
2

Acknowledgements

First of all, I would like to thank my family, my gilfriend Maria and my
friends for all of their love and support during these years. I would
also like to thank all of the people in my lab for their contribution to
my professional growth and for the very good time we spent together.
A special acknowledgment to the guys of the NP team: Fabio, Gianni
and Domenico. It has been great to work together. Thanks to my tutors
prof. Franco Russo, prof. Stefano Giordano and Dr. Gregorio Procissi
for their help and support. A special thought for Gregorio, for all of the
good time we spent together while travelling abroad and working in the
lab. A special acknowledgement also to Nicola: working with him was
a great opportunity, as well as a pleasure. I would also like to thank all
of people I worked with at the NEC Laboratories of Heidelberg: Felipe,
Saverio and many others. They played a big role in my professional and
human growth. Finally, I want to thank all of the colleagues I worked
with (and had fun with) during the European projects I participated to.
It has been a wonderful experience that I am sure I will miss.

Sommario

Con la tendenza di Internet a diventare sempre di più un’infrastruttura
critica e con l’aumento continuo del volume di traffico che essa è chia-
mata a trasportare (accompagnato da una crescita parallela delle minacce
alla sicurezza informatica), l’attività di monitoraggio sta assumendo sem-
pre di più un ruolo cruciale per garantire il funzionamento della rete e
dei servizi che su di essa si basano. D’altra parte, la quantità di dati da
analizzare e l’estrema varietà delle analisi da svolgere, unite alla neces-
sità di correlare informazioni derivate da sorgenti differenti e alle lim-
itazioni imposte dalla legislazione per la protezione della privacy, ren-
dono il monitoraggio un’attività estremamente difficoltosa dal punto di
vista tecnico. In questa tesi esploreremo diversi filoni di ricerca, acco-
munati dalla loro importanza per le attività di network monitoring. Per
prima cosa, presenteremo tecniche di network tomography, che permet-
tono di ottenere una stima dello stato interno della rete applicando tec-
niche di inferenza statistica a partire da osservazioni ricavate dai nodi
periferici, senza alcuna cooperazione da parte degli apparati interni. Suc-
cessivamente, presenteremo algoritmi e strutture dati originali per velo-
cizzare alcune funzioni di packet processing particolarmente impegna-
tive dal punto di vista computazionale, come l’ispezione di tutto il con-
tenuto informativo del pacchetto. Ci sposteremo poi su tematiche più ar-
chitetturali e mostreremo come processori general purpose e dispositivi
dedicati possano essere usati in maniera complementari per progettare
sistemi di monitoring e testing che offrono un compromesso ottimale tra
flessibilità d’uso e prestazioni. Inoltre, mostreremo come il potenziale
dell’hardware moderno (che è caratterizzato da un alto grado di paral-
lelismo) possa essere sfruttato per migliorare le prestazioni del software
di monitoraggio della rete. Infine, affronteremo alcuni argomenti rela-
tivi ai sistemi distribuiti di monitoraggio e proporremo delle soluzioni
originali per costruire degli overlay di sonde che possano correlare i dati
osservati in maniera efficiente, evitando cosı̀ il collo di bottiglia in cui si
incorre nelle architetture caratterizzate da un singolo collettore.

Abstract

As internet is becoming a critical infrastructure and the amount of traf-
fic carried on it is rapidly growing, along with the potential security
threats, monitoring is becoming more and more a crucial activity to the
correct operations of networks and network based services. However,
the amount of data to be analyzed, the extreme variety of the analy-
sis to be supported, along with the need to correlate data from differ-
ent sources and the limitations imposed by the privacy legislation make
network monitoring a difficult and challenging task. In this work we ex-
plore several research fields, all of them related to network monitoring
and testing. First of all, we propose tomographic techniques, that allow
to infer the internal state of the network by applying statistical analy-
sis to measurements carried out by the end–hosts, with no cooperation
from the internal nodes. We then illustrate novel algorithms and data
structures for speeding up expensive packet processing tasks, such as
deep packet inspection. Subsequently, we move on to architectural topics
and show how general purpose processors and special purpose devices
can complement each other in order to build monitoring and testing sys-
tems offering an optimal trade–off between flexibility and performance.
Moreover, we also investigate on the potential that the modern commod-
ity hardware (which is highly parallel) provides and on how this can be
leveraged for the benefit of the network monitoring applications. Finally,
we delve into the topic of distributed monitoring and propose novel solu-
tions for building an overlay of monitoring probes which can efficiently
correlate the observed data, thus avoiding the scalability bottleneck of an
architecture based on a single collection point.

iv

Contents

Introduction 1

1 Network tomography and active measurements 5
1.1 Noise Reduction Techniques for Network Topology Discovery 6

1.1.1 Topology Reconstruction by Hierarchical Clustering 6
1.1.2 The Packet Sandwich Similarity Metric 7
1.1.3 Noise analysis in packet sandwich measurements 8

1.1.3.1 Simulation layout for the characterization of the in-
terarrival time . 8

1.1.3.2 Models of Noise Patterns 9
1.1.3.3 Analysis of collected sample patterns 10

1.1.4 A noise reduction algorithm for packet sandwich probes 12
1.1.5 Performance Evaluation . 14

1.2 PingPair: a Lightweight Tool for Measurement Noise Free Path Ca-
pacity Estimation . 15
1.2.1 Queueing delay estimation . 16
1.2.2 Analysis of the measurement noise 18
1.2.3 Measurements Selective Filtering 20
1.2.4 Performance evaluation through NS2 simulations 22
1.2.5 Internet Measurements . 23
1.2.6 Field Trial Measurements . 23

1.3 A Decision Theoretic Approach to Network Topology Discovery 24
1.3.1 The decision theoretic approach 25
1.3.2 Noise reduction . 28
1.3.3 Computational complexity . 29
1.3.4 Performance evaluation . 30

1.4 Network Topology Discovery through Self-Constrained Decisions . . . 32
1.4.1 Self-constrained topology reconstruction 33
1.4.2 Theoretical Limitations . 35
1.4.3 Algorithms evaluation . 36

1.4.3.1 Measuring Graph similarity 36
1.4.3.2 Results . 37

1.5 Merging Spanning Trees in Tomographic Network Topology Discovery 38
1.5.1 The merging algorithm . 39

v

CONTENTS

1.5.2 Computational Complexity . 40
1.5.3 Performance Evaluation . 42

1.6 End–to–End Inference of Link Level Queueing Delay Distribution and
Variance . 42
1.6.1 Tomographic techniques for queueing delay distribution esti-

mation . 45
1.6.2 Tomographic techniques for delay variance estimation 47
1.6.3 Delay distribution inference over tree–like topologies 47
1.6.4 Link level delay distribution inference 49
1.6.5 Numerical issues about deconvolution of probability distribu-

tions . 51
1.6.6 Link level delay variance estimation 52
1.6.7 Simulation results: delay distribution estimation 53
1.6.8 Simulation results: delay variance estimation 56

1.7 End–to–End Inference of Link Level Queueing Delay Statistic through
cumulant estimation . 58
1.7.1 Link level delay distribution inference 58
1.7.2 Heuristic solution . 61
1.7.3 Experimental results . 62

2 Algorithms and data structures for high performance network processing 67
2.1 An Improved DFA construction for fast and efficient regular expres-

sion matching . 69
2.1.1 Related Work . 70
2.1.2 Delta Finite Automaton . 71

2.1.2.1 Motivation through an example 73
2.1.2.2 Definition of our automaton 73
2.1.2.3 Construction . 74
2.1.2.4 Lookup . 75

2.1.3 Application to H-cFA and XFA 76
2.1.4 Compressing char-state pairs . 78

2.1.4.1 Indirection Table Compression 79
2.1.5 Applying C-S to our automaton 80
2.1.6 Implementation . 81
2.1.7 Experimental Results . 82

2.2 Second order delta enconding to improve DFA efficiency 85
2.2.1 The Main idea . 86

2.2.1.1 Lookup . 86
2.2.1.2 Construction . 88

2.2.2 Experimental Results . 90
2.3 Homomorphic encoding of DFAs . 92

2.3.1 Related works . 92
2.3.2 An efficient representation for DFAs 93
2.3.3 The look for an effective Homomorphism 94
2.3.4 Optimizations . 96

2.3.4.1 Permutation for LPM 96
2.3.4.2 Bitmap trees . 97

vi

CONTENTS

2.3.4.3 The overall algorithm 98
2.3.5 The k-step DFA . 99
2.3.6 Results . 100

2.4 Sampling techniques to accelerate regular expression matching 102
2.4.1 Sampling DFAs . 103

2.4.1.1 Motivation . 103
2.4.1.2 A Motivating Example 103
2.4.1.3 Taxonomy of DFA Sampling 104

2.4.2 Regex sampling rules . 104
2.4.2.1 Regex rewriting . 105

2.4.3 Constant Period Sampling . 106
2.4.3.1 First stage: Sampled DFA 106
2.4.3.2 Second stage: Reverse DFA 107
2.4.3.3 Possible implementations 112
2.4.3.4 Dealing with DoS attacks 112

2.4.4 Experimental Results . 112
2.5 Enhancing Counting Bloom Filters through Huffman-Coded Multi-

Layer Structures . 117
2.5.1 Background on Bloom Filters . 118
2.5.2 Theoretical Results . 120
2.5.3 Huffman Counting Bloom Filters 123

2.5.3.1 Size . 124
2.5.3.2 Lookup . 125
2.5.3.3 Insertion/Deletion . 125

2.5.4 MultiLayer Compressed CBF . 126
2.5.4.1 Complexity and properties 126
2.5.4.2 Size . 128

2.5.5 Comparative Analysis . 130
2.6 iBF: Indexed Bloom Filter . 133

2.6.1 The main idea . 134
2.6.2 iBF Construction . 135

2.6.2.1 First step: determine bits to mark 135
2.6.2.2 Second step: build the index 138
2.6.2.3 Check and restart . 139

2.6.3 Considerations on iBF . 139
2.6.4 Experimental Evaluation . 140

3 Network monitoring and testing architectures on hybrid platforms 143
3.1 BRUNO: An Accurate Gigabit Traffic Generator 145

3.1.1 BRUNO . 147
3.1.2 BRUTE-NP communication . 151
3.1.3 Performance Evaluation . 154
3.1.4 Experimental results . 159

3.2 A Network Processor based architecture for multi gigabit traffic analysis165
3.2.1 The System Architecture . 167
3.2.2 Network Processor Side . 169

3.2.2.1 Microengines Application Scheme 170

vii

CONTENTS

3.2.2.2 XScale Application Scheme 171
3.2.3 Host PC side . 171
3.2.4 Cluster PCs side . 172

3.2.4.1 Kernel space: the compatibility abstraction layer . . . 172
3.2.4.2 User Space – the user interface 173

3.2.5 Timestamping . 173
3.2.5.1 Time Budget . 174
3.2.5.2 The Accuracy of Timestamps 175
3.2.5.3 Timestamp synchronization 176

3.2.6 Packet Capturing Evaluation . 178
3.2.6.1 Experimental setup . 178
3.2.6.2 Experimental runs . 178

3.2.7 Timestamp accuracy . 179
3.2.7.1 Testbed description . 180
3.2.7.2 Finer grain performance analysis 182

3.3 Towards smarter probes: in-network traffic capturing and processing . 184
3.3.1 Introduction . 185

3.3.1.1 Why smart probes? . 185
3.3.1.2 The analyze while capturing paradigm 187

3.3.2 The probe architecture at-a-glance 188
3.3.3 Probe Data Plane . 190

3.3.3.1 Capturing Unit . 190
3.3.3.2 Processing Units . 190
3.3.3.3 Data Plane Performance 191

3.3.4 Probe Control Plane . 191
3.3.5 On–The–Probe Advanced Processing Techniques 192
3.3.6 Actual Monitoring Applications: A Practical Use Case 193

3.4 Design and Development of an OpenFlow Compliant Smart Gigabit
Switch . 193
3.4.1 Related Works . 195
3.4.2 NetFPGA board . 195
3.4.3 Pattern Matching Engine as a Gigabit Switch 196
3.4.4 The Smart Switch . 197

3.4.4.1 Software Plane . 197
3.4.4.2 Hardware Plane . 197

3.4.5 Load Balancing . 199
3.4.6 Device Utilization . 199
3.4.7 Experimental Results . 201

3.4.7.1 Load Balancing . 201
3.4.7.2 Throughput . 202

4 High performance packet processing on general purpose parallel platforms203
4.1 Multi–Gigabit Packet Capturing With Multi–Core Commodity Hard-

ware . 204
4.1.1 State–of–the–Art in software–based packet generation 205
4.1.2 The generator architecture . 208

4.1.2.1 Traffic Transmitters: PF DIRECT 208

viii

CONTENTS

4.1.2.2 Traffic Engines . 210
4.1.2.3 Traffic Models . 211

4.1.3 Experimental results . 211
4.1.3.1 Up to 1 Gb/s rates . 212
4.1.3.2 Towards 10 Gb/s rates 215

4.2 Flexible High Performance Traffic Generation on Commodity Multi–
Core Platforms . 216
4.2.1 State–of–the–Art in packet capturing 216
4.2.2 PFQ capturing engine . 217

4.2.2.1 Building blocks . 217
4.2.3 Experimental results . 219

4.2.3.1 One–thread setup . 221
4.2.3.2 Parallel setup . 221
4.2.3.3 Multiple capture sockets 222

4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic
Monitoring and Analysis . 224
4.3.1 Related Work . 225
4.3.2 Base System . 225

4.3.2.1 Blocks and Scheduling 227
4.3.2.2 Gates and Messages . 227
4.3.2.3 Dynamic Reconfiguration 228
4.3.2.4 Multi-Node Blockmon 229

4.3.3 Performance Mechanisms . 229
4.3.3.1 Thread Pools and CPU Pinning 229
4.3.3.2 Lockless Queues . 229
4.3.3.3 Batch Allocation . 231
4.3.3.4 Efficient Message Transfer 231
4.3.3.5 Pluggable Schedulers 231
4.3.3.6 Fast Capture Blocks . 231

4.3.4 Blocks and Libraries . 231
4.3.4.1 Hash Library . 232
4.3.4.2 Probabilistic Data Structures Library 232
4.3.4.3 Abrupt Change Detection Library 232

4.3.5 Evaluation . 232
4.3.5.1 Experimental Setup . 233
4.3.5.2 Performance Experiments 233

4.3.6 Applications . 236
4.3.6.1 Heavy Hitter Statistics 236
4.3.6.2 SYN Flooding Detection 239

5 Scalable coordination and correlation architectures for distributed moni-
toring systems 243
5.1 Crosstalk: A Scalable Cross-Protocol Monitoring System for Anomaly

Detection . 244
5.1.1 Crosstalk’s Architecture . 244

5.1.1.1 Distributed Aggregation Trees 245
5.1.1.2 Probabilistic Data Structures 245

ix

CONTENTS

5.1.1.3 Backtracking . 246
5.1.2 Application: VoIP Attack Detection 247
5.1.3 Evaluation . 249

5.1.3.1 Setup . 249
5.1.3.2 Performance Analysis 250
5.1.3.3 Real-World Performance 253

5.2 DECON: Decentralized Coordination for Large-Scale Flow Monitoring 253
5.3 Related Work . 254

5.3.1 DECON’s Architecture . 255
5.3.1.1 Batch Optimization . 257

5.3.2 Evaluation . 257
5.3.2.1 Simulation Setup . 257
5.3.2.2 Simulations . 258
5.3.2.3 Monitoring Probe . 260

5.4 The LogLog Counting Reversible Sketch: a Distributed Architecture
for Detecting Anomalies in Backbone Networks 262
5.4.1 Theoretical Background . 265

5.4.1.1 LogLog counting . 265
5.4.1.2 Reversible Sketch . 266

5.4.2 System Architecture . 267
5.4.2.1 System Input . 268
5.4.2.2 LogLog counting Sketch module 268
5.4.2.3 Detection Phase . 269
5.4.2.4 Identification phase . 270

5.4.3 Experimental results . 270

Conclusions 273

References 291

x

List of Figures

1.1 Working principle of a packet sandwich probe 7
1.2 Simulation scenario for the characterization of packet sandwich inter-

arrival times. 9
1.3 Interarrival time histogram with independence signature. 11
1.4 Interarrival time histogram with quantification signature. 12
1.5 Time intervals involved in the derivation of equation (1.8). 13
1.6 Absolute estimation error vs. K . 13
1.7 Experimental testbed for measurement noise characterization 19

1.8 Normal probability associated to 600 experimental samples of σ (n)
k . . 19

1.9 Histogram of the dispersion values of 500 probes sent to public ad-
dress 66.249.93.147 . 21

1.10 Histogram of the dispersion selected by algorithm 1 among the sam-
ples whose distribution is shown in figure 1.9 21

1.11 Estimates produced by Capprobe and PingPair in several network
scenarios. 22

1.12 Topology of our experimental testbed. 24
1.13 35 nodes topology generated by BRITE and its reconstruction by an

ideal hierarchical clustering algorithm (dashed links)). 31
1.14 45 nodes topology generated by BRITE. 32
1.15 Realistic topology (continuous lines) composed by 25 nodes and its re-

construction by our technique (dashed links represents the differences). 33
1.16 Topological dependencies. 33
1.17 Superset and subset constraints. 35
1.18 Topology which causes the failure of the tree merging algorithm: the

dark node is assigned multiple labels. 41
1.19 A sample topology generated by BRITE (Waxman model). 43
1.20 A sample topology generated by BRITE (Barabasi-Albert model). . . . 44
1.21 End–to–end and logical link level delays experienced by a packet pair

probe. 46
1.22 Generic single-source multiple-receivers logical tree. 49
1.23 Working principle of the packet pair probes used for link-level delay

estimation. 50
1.24 Virtual logic tree corresponding to an end–to–end path. 51

xi

LIST OF FIGURES

1.25 Estimated and real queueing delay distributions on a four links net-
work path with exponentially distributed simulated delay. 53

1.26 Estimated and real queueing delay distributions on a four links net-
work path simulated using ns2. 54

1.27 Estimated and real queueing delay distributions on a four links net-
work path simulated using ns2. 55

1.28 Confidence intervals of the estimated delay variances corresponding
to each link of a 6 hop network path in the case of exponentially dis-
tributed delay. The squares correspond with the actual variance value. 56

1.29 Confidence intervals of the estimated delay variances corresponding
to each link of a 6 hop network path in the case of Erlang distributed
delay. The squares correspond to the actual variance value. 57

1.30 Confidence intervals of the estimated delay variances corresponding
to each link of a 5 hop network path crossed by TCP traffic and simu-
lated over ns2. The squares correspond to the actual variance values. . 57

1.31 Estimated and actual cumulants of link delay distribution in a Matlab
simulated model based scenario. 63

1.32 Estimated and actual cumulants of link delay distribution in a light-
load scenario. 64

1.33 Estimated and actual cumulants of link delay distribution in a heavy-
load scenario. 64

2.1 Automata recognizing (a+),(b+c) and (c∗d+). 72
2.2 δFA internals: a lookup example. 76
2.3 Automata recognizing .*ab[ˆa]*c and .*def 77
2.4 Distribution of the number of bits used for a relative identifier with

our compression scheme for standard rule sets. 79
2.5 Mean number of memory accesses for δFA, BEC-CRO and D2FA for

different datasets. 84
2.6 Comparison of speed performance and space requirements for the dif-

ferent algorithms. 85
2.7 Automata recognizing (a+), (b+c) and (c∗d+). 87
2.8 δ2FA internals: a lookup example. 88
2.9 Schematic view of the problem. Same color means same properties. If

the properties of S3 are set temporary, the ones in S1 can be avoided. . 88
2.10 Mean number of memory accesses. 91
2.11 A very simple DFA . 94
2.12 An example of Co-occurrence Permutation for 3-bit characters 97
2.13 Ratio of transitions stored when Co-occurrence Permutation is used com-

pared with the minimum number of transitions. The ratio is com-
puted with respect to the case when no permutation is adopted. 98

2.14 An example of state construction in h-DFA for 3-bit characters. The
numbers on the leaves are pointers to next states 99

2.15 Mean number of memory accesses per character. 101

xii

LIST OF FIGURES

2.16 Examples of sampling with θ = 2. The regex to match is ab. ∗ cd, the
sampled one is [ab]. ∗ [cd] and the text consists of 16 bytes. Arrows
point to observed chars. Sampling performs 12 memory accesses in
case of a real match(b) or false alarm(c) or even 8 in the average non-
matching case(a). In (c) the striked arrow point to the non-matching
char. 102

2.17 Example of the finite automata needed for sampling (only the forward
transitions are shown for readability): (a) is the standard DFA, (b) is
the sampled one (with θ = 2) and (c) is the reverse DFA. 108

2.18 Example of a sampled DFA for regular expression: abc ∗ d. Only some
edges are shown. 111

2.19 Using an overall reverse DFA (one) or one DFA per regex subset (all). . 113
2.20 Bit rate with a standard DFA (θ = 1) and sampled DFAs (θ = 2, 3, 4). . 115
2.21 Bit rate with k-DFA and our DFAs. 115
2.22 False alarms, length and range for each signature. 116
2.23 Bounds comparison for n = 1000, k = 10 and m = nk/ ln 2. P is the

actual P(φ ≥ j), Pb is the well known (2.6) while P′b is that provided by
the theorem 1. In the smaller graph, a zoom on the contour of j = 2.
P′b is always tighter than Pb. 122

2.24 A Huffman tree for the CBF bin counters. 123
2.25 Example of fast lookup through popcount. 124
2.26 An example of HCBF. 125
2.27 ML-CCBF example. The resulting Huffman code forφ is 1110. 127
2.28 Size comparison among ML-CCBF, CBF and m× Entropy. 129
2.29 Size comparison between CBF and ML-CCBF (for fixed and variable

number of bits m0 for layer 0) . 130
2.30 The desired data structure . 135
2.31 Probability of good BFs as a function ofα and k. 137
2.32 Overall scheme. Here the parameters ε = 2 and m = 16 are quite

over-dimensioned in order to better illustrate the idea. 137
2.33 The bipartite matching problem. 137
2.34 Minimal m for the construction of iBF 140
2.35 Ratio of m over minimal m for the construction of iBF 141
2.36 Number of bits per element m/n. 141
2.37 False positives in a iBF for n = 100, 400, 1000, 2000. 141

3.1 Architecture of BRUTE. 146
3.2 Architecture of BRUNO. 148
3.3 Structure of a packet request (PR). 149
3.4 A flow structure. 150
3.5 Address Translation. 151
3.6 DRAM window circular buffer. 153
3.7 Schematic view of BRUNO as a system 156
3.8 Energy of the impulse response of G(z). 158
3.9 Estimated Power Spectral Density of ω(n). 158
3.10 Square absolute frequency response of G(z). 159
3.11 CBR traffic: Brute vs Bruno. 160

xiii

LIST OF FIGURES

3.12 Bar chart of interarrival times of a Poisson traffic (λ = 0.03). 161
3.13 PAB traffic profile. 162
3.14 Variance time of generated PAB traffic. 163
3.15 Interarrival times of a 40s SIP call. 164
3.16 Conceptual scheme of the monitoring system. 168
3.17 Functional scheme of the entire NP-side application. 170
3.18 Batch frame and packet digest specification. 171
3.19 Hardware packet receiving chain. 174
3.20 Histogram of measured Tproc. Inequality (3.16) is satisfied for 4 threads

(Tproc < 816cc) and 8 threads (Tproc < 1632cc). 176
3.21 Synchronization mechanism. 177
3.22 (a): Packets rawly saved to trace file. (b): Packets captured from the

mouse flow. 179
3.23 Distributions of measurement errors of interarrival times: comparison

between our system and an ordinary PC. 181
3.24 Comparison between our system and an ordinary PC in terms of mean

value of the absolute measurement error. 181
3.25 Mean absolute error of timestamps without interfering flows. 182
3.26 a) Timestamps with variable interfering flows; b) Timestamps with

fixed interfering flows. 183
3.27 Timestamps with variable packet length. 183
3.28 Timestamps with MMPP traffic. 184
3.29 Overall probe architecture . 189
3.30 Core module of the Smart Switch. 198
3.31 A row in the BRAM implementation of the Cache. 199
3.32 Histogram of distribution of destination IP addresses with the 6 less

significant bits fixed. 200
3.33 Histogram of distribution of destination IP addresses with the 8 less

significant bits fixed. 200
3.34 Throughput of the smart switch with growing rates of the traffic of

interest. 202

4.1 Traffic generator architecture . 209
4.2 CBR traffic – Rate: 100 kpkt/s. 213
4.3 CBR traffic – Increasing rates . 213
4.4 Possion process – Rate: 100 Kpkt/s. 213
4.5 Poisson process – Rate: 1 Mpkt/s. 213
4.6 Poisson processes generated with different number of HW queues

(transmitters) . 214
4.7 Composition of three Poisson processes 214
4.8 Poisson process – Rate: 4 Mpkt/s. 214
4.9 Traffic packet rate vs. packet size . 215
4.10 Traffic bitrate vs. packet size . 215
4.11 PFQ scheme at–a–glance . 218
4.12 One capturing thread . 222
4.13 Throughput vs. Packet Size . 222
4.14 Completely parallel processing paths . 223

xiv

LIST OF FIGURES

4.15 Completely parallel processing paths: CPU consumption 223
4.16 Load balancing across a variable number of user–space threads 223
4.17 Copying traffic to a variable number of user–space threads 223
4.18 Blockmon sample composition. 226
4.19 Simple composition showing block scheduling types. 227
4.20 Excerpt from a composition specifying mappings of blocks to thread

pools, CPU pinnings and thread-safeness. 230
4.21 Sample of provided blocks. 230
4.22 Blockmon packet capture and counter compositions. 234
4.23 Effect of batch allocation and lockless queues optimizations and of the

thread-safe mechanism. 235
4.24 Scaling performance with a parallelized composition. 236
4.25 Performance for different packet sizes using the parallelized compo-

sition and the batching optimization. 237
4.26 Overhead introduced by the Blockmon architecture. 237
4.27 Comparison of the various capture blocks provided in Blockmon. . . . 238
4.28 Accelerating a Blockmon composition using specialized hardware. . . 239
4.29 Effects of the move optimization. 240
4.30 Software- and hardware-based compositions for the per-flow statistics

application. 240
4.31 Performance of the per-flow statistics application. 241
4.32 SYN flooding detection parallel composition (2 counters). 241
4.33 Performance of the SYN flood detection application. 242

5.1 Example of a Distributed Aggregation Tree built on top of Chord with
node N24 as the root. 245

5.2 Example of backtracking. Each set of squares represents a Bloom fil-
ter. A dark Bloom filter represents stored state, while a white one
information sent with the backtracking request. Here the matching is
done using a bitwise “AND”. 247

5.3 Measured and expected missed detection probabilities for different
call rates and BF with sizes of 12,000 and 36,000 bits. 251

5.4 Rate between backtracking and report messages in DATs made up of
100 and 1,000 probes with a varying anomaly rate. 252

5.5 Crosstalk’s performance when using real-world data from a large VoIP
provider. Each row represents a different 30-minute time sample in
our data set. 254

5.6 DECON’s architecture. Monitoring probes (P) send reports about flows
to the rendez-vous overlay, which then decides which of the probes
seeing a flow should monitor it. 255

5.7 Number of total flows actually monitored without coordination and
using two different coordination strategies. 259

5.8 Number of times a single flow is monitored without coordination. . . . 260
5.9 Load-balancing histogram showing the number of flows each probe

has to monitor with and without coordination. 261
5.10 99-percentile of the number of monitored flows per probe for a vary-

ing number of probes and a fixed load of 100K flows/sec. 262

xv

LIST OF FIGURES

5.11 Average number of messages per probe. 263
5.12 Ratio between the number of missed flows with batching and the

number of missed flows without batching. 264
5.13 Network topology used to test the probe’s performance. G stands for

generator, P for probe, and C for counter. 264
5.14 Click monitoring probe throughput performance while monitoring

15,000 flows of different packet sizes. 265
5.15 Modular Hashing . 267
5.16 System Architecture . 268

xvi

List of Tables

1.1 Metric estimation error (µsec). Metric value: 1ms (10 links), 0.54ms (5
links) . 15

1.2 Path capacity estimates provided by Capprobe and PingPair during
experimental tests over the Internet. The estimates are expressed in
Mbps. The actual path capacity is 10 Mbps (except for www.ecole-
francaise.it, whose capacity is 2 Mbps) 23

1.3 Path capacity estimates provided by Capprobe in field-trial experi-
ments. The estimates are expressed in Mbps while the actual value of
the path capacity is 10 Mbps . 24

1.4 Ambiguous LCCs in different network scenarios 28
1.5 Euclidean distance of spectra between reconstructed graph and origi-

nal topology for a regular technique (∆md) and the self-constrained ap-
proach (∆sc). The exponent w indicates the similarity score of weighted
laplacian matrices. 38

1.6 Number of multiple label nodes generated by our algorithm. 43
1.7 Mean queueing delay estimates in a scenario with exponential queue-

ing delay and 4 congested links . 64
1.8 Mean queueing delay estimates in a scenario with exponential queue-

ing delay and 8 congested links . 65

2.1 Percentage of states reached by edges with the same one label (p1char),
C-S compression (rcomp), average number of scratchpad accesses per
lookup (ηacc) and indirection-table size (TS). 78

2.2 Characteristics of the rule sets used for evaluation. 81
2.3 Compression of the different algorithms in terms of transitions and

memory. 83
2.4 Number of transitions and memory compression by applying δFA+C-

S to XFA. 84
2.5 Simple vs. Optimal approach: ratio of deleted and temporary transi-

tions. 90
2.6 Compression of the different algorithms. In (b) the results for δFA and

δ2FA include char-state compression. 91
2.7 Compression of the different 1-step algorithms in terms of transitions

and memory. 100

xvii

LIST OF TABLES

2.8 Memory and transition compression (%) for 2 and 3-step h-DFA +
Char-State compression . 101

2.9 Number of Clock Cycles for Operations in the IXP2800 131
2.10 Performance Algorithms Comparison 132
2.11 Terms and notation used through the work 135

3.1 Mean times for each operation in clock cycles. 155
3.2 Interdeparture time variation reduction achieved by the correction

mechanism. 165
3.3 Comparison in resource utilization. 201
3.4 Load balancing feature. 201

5.1 Experimental Results . 272

xviii

Introduction

In the last years internet is evolving more and more towards a critical infrastructure,
whose availability is crucial to a number of economic activities. At the same time,
the amount of data moving through the network is rapidly increasing and so are the
capacities of the internal links. Legitimate traffic, however, is not the only evolving
player in the last years: cyberthreats and malicious activities are also exploiting the
pervasive and open nature of the network. Armies of infected hosts controlled by
technically skilled players can be used in order to throw large-scale attacks against
which can cripple important activities and cause huge money loss. Moreover, as
more and more heterogeneous devices are being connected to the internet, new kind
of attacks and exploits are surfacing: skilled hackers are able to re–route and high-
jack phone calls performed by VoIP–enabled devices, while more and more attacks
are targeting mobile terminals connected to the network through mobile broadband
access networks. In this evolving scenario, the ability of constantly monitoring the
traffic in order to promptly detect and face security threats and malfunctions in cru-
cial to the correct operation of networks and network–based services. This purpose
clashes with a number of both technological and operational issues: on one hand,
the growing amount of data makes traffic analysis challenging while, on the other,
the amount of available information is often limited. In particular, administrative
limitations can restrict the position and the scope of the links to be monitored, while
legislation imposes limitations on the information that can be collected and exported
for monitoring purposes. In this work, we contribute to this crucial technological
challenge by exploring several topics in the vast field of network monitoring, rang-
ing from inference algorithms to software architectures for packet processing.

The first topic to be addressed is network tomography: such generic definition
covers in fact a large variety of techniques which try to obtain information about the
state of the network (be it either its topology or the state of congestion of its inter-
nal links) by applying statistical inference to measurements which are performed by
the end nodes. The main advantage of such an approach is that it does not require
cooperation from internal nodes, thus being able to cross the administrative borders
of the networks; furthermore it does not require any high performance probes to be
deployed at the core links. In this field, our main contribution is a set of techniques
which try to infer the network internal topology from edge measurements, by lever-
aging the a–priori knowledge of the possible link capacities (since the link speeds
usually belong to a well known standard set, this is a well–grounded assumption).
In addition, novel solutions to infer the link congestion state over an end–to–end

1

LIST OF TABLES

path are proposed.
The second topic that we address in this work is the development of novel algo-

rithms and data structures for efficient traffic analysis. Due to the very strict timing
requirements which characterize packet by packet computations, proper solutions
are crucial to the performance of network monitoring devices. Indeed, the key fac-
tor for obtaining good results turns out to be the efficient exploitation of the mem-
ory hierarchy that characterizes most of the network processing devices, be them
special–purpose embedded systems or general purpose processors: layered data
structures which allow to split information on different levels (with different access
frequency) can leverage at best such architectures, bringing to huge performance
gains. In particular, our main contributions concern deep packet inspection algo-
rithms and Bloom filters (a compressed data–set representation which is used in a
number of networking applications). As for the former, we design a novel compres-
sion technique for deterministic finite automata which achieves an excellent trade–
off between memory footprint and speed, while, in the latter case, we propose more
efficient versions of the well-known data structure based on a layered implementa-
tion.

Subsequently, we shift from algorithmic research to architectural issues. In par-
ticular, we investigate how special purpose architectures for network processing can
be effectively leveraged in order to compose hybrid systems, where the flexibility
of software can be complemented by the performance of dedicated devices. In our
work we use both network processors and the recently released Netfpga platform.
We propose two extensible and modular architectures built around a network pro-
cessor and its host PC: the first one allows high performance and precise traffic gen-
eration while the second one uses a network processor to act as a packet demulti-
plexer towards a set of software–based sensors. The latter, in particular, is then used
in the framework of a more involved ”smart probe” architecture whose purpose is to
perform complex application–aware traffic analysis already at the capturing stage.
In addition, we also propose a ”smart–switch” architecture, based on a Netfpga plat-
form, which adopts and extends the well–known Openflow switching paradigm.

We then focus on packet processing and network monitoring architectures wholly
based on commodity hardware. The leading principle of our research in this field is
to investigate how the potential of modern platforms (whose distinctive feature is
an ever increasing degree if parallelism) can be leveraged by networking software.
Our contributions encompass a novel packet capturing engine (named PFQ) and a
synthetic traffic generator; both of them achieve higher performance than their com-
petitors and good scalability as the number of available cores increases. On top of
our packet–capturing engine we also develop a full–fledged middleware for sup-
porting modular monitoring applications, which can be easily composed as a set of
interconnected and reusable blocks.

Finally, we delve into the topic of distributed monitoring. With the emergence
of botnets and distributed cyberhtreats, this research field has become of paramount
importance information security. Indeed, the traditional approach to such problem
(a set of distributed probes exporting data to a central collector) does not offer the
required scalability and flexibility when it comes to correlating the huge amount of
information stemming from the traffic monitoring activities; moreover, data export
is strictly limited by privacy–related regulations. In order to address such issue, we

2

LIST OF TABLES

propose a distributed protocol for inter–protocol correlation and a scalable infras-
tructure for coordinating an overlay of probes, so as to get rid of duplicated measure-
ments and to optimize resource utilization and illustrate the functioning principle of
a duplicate–avoiding aggregation scheme.

3

4

Chapter 1

Network tomography and active
measurements

The term network tomography is in fact used as a large umbrella covering a number
of techniques whose common goal is to infer information about the internal state
of the network with no support and cooperation from the internal nodes. These
techniques usually entail collecting a large set of samples from active measurements
(be them delay values or inter-arrival values) and applying statistical inference tech-
niques. The advantages of such an approach are many–fold:

• it is possible to gather information about a whole network path, whatever the
administrative domains the path crosses.

• there is no need to deploy special–purpose probes to monitor the traffic.

• the performance requirements are much looser with respect to passive network
monitoring.

Tomographic techniques have been proposed to infer several details about the inter-
nals of the network: network topology, packet loss rate, delay distribution, capacity
of the bottleneck link on a path or available bandwidth. Overall, the techniques that
we propose in this chapter target most of such variables. In particular, in section 1.1
we address the topology discovery problem and we enhance the so–called packet
sandwich technique by proposing a selective filtering algorithm that allows to dis-
card the samples whose information content has been corrupted by the interaction
between probing traffic and regular traffic. In section 1.2 we leverage a similar tech-
nique in order to build a reliable tool that estimates the capacity of the bottleneck
link between two network hosts. In section 1.3 we introduce a novel and different
approach for the problem of topology discovery. In particular, we leverage the addi-
tional information coming from the a–priori knowledge of the possible link capacity
values in order to transform the inference problem into a decision problem with a
well defined set of possible hypotheses. In section 1.4 we develop further such a

5

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

novel approach by observing that the requirement to keep different decision consis-
tent among themselves can be used in order to reduce the hypotheses space, thus
improving the reliability of the subsequent decisions. In section 1.5 we introduce
another improvement of the proposed technique, by specifying an algorithm that al-
lows to merge the topologies inferred by multiple vantage points in order to obtain
a global view of the network. Subsequently we shift from the topology discovery
problem to the inference of delay statistics and loss rates on the links of an end–to–
end network path. In particular, in section 1.6 we show how most of the traditional
tomographic inference techniques, which had been designed to be used in a point–
to–multipoint layout, can be adapted to work on a single network path. Finally, in
section 1.7 we face again the problem of inferring the delay on the links of a network
path by adopting a different perspective and working in the frequency domain.

1.1 Noise Reduction Techniques for Network Topology
Discovery

The concept of network topology discovery groups all the techniques that allow,
by any means, to obtain the knowledge of the internal topology of a communi-
cation network. This kind of knowledge can be useful in several fields, such as
troubleshooting, SLA verification, topology-aware (multicast) applications, network
management, routing decisions and so forth. The most widespread techniques for
topology discovery are those based on the Traceroute tool, on OSPF messages listen-
ing and on SNMP queries and need a certain degree of cooperation from the interior
routers which is not always available. This limitation can be overcome through net-
work tomography techniques that extract the information on the internal state of a
network from end-to-end measurements, with no need for cooperation of internal
routers and, therefore, can be applied in nearly every scenario. Due to the inter-
ference of regular traffic with probe packets, the measurements obtained by active
probing are generally affected by noise that can lead to a wrong topology recon-
struction. In this section, we present a novel approach to analyze typical noise pat-
terns based on the extension of the model of [1, 2] originally proposed for packet
trains. Moreover, we address the issue of noise reduction by developing two origi-
nal model-free noise reduction algorithms whose performance is evaluated through
ns2 simulations.

1.1.1 Topology Reconstruction by Hierarchical Clustering

In recent years, several tomographic techniques for network topology discovery
have been proposed, though, in most cases, they are based on a common theoret-
ical framework which has been formalized in [3]. Generally speaking, a host of the
network sends probing packets to a large set of hosts located across the network
to perform some kind of end-to-end measurement. By off-line processing of such
data, a tree topology which represents the logical structure of the network is built.
The root of the tree represents the sender of the probe packets, the leaves are the
receivers, while the internal nodes of the tree are the so called branching points, as

6

1.1 Noise Reduction Techniques for Network Topology Discovery

Figure 1.1: Working principle of a packet sandwich probe

they represent the locations where the paths from the sender to the receivers split.
The inference of the tree can be accomplished by processing end-to-end measures
through specific algorithms, like those proposed in [4, 5]. In addition, the solution
proposed in [6] can be used to merge trees with different roots in order to achieve a
more complete view of the network topology.

Most of the proposed algorithms are based on the so called similarity metrics, that
is the end-to-end measurable variables that indicate the length of the shared path
between the sender and a pair of receivers (i.e. the path between sender and their as-
sociated branching point). They therefore reveal the proximity of each pair of leaves
in the sender tree.

1.1.2 The Packet Sandwich Similarity Metric
Despite several variables (end-to-end delay covariance, shared packet loss..) have
been proposed to be used as similarity metrics, this section will focus on the metric
related to packet sandwich probes.Such probes, thoroughly described in [4], are a
particular kind of packet trains whose packets are directed to different receivers. A
packet sandwich consists of three packets (in the following referred to as p1, q and
p2) which are sent back to back by the probing host. Packets p1 and p2 are sent to the
same receiver R1 and have the same length L1, while q is sent to receiver R2 and has
length L2, that is usually much bigger than L1. In particular, L1 is typically 56 bytes,
while the value of L2 generally equals the value of the MTU of the network under
test.

The basic idea underlying packet sandwich is quite simple and is explained in
figure 1.1: at every hop of the shared path between the sender and the two receivers,
the third packet gets queued behind the second much bigger packet and the delay
difference between p1 and p2 increases. The interarrival time d(R1 ,R2)

of packets p1
and p2 is an end-to-end measurable metric which increases with the extent of the
path shared by receivers R1 and R2 in that it increases at every hop of that path. It
is possible to derive a simple expression for the interarrival time of the packets p1
and p2 as a function of the capacity of the Nshared links composing the path shared
by receivers R1 and R2. Although the derivation of such a formula is quite simple,

7

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

we have not found it so far in the technical literature concerning packet sandwich
probes.

Let us first consider the delay increment that packet p2 experiences on a sin-
gle link Ci of the shared path, assuming no cross traffic. On link Ci, packet p1 will
only experience the transmission delay, while packet p2 will also experience a given
amount of queuing delay in that it must wait for the transmission of packet q; the
interarrival time will then be exactly increased by such a queuing delay. Let us now
consider the time instant when q starts its transmission on link Ci: at the same time,
packet p2 will start its transmission on link Ci−1. Whenever p2 reaches the queue of
link Ci, namely after L1/Ci−1 seconds, it will be queued waiting for packet q to finish
its transmission: it will therefore wait in the queue for a time:

∆di =
L2

Ci
− L1

Ci−1
(1.1)

Summing up all the delay increments together with the packets intedeparture time
we obtain:

d(R1 ,R2)
=

L2

C1
+

N−1

∑
i=2

L2 − L1

Ci
+

L2

CN
(1.2)

1.1.3 Noise analysis in packet sandwich measurements

In the literature, the interarrival time of packets p1 and p2 of the packet sandwich
is typically modeled as a constant value (the similarity metric itself) afflicted by an
additive zero mean noise. In particular, in [4] the authors invoke the Central Limit
Theorem to model the sample mean of a sequence of independent packet sandwich
probe measurements as a Gaussian random variable, although they do not propose
a statistical model for the interarrival time itself.

1.1.3.1 Simulation layout for the characterization of the interarrival time

The effect of the interaction between sandwich probe packets and cross traffic is eval-
uated through simulations by using the ns2 simulator [7].

Figure 1.2 shows a typical simulation scenario: in order to evaluate the impact
of the length of the shared path on the interarrival time distribution, the number of
shared links has been varied throughout the simulations. Each of the shared links
is loaded with multiple TCP flows; to reproduce the multi-modal distribution of
Internet packet length, TCP segments have different sizes. In order to accurately tune
the load of cross traffic interacting with packet probes on each link, TCP connections
are established as shown in figure 1.2. For example, the cross traffic loading the link
which connects nodes 5 and 6 is generated by TCP connections established between
nodes tcp5 and the downstream node 6. The link that connects the out–of–path node
tcp5 and the node 5 is the bottleneck link of the TCP connections; by simply varying
its capacity, it is possible to accurately tune the cross traffic load on each link of the
shared path. The physical speed of the links of the path has been chosen according
to widespread standards in use, such as Ethernet links or Optical Carrier.

8

1.1 Noise Reduction Techniques for Network Topology Discovery

Figure 1.2: Simulation scenario for the characterization of packet sandwich interar-
rival times.

1.1.3.2 Models of Noise Patterns

The idea of modelling the measurements noise due to regular traffic by means of
simple random variables turns out to be a very complex task, due to the extreme
variability of statistical patterns that emerge from simulations.

In order to derive effective models of noise patterns, we extend the approach of
[1, 2] that was originally proposed in the framework of bottleneck capacity estima-
tion to model the empirical distribution of interarrival times of packet train probes.
Therefore, let us consider a packet pair and let δ be the delay difference experienced
by the two consecutive packets. Two possible cases may occur and are described in
the following.

• The two consecutive packets, while crossing the network, are never queued to-
gether at the same node: under this hypothesis, if we denote with l1 and l2 the
packet lengths of the two packets, and with Wk

i the queuing delay experienced
by the k-th packet on link i, the expression of the delay difference becomes

δ =
Nlink

∑
i=1

(
l2 − l1

Ci
+ W2

i −W1
i

)
(1.3)

• The two consecutive packets are queued together for the last time at the h-th
link of the network. In this case the expression of the delay difference is:

δ = −th + xh +
l1
Ch

+
Nlink

∑
i=h+1

(
l2 − l1

Ci
+ W2

i −W1
i

)
(1.4)

9

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

where the term xh indicates the transmission time of the cross traffic packets
queued between the two probe packets, while th is the interarrival time of the
packets.

Notice that in the second case the information about the capacity of links which are
upstream to the h-th is overwritten.

Equations (1.3) and (1.4) can be successfully extended to packet sandwiches: the
interarrival time of packets p1 and p2, namely their interarrival time at the ending
node of the shared path, can be expressed as a sum of two terms: the first term is the
interarrival time of packets p1 and q, while the second term is the interarrival time
of packets q and p2.

Under the hypothesis of uncongested network, packets q and p1 will normally
never queue at the same internal node and their path delay difference can therefore
be expressed by (1.3). Thus, the interarrival time of packets q and p1 is the sum of
their interdeparture time and their delay difference:

tinterarr
p1 ,q = tinterdep

p1 ,q + δp1 ,q

=
L2

C1
+

N

∑
i=2

(
L2 − L1

Ci
+ Wq

i −Wp1
i

)
(1.5)

Moreover, since packets q and p2 always travel back to back, their interarrival time
is simply given by the transmission time of packet p2 on the last shared link.

Therefore, by summing up the two contributions of the interarrival time, we ob-
tain the following expression for the packet sandwich metric:

d = tinterarr.
p1 ,q + tinterarr.

q,p2

=
L2

C1
+

N

∑
i=2

(
L2 − L1

Ci
+ Wq

i −Wp1
i

)
+

L1

CN

=
L2

C1
+

N−1

∑
i=2

(
L2 − L1

Ci
+ Wq

i −Wp1
i

)
+

L2

CN

(1.6)

which, with no cross traffic (Wi equal to zero), corresponds to the interarrival
time equation (1.2).

In the case of heavily loaded networks, the packet q could be queued behind
p1 and the term δ assumes the form (1.4); in this case, the measured sample could
significantly differ from its theoretical value.

1.1.3.3 Analysis of collected sample patterns

The model described in the previous subsection can be used to explain the reason of
some of the delay distribution patterns exhibited by simulation results. In [1] and [2],
the authors define several types of cross traffic related noise patterns that can affect
packet train probes; some of those patterns can be found in the analysis of packet
sandwich samples distributions.

10

1.1 Noise Reduction Techniques for Network Topology Discovery

Figure 1.3: Interarrival time histogram with independence signature.

A measurement pattern which is often identifiable in simulation data is the so
called independence signature, which is typical of lightly loaded networks: in this case,
packets p1 and q are never queued at the same node and their interarrival time is ac-
tually given by (1.6). The only random element in this expression is the queuing
delay difference, that may be considered as a continuous zero mean random vari-
able; there is a significant probability that a probe experiences no queuing delay at
all along the whole path. For these reasons, the interarrival time distribution shows
a mode corresponding to the theoretical value of the metric and a continuously dis-
tributed noise. A typical distribution representing the case of independence signature
is given in figure 1.3 where the filled dot corresponds to the actual value of the mea-
sured metric.

Another pattern that can be detected in the interarrival time distribution is the so
called quantification signature, which is typical of highly loaded networks where cross
traffic packet lengths assume values in a small set. In such scenarios, packets q and
p1 are likely queued together and the end–to–end observed delay difference depends
on the transmission time of cross traffic packets queued between them (represented
by the xh term of (1.4)). In presence of highly quantized packet lengths the values
of xh have a multimodal distribution which, in turn, causes the appearance of well
defined secondary modes, as shown in figure 1.4. Again, the filled dot corresponds
to the actual value of the measured metric; the empty dot is obtained by adding to the
actual metric the transmission time of a cross traffic packet on one of the congested
links. The secondary mode corresponding to this value is evident in the distribution.

Finally, in a network where congestion takes place on a particular link, the sam-
ples of interarrival time may show the so called rate signature: probe packets arriving
at a certain node get likely queued together and the delay difference information
they carried will be likely overwritten. The delay difference increases again when
crossing downstream less congested links; however a secondary mode correspond-
ing to an interarrival time value smaller than the theoretical one will be found in the
samples distribution.

Unfortunately, the three scenarios above depicted rarely occur alone: in many
real cases, the interpretation of results is not straightforward because of the combina-

11

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Figure 1.4: Interarrival time histogram with quantification signature.

tion of the effects of different signature phenomena. This, as stated in [1, 2], prevent
from deriving tools for automatic pattern signature recognition. The large variety
of noise patterns which emerges from simulation results makes the goal of deriving
a single statistical model capable of capturing the whole presented phenomena far
from being achieved.

1.1.4 A noise reduction algorithm for packet sandwich probes

The whole discussion presented in the previous subsection led us to address the
problem of noise reduction by using an approach which does not rely on any a pri-
ori statistical model, but that only assumes the knowledge of packet sandwich in-
terdeparture times. Out of all the available measurements, the algorithm that will
be next illustrated selects the ones that are minimally affected by the interaction
with cross traffic packets. Since cross traffic interaction results in increased queu-
ing times, the smaller the queuing delay experienced by probe packets, the better
the measurements. Let us therefore assume that Nprobe packet sandwiches directed
to the same pair of receivers are sent with a D time spacing (actually, our algorithm
still works with any pattern of interdeparture times, provided that it is determin-
istically known). Let us focus on the n–th pair of small packets pn

1 and pn
2 , whose

interarrival time is the measured variable: the end-to-end delay experienced by the
k-th small packet (k = 1, 2) of the n-th sandwich is given by the sum of a determin-
istic time Rk (the one experienced by packets that do not interact with cross traffic)
and a random, non-negative queuing delay Qk

n, induced by the interaction of cross
traffic . The packet arrival time ak

n is therefore:

ak
n = dk

n + Rk + Qk
n (1.7)

where dk
n denotes the deterministic departure time.

12

1.1 Noise Reduction Techniques for Network Topology Discovery

Figure 1.5: Time intervals involved in the derivation of equation (1.8).

Figure 1.6: Absolute estimation error vs. K

The interarrival time Xk
n of packets pn

k and pn+1
k can therefore be expressed as:

Xk
n = ak

n+1 − ak
n = Qk

n+1 −Qk
n + (dk

n+1 − dk
n) = Qk

n+1 −Qk
n + D (1.8)

The relationships among the different time intervals involved in the derivation
of the previous formula are represented in figure 1.5. Equation (1.8) can be seen as a
recursion between the queuing delay of sandwich packets belonging to consecutive
probes:

Qk
n+1 = Qk

n + Xk
n − D (1.9)

The initial condition Qk
0 is unfortunately unknown; nevertheless, by choosing

any arbitrary initial condition, queuing delay estimates calculated by (1.8) are biased

13

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

by the same, constant, initial error ϵk. By indicating with Q̂k
n the series of queuing

delay estimates, the following relation holds:

Q̂k
n = Qk

n +ϵk (1.10)

Therefore, it is possible to reorder the set of sandwich probe packets in terms

of their estimated queuing delay Q̂k
n in that, as previously mentioned, the constant

estimation bias does not change the sequence ordering.

Equation (1.9) holds for both packets p1 and p2 of the sandwich: the sample
selection is therefore based on the two estimates sequences Q̂1

n and Q̂2
n. The noise

reduction algorithm evolves according to the following steps:

Algorithm 1

• Calculate the sequences Q̂1
n and Q̂2

n of queuing delays.

• Sort the two sequences in ascending order.

• Create the sets G1 and G2 that include the first K samples of Q̂1
n and Q̂2

n, respec-
tively.

• Let di be the interarrival time of the i-th packet sandwich:

– If Q̂1
i ∈ G1 and Q̂2

i ∈ G2 then accept the sample di;

– otherwise discard the sample.

• Calculate an estimation of the packet sandwich metric by averaging the ac-
cepted samples.

The behavior of the algorithm 1 depends on the value of the parameter K. If K is
too large, the algorithm will probably accept samples significantly affected by noise.
If K is too small, the algorithm may not converge: indeed, the selection of the best
samples is based on the sequences Q̂1

n and Q̂2
n and the sets G1 and G2, if too small,

may exhibit empty intersubsection.

We have not found a theoretically optimal choice for the K parameter; however,
the heuristic choice K = 0.3×Nprobe has proved to be effective and generally leads to
satisfactory simulation results. Figure 1.6 shows the estimation error as a function of
the parameter K in a simulated shared path composed by 7 links; the value returned
by our empirical formula (about 200 samples over the total number of 600) actually
approaches the absolute minimum error.

14

1.2 PingPair: a Lightweight Tool for Measurement Noise Free Path Capacity
Estimation

Table 1.1: Metric estimation error (µsec). Metric value: 1ms (10 links), 0.54ms (5
links)

% load M. (10 L.) Alg. (10 L.) M. (5 L.) Alg. (5 L.)
20 22 2 0.23 0.12
40 40 6 0.56 0.18
50 30 13 0.57 0.42
75 15 5.6 5.5 2

90-100% 69 22 47 18
20 to 65% 61.5 18 8.7 6.9
40 to 80% 28 10 10 6.12

1.1.5 Performance Evaluation
To evaluate the effectiveness of the noise reduction algorithm presented in the pre-
vious subsection we performed a set of simulations by using ns2. The impact of our
algorithm on the estimation error reduction has been evaluated in simulation scenar-
ios analogous to those presented in subsection 1.1.3.1. The performance achieved by
the noise reduction algorithm is compared to that achieved by averaging all avail-
able interarrival time measurements. ns2 simulations are carried out under different
network load conditions and shared path lengths; results are reported in table 1.1.

1.2 PingPair: a Lightweight Tool for Measurement Noise
Free Path Capacity Estimation

The knowledge of the capacity of a network path can be useful for many purposes:
multimedia applications, service level agreement verification, network monitoring
and management. Several solutions have been proposed for this purpose and many
tools are available. Out of the many proposals, the most effective techniques are
those which infer the path capacity from the packet pair dispersion, i.e. the inter-
arrival time of two packets of the same length sent back to back by the source. The
concept of packet pair dispersion was first introduced in [8] but its application for
bottleneck link speed estimation was first proposed in [9]. Later on, the idea of mea-
suring packet dispersion by averaging the interarrival times of a train of N packets
was proposed, as shown, for example, in [10]. Unfortunately, this kind of measure-
ments can be seriously distorted by the queueing delay due to cross traffic: its ef-
fect on the distribution of the packet pair dispersion measurement has been stud-
ied in several papers [1, 2, 11]. It is generally established that, due to the influence
of interfering packets, some evident modes can emerge in the sample distribution,
corresponding to dispersion values which can be significantly different than the ac-
tual one. The occurrence of such values is determined by many causes, including
the length of the probe packets as well as that of the cross traffic packets. In order

15

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

to discard the distorted measurements, several techniques have been proposed and
many tools have been implemented: among the most well-known are Pathrate [11],
Capprobe [12], Nettimer [13]. However, the queueing delay is not the only cause of
capacity measurement errors: the interarrival time measurements obtained by a user
level application are affected by a measurement noise that is mainly due to the vari-
able latencies related to the transfer of a packet between the wire and the application
socket. In this section we assume a Gaussian model for such noise and verify this hy-
pothesis through experimental analysis; also, we develop a novel selective filtering
algorithm in order to deal with this kind of disturb as well. Unlike most of the avail-
able tools, PingPair is based on one-point measurements: the packet pair sent by the
probing host is composed by two ICMP echo request packets and the dispersion of the
couple of the corresponding ICMP echo reply packets is measured by the same host.
For this reason, our tool can be deployed in almost all network scenarios, since no
special cooperation from the destination host is required (many other tools, such as
Pathrate [11], must run on both ends of the network path). The solution proposed
in this section is based on the queueing delay estimation method described in the
previous section and selects, in the set of packet pair dispersion measurements, the
ones which have experienced the minimum queueing delay throughout the network:
the values of their dispersion is then used to derive a reliable estimate of the whole
path capacity. The performance of the tool is compared to that of Capprobe [12],
since both techniques are based on one point measurements (even if a client-server
implementation of Capprobe is also available).

1.2.1 Queueing delay estimation

While Capprobe selects the most reliable dispersion samples based on the probe
packets’ round-trip times (or one-way delays) our algorithm selects the best mea-
surements on the basis of an estimate of the probe packets’ queueing delay. The
queueing delay estimation technque that we describe in this subsection is largely
based around the same principles that have been illustrated in subsection 1.1.4.These
ideas can be applied without significant modifications to packet pairs, since it is
based on the knowledge of the packets’interdeparture and interarrival times only.
In this section, though, we also add an evaluation of the effect of the measurement
noise. Let us therefore indicate with p(n)k the k-th (with k ∈ {1, 2}) packet of the

n-th packet pair and let us assume that both its departure time π
(n)
k and its arrival

time a(n)k are deterministically known; this hypothesis is easily satisfied since both
the arrival times and the departure times are measured by the probing host. The
end-to-end delay that p(n)k experiences is given by the sum of a deterministic time
Rk (the one experienced by packets that do not interact with cross traffic) and a ran-
dom, non-negative queueing delay Q(n)

k , induced by the interaction of cross traffic.

The packet arrival time a(n)k is therefore:

a(n)k = π
(n)
k + Rk + Q(n)

k (1.11)

16

1.2 PingPair: a Lightweight Tool for Measurement Noise Free Path Capacity
Estimation

The interarrival time X(n)
k of packets p(n)k and p(n+1)

k can therefore be expressed
as:

X(n)
k = a(n+1)

k − a(n)k
= Q(n+1)

k −Q(n)
k +

(
π
(n+1)
k − π

(n)
k

)
= Q(n+1)

k −Q(n)
k + τn+1

(1.12)

where τn+1 is the interdeparture time of packets p(n)k and p(n+1)
k . Equation (1.12)

can be seen as a recursive relation between the queueing delay of the corresponding
packets belonging to consecutive packet pair probes:

Q(n+1)
k = Q(n)

k + X(n)
k − τn+1 (1.13)

Unfortunately, the initial condition Q(0)
k is unknown; nevertheless, by choosing

any arbitrary initial condition, the queueing delay estimates given by (1.12) are bi-
ased by the same, constant, initial error ϵk. By indicating with Q̂(n)

k the sequence of
queueing delay estimates, the following relation holds:

Q̂(n)
k = Q(n)

k +ϵk (1.14)

Therefore, it is possible to reorder the set of packet pairs in terms of their esti-
mated queueing delay Q̂(n)

k in that, as previously mentioned, the constant estimation
bias does not modify the sequence order.

The packet probes experiencing the smallest queueing delay are those which
most likely give the best (i.e. less corrupted by cross traffic interference) interarrival
time measurements.

Equation (1.13) holds for both packets p1 and p2 of a packet pair: the sample
selection is therefore based on the two estimates sequences Q̂(n)

1 and Q̂(n)
2 .

Unfortunately, given the particular structure of (1.13), the sequences of estimates
can be seriously affected by the propagation of measurement errors. Let us therefore
consider the measured interarrival time of packets p(n)k and p(n+1)

k ; the measured

time interval X(n)
k can be expressed as

X(n)
k = Q(n+1)

k −Q(n)
k + τn+1 +σ

(n)
k (1.15)

where σ (n)
k is a random measurement noise term. In subsection 1.2.2 we will fur-

ther investigate the causes and the characteristics of the measurement noise, showing
that each sample σ

(n)
k can be modeled as a zero mean Gaussian random variable. If

compared to the other time intervals involved in the estimation process, each sample
of such a noise can be considered negligible; nevertheless, as it is easy to infer from
(1.13), all the noisy terms are summed up together by the recursive estimator. As a
consequence, after some dozens of iterations, the estimated queueing delay Q(n)

k can

17

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

be affected by a considerable amount of measurement noise. Even though the mea-
surement noise will be shown to have zero mean, its variance grows at each iteration
of the recursive estimation. The selection of the best packet pair dispersion sample
would then be based on an unreliable information.

It is then necessary to devise an effective sample selection algorithm to take ad-
vantage of the information provided by (1.13) and to cope with the effects of mea-
surement noise.

1.2.2 Analysis of the measurement noise

The noisy term σ
(n)
k takes into account all the phenomena that influence the inter-

arrival time measurements and that cannot be included in the queueing delay term;
a wide variety of elements can contribute to the measurement error but the most
relevant source of noise is introduced by the measurement process at the user level
application. Such uncertainty is mainly due to the variable latencies associated with
the interrupt based mechanism which is in charge of transferring a packet between
the Network Interface Card and the application socket. The extent of such a delay
is related to the features of the computer and the operating system on which the
tool runs; moreover, it heavily depends on the workload of the whole system. With
reference to (1.13), each σ

(n)
k term can be expressed as the difference of the noise af-

fecting the interarrival time measurement and the one affecting the interdeparture
time measurement. Since both the noisy terms are due to the same causes and are
related to a wide variety of independent phenomena, we assume that the overall
measurement noise σ

(n)
k may be safely modeled as a zero mean Gaussian random

variable. We will assess the validity of such a hypothesis by analyzing the results of
the experiments we performed on an ad-hoc experimental testbed.

Experimental testbed layout Figure 1.7 depicts the testbed used to characterize
the measurement noise. The probing PC, which runs the PingPair application and
probes a remote server (probed server in the picture), is connected to a 1Gbps Ethernet
switch featured with the port mirroring functionality; this switch is in turn connected
to the Internet via a 10Mbps Ethernet switch (this is the bottleneck link). The two
ingress interfaces involved in the probing process are mirrored to an optical port
(mirrored port in the picture) of the GigaEthernet switch that is connected to a PC
(DAG-equipped PC in the picture). The PC is equipped with a DAG card in order
to take on-wire hardware packet timestamps. The interarrival and interdeparture
times captured by the probing PC and those captured by the DAG-equipped PC are
compared to characterize the measurement noise.

Analysis of the experimental data After measuring the actual values of the inter-
arrival and interdeparture times, we extracted the values of the noisy terms σ (n)

k ∀n
and performed some statistical analysis on the experimental data, in order to verify
our hypotheses.

18

1.2 PingPair: a Lightweight Tool for Measurement Noise Free Path Capacity
Estimation

Figure 1.7: Experimental testbed for measurement noise characterization

Figure 1.8: Normal probability associated to 600 experimental samples of σ (n)
k

By averaging the whole set of noise samples, we found that the zero mean hy-
pothesis is well grounded: the sample mean was always several orders of magnitude
smaller than the samples themselves.

In order to verify the Gaussian distribution hypothesis, we further calculated
the normal probability plot of each set of data. In all cases, the normal probability
plots associated with the experimental data approximated quite well the linear plot,
which is typical of a Gaussian distribution. An example of such a plot is shown in
figure 1.8. As a more formal verification of our hypothesis, the Smirnoff-Kolmogorov
test (with α = 0.05) on the same set of experimental data yielded a positive result,
thus confirming our qualitative conclusion.

The standard deviation of the measurement noise we observed in our experi-
ments turned out to be of the order of about 10−5sec. Even if the noisy terms them-
selves are negligible (as compared to the measured dispersion values with a bot-
tleneck of 10Mbps), after a few dozens of iteration of (1.13) the overall noise can
determine significantly wrong estimations of the queueing delay.

19

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

1.2.3 Measurements Selective Filtering
The simplest approach to cope with the accumulation of the measurement noise is
to split the whole sequence Q(n)

k (which includes all the queueing delay estimates)
into several subsequences, each of them evaluated from null initial conditions. The
queueing delay estimates can then be computed over disjoint sets of consecutive
samples and the measurement error propagation is limited to each set.

The experimental results that have been previously shown suggest that about a
dozen of samples for each subsequence turns out to be a reasonable choice in order
to keep the overall measurement error at negligible values.

Once the subsequences have been calculated, the best (i.e. less influenced by the
queueing delay) sample out of each of them is selected. Notice that, if the subse-
quences are composed by a few packet pairs, it is possible that none of the corre-
sponding packets has crossed the network without being significantly affected by
queueing delay; a sample is accepted only if both the first and the second packets
of the corresponding packet pair are the best (i.e. they have the smallest estimated
queueing time) of their subsequences. After selecting the best packet pair dispersion
measurements, the dispersion is calculated as the statistical mode of their distribution.
More formally, the algorithm steps are described in Algorithm 1.

Algorithm 2 Algorithm for the selection of the most reliable dispersion measure-
ments.
• Let Nsub be the number of samples composing a subset and N be the total

number of available samples.

• Let B be the (initially empty) set of the reliable dispersion measurements.

• Partition the whole set of packet pair samples in a N
Nsub

non-overlapping sub-
sets composed by Nsub consecutive probes. Let Sl be the l − th subset: it will
be then composed by packet pairs {(l − 1)× Nsub . . . l × Nsub − 1}.

• For each subset Sl and for k ∈ {1, 2}:

– set Q(l−1)×Nsub
k = 0;

– compute Qm
k ∀m ∈ {(l − 1)× Nsub + 1 . . . l × Nsub − 1} using equation

(1.13);

– if ∃h|Qh
k = min j∈Sl Q j

k ∀k ∈ {1, 2} add the dispersion measured by
packet pair h to the set B.

• Compute the dispersion as the mode of the distribution of the dispersion val-
ues in B.

The rationale of such an approach is intuitive: despite the acceptance criterion
previously described, a “bad” sample can be selected out of a subsequence if no

20

1.2 PingPair: a Lightweight Tool for Measurement Noise Free Path Capacity
Estimation

Figure 1.9: Histogram of the dispersion values of 500 probes sent to public address
66.249.93.147

Figure 1.10: Histogram of the dispersion selected by algorithm 1 among the samples
whose distribution is shown in figure 1.9

“good” (i.e. not significantly afflicted by queueing delay) samples belong to that
subsequence. Although the selected “good” samples will be concentrated in the
neighborhood of a mode centered in the nominal dispersion value, “bad” samples
will only result as outliers. The effects of the application of this selection criterion can
be easily noticed by comparing figure 1.9 and figure 1.10: the first figure shows the
distribution of the dispersion of 500 packet pairs sent to Google (www.google.it) over
the Internet, while the second figure shows the distribution of the “good” samples
selected by algorithm 1 out of all the measurements. It is evident that, while in
figure 1.9 the main mode corresponds to a dispersion value which is significantly
lower than the actual one (which is indicated in both figures by the empty sample
and corresponds to the actual 10 Mbps bottleneck link capacity), the dispersion of
the selected samples is concentrated nearby the theoretical dispersion value.

21

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Figure 1.11: Estimates produced by Capprobe and PingPair in several network sce-
narios.

1.2.4 Performance evaluation through NS2 simulations

In order to assess the performance of our tool in a totally controlled network sce-
nario, we ran several simulations by using NS2 [7]. We compared the performance
to that of Capprobe, which can be simulated by using the NS2 module available at
[14]. The simulation scenario consists of a 6-links path with capacities of 51.84 Mbps,
155.52 Mbps (typical of the OC links) and 10 Mbps (the bottleneck link). The cross
traffic is generated by one–hop persistent TCP connections and the traffic load is the
same on each link of the path.

Both capacity estimation tools have been tested in a wide range of path load
conditions; in each scenario 30 independent simulations have been performed to
properly estimate a confidence interval for the performance of both tools. In order to
perform a fair comparison, both estimates were based on a set of 200 probes; such an
amount of probes is fairly small if compared to the that needed by other tools (e.g.:
Pathrate sends at least 1500 probes to estimate the capacity of the path). The results
of these tests are summarized in fig. 1.11.

The results show that the estimates provided by PingPair are generally more ac-
curate than those provided by Capprobe, since the central values of the correspond-
ing confidence intervals is, in most of the cases, closer to the actual capacity value of
10Mbps. In addition, the estimates provided by Capprobe generally exhibit larger
variability, as it can be inferred from the wider extension of the corresponding confi-
dence intervals.

22

1.2 PingPair: a Lightweight Tool for Measurement Noise Free Path Capacity
Estimation

Table 1.2: Path capacity estimates provided by Capprobe and PingPair during ex-
perimental tests over the Internet. The estimates are expressed in Mbps. The ac-
tual path capacity is 10 Mbps (except for www.ecole-francaise.it, whose capacity is 2
Mbps)

path dest. dest. addr. probes PingPair Capprobe
google.it 66.249.93.147 101 9.630 15.059

youtube.com 208.65.153.251 151 8.680 11.907
myspace.com 216.178.39.13 101 9.867 3.413

ucla.edu 169.232.33.135 151 8.204 3.436
ecole-francaise.it 193.204.146.3 101 1.986 1.590

gmail.com 66.249.91.18 101 9.414 10.449
hotmail.com 213.19.160.188 101 8.467 15.515
berkely.edu 169.229.131.92 101 8.641 16.516

mit.edu 18.7.22.83 101 9.491 3.507
Tin DNS 212.216.112.112 101 9.830 0.342

1.2.5 Internet Measurements

In order to test PingPair in a real network scenario, we implemented it by writing a
user level application which, at present, is still at its beta version, but will be available
as soon as possible at the website of our research goup (http://netgroup.iet.unipi.it).

From a host located in the Network Laboratory of the Dept. of Information engi-
neering in Pisa, we sent packet pair probes to several hosts over the global Internet
and estimated the capacity of the corresponding paths; the bottleneck was always
the 10Mbps Ethernet link connecting the sending host to the network. The location
of the bottleneck link in the first hop of a path is quite common in real scenarios,
since the links at the edges of a network are often slower than those located in the
core. Again, we compared the performance of our tool to that achieved by the Linux
implementation of Capprobe [14]. We always ran Capprobe immediately after Ping-
Pair, so as to test both tools in the same network conditions. The two tools used the
same number of packet pairs.

The results of several experiments are reported in table 1.2 and confirm the capa-
bility of PingPair of providing fairly good estimates by using an extremely limited
number of samples.

1.2.6 Field Trial Measurements

Finally, we tested PingPair in an experimental testbed, in order to assess its perfor-
mance in a scenario which is both realistic (a true path probing process is performed)
and controlled (both the amount and the characteristics of the interfering traffic are
perfectly known).

The logical topology of the testbed is shown in figure 1.12: the network path
crossed by probes consists of four Linux Boxes equipped with several Ethernet NICs

23

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Figure 1.12: Topology of our experimental testbed.

Table 1.3: Path capacity estimates provided by Capprobe in field-trial experiments.
The estimates are expressed in Mbps while the actual value of the path capacity is 10
Mbps

tr. type tr. rate (Mbps) tr. pkt size Capacity estimate
CBR 9.8 800 8.9
CBR 9.5 1000 9.55
CBR 9.5 1400 10.833

Poisson 8.5 800 9.451

and statically configured for routing. Packet pairs and cross traffic are originated
by two laptops connected to the first PC of the path and are directed to the last PC;
in particular, interfering traffic was generated by using the open source BRUTE [15]
traffic generator. This kind of layout allowed to test our tool with highly persistent
cross traffic, since the interfering traffic shared the whole network path with the
probe packets. As in the previous experiments, the bottleneck link corresponds to a
10 Mbps Ethernet link.

As for most of the Internet experiments, the path capacity was estimated by send-
ing 100 probes only. The size of the interfering packets was varied through the exper-
iments; as claimed in [11], the size of cross traffic packets may have a strong influence
on the location of the modes of the distribution of the packet pair dispersion.

The results of the experiments are reported in table 1.3, together with the char-
acteristics of the interfering traffic. Once more, they show that, even in a heavily
loaded network, PingPair provides fairly good estimates by taking advantage of a
very few packet pairs.

1.3 A Decision Theoretic Approach to Network Topol-
ogy Discovery

In section 1.1 we discussed how hierarchical clustering techniques, when applied to
the packet sandwich probes, can be used to infer the network topology. In this sec-
tion we will propose a completely novel approach to such problem, which radically
changes the perspective by turning the topology inference problem into a decision

24

1.3 A Decision Theoretic Approach to Network Topology Discovery

within a discrete hypotheses set. Indeed, under the hypothesis that network link ca-
pacities belong to standard well known sets (Ethernet, OC), we define a finite space
of possible topological hypotheses; within such a domain, the most likely hypothe-
sis is chosen. This assumption appears to be realistic, at least in local area networks,
where almost all links use the Ethernet (or 802.11 in the wireless scenario) MAC
protocol, which defines a restricted set of link bandwidths. As it will be shown,
with respect to traditional tomographic approaches, our technique allows to reveal
a larger number of internal nodes; in addition, the capacity of the network links can
be effectively inferred.

1.3.1 The decision theoretic approach

Let us first recall briefly some details about the packet sandwich probe, that has
already been introduced in subsection 1.1.2. A packet sandwich (as illustrated in
figure 1.1)is a particular packet train composed by three packets, which are sent back
to back by the sender and that will be indicated as p1, q and p2. Packets p1 and p2
are L1 Bytes long and are directed to the same receiver, while q is L2 Bytes long
and directed to another receiver (usually, L1 is 56 Byte while L2 equals the network
MTU). At every hop of the shared path between the sender and the two receivers,
the third packet gets backlogged behind the second (much bigger) packet and the
delay difference between p1 and p2 increases.The interarrival time d of packets p1
and p2 can therefore be used as a similarity metric, since it increases with the length
of the path shared by the pair of receivers.

Equation (1.16) shows the analytical expression of the interarrival time of packets
p1 and p2 as a function of the capacities of the N links composing the shared path
(the complete derivation of the formula below can be found in [16]:

di, j =
L2

C1
+

N−1

∑
k=2

L2 − L1

Ck
+

L2

CN
(1.16)

Equation (1.16) shows that (as stated also in [4]) the packet sandwich dispersion
is incremented at each link k of the shared path, provided that the following rela-
tion,involving the capacity Ck of link k and the capacity Ck+1 of the following link, is
satisfied:

L2

L1
>

Ck+1
Ck

With a MTU of 1500 bytes and L1 = 56B such a condition turns out to be roughly
Ck+1

Ck
< 25, which, as also stated in [4], is typically satisfied in actual networks. Equa-

tion (1.16) shows that the packet sandwich based metric is basically given by the
sum of the inverse of the shared path link capacities. In real networks, link capac-
ities usually belong to a restricted set of standard values (Ethernet, Optical Carrier
. . .); the set of capacities {C1, C2, . . .} is then discrete. In addition, it is generally pos-
sible to obtain a reliable estimate of the depth of the spanning tree, i.e. the maximum
number of links composing the path between the probe sender and each receiver
by taking advantage of the TTL field of IP packets. Therefore, given the set of all

25

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

possible link capacities, if an upper bound of the number of hops composing a path
is available, equation (1.16) can be used to off-line pre-evaluate a table with all the
possible values of the similarity metric d. More formally, let us define:

C = {c1, c2 . . . ck−1, ∞}
as the set of all the possible values of link capacities. Notice that C includes the sym-
bol ∞ in order to represent sequences of different length with the same number of
elements (i.e., including zero delay links). Any possible combination of D elements
of C is an element of the Cartesian product CD and will be referred to as Link Capaci-
ties Combination (LCC).

Let us define the function:

γ : CD → H

as:

γ(C) =
L2

C1
+

D−1

∑
k=2

L2 − L1

Ck
+

L2

CD
(1.17)

where C = (C1, C2, . . . , CD) is an arbitrary D-links capacity combination and
H = {d1, d2, . . . , } is the finite discrete subset of R which contains all the possi-
ble values assumed by (1.17). As previously mentioned, the vector C may include∞-valued components. In order to list the actual finite-capacity elements of C, we
define the set:

B = {Ci : Ci < ∞}
Given a specific pair of destinations (i, j), an LCC associated to their shared path is
indicated as Ci, j, while the set of actual link capacities is referred to as Bi, j. Notice
that, while vectors Ci, j have all the same length D, the cardinality of Bi, j depends
on the actual number of links of the shared path. Given estimates d̂i of the metric
(1.17) obtained by averaging a given number of interarrival time samples, the fun-
damental decision problem is to select the correct LCC of length D that originated
it. Although the space CD is both discrete and finite, equation (1.17) is not invertible,
since different link sequences yield the same value in H; as an example, two LCCs
that only differ for the elements order produce the same value of the metric. Topol-
ogy reconstruction based on LCCs decisions can therefore be affected by a certain
degree of ambiguity due to link ordering; nevertheless, the incidence of such am-
biguity, for realistic network sizes and capacity sets, is limited, as it can be noticed
from table 1.4, where the percentage of ambiguous LCCs over the number of all the
possible LCCs is evaluated for different network scenarios. In addition, by sending
packets p1, p2 and q of a sandwich to the same destination, it is possible to find out
the whole combination of end-to-end capacities. In those cases, to make the notation
consistent to (1.16), the metric measured when all packets of the sandwich are sent
to the same receiver i will be denoted as di,i.

The use of the decision theory is motivated by the evidence that packet sandwich
measurements are disturbed by the interaction with regular traffic, that acts as noise.
It will be then necessary to decide which LCC most likely generated the observed

26

1.3 A Decision Theoretic Approach to Network Topology Discovery

interarrival time measurements: effective strategies should then be devised in order
to select the most likely hypothesis in the space H. The main issue of decision is
the lack of a statistical model of the cross traffic interference on packet sandwich
interarrival times. We can nonetheless model the sample mean of a set of samples
of interarrival time as a Gaussian random variable [4] by invoking the Central Limit
Theorem. Under this hypothesis, the optimal decision can be made according to
the Maximum Likelihood criterion that, in the space H, collapses into the minimum
distance criterion. Let d̂ be the sample mean of the available measured interarrival
times; the selected link combination C will be:

C = arg min
C∈CD

∣∣∣d̂−γ(C)
∣∣∣ (1.18)

An upper bound on the probability of taking a wrong decision can be obtained
through the union bound:

Pe ≤∑
i

∑
m

m ̸=i

Q
(

dm − di
2σ

)
Pr(dm) (1.19)

where dm, di ∈ H, Q(x) =
∫ +∞

x
1√
2π

e−x2/2dx is the error function, σ is the variance
of the sample mean and Pr(dm) represents the probability of dm. Clearly, equation
(1.19) shows that the reliability of decisions improves as the distance of the metrics
associated to the different link combinations in H increases. Once the decisions are
taken for each pair of receivers, they can be elaborated to infer the network topology.
Traditional hierarchical clustering algorithms cannot be adapted for this purpose, in
that they require the knowledge of a continuous-valued similarity metricγi, j for each
pair (i, j) of receivers. On the contrary, in this case, for each pair of receivers an LCC
Ci, j is available upon decision. Such a task is accomplished by the next algorithm
3, which reconstructs the complete spanning tree of the probe sender based on the
decided Ci, j LCCs. In order to reconstruct the complete topology of the tree, it is also
necessary to estimate the di,i metric for each receiver i, so as to obtain, by decision,
the Ci,i combination. The underlying idea of the proposed algorithm is analogous
to that of the binary tree algorithm [5], but it does not include a tree pruning phase.
Indeed, with discrete-valued similarity metrics, if three nodes (m, n, l) have the same
parent, the following relations will be exactly verified:

Cm,n = Cm,l = Cn,l (1.20)

Therefore the tree reconstructed by algorithm 3 will not be in general binary.
Let us consider now two arbitrary internal nodes k and h; the set of link capacities

composing the path between the internal nodes k and h will be denoted as Λk→h.
Once all the combinations Ci, j have been decided for each pair (i, j) of receivers, the
reconstruction algorithm 3 operates as follows:

If the capacity combinations Ci, j are correctly decided, algorithm 3 reconstructs
the complete topology of the network as it is visible by the probe sender through its

27

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Table 1.4: Ambiguous LCCs in different network scenarios
Capacities % ambiguous tree depth

10Mb-100Mb-1Gb and OC (max OC-48) 4.5% 6
Ethernet (10Mb-100Mb-1Gb-10Gb) 0% 6

OC (OC-1 to OC-765) 5.4% 4
10Mb-100Mb-1Gb and OC (max OC-48) 0.6% 4

Ethernet (10Mb-100Mb-1Gb-10Gb) 0% 4

Algorithm 3 Tree Reconstruction
• Initialize the set L containing the leaves of the spanning tree.

• For each leaf i, define Λroot→i = Bi,i

• Until the set L is not empty

1. Choose the set Bi, j, with (i, j) ∈ L, composed by the maximum number
of links

2. Find the set M ⊂ L such that Bm,n = Bi, j ∀n, m ∈ M

3. Remove from L all the nodes that belong to M

4. Add to L a new node k (k will be the nearest common ancestor of the M
nodes)

5. For each node h ∈ L such that h ̸= k, define Bk,h = Bm,h with m ∈ M

6. Define Λroot→k = Bi, j

7. For each m ∈ M, define Λk→m = Λroot→m \Λroot→k

spanning tree. However, the topology so inferred still suffers from a certain degree of
ambiguity: in general, the algorithm cannot reveal the ordering of the link capacities
that compose the path between two adjacent branching points. In the case of wrong
prior decisions, the combinations Ci, j will likely be incoherent and the algorithm
will probably not converge: in particular, the operation Λroot→m \ Λroot→k will be
mathematically impossible. This feature, actually, turns out to be an advantage, since
the presence of decision errors can often be revealed.

1.3.2 Noise reduction

The noise affecting the packet sandwich measurements can lead to a completely
wrong topology reconstruction, especially in the cases where the possible metrics
in H are very close to each other. For this reason we take advantage of a noise reduc-
tion algorithm in order to “denoise” the dispersion measurements obtained from the

28

1.3 A Decision Theoretic Approach to Network Topology Discovery

packet sandwich probes, before taking any decision about the most likely LCCs and
using the tree reconstruction algorithm. Such a noise reduction technique, whose
detailed discussion can be found in [16], does not rely on any statistical delay model
and can be applied to any kind of dispersion measurements. Paper [17] proves it to
be effective in enhancing dispersion based capacity estimation and that it can also
cope with the measurement noise caused by the variable latencies associated with
the interrupt based packet reception in ordinary PCs.

The rationale of the algorithm is to choose the most reliable samples of interar-
rival times out of all the available observations. Since the interaction of cross traffic
with packet sandwich probes results in an increased queuing time, the smaller the
queuing delay experienced by probe packets, the better the measurements. There-
fore the noise reduction algorithm we take advantage of first estimates the queuing
delays experienced by the probe packet through a recursive equation and, after that,
based on the estimated issued by such equation, selects the best dispersion samples.

1.3.3 Computational complexity

In order to evaluate the scalability of our technique, we discuss here the compu-
tational complexity of the approach described in subsection 1.3.1. Such approach
basically consists of two phases: the decision, for each pair of receivers, of the most
likely LCC and the actual topology reconstruction, performed by applying algorithm
3.

In order to keep the problem analytically tractable, we assume to apply our al-
gorithm to a binary tree topology where the sender is located in the root. Since the
number of iterations of the tree reconstruction algorithm grows linearly with the
number of branching points, such a topology represents, from that point of view, a
worst case scenario. In addition, some properties of the binary tree topology are still
valid also for most random graph models which are commonly used to describe the
Internet Topology: in Scale Free (SF) graphs [18] the overall number of nodes grows
as fast as the number of leaves (the two quantities are asymptotically equivalent).
Moreover the network diameter (that we use here to upper bound the depth of the
spanning tree) is proportional to the logarithm of the number of nodes (because of
the small-world properties of SF graphs). Let then n be the number of probe re-
ceivers, Nbranch be the number of branching points (which, in the binary tree case,
turns out to be also the number of internal nodes) and d be the number of hops be-
tween the probe sender and any receiver. The following relations are easily verified:

Nbranch = n− 2 (1.21)
d = log2 n (1.22)

We evaluate the computational cost as a function of n since the number of leaves
is the only topological characteristic which is known a priori. Let us first consider
the decision phase: for each receiver pair the minimum distance LCC must be deter-
mined, and, therefore, a list of all the possible metrics must be searched. By assuming
a set of K possible link capacities, since the order of the capacities for each LCC is

29

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

irrelevant, the number of elements composing such a list will be:

(K + d− 1)!
(K− 1)! · d!

=
(K + log2 n− 1)!
(K− 1)! · log2 n!

Since, as already pointed out, such a list can be built off-line, it is possible to speed up
the algorithm by building it as an ordered (with reference to the dispersion metric)
list, so as to use a binary search algorithm which allows to find an element in a
logarithmic (instead of linear) time. Under such a hypothesis, and by noticing that a
decision has to be made for each pair of receivers i, j (even when i = j), the cost of
the whole decision phase equals:

ωdec =
n2

2
· log2

(
(K + log2 n− 1)!
(K− 1)! · log2 n!

)
In order to evaluate the computational cost of alg. 3, we observe that such an algo-
rithm basically consists of finding, for each of the Nbranch branching points, the inter-
subsection and the difference of two decided LCCs; by adopting a trivial technique
(for each element in a LCC, a match in the other one is searched for) such an oper-
ation is performed in a time proportional to l2, where l is the number of elements
composing the LCCs. Under the assumption of a binary tree, and by considering
l = d = log2 n, the overall cost of alg. 3 equals:

ωalg = Nbranch · d2 = (n− 2) · log2
2 n

The overall computational cost of our technique ω =ωdec +ωalg is therefore:

ω(K, n) =
n2

2
· log2

(
(K + log2 n− 1)!
(K− 1)! · log2 n!

)
+ (n− 2) log2

2 n (1.23)

For high values of n, the largest contribution in (1.23) is given by the cost of the
decision phase and it turns out to be of the order of the thousands of operations
even for very large networks, with up to n = 50 probe receivers.

Finally, for more complex networks, the value of ω(K, n) should be multiplied
by the number of sender nodes required. However, this is not a big issue since the
number of required sender nodes (beacons) to discover a complex SF topology can be
limited to the order of log(n) [19].

1.3.4 Performance evaluation

We evaluate our topology discovery technique by performing a set of simulations
based on ns2 [7]. We simulate the probing process over a wide series of topologies.
However, due to space limitations, we can report only a few examples. The first case
study we describe is based on the SF topology reported in fig. 1.13 which has been
generated by BRITE [20] according to the Barabasi-Albert model; such a topology is
composed by 35 nodes and 34 links whose capacities are randomly selected within

30

1.3 A Decision Theoretic Approach to Network Topology Discovery

..

p10

....

p7

.......

p2

.

p9

..

p5

.

p6

..

p8

.

p14

..

p16

.

p3

..

p12

...

p4

. p11....

p13

.

p15

.

p17

.

pst

.

FE

.

E

.

FE

.

E

.

E

.

FE

.

FE

.

FE

.

FE

.

E

.

FE

.

E

.

FE

.

FE

.

FE

.

E

.

FE

.

E

.

FE

.

FE

.

FE

.

FE

.

FE

.
FE

.

E

.

E

.

E

.

E

.

E

.

FE

.

E

.

FE

.

FE

.

FE

.

FE

.

FE

.

E

.

FE

.

FE

.

FE

Figure 1.13: 35 nodes topology generated by BRITE and its reconstruction by an ideal
hierarchical clustering algorithm (dashed links)).

the standard Ethernet set and described as E, FE and GE respectively for 10 Mbps,
100 Mbps and 1Gbps. In order to reproduce the interaction between the probing traf-
fic and the regular traffic over an actual network, we flooded the internal links with
packets generated by variable bit rate traffic sources; the interfering traffic rate is, for
each link, about 50% of the capacity. We simulate other probing process by send-
ing, from the node pst, 60 packet sandwiches for each pair of leaves of the topology
tree. The topology reconstructed by our algorithm differs from the one shown in fig.
1.13 only for 4 mistaken link capacities and one additional inexistent 100Mbps link
attached to receiver p15 (differences are dashed in the figure);

In order to provide a benchmark, we compared the output of our algorithm with-
the topology which would be yield, in case of a completely correct reconstruction,
by a traditional clustering based technique. Out of the 35 nodes of the original topol-
ogy, only 26 are detected, and the capacities of the links are not revealed; the overall
picture turns out to be consistently less detailed than the one produced by our tech-
nique.

By using the same simulation methodology (in terms of interfering traffic, topol-
ogy generation and probing scheme) we then apply our technique to a larger topol-
ogy, composed by 45 nodes and shown in figure 1.14. In this case, the inferred topol-
ogy differs from the real one for 6 mistaken link capacities only.

Another case study is based on a non-randomly generated topology: it is inspired
to an actual network, where the peripheral nodes are connected to core nodes which
have a higher degree and are attached to faster network links; again, the capacities
are chosen within the Ethernet set (10,100,1000 Mbps). In this case, we generate the
interferent traffic by establishing TCP connections between the leaves and some of
the core nodes, thus reproducing realistic traffic patterns. The simulated topology
is shown in figure 1.15 (along with the reconstruction errors). A hundred packet
sandwiches for each pair of leaves are sent from node p1a and, in the reconstruction

31

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

..

p4

..

p19

...
p8

. p28.
p29

. p2.

p13

.

p25

.

p5

.

p9

..

p23

.

p24

.

p31

.

p7

..

p27

.

p10

.

p18

..

p21

..

p12

..

p6

.

p16

.

p17

.

p11

...

p15

..

p22

.

p32

..

p20

.

p26

.

p14

.

p3

.

p30

.

pst

.

E

.

FE

.

FE

.

E

.

E

.

FE

.

E

.

FE

.

FE

.

FE

.

E

.

E

.

FE

.

FE

.

FE

.

FE

.

FE

.

E

.

E

.

FE

.

E

.

FE

.

FE

.

E

.

FE

.

FE

.

FE

.

E

.

E

.

E

.

FE

.

E

.

FE

.

FE

.

E

.

E

.

FE

.

FE

.

FE

.

FE

.

FE

.

FE

.

E

Figure 1.14: 45 nodes topology generated by BRITE.

given by our algorithm (that we do not report here for lack of space)only two little
mistakes (dashed links) are present: an additional node, connected to node labeled
p1d, is present and a link capacity is wrongly revealed. However, the overall topol-
ogy is quite close to the original one.

Those simulative results show that our of technique is capable of inferring a de-
tailed and quite reliable picture of the network topology and, besides, that its effec-
tiveness is only marginally influenced by the size of the network under probing.

1.4 Network Topology Discovery through Self-Constrained
Decisions

In the previous subsection we introduced a decision theoretic approach for network
topology discovery. The cornerstone of such approach is the correspondence be-
tween a measurement based similarity metric and a discrete sequence of possible
link capacities LCCi, j associated to the receiver pair i, j.

If the capacity combinations LCCi, j are correctly decided, the proposed algorithm
reconstructs the complete topology of the network as it is visible by the probe sender
through its spanning tree. However, the topology so inferred still suffers from a cer-
tain degree of ambiguity: in general, the algorithm cannot reveal the ordering of the
link capacities that compose the path between two adjacent branching points. Be-
sides, in the case of wrong prior decisions, the combinations LCCi, j will likely be
incoherent and the algorithm will probably not converge.In this section, we extend
the previoulsy illustrated technique by making measurements quality (practically
their variance) to influence the decision process so that the decisions on the most
reliable (i.e., lowest variance) measurements are made at first and they help the deci-
sion process on less reliable ones. This is motivated by the large degree of correlation
among measurements: when the links of a subpath of a larger path are decided, the

32

1.4 Network Topology Discovery through Self-Constrained Decisions

... p2a....

p2c

... p1a...

p1b

...

p2b

...

p1c

....

p2d

....

p3d

.

p1d

.
E

.

FE

.

FE

.

E

.

FE

.
E

.

FE

.

FE

.

E

.

FE

.

E

.

FE

.

FE

.

E

.

FE

.

FE

.

GE

.

GE

.

GE

.

E

.

FE

.

FE

.

FE

.

E

.

FE

.

E

.

GE

..

FE

.

E

Figure 1.15: Realistic topology (continuous lines) composed by 25 nodes and its re-
construction by our technique (dashed links represents the differences).

..

s

....

1

.

2

.

3

. 4.

E

.

FE

.

E

.

LCC3,4

.

LCC2,4

Figure 1.16: Topological dependencies.

hypotheses domain for the links of the larger path can be effectively reduced, thus
improving the decision and the overall process. As we show, our technique allows
to reveal a larger number of internal nodes than traditional tomographic approaches
and our previous proposal. In addition, the capacity of the network links is effec-
tively inferred.

1.4.1 Self-constrained topology reconstruction
A minimum distance based decision criterion seems to be the best choice for coping
with several independent measures. However, as LCCs have, in general, topological
relations with each other, in the following we propose a decision scheme which takes
advantage of these dependencies in order to provide more reliable decisions. Such
a scheme represents the main novel contribution of this section. In order to explain
how the topological dependencies among LCCs can be exploited, let us consider the
example in figure 1.16 and let us assume that the decision LCC2,4 has been correctly

33

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

made and that the maximum tree depth has been estimated to be 4 hops. If the mea-
surements are not completely wrong, it will appear that γ2,4 ≤ γ3,4 and, therefore,
LCC2,4 ⊆ LCC3,4. Since, as assumed, LCC3,4 can encompass 4 link capacities at most
and, since it has to admit LCC2,4 as a subset, the value of three capacities out of
four is already constrained. Therefore the reference decision space of the topological
hypotheses is quite reduced (it actually collapses into the space of the possible link
capacities) and, as a consequence, the error probability is remarkably reduced. This
simple example provides the motivation to our work and its generalization defines
an useful idea: the results of prior decisions can be exploited, in terms of topological
constraints, in order to improve the reliability of the following decisions.

In details, the topological constraints which can be issued by the decision of a
generic LCCi, j can be formalized as follows: ∀k ̸= i, j ∈ R, where R is the set of
receivers

γk,i ≤ γi, j ⇒ LCCk,i ⊆ LCCi, j

γk,i ≥ γi, j ⇒ LCCk,i ⊇ LCCi, j
(1.24)

These two cases are depicted respectively in fig. 1.17(a) and fig. 1.17(b). We
associate to each LCCk,i two constraints in the form of a pair of set SBk,i and SPk,i, so
that :

LCCk,i ⊆ SPk,i

LCCk,i ⊇ SBk,i
(1.25)

After each decision, these two sets are updated as follows:

SPk,i = SPk,i ∩ LCCi, j

SBk,i = SBk,i ∪ LCCi, j
(1.26)

where the last decision has been made on LCCi, j. It is trivial to verify that the sets
of equations (1.25) and (1.26) simply enforce the conditions in (1.24).

As more and more decisions are taken, the remaining constraints for the LCCs be-
come tighter; since the tighter the constraints, the smaller the hypotheses space, the
probability of decision errors for heavily constrained LCCs decreases (indeed, (1.19)
states that the error probability increases as the hypotheses space grows crowded).
Furthermore, contraints from previous decisions can prevent errors that may occur
due to the presence of ambiguous LCCs. However, the order in which the decision
are taken appears to be critical for the efficiency of this algorithm: if an error is made
during the very first iterations, it will propagate to the rest of the inferred topology.
In order to schedule the decisions properly we sort the available similarity metrics
according to the module of their difference from the associated minimum distance
LCC. The rationale of such approach is intuitive: measurements which were not
distorted by the interfering traffic will be very close to their theoretical value. More
formally, by taking advantage of well know results in the field of decision theory, it is
straightforward to prove that the distance of the noisy observation from the nearest

34

1.4 Network Topology Discovery through Self-Constrained Decisions

..

s

....

k

.
i

.
j

.

LCCi, j

.

LCC j,k

(a) γk,i ≤ γi, j
..

s

....

j

.
i

.
k

.

LCCi,k

.

LCCi, j

(b) γk,i ≥ γi, j

Figure 1.17: Superset and subset constraints.

theoretical value grows monotonically with the decision error probability.

1.4.2 Theoretical Limitations

In this subsection we give a bound on the performances of our approach which also
provides a guideline for its application. We aim to show that the self-constrained
technique is stochastically less error-prone than a regular minimum-distance deci-
sion approach, more formally:

Psc
i (e) ≤ Pmd

i (e) (1.27)

where i is the decision step (we have a decision per link) and the exponents of
Pi(e) denote the approach (sc: self-constrained, md: minimum-distance). The self-
constrained approach heavily depends on the goodness of early decisions (that is
why the less-noisy decisions are made first), therefore the expansion of Psc

i (e) can be
divided into two cases according to the occurrence of the event of “no error so far”
(i.e. before step i). Indeed, if an error occurred somewhere between step 0 and i− 1,
then the constrains we apply might be mistaken and they might affect the decision
on step i producing another error. On the other hand, if all the previous decisions
are correct, also the constrains are correct and the decision can only benefit from
them. However, in both cases, once the constraints are applied, the self-constrained
approach requires a minimum-distance decision to be performed, therefore we can
write:

Psc
i (e) = Pmd

i [e|NO ERROR]Pi[NO ERROR] +

+ Pmd
i [e|SOME ERRORS] (1− Pi[NO ERROR])

35

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Now, the conditioned probabilities Pmd
i [e|NO ERROR] and Pmd

i [e|SOME ERROR] are
respectively lower and higher than the unconditioned Pmd

i (e):

Pmd
i [e|NO ERROR] = Pmd

i (e)− πg

Pmd
i [e|SOME ERRORS] = Pmd

i (e) + πl

where πg, πl ≥ 0 are factors that capture the penalty and advantages of bad and good
decisions in the previous steps. Then, through simple substitutions on eq.(1.27) we
obtain:

Pi[NO ERROR] =
i−1

∏
j=1

(
1− Psc

j (e)
)
≥ πl

πg + πl
(1.28)

In the following tractation, we impose πl = πg. Here we provide a simplicistic ar-
gument for this choice: whenever we apply constraints (either they are correct or
mistaken) we ultimately eliminate a number of possible solutions in the solution
domain; without additional knowledge of the solutions, the best model is the uni-
form one, hence the imposition of equality. Under this conditions, the probability of
having no errors up to step i must be simply greater than 1/2. Now, a couple of con-
siderations are possible. First: eq. (1.28) sooner or later will go unsatisfied because
of the large productory that is monotonically decreasing with i. This means that the
self-constrained approach is stochastically better than the minimum-distance one
up to a certain number of decisions (there is a critical ith such that any i ≥ ith in
eq. (1.28) makes the disequation unsatisfied). This suggests we should divide the
network graph under observation in different subgraphs that can be separately ex-
plored by means of the self-constrained technique. A second consideration actually
helps relaxing this directive: in real graphs, we observe trees which, intrinsically, are
divided in subtrees with very few (if any) links in common. This means that the sep-
aration mentioned above is naturally provided by the topology (i.e., there is a sort of
limited memory in the exploration of a tree) and eq. (1.28) is always satisfied, which
implies that the self-constrained approach performs always stochastically better than
the minimum distance technique.

1.4.3 Algorithms evaluation
In the following a number of tests results are shown which aim to show the effec-
tiveness of the algorithms we proposed in this section. We evaluate our topology
discovery technique by performing a set of simulations based on ns2 [7]. We sim-
ulate the probing process over a wide series of topologies generated by BRITE [20].
Graphs have been generated according to well-known models: Barabasi-Albert [18]
and Waxman [21], which have proved to well-describe real topologies and are widely
adopted in literature.

1.4.3.1 Measuring Graph similarity

The main concern of this work is to improve the reconstruction of the network graph
from a certain set of measurements, therefore the problem of defining the quality of

36

1.4 Network Topology Discovery through Self-Constrained Decisions

the reconstruction arises. In details, we want to measure how similar the recon-
structed topology and the original topology are. This is a widely investigated prob-
lem in the field of computer vision [22] and pattern recognition. Unfortunately the
problem of graph isomorphism (recognizing if two graphs are topologically equiva-
lent) is known to be NP-hard [23], hence also the computation of the edit distance of
two graphs (i.e., the number of editing operations to perform on a graph in order to
obtain the second) is unacceptably expensive.

However, it has been shown [24] that the edit distance of two graphs G1 and G2
is linearly dependent with the euclidean distance of their spectra (i.e., the ranked
set of their eigenvalues). Therefore, in this section we adopt this metric as a “graph
similarity score”. In particular, we compute the spectrum of the signless Laplacian
matrix L because it best reproduces the linear dependence with the edit distance as
shown in [24].

By defining a graph as G=(V, E) with V as vertices and E as edges, the Laplacian
matrix L of G can be computed as:

L(u, v) =

{ du if u = v
1 if (u, v) ∈ E
0 otherwise

(1.29)

where du represents the degree of node u.
It is worth reminding that this definition of the matrix L(u, v) does not capture

any information on the bandwidth of the edges in the network, hence a spectra com-
parison based on such a matrix does not allow for the recognition of errors in the
bandwidth reconstruction, because links are simply defined with a 1 in the row and
column corresponding to the ends of the edge. However, as stated in [24], this spec-
tral approach can be easily extended to weighted graphs. In this case, we re-define
the signless Laplacian matrix of G as:

Lw(u, v) =

∑

j=1...du , j ̸=u
w(u, j) if u = v

w(u, v) if (u, v) ∈ E
0 otherwise

(1.30)

where w(u, v) defines the weight of the link (u, v). In the following we impose the
weights as 1, 2, 3 respectively for Ethernet (10Mbps), Fast Ethernet (100Mbps) and
Gigabit Ethernet (1Gbps). With this linear choice of weights, a mistaken decision for
a 1Gbps link in place of a 10Mbps counts as twice as an error between a 100Mbps
and a 10Mbps.

1.4.3.2 Results

The results of the experimental evaluation of the self-constrained technique are shown
in tab. 1.5. The table presents the euclidean distance between the spectra of the
original topology and the reconstructed one obtained through a minimum distance
approach (∆md) and through the self-constrained technique (∆sc). The results are
reported both for the spectra of the simple signless Laplacian matrix and for the
weighted signless Laplacian matrix of the graphs (denoted by the w exponent in the

37

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Nodes Noise ∆md ∆sc ∆w
md ∆w

sc
30 Moderate 1.86 1.4 3.12 2.23
35 Moderate 2.94 1.77 4.39 2.31
35 Heavy 3.63 2.75 4.84 3.22
40 Moderate 3.33 2.72 11.57 8.63
40 Heavy 4.21 3.75 11.43 8.76
45 Moderate 7.52 2.92 11.67 4.34

Table 1.5: Euclidean distance of spectra between reconstructed graph and original
topology for a regular technique (∆md) and the self-constrained approach (∆sc). The
exponent w indicates the similarity score of weighted laplacian matrices.

∆ symbol).
The values in the table show that the reconstruction of the self-constrained tech-

nique is always more accurate (∆sc ≤ ∆md) than the minimum distance approach
for all the topologies under examination. Therefore this means that, referring to the
results of sec. 1.4.2, the approach is effective even for quite large topologies, con-
firming the intuition of a limited memory in tree topologies explorations. Moreover, it
is noteworthy that even if the amount of noise in the experiments varies from mod-
erate to heavy, the results do not change: the self-constrained approach gives again
the best reconstructions for both similarity scores. This confirms the effectiveness of
the technique for the detection of real link capacities.

1.5 Merging Spanning Trees in Tomographic Network
Topology Discovery

Analogously to all standard topology discovery techniques, the algorithm described
in the previous subsection is intended to reconstruct the spanning tree of the probe
sender. In order to achieve a complete representation of the network, it is therefore
necessary to merge the spanning trees associated with all the different roots. Merg-
ing the trees from different beacons can be a hard task [25], especially because any
solution is affected by the aliasing problem. Such a phenomenon occurs whenever
the same node is observed within several measurements that cannot be correlated: as
a result, two or more nodes are redundantly revealed and associated with different
labels. Most of the existing tools for alias resolution use an active probing approach,
which induces a significant traffic overhead into the network and critically depends
on the participation of the routers. More recent solutions try to avoid such an over-
head. For instance, Alias Resolver [26] utilizes the common IP address assignment
scheme to infer IP aliases from collected path traces: it is able to significantly detect
several IP aliases. Moreover, the difficulty of the tree-merging process also depends
on the amount of information provided together with the trees. Indeed, traditional
topology discovery techniques usually need a certain degree of cooperation from in-
ternal nodes (such as traceroute [27], SNMP querying [28], OSPF listening [29]) and

38

1.5 Merging Spanning Trees in Tomographic Network Topology Discovery

produce address-labeled graphs. Therefore, DNS and IP address correlation may
help the tree-merging process [26]. However, in most cases, those techniques cannot
be applied in practice for many reasons such as the presence of ICMP rate limiters
as well as query blocking firewalls, etc. However, this is not the focus of network to-
mography techniques, which intend to reveal network internals by considering the
network itself as a black box and by using active measurements obtained from probe
packets exchanged within a set of network hosts (usually at the border of the graph).
In [30] a procedure for combining end-to-end multicast measurements made inde-
pendently from multiple sources is described, but the authors assume that the topol-
ogy is known. Instead, the approach in [25] does not require the prior knowledge
of topology and presents a multiple source active measurement procedure using a
semi-randomized probing scheme and packet arrival order measurements. How-
ever, such an approach requires, in most cases, additional probe packets apart from
those needed to reconstruct the single trees. In this section we propose a solution to
the tree-merging problem that can be applied to trees with very limited information,
such as the ones obtained by means of tomographic topology discovery techniques.
In particular, such an algorithm is specifically designed to merge the trees produced
by the topology discovery method we have presented in the previous sections. Many
standard methods of tree merging are not able to handle trees which present also in-
ternal nodes which are not branching points, or they need further information by the
probes. Therefore, an enhanced and more efficient tree merging algorithm is needed.
The algorithm that we propose yields, in case of no errors of the underlying decision
based technique and no ambiguous nodes, a perfect picture of the network without
need for further probing.

1.5.1 The merging algorithm

A novel tree merging algorithm is presented in this subsection. It does not require
further probing traffic and is able to handle spanning trees where all the nodes of the
network (i.e. not only the branching points) are revealed. In addition, this algorithm
is specifically designed to be applied in network scenarios where each cooperating
host is both a probe sender and a probe receiver. It is assumed that the network
under test implements symmetric routing, that is the route which connects any ar-
bitrary pair of nodes A and B in the forward direction crosses the same links as the
reverse route.

The algorithm works in two phases: at first, it scans the path connecting each
sender-receiver pair and assigns the same label to the nodes representing the same
routers on different trees. After that, a tree merging operation based on the value of
the labels is performed. More formally, let Ii→ j

n be the n-th node on the network path
connecting node i and node j, and let Ni, j the total number of nodes composing such
a path; the tree merging algorithm works as follows:

By combining the description of the algorithm and the hypothesis of symmetric
routing, it is easy to prove the correctness of the described procedure: two nodes
are assigned the same label if and only if they correspond to the same hop of the
same end-to-end path and, as a consequence, two nodes which are assigned the same
labels always stand for the same physical node. However, it is unfortunately not

39

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Algorithm 4 Tree merging algorithm
• For each pair (i, j) of hosts

– For n = 1, 2 . . . Ni, j

∗ if neither node Ii→ j
n nor node I j→i

Ni, j+1−n are labeled yet, then both
nodes are assigned the same label

∗ if one of the two nodes Ii→ j
n and I j→i

Ni, j+1−n has already been labeled,
the other node is assigned the same label

• Merge labeled trees as follows:

– Map all nodes with the same label into the same node of the output graph

– Map all the edges whose ends are assigned the same pair of labels into the
same edge of the output graph

always true that all the nodes corresponding to the same physical device are assigned
the same label. In some specific topologies, such as the one shown in figure 1.18,
the label assignment algorithm may fail as it may assign different labels to nodes
which actually correspond to the same router. In this case, multiple instances of
these nodes, which will be referred to as multiple label nodes, will be present in the
reconstructed global topology. However, we will show in subsection 1.5.3 that the
actual impact of such nodes is quite low also in the case of very meshed topologies.

1.5.2 Computational Complexity

In order to give an evaluation of the amount of computation required by our al-
gorithm, we will make some assumptions. In particular, by indicating with Nl the
number of leaves in a tree graph, with Nt the total number of nodes in the network,
with D the network diameter (which we will assume to be equal to the depth of
the reconstructed trees) and with dm the mean connectivity degree of the trees, the
following relations will be assumed:

• Nl = log
(

Ntdm

2

)
• D = log (Nt)

As for the first assumption, it has been proved in [31] that a network can be effec-
tively monitored by using a number of beacons that grows as the logarithm of the
total number of edges. The second assumption comes from the small-world proper-
ties of the scale-free graphs, which are commonly used to model network topologies
[31]. Furthermore, the mean connectivity degree can be considered independent

40

1.5 Merging Spanning Trees in Tomographic Network Topology Discovery

Figure 1.18: Topology which causes the failure of the tree merging algorithm: the
dark node is assigned multiple labels.

from the total number of nodes, as a directed consequence of the scale-free property
(the degree distribution does not change with the size of the network).

Since the label assignment step of the algorithm consists of inspecting, on each
tree, all the paths leading to the roots of the other trees (which, in turn, correspond
to the leaves of the root), Nl(Nl − 1) end-to-end paths have to be inspected; we will
assume the length of each of these paths to be equal to the network diameter, thus
carrying on a worst case analysis.

The second step of the algorithm consists of joining the nodes with the same
labels belonging to different trees; we will assume that each node of the network
is represented on each tree. This is not true in real cases, since each tree spans a
different subset of the network nodes, but, again, we perform a worst case analysis.
As a consequence we will assume that Nt × Nl nodes have to be joined. Since the
join operation basically consists in redirecting or deleting every link of a node, we
will assume dm basic steps for such a task.

By summing up all these remarks and by making use of the assumed relations,
we can express the number of basic steps required by the algorithm as a function of
the total number of the trees and of their mean connectivity degree:

log (Nt)× log
(

Ntdm
2

)
× log

(
Ntdm

2

)
− 1)+

Nt × log
(

Ntdm
2

)
× dm

Therefore, since the order of complexity of our algorithm is roughly Nt ∗ log(Nt),
it can scale up to very large networks without raising serious computational issues.

41

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

1.5.3 Performance Evaluation

All our experiments proved that, under ideal conditions (trees correctly reconstructed
by the discovery techniques, no multiple label nodes, probe packets crossing every link
of the network), our algorithm perfectly reconstructs the network topology. How-
ever, in practical cases, an incorrect or incomplete picture of the network can be
caused by either the presence of multiple label nodes or by the fact that, because of the
routing scheme, some links or nodes are not crossed by the active probes and, as a
consequence, are not revealed in the trees. As for the second phenomenon, this issue
is common to all the active probing based technique: links and nodes which, due
to the routing scheme, are not crossed by the probing traffic (the so called side-links)
cannot be revealed. Such a problem has been analyzed within many probing based
topology discovery projects, for example Mercator [32] and Skitter [33]. However,
[31] refers that, if the number of beacons is large enough, a good coverage of the
network topology can be achieved (over 90% of the links can be discovered).

Instead, in order to evaluate the incidence of multiple label nodes, we applied our
tree merging algorithm to several random topologies generated by the BRITE gen-
erator [20] according to the Barabasi-Albert and Waxman models for router-level
topologies. Even if the first model is quite simplistic with respect to actual net-
work topologies, such a generator is a broadly adopted tool, thus providing a good
benchmark to test our algorithm. Furthermore, the generated topologies turn out
to be very meshed, thus representing a challenging scenario for our solution. For
the topologies generated according to the Waxman model, they turn out to be quite
tree-like, thus providing an ideal scenario for our algorithm, which always issues a
perfect reconstruction. Two visual examples of the topologies which are issued by
the two different models are reported in figure 1.19 (Waxman) and 1.20 (Barabasi-
Albert).

Hence, we generated topologies through BRITE with different number of nodes
and different mean connectivity degrees (m). The results are reported in table 1.5.3
and show that the number of multiple label nodes is low (always less than 10% of
the total number of nodes) in ordinary network scenarios.

In order to test the algorithm in a more realistic scenario, we also developed our
own topology generator, based on a structural approach described in [34]. Such a
tool, which will be soon available online, generates a random topology characterized
by three levels of node aggregation; in particular, low connectivity peripheral nodes
are connected to intermediate nodes, which, in turn, are attached to an internal mesh
of core nodes. Such a structure represents quite well the architecture of common ISP
networks, which are made up of Access, Distribution and Core nodes.

We generated several topologies according to this model with sizes spanning
from 30 up to 80 nodes. Even in these cases the topology reconstructed by our algo-
rithm showed no multiple label nodes.

42

1.5 Merging Spanning Trees in Tomographic Network Topology Discovery

Figure 1.19: A sample topology generated by BRITE (Waxman model).

Barabasi-Albert Waxman
nodes m=1.2 m=1.4 m=1.7 m=1.4

60 0 0 7 0
70 1 1 2 0
80 6 1 4 0
90 3 2 4 0
100 3 7 4 0
110 8 8 13 0
120 8 4 8 0

Table 1.6: Number of multiple label nodes generated by our algorithm.

43

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Figure 1.20: A sample topology generated by BRITE (Barabasi-Albert model).

44

1.6 End–to–End Inference of Link Level Queueing Delay Distribution and
Variance

1.6 End–to–End Inference of Link Level Queueing De-
lay Distribution and Variance

After investigating the topic of tomographic topology discovery, we will address
here another application of tomographic techniques: the inference of the distribution
of the queueing delay across the network links. Such a knowledge is very useful for
delay sensitive applications (such as multimedia services), which can choose a par-
ticular server on the basis of the delay associated with the corresponding network
path, as well as for network management and traffic engineering issues: a link intro-
ducing a heavy queueing delay is likely to be congested, and the network adminis-
trator, either manually or by using automated load balancing algorithms, can route
incoming traffic flows away from that link. However, even if the distribution of the
queueing delay provides the maximum first order statistical information, the simple
knowledge of the delay variance itself can be an indicator of the congestion state of a
link. In addition, high delay variance itself can be the cause of performance degrada-
tion: TCP connections can consider a packet lost even if actually it is only experienc-
ing higher delay and, as a consequence, they reduce their windows and slow down
unnecessarily, while multimedia flow quality can be consistently reduced when the
associated packets arrive possibly much later than they are supposed to. The focus
of this section is to use some of the tomographic tools, taking advantage of the tech-
niques which have been developed to be used in a single-sender/multiple-receivers
scenario, to reveal some statistical characteristics (namely distribution and variance)
of the queueing delay associated with each link of an end–to–end path. In fact, al-
most all the proposed tomographic techniques we refer to are intended to infer the
delay statistics over a whole network, by making use of active measurements per-
formed by a probe sender node and a set of probe receivers. The network topology
is thus modelled as a tree, whose root represents the probe sender and whose leaves
stand for the receivers: for each arc of such, a tree a delay distribution is inferred.
Unfortunately, none of the proposed techniques allows, in general, the inference of
the statistics of the queueing delay on each link of a network path, since an arc of
the topology tree is a logical link that can be associated with a multitude of phys-
ical links. The delay distribution referring to a logical link can thus be considered
as the convolution of the delay distributions referring to different links. In addition,
the cooperation of several receiver nodes is not always available, thus reducing the
extent of application of such algorithms. On the contrary, the solution that we pro-
pose is based on two–points measurements only, thus guaranteeing the maximum
flexibility of use.

1.6.1 Tomographic techniques for queueing delay distribution es-
timation

Most of the algorithms which have been proposed in the literature are based on a
discretized delay model: the domain of the possible delay values for each link is
partitioned into a finite set of bins (which can be of either variable or fixed length)
and the probability of the queueing delay falling within each bin is inferred. The
inference of a continuous distribution is therefore transformed into a parameter es-

45

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

..

0

.

1

. 2. 3..

ys2

...

ys3

...

ds

...

Y2

...

Y3

.

Figure 1.21: End–to–end and logical link level delays experienced by a packet pair
probe.

timation problem. However, different kinds of approaches can be also used: paper
[35] proposes to model the queueing delay as a linear combination of different con-
tinuous distributions and to estimate the coefficients of such a mixture, while paper
[36] proposes to estimate the cumulant generating function of the delay distribution.
Such an approach takes advantage of the cumulant generating function of the end–
to–end delay evaluated as the sum of the cumulant generating functions of the delay
distributions over each link: a linear system involving end–to–end measurements
and the unknown link level distributions can therefore be written. However, in this
section we use a parametric approach. The probes on which the active measure-
ments are based can be multicast packets directed to the whole set of receivers (as
proposed in [37]) or couples of unicast packets directed to a receivers pair. However,
our interest will be focused on unicast based techniques only, which can be adopted
in every network scenario. A unicast probe is composed by a pair of back–to–back
packets directed to different receivers; once the packets reach their destination, their
one way delay is measured. Such a delay is modelled as the sum of two random vari-
ables: the first one (referred to as ds) represents the delay experienced on the shared
path, and is assumed to have the same value for both packets (since the two packets
are expected to cross the shared path back–to–back, perfect correlation is hypothe-
sized), while the second one (referred to as ys) represents the delay experienced on
the path between the branching point and the receiver. For each packet, such a delay
is assumed to be an independent random variable. More formally, let us consider a
pair of probe packets directed to receivers i and j and let us indicate with Yi and Yj
the corresponding end–to–end delays: the following relation holds

Yi = ds + ysi
Yj = ds + ys j

(1.31)

The relationship between the quantities involved is graphically represented in figure
1.21.

The vector of samples Yi, j, composed by the measurements pair {Yi , Yj}, is the
basic data sample which is used by all unicast based estimation algorithms. The
delay distribution inference is based on the knowledge of a certain number (N) of

46

1.6 End–to–End Inference of Link Level Queueing Delay Distribution and
Variance

delay measurements Y(n)
i, j for different pairs i, j of receivers. Since the information

provided by those samples is insufficient for the purpose of a deterministic inference
of the actual experienced delay values (the corresponding linear system would be
widely underdetermined), the most common approach to the inference of the delay
distribution is based on the Expectation Maximization (EM) algorithm [38].

1.6.2 Tomographic techniques for delay variance estimation
Most of the tomographic solutions concerned with delay variance estimation ([39],[40])
are based on the same probing scheme which has been illustrated in subsection 1.6.1,
i.e. on packet pair (or multicast packet) probes which are sent from a single host to
several pairs (or sets) of receivers. In particular, referring to (1.31), it can be proven
that, for a probe directed to receivers i and j, the following holds:

cov(Yi , Yj) = σ2
ds

(1.32)

As a consequence, the overall delay variance over the shared links crossed by the
probe packets can be trivially estimated by calculating the covariance of the corre-
sponding measured end–to–end delays. After calculating an estimate for each cou-
ple of receivers, the delay variance associated with each logical link of the sender–
based tree can be inferred. Let us consider, as an example, the tree represented in
figure 1.22 and apply equation (1.32). The following relations are easily verified:

cov(Ya, Yb) = σ2
l1 +σ2

l2

cov(Ya, Yc) = σ2
l1

The delay variances over the internal logical links can then be computed, while those
referring to the logical links which are directly connected to each receiver can be
obtained as the difference between the end–to–end delay variance and the delay
variance associated with the shared path.

1.6.3 Delay distribution inference over tree–like topologies
Let us first describe the parameter estimation problem which has to be solved by
means of the EM algorithm. As previously described, the span of the possible val-
ues which can be taken by the queueing delay will be partitioned into Nbin bins; the
probability of the queuing delay Xk associated with each link k falling within each
bin bi has then to be inferred. More formally, the parameters to be estimated will
be α

(k)
i = P{Xk ∈ bi} ∀i, k. The actual queueing delays {Xk} are unfortunately

impossible to determine through end–to–end measurements: they will then consti-
tute the unobserved data in the EM algorithm. Notice that the measured delay is
actually given by the sum of a set of variable queuing delays and of a set of constant
delay terms (physical signal propagation delay, packet transmission delay, packet
processing delay). Such quantities are of no interest for queuing delay estimation
and can usually be compensated for: under the hypothesis that the minimum delay

47

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

packet for a given path experiences no queueing delay at all, it is possible to re-
move the fixed delay terms by subtracting it from the other available measurements.
Many network tomography algorithms, such as the one used by the widely known
tool PathChar [41], rely on such hypothesis. For this reason, all the fixed delays, in-
cluding any synchronization offset, can be considered irrelevant with respect to the
delay estimation algorithm; there is then no need for precise synchronization among
sender and receivers in order to measure one-way-delays, provided that the effect
of the clock frequency drift among the corresponding hosts can be considered neg-
ligible over the time interval employed to perform all the measurements. Several
applications of the EM algorithm have been proposed to solve the delay distribution
inference problem; in this section we will refer to the recent work of [42], but we point
out that all the other existing solutions can be used in our scheme. The algorithm fol-
lows the canonical two steps of the EM algorithm. The E-step consists of estimating,
under a given value of α(k)

i , the unknown data n(k)
i , that is the expected number of

packets experiencing a queueing delay falling within the i− th bin on the k− th link.
After the E-step is performed, the M-step is quite trivial: α(k)

i = n(k)
i /n(k) where n(k)

is the total number of packets crossing link k. The estimation of the n(k)
i parameters

is the most complex part of the algorithm. Let us suppose a link is crossed by N
packet pairs directed to nodes m and l; then

n(k)
i =

N

∑
n=0

P{Xk ∈ bi|Y
(n)
l,m}.

In [43], it has been proposed to estimate P{Xk ∈ bi|Y
(n)
l,m} through an upward–

downward algorithm, but the solution we are referring to is based on another ap-
proach. Let us consider a two leaves–tree as illustrated in figure 1.21; the following
expressions hold:

P{Ds = k|Y(n)
2,3 } =

P{Ds = k, Y(n)
2,3 }

P{Y(n)
2,3 }

=
P{Ds = k, Ys2 = Y(n)

2 − k, Ys3 = Y(n)
3 − k}

P{Y(n)
2,3 }

=
P{Ds = k} · P{Ys2 = Y(n)

2 − k} · P{Ys3 = Y(n)
3 − k}

P{Y(n)
2,3 }

(1.33)

Since the delay distribution on each link on the path is supposed to be known (it
has been calculated by the E-step), all of the terms in the previous equation can be
directly computed. It is then simple to extend such an approach to any tree topology;
let us take as an example the topology shown in figure 1.22: by considering the
two–receivers tree ending in A and B, it is possible to infer the distribution of the
cumulative queueing delay introduced by links l1 and l2, while, with reference to

48

1.6 End–to–End Inference of Link Level Queueing Delay Distribution and
Variance

..

src

.

1

.

C

.

2

.

B

. A.

l1

.

l2

Figure 1.22: Generic single-source multiple-receivers logical tree.

the receivers couple {B, C} it is possible to estimate the queueing delay distribution
for link l1. Finally, by deconvolving the two estimated distributions it is then possible
to also obtain the distribution of the delay associated with link l2.

1.6.4 Link level delay distribution inference

The solutions described in the previous subsections are intended to provide esti-
mates of the queueing delay distributions in a single–sender/multiple–receivers mea-
surement scenario; however, in many cases, only two-points measurements are avail-
able. An end–to–end path can be modelled as a sequence of links, each of them
consisting of two independent queues, one belonging to the forward path and asso-
ciated to the queueing delay X(k)

f and one to the reverse path and corresponding to

the queueing delay X(k)
r ; such a reference scenario is shown in figure 1.23. In order

to extend the existing algorithms to such a scenario, we propose to adopt another
kind of probe: such a probe is still a packet pair, but, while the first packet is an uni-
cast packet directed to the host at the other end of the path, the second is a ping-like
packet (i.e. a packet that forces the receiver to send an immediate response to the
sender, such as an ICMP echo request) directed to one of the intermediate nodes of the
path, as shown in figure 1.23. The two packets are sent back–to–back by the probe
sender and, as in the multiple receivers scenario, perfect correlation on the shared
links is assumed; from such a probe, a pair of samples Y(l)(n) = {yo(n), y(l)p (n)}
(with n ∈ {1, N}, indicates the n − th pair out of N measurements) is originated,
where yo is the end–to–end delay experienced by the unicast packet directed to the
other end of the path and yl

p is the round trip delay experienced by the ping− like
packet directed to the l − th node of the path (which globally consists of Nh links).
By considering the path model previously described, the two quantities can be ex-

49

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

.......

x1
f

.

x2
f

.

x3
f

.

x4
f

.
x1

r

.
x2

r

.
x3

r

.
x4

r

Figure 1.23: Working principle of the packet pair probes used for link-level delay
estimation.

pressed as:

yo(n) =
Nh

∑
k=1

x(k)f (n) (1.34)

y(l)p (n) =
l

∑
k=1

x(k)f (n) +
l

∑
k=1

x(k)r (n) (1.35)

Such expression can be verified by examining figure 1.23, where the behavior of
one of the probes is illustrated; the two arrows indicate the path that is crossed by
both the ping− like packet and the one way packet, respectively.

It can be therefore noticed that such a delay model is analogous to that of the
packet pair case: in particular, referring to (1.31), it can be verified that:

d(l)s =
l

∑
k=1

x(k)f (n)

y(l)si =
l

∑
k=1

x(k)r (n)

y(l)s j =
Nh

∑
k=l+1

x(k)f (n)

It is thus possible to map the whole end–to–end path into a virtual logical tree,
as represented in figure 1.24. The right-side branches of such a tree, which connect
one of the intermediate nodes to one of the out–of–path nodes are logical links that
correspond to the whole reverse path from the intermediate node to the receiver. The
out–of–path nodes, in turn, do not correspond to different network devices, but can
be seen as multiple instances of the probe sender. Notice that, in our assumption, the
stochastic queueing delay terms y(l)si ∀l < Nh are considered to be statistically inde-
pendent even if the sets of links they correspond to are partially overlapping; such
an assumption is justified by the fact that the measurements referring to different
probes are taken at sufficiently spaced time instants. More formally, for sufficiently
spaced probes, it can be assumed that x(k)(n) and x(k)(m) are realizations of indepen-
dent identically distributed random variables for each k < Nh and for each n ̸= m.
Under such an assumption, the mathematical model underlying the problem is for-

50

1.6 End–to–End Inference of Link Level Queueing Delay Distribution and
Variance

..

snd

.

1

.

snd1

.

2

.

snd2

.

3

.

snd3

. rcv.

l1

.

l2

.

l3

.

l4

..

d(2)s

...

y(2)si

...

y(2)s j

.

Figure 1.24: Virtual logic tree corresponding to an end–to–end path.

mally equivalent to that of the single–source/multiple–receivers case. Such a result
is the main result of our work since, by introducing the concept of virtual logical
tree, it allows to infer link level statistics by using the same tomographic techniques
proposed for a whole network. In particular for each value of l, the distributions of
the three cumulative random variables D(l)

s , Y(l)
si , Y(l)

s j can be estimated by applying
the proceedure described in subsection 1.6.3 and based on the measured delay pairs
Y(l)(n). In order to obtain an estimate of the queueing delay distribution over link k,
it is then sufficient to deconvolve the estimated distributions of D(k)

s and D(k−1)
s .

1.6.5 Numerical issues about deconvolution of probability distri-
butions

The recursive nature of EM method requires the calculation of several deconvolu-
tions involving estimated delay distributions. Since, especially during the first iter-
ations of the EM algorithm, the estimated distributions can be significantly different
from the actual ones, such deconvolutions are not guaranteed to produce a sequence
of positive values. In particular, numerical deconvolution of two estimated queueing
delay distributions could even result in a sequence with non negligible negative val-
ues that, in turn, could cause convergence problems during the following iteration
of the EM algorithm. The classical recursive deconvolution method can lead to huge
error propagation and is therefore not suitable for our application. In order to reduce
error propagation, an effective way of performing deconvolution is to operate in the
frequency domain, by calculating the ratio of the DFTs of both operands. Neverthe-

51

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

less, this approach may not produce a non–negative real sequence. Since the numeri-
cal deconvolution of two sequences can be performed by solving an associated linear
system, the use of one of the existing algorithm for linear system solution with pos-
itivity constraints seems to be a suitable solution. Paper [42] suggests the use of the
Non Negative Least Squares (NNLS) algorithm. Such an iterative algorithm yields
a positive coefficients vector which has the least Euclidean distance from the exact
solution of the system. However, the NNLS algorithm, in some cases, yields a vector
filled with very small values, which can result in huge convergence problems for the
whole algorithm (even a forced normalization of the probability distribution can be
problematic, since it leads to divisions by a very small number). For this reason, we
prefer the adoption of the Fully Constrained Least Squares (FCLS) algorithm in order
to force the output vector to be normalized and positive. Although computationally
more expensive, such an algorithm generally guarantees a smooth convergence of
the whole delay estimation method, as we verified through simulation campaigns.

1.6.6 Link level delay variance estimation
The variance estimation techniques described in subsection 1.6.4 can be applied to
the virtual logical tree associated with the end–to–end path, since their probing
scheme, as already pointed out, is the same of that of the delay distribution esti-
mation algorithms. In particular, by combining equations (1.34),(1.35),(1.32), the fol-
lowing relation holds for l ∈ {1, Nh − 1}:

cov(Yo, Y(l)
p) =

l

∑
i=1

σ2
X(i)

f
(1.36)

In addition, it is straightforward to note that:

σ2
Yo

=
Nh

∑
i=1

σ2
X(i)

f
(1.37)

Since the left side term of both equations can be estimated from the available mea-
surements, a triangular and always determined system in the unknownsσ2

X(1)
f

. . .σ2
X
(Nh)
f

can be written down. The solution of such a system is shown below:

σ2
X(1)

f
= cov(Yo, Y(1)

p)

σ2
X(l)

f
= cov(Yo, Y(l)

p)− cov(Yo, Y(l−1)
p) ∀l ∈ {2, Nh − 1}

σ2
X
(Nh)
f

= σ2
Yo
− cov(Yo, Y(l)

p)

It is worth noticing that, in the expression of each unknown term, only two mea-
sured quantities are involved; as a consequence, the variance of each estimate is,

52

1.6 End–to–End Inference of Link Level Queueing Delay Distribution and
Variance

in any case, equal to the sum of the two variances associated with the measured
quantities. Therefore, no error accumulation issues arise and, furthermore, a wrong
measurement can only affect two variance estimates. In addition, for both delay
variance and delay covariance, unbiased and efficient estimators are available: as a
consequence, the variance of the quantities to be estimated can arbitrarily reduced
by using more samples.

1.6.7 Simulation results: delay distribution estimation

We assess the performance of our algorithm by performing two series of simulations;
the first one is model–based, and uses random variables generators available under
MATLAB, while in the second one we simulate the realistic scenario of a network
path by using the ns2 simulator [7]. It is worth noticing that the performance of our
algorithm is related to that of the EM algorithm which is adopted; in all cases we
use the algorithm described in 1.6.3, but, as already mentioned, several others varia-
tions are available. However, the focus of this section is not the EM algorithm itself,
but rather its application to link level delay estimation. In figure 1.25 we show the
histograms of the delay distributions as inferred by our algorithm, plotted against
the real distributions which are Exponential. In both cases, our network scenario is
composed by a path made up of four links, each of them associated with a forward
and a reverse queueing delay with different distributions.

The performance of the algorithm appears to be quite good, and it is possible to
detect the most congested links of the network. In the ns2 simulations, we set up a
scenario composed by 4 links, each of them loaded with TCP cross traffic at a differ-
ent rate; the TCP cross traffic crossing each link is generated by several connections,
each of them characterized by a different segment size, in order to reproduce the
multimodal distribution of packet lengths over the real Internet. Such a cross traffic
is generated by out–of–path nodes and directed to different intermediate nodes of
the path; the link connecting each out–of–path node with a node belonging to the
path represents the bottleneck link of the TCP connections: by varying its capacity
it is then possible to accurately tune the amount of TCP cross traffic loading each
link of the path. In order to verify the correctness of our estimates, the actual dis-
tributions of the queueing delays is measured by analyzing the ns2 traces referring
to each queue of the network. At first, we assume a path composed by links charac-
terized by the same capacity (10 Mbps) and loaded with different amounts of cross
traffic. Again, the results shown in figure 1.26 report the estimated queueing delay
distribution plotted against the actual one; in spite of a few detection failures, it can
be noticed that our algorithm correctly locates the most congested links, and even re-
veals the multimodal nature of the delay distribution on the last queue. In a second
scenario, we assume links of different capacities, (10, 4, 4 and 3 Mbps, respectively)
and, again, different amounts of cross traffic. The results are presented in figure 1.27
and show that the estimates provided by our algorithm allow to correctly reveal the
last link of the path as the most congested link.

53

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Figure 1.25: Estimated and real queueing delay distributions on a four links network
path with exponentially distributed simulated delay.

54

1.6 End–to–End Inference of Link Level Queueing Delay Distribution and
Variance

Figure 1.26: Estimated and real queueing delay distributions on a four links network
path simulated using ns2.

55

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Figure 1.27: Estimated and real queueing delay distributions on a four links network
path simulated using ns2.

56

1.6 End–to–End Inference of Link Level Queueing Delay Distribution and
Variance

Figure 1.28: Confidence intervals of the estimated delay variances corresponding to
each link of a 6 hop network path in the case of exponentially distributed delay. The
squares correspond with the actual variance value.

1.6.8 Simulation results: delay variance estimation

We evaluate the performance of our delay variance estimation method by using the
same approach of the previous subsection: again, we perform both model-based
simulations and ns2 based simulations. In the first case, we take advantage of the
high scalability of the variance estimation algorithm and we assess its performance
in a larger network scenario, composed by 6 links. We test our algorithm both for Ex-
ponential and Erlang distributed delay and, in each case, we perform 20 simulations
and evaluate the 95% confidence interval for the estimated variance corresponding
to each link. The results are shown in figures 1.28 and 1.29. Simulations show our
algorithm to provide quite reliable estimates of the delay variance.

We also perform a set of ns2 based simulations in order to test our algorithm in
more realistic conditions. The simulated network scenario consists of a network path
composed by 5 hops and crossed by TCP cross traffic; the generation mode of such
traffic is the same which has been described in the previous subsection. The 95%
confidence intervals of the corresponding estimates are plotted in figure 1.30. Even
in this case, it is worth noticing that our algorithm provides fairly good estimates,
with a generally very small variation interval. By examining figure 1.30, it would be
straightforward, in an hypothetical troubleshooting application, to locate the link(s)
that is(are) causing performance degradation.

57

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Figure 1.29: Confidence intervals of the estimated delay variances corresponding to
each link of a 6 hop network path in the case of Erlang distributed delay. The squares
correspond to the actual variance value.

Figure 1.30: Confidence intervals of the estimated delay variances corresponding to
each link of a 5 hop network path crossed by TCP traffic and simulated over ns2. The
squares correspond to the actual variance values.

58

1.7 End–to–End Inference of Link Level Queueing Delay Statistic through
cumulant estimation

1.7 End–to–End Inference of Link Level Queueing De-
lay Statistic through cumulant estimation

The algorithm that we proposed in the previous section allows, in general, the infer-
ence of the statistics of the queueing delay on each physical link of a network path,
since arcs of the topology tree are logical links that can be associated with a multitude
of physical links. The delay distribution referring to a logical link can thus be con-
sidered as the convolution of the delay distributions referring to different physical
links. In this section, we address the same problem by taking a completely different
approach. In particular, we estimate the cumulants of the queueing delay distribu-
tion as a simple linear combination of the cumulants of the available data set (which,
in turn, can be estimated without bias by means of the well known k-statistics). The
estimator is then unbiased and of low complexity (the coefficients of the linear com-
bination are fixed and can be easily pre-computed offline). The only limitation of our
approach is the impossibility of calculating the first order cumulants of the queueing
delays, since, in that case, the problem is intrinsically undetermined. However, we
propose here an approach that allows to estimate such a statistic for the most con-
gested links, which are the most relevant for traffic engineering and troubleshooting
purposes. Indeed, the most common approach to the inference of the delay distri-
bution is based on the Expectation Maximization (EM) algorithm [38]. This way of
modeling is somehow similar to that proposed in the previous section. However, our
preceeding techniques showed several limitations, both from the point of view of nu-
merical stability and in terms of processing complexity; therefore, the approache that
we will present is both more reliable and less complex.

1.7.1 Link level delay distribution inference

In this section, we will hypothesize to use a packet pair probe and rely on the as-
sumptions that we already illustrated in subsection 1.6.1.

In general, an end–to–end path can be modelled as a sequence of links, each of
them consisting of two independent queues, the one belonging to the forward path
and associated with the queueing delay X(k)

f (k is the index of the node) and the

one associated with the reverse path and corresponding to the queueing delay X(k)
r ;

such a reference scenario is shown in figure 1.23. In this scenario, our main goal is
estimating the cumulants of the delay distributions associated with each link of the
path.

The r− th cumulant of random variable X is defined as:

Kr
X =

∂rGX(t)
∂tr

∣∣∣∣
t=0

(1.38)

where GX(t) is the cumulant generating function associated with X, defined as

GX(t) = log(E(etx)) (1.39)

59

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

The reasons for the choice of such statistics are manyfold:

• the cumulants are linear with respect to the sum: the k-th cumulant of the sum
of independent random variables is equal to the sum of the k-th cumulants of
each random variable;

• unbiased estimators of the cumulants of a distribution are available through
the use of k-statistics;

• the moments of a random variable can be exactly calculated based on the
knowledge of its cumulants;

• the distribution of a random variable can be approximated based on the knowl-
edge of the cumulants by means of either the saddlepoint method or the Edge-
worth series.

Another interesting property of the cumulants, which will be crucial to the develop-
ment of our technique, is:

Kr
αX = αrKr

X (1.40)

which can be trivially derivated from (1.38).
We probe the end-to-end path by using a proper packet pair, whose property is

already described in the previous section. Such a probe is a packet pair, but, while
the first packet is a unicast packet directed to the host at the other end of the path,
the second is a ping-like packet (i.e. a packet that forces the receiver to send an im-
mediate response to the sender, such as an ICMP echo request) directed to one of the
intermediate nodes of the path, as shown in figure 1.23. The two packets are sent
back–to–back by the probe sender and, as in the multiple receivers scenario, perfect
correlation on the shared links is assumed; the generic n-th probe (1 ≤ n ≤ N) origi-
nates a pair of samples Y(l)(n) = {yo(n), y(l)p (n)}, where yo is the end–to–end delay

experienced by the unicast packet directed to the other end of the path and y(l)p is the
round trip delay experienced by the ping− like packet directed to the l − th node of
the path. By considering the path model previously described and by assuming the
whole path consists of Nh links, the two quantities can be expressed as:

yo(n) =
Nh

∑
k=1

x(k)f (n) (1.41)

y(l)p (n) =
l

∑
k=1

x(k)f (n) +
l

∑
k=1

x(k)r (n) (1.42)

Such expressions can be verified by examining figure 1.23, where the behavior of
one of the probes is illustrated; the two arrows indicate the path that is traversed by
both the ping− like packet and the one way packet, respectively. As we are intersted
in the queueing delay only, a minimum filtering over the observed data is prelimi-
narly performed in order to compensate for constant delay terms (e.g. transmission
and propagation latencies).

60

1.7 End–to–End Inference of Link Level Queueing Delay Statistic through
cumulant estimation

Since the goal of our technique is to estimate the r− th cumulants Kr
X(k) f

, Kr
X(k)r
∀ k ∈

[0, Nhop] for any arbitrary order r, we can now write down a linear system which al-
lows to compute such cumulants from the cumulants of the measurements which
can be obtained through packet pair probing. A first set of equations can be easily
obtained by re-writing (1.41) and (1.35) in terms of cumulants and by taking advan-
tage of their linear property. Thus, the following equations hold:

Nh

∑
k=1

Kr
x(k)f

= Kr
yo (1.43)

l

∑
k=1

Kr
x(k)f

+
l

∑
k=1

Kr
x(k)r

= Kr
y(l)p
∀ l ∈ [1, Nh] (1.44)

The two relations above provide Nh + 1 linearly independent equations; there-
fore, for the system to be solved, Nh− 1 additional independent relations are needed.
In order to obtain them, let us consider the sum S(l) of the measured delays expe-
rienced by the two packets of each packet pair (i.e. the sum of the round–trip–time
experienced by the ping-like packet directed to node l and the end–to–end delay
experienced by the one-way packet). By combining (1.41) and (1.42), the following
relation can be obtained:

S(l)(n) = 2
l

∑
k=1

x(k)f (n) +
l

∑
k=1

x(k)r (n) +
Nh

∑
k=l+1

x(k)f (n) (1.45)

By expressing the relation above in terms of cumulants (to this end, let us take ad-
vantage of (1.40)), we can obtain Nh − 1 equations of the form (∀ l ∈ [1, Nh − 1]):

2r
l

∑
k=1

Kr
x(k)f

+
l

∑
k=1

Kr
x(k)r

+
N

∑
k=l+1

Kr
x(k)f

= Kr
S(l) (1.46)

The overall linear system, for each cumulant order r, can then be written as:

H(r) X(r) = Y(r) (1.47)

where X(r) is the unknowns’ vector:

X(r) =
(

X(1)
f , . . . , X(Nh)

f , X(1)
r , . . . , X(Nh)

r

)T

61

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

and the matrix H(r) is of the form:

H(r) =

1 0 0 0 . . . 1 0 0 0 . . .
1 1 0 0 . . . 1 1 0 0 . . .
1 1 1 0 . . . 1 1 1 0 . . .
1 1 1 1 . . . 1 1 1 1 . . .

. .
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 . . .
2r 1 1 1 . . . 1 1 0 0 . . .
2r 2r 1 1 . . . 1 1 0 0 . . .
2r 2r 2r 1 . . . 1 1 1 0 . . .
2r 2r 2r 2r . . . 1 1 1 1 . . .
. .

The vector of the known terms, in turn, is of the form:

Y(r) =

(
Kr

Y(1)
p

, . . . , Kr
Y
(Nh)
p

, Kr
Yo

, Kr
S(1)

p
, . . . , Kr

S
(Nh−1)
p

)T

All of the terms in such a vector can be estimated from the data-set obtained by
packet-pair probing, by means of non-biased estimators. It is easy to prove that H(r)

is non-singular for each cumulant order r ≥ 2: as a consequence, our technique
allows to obtain an unbiased estimator for each of the cumulants of the link-level
delay distributions except for the first order cumulant. Since the first order cumu-
lant corresponds to the mean of a random variable, this conclusion is not surprising.
Indeed, due to the linearity of the expectation operator, the problem of evaluating
the average delay associated with the internal links based on the end–to–end mea-
surements is formally equivalent to computing the value of each delay realization
X(l)

r, f (m) which is, obviously, an undetermined problem. In the following subsection
we will illustrate a heuristic method that allows to estimate the first order cumulant
at least for the most congested links. A final remark on the estimators’ robustness
is necessary: in the present work we do not actually provide theoretical confidence
bounds for our estimates. However, we point out that the estimates yelded by our
method are computed as linear combinations of the cumulants of the measured de-
lays; the coefficients of such combinations only depend on the number of links and
are therefore known a priori and the confidence ranges of the cumulants of exper-
imental data-sets can be expressed analytically. Though fairly complex, theoretical
confidence bounds can therefore be derived, but, for lack of space, we decide to omit
such a discussion here and to postpone it to a follow-up work.

1.7.2 Heuristic solution

As proved in the previous subsection, calculating the mean value of the link level
delays based on end-to-end measurements only is an underdetermined problem.
However, it is possible to extract from the available data-set some useful information

62

1.7 End–to–End Inference of Link Level Queueing Delay Statistic through
cumulant estimation

concerning, at least, the most congested links. To this end, we will rely on the fol-
lowing hypothesis: in real networks there are few links where a packet experiences
a heavy queueing delay, while the queueing delay on most links is often negligible;
we will assume the mean delay associated to such links to be zero. If the links with
negligible queueing delay could be located, the number of unknowns of the linear
system could be reduced and hopefully, it would be possible to calculate the mean
delay associated with the most congested links. Those lightly loaded links can be re-
vealed based on the other cumulants: since their associated delay distributions can
be approximated as a Dirac delta function, all of their estimated cumulants will be
negligible. Once a lightly loaded link has been located, its associated column can be
set to zero within the H(r) matrix. Such a procedure can be iterated until the rank
of the system reaches the number of non-negligible delay terms; when such condi-
tion is satisfied, the resulting overdetermined system (the number of equations is the
same as that of the orginal system, but the number of unknowns has been reduced)
can be solved by using, for example, a least squares approach. Such a technique
would not work in the case of a link associated with a nearly constant but non-zero
queueing delay (the distribution would in that case be modeled as a translated delta,
whose translation factor could not be estimated throughthe cumulants). However,
in this case, such a delay would be included in the constant delay slack which is
compensated for during the preliminary minimum filtering phase and it would not
be possible, in any case, to recover it from the available data-set. Of course, the num-
ber of delay terms that can be estimated depends on the specific delay distribution:
deletion of a column in the system matrix can cause the overall rank either to be
decremented or not, depending on the values in the specific column.

1.7.3 Experimental results
In order to assess the accuracy of our estimation algorithm, we performed two sep-
arate evaluation trials, one focused on the heuristic we described in the previous
subsection and one focused on the estimation of higher order cumulants by means
of the system described in subsection 1.7.1. As for the assessment of the cumulant
estimation accuracy, we ran simulations by using both Matlab generated random
variables and Network Simulator ns2 testbed scenario. In the first case, we simu-
lated a network path composed of 8 hops, each one associated with an exponentially
distributed queueing delay. For the sake of clarity, we show the results associated
only with the forward links (the estimator of the delay associated with the reverse
links has the same mathematical form). The estimated and actual values of the cu-
mulants up to the 6-th order are shown in figure 1.31.

As it appears from the graph, our estimates are in the large majority of cases very
close to the actual value of the cumulants. Of course, the estimation error grows with
the order of the cumulant; this is due to the fact that the variance of the k-statistics
(the unbiased estimators used to retrieve the cumulants of the end-to-end measure-
ment from the data-set) increases with the cumulant order. Therefore, since our es-
timator is a linear combination of such k-statistics, its variance grows as well, thus
originating higher estimation errors. However, because of the consistency property
of the k-statistics, their variance can be arbitrarily reduced by using a larger data-set.
As for the ns2 simulations, we set up a scenario composed by 8 links, each of them

63

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Figure 1.31: Estimated and actual cumulants of link delay distribution in a Matlab
simulated model based scenario.

loaded with TCP cross traffic at a different rate; the TCP cross traffic crossing each
link is generated by several connections, each of them characterized by a different
segment size, in order to reproduce the multimodal distribution of packet lengths
over the real Internet. Such a cross traffic is generated by out–of–path nodes and
directed to different intermediate nodes of the path; the link connecting each out–
of–path node with a node belonging to the path represents the bottleneck link of the
TCP connections: by varying its capacity it is then possible to accurately tune the
amount of TCP cross traffic loading each link of the path. Notice, however, that no
assumption on assumption on the traffic distribution is made.

Again, we show in figure 1.32 the results for the forward links only; the same
increase in the estimation error with the order of the cumulants emerges also in this
simulation run.

In order to test our technique in a more congested scenario, we increased the
traffic load on each queue and repeated the simulation run; the results are shown in
figure 1.33 and the estimation accuracy does not appear to be significantly affected
by the increased link load.

In order to evaluate the heuristic described in subsection 1.7.2, we relied on
model based Matlab simulations. The motivation for this choice is two-fold: first,
model based simulation allows for a more strict control of the scenario, second, the
calculation of the mean is not affected by the correlation among delays, which, on the
contrary, influences the estimation of higher order cumulants. A first run of simu-
lations has been performed by assuming again exponentially distributed delays and
by hypothesizing the presence of only 4 congested links (the other links are assumed
to be lightly loaded, i.e. associated with a mean queueing delay which is by at least
an order of magnitude lower than that of the highly loaded links). The results are
shown in table 1.7 and it clearly appears that, even if some errors affect the estimates
associated with the less loaded links, the mean delay associated with congested links
is generally well estimated.

64

1.7 End–to–End Inference of Link Level Queueing Delay Statistic through
cumulant estimation

Figure 1.32: Estimated and actual cumulants of link delay distribution in a light-load
scenario.

Figure 1.33: Estimated and actual cumulants of link delay distribution in a heavy-
load scenario.

Table 1.7: Mean queueing delay estimates in a scenario with exponential queueing
delay and 4 congested links

forw. est. µ forw. actual µ rev. est. µ rev. actual µ
0.0036 0.0010 0 0.0020

0 0.0010 0.1009 0.1000
0 0.0010 0.0403 0.0400

0.0421 0.0400 0 0.0010
0 0.0010 0.0197 0.0200
0 0.0030 0.0048 0.0010
0 0.0010 0.0601 0.0600

0.0117 0.0100 0 0.0010

65

1. NETWORK TOMOGRAPHY AND ACTIVE MEASUREMENTS

Table 1.8: Mean queueing delay estimates in a scenario with exponential queueing
delay and 8 congested links

forw. est. µ forw. actual µ rev. est. µ rev. actual µ
0 0.0010 0.0194 0.0200

0.0341 0.0300 0 0.0010
0 0.0010 0.0380 0.0400

0.0444 0.0400 0 0.0010
0 0.0010 0.0573 0.0600

0.0841 0.0800 0 0.0010
0 0.0010 0.0653 0.0600
0 0.0100 0 0.0010

In a second simulation run we alternated an equal number of heavily loaded links
to almost idle links; the results are illustrated in table 1.8 and show our heuristic
to correctly locate the congested links and to give a good approximation of their
associated mean delay.

Again, the mean delay associated with the most congested links is generally well
approximated, while that of the less congested ones is reduced to zero, in order to
make the linear problem solvable.

66

Chapter 2

Algorithms and data structures
for high performance network
processing

Packet processing on high–speed links is a very challenging task, especially if non–
trivial computations have to be performed and a relevant amount of state informa-
tion is involved. A 10Gb link filled with minimum–sized packets can carry as many
as 14 million messages per seconds and, therefore, the time budget for a network
monitoring device to process a packet is in the order of tens of clock cycles, thus
requiring thorough processing optimization in order to keep up with the data rate.
However, most of the time, the bottleneck for this kind of processing is not the pro-
cessing power itself, but rather the latency involved in fetching data from external
memory blocks. Indeed, both general purpose processors and dedicated ones come
with a hierarchy of memory blocks, each of them characterized by a different capac-
ity and access latency (usually being inversely proportional to each other). Besides,
packet processing applications are usually associated with a huge amount of state
which is characterized by a random access pattern: therefore traditional cache man-
aging policies are not effective in avoiding the bottleneck. For this reason, the aim of
our work is to design cache friendly algorithms, that allow to segment the data into
different structures, the most likely accessed among them hopefully small enough
to fit the lower layer caches. In particular, one of the most challenging packet–by–
packet operations is deep packet inspection, which is usually carried out by using
finite state automata. Such state machines provide an effective way of searching for a
set of regular expressions into a byte stream, but, on the other hand, they can require
a huge amount of state for storage. Even if techniques for compressing a state ma-
chines do exist, they involve an increased number of access to the memory where the
machine state is stored. In section 2.1 we propose a compression scheme that, thanks
to a local transition cache which can fit into a small memory block, achieves an op-
timal trade–off between memory consumption and number of memory accesses. In

67

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

section 2.2 we optimize further such solution by considering two–step transitions.
In section 2.3 we propose to adopt homomorphic transformations for compressing
the transition table when several input bytes at a time are processed. In section 2.4,
instead, we propose a completely different and novel approach to speed up pattern
matching: we propose to sample a subset of bytes within the traffic stream to be fed
into the finite automaton, while using a traditional state machine for confirmation
of an actual matching. Another important data structure for fast packet processing
is the Counting Bloom Filter, which can efficiently represent a set of items while al-
lowing both element insertions and removals. Bloom Filters and similar structures
are used in a number of network monitoring applications but, despite their good
compression level, they can grow too large to fit into small memories. In order to
address such an issue, in section 2.5 we propose a further optimization, that parti-
tions a Bloom Filter into several layers, the first of them usually small enoughto fit
into small caches. Finally, in section 2.6 we propose a modified version of the Bloom
Filter that can be used as a hash table. Notice that some real–world applications of
the techniques that we illustrate in this chapter will be shown in the following one
(in particular, refer to sections 3.3 and 3.4).

68

2.1 An Improved DFA construction for fast and efficient regular expression
matching

2.1 An Improved DFA construction for fast and efficient
regular expression matching

Many important services in current networks are based on payload inspection, in
addition to headers processing. Intrusion Detection/Prevention Systems as well as
traffic monitoring and layer-7 filtering require an accurate analysis of packet con-
tent in search of matching with a predefined data set of patterns. Such patterns
characterize specific classes of applications, viruses or protocol definitions, and are
continuously updated. Traditionally, the data sets were constituted of a number of
signatures to be searched with string matching algorithms, but nowadays regular
expressions are used, due to their increased expressiveness and ability to describe
a wide variety of payload signatures [44]. They are adopted by well known tools,
such as Snort [45] and Bro [46], and in firewalls and devices by different vendors
such as Cisco[47]. Typically, finite automata are employed to implement regular ex-
pression matching. Nondeterministic FAs (NFAs) are representations which require
more state transitions per character, thus having a time complexity for lookup of
O(m), where m is the number of states in the NFA; on the other hand, they are very
space-efficient structures. Instead, Deterministic FAs (DFAs) require only one state
traversal per character, but for the current regular expression sets they need an exces-
sive amount of memory. For these reasons, such solutions do not seem to be proper
for implementation in real deep packet inspection devices, which require to perform
on line packet processing at high speeds. Therefore, many works have been recently
presented with the goal of memory reduction for DFAs, by exploiting the intrinsic
redundancy in regular expression sets [48][49][50][51].

This work focuses in memory savings for DFAs, by introducing a novel compact
representation scheme (named δFA) which is based on the observation that, since
most adjacent states share several common transitions, it is possible to delete most
of them by taking into account the different ones only. The δ in δFA just emphasizes
that it focuses on the differences between adjacent states. Reducing the redundancy
of transitions appears to be very appealing, since the recent general trend in the
proposals for compact and fast DFAs construction (see sec.2.1.1) suggests that the
information should be moved towards edges rather than states. Our idea comes
from D2FA [48], which introduces default transitions (and a “path delay”) for this
purpose.

Unlike the other proposed algorithms, this scheme examines one state per charac-
ter only, thus reducing the number of memory accesses and speeding up the overall
lookup process. Moreover, it is ortoghonal to several previous algorithms (even the
most recent XFAs [51][52][53] and H-cFA [49]), thus allowing for higher compression
rates. Finally, a new encoding scheme for states is proposed (which we will refer to
as Char-State compression), which exploits the association of many states with a few
input characters. Such a compression scheme can be efficiently integrated into the
δFA algorithm, allowing a further memory reduction with a negligible increase in
the state lookup time.

In summary, the main contributions of this work are:

• a novel compact representation of DFA states (δFA) which allows for iterative
reduction of the number of states and for faster string matching;

69

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

• a new state encoding scheme (Char-State compression) based on input charac-
ters;

2.1.1 Related Work

Deep packet inspection consists of processing the entire packet payload and identi-
fying a set of predefined patterns. Many algorithms of standard pattern matching
have been proposed [54][55][56], and also several improvements to them. In [57]
the authors apply two techniques to Aho-Corasick algorithm to reduce its memory
consumption. In details, by borrowing an idea from Eatherton’s Tree Bitmap [58],
they use a bitmap to compress the space near the root of the state machine, where
the nodes are very dense, while path compressed nodes and failure pointers are ex-
ploited for the remaining space, where the nodes become long sequential strings
with only one next state each. Nowadays, state-of-the-art systems replace string sets
with regular expressions, due to their superior expressive power and flexibility, as
first shown in [44]. Typically, regular expressions are searched through DFAs, which
have appealing features, such as one transition for each character, which means a
fixed number of memory accesses. However, it has been proved that DFAs corre-
sponding to a large set of regular expressions can blow up in space, and many recent
works have been presented with the aim of reducing their memory footprint. In [59]
the authors develop a grouping scheme that can strategically compile a set of regu-
lar expressions into several DFAs evaluated by different engines, resulting in a space
decrease, while the required memory bandwidth linearly increases with the number
of active engines. In [48], Kumar et al. introduce the Delayed Input DFA (D2FA), a
new representation which reduces space requirements, by retrieving an idea illus-
trated in [60]. Since many states have similar sets of outgoing transitions, redundant
transitions can be replaced with a single default one, this way obtaining a reduc-
tion of more than 95%. The drawback of this approach is the traversal of multiple
states when processing a single input character, which entails a memory bandwidth
increase to evaluate regular expressions. To address this issue, Becchi and Crow-
ley [61] introduce an improved yet simplified algorithm (we will call it BEC-CRO)
which results in at most 2N state traversals when processing a string of length N.
This work is based on the observation that all regular expression evaluations begin
at a single starting state, and the vast majority of transitions among states lead back
either to the starting state or its near neighbors. From this consideration and by
leveraging, during automaton construction, the concept of state distance from the
starting state, the algorithm achieves comparable levels of compression with respect
to D2FA, with lower provable bounds on memory bandwidth and greater simplic-
ity. Also, the work presented in [62] focuses on the memory problem of DFAs, by
proposing a technique that allows non-equivalent states to be merged, thanks to a
scheme where the transitions in the DFA are labeled. In particular, the authors merge
states with common destinations regardless of the characters which lead those tran-
sitions (unlike D2FA), creating opportunities for more merging and thus achieving
higher memory reduction. Moreover the authors regain the idea of bitmaps for com-
pression purposes. Run-Length-Encoding is used in [63] to compress the transition
table of DFAs. The authors show how to increase the characters processed per state

70

2.1 An Improved DFA construction for fast and efficient regular expression
matching

traversal and present heuristics to reduce the number of memory accesses. Their
work is specifically focused on an FPGA implementation. The work in [50] is based
on the usual observation that DFAs are infeasible with large sets of regular expres-
sions (especially for those which present wildcards) and that, as an alternative, NFAs
alleviate the memory storage problem but lead to a potentially large memory band-
width requirement. The reason is that multiple NFA states can be active in parallel
and each input character can trigger multiple transitions. Therefore the authors pro-
pose a hybrid DFA-NFA solution bringing together the strengths of both automata:
when constructing the automaton, any nodes that would contribute to state explo-
sion retain an NFA encoding, while the others are transformed into DFA nodes. As
shown by the experimental evaluation, the data structure presents a size nearly that
of an NFA, but with the predictable and small memory bandwidth requirements of
a DFA. Kumar et al. [64] also showed how to increase the speed of D2FAs by storing
more information on the edges. This appears to be a general trend in the literature
even if it has been proposed in different ways: in [64] transitions carry data on the
next reachable nodes, in [62] edges have different labels, and even in [49] and [51][52]
transitions are no more simple pointers but a sort of “instructions”. In a further com-
prehensive work [49], Kumar et al. analyze three main limitations of the traditional
DFAs. First, DFAs do not take advantage of the fact that normal data streams rarely
match more than a few initial symbols of any signature; the authors propose to split
signatures such that only one portion needs to remain active, while the remaining
portions can be “put to sleep” (in an external memory) under normal conditions.
Second, the DFAs are extremely inefficient in following multiple partially matching
signatures and this yields the so-called state blow-up: a new improved Finite State
Machine is proposed by the authors in order to solve this problem. The idea is to
construct a machine which remembers more information, such as encountering a
closure, by storing them in a small and fast cache which represents a sort of his-
tory buffer. This class of machines is called History-based Finite Automaton (H-FA)
and shows a space reduction close to 95%. Third, DFAs are incapable of keeping
track of the occurrencies of certain sub-expressions, thus resulting in a blow-up in
the number of state: the authors introduce some extensions to address this issue in
the History-based counting Finite Automata (H-cFA). The idea of adding some in-
formation to keep the transition history and, consequently, reduced the number of
states, has been retrieved also in [51][52], where another scheme, named extended
FA (XFA), is proposed. In more details, XFA augments traditional finite automata
with a finite scratch memory used to remember various types of information rele-
vant to the progress of signature matching (e.g., counters of characters and other
instructions attached to edges and states). The experimental tests performed with a
large class of NIDS signatures showed time complexity similar to DFAs and space
complexity similar to or better than NFAs.

2.1.2 Delta Finite Automaton

In this section we introduce δFA, a D2FA-inspired automaton that preserves the ad-
vantages of D2FA and requires a single memory access per input char.

71

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

..1.

2

. 5.

3

.

4

.

a

.
b

.

d

.c .

a

.
b

.

c

.

d

.

b

.
a

.

c

.

d

.

d

.

b

.

a

.

c

.
c

.

a

.
b

.

d

(a) The DFA

..1.

2

. 5.

3

.

4

.

a

.

b

.

d

.c .

c

(b) The D2FA

..1.

2

. 5.

3

.

4

.

a

.
b

.

d

.c .

c

.

c

.

c

.
c

(c) The δFA

Figure 2.1: Automata recognizing (a+),(b+c) and (c∗d+).

72

2.1 An Improved DFA construction for fast and efficient regular expression
matching

2.1.2.1 Motivation through an example

In order to make clearer the rationale behind δFA construction and the differences
with D2FA, we start by analyzing the same example brought by Kumar et al. in
[48]: the figure 2.1(a) represents a DFA on the alphabet {a, b, c, d} that recognizes the
regular expressions (a+),(b+c) and (c∗d+).

In figure 2.1(b) the D2FA for the same set of regular expressions is shown. The
main idea is to reduce the memory footprint of states by storing only a limited num-
ber of transitions for each state and a default transition to be taken for all input char
for which a transition is not defined. When, for example, in figure 2.1(b) the state
machine is in state 3 and the input is d, the default transition to state 1 is taken. State
1 “knows” which state to go to upon input d, therefore we jump to state 4. In this
example, taking a default transition costs 1 more hop (1 more memory access) for a
single input char. However, it may happen that also after taking a default transition,
the destination state for the input char is not specified and another default transition
must be taken, and so on. The works in [48] and [61] show how we can limit the
number of hops in default paths and propose refined algorithms to define the best
choice for default paths. In the example, the total number of transitions was reduced
to 9 in the D2FA (less than half of the equivalent DFA which has 20 edges), thus
achieving a remarkable compression.

However, observing the graph in fig.2.1(a), it is evident that most transitions for
a given input lead to the same state, regardless of the starting state; in particular, ad-
jacent states share the majority of the next-hop states associated with the same input
chars. Then if we jump from state 1 to state 2 and we “remember” (in a local mem-
ory) the entire transition set of 1, we will already know all the transitions defined in
2 (because for each character they lead to the same set of states as 1). This means that
state 2 can be described with a very small amount of bits. Instead, if we jump from
state 1 to 3, and the next input char is c, the transition will not be the same as the
one that c produces starting from 1; then state 3 will have to specify its transition for
c. The result of what we have just described is depicted in fig.2.1(c) (except for the
local transition set), which is the δFA equivalent to the DFA in fig.2.1(a). We have 8
edges in the graph (as opposed to the 20 of a full DFA) and every input char requires
a single state traversal (unlike D2FA).

2.1.2.2 Definition of our automaton

As shown above, the target of δFA is to obtain a similar compression as D2FA with-
out giving up the single state traversal per character of DFA. The idea of δFA comes
from the following observations:

• as shown in [61], most default transitions are directed to states closer to the
initial state;

• a state is defined by its transition set and by a small value that represents the
accepted rule (if it is an accepting state);

• in a DFA, most transitions for a given input char are directed to the same state.

73

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

By elaborating on the last observation, it becomes evident that most adjacent
states share a large part of the same transitions. Therefore we can store only the
differences between adjacent (or, better, “parent-child”1) states.

This requires, however, the introduction of a supplementary structure that locally
stores the transition set of the current state. The main idea is to let this local transition
set evolve as a new state is reached: if there is no difference with the previous state
for a given character, then the corresponding transition defined in the local memory
is taken. Otherwise, the transition stored in the state is chosen. In all cases, as a new
state is read, the local transition set is updated with all the stored transitions of the
state. The δFA shown in fig.2.1(c) only stores the transitions that must be defined for
each state in the original DFA.

2.1.2.3 Construction

In alg.5 the pseudo-code for creating a δFA from a N-states DFA (for a character set
of C elements) is shown. The algorithm works with the transition table t[s, c] of the
input DFA (i.e.: a N × C matrix that has a row per state and where the i-th item in
a given row stores the state number to reach upon the reading of input char i). The
final result is a “compressible” transition table tc[s, c] that stores, for each state, the
transitions required by the δFA only. All the other cells of the tc[s, c] matrix are filled
with the special LOCAL TX symbol and can be simply eliminated by using a bitmap,
as suggested in [57] and [62]. The details of our suggested implementation can be
found in section 2.1.6.

The construction requires a step for each transition (C) of each pair of adjacent
states (N×C) in the input DFA, thus it costs O(N×C2) in terms of time complexity.
The space complexity is O(N × C) because the structure upon which the algorithm
works is another N×C matrix. In details, the construction algorithms first initializes
the tc matrix with EMPTY symbols and then copies the first (root) state of the orig-
inal DFA in the tc. It acts as base for subsequently storing the differences between
consecutive states.

Then, the algorithm observes the states in the original DFA one at a time. It refers
to the observed state as parent. Then it checks the child states (i.e.: the states reached
in 1 transition from parent state). If, for an input char c, the child state stores a
different transition than the one associated with any of its parent nodes, we cannot
exploit the knowledge we have from the previous state and this transition must be
stored in the tc table. On the other hand, when all of the states that lead to the child
state for a given character share the same transition, then we can omit to store that
transition. In alg.5 this is done by using the special symbol LOCAL TX.

Equivalent states After the construction procedure shown in alg.5, since the num-
ber of transitions per state is significantly reduced, it may happen that some of the
states have the same identical transition set. If we find j identical states, we can sim-
ply store one of them, delete the other j− 1 and substitute all the references to those
with the single state we left. Notice that this operation creates again the opportunity

1here the terms parent and child refer to the depth of adjacent states

74

2.1 An Improved DFA construction for fast and efficient regular expression
matching

Algorithm 5 Pseudo-code for the creation of the transition table tc of a δFA from the
transition table t of a DFA.

1: for c← 1, C do
2: tc[1, c]← t[1, c]
3: end for
4: for s← 2, N do
5: for c← 1, C do
6: tc[s, c]← EMPTY
7: end for
8: end for
9: for sparent ← 1, N do

10: for c← 1, C do
11: schild ← t[sparent , c]
12: for y← 1, C do
13: if t[sparent , y] ̸= t[schild , y] then
14: tc[schild , y]← t[schild , y])
15: else
16: if tc[schild , y] == EMPTY then
17: tc[schild , y]← LOCAL TX
18: end if
19: end if
20: end for
21: end for
22: end for

for a new state-number reduction, because the substitution of state references makes
it more probable for two or more states to share the same transition set. Hence we
iterate the process until the number of duplicate states found is 0.

2.1.2.4 Lookup

Algorithm 6 Pseudo-code for the lookup in a δFA. The current state is s and the
input char is c.
procedure Lookup(s, c)

1: read(s)
2: for i← 1, C do
3: if tc[s, i] ̸= LOCAL TX then
4: tloc[i]← tc[s, i]
5: end if
6: end for
7: snext ← tloc[c]
8: return snext

The lookup in a δFA is computed as shown in alg.6. First, the current state must
be read with its whole transition set (step 1). Then it is used to update the local
transition set tloc: for each transition defined in the set read from the state, we up-
date the corresponding entry in the local storage. Finally the next state snext is com-

75

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

puted by simply observing the proper entry in the local storage tloc. While the need
to read the whole transition set may imply more than 1 memory access, we show
in sec.2.1.5 how to solve this issue by means of a compression technique we pro-
pose. The lookup algorithm requires a maximum of C elementary operations (such
as shifts and logic AND or popcounts), one for each entry to update. However, in our
experiments, the number of updates per state is around 10. Even if the actual pro-
cessing delay strictly depends on many factors (such as clock speed and instruction
set), in most cases, the computational delay is negligible with respect to the memory
access latency.

In fig.2.2 we show the transitions taken by the δFA in fig.2.1(c) on the input string
abc: a circle represents a state and its internals include a bitmap (as in [57] to indicate
which transitions are specified) and the transition set. The bitmap and the transition
set have been defined during construction. It is worth noticing that the “duplicate”
definition of transitions for character c. We have to specify the c-transition for state
2 even if it is the same as the one defined in state 1, because state 2 can be reached
also from state 3 which has a different next state for c. We start (t = 0) in state 1 that
has a fully-specified transition set. This is copied into the local transition set (below).
Then we read the input char a and move (t = 1) to state 2 that specifies a single
transition toward state 1 on input char c. This is also an accepting state (underlined
in figure). Then we read b and move to state 3. Note that the transition to be taken
now is not specified within state 2 but it is in our local transition set. Again state 3
has a single transition specified, that this time changes the corresponding one in the
local transition set. As we read c we move to state 5 which is again accepting.

..

Local

.
transition set

.

1

.

d

.

c

.

b

.

a

.

1

.

1

.

1

.

1

.

4

.

1

.

3

.

2

. 4.
1

.
3

.

2

.

t = 0

.

a

.

2

.

0

.

1

.

0

.

0

.

1

. 4.
1

.
3

.

2

.

t = 1

.

b

.

3

.

0

.

1

.

0

.

0

.

5

. 4.
5

.
3

.

2

.

t = 2

.

c

.

5

.

0

.

1

.

0

.

0

.

1

. 4.
1

.
3

.

2

.

t = 3

Figure 2.2: δFA internals: a lookup example.

2.1.3 Application to H-cFA and XFA
One of the main advantage of our δFA is that it is orthogonal to many other schemes.
Indeed, very recently, two major DFA compressed techniques have been proposed,
namely H-cFA [49] and XFA [51][52]. Both these schemes address, in a very similar
way, the issue of state blow-up in DFA for multiple regular expressions, thus can-
didating to be adopted in platforms which provide a limited amount of memory, as
network processors, FPGAs or ASICs. The idea behind XFAs and H-cFA is to trace

76

2.1 An Improved DFA construction for fast and efficient regular expression
matching

..0.

1

.

2

.

3

.

4

.
5

.c|(0 or n = 0) .

d

.

a

.

b,+1, n = 4

.
d

.

a

. d.

d

.

e

. c,−1|(1 and n = 0).

d

.
a,−1

.

f

.

d

.

e

(a) The H-cFA. Dashed and dotted edges have same labels, respectively
c,−1|(1 and n = 0) and a,−1. Not all edges are shown to keep the figure
readable. The real number of transitions is 38.

..0.

1

.

2

.

3

.

4

. 5.

a,−1

.
c,−1|(1 and n = 0)

.b,e, f ,c|(0 or n = 0) .

d

.

e,c, f ,b,+1, n = 4

.
e, f

.

e

.

f

.

f

.

e,c

.

f

(b) The δH-cFA. Here all the 18 transitions are shown.

Figure 2.3: Automata recognizing .*ab[ˆa]*c and .*def

77

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

the traversal of some certain states that corresponds to closures by means of a small
scratch-memory. Normally those states would lead to state blow-up; in XFAs and
H-cFA flags and counters are shown to significantly reduce the number of states.

The application of δFA to H-cFA and XFA (which is tested in sec.2.1.7) is obtained
by storing the “instructions” specified in the edge labels only once per state. More-
over edges are considered different also when their specified “instructions” are dif-
ferent. To better clarify the idea, an example of the application to H-cFA (again taken
from a previous paper [49]) is reported in fig.2.3(a). The aim is to recognize the regu-
lar expressions .*ab[ˆa]*c and .*def, and labels include also conditions and operations
that operate on a flag (set/reset with +/-1) and a counter n (for more details refer to
[49]). A DFA would need 20 states and a total of 120 transitions, the corresponding
H-cFA (fig.2.3(a)) uses 6 states and 38 transitions, while the δFA representation of
the H-cFA (fig.2.3(b)) requires only 18 transitions.

2.1.4 Compressing char-state pairs
In a δFA, the size of each state is not fixed because an arbitrary number of transi-
tions can be present, and therefore state pointers are required, which generally are
standard memory addresses. They constitute a significant part of the memory oc-
cupation associated with the DFA data structure, so we propose here a compression
technique which remarkably reduces the number of bits required for each pointer.
Such an algorithm is fully compatible with δFA and most of the other solutions for
DFA compression already shown in section 2.1.1. Our algorithm (hereafter referred
to as char-state compression or simply C-S) is based on a heuristic which is verified by
several standard rule sets: in most cases, the edges reaching a given state are labelled
with the same character. Table 2.1 shows, for different available data sets (see section
2.1.7 for more details on sets) the percentage of nodes which are reached only by
transitions corresponding to a single character over the total number of nodes.

Data set p1char (%) rcomp (%) ηacc TS (KB)
Snort34 96 59 1.52 27
Cisco30 89 67 1.62 7
Cisco50 83 61 1.52 13
Cisco100 78 59 1.58 36
Bro217 96 80 1.13 11

Table 2.1: Percentage of states reached by edges with the same one label (p1char), C-S
compression (rcomp), average number of scratchpad accesses per lookup (ηacc) and
indirection-table size (TS).

As a consequence, a consistent number of states in the DFA can be associated
with a single character and can be referred to by using a “relative” address. More
precisely, all the states reached by a transition labelled with character c will be given
a “relative” identifier (hereafter simply relative-id); since the number of such states
will be smaller than the number of total states, a relative-id will require a lower

78

2.1 An Improved DFA construction for fast and efficient regular expression
matching

Figure 2.4: Distribution of the number of bits used for a relative identifier with our
compression scheme for standard rule sets.

number of bits than an absolute address. In addition, as the next state is selected
on the basis of the next input char, only its relative-id has to be included in the state
transition set, thus requiring less memory occupation. In a D2FA, where a default
transition accounts for several characters, we can simply store it as a relative-id with
respect to the first character associated with it. The absolute address of the next state
will be retrieved by using a small indirection table, which, as far as our experimental
results show, will be small enough to be kept in local (or in a scratchpad) memory,
thus allowing for fast lookup. It is clear that such a table will suffer from a certain
degree of redundancy: some states will be associated with several relative-ids and
their absolute address will be reported more than once. In the next subsection we
then propose a method to cope with such a redundancy, in the case it leads to an
excessive memory occupation. Figure 2.4 shows the distribution of the number of
bits that may be used for a relative-id when applying our compression scheme to
standard rule sets. As it can be noticed, next state pointers are represented in most
cases with very few bits (less than five); even in the worst case, the number of bits
is always below ten. In the second column of table 2.1, we show the compression
rate achieved by C-S with respect to a naive implementation of DFA for the available
data sets. As it appears from the table, the average compression is between 60% and
80%.

2.1.4.1 Indirection Table Compression

As claimed above, the implementation of Char-State compression requires a lookup in
an indirection table which should be small enough to be kept in local memory. If
several states with multiple relative-ids are present in such a table, this might be an
issue. For this reason we present a lookup scheme which offers an adaptive trade-off
between the average number of memory accesses and the overall memory occupa-

79

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

tion of the table. The table that we use in our scheme encompasses two kinds of
pointers: absolute pointers and local ones. When a state has a unique relative-id, its
absolute address is written in the table; otherwise, if it has multiple relative-ids, for
each one of them the table reports a pointer to a list of absolute addresses; such a
pointer will require a consistently smaller number of bytes than the address itself.
An absolute address is then never repeated in the table, thus preventing from ex-
cessive memory occupation. Such a scheme is somewhat self-adapting since, if few
states have multiple identifiers, most of the translations will require only one mem-
ory access, while, if a consistent amount of redundancy is present, the translation
will likely require a double indirection, but the memory occupation will be consis-
tently reduced. Notice that the presence of different length elements in the table
poses no severe issues: since the relative address is arbitrary, it is sufficient to assign
lower addresses to nodes which are accessible with only one lookup and higher ad-
dresses to nodes requiring double indirection, and to keep a threshold value in the
local memory. The results in terms of memory accesses and size of such a scheme
applied to the available data sets are reported in tab.2.1.

2.1.5 Applying C-S to our automaton
The C-S can be easily integrated within the δFA scheme and both algorithms can be
cross-optimized. Indeed, C-S helps δFA by reducing the state size thus allowing the
read of a whole transition set in a single memory access on average. On the other
hand, C-S can take advantage of the same heuristic of δFA: successive states often
present the same set of transitions. As a consequence, it is possible to parallelize
the retrieval of the data structure corresponding to the next state and the translation
of the relative address of the corresponding next-state in a sort of “speculative” ap-
proach. More precisely, let s and s + 1 be two consecutive states and let us define Ac

s
as the relative address of the next hop of the transition departing from state s and
associated with the character c. According to the previously mentioned heuristic it
is likely that Ac

s = Ac
s+1; since, according to our experimental data (see sec.2.1.7),

90% of the transitions do not change between two consecutive states, we can con-
sider such an assumption to be verified with a probability of roughly 0.9. As a con-
sequence, when character c is processed, it is possible to parallelize two memory
accesses:

• retrieve the data structure corresponding to state s + 1;

• retrieve the absolute address corresponding to Ac
s+1 in the local indirection

table.

In order to roughly evaluate the efficiency of our implementation in terms of the state
lookup time, we refer to a common underlying hardware architecture (described in
section 2.1.6). It is pretty common [65] that the access to a local memory block to
be than twice as faster than that of to an off-chip memory bank: as a consequence,
even if a double indirection is required, the address translation will be ready when
the data associated with the next state will be available. If, as it is likely, Ac

s = Ac
s+1,

it will be possible to directly access the next state (say s + 2) through the absolute

80

2.1 An Improved DFA construction for fast and efficient regular expression
matching

pointer that has just been retrieved. Otherwise, a further lookup to the local indirec-
tion table will be necessary.

Dataset # of regex ASCII % Regex w/ Original DFA
length range wildcards (*,+,?) # of states # of transitions

Snort24 24 6-70 83.33 13886 3554816
Cisco30 30 4-37 10 1574 402944
Cisco50 50 2-60 10 2828 723968
Cisco100 100 2-60 7 11040 2826240
Bro217 217 5-76 3.08 6533 1672448

Table 2.2: Characteristics of the rule sets used for evaluation.

Such a parallelization can remarkably reduce the mean time needed to examine a
new character. As an approximate estimation of the performance improvement, let
us suppose that our assumption (i.e. Ac

s = Ac
s+1) is verified with probability p = 0.9,

that one access to on-chip memory takes ton = 4T and to an external memory to f f =
10T [65], and that an address translations requires ntrans = 1.5 memory accesses
(which is reasonable according to the fourth column of table 2.1). The mean delay
will be then:

tpar = (1− p)(to f f + ntrans × ton) + p× to f f = 10.6T

This means that even with respect to the implementation of δFA the C-S scheme
increases the lookup time by a limited 6%. On the contrary, the execution of the two
tasks serially would required:

tser = (to f f + ntrans × ton) = 16T

The parallelization of tasks results then in a rough 50% speed up gain.

2.1.6 Implementation
The implementation of δFA and C-S should be adapted to the particular architecture
of the hardware platform. However, some general guidelines for an optimal deploy-
ment can be outlined. In the following we will make some general assumptions on
the system architecture; such assumptions are satisfied by many network processing
devices (e.g. the Intel IXP Network Processors [66]). In particular, we assume our
system to be composed by:

• a standard 32 bit processor provided with a fairly small local memory (let us
suppose a few KBs); we consider the access time to such a memory block to be
of the same order of the execution time of an assembly level instruction (less
than ten clock cycles);

• an on-chip fast access memory block (which we will refer to as scratchpad)
with higher storage capacity (in the order of 100 KB) and with an access time

81

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

of a few dozens of clock cycles;

• an off-chip large memory bank (which we will refer to as external memory)
with a storage capacity of dozens of MBs and with an access time in the order
of hundreds of clock cycles.

We consider both δFA and Char-State compression algorithms. As for the former, two
main kinds of data structures are needed: a unique local transition set and a set of
data structures representing each state (kept in the external memory). The local tran-
sition set is an array of 256 pointers (one per character) which refer to the external
memory location of the data structure associated with the next state for that input
char; since, as reported in table 2.3(b) , the memory occupation of a δFA is generally
smaller than 1 MB, it is possible to use a 20 bit-long offset with respect to a given
memory address instead of an actual pointer, thus achieving a consistent compres-
sion. A δFA state is, on the contrary, stored as a variable-length structure. In its
most general form, it is composed by a 256 bit-long bitmap (specifying which valid
transition are already stored in the local transition set and which ones are instead
stored within the state) and a list of the pointers for the specified transitions, which,
again, can be considered as 20 bit offset values. If the number of specified transi-
tions within a state is small enough, the use of a fixed size bitmap is not optimal: in
these cases, it is possible to use a more compact structure, composed by a plain list of
character-pointer couples. Note that this solution allows for memory saving when
less than 32 transitions have to be updated in the local table. Since in a state data
structure a pointer is associated with a unique character, in order to integrate Char-
State compression in this scheme it is sufficient to substitute each absolute pointer
with a relative-id. The only additional structure consists of a character-length cor-
respondence list, where the length of the relative-ids associated with each character
is stored; such an information is necessary to parse the pointer lists in the node and
in the local transition set. However, since the maximum length for the identifiers is
generally lower than 16 bits (as it is evident from figure 2.4), 4 bits for each character
are sufficient. The memory footprint of the character-length table is well compen-
sated by the corresponding compression of the local transition set, composed by
short relative identifiers (our experimental results show a compression of more than
50%). Furthermore, if a double indirection scheme for the translation of relative-ids
is adopted, a table indicating the number of unique identifiers for each character (the
threshold value we mentioned in section 2.1.4.1) will be necessary, in order to parse
the indirection table. This last table (that will be at most as big as the compressed lo-
cal transition table) can be kept in local memory, thus not affecting the performance
of the algorithm.

2.1.7 Experimental Results
This subsection shows a performance comparison among our algorithm and the
original DFA, D2FA and BEC-CRO. The experimental evaluation has been performed
on some data sets of the Snort and Bro intrusion detection systems and Cisco secu-
rity appliances [47]. In details, such data sets, presenting up to hundreds of regular
expressions, have been randomly reduced in order to obtain a reasonable amount of

82

2.1 An Improved DFA construction for fast and efficient regular expression
matching

(a) Transitions reduction (%). For δFA also the percentage of duplicate states is reported.

Dataset D2FA BEC- δFA
DB = ∞ DB = 14 DB = 10 DB = 6 DB = 2 CRO trans. dup.states

Snort24 98.92 98.92 98.91 98.48 89.59 98.71 96.33 0
Cisco30 98.84 98.84 98.83 97.81 79.35 98.79 90.84 7.12
Cisco50 98.76 98.76 98.76 97.39 76.26 98.67 84.11 1.1

Cisco100 99.11 99.11 98.93 97.67 74.65 98.96 85.66 11.75
Bro217 99.41 99.40 99.07 97.90 76.49 99.33 93.82 11.99

(b) Memory compression (%).

Dataset D2FA BEC-CRO δFA + C-SDB = ∞ DB = 14 DB = 10 DB = 6 DB = 2
Snort24 95.97 95.97 95.94 94.70 67.17 95.36 95.02
Cisco30 97.20 97.20 97.18 95.21 55.50 97.11 91.07
Cisco50 97.18 97.18 97.18 94.23 51.06 97.01 87.23
Cisco100 97.93 97.93 97.63 95.46 51.38 97.58 89.05
Bro217 98.37 98.34 95.88 95.69 53 98.23 92.79

Table 2.3: Compression of the different algorithms in terms of transitions and mem-
ory.

memory for DFAs and to observe different statistical properties. Such characteristics
are summarized in table 2.2, where we list, for each data set, the number of rules,
the ascii length range and the percentage of rules including “wildcards symbols”
(i.e. *, +, ?). Moreover, the table shows the number of states and transitions and the
amount of memory for a standard DFA which recognizes such data sets, as well as
the percentage of duplicated states. The choice of such data sets aims to mimic the
size (in terms of DFA states and regular expressions) of other sets used in literature
[62][48][50],[61] in order to obtain fair comparisons.

Tables 2.3 illustrate the memory compression achieved by the different algo-
rithms. We have implemented the code for our algorithm, while the code for D2FA
and BEC-CRO is the regex-tool [67] from Michela Becchi (for the D2FA the code runs
with different values of the diameter bound, namely the diameter of the equivalent
maximum weight spanning tree found in the space reduction graph [48]; this param-
eter affects the structure size and the average number of state-traversals per charac-
ter). By means of these tools, we build a standard DFA and then reduce states and
transitions through the different algorithms. The compression in tab. 2.3(a) is sim-
ply expressed as the ratio between the number of deleted transitions and the original
ones (previously reported in tab.2.2) , while in 2.3(b) it is expressed considering the
overall memory saving, therefore taking into account the different state sizes and
the additional structures as well. Note also, in the last column of tab.2.3(a) , the lim-
ited but effective state-reduction due to the increased similarity of states obtained by
the δFA (as described in sec.2.1.2.3). Although the main purpose of our work is to
reduce the time complexity of regular expression matching, our algorithm achieves
also a degree of compression comparable to that of D2FA and BEC-CRO, as shown

83

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

by tab.2.3. Moreover, we remark that our solution is orthogonal to these algorithms
(see sec.2.1.3), thus allowing further reduction by combining them.

Figure 2.5: Mean number of memory accesses for δFA, BEC-CRO and D2FA for dif-
ferent datasets.

Figure 2.5 shows the average number of memory accesses (ηacc) required to per-
form pattern matching through the compared algorithms. It is worth noticing that,
while the integration of C-S into δFA (as described in sec.2.1.5) reduces the average
state size, thus allowing for reading a whole state in slightly more than 1(< 1.05)
memory accesses, the other algorithms require more accesses, thus increasing the
lookup time. We point out that the mean number of accesses for the integration
of δFA and C-S is not included in the graph in that C-S requires accesses to a local
scratchpad memory, while the accesses the figure refers to are generally directed to
an external, slower memory block; therefore it is difficult to quantify the additional
delay introduced by C-S. However, as already underlined in section 2.1.5, if an ap-
propriate parallelization scheme is adopted, the mean delay contribution of C-S can
be considered nearly negligible on most architectures.

Dataset # of # of trans. # of trans. Compr.
states XFA δXFA %

c2663-2 14 3584 318 92
s2442-6 12 3061 345 74.5
s820-10 23 5888 344 94.88
s9620-1 19 4869 366 92.70

Table 2.4: Number of transitions and memory compression by applying δFA+C-S to
XFA.

Finally, table 2.4 reports the results we obtained by applying δFA and C-S to one

84

2.2 Second order delta enconding to improve DFA efficiency

.. speed.

size

.

DFA

.

D2FA

.

BEC-CRO

.

δFA

.

+C-S

.

XFA/

.

H-cFA

.
δXFA/

.
δH-cFA

Figure 2.6: Comparison of speed performance and space requirements for the differ-
ent algorithms.

of the most promising approach for regular expression matching: XFAs [51][52] (thus
obtaining a δXFA). The data set (courtesy of Randy Smith) is composed of single reg-
ular expressions with a number of closures that would lead to a state blow-up. The
XFA representation limits the number of states (as shown in the table). By adopting
δFA and C-S we can also reduce the number of transitions with respect to XFAs and
hence achieve a further size reduction. In details, the reduction achieved is more than
90% (except for a single case) in terms of number of transitions, that corresponds to
a rough 90% memory compression (last column in the table). The memory require-
ments, both for XFAs and δXFAs, are obtained by storing the “instructions” specified
in the edge labels only once per state. Figure 2.6 resumes all the evaluations by mix-
ing speed performance (in terms of memory accesses) and space requirements in a
qualitative graph (proportions are not to be considered real). It is evident that our
solution almost achieves the compression of D2FA and BEC-CRO, while it proves
higher speed (as that of DFA). Moreover, by combining our scheme with other ones,
a general performance increase is obtained, as shown by the integration with XFA or
H-cFA.

2.2 Second order delta enconding to improve DFA effi-
ciency

In the previous section, we have introduced a compact representation scheme (named
δFA) which is based on the observation that, since most adjacent states share several
common transitions, it is possible to delete most of them by taking into account the
different ones only. In this section, we present a novel automaton which takes advan-
tage of the ideas of δFA and adds the concept of “temporary transition”. It extends
the δFA main assumption some step further: while δFA specifies the transition set of

85

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

a state with respect to its direct parents, the adoption of 2-step “ancestors” (in this
definition a direct parent is a 1-step ancestor) increases the chances of compression.
As we will show in the following, the best approach to exploit this second order de-
pendence is to define the transitions of the states between the ancestors and the child
as “temporary”. This, however, introduces a new problem during the construction
process: the optimal construction (in terms of memory or transition reduction) ap-
pears to be an NP-complete problem. Therefore, a direct and oblivious approach is
chosen for simplicity. Results (on real rule-sets from Snort, Bro and Cisco devices)
show that our simple approach do not differ significantly from the optimal (if ever
reachable) construction. Since the technique we propose is an extension to δFA that
exploits second order dependence, we name this scheme δ2FA.

2.2.1 The Main idea

Consider again the DFA in 2.7(a). Although the δFA in fig. 2.7(b) shows a remarkable
saving in terms of transitions with respect to the standard DFA, its main assumption
(all parents must share the same transition for a given character) somewhat limits
the effectiveness of the compression. In the example, all the transitions for character
c are specified (and hence stored) for all the 5 states, because of a single state 3 that
defines a different transition (the transition for c is directed to state 1 for states 1, 2, 4
and 5, while 3 defines an edge to 5). Notice that this is due to the strict definition of
δFA rules that do not “see” further than a single-hop: the transition set of a state is
stored as the difference with respect to all its direct parents.

Intuitively, just as a D2FA with long default-transitions paths compresses bet-
ter than a bounded D2FA with B=2 [48], by relaxing the definition of “parents” to
“grandparents” (i.e., 2-step neighbor nodes) the effectiveness of the δFA approach
increases because of the larger number of possibilities.

However, a blind adoption of this concept does not provide better results in δFA:
for instance, in fig. 2.7(b) defining the transitions for c as difference with respect to all
the “grandparents” still would not allow to eliminate any new transition. Moreover
this scheme would require to store 2 local transition sets (doubling the local memory
needed).

A better approach is, instead, to define the transition for c in state 3 as “tempo-
rary”, in the sense that it does not get stored in the local transition set. In this way, we
force the transition to be defined uniquely within state 3 and not to affect its children.
This means that, whenever we read state 3, the transition for c in the local transition
set is not updated, but it remains as it was in its parents. Then, we can avoid storing
the transitions for c in states 2, 4 and 5, as shown in fig. 2.7(c) where the temporary
transition is signaled with ĉ.

By defining temporary transitions, we effectively exploit 2-nd order relationships
among states in a simple way, without incurring in the need for 2-times larger local
memories.

86

2.2 Second order delta enconding to improve DFA efficiency

..1.

2

. 5.

3

.

4

.

a

.
b

.

d

.c .

a

.
b

.

c

.

d

.

b

.
a

.

c

.

d

.

d

.

b

.

a

.

c

.
c

.

a

.
b

.

d

(a) The DFA

..1.

2

. 5.

3

.

4

.

a

.
b

.

d

.c .

c

.

c

.

c

.
c

(b) The δFA

..1.

2

. 5.

3

.

4

.

a

.
b

.

d

.c .

ĉ

(c) The δ2FA

Figure 2.7: Automata recognizing (a+), (b+c) and (c∗d+).

87

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

..
Local

.
transition set

.

1

.

d

.

c

.

b

.

a

.

1

.

1

.

1

.

1

.

4

.

1

.

3

.

2

. 4.
1

.
3

.

2

.

t = 0

.

a

.

2

.

0

.

0

.

0

.

0

. 4.
1

.
3

.

2

.

t = 1

.

b

.

3

.

0

.

1

.

0

.

0

.

5

. 4.
1

.
3

.

2

.

t = 2

.

c

.

5

.

0

.

0

.

0

.

0

. 4.
1

.
3

.

2

.

t = 3

Figure 2.8: δ2FA internals: a lookup example.

2.2.1.1 Lookup

The lookup in a δ2FA differs very slightly from that of δFA. The only difference
concerns the way we handle temporary transitions: temporary transitions are valid
within their state but they are not stored in the local transition set. Fig. 2.8 shows
also an example of the lookup process for a δ2FA: the whole transition set of state
1 (where we start at time t = 0) is copied into the local transition set. Then by
char a, we move (t = 1) to state 2 which does not specify any transition. When we
read b (t = 2), we move to state 3, where a temporary transition (dashed box) is
specified: this transition is valid only within state 3. Finally (t = 3) we read c, take
the temporary transition, and end up in state 5.

2.2.1.2 Construction

The construction process of the δ2FA requires the corresponding δFA to be con-
structed beforehand and used as input. Then, the process works by recognizing
subsets of nodes where a transition for a given character can be defined as tempo-
rary. In fig. 2.9, nodes are shown as divided into sets according to their parent-child
relationships (highlighted by the bold arrows) and their transitions (for a given char-
acter). In particular, all nodes with the same transition for a given char x share the
same color: sets S1, S2 and S4 all provide the same transition for char x, while S3 de-
fines a different next state for x. If we set all the transitions for x in S3 as temporary,
we can avoid storing the transition for x in S1.

In a real implementation, in order to recognize the nodes where a transition for
a given character can be defined as temporary, for each char x of each state s, if the
corresponding transition t[s, x] in the δFA is stored (i.e., it is different from that t[p, x]
of all its parents) the following steps are required:

• a search is performed in all the children of s: whenever at least a child has the
same transition t[p, x] of its “grandparents”, the second step follows;

• check all the other parents (except for s) of such a subset of children in order to
check if they have the same transition t[p, x];

88

2.2 Second order delta enconding to improve DFA efficiency

..

S1

.

S2

.

S3

. S4.

temporary

Figure 2.9: Schematic view of the problem. Same color means same properties. If the
properties of S3 are set temporary, the ones in S1 can be avoided.

• in this case, the transition t[s, x] in s can be set as temporary and the process
ends.

The process is also described in alg. 7 where, for the sake of readability, we adopt
the same notation of fig. 2.9.

Algorithm 7 Pseudo-code for the creation of the transition table t2 of a δ2FA from
the transition table t of a δFA.

1: t2 ← t
2: for all state s in δFA do
3: for all char c do
4: if t[s, c] ̸= LOCAL TX then
5: S4 ← { parents of s}
6: if t[s j , c] ∀s j ∈ S4 are equal and specified then
7: S1 ← { children of s}
8: if ∃ s j ∈ S1 s.t t[s j , c] == LOCAL TX then
9: break

10: end if
11: if ∃ s j ∈ S1 s.t t[s j , c] == t[S4 , c] then
12: S2 ← { parents of s j} \ s
13: if t[S2 , c] == t[s j , c] == t[S4 , c] ̸= t[s, c] then
14: t2[s, c]← TEMP TX
15: delete t2[s j , c]
16: end if
17: end if
18: end if
19: end if
20: end for
21: end for

A few remarks (which ultimately result in constraints in the construction process)
can be explained by referring to fig. 2.9 (where the transitions for x in S3 are set
temporary):

1. no state in S4 can have a temporary transition for x. The reason is simple:
a temporary transition for x in the parents S4 means that such a transition
does not modify the local transition table and therefore we have no way to
“remember” the next-state when (after some hops) we reach the children S1;

89

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

Dataset Cisco30 Cisco50 Snort24 Snort31 Bro217
Del. ratio 97% 89% 100% 99% 99%

Temp. ratio 84% 76% 100% 98% 99%

Table 2.5: Simple vs. Optimal approach: ratio of deleted and temporary transitions.

2. all children states in S1 must have specified transitions for x, because if the
transitions in S3 are temporary and an un-specified transition exists in a state
s j ∈ S1, the ultimate result is that t[s j, x] = t[S4, x] while s j was meant to inherit
t[S3, x].

Hence, this process introduces some constraints and, as usual when dealing with
constraints on graphs, this creates new problems: as described above, when setting
a subset y of transitions as temporary, we must rely on some other transitions (the
granparents of y) to be non-temporary. This can be classified as a graph-coloring
problem which is known to be NP-hard.

Because of this severe problem, we adopt a straight and oblivious construction:
we construct the δ2FA in a single run by observing all the transitions and setting
all the transitions that satisfy the above-mentioned constraints as temporary. This
solution is very fast because it does not explore the whole solution domain and sim-
ply gives up the idea of optimality. While this may appear unusual and is certainly
non-optimal, it is however motivated by a number of experimental results (reported
in the following section), where this approach does not differ significantly from the
optimal setting (if ever reachable) in terms of transitions reduction. Moreover, notice
that the optimal construction would require an exhaustive search of all the solution
domain, thus questioning the advantages of the optimal setting.

2.2.2 Experimental Results
In this subsection we report the experimental results of our proposed technique
(δ2FA) applied to real-world regular expression-set from IDS/IPSs such as Snort and
BRO and from Cisco security devices [47]. As a first set of results, in order to moti-
vate the simplistic approach to the construction of δ2FA, we compare the best (if ever
reachable) construction and the simple approach we adopt. Since the ultimate goal
of this work is to come up with an efficient way to further reduce the number of tran-
sitions to store in a δFA, the comparison is expressed in terms of deleted transitions.
The results in tab. 2.5 show the ratio between the number of deleted (and tempo-
rary) transitions of our simple approach and the maximum number of deleted (and
temporary) transitions we may have in the optimal setting. The latter is computed
by accepting the violation of the two constraints described in the previous section.
Hence, in this sense, this optimal value is actually a bound. The values in the table
suggest the simple approach is effective and provides very good results, reaching
the maximum number of deleted transitions in almost all the cases.

Tab. 2.6 shows a performance comparison among δFA and δ2FA (which include

90

2.2 Second order delta enconding to improve DFA efficiency

(a) Transitions reduction (%).

Dataset D2FA BEC-CRO δFA δ2FADB = ∞ DB = 2
Snort24 98.92 89.59 98.71 96.33 96.82
Cisco30 98.84 79.35 98.79 90.84 92.01
Cisco50 98.76 76.26 98.67 84.11 86.11
Cisco100 99.11 74.65 98.96 85.66 86.90
Bro217 99.41 76.49 99.33 93.82 94.30

(b) Memory compression (%).

Dataset D2FA BEC-CRO δFA δ2FADB = ∞ DB = 2
Snort24 95.97 67.17 95.36 95.02 95.90
Cisco30 97.20 55.50 97.11 91.07 92.65
Cisco50 97.18 51.06 97.01 87.23 89.03
Cisco100 97.93 51.38 97.58 89.05 90.3
Bro217 98.37 53 98.23 92.79 93.4

Table 2.6: Compression of the different algorithms. In (b) the results for δFA and
δ2FA include char-state compression.

..

A
ve

ra
ge

nu
m

be
r

of
m

em
or

y
ac

ce
ss

.

Dataset

.

Sn
or

t2
4

.

C
is

co
30

.

C
is

co
50

.

C
is

co
10

0

.

Br
o2

17

.

1

.

2

.

3

.

4

.

5

.

6

.

δ2FA

.

D2FA(DB = 2)

.

D2FA(DB = ∞)

.

BEC− CRO

Figure 2.10: Mean number of memory accesses.

91

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

also the Char-State encoding scheme for further memory compression, as explained
in 2.1.4) and the most efficient previous solutions. For D2FA and BEC-CRO, we use
the code of regex-tool [67], which builds a standard DFA and then reduces states and
transitions through the different algorithms. In particular, for the D2FA the code
runs with two different values of the bound B (i.e., 2 and ∞), which is a parameter
that affects the structure size and the average number of state-traversals per charac-
ter [48]. The compression in tab. II(a) is simply expressed as the ratio between the
number of deleted transitions and the original ones, while in tab. II(b) it is expressed
by considering the overall memory consumption, therefore taking into account the
different state sizes and the additional structures as well. Our algorithms achieve
a degree of compression comparable to that of D2FA and BEC-CRO, while allow-
ing for a higher lookup speed by preserving one transition per character. This is
the main strength of our scheme, which allows for reducing lookup time by exploit-
ing the adoption of wide memory accesses which are very common in DRAMs. As
shown by results, δ2FA provides an improvement with respect to δFA at practically
no cose, since it requires a minimal change in the lookup algorithm. Finally since
our solutions are orthogonal to previous algorithms, a further reduction is possible
by combining them. Fig. 2.10 shows the average number of memory accesses re-
quired to perform pattern matching through the compared algorithms. It is worth
noticing that, while δ2FA (just as δFA) needs about < 1.05 accesses (more than 1
because of the integration with the Char-State scheme), the other algorithms require
more accesses, thus increasing the lookup time.

2.3 Homomorphic encoding of DFAs

In this section we propose a solution to increase the speed of regular expression
searching techniques by multiplying the amount of bytes processed per cycle while
also reducing memory requirements. Indeed, very few works have explored this
possibility. The main reason is that, when processing k bytes per step, 256k transi-
tions per state are needed, so even observing only 2 bytes per cycle would require
each DFA state to define 65536 transitions. Of course, the amount of states reach-
able in one-hop from a given state is not that large, on the contrary it is limited and
concentrated on its average. Such fact is exploited in this work in order to define a
simple and effective way to build small-sized and fast DFAs that process k bytes per
step. This involves the definition and application of an homomorphism [68], hence
we name our DFA representation Homomorphic-DFA (h-DFA).

2.3.1 Related works

The current trend in research and industry is to use DFAs to represent regular ex-
pressions, in order to obtain higher performance, while trying to solve their prob-
lems in terms of memory requirements. Many recent works have been presented
with the aim of reducing their memory footprint. For a complete survey of these
works, please refer to section 2.1.1. This work focuses on speed as main issue for

92

2.3 Homomorphic encoding of DFAs

current regular expression searching techniques. Very few works have explored the
possibility to increase searching–speed in DFAs. Basically, the idea of these previous
works is to multiply the amount of bytes processed per cycle, thus working with 2,
3 or 4-byte strides. However, even observing only 2 bytes per cycle would require
each DFA state to include 216 transitions. To solve this problem, the authors of [63]
suggest a solution by observing that in actual FAs the number of different transi-
tions (even when k bytes are processed) is more limited. In particular, they propose
the use of Equivalent Character Identifiers defining the set of input words (strides
of k bytes) which produce transitions to the same next state. Moreover, Run Length
Encoding is used to encode the transition table. Such an approach is not general
and presents some limitations, as highlighted by [69]. Indeed, it is not feasible in
contexts where big DFAs (more than 100 states) and/or large compressed alphabets
are involved. Therefore, the authors of [69] try to make a k-DFA feasible by tak-
ing advantage of alphabet-reduction and default transition compression. The use of
alphabet-reduction, as well as in [63], is justified by the fact that, when the number
of processed bytes increases, the automaton actually uses only a small subset of the
entire alphabet. Instead, the default transition compression acts by removing the
transitions redundancy present in a DFA. Indeed, if the stride doubles, the number
of transitions in the DFA increases quadratically, but the number of states does not;
therefore, intuitively, the fraction of distinct transitions decreases and the transition
redundancy tends to increase.

2.3.2 An efficient representation for DFAs

In the following we introduce the basics of our scheme. We want to succintly de-
scribe the outgoing transitions for each state, so that, when computing the corre-
sponding k-step DFA, we have to combine a small amount of one-step transitions.

Our main idea is to group all the symbols that produce a transition to a given
node into a subset and find a series of functions that, only when applied to such a
subset, provides a specific result or a set of results. When applied to all the other
symbols, the result must be different. More formally, in each state, for each subset of
symbols S j that produces a transition to a node n j, we look for a function h j(c) such
that

h j(c) = x j ∈
{

X j ∀c ∈ S j
U \ X j ∀c /∈ S j

(2.1)

where U is the image of h j(c) and X j is the subset of the image of h j(c) for c ∈ S j.
By means of this series of functions h j, we can describe the transition set of each

node as an array of tuples:

(h1 : x1,1, . . . , x1,N1 : n1) . . . (hd : xd,1, . . . , xd,Nd
: nd) (2.2)

where d is the state outdegree, n1 . . . nd are the reachable states, xk,1 . . . xk,Nk
are

the different values that hk takes in Sk or, in other words, a representation of Xk and
Nk is the cardinality of Xk.

Such a representation helps reducing the redundancy of DFAs as regular Alpha-

93

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

..0. 1. b.

a,c,d,e

.
a,c,d,e

.

b

Figure 2.11: A very simple DFA

bet Compression Tables: it requires to store ∑k Nk values, d functions and d pointers
to next states. As an example of the compactness of such representation, let us ob-
serve the transition set of the DFA state 1 in fig.2.11. In this case, the characters a,c,d
and e all belong to a subset S0 that produces a transition to state 0. Therefore we can
describe the transition set with two tuples only:

{h0:X0:0}, {h1:X1:1}

where h0 and h1 are defined as in (2.1): when h0 is applied to a,c,d and e, the result is
in X0, while h1(b) ∈ X1.

By defining a set of functions to a DFA, we exploit the properties of inverse ho-
momorphisms applied to DFAs. An homomorphism [68] is an application that maps
symbols to strings belonging to a language L. An inverse homomorphisms translate
strings of a language L into symbols belonging to a given alphabet. From our point
of view, by grouping all our functions h j into a function H−1 such that

H−1(c) = h j(c) ∀c ∈ X j

we define an inverse homomorphism (the exponent emphasizes it is an inverse
homomorphism). On the other hand, by means of the representation in tuples we
apply an homomorphism H to a DFA. The composition of the two is, of course, the
original DFA.

2.3.3 The look for an effective Homomorphism

In order to find a description for H−1(c), we test the following possible “bit-friendly”
definition for h j(x):

1. h j(x) = (p j × x + q j) mod m j

2. h j(x) = (p j AND x) mod m j

3. h j(x) = popcount(x mod m j)

These possible definitions are applied (with parameters p j, q j, m j varying from 1 to
256 because x itself is a byte) to DFAs that recognize real data-sets (the ones shown
in sec.2.3.6).

In each test, we start by looking for a function that provides a single result in a
given subdomain S j; if none is found, we look for 2 results and so on. Once we find

94

2.3 Homomorphic encoding of DFAs

such a function, we follow the “definition” of h j(x): we check if it outputs the same
value inside and outside a subset S j, that is we check for the following condition:

{xi = h j(ci) : ∀ci /∈ S j}
∩
{x j = h j(c j) : ∀c j ∈ S j}

?
= ∅ (2.3)

If the condition is not verified (the intersection is not empty), we drop the function
and change the parameter again, as described by the pseudocode in algorithm 8.
The algorithm can either finish the computation because it finds a good function
(i.e.: the return value is FOUND) or fail. The failure happens if no combination of
the parameters {p j, q j, m j} produces a function h j whose image set X j has less than
Cmax elements.

Algorithm 8 Pseudocode for the search of function h j(x)
1: for {p j , q j , m j} ← {0, 0, 0}, {255, 255, 255} do
2: for a← 1, Cmax do
3: for all c j ∈ S j do
4: Compute the set X j = {x j = h j(c j)}.
5: end for
6: if Card(X j) > a then
7: Try with a larger Cardinality a, goto 2
8: end if
9: for all ci /∈ S j do

10: if h j(ci) ∈ X j then
11: Try another function, goto 2
12: end if
13: end for
14: return FOUND with parameters {p j , q j , m j}.
15: end for
16: end for
17: return FAIL.

The results show that, for practical values of the parameter Cmax (i.e.: max ≤ 64),
only h j(x) = (p j AND x) mod m j does not cause the algorithm to fail. Moreover, it
turns out that m j = 255 in all the tests. Therefore we can define h j(x) as a simple
AND operation with a bitmask:

h j(x) = x AND p j (2.4)

Such an outcome has a number of advantages: the number of parameters is limited
to 1 (i.e.: small memory footprint), the operation is one of the most basic logic oper-
ation (i.e.: it costs a simple logic gate in an hardware implementation and it is very
fast and parallelizable if our aim is a software engine) and the definition of h j(x)
is amenable to be described by means of a tree, which means we can redefine each
state transition set in a Longest-Prefix-Matching (LPM) description. Finally such a
description is always achievable: even in the worst case (all characters produce a
different transition and have a different tuple) the correctness of the scheme is not
affected. In the following sections , we walk through the properties of such a repre-

95

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

sentation and provide optimizations for our scheme. However, the main advantage
is the possibility to concatenate two or more h j(x), such that we easily obtain a k-
step DFA. As an example, if {h0 : X0 : n1} describes a transition from state n0 to n1
and {h1 : X1 : n2} is a transition from n1 to n2, then it it straightforward to verify
that we the transition from n0 to n2 of the corresponding 2-step DFA is as simply as
: {h0||h1 : X0||X1 : n2}, where h0||h1 indicates the concatenation of h0 and h1 and
X1||X2 is defined as:

X1||X2 = {a1||a2 : ∀a1 ∈ X1, ∀a2 ∈ X2} (2.5)

Therefore all we have to take care of is the cardinality of the image sets X j, that
determines the memory requirements for this representation.

2.3.4 Optimizations

In the following we describe the advantages and the properties of the bitmask def-
inition for h j(x) and elaborate upon the problem of minimizing the cardinalities of
the image sets.

2.3.4.1 Permutation for LPM

A first observation on subsets S j is that, in some cases, they may not be contiguous,
i.e.: they may be the union of two or more non-contiguous subsets of symbols. Of
course this is detrimental to our mission to minimize the cardinality of X j. We solve
this problem by introducing a permutation of symbols: we define a translation table
(since we are dealing with bytes, it is a small 256 bytes table that does not increase the
cost in terms of external memory accesses) that moves symbols in order to make non-
contiguous subsets as contiguous as possible. Finding the optimal translation table
is a complex issue since we can define a single translation table for the whole DFA,
while subsets may vary from state to state. The good news is that in practical DFAs
the number of different subsets is very limited. The bad news is that, as subsets vary
from state to state, it may happen that a certain symbol occurs in different subsets.
Therefore finding the optimal translation table is an NP-complete problem as it is
equivalent to the weighted maximum set packing problem[70]: we want to find a set-
packing (a collection of disjoint subsets) that maximize the total weight of its subsets.

Such weight (w) must take into account the memory impact of the subsets (a large
and frequent subset has high utility because, once we put it in the translation table,
it is likely to be described by a single bitmask). Therefore w is defined as the product
of the cardinalities of subsets and the number of times those subsets appear in the
whole DFA.

We attack the problem with the Co-occurrence Permutation algorithm, which is
based on the co-occurrence of symbols in subsets. First, it computes the charac-
ter co-occurrence matrix A(0), where an element a(0)i, j represent the number of times
characters i and j appears in the same subset multiplied by the cardinalities of the
subsets they appear into (such that we replicate our weight metric). Then, the algo-

96

2.3 Homomorphic encoding of DFAs

..a. b. c. d. e. f. g. h.....
Step 1.

..a. c. b. e. d. h. f. g.......
Step 2.

..a. c. d. h. b. e. f. g........
Step 3.

Figure 2.12: An example of Co-occurrence Permutation for 3-bit characters

rithm aggregates all 256 characters in 128 pairs, by grouping characters that present
the largest co-occurrence, as depicted in the example of fig.2.12. After that, a new
co-occurrence matrix A(1) is computed for all the 128 pairs. Again, pairs are aggre-
gated thus forming 4-characters groups, another A(2) matrix is computed and so on.
Therefore the algorithm recursively aggregates characters in a tree and the last ma-
trix A(8) actually collapse into a scalar. Of course we have to define the co-occurrence
of groups: for instance, given two symbols pairs i, j and l, m, we can define the pairs
co-occurrence as:

• 1
4 (ai,m + ai,l + a j,l + a j,m)

• max(ai,m, ai,l , a j,l , a j,m)

• min(ai,m, ai,l , a j,l , a j,m)

In our tests, we used the last option (min(.)) as it showed best results on all datasets.
Finally we put the symbols in the leaves of the tree into a table and the translation ta-
ble is simply the inverse permutation of such a table. Now, by means of Co-occurrence
Permutation, subsets S j can be described with single bitmasks. Then we can use a
Longest-Prefix-Matching description of state transition-set and enlarge the number
of ideas we can exploit for efficient implementation of DFAs, either taken from the
widely studied field of IP lookup or newly proposed.

The effectiveness of the proposed schemes is measured by the total number of
h j(x) we find for all states, once we permute the characters, as such a value repre-
sents the “cost” of our h-DFAin terms of transitions. The closer this number gets
to the volume of the DFA graph (the cardinality of the edge set), the better the per-
mutation scheme works. The results are shown in fig.2.13: Co-occurrence Permutation
always gave good results, reaching, for many datasets, the minimum number of
transitions or a value very close to it.

97

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

..

Tr
an

si
ti

on
s

R
at

io

.

Dataset

.

Sn
or

t2
4

.

C
is

co
30

.
C

is
co

50
.

C
is

co
10

0

.

Br
o2

17

.0.5 .

0.6

.

0.7

.

0.8

.

0.9

.

1

.

Minimum

.

Permutation

Figure 2.13: Ratio of transitions stored when Co-occurrence Permutation is used com-
pared with the minimum number of transitions. The ratio is computed with respect
to the case when no permutation is adopted.

2.3.4.2 Bitmap trees

As described above, thanks to the permutation, we can define each state by means
of LPM structures, such as trees. The adoption of trees is twofold useful: it reduces
the memory footprint of the bitmask description and it provides us with another
faster way to compute the bitmask parameter in (2.4). As for the latter issue, it is
straightforward to see that computing p j and X j (the result of h j on subset S j) can
be now simply demanded to the creation of a tree of all the 256 possible values of
the symbol (where last level leaves point to next state) and its subsequent pruning.
Therefore, to store our tuples representation (2.2), we can simply use a bitmap tree.
However, this does not preclude permutation; on the contrary, it takes advantages
from the use of a permutation algorithm, because if the characters of same subsets
are close to each other, they most likely produce short branches in the tree.

In order to construct a bitmap tree representation of a state, for each character
c we get the next state snext and add c in a tree, such that the leaf points to snext
as shown in fig.2.14 (where next states are 1, 2 and 3). Once we observed all the
symbols, we prune the tree: if both children of a node x point to the same next
state, x inherits children’s pointer and children are removed. Finally, we can also
remove from the tree the subset described with the largest number of leaves, as it
can be stored as a “default transition” to be taken when no match is obtained. In
the example of fig.2.14, we remove the leaves pointing to state 1 as they are the most
frequent.

98

2.3 Homomorphic encoding of DFAs

...

1

.

1

.

1

.

1

.

1

.

3

.

2

.

2

(a) Filling

...

1

.

1

.

3

.

2

(b) Pruning

...

3

.

2

(c) Largest
subset re-
moved

Figure 2.14: An example of state construction in h-DFA for 3-bit characters. The
numbers on the leaves are pointers to next states

2.3.4.3 The overall algorithm

Here we retrieve the pieces decribed in the previous paragraphs and finally compose
our algorithm for the creation of bitmask-based (or LPM) DFAs. The first step of the
algorithm is the computation of subsets and of a series of functions h j(x) that can
define an inverse homomorphism. Then we add a translation table by adopting Co-
occurrence Permutation, and then we can simply compute an LPM description of each
state of our DFA. Notice that an LPM description requires rules be stored in order in
(2.2) or in a bitmap tree.

2.3.5 The k-step DFA
As described earlier in sec.2.3.3, the homomorphic (or LPM) description allows for
a simple yet memory-efficient computation of k-step DFAs. The algorithm for the
creation of a k-step h-DFA is shown in alg.9: it is based on a recursive procedure
compute 1-step that takes a k-step h-DFA D′ and a 1-step h-DFA D and computes the
(k + 1)-step h-DFA D′′. As shown in the pseudocode, we add transitions defined
by the concatenation of functions h1||h2 as defined in 2.3.3. Such a concatenation of
functions may as well be seen as a concatenation of trees.

2.3.6 Results
The experimental runs have been performed on data sets of the Snort and Bro intru-
sion detection systems and Cisco security applications [47]. Such data sets, present-
ing up to hundreds of regular expressions, have been randomly reduced in order to
mimic the size (in terms of DFA states and regular expressions) of other sets used in
literature [62][48][50][61], as a fair comparison. The characteristics of the data sets
are summarized in table 2.2, since we adopt the same datasets of previous sections.
As for a construction timing evaluation, our preliminary code always required less
than 2 minutes for each DFA to compute the corresponding h-DFA on a Pentium 4

99

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

Algorithm 9 Pseudocode for the creation of a k-step DFA
procedure compute 1-step(D, D′)
1: for all state s ∈ DFA D do
2: for all next state s1 of s do
3: for all next state s2 of s1 in D′ do
4: Add transition(D′′,s,s2, h1||h2);
5: end for
6: end for
7: end for
8: return D′′

procedure compute k-step(D)
1: for i← 1, k do
2: D′ ← compute 1-step(D, D′)
3: end for
4: return D′

machine and always achieved a successful construction. The regular expessions in
the data sets are given as input to the regex-tool [67], that produces the corresponding
standard DFAs. Such DFAs are, in turn, used as start-point for our algorithms.

Tables 2.7 display the percentage of transitions (and memory) reduction for the
different 1-step algorithms with respect to data sets representations through a stan-
dard DFA. h-DFA achieves a compression degree which is comparable to the other
algorithms while requiring a single memory access per state. Because of its orthog-
onality with other schemes, this is a very appealing result. By using Co-occurrence
Permutation, we are able to obtain good transitions and memory savings.

Fig.2.15 completes the comparison among 1-step algorithms by showing the mean
number of memory accesses per character. D2FA always requires the largest amount
of memory accesses, while h-DFA requires always a single access (as D2FA).

However, the main results are shown in tab.2.8, where the memory reduction ob-
tained by computing 2 and 3-step h-DFA according to sec.2.3.5 are reported. In those
results, h-DFAis combined with Char-State compression 2.1.4 to reduce the number of
bits required to store transitions (notice that those techniques 2.1.4 do not add mem-
ory accesses). The memory reduction is computed with respect to a standard repre-
sentation of 2 and 3-step DFA (respectively with 2562 and 2563 transitions per state).
The compression percentages are very high. Certainly, 3-step h-DFAs still require
too large amounts of memory (in the order of tens or even hundreds of megabytes).
However, considering the consumptions of standard 2 and 3-step DFAs, which reach
even hundreds of gigabytes, our solution is still appealing for DRAM storage. In fact,
h-DFArequires at most 10 megabytes to represent 2-step DFA and (in some cases)
less than 100MB for a 3-step, thus offering a great speed-up without the unfeasible
memory requirements of standard DFAs. Moreover, as our technique is orthogonal
to other schemes, we believe that a combination of different compression schemes
can reach higher speed-ups requiring less amount of memory.

100

2.3 Homomorphic encoding of DFAs

(a) Transitions reduction (%). For δFA also the percentage of duplicate states is reported.

Dataset D2FA BEC-CRO δFA h-DFA
DB = ∞ DB = 2 trans. dup. states No Perm. PCo−Occ

Snort24 98.92 89.59 98.71 96.33 0 94.05 96.52
Cisco30 98.84 79.35 98.79 90.84 7.12 91.28 91.96
Cisco50 98.76 76.26 98.67 84.11 1.1 90.47 90.75

Cisco100 99.11 74.65 98.96 85.66 11.75 87.81 87.93
Bro217 99.41 76.49 99.33 93.82 11.99 78.48 78.48

(b) Memory compression (%).

Dataset D2FA BEC-CRO δFA + C-S h-DFA + C-S
DB = ∞ DB = 2 No Perm. PCo−Occ

Snort24 95.97 67.17 95.36 95.02 84.16 90.73
Cisco30 97.20 55.50 97.11 91.07 87.91 88.87
Cisco50 97.18 51.06 97.01 87.23 83.82 84.31
Cisco100 97.93 51.38 97.58 89.05 81.63 81.82
Bro217 98.37 53.00 98.23 92.79 69.02 69.02

Table 2.7: Compression of the different 1-step algorithms in terms of transitions and
memory.

..

A
ve

ra
ge

nu
m

be
r

of
m

em
or

y
ac

ce
ss

.

Dataset

.

Sn
or

t2
4

.

C
is

co
30

.

C
is

co
50

.

C
is

co
10

0

.

Br
o2

17

.

1

.

2

.

3

.

4

.

5

.

6

.

D2FA(DB = 2)

.

D2FA(DB = ∞)

.

δFA

.

H − DFA

.

BEC− CRO

Figure 2.15: Mean number of memory accesses per character.

101

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

Dataset 2-step h-DFA + C-S 3-step h-DFA + C-S
mem. trans. mem. trans.

Snort24 88.48 98.35 99.34 99.69
Cisco30 98.73 99.50 99.87 99.99
Cisco50 97.84 99.07 99.81 99.92
Cisco100 95.67 98.06 99.42 99.56
Bro217 96.97 95.57 97.98 99.08

Table 2.8: Memory and transition compression (%) for 2 and 3-step h-DFA + Char-
State compression

2.4 Sampling techniques to accelerate regular expres-
sion matching

The previous works which propose acceleration techniques (as we discussed in sub-
section 2.3.1) multiply the amount of bytes (strides) processed per cycle. The ob-
vious problems which arise is memory blow-up (essentially due to the exponential
growth of edge numbers with the stride size) and can be partially mitigated through
smart coding for the transition table, alphabet-reduction and default transition com-
pression. Our approach to the finite automata speed-up is completely innovative:
sampling the text, thus having less symbols to be processed. Clearly, sampling in-
troduces some issues; in details, particular automata for the processing are required
and a certain probability of false alarms is introduced. We address these issues by
the combination of a “sampled” and a “reverse” DFA, two different versions of the
original automaton. We perform a first fast search on the traffic through the sampled
DFA, which is able to exclude most part of non–malicious traffic, and, if necessary, a
more accurate processing through the reverse DFA is triggered, in order to confirm a
match. While other works [71] in the area of intrusion detection already show how to
sample messages to reduce the amount of messages to be processed in a distributed
system, the application of sampling to regex-matching is a novelty and one of the
main contributions of this work.

2.4.1 Sampling DFAs
In this section we introduce the motivation for DFA sampling and describe the main
concepts by means of an example. Moreover, we provide a taxonomy to distinguish
the different ways we can sample a regular-expression set or the corresponding DFA.

2.4.1.1 Motivation

The motivation for this work relies on the following assumptions:

• IDS regex data sets are well-written;

• Regular internet traffic does not match properly written IDS regexes.

102

2.4 Sampling techniques to accelerate regular expression matching

..a) Average case .
..text: ..× ..× ..× ..× ..× ..× ..× ..× ..× ..× ..a ..b ..× ..× ..× ..×
..1st stage: Sample↑↑↑↑↑↑↑↑
..

..b) Matching case .

..text: ..× ..× ..× ..× ..× ..× ..× ..× ..× ..× ..a ..b ..c ..d⃝ ..× ..×

..1st stage: Sample↑↑↑↑↑↑↑↑

..2nd stage: Confirm↑ ..↑ ..↑ ..↑

..

..c) False alarm .

..text: ..× ..× ..× ..× ..× ..× ..× ..× ..× ..× ..b ..b ..c ..d⃝ ..× ..×

..1st stage: Sample↑↑↑↑↑↑↑↑

..2nd stage: Confirm↑ ..↑ ..↑ ..↑

Figure 2.16: Examples of sampling with θ = 2. The regex to match is ab. ∗ cd, the
sampled one is [ab]. ∗ [cd] and the text consists of 16 bytes. Arrows point to observed
chars. Sampling performs 12 memory accesses in case of a real match(b) or false
alarm(c) or even 8 in the average non-matching case(a). In (c) the striked arrow
point to the non-matching char.

Indeed, if regex sets are not poorly written (in our tests we use real and effective IDS
signatures from Bro and Cisco security applications) a signature match will occur
with malicious traffic only. The main assumption is that the majority of traffic is not
malicious. Therefore we can take advantage of the fact that a match is a rare event
and speed up the average case (regular traffic).

The idea of DFA sampling is to speed up the regex matching by simply “sam-
pling” the traffic stream: we extract a byte every θ bytes from the stream, where θ is
the sampling period. The sampled bytes are then used as input to a proper sampled
DFA. The outcome is that all regular traffic is processed θ times faster. The price to
pay is that this process may introduce false alarms: strings that would not match the
original non-sampled regex could match the sampled one. Therefore whenever we
have a match in the sampled DFA, we have to process the suspect packet through a
regular non-sampled DFA.

It is worth noticing that we aim at reducing the number of memory accesses to the
main memory that stores the state-machine, while we cannot reduce the number of
accesses to the memory where the packet is stored. The reason is that even if we were
interested in, say, a byte every two, memories would allow accesses in minimum
sizes of k bytes long words. However, in cached-systems, this is an advantage when
performing the second stage to check for false alarms: all the memory accesses for
this second stage will result in cache-hits, thus reducing the cost of false alarms.

103

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

2.4.1.2 A Motivating Example

Fig. 2.16 shows the principles of our scheme, with the example regex ab. ∗ cd. We
use a sampled DFA (that matches [ab]. ∗ [cd]) and a regular non-sampled one. We
perform a first check on the text by using the sampled DFA; if we find a match, we
move to the second stage.

Fig. 2.16(a) represents the common scenario with traffic that does not match sig-
natures. It is evident, in this case, that the number of memory accesses and opera-
tions to be performed is divided by the sampling period.

Whenever the sampled regex is matched (lower two cases in figure 2.16, where
the circled letter indicates the sample where we find the match), the non-sampled
text has to be checked to confirm the match. To address this issue, the simplest and
fastest way (see section 2.4.3.2) is to adopt DFAs that match reversed signatures (in
our example, dc. ∗ ba). Any regular language is closed with respect to reversing
operations [68], therefore we can always reverse a regular expression and match it
inside a text by observing the text backwards from the end to the beginning. Then,
if a match occurs in the second stage, because of the equivalence of reversed and
forward DFAs, we have a confirmed match (fig. 2.16(b)). Otherwise, we can claim
that a false alarm occurred (fig. 2.16(c)).

2.4.1.3 Taxonomy of DFA Sampling

Sampling can be performed in a number of different ways. In the following we give
a brief description of these techniques and of the models that we use. From the point
of view of the sampling period θ, we can have:

1. Fixed Period Sampling (CPS) : θ is constant;

2. Variable Period Sampling (VPS) : θ = θ(s, c) is a function of the DFA state s
and/or the input character c.

The construction of a sampled DFA can be classified as:

1. Static : θ(s, c) is decided during construction;

2. Adapting/Evolving : θ(s, c) evolves adapting to traffic features, reducing false
alarms and maximizing speed-up.

However, in this first work on sampling we focus on static constant period sam-
pling.

2.4.2 Regex sampling rules

Here we introduce basic theoretical results on DFA sampling. As in signal sampling
theory Nyquist condition is the only one rule to satisfy, also when dealing with reg-
ular expressions matching a simple unique condition has to be satisfied to perform
a correct sampling:

104

2.4 Sampling techniques to accelerate regular expression matching

Lemma 1. Let DFA A describe a single regular expression R1 and let a text T match R.
The corresponding sampled DFA AS will match the sampled text ST if the sampling period
θ satisfies the following:

θ ≤ min |r| ∀r ∈ R

Proof. The proof is straightforward. In order to match the sampled text, we have to
extract (by sampling) at least a character from the substring of T that matched A.
Thus the condition follows.

Lemma 1 limits the sampling period that can be used when matching a single
regular expression. However when working with DFAs that match a set of regular
expressions, it still applies, as long as the limit is moved to the minimum length of
any string that match any regular expression in the set. Moreover the lemma states
that, if the condition is satisfied, we may have false positives but we cannot have
false negatives. This important result is the basis of the research presented in the rest
of this research.

2.4.2.1 Regex rewriting

The application of sampling can be performed by rewriting regular expressions ac-
cording to few simple rules. In the following we use the notation:

SX0
{θ}a

to refer to the application of sampling to the regular language a. In particular, the
symbol S represents the sampling operator, {θ} is the series of sampling periods
θ0,θ1, . . . ,θN , and X0 is the position of the first sampled character. In the rest of
this section, the sampling operator S will be adopted also as an exponent (i.e.: AS) to
denote the sampled version of a DFA.

Basically, we show the application of the S operator to four main cases:

1. simple string str

2. concatenation of regular expressions a and b : ab

3. union of regular expressions a and b: a|b

4. star closure of a character a followed by a regular expression b: a∗b

The sampling of a string is straightforward, and it simply consists of extracting char-
acters at the positions defined by {θ} with offset X0:

SX0
{θ}str = {str(X0 + {θ})}

1Throughout the whole section, bold letters represent regular expression, while non-bold stand for
single letters.

105

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

The offset X0 is critical also when sampling the concatenation and union of regular
expressions, it is immediate to show that:

SX0
{θ}ab = (SX0

{θ}a)(S
X0
{θ}b)

and
SX0
{θ}a|b = (SX0

{θ}a)|(S
X0
{θ}b)

Finally, a star closure of a character a followed by a regular expression is simply :

SX0
{θ}a ∗ b = a ∗

θ−1
|

i=0

i
S{θ}b = a ∗ S{θ}b

We can easily verify the sampling of a∗ is again a∗. Then, since a∗ consists of all the
possible n-repetitions of a (where n ∈ N), the sampling offset we apply to b can be
any, hence the big OR operator |.

Now, although the last case follows from the first three (concatenation and union),
it is worth describing it because of its frequent occurrence in real regular expression
sets. Indeed, many regular expressions in real IDS/IPS data-sets adopt star closures
and most of the times they are unanchored rules (because security signatures may
occur everywhere in the text) of the form: .∗a. Therefore sampling produces a union
of the regex a sampled with all different possible offsets. As an example, let us
suppose we have . ∗ abcde ∗ f gh and we are sampling with fixed period θ = 2. By
applying the previous rules, it follows that:

S2[. ∗ abcde ∗ f gh] = . ∗ (ac|bd)e ∗ (f h|g)

2.4.3 Constant Period Sampling

2.4.3.1 First stage: Sampled DFA

As above mentioned, the idea of DFA sampling is to speed up the string matching by
extracting a byte every θ bytes from the stream and giving such characters as input
to a “sampled DFA” for a first approximate search (to be subsequently confirmed).
Regarding the Constant Period Sampling (CPS) case, such sampled DFA can be sim-
ply obtained by properly rewriting the regexes and building the DFA according to
the new rule-set.

In details, for the process of regex rewriting, we can apply the results of section
2.4.2.1 by selecting a single value θ for all the sampling periods θi. Instead, concern-
ing the offset X0, which is the position of the first character to be sampled in the
regex, we have to take into account all the possible starting values. This way, the re-
sulting complete automaton can be used for string searching regardless of the point
in which we start to sample the traffic.

The pseudocode 10 just shows the overall procedure for rewriting a regex by us-
ing a constant periodθ and by adopting all the possible values for the starting offset:
we split the regular expressions into sub-elements that can be processed directly by

106

2.4 Sampling techniques to accelerate regular expression matching

adopting the rules in sec. 2.4.2.1. In order to simplify the code, a pre-processing
(not shown here) is adopted to convert “+” closures in “*” (i.e., a+ becomes aa∗) and
to take care of the cases when the sampling period is higher than the length of the
minimum string between two closures or the presence of unions (“|”). By repeating
such a process for all the regexes belonging to the set, we obtain the “sampled” rules
on which the “sampled DFA” has to be built. Such a resulting automaton is a simple
DFA and does not require additional information on the states or on the transitions.
From this observation and as suggested by the results of section 2.4.2, we can claim
that a regular language is closed with respect to the fixed sampling operator.

However, even after pre-processing, some regular expressions may still be so
short to make sampling unconvenient. For instance S3abc = [abc]: although the sam-
pled regular expression is valid, it is only 1-character long, thus potentially yielding
a large number of false alarms. The good news is that these extremely short reg-
ular expressions are not very frequent. Therefore a good and effective solution is
to hardcode them, moving the matching problem from data to code and adopting
a function regex match(c) which is basically composed of switch() – case and if – then
statements. This is a well-investigated idea [72][73][74] that is shown to be very use-
ful with a small number of regular expressions. It is also compatible to our sampling
approach: the regex match(c) function can still access all the bytes of the un-sampled
text (which are available to the code, as discussed in section 2.4.3.3) thus keeping the
processing engine busy between two successive memory accesses to the sampled
DFA. Since the number of regular expressions to be matched by such a code is small
(as already pointed out, short regular expressions are fairly rare), the whole data set
which is necessary for such a code can be kept in the local cache, thus requiring no
further accesses to the external memory blocks.

Algorithm 10 FPS of a regex a with period θ.
procedure sample regex(a,θ)

1: pnext ← first pos(a,“*”) −1
2: l ← a[pnext]
3: while pnext ̸= NULL do
4: b← ε

5: for all offset x do
6: b← b| sample str(a(pprev + x . . . pnext))
7: end for
8: a′ ← bl ∗ a′

9: a← a << pnext
10: pnext ← first pos(a,“*”) −1
11: end while

2.4.3.2 Second stage: Reverse DFA

Whenever in the “sampled DFA” a matching happens (i.e., an accepting state is
reached), we have to process the text again, by means of the original non-sampled
DFA, in order to obtain a confirmation of the match. As already mentioned, the rea-
son is that sampling a DFA introduces a false alarm probability, since we check only

107

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

a subset of the characters of the string.
Let us suppose the matching has been detected at the k − th sample in the text.

By using the original DFA for such a further search, a problem arises: which byte of
the packet has to be the starting point for the matching confirmation processing?

The simplest solution could be processing again the overall packet (i.e., start-
ing from the first byte of packet), but this heightens the processing and yields an
excessive delay. Therefore, a more efficient technique could be to “remember” the
last time the process has been in the root state (hereafter simply called state 0) and
start from the corresponding character. However, even this solution could be too
expensive, requiring the processing of a big number of characters, as shown in the
following example.

Let us assume our DFA (shown in figure 2.17(a)) matches the two regular expres-
sions:

. ∗ ab. ∗ f gh

. ∗ cded

The sampled DFA (fig. 2.17(b)) is built on the sample regexes:

. ∗ (a|b). ∗ (f h|g)

. ∗ (ce|dd)

Suppose we read the text: T = xxabxxxxxxxcdedxxx and we sample the text with
θ = 2, obtaining the sequence: T′ = xbxxxcexx. By triggering the sampled DFA with
such a sequence, the processing of the character e reports a match in state 8, which
has to be confirmed with the standard 1-step DFA (fig. 2.17(a)). The last sampled
character for which the sampled DFA was in state 0 is the second x of T. Therefore,
if we use a forward DFA to confirm the match, we need to process all the characters
from a (position 3) to the last d (position 16): we read 13 characters to confirm a
match of a 4-bytes string (cded). This is due to the presence of a closure (.∗) within
one of the regex matched by the DFA. Indeed, for each closure, the DFA replicates
the states corresponding to some regular expressions (as happens in state 2 in fig.
2.17(a)). This means that we can start matching a whole signature starting from a
state which is not the root state 0. This requires the processing of a much larger
number of characters than strictly needed.

For these reasons, in order to improve the performance of the second stage, we
propose a novel scheme where a reverse DFA has to be built. Such a technique re-
quires a slightly larger amount of off-line processing: all the regexes have to be in-
dependently reversed and a new DFA has to be built according to such new rules.
However, this approach has the advantages that we can start the second stage reverse-
matching from the last sample. More precisely, in order to take into account all the
characters belonging to the string, the correct starting point for the reverse DFA is the
(k + 1)-th sampled char in the text. The reason is that the sampled DFA may report
a match for a signature that ends between the actual and the next sample. Therefore,
we process some useless characters too (the first ones in the text after the matched
string), but this does not affect the detection of the string by the reverse DFA. On the
contrary, since the match in the sampled DFA may occur some character before the

108

2.4 Sampling techniques to accelerate regular expression matching

..0. 1. 2. 3. 4. 5.

6

.

7

.

8

.

9

.

10

.

11

.

12

.

13

. a.

c

.

[ˆ ac]

. b. f.

[ˆ f c]

.

c

. g. h.

d

.

e

.

d

.

d

.

e

.

d

(a) The DFA

..0. 1. 2. 3.

4

.

5

.

6

.

7

.

8

.

9

. a|b.

d

.

c

.

[ˆ abcd]

. f.

[ˆ cdf g]

.
g

.

d

.
c

. h.

d

.

e

.

d

.

e

(b) The Sampled DFA

..0. 1. 2. 3. 4. 5.

6

.

7

.

8

.

9

.

10

.

11

.

12

.

13

. h.

d

.

[ˆ hd]

. g. f. b.

d

.

[ˆ b]

. a.

e

.

d

.

c

.

e

.

d

.

c

(c) The Reverse DFA

Figure 2.17: Example of the finite automata needed for sampling (only the forward
transitions are shown for readability): (a) is the standard DFA, (b) is the sampled one
(with θ = 2) and (c) is the reverse DFA.

109

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

real match of the non-sampled string, by moving one sample further we ensure the
correctness of the scheme at the cost of processing a few more (less thanθ) characters
than the strictly needed.

Thus, if we adopt a reverse DFA (fig. 2.17(c)) in the previous example, and we
have a match in the k-th sample, we start the reverse DFA from the next sample (the
(k + 1)-th) and go backwards, processing the substring T′′ = xdedc (i.e., the reverse
of the substring cdedx from T). As easily verifiable, the reverse DFA correctly con-
firms the match by processing 5 characters only, while the forward DFA needed 13
bytes. Notice that, in this example, if we started the reverse DFA from the matching
sample (character e) we would wrongly miss the match.

In the confirmation stage performed through a reverse DFA, we confirm a match
whenever an accepting state is reached (notice that an accepting state in such a DFA
represents the beginning of an original non-reversed regex). Instead, we can imme-
diately detect a false alarm and stop our search whenever we return to the state 0
with any character belonging to the subset of positions 0 . . . k×θ. Indeed, the char-
acters not belonging to the string, which are between the (k × θ + 1) − th and the
((k + 1)×θ)− th char, could trigger a return to the state 0, but this does not imply
a false alarm. Instead, if the return to the state 0 is forced by any character from the
(k×θ)− th to the first one (which certainly belong to the probable matching string),
then a false alarm is detected.

Further performance refinement However, in some cases, locating the (k + 1)-th
sampled char in the text is not a good choice for the performance of the correct
matching search. An example is shown in fig. 3 where the sampled DFA (with
θ = 2) for the regular expression abc ∗ d is depicted. With such a DFA, when we
process the text T = xxxabccccccccdx we trigger a reverse DFA confirmation for each
of the sampled character c inside the text, always reporting a false alarm. When, at
last, we read the character d, we restart the final and conclusive confirmation stage
with the reverse DFA (with a right positive result). Notice that this problem occurs
because of the closure on the accepting state of the DFA and affects the performance
of the technique solely, while the correctness is not invalidated. A simple solution
to this problem is to start the confirmation process when leaving a matching state
only (i.e., state 2 in the example). In this way, we make sure that the reverse DFA has
really started matching a regular expression.

The pseudocode for the lookup is shown in alg.11. In the listing, s represents
the actual state, snext is the next state and i and j are the text position we currently
read respectively for the sampled DFA AS and the reverse DFA AR (this convenient
exponent–notation will be adopted hereafter). In the pseudocode, lines 1-3 and 22-
24 are part of the regular sampled DFA walk. Line 4 represents the condition we
discussed above: we start a confirmation match only when we leave an accepting
state (s.acc is the accepted rule) and move to a state that does not match the previous
rule. This takes care of the cases where the accepting state has a loop. In lines 5-8 we
initialize and start the first part of the reverse DFA walk and do not care about the
occurrence of state 0. Then the first while loop (lines 9-12) is in charge of cases where
the first state of the reverse DFA has a closure (for instance: (abcde∗)R = e ∗ dcb).
Finally the next while loop performs the reverse DFA walk.

110

2.4 Sampling techniques to accelerate regular expression matching

Algorithm 11 Pseudo-code for the lookup procedure.

procedure lookup (T,AS,AR,θ)
1: s← 0
2: while i < length(T) do
3: snext ← AS[s, T[i]]
4: if s.acc > 0 AND snext.acc ̸= s.acc then
5: s′ ← 0
6: for j← i, i−θ(s) do
7: s′ ← AR[s′ , T[j]]
8: end for
9: while s′ == 0 do

10: s′ ← AR[s′ , T[j]]
11: j← j− 1
12: end while
13: while s′ ̸= 0 do
14: s′ ← AR[s′ , T[j]]
15: if s′ .acc > 0 then
16: Confirm Match of s′ .acc
17: return to outer loop
18: end if
19: j← j− 1
20: end while
21: claim False Alarm
22: end if
23: i← i +θ(snext)
24: snext ← s
25: end while

..0. 1. 2.

3

.

4

. a.
b

. c.
d

.

d

.

c

.

d

Figure 2.18: Example of a sampled DFA for regular expression: abc ∗ d. Only some
edges are shown.

111

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

Splitting the reverse DFA As a final comment, we consider splitting the reverse
DFA into several smaller DFAs, one for each subset of regular expressions corre-
sponding to a matching state in the sampled DFA. In details, for each accepting
state s j in the sampled DFA AS, we observe the subset of regular expressions X j =

(r1, r2, . . . rk) that s j accepts. For each different subset X j we create a reverse DFA AR
j .

This way, whenever the sampled DFA reaches a matching state s j, we start the re-

verse match with the corresponding AR
j . This approach reduces the number of steps

to perform in the reverse match when a false alarm occurs. Indeed, on a large DFA
AR a piece of text that does not match a given regular expression may match a part of
any other regular expression in the set hence keeping the walk away from state 0 and
preventing us to claim the false alarm. This does not happen when adopting several
small DFAs AR

j . Moreover this scheme remarkably reduces memory wastage, since,
as shown in [59], n DFAs are less expensive than a single DFA for n signatures in
terms of number of states and size. However, using n reverse DFAs requires in the
sampled DFA additional information which link each accepting state to its own re-
verse DFA. In the final experiments we will discuss about the performance of both
schemes.

2.4.3.3 Possible implementations

The discussion above shows that the basic idea of our approach is to divide the prob-
lem into common cases (no matches) and “exceptional” events (a match). To deal
with these two cases, we perform two different processing stages. It is worth men-
tioning that the second stage does not have to be performed necessarily by the same
processing engine that executes the first stage. For instance, k2 processing engines
can be allocated for this job, dealing with all the alarms produced by k1 > k2 first-
stage engines. However, while this possible implementation can increase the speed
of our solution, in this work we describe our approach as performed by single enti-
ties (first and second stages in the same engine), as we are interested in showing a
proof of concept rather than the best possible implementation.

2.4.3.4 Dealing with DoS attacks

Generally, when dealing with security applications, every approach that tries to op-
timize a frequent case by relying on the assumptions that certain events (for us, a
signature match) are relatively uncommon, is subject to be affected by aimed attacks
that try to increase the probability of the rare events, thus invalidating the purpose of
the method. However, as proposed in [49], such Denial Of Service (DoS) attacks can
be taken care of by observing the “behavior” of the incoming flows and distributing
them into different queues (with different service rates) accordingly. In our scheme,
the “good” or “bad” behavior of a flow is measured by the number of false alarms
it generates within a time frame, since false alarms represent the largest portion of
the processing cost. Therefore, according to this mechanism, flows that generate a
large number of false alarms are sent to the queue with lowest service rate, while

112

2.4 Sampling techniques to accelerate regular expression matching

“good” flows (i.e.: with few false alarms) are queued and serviced with high rates.
However, in this work we do not deal with the details of such an approach, inviting
the interested readers to find more details in [49].

2.4.4 Experimental Results
In order to understand the advantages and costs of our approach, in the following
we present the results of a number of experimental tests on real traffic. In details, the
purpose of these tests is to show the behavior of the sampling approach in real cases
and as the parameters of the problem vary.

To propose verifiable and valid tests, we use:

• the datasets of regexes of real Bro and Snort intrusion detection systems and
Cisco security appliances [47];

• the Michela Becchi’s regex tool (which is freely available [67] and proven very
stable and powerful) to create the DFAs from the “sampled” regexes.

More precisely, we processed the real regex datasets (where the number in the name
indicates the number of regexes) with our tools for creating the new regexes (i.e.
sampled and reverse), which are then parsed by the Michela Becchi’s regex tool to
create the DFAs (which therefore result to be the sampled and reverse DFAs).

We dumped several traffic traces from our department network. Such traces were
composed by several flows, associated with different kinds of applications (peer-
to-peer, web browsing, multimedia, ftp), therefore they encompass a realistic mix
of both mainly textual streams and binary streams. The different TCP connections
have been reassembled by using TCPflows [75] and the resulting streams have been
concatenated in order to obtain the overall traces. The first runs aim at comparing
the efficiency of using an overall reverse DFA for all the regexes (one in figure 2.19)
or a single reverse DFA for each subset of regular expressions corresponding to a
matching state in the sampled DFA (all in figure 2.19). The graph in figure 2.19(a)
shows the number of steps required in the reverse walk by using the two different
techniques when processing three real traces (of length 52MB, 48MB and 66MB re-
spectively) with Cisco100 as regex databases. Instead, figure 2.19(b) illustrates the
speedup (computed as ratio between the trace length and number of accesses re-
quired) when processing the firs trace (52MB) for different regexes datasets. As fore-
seen in section 2.4.3.2, using one reverse DFA for each subset of regex reduces the
number of steps to perform in the reverse walk when a false alarm occurs and al-
lows higher speedups, along with a memory saving.

To compare our sampling scheme with a classical DFA which processes all bytes,
we took as reference hardware platform the Network Processor Intel IXP2800 [76].
Network Processors offer very high packet processing capabilities (e.g. for gigabit
networks) and combine the programmability of general-purpose processors with the
high performance typical of hardware-based solutions. In particular the IXP2800 is
designed to perform a wide range of functionalities, including multi-service switches,
routers, and broadband access devices. It is a fully programmable network proces-
sor, characterized by a hierarchy of processing units (a XScale core and 16 32-bit mi-
croengines MEv2, running at 1.4GHz) and memory devices (4KB of local memory,

113

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

(a) Required steps in the reverse walk.

(b) Overall speedup.

Figure 2.19: Using an overall reverse DFA (one) or one DFA per regex subset (all).

114

2.4 Sampling techniques to accelerate regular expression matching

16KB of scratchpad memory, 256MB of external SRAM and 2GB of external DRAM).
The bigger the memory, the slower the access to it.

Figure 2.20: Bit rate with a standard DFA (θ = 1) and sampled DFAs (θ = 2, 3, 4).

We simulated the functioning of our algorithm by putting the automata in DRAM,
given the large memory required by standard DFAs, and reserving for pattern match-
ing 4 microengines with zero-overhead full threading support (i.e., 8 threads per
microengine with no penalty for context switch). Consider that each state traversal
requires a DRAM access, as well as the readings of packets, and that, in turn, each
DRAM access costs on the average 1270 clock cycles. Fig. 2.20 reports the results
in terms of bit rate when processing a real trace of 20MB with a common DFA (i.e.
θ = 1) or with our sampling scheme (with θ = 2, 3, 4). It is evident the speedup
of sampling DFA, which allows to multiply the bit rate. The payment due to the
check in the reverse DFA is very slight because of the low occurrencies of false posi-
tives in real traffic. Therefore, the sampling DFA enables a big saving of processing,
according to the sampling period, which results in a higher sustainable bit rate.

In order to perform comparisons between our solution and the more efficient
schemes for speeding up the matching search in DFAs, we implemented the tech-
niques proposed in [69]. In details, we apply alphabet-reduction and default transi-
tion compression to k-DFAs introduced in [69], which in turns are based on D2FAs.

The graph in figure 2.21 shows the data rates achieved when processing real
traces of 52MB (trace1) and 48MB (trace2) and by adopting Cisco100 as dataset. In
particular, we compared our scheme and the one implemented according to the di-
rections in [69] by setting θ = k, where the former represents the sampling period
and the latter the stride length (i.e., the amount of bytes which are processed at each
step in [69]). Notice that the runs pointed out that both the schemes detect the over-
all number of attacks in each case (i.e. for each mix of traces and databases). The 1st

115

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

and 3rd bars of the histogram represent the bit rates for our sampling scheme, while
the other two bars report the values for the multi-stride scheme. The advantages of
our schemes are clear.

Figure 2.21: Bit rate with k-DFA and our DFAs.

As for the memory size requirements, we do not report the results because, since
our technique produces regular DFAs, it can actually be coupled with many of the
compression schemes proposed in literature (and cited in the previous introductory
sections) thus avoiding memory blowup. However, it is important to point out that
the sampling operation does not overly increase the size of the DFAs. Another ex-
periment aims at describing the effect of the features of regular expressions on the
number of false alarms (and hence speed) in the sampling approach.

In fig. 2.22 we report three aligned graphs that correlate the measured proba-
bility of false alarms (PFA, top graph) generated by each signature to the signature
length (graph in the center) and the signature range (bottom graph). The signatures
are labeled by the numbers on the x-axis and the graphs represents the results of
a sampled match of the Cisco200 regular expressions with θ = 4. The length of a
signature is defined as the length of the shortest string that matches the signature,
while we define the range as the cardinality of the set of all strings matching that
signature. Of course, closures (* or +) would cause the range of a signature to be
infinite (remember closures represent the unlimited repetition of a character). For
this reason, in order to properly represent ranges in the graph, we set the range of
a closure to a large number (10000). The figure shows that a few short signatures
are responsible for the majority of the false alarms. In the following, from the in-
spection of a few distinct cases, we show how to extrapolate the general behaviour.
Signature 99 contributes to more than 25% of all false alarms, this is mainly due to
its short length and to its fairly regular range. On the other hand, signature 110 does
not produce any false alarm because, even if it has a large range, it has a remarkable
length. Signature 115, instead, is quite short (the shortest length bar in the middle
graph), but it does not contribute to false alarms because of its very limited range.
These examples justify the intuitive idea that short signatures with large range are
the most likely to provoke false alarms. Another comment is that the length of a

116

2.4 Sampling techniques to accelerate regular expression matching

Figure 2.22: False alarms, length and range for each signature.

117

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

regular expression has a larger effect on false alarms than its range.

2.5 Enhancing Counting Bloom Filters through Huffman-
Coded MultiLayer Structures

Nowadays streamed data processing is a basic problem in many areas related to com-
puter applications. In particular, detecting whether an item belongs to a set is one of
the most challenging tasks, especially when the amount of data to be processed per
unit of time is very large and rapidly changes.

A Bloom Filter (BF) is a simple data structure for information representation and
query processing. It is a randomized method based on hash functions; thus, it allows
for false positives, but the space savings often outweigh this drawback. BFs were in-
troduced by Burton Bloom [77] in the 1970s for database applications, but recently
they have received a great attention also in the networking area [78], for collaborat-
ing in overlay and peer-to-peer networks, packet routing, and measurements. BFs
are also proposed for many distributed networking protocols: for example, in order
to share web cache, a proxy periodically broadcasts BFs that represent the contents
of their cache. In this situation, BFs are not only data structures but also messages
being transmitted in a network. Thus, several performance parameters have to be
taken into account: the probability of false positives, memory size, number of items
to be managed and transmission size.

BFs do not address the issues of inserting and deleting items in the set. For exam-
ple, a set may change over time, with elements being inserted and deleted. Deletion
cannot be done by simply reversing the insertion operation, because of the collisions
created by the hash functions. In order to allow these operations, Counting Bloom
Filters have been designed [79]. They are based on the same idea of BFs, but they use
fixed size counters (also called bins) instead of single bits of presence. When an item
is inserted, the corresponding counters are incremented; deletions can then be safely
done by decrementing the counters. CBFs present the problem of counters overflow,
which has to be considered in the design.

This section adopts a simple upper bound for the CBF overflow probability which
is functional to the design of new efficient solutions.

The central idea of the section is that, by leveraging on the bound, a novel paradigm
in CBF design can be adopted; such a paradigm involves compression – to improve
CBFs in terms of fast access and limited memory consumption (up to 50% of mem-
ory saving in comparison with the standard solutions) – and the introduction of layer
hierarchy in the CBF data structure.

The target could be to take advantage of the built-in memory hierarchy of many
systems (such as Network Processors – NPs) to implement compressed data struc-
tures in the small but fast local memory or “on-chip SRAM” of such devices. As an
example of the advantages of our compressed CBFs, we propose a compact solution
to the detection of evasion attacks to Intrusion Prevention Systems (IPSs).

In details, the main contributions of this section (which is an extended version of
the work in [80]) are:

118

2.5 Enhancing Counting Bloom Filters through Huffman-Coded MultiLayer
Structures

• the use of Huffman code in CBF, which is optimal for independent symbols
(such as the bins of a CBF);

• the idea of a hierarchical multilayer structure;

• the proposal of an efficient CBF for systems with limited memory such as NPs
and programmable routers;

• the adoption of these efficient structures in the solution of a difficult task such
as recognizing evasion attacks.

This sectionr is organized in two main parts: first we describe the proposed al-
gorithms and then we show a brief example of their application, which is shown in
more details in [81]. A comparison among our algorithms and the algorithms de-
fined in literature is performed in subsection 2.5.5, by adopting NP Intel IXP2800 as
a referential hardware platform.

2.5.1 Background on Bloom Filters
A Bloom Filter represents a set S of n elements from a universe U by using an array
of m bits, denoted by B[1], ..., B[m], initially all set to 0. The filter uses k independent
hash functions h1, ..., hk with log2(m) bits long output, that independently map each
element in the universe to a random number uniformly distributed over the range.
For each element x in S, the bits B[hi(x)] are set to 1, for 1 ≤ i ≤ k (a bit can be set to
1 multiple times).

To answer a query of the form “Is y in S?”, we check whether all B[hi(y)] are set
to 1. If not, y is not a member of S, by construction. If all B[hi(y)] are set to 1, it
is assumed that y is in S, hence a BF may yield a false positive. The probability of
a false positive f can be tuned by choosing the proper values for m and k. It is a
well-known result [79] that the minimum f is obtained for k = (m/n) ln 2. In this
configuration, all bits B[1], ..., B[m] are set or cleared with probability p = 1/2 (thus,
roughly, the same number of ones and zeros are present in the BF).

Many works about BFs have been presented, and the major improvements are
compressed BFs [82], distance-sensitive BFs [83], dynamic BFs [84], space-code BFs
[85].

As previously stated, BFs do not allow insertion and deletion of an item in the
set. Therefore, CBFs have been introduced, which use m fixed size bins instead of
m single bits of presence. When an item is inserted (or deleted), the corresponding
counters are incremented (or decremented).

However, CBFs present the problem of counters overflow, which has to be consid-
ered in the design. Although for most network applications four bits long counters
are sufficient [78], the distribution of counters load across bins changes dramatically
(according to Poisson arrivals [79]), suggesting that four bits per bin is a safe choice
and that a certain amount of compression is achievable. Moreover, by using a fixed
number of bits, the problem of counters overflow in CBFs is not completely solved.
It results in a lack of adaptiveness and inaccuracy of stored information.

In order to waive these limitations and achieve better performance, many im-
provements to CBFs have been done. Mitzenmacher [82] shows that unbalancing the

119

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

number of ones and zeros in a standard BF can help achieving a good compression
ratio before transmission (e.g. for web-caching application). This way, by keeping
the same amount of bits of the uncompressed case, it is possible to either reduce the
false positive probability or use a lower number of hash functions.

Spectral Bloom Filters (SBFs) [86] are an extension of standard BFs to multi-sets,
allowing estimates of the multiplicities of individual items with a small error proba-
bilities. The word “Spectral” means that SBFs allow only filtering of elements whose
multiplicities are within a requested spectrum (therefore they do not preserve bins
from overflow in a conclusive way). The main goal of SBFs is the optimal counter
space allocation, so they dynamically vary the size of their counters in order to mini-
mize the number of necessary bits. To achieve this flexibility, SBFs include additional
slack bits among the counters and complex index structures, that increase both mem-
ory needs and access time as compared to standard CBFs. Finally, SBFs introduce
techniques for filter compression based on Elias code, that reduce the transmission
size of data structures but increase again the processing load.

Dynamic Count Filters (DCFs) [87] are data structures designed for speed and
adaptiveness in a very simple way. They do not require the use of indexes, thus
obtaining a fast access time, and avoid permanently counters overflow. DCFs consist
of two different vectors: the first one is a basic CBF with counters of fixed size, the
second one is the Overflow Counter Vector, which has a counter for each element of
first vector that keeps track of the number of overflow events. The size of counters
in Overflow Counter Vector changes dynamically to avoid saturation; this implies
that, for each update, a structure rebuilding is required. Moreover, the decision of
having the same size for all these counters (for direct access entails that many bits are
not used. Therefore, this solution can be improved, especially in terms of memory
consumption.

The d-left CBFs (dlCBFs) [88] are simple alternatives based on d-left hashing and
fingerprints of bins. They do not rely on the principles of Bloom Filters, but they offer
the same functionalities. The dlCBFs use less space, generally saving a factor of two
or more for the same fraction of false positives, and the construction is very simple
and practical, much like the original Bloom Filter construction. Indeed the simplicity
in constructing and maintaining data structures is maybe the greatest contribution
of [88] as compared to previous works. Moreover, even dlCBFs have the limitation
of potential counters overflow and the need for an additional fingerprint for each bin
in the data structure.

A successive proposal [89] advocates the use of rank indexing to achieve com-
pact representations of BFs and CBFs through a hierarchical construction. The main
idea of this proposal is to implement a CBF as a hash table where a fingerprint (hash
value) for each key is stored. Even if the data structure does not actually perform any
counting operation, dynamic insertions and deletions from the set are supported.
The authors use several layers of bitmaps to avoid the overhead associated to the
canonical pointer based implementation. While the use of multilayer bitmaps sug-
gests a similarity with our work, its focus is significantly different, as it does not
really provide “counting” functionalities and it cannot support multi-sets.

The memory utilization is the parameter that is better taken into account in this
work. As previously mentioned, there are several cases where network bandwidth
is still expensive and transmission size becomes a fundamental parameter (e.g., Web

120

2.5 Enhancing Counting Bloom Filters through Huffman-Coded MultiLayer
Structures

cache sharing or P2P applications). Moreover, although memory appears plentiful
today, there are many hardware architectures used in network devices (e.g. Network
Processors) that may take advantage of using very space-efficient data structures, in
terms of both performance and costs. Indeed, memory saving can greatly speedup a
device by requiring rare access to slower off-chip memory; further, while ordinarily
DRAM memory is cheap, fast SRAM memory and especially on chip SRAM continue
to be comparatively scarce. All these issues have led our research, which had the
target of an efficient and practical data structure for CBF.

2.5.2 Theoretical Results
In this subsection we present the main theoretical results on the CBF counter over-
flow probability and on Huffman coding of bin counters that will be the basis of the
data structures proposed in the rest of the section.

The following classical result [78] on CBF gives a bound on the overflow proba-
bility P(φ ≥ j) that is widely adopted to design the bin size:

P(φ ≥ j) ≤
(

enk
jm

) j
(2.6)

However, (2.6) is pretty loose; the next theorem 1 presents a tighter bound for P(φ ≥
j).

Lemma 1. Let φ be a CBF counter value and α = nk
m−1 . If α < 1, the function χ(j) =

P(φ = j) is a monotonically decreasing function.

Proof. The probability of the event {φ = j}, for j ≥ 1, is given [78] by:

χ(j) =
(

nk
j

)(
1
m

) j (
1− 1

m

)nk− j

The ratio between two consecutive values is:

χ(j + 1)
χ(j)

=
nk− j
j + 1

1
m− 1

<
α

j + 1
< 1 (2.7)

which gives the proof.

For k = (m/n) ln 2, α = (m × ln 2)/(m − 1). α is less than 1 for m > (1 −
ln 2)−1 ≈ 3.26. In the CBFs, the previous condition is always satisfied, since m≫ 1.

Theorem 1. Let φ be a CBF counter value and α = nk
m−1 . If the number of hash functions

is chosen so as to minimize the probability f of false positive (i.e., k = (m/n) ln 2), then:

P(φ ≥ j) <
α(j + 1)

j(j + 1−α)
P(φ = j− 1)

121

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

Proof. By repeatedly applying eq. 2.7:

P(φ ≥ j) =
+∞
∑
i= j

P(φ = i) < P(φ = j)
+∞
∑
i=0

j!αi

(j + i)!
(2.8)

The right hand sum of (2.8) can be bounded as:

+∞
∑
i=0

j!αi

(j + i)!
<

+∞
∑
i=0

(
α

j + 1

)i
=

j + 1
j + 1−α

to finally obtain:

P(φ ≥ j) <
α(j + 1)

j(j + 1−α)
P(φ = j− 1) (2.9)

Corollary 1. Under the previous results, ifα < 1:

P(φ > j) < P(φ = j− 1) (2.10)

Proof. From (2.8), by changing the lower limit of the series from 0 to 1, we obtain:

P(φ > j) <
α2

j(j + 1−α)
P(φ = j− 1) (2.11)

Then, considering that j ≥ 1,α2/(j(j + 1−α)) < 1.

Lemma 1 allows to approximate P(φ = 0) and E[φ]:

1 =
+∞
∑
j=0

P(φ = j) ≃ P(φ = 0)
∞
∑
j=0

α j

j!
= P(φ = 0)eα (2.12)

Then P(φ = 0) ≃ e−α . As for the expectation ofφ we get:

E[φ] =
+∞
∑
j=0

jP(φ = j) ≃ P(φ = 0)
∞
∑
j=0

j
α j

j!
= α (2.13)

If the CBF minimizes f , E[φ] ≃ ln 2 = 0.693, which is a a very tight approxima-
tion in several cases.

It is interesting to see that, as shown in fig. 2.23, the previous bound can be
much tighter than the widely used (2.6). For instance, if n = 1000, k = 10 and
m = nk/ ln 2, eq. (2.6) yields P(j > 15) ≤ 1.37× 10−15 while our bound produces

122

2.5 Enhancing Counting Bloom Filters through Huffman-Coded MultiLayer
Structures

Figure 2.23: Bounds comparison for n = 1000, k = 10 and m = nk/ ln 2. P is the
actual P(φ ≥ j), Pb is the well known (2.6) while P′b is that provided by the theorem
1. In the smaller graph, a zoom on the contour of j = 2. P′b is always tighter than Pb.

P(j > 15) < 1.51 × 10−16, with a gain of an order of magnitude. Moreover, the
results of this first theorem are the basis for the following one.

Observation 1. Let H(σ) be the Huffman coding of σ , len(·) the “bit-length” operator, φ
a CBF counter value; then:

len(H(φ)) =φ+ 1

Indeed, Huffman codes can be obtained by using a binary tree. The tree is con-
structed from a list of N nodes (symbols) whose weights correspond to the symbol
probabilities.

The whole procedure is the following:

• let x and y be the two nodes with the lowest weight;

• x and y are aggregated into a parent node whose weight is set to the sum of
the two nodes;

• the parent node replaces x and y in the list.

These steps are repeated until the list contains one node only.
To perform Huffman coding of CBF bin counters, we first construct a tree whose

nodes X0, ..., XN correspond to the possible values of the counters j = 0, ..., N; the
weight of the j-th node is set to P(φ = j). Let Lτ be the list of nodes at step τ
and let Xτ be the parent node to be created at this step. Suppose we have Lτ =
{X0, X1, . . . , XN−τ−1, Xτ−1}; the weight of the parent node Xτ−1 created at the pre-
vious step is P(Xτ−1) = P(j > N − τ − 1).

123

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

...

4

.

0

.

1

.

3

.

0

.

1

.

2

.

0

.

1

. 1. 0.

1

.
0

.
0

Figure 2.24: A Huffman tree for the CBF bin counters.

By using the result of corollary 1, we obtain:

P(Xτ−1) < P(j = N − τ − 2)

Moreover, the previous inequality also implies that P(Xτ−1) is smaller than any of
the values in the set {P(X0), . . . , P(XN−τ−2)}. Then, at step τ , the nodes with the
smallest weights are Xτ−1 and XN−τ−1 and they shall be aggregated into the parent
node Xτ . Thus:

Lτ = {X0, ..., XN−τ−2, XN−τ−1, Xτ−1} ⇒
⇒ Lτ+1 = {X0, ..., XN−τ−2, Xτ}

The resulting tree turns out to be completely unbalanced (i.e., the depth of all
N nodes is given by the sequence of the first N naturals) such as the one of fig.
2.24. Therefore, the depth of node φ is φ+ 1, i.e. the encoding of the value φ of a
CBF counter is φ+ 1 bit-long. This result, which comes in turn from the results of
theorem I, is one of the basic principles of our structures.

2.5.3 Huffman Counting Bloom Filters
The target of our data structures is an improvement of CBFs by avoiding counters
overflow and reducing memory needs. The drawback, as we will see below, is a very
slight increase of complexity for the insertion/deletion of an element.

The first step towards the above mentioned target (that will be fully accom-
plished through the layered structure presented in the next subsection) involves the
use of Huffman coding in CBF. The result is Huffman Counting Bloom Filter (HCBF);
in order to introduce this data structure, we begin by recalling Spectral Bloom Filters
[86].

They use a memory-efficient structure that encodes any bin with Elias coding.
This way, bins do not have a fixed position and, for all k hash functions, we have
to find the right bin it points to by looking up a certain amount of words. Lookup
implies to decode a number of bins until the right one is found. Moreover each
insertion and deletion imply a potential shift of the whole structure.

To simplify these operations, SBFs divide the entire structure in subsegments and

124

2.5 Enhancing Counting Bloom Filters through Huffman-Coded MultiLayer
Structures

wi

0111011010011011︸ ︷︷ ︸
popcount=10

wi+1

1101001011001· · ·

⇓
16− 10 = 6 symbols in wi

Figure 2.25: Example of fast lookup through popcount.

use a set of tables in aid to the lookup. In addition, a certain number ε of empty bits
(called slack bits) are inserted to reduce shifts operations for insertions and deletions.
Elias compression scheme is a perfect choice when dealing with large numbers, such
as those of multiset membership query applications. However, for smaller values
(recall that in a regular CBF, 16 is widely considered as a high loose bound), other
codings can perform better. By leveraging on Observation 1 of the previous sub-
section, our proposal is to encode a numberσ withσ consecutive ones and a trailing
zero (fig. 2.24). This way, the encoding producesσ + 1 bits for symbolσ : it is a Huff-
man coding, as shown in subsection 2.5.2. This is a major advantage since Huffman
is the minimum redundancy coding for independent symbols such as the bins of a
CBF.

Moreover, our coding scheme allows an easy lookup since most processors pro-
vide an instruction that counts the number of bits set to one in a word (popcount).
By taking advantage of such an instruction, we do not have to decode each value
we find during lookup, but simply count the number of cleared bits in a word. The
number of cleared bits is the number of symbols encoded in that word (see example
in fig. 2.25). Clearly, we still have to perform a shift for each insertion or deletion and
we need a table to speed up lookup but the total size of the structure is very close to
the minimum (given by the entropy of all symbols).

2.5.3.1 Size

In order to simplify the operations and reduce the cost of lookups and insertion-
s/deletions, we group the bins in B blocks of D bins (with few slack bits) and we
address the blocks with the table. The average size of the HCBF is:

E[S] = m(1 +E[φ]) + B (ε+ log2 [(m− D) (φmax + 1)])

where ε is the number of slack bits kept at the end of each block. The last part of the
above formula takes into account the table size. The table is addressed by the first
log2 B bits of the hash, the remaining bits represent the bin index. Each entry of the
table represents the starting address of the corresponding block thus requiring less
than (m− D)(φmax + 1) bit.

125

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

....

101101110101111101111101110

.

block 1

.

block 2

.

h(s) :

.
lookup table

Figure 2.26: An example of HCBF.

2.5.3.2 Lookup

As for operation complexity, a lookup requires k hash functions and, for each of
them, a check in the table and a search in the corresponding block for the bin we
need (see fig. 2.26). Thus, on average, D/2 bins have to be looked and W/(E[φ] + 1)
bins will be found in a word of W bits. The overall average number of operations for
a lookup is then:

ω = k
(

D(E[φ] + 1)
2W

)
As shown in subsection 2.5.2, E[φ] ≃ ln 2. Therefore, the average number of

operations for a lookup is constant and its complexity is O(1).

2.5.3.3 Insertion/Deletion

In order to insert a new element, we need to perform a lookup and to add a “1” digit
for each bin in the code. This corresponds to shifting all the bits at the bin’s right by
one position and a table update. Thus, for all insertions, the number of operations is:

ω = k
(

D(E[φ] + 1)
W

)
It is straightforward to see that, since even deletion requires a lookup and a shift,

the overall cost is the same as insertion. The complexity of these operations is O(1),
as for lookup.

2.5.4 MultiLayer Compressed CBF

The drawbacks of the algorithm described in sec. 2.5.3, as well as SBF, are related
to the memory wastage due to slack bits and to the complexity of a searching based
lookup (even if aided by index tables).

126

2.5 Enhancing Counting Bloom Filters through Huffman-Coded MultiLayer
Structures

In the following, the MultiLayer Compressed Counting Bloom Filter (ML-CCBF)
is presented, which is a CBF that reduces the memory requirements and the com-
plexity of lookup. The idea is to explode the CBF along another dimension, hence
creating a multilayer structure, where, for each encoded symbol, a bit per layer is
stored. This construction, in conjunction with the Huffman coding defined in sec.
2.5.3, provides a stack of bitmaps (L0, ..., LN), where the first layer L0 is a standard
BF. The other layers are built and modified dynamically when needed. The rela-
tionship between ML-CCBF and the previously described HCBF can be expressed
in a few words by saying that ML-CCBF is, somewhat, the rotated version of HCBF,
with all bits representing the Huffman coded values of counters in HCBF placed in
ascending layers.

To the best of our knowledge, although a limited degree of hierarchy is some-
times obtained by adding a CAM [90] or another counter [87], this is the first attempt
to introduce the idea of a hierarchy of arrays in CBFs, which results in a multilayer
structure where counters may span over different levels.

Let popcount(u) be the number of 1s in the bitmap (0, ..., u− 1); the construction
is as follows:

• Li keeps all the i-th binary digits of our Huffman encoded counters;

• on Li, the j-th bit belongs to the counter whose popcount on Li−1 is j.

Figure 2.27 shows an example of a ML-CCBF. In the example, we are counting
a bin φ for symbol σ . The bin at layer 0 is pointed by the hash function h(σ). The
number of ones before h(σ) is computed (i.e. popcount(h(σ)) = 5) and used as
index for layer 1. The procedure is repeated until we find a “0” digit (that is the end
of the code). Therefore the resulting Huffman code for the counter is 1110, which
corresponds to value 3.

2.5.4.1 Complexity and properties

One of the most significant advantage of our algorithm is that it is an extension of a
standard BF. Thus, the lookup is as simple and fast as in a standard BF as we need to
check only bits at layer 0. Therefore the lookup complexity is O(1).

Instead, for insertions and deletions, we need to explore different layers in the
structure. We refer to mi as the number of bits in layer i. The size of layer i can be
obtained as:

mi = m0P(φ ≥ i)

The above formula provides a useful mean for dimensioning the overall data
structure. As the (binomial) distribution of counters is known, the maximum length
of each layer can be estimated and the corresponding memory allocated accordingly.
Also, the formula allows to allocate the number of levels as well, by selecting the
number for which the probability of overflow is negligible. In addition, when multi-
set has to be supported, the maximum cardinality for a key has to be taken into
account.

Since jumping one layer up requires a popcount on a potentially large number
of bits, we divide all layers in blocks of the same bit-size D and add a table for

127

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

L3 0 0 · · ·
⇑
1

L2 0 1 0 1 · · ·︸ ︷︷ ︸
1 one

⇑
3

L1 1 1 0 1 0 1 0 0 · · ·︸ ︷︷ ︸
3 ones

⇑
5

L0 1 0 1 1 1 0 0 1 1 0 1 · · ·︸ ︷︷ ︸
5 ones

⇑
h(σ)

Figure 2.27: ML-CCBF example. The resulting Huffman code forφ is 1110.

each level. When computing popcount(u j) at layer j, the first log2(m j/D) bits of u j
are used as index to table j. Each entry of the table represents the number of ones
preceding the start of the block. Thus, if W is the number of bits in a word, the actual
popcount operation works only on less than D/W words. Therefore, the average cost
of a popcount is 1 + D

2W .

Algorithms 12 and 13 show the pseudocode for insertion and deletion procedures
in a ML-CCBF. Both operations require, for all k bins, the complete lookup of mul-
tiplicity (by exploring a certain amount of layers), a shift by one position and the
update of the last explored table. Such an update simply consists of an increment
or a decrement on a limited number of entries. Therefore, the average number of
operations for insertion and deletion is given by:

ω = k
[
E[φ]

(
1 +

D
2W

)
+ 2
]

Once again, E[φ] ≃ ln 2, thus the average amount of operations is fixed and the
complexity for insertion/deletion is O(1).

A major advantage of ML-CCBF over HCBF and SBF comes from having update
and lookup operations decoupled: all insertions/deletions work with higher layers
or may flip some bits in the bottom layer 0, requiring no shift nor enlargement of
layer 0. This means that we can still perform lookups during dataset-updates if
we just take precautions (by means of mutexes) when dealing with changes in the
bottom layer (the BF).

128

2.5 Enhancing Counting Bloom Filters through Huffman-Coded MultiLayer
Structures

Algorithm 12 The insertion of an element in a ML-CCBF
1: for i← 1, k do
2: j← 0
3: u0 ← hi(s)
4: while (L j(u j) = 1) do
5: u j+1 ← popcount(u j)
6: j← j + 1
7: end while
8: L j(u j)← 1
9: u j+1 ← popcount(u j)

10: j← j + 1
11: L j(u j + 1, . . . , m j + 1)← L j(u j, . . . , m j)
12: m j ← m j + 1
13: L j(u j)← 0
14: UpdateTable(L j)
15: end for

Algorithm 13 The deletion of an element in a ML-CCBF
1: for i← 1, k do
2: j← 0
3: u0 ← hi(s)
4: while do(L j(u j) = 1)
5: u j+1 ← popcount(u j)
6: j← j + 1
7: end while
8: L j(u j, . . . , m j)← L j(u j + 1, . . . , m j + 1)
9: m j ← m j − 1

10: L j−1(u j−1)← 0
11: UpdateTable(L j)
12: end for

129

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

Figure 2.28: Size comparison among ML-CCBF, CBF and m× Entropy.

2.5.4.2 Size

ML-CCBF is a multilayer transposition of the algorithm shown in sec.2.5.3, with no
need for slack bits. Hence, it results in a lower memory requirement:

S = m0 +
m0

∑
i=1

φi +
ntab

∑
i=1

TSi

TSi is the size of the table required for layer i, which needs ni = ⌈mi/D⌉ entries
of size log2(mi), thus resulting in:

TSi = ni log2(mi) =
⌈m0

D

⌉
P(φ ≥ i) log2 [m0P(φ ≥ i)]

The average amount of required memory is then:

E[S] = m0(1 +E[φ]) + TS

A closed form expression for TS = ∑ntab
i=1 TSi is not simple to obtain in a general

case. However, we use the results of theorem 1 to compute a bound for TS.
Ifα = ln 2 to minimize the false positive probability, then:

TS ≤
⌈m0

D

⌉
(2 log2(m0)− 1.85)

Clearly, as updates occur, upper layers may change in size, thus requiring some

130

2.5 Enhancing Counting Bloom Filters through Huffman-Coded MultiLayer
Structures

Figure 2.29: Size comparison between CBF and ML-CCBF (for fixed and variable
number of bits m0 for layer 0)

extent of overprovisioning or memory dynamic allocation schemese. However, those
layers are designed to be placed in memories whose size is not critical (as opposed
to layer 0) and this does not affect the overall scheme properties.

Figure 2.28 shows the comparison among the sizes of ML-CCBF, standard CBF
and the minimum amount of bits for independent symbols (BF entropy = m ×
entropy), for k = 10 and m = 32768 (notice that m is fixed regardless of n, there-
fore the probability of false positives f is not minimized). The memory saving of our
method is clear as it approaches the minimum value. Note that the optimal number
of elements n = 2270 (i.e., the value that minimizes f) minimizes the distance from
the BF entropy as well.

Figure 2.29 instead reports, for k = 4, 7, 10, the curve of the structure size (in
Kbytes) for various number of elements (n = 1024, . . . , 10240) between a standard
CBF (constructed so as to minimize false positives) and a ML-CCBF constructed with
a fixed layer 0 or with a variable layer 0. For the latter, m0 has been set as minimizing
false positives (i.e., m0 = n × k/ ln 2), while for ML-CCBFs with a fixed layer 0,
m0 has been set to n′k/ ln 2 (with n′ = 4096). Setting the size m0 of the bottom
layer of ML-CCBF (basically the corresponding BF) as fixed is an easy and fast way
to construct the structure but it does not provide the best results in terms of false
positives and memory efficiency. However, the figure shows that, even for n ≃ 2n′
(i.e., for twice the optimal number of elements), the size penalty for a ML-CCBF with
fixed m0 is limited to less than 20% with respect to an optimal (i.e. with variable m0)
construction. Moreover, it is noteworthy that the difference between the two type of
constructions (in terms of size) is minimal, thus showing that the choice of n′ (and
hence of m0) in the scenario with a fixed layer 0 is not critical.

131

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

Table 2.9: Number of Clock Cycles for Operations in the IXP2800

Operations Number of cycles
hash 10

popcount 1
shift 1

read/write in local memory 2
read/write in scratchpad memory 60

2.5.5 Comparative Analysis
For the evaluation of the algorithms proposed in this section and the comparison
with other known in literature, the Network Processor Intel IXP2800 has been taken
as referential hardware architecture. NPs are platforms that offer very high packet
processing capabilities (e.g. for gigabit networks) and combine the programmability
of general-purpose processors with the high performance typical of hardware-based
solutions. The IXP2800 is designed to perform a wide range of functionalities, in-
cluding multi-service switches, routers, and broadband access devices. It is a fully
programmable network processor, characterized by a hierarchy of processing units
(a XScale core and 16 32-bit microengines MEv2) and memory devices (4KB of local
memory, 16KB of scratchpad memory, besides external memories of the host card).
The bigger the memory, the slower the access to it. For more details about Intel
IXP2800 we refer to [91].

The hierarchy of memory devices in the IXP2800 reflects the memory architecture
of many systems, which present small fast memories and slower big ones. Therefore,
although referred to a certain hardware platform, the results of our research are very
general.

As shown in tab. 2.9, we have weighted, according to the IXP2800 Hardware
Reference Manual [92], the operations of the algorithms in terms of clock cycles for
microengines (which are the processors designed to handle fast data path).

In the analysis, we always considered a few clock cycles for emptying the pipeline
from all operations. Indeed, all costs reported in the tables are average costs. They are
not the minimal costs (those than can be achieved when the pipeline is full and no
additional costs are payed for switching among operations). For example, to access
local memory, if pointers are all set, only 1 clock cycle is needed while the cost of
setting pointers is 3 clock cycles. We always conservatively estimated 2 clock cycles
penalty; in fact, generally, once the pointer is set, one can access long words (LWs)
around with no extra costs (in terms of clock cycles). This is actually a very common
case, particularly when working with ML-CCBF and HCBF where typically LWs to
be processed are next to each other.

Each algorithm has been simulated and its performance has been measured in
terms of memory consumption and processing load for lookup and insertion/dele-
tion. In simulation runs, the total number of data elements is n = 2000, k = 10, and
the number of bins for the main vector is 2.8× 104, thus minimizing the probability

132

2.5 Enhancing Counting Bloom Filters through Huffman-Coded MultiLayer
Structures

Table 2.10: Performance Algorithms Comparison

ML-CCBF ML-CCBF CBF DCF HCBF SBF dlCBF
Size (KB) 6.13 6.13 14.1 14.1 6.42 12.12 5.2
Main structure (KB) 3.52 (local) 6.13 (scratch.) 14.1 (scratch.) 14.1 (scratch.) 5.92 (scratch.) 8.12 (scratch.) 5.2 (scratch.)
Secondary structures (KB) 2.4 (scratch.) - - - - - -
Index tables (KB) 0.21 (local) - - - 0.5 (local) 4 (local) -
Probability of false positives 10−3 10−3 10−3 10−3 10−3 10−3 1.5× 10−3

Lookup (clock cycles) 120 700 700 700 780 801 800
Insertion/Deletion (clock cycles) 1064 1893 710 710 1058 1217 810

of false positives. For the algorithms which divide data structure in subsegments,
the number of blocks is B = 64. All other parameters are set to obtain about the
same probability of false positives among the different algorithms and to be able to
manage the same number n of elements. Moreover, for the algorithms which present
a hierarchical structure, we have located each substructure in the fastest memory as
possible (see tab. 2.10).

Concerning ML-CCBF, the main BF vector L0 and index tables are stored in local
memory, while the remaining vectors in scratchpad. A lookup only requires check-
ing the first vector, therefore only local memory is accessed. For insertion and dele-
tion we still need to explore different layers in the structure, thus both memories are
accessed.

For a standard CBF, built with four bits for bin, the overall structure has been
located in scratchpad. Therefore lookup, insertion and deletion require accesses to
this memory.

With the data of our simulation, DCF (see subsection 2.5.1) does not experiment
any overflow of counters in CBF vector. Therefore, Overflow Counter Vector are not
necessary and DCF exhibits exactly the same behavior of CBF, in terms of both size
and complexity.

Regarding HCBF, we have stored in scratchpad the main structure and in local
memory the index tables. As said in subsection 2.5.3, a lookup requires, for each hash
function, to check the table in local memory, to search for the corresponding block
in scratchpad for the bin we need and to compute a popcount. The same number of
operations are required for inserting/deleting an element, with the addition of shift-
ing by one position the bits in the bin, to increment/decrement a counter. Remember
that HCBF is a simple alternative version of SBF, which is a structure optimized for
multi-set. SBFs use, for values greater than 2, Elias code instead of Huffman code
and several more index tables, thus resulting in higher memory consumption and
operational complexity.

Finally, the overall unique structure of dlCBF has been located in scratchpad. A
lookup requires k hashes, k permutations and k accesses to scratchpad, while an in-
sertion or a deletion needs the same operations for locating the candidate bins, k ac-
cesses to scratchpad to find the right bin and, finally, depending on the counter value,
either one incrementing (or decrementing) operation or the insertion (removal) of a
new fingerprint and its associated counter.

As for Rank-Indexed Hashing, the functionality it provides is somehow different
from those offered by the other CBFs. Although it does support dynamic insertion or

133

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

deletion of elements and it certainly provides good compression, it does not really
support counting functionalities and it cannot keep track of multi-sets. Therefore
it is not suitable for all of the applications that use CBFs. Moreover, as the lookup
operation in this data structure is equivalent of walking through a list, it cannot
be parallelized as in the case of the other solutions, where the locations specified
by multiple hash functions can be accessed independently by different cores at the
same time. For this reason, we believe that a direct comparison (in terms of plain
clock cycles) is not fair to the other algorithms, which can be simply sped up through
parallelization.

From results in tab. 2.10, it is clear that the solutions proposed in this section
show a significant memory saving in comparison with standard CBF and DCF (sav-
ing of 56% for ML-CCBF and 54% for HCBF), and also compared to SBF. Instead,
there is a memory consumption increase in comparison with dlCBF (from 0.93 KB
up to 1.22 KB). Hovewer, our methods, inspired by dynamic approaches (e.g. DCF),
avoid in a conclusive way the problem of counters overflow, thus preserving the
accuracy of stored information. This makes our data structure suitable for keeping
track of multi-sets: inserting the same element several times on a CBF can rapidly
bring to overflow, especially with architectures that, as dlCBF, put a lot of effort into
reducing the size of the counters (counters can be as small as two bits). With our
solution, adding keys just requires adding more layers and results in an increased
memory footprint.

Moreover, the introduction of a hierarchical structure allows in ML-CCBF a re-
markable decrease of clock cycles for the lookup operation. Indeed, the main struc-
ture is stored in local memory, thus enabling lookup by accessing local memory only.
Naturally, keeping the whole state required by ML-CCBF in the same cache level re-
duces the performance boost which is provided by the structure layerization, thus
negatively impacting the overall performance: the lookup time is the same of a stan-
dard BF and the insertion/deletion time is increased. The membership query is the
most frequent operation for these data structures, therefore the reduction of about
83% of clock cycles for lookup is a great outcome. It outweighs the drawback of an
increase of 50% of processing for inserting/deleting an element.

Performance results indeed show that ML-CCBF cannot be the best solution when
high update rates are requested; this, indeed, is the cost to pay to flexibility that, if
on one hand guarantees no overflow, on the other hand requires a few extra opera-
tions for inserting (and deleting) entries. Clearly, this suggests the use of ML-CCBF
in applications that require very fast lookup but reasonably frequent updates (as in
next subsection application)

Finally, note that our HCBF outperforms SBF, in terms of memory consumption
and operational complexity. This is an expected result, due to the simplicity of our
method and to the use of Huffman code (SBFs are optimized for multi-sets). If com-
pared to the complexity of standard algorithms, HCBF shows a reduction of 13%
for lookup and an increase of 45% for insertion/deletion. The different frequency of
operations allows to claim that the tradeoff is advantageous.

134

2.6 iBF: Indexed Bloom Filter

2.6 iBF: Indexed Bloom Filter

Although BFs have many features that make them attractive for fast and simple ap-
plications, their adoption in more sophisticated schemes is prevented by their lack
of functionalities and (in some cases) poor performance. As a motivational example,
let us suppose we need to classify traffic according to fixed-size substrings of packet
payloads at high speed. Let us assume that we are looking for a set of particular
strings. We can train a BF with the set of pre-determined strings we are search-
ing, so that the (hopefully large) part of traffic that does not match them can pass
through with no additional computation required. However, if the BF returns a
match, we need then to check whether it is a false positive and which string has
been matched. This requires an additional exact filtering stage, which could be im-
plemented as an hash-table. Moreover, while the first stage may help the second
hash-table lookup (as, for instance, shown in [93] where a Counting Bloom Filter
reduces the number of accesses to the following hash table), the whole lookup re-
mains non-deterministic thus jeopardizing performance if implemented in parallel
systems. In order to achieve deterministic lookup times, a perfect hashing scheme
,as shown by Kumar et al. in ([94][64][95]), is very effective. These works propose
the adoption of a small fast table of “discriminator” values which, together with the
key, are fed to a regular hash function thus removing collisions and achieving per-
fect hashing. In such a way, in [94] and [64], finite automata are succintly stored
and in [95] perfect hashing is achieved with as low as 1 additional bit per key in a
double hashing scheme. A BF-like structure is also adopted in the previous section
where a Blooming Tree is the basis for the construction of a minimal perfect hashing
scheme. However, all these results come at the cost of a quite expensive construc-
tion and, unlike the iBF, cannot be adopted in existing applications with minimal
effort, as they require major code rewriting of even hardware modifications in order
to be effective. Indeed, there solutions require more than a single memory block to
be effective as they rely on a number of tables to be accessed at the same time. This
implies that, in an existing application, more than just code rewriting is needed: new
fast memory blocks and corresponding bus bandwidth must be allocated. The pur-
pose of this work is to show we can use a BF to obtain a perfect hashing scheme by
exploiting a certain number of degrees of freedom and relaxing the false probability
requirements. In details, we show a quite succinct data-structure, which is a direct
modification of a BF that can be implemented in existing applications adopting BF
at a negligible cost in terms of code rewriting. The modified BF we construct returns
an index for each element of the working set, hence the name indexed BF or iBF. The
data structure requires O(log(n)) bits per key and k memory accesses per lookup,
where k is O(log(n)). A closely related work is the one by Chazelle et al. in [96],
introducing Bloomier Filters. Bloomier Filters augment Bloom Filters with the capa-
bility of storing any function of the input set. They are therefore more general than
our iBF but may require a larger amount of memory.

In short, the main contribution of this work is its novel approach, which exploits
a couple of interesting degrees of freedom in BFs, to a widely discussed problem:
achieving deterministic perfect hashing in network applications. We believe such
degrees of freedom may also be useful for other purposes and the algorithm we
propose can be adopted with minor changes in existing applications based on BFs.

135

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

Term Description
singleton bit j CBF[j]=1

marked bit a singleton bit cleared to 0. One per element.
index (x) b bits at the marked bit’s left
good BF BF where each element has at least an singleton bit

well–constructed BF BF with minimum false positive probability

Table 2.11: Terms and notation used through the work

..0. 0. 1. 0. 1. 0. 0. 1. 0. 0. 1. 1. 0. 0. 1. 0.

y

.

x

.

h0

.

h1

.

h2

.

h3

.

h0

.

h1

.

h2

.

h3

.
index(x)

.
index(y)

Figure 2.30: The desired data structure

2.6.1 The main idea

The purpose of iBF is to create a perfect hash by simple bit-flipping operations on an
already-constructed BF.

As a motivational example, the structure in fig.2.30 shows our desired result: a BF
and 2 elements (x and y) are depicted. For each element, one of the 3 hash functions
points to a marked bit which, in turn, defines an index at its left. These indexes serve
as perfect hash for elements x and y.

The idea of iBF builds upon the following considerations:

1. In a well-constructed BF, if k is large enough (we will show that it must not
be larger than O(log(n))) there is at least a hash-function hi for each item x of
the set S that addresses a bit with no collisions (i.e.: where no other h j(y) falls,
∀y ∈ S, y ̸= x). We hereafter refer to BFs with such property as “good” BFs.

2. Bits equal to “zeros” in the BF can be flipped to 1 by only paying a small price
in terms of false positives.

These observations basically lead the construction which is, in turn, performed
in two steps. The first step marks a bit for each item in the set by focusing on non-
colliding bits as suggested by the first observation. The other step exploits the second
consideration and flips a number of bits at the left of each marked bit in order to
obtain, for each element, a different return value. In the following we describe these
operations in greater details.

136

2.6 iBF: Indexed Bloom Filter

2.6.2 iBF Construction

2.6.2.1 First step: determine bits to mark

We want to have an univocal index to be returned from the BF for each element x
in the set S. To this aim, we take advantage of the first consideration and focus on
the “non-colliding” bits in the BF (i.e., bits which have been set by a single element
only). In the following we refer to those bits simply as “singleton” (see legend in
tab.2.11). A simple way to describe such property is that if we expand the BF to a
Counting BF (CBF), singleton bits are those corresponding to counters equal to 1.
The first degree of freedom we exploit in this work is used here. By definition, in
a good BF, for each element we have at least one of the singleton bits that we can
flip to zero, thus marking it. This way, we relax the BF requirements, accepting that
an element x belongs to the set if the k hash functions point to k-1 ones and 1 zero.
Hence, the false positive probability grows by a factor of 2 (as if we were using a BF
with k-1 hash functions), but we earn a way to “mark”, for each element x, one of
the bits representing it. This is crucial in order to proceed in our construction.

Let us now discuss about the likelihood of the first consideration; in other terms,
how probable are good BFs? And what choice of parameters m and k makes a BF
good?

The probability for an element x to have at least a singleton bit is simply:

π = 1−
(
1− e−α

)k

where k is the number of hash functions and α is defined as nk/m. Then, the prob-
ability that this property holds for all the n elements (i.e., the probability of a good
BF) is:

P = πn ≃ e−n(1−e−α)k
(2.14)

It can be easily demonstrated that the value of k which maximizes P is the same that
minimizes false positives: k = m/n ln 2. The reason is simple: let us assume we have
n− 1 items stored in our BF and we add the n-th item. Computing the probability
that all the k hash functions point to already-set bits is basically computing the prob-
ability of a false positive f . Since we try to avoid this event, maximizing P is the
same as minimizing f .

Naturally, we are interested in making P as close to 1 as possible. In this sense,
for δ → 0, we observe that P ≥ 1− δ if:

k ≥ log n− log δ

− log(1− e−α)

The main comment is that k must grow like log n which is quite intuitive, as it makes
the structure size behave as Bloomier Filters: O(n log n). The effect of this inequality
is shown in fig. 2.31 where P is reported for different k and as a function of α =
nk/ ln 2.

Once we assessed the conditions that make well-constructed BFs probable, we
can proceed to determine which singleton bit to mark among the ones belonging to

137

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

.. α.

P(α)

. k = 2. k = 4. k = 6. k = 8.

δ

.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.
0

.
0.1

.
0.2

.
0.3

.
0.4

.
0.5

.
0.6

.
0.7

.
0.8

.
0.9

.
1

Figure 2.31: Probability of good BFs as a function ofα and k.

..0. 0. 1. 0. 1. 0. 0. 1. 0. 0. 1. 1. 0. 0. 1. 0.

y

.

x

.

h0

.

h1

.

h2

.

h3

.

h0

.

h1

.

h2

.

h3

.
index(x)

.
index(y)

..

0

.

0

.

1

.

0

.

0

.

0

.

0

.

1

.

0

.

0

.

1

.

0

.

0

.

0

.

1

.

0

.

index(x)

.

index(y)

Figure 2.32: Overall scheme. Here the parameters ε = 2 and m = 16 are quite
over-dimensioned in order to better illustrate the idea.

..
elements

.
indexes

.

x

.

y

......... 000.

001

.

010

.

011

.

100

.

101

.

110

.

111

Figure 2.33: The bipartite matching problem.

138

2.6 iBF: Indexed Bloom Filter

each item. The choice may be driven according to different metrics which can be
combined in order to facilitate the second step. In our experimental tests, we found
that a good metric is, for a singleton bit j, the number of zeros at j’s left minus the
minimum distance between j and other singleton marked bits.

2.6.2.2 Second step: build the index

As a second step, we need to get an index out of the BF for each element x ∈ S. In
order to do that, we use the marked bits, and simply choose the index to be defined
by a number of b = log2 n + ε bits at the left1 of them (as shown in fig.2.32 where
marked bits are circled). In the following, we will refer to those b bits simply as
“indexes”. As we have an index for each of the n elements of the set, we can then de-
termine them referring to their corresponding element: for instance, index(x) refers
to the b bits at the left of the marked bit for x.

The next step is to make the indexes report different numbers so that we can
return them as the result of the perfect hash of the elements we are looking up. This
is where the second consideration comes handy: we can exploit the second degree
of freedom given by the zeros inside the indexes so that all the elements return a
different number. Indeed, by flipping a subset of the zeros within the indexes, each
index can provide up to 2z (where z = b− popcnt(index) = no. of zeros) different
numbers2. This problem is an instance of the bipartite graph matching problem (see
fig.2.33) which can be easily solved because of the 2z choices per element that help
satisfy the Hall marriage’s theorem[97].

We will come back to the theorem after a short discussion on an example describ-
ing the idea. In fig.2.33, we present an example of the bipartite matching problem
given by the iBF in fig.2.32: the index of the element x is 010, thus we have 2 ze-
ros to flip at will and, in the bipartite graph, we have 4 possible matches (namely
010, 011, 110, 111); the same goes for y whose possible matches are 001, 011, 101, 111.

Generally, if p0 represents the probability of a zero, the mean number of choices
per index is:

d = E[2z] =
b

∑
z=0

(
b
z

)
pz

0(1− p0)
b−z2z = (1 + p0)

b (2.15)

Of course, for a well–constructed BF, where the number of zeros is the same as the
number of ones, the probability p0 is practically 0.5 and d = 1.5b. Since b ≥ log2 n,
the mean number of total choices n× d is O(n2). Therefore the average outdegree of
nodes in the bipartite graph is around n. This means we have more links per node
than what is needed (log n) to satisfy Hall’s theorem with high probability, as shown
by Motwani et al. in [98]. Therefore, by means of the Hopcroft-Karp[99] algorithm
the bipartite graph matching problem can be easily solved.

In the previous discussion, we have discarded the possibility that two or more
indexes could share some bits. For this reason the problem, in real cases, can be

1Naturally we could have chosen the right as well
2Note that, in a real implementation, we take advantage of the popcnt instruction that computes the

number of ones in a register and is available on most architectures.

139

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

highly correlated and NP-hard. Indeed, having always more than b bits between
two marked bits is an highly unlikely event, and we are definitely going to have
super-positions of indexes: two marked bits closer than b bits imply that their corre-
sponding indexes share at list one bit. This means that if we flip those “colliding3”
bits, then we are actually affecting the match of two or more elements in the bipartite
graph, which leads to large difficulties in the construction.

2.6.2.3 Check and restart

It may happen that the Hopcroft-Karp algorithm may not find any bipartite perfect
match. This is mainly due to the choices made in the first step. Because of the com-
plexity of the problem, a totally random choice of the singleton bits in step 1 is not
a good idea. In our tests, we experimented that genetic algorithms are quite useful in
this problem. Because of lack of space we do not include all the details of the genetic
algorithm we adopted and do not describe the basics of genetic algorithms (inter-
ested readers may look at [100]). However, the main step when adopting genetic
algorithm for such kind of problems is the definition of fitness. In our scheme, we
associated to each iBF a “DNA” of genes defined by a vector of bits of size m. Such a
vector D is such that

D⊕ BF = iBF (2.16)

(where ⊕ is the symbol of a XOR operation) and is adopted by the genetic algo-
rithm as starting point for creating a solution. Basically, we start with a vector D
which is empty (all zeros). Then we create an “individual1” by choosing random
singleton bits and setting them in D. Note that, setting a bit in D implies clearing
a bit in the iBF (as stated by (2.16)). The individual then passes through step 2 and
we compute its fitness and store it. Its fitness is basically defined by the number of
matched elements. We repeat this procedure for a number of random individuals
which form an initial “generation”. For each generation, we adopt a roulette-wheel
scheme [100], select individuals according to their fitness and couple them, creating
new individuals by means of “cross-over” and “mutation” which, in turn, form a
new generation. This means we have other choices of singleton bits to be checked
and construct the iBF. The procedure is repeated until an individual with maximum
fitness (i.e. a perfect match) is found.

Although the algorithm we adopt is quite general, it provides good results in
relatively short time. All experimental tests (with n ≤ 2000 elements) produced a
perfect match in less than 5 seconds on a recent Pentium 4 machine. However this
procedure is to be performed off-line and its timing requirements are not strict.

2.6.3 Considerations on iBF
Here we introduce a few considerations on iBFs both regarding their size and their
speed.

3Please notice the different meaning of “collision” here that refers to bits shared by more than 1 in-
dexes

1the individual is the genetic term for a possible solution of the problem

140

2.6 iBF: Indexed Bloom Filter

Figure 2.34: Minimal m for the construction of iBF

A first observation can be made on the values of parameters m and k: as discussed
above in 2.6.2, k must grow like log n in order to have a good BF w.h.p. This means
that m grows like O(n log n), which resembles the occupancy of Bloomier Filters[96]
but with a lower multiplicative factor. Comparing structure sizes (per item) we have:

• a BF requires m/n = k/ ln 2 bits;

• a Bloomier filters needs k log2 n/ ln 2 bits;

• an iBF needs m/n = log2 n/ ln 2 bits.

Therefore an iBF requires k times less memory than the corresponding (i.e. same
number of items) Bloomier Filter , at the cost of a double false positive rate. Indeed,
an iBF behaves as a BF with k-1 hash functions in terms of false positives.

On the other hand, an iBF requires a logarithmical amount of memory accesses
for each lookup, which is not optimal but effective in many situations, especially
when BFs are implemented in network devices and only few changes may be ac-
ceptable to the running code or to the hardware description.

Finally, from the point of view of the overall balance of ones and zeros in the
structure, we can say that the two construction stages (first mark some bits by clear-
ing them and then add some zeros to the indexes) somewhat compensate each other.
Especially if ε is small and b is hence close to log2 n, the n indexes are going to
provide all the combinations of b bits, which means that, within them, a one is as
probable as a zero. This is quite important in order to preserve the false positive
probability of a BF with k-1 hash functions, as we see in the experimental results.

2.6.4 Experimental Evaluation
In the following we show the results of the experimental evaluation of iBFs. We
first show in fig.2.34 the effect of the number of output bits b on the size m of the

141

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

Figure 2.35: Ratio of m over minimal m for the construction of iBF

Figure 2.36: Number of bits per element m/n.

Figure 2.37: False positives in a iBF for n = 100, 400, 1000, 2000.

142

2.6 iBF: Indexed Bloom Filter

iBF. Enlarging b facilitates the construction of the iBF by allowing smaller structures.
Indeed, as b increases, the iBF output grows as 2b, increasing also the number of
links in the bipartite match, which makes the perfect match more probable for small
structures. In the graph, values of b are limited as it does not make sense to increase
b to value larger than log2 m. Indeed, if we simple define the output of the iBF as the
hash function that points to the singleton bit, we have a fast and simple perfect hash
with output domain equal to m = 2log2 m.

In fig.2.35 we show the behavior of m as k increases. Here the effect of a larger
number of choices for a singleton bit is evident as k grows. In the figure, mMIN
represents nk/ ln 2 which is the value of m that minimizes false positives. As shown
in figure, that value of m is also the minimal size of the iBF and it is reachable for
values of k that are proportional to log n, as described in sec.2.6.3.

Then figure 2.36 shows the ratio m/n which is the number of bits per element in
an iBF. Such a value can be considered as a “cost per unit” for our approach and,
again, it reaches its minimal values for values of k which are proportional to log n.
This is well justified by the results in the previous figure.

Finally, fig.2.37 shows the amount of false positives we registered by testing the
iBF (for n = 100, 400, 1000, 2000) with 10 million random queries in 5 different tests.
In the graph, the dotted black line represents the theoretical false positive probability
(2k−1) and the blue stars are the measured false positive probability value. Measured
and theoretical false positive probability overlap for all tested number of elements,
confirming our previously stated considerations.

143

2. ALGORITHMS AND DATA STRUCTURES FOR HIGH PERFORMANCE
NETWORK PROCESSING

144

Chapter 3

Network monitoring and testing
architectures on hybrid
platforms

The extremely challenging nature of network processing often calls for the adop-
tion of dedicated hardware solutions. A number of hardware based appliances for
security and monitoring tasks are often to be found in operational networks. Al-
though they meet the desired performance levels, such devices often lack the flexi-
bility which is needed for adapting to fast–changing applications. In order to achieve
a better trade off between performance and flexibility, a number of programmable
dedicated processors for network appliances has been produced. Different vendors
proposed different architectures but, in general, such devices are characterized by
high parallelism and a low–level access to hardware resources, including the net-
work interfaces. [101] presents an extensive overview of the network processor ar-
chitectures. Such processors can usually be accessed as peripherals by a host PC,
through a fast PCI bus. Overall, such architectures are appealing for creating hybrid
systems, where the actual functionalities are divided between a common CPU and
the dedicate engine. A proper partitioning of functionalities, indeed, may allow to
achieve a good trade–off between performance and flexibility. We followed such a
design principle to implement different types of systems. In section 3.1 we describe
the architecture of a traffic generator (named BRUNO) which can support a range
of extensible modules for generating synthetic traffic. The generation of packet sizes
and inter–departure times happens on the host PC processor, while the actual gen-
eration is performed by the network processor, thus guaranteeing maximum perfor-
mance. In section 3.2, instead, we propose an architecture where a Network Proces-
sor is the first capturing layer of a network monitoring architecture, its role being
classifying and dispatching traffic across a cluster of software based sensors. This ar-
chitectural concept is further developed in section 3.3, where a system called “smart
probe” is depicted. The cornerstone of such a system is to use a cluster of computers

145

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

to build a probe which is able to perform complex, application–specific processing
on a subset of the captured traffic, so that traffic–related data have to be exported
out of the probe only for specific and well–specified reasons. Such an approach
guarantees good performance and privacy preservation at the same time. Most of
the optimized algorithms proposed in the previous section are an excellent fit for the
proposed framework, as they allow to efficiently filter out most of the traffic which
is of no interest to the supported applications. Finally, in section 3.4 we describe the
architecture of an application–aware switch, which adopts the semantic of regular
expressions for specifying switching rules. Such a design choice allows to support
the well known Openflow standard and to extend it to fit the needs of specific appli-
cations. In order to implement regular expression matching while matching the strict
resource requirements imposed by the Netfpga platform, we leverage our optimized
compression scheme that we illustrated in section 2.1.

146

3.1 BRUNO: An Accurate Gigabit Traffic Generator

3.1 BRUNO: An Accurate Gigabit Traffic Generator

In the last few years, interest in modern Internet applications has been constantly
growing and a significant number of such applications has imposed strict demands
on network performance. This has required reliable networks offering high trans-
mission capacity, which in turn has raised the need for network testing to measure
performance and reveal possible “weaknesses”. Such an evaluation, however, is
a very difficult task. Given the high speed of current networks, the simulation of
their behavior (for example by means of tools such as the largely diffused ns2) is
not possible with the proper accuracy: the unavoidable simplifications required by
simulations have become unacceptable.

Therefore, the only viable direction to test modern networks is emulation. This
requires to generate packet flows which resemble the actual internet traffic, in terms
of both data rate and statistical properties. It is obviously a critical task for soft-
ware tools running on general purpose hardware, especially when dealing with high
traffic rates. To address this issue, a very accurate traffic generator, called BRUTE
(Browny and RobUst Traffic Engine), has been implemented by our research group
[15]. Although such a tool outperform most of its competitors (see section 4.1.1 for
a detailed discussion of the state–of–the art in packet generation software), still it’s
not able to attain line rate.

Network processors (NPs) appear as promising solutions for building flexible
yet high–performance traffic generators; systems inspired to such design criterion
are presented in works [102] and [103], which have inspired our activity.

This work presents BRUNO (BRUte on Network prOcessor), a traffic generator
built on the IXP2400 Intel Network Processor and based on a modified BRUTE ver-
sion. BRUTE is designed to run on the PC hosting the NP-card and is in charge
of computing departure times according to given traffic models. Then, the host PC
writes such information in the memory shared with the packet processing units of
NP (i.e., the microengines), which, in turn, use these data to generate packets and
send them with the right timeliness. The motivation is a smart distribution of tasks
according to capabilities and practicality: while it is very easy to program and make
a PC “intelligent” and “flexible” enough to provide new functionalities and mod-
els, it is quite difficult to do so on a Network Processor which, in turn, has a great
brute-force power to sustain and produce high loads of packet rates. The overall
application has shown a sustainable rate of 1 Gbps and a great accuracy in models
reproduction, guaranteed by a feedback scheme for time correction, thus confirming
the goodness of the design.

To date, most of the traffic models implemented in BRUNO are those inherited
from BRUTE (Constant Bit Rate, Poisson, Poisson Arrival of Burst). However, the
simple APIs provided by BRUTE are also inherited, so that adding custom traffic
models is an easy process that involves a minimum amount of programming skills.
In addition, a “playback capability” is also available as BRUNO is able to exactly
reproduce a libpcap trace and to introduce a scaling factor on the interarrival times
for “speeding up” or “slowing down” the real trace.

BRUTE The Browny and RobUst Traffic Engine (BRUTE) [15] takes advantage of
the Linux kernel potential in order to accurately generate traffic flows up to very high

147

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Figure 3.1: Architecture of BRUTE.

bit rates. Because of its excellent flexibility due to a simple scripting language and
an extensible architecture, it has been chosen as the basis for the development of our
generator BRUNO. BRUTE provides extensibility by means of optimized functions
and an interface (API) which enable the implementation in C language of additional
traffic sources (named T-modules) by users. Because of portability issues (at the ex-
pense of a slight loss in terms of latency), it uses POSIX.1B FIFO process type and
has been designed as an user space application.

Fig. 3.1 shows the architecture of BRUTE:

• the parser reads script files containing the generation requests;

• such information is then stored into an internal database called mod-line;

• the traffic engine examines the mod-line entries and instantiates the proper traf-
fic handlers, called micro-engines, which are defined into the T-modules;

• all the micro-engines are sequentially executed to generate the requested traf-
fic.

Currently BRUTE is available in [104] along with several traffic patterns: Con-
stant Bit Rate, Poisson, Poisson Arrival of Burst, constant inter-departure time, tri-
modal ethernet distribution and more. The programming script language is orga-
nized in a list of statements, each occupying a single line that consists of an optional
label, a command identifier and a sequence of parameters of the traffic class. A little
example of the script language is reported in the following:

lab: cbr msec=1000; rate=1000;

daddr=10.0.1.10; len=512;

This statement instructs the traffic engine to generate a 1 Kfps CBR traffic flow
with 512 bytes long frames for a duration of 1000 ms. When not all parameters are
specified, BRUTE uses default values (for instance in this example the default source
IP address is assumed). However, in a gigabit ethernet scenario, the highest through-
put achievable with BRUTE (1.09 Mpps) is reached only in intermittent bursts (as it
will be show in section 3.1.4).

148

3.1 BRUNO: An Accurate Gigabit Traffic Generator

Hardware architectures for generation A few solutions for traffic generation upon
specialized hardware architectures have been proposed in last years. Abdo et al.
[105] employed an Altera Stratix GX FPGA to develop an OC-48 traffic generator.
This tool provides high performance but it presents a lack of flexibility and a re-
stricted set of traffic models. This is mainly due to the difficulties in the definition of
new models because of the limited programmability. To the best of our knowledge,
only two traffic generation tools have been proposed on Network Processors, both
for Intel R⃝IXP2XXX NPs. Such tools are reviewed in sec. 3.1.

This work has been inspired by the need for a generator combining the high
flexibility of PC-based tools such as BRUTE and the high performance of dedicated
hardware instruments.

Traffic generators on the IXP2400 NP The University of Kentucky developed IX-
Pktgen [102], a generator based on the Intel IXP2400. In spite of the lack of specific
informations about this generator, an accurate study of its source code has shown
its structure. It employs 4 µEs (working in 8-threads mode) which are used for traf-
fic generation. This implies that, since each thread is statically assigned a single
flow, only 32 flows can be generated at the same time. IXPktgen is developed in
microcode-assembly and can generate any kind of ethernet frames according to a
static parameter file which is read at the startup. Thus the generator is not dynami-
cally reconfigurable.

The Pktgen [103] is a traffic generator proposed by the University of Genova. It
is based on the Radysis ENP-2611 board equipped with the Intel IXP2400 NP. It can
generate Constant Bit Rate and burst traffic with high throughput. In its design,
5 µEs (working in 4-threads mode with a single flow per thread) are in charge of
traffic generations. Therefore it is possible to generate only 20 flows at the same time.
The Pktgen code is developed in microC (a C language with several ”intrinsics” for
IXP-based specific requirements). Although microC compiler is not as optimized as
the microcode-assembler (according to Intel’s guidelines [106]), the adoption of a C
dialect can simplify a possible porting to other platforms. However, as the previous
IXPktgen, in this generator the traffic is statically defined and cannot be changed at
run-time.

3.1.1 BRUNO

The target of BRUNO is to combine the flexibility of software-based generators with
the high performances achievable only by hardware-assisted applications. Therefore
in our architecture we exploit both a general purpose PC and an ENP2611 Radisys
pci-board equipped with the Intel IXP2400 NP. The DRAM and SRAM memories on
the board, accessible through PCI bus, set up the link between PC host and NP in
terms of shared data structures.

The user interface, as well as the parsing process and the creation of flow struc-
tures, are assigned to the host PC, while the actual traffic creation is committed to the
IXP2400. More precisely, the host PC, through an ad-hoc modified version of BRUTE
(that we simply call BRUTE in the following), computes departure times and packet
lengths according to the user specifications and stores them in the DRAM. On the

149

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

NP side, a µE named Load Balancer (LB) is in charge of reading data from DRAM
and applying a correction algorithm on packet departure times, while 4 µEs named
Traffic Generators (TGs) create packets for transmission.

Design of BRUNO In fig. 3.2 the design of our solution is depicted. The first µE,
represented by the tagged box on the left (Load Balancer), reads the packet timeline
that BRUTE (on the PC) writes in DRAM and SRAM. Then it properly modifies and
sends it to theµEs called Traffic Generators, through a ring structure. Rings are circu-
lar, fast and small FIFO queues allocated into the scratchpad memory of the IXP2400
[92]. Since the scratchpad memory is the only shared memory that is embedded in
the NP, such rings represent an optimal solution for the communication among the
processing units. Traffic Generators finally send packet transmission requests to the
transmitter (TX) µE, which, in turn, is connected to the Load Balancer through the
feedback ring.

Figure 3.2: Architecture of BRUNO.

The choice of this particular design comes from the need to overcome some lim-
itations that the other NP-based generators have shown. The maximum number of
flows that can be simultaneously generated is one of them. This is mainly due to
the fixed association between flows and µE threads. For these reasons, in BRUNO
a given flow is not strictly associated to a particular thread, thus allowing for an
unlimited number of simultaneous flows.

Moreover, if each thread is in charge of a single flow, it is likely that some threads
work more than others, or even that all threads on a certain µE work while other µEs
just sleep. This is not desirable since a high number of active threads on the same
µE could affect the timeliness of packets and hence the precision of the system. In
BRUNO each thread processes packets regardless of flows which they belong to and
the LB µE guarantees an equal balance of load among TG µEs, by distributing the

150

3.1 BRUNO: An Accurate Gigabit Traffic Generator

packet generation requests in a round robin fashion. This way, for instance, when-
ever a single flow has to be generated, all the threads in the TGs can work for it.

The feedback ring is introduced in order to improve the traffic generation accu-
racy. Indeed, this mechanism makes the observed real transmission times available
to the LB for a comparison with the ideal departure ones. While the packets request
are kept in DRAM in a memory window that is continuously refreshed by the PC
with new data, the traffic parameters (e.g. L2 and L3 addresses, as we will see later)
are kept in SRAM as they need to be accessed very frequently for the creation of each
packet.

Load Balancer The LB µE draws data from DRAM related to a packet generation,
properly modifies its departure time and then sends them to a TG µE. Fig. 3.3 de-
picts the structure for a packet generation request (PR), which is loaded in DRAM
by the BRUTE application running on the host PC. The first 32 bits contain the inter-
departure time, the packet size (16 bits), the pointer to the flow structure in SRAM
(Flow Index, 15 bits), and the IP version (IPv4 or IPv6, 1 bit) follow.

Interdeparture Time
(31-0)

Packet Size Flow Index Type
(31-16) (15-1) 0

Figure 3.3: Structure of a packet request (PR).

More precisely, the threads of LB are divided into two groups.

• Even Threads: they convert the departure times from “relative” (as generated
by BRUTE) into “absolute” (as required by TGs) and then move PRs from
DRAM to the rings in the local memory of µEs. 8 requests are processed at
a time since the DRAM is read in blocks of 16 words of 32 bits.

• Odd Threads: they draw PRs from local memory, adjust the departure times
according to the feedbacks (the process of departure times correction is accu-
rately explained in section 3.1.3) and forward the new requests to TGs.

Since the timestamp counter in the TGs is limited to 16 bits, the LB should not
send to TGs any PRs scheduled more than 216 clock ticks ahead in the future. There-
fore odd threads stop when the difference between the time written in the PR and
present time is greater than a parameter (AWAITING THRESHOLD), which has to be
set at the start of BRUNO application. This parameter can be at most 216 ticks. Since
the timestamp counter is increased every 16 clock cycles and the µE clock frequency
is set to 600 Mhz:

1 tick =
16

600 · 106 seconds = 26ns

The choice of the AWAITING THRESHOLD must be carefully considered. In fact,
low values lead to an under-utilization of the Traffic Generators that may not re-

151

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Output Port Protocol TOS Ind Type Res
(31-23) (22-15) (14-7) (6-5) (4-0)

Source Port Destination Port
(31-16) (15-0)

Index Total SRC ADDs
(31-24) (23-16) (15-0)
Index Total DEST ADDs
(31-24) (23-16) (15-0)

Figure 3.4: A flow structure.

spond properly to abrupt changes in the traffic. On the other hand, high values of
this parameter can easily saturate the scratch rings between the Load Balancer and
Traffic.

Traffic Generators As shown in fig. 3.2, 4 µEs are designed for packet creation. The
thread of Traffic Generators process a packet at a time, by taking the corresponding
PR from the communication ring between LB and TG. Through the field Flow Index
in the PR, the structure describing the flow which the packet belongs to is accessed.
Fig. 3.4 shows an example of such flow structures, which are loaded into the SRAM
by BRUTE in the initialization phase, according to the user settings.

Output Port indicates the physical output port for the flow. Protocol, TOS, Source Port,
and Destination Port provide the corresponding fields of L3 and L4 packet headers.
SRC ADDs and DEST ADDs point to two SRAM locations which contain a list of
source and destination addresses respectively. Total provides the number of these
addresses, while Index indicates the next address to be read if the choice is made
in a linear way (otherwise, in random mode, the proper address is suggested by a
random number generator). The two bits of Ind Type indicates the selection mode
for both source and destination addresses (which in addition can be IP or MAC ad-
dresses).

From these data, a thread is able to create packet metadata and L2, L3 and L4
headers. Then the thread is placed in a state of sleep, until the time to send the
packet arrives. At this point, the thread wakes up and sends the packet transmission
request to the transmission block, which will provide to transmit the packet.

Transmitter The last stage of the generator is the transmitter. The code used is the
one provided by Intel R⃝, as optimized for the transmission. Obviously, the feedback
system for time correction has been added. It is executed right before before the
last step of the transmission process, in order to measure “real departure times” as
truthfully as possible.

System Initialization BRUNO requires that the flow structures and the addresses
lists are loaded in the SRAM, as well as the requests for transmission generated by

152

3.1 BRUNO: An Accurate Gigabit Traffic Generator

BRUTE have to be stored in the DRAM, before the application begins to create traf-
fic. In order to obtain a time consistency among the various µEs, which is funda-
mental for the good feedback functioning, a system synchronization is required. For
this purpose, a specific function is included in Load Balancer, Traffic Generators and
Transmitter code to force initialization and timestamp synchronization of the various
µEs before the regular functioning.

3.1.2 BRUTE-NP communication

The communication between the BRUTE application, which is in charge of generat-
ing the packet requests, and the Network Processor, where the traffic generation ac-
tually takes place, is performed through the PCI bus. In particular, both the DRAM
and SRAM memory banks on the board are accessible through the local PCI bus,
which, in turn, is connected to the PCI bus of the host PC through the Intel 21555
non-transparent PCI-to-PCI bridge [107]. Since the address plan referring to the two
buses is different (this is the main reason of using a non-transparent bridging), ad-
dress translation is implemented on such a device (see fig. 3.5): up to three non
overlapping intervals in the PCI address space of the host PC (called downstream
windows) can be configured to be translated into the corresponding address inter-
vals in the Radisys PCI address space. Every time the 21555 bridge receives a trans-
action referring to an address falling into one of the downstream windows, it maps
such an address into the corresponding address of the Radisys PCI bus and forwards
the transaction over it. In a symmetric way, three upstream windows in the Radisys
PCI address space can be defined in order to forward transactions from the board
bus to the host PC bus.

Figure 3.5: Address Translation.

Different address translation methods are provided by the bridge, but the most
simple and efficient one is the direct base translation: a downstream (or upstream)

153

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

memory window is defined by a base address, and address translation is performed
by simply replacing such a base with a corresponding translated base which defines
an address region over the target bus. Since the base length is variable, the size of an
address window can be defined by the user: in general, the window size may assume
values from 4 KB up to 2 GB, thus allowing to completely map each memory bank
of the Radisys board.

The memory translation map can be configured by accessing and setting some
control registers associated with the non-transparent bridge; in our implementation,
this is done by a Linux kernel module inserted in the host PC operating system.
After the initialization of such a module, both the SRAM and the DRAM memory
banks are accessible as PCI resource regions by the host PC operating system and
can be read and written by using system calls referring to memory mapped I/O. In
order to offer a simple interface to user applications, our module registers two virtual
character devices in the Linux kernel, which are associated to the Radisys DRAM and
SRAM banks, respectively. Such devices provide support to the mmap access method
[108], which allows to register a direct binding between a statically defined physical
address region and a user space virtual address region. When a user process accesses
a virtual address falling into the mapped area, the virtual memory manager of the
kernel directly converts it to the corresponding physical address. This allows user
processes to directly access the resources associated with a device, without using
any data buffering in the kernel memory. Such a mechanism, which is generally
used for accessing high performance devices such as graphical cards, provides the
maximum speed for accessing peripheral devices, since no data copying is required.
By accessing the two character devices, BRUTE can both configure the parameters
defining each generated traffic flow (stored in SRAM) and set the times and lengths
for each packet, by writing the corresponding data structure in DRAM.

Synchronization In operational conditions, the DRAM area containing the packet
requests must be accessed by both the µEs and the host CPU through the PCI com-
munication mechanism described in the previous section. In order to accurately re-
produce the statistical characteristics of a given traffic flow, while the µEs read the
metadata and actually generate the packets, new packets lengths and interarrival
times must be written in the DRAM memory by the host CPU. Therefore, we need to
define a mechanism to cope with the simultaneous presence of readers and writers
on the same memory area. In particular, each packet request must be written by the
host CPU and read by the NP only once. Let us take as a trivial example a plain
Poisson traffic flow: since the packet interdeparture times are independent exponen-
tially distributed random variables, the repetition of a given interdeparture time is
not compliant with the flow specification.

For this reason, a synchronization mechanism between the NP and the host CPU
has to be implemented. We choose a method that does not rely on the classic in-
terrupt based solutions (typically used for PCI devices) because of the variable and
possibly long latencies which are involved in such schemes. On the contrary, we
adopt a polling based mechanism. In particular, in our scheme, the CPU takes care
of the whole synchronization task: first, ordinary CPUs are generally faster than
our NP (the IXP2400 has a 600Mhz clock rate, while ordinary PCs usually work at
a frequency of a few Ghz); in addition, the mean rate at which the data structure in

154

3.1 BRUNO: An Accurate Gigabit Traffic Generator

the buffer can be read must be of the same order of the packet sending rate (other-
wise, in the long run, the internal buffers of the LB µE, where the packet requests
are temporarily stored, would overflow). Since, even at full rate, less than a few mil-
lion packets per second can be sent by the traffic generator, a common PC can easily
fill the buffer faster than it is emptied. Besides, in order to avoid contention issues
on the host PC, the BRUTE process can be assigned a higher priority in the Linux
processor scheduling mechanism, thus guaranteeing that other tasks interfere only
marginally with the traffic generation. As a consequence, there is no need for the
NP to wait for the CPU, while it is likely that the CPU has to stop to wait for the NP
to read the data in the buffer. In addition, the code running on the NP is optimized
for maximum performance and implementing waiting mechanisms could lead to a
major performance degradation.

Figure 3.6: DRAM window circular buffer.

The DRAM window containing the packet requests is cyclically read by the Net-
work Processor as a circular buffer. Transferring a large block of data over the PCI
bus (and from/to the DRAM) is, in terms of overall delay, more profitable for the
host CPU than moving small amounts of packet requests at a time. Therefore, such a
circular buffer will be partitioned in blocks containing a given number of data struc-
tures (let us say 8); each time either the host CPU or the NP accesses the buffer, a
whole block of data structures is read or written. In fig. 3.6, the DRAM window
divided into different blocks (arranged in a FIFO circular queue) is depicted.

The NP keeps in its SRAM a pointer to the last block it has read and, in turn, the
CPU maintains in its own memory a pointer to the last block it has written. Before
performing a write operation, the CPU reads both pointers to check whether the
buffer is full. In such a case, the CPU enters a waiting state for a given waiting time
and, after that, it checks the pointers again.

We avoid using a polling mechanism that continuously reads the pointer in order
to reduce the number of accesses to the NP SRAM. Indeed, contention for access to
the memory block could affect the delay of NP accesses to such a memory, and lead

155

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

to a performance degradation.
The waiting time must be accurately calculated so as to avoid that the NP reads

the whole buffer while the CPU is waiting. Since, as already pointed out, the average
buffer reading rate must be equal to the average packet sending rate of the NP, good
estimate of such a waiting time can be computed by the host CPU as:

Tdelay = ρ× B
R

(3.1)

where B is the overall amount of packet requests that can be contained in the buffer,
R is the average packet rate produced by the generator (known by the host PC) and
ρ is an arbitrary safety parameter smaller than one (if ρ = 1 then Tdelay is the time
needed to empty the whole buffer). For very low values of ρ the CPU floods the
SRAM with read requests, thus affecting precision. On the other hand, if ρ ≃ 1, the
CPU may not be able to fill the buffer properly and the system would not be able to
respond in time to abrupt changes of the generated traffic. Preliminary experimental
results (limited to the PCI communication) seems to confirm that setting 0.1 ≤ ρ ≤
0.4 is a good choice.

The implementation of the busy waiting mechanism over the host PC relies on
the real time capabilities which are included in the original BRUTE. It provides busy
waiting functions which, by actually counting the CPU clock cycles and by taking
advantage of the Linux process scheduling policies, allow to set a waiting period
with a fairly good accuracy.

3.1.3 Performance Evaluation

System delays In this section, we analyze the system behavior in order to estimate
the goodness of our design in terms of performance. In particular, we will try to
understand if the system is able to generate the maximum packet rate for a gigabit
ethernet: 1488000 pps (with 64 bytes per packet). As stated by code simulation, the
hardest workload among the µEs is in the charge of the Traffic Generators, so we
focus on them.

The mean time (hereafter we call “T” the mean times) spent by a thread of a
Traffic Generator µE for its overall processing of a packet is:

Tc = Tr,scr + Tel + Tw,SRAM + Tw,DRAM + Twait + Tw,scr (3.2)

where Tr,scr represents the mean time spent for reading the PR from the scratchring,
Tel for processing the request, Tw,SRAM, Tw,DRAM, and Tw,scr for writing metadata
in SRAM, the whole packet in DRAM, and the packet transmission request in the
transmission scratchring respectively. Finally, Twait represents the time a thread must
wait when it is placed in the sleep state, as we have described above.

By using Little’s law, we compute the available time budget for the overall pro-
cessing of a packet by the TGs:

Tc · λ = n (3.3)

where λ represents the load (in our worst case 1488000 pps) and n the number of

156

3.1 BRUNO: An Accurate Gigabit Traffic Generator

Tr,scr Tel Tw,SRAM Tw,DRAM Twait Tw,scr
60 200 100 100 250 60

Table 3.1: Mean times for each operation in clock cycles.

entities that take care of packet generation. In particular, in our design, n = nm · nt,
where nt = 8 is the number of threads per microengine and nm = 4 the number
of Traffic Generator µEs. With such values, we obtain a time budget for a packet of
Tc ≃ 12900 clks.

Then we have measured by means of the Develop Workbench the mean times
above listed: tab. 3.1 reports these values in terms of clock cycles. Their sum
amounts to 770 clks, which is widely within the computed budget. Therefore our
system looks able to support the maximum packet rate in a gigabit ethernet, and the
experimental results shown in sec. 3.1.4 confirm this analysis.

Timing correction In fig. 3.7 we represent a schematic view of BRUNO as a sys-
tem with an input (the ideal departure time t(n) for the n-th packet) and an output
(the actual departure time τ(n)). This representation comes in handy in order to
describe the actual system implementation and also the timing correction algorithm
introduced in the Load Balancer µE. The introduction of a correction algorithm is
motivated by the large number of phenomena that, in a complex multi-core system
such as our IXP2400 NP, could affect the accuracy of the traffic generation. As an
example it suffices to say that the latency of each memory access to any SRAM or
DRAM is strictly dependent on the number and the state of all the other threads and
the number of requests coming from the PCI bus referring to that memory. A large
variety of events (that imply memory and bus accesses) also occurs on the XScale
core because of the regular OS house-keeping (e.g.: timing interrupts, memory pag-
ing and swapping). All these phenomena may affect a number of packet departures
because of their duration in time. Therefore they are modeled in our scheme as a
noise ω(n) with a non-null autocorrelation. In addition, we point out that, since the
noise represents a sum of different phenomena that introduce delays, its mean value
is positive: E[ω(n)] > 0. Hence the reason for a correction algorithm (f (·) in fig.
3.7).

However, because of the limited instruction set of the µEs and to limit the delay
it introduces, our error-correction algorithm must be devised to be fast and simple,
requiring the minimal amount of instructions. Therefore we choose an exponential
moving average:

φ(n) = A ·φ(n− 1) + B · [∆̂(n− k)− ∆(n− k)] (3.4)

where φ(n) represents the correction applied to the n-th packet departure time,
∆̂(n− k) = τ(n− k)−τ(n− k− 1) is the measured interdeparture time of the (n− k)-
th packet (taken from the feedback scratchring) and ∆(n− k) = t(n− k)− t(n− k−
1) is the ideal interdeparture time (kept in local memory) of the same packet. The

157

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

..

+

.

t(n)

.

+

.

τ(n)

.

ω(n)

.

f (·)

. z−k. +. z−k.

+

.

x(n)

.. -.

-

.

φ(n)

. +...

Figure 3.7: Schematic view of BRUNO as a system

parameters A and B are real and positive numbers, with A + B = 1, while the term
k takes into account the feedback and system delay (shown in fig. 3.7 as z−k). In fact,
when the LB is working on the n-th PR, there are a certain number of PRs in the TGs
and on the rings, moreover the feedback mechanism is obviously not instantaneous.
Notice that the correction function is applied to the difference of interarrival time
rather than on the absolute time themselves: indeed, interarrival times must be very
precise while the presence of a possible constant offset between t(n) and τ(n) is not
relevant.

In the following, we assume this term k to be fixed and known and we analyze
the system in fig. 3.7 as a discrete-time linear system where packet departure times
define the time-domain. Notice that, dealing with a discrete time system that evolves
on a packet generation basis (i.e., events are not necessarily equally spaced in time),
the mathematical approach is still valid though the frequency parameter cannot be
interpreted in the standard way and measured in Hertz.

By simple calculations, it is easy do derive the transfer function H(z) that de-
scribes the output of the correcting block as a function of the noise process ω(n)
as:

H(z) =
φ(z)
ω(z)

=
Bz−k(1− z−1)

1− Az−1 + Bz−k(1− z−1)
(3.5)

According to fig. 3.7, and by indicating the impulse response of the system H(z)
with h(n), one has:

τ(n) = t(n)−φ(n) +ω(n)
= t(n) +ω(n)− h(n)⊗ω(n)
= t(n) + e(n)

(3.6)

The error term e(n) associated with the absolute generated times can be calculated

158

3.1 BRUNO: An Accurate Gigabit Traffic Generator

as the output of the system:

L(z) = 1− H(z) =
1− Az−1

1− z−1 + Bz−k(1− z−1)
(3.7)

which receives as an input the sequence of noise ω(n).

As above mentioned, though, the error sequence of interest is that of the interar-
rival time, that is:

∆̂(n)− ∆(n) = τ(n)− τ(n− 1)− (t(n)− t(n− 1))
= e(n)− e(n− 1)
= ϵ(n)

(3.8)

In other words, we can express the sequence of errors of interarrival times ϵ(n)
in terms of the noise process ω(n) through the transfer function of the equivalent
system:

G(z) =
(

1− z−1
)

L(z) =
(
1− Az−1) (1− z−1)

1− Az−1 + Bz−k(1− z−1)
(3.9)

The effectiveness of the timing correction mechanism can then be evaluated through
the characteristics of the equivalent system G(z).

By assuming the noise process as wide sense stationary, it turns out that the av-
erage error is null:

E[ϵ(n)] = E[ω(n)] · G(1) = 0 (3.10)

and that its power spectral density Sϵ(f) is given by:

Sϵ(f) = Sω(f) |G(f)|2 (3.11)

In lack of any statistical information on the noise, the selection of parameters A
and B = 1− A should be made in order to minimize the energy of the system G(z)
so as to minimize the variance of the error ϵ(n) in the case of flat spectral density of
the noise process.

Fig. 3.8 shows the energy of the system G(z) with respect to A for several values
of k. From this figure, the choice of A > 0.5 seems to be suitable in that the energy
approaches 1 and it is very little sensitive with respect to k.

In our experiments (fig. 3.9), though, the noise ω(n) turns out to be colored as
it exhibits stronger components at low frequencies (notice that the peak at f = 0 is
mainly due to the non zero mean of ω(n)). As shown in fig. 3.10, the frequency re-
sponse G(f) evaluated for A = 0.75 and k = 12 (the maximum value of k observed
in our experiments) indeed proves a clear high pass behavior, thus effectively filter-
ing out the low frequency relevant components of noise.

159

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Figure 3.8: Energy of the impulse response of G(z).

Figure 3.9: Estimated Power Spectral Density of ω(n).

160

3.1 BRUNO: An Accurate Gigabit Traffic Generator

Figure 3.10: Square absolute frequency response of G(z).

3.1.4 Experimental results

We evaluate the actual performance of BRUNO through a wide variety of experi-
mental tests. All the measurements are taken by means of the Spirent AX4000 traffic
analyzer [109], which is an ASIC-based tool supporting a precision of the order of
nanoseconds.

We test the accuracy of BRUNO in traffic models and synthetic traces reproduc-
tion, and illustrate the advantages of the time error correction scheme.

Traffic models To date, the library of synthetic models implemented in BRUNO
includes three common traffic profiles with different statistical features and param-
eters. The modular design of the system, however, allows to add any other models
upon need. The traffic models implemented are described in the following along
with a performance analysis.

Constant Bit Rate traffic. CBR is the easiest traffic pattern that can be generated as
it consists of a sequence of packets with constant interdeparture time. In addition
to the common parameters used to build IPv4 packets and UDP headers (i.e., IP
addresses, packet size, etc.), the only parameter to be specified is given by the rate,
that is the number of packets sent per second (or, the inverse of the interdeparture
time of packets).

In fig. 3.11, which reports the short term packet rate (calculated as a mean over
intervals of 0.10 s), we compare the performance of BRUNO to those of BRUTE in re-
producing the CBR model. The improvement of BRUNO is evident, in particular for
the accuracy and the maximum achievable throughput: BRUNO is able to generate
up to 1488000 pps with a high precision. It is worth noticing that this is the maxi-
mum packet rate achievable over a 1 Gigabit Ethernet link with the smallest packet

161

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

size (64 Bytes); this is clearly the worst case scenario for testing network devices. In
such conditions BRUTE provides lower throughput and accuracy.

Figure 3.11: CBR traffic: Brute vs Bruno.

Poisson traffic. The Poisson process is historically one of the most popular traffic
models and it is obtained by generating packets whose interdeparture times are in-
dependent and exponentially distributed random variables. The parameter λ is used
to define the mean number of packets generated per second.

Fig. 12 shows the distribution of a Poisson traffic with throughput= 300 Kpps
and λ = 0.03; the comparison among the traces generated by AX4000, by BRUNO
and by BRUTE highlights the improvement of our solution with respect to BRUTE,
and especially the capability to properly produce also very small interarrival times
(between 0 and 1 µs) thus providing great accuracy at high rates. Moreover, it is
worthy noticing that the histogram of interarrival times generated by BRUNO is very
similar to that of the commercial AX4000 traffic generator, which is a very expensive
hardware solution (hundreds of thousands dollars, while an NP board costs a few
thousands dollars).

Poisson Arrival of Burst traffic (PAB). The PAB model is the process given by the
superposition of CBR bursts scheduled according to a Poisson process of parameter
λ, where the duration of bursts are independent and might be modeled as an arbi-
trary random variable B with distribution B(x). More formally, the instantaneous
rate can be written as

R(t) = R · N(t) (3.12)

where N(t) is the number of active bursts at time t and R is a scaling factor whose
dimension is a data rate (e.g. packet/byte/bit per second). Notice that the random
process N(t) is equivalent to the process representing the number of busy servers in
a M/G/∞ queue with Poisson arrival rate of parameter λ and service time distribu-
tion B(x) (with mean value E(B)).

162

3.1 BRUNO: An Accurate Gigabit Traffic Generator

(a) AX4000

(b) BRUNO

(c) BRUTE

Figure 3.12: Bar chart of interarrival times of a Poisson traffic (λ = 0.03).

163

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

While the marginal distribution of N(t) is given by:

P (N(t) = n) =
λE(B) t

n!
e−λE(B) t (3.13)

its correlelation features (and so those of the resulting traffic) vary according to the
distribution of burst length B(x). In particular, if burst lengths are distributed ac-
cording to a power–law distribution (e.g., Pareto distribution), such as:

P (B > x) = 1− B(x) =
(

θ

θ+ x

)α

(3.14)

depending on the value of α, the resulting traffic process may exhibit either Short
Range Dependence (α ≥ 2 – light tailed distribution) or Long Range Dependence
(1 < α < 2 – heavy tailed distribution) [110] with Hurst parameter given by:

H =
3−α

2
(3.15)

The parameterθ acts simply as used for time offset. Fig. 3.13 and 3.14 show a slice of
about 15 minutes of PAB trace generated with parameters α = 1.5 (thus H = 0.75),
θ = 1s, λ = 300 s−1 and R = 1000 packets/s. The associated Variance–Time plot
clearly proves the presence of Long Range Dependence. Moreover, the estimated
value of H is equal to 0.736, which is pretty close to the nominal value H = 0.75.

Figure 3.13: PAB traffic profile.

Playback capability The second set of experimental runs aims at illustrating the
“playback capability”. Our application is able to exactly reproduce a libpcap trace in
terms of packet lengths, IP addresses and ports. Moreover, BRUNO gives the pos-

164

3.1 BRUNO: An Accurate Gigabit Traffic Generator

Figure 3.14: Variance time of generated PAB traffic.

sibility of modifying the original speed of the trace by multiplying its interarrival
times by a scale factor: the application preserves the time distribution shape of the
traffic, while the time scale is “compressed” or “enlarged”. This “playback capabil-
ity” allows at the same time to perform tests with real traffic and stress devices or
networks with different traffic loads.

Fig. 3.15(a) shows the interarrival time distribution of a real SIP call (signalling
and data) performed through a soft-phone. Fig. 3.15(b) and 3.15(c) show the dis-
tribution of the trace reproduced by BRUNO and an “accelerated” version with a
scaling factor of 100. It is evident that the shape is almost the same of the original
trace and that the time references (time axis and mean packet interarrival time) differ
by the factor of 100.

Timing Correction Effect In this set of experiments, the benefits introduced by
the error correction mechanism are investigated. We instruct BRUNO to generate
CBR traffic flows within a wide range of bit rates, spanning from 100 to 600 Mbps,
and we run, for each value of bit rate, both the standard version of BRUNO and a
modified version in which the feedback correction mechanism was disabled. The
measurements are taken again by means of the AX4000.

Tab. 3.2 reports the reduction in the interdeparture time variation due to the in-
troduction of the correction mechanism. We have measured the standard deviations
of interdeparture times (σϵ for the system with error correction, σnϵ for the simple
one), obtaining for both versions extremely small values (in the order of hundreds of
nanoseconds). However, the use of the timing correction mechanism increases the
performance of the system, as shown by the difference σnϵ −σϵ. In any case, these
benefits are more evident with increasing complexity of the traffic model generated,
because in a CBR model there are few variable factors that can cause a consistent
deviation from the ideal behavior, and, therefore, the variance reduction achievable
with an error correction mechanism is limited.

165

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

(a) Original trace (ns)

(b) Trace reproduced by BRUNO (ms)

(c) Trace accelerated by BRUNO (µs)

Figure 3.15: Interarrival times of a 40s SIP call.

166

3.2 A Network Processor based architecture for multi gigabit traffic analysis

rate (Mb/s) σnϵ −σϵ(ns)
100 14.3
200 12.4
300 3.9
400 3.1
500 14.3
600 13.1

Table 3.2: Interdeparture time variation reduction achieved by the correction mech-
anism.

3.2 A Network Processor based architecture for multi
gigabit traffic analysis

In the last few years, the proposal for measurement-based techniques of traffic en-
gineering and management as well as the continuously increasing concern for net-
work security has raised the interest of researchers and network operators towards
the development of measurement tools for traffic monitoring/characterization and
to support Intrusion Detection Systems (IDSs).

Moreover, the large availability of flexible, easy to use and easy to customize net-
work monitoring software, has proposed the PC as a suitable and cheap platform for
network measurement and testing. Indeed, applications such as tcpdump [111], wire-
shark [112], ntop [113], etc., prove to be very effective and flexible for a large variety of
monitoring tasks. Most of these pieces of software are based on the well known libp-
cap API [111], which rapidly became a de facto standard for PC based packet captur-
ing. Even though many improvements have been applied to this library [114] [115],
it still suffers from performance flaws, that mostly depend on underlying hardware
bottlenecks [116] [117].

In particular, two main issues emerge:

1. packet timestamps: to sustain a high packet rate, the PC must drive interface
cards by using a polling scheme and this results into poor timestamp accuracy;

2. packet loss: packet loss can be experienced if either the packet rate is too high
and the host CPU cannot allocate/release memory for packets or if the system
bus cannot keep the pace of the incoming data.

Furthermore, only off-line processing can often be performed on incoming pack-
ets since, typically, no extra CPU power is left for on-line analysis (all the CPU time
is used for capturing) [116] [117]. This is mainly due to the lack of packet processing
capabilities on the network interface cards which commonly equip commodity PCs.
Indeed, these cards are not capable of:

• timestamping the arrival of a packet (avoiding interrupt latency);

167

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

• filtering unwanted packets out (avoiding memory allocation/release for un-
wanted packets);

• feeding the host PC with only a fragment of the packet instead of the entire one
(avoiding system bus saturation).

The research described in this work addresses the development of a novel mea-
surement tool that overcome the above listed weaknesses of a purely PC–based ar-
chitecture by integrating the power of Network Processors (NPs) of the Intel IXP2XXX
family in a cooperative and distributed platform. The objective is to combine the
high performance of a hardware–oriented solution with the flexibility of general
purpose PCs equipped with existing libpcap–based applications. The overall target
is a powerful system capable of capturing packets on GigaEthernet links with good
timestamp accuracy.

Several works on distributed measurement systems have been proposed in the
literature in the last few years. In [118], the authors illustrate a distributed archi-
tecture for IP traffic analysis composed by a bank of capturing devices which work
together and automatically distribute the capturing task among themselves, before
passing the data to the bank of processing devices. The purpose is to monitor multi-
ple links within an administrative domain.

The idea of an architecture made up of a primary component that distributes the
incoming traffic among several processing units was proposed first in [119]. In the
section, the authors outline also the following requirements that must be satisfied by
any measurement tools, irrespective of their target application (e.g. attack detection,
traffic analysis, accounting or traffic engineering):

• processing scalability: the extensibility in terms of packet processing power;

• flexible flow definition: the capability of defining a flow by specifying different
fields;

• operational flexibility: to update the flow definitions on-demand;

• long-term operation: the ability of running as long as possible;

• flexibility of visualization resolution: the availability of statistics with different
resolutions in terms of space and time.

In addition, in [120] the same authors summarize the set of features which a mon-
itoring platform must provide: accurate timestamping, packets storage and/or in-
spection, packet sampling, flows identification, counting, and high-level statistics
computation. Moreover, they propose the use of NPs for the implementation of their
system.

Our work originates from the idea of a primary distribution component with the
aim of reducing the effort of the subsequent processors and improving the overall
monitoring architecture performance. Such a distribution engine is implemented by
means of a Network Processor. Thus, the measurement system turns out to be based
on a cooperative PC/NP architecture, which provides the flexibility and the power
to satisfy the above mentioned requirements as well as to exhibit the features of [120].

168

3.2 A Network Processor based architecture for multi gigabit traffic analysis

Several other research efforts recognize the effectiveness of NP-based devices in
aid to common hardware for monitoring purposes. Xinidis et al. [121] propose an
active splitter based on Intel IXP1200 for filtering traffic directed to the sensors of a
Network Intrusion Detection or Prevention System (NIDS/NIPS). In their scheme,
the NP first enforces Early Filtering techniques, then it forwards traffic to different
sensors, according to Locality Buffers or hash load balancing.

In [122], Wolf et al. propose to use a distributed architecture, called Distributed
Online Measurement Environment (DOME), of passive measurement nodes equipped
with Intel IXP2400 NP. Their work includes header anonymization schemes and per-
formance is compared to that of Endace DAG 4.3 cards. Both the previous systems
are able to analyze up to 500 Mbit/s traffic flows composed by small packets (64
bytes), while our solution is able to handle up to 1 Gbit/s with the same packet size.
Moreover, our system carefully addresses the issue of an accurate packet timestamp-
ing.

If compared to hardware solutions (e.g. DAG cards), our traffic monitor turns out
to be fairly convenient in terms of price, number of functionalities and flexibility. For
instance, the implemented packet classifier supports up to 50000 rules [123], while
the DAG 4.3 card, which integrates a simple 7-rule filter, costs as twice as much.
Moreover, our solution allows a very flexible and quickly updatable definition of
flows.

3.2.1 The System Architecture

The high level view of the measurement system is represented in figure 3.16, where
two flow directions of a Gigabit Ethernet optical fiber are both split into two optical
signals. The first signal is directed to an output fiber while the second passes through
the splitter. Hence, there are two output fibers, one for each direction. This is the best
available way to “copy” network traffic though some other solutions are possible
(e.g. configuring port mirroring on layer 2 network devices).

The output fibers of the splitter are connected to two of the three optical inter-
faces (see section 3.2.2) of a Radisys ENP-2611 Network Processor board hosted by a
PC (this is our front-end), while a cluster of PC-based Linux boxes is connected to the
third interface via a gigabit ethernet switch. The PC cluster and the front-end probe
are also connected via a standard 100BaseT Ethernet LAN (which acts as the con-
trol interface of our system) supporting a standard TCP/IP connection used to issue
configuration commands from user interfaces. Therefore, every PC on the LAN can
issue configuration commands to the NP via a client/server application (the server
resides on the PC hosting the NP board, while each PC runs an instance of the client).

Referring to this scenario, the basic idea behind the proposed architecture is to
make the NP board perform the following operations at the wire speed:

1. packet timestamping: recording the arrival time of each packet in the standard
UTC format;

2. packet classification and filtering: selecting the desired packets only and assigning
each packet a unique flow identifier based on a rule set;

169

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Figure 3.16: Conceptual scheme of the monitoring system.

3. keeping per-flow counters: counting the amount of bytes and packets belonging
to each flow;

4. header striping: getting the necessary information only (e.g. the first n bytes);

5. batch frame crafting: collecting data in batch frames, each containing the infor-
mation of several packets;

6. sending batch frames to commodity PCs belonging to the cluster: using the third
fiber port of the NP board.

On the PC side, the batch frame is received, dissected, and delivered towards any
monitoring application, which provides higher level functionalities, such as traffic
analysis, intrusion detection and statistics gathering.

The main advantages of this architecture are:

1. timestamping accuracy, in that it is performed by the NP card without the inter-
rupt latency typical of a PC;

2. heavy CPU offload, as unwanted packets are dropped at the NP level and are
not delivered to any PC and since a pre-classification is performed on packets,
bringing even more CPU offload (for example in flow identification).

All the functionalities listed above are regulated by a control plane, which is in
charge of handling the definition of the traffic flows, to plan the delivery of the batch

170

3.2 A Network Processor based architecture for multi gigabit traffic analysis

packets associated to each flow to one (or several) PCs belonging to the cluster and
to take care of timestamp association. Such a plane is implemented through user
level applications which run both on the PC hosting the NP board and on the PCs
belonging to the cluster.

At this stage, the main issue of this architecture would be the incompatibility
between the proposed batch frame and all the available libpcap–based applications.
Next sections describe the implementation design of the entire architecture made
up of an NP-side timestamping and classification application and a PC-side kernel
space abstraction layer which guarantees the compatibility with any libpcap-based
application.

3.2.2 Network Processor Side

The IXP2400 is a fully programmable NP, which implements a high-performance
parallel processing architecture on a single chip suitable for processing complex al-
gorithms, detailed packet inspection and traffic management at the wire speed. It
combines a high-performance Intel R⃝XScale core with eight 32-bit MEv2 packet pro-
cessing engines called microengines (µ-Es) which cumulatively provide more than
5.4 giga-operations per second (capable of processing, namely, up to 3.6 mega pack-
ets per second). Each µ-E has eight hardware-assisted (i.e. zero-overhead context
switch) threads of execution. The Intel XScale core is a general-purpose 32-bit RISC
processor (ARM Version 5 Architecture compliant) used to manage the NP, to han-
dle exceptions and to perform slow data path. The XScale processor and the whole set
of µ-Es run at 600 MHz. Microengines provide the processing power necessary to
perform fast data path tasks that would require very expensive high-speed ASICs.

The IXP2400 NP is hosted by a third-party board. We adopt the Radisys ENP-
2611 board, equipped with 8 MB of SRAM and 256 MB of DRAM. This board pro-
vides three Gigabit Ethernet optical interfaces and one Fast Ethernet interface for
remote control. Moreover it supports MontaVista Linux [124] operating system run-
ning on the XScale CPU. The board is plugged into a PCI-X slot of a host PC; a
non-transparent PCI to PCI bridge allows fast communication between the host PC
and the Network Processor board.

The NP side of our traffic monitor application reflects the IXP processor hierar-
chy: µ-Es are in charge of packet timestamping, classification, per-flow counting and
batch frame crafting, while the XScale deals with classification table setup and up-
date and parameter reconfiguration, according to the configuration data which are
provided by the host PC.

The entire NP-side application is depicted in fig. 3.17: the circles represent rings,
which are on-chip circular FIFO queues (used for inter-µ-E communication), the ex-
ternal rectangles represent processors, the internal ones represent the pieces of code
that implement specific functions. In a µ-E, these pieces are named µ-blocks, while
at the XScale level they are called “core components”. White µ-Es contain the driver-
blocks, directly provided by Intel and strictly hardware-dependent, dealing with low
level functionalities.

171

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Figure 3.17: Functional scheme of the entire NP-side application.

3.2.2.1 Microengines Application Scheme

Referring again to Figure 3.17, the whole application can be summarized as follows.
The RX µ-E (0x00) retrieves packets from the interface and places them in Ring 1.
For each packet, the arrival time (actually the arrival time of the first mpacket, cfr.
section 3.2.5), the entire length and the first n bytes of the packet are recorded. The
second µ-E (0x01) classifies the packets it receives from Ring 1 (by either assigning
them a flow identifier (flowID) between 0 and 216− 1 or by simply dropping them), in-
crements the corresponding per-flow counters and sends them to the next µ-E (0x10)
which copies all data buffers (each one containing flowID, length, timestamp and the
first n bytes of a packet) together to create a batch frame (whose format is depicted
in fig. 3.18). Finally, the batch frame is passed to the TX µ-E (0x02) to be sent to one
of the PCs belonging to the cluster. The batch frame header has the source address
set to the MAC address of the outgoing interface, the destination address set to the
MAC address of the correspondent cluster’s PC (which is in charge of analyzing that
flow) and the type field set to an unused value (0x9000). As shown in fig. 3.18, the
payload filled with a variable number of packet digests each made up of all the packet
information (flowID, length, the n-bytes fragment and the arrival timestamp). The
length of the fragment can be different among different flowIDs. The code running
on the 0x10 µ-E (Packet batch builder) contains a table with the correspondence be-
tween flowIDs and the MAC addresses of the PCs processing those flows. At a given
time, the application maintains up to one batch frames for each PC of the cluster and
each packet digest is copied onto the batch frame correspondent to its flowID. Packet
classification is performed according to the scheme described and in [125][123]. The
adopted classifier is reconfigurable and capable of sustaining a very high packet rate.

172

3.2 A Network Processor based architecture for multi gigabit traffic analysis

Figure 3.18: Batch frame and packet digest specification.

3.2.2.2 XScale Application Scheme

In our scheme, the XScale processor reads the configuration parameters which have
been written by the control plane software at well known addresses of the Radisys
board memory banks and translates them into a decision-making data structure,
which is stored in the SRAM block; this is performed by the Classifier Core com-
ponent [123]. In addition, the XScale also manages the dynamic reconfiguration of
the rule set, which allows for updating the flow definitions on-demand. This is done
through a message exchange between its core components and µ-Es, which keeps data
structures consistency by properly switching between the classifier table and the
cache table. Such a mechanism allows for a fast update of the table and, besides,
no packet loss is experienced, since the traffic arriving while the data structure pro-
cessing is in progress can still be classified by using the cache table. Furthermore,
the XScale is in charge of loading the microcode on the microengines when the mon-
itoring application starts.

3.2.3 Host PC side
The communication between the host PC CPU and the Radisys board takes place
over the PCI bus and leverages the same mechanisms that we described in subsection
3.1.2.

Although, at the present state, the PCI bus is only used to convey control plane
information and, therefore, communication speed is not a sensitive issue, the possi-
bility of fast data transfer offers an interesting opportunity to expand our architec-
ture by implementing additional functionalities on the host PC.

Furthermore, since the use of a gigabit ethernet interface of the NP-board to send

173

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

batch frames to the cluster can represent a limitation for the performance of our
system, a less expensive choice would be to use the PCI-X bus to transmit batch
frames to the host PC and make it forward them to the cluster via a standard gigabit
ethernet PCI-X NIC.

A server application running at the user space of the host PC is in charge of
the implementation of the control plane; such an application communicates through
TCP connections with the PCs of the cluster and it handles the functionalities con-
cerning the timestamp synchronization (as it will be described in section 3.2.5.3), the
definition of the different flows (including the number n of bytes to be captured for
each packet) and their association with a unique flowID and a given PC of the clus-
ter. Besides, it periodically reads the per-flow counters updated by µ-E 0x01 and
makes it available on-demand to the client application together with the associated
timestamp. Since this software takes advantage of the different libraries which have
already been developed, encryption and authentication functions can be easily inte-
grated in our control plane in order to protect the system from malicious users.

3.2.4 Cluster PCs side

The PC-side application is composed by two components. The first is a Linux kernel
module which implements a compatibility abstraction layer, while the second is a
user space application which consists of a front-end (user interface) and a back-end
which passes user’s configuration commands to the kernel module (via ioctl system
calls) and to the NP (via the above mentioned TCP/IP connection established on the
Fast Ethernet control interface).

3.2.4.1 Kernel space: the compatibility abstraction layer

This module acts as a compatibility layer between the NP-PC communication proto-
coland the standard packet processing chain of the Linux kernel on which the libpcap
API is based.

The module registers itself as a virtual “network layer” capable of processing
ethernet frames with the type field equal to 0x9000. The module also creates up to
216 virtual interface cards mon0 to mon65535 (one for each flowID), thus implement-
ing an abstraction layer toward the system. Every time a batch frame is received
by the kernel, it is steered to this layer which, in turn, extracts from its payload all
the packets together with their timestamp and flowID. For every extracted packet di-
gest, a new correctly timestamped packet is generated and transmitted on the virtual
interface indexed by flowID.

Hence, for example, a libpcap–based application configured to monitor the inter-
face mon5 (with the command tcpdump -i mon5) will see all (and only) those packets
with flowID 5, as if it were directly connected to the fiber (to which actually the NP
is connected).

Therefore, this layer makes it possible to instruct the NP to mark an arbitrary
microflow with a specific flowID, and to analyze this flow by simply connecting an
application, such as wireshark, to the corresponding virtual interface.

174

3.2 A Network Processor based architecture for multi gigabit traffic analysis

As experimentally shown in section 3.2.6, the computational overhead introduced
by this piece of code is negligible since it is implemented in a zero-copy fashion.

Probably, the most important advantage of this abstraction layer is the full com-
patibility with existent software: packets arrive at the kernel as they were captured
on the wire, making unnecessary any modification to applications and libraries.

3.2.4.2 User Space – the user interface

The user interface is made up of a back-end for:

• configuring the NP classifier via a TCP connection whose peer is the host PC
application;

• instructing the NP to capture the desired number n of bytes from every packet
(via the TCP connection);

• reading the association timestamp-UTC;

• retrieving per-flow counters;

• configuring the abstraction layer via ioctl system calls.

The front-end module simply implements a user-interface from which the user
can configure the entire system.

3.2.5 Timestamping
The timestamping operation consists of recording the arrival time of each packet.
The arrival time is intended as the time ta at which the first bit of the packet reaches
the network interface. Unfortunately, packet reception (the action of retrieving pack-
ets from the wire to the CPU, which is the first place where timestamping can be
performed) is a compound operation (made up of many stages): to derive the times-
tamping accuracy of the system, we need to accurately examine what actually hap-
pens whenever a packet arrives at the board.

The Gigabit Ethernet interfaces of ENP-2611 are controlled by a Sierra PM3386
and a PM3387 Gigabit MAC devices (see figure 3.19). Those devices forward re-
ceived frames to an FPGA bridge connected to the Media Switch Fabric (MSF) in-
terface of the IXP2400. The MSF operates in POS-PHY Level 3 (aka SPI-3, aka PL3)
mode and splits packets in fixed-sized chunks called mpackets (whose size is config-
urable as 64, 128 or 256 bytes). To avoid contention on the PM3386, in our application
one of the two interfaces connected to this chip is used for transmission, while the re-
maining one, together with the one connected to the PM3387 chip, is used for packet
capturing.

At start-up time, all the RXµ-E threads place themselves on a freelist (RX FREELIST),
thus announcing they are ready to handle a new mpacket. Each time the MSF re-
ceives an mpacket, it awakes the first thread in the list and delivers the data to it.
Then RX threads gather the set of incoming mpackets from MSF and merge them,
thus reassembling original packets.

175

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Figure 3.19: Hardware packet receiving chain.

3.2.5.1 Time Budget

When dealing with timestamp operation, the main concern is the jitter of the delay
each stage introduces (a fixed and known amount of delay between the real and mea-
sured time can be simply subtracted to the measure). In the following, we show that
the delay between the arrival time and the timestamp operation is almost constant
on the ENP-2611.

Both the PM3386 controller and the SPI-3 bridge forward incoming frames as
soon as a certain amount of bytes (hereafter we will call it the “forwarding thresh-
old”) is received. This threshold can be configured to 64, 128 or 256 bytes. Since the
minimum packet size on Ethernet is 64 bytes, in order to avoid timestamp jitter due
to different packet lengths, we set the threshold and the mpacket size to 64 bytes.

This way, the first thread in the RX FREELIST is awaken at time tx with a fixed
delay from the arrival time ta. The delay tx − ta consists of the sum of three latencies
corresponding to the three interfaces that data has to cross (see fig. 3.19):

1. the time to reach the “forwarding threshold” within the PM3386, given by d0 =
512bits/1Gbps = 0.512µs;

2. the time required by the PM3386 to transfer data across the second interface
toward SPI-3 bridge, given by d1 = (512bits/32bits)/104Mhz ∼= 0.154µs;

3. the time required by the SPI-3 to transfer data across the third interface, which
operates at the same speed as the second one, thus adding an equal delay d2 =
d1.

Therefore, provided there is an available thread ready to timestamp the packet as
soon as it arrives, the time lag tx − ta = d0 + d1 + d2 ∼= 0.820µs is fixed and known.

176

3.2 A Network Processor based architecture for multi gigabit traffic analysis

3.2.5.2 The Accuracy of Timestamps

We now have to prove that there is always such a thread. The operations performed
by a thread of the RX µ-E when a packet arrives are timestamping (i.e., reading a
timestamp counter and storing its value into an internal register), copying packet
data and timestamp into the DRAM and context switching.

The first two steps together are very fast and take about 80 clock cycles (cc) to
be executed. In the third step, the µ-E puts itself in an idle state until the mem-
ory executes the requested operations and switches to the first ready thread in the
RX FREELIST; when all the memory operations are completed, the thread is signaled
by the memory hardware itself and can restart its operation. Clearly, while the mem-
ory controller is executing the requested operations, the µ-E can be used to perform
other tasks by means of other threads.

The worst case occurs whenever all packets are 65 bytes long: in this case, we
have a 64 bytes long mpacket plus one extra 1 byte long mpacket. The total amount
of time it takes to process this packet is twice the time needed for one mpacket (i.e.
2× Tproc), while the interarrival time is slightly larger than the single-mpacket case:
408cc instead of 364cc.

As reported in the IXP2400 data sheet, the signaling delay to awake a RX thread
is constant and very small. Thus, by using Nth threads per port, we make sure that
the RX µ-E threads can receive and timestamp the first mpacket of a packet with a
fixed delay from the real arrival time if the following inequality holds:

Tproc ≤ 204cc× Nth (3.16)

Since Tproc depends on a very large number of factors (accesses in memory, num-
ber of threads, instantaneous conditions, etc.), it has been experimentally measured.
As shown in fig. 3.20, either for 4 and 8 threads it largely satisfies (3.16).

As for packet batch creation, both the amount of data taken from each packet
and the packet batch total size are configurable. Once the amount of data in the
packet batch reaches the configured size, it is sent to the TX µ-E. Moreover, a timeout
is provided to make sure that non-full packet batches are transmitted if no more
packets arrive.

Timestamp is provided by the use of 64-bit timestamp registers within the RX µ-
E. Such registers are increased by one every 16cc (we shall call it “NP-tick” or simply
“tick”). Then each packet is timestamped with a value given by tx − d0 − d1 − d2 =
tx − 492cc = tx − 31ticks.

In order to quantify the goodness of timestamp accuracy, it is worth reminding
that the most error sensitive application is traffic characterization; in this application
the measure that has to be very accurate is the inter-arrival time of packets. Since the
minimum inter-arrival time on a Gigabit Ethernet link is 0.68µs, the “tick” granular-
ity represents a very good maximum error of 4%.

If packets are concurrently captured from two interfaces, a timestamp error oc-
curs whenever two mpackets are sent to the SPI-3 chip by PM3386 and PM3387. An
upper bound of the timestamping error is obtained in the worst case which takes
place when two mpacket arrive exactly at the same time to the SPI-3. In this case one
of the two mpackets has to wait Emax = d1 ∼= 0.154µs before being timestamped.

177

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Figure 3.20: Histogram of measured Tproc. Inequality (3.16) is satisfied for 4 threads
(Tproc < 816cc) and 8 threads (Tproc < 1632cc).

Comparing this error to the minimum inter-arrival time, we obtain a maximum er-
ror of 22.6%, which is much larger than the 4% due to the clock granularity.

3.2.5.3 Timestamp synchronization

As above described, the timestamps included in the batch frames are expressed in
ticks (26ns) and represent the time offset of the packet arrival with respect to the in-
stant when the monitoring application has been loaded; such a time instant will be
referred to as UTC0. Despite its accuracy, such a time measure cannot be directly
converted into an absolute timestamp; therefore, measurements taken by two dif-
ferent monitoring probes cannot be correlated, because of the lack of an absolute
synchronization. However, the need to correlate measurements taken by different
probes is crucial for many network applications: for example, network monitoring
applications may require the knowledge of the delay experienced by packets be-
longing to a given flow while crossing a network. For this purpose, it is necessary
to deploy a probe at the network ingress and one at the egress, and to compare the
timestamps given by the two devices to the same packet. For such a purpose, we
provide our monitoring device with a mechanism to convert the timestamp in the
batch frame to an absolute timestamp. Such a mechanisms is based on the cooper-
ation between the PC hosting the NP board and the PC receiving the batch frames.
The XScale routine in charge of loading the monitoring software, immediately after
resetting the tick counter register, sends an interrupt to the host PC, by setting a bit of
a register belonging to the non-transparent PCI bridge which connects the NP board

178

3.2 A Network Processor based architecture for multi gigabit traffic analysis

Figure 3.21: Synchronization mechanism.

PCI bus to the host PC bus. The latency introduced by this operation is negligible.
The interrupt handler on the host PC, which is implemented as a Linux 2.6 kernel
module, records the timestamp associated to the interrupt directly from interrupt
context; such a timestamp is considered as the UTC0 associated to the probe and is
conveyed to the PC receiving the batch frames by means of a user level application.
Subsequently, such a value is passed, via an ioctl system call, to the kernel module
handling the batch frames, which, by combining it to the offsets conveyed by the
frames, is able to associate to each incoming fragment an absolute UTC timestamp.
In order to cope with the clock skew between the NP and the PCs, a mechanism to
periodically update such a timestamp has been designed. The whole mechanism is
illustrated in figure 3.21.

Our design provides the maximum flexibility for the synchronization of different
probes: since the reference UTC is measured with respect to the clock of a general
purpose PC, any available synchronization methods can be used, depending on the
precision which is required by the specific application. If an offset of a few millisec-
onds is acceptable, the synchronization of the probes can be achieved by using the
NTP protocol; on the other hand, if a very precise synchronization is needed, GPS
receivers can be connected to the PCs hosting the monitoring probes. Note that a
small timing error may be due to the latency associated with the interrupt handling
by the host PC. However, since such a system does not have to perform any data
path function, it is likely not heavily loaded and, therefore, if the interrupt is given
high priority, the delay associated with interrupt preemption will be in general very
small.

179

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

3.2.6 Packet Capturing Evaluation

3.2.6.1 Experimental setup

In the experimental testbed, the NP-based capturing device is connected to a high-
end personal computer equipped with two Intel Xeon 2.8GHz CPUs (with hyper
threading activated), 1 GByte of rambus RAM and a 3COM Gigabit Ethernet opti-
cal fiber network interface using the tg3 driver. The installed Operating System is
Ubuntu Linux 7.04 with a 2.6.18 vanilla kernel. Unfortunately, the tg3 driver, sim-
ilarly to the majority of the drivers for gigabit interfaces available for Linux, does
not support the polling working mode (NAPI). Nonetheless, the interrupt mitigation
mechanism supported in hardware by this 3COM interface proved to be sufficient to
avoid PC livelock.

In order to perform packet capturing, a standard tcpdump and libpcap distribution
is used. Data streams are generated by Spirent ADTECH AX4000 hardware packet
generator and analyzer [126].

3.2.6.2 Experimental runs

In the first experiment, a bulk traffic stream is generated and sent to the personal
computer either directly or through the NP. The main purpose of this experiment
is, on one hand, to evaluate the processing overhead introduced by the abstraction
layer and, on the other hand, to assess the benefits introduced by the packet batching
operation performed in the NP (due to the lower packet rate which means a lower
rate of calls to the driver function). The NP has been set up to mark all the traffic with
the flowID 3, thus making it available through the mon3 virtual network interface on
the receiving PC.

The stream is captured in both cases by using the tcpdump raw capturing features.
Hence, for the first experiment the command line is:

user@hostname# tcpdump -i eth4 -w file1

while for the NP-driven one the command line is:
user@hostname# tcpdump -i mon3 -w file2

The second experiment aims at showing the capabilities of the system in extract-
ing and processing a mouse flow in presence of an elephant one. Therefore two flows
are involved: the mouse flow, from IP host 100.3.3.3 to 10.3.3.3 with TCP source port
100 and destination port 3357, and the elephant flow with a different source port (3).
The first flow is generated at a rate of 50Kpps, while the second one is generated
at increasing packet rates. The compound flow is once again captured by the PC
alone and through the NP. The NP is configured to mark the mouse with flowID 4
(available through mon4 at the receiving PC). In both cases tcpdump is simply used
to decode and dump packets in a trace file (in a real context, this is the minimum
real-time packet processing). The issued command line is the following:

user@hostname# tcpdump -nttv -i eth4 -w file1 src host 10.3.3.3
and dst host 100.3.3.4 and src port 100 and dst port 3357

while, in the NP-driven experiment:
user@hostname# tcpdump -nttv -i mon4 -w file1.

180

3.2 A Network Processor based architecture for multi gigabit traffic analysis

Figure 3.22: (a): Packets rawly saved to trace file. (b): Packets captured from the
mouse flow.

In both experiments, packets are minimum sized (i.e. 64 bytes). Notice that this
is the worst case scenario for our system since every single byte of the incoming
packets is included in the batch frame; therefore there is no bandwidth reduction
between incoming and batch frame traffic and the only relief for the PC is given
by interrupt mitigation. However in realistic traffic scenario, where average packet
lengths are likely higher than 64 bytes, the bandwidth reduction represents a major
advantage for our system.

Fig. 3.22.a refers to the first experiment performed with CBR traffic and reports
the amount of packets captured by our system and by the PC alone. As shown in
figure, the NP-based system outperforms the PC alone, meaning that the benefit of
a lower number of calls to the driver is greater than the processing overhead intro-
duced by the abstraction layer. Fig. 3.22.b shows the full advantage obtained by
using the NP in the flow extraction. The totality of the mouse flow is captured by the
NP-based system while it shares the fate of the elephant flow when captured by the
PC alone. In this context, the PC shows all its architectural flaws in that it looses a
huge amount of packets, while the NP-based system performs this operation with
no loss.

3.2.7 Timestamp accuracy

We performed a broad experimental campaign in order to assess the capability of
our tool to provide precise timestamps with different amounts and characteristics of
traffic load; in particular, we focused on the precision of interarrival time measure-
ments, since the precision of UTC timestamps heavily depends on the performance

181

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

of synchronization protocols, which, in turn, is influenced by factors (propagation
delay, jitter, etc.) which are external to our system. Since, in this section, we focus
on timestamp accuracy, we ignore the packet loss issues (extensively discussed in
section 3.2.6) and computations are made on the available interarrival times only.
Unfortunately it was not possible to compare the performance of our system with
that of other NP-based solutions, since the source files of such applications are com-
monly not publicly available.

We point out that, unless explicitly mentioned, the generated traffic is always
composed by 64 bytes long packets; as already discussed, this constitutes the worst
case scenario for our system. Furthermore, except for the last experiments, we gen-
erated constant bit rate traffic; however, since we pushed our analysis up to very
high traffic rates (1200Kpps), such scenario can be considered as the worst case for
the system (like a non-stopping burst).

3.2.7.1 Testbed description

The experimental layout is the one previously described in section 3.2.6.1. In addi-
tion, to evaluate the accuracy of timestamps, we used as a primary benchmark the
timestamps provided by an Endace 4.5G2 DAG card, which can reach a time gran-
ularity of 20ns. Therefore, we connected the Network Processor or the optical NIC
of the PC to a port of an optical splitter. The DAG card was connected to the other
output port while the input signal was generated by the Spirent ADTECH AX4000.
This way, both measurement devices were loaded with exactly the same traffic.

Notice that the data structure used by the Linux kernel forces the timestamp gran-
ularity of both our tool and the PC to be 1µs. Therefore, if compatibility with existing
user space software has to be maintained, quantization errors are not avoidable.

We generated traffic flows at different rates and calculated the interarrival time
measurement errors by using the timestamps provided by the DAG card as refer-
ence; since such an error has typically zero mean, we considered its absolute value.
The results are illustrated in figure 3.23, where the distribution of the measurement
error is reported for different rates of the incoming traffic. The plots show that the
accuracy achieved by our system is significantly better than that of an ordinary PC:
while the measurements provided by the former are almost always within one mi-
crosecond from the actual values (a difference which can be ascribed to the coarser
granularity of the timestamp), those provided by the latter can differ for even 100 µs
with non negligible probability. In addition, while, for the measurements provided
by the PC larger error values emerge at higher traffic rates, the performance of our
tool is not significantly influenced by the speed of the incoming flow.

Figure 3.24 summarizes the performance achieved by both tools in terms of mean
value of the absolute measurement error. The results confirm that the performance
of our tool does not suffer from higher traffic rates and generally outclasses that of a
PC by at least one order of magnitude. In addition, the granularity of the timestamp
appears to be the main source of measurement error, since, as it appears from the
analysis, such an error is always smaller than 1µs and keeps almost constant despite
the significant increment of traffic rate. Such an analysis is also confirmed by the fact
that the best performance is achieved for a packet rate of 200000 packets per second,
when the interarrival time (5µs) is an exact multiple of the timestamp granularity.

182

3.2 A Network Processor based architecture for multi gigabit traffic analysis

Figure 3.23: Distributions of measurement errors of interarrival times: comparison
between our system and an ordinary PC.

Figure 3.24: Comparison between our system and an ordinary PC in terms of mean
value of the absolute measurement error.

183

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Figure 3.25: Mean absolute error of timestamps without interfering flows.

3.2.7.2 Finer grain performance analysis

In order to evaluate the best performance that can be achieved by our system, we
slightly modified the kernel module running in the back–end to retrieve the orig-
inal timestamps provided by the NP, thus reaching a granularity of 1 tick (26ns).
Furthermore, such a higher resolution allows to analyze the impact on the system
performance of the variation of some operating parameters, which are usually hid-
den by the coarser granularity of the timestamp. First, we considered a single traffic
flow with increasing bit rate, and evaluated the mean absolute error; the results are
shown in figure 3.25 and confirm that the system is able to handle high rate traffic
flows, while still preserving a good timestamp accuracy. The error, although slightly
growing with the packet rate, is always well below 0.3ms.

After that, we evaluated the effect of concurrent traffic flows on the timestamping
of packets belonging to a given flow. In particular, we first kept constant the packet
rate of the flow of interest (200Kpps) while gradually increasing that of the interfer-
ing traffic; subsequently, we generated a constant interfering flow (200Kpps) and a
flow of interest with increasing bit rates. Figure 3.26 shows the results of the experi-
ments as a function of the overall traffic rate: from the comparison between the two
graphs it appears that the accuracy is only marginally influenced by the composi-
tion of the incoming traffic; such a result is coherent with the timestamp being taken
before the classification of the packet.

In a further experiment, we evaluated the influence of incoming packet length
over the timestamp accuracy. We therefore generated traffic flows with the same
packet rate (i.e., 80Kpps), but with a different packet length. As a consequence, the
traffic flows are characterized by different bit rates; the results, reported in figure
3.27, show that the mean error rises very slowly with the packet length, as a plain
consequence of the increased bit rate. Indeed larger packets, composed by several
mpackets (see section 3.2.5), require the RX µ-E to perform a greater amount of work,
thus slightly affecting the timestamp accuracy.

Finally, we evaluated the timestamp accuracy in the case of incoming traffic with
variable interarrival time of packets. We generated traffic according to the Markov
Modulated Poisson Process (MMPP) [127, 128], a well known traffic model for ag-
gregate sources, widely adopted to characterize packetized multimedia communi-
cations. In this case, we evaluated the distribution of measurement error with two
kinds of traffic flows, one characterized by an average rate of 350Kpps, the other by

184

3.2 A Network Processor based architecture for multi gigabit traffic analysis

Figure 3.26: a) Timestamps with variable interfering flows; b) Timestamps with fixed
interfering flows.

Figure 3.27: Timestamps with variable packet length.

185

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Figure 3.28: Timestamps with MMPP traffic.

an average rate of 450Kpps; in both cases the average packet rate associated with
the higher speed state of the correspondent Markov chain is 800Kpps. The results
are reported in figure 3.28 and show that, even in this case, the measurement error
is well constrained below 1 microsecond with mean values of 60ns and 80ns, re-
spectively. Therefore, the accuracy of our system is preserved even in more realistic
traffic scenarios.

3.3 Towards smarter probes: in-network traffic captur-
ing and processing

As already discussed, analyzing and checking out the traffic flowing over a high ca-
pacity link is still a very challenging technological issue, due to the huge amount of
data stemming from such a process. Furthermore, current national and international
legislation is imposing stricter and stricter limits on the storage and utilization of po-
tentially privacy-sensitive data that may be generated from monitoring applications.
We argue that both of these problems can be effectively addressed by increasing and
extending the capabilities of traffic capturing devices beyond plain packet capturing
and flow metering. Therefore, we envision a new generation of smart probes that
support traffic pre-processing according to the needs of the specific application that
is expected to provide the final results of the monitoring activity. The benefits of such
an approach are two-fold: on one hand, in–network traffic filtering allows to discard
a huge amount of information which is not relevant at all to the selected application,
thus relaxing the performance requirements of the application itself. On the other
hand, traffic pre-processing can be used to hide personal information that may be
made available only to a user in possession of the required privileges upon verifi-
cation of a given condition. Optimized and effective packet processing algorithms,

186

3.3 Towards smarter probes: in-network traffic capturing and processing

as those we described in the previous chapter, are a very nice fit for this kind of
processing. Following such a general approach we propose a modular architecture
that allows application specific traffic pre-processing to be carried out in a scalable
and performance-effective way. Such an architecture interacts with the external net-
work by enforcing strict role-based policies, thus allowing selective and proportional
information disclosure; the architecture as it is can be easily integrated with a stan-
dard access control infrastructure. An example application is demonstrated in order
to prove the effectiveness of the proposal.

3.3.1 Introduction

3.3.1.1 Why smart probes?

State–of–the–Art approaches do not scale. Many currently adopted monitoring
applications (Snort [45] is just the simplest example) are built as a unique block,
which takes as input a stream of raw packets (a trace, which can be made up of
live traffic or traffic which has been previously captured by a probe) and returns
the desired output. Usually, such systems leverage the standard PCAP interface,
which provides a similar kind of access to stored and live data. Several examples
of such solutions have been proposed in the literature. Coralreef [129] provides an
API implementing two stacks to retrieve data from hetherogeneous sources: one of
the stacks is used to import traces from different kinds of links while the second
one enables working with flow records. The work [130], instead, proposes a large
scale measurement infrastructure which is more tailored for active and performance
measurements.

Nowadays, such a design paradigm shows several limitations. On one hand,
with the current fast growth of link capacities and traffic volumes [131], having a
full fledged monitoring application inspect every single packet on a multi–gigabit
link raises huge performance issues. Common general purpose hardware hardly
keeps the pace with the packet rates characterizing current core links, even when
minimal per–packet processing is required. Hardware-based implementations, in
turn, usually lack the flexibility and expressiveness which are required to implement
complex traffic analysis applications. Moreover, according to the current technolog-
ical trends, traffic speed is growing faster than processing power, so that having
the application monitor a complete traffic stream on a core link will be increasingly
problematic. Such a scaling problem surfaces, in particular, when dealing with dis-
tributed monitoring applications, which have to deal with data captured by multiple
vantage points scattered across the network. This kind of applications is likely to be-
come more and more popular, as distributed anomalies and cyberthreats (of which
botnets are a major example) require a detection/mitigation infrastructure which
correlates events and alerts from several probes, possibly belonging to different do-
mains.

Other monitoring applications address this issue by taking as an input pre–processed
reports formatted according to NetFlow [132] or IPFIX [133] protocols. Such reports
encompass summarized per–flow information (usually cumulative packets or bytes
counters, duration and TCP flags) which are usuful for a number of applications
(billing is a common example). IPFIX, in fact, offers a significant degree of flexibility

187

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

in letting the user define the data types it needs to convey.
Such an approach is nowadays very popular in the field of distributed moni-

toring: a scenario where several NetFlow probes report to a centralized collector
is common in many operational scenarios. However, despite achieving a significant
reduction over packet traces, the practice of exporting a standard information for ev-
ery flow as an input to the monitoring application still presents significant issues. On
one hand, collecting per flow data on a full operator network is likely to raise a huge
scalability problem, as the collector represents a serious performance bottleneck and
is likely to get congested: the rate of new flows entering the network is likely to be
one or two orders of magnitude lower than the packet rate but, in a large opera-
tor network, can easily rise to prohibitive figures. Indeed, much of the information
which is conveyed by per–flow records is of little or no interest to the application,
especially when it deals with detecting anomalies and security breaches: a famous
Van Jacobson quote reports that “...If we’re keeping per–flow state, we have a scaling prob-
lem, and we’ll be tracking millions of ants to track a few elephants”. In addition, per flow
information is, in many cases, not detailed enough for the application’s needs: as an
example, Snort requires scanning the packet payload for malware signatures, while
applications dealing with network path delays needs precise timestamps of certain
packets.

In many cases, performance problems have been addressed by implementing
some critical application primitives in hardware. While this solution is certainly ef-
fective in reaching the required throughputs, it significantly impacts on the flexibility
of the monitoring devices: once the desired functionalities have been committed to
the silicon, there is no way of updating them. DAG cards [134] are effective in cap-
turing packets at high–speed, but usually only provide limited on-board filtering
functionalities. Other probes export flow–data through NetFlow or IPFIX protocols;
such information is sometimes not enough for certain applications. Some devices
[135] use special purpose hardware in order to perform some specific monitoring
tasks on high–speed links. However, as previously mentioned, they are intended for
a specific task only and are not able to support a wide range of applications.

Privacy preservation is not an option. Another big issue that current network
monitoring practice needs to address is the compliancy with current legislation in
terms of privacy preservation. In particular, due to current legislation trends ([136]
effectively explains the constraints imposed by EU legislation), much of the informa-
tion which is retrieved from the captured traffic is considered privacy sensitive, and
its disclosure and storage is subject to strict rules. Such constraints, besides further
preventing the practice of trace based monitoring, reflect on almost all of the above
described approaches. Not only the packet traces, but a huge number of derived
metadata (including per–flow reports) are considered to contain privacy sensitive
information and therefore their export and storage is subject to very strict rules (if
not completely forbidden).

A classical approach to privacy–aware network monitoring has been to run spe-
cific anonymization tools over the packet traces or the metadata to be exported and
to hand them over to the legacy analyses, so as to have them work with “sanitized”
input. A broad range of such techniques has been proposed in the literature (see
[137] for a detailed survey), including blackmarking (complete removal of given

188

3.3 Towards smarter probes: in-network traffic capturing and processing

fields), pseudonymization (substitution of a given identifier with an anonymized
alias), timestamp approximation or prefix preserving anonymization (a technique
allowing to replace IP addresses with a pseudonym which preserve their common
prefix length relationships). Several tools have been published claiming to be able
to sanitize a packet trace in a user configurable manner. However, several studies
show that classic anonymization schemes may be easily reversed by skilled attack-
ers using statistical analysis techniques (see, for example [138] or [139]). A theoretical
study [140] showed that there is a clear trade–off between the information content
of a trace and its ability to preserve privacy: as a consequence, traces which are well
anonymized turn out to be almost useless for a monitoring application. In addition,
anonymizing the data before handing them over to the monitoring application in-
creases the burden of traffic capturing, so making the performance issues even more
serious.

Finally, particular care has to be taken in distributed monitoring scenarios, es-
pecially when dealing with multi–domain applications: in the latter case, indeed,
beside complying to the law, the application must ensure that no business confiden-
tial information is leaked to a possible competitor.

3.3.1.2 The analyze while capturing paradigm

As opposed to traditional approaches in monitoring application design, in this work
we propose to address both of the above illustrated major issues through in–network
traffic processing performed by smart probes. In fact, traditional probe devices are
usually designed with a strong focus on capturing performance but with little flex-
ibility in terms of packet processing and exporting. On the contrary, we argue that
the probe should be a flexible and programmable device that can filter and export
the information it handles in a way that is specifically “matched” to a certain moni-
toring application. Of course, this means that a modular and extensible probe design
is needed in order to accommodate different monitoring applications concurrently.
An application specific filtering module directly on the probe can select and export
the only information which is relevant to that particular application, thus enforcing
immediate data reduction.

Such basic principle of “processing while capturing” is beneficial to the overall
monitoring infrastructure in that it addresses at the same time the two main issues
which have been described. In particular, it allows to support:

• performance scalability through data reduction: information which is of no
interest to the application is discarded, thus aggressively reducing the amount
of data to be processed;

• selective data protection: personal information is hidden and is not allowed to
leave the probe, unless some particular condition is met that makes informa-
tion disclosure necessary and therefore legal.

As for the latter point, our approach effectively leverages the so-called “proportion-
ality principle”, which is common in privacy related legislation: an application is
allowed to receive only the data which is strictly necessary to its operation. On-
probe filtering, therefore, allows the data which are required by a given application

189

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

to be legally exported out: the privacy of the users is preserved as most of the regular
and legitimate traffic (which is of no interest to the applications) will never leave the
probe, thus preventing any possible leak of sensitive information.

A simple example of how these principles are implemented is that of a common
intrusion detection application: in that case the filtering module on the probe will
perform a fast scan of every packet, in order to separate legitimate traffic (the vast
majority), from suspicious flows, which will be sent to the actual application for
more detailed inspection. Of course, such a fast filtering activity requires proper
algorithmic, as it will be illustrated in subsection 3.3.5.

A smart probe, in addition, can export information in very compressed and anonymity-
preserving data structures, which allow to detect a certain class of events without
leaking information about the single users; sketches [141] and Bloom filters are good
candidates for this kind of solutions.

Such a general principle is embodied in a flexible monitoring probe architecture
that will be described in the next subsections. Such architecture allows to encompass
several instances of application–specific processing running in parallel in a scalable
and effective way. This is accomplished by means of several architectural choices:

• decoupling of control functions (access control, configuration etc.) from traffic
processing functions;

• distribution of the traffic processing workload among several (possibly hetero-
geneous) processing units;

• dynamic allocation of the computational resources;

• strict access–control mechanisms with role-purpose specifications.

Such a novel architecture has been adopted and deployed within the integrated pro-
totype built as a result of the FP7 European research project PRISM [142] (under
which this research activity has been carried out), where it was used as the base ar-
chitecture of the Front–End module [143]. The goal of such a research was to design a
framework allowing to deploy heterogeneous off–the–shelf monitoring applications
while respecting user privacy constraints.

The rest of the chapter is organized as follows. Section 2 describes the overall
probe architecture while subsection 3 and 4 deals more specifically with the data and
control planes respectively. Section 5 is devoted to advanced algorithmic for on–the–
probe traffic processing while subsection 6 reports a practical use case deployment
of the described probe architecture. Finally conclusions end–up the contribution.

3.3.2 The probe architecture at-a-glance
The probe design which embodies the overall previous discussion is represented in
Figure 3.29. The architecture reflects the idea of an advanced logical component that
is in charge of both capturing data at gigabit speed and performing a set of basic
operations on–the–fly in an efficient way in order to:

• isolate relevant flows out of the set of all traffic flows;

190

3.3 Towards smarter probes: in-network traffic capturing and processing

• extract relevant information from the observed traffic and eliminate irrelevant
information (data reduction);

• protect relevant information to force compliancy with end–users privacy re-
quirements.

Figure 3.29: Overall probe architecture

The device directly connected to the wire is the Capturing Unit (CU). Its main
functions are: capturing traffic, timestamping packets, classifying packets and send-
ing snapshots of the captured packet to multiple destinations (Processing Units). As
Figure 3.29 highlights, multiple Processing Units (PU) are supported. They are de-
ployed as commodity PCs or dedicated HW devices and they receive data from the
CU and are in charge of actually implementing the application-matched data pro-
cessing and protection (analyses). After their operations, PUs export results towards
the further stages of the monitoring applications. The overall system configuration
is controlled by the Control Plane Interface that issues commands to the Front-End
Data Plane Manager (DPM), which, in turn, communicates with the other compo-
nents. The DPM, in particular, enforces the received directives on the CU and the
PUs by instantiating commands to the Processing Unit Managers and the Captur-
ing Unit Manager, which constitute the control components of the traffic processing
blocks. Notice that the prototype implementation of the proposed architecture is
largely based upon the system that we describe in section 3.2. In particular, both the
CU and the abstraction layer of the PU are based on the implementation described
in the previous section.

191

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

3.3.3 Probe Data Plane

3.3.3.1 Capturing Unit

As already mentioned, this is the component which is in charge of capturing the
monitored traffic and demultiplexing it among the analyses performing application–
specific processing. In particular, packets can be dropped or selected for further pro-
cessing, in which case a portion of them will be forwarded to one or multiple PUs,
according to the rule table. As it is in charge of handling a potentially large data flow,
it is likely to be implemented as a hardware accelerated device. Depending on the
monitoring application requirements, this unit may extract header values by strip-
ping only the necessary information from packets (in the simplest case this might be
even just packet truncation after the layer 3 header), thus alleviating the workload
on the upstream PUs. In order to deliver the captured traffic to the proper pro-
cessing block, an internal interconnecting network is used. A simple and effective
implementation consists of an Ethernet network where batch frames are transmitted,
consisting of snapshots of captured traffic data plus some extra meta-data informa-
tion.

3.3.3.2 Processing Units

As far as the data plane concerns, processing units are physical devices that receive
data from the capturing unit through standard interfaces (standard libpcap inter-
faces), process them according to the analysis function(s) installed on them, and fi-
nally deliver encrypted data to the external world. PUs are usually software–based
devices, where different kinds of processing are dynamically allocated. However, in
case processing intensive analyses are required (e.g. deep packet inspection), they
can use special purpose hardware. Such particular features are taken into account
by the control plane when resource allocation has to be performed.

A typical PU has to implement several functionalities, which are described in the
following.

Abstraction layer. In order to provide a standard interface between the propri-
etary protocol implemented by the CU exporting process and the analysis functions,
a proper abstraction layer is installed on the PUs. Such an abstraction layer restores
the compatibility between the proprietary batch frame format and the standard libp-
cap capturing interface. The abstraction is typically implemented by leveraging the
concept of virtual capturing interface: all of the packets belonging to the same group
(matching the same set of flow definitions) can be received by the analysis func-
tion through a virtual network interface, just as if the traffic were captured by the
PU itself. The major advantage of this approach is that it totally hides the underly-
ing batch framing process and allows compatibility to existing software. Therefore,
brand new applications that reside on PUs can be designed and implemented in a
completely independent manner, as they will just need to rely on libpcap.

Analysis functions. Analysis functions are applications developed at the user space
that i) read (possibly truncated) packets from the virtual monitoring interfaces made

192

3.3 Towards smarter probes: in-network traffic capturing and processing

available by the abstraction layer, ii) process data according to their specific func-
tion and iii) export their outcome to the further processing stages of the monitoring
application.

The development of analyses actually implements the overall design philosophy
of further reducing data directly at the probe (the first application-agnostic stage of
reduction occurs at the capturing unit level as packets are truncated to a customiz-
able size) and delivering to the following stages the minimum necessary information
only. Although the functional interface of such analyses is quite simple, they are sub-
ject to strict performance requirements, as they must process packets in real time and
by keeping a very limited amount of state.

As it will be elaborated upon in subsection 3.3.5, the use of probabilistic data
structures, such as Bloom filters, that keep state in a compressed and quickly accessi-
ble way, is envisioned at this stage of the application.

Besides processing traffic, the PUs are also directly responsible for conveying
it out of the probe to the further stages. The destinations of such reports (as well
as some formatting options) are communicated to the analyses through the control
plane. In principle, any analysis function may use its own protocol, even if the use
of standard formatting (as the IPFIX protocol, that was the choice for the PRISM
project) is recommended.

3.3.3.3 Data Plane Performance

The probe data plane is subject to very strict real-time constraints, as a large portion
of the traffic flowing over the monitored link has to be conveyed through it (po-
tentially, as some flows may need to be duplicated to several PUs, the traffic rate
might be even higher than that on the link). In order to prove that such a com-
ponent can be actually implemented and meet such performance requirements, we
report here the experimental results as obtained for the PRISM implementation of
the smart probe. As for an evaluation of the basic low–level capabilities (timestamp-
ing, capturing etc.), please refer to the exstensive evaluation reported in section 3.2
(as already stated, the implementation of the performance–critical components relies
on the system we described in that section).

3.3.4 Probe Control Plane
The high level scheme of the probe control plane is depicted in Figure 3.29. An
analysis function is dynamically set up on the probe upon request from an external
entity (be it the monitoring application itself or a further processing stage). All kind
of requests are received through the Control Plane Interface (CPI), which acts as the
border module between the probe itself and the rest of the system. Typical requests
being served at the CPI and properly mapped and delivered to the Front–End in-
clude setting up, tearing down, stopping and restoring an analysis, as well as updating
its parameters (output format, report destination, etc.). Naturally, strict authentica-
tion and authorization mechanisms have to be enforced within this block, ranging
from standard X.509 identity and privilege management infrastructure to more in-
volved schemes, such as the purpose-role based mechanisms used within the PRISM
project [144].

193

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Once a request has been authorized, it is taken over by the Data Plane Manager
(DPM). The DPM is the central component in charge of managing the capturing unit
and the available processing units. Its main purpose is to arrange and launch the
analyses on the various PUs (by communicating to the Processing Unit Manager in-
stalled on all PUs), and to configure the CU (through the Capturing Unit Manager) to
capture and forward them the portions of traffic that will be the subject of the anal-
yses. Since DPM has a perfect knowledge of the status of all the processing units,
before setting up new analyses it first checks for resource availability (admission con-
trol) and may enforce load balancing in order to optimize resource usage.

Any new request is accompanied by a tuple (source and destinations networks,
ports, protocol) that specifies the traffic flow subject of the inspection. Such infor-
mation is used by DPM to dynamically configure the CU, in order to classify and
forward the traffic to the selected PU. It is worth noticing that, since the traffic clas-
sification rules may overlap (i.e.: two distinct analyses running on top of the same
PU may have a network address range in common), set theory results applied to
collections of ranges have been efficiently used to minimize the amount of traffic
to be forwarded from the CU to the various PUs. Indeed, DPM relies on a generic
multidimensional range algorithm to expand and reduce the classification rules in
term of generic tuples, as well as to arrange them to fit with the longest prefix match
algorithm implemented in the CU.

3.3.5 On–The–Probe Advanced Processing Techniques
The development of a probe that plays an active role in the overall monitoring pro-
cess increases the burden on such component, and therefore requires the adoption
of a novel design paradigm where methodologies and functionalities are strongly
aware of the available hardware. Indeed, in order to accomplish operations like cap-
turing, classification, anomaly detection, flow discrimination and isolation, etc., at
wire speed, a detailed knowledge of the hardware capabilities/bottlenecks, as well
as the fine grained analysis of the available time budget for each micro–operation
involved are required.

The attempt to come up with performance effective solutions to be integrated
into the front–end stage must then pursue the investigation of stateless and memory
saving approaches with constant look–up time in that they tightly reflect into faster
operations since they can take advantage of layered caches available in today’s off–
the–shelf multicore processors.

In particular, the use of Counting Bloom Filters for statistical data processing
turns out to be extremely flexible although the fixed size of bins may cause memory
inefficiency. A significant improvement can be obtained by allowing dynamic size
of bins, compression, and multi–layering, as reported in section 2.5. These modifica-
tions appear applicable to the data processing performed by the probe.

For example, let us consider a set of rules used to classify flows at the front-end:
a CBF can easily be used to represent the set. In order to verify whether a packet
obeys one of the rules of the set, a simple lookup operation consists of evaluating k
hash functions and comparing the values in all resulting bins to zero. If the result
is positive, the packet satisfies the rule with small and predictable error probability,
and can be exported for further processing.

194

3.4 Design and Development of an OpenFlow Compliant Smart Gigabit Switch

Several papers have been published that describe in detail the application of such
technique to specific monitoring applications. Among them, [145] and [146] have
been devised within the PRISM research project.

3.3.6 Actual Monitoring Applications: A Practical Use Case
In order to better illustrate the above discussed features, we describe here a possible
use case scenario where the proposed architecture allows to meet high–performance
demands while being privacy preserving at the same time.

Let us assume the smart probe is used to protect a company network from ex-
ternal attacks by monitoring its gigabit ingress/egress link. In particular, let us sup-
pose that two monitoring applications are used: a scan detection application that flags
anomalous behaviors, and a TCP SYN flooding detection application. Both applica-
tions would raise significant performance issues if they had to process the whole
traffic flowing through the link. In order to avoid that, special pre–filtering func-
tions are installed on the Capturing Unit: the scan detection application will receive
only the headers of the traffic entering the network, while the TCP SYN flooding
detector will be fed with the headers of both incoming and outgoing TCP segments.
The classified traffic is shipped by the CU onto batch frames and forwarded to sep-
arate PUs; at this stage, the data rate turns out to be significantly reduced. With a
standard trimodal packet length distribution, a quick back–of–the envelope calcula-
tion shows that each processing unit needs to process less than 20 MBps of traffic,
which is affordable with current off–the–shelf hardware.

The amount of flows to be processed, however, has not been reduced and keeping
per–flow state is still unfeasible, due to its excessive memory footprint. To this end,
PU processing should be carried out in a quick and stateless manner, which can be
achieved by using probabilistic data structures. In particular, the method proposed
in [147] provides a good heuristic for TCP SYN flooding detection while the one
proposed in [146] can be adopted for fast stateless scan detection. Such a second–
stage filtering operated at the PUs, is used to select suspicious traffic, which can be
legitimately conveyed to an external collector for further analysis (as the volume
of such data is likely to be very low, stateful and more complex analyses can be
carried out), and discard legitimate traffic, which is likely to contain privacy sensitive
information and will never leave the probe.

3.4 Design and Development of an OpenFlow Compli-
ant Smart Gigabit Switch

OpenFlow [148] has recently been proposed as a switching paradigm that allows
a network or data center operator to arbitrarily control routing without being con-
strained by the existing protocols. The applications of such mechanism are manifold:
a data center operator can decide to move an instance of a server (running on a vir-
tual machine) from one physical node to another without changing its IP address
and without even interrupting the current tcp connection. This can be done in or-
der to ensure reliability (in case of a node fault) or to save energy by switching off a

195

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

portion of the network in a light load condition. Other application of Openflow in-
clude network virtualization and experimentation of new routing protocol. Indeed,
despite its original goal was to allow researchers to evaluate new network architec-
tures, Openflow is receiving more and more interest also in the industrial fields, and
big equipment manufacturers such as NEC and CISCO are designing and deploying
Openflow switches. The big advantage of the OpenFlow paradigm is the separation
between the data plane (whose functionality is fixed and which can be optimized for
high performance) and the routing intelligence, which is left for the user to imple-
ment through a well defined standard interface. In particular, the user is free to make
a-priori switching decisions based on a flexible definition of flow or to take decisions
on demand when a packet belonging to an unknown flow is detected. However, de-
spite it offers a wide flexibility for intelligently tweaking network routing, OpenFlow
seems to be slightly limiting with respect to other classes of network functionalities
which may equally benefit from the smart switches. An example thereof are net-
work monitoring applications, which may use an OpenFlow switch as a demulti-
plexer in order to dispatch packets and flows to an array of software based sensors.
Another useful appliance would be an application-aware switch, which may demul-
tiplex packets based on a the presence of a certain pattern in their payload (in turn,
revealing a particular network based application). Such use cases cannot currently
be handled by the standard OpenFlow protocol, which limits the definition of a flow
to a 10-tuple of fields extracted from layer 2-4 headers. For these reasons, we pro-
pose a novel switching architecture which, unlike OpenFlow, is based on regular
expressions.

A regular expression, also referred to as regex or regexp, provides a concise and
flexible means for matching strings of text, such as particular characters, words, or
patterns of characters. A regular expression is written in a formal language that
can be interpreted by a regular expression processor, a program that either serves
as a parser generator or examines text and identifies parts that match the provided
specification. Chapter 2 reports a more thorough discussion about pattern matching
and finite automata.

In our case, instead of defining a flow in terms of a tuple (with possibly unde-
fined values), we define it in terms of a pattern described as a regular expression.
Such a different approach allows to define a flow in a very flexible way: each field of
the packet can be “wildcarded” or assigned a set of alternative values (by OR–ing to-
gether several expressions) and, if needed, the definition may also describe patterns
observed in the payload. Let us for example assume that all RTP traffic needs to be
forwarded through a given port: as RTP port numbers are notoriously dynamically
assigned, that cannot be achieved by just observing the OpenFlow 10-tuple. How-
ever it is easy to specify in terms of regular expressions the patterns in the payload
that reveal the presence of RTP streams. In this section we will describe in more
details two specific use cases of the architecture we propose: a first one describes
how our architecture can be used to implement a full-fledged standard-compliant
OpenFlow switch (that implies that OpenFlow is somewhat a subset of the cases our
proposal is able to handle). We illustrate a prototype of a node implementing our ar-
chitecture in hardware over a NetFPGA [149] board. In this case, we also show that
our solution provides a relevant performance enhancement over the current state–
of–the–art implementation of an OpenFlow switch over the same architecture, in

196

3.4 Design and Development of an OpenFlow Compliant Smart Gigabit Switch

that a higher number of flow definition rules can be supported, while still reaching
line-rate speed. In a second scenario we describe how, by leveraging common statis-
tical properties of the packet distribution, our architecture can be used to implement
a traffic load balancer.

3.4.1 Related Works

In the last years, a large number of solutions have been proposed in order to lead
researchers and developers to evolve networks, and so accelerate the deployment of
improvements, and create a marketplace for ideas. OpenFlow protocol is the most
promising one. It was born as an abstraction of Ethane’s datapath [150] but it guar-
antees more flexibility thanks to its modular approach. Moreover, we believe that it
could be possible to obtain more flexibility defining a flow tuple in terms of a pat-
tern described as a regex. Naus et al. [151] propose a possible implementation of the
OpenFlow datapath on NetFPGA. The whole NetFPGA SRAM is used for the rules
and the output queues are placed in the DRAM. This system allows to create up to
64000 exact match rules and up to 32 wildcard rules while our system guarantee up
to 100000 wildcard rules using half-SRAM. In this way, it is possible to use the other
portion of SRAM for the output queues avoiding a loss a performance due to the
bigger latency of DRAM with respect to the SRAM memory. If we move the out-
put queues in DRAM and we use the whole SRAM for our data structure we could
reach approximately up to 200000 rules considering a linear growth of the memory
consumption with respect to the number of rules. Greenberg et al. [152] propose
a clean slate approach to network control and management called 4D. In the 4D
architecture, the routers and switches simply forward packets at the behest of the
decision plane, and collect measurement data to aid the decision plane in control-
ling the network. However, 4D does not provide fine-grained, per-flow control over
the network. Molinero-Fernandez and McKeown [153] propose a technique called
TCP switching in which each application flow triggers its own end-to-end circuit
creation across a circuit switched core. Based on IP switching, TCP switching incor-
porates modified circuit switches that use existing IP routing protocols to establish
circuits. Routing occurs hop by hop, and circuit maintenance uses soft state, that is,
it is removed through an inactivity timeout. OpenFlow is more powerful because
delegates decisions to a controller and the decisions are made once per–flow, not
hop–by–hop. In addition, with our architecture we could also implement this sys-
tem by using regexes without significant changes in the source code. Finally, Click
[154] is a software architecture for building flexible and configurable routers. Us-
ing the NetFPGA hardware we are able to support the full line-rate with respect the
Click software implementation that achieves a maximum loss-free forwarding rate
of 333,000 64-byte packets per second.

3.4.2 NetFPGA board

NetFPGA [149] is a low-cost platform, developed by the High Performance Net-
working Group at Stanford University, primarily designed as a tool for teaching net-
working hardware and router design. It is a standard PCI card that plugs into a

197

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

standard PC. The card contains a Field Programmable Gate Array (FPGA) by Xilinx
(Virtex-II pro) which is programmed with user-defined logic and has a clock of 125
MHz. The PCI interface connecting the host PC to the NetFPGA is managed by a
small Xilinx Spartan II FPGA. Four 1GigE ports, 4.5MB of Static Ram (2 banks) and
64MB of DDR2 Dynamic RAM are also on board in the card. A reference package
containing verilog source code for the FPGA, C code for the host PC and java code
for the graphical interface can be downloaded from the NetFPGA website in order
to run NetFPGA with basic networking functions such as Network Interface Card
(NIC), PW-OSPF IPv4 Router and Layer 2 switch. The basic target for this board is
the adoption of an FPGA as a networking accelerator in order to take advantage of
the host PC flexibility to implement the control plane of the project. In this scenario,
for example, the user could implement the forwarding plane of an IPv4 router in
FPGA and the control plane (with its routing algorithm) in the host PC connected to
the card via PCI. Thanks to its modularity, NetFPGA is a very useful system to test
new ideas for next generation networks.

3.4.3 Pattern Matching Engine as a Gigabit Switch

Switches may operate at one or more OSI layers, including physical, data link, net-
work, or transport (i.e., end-to-end). A device that operates simultaneously at more
than one of these layers is known as a multilayer switch. The process of IP packet
forwarding depending on arbitrary metadata (i.e., one or more OSI layers) contained
in the packets themselves is logically (and practically) equivalent to perform pattern
matching. The search in the forwarding table can therefore be obtained by simply
applying pattern matching algorithms upon the associated fields of the IP packets
as in classification problems [155]. However, our scheme supports forwarding rules
defined over arbitrary metadata. As pattern matching is a widely addressed topic
in literature, the above observation opens a wide horizon of theoretical and practi-
cal solutions to address the problem of lookup and classification. In recent years,
due to the increasing interest focused on deep packet inspection, the use of regular
expressions (regexes) has become more and more popular because of their high ex-
pressiveness in describing sets of strings [44]. Typically, finite automata (FAs) are
employed to implement regular expression search, but for the current string sets
they need a memory amount which turns out to be too large for practical imple-
mentation. Many recent works have proposed improvements to address this issue.
They are adopted by well known IDS tools, such as Snort [45] and Bro [46], and in
firewalls and devices by different vendors such as Cisco[47]. However, Finite Au-
tomata suffer from either speed issues (if they are non deterministic) or size ones (if,
on the contrary, they allow deterministic lookups). For these reasons, many works
have been recently presented with the goal of memory reduction for DFAs, by ex-
ploiting the intrinsic redundancy in regular expression sets [48, 49, 50, 51]. We have
chosen for our scheme the δFA (which has been already described in section 2.1) for
its interesting performance characteristics. In particular, in addition to maintaining
a data structure which is much more compact that the standard automaton, it needs
a lower number of memory accesses than most compressed automata.

198

3.4 Design and Development of an OpenFlow Compliant Smart Gigabit Switch

3.4.4 The Smart Switch
Our aim is to develop an OpenFlow compliant smart architecture on NetFPGA that
could be also used in systems where load–balancing is needed. Our implementa-
tion can hold more than 100000 flow entries and it is capable of running at line-rate
across the four NetFPGA ports. We stored the δFA structure in half-SRAM of NetF-
PGA, leaving the rest of SRAM for the output queues. In this way, with respect to
the original implementation of OpenFlow on NetFPGA [151], we prevented from
risks of queue overflow (i.e., putting the output queue in BRAM, the fastest on-chip
memory usable in FPGA design) and, at the same time, we tried to guarantee the line
rate avoiding to put the output queues in DRAM. While the hardware takes care of
finding the longest prefix match in the δFA structure, the software level manages this
data structure, by inserting and removing the rules in the forwarding table. When
a packet does not match any rules it is sent via PCI to the PC-Host of the NetFPGA
that will take care to send it to the Controller through an SSL connection. Moreover,
if no OpenFlow compatibility is requested, a local running software on the PC-Host
could provide a simple command line interface for the user in order to manage the
forwarding rules.

3.4.4.1 Software Plane

As above mentioned, the software level of the Smart Switch takes care of creating and
managing the δFA data structures as well as storing them into the NetFPGA SRAM.
We extended the OpenFlow reference software implementation in order to map the
rules created by the OpenFlow protocol in a δFA data structure and to store it in the
NetFPGA SRAM. Any time a new change occurs in the OpenFlow rules table, a new
recalculation of the δFA data structure is required and so is the consequent write
operation in the NetFPGA SRAM. If OpenFlow compatibility is not requested, the
user could write a simple text file to specify the rules and the associated output port.
A software, then, is in charge of creating from the rules the associated standard DFA
and convert it to the δFA structure in order to store it in the NetFPGA SRAM.

3.4.4.2 Hardware Plane

The core module of the switch is shown in figure 3.30. The first operation performed
on the incoming packet is parsing the fields of the packet in order to compose the
string which will be fed into the δFA state machine. The “Metadata Exctractor”
block extracts the right fields (i.e.: in the implemented prototype the OpenFlow 10-
tuple). The obtained string, then, is used for querying the cache (see subsection
3.4.4.2). If a miss is obtained, the ”Pattern Matching Engine” starts walking through
the δFA data structure stored in SRAM using one character at a time. The result
(i.e., the output port associated with the flow) is then written in the Cache. If the
system is configured to work in an OpenFlow version, when a packet does not match
any rules is sent to the PC-Host where the OpenFlow software is running. Then,
thanks to the Controller, a new entry related to that flow will be inserted in the flow
table. Otherwise, if no OpenFlow compatibility is requested, the hardware plane
will send the packet without any rules associated with a default port. As already

199

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

Figure 3.30: Core module of the Smart Switch.

mentioned in subsection 3.4.4.1, the software plane is in charge of updating the δFA
data structure in SRAM. To avoid loss of data during the rules update in hardware,
while the software plane is writing in SRAM only the Cache is enabled.

Caching An ordinary way to speed up packet forwarding is caching flows. Pack-
ets belonging to the same flow are likely to exhibit good temporal locality, and the
result of the search in the forwarding table can be cached and used for the forthcom-
ing packets. Therefore, it is useful to introduce a flow–cache, where a new entry is
added when the first packet of a new flow enters the system. In this case, the switch
performs a lookup in the δFA as mentioned in subsection 3.4.4.2 and stores the re-
sult in the flow cache. Otherwise, for each packet belonging to a known flow, the
forwarding result is already in the cached data and the amount of memory accesses
is reduced. Since the number of flows can be very high, a hash table is an efficient
way to implement such a cache. To avoid collisions, we implemented a Perfect Hash
Function (PHF) through double hashing. The basic idea to create a PHF is using a
two-level hashing scheme with universal hashing at each level. In the first level, the
n keys are hashed into m slots by using a hash function h carefully selected from a
family of universal hash functions. To handle collisions in a slot j, a small secondary
hash table S j with an associated hash function h j is used. By carefully choosing the
hash functions h j, we can guarantee that there are no collisions at the secondary
level.

However, we need to let the size m j of hash table S j be the square of the number
n j of keys hashing to slot j. While having such a quadratic dependence of m j on
n j may seem likely to cause the overall storage requirements to be excessive, it has

200

3.4 Design and Development of an OpenFlow Compliant Smart Gigabit Switch

Figure 3.31: A row in the BRAM implementation of the Cache.

been shown that by properly choosing the first level hash function, the expected total
amount of space used is still O(n). In our current implementation, such a structure
is kept in two different blocks of BRAM memory. In order to provide on–the–fly
reconfigurability, we also inserted the field “revision”, as shown in fig. 3.31. Every
time an update in SRAM is done, the global variable revision is incremented. This
way, by comparing the global revision value to the one associated with a given flow,
it is possible to check whether the entry needs to be updated or not.

3.4.5 Load Balancing
In this subsection we describe how our architecture can be used to implement a
traffic load balancer by leveraging common statistical properties of the packet distri-
bution. The analysis of many forwarding tables of real devices reveals that the most
significant 16 bits of rules are almost always completely specified and do not present
wildcards: in other words, the prefix lengths are greater than 16 [156]. This result is
not surprising because of supernetting; however it points out that a “smart” switch
(it is worth reminding that we indicate with smart switch a networking device that
works not only at layer 2) must be able to manage a large number of packets with
destination IP addresses that broadly differ in their less significant bits while they do
not differ significantly in the most significant ones. For this reason, we focused on
the design of a load balancer by just exploiting this heuristic and by using the wild-
cards in the most significant bits only. In a first step, we performed some analysis on
real traffic traces in order to verify if such idea provides a uniform distribution of the
less significant bits of the IP destination address. To this aim, we read traffic from
a 9GB long pcap trace collected from a local network and we evaluate the statistical
properties in order to verify if this idea could be used.

Figures 3.32 and 3.33 show the histogram of destination IP addresses with the 6
and 8 less significant bits fixed, respectively. These first results show a good unifor-
mity and allows us to test our system using the wildcards in the most significant bits.
The experimental results will be shown in subsection 3.4.7.1. Notice that, being the
regex aligned on bytes, if the number of fixed bit used is not multiple of a byte we
can just OR-ing two different regexes in order to obtain the desired granularity.

3.4.6 Device Utilization
We compared the complexity of our Smart Switch working as an OpenFlow compli-
ant device to the original OpenFlow running on NetFPGA as implemented in [151].

201

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 0 10 20 30 40 50 60 70

N
um

be
r

of
 o

cc
ur

re
nc

ie
s

histo.txt

Figure 3.32: Histogram of distribution of destination IP addresses with the 6 less
significant bits fixed.

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300

N
um

be
r

of
 o

cc
ur

re
nc

ie
s

histo.txt

Figure 3.33: Histogram of distribution of destination IP addresses with the 8 less
significant bits fixed.

202

3.4 Design and Development of an OpenFlow Compliant Smart Gigabit Switch

The build results for the two designs are shown in table 3.3. These results were ob-
tained by using Xilinx’s implementation tools from ISE10.1.03. We report the values
of logic utilization and logic distribution considered in percentage. These results
suggest that in terms of logic, our implementation is better than the original. This
is a rather satisfactory result, even considering that our solution can handle a larger
number of rules. The core processing of the smart switch resides in SRAM, where all
the δFA structure is stored. This way, the FPGA chip only takes care of i) extracting
the right fields from the packets ii) walks the automata, and, at the end, iii) stores
the obtained result in Cache. In order to implement a very good cache with a perfect
hash function (as described in 3.4.4.2), we needed a large amount of BRAM. For this
reason our percentage equals that of the original solution (that employs 8 parallel
TCAMs using Xilinx SRL16e).

Resource Logic Utilization (%) Logic Distribution (%)
Slice Flip Flop 4 input LUTs Occupied Slices Total of 4 inputs LUTs RAMB16s

Smart Switch 32 42 66 49 65
OpenFlow on NetFPGA 47 75 91 80 65

Table 3.3: Comparison in resource utilization.

Load Trace Total length Total # Interface 1 Interface 2 Interface 3 Interface 4
Balancing (MB) of pkts (Kp) Mbytes pkts (Kp) Mbytes pkts (Kp) Mbytes pkts (Kp) Mbytes pkts (Kp)

Our Trace 1 22.17 36.02 8.1 10.38 3.01 5.71 2.52 6.39 8.52 13.54
Solution Trace 2 9041.98 15471.47 2945.68 4515.77 1851.51 3255.43 1667.36 3362 2577.41 4338.25

Hash Trace 1 22.17 36.02 2.79 5.85 5.81 9.43 3.27 6.45 10.3 14.28
Trace 2 9041.98 15471.47 2071.72 3850.88 2473.51 4180.01 1925.17 3395.57 2571.56 4044.99

Table 3.4: Load balancing feature.

3.4.7 Experimental Results

3.4.7.1 Load Balancing

As motivated in subsection 3.4.5, we hereafter describe a set of experiments where
our architecture is used for load balancing purposes. We used TCPreplay to repro-
duce two different real traffic traces collected from a local network. Tab. 3.4 shows
the results on the number of packets (as well as their volume in MB) sent for each
physical port of the NetFPGA board, using rules with the 24 most significant bytes
specified. We compared the results of our solution to those that can be obtained by
means of a common load balancer based on a hash function (i.e., we used the one
in the std library of the C++). Our solution works, approximately, as a hash-based
solution and does not require any particular implementation.

Despite the traces that we used are affected by address locality (indeed, they are
not taken from core links) the obtained results are encouraging. In this sense, we
tested the load balancer in a worst case scenario: indeed, we expect that its use in
a core network context (where addresses locality does not occur) would reflect in
much higher performance.

203

3. NETWORK MONITORING AND TESTING ARCHITECTURES ON HYBRID
PLATFORMS

3.4.7.2 Throughput

In this sets of experiments we evaluated the throughput of the smart switch. We
carried out several tests by using a Spirent AX 4000 hardware based traffic genera-
tor. Such a device is able to completely saturate a Gigabit link with minimum sized
packets, thus recreating the worst case scenario for a network device performing
packet–by–packet processing. For this reason, we actually performed all tests with
minimum sized packets. We inserted static rules that covers all the possibilities be-
cause we were not interested in the PCI throughput (i.e., a packet that does not match
any rules is sent to the PC-Host via PCI) and we registered the processing time of
our architecture. As the performance of our smart switch is strictly dependent not
only on the packet rate, but also on the number of flows, which, in turn, reflects the
speed-up introduced by the cache, we used the API generator in order to produce a
high number of flows. In particular, the AX 4000 generator can inject packets whose
addresses are randomly selected within user defined ranges, thus generating traffic
where different flows are randomly interleaved. We point out that this scenario is
probably more challenging than that of real traffic, as in the latter packets from the
same flows are close to each other and the caching mechanism provides a significant
speed up. We increased the generation rate until the link was completely saturated.
As illustrated in figure 3.34 our switch is able to process all of the packets with neg-
ligible losses.

Figure 3.34: Throughput of the smart switch with growing rates of the traffic of
interest.

204

Chapter 4

High performance packet
processing on general purpose
parallel platforms

General purpose processors provide the most suitable architecture in terms of flexi-
bility and usability for building network monitoring systems. However, due to their
performance limitations, commodity CPUs have always been deemed not to be able
to keep the pace with incoming traffic on high speed links. In particular, it has often
been claimed that the growth rate of the CPU clock would be slower than that of the
link capacity and, in any case, limited by physical factors. Despite that, the recent
evolution of general purpose hardware towards an increasing degree of parallelism
may change such a commonplace and make generic CPU apt to high–speed mon-
itoring again. In particular, commodity CPUs are providing an increasing number
of cores and networking hardware is adapting to this trend by explicitly support-
ing concurrent access. New forecasts claim that the overall processing power of the
cores in a CPU will grow again according to Moore’s law. Although this trend opens
a wholly new space of opportunities for the evolution of high performance network
software, several challenges emerge. Most of the current packet processing soft-
ware is still designed in a single–core perspective. Very often, even if concurrency
is formally supported, this is ensured by means of mutexes and locking. While such
mechanisms do guarantee correctness, they are not fit for high speed parallel pro-
cessing and prevent the software from effectively scaling. In this chapter we intend
to propose some new architectures that would allow network monitoring and test-
ing applications to benefit from parallel hardware in a way that is as transparent
as possible for the application writer. This is mainly done by hiding within our ar-
chitecture lockless solutions for efficient handling concurrency and data sharing. In
particular, in section 4.1 we sketch the architecture of a traffic generator which can
produce synthetic traffic at very high rates by leveraging parallel hardware, while
still retaining an extensible and modular architecture for supporting arbitrary traffic

205

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

models. In section 4.2 we describe a novel packet capturing engine that is able to
leverage the full potential of hardware parallelism while allowing the application
developer to choose the degree of parallelism of the user–space software. In section
4.3, instead, we propose a complete framework for composing modular monitoring
applications, named Blockmon, which provides the user with several mechanism for
easily exploiting processor parallelism. Such a system is based around the block ab-
straction (a block being an independent and self–contained processing functionality)
and a message passing paradigm. Blockmon allows the user to define a monitoring
application as a composition of blocks and to easily reuse a base of highly optimized
thread–safe code.

4.1 Multi–Gigabit Packet Capturing With Multi–Core
Commodity Hardware

As already discussed in 3.1, reliable tools that can generate a realistic and verifiable
traffic load are needed in order to discover weaknesses and faults in the network
infrastructure before they become a cause of major damages, and to assess the ca-
pability of the equipment to keep working correctly even in the worst possible con-
dition. On one hand, flexibility is needed in order to be able to mimic very specific
traffic patterns, while on the other hand an ever increasing level of performance is re-
quired. Indeed, as the overall amount of the traffic carried by the internet is growing
exponentially, the capacities of the links deployed on production networks is rapidly
increasing (10 Gigabits are becoming more and more common). Therefore, a reliable
testing tool needs to be able to generate an ever–growing amount of traffic. In spite
of that, high performance traffic generation is a surprisingly understudied topic in
the research community.

In many cases, the task of generating traffic to assess the performance of proto-
types is delegated to hardware commercial devices. In order to reproduce different
traffic models, such generators usually either provide a well bounded set of possi-
ble models (as in the Spirent AX 4000) or reproduce real traffic traces captured over
the network (like Napatech). Both approaches show severe limitations: in the former
there is an evident lack of flexibility, as the models are implemented in hardware and
therefore there is no way of introducing new features. The latter approach, however,
despite being more flexible, still has several limitations: first, relevant traffic traces
are treated by the law as personal data and are hardly available for the purpose of
testing (besides, storing such traces is officially forbidden). In addition, a real traffic
trace is usually not suitable when there is the need of reproducing particular traffic
patterns (e.g. the worst case scenario) which are not common in real traffic.

As opposed to the limited flexibility of hardware based generators, a broad range
of software based generators are available, which usually allow a very easy config-
uration of the generated traffic stream (often with graphical interfaces) and are able
to support a wide range of protocols. However, those generators usually provide
relatively low performance: most of them are able to fill only a fraction of a 1 Gb
link. The currently available software tools, in addition, were mostly designed to
run on single core commodity machines and are not able to make the most of the

206

4.1 Multi–Gigabit Packet Capturing With Multi–Core Commodity Hardware

latest commodity hardware.
Indeed, the evolution of commodity hardware is pushing parallelism forward

as the key factor that can allow software to attain hardware-class performance while
still retaining its advantages. On one side, commodity CPUs are providing more and
more cores (the next-generation Intel Xeon E 7500 CPUs will soon make 10 cores pro-
cessors a commodity product), with a complex cache hierarchy which makes aware
data placement crucial to good performance. On the other side, server NICs are
adapting to these new trends by increasing themselves their level of parallelism.
While traditional 1Gbps NICs (such as the very common Intel pro 1000 cards) ex-
changed data with the CPU through a single ring of shared memory buffers, mod-
ern 10Gbps cards (such as those based on the Intel 82599 controller) support mul-
tiple queues: multiple cores can therefore receive and transmit packets in parallel.
In particular, incoming packets can be demultiplexed across CPUs based on a hash
function (the so-called RSS technology) or on the MAC address (the VMD-q tech-
nology, designed for servers hosting multiple virtual machines). The Linux kernel
has recently begun to support these new technologies (the 2.6.32 kernel is already
multiqueue–aware).

In this section we propose a novel architecture for packet generation, which ef-
fectively leverages NIC and CPU parallelism in order to combine the flexibility of
the software based generators with hardware–class performance. In particular, our
system is modular and allows a user to plug in new traffic models by writing a very
limited amount of code; the massively parallel nature of the underlying system is
completely hidden to the model developer and handled by the framework. The abil-
ity of effectively leveraging parallel processors guarantees that our architecture will
keep scaling with the newer generations of CPUs, thus being able to attain higher
and higher rates, the bottleneck of the single processor being eliminated. Multi-core
aware design and implementation allow our generator to produce as much as 13 mil-
lion packets per second on a commodity server, thus almost reaching wire-rate on a
10Gb link. In addition, differently from most of the solutions which need modified
device drivers, it achieves such performance with vanilla drivers.

4.1.1 State–of–the–Art in software–based packet generation

One of the most crucial performance show-stoppers in packet generation is the ca-
pacity of the socket which is used for sending packets down to the network interface.
Therefore, we will briefly point outs the limitations of the state–the–art solutions.

Packet transmission sockets. Most of the current software based generators use
the PF PACKET socket, which comes with the standard Linux distribution and also
supports a memory-mapping mode that allows to increase performance. However,
such a socket has been designed in a single–core perspective and shows some limi-
tations with respect to the modern architectures.

By accurately delving into its source code, we found several bottlenecks that we
will describe in the following. The most evident weakness of PF PACKET is that it
does not allow to select a specific hardware queue for transmission when used on
top of multi-queue NICs; this results in thread serialization when multiple threads

207

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

send packets on the same device (no matter if they share the same socket or not) and
it clashes with the base purpose of queue parallelism. In addition to this, PF PACKET
is based on a per-packet system call, like most of the classic I/O mechanisms. Such a
dated design represents a remarkable overhead. Although the cost of the system–call
can be amortized by means of batch–transmission (recent kernels introduce sendmmsg),
such a system–call is hardly useful for a traffic generator, as there is no way to specify
the inter–departure times for packets in the batch.

Another bottleneck of PF PACKET is represented by the copy from user function,
commonly used to transfer the packet payload to the kernel, and whose overhead
is well-known to be higher than that of a normal memcpy performed to a memory-
mapped region. However, this limitation can be worked around by using the re-
cently introduced memory mapped version of the socket. Furthermore, packets
transmitted by this socket are not directly conveyed to the NIC device driver but
go through a series of mechanisms which brings several additional overheads. In
particular, packets are also sent to registered sniffers, and therefore toward other
open sockets. Since there is no way for a PF PACKET socket to be used exclusively for
transmission, this results in a severe performance penalty, especially in a multi–core
scenario, where several sockets are in-use for parallel transmission (i.e. one socket
per thread). Furthermore, when packet transmission is performed, the Linux traffic
control (TC) also comes into play. This, in turn, involves an additional overhead even
if no TC egress class is specified for the network device. This forces the packet trans-
mission to be performed asynchronously by a different context, impacting adversely
on the precision of the transmission time.

Recently, different solutions for improving the efficiency of Linux networking
I/O have been proposed. Such solutions do provide good performance and are usu-
ally able of saturating a link with minimum sized packets. However, their scope is
essentially different from that of our work, as they do not come with an integrated
framework for synthetic traffic generation and are based on heavily patched drivers.

In [157], the authors present Packetshader, an extremely well performing soft-
ware router, which is built around GPU acceleration of computation intensive and
memory intensive functionalities (such as address lookup). Also, it relies on a heav-
ily modified driver which introduces several optimizations, such as using a reduced
version of the socket buffer structure and preallocating huge buffers to avoid per–
packet memory allocations.

Netmap [158], a BSD based project, integrates in the same interface a number of
modified drivers mapping the NIC transmit and receive buffers directly into user
space. Deri recently released a heavily patched driver to be integrated into the well
known PF RING architecture [159], which allows to reach wire speed both in genera-
tion and in transmission, when simple test programs are used. However, as reported
in [160], integration of such a system with a non multicore–aware traffic generator
brings a significant performance decrease (the maximum packet rate being about 6
millions).

Software based traffic generators. Several open-source tools for traffic generation
on commodity PCs have been proposed over the years, most of them designed for
the Linux Operating System. KUTE [161] (an evolution of the former UDPgen) is an
UDP traffic generator which is designed to achieve high performance over Gigabit-

208

4.1 Multi–Gigabit Packet Capturing With Multi–Core Commodity Hardware

Ethernet. It is based on a Linux kernel module that operates directly on the network
device driver bypassing the Linux kernel networking subsystem. However its per-
formance is reported to be low and the project has not been supported for some
years. RUDE [162] is able to instantiate simultaneous patterns of traffic, but it does
not provide any explicit support for extensible interfaces and is not suitable to work
at high rates, especially with small frames, as shown in [15].

MGEN provides both a command line and a GUI for user-friendly traffic gener-
ation in user-space. It runs on different Operating Systems such as FreeBSD, Linux,
NetBSD, Solaris and Windows but its accuracy is limited by the system timers it is
based on (e.g.: in the Linux kernel on PC-platforms, the timer resolution used by
MGEN is only 10ms [162]). The Internet Traffic Generator (ITG) [163, 164] aims at
reproducing TCP and UDP traffic and replicate appropriate stochastic processes for
inter–departure time and packet size. It is based on several distinct processes that
are connected through Inter Process Communication and can actually support paral-
lel generation. It is able to achieve a performance level comparable to that of RUDE
and MGEN but provides more traffic patterns and runs also under WindowsTM. A
version thereof [165] has been proposed for distributed measurements, but the au-
thors reports its generated traffic to be below 650 Mb/s. Brute [15] is probably the
best–performing software based traffic generator among the currently available ones
and has an extensible modular architecture. However, as the other competitors, its
design does not take parallelism into account and, therefore, it cannot scale properly
on multi–core platforms. In particular, we measured its peak rate to be around one
million packets per second. Ostinato [166] is a very recent traffic generator, which
enables very flexible definition of the traffic flows via a graphical interface. However,
its performance is reported to be quite poor when it comes to generating high traffic
rates [167]. As already mentioned, [160] shows that, even when the packet trans-
mission bottleneck is removed by using a properly modified driver, the design of
Ostinato (which is not multi–core aware) limits the overall obtainable performance.
Pktgen [168] is a software based traffic generator that runs within the Linux kernel
directly, thus avoiding the overhead of communicating with a user space application.
However, such a design choice limits its flexibility, as the range of traffic patterns it
can generate is fixed and quite limited.

[169] gives an interesting insight about the level of performance and accuracy
software based packet generators can reach. In particular, it compares MGEN, ITG
and RUDE and shows that they cannot comply with the requested packet rate even
at reasonably low speeds (well below 1Gbps). The paper also gives an interesting
insight about how the OS scheduling interferes with packet generation and suggests
polling as a way of improving both accuracy and performance (in fact, this is the so-
lution we use in our architecture). [170] investigates further the correlation between
OS scheduling and traffic generation accuracy.

Our approach. Our approach, whose cornerstone is the integrated co-design of
kernel–space and user–space components, shows several significant contributions.
In particular, with respect to the latest generation sockets:

• it adds a modular architecture which allows to transparently leverage paral-
lelism for generating arbitrary traffic models. This is not trivial because, as

209

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

reported, a non–aware design of the user space portion can cause a huge per-
formance loss even with highly efficient sockets;

• it allows to attain high rates with non modified drivers, thus being able to cover
a much broader range of hardware platforms.

With respect to user–space only traffic generators, instead, our design allows to at-
tain much better performance, while still retaining a total flexibility with respect to
the traffic models that can be generated. In particular, we propose an open architec-
ture that users can extend to fit their needs.

4.1.2 The generator architecture
Our modular architecture is made up of several components. First of all, a set of par-
allel traffic transmitters is in charge of actually sending the packets to the NIC. Such
transmitters are implemented as a novel socket named PF DIRECT, along with an ac-
tive context implemented as kernel–space thread. The context is in charge of either
managing a specific device, or a hardware queue (for devices supporting them – no-
tice that most of modern 10G NICs are equipped with hardware queues). PF DIRECT
sockets are fed with data to send by a set of traffic generation engines, which rep-
resent the user space threads that generate the global traffic streams out of a set of
independent models. From a certain perspective, an engine is nothing but a discrete
event simulator, which keeps ordered and updates the events generated by the traf-
fic models; however, in order for the transmitters not to run out of data, the engine
has real time requirements.

The traffic models are plug-ins that generate an ordered sequence of packets; they
can set at will both the inter–departure times and the packet payloads, thus leaving
the maximum freedom for implementing new models. In order for the system to
avoid any data contention (which would impact on the performance), the described
entities are associated into independent groups (user–space threads): each engine
has a separate set of models to handle and a separate set of transmitters to feed. No-
tice that models served by the same engine are guaranteed to be strictly ordered with
respect to the inter–departure times of packets (unless multiple hardware queues are
used by the same engine, which may involve occasional reordering). Instead, mod-
els associated with different engines are independent and their synchronization re-
lies on a common timer only. This architectural constraint is required to avoid the
high cost of handling a shared resource among multiple cores. However, we point
out that this is perfectly acceptable: as a use case, an engine could be serving a set
of models which create an attack pattern, while a parallel one could be in charge of
simulating a background traffic. Our architecture leaves a high degree of freedom in
choosing different configurations, which can be specified as XML files.

4.1.2.1 Traffic Transmitters: PF DIRECT

As already discussed, the Linux kernel places several bottlenecks on the path be-
tween the user space application and the NICs. In order to avoid this limitation
we developed a novel socket, named PF DIRECT, which allows efficient and scalable
packet transmission.

210

4.1 Multi–Gigabit Packet Capturing With Multi–Core Commodity Hardware

Model Model

Engine

Model Model

Engine

Model Model

Engine

HW queue HW queue HW queue HW queue

PF_DIRECT PF_DIRECT PF_DIRECT PF_DIRECT

SK_buff ring SK_buff ring SK_buff ring SK_buff ring

Ethernet Interface

Figure 4.1: Traffic generator architecture

The novel PF DIRECT socket. The internal architecture of our socket is depicted in
Figure 4.1 and is made up of the following components:

• a memory–mapped queue for payload and meta–data;

• a pool of pre–allocated socket buffers;

• a direct interface to a hardware queue.

We point out that a PF DIRECT socket is bound to a network device or to a spe-
cific hardware queue and, being asynchronous, it has its own thread of execution
in charge of transmitting packets. In addition to this, it is supposed to perform ac-
tive waits in order to precisely reproduce the inter–departure times generated by the
models. The SPSC (Single Producer Single Consumer) queue is the communication
channel between the application and the socket. The queue consists of a memory–
mapped area and two indices, specifying the last read position (which is written by
the engine context and read by the socket context) and last written position (which,
conversely, is read by the engine and written by the kernel context). Such a simple
implementation gives a two-fold advantage: on one hand it avoids the performance
cost of a system call, on the other it provides a wait–free mechanism for data shar-
ing. The queue is used to convey both the packet payload (which is generated by
the models) and some associated meta-data: packet length and, most importantly,
transmission time.

Notice that the timing of the whole system is based on absolute timestamp-
counters (TSC) available as a 64 bits register in modern CPU. TSC provides a number
of advantages: on one hand, reading the value of the TSC register is much quicker
(a few cpu cycles) than any other call/mechanism for reading the current time; be-
sides, working with absolute time–points allows an easier and flexible dispatching
of packets across multiple cores, which can follow a precise ordering of transmission

211

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

without requiring inter-core communications. On the other, absolute time–points
optionally leaves to the socket the possibility to recover from a late transmission by
anticipating the following one, which would not be possible if the inter–arrival pol-
icy were specified. However, for multiple cores to work with absolute times, a com-
mon source of clock is required. Most server–class Xeon processors, for example,
support the INVARIANT TSC capability, which guarantees the timestamp counters
on the different cores to be consistent. In case such feature is not available, an initial
calibration procedure can be used to compute per–core offsets: in particular we can
have all of the cores actively polling for a given atomic variable, then immediately
read their own timestamp counter. Of course this may involve a small calibration
error and we plan to devise a correction method based on multiple subsequent mea-
surements as a future work.

The second component of the socket is a ring of pre–allocated socket buffers
(sk buff). While [157] reports allocation and initialization of the sk buff structure
to be one of the main bottlenecks in the Linux networking subsystem, using such
a structure is mandatory in order to work with vanilla device drivers. Therefore,
PF DIRECT allocates a pool of such structures at initialization time and cycles through
them at run time: in particular, the payload and part of its metadata are copied from
the shared queue into a socket buffer of the pool (at a negligible cost). The usage
count of such a socket buffer is then forcibly incremented before the transmission, so
that it is not deallocated by the device driver once transmitted.

The ring of socket buffers is required to amortize the latency of the clean-up rou-
tine: commonly it is used in drivers to free the socket buffers, while, in the case of
PF DIRECT, it just notifies that such a buffer is ready to be reused. The last component
of the PF DIRECT socket is the transmission routine, a direct interface to the device
driver: it allows to skip the traffic control machinery that, as already pointed out,
has a negative impact on the precision of the inter–departures time of packets.

4.1.2.2 Traffic Engines

The traffic engines are completely user–space threads of execution whose main func-
tion is generating an ordered stream of packets from a model set and dispatching
them across a set of PF DIRECT sockets (packet transmitters). For this reasons each
engine keeps the models ordered in a heap according to the scheduled transmission
time; they continuously extracts the first model from such a heap (i.e. the one with
the closest transmission time) ans push its associated packet into the queue of one
of the transmitters. The selection of most appropriate transmitter can be made ac-
cording to a number of different criteria; we recall here that the packet transmitter
perform active waiting until the intended transmission time for the packet is reached.
The implemented criteria are:

• round robin: this policy provides good load balancing in terms of number of
packets and is very simple;

• affinity: as the transmitters are synchronized and transmission is based on an
absolute time–point, the packets generated from the models should be trans-
mitted in order (i.e. in the order they are popped from the heap). However, if

212

4.1 Multi–Gigabit Packet Capturing With Multi–Core Commodity Hardware

transmission times are close to each other and packets are assigned to different
transmitters, minor timing errors can result in packet reordering. If a traffic
model can by no means tolerate reordering, it can specify an affinity value, so
that all of its associated packets are assigned to the same transmitter and strict
ordering is enforced.

As above mentioned, in this preliminary prototype we only implemented these two
policies: the implementation and evaluation of more involved schemes are left to
future work.

4.1.2.3 Traffic Models

The traffic models are the components which are in charge of defining the traffic
flows generated. Models are in fact plug-ins conforming to a simple interface and
can be easily added by the user through a factory pattern implemented in C++. The
interface is defined as an abstract base class. Such a base class provides three es-
sential protected methods to the derived classes (i.e. the actual models): one for ac-
cessing a buffer where the data to be transmitted is stored, one for setting the packet
length, and another one for defining the inter–departure time of the packet. For the
former, notice that defining a new packet involves no data allocation: the model just
needs to overwrite the fields that change on a packet by packet basis. As for the
latter, the choice of having a model work in terms of relative inter–departure times
is intended to provide the maximum degree of abstraction to the model developer;
conversion to an absolute time–point expressed in clock cycles is automatically per-
formed by the framework. In order to define a new model, a developer has to imple-
ment two simple methods: one intended for configuration of the model’s internals
(e.g. a Constant Bit Rate – CBR – model needs to be provided a rate value) and called
at start-up time, one called to schedule the transmission of a new packet when the
previous one has been dispatched to a transmitter. We point out that our simple in-
terface allows to reproduce even complex traffic model (we are currently working on
a TCP emulator that should mimic two state machines on a network path). However,
due to its performance penalty, closed loop generation is not supported.

As the packet–by–packet update method is on the fast data path, it is up to the
developer to make it as quick and efficient as possible: a slow method can result in
the transmitter queues to become empty and, in turn, in the generated traffic stream
to have huge gaps and bursts (if the recovery algorithm is enabled). If a model needs
an unavoidable degree of complexity, it is a good configuration choice to segregate
it on a specific engine, so that it can have dedicated resources and cannot interfere
with the rest of the traffic.

4.1.3 Experimental results
In order to assess both the precision and the performance of our traffic generator, we
carried out a number of tests by using different traffic analysis tools. Our genera-
tor always ran on a server–class machine, whose cost is below 2000$, which can be
reasonably considered to be a commodity platform. Such a machine comes with a 6
cores Intel X5650 Xeon (2.66 Ghz clock, 12Mb cache), 12 GB of DDR3 RAM, and an

213

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

Intel E10G42BT NIC, with the 82599 controller on board. In order to test our system
with the maximum degree of parallelism, we kept Intel Hyperthreading enabled,
thus carrying out the experiments with 12 virtual cores. The server runs Linux with
the latest 3.0.1 kernel and the ixgbe 3.4.24 NICs driver.

In order to analyze the traffic produced by our generator, we used both commod-
ity and special purpose hardware. A first set of tests is performed with the Spirent
AX4000 hardware based protocol analyzer, which provides high resolution packet
timestamping but, unfortunately, is not equipped with a 10Gb interface, thus limit-
ing the maximum traffic rate to 1Gbps. We used it in order to obtain a very reliable
characterization of the inter–arrival times of our generated traffic at relatively low
rates (under 1 Mpkts/sec). As for 10Gb measurements, we had to rely on a software
solution running on a server which is identical to the one we used for generation.
We measured the overall rate of the generated traffic by means of PFQ, a Linux ker-
nel module designed for packet capture on multi-core architectures whose details
will be described in section 4.2. We captured the traffic generated by our system on a
separate host (its hardware configuration being identical to the one of the generator);
we also configured PFQ in order to timestamp the packet as soon as it was captured,
in order to achieve the best resolution available on a software platform. Overall, the
performance evaluation here carried out will be further expanded in future works.
In particular we plan to perform a more detailed investigation of the timing preci-
sion of our generator and to develop further its calibration mechanisms. In addition,
the generator will be compared to a broader number of other generators on the same
platform.

4.1.3.1 Up to 1 Gb/s rates

The first set of tests aims at assessing the precision of the traffic generator in terms of
packet inter–departure times and packet rates produced by CBR traffic models. We
point out that in this subsection, unless it is explicitly remarked, we always used a
single generation engine and a single hardware queue; also, generated packets are al-
ways 64 bytes long. Figure 4.2 shows the histogram of the packet inter–arrival times
of CBR traffic at 100 Kpkt/s rate with a clear mode at 10 µs that, indeed, represents
the constant inter–departure times of packet at that rate: in fact 99% of the samples
lay in a range of 0.4 microseconds from the expected value. Figure 4.3, instead, is
obtained by increasing every 10 seconds the generated packet rate, starting from 100
Kpkt/s up to line rate. The picture shows that the measured packet rate corresponds
almost perfectly to the selected values for transmission; in addition, no significant
rate fluctuation is reported, proving the high stability of the traffic generation pro-
cess.

Figure 4.4 and 4.5 represent the histogram of inter–arrival times of two Poisson
processes, with average rate of 100 Kpkt/s and 1 Mpkt/s respectively. The expo-
nential behavior is clear in both cases (values of Figure 4.4 are plotted in linear scale
while those of Figure 4.5 are reported in log scale) with values of rate consistent to
those selected in generation. Only with small inter–departure times (under one mi-
crosecond) does the distribution in 4.5 show some spikes. This is most likely due to
the quantized latency of the in–kernel polling cycle: indeed, this involves retrieving
the timestamp value, which involves a non–negligible amount of clock cycles, thus

214

4.1 Multi–Gigabit Packet Capturing With Multi–Core Commodity Hardware

0 20 40 60 80 100

Interarrival Time (microseconds)

0

0.2

0.4

0.6

0.8

1

F
re
q
u
e
n
c
y

Figure 4.2: CBR traffic – Rate: 100 kp-
kt/s.

0 10 20 30 40 50

Time (seconds)

200000

400000

600000

800000

1x106

1.2x106

1.4x106

T
ra
ffi
c
 R
a
te
 (
p
k
t/
s
)

Figure 4.3: CBR traffic – Increasing
rates

0 20 40 60 80 100

Interarrival Time (microseconds)

0

0.05

0.1

0.15

0.2

F
re
q
u
e
n
c
y

Generated Traffic

Analytic

Figure 4.4: Possion process – Rate:
100 Kpkt/s.

0 2 4 6 8 10

Interarrival Time (microseconds)

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

F
re
q
u
e
n
c
y

Generated Traffic

Analytic

Figure 4.5: Poisson process – Rate: 1
Mpkt/s.

leading to a discretized duration of the polling operation. The same phenomenon
can be noticed in Figure 4.7.

Figure 4.6 reports the histogram of inter–arrival times of packets generated ac-
cording to a Poisson process at 100 Kpkt/s rate by varying the number of hardware
queues used in packet transmission. The histograms so obtained do not exhibit sig-
nificant differences (they actually are almost perfectly overlapped), thus proving that
the statistical properties of the traffic model are not affected by the number of active
transmitters. This is an important result, as it shows that reordering of packets yield
by the same model (which is theoretically possible when more than one hardware
queue is used) is unlikely and does not affect the generator accuracy significantly.

Finally, to validate the overall architecture when multiplexing multiple traffic

215

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

0 20 40 60 80 100 120

Interarrival Time (microseconds)

0

0.05

0.1

0.15

0.2

0.25

0.3

F
re
q
u
e
n
c
y

1 HW queue

2 HW queues

4 HW queues

Figure 4.6: Poisson processes generated with different number of HW queues (trans-
mitters)

models, we compose together three independent Poisson processes with rates of 1
Kpkt/s, 4 Kpkt/s and 14 Kpkt/s respectively on the same generation engine. As well
known from traffic theory, the resulting process must be again a Poisson process.
Figure 4.7 clearly proves that the histogram of inter–arrival times is exponential (a
straight line in log scale).

0 50 100 150 200 250 300 350

Interarrival Time (microseconds)

0.00001

0.0001

0.001

0.01

F
re
q
u
e
n
c
y

Generated Traffic

Analytic

Figure 4.7: Composition of three
Poisson processes

0 0.5 1 1.5 2

Interarrival Time (microseconds)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

F
re
q
u
e
n
c
y

Generated Traffic

Analytic

Figure 4.8: Poisson process – Rate: 4
Mpkt/s.

216

4.1 Multi–Gigabit Packet Capturing With Multi–Core Commodity Hardware

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2x106

4x106

6x106

8x106

1x107

1.2x107

1.4x107

G
e
n
e
ra
te
d
 T
ra
ffi
c
 R
a
te
 (
p
k
t/
s
)

Generated Traffic

Theoretical Limit

Figure 4.9: Traffic packet rate vs.
packet size

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

0

2x109

4x109

6x109

8x109

1x1010

G
e
n
e
ra
te
d
 T
ra
ffi
c
 R
a
te
 (
b
p
s
)

Generated Traffic

Theoretical Limit

Figure 4.10: Traffic bitrate vs. packet
size

4.1.3.2 Towards 10 Gb/s rates

In this subsection we report the results of several tests carried out at traffic genera-
tion rates higher than 1 Gbps. Figure 4.8 reports the histogram of inter–arrival times
of a Poisson process with 4 Mpkt/s. rate (in this case we used multiple hardware
queues to generate the distribution). As previously mentioned, in these cases mea-
surements are taken by means of a software application (pfq-isto) running on top
of PFQ: although we cannot make definitive statements on time precision, the figure
shows a good exponential behavior. Notice that, unlike analogous tests carried out
with lower rates, for the system to produce high packet rate multiple engines must
be used on different cores. In the specific case shown in Figure 4.8 we used two en-
gines each of them, in turn, feeding two transmitters (for an overall number of four
transmitters involved in generating traffic). As a result of the last set of experiments,
Figures 4.9 and 4.10 show the cumulative amount of traffic that could be generated
with our platform. To this end, we used a simple constant bit rate model and we
adopted a configuration with 1 traffic engine and 4 packet transmitters (PF DIRECT
sockets); notice that in this case a single engine is enough to feed the transmitter due
to the extreme simplicity of the CBR model, which does not involve random num-
ber computations. Figure 4.9 reports the maximum cumulative packet rate that we
can produce for different packet sizes. As we can see from the graph, our generator
hits the line rate with 128 Bytes long packets and stays very close to it for minimum
size (64 bytes) packets: indeed, it generates up to 13 million packets per second. The
correspondent values in terms of bit rates are reported, instead, in Figure 4.10.

217

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

4.2 Flexible High Performance Traffic Generation on Com-
modity Multi–Core Platforms

In the previous section we showed how hardware parallelism can be highly benefi-
cial for building fast and scalable traffic generators. Unfortunately, current network
monitoring and security software is not yet able to completely leverage the potential
which is brought on by the hardware evolution: even if progress is actually being
made (multiple queue support has been included in the latest releases of the Linux
kernel), much of current monitoring software has been designed in the pre–multicore
era. The aim of our work is to make the full power of parallel CPUs available to both
traditional and natively parallel application, through efficient and configurable in–
kernel packet flow aggregation. Therefore, we designed a novel packet capturing
engine, named PFQ, that allows to parallelize the packet capturing process in the
kernel and, at the same time, to split and balance the captured packets across a user–
defined set of capturing sockets. This way, the application writer can arbitrarily
choose its level of parallelism with PFQ, hiding within the kernel the full parallelism
of the system. In particular, an application can either use a single capturing socket
(as in the case of legacy applications) or have PFQ balance incoming frames across a
configurable set of collection points (sockets) or even use a completely parallel setup,
where packets follow parallel paths from the device driver up to the application. In
all of those cases, PFQ yields better performance than its competitors, while burning
a lower amount of CPU cycles. Differently from many existing works for accelerat-
ing software packet processing, PFQ does not require driver modification (although
a minimal few–lines patch in the driver can further improve performance). Scalabil-
ity can be achieved through batch processing (which, in turn, leverages the hierarchi-
cal cache structure of modern CPUs) and through lockless techniques, which allow
multiple threads to update the same state with no locking and minimal overhead.
In particular, we designed a novel double buffer multi–producer single–consumer
lockless queue which allows high scalability. PFQ is open–source software released
under GPL license and can be freely downloaded at [171]. The package consists of a
Linux kernel module and of a C++ user–space library.

4.2.1 State–of–the–Art in packet capturing
Several solutions have been proposed to speed up the packet capturing capabilities
of commodity PCs. nCap [172] uses memory mapping to directly expose to the ap-
plication the memory areas where the NIC copies incoming frames. Also PF RING
[173] uses a memory mapped ring to export packets to user space processes: such a
ring can be filled by a regular sniffer (thus using the standard linux capturing mech-
anisms) or by specially modified drivers, which skip the default kernel processing
chain. Those can be both drivers with minimal patches (aware drivers) or heavily
modified ones. Memory mapping has also been adopted by the well-known PCAP
capturing libraries [174]. In the past years, the capturing stack of Free-BSD has been
enhanced by a double–buffer mechanism, where packets are written into a memory–
mapped buffer which is first filled within the kernel and then switched over to the
application for reading. This is different from PF RING, where applications and ker-

218

4.2 Flexible High Performance Traffic Generation on Commodity Multi–Core
Platforms

nel work on the same ring concurrently. Although our proposed architecture also
adopts a double buffer solution, it brings it further by introducing other optimiza-
tions (like batch processing) and by explicitly tailoring it to a multi–core scenario.
Many works (most of them on software based routers) have obtained good results in
accelerating software packet processing by extensively patching the device drivers.
TNAPI [175] effectively addressed the topic, but the proposed solution is based on a
heavily customized driver, which detaches parallel polling threads instead of relying
on NAPI. Besides, its heavy use of kernel level polling leads to high CPU utilization.
The authors in [176] focus on how to distribute work across cores in order to build
high performance software routers. Although the results are certainly interesting, it
relies on the Click modular router [154] and its modified polling driver to deliver
good performance. Again (like in 4.2), our work is somewhat orthogonal to those
based on modified drivers, as PFQ is a general architecture that can be beneficial to
both vanilla and modified drivers. Other architectures for accelerating network IO
on general purpose systems are described in 4.1.1.

4.2.2 PFQ capturing engine
The system as a whole is depicted in Figure 4.11 and is made up by the following
components: the packet fetcher, the demultiplexing block and socket queues. The
fetcher dequeues the packet directly from the driver, which can be a standard driver
or a patched “aware” driver, and inserts it into the batching queue. The next stage
is represented by the demultiplexing block, which is in charge of selecting which
socket(s) need to receive the packet. The final component of PFQ is the socket queue,
which represents the interface between user space and kernel space. All of the kernel
processing (from the the reception of the packet up to its copy into the socket queue)
is carried out within the NAPI context; the last processing stage is completely per-
formed at user space, thanks to memory mapping. In the following we will describe
in more detail each building block.

4.2.2.1 Building blocks

Aware driver. The concept of driver awareness has been first introduced by PF RING:
an aware driver, instead of passing a packet up the standard linux networking stack,
highjacks and forwards it directly to the capturing module. This implies that, on one
hand, the message does not have to go through the standard network stack process-
ing, thus improving performance. On the other hand, the capturing module has ex-
clusive ownership of the packet, which is invisible to the rest of the kernel (including
the sniffers). We developed a patched version of the ixgbe driver that just involves
minimal code modifications (around a dozen lines of code); such a simple patch
can be easily applied to new and existing drivers. We point out that such a block
is completely optional and PFQ shows good performance with vanilla drivers too.
Moreover, an aware driver managing multiple interfaces can handle in aware-mode
only the packets coming from a monitoring interface, while exposing the others to
the kernel stack.

Packet fetcher. The packet fetcher is the only component which acts on a packet
by packet basis. It receives the packets and inserts the associated pointer into its

219

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

eth0 ethx

napi napi napi napi

HW QUEUE

BATCHING QUEUE

SOCKET QUEUE

packet steering block

FETCHER

NAPI context

User space

Figure 4.11: PFQ scheme at–a–glance

batching queue. Once such a queue (whose length is configurable) is filled, all of its
enqueued packets are processed by the next block in a single batch. Batch processing
turns out to be more efficient in that it improves the temporal locality of memory
accesses, thus reducing the probability of both cache misses and concurrent access to
shared data. In particular, a significant advantage comes from deallocating packets
in batches that, according to our measurements, can reduce the deallocation cost
by as much as 75%. Our measurements reveal that the optimal queue length is of
the order of a hundred of packets. Notice that, as the packet is timestamped before
queueing, this component does not influence timing accuracy.

Packet steering block. The main function of the steering block is to select which
sockets need to receive the captured packets. Notice that, although it is a single
functional block, the steering block processing is completely distributed and does
not represent a serialization point (in fact, it only deals with read–only state). Such a
block consists of a routing matrix that allows to flexibly dispatch the incoming pack-
ets across multiple capturing sockets. In particular, such a matrix associates each
reception queue of each handled card with one or more capturing sockets. Such sock-
ets can be independent from each other (thus receiving one copy of the packet each)
or can be aggregated into a load balancing group. In this latter case, a hash function
is computed for each packet and only one socket in the balancing group is chosen.
An additional advantage of such an approach is the possibility of performing a bidi-
rectional load balancing. Indeed, RSS performs its native form of load balancing by
computing a hash function over the 5–tuple of incoming packets. However, such a
scheme may not be appropriate for some applications, as RSS is not symmetric. For
example, applications that monitor TCP connections need to observe packets from
both directions which RSS would dispatch to different cores. For this reason, the
packet steering block recomputes a symmetric hash function that will rebalance the
packets with small overhead. Notice that load balancing and copy are not mutually
exclusive: packets from the same hardware queue can be copied to a set of sockets

220

4.2 Flexible High Performance Traffic Generation on Commodity Multi–Core
Platforms

and load–balanced across another one. In greater detail, the demultiplexing block is
composed by a bit–field matrix and a load balancing function. The switching matrix
stores, for each queue, a bitmap specifying which sockets have to receive its packets.
Such a design allows dynamic insertion and removal of sockets with no need for
mutexes on the fast data path.

Socket queue. It is the last component of our architecture and the only one which
is subject to inter–core contention. Our design shares some similarities with that of
the FreeBSD zero–copy packet filter, but it improves the state of the art by introduc-
ing a wait–free solution which is optimized for a multi–core environment. Indeed,
the whole mechanism implements a multiple producer – single consumer wait–free
queue. The main components of this block are two memory mapped buffers: while
one of them is being filled with the packets coming from the demultiplexer, the
other one is being read from the user application. The two buffers are periodically
swapped through a memory mapped variable (named index in the pseudocode of
algorithm 14) that stores both the index of the queue being written to and the num-
ber of bytes that have been already inserted (in particular, its most significant bit
represents the queue index). Each producer (i.e. a NAPI kernel thread) reserves a
portion of the buffer by atomically incrementing the shared index; such a reservation
can be made on a packet by packet basis or once for a batch. After the thread has
been granted exclusive ownership of its buffer range, it will fill it with the captured
packet along with a short pseudo header containing meta–data (e.g. the timestamp).
Finally, it will finalize it by setting a validation bit in the pseudo–header after raising
a write memory barrier. Notice that, when the user application copies the packets
to a user space buffer, some NAPI contexts may still be writing into the queue. This
will results in some of the slots being “half filled” when they reach the application;
however, the user–space thread can wait for the validation bit to be set. On the ap-
plication side, the user thread which needs to read the buffer will first reset the index
by specifying another active queue (so as to direct all subsequent writes to it). Sub-
sequently, it will copy to the application buffer a number of bytes corresponding to
the value shown by the old index. Such copy will be performed in a single batch,
as, from our past measurements, batch copy can be up to 30% faster. Alternatively,
packets can be read in place in a zero–copy fashion. The access protocol is described
in greater detail by the pseudocode in algorithm 14. Notice that, the first read of
the index is not functionally necessary, but prevents the index from overflowing in
case the consumer is not swapping for a long period. Finally, we point out that
PFQ comes with a C++ user-space library which hides the complexity of the lockless
queue while still transferring packets in batches.

4.2.3 Experimental results
We assessed the performance of our system under several configurations and we
compared it mainly against that of PF RING. The latter is the obvious competitor for
PFQ, in that it is a general architecture that increases the capturing performance with
both vanilla and modified drivers. Unfortunately we could not consider PF RING
TNAPI [175] in the comparison as it is not publicly available for download. We
also show some results obtained by the well–known PCAP library (version 1.1.1
with memory mapping enabled), that only works with vanilla drivers; however,

221

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

Algorithm 14 Pseudo-code for the NAPI context inserting N packets into the
double–buffer queue.
function insert packet(bytes, packet)
1: if QLENGTH(index) < BUFFER LEN then
2: queue full, exit ◃ this first read is only to prevent overflow
3: end if
4: curr index← atomic incr(index, bytes + PSEUDO HEADER LENGTH)
5: curr bytes← QLENGTH(curr index)
6: curr bu f f er← QACTIVE(curr index)
7: if curr bytes < BUFFER LEN then
8: queue f ull, exit
9: end if

10: my bu f f er← bu f f er pointer[curr bu f f er] + curr bytes− (bytes + PSEUDO HEADER LENGTH)
11: copy packet and compile pseudo header
12: write memory barrier()
13: set pseudo header validity bit
function read packets()
1: active queue← QACTIVE(index)
2: next index← complement(acive queue) << INDEX BITS− 1
3: index← next index ◃ atomic swap
4: my bu f f er← bu f f er pointer[active queue]
5: for all packet in my bu f f er do
6: wait for valid bit to be set
7: read packet and pseudo header
8: end for

as PCAP does not explicitly support hardware queues, its results can be shown in
a few layouts only. We wrote a simple packet counting application for PFQ, while
for PF RING we used the pfcount application that comes with the project distribu-
tion. We took two main performance metrics into consideration: number of captured
packets and average CPU consumption. While the first one is the most obvious per-
formance index, the second one is important as well: if the capturing engine is con-
suming a very high fraction of CPU cycles, a monitoring application will hardly have
resources to do any significant processing. The testbed for experiments is made up
of two identical machines, one for generating traffic, the other in charge of capturing.
Both of them come with a 6 cores Intel X5650 Xeon (2.66 Ghz clock, 12Mb cache), 12
GB of DDR3 RAM, and an Intel E10G42BT NIC, with the 82599 controller on board.
In order to test our system with the maximum degree of parallelism, we kept Intel
Hyperthreading enabled, thus carrying out the experiments with 12 virtual cores.
We will show that such a choice yields performance improvement in all scenarios.
Both servers run Linux with the lates 3.0.1 kernel and the ixgbe 3.4.24 NICs driver.
Due to the high cost of hardware based traffic generators and to the limited perfor-
mance of software based ones, we chose, as the authors also did in [157], to write
our own generator. Such a software [177] which, again, leverages platform paral-
lelism, is able to generate up to 12 Millions minimum–sized packets per second. We
validated its performance by means of a borrowed Napatech hardware based traf-
fic analyzer (courtesy of Luca Deri). In particular, we verified that the maximum

222

4.2 Flexible High Performance Traffic Generation on Commodity Multi–Core
Platforms

generated rate advertised by the generator itself was the same rate measured by the
Napatech board. Moreover, in order to leverage the RSS load–balancing mechanism,
we randomized the IP addresses of each packet.

Finally, we remark that due to the use of hyperthreading, we can display up to
12 capturing cores; however, from the performance point of view, this is not the
same of having 12 real CPUs. The CPU numbers are arranged as follows: real core
number x corresponds to two virtual cores x and 6 + x, respectively. Therefore, if
we increase the set of capturing cores in a linear manner starting from 0, we expect
the contribution of the first six cores to be significantly higher than that of the others
(as it actually appears in our results). Therefore, we expect an ideal graph to scale
linearly from 1 to 6 and to show a discontinuity in 6 and to grow linearly again, but
with a much less steep slope, from 7 to 12 cores.

4.2.3.1 One–thread setup

In this first layout, which is the most relevant for legacy applications, we used a
variable number of hardware queues for fetching packets and we only used one
socket to bring them to user space. Indeed, we hid the system parallelism within the
kernel while still exposing a standard interface to the application. In particular we
used a layout that we showed to be beneficial in [178]: we captured the packets on
all the physical cores but one, and on that one we bound the user–space process. The
results shown in Figure 4.12 report the number of captured packets for both modified
and aware drivers: the behavior of PFQ with an increasing degree of parallelism is
piece–wise linear (due to the expected discontinuity around 6) while PF RING, that
handles contention through traditional lock–based mechanisms, and PCAP do not
manage to scale with the number of cores. Besides, the scalability of our architecture
does not depend on the driver: using an aware or a vanilla driver just reflects on
the slope of the graph, but linearity is preserved. Notice that, as anticipated, we
did not capture packets on the physical core where the user space process is bound:
therefore, the number of available capturing cores is limited to 10.

Figure 4.13 reports the bit rate of the captured traffic for several packet sizes and
by using 12 hardware queues. PFQ always captures all of the traffic our generator
can provide (although this does not always correspond to the nominal maximum bit
rate).

4.2.3.2 Parallel setup

In this scenario each hardware queue is associated with its own user space thread,
so that the processing paths of packets are completely parallel. Notice that in this
scenario we used PF RING with the recently introduced quick mode option, which al-
lows avoiding per–queue locks. The results are shown in Figure 4.14 and show that,
although PF RING manages to achieve good performance by preventing locking,
PFQ still outperforms it. Besides, PFQ shows the same behavior with both vanilla
and aware drivers (apart from a scale factor), while PF RING only scales well with
aware drivers. Notice that PFQ is able to capture all of the incoming packets with
10 cores (its throughput steadies because there is no additional traffic to capture);

223

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

2 4 6 8 10

Number of HW Queues

2x106

4x106

6x106

8x106

1x107

1.2x107

C
a
p
tu
ri
n
g
 R
a
te
 (
p
k
ts
/s
)

PFQ - Aware Driver
PFQ - Vanilla
PCAP - Vanilla
PF_RING - Aware Driver
PF_RING - Vanilla

Figure 4.12: One capturing thread

200 400 600 800 1000 1200 1400

Packet Size

2x109

4x109

6x109

8x109

1x1010

C
a
p
tu
ri
n
g
 R
a
te
 (
b
p
s
)

Theoretical Bound
Generated Traffic
PFQ - Driver Aware
PCAP
PF_RING Aware Driver

Figure 4.13: Throughput vs. Packet
Size

unfortunately, our generator is not able to produce more input traffic and, therefore,
we can only obtain a lower bound of PFQ’s performance.

We also report the CPU utilization (in the case of aware drivers) in Figure 4.15:
while PF RING saturates the CPU, the global CPU consumption in the case of PFQ
is roughly constant and well below 20%.

4.2.3.3 Multiple capture sockets

Besides high performance, one of the strengths of PFQ is the ability of decoupling
parallelism between the application level and the kernel level. In this set of tests we
measure the performance of such a feature by always using the maximum number
of available contexts in the kernel (i.e. 12) and by varying the number of parallel
user–space threads. First, we report the overall throughput when incoming packets
are load–balanced across the application threads. In order to have a benchmark, we
compare our result with that of PF RING using the recently introduced RSS rehash
functionality. However, the balancing functionality in PF RING slightly differ from
that of PFQ. The results are reported in Figure 4.16 and show that, with an aware
driver, PFQ is able to capture all of the incoming traffic with just 3 user–space threads
while, with a vanilla driver, the behavior is the same but the overall throughput is
lower.

We also evaluate a scenario where multiple applications are requesting a copy
of the same packet: the results are shown in Figure 4.17 and show the cumulative
number of packets brought to user–space. In this case, we also show the results for
PCAP. Ideally this graph should scale linearly, as the same traffic is being copied
to more and more threads; however the overhead of copy and concurrent access
to the socket queues has a relevant impact on performance when the number of
copies is high. Notice, however, that such a large number of copies is unlikely in a
practical setup. Interestingly, this figure also provides an upper bound of the number
of packets the system may be able to process with a faster driver with no allocations

224

4.2 Flexible High Performance Traffic Generation on Commodity Multi–Core
Platforms

2 4 6 8 10 12

Number of Threads/HW Queues

2x106

4x106

6x106

8x106

1x107

1.2x107

C
a
p
tu
ri
n
g
 R
a
te
 (
p
k
ts
/s
)

PFQ - Aware Driver
PFQ - Vanilla
PF_RING - Aware Driver
PF_RING - Vanilla

Figure 4.14: Completely parallel pro-
cessing paths

2 4 6 8 10 12

Number of Threads/HW Queues

0

20

40

60

80

C
P
U
 A
v
e
ra
g
e
 L
o
a
d
 (
%
)

PF_RING - Aware Driver
PFQ - Aware Driver

Figure 4.15: Completely parallel pro-
cessing paths: CPU consumption

or multiple capturing cards: PFQ is able to enqueue and make available to user space
over 42 Mpps, thus outperforming by far both competitors.

2 4 6 8 10 12

Number of Threads

2x106

4x106

6x106

8x106

1x107

1.2x107

C
a
p
tu
ri
n
g
 R
a
te
 (
p
k
ts
/s
)

PFQ - Aware Driver
PFQ - Vanilla
PF_RING - Aware Driver
PF_RING - Vanilla

Figure 4.16: Load balancing across
a variable number of user–space
threads

2 4 6 8 10 12

Number of Threads

0

1x107

2x107

3x107

4x107

A
g
g
re
g
a
te
 P
a
c
k
e
t
R
a
te
 (
p
k
ts
/s
)

PFQ
PCAP
PF_RING

Figure 4.17: Copying traffic to a vari-
able number of user–space threads

225

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

4.3 Blockmon: A Modular System for Flexible, High-
Performance Traffic Monitoring and Analysis

As already discussed in the introduction, the monitoring infrastructure is called to
face two different and opposed trends: on one hand the growth of internet traffic
makes the performance constraints on the monitoring points more and more tight,
while on the other the great variety and quick evolution of threates requires high
flexibility and quick adaptation of the analysis.

These challenges point to the need for a high-performance, yet easily-extensible
solution. In this section we present Blockmon, a system for flexible, high-performance
traffic monitoring and analysis that allows concurrent use by independent applica-
tions or users.

Blockmon builds upon previous work in programmable on-line network mea-
surement and composable networking. CoMo [179], a passive monitoring system,
introduced the concept of a monitoring plugin: a monitoring application is written
as a set of callback functions and the system is in charge of calling them. However,
these callback functions are limited and strictly pre-defined, reducing the system’s
flexibility.

The modular principles in Blockmon were inspired by the Click modular router [154].
However, Click is intended only for packet processing, with its modules only able
to communicate in terms of packets. Further, Click cannot easily do more advanced
types of processing such as maintaining TCP connections, inter-acting with databases,
or any number of other actions relevant to monitoring and data analysis.

In essence, Blockmon takes some of the design principles of previous approaches,
enhances them to allow for a wider range of monitoring and analysis applications,
and provides tuning mechanisms that allow it to yield high performance when run-
ning on modern, multi-core, multi-queue architectures. Further, by allowing runtime
reconfiguration of the connections among its modules, Blockmon enables on-line
data analysis of traffic which adjusts to current network conditions. Our contribu-
tions are as follows:

• A flexible, multi-user, high-performance system for monitoring and analysis,
leveraging recent work and new technologies in high-performance software
development.

• A set of common blocks (small units of processing) for several application areas,
leveraging libraries implementing probabilistic data structures, hashes and abrupt
change detectors.

• The ability to extend an application across multiple nodes.

• The ability to dynamically reconfigure a running application.

• The release of Blockmon as open source.

226

4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic
Monitoring and Analysis

4.3.1 Related Work
We are certainly not the first to tackle the problem of modular, high performance
traffic processing on commodity hardware. As mentioned, both CoMo [179] and
Click [154] are in this space, but neither provide the mechanisms nor flexibility
needed for monitoring and data analysis tasks.

The work in [180] explores the scalability of software routers on general-purpose
hardware, and investigates the bottleneck in packet forwarding performance; such
results were important in informing the decision of how to parallelize and scale pro-
cessing in Blockmon. RouteBricks [181] explores the scaling of software routers by
enabling parallelism across multiple servers. This complements our work, since such
an approach can be used to scale Blockmon’s capacity by adding more servers.

Considering programmable measurement, ProgME [182] specifies a runtime-programmable
network flow aggregator configured using a declarative language based upon set al-
gebra. An approach that provides a framework for building monitoring applications
is RTC-Mon [183], though the architecture it provides is somewhat inflexible.

There has been significant work on the subject of fast packet capture, as in [184]
and PF RING [185]; this latter even contains a basic, if inflexible, programmable
measurement system. For 10Gb and faster links, packet capture is often enhanced
through hardware acceleration [186, 187]. NetworkDVR [188] follows another ap-
proach to packet capture by deciding early in the process which packets to cap-
ture and which to ignore; this can also be performed by packet capture and offload
cards [189]. As we will show, Blockmon can easily take advantage of such hard-
ware acceleration and combine it with the flexibility provided by its software-based
blocks.

4.3.2 Base System
At a high-level, Blockmon provides a set of units called blocks each carrying out a
certain type of processing, for instance counting the number of distinct VoIP users
on a link. The blocks are then inter-connected via a set of input and output gates;
the number of gates and what they are used for are defined by the developer of the
block. A set of inter-connected blocks representing a monitoring and data analysis
application is called a composition, which is specified in XML. The Blockmon core
and the blocks themselves are implemented in C++, and the system is controlled at
runtime using a simple, Python-based command-line interface.

Figure 4.18 shows an example of a composition, first drawn as a logical graph of
connected blocks and then as the actual XML file that would be given to Blockmon
for installation. In this case, the composition filters traffic for SIP messages, keeps
per-message and per-user statistics and periodically exports results.

Blocks can be configured so that two blocks of the same type may be initialized
differently; for instance, a block that captures traffic could be configured with dif-
ferent capture filters by different users. Should the available blocks not cover the
functionality required by a particular application, a user can easily implement addi-
tional blocks and connect them to existing ones.

To support different users and applications simultaneously, Blockmon composi-
tions have external interfaces that are defined in terms of input and output gates and

227

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

(a) Composition in graph form.

<composition id =”1” app id=” s i p s t a t s ”>
<block id =” f i l t e r ” type=” S I P F i l t e r ”>

<params>
<source type=” l i v e ” name=” eth0”/>

</params>
</block>

<block id =” c t r ” type=”SIPMsgCtr”/>
<block id =” s t a t s ” type=” SIPUsrSta ts”/>
<block id =”exp” type=” SIPSta tsExpor t”>

<params>
<dst ip = ” 1 9 2 . 1 6 8 . 0 . 2 0 0 ” port =”5000”/>

</params>
</block>

<connect ion s r c b l k =” f i l t e r ” s r c g a t e =”1”
d s t b l o c k =” c t r ” d s t g a t e =”1”/>

<connect ion s r c b l k =” f i l t e r ” s r c g a t e =”2”
d s t b l o c k =” s t a t s ” d s t g a t e =”1”/>

<connect ion s r c b l k =” c t r ” s r c g a t e =”1”
d s t b l o c k =”exp” d s t g a t e =”1”/>

<connect ion s r c b l k =” s t a t s ” s r c g a t e =”1”
d s t b l o c k =”exp” d s t g a t e =”1”/>

</composition>

(b) Corresponding XML composition file.

Figure 4.18: Blockmon sample composition.

228

4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic
Monitoring and Analysis

Figure 4.19: Simple composition showing block scheduling types.

the types of messages they expect. For instance, consider the likely case of several
applications needing to capture traffic, via access to the same Sniffer block. Each
application has its own composition, and each of these uses its external interface to
connect to the external interface of the composition containing the sniffer. This ap-
proach also permits the internals of compositions to change without affecting other
compositions, as long as the interface does not change: for example, changing the
sniffer to capture on “eth1” instead of “eth0” in response to a routing change would
not disturb running compositions using the sniffer.

In the rest of this subsection we describe the various parts of Blockmon in greater
detail.

4.3.2.1 Blocks and Scheduling

As mentioned, a block represents a small unit of processing and can implement
a wide range of functionality including packet capture and filtering, monitoring,
anomaly detection algorithms and export capabilities (see subsection 4.3.4 for a de-
scription of blocks available in the Blockmon distribution).

All blocks are derived from a common superclass. In order to create a new
block, developers simply inherit from this class and implement at least two methods:
configure, which receives XML representing the block’s configuration parameters,
and receive_msg which is called when a message arrives at the block.

Blockmon supports active and passive block invocation. Active blocks are called
by Blockmon’s scheduler, while passive blocks are activated directly within the same
thread as the block which sends them a message. Blocks can also be scheduled to run
on a timer.

To make things more concrete, figure 4.19 shows an example of how the different
block and scheduling types are used in a composition. In this case, Sniffer is actively
scheduled, capturing packets from a network interface and sending them to UDP-
Filter. This is a passive block, and runs whenever the sniffer sends a message to
it (calling to its receive_msg method). UDPFilter then filters for UDP packets, and
sends results to StatsTable, which is also passive and registers a timer. Periodically
Blockmon’s scheduler activates StatsTable, causing it to send data to StatsExporter,
which exports them to an external consumer.

4.3.2.2 Gates and Messages

Blocks use gates to communicate with other blocks, with each block defining a num-
ber of input and output gates. For instance, a sniffer block might have no input gates

229

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

and an output gate per given filter, while a packet counter block might have several
input gates but a single output gate.

Gates are implemented as simple message queues. For an active block, the mes-
sage is simply stored in the queue; the block will then retrieve it when it is run by
the scheduler. For a passive block, the message is not stored, but rather sent directly
as a parameter to the block’s receive_msg method.

The actual communication is in terms of messages derived from a common su-
perclass, which provides a basic interface for identifying message types, and for
supporting marshaling and demarshalling of messages for the proxy block facility
described below. Blockmon provides a base data model for common monitoring and
analysis tasks. This data model is designed to ease the composition of blocks by en-
suring a single implementation of commonly used messages. The message types in
this base data model include:

• RawPacket: represents a raw captured packet and a timestamp (equivalent to
struct pcap_potheads in libpcap-based applications).

• Packet: extends a RawPacket to add parsed packet header information.

• Flow: represents a set of packets sharing a common 5-tuple (source and des-
tination address and port, plus protocol), and maintains start and end times-
tamps, optional partial or complete payload reassembly, as well as byte, packet,
and “accumulator” counters for each;

• PairMsg: a class template which represents a two-tuple of values, intended to
represent key-value pairs.

The first three of these are designed for the early stages of processing, when the
compositions are still handling relatively raw data. The last of these is intended for
mostly-processed data and export of results for presentation and storage.

4.3.2.3 Dynamic Reconfiguration

The environment in which an analysis system runs is rarely static. For example,
routing changes could require traffic capture from a different interface, or informa-
tion produced by an application could lead to a refined query. Blockmon supports
dynamic reconfiguration, changing block parameters or the connections among run-
ning blocks, or adding or removing blocks from a composition. This allows for the
implementation of control loops, where compositions can be changed based on anal-
ysis results they produce themselves. This is particularly useful in monitoring pro-
tocols with application-layer control, such as in VoIP traffic, where RTP flows are
identified by the payload of SIP messages.

Blockmon’s Python-based command-line interface allows changes of composi-
tions on the fly, without losing per-block state. At reconfiguration time, messages
flowing through a composition are kept in flight in circular buffers until the recon-
figuration is complete, then processed before new messages from upstream in the
composition.

230

4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic
Monitoring and Analysis

4.3.2.4 Multi-Node Blockmon

Blockmon supports the ability to extend a single composition across a set of nodes.
This allows additional scalability, by leveraging multiple nodes as well as multiple
cores for processing, and flexibility of deployment. To implement this, Blockmon
provides a proxy block facility. This represents each end of a connection between
Blockmon nodes with a block which acts as a proxy for the remote end, handling
marshaling and demarshaling of Blockmon messages on the wire. Two wire proto-
cols are supported. The first is called raw structure marshaling, which allows direct
copying of message contents from machine to machine, assuming identical binaries,
language runtimes, and architectures on each.

This facility also supports the IETF IPFIX [190] standard, which provides a tem-
plated format and transport protocol for network traffic data. In addition to adding
flexibility in multi-node Blockmon installations, by allowing compositions to be built
from nodes of different architectures and versions of Blockmon, IPFIX proxy blocks
also significantly increase the interoperability of our system. For example, by lever-
aging existing IPFIX flow meters (e.g., YAF [191]) Blockmon is applicable as a flow
analysis tool in addition to its native packet analysis capabilities. Fully exploring the
possibilities of this interoperability are the subject of future work.

4.3.3 Performance Mechanisms

Blockmon has been designed to leverage the potential of modern multi-core com-
modity server hardware and network interfaces. In this subsection we describe the
optimizations used by Blockmon for high performance traffic processing; evaluation
results for these appear in subsection 4.3.5.

4.3.3.1 Thread Pools and CPU Pinning

Blockmon is multi-threaded in order to take advantage of multi-core CPUs. The
assignment of activities to threads and threads to CPU cores can have a large impact
on performance [180]. To leverage this, Blockmon schedules work in thread pools.
Each block is assigned to a pool via the composition, and pools can be pinned to
specific cores.This model allows flexibility in terms of which block is executed on which CPU
core. In the example in figure 4.20, pool1 runs a single thread on its own dedicated
CPU (for performance critical tasks), pool2 shares three threads across three cores
with no fixed mapping, and pool3 provides 10 threads running on any available
core. Lastly, it is worth pointing out that blocks can make use of a default mechanism
providing thread-safeness, as is the case with pkt_counter3; we provide figures on
the impact of using this in the evaluation subsection.

4.3.3.2 Lockless Queues

One potential performance bottleneck are the queues within a block’s gates, particu-
larly for compositions where several blocks send messages to a single active receiver

231

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

<composition id =”1” app id=” t e s t ”>
<threadpool id =”pool1 ” n threads =”1” cores =”2”>
<threadpool id =”pool2 ” n threads =”3” cores =”0−1,4”>
<threadpool id =”pool3 ” n threads =”10”>

<block id =” pkt counter1 ”
type=”PktCounter ”
threadpool =”pool1 ” />

<block id =” pkt counter2 ”
type=”PktCounter ”
threadpool =”pool2 ” />

<block id =” pkt counter3 ”
type=”PktCounter ”
thread safe mode =”on” />

</composition>

Figure 4.20: Excerpt from a composition specifying mappings of blocks to thread
pools, CPU pinnings and thread-safeness.

Block Name Description
Sniffer Captures traffic from a local interface or pcap trace file into RawPacket messages.
ComboSniffer Captures traffic from an INVEA-TECH COMBO card into RawPacket messages.
MQPfringSniffer Capture traffic from PF RING sockets into RawPacket messages; supports multi-queue NICs.
PFQSniffer Captures traffic using PFQ into RawPacket messages; supports multi-queue NICs.
TCPDemux Segregates TCP and non-TCP packets.
IPAnon Parses the headers of RawPackets and anonymizes IP addresses.
PktCounter Counts and periodically logs number of received messages.
CDF Tracks and periodically logs cumulative distribution of values in received messages.
FlowStats Counts bytes and packets per flow based on a 5-tuple flow key.
HeavyFlowSelector Computes heavy hitters in terms of packet counts from flow statistics.
SYNCounter Counts the number of TCP SYN packets received from each IP using a count min sketch.

Figure 4.21: Sample of provided blocks.
block. In order to remove contention in these cases, BlockMon provides a multi-
producer, single-consumer queue using double buffering, reserving one buffer for
the writing and one for reading at any given time. The design of this queue is simi-
lar to the one we describe in subsection 4.2.2.

This design makes synchronization fairly simple: producers reserve a slot by in-
crementing an atomic index, while the consumer simply swaps the active buffer (by
atomically changing the index) and is granted exclusive access to the written data.
Writers signal they are finished via a per-slot flag; this allows writes to complete after
a buffer swap.

Although both double buffers [192] and lockless queues [193] are covered in the
literature, the design of this queue is, to the best of out knowledge, novel: Block-
mon’s lockless queues are wait-free for producers, while consumers only have to
wait for writes to complete after a swap. Experimentation shows this is a low-
probability occurrence with negligible impact on performance.

232

4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic
Monitoring and Analysis

4.3.3.3 Batch Allocation

BlockMon reduces dynamic memory allocation overhead [194] by batching memory
allocations of buffers used by each block into larger blocks. The batch allocations are
reference-counted, such that they are automatically freed with the destruction of the
last buffer in the batch. Note that this optimization is only possible with the new
shared ownership constructor of the shared pointer class supported by C++11 [195],
which avoids the allocation of a reference-count metadata structure for each buffer.

4.3.3.4 Efficient Message Transfer

Blocks pass messages between themselves via C++11 shared pointers, so that the
same message can go through different processing paths in a composition without
spurious allocations or copies, with automatic reference counting. However, copying
a shared pointer involves atomically decrementing and incrementing the reference
counter, which can lead to high contention when a message moves from core to core.
Therefore, Blockmon adopts the new C++11 object-move semantic, which allows for
the transfer of shared pointers without reference count updates.

4.3.3.5 Pluggable Schedulers

How one schedules the various threads to run (and the blocks within them) can have
a major impact on performance. Rather than trying to design an ideal scheduler for
all possible compositions, Blockmon’s scheduler, like that of the Linux kernel [196],
is pluggable. It provides a standard scheduler that provides good performance, but
allows advanced developers the ability to easily plug-in custom-built schedulers by
implementing a simple interface.

4.3.3.6 Fast Capture Blocks

Fast packet capture is crucial to systems like Blockmon aimed at doing high-rate
monitoring and data analysis. To this end, Blockmon provides three software-based
packet capture blocks: a standard pcap-based Sniffer block that can capture packets
from a network interface or a packet trace; a MQPfringSniffer block based around
the PF RING network socket for higher performance; and a PFQSniffer block, which
implements an adapter for a novel engine called PFQ [171], which better leverages
multi-core architectures. Hardware-accelerated capture using INVEA-TECH Combo
cards is supported by a fourth ComboSniffer block.

4.3.4 Blocks and Libraries
Blockmon provides flexibility for users to create arbitrary monitoring and data anal-
ysis blocks. In addition to the standard blocks included in Blockmon, a sample of
which are listed in figure 4.21, Blockmon provides a set of libraries to ease block
development as well. The subsubsections below give an overview of the available
libraries for implementing new blocks.

233

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

4.3.4.1 Hash Library

Network monitoring applications running on high speed links need to use efficient
data structures that can be quickly updated independently of the number of ele-
ments stored. Hash functions are often used to satisfy these requirements and this is
why Blockmon provides a simple and extensible Hash Library. Application devel-
opers can use the hash functions already provided (e.g., MD5, SHA1, and SHA256,
among others), or create new ones by extending a simple prototype. In addition, the
library provides a hash data structure as well as a D-Left hash that provides better
performance.

4.3.4.2 Probabilistic Data Structures Library

A common challenge in network monitoring is data storage: many algorithms have
to store counters or information on a per-flow basis. To this end, the probabilistic
data structures library contains a Count Min Sketch (CMS) which is simple to use:
choose a width and depth for the sketch (to determine the memory usage and the
error probability), choose which fields of the 5-tuple compose a counter’s identifier,
and then increment, decrement or read a counter by calling the data structure with a
5-tuple identifier.

Further, the library implements both a Bloom filter data structure as well as a
counting Bloom filter one. Both of these can be easily configured based on table size,
bucket size, and number of hash functions, among others.

4.3.4.3 Abrupt Change Detection Library

For certain algorithms, a common task is to detect an abrupt change in the distribu-
tion of a value over time, since such a change may indicate an anomaly due to an
attack. This is for example required to detect a flooding attack: an abrupt increase in
the number of packets of a certain type (TCP SYN for example) can be an indication
of an attack. It may also be used for Botnet detection by detecting an increase in the
frequency of some payload characteristics.

To aid in this kind of detection Blockmon provides a library that implements the
CUmulative SUM control chart (CUSUM) algorithm, which detects anomalies by
looking at abrupt time changes in the distribution of a random series. The recursive
implementation of the algorithm updates CUSUM statistics at each new observed
value, and an alarm is raised as soon as these statistics pass a threshold. Blockmon
also provides NP-CUSUM, a non-parametric version of CUSUM.

4.3.5 Evaluation

Blockmon contains a number of performance optimizations aimed at providing high-
rate traffic capturing and analysis. In this subsection we present an experimental
evaluation of these mechanisms in isolation. Section 4.3.6 focuses on the evaluation
of two applications implemented using Blockmon.

234

4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic
Monitoring and Analysis

4.3.5.1 Experimental Setup

For our experiments we use a pair of servers, one running a traffic generator and
the other one running Blockmon, directly connected via 10Gb wired interfaces. Each
of these computers has a 2.66Ghz 6-core Intel Xeon X5650 with HyperThreading
enabled, 12GB of DDR3 RAM, an Intel 82599EB network interface, and run Linux
kernel version 2.6.39. A third server is used for experiments on the COMBO card;
this has a 2.50GHz 4-core Intel Xeon E5420 CPU and 4GB of RAM; test traffic in this
scenario comes from a hardware traffic generator. Unless otherwise stated, all exper-
iments in this subsection are performed with 64-byte packets, since these maximize
strain on the system. Throughout we use Mp/s to mean million packets per second.

4.3.5.2 Performance Experiments

To test the effect of the batch allocation and lockless queue optimizations, we created
the composition shown in figure 4.22(a). Each of the multiple capture blocks services
one of the hardware queues on the Intel NIC, and feeds packets into a single counter
block. We further assigned one CPU core to each capture block, and one for the
counter. The single counter creates a bottleneck that allows us to measure the effects
of the lockless optimization.

Running this set-up produces the results in figure 4.23, showing packet rate in
Mp/s depending on the number of logical CPU cores used for capture. Two logical
cores are reserved for the counter block. We start our measurements with 2 cores
(i.e., 2 sniffers) since setting RSS [197] on the Intel NIC to 1 causes the driver to use
all of the NIC’s hardware queues instead of a single one.

Applying each of the two optimizations in turn, as is the case for the “batch only”
and “lockless only” curves, results in sub-optimal performance, as each optimization
removes only one of the two performance bottlenecks: performance is still bound
by the remaining bottleneck. Thus, the lockless optimization curve does not show
much improvement as the number of sniffers increases and contention on the single
counter becomes more severe since the memory allocation bottleneck remains. Con-
versely, the batch optimization curve holds steady but decreases slightly as the con-
tention on the packet counter’s queue increases with the number of capture blocks.
This effect is confirmed by the top curve: removing both bottlenecks provides a sig-
nificant bump in performance. Note that the slight dip in performance at 6 cores
is due to the fact that the last 6 cores are not physical cpus, but rather emulated
by means of the Intel HyperThreading technology. As a result, their contribution is
lower with respect to that of actual cores.

The graph also quantifies the overhead of the thread safety mechanism. Here,
we enabled thread safety for the counter block, and enabled the batch and lockless
queue optimizations. As can be seen, the mechanism still yields decent packet rates
(in the order of 2.5 Mp/s), but hinders scalability as the number of cores increases.
This shows that disabling thread safety for a block can yield an approximate dou-
bling in capacity, at the cost of increased implementation complexity for the block
developer.

Parallelizing packet counting, as shown in figure 4.22(b), removes the single
counter bottleneck. Here we measure only the capacity increase due to the batch

235

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

(a) Non-parallel setup.

(b) Parallel setup.

Figure 4.22: Blockmon packet capture and counter compositions.

236

4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic
Monitoring and Analysis

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8 9 10

P
ac

ke
t R

at
e

(M
p/

s)

Cores

batch + lockless
batch

lockless
unoptimized

B+L thread-safe

Figure 4.23: Effect of batch allocation and lockless queues optimizations and of the
thread-safe mechanism.

optimization, as there is no longer any queue contention. Taking advantage of par-
allelization, NIC hardware multi-queuing, multiple processor cores and the batch
optimization produces very good results: up to 12 Mp/s captured and counted, as
shown in figure 4.24. This rate is equal to the maximum rate offered by our traffic
generator; further measurement of Blockmon will require future optimizations to the
traffic generator used in the test.

To show the dependence of performance on packet size, we tested the composi-
tion in figure 4.22(b) with varying packet sizes. As shown in figure 4.25, two cores
are sufficient to capture 512-byte packets at line rate; three cores for 256-byte packets;
and five cores for 128-byte packets.

To quantify the overhead introduced by Blockmon itself, we created a simple
stand-alone test application that uses the PFQ engine to capture and count pack-
ets, and compared it to Blockmon installed with the parallel composition in fig-
ure 4.22(b). The results, shown in figure 4.26, illustrate that the flexibility provided
by Blockmon costs less than 17% in the worst-case for this simple application.

As described in subsection 4.3.3.6, Blockmon provides a number of software cap-
ture blocks. We compare their performance in figure 4.27, showing that PF RING
and PFQ handily outperform pcap, with PFQ slightly faster.

Hardware, however, outperforms all. To demonstrate Blockmon’s ability to in-
tegrate specialized hardware into a composition, we replaced the PFQSniffer blocks
with ComboSniffer ones that encapsulate an INVEA-TECH’s COMBO-10G2 FPGA
hardware card [189]. The results in figure 4.28 show that using 4 cores results in
line-rate processing for any packet size, showing that Blockmon’s performance can
be even further enhanced by using specialized hardware.

Blockmon utilizes new language features in C++11 to maximize performance.
It is difficult to quantify the performance attributable to this design choice, specifi-
cally with respect to the move semantic used for message passing (as described in

237

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12

P
ac

ke
t R

at
e

(M
p/

s)

Cores

unoptimized
batch

Figure 4.24: Scaling performance with a parallelized composition.

subsection 4.3.3.4), as it is deeply integrated into Blockmon and cannot be disabled.
To avoid having to implement a different, lower-performance Blockmon to measure
this, we implemented a simple test application that allocates data (a simple integer)
and binds it to a shared pointer. Multiple consumer threads each using a CPU core
then take this pointer and either destroy it right away, copy and destroy it or use
the move semantics and destroy it, in essence emulating the message life-cycle in
Blockmon.

Note that this is a test of the C++11 implementation used by Blockmon on the
test machine more than anything else, but does serve to illustrate the performance
that can be derived from leveraging new technologies in software development.

As shown in figure 4.29, using the move semantics instead of a copy allows sav-
ings of up to 200 clock cycles per operation in the case of high concurrency.

4.3.6 Applications
So far we have described the primary mechanisms behind Blockmon and demon-
strated its base performance in an experimental setting. However, whether these
mechanisms are useful in real applications is a different question. Here, we address
this question by examining two applications: a simple monitoring system that keeps
per-flow statistics, and an anomaly detector for detecting TCP SYN flooding attacks.
We use the first application to illustrate the flexibility of composable measurement
systems, and the second to demonstrate more complicated compositions.

4.3.6.1 Heavy Hitter Statistics

A common task in traffic monitoring is collection of per-flow statistics for heavy hit-
ter tracking. This application is useful on its own, and simple enough to implement

238

4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic
Monitoring and Analysis

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12

P
ac

ke
t R

at
e

(M
p/

s)

Cores

64 bytes
128 bytes
256 bytes
512 bytes

1024 bytes
1500 bytes

Figure 4.25: Performance for different packet sizes using the parallelized composi-
tion and the batching optimization.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12

P
ac

ke
t R

at
e

(M
p/

s)

Cores

pfq
Blockmon+pfq

Figure 4.26: Overhead introduced by the Blockmon architecture.

239

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12

P
ac

ke
t R

at
e

(M
p/

s)

Cores

pcap
PF_RING

PFQ

Figure 4.27: Comparison of the various capture blocks provided in Blockmon.

twice, to illustrate the impact of integrating specialized hardware into a composable
measurement system. This application is implemented using the two compositions
shown in figure 4.30.

The software version uses the FlowStats block, which parses a flow’s 5-tuple and
stores statistics using a simple hash. The statistics are periodically exported to a
HeavyFlowSelector block, which filters and exports only flows with large packet or
byte counts.

The hardware-based composition mimics this, with a few differences. The sniffer
is now a wrapper block called ComboFlowSniffer which uses INVEA-TECH’s combo
card and keeps the per-flow statistics. This blocks outputs data from the hardware
card in SZE2 format, where SZE2 is a zero-copy API for high-speed generic data
transfers. The SZEToTupleStatistic converts the SZE2 data format into the flow statis-
tics that HeavyFlowSelector expects.

The results of the performance tests are shown in figure 4.31. We used minimum-
sized packets, and had 64 of the generated flows (“elephants”) account for 30% of
the offered traffic rate of 12Mp/s; the rest of the flows were smaller (“mice”). It
is worth noting that the 30% figure is an overly pessimistic version of the 80/20
rule [198], where 20% of the flows on the Internet contribute to 80% of its traffic.
In our experiments, we use only 64 flows to account for 30% of the traffic to force
Blockmon to keep track of more flows. The results show that the application, which
is not particularly optimized, is able to process as many as 7.5Mp/s minimum-sized
packets while keeping statistics on a per-flow basis.

The hardware-based composition yielded line-rate processing for all packet sizes
using a single CPU core (recall that for these tests we had access to a hardware traf-
fic generator, so we did not have the 12Mp/s bottleneck). These results shows that
Blockmon’s performance can be even further enhanced by using specialized hard-
ware.

240

4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic
Monitoring and Analysis

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

P
er

ce
nt

ag
e

of
 L

in
e

R
at

e

Packet Size (in bytes)

1 core
2 cores
4 cores

Figure 4.28: Accelerating a Blockmon composition using specialized hardware.

4.3.6.2 SYN Flooding Detection

SYN flooding is a common denial of service attack. It works by sending many TCP
SYN packets to a victim, forcing it to keep potentially large amounts of state for
half-opened connections.

We used Blockmon to implement an application that detects these attacks and
identifies their victims. Our solution leverages the libraries provided with Block-
mon, using a Count Min Sketch (CMS) to store the number of TCP SYN packets sent
to each IP address, and the multi-channel NP-CUSUM algorithm to watch all the val-
ues of the sketch and detect any abrupt changes in the number of TCP SYN packets
sent to a particular IP address.

The detection is divided into different blocks brought together by the composi-
tion in figure 4.32. Note that for presentational reasons we only show a composition
with 2 counters; this number increases in the performance evaluation with the num-
ber of CPU cores in use. The blocks involved are:

• SynSynchronizer: generates and sends a sketch using the CMS library during
initialization to all SynCounter blocks, so that the size of the sketch and the hash
functions used are uniform for all counters.

• SynCounter: uses the CMS library to store the number of TCP SYN packets
sent to each IP and periodically sends the computed sketch as a message, re-
seting it in the process.

• CmsMerger: merges the sketches arriving from the counter blocks and exports
the merged sketch.

• SynFloodingDetection: periodically receives the sketch and uses the CUSUM
library to monitor all cells of the sketch and detect abrupt changes. If enough

241

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12

C
yc

le
s

pe
r

P
oi

nt
er

Cores

dealloc only
move+dealloc
copy+dealloc

Figure 4.29: Effects of the move optimization.

Figure 4.30: Software- and hardware-based compositions for the per-flow statistics
application.

242

4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic
Monitoring and Analysis

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12

P
ac

ke
t R

at
e

(M
p/

s)

Cores

software
hardware

Figure 4.31: Performance of the per-flow statistics application.

Figure 4.32: SYN flooding detection parallel composition (2 counters).

243

4. HIGH PERFORMANCE PACKET PROCESSING ON GENERAL PURPOSE
PARALLEL PLATFORMS

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12

P
ac

ke
t R

at
e

(M
p/

s)

Cores

2% syn
10% syn

100% syn

Figure 4.33: Performance of the SYN flood detection application.

abrupt changes have occurred, it sends an alarm with the index of the faulty
cells as a message.

Further, the SynFloodingDetection block sends the alarm back to the SynCounter
block; since the sketch is not reversible, SynFloodingDetection does not know which
IP address is the target of the attack. To remedy this, SynCounter keeps a small list of
recently seen IP addresses, which it tests when it receives the alarm to see which of
them triggered it.

We plot the performance of the TCP SYN flood detection application in figure 4.33.
Each of the curves shows a different proportion of TCP SYN packets in the offered
traffic. The results are encouraging: even at 10% (more than one million SYN pack-
ets per second) Blockmon is able to perform anomaly detection at a rate of approx-
imately 12Mp/s. To test accuracy, we manually instructed our generator to insert
a burst of SYN packets at different points during the tests (recall that the detection
is based on abrupt changes); each time we did so the SynFloodingDetection block re-
ported an anomaly and gave the victim’s IP address.

244

Chapter 5

Scalable coordination and
correlation architectures for
distributed monitoring systems

In the last years, the scale of the internet cyberthreats has been rapidly growing.
Skilled hackers can easily recruit an army of infected hosts (called bots) which can
then be used to perform large–scale attacks and other malicious activities. Botnets
with hundreds of thousands of hosts have been reported several times in the last
few years. A big network domain can therefore expect to be a target of distributed
attacks, involving several hosts scattered across the global internet. Therefore, be-
ing able to gather and correlate the information gathered by a large set of probes
is essential for the future security systems. In a certain sense, as botnets represent
a distributed attack infrastructure, a distributed defense infrastructure is needed.
The standard approach to distributed monitoring has usually been based on a set
of probes exporting raw data (be them sampled packets or Netflow/Ipfix reports)
to a central collector which would perform the actual processing. However, such
an approach will hardly scale with the constant growth of internet traffic and the
increasing need for complex analysis applications. In addition, privacy–preserving
legislation prevents indiscriminate export of traffic–related data. For these reasons,
a distributed overlay of smart monitoring nodes, which can be able to perform in–
network processing and correlation, seems to be the right path to follow while de-
signing the future distributed monitoring systems. In this chapter, we contribute to
such a research field with several novel proposals. In section 5.1 we propose an in-
frastructure for distributed correlation of cross–protocol events. Such an architecture
is based around the use of probabilistic data structures for exporting a compressed
summary of the observed data. In section 5.2, instead, we propose a distributed coor-
dination infrastructure whose goal is to assign a subset of the traffic to be monitored
to each of the probes in an overlay. This allows to avoid duplicate measurements
(which would, in turn, bias the monitoring results) and, at the same time, to optimize

245

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

the utilization of the probes’ capabilities. Finally, in section 5.4 we propose an algo-
rithmic solution to the duplicate prevention problem: indeed, we propose a hybrid
data structure which implements the functionality of a sketch while automatically
discarding duplicates. We show how such a structure can be used to implement a
distributed anomaly detection system with no need for a coordination system.

5.1 Crosstalk: A Scalable Cross-Protocol Monitoring Sys-
tem for Anomaly Detection

Monitoring large networks in order to detect such anomalies is inherently difficult
for several reasons. First, many of these anomalies require cross-protocol correlation
in order to be detected. Botnets, for example, often use several protocols to coordi-
nate activities and to carry out attacks (e.g., IRC for control and SMTP to send out
spam) [199][200]. Another example where cross-protocol detection is needed is VoIP,
since calls tend to be split into signaling and media traffic, as is the case with SIP and
RTP.

In addition to cross-protocol correlation, monitoring needs to be done in a dis-
tributed fashion, since traffic from a particular attack or a mis-configuration may
cross different monitoring points in the network. Making matters more difficult is
the relentless growth of IP traffic volume, nearly doubling every two years [201];
this growth raises serious scalability issues when designing a system that not only
needs to monitor large quantities of traffic in real-time, but also to aggregate results
in order to provide network-wide anomaly detection.

In this section we introduce Crosstalk, a scalable architecture that gathers data
from a potentially large set of distributed monitoring probes, and performs cross-
protocol correlation to detect network anomalies. While previous work has looked
into the area of cross-protocol detection [202][203], it has focused on single-point so-
lutions, and so did not scale nor could it correlate attack traffic traversing more than
one monitoring point. In [204] the authors implement a distributed system, but its
evaluation does not show how it would scale under heavy load and a large num-
ber of monitoring probes. SDIMS [205] presents a scalable infrastructure leveraging
Distributed Aggregation Trees (DATs), but again does not evaluate its performance
under heavy load nor does it look at ways of reducing messaging and data transmis-
sion overheads.

As mentioned, several anomalies can be detected using cross-protocol correla-
tion. For the purposes of evaluating Crosstalk’s scalability and performance, we
pick one point in this application space and focus on SIP-based VoIP attacks.

5.1.1 Crosstalk’s Architecture

Crosstalk’s architecture consists of three main features that allow it to perform dis-
tributed detection in a scalable way: leveraging Distributed Aggregation Trees (DATs),
taking advantage of probabilistic data structures (e.g., Bloom filters), and using a
novel mechanism called backtracking (BT).

246

5.1 Crosstalk: A Scalable Cross-Protocol Monitoring System for Anomaly
Detection

(a) Chord fingers for all nodes to
node N24.

(b) Same Chord fingers, this time
shown as a tree.

Figure 5.1: Example of a Distributed Aggregation Tree built on top of Chord with
node N24 as the root.
5.1.1.1 Distributed Aggregation Trees

The simple approach of exporting data from several monitoring probes to a central-
ized location clearly does not scale. In order to cope with this scalability issue, efforts
both in the research and standardization communities have focused on creating tree-
based hierarchies, whereby monitoring probes export measurements to intermediate
nodes called mediators. These in turn perform some sort of data reduction operation
(e.g., aggregating packet counts) and export the results up the tree hierarchy. In the
final step the root, which is a special mediator called a collector, stores the aggregated
results.

Ideally we would like to have a way of deriving such a tree-based topology dy-
namically in order to adapt to traffic conditions. This is precisely the goal of DATs,
which create this structure on top of a peer-to-peer network such as Chord [206], thus
providing the best from both worlds: the scalability (and resilience) of p2p networks
with that provided by the aggregation mechanism of a tree structure.

The basic insight behind a DAT is that Chord’s fingers already provide a tree
structure. In order to illustrate this, figure 5.1(a) shows a regular Chord network
with dotted lines representing the path from each node to node N24 (perhaps the
responsible node for a particular key); figure 5.1(b) then shows these same connec-
tions but this time drawn as a tree. As can be seen, for any given key, Chord naturally
builds a tree rooted at the node responsible for that key. In this way, each key has
its own DAT, with all the DATs sharing the same peer-to-peer infrastructure. Within
each DAT, intermediate nodes (i.e., all nodes except the leaves of the tree can aggre-
gate data as it travels towards the root, thus providing scalability.

5.1.1.2 Probabilistic Data Structures

Clearly nodes in the DAT will need to export information about the monitored data,
and this will consume bandwidth. Another consideration for real-time monitoring

247

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

and detection is being able to perform the cross-protocol correlation quickly. To
achieve both of these goals we rely on probabilistic data structures, and more specif-
ically Bloom filters (BFs)1.

The details of what a Bloom filter represents are application-specific, but gener-
ally we use one filter per protocol. For instance, in the case of VoIP attacks presented
later in the section, we use one filter for SIP traffic and another one for RTP, with an
entry in a filter denoting a SIP identifier such as the SIP dialog id.

This compressed representation of the data consumes little bandwidth when trans-
mitted, and it allows us to perform aggregation and correlation (since they are based
on fast bitwise operations) very quickly. Probabilistic data structures do carry a cost
in the form of false negatives/positives; next we introduce a mechanism to deal with
this and in subsection 5.1.3 we evaluate their impact.

5.1.1.3 Backtracking

While some applications might be content to only receive the summarized data from
a DAT’s collector, others will use such summarized data as a trigger for retrieving
more detailed information (e.g., packet headers) at the monitoring probes, perhaps
to determine the cause of the trigger. In addition, Bloom filters carry a low but non-
negligible probability of false positives, and so we need a way to verify whether a
result is valid or just a false positive.

In order to accomplish these goals we introduce a mechanism called backtracking.
The idea behind it is simple: when exporting Bloom filters to nodes in the DAT, keep
a copy of them locally so that the system can track back to the original probes that
monitored the traffic.

Figure 5.2 shows the process in greater detail. Probes P0 and P3 monitor traffic
and export data about it in the form of Bloom filters, depicted as a set of squares
with each square representing a bit in the filter (note that the figure is simplified for
explanatory purposes: normally an entry in the Bloom filter would use up several
bits, and more than one Bloom filter would be used to represent the protocols to be
correlated). In addition, probes, as well as mediators, keep a local copy of exported
Bloom filters, shown in the figure in grey. As the exported filters travel up the tree,
mediators perform a bitwise operation to combine the filters, which eventually reach
the collector C.

Upon receiving all the combined data, C correlates Bloom filters from different
protocols and, depending on the application, triggers a backtracking request to all
its immediate mediators, in this case M4 and M5. The request includes the collec-
tor’s Bloom filter (shown in white), which the mediators use to compare it with their
locally stored state by performing a bitwise operation: if the number of set bits in
the resulting filter is higher than a user-defined threshold, the backtracking request
is propagated to all of the mediator’s children; otherwise, no relevant probes exist
in this area of the DAT and the backtracking process finishes. Eventually the back-
tracking message arrives at the probes, in this case P0 and P3. In subsection 5.1.3

1While Crosstalk can function with more advanced probabilistic data structures such as sketches,
Bloom filters are simpler and provide all the necessary mechanisms.

248

5.1 Crosstalk: A Scalable Cross-Protocol Monitoring System for Anomaly
Detection

Figure 5.2: Example of backtracking. Each set of squares represents a Bloom filter.
A dark Bloom filter represents stored state, while a white one information sent with
the backtracking request. Here the matching is done using a bitwise “AND”.

we provide an evaluation of the costs associated with this mechanism and show its
applicability even in large networks.

5.1.2 Application: VoIP Attack Detection

In order to evaluate the performance of Crosstalk, we implemented an application
over it aimed at detecting SIP-based VoIP attacks. Several types of attacks on SIP
and its related media protocol, RTP, exist. In [207], for example, the authors describe
billing frauds whereby a legitimate host is sent a fake SIP BYE message causing its
call to be hijacked so that the attackers are using the operator’s resources while the
victim is being billed for the communications. The work in [202] describes an at-
tack targeted at fooling the billing system into thinking a call is over by prematurely
sending a SIP BYE message while keeping the corresponding RTP media traffic go-
ing. Further, SIP communications are also vulnerable to Denial-of-Service attacks
such as BYE and CANCEL attacks, as well as call hijacking based on fake REINVITE
messages [204].

The common thread among all of these attacks is that the RTP session keeps flow-
ing (at least in one direction) even though the SIP control session has been torn down
or redirected. As a result, Crosstalk can be used to detect such attacks by detecting a
live RTP flow corresponding to a recently terminated (or redirected) SIP session. Af-
ter this detection, backtracking can be used to reveal the actual nature of the anomaly,
to pinpoint the malicious users, and to discard false positives. We use the remainder
of the subsection to describe the application’s implementation details, and evaluate

249

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

its performance in the next subsection.
Our attack detection application works as follows: each of the probes monitors

all the ongoing SIP and RTP traffic. The SIP messages are parsed and, for each call,
the two end-points of the media traffic are located by examining the SDP data; as for
the RTP traffic, the two end-points simply correspond to the source and destination
addresses of the messages.

Our method assumes the probes to synchronously and periodically export their
probabilistic summaries of the monitored traffic. Thanks to the large time granular-
ity involved in voice traffic (seconds), an offset of tens of milliseconds among the
probes’ clocks is certainly acceptable; consequently, the probe synchronization re-
quirement can be simply met by using protocols like NTP, with no need for special-
purpose hardware.

The monitored data is used to fill two Bloom filters:

• A Bloom filter for keeping track of the end-points of the media traffic corre-
sponding to SIP calls that have been terminated (or redirected) within the last
measurement period.

• A Bloom filter for keeping track of the end-points of the RTP sessions that have
been terminated (or redirected) within the last measurement period.

Clearly, the hash functions associated with these BFs must be the same so that the
RTP and SIP endpoints associated with the same call are hashed into the same bit
positions. Once these BFs are created, they are exported to the nearest mediator (i.e.,
the parent of the probe in the DAT). The mediator then joins all of the SIP BFs and
all the RTP BFs received from its sons by performing a bitwise “OR”, thus obtaining
two summarized BFs that it forwards to its own mediator. Each mediator along the
way caches a copy of the last BFs it has sent up the DAT in order to support possible
backtracking requests.

The detection of the anomalous behavior is achieved by a node in the DAT per-
forming a bit-wise “XOR” of the RTP and SIP BFs: if two bits in the same position are
different, that means that either the data stream or the control stream have not been
terminated. In that case, all of the node’s children receive a backtracking request
which includes the indices of the unmatched bits (i.e., the set bits that appeared in
one BF but not the other). Each intermediate node then checks such bits against its
cached aggregated BFs, and, if at least one among those is set, it propagates the BT
request to its children. Such a procedure is repeated recursively until all the probes
which have logged relevant information are reached.

Of course, collisions with other calls in the BFs may prevent the detection of such
an event (a false negative); however, as we will show in the following subsections,
the system can be dimensioned in order to keep this probability arbitrarily low. On
the other hand, the false positive rate is almost negligible for this system: as collisions
on the BFs cannot generate false alarms, these events can happen only in very rare
cases:

• When, upon detection of an actual anomalous event, the backtracking requests
reach some probes which did not log relevant information

250

5.1 Crosstalk: A Scalable Cross-Protocol Monitoring System for Anomaly
Detection

• When the terminations of the media and control flows happen so close to the
boundary between two measurement intervals that the two events are recorded
in different time windows.

In both cases, false alarms are easily spotted: in the former, the post-event analy-
sis (perhaps looking at logs) allows to discard pointless requests, while in the latter it
is enough to match two adjacent time windows. We point out that, in case a system
cannot tolerate any missed detections, a minor modification to our system allows us
to fulfill this requirement: use the RTP BF to record the end-points of the ongoing
(instead of those of the terminated) media flows, and detect anomalies by looking
for matching bits between the two aggregated BFs by performing a bitwise “AND”;
this change comes at the the cost of increased utilization of network resources (larger
BFs are in general needed).

5.1.3 Evaluation
In this subsection we provide extensive simulation results to show the performance
of Crosstalk, and in particular that of the VoIP attack detection application. Please
note that throughout this subsection we use the term report to mean the Bloom filters
exported between probes and mediators as a result of the monitoring and aggrega-
tion process.

5.1.3.1 Setup

In order to assess the performance of our solution, we evaluated several performance
parameters through extensive simulations. In greater detail, we extended the Over-
sim overlay network simulator [208] by implementing a new application module
with Crosstalk’s basic functionality and which runs on top of the Chord.

The input to the simulation consists of Call Data Records (CDRs), in order to
match the format used by our VoIP data set (a CDR is a short record of a VoIP com-
munication, including fields like caller, callee, and call duration). To have control
over their distribution, CDRs are fed to the simulated monitoring probes by a cen-
tralized CDR dispatcher module: each node is assigned a given range of the overall
hash ID space and each CDR is handed over to the responsible node (based on its
source address).

In order to simulate the fact that RTP and SIP traffic for the same call may traverse
different paths, two separate copies of the same CDR, representing in turn the RTP
and SIP traffic associated with a given call, are assigned to two distinct probes by
using two independent hash functions. Such a choice is rather conservative, since
in a significant fraction of the real cases, the two traffic streams are likely to follow
the same path, but this approach is still useful to show that our system can cope
with even this extreme case. It is worth noting that the simulated probes are actually
nodes on the DATs, meaning that they can act as probes for one key but as mediators
(and even collector) for others simultaneously.

Regarding CDR generation, we took two approaches. First, we generated CDRs
randomly by setting the timestamps and the call durations according to a Poisson
process (such a simple model has been extensively used in the field of telephone

251

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

traffic measurement). The purpose here was to be able to effectively tune and change
the simulation parameters to show the performance of the system. In the second
approach we relied on an extensive data set gathered from a large VoIP operator in
order to demonstrate Crosstalk’s applicability to a real world scenario. In both cases
we modified the CDRs at a certain rate (set as a percentage of the total CDRs) in
order to simulate malicious calls.

5.1.3.2 Performance Analysis

In this subsection we present simulation results based on generated CDRs in order
to assess the system’s performance and scalability. Crosstalk’s VoIP application de-
pends on a number of different parameters:

• Bloom filter size, which affects several factors such as the missed detection
rate, the bandwidth consumed and how much state nodes in the DAT keep.

• The call rate, in other words, how much traffic the system needs to monitor,
export, and correlate.

• The measurement interval, which determines how long the probes keep data
locally before exporting (longer intervals result in lower overheads but increase
the detection delay).

• The anomaly rate, or percentage of malicious calls, which increases the costs
associated with backtracking requests.

• The number of probes, equal in our case to the number of nodes in the p2p
system, affecting the DAT’s topology and therefore the messaging overhead,
the amount of aggregation, and the detection delay.

Bloom filter size and call rate: For the first experiment we took a look at the first two
parameters and their relationship to false negatives and positives. In other words,
given a certain call rate, how would an operator deploying Crosstalk dimension the
Bloom filter size (which affects things like bandwidth consumption) so that the false
negative and positive rates are relatively low? To this end, consider that missed
detections (i.e., false negatives) happen when a collision in one BF causes a match
with a “true” set bit in the other BF, resulting in the “XOR” matching operation to
return 0 (the misdetection). Because the cause is the collision within a BF, all the
well-known results about BF performance evaluation and dimensioning apply to our
system. In particular, as the number of keys in the BFs equals the call rate λ times
the measurement period T, the missed detection (md) probability can be expressed
as:

P(md) = (1− (1− 1
M

)
KλT

)K ∼ (1− e−
KλT

M)K

where M stands for the BF size (in bits) and K for the number of hash functions
(which is set to an optimal value depending on the other parameters). In order to di-
mension the BF size for a given missed detection probability, the following inequality

252

5.1 Crosstalk: A Scalable Cross-Protocol Monitoring System for Anomaly
Detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800 900 1000

M
is

se
d

de
te

ct
io

n
pr

ob
ab

ili
ty

Call rate (calls/sec.)

Expected M=12000
Expected M=36000
Measured M=12000
Measured M=36000

Figure 5.3: Measured and expected missed detection probabilities for different call
rates and BF with sizes of 12,000 and 36,000 bits.

can be leveraged:

M ≥ λT log2(e) log2(
1

P(md)
)

As for the false positives, they are mainly due to backtracking (BT) messages reach-
ing probes which did not log any relevant event. However, since BT requests are
triggered only when an actual anomaly is detected, the probability of such events
(an anomaly happening and a request reaching a wrong probe) is definitely low.
During our simulations we never observed more than a dozen such events, even
when generating hundreds of thousands of calls.

In order to verify this model’s accuracy, we ran simulations to evaluate the missed
detection probability for two different BF sizes and call rates ranging from 10 to 1,000
calls per second, plotting the measured results against the model’s expected values
(see figure 5.3). As shown, the model can, to a fairly high degree, predict the actual
system behavior.

To get a feel for the system’s performance we rely on this model and on our CDR
database, which shows a peak call rate well below 100 calls per second. Even if we
assume that since more and more users are migrating from PSTN to VoIP such a fig-
ure will increase in the future by an order of magnitude, our system can handle the
resulting traffic volume (1,000 calls/sec.): exporting data every 10 seconds and us-

253

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

ing 17KB-wide BFs yields a target missed detection probability of 10−3, while using
34KB-wide BFs yields a target missed detection probability of 10−6. For a measuring
infrastructure made up of 1,000 probes the total reporting traffic adds up to only few
MB/sec.
Measurement interval: If the BF size does not vary, a longer measurement period
implies a larger number of keys in the BF, and, in turn, an increased missed detection
probability. On the other hand, of course, this involves a lower bandwidth consump-
tion, as data summaries are exported less frequently. Depending on the operational
constraints, the previously presented mathematical model allows to find out a good
trade-off; we do not present more extensive results here due to space constraints.
Anomaly rate: The next parameter we looked at was the anomaly rate, and in par-
ticular how it affects the costs related to backtracking (BT). Backtracking is triggered
by either a detected anomaly or a false positive. Assuming a well-dimensioned sys-
tem with a low false positive rate (e.g., less than 1%) and no anomalies, simulation
results show about an order of magnitude difference between export messages and
BT messages.

Arriving at more precise figures is difficult since the actual number of backtrack-
ing messages generated depends on the number of probes which have to be reached
by a BT request and on the topology of the tree. Having said that, we ran a simula-
tion to get a feel for the effects of the anomaly rate on the system, and in particular
the cost of backtracking (see figure 5.4).

The figure shows that, unless a very unrealistic scenario is assumed (a network
where one in ten calls is malicious), the fraction of BT messages is small (usually
an order of magnitude smaller) with respect to the number of reports, which proves
that the BT mechanism can locate the relevant probes without flooding the DAT with
messages. Further, the behavior of the system improves as the number of nodes
increases.

These figures can be even further improved by reducing the size of each BT mes-
sage. Observe that the Bloom filter obtained through a bit-wise “XOR” of the aggre-
gated SIP and RTP reports must have a very limited number of set bits (in fact, the
number of such bits should be lower than the number of malicious calls times the
number of hash functions), which lends itself to compression. In order to effectively
compress such a “sparse” bitmap, it is sufficient to include the indices of the set bits
within the BT message: the resulting message size would be roughly some dozens of
bytes, which is negligible when compared to the bandwidth consumed by the report-
ing messages. Even more efficient compression schemes for sparse bitmaps can be
adopted: Fastbit [209] is just an example of a technique achieving good compression
while still allowing bitwise operations to be performed over the codified data.
Number of nodes: The number of probes does not affect the accuracy of our sys-
tem (that, in fact, depends on the overall number of monitored calls) but rather the
aggregation and backtracking delay and the overall bandwidth consumption. The
former depends on the depth of the tree, which, in turn, grows logarithmically with
the number of probes. On the other hand, the overall bandwidth consumption due
to the report messages grows linearly with the number of probes (each additional
probe corresponds to an additional edge on the tree, which, in turn, corresponds to
an additional report being transmitted). As for the BT requests, their amount de-
pends on several variables, but we already showed their bandwidth consumption to

254

5.1 Crosstalk: A Scalable Cross-Protocol Monitoring System for Anomaly
Detection

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

B

T
 m

es
sa

ge
s

/ #
 r

ep
or

t m
es

sa
ge

s

maliciuos calls / # total calls

100 nodes
1000 nodes

Figure 5.4: Rate between backtracking and report messages in DATs made up of 100
and 1,000 probes with a varying anomaly rate.

255

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

calls/sec. P(md) P(fp) no. BT/ no. reports
30 0.0014782 0.0000316 0.2585591
34 0.0014215 0.0000632 0.258106
42 0.0033482 0.0000527 0.2986333
41 0.0016393 0.0000632 0.2970421
33 0.0021536 0.0000738 0.2561671
8 0.0000000 0.0000000 0.1249855

1.3 0.0000000 0.0000000 0.024015
0.5 0.0000000 0.0000000 0.0125396

Figure 5.5: Crosstalk’s performance when using real-world data from a large VoIP
provider. Each row represents a different 30-minute time sample in our data set.

be negligible with respect to that of the report messages.

5.1.3.3 Real-World Performance

In the previous subsection we looked at how Crosstalk behaves when varying a
number of different parameters in simulation. To get a sense of how it would per-
form in a realistic scenario we replaced the generated CDRs with those of an exten-
sive data set consisting of more than 100 million CDRs from more than 15 million
users collected over a period of more than 4 weeks. In order to test our system in dif-
ferent traffic scenarios without having to face prohibitive simulation times, we ran
our experiments by using 30 minutes time slots that we sampled out of our complete
database. We assumed a system with 1,000 probes, 4KB BFs, a measurement interval
of 20 seconds, and a (quite conservative) anomaly rate of 3% (see figure 5.5). The re-
sults clearly show that Crosstalk is more than able to cope with this traffic, yielding
very low false negative (md) and false positive rates as well as a negligible number
of backtracking messages with respect to the number of reports. It is worth noting
that while the table lists figures from a few 30-minute time samples in our data set
(one per row), we ran simulations for others and obtained similar results.

5.2 DECON: Decentralized Coordination for Large-Scale
Flow Monitoring

Monitoring at higher granularities than packets, and in particular at the flow level,
certainly alleviates the problem of coping with high traffic volumes. The widespread
use of protocols like NetFlow and sFlow is evidence of the fact that monitoring at the
flow level provides the necessary data to carry out essential network tasks, while at
the same time reducing the load on the devices that gather such data.

While the flow abstraction helps, clearly any sizable network requires several
monitoring probes to have different observation points but also in order to scale to
the large number of flows that go through it. This situation raises the following
question: given a set of monitoring probes and a set of flows going through them,
which flows should a probe monitor at any given point in time? Such a mapping

256

5.3 Related Work

of flows to probes should be done with the aim of maximizing the number of flows
actually monitored, as well as removing redundancies (for example, preventing a
flow to be monitored simultaneously by two or more probes).

In essence this is a coordination problem, and in this section we present DECON,
a decentralized coordination system aimed at tackling it. Because the coordination
happens in a decentralized manner, DECON scales to large numbers of flows and
probes. In addition, the system requires neither topology information nor traffic
matrices, as is the case with other approaches. We present extensive simulation re-
sults that show that despite having a decentralized coordination mechanism, DE-
CON achieves a high degree of coverage (i.e., the number of flows that are actually
monitored) even when faced with a large number of flows, including short-lived
ones.

5.3 Related Work
The problem of coordinating flow monitoring tasks among a set of probes was also
tackled in CSAMP [210]. Unlike DECON, CSAMP uses a centralized decision point
which knows both the routing state and the traffic matrix of the network, and that
is in charge of periodically computing the subset of flows each monitoring probe
is responsible for. While sharing similar goals as CSAMP’s, our system achieves
them in a distributed, fault tolerant, and more scalable architecture with no need
for detailed information about the network. Another solution in this space [211]
suggests that monitoring probes use Bloom filters and a gossip protocol in order to
exchange information about which flows they are monitoring, and thus coordinate
their activities. While decentralized, this approach suffers from serious scalability
problems, since the messaging overhead of a gossip protocol does not scale well
with the number of probes nor with the number of flows to be monitored.

In [212] the authors propose a technique for choosing the monitoring points and
their associated sampling rates according to optimality criteria. Unfortunately, the
approach requires a-priori knowledge of the network routing state and does not ad-
dress the issue of duplicate measurements (the authors assume that duplicates can
be detected at the collector). The work in [213] proposes a double-hash based ap-
proach whose purpose is to ensure that the same packets are monitored by all of the
probes, in order to provide multi-point measurements. Although this can be also
achieved by our scheme, the reverse is not true: a double-hash based schema cannot
ensure that every flow is monitored only once, unless the path of each flow is known
beforehand.

5.3.1 DECON’s Architecture
DECON’s architecture is in charge of making decisions about which monitoring
probes in the network should monitor which set of flows going through them. The
aim is to spread the load across the available resources in order to increase cover-
age, which is the number of flows actually monitored during a certain time period.
Further, DECON achieves this goal in a decentralized way, without the need of cal-
culating traffic matrices nor having knowledge of network topology.

257

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

Figure 5.6: DECON’s architecture. Monitoring probes (P) send reports about flows
to the rendez-vous overlay, which then decides which of the probes seeing a flow
should monitor it.

To achieve this, DECON relies on a peer-to-peer network called the rendez-vous
overlay (see figure 5.6). When a new flow arrives in the network and goes through a
set of monitoring probes (P0, P1, P2 and P3 in the figure), each probe computes the
flow’s hash1. Each probe then sends a small report to the node in the overlay respon-
sible for the value resulting from the hash, called a rendez-vous point (RP). The RP (R7
in the example) receives messages from all probes seeing a particular flow, and de-
cides which of these (P2) should do the actual monitoring; it then sends messages
back communicating the decision. For negative decisions, probes stop monitoring
the flow and remove any state associated with it.

Clearly, a number of strategies are possible when deciding which probe should
monitor the flow. Perhaps the simplest one is first-fit, where the RP assigns the flow
to the probe whose message arrives first, a likely less-than-optimal strategy that has
the advantage of reducing the decision delay (the time between when a flow is first
seen at a probe and the decision message arriving at that probe). A more advanced
strategy is best-fit, in which probes send a metric in the message reflecting their cur-
rent load (e.g., the current number of flows being monitored, CPU utilization, etc),
and have the RP choose the least-loaded probe as the one that should monitor the
flow. This strategy spreads the monitoring load better across the probes, but in-
creases the decision delay, since the RP now has to wait to make sure that all reports
from probes seeing a flow have arrived before making a decision. In subsection 5.3.2
we evaluate these two strategies, leaving more advanced strategies as future work.

DECON’s decentralized decision process as well as its reliance on a p2p overlay
allows it to scale to large networks while being resilient to failure. In addition to
this, DECON’s coordination mechanism has a couple of other beneficial features.
First, the system can easily cope with flows changing their path through the network.

1The hash we used is based on the flow 5-tuple <src/dst IP address, src/dst port and protocol ID>,
but any other flow definition can be used.

258

5.3 Related Work

Suppose that in figure 5.6 the path changed so that the flow went through P5 instead
of P2. In this case, P5 would send a message to R7 telling it that it has seen a “new”
flow. Because R7 keeps state about flows and its previous decisions, it knows that
this is not a new flow. As a result, it will send a message to P2 to ensure that it is
still seeing the flow. If it is, it may evaluate whether P5 is a better choice (e.g., less
loaded) or decide to do nothing, keeping P2 as the “active” probe; if, on the other
hand, P2 no longer sees the flow, R7 will evaluate which of P0, P1, P3 and P5 is the
best choice to monitor the flow.

The system is also resilient to losses: if a probe completely misses a flow the
responsibility of monitoring it will be assigned to another node. In order for a flow
to be completely ignored, each of the probes on its path must be unable to monitor
it: as we will show in the evaluation subsection, this happens seldom even with high
network loads.

The second feature of the system is that, by nature of the decision process, it pre-
vents undesired duplicate monitoring. It may, of course, sometimes be desirable to
monitor a flow more than once (for example, to measure performance statistics at
various points in the network). One of DECON’s strengths is that it can accommo-
date a number of different decision strategies in order to suit different monitoring
needs.

As an additional feature, our system can easily support flow sampling, as Csamp
does. As opposed to per-packet sampling, such a sampling technique involves mon-
itoring a given flow with a certain probability. This can be accomodated by DECON:
the RP point can, with some probability, decide whether or not the probes detecting
a flow will monitor it, thus implementing random sampling.

5.3.1.1 Batch Optimization

In order to reduce messaging overhead, reports can be batched. Since each probe
accesses the rendez-vous overlay through a single ingress node, it is possible for the
probe to bundle these reports into a single report, and send this batch report to the
ingress node upon expiration of a timer (the reports consist of very little information,
so it is possible to store many of them in a single packet). Upon receival, the node
parses the reports and sends each to the responsible RP. This same optimization can
be implemented in order to reduce the number of response messages directed to a
monitoring probe: the RP sends the response messages to the corresponding ingress
points for each reporting probe; the ingress point then can, in turn, bundle the re-
sponse messages into a single batch response.

As a result of this mechanism, the number of exchanged messages outside the
overlay would then depend only on the batching period and no longer on the num-
ber of flows in the network. Further, this mechanism keeps most packets related to
reports within the overlay, an infrastructure which has to fulfill only the coordina-
tion task and that can be easily scaled. Of course, such an optimization may increase
the decision delay, as the reports are queued waiting for a batch message to be sent;
however, we will show in the evaluation subsection that the overall performance is
only marginally affected.

259

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

5.3.2 Evaluation

We conducted extensive simulations to show that DECON can scale to a large num-
ber of flows. In this subsection we describe the simulation setup, the simulation
results, and performance results from a prototypical monitoring probe that show
that even commodity-hardware can fulfill DECON’s requirements.

5.3.2.1 Simulation Setup

In order to assess the performance of our solution we implemented a special-purpose
discrete-event simulator which models all the variables that affect the behavior of
our system even under heavy traffic load. We simulated several network topologies
composed of hundreds to thousands of nodes; to this end, we leveraged the simple
and well-known Barabasi-Albert model [18], which allows to build huge scale-free
graphs with a preferential attachment procedure. Even if such a model does not
exactly represent all of the topological features of a real network, it nonetheless re-
produces a topology where a few hub nodes are crossed by a large number of paths,
as is common in real networks.

In order not to bias our results by assuming a particular probe placement strategy,
we assumed each node in the network to be a probe. Regarding link delays, we gen-
erated them randomly within a range of values that spanned up to ten milliseconds;
we chose such a range of values after observing delay statistics published by the
Internet2 network observatory (such values usually never exceed a few dozen mil-
liseconds). For the communication between probes and the overlay we used larger
latencies of up to 20 milliseconds, since we assumed that reports could cross several
links before reaching the overlay. As for the overlay, we assumed the rendez-vous
points to be organized in a Chord ring, where the delays for each hop are in the order
of a few milliseconds.

We generated flows by picking up a random pair of end-points within the gener-
ated topology and by assuming a Pareto-distributed duration (the simplest mathe-
matical model for a heavy tail distribution), with mean values of around 30 seconds.

However, by examining the results of experimental runs performed with differ-
ent average durations, we found out that such a parameter does not significantly
influence the peformance, as long as it is in the order of seconds (i.e. much larger
than the network latencies). A study from a few years back confirms this, claiming
an average tcp session to be between 12 and 19 seconds long [214].

We made such a choice after analyzing traffic traces published by the Mawi
group; such traces were captured on a trans-Pacific line in early 2009, thus repre-
senting up-to-date samples of real backbone traffic. As for the number of flows, we
once again relied on Internet2 data which had about 9 million flows over a 5 minute
time span, or about 30,000 flows/sec. Since we would like our system to scale up to
very large topologies, we actually simulated much larger values (hundreds of thou-
sands of flows per second over the whole topology).

260

5.3 Related Work

5.3.2.2 Simulations

We used the simulator to evaluate several performance parameters of the system.
One of the most relevant is the achievable flow coverage, in other words, the per-
centage of flows that can be monitored with a fixed amount of resources (we assume
that each probe can monitor up to a certain limit of flows at the same time). In
greater detail, we simulated a network with 300 monitoring probes, each of them ca-
pable of monitoring up to 10,000 flows. We evaluated the flow coverage that can be
achieved by using our coordination scheme under the two flow assignment strate-
gies mentioned in subsection 5.3.1: first-fit and best-fit. Further, in order to more
clearly illustrate DECON’s impact, we ran simulations to see what happens when
no coordination is used at all; the results for different traffic loads are shown in fig-
ure 5.7. It is evident that, while without coordination the number of missed flows
grows quickly with the network load, DECON keeps these misses almost constant
and significantly lower. In particular, the best-fit strategy, as expected, achieves the
best performance when faced with very high flow rates.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 50000 100000 150000 200000 250000

N
um

be
r

of
 n

on
 m

on
ito

re
d

flo
w

s

Overall traffic load (flows/sec.)

first fit
best fit

no coordination

Figure 5.7: Number of total flows actually monitored without coordination and us-
ing two different coordination strategies.

Besides improving flow coverage, our solution prevents two or more probes from
unnecessarily monitoring the same flow (DECON can of course also allow a flow
to be observed at several probes when needed). In figure 5.8 we show the average
number of times a single flow is measured when no coordination mechanism is used:
even if such a figure improves with higher traffic rates (there are simply not enough
resources for duplicate measurements) it is clear that, on average, even under high

261

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

load, each flow is wastefully monitored more than once.

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 50000 100000 150000 200000 250000

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 e
ac

h
flo

w
 is

 m
on

ito
re

d

Overall traffic load (flows/sec.)

Figure 5.8: Number of times a single flow is monitored without coordination.

We also evaluated the ability of our system to balance the burden of the monitor-
ing activity among all the probes. Load balancing is not trivial to achieve because
some nodes in the topology act as hubs, and, without a proper coordination scheme,
are likely to be overloaded. Figure 5.9 shows the histogram of the average number
of monitored flows for each probe in a scenario with 200 probes, each one able to
concurrently monitor up to 10,000 flows and with a rate of 190,000 new flows per
second over the overall network. Again, we plot the results achieved by the two
different allocation strategies and those obtained with no coordination.

As expected, the best-fit scheme achieves the best balance among all the probes
(it has the highest number of probes with a similar number of flows), while, with the
first-fit allocation strategy, a small number of the probes (likely the hub nodes) are
overloaded. With no coordination scheme, the mean resource occupation is much
higher and a large fraction of the monitoring probes is always overloaded.

In order to provide a way of dimensioning our system, we ran a series of simula-
tions without imposing any resource limitation on the probes (in terms of number of
flows monitored), measuring how many resources would be needed on the probes
in order to monitor all the traffic with no (or negligible) losses. More specifically,
we computed the 99-percentile of the number of monitored flows with a varying
number of probes (reaching up to 1,500 probes) and with a fixed load of 100,000 new
flows/sec. Further, we used a best-fit allocation strategy, since, without buffer limi-
tation, first-fit would simply allocate a flow to the first probe reporting it. The results

262

5.3 Related Work

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 p

ro
be

s

Average number of monitored flows

best−fit
first−fit

no coordination

Figure 5.9: Load-balancing histogram showing the number of flows each probe has
to monitor with and without coordination.

are plotted in figure 5.10 and show that, by leveraging a large number of measure-
ment probes and a proper coordination scheme, DECON can monitor high traffic
volumes while requiring a small amount of resources from each probe. In the next
subsection we will show that such a resource constraint can be met by using cheap
commodity hardware.

Another important parameter that we evaluated is message overhead (i.e., the
number of messages that probes send to the coordination overlay). In particular,
we computed the average number of messages per probe when having 200 and 400
probes and with different number of flows; the results are plotted in figure 5.11. As
shown, the number of generated reports is well below 10,000/sec even for 180,000
flows. Since each report has a very small payload, this number corresponds to a rate
of less than 1 MB/s.

We also extended our simulator in order to support the batching optimization de-
scribed in the previous subsection. In particular, we tried to evaluate the impact on
the overall flow coverage that the additional delays incurred by this scheme had. To
this end, we ran several simulations with different traffic loads and different batch-
ing periods. In each scenario, we evaluated the ratio between the number of missed
flows with batching and the number of missed flows without batching for varying
time periods (see figure 5.12). As expected, the performance gets worse with increas-
ing batching periods, as responsiveness is being traded-off against lower overhead.
However, we point out that even for fairly large batching periods (0.1 seconds cor-
responds to 10 messages per second per probe) the loss is relatively small, and this
figure only improves with higher numbers of flows.

263

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 m

on
ito

re
d

flo
w

s
(9

9%
 p

er
ce

nt
ile

)

Number of probes

Figure 5.10: 99-percentile of the number of monitored flows per probe for a varying
number of probes and a fixed load of 100K flows/sec.

5.3.2.3 Monitoring Probe

As shown in the simulations, DECON puts certain state requirements on monitoring
probes, more specifically in terms of how many flows a probe has to keep track of
at any given point in time. In order to demonstrate that these are not unreasonable,
we built a simple monitoring probe using the Click modular router. Click is based
around the concept of elements, which are small units that perform different kinds
of packet processing such as looking up an entry in a forwarding table, responding
to ARP queries, or queueing packets; a Click configuration file then specifies how
elements should be connected to each other.

To implement the probe, we created a new Click element called FlowMon. The
element is based around a hash, and keeps track of all flows that the probe is in
charge of, updating simple statistics about them such as packet and byte counts.
While the probe has timeout counters for detecting flow expiration and for when a
decision takes too long to arrive from a rendez-vous point, we disabled these during
this evaluation in order to test the worst-case performance where flows do not expire
and the probe is responsible for all flows it sees.

In terms of hardware, we used a Dell 2950 with two Intel Xeon X5355 2.66GHz
quad-core processors, 8 GB of main memory and 3 quad-port Intel 82571EB PCI ex-
press network cards. In addition, we used Dell 1950s to both generate and count traf-
fic. Since the Dell 2950 acting as the probe had a maximum of 12 network interfaces,
we connected three traffic generators and three traffic counters to it, as shown in fig-
ure 5.13 (the dell 1950s can generate packets at line rate for all packet sizes out of a

264

5.4 The LogLog Counting Reversible Sketch: a Distributed Architecture for
Detecting Anomalies in Backbone Networks

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s/

se
c.

 fo
r

ea
ch

 p
ro

be

Overall traffic load (flows/sec.)

400 probes
200 probes

Figure 5.11: Average number of messages per probe.

maximum of two interfaces). The aim was to test the performance of the monitoring
probe when faced with a large number of flows of different packet sizes. While our
generators (x86 servers running Click) could send packets at line rate for all packet
sizes, due to memory limitations each of them could only generate 5,000 flows, for
a total of 15,000 flows going through the monitoring probe. With this in place, we
measured the probe’s throughput for different packet sizes while keeping track of
statistics for all of these flows (figure 5.14). As can be seen, even for minimum-sized
packets the probe reaches a very reasonable 2.5Gb/s; this figure quickly ramps up to
the line rate value of 6Gb/s for 200-byte packets and larger. These results show that
the state requirements arising from DECON’s coordination (recall from figure 5.10
a maximum of about 2,300 flows going through any one probe) can be met even by
inexpensive, off-the-shelf hardware.

5.4 The LogLog Counting Reversible Sketch: a Distributed
Architecture for Detecting Anomalies in Backbone
Networks

During the last years, many research groups have focused their attention on de-
veloping novel detection techniques, able to promptly reveal and identify network
attacks, mainly detecting Heavy Changes (HCs) in the traffic volume [215], [216],
[217], [218], and [219].

265

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

R
at

io
 b

et
w

ee
n

m

is
se

d
flo

w
s

w
 a

nd
 w

/o
 b

at
ch

in
g

Batching period (sec.)

20 Kflows/sec.
50 Kflows/sec.

Figure 5.12: Ratio between the number of missed flows with batching and the num-
ber of missed flows without batching.

Figure 5.13: Network topology used to test the probe’s performance. G stands for
generator, P for probe, and C for counter.

Nevertheless, the recent spread of coordinated attacks, such as large-scale stealthy
scans, worm outbreaks, and distributed denial-of-service (DDoS) attacks, that occur
in multiple networks simultaneously, makes extremely difficult the detection, using
isolated intrusion detection systems that only monitor a limited portion of the Inter-
net. Hence, the research efforts are now moving to develop distributed approaches
to solve such an issue [220].

For this reason, in this section, we propose a novel distributed architecture for
the detection of network anomalies in backbone networks. Such architecture can be
seen as a general framework on top of which most anomaly detection techniques can
be implemented.

According to our approach, multiple detection probes, distributed in the back-
bone network, monitor a given portion of the network separately. Such reports are
collected and aggregated by an overlay of nodes (named mediators) that analyzes the

266

5.4 The LogLog Counting Reversible Sketch: a Distributed Architecture for
Detecting Anomalies in Backbone Networks

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t (

in
 M

b/
s)

Packet Size (in bytes)

Figure 5.14: Click monitoring probe throughput performance while monitoring
15,000 flows of different packet sizes.

data and generates the alerts. The working principle is similar to that of the system
described in section 5.1,

In this work, we consider anomaly detection algorithms that analyze traffic vol-
umes, that means that the data collected by the probes are represented by the esti-
mation of the number of traffic flows observed in a given time bin.

Hence, the first problem to be solved is to provide a reliable estimate of such
quantities. This task, that is not trivial when performed over the multi-gigabits links
of a backbone network, has been discussed in several previous works, and the use of
probabilistic data structure (e.g., sketches) has emerged as a standard approach [221].

To effectively solve this estimation step we propose a novel probabilistic data
structure, named LogLog Counting Sketch (LLCS), based on the combined use of
the LogLog Counting algorithm and the k-ary sketches, as detailed in the following
subsections.

In the proposed approach, this task is performed by the distributed probes, that
then forward the computed LLCSs to mediators, which are responsible for aggregat-
ing them. It is worth noticing that, when aggregating these structures at the mediator
level, we have to solve the hard problem of not counting duplicated flows, that are
the flows observed by more than a single probe and thus observed in more than a
single LLCS.

In the following we demonstrate that our distributed architecture is able to ef-
ficiently solve such problem also taking into account some privacy related problem
that can arise in a distributed environment. Finally, we also show that not only is our
architecture able to detect the anomalies but it can also effectively solve the identi-
fication problem (namely identifying the IP addresses responsible for the detected
anomaly) by back-propagating the detection information from the mediator to the

267

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

probes that run an appropriate identification algorithm.

5.4.1 Theoretical Background
In this subsection we present some theoretical background information, necessary to
understand the proposed architecture. Note that we focus on the useful details only,
referring the reader to the provided references for a complete description of both the
LogLog counting algorithm and the reversible sketches.

5.4.1.1 LogLog counting

The LogLog counting is a probabilistic algorithm proposed in [222] as a means for
counting the number of distinct elements in a data set.

The problem can be formalized as follows. Given a multi set M produced starting
from a discrete universe U, we want to estimate its cardinality, that is the number of
distinct elements it comprises.

Like in many similar algorithms, even in this case it can be assumed that a hash
function is available for transforming each element of U into sufficiently long binary
strings (x) producing a “random” set M with cardinality n. Note that the use of hash
functions allows us to obtain strings x with random uniform independent bits.

Given that, let us suppose that the strings are infinitely long, that is x ∈ {0, 1}∞
(this is a convenient abstraction at this stage) and let ρ(x) denote the position of its
first 1-bit. We expect that about n/2k, among the distinct elements of M, have a
ρ-value equal to k.

Thus, the quantity
R(M) = max

x∈M
ρ(x) (5.1)

can be reasonably a rough approximation of log2 n.
To improve the estimate of n, we can divide the elements of M into m groups

(M(j) with j = 1, 2, · · · , m). Typically, m = 2k so that we can use the first k bits
of x to represent the binary index of the group. For each group M(j) the algorithm
computes the parameter R(j), after discarding the first k bits of the strings x ∈ M(j).
Then, the arithmetic mean

1
m

m

∑
j=1

R(j) (5.2)

can legitimately be expected to approximate log2(n/m) plus an additive bias.
Thus, the estimate of n according to the LogLog algorithm is:

E = αmm2
1
m ∑m

j=1 R(j)
(5.3)

where αm is the bias correction factor in the asymptotic limit and can be evaluated
as follows.

αm =

(
Γ(−1/m)

2−1/m − 1
log 2

)−m

(5.4)

268

5.4 The LogLog Counting Reversible Sketch: a Distributed Architecture for
Detecting Anomalies in Backbone Networks

Γ(s) =
1
s

∫ ∞
0

e−tts dt (5.5)

5.4.1.2 Reversible Sketch

The sketch has proven to be useful in many data stream computation applications
[223], [224], [221]. Recent work on a variant of the sketch, namely the k-ary sketch,
showed how to detect heavy changes in massive data streams with small memory
consumption, constant up- date/query complexity, and provably accurate estima-
tion guarantees [225].

However, sketch data structures have a major drawback: they are not reversible.
That is, a sketch cannot efficiently report the set of all keys that correspond to a given
bucket of the sketch.

To overcome such a limitation, [226] proposes a novel algorithm for efficiently
reversing sketches, focusing primarily on the k-ary sketch. The basic idea is to hash
intelligently by modifying the input keys and/or hashing functions so as to make
possible to recover the keys with certain properties like big changes without sacrific-
ing the detection accuracy.

The basic idea is to modify the update procedure for the k-ary sketch by intro-
ducing modular hashing and IP mangling techniques.

The modular hashing works partitioning the n-bit long hash key x into q words
of equal length n/q, that are hashed separately using a different hash function, hdi
(i = (1, . . . , q)). Let us consider that the output of each function is m-bit long. Finally,
these outputs are concatenated to form the final hash value (see Figure 5.15).

δd(x) = hd1(x)|hd2(x)| . . . |hdq(x) (5.6)

Since the final hash value consists of q×m bits, associated with the LLCS columns,
it results w = 2q×m.

Note that the use of the modular hashing can cause a highly skewed distribution
of the hash outputs. Consider, as an example, our case in which IP addresses are
used as hash keys. In network traffic streams there are strong spatial localities in
the IP addresses since many IP addresses share the same prefix. This means that
the first octets (equal in most addresses) will be mapped into the some hash values
increasing the collision probability of such addresses.

To effectively resolve this problem, the IP mangling technique has to be applied
before computing the hash functions. By using such technique the system random-
izes, in a reversible way, the input data so as to remove the correlation or spatial
locality.

The other key point introduced in [226] is the algorithm for reversing the sketch,
given the use of modular hashing and IP mangling. For the sake of brevity, we skip
the discussion of this algorithm, referring the reader to [226] for all the details.

269

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

!""!"!""#######!"!"!"!!#######!""!"!"!#######!"!"""!!#

$!# $%# $&# $'#

"!"# !!"# "!!# ""!#

"!"!!""!!""!#

Figure 5.15: Modular Hashing

5.4.2 System Architecture
In this subsection we present a novel collaborative Intrusion Detection System based
on a distributed architecture.

According to our approach multiple detection probes, distributed in the network,
monitor a given portion of the network separately and report the collected informa-
tion to a set of mediators, which perform partial aggregation and analysis. Such
mediators are part of an aggregation tree, whose root node generates the alerts.

A backtrack mechanism is then used by the mediator to ask the probes for flow
identification. Figure 5.16 depicts the proposed architecture; for the sake of simplic-
ity, only one mediator is shown.

5.4.2.1 System Input

The system input consists of data measuring network traffic gone through a given
probe. Starting from the observed traffic, they produce a periodical report that con-
tains information related to the traffic measured in a given time bin, and consists of a
collection of flow keys: ⟨IP source address, IP destination address, source Port, destination
Port, Protocol⟩.

5.4.2.2 LogLog counting Sketch module

The periodical reports are passed as input to the module responsible for the con-
struction of the LogLog Counting Sketch table (LLCS). This data structure is a three-
dimensional array SD×W×L, where each row d (d = 1, . . . , D) is associated with a
function δd that can assume values in the interval (1, . . . , W) that are associated to
the columns of the array. Note that the two-dimensional substructure SD×W is a
standard sketch table. The third dimension L has been introduced to integrate the

270

5.4 The LogLog Counting Reversible Sketch: a Distributed Architecture for
Detecting Anomalies in Backbone Networks

!"#$

%&'()*+$$
,-.-/0'&$

1)231-45-$

6'4()*$
)/078.+$

+-9$

&'$

::;<$

9&8=-4$

,).)$$
4->'4.$

?<$

!"#$%&'&

@&&

%$().482$

Anomalous
time bin

Anomalous IP

::;<$

9&8=-4$

,).)$$
4->'4.$

?<$

!"#$%&(&

Anomalous IP

6-.A'4B$ 6-.A'4B$

::;<$

9&8=-4$

,).)$$
4->'4.$

?<$

!"#$%&)&

Anomalous IP

6-.A'4B$

*%+,-.#"&

Figure 5.16: System Architecture

LogLog counting algorithm in such sketch table. To this aim, each bucket of the
sketch table is associated with another hash function Hdw that gives output in the in-
terval (1, . . . , L), associated with the layer (depth) of the array. In more detail, let us
see how the different operations necessary for the LLCS construction are performed.
First of all, as far as the the hash functions are concerned, we have chosen to use
functions belonging to the 4-universal hash family1 [227], obtained as:

h(x) =
3

∑
i=0

ai · xi mod p mod W (5.7)

where the coefficients ai are randomly chosen in the set (0, 1, . . . , p − 1) and p is a
random prime number (we have considered the Mersenne numbers).

LLCS is update by using IP mangling and modular hashing techniques, as described
in Section 5.4.1.2.

Thus, by applying such techniques, the system “selects” a bucket S[d][w][·] and
the associated hash function Hdw. Note that, given the structure of the LLCS, each

1A class of hash functions H : (1, . . . , N) → (1, . . . , W) is a k-universal hash if for any distinct
x0 , · · · xk−1 ∈ (1, . . . , N) and any possible v0 , · · · vk−1 ∈ (1, . . . , W):

Prh∈H = {h(xi) = vi ; ∀i ∈ (1, . . . , k)} = 1
Wk

271

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

bucket contains a LogLog counter.
For all the flows that collide in a given bucket the system computes the flow ID,

that is a function of the header fields IP source and destination addresses, source and
destination ports, and protocol. Then it computes the hash function Hdw of the flow
ID and update the LogLog counter according to the algorithm described in Section
5.4.1.1.

Moreover, in parallel to the described LLCS, each probe also constructs a re-
versible sketch (RS) [226], which will be eventually used in the identification phase.
Note that, for making the identification possible, the RS and the LLCS must be real-
ized using the same hash functions.

Once the LLCS has been constructed, it is passed to the mediator that performs
a merging of the LLCSs received by the different probes. To allow this operation, all
the different probes must share the same hash functions.

It is worth noticing that the idea of building two distinct data structures, instead
of a unique reversible version of the LLCS is mainly due to performance consider-
ations and privacy concerns. Indeed, transmitting a reversible version of the LLCS
from the probes to the mediator would imply the transmission of the sketch tables
together with all the list of keys associated to the single buckets. This, on one hand,
would worsen the performance in terms of transmission time and bandwidth usage,
and, on the other hand, would imply the probes to disclose “potentially” private
information (the keys) to the mediators.

5.4.2.3 Detection Phase

The mediator, responsible for the detection phase, combines the information ex-
ported by each probe (related to the same time bin) and constructs a merged LLCS,
M[d][w][l].

In more detail, given the different LLCSs (Sp[d][w][l]; p = 0, . . . , P), constructed
by each probe p, in a given time-bin, the mediator computes M[d][w][l] by applying
a “max-merge” algorithm:

M[d][w][l] = max
p

Sp[d][w][l] (5.8)

This technique implicitly solves the problem of not counting duplicated flows
(that is the flows observed by more than one single probe). Indeed, given the nature
of the LogLog counting algorithm, the resulting aggregated sketch is exactly equiv-
alent to the one that would be constructed in an “ideal” case, in which the mediator
would be able to directly observe all the traffic. This also implies that the estimation
error, due to the probabilistic nature of the used data structure, is not worsened by
the distributed framework, being equivalent to that of a single counter, studied in
[222].

At this point the mediator counts the number of distinct flows that collide in the
same bucket. This task can be solved by applying Eq. 5.3 to each bucket M[d][w][·].

At this stage, by using a classical detection method (e.g. PCA, wavelet analysis,
heavy hitter) the system is able to decide if there are or not anomalous aggregates in
a given time bin. The output of this phase is a binary matrix (A[d][w]) that contains
a “1” if the corresponding bucket is considered anomalous “0”, otherwise.

272

5.4 The LogLog Counting Reversible Sketch: a Distributed Architecture for
Detecting Anomalies in Backbone Networks

Note that, given the nature of the sketches, each traffic flow is part of several
random aggregates (namely D aggregates), corresponding to the D different hash
functions. This means that, in practice, any flow will be checked D times to verify if
it presents any anomaly (this is done because an anomalous flow could be masked
in a given traffic aggregate, while being detectable in another one).

Due to this fact, a voting algorithm is applied to the matrix A. The algorithm
simply verifies if at least H rows of A contain at least a bucket set to “1” (H is a
tunable parameter). If so the mediator reveals an anomaly, otherwise the matrix A is
discarded.

5.4.2.4 Identification phase

In case the mediator reveals some anomalous time bin during the detection phase, it
back-propagates the matrix A[d][w] to the probes.

At this point each probe uses the RS, computed for the anomalous time bin, for
identifying the IP addresses responsible for the anomalies (see [226] for the algorithm
details).

5.4.3 Experimental results

The proposed system has been tested using a publicly available data-set, composed
of traffic traces collected in the Abilene/Internet2 Network [228], that is a hybrid
optical and packet network used by the U.S. research and education community.

The used traces consist of the traffic measured in one week on nine distinct
routers. The traces of each router are organized into 2016 files, each one contain-
ing data about five minutes of traffic (Netflow data). To be noted that the last 11 bits
of the IP addresses are anonymized for privacy reasons; nevertheless we have more
than 220000 distinct IP addresses.

To test the effectiveness of the proposed architecture we have considered three
distinct case:

• case 1: the traces have been analyzed router by router and the obtained results
have been combined all together. This case corresponds to the application of a
centralized approach, where each probe analyzes the traffic independently of
the others.

• case 2: the traces have been processed by the single probes, responsible for the
construction of the LLCSs, then combined together by the mediator. This case
corresponds to our proposed architecture.

• case 3: the traces have been manually pre-processed so as to combine them
all together by eliminating the duplicate flows. This case represents an “ideal”
scenario (not applicable to a real network), where the mediator is able to ob-
serve all the traffic in the network and has been introduced as a performance
benchmark. To be noted that, in this case, the only (statistically bounded) error
is due to the use of probabilistic structures.

273

5. SCALABLE COORDINATION AND CORRELATION ARCHITECTURES
FOR DISTRIBUTED MONITORING SYSTEMS

Case 1 Case 2 Case 3
HHs 6107 767 767
HHs also detected in Case 1 - 765 765
HHs also detected in Case 2 765 - 767
HHs also detected in Case 3 765 767 -

Table 5.1: Experimental Results

Since our architecture is quite general, we have applied a simple algorithm for the
estimation of the Heavy Hitters (HHs) in the number of flows, instead of a complete
anomaly detection algorithm, so as not to bias the results with the performance of the
chosen algorithm. It is also important to highlight that the aim of such experimental
test is to show the differences among the three presented cases, in terms of num-
ber of detected HHs, duplicated HHs, and so on. For this reason, the identification
part, realized applying the algorithm presented in [226], has not been considered, as
essentially out of the scope of this work.

It is worth noticing that the aim of these tests would be to show that not using
a distributed approach (Case 1) leads to detect a huge number of duplicated HHs
(those observed by more than a single probe) together with a certain number of HHs,
that are, in fact, not significant in the network considered as a whole. In addition,
the other main target is also to show that our proposed architecture (Case 2) is able
to almost achieve the ideal situation of Case 3.

Regarding the parameters of the system, in this work, we have used as hash key,
for the modular hashing, the IP destination address and we partitioned the 32-bit IP
addresses into q = 4 words of 8 bits. The outputs of the different hash functions are
3-bit long and are concatenated to form a 12-bit long final hash. The resulting sketch
is a table of dimension D = 16 rows and W = 212 = 4096 columns.

As far as the LogLog counting is concerned, the flow ID is given by the simple
concatenation of IP source and destination addresses, source and destination ports,
and protocol, while L = 8. To be noted that this results in a memory occupancy of
about 20MB that is a reasonable small amount of memory if considering to process
all the traffic going through a backbone network.

Table 5.1 reports the results obtained in the experimental tests. As expected, in
Case 1 the system reveals a huge number of HHs (6107): 765 of these are also re-
vealed in the second and third case, while the remaining 5342 correspond to 3570
repeated detection plus 1772 additive HHs that do not correspond to “real” HHs
(they represent a significant portion of the traffic traversing a given probe, but not of
the whole network traffic).

Regarding Case 2 and 3, we can easily observe that they present exactly the same
behavior, detecting the same 767 HHs, demonstrating that the proposed architecture
(Case 2) is able to achieve the same performance of the “ideal” case (Case 3).

274

Conclusions

This thesis has addressed several technical challenges in the broad field of network
monitoring and measurements. A set of novel tomographic algorithms have been
developed, for inferring both the network topology and the congestion state of the
links along a network path. Several novel algorithms and data structures have been
proposed, in order to speed up packet processing thanks to an optimal exploitation
of the cache hierarchy. The issues involved in designing hybrid systems, made up
of both task specific and general purpose components, have been addressed and
several novel architectures have been proposed. Also, several novel solutions for
leveraging the last–generation commodity platforms in order to speed up network
monitoring software have been illustrated. Finally, distributed systems for building
an overlay of coordinated monitoring probes have been designed.

275

276

References

[1] A. Pasztor and D. Veitch, “The packet size dependence of packet pair like
methods,” 2002. [Online]. Available: citeseer.ist.psu.edu/pasztor02packet.
html

[2] A. Johnsson, B. Melander, and M. Björkman, “Modeling of packet
interactions in dispersion-based network probing schemes,” Tech. Rep.,
April 2004. [Online]. Available: http://www.mrtc.mdh.se/index.php?choice=
publications&id=0706

[3] R. M. Castro, M. J. Coates, and R. D. Nowak, “Likelihood based hierarchical
clustering.” [Online]. Available: citeseer.ist.psu.edu/castro04likelihood.html

[4] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang, “Max-
imum likelihood network topology identification from edge-based unicast
measurements,” in SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMET-
RICS international conference on Measurement and modeling of computer systems.
New York, NY, USA: ACM Press, 2002, pp. 11–20.

[5] H. Meng Fu Shi, “Topology discovery on unicast networks: a hierarchical
approach based on end-to-end measurements.” [Online]. Available: citeseer.
ist.psu.edu/castro04likelihood.html

[6] M. Coates, M. Rabbat, and R. Nowak, “Merging logical topologies using end-
to-end measurements,” in IMC ’03: Proceedings of the 3rd ACM SIGCOMM con-
ference on Internet measurement. New York, NY, USA: ACM Press, 2003, pp.
192–203.

[7] “The ns manual,” 2007. [Online]. Available: http://www.isi.edu/nsnam/ns/
doc/

[8] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM ’88,
Stanford, CA, Aug. 1988, pp. 314–329. [Online]. Available: citeseer.ist.psu.
edu/jacobson88congestion.html

[9] S. Keshav, “A control-theoretic approach to flow control,” Proceedings of the
conference on Communications architecture & protocols, pp. 3–15, 1993. [Online].
Available: citeseer.ist.psu.edu/keshav91controltheoretic.html

277

citeseer.ist.psu.edu/pasztor02packet.html
citeseer.ist.psu.edu/pasztor02packet.html
http://www.mrtc.mdh.se/index.php?choice=publications&id=0706
http://www.mrtc.mdh.se/index.php?choice=publications&id=0706
citeseer.ist.psu.edu/castro04likelihood.html
citeseer.ist.psu.edu/castro04likelihood.html
citeseer.ist.psu.edu/castro04likelihood.html
http://www.isi.edu/nsnam/ns/doc/
http://www.isi.edu/nsnam/ns/doc/
citeseer.ist.psu.edu/jacobson88congestion.html
citeseer.ist.psu.edu/jacobson88congestion.html
citeseer.ist.psu.edu/keshav91controltheoretic.html

REFERENCES

[10] R. Carter and M. Crovella, “Measuring bottleneck link speed in packet-
switched networks,” Boston, MA, USA, Tech. Rep., 1996.

[11] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion
techniques measure?” in INFOCOM, 2001, pp. 905–914. [Online]. Available:
citeseer.ist.psu.edu/479183.html

[12] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi, “Capprobe: a sim-
ple and accurate capacity estimation technique,” in SIGCOMM ’04: Proceedings
of the 2004 conference on Applications, technologies, architectures, and protocols for
computer communications. New York, NY, USA: ACM Press, 2004, pp. 67–78.

[13] K. Lai and M. Baker, “Nettimer: A tool for measuring bottleneck
link bandwidth,” pp. 123–134. [Online]. Available: citeseer.ist.psu.edu/
lai01nettimer.html

[14] http://www.cs.ucla.edu/NRL/CapProbe/.

[15] N. Bonelli, S. Giordano, G. Procissi, and R. Secchi, “Brute: A high performance
and extensibile traffic generator,” in Int’l Symposium on Performance of Telecom-
munication Systems , 2005.

[16] A. Di Pietro, D. Ficara, S. Giordano, F. Oppedisano, and G. Procissi, “Noise
reduction techniques for network topology discovery.” in Proc. of PIMRC 07,
2007.

[17] A. Di Pietro, D. Ficara, S. Giordano, F. Oppedisano and G. Procissi, “Pingpair:
a lightweight tool for measurement noise free path capacity estimation,” in
Proc. of ICC 08, 2008.

[18] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Re-
views of Modern Physics, vol. 74, pp. 47–97, January 2002.

[19] D. Ficara, F. Paolucci, L. Valcarenghi, F. Cugini, P. Castoldi, and S. Giordano,
“The beacon number problem in a fully distributed topology discovery ser-
vice,” in Proc. of GLOBECOM 07.

[20] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: Universal topology gen-
eration from a user”s perspective,” Boston University, Boston, MA, USA, Tech.
Rep., 2001.

[21] B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on Selected
Areas in Communications, vol. 6, no. 9, pp. 1617–1622, December 1988.

[22] P. N. Klein, T. B. Sebastian, and B. B. Kimia, “Shape matching using edit-
distance: an implementation,” in Proc. the Twelfth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2001.

[23] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness. W. H. Freeman, 1979.

278

citeseer.ist.psu.edu/479183.html
citeseer.ist.psu.edu/lai01nettimer.html
citeseer.ist.psu.edu/lai01nettimer.html

REFERENCES

[24] P. Zhu and R. Wilson, “A study of graph spectra for comparing graphs,” 2005.

[25] M. Rabbat, R. D. Nowak, and M. Coates, “Multiple source, multiple destina-
tion network tomography.” in INFOCOM, 2004.

[26] M. Gunes and K. Sarac, “Analytical ip alias resolution,” Communications, 2006.
ICC ’06. IEEE International Conference on, vol. 1, pp. 459–464, June 2006.

[27] R. Govindan and H. Tangmunarunkit, “Heuristics for internet map discovery,”
in IEEE INFOCOM 2000. Tel Aviv, Israel: IEEE, March 2000, pp. 1371–1380.

[28] Y. Breitbart, M. Garofalakis, B. Jai, C. Martin, R. Rastogi, and A. Silberschatz,
“Topology discovery in heterogeneous ip networks: the netinventory system,”
IEEE/ACM Trans. Netw., vol. 12, pp. 401–414, 2004.

[29] A. Shaikh, M. Goyal, A. Greenberg, R. Rajan, and K. K. Ramakrishnan, “An
ospf topology server: design and evaluation,” IEEE Journal on Selected Areas in
Communications, 2002.

[30] T. Bu, N. Duffield, F. L. Presti, and D. Towsley, “Network tomography on gen-
eral topologies,” in SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMET-
RICS international conference on Measurement and modeling of computer systems.
New York, NY, USA: ACM Press, 2002, pp. 21–30.

[31] D. Ficara, F. Paolucci, L. Valcarenghi, F. Cugini, P. Castoldi, and S. Giordano,
“The beacon number problem in a fully distributed topology discovery ser-
vice,” in Proc. of GLOBECOM 07, Washington DC, USA, 2007, pp. 2591–2596.

[32] R. Govindan and H. Tangmunarunkit, “Heuristics for internet map discovery,”
in IEEE INFOCOM 2000, Tel Aviv, Israel, March.

[33] B. H. r, D. Plummer, D. Moore, , and k. Claffy, “Topology discovery by active
probing,” in SAINT-W ’02: Proceedings of the 2002 Symposium on Applications
and the Internet (SAINT) Workshops. Washington, DC, USA: IEEE Computer
Society, 2002, p. 90.

[34] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger,
“Network topology generators: Degreebased vs. structural,” in ACM SIG-
COMM 2002, 2002.

[35] M.-F. Shih and A. Hero, “Unicast-based inference of network link delay dis-
tributions using mixed finite mixture models,” in Acoustics, Speech, and Signal
Processing (ICASSP), 2002 IEEE International Conference on, vol. 2, may 2002, pp.
II–1305 –II–1308.

[36] ——, “Unicast inference of network link delay distributions from edge mea-
surements,” in Acoustics, Speech, and Signal Processing, 2001. Proceedings.
(ICASSP ’01). 2001 IEEE International Conference on, vol. 6, 2001, pp. 3421 –3424
vol.6.

279

REFERENCES

[37] F. L. Presti, N. G. Duffield, J. Horowitz, and D. Towsley, “Multicast-
based inference of network-internal delay distributions,” IEEE/ACM Trans.
Netw., vol. 10, pp. 761–775, December 2002. [Online]. Available: http:
//dx.doi.org/10.1109/TNET.2002.805026

[38] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the em algorithm,” JOURNAL OF THE ROYAL STATISTI-
CAL SOCIETY, SERIES B, vol. 39, no. 1, pp. 1–38, 1977.

[39] N. G. Duffield and F. L. Presti, “Network tomography from measured end-to-
end delay covariance,” IEEE/ACM Trans. Netw., vol. 12, pp. 978–992, December
2004. [Online]. Available: http://dx.doi.org/10.1109/TNET.2004.838612

[40] Y. Tsang, M. Yildiz, P. Barford, and R. Nowak, “Network radar:
tomography from round trip time measurements,” in Proceedings of the
4th ACM SIGCOMM conference on Internet measurement, ser. IMC ’04.
New York, NY, USA: ACM, 2004, pp. 175–180. [Online]. Available:
http://doi.acm.org/10.1145/1028788.1028809

[41] “http://www.caida.org/tools/utilities/others/pathchar/.”

[42] G. V. I. C. G. Simon, P. Hga, “A flexible tomography approach for queueing
delay distribution inference,” in Proceedings of Internet Performance, Simulation,
Monitoring and Measurement (IPS-MoMe 2005), p39-48, 14-15 March 2005, War-
saw, Poland, 2005.

[43] M. Coates and R. Nowak, “Network tomography for internal delay estima-
tion,” in Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP ’01).
2001 IEEE International Conference on, vol. 6, 2001, pp. 3409 –3412 vol.6.

[44] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion detection
signatures with conte xt,” in Proc. of CCS ’03. ACM, pp. 262–271.

[45] Snort: Lightweight Intrusion Detection for Networks, http://www.snort.org/.

[46] Bro: A system for Detecting Network Intruders in Real Time, http://bro-ids.org/.

[47] W. Eatherton and J. Williams, An encoded version of reg-ex database from cisco
systems provided for research purposes.

[48] S. Kumar, S. Dharmapurikar, F. Yu, P. C. y, and J. Turner, “Algorithms to accel-
erate multiple regular expressions matching for dee p packet inspection,” in
Proc. of SIGCOMM ’06. ACM, pp. 339–350.

[49] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing regular
expressions matching algorithms from insomnia, amnesia, and acalculia,” in
Proc. of ANCS ’07. ACM, pp. 155–164.

[50] M. Becchi and P. Crowley, “A hybrid finite automaton for practical deep packet
inspection,” in Proc. of CoNEXT ’07. ACM, 2007, pp. 1–12.

280

http://dx.doi.org/10.1109/TNET.2002.805026
http://dx.doi.org/10.1109/TNET.2002.805026
http://dx.doi.org/10.1109/TNET.2004.838612
http://doi.acm.org/10.1145/1028788.1028809

REFERENCES

[51] R. Smith, C. Estan, and S. Jha, “Xfas: Fast and compact signature matching,”
University of Wisconsin, Madison, Tech. Rep., August 2007.

[52] ——, “Xfa: Faster signature matching with extended automata,” in IEEE Sym-
posium on Security and Privacy, May 2008.

[53] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: Fast and scal-
able deep packet inspection withextended finite automata,” in SIGCOMM ’08.

[54] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to biblio-
graphic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340, 1975.

[55] B. Commentz-Walter, “A string matching algorithm fast on the average,” in
Proc. of ICALP ’79. Springer-Verlag, pp. 118–132.

[56] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,” Univer-
sity of Arizona, Tech. Rep. TR-94-17.

[57] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic memory-
efficient string matching algorithms for intrusion detection,” in Proc. of INFO-
COM 2004, pp. 333–340.

[58] W. Eatherton, Z. Dittia, and G. Varghese, “Tree bitmap: Hardware/software
ip lookups with incremental updates,” 2004. [Online]. Available: citeseer.ist.
psu.edu/dittia02tree.html

[59] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and memory-
efficient regular expression matching for deep packet inspection,” in Proc. of
ANCS ’06, pp. 93–102.

[60] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison Wesley, August 2006.

[61] M. Becchi and P. Crowley, “An improved algorithm to accelerate regular ex-
pression evaluation,” in Proc. of ANCS ’07, 2007, pp. 145–154.

[62] M. Becchi and S. Cadambi, “Memory-efficient regular expression search using
state merging.” in Proc. of INFOCOM 2007, May 2007.

[63] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture for high-
throughput regular-expression pattern matching,” in Proc. of ISCA’06, June
2006.

[64] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and scal-
able deep packet inspection,” in Proc. of ANCS ’06. ACM, pp. 81–92.

[65] G. Varghese, Network Algorithmics,: An Interdisciplinary Approach to Designing
Fast Networked Devices. Morgan Kaufmann Publishers Inc., 2004.

[66] Intel Network Processors, www.intel.com/design/network/products/npfamily/.

[67] Michela Becchi, regex tool, http://regex.wustl.edu/.

281

citeseer.ist.psu.edu/dittia02tree.html
citeseer.ist.psu.edu/dittia02tree.html

REFERENCES

[68] J. E. Hopcroft and J. D. Ullman, Introduction To Automata Theory, Languages, And
Computation. Addison-Wesley Longman, 1990.

[69] M. Becchi and P. Crowley, “Efficient regular expression evaluation: theory to
practice,” in ANCS ’08, 2008.

[70] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness. W. H. Freeman, 1979.

[71] G. Khanna, I. Laguna, F. Arshad, and S. Bagchi, “Stateful detection in high
throughput distributed systems,” in IEEE SRDS 2007.

[72] E. Ketcha Ngassam, D. G. Kourie, and B. W. Watson, “On implementation and
performance of table-driven DFA-based string processors,” in Proceedings of the
Prague Stringology Conference ’06, 2006.

[73] E. K. Ngassam, B. W. Watson, and D. G. Kourie, “Hardcoding finite state au-
tomata processing,” in SAICSIT ’03, 2003.

[74] K. Ngassam, “Towards cache optimization in finite automata implementa-
tions,” Ph.D. dissertation, University of Pretoria, South Africa, 2007.

[75] http://www.circlemud.org/ jelson/software/tcpflow/.

[76] http://www.intel.com/design/network/products/ npfamily/ixp2800.htm.

[77] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-
munications of the ACM, vol. 13, no. 7, pp. 422–426, July 1970.

[78] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Mathematics, vol. 1, no. 4, 2005. [Online]. Available:
http://www.internetmathematics.org/volumes/1/4/Broder.pdf

[79] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable wide-
area web cache sharing protocol,” SIGCOMM Comput. Commun. Rev., vol. 28,
no. 4, pp. 254–265, 1998.

[80] D. Ficara, S. Giordano, G. Procissi, and F. io Vitucci, “Multilayer compressed
counting bloom filters,” in Proceedings of the 27th Conference on Computer Com-
munications, INFOCOM ’08, 2008.

[81] G. Antichi, D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, “Counting bloom
filters for pattern matching and anti-evasion at the wire speed,” Network, IEEE,
vol. 23, no. 1, pp. 30–35, January-February 2009.

[82] M. Mitzenmacher, “Compressed bloom filters,” in PODC ’01: Proc. of the twen-
tieth annual ACM symposium on Principles of distributed computing. New York,
NY, USA: ACM Press, 2001, pp. 144–150.

[83] A. Kirsch and M. Mitzenmacher, “Distance-sensitive bloom filters,” in
ALENEX ’06: Proc. of Algorithm Engineering and Experiments, 2006.

282

http://www.internetmathematics.org/volumes/1/4/Broder.pdf

REFERENCES

[84] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and network applications of dy-
namic bloom filters,” in Proc. of INFOCOM 2006. 25th IEEE International Con-
ference on Computer Communications., vol. 1, 2006.

[85] A. Kumar, J. J. Xu, L. Li, and J. Wang, “Space-code bloom filter for efficient
traffic flow measurement,” in Proc. of IMC ’03. New York, NY, USA: ACM
Press, 2003, pp. 167–172.

[86] S. Cohen and Y. Matias, “Spectral bloom filters,” in SIGMOD ’03: Proc. of the
2003 ACM SIGMOD international conferenceon Management of data. New York,
NY, USA: ACM Press, 2003, pp. 241–252.

[87] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J. L. Larriba-Pey, “Dy-
namic count filters,” SIGMOD Rec., vol. 35, no. 1, 2006.

[88] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An
improved construction for counting bloom filters,” in LNCS 4168, 14th Annual
European Symposium on Algorithms, 2006, pp. 684–695.

[89] N. Hua, H. Zhao, B. Lin, and J. Xu, “Rank-indexed hashing: A compact con-
struction of bloom filters and variants,” in Proc. of ICNP’08. IEEE, 2008, pp.
73–82.

[90] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: an aid to networkprocessing,” in Proc.
of SIGCOMM ’05. New York, NY, USA: ACM, 2005, pp. 181–192.

[91] http://www.intel.com/design/network/products/npfamily/ixp2350.htm.

[92] Intel R⃝ IXP2800 Hardware reference manual.

[93] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: An aid to network processing,” in Pro-
ceedings of ACM SIGCOMM’05, 2005.

[94] S. Kumar, J. Turner, P. Crowley, and M. Mitzenmacher, “Hexa: Compact data
structures for faster packer processing,” in Proc. of ICNP 07, 2007.

[95] D. Ficara, S. Giordano, S. Kumar, and B. Lynch, “Divide and discriminate: Al-
gorithm for fast and deterministich hash lookups,” in ANCS ’09: Proc. of the
ACM/IEEE symposium on Architecture for networking and communications systems.
New York, NY, USA: ACM, 2009.

[96] B. Chazelle, J. Kilian, R. Rubinfeld, A. T. al, and O. Boy, “The bloomier filter:
An efficient data structure for static support lookup tables,” in Proc. of the Fif-
teenth Annual ACM-SIAM Symposium on Discrete Al gorithms (SODA), 2004, pp.
30–39.

[97] P. Hall, “On representatives of subsets,” J. London Math. Soc., vol. 10, pp. 26–30,
1936.

283

REFERENCES

[98] R. Motwani, “Average-case analysis of algorithms for matchings and related
problems,” Journal of the ACM, vol. 41, pp. 1329–1356, 1994.

[99] J. Hopcroft and R. Karp, “An n5/2 algorithm for maximum matchings in bi-
partite graphs,” SIAM Journal on Computing, vol. 2, 1973.

[100] M. Mitchell, “An introduction to genetic algorithms,” 1996.

[101] D. Ficara, “Accelerating traffic classification and measurements on network
processors,” Ph.D. dissertation, University of Pisa, 2010.

[102] http://protocols.netlab.uky.edu/ esp/pktgen/.

[103] R. Bolla, R. Bruschi, M. Canini, and M. Repetto, A High Performance IP Traffic
Generation Tool Based On The Intel IXP2400 Network Processor, ser. Distributed
Cooperative Laboratories: Networking, Instrumentation, and Measurements.
Springer Berlin Heidelberg, 2006, pp. 127–142.

[104] http://netgroup-serv.iet.unipi.it/brute/.

[105] A. Abdo, H. Awad, S. Paredes, and T. J. Hall, “Oc-48 configurable ip traffic
generator with dwdm capability,” in Proc. of the Canadian Conference on Electri-
cal and Computer Engineering, May 2006, pp. 1842 – 1845.

[106] Intel R⃝ IXP2400/2800 Developer’s Tool reference manual.

[107] Intel Corporation, 21555 Non-Transparent PCI-to-PCI Bridge User’s manual.

[108] Linux Device Drivers, Third Edition, http://lwn.net/Kernel/LDD3/.

[109] http://www.spirent.com.

[110] K. Park and W. Willinger, Self-Similar Network Traffic: An Overview. Wiley
Interscience, 1999.

[111] “tcpdump/libpcap.” [Online]. Available: http://www.tcpdump.org/

[112] “Wireshark protocol analyzer (was ethereal).” [Online]. Available: http:
//www.wireshark.org

[113] “Ntop network traffic probe.” [Online]. Available: http://www.ntop.org

[114] P. Wood, “libpcap-mmap.” [Online]. Available: http://public.lanl.gov/cpw

[115] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in an
interrupt-driven kernel,” ACM Transactions on Computer Systems, vol. 15,
no. 3, pp. 217–252, 1997. [Online]. Available: citeseer.ist.psu.edu/article/
mogul95eliminating.html

[116] L. Deri, “Improving passive packet capture:beyond device polling.” [Online].
Available: citeseer.ist.psu.edu/695645.html

284

http://www.tcpdump.org/
http://www.wireshark.org
http://www.wireshark.org
http://www.ntop.org
http://public.lanl.gov/cpw
citeseer.ist.psu.edu/article/mogul95eliminating.html
citeseer.ist.psu.edu/article/mogul95eliminating.html
citeseer.ist.psu.edu/695645.html

REFERENCES

[117] L. Deri, “Passively monitoring networks at gigabit speeds using commodity
hardware and open source software,” in Proceedings of PAM, 2003.

[118] A Distributed Architecture for IP Traffic Analysis, 2007.

[119] Real-Time IP Flow Measurement Tool with Scalable Architecture, 2004.

[120] Distributed Flow Monitoring Tool Using Network Processor. Washington, DC,
USA: IEEE Computer Society, 2007.

[121] K. Xinidis, I. Charitakis, S. Antonatos, K. G. Anagnostakis, and E. P. Markatos,
“An active splitter architecture for intrusion detection and prevention,” IEEE
Trans. Dependable Secur. Comput., vol. 3, no. 1, p. 31, 2006.

[122] T. Wolf, R. Ramaswamy, S. Bunga, and N. Yang, “An architecture for dis-
tributed real-time passive network measurement,” in MASCOTS ’06: Proceed-
ings of the 14th IEEE International Symposium on Modeling, Analysis, and Simula-
tion. Washington, DC, USA: IEEE Computer Society, 2006, pp. 335–344.

[123] D. Ficara, S. Giordano, F. Rossi, and F. Vitucci, “Refine: the reconfigurable
packet filtering on network processors,” International Journal of Communication
Systems, 2008.

[124] http://www.mvista.com/.

[125] Design of a Multi-Dimensional Packet Classifier for Network Processors, 2006.

[126] http://www.spirentcom.com/analysis/technology.cfm?az-
c=pl&media=7&ws=325&ss=101.

[127] R. Gusella, “Characterizing the variability of arrival processes with indexes of
dispersion,” vol. 9, no. 2, pp. 203–211, Feb. 1991.

[128] H. Heffes and D. Lucantoni, “A markov modulated characterization of pack-
etized voice and data traffic and related statistical multiplexer performance,”
vol. 4, no. 6, pp. 856–868, Sep. 1986.

[129] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and k claffy, “The archi-
tecture of coralreef: An internet traffic monitoring software suite,” in In PAM,
2001.

[130] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An architecture for large
scale internet measurement,” IEEE Communication Magazine, vol. 36, no. 8, pp.
48–54, 1998.

[131] CISCO, “Parallel express forwarding in the cisco 10000 edge service
router.” [Online]. Available: http://whitepapers.zdnet.co.uk/0,1000000651,
260007268p-39000421q,00.htm

[132] Cisco, “Cisco systems netflow services export version 9,” 2004. [Online].
Available: http://www.ietf.org/rfc/rfc3954.txt

285

http://whitepapers.zdnet.co.uk/0,1000000651,260007268p-39000421q,00.htm
http://whitepapers.zdnet.co.uk/0,1000000651,260007268p-39000421q,00.htm
http://www.ietf.org/rfc/rfc3954.txt

REFERENCES

[133] “Ip flow information export (ipfix).” [Online]. Available: http://datatracker.
ietf.org/wg/ipfix/charter/

[134] “Endace.” [Online]. Available: www.endace.com.

[135] “Palo alto networks.” [Online]. Available: www.paloaltonetworks.com

[136] G. Bianchi, E. Boschi, F. Gaudino, E. A. Koutsoloukas, G. V. Lioudakis, S. Rao,
F. Ricciato, C. Schmoll, and F. Strohmeier, “Privacy-preserving network mon-
itoring: Challenges and solutions,” in 17th ICT Mobile & Wireless Communica-
tions Summit 2008, 2008.

[137] FP7-PRISM, “Deliverable d3.1.1 : State of the art on data protection
algorithms for monitoring systems,” Tech. Rep., 2008. [Online]. Avail-
able: http://fp7-prism.eu/images/upload/Deliverables/fp7-prism-wp3.
1-d3.1.1-final.pdf

[138] A. Hintz, “Fingerprinting websites using traffic analysis,” in Workshop on Pri-
vacy Enhancing Technologies, 2002.

[139] G. Bissias, M. Liberatore, D. Jensen, and B. Levine, “Privacy vulnerabilities in
encrypted http streams,” in Privacy Enhancing Technologies, ser. Lecture Notes
in Computer Science, G. Danezis and D. Martin, Eds. Springer Berlin / Hei-
delberg, 2006, vol. 3856, pp. 1–11.

[140] W. Yurcik, C. Woolam, G. Hellings, L. Khan, and B. Thuraisingham, “Priva-
cy/analysis tradeoffs in sharing anonymized packet traces: Single-field case,”
in ARES ’08: Proceedings of the 2008 Third International Conference on Availability,
Reliability and Security. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 237–244.

[141] G. Cormode and S. Muthukrishnan, “An improved data stream summary: The
count-min sketch and its applications,” J. Algorithms, vol. 55, pp. 29–38, 2004.

[142] “Fp7 prism.” [Online]. Available: http://fp7-prism.eu/

[143] FP7-PRISM, “Deliverable d2.2.2: Detailed system architecture specification,”
Tech. Rep., 2010. [Online]. Available: http://telscom.ch/wp-content/
uploads/Prism/FP7-PRISM-WP2.2-D2.2.2.pdf.

[144] G. V. Lioudakis, F. Gogoulos, A. Antonakopoulou, A. S. Mousas, I. S. Venieris,
and D. I. Kaklamani, “An access control approach for privacy-preserving pas-
sive network monitoring,” in Proc. Int. Conf. for Internet Technology and Secured
Transactions ICITST 2009, 2009, pp. 1–8.

[145] G. Antichi, D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, “Counting bloom
filters for pattern matching and anti- evasion at the wire speed,” Netwrk. Mag.
of Global Internetwkg., vol. 23, no. 1, pp. 30–35, 2009.

[146] G. Bianchi, E. Boschi, S. Teofili, and B. Trammell, “Measurement data reduction
through variation rate metering,” in Proc. IEEE INFOCOM, 2010, pp. 1–9.

286

http://datatracker.ietf.org/wg/ipfix/charter/
http://datatracker.ietf.org/wg/ipfix/charter/
www.endace.com.
www.paloaltonetworks.com
http://fp7-prism.eu/images/upload/Deliverables/fp7-prism-wp3.1-d3.1.1-final.pdf
http://fp7-prism.eu/images/upload/Deliverables/fp7-prism-wp3.1-d3.1.1-final.pdf
http://fp7-prism.eu/
http://telscom.ch/wp-content/uploads/Prism/FP7-PRISM-WP2.2-D2.2.2.pdf.
http://telscom.ch/wp-content/uploads/Prism/FP7-PRISM-WP2.2-D2.2.2.pdf.

REFERENCES

[147] C. Sun, C. Hu, Y. Tang, and B. Liu, “More accurate and fast syn flood detec-
tion,” in Proc. 18th Internatonal Conf. Computer Communications and Networks
ICCCN 2009, 2009, pp. 1–6.

[148] The Open Flow Switch Consortium, www.openflow.org.

[149] NetFPGA Official Web Site, www.netfpga.org.

[150] M. Casado, M. Freeman, J. Pettit, N. McKeown, and S. Shenker, “Ethane: Tak-
ing control of the enterprise,” Sigcomm Computer Communication Review, 2007.

[151] J. Naous, D. Erickson, A. Covington, G. A. ler, and N. McKeown, “Implement-
ing an openflow switch on the netfpga platform,” in ACM ANCS, 2008.

[152] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang, “A clean slate 4d approach to network con-
trol and management,” Sigcomm Computer Communication Review, 2005.

[153] P. Molinero-Fernandez and N. McKeown, “Tcp switching: exposing circuits to
ip,” in IEEE Micro, 2002.

[154] E. Kohler, R. Morris, B. Chen, J. Jahnotti, and M. F. Kasshoek, “The click mod-
ular router,” ACM Transaction on Computer Systems, vol. 18, no. 3, pp. 263–297,
2000.

[155] G. Antichi, A. D. Pietro, D. Ficara, S. o Giordano, G. Procissi, and F. Vitucci,
“On the use of compressed dfas for packet classification on netfpga,” in IEEE
CAMAD, 2010.

[156] G. Antichi, A. D. Pietro, D. Ficara, S. G. iordano, G. Procissi, and F. Vitucci, “A
prefix-distribution adaptive scheme for routing lookup acceleration,” in Proc.
of GLOBECOM ’09. IEEE, 2007, pp. 1–12.

[157] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” in Proceedings of the ACM SIGCOMM 2010 conference on
SIGCOMM, ser. SIGCOMM ’10. New York, NY, USA: ACM, 2010, pp.
195–206. [Online]. Available: http://doi.acm.org/10.1145/1851182.1851207

[158] L. Rizzo, “http://info.iet.unipi.it/ luigi/netmap/.”

[159] “http://www.ntop.org/products/pf ring/dna/,” 2011.

[160] “http://www.ntop.org/pf ring/building-a-10-gbit-traffic-generator-using-
pf ring-and-ostinato/,” 2011.

[161] http://caia.swin.edu.au/genius/tools/kute/.

[162] http://rude.sourceforge.net/.

[163] A. Botta, A. Dainotti, and A. Pescape, “Multi-protocol and multi-platform traf-
fic generation and measurement,” in Proc. of INFOCOM 2007 DEMO Session,
May 2007.

287

http://doi.acm.org/10.1145/1851182.1851207

REFERENCES

[164] S. Avallone, A. Pescape, and G. Ventre, “Analysis and experimentation of inter-
net traffic generator,” in Proc. of New2an 2004, International Conference on Next
Generation Teletraffic and Wired/Wireless Advanced Networking, February 2004.

[165] “http://www.grid.unina.it/software/itg/.”

[166] “http://code.google.com/p/ostinato/.”

[167] “http://code.google.com/p/ostinato/issues/detail?id=39,” 2011.

[168] “http://lxr.linux.no/linux+v3.1.6/net/core/pktgen.c.”

[169] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-based
traffic generator?” Comm. Mag., vol. 48, pp. 158–165, September 2010.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1866991.1867012

[170] M. Paredes-Farrera, M. Fleury, and M. Ghanbari, “Precision and accuracy of
network traffic generators for packet-by-packet traffic analysis,” in 2nd Inter-
national IEEE/Create-Net Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities, 2006.

[171] T. N. R. Group, “Pfq,” ”http://netgroup.iet.unipi.it/software/pfq/”, July
2011.

[172] L. Deri, “ncap: wire-speed packet capture and transmission,” in End-
to-End Monitoring Techniques and Services on 2005. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 47–55. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1251986.1253236

[173]

[174] l. M. m. o. l. Phil Woods, “http://public.lanl.gov/cpw/.”

[175] F. Fusco and L. Deri, “High speed network traffic analysis with commodity
multi-core systems,” in IMC 2010, 2010, pp. 218–224.

[176] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, L. Mathy, and
P. Papadimitriou, “Forwarding path architectures for multicore software
routers,” in Proc. of PRESTO ’10. New York, NY, USA: ACM, 2010, pp.
3:1–3:6. [Online]. Available: http://doi.acm.org/10.1145/1921151.1921155

[177] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, “Flexible high perfor-
mance traffic generation on commodity multi-core platforms,” in To appear in
Traffic Monitoring and Analysis (TMA 2012) Workshop, 2012.

[178] N.Bonelli, A. D. Pietro, S. Giordano, and G. Procissi, “Packet capturing on
parallel architectures,” in IEEE workshop on Measurements and Networking, 2011.

[179] G. Iannaccone, “Fast prototyping of network data mining applications,” in Pas-
sive and Active Measurement Conference 2006, Adelaide, Australia, mar 2006.

288

http://dl.acm.org/citation.cfm?id=1866991.1867012
http://portal.acm.org/citation.cfm?id=1251986.1253236
http://portal.acm.org/citation.cfm?id=1251986.1253236
http://doi.acm.org/10.1145/1921151.1921155

REFERENCES

[180] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy, “To-
wards high performance virtual routers on commodity hardware,” in Proceed-
ings of ACM CoNEXT 2008, Madrid, Spain, December 2008.

[181] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies,
M. Manesh, and S. Ratnasamy, “Routebricks: Exploiting parallelism to scale
software routers,” in Proceedings of USENIX SOSP 2009, Big Sky, MT, USA,
October 2009.

[182] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards programmable
network measurement,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp.
97–108, 2007.

[183] F. Fusco, F. Huici, L. Deri, S. Niccolini, and T. Ewald, “Enabling high-speed
and extensible real-time communications monitoring,” in IM’09: Proceedings of
the 11th IFIP/IEEE international conference on Symposium on Integrated Network
Management. Piscataway, NJ, USA: IEEE Press, 2009, pp. 343–350.

[184] L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle, “Comparing
and improving current packet capturing solutions based on commodity
hardware,” in Proceedings of the 10th annual conference on Internet measurement,
ser. IMC ’10. New York, NY, USA: ACM, 2010, pp. 206–217. [Online].
Available: http://doi.acm.org/10.1145/1879141.1879168

[185] F. Fusco and L. Deri, “High speed network traffic analysis with commodity
multi-core systems,” in Proceedings of the 10th annual conference on Internet
measurement, ser. IMC ’10. New York, NY, USA: ACM, 2010, pp. 218–224.
[Online]. Available: http://doi.acm.org/10.1145/1879141.1879169

[186] Endace, “Endace DAG 9.2X2,” http://www.endace.com/dag-9.
2x2-packet-capture-card.html, Auckland, New Zealand, mar. 2010.

[187] Napatech, “Napatech NT20E2,” http://www.napatech.com/products/
capture adapters/2x10g pcie nt20e2.html, Soeborg, Denmark, apr. 2010.

[188] C.-W. Chang, A. Gerber, B. Lin, S. Sen, and O. Spatscheck, “Network DVR:
A programmable framework for application-aware trace collection,” in Pro-
ceedings of the Passive and Active Measurement Conference (PAM) 2010, Zürich,
Switzerland, mar 2010.

[189] Invea-Tech, “COMBOv2 FPGA Boards,” http://www.invea-tech.com/
products-and-services/combo-fpga-boards, Brno, Czech Republic, 2009.

[190] B. Trammell and E. Boschi, “An introduction to ip flow information export,”
IEEE Communications Magazine, vol. 49, no. 4, Apr. 2011.

[191] C. Inacio and B. Trammell, “YAF: Yet Another Flowmeter,” in Proceedings of the
24th USENIX Large Installation System Administration Conference (LISA ’10), San
Jose, California, nov 2010, pp. 107–118.

289

http://doi.acm.org/10.1145/1879141.1879168
http://doi.acm.org/10.1145/1879141.1879169
http://www.endace.com/dag-9.2x2-packet-capture-card.html
http://www.endace.com/dag-9.2x2-packet-capture-card.html
http://www.napatech.com/products/capture_adapters/2x10g_pcie__nt20e2.html
http://www.napatech.com/products/capture_adapters/2x10g_pcie__nt20e2.html
http://www.invea-tech.com/products-and-services/combo-fpga-boards
http://www.invea-tech.com/products-and-services/combo-fpga-boards

REFERENCES

[192] S. McCanne and V. Jacobson, “The BSD packet filter: a new architecture for
user-level packet capture,” in Proceedings of the USENIX Winter 1993 Conference.
San Diego, California: USENIX Association, 1993.

[193] 1024cores, “1024cores,” ”http://www.1024cores.net/”, July 2011.

[194] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” in Proceedings of ACM SIGCOMM 2010, New Delhi, India,
September 2010.

[195] ISO/IEC JTC1/SC22/WG21, “Working Draft, Standard for Programming
Language C++,” http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2011/n3242.pdf, February 2011.

[196] W. Mauerer, Professional Linux Kernel Architecture. Birmingham, UK, UK: Wrox
Press Ltd., 2008.

[197] Intel, “Receive side scaling on Intel Network Adapters,”
”http://www.intel.com/support/network/adapter/pro100/sb/cs-
027574.htm”, July 2011.

[198] K. Psounis, A. Ghosh, B. Prabhakar, and G. Wang, “Sift: A simple algorithm for
tracking elephant flows, and taking advantage of power laws,” in 43rd Allerton
Conference on Communication, Control and Computing, 2005.

[199] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: clustering analysis of
network traffic for protocol- and str ucture-independent botnet detection,” in
SS’08: Proceedings of the 17th conference on Security symposium. Berkeley, CA,
USA: USENIX Association, 2008, pp. 139–154.

[200] W. T. Strayer, D. Lapsley, R. Walsh, and C. Livadas, “Botnet detection based on
network behavior,” in Botnet Detection: Countering the Largest Security Threat,
W. Lee, C. Wang, and D. Dagon, Eds. Springer-Verlag, 2007.

[201] Cisco Systems, “Cisco Visual Networking Index: Forecast and Methodology,”
”http://www.cisco.com”, June 2011.

[202] Y.-S. Wu, S. Bagchi, S. Garg, N. Singh, and T. Tsai, “Scidive: A stateful and cross
protocol intrusion detection architecture for voice-over-ip environments,” in
DSN ’04: Proceedings of the 2004 International Conference on Dependable Systems
and Networks. Washington, DC, USA: IEEE Computer Society, 2004, p. 433.

[203] B. Barry and A. Chan, “Towards intelligent cross protocol intrusion detection
in the next generation networks based on protocol anomaly detection,” in The
9th International Conference on Advanced Communication Technology, 2007, pp.
1505–1510.

[204] Y.-S. Wu, V. Apte, S. Bagchi, S. Garg, and N. Singh, “Intrusion detection
in voice over ip environments,” International Journal of Information Security.
[Online]. Available: http://dx.doi.org/10.1007/s10207-008-0071-0

290

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://dx.doi.org/10.1007/s10207-008-0071-0

REFERENCES

[205] P. Yalagandula and M. Dahlin, “A scalable distributed information manage-
ment system,” in SIGCOMM ’04: Proceedings of the 2004 conference on Applica-
tions, technologies, architectures, and protocols for computer communications. New
York, NY, USA: ACM, 2004, pp. 379–390.

[206] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications,” in SIGCOMM
’01: Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications. New York, NY, USA: ACM, 2001,
pp. 149–160.

[207] R. Zhang, X. Wang, X. Yang, and X. Jiang, “Billing attacks on sip-based voip
systems,” in WOOT ’07: Proceedings of the first USENIX workshop on Offensive
Technologies. Berkeley, CA, USA: USENIX Association, 2007, pp. 1–8.

[208] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay Network
Simulation Framework,” in Proceedings of 10th IEEE Global Internet Symposium
(GI ’07) in conjunction with IEEE INFOCOM 2007, Anchorage, AK, USA, May
2007, pp. 79–84.

[209] “Fastbit: An efficient compressed bitmap index technology.” [Online].
Available: http://sdm.lbl.gov/fastbit/

[210] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and D. G. An-
dersen, “CSAMP: a system for network-wide flow monitoring,” in NSDI’08:
Proceedings of the 5th USENIX Symposium on Networked Systems Design and Im-
plementation. Berkeley, CA, USA: USENIX Association, 2008, pp. 233–246.

[211] M. Sharma and J. Byers, “Scalable Coordination Techniques for Distributed
Network Monitoring,” Passive and Active Measurement Conference, 2005.

[212] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thiran, “Reformulat-
ing the monitor placement problem: Optimal network-wide sampling,” in In
Proc. of CoNeXT, 2006.

[213] R. Serral-Gracia, P. Barlet-Ros, and J. Domingo-Pascual, “Distributed sampling
for on-line sla assessment,” in Local and Metropolitan Area Networks, 2008. LAN-
MAN 2008. 16th IEEE Workshop on, Sept. 2008, pp. 55–60.

[214] B. Reynolds and D. Ghosal, “Secure ip telephony using multi-layered protec-
tion,” in In Proc. of NDSS, 2003.

[215] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of network traffic
anomalies,” in In Internet Measurement Workshop, 2002, pp. 71–82.

[216] J. D. Brutlag, “Aberrant behavior detection in time series for network
monitoring,” in Proceedings of the 14th USENIX conference on System
administration. Berkeley, CA, USA: USENIX Association, 2000, pp. 139–146.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1045502.1045530

291

http://sdm.lbl.gov/fastbit/
http://portal.acm.org/citation.cfm?id=1045502.1045530

REFERENCES

[217] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” in In ACM SIGCOMM, 2004, pp. 219–230.

[218] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan, “Network anomography,” in
In IMC, 2005.

[219] M. Thottan and C. Ji, “Anomaly detection in ip network,” in IEEE Trans. Signal
Processing, vol. 51, 2003, pp. 2191–2204.

[220] C. V. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated attacks
and collaborative intrusion detection,” Computers Security, vol. 29, no. 1, pp.
124–140, 2010.

[221] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base
applications,” J. Comput. Syst. Sci., vol. 31, pp. 182–209, September 1985.
[Online]. Available: http://portal.acm.org/citation.cfm?id=5212.5215

[222] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in In ESA,
2003, pp. 605–617.

[223] G. Cormode and S. Muthukrishnan, “Holistic udafs at streaming speeds,” in
In SIGMOD, 2004. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.113.2257

[224] ——, “An improved data stream summary: the count-min sketch and
its applications,” Journal of Algorithms, vol. 55, no. 1, pp. 58 – 75,
2005. [Online]. Available: http://www.sciencedirect.com/science/article/
B6WH3-4BM8Y1G-1/2/71b7980bb85b570bc57ee73f8afcd62f

[225] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: methods, evaluation, and applications,” in IMC ’03: Proceedings
of the 3rd ACM SIGCOMM conference on Internet measurement. New
York, NY, USA: ACM Press, 2003, pp. 234–247. [Online]. Available:
http://dx.doi.org/10.1145/948205.948236

[226] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible sketches
for efficient and accurate change detection over network data streams,” in
Proceedings of the ACM SIGCOMM conference on Internet Measurement, ser.
IMC ’04. New York, NY, USA: ACM, 2004, pp. 207–212. [Online]. Available:
http://doi.acm.org/10.1145/1028788.1028814

[227] M. Thorup and Y. Zhang, “Tabulation based 4-universal hashing with appli-
cations to second moment estimation,” in Proceedings of the annual ACM-SIAM
symposium on Discrete algorithms (SODA). Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2004, pp. 615–624.

[228] “The Internet2 Network,” http://www.internet2.edu/network/.

292

http://portal.acm.org/citation.cfm?id=5212.5215
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.2257
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.2257
http://www.sciencedirect.com/science/article/B6WH3-4BM8Y1G-1/2/71b7980bb85b570bc57ee73f8afcd62f
http://www.sciencedirect.com/science/article/B6WH3-4BM8Y1G-1/2/71b7980bb85b570bc57ee73f8afcd62f
http://dx.doi.org/10.1145/948205.948236
http://doi.acm.org/10.1145/1028788.1028814

	Introduction
	1 Network tomography and active measurements
	1.1 Noise Reduction Techniques for Network Topology Discovery
	1.1.1 Topology Reconstruction by Hierarchical Clustering
	1.1.2 The Packet Sandwich Similarity Metric
	1.1.3 Noise analysis in packet sandwich measurements
	1.1.3.1 Simulation layout for the characterization of the interarrival time
	1.1.3.2 Models of Noise Patterns
	1.1.3.3 Analysis of collected sample patterns

	1.1.4 A noise reduction algorithm for packet sandwich probes
	1.1.5 Performance Evaluation

	1.2 PingPair: a Lightweight Tool for Measurement Noise Free Path Capacity Estimation
	1.2.1 Queueing delay estimation
	1.2.2 Analysis of the measurement noise
	1.2.3 Measurements Selective Filtering
	1.2.4 Performance evaluation through NS2 simulations
	1.2.5 Internet Measurements
	1.2.6 Field Trial Measurements

	1.3 A Decision Theoretic Approach to Network Topology Discovery
	1.3.1 The decision theoretic approach
	1.3.2 Noise reduction
	1.3.3 Computational complexity
	1.3.4 Performance evaluation

	1.4 Network Topology Discovery through Self-Constrained Decisions
	1.4.1 Self-constrained topology reconstruction
	1.4.2 Theoretical Limitations
	1.4.3 Algorithms evaluation
	1.4.3.1 Measuring Graph similarity
	1.4.3.2 Results

	1.5 Merging Spanning Trees in Tomographic Network Topology Discovery
	1.5.1 The merging algorithm
	1.5.2 Computational Complexity
	1.5.3 Performance Evaluation

	1.6 End–to–End Inference of Link Level Queueing Delay Distribution and Variance
	1.6.1 Tomographic techniques for queueing delay distribution estimation
	1.6.2 Tomographic techniques for delay variance estimation
	1.6.3 Delay distribution inference over tree–like topologies
	1.6.4 Link level delay distribution inference
	1.6.5 Numerical issues about deconvolution of probability distributions
	1.6.6 Link level delay variance estimation
	1.6.7 Simulation results: delay distribution estimation
	1.6.8 Simulation results: delay variance estimation

	1.7 End–to–End Inference of Link Level Queueing Delay Statistic through cumulant estimation
	1.7.1 Link level delay distribution inference
	1.7.2 Heuristic solution
	1.7.3 Experimental results

	2 Algorithms and data structures for high performance network processing
	2.1 An Improved DFA construction for fast and efficient regular expression matching
	2.1.1 Related Work
	2.1.2 Delta Finite Automaton
	2.1.2.1 Motivation through an example
	2.1.2.2 Definition of our automaton
	2.1.2.3 Construction
	2.1.2.4 Lookup

	2.1.3 Application to H-cFA and XFA
	2.1.4 Compressing char-state pairs
	2.1.4.1 Indirection Table Compression

	2.1.5 Applying C-S to our automaton
	2.1.6 Implementation
	2.1.7 Experimental Results

	2.2 Second order delta enconding to improve DFA efficiency
	2.2.1 The Main idea
	2.2.1.1 Lookup
	2.2.1.2 Construction

	2.2.2 Experimental Results

	2.3 Homomorphic encoding of DFAs
	2.3.1 Related works
	2.3.2 An efficient representation for DFAs
	2.3.3 The look for an effective Homomorphism
	2.3.4 Optimizations
	2.3.4.1 Permutation for LPM
	2.3.4.2 Bitmap trees
	2.3.4.3 The overall algorithm

	2.3.5 The k-step DFA
	2.3.6 Results

	2.4 Sampling techniques to accelerate regular expression matching
	2.4.1 Sampling DFAs
	2.4.1.1 Motivation
	2.4.1.2 A Motivating Example
	2.4.1.3 Taxonomy of DFA Sampling

	2.4.2 Regex sampling rules
	2.4.2.1 Regex rewriting

	2.4.3 Constant Period Sampling
	2.4.3.1 First stage: Sampled DFA
	2.4.3.2 Second stage: Reverse DFA
	2.4.3.3 Possible implementations
	2.4.3.4 Dealing with DoS attacks

	2.4.4 Experimental Results

	2.5 Enhancing Counting Bloom Filters through Huffman-Coded MultiLayer Structures
	2.5.1 Background on Bloom Filters
	2.5.2 Theoretical Results
	2.5.3 Huffman Counting Bloom Filters
	2.5.3.1 Size
	2.5.3.2 Lookup
	2.5.3.3 Insertion/Deletion

	2.5.4 MultiLayer Compressed CBF
	2.5.4.1 Complexity and properties
	2.5.4.2 Size

	2.5.5 Comparative Analysis

	2.6 iBF: Indexed Bloom Filter
	2.6.1 The main idea
	2.6.2 iBF Construction
	2.6.2.1 First step: determine bits to mark
	2.6.2.2 Second step: build the index
	2.6.2.3 Check and restart

	2.6.3 Considerations on iBF
	2.6.4 Experimental Evaluation

	3 Network monitoring and testing architectures on hybrid platforms
	3.1 BRUNO: An Accurate Gigabit Traffic Generator
	3.1.1 BRUNO
	3.1.2 BRUTE-NP communication
	3.1.3 Performance Evaluation
	3.1.4 Experimental results

	3.2 A Network Processor based architecture for multi gigabit traffic analysis
	3.2.1 The System Architecture
	3.2.2 Network Processor Side
	3.2.2.1 Microengines Application Scheme
	3.2.2.2 XScale Application Scheme

	3.2.3 Host PC side
	3.2.4 Cluster PCs side
	3.2.4.1 Kernel space: the compatibility abstraction layer
	3.2.4.2 User Space – the user interface

	3.2.5 Timestamping
	3.2.5.1 Time Budget
	3.2.5.2 The Accuracy of Timestamps
	3.2.5.3 Timestamp synchronization

	3.2.6 Packet Capturing Evaluation
	3.2.6.1 Experimental setup
	3.2.6.2 Experimental runs

	3.2.7 Timestamp accuracy
	3.2.7.1 Testbed description
	3.2.7.2 Finer grain performance analysis

	3.3 Towards smarter probes: in-network traffic capturing and processing
	3.3.1 Introduction
	3.3.1.1 Why smart probes?
	3.3.1.2 The analyze while capturing paradigm

	3.3.2 The probe architecture at-a-glance
	3.3.3 Probe Data Plane
	3.3.3.1 Capturing Unit
	3.3.3.2 Processing Units
	3.3.3.3 Data Plane Performance

	3.3.4 Probe Control Plane
	3.3.5 On–The–Probe Advanced Processing Techniques
	3.3.6 Actual Monitoring Applications: A Practical Use Case

	3.4 Design and Development of an OpenFlow Compliant Smart Gigabit Switch
	3.4.1 Related Works
	3.4.2 NetFPGA board
	3.4.3 Pattern Matching Engine as a Gigabit Switch
	3.4.4 The Smart Switch
	3.4.4.1 Software Plane
	3.4.4.2 Hardware Plane

	3.4.5 Load Balancing
	3.4.6 Device Utilization
	3.4.7 Experimental Results
	3.4.7.1 Load Balancing
	3.4.7.2 Throughput

	4 High performance packet processing on general purpose parallel platforms
	4.1 Multi–Gigabit Packet Capturing With Multi–Core Commodity Hardware
	4.1.1 State–of–the–Art in software–based packet generation
	4.1.2 The generator architecture
	4.1.2.1 Traffic Transmitters: PF_DIRECT
	4.1.2.2 Traffic Engines
	4.1.2.3 Traffic Models

	4.1.3 Experimental results
	4.1.3.1 Up to 1 Gb/s rates
	4.1.3.2 Towards 10 Gb/s rates

	4.2 Flexible High Performance Traffic Generation on Commodity Multi–Core Platforms
	4.2.1 State–of–the–Art in packet capturing
	4.2.2 PFQ capturing engine
	4.2.2.1 Building blocks

	4.2.3 Experimental results
	4.2.3.1 One–thread setup
	4.2.3.2 Parallel setup
	4.2.3.3 Multiple capture sockets

	4.3 Blockmon: A Modular System for Flexible, High-Performance Traffic Monitoring and Analysis
	4.3.1 Related Work
	4.3.2 Base System
	4.3.2.1 Blocks and Scheduling
	4.3.2.2 Gates and Messages
	4.3.2.3 Dynamic Reconfiguration
	4.3.2.4 Multi-Node Blockmon

	4.3.3 Performance Mechanisms
	4.3.3.1 Thread Pools and CPU Pinning
	4.3.3.2 Lockless Queues
	4.3.3.3 Batch Allocation
	4.3.3.4 Efficient Message Transfer
	4.3.3.5 Pluggable Schedulers
	4.3.3.6 Fast Capture Blocks

	4.3.4 Blocks and Libraries
	4.3.4.1 Hash Library
	4.3.4.2 Probabilistic Data Structures Library
	4.3.4.3 Abrupt Change Detection Library

	4.3.5 Evaluation
	4.3.5.1 Experimental Setup
	4.3.5.2 Performance Experiments

	4.3.6 Applications
	4.3.6.1 Heavy Hitter Statistics
	4.3.6.2 SYN Flooding Detection

	5 Scalable coordination and correlation architectures for distributed monitoring systems
	5.1 Crosstalk: A Scalable Cross-Protocol Monitoring System for Anomaly Detection
	5.1.1 Crosstalk's Architecture
	5.1.1.1 Distributed Aggregation Trees
	5.1.1.2 Probabilistic Data Structures
	5.1.1.3 Backtracking

	5.1.2 Application: VoIP Attack Detection
	5.1.3 Evaluation
	5.1.3.1 Setup
	5.1.3.2 Performance Analysis
	5.1.3.3 Real-World Performance

	5.2 DECON: Decentralized Coordination for Large-Scale Flow Monitoring
	5.3 Related Work
	5.3.1 DECON's Architecture
	5.3.1.1 Batch Optimization

	5.3.2 Evaluation
	5.3.2.1 Simulation Setup
	5.3.2.2 Simulations
	5.3.2.3 Monitoring Probe

	5.4 The LogLog Counting Reversible Sketch: a Distributed Architecture for Detecting Anomalies in Backbone Networks
	5.4.1 Theoretical Background
	5.4.1.1 LogLog counting
	5.4.1.2 Reversible Sketch

	5.4.2 System Architecture
	5.4.2.1 System Input
	5.4.2.2 LogLog counting Sketch module
	5.4.2.3 Detection Phase
	5.4.2.4 Identification phase

	5.4.3 Experimental results

	Conclusions
	References

