
i
i

“main” — 2017/1/11 — 15:05 — page 1 — #1 i
i

i
i

i
i

UNIVERSITÁ DI PISA
DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE

DESIGN AND IMPLEMENTATION OF AN INTEGRATED

FULLY DIGITAL TRIGGER AND DATA ACQUISITION

SYSTEM FOR HIGH ENERGY PHYSICS EXPERIMENTS

DOCTORAL THESIS

Author
Elena Pedreschi

Tutors
Prof. Luca Fanucci
Dott. Franco Spinella

Reviewers
Dott. Gianmaria Collazuol
Dott. Ing. Angelo Cotta Ramusino

The Coordinator of the PhD Program
Prof. Marco Luise

Pisa, December 2016

XXIX

i
i

“main” — 2017/1/11 — 15:05 — page 2 — #2 i
i

i
i

i
i

i
i

“main” — 2017/1/11 — 15:05 — page 1 — #3 i
i

i
i

i
i

This thesis is dedicated to Diana, Gianfranco and Francesco

i
i

“main” — 2017/1/11 — 15:05 — page 2 — #4 i
i

i
i

i
i

i
i

“main” — 2017/1/11 — 15:05 — page 3 — #5 i
i

i
i

i
i

“Everybody is a genius. But if you judge a
fish by its ability to climb a tree, it will

live its whole life believing that it is
stupid.”

A. Einstein

i
i

“main” — 2017/1/11 — 15:05 — page 4 — #6 i
i

i
i

i
i

i
i

“main” — 2017/1/11 — 15:05 — page I — #7 i
i

i
i

i
i

Acknowledgements

IWISH to send all my gratitude to those who have helped me with suggestions, crit-
icism and comments - to them goes my gratitude, though to me the responsibility
for any error contained in this thesis.

I first wish to thank Professor Luca Fanucci, Tutor, and Dottor. Franco Spinella,
Co-tutor: without their support and their wise guidance this thesis would not exists.

I would continue on with my external evaluators, the Engineer Angelo Cotta Ra-
musino (INFN), and Dottor Gianmaria Collazzuol (University of Padua): they patiently
read and reviewed my paper, giving advices and timely corrections that made it better.

My special thanks to my colleagues at INFN and CERN - in particular Marco,
Franco, Bruno, Jacopo, and Roberto - with whom I shared these years of research and
work. Together with them I faced the hard and arduous journey in which I grew as a
person and as a researcher.

Finally, I would like to express my gratitude to my parents and to my husband that
this work is dedicated.

I

i
i

“main” — 2017/1/11 — 15:05 — page II — #8 i
i

i
i

i
i

i
i

“main” — 2017/1/11 — 15:05 — page III — #9 i
i

i
i

i
i

Ringraziamenti

DESIDERO ricordare tutti coloro che mi hanno aiutato nella stesura della tesi con
suggerimenti, critiche ed osservazioni: a loro va la mia gratitudine, anche se a
me spetta la responsabilità per ogni errore contenuto in questa tesi.

Ringrazio anzitutto il Professor Luca Fanucci, Relatore, ed il Dottor Franco Spi-
nella, Co-relatore: senza il loro supporto e la loro guida sapiente questa tesi non esi-
sterebbe.

Proseguo con i miei valutatori esterni, l’Ingegner Angelo Cotta Ramusino (INFN)
ed il Dottor Gianmaria Collazzuol (Università di Padova): hanno letto con pazienza e
revisionato il mio elaborato fornendomi i consigli e le correzioni puntuali che lo hanno
reso migliore.

Un ringraziamento particolare va ai i miei colleghi, dell’ INFN e del CERN, con cui
ho condiviso questi anni di ricerca e lavoro. Un occhio di riguardo e un grazie speciale
vanno a Marco, Franco, Bruno, Jacopo e Roberto insieme a loro ho affrontato un viag-
gio duro e faticoso in cui sono cresciuta come persona e come ricercatore.

Vorrei infine ringraziare le persone a me più care: i miei genitori e mio marito, a cui
questo lavoro è dedicato.

III

i
i

“main” — 2017/1/11 — 15:05 — page IV — #10 i
i

i
i

i
i

i
i

“main” — 2017/1/11 — 15:05 — page V — #11 i
i

i
i

i
i

Summary

THE work reported in this thesis has been performed within the project “Exper-
iment to detect KL Very Rare decays” (KLEVER). KLEVER aims at using
powerful programmable systems in the first stages of the data collection and

selection process in particle experiments at accelerators, i.e. the use of hardware pro-
cessors based on Field-Programmable Gate Arrays (FPGAs) and Graphic Processing
Units GPUs. The FPGAs are placed at the front-end stage of detectors, immediately
after digitization, thus allowing data processing at an earlier stage of the acquisition
and trigger chain. We aim also to exploit the use of highly parallelized processors, the
GPUs, in order to process data at early selection stages. In recent years GPUs were in-
creasingly used to build high-performing computing systems at reasonable prices, but
the growth of their computing power and the reduction of their intrinsic latency is such
that they are nowadays suited for real-time application. Both these possibilities entail
an effort of integration and adaptation, as these systems were developed for totally dif-
ferent purposes, such as the automotive and the video-games market. In particular the
intention is to probe the performances of FPGAs and GPUs processors by building a
system acting as an easily updatable test bench of the attainable collection and selection
capabilities of large amounts of data. This will allow to evaluate the present technolog-
ical limits, which in turn represent the most important bottleneck for a high-precision
physics experiment studying ultra-rare decays.

My work was focused on the development of the Trigger and Data Acquisition Sys-
tem for the experiment NA62. The NA62 experiment is placed in the CERN North Area
in the Super Proton Synchrotron accelerator extraction site and it aims at measuring the
Branching Ratio of the ultra-rare decay K+ → π+νν in order to provide a stringent
test of the Standard Model. Since the value predicted by the Standard Model is very
precise, the measurement of this quantity represents an excellent way to investigate the
existence of New Physics, or in case of agreement with the Standard Model(SM) to
improve the current knowledge of the |Vtd| parameter of the CKM matrix. The use of
a high-rate kaon beam will result in an event rate of about 15 MHz, so high that it is
impossible to store data on disk without a very selective reduction. The experiment use
devised three trigger levels, allowing to reduce the data rate fed to the readout PC farm

V

i
i

“main” — 2017/1/11 — 15:05 — page VI — #12 i
i

i
i

i
i

down to ∼10 kHz.
High Energy Physics environment, the historical approach to Trigger and data Ac-

Quisition (TDAQ) system, the state of the art and the integrated fully-digital system
approach proposed in this thesis work are described in chapter 1.

In chapter 2 the NA62 experimental setup is described, composed of an upstream
part, with detectors used to identify and measure the propriety of the K+ inside the
beam, and a downstream part where the decay products are detected.

The first part of this work concerns the hardware and firmware development of the
common trigger and data acquisition system for the majority of detectors in NA62.
The unified trigger and data acquisition system, where the trigger is integrated inside
the DAQ, and allowing a good control of the trigger using the same data available at
readout, and a excellent flexibility, is presented in chapter 3.

The second part of the work describes the NA62 L0 standard trigger and the studies
performed for a L0 trigger based on GPU. The L0 hardware trigger is described in
chapter 4 and the attention is focused on the trigger firmware developed for the RICH
detector. The use of GPU in high energy physics, the NA62 GPU trigger and the GPU-
RICH firmware are described in chapter 5.

i
i

“main” — 2017/1/11 — 15:05 — page VII — #13 i
i

i
i

i
i

Sommario

IL il lavoro riportato in questa tesi è stata eseguito nell’ambito del progetto "Expe-
riment to detect KL Very Rare decays "(KLEVER).Obiettivo di KLEVER sono lo
studio e la realizzazione di sistemi integrati per l’elaborazione dei dati acquisiti da

esperimenti di fisica delle alte energie, basati su processori massicciamente paralleli;
KLEVER si propone di esplorare le possibilita‘ attuali offerte dai processori imple-
mentabili in FPGA e dai processori grafici (GPU). Le FPGA sono posizionate vicino
ai front end dei rivelatori e ricevono quindi i dati digitalizzati da usare nella selezione
degli eventi gia’ negli stadi piu’ a monte della catena di acquisizione. Le GPU sono
processori molto avanzati utilizzati nelle schede grafiche ed negli ultimi anni vengono
utilizzati in modo sempre piu’ massiccio anche per realizzare sistemi di calcolo di gran-
de potenza a costi contenuti. La crescita continua della loro potenza e la diminuzione
dei tempi di latenza permette oggi di considerare tali processori anche per possibili
applicazioni in tempo reale negli esperimenti di Fisica delle particelle agli accelerato-
ri. Entrambe queste possibilità comportano uno sforzo di integrazione e adattamento,
in quanto questi sistemi sono stati sviluppati per impieghi totalmente diversi, come ad
esempio nell’industria automobilistica e nel mercato videogiochi. In particolare si in-
tende sondare le prestazioni dei processori FPGA e GPU costruendo un sistema che
agisca come un banco di prova facilmente aggiornabile delle capacità di raccolta e se-
lezione raggiungibili di grandi quantità di dati. Ciò consentirà di impostare gli attuali
limiti tecnologici, che a loro volta rappresentano più importante collo di bottiglia per
un esperimento di fisica ad alta precisione determinato a studiare decadimenti ultra rari.

Il mio lavoro si è concentrato sullo sviluppo del trigger e del sistema di acquisizione
dati per l’esperimento NA62. L’esperimento NA62 è collocato nella North Area del
CERN sul sito di estrazione dell’acceleratore Super Proton Synchroton e ha lo scopo
di misurare il Branching Ratio del decadimento ultra raro K+ → π+νν per fornire una
prova rigorosa del Modello standard. Dal momento che il valore previsto dal modello
standard è molto preciso, la misura di questa quantità rappresenta un ottimo modo per
indagare l’esistenza di nuova fisica, o in caso di accordo con il Modello Standard (SM)
per migliorare le attuali conoscenze del parametro |Vtd| della matrice CKM. L’uso di un
fascio ad alta intensità si traduce in un rate di eventi di circa 15 MHz, valore talmente

VII

i
i

“main” — 2017/1/11 — 15:05 — page VIII — #14 i
i

i
i

i
i

elevato che rende impossibile la memorizzazione dei dati su disco senza una riduzione
molto selettiva. Tre livelli di trigger sono stati realizzati in modo tale da ridurre a 10
KHz il rate di dati da inviare alla PC farm.

Una introduzione sul mondo della fisica delle alte energie, un cenno a come si sono
evoluti i sistemi di trigger e acquisizione dati, una panoramica sullo stato dell’arte e una
introduzione al sistema integrato di trigger e acquisizione dati completamente digitale
proposto sono descritti nel capitolo 1.

Nel capitolo 2 viene descritto l’apparato sperimentale di NA62, composto da una
parte a monte per la identificazione e la misura del K+ nel fascio e una parte a valle
dove vengono identificati i prodotti del decadimento.

La prima parte del mio lavoro riguarda il progetto e la realizzazione dell’ hardware
del sistema di trigger e acquisizione dati comune per la maggior parte dei rivelatori in
NA62 e lo sviluppo del firmware ad esso associato. Il sistema integrato di trigger e
acquisizione dati , in cui il trigger può utilizzare tutti i dati digitalizzati, è presentato
nel capitolo 3.

La seconda parte del mio lavoro descrive il trigger standard di livello 0 (L0) di NA62
e gli studi eseguiti per realizzare un trigger innovativo di livello 0 basato sulle GPU. Il
trigger standard L0 è descritto nel capitolo 4. Nello stesso capitolo viene descritto
ampiamente il firmware di trigger sviluppato per il rivelatore RICH. L’utilizzo delle
GPU in fisica delle alte energie, il trigger basato sulle GPU in NA62 e il firmware
GPU-RICH sono descritti nel capitolo 5 .

i
i

“main” — 2017/1/11 — 15:05 — page IX — #15 i
i

i
i

i
i

Summary of PhD Achievements

Research Activity

MY PhD activity was held at the National Institute of Nuclear Physics (INFN) in
Pisa collaborating in the research project KLEVER (KL Experiment to detect
Very Rare decays). KLEVER aims at using powerful programmable systems

in the first stages of the data collection and selection process in particle experiments
at accelerators, i.e. the use of hardware processors based on Field-Programmable Gate
Arrays (FPGAs) and Graphic Processing Units GPUs. The goal was to develop pro-
totypes in order to investigate the feasibility of data-acquisition and selection systems
characterized by a reduced price and a limited obsolescence, as they might easily be
updated later on using future technical advancements and without redesigning the sys-
tem. In particular there was the intention to probe the performances of FPGAs and
GPUs processors by building a system acting as an easily updatable test bench of the
attainable capabilities of collection and selections of large amounts of data. This will
allow to evaluate the present technological limits, which in turn represent the most im-
portant bottleneck for a high-precision physics experiment studying ultra rare decays of
charged K mesons. The study of ultra rare channels of charged K mesons is currently
only performed at CERN in Geneva (Switzerland), by the international collaboration
NA62, and as a first application of KLEVER project the Trigger and Data AcQuisition
(TDAQ)system for the NA62 experiment was designed. The NA62 TDAQ scheme has
two essential differences from the schemes used currently in experiments of this type:

• the digitization is always enabled;

• the same data digitized are the inputs for L0 and L1 levels, as it will be for ad-
vanced stages of the trigger and possibly for storage;

Courses

During my PhD I attended the following training courses:

• Recent Advances in Sensors and Embedded Sys-tems for Automotive ADAS (Au-
tonomous Driver Assistance Systems) - 4 credits

IX

i
i

“main” — 2017/1/11 — 15:05 — page X — #16 i
i

i
i

i
i

• Academic Writing and Presentation Skills for Engineering PhD students - 4 credits

• RF, Beam Instrumentation and Electrical Engineering for particle accelerators - 4
credits

• Short course on humanoid robots: modeling, planning and control - 5 credits

• Accelerate System Performance with ALTERA SoC - 5 credits

• Programma PHD PLUS 2015: “Creatività, Innovazione, Spirito Imprenditoriale”
dell’ Università di Pisa - 8 credits

• Design Technologies for Embedded Multiprocessor Systems-on-Chip - 5 credits

• English for writing and presenting scientific papers - 2 credits

• Biosensors and Biochip: state-of-art and perspectives - 4 credits

Research Periods in Qualified Institutions

During my PhD I spent part of my research at CERN in Geneva. The months when I
was abroad were:

• November 2013;

• July, October, November, December 2014;

• February, March, May, June, July, December 2015;

• April, May, September 2016;

Project Title and Topology

KEVLER is a research project financed by the Ministry of Education, University and
Research (MIUR), with the Decree of 23 October 2012 n. 719 PRIN 2010-2011, Area
2 2010Z5PKWZ Code, and within the sectors Physical Sciences and Engineering and
Fundamental constituents of matter.

Publications

International Journals

1. E.Pedreschi et Al.: "A high resolution TDC based board for a fully digital trigger
and data acquisition system in the NA62 experiment at CERN", IEEE Transaction
on Nuclear Science, June 2015.

2. E.Pedreschi et Al.: “A fully digital trigger and data acquisition system for the
NA62 kaon factory at the CERN SPS”, IEEE Transaction on Nuclear Science,
submitted and under review.

i
i

“main” — 2017/1/11 — 15:05 — page XI — #17 i
i

i
i

i
i

International Conferences/Workshops with Peer Review

1. E. Pedreschi: “TDCB and TEL62 status”, TDAQ Working Group Meeting, Febru-
ary 2015.

2. E. Pedreschi et Al.: “The TEL62: a Real time Board for the NA62 Trigger and
Data Acquisition. Data Flow and Firmware Design”, Real Time Conference (RT),
2014 19th IEEE NPSS, May 2015.

3. B. Angelucci, E. Pedreschi et Al.: “The FPGA based Trigger and Data Acquisition
system for the CERN NA62 experiment”. JINST 9.01 (2014), p. C01055. doi:
10.1088/1748-0221/9/01/C01055.

4. Jacopo Pinzino, E. Pedreschi et Al.: “The CERN NA62 experiment: Trigger and
Data Acquisition”, PoS TIPP2014 (2014), p. 200.

5. E. Pedreschi: “TEL62 TDCB hardware status”, NA62 Collaboration meeting
2015, Prague.

Others

1. NA62 Collaboration: “2015 NA62 Status Report to the CERN SPSC”, March
2015

2. V. Duk: “Study of the rare decay K+ → π+νν at the NA62 experiment”, Pro-
ceedings, 18th International Seminar on High Energy Physics (Quarks 2014). url:
http://quarks. inr.ac.ru/2014/proceedings/www/p2/Duk.pdf.

3. B. Angelucci et Al.: “Prospects forK+ → π+νν Observation at CERN in NA62”,
PoS DIS2015 (2015), p. 217.

4. V. Duk et Al.: “LFV and exotics at the NA62 experiment”, J. Phys. Conf. Ser.
556.1 (2014), p. 012067.

5. V. Duk et Al.: “Recent Results From NA62”, Proceedings, 16th Lomonosov Con-
ference on Elementary Particle Physics: Particle Physics at the Year of Centenary
of Bruno Pontecorvo. 2015, pp. 309–312.

6. R. Fantechi et Al.: “The NA62 experiment at CERN: status and perspectives”,
12th Conference on Flavor Physics and CP Violation (FPCP 2014) Marseille,
France, May 26-30, 2014. 2014. arXiv: 1407.8213 [physics.ins-det]. url: https://inspirehep.net/
record/1309159/files/arXiv:1407.8213.pdf. /item V. Kozhuharov et A.: “NA62
experiment at CERN SPS” EPJ Web Conf. 80 (2014), p. 00003.

7. N. Lurkin et Al.: “The NA62 run control”, J. Phys. Conf. Ser. 556.1 (2014), p.
012074.

8. C.Parkinsonet Al.: “Precision tests of the Standard Model with kaon decays at
CERN”, HQL2014 (2014), p. 027.

9. M. Pepe et Al.: “Rare and forbidden kaon decays at NA62”, EPJ Web Conf. 95
(2015), p. 03029.

i
i

“main” — 2017/1/11 — 15:05 — page XII — #18 i
i

i
i

i
i

10. A. Romano et Al.: “The kaon identification system in the NA62 experiment at
CERN”, Proceedings, 4th International Conference on Advancements in Nuclear
Instrumentation Measurement Methods and their Applications (ANIMMA 2015).
2015, pp. 1–8.

11. B. Wrona et Al.: “The kaon identification system in the NA62 experiment at
CERN SPS”, JINST 9.12 (2014), p. C12048.

i
i

“main” — 2017/1/11 — 15:05 — page XIII — #19 i
i

i
i

i
i

List of Figures

1.1 Aerial view of the Large Hadron Collider at CERN, that is an example
of circular accelerator . 2

1.2 Aerial view of the Tevatron at Fermilab, that is an example of circular
accelerator . 2

1.3 Aerial view of the Stanford Linear Accelerator Center (SLAC), an ex-
ample of LINAC . 3

1.4 Typical architecture of the control and readout system for a HEP exper-
iment . 5

1.5 DAQ architecture in the seventies . 7
1.6 Trigger and Data Acquisition architecture for LHC experiments schematic

view . 9
1.7 Totem readout architecture . 10
1.8 Trigger and DAQ integrated system architecture proposed 10

2.1 Schematic view of the CERN accelerator complex (not to scale). The
NA62 experiment is located in the North Area SPS extraction line. . . . 14

2.2 Gigapanorama of the NA62 cavern, in which all detectors can be roughly
seen. 15

2.3 Schematic longitudinal view of the NA62 experimental setup. 16
2.4 Schematic layout of the optical system located inside the CEDAR. . . . 18
2.5 Pressure scan, done during the 2015 run, with different requirerments on

the number of sectors coincidences: the 1st peak corresponds to the pion
peak, the 2nd to the kaon peak, and the 3rd one to the proton peak. . . . 18

2.6 A schematic view of KTAG . 20
2.7 Sketch of the Gigatracker stations . 20
2.8 Sketch of CHANTI stations on the beam line [32]. 21
2.9 A LAV block (left). The LAV1 station, with 32 X 5 lead glass calorime-

ter blocks (right). 22
2.10 The LKr electrode structure and a detail of the LKr cells showing the

ribbons structure (left). A picture of the LKr (right). 23
2.11 IRC and SAC scheme . 24

XIII

i
i

“main” — 2017/1/11 — 15:05 — page XIV — #20 i
i

i
i

i
i

2.12 The four view of a STRAW chamber [32]. In the bottom right corner the
four view are super-imposed. 25

2.13 A picture of the RICH installed in the NA62 cavern. 25
2.14 The RICH mirrors (a), a laser was used to calibrate the mirrors align-

ment. One photomultiplier flange (b). 26
2.15 C̆erenkov ring radius as a function of particle momentum; electrons,

muons and charged pions can be seen; charged kaons from the scattered
beam can also be seen. Particles with momentum higher than 75 GeV/c
are due to background muons from the experiment target. Data obtained
in the 2015 run. 27

2.16 Sketch of the CHOD (front and side). One can see the horizontal and
vertical planes. 28

2.17 Sketch of the NEW CHOD, front and side views. 29
2.18 Sketch of the Muon Veto System. 30
2.19 MUV3 detector picture (a) and layout (b). 31

3.1 The NA62 TTC system. 33
3.2 Schematic view of NA62 TDAQ system 35
3.3 Logical scheme and photo of a Calorimeter Readout Module. 38
3.4 The TDC Board. 39
3.5 Schematic view of the TDCB architecture. 39
3.6 Schematic view of the HPTDC architecture. The input for the TDC from

the subdetector front-end electronics are at the top left and are called
Hit[31:0]. At the bottom there are the link (called in the scheme Read-
out) with the TDCC-FPGA. 41

3.7 Block diagram of the TDCC-FPGA firmware. 42
3.8 Distribution of times-over-threshold for digital 25 ns wide signals as

measured by the TDCB, with 32 channels pulsed (left) and 8 channels
pulsed (right). 44

3.9 TDCB hits efficiency pulsing one and two channels. 46
3.10 Distribution of event time differences between CHOD and CEDAR de-

tectors (2012 test beam). 46
3.11 The TEL62 motherboard. 48
3.12 Layout of the TEL62 board architecture. FPGAs are shown in yellow,

memory buffers in orange, other chip and daughter-card connectors are
in green. Lines represent data bus links between devices. 48

3.13 Main components of the TEL62. 49
3.14 Block diagram of the PP-FPGA firmware version 3. 52
3.15 Layout of the second version of DDR organization. 54
3.16 Example of data distribution in the DDR2 for a frame with 3 not empty

slots, firmware version 2. 54
3.17 Example of burst structure. 55
3.18 Zoom of the burst structure showing the large 50 Hz modulation and the

intensity peaks. 55
3.19 Example of data distribution in the DDR2 of a frame with 3 slot not

empty, firmware version 3. 56
3.20 Data flow block diagram of the SL-FPGA firmware. 58

i
i

“main” — 2017/1/11 — 15:05 — page XV — #21 i
i

i
i

i
i

3.21 Trigger primitive generation flow block diagram of the SL-FPGA firmware. 60
3.22 TEL62 output bandwidth as function of the number of used Gigabit

ports. The blue line indicates the expected upper limit value (1 Gbit/s =
125 MB/s per port), while red points refers to the measured values. . . . 61

3.23 TEL62 data packet maximum payload size as function of the trigger rate
using 4 output links. 61

4.1 The Figure shows how RICH channels are divided between four TEL62s,
two dedicated to the Jura side flange (blue ones) and two to the Salève
side flange (red ones). 63

4.2 RICH firmware scheme. 64
4.3 PP firmware: t0 corrector block diagram. 66
4.4 PP firmware: trigger data format. 66
4.5 SL firmware block scheme. 66
4.6 SL Rich trigger firmware: primitive generation modes. 67
4.7 NA62 2016 Data Taking: NewRich primitives transmitted to L0TP as a

function of the number of the burst received. 68
4.8 RICH format. 68
4.9 NEW RICH PP firmware. 69
4.10 NEW RICH SL firmware. 70
4.11 Data Merger block diagram. 72
4.12 Clustering Module block diagram. 73
4.13 Data Distributor graphical view. 73
4.14 Data Distributor graphical view: merger window. 74

5.1 GPU and CPU architectures showing the ammount of chip area devoted
to the different parts. The largest area (green) GPU chip is devoted to
ALU (Arithmetic and Logic Unit) circuits that are fundamental block
for computing operation; Flow control (yellow) and caching (red) units
occupy a little fraction of the chip area. 77

5.2 Time evolution of floating-Point Operations per Second for CPUs and
GPUs in recent years. 77

5.3 The GPU is located inside a Host PC, and receives the primitives from all
the detectors participating the L0, to issue a trigger decision, and sends
it to the TEL62. According to the trigger decision data will be discarded
or sent to L1 PC farm. 80

5.4 The GPU is located inside a Host PC, and receives the data only from the
RICH detector, and sends primitives to the L0TP, where will be matched
with the ones from the others detectors for issue a L0 trigger decision.
According to the trigger decision data will be discarded or sent to L1 PC
farm. 81

5.5 NVIDIA GPUDirect Peer-to-Peer (P2P) Communication Between GPUs
on the Same PCIe Bus. 83

5.6 The latency time to transfer data from NaNet to GPU memory for dif-
ferent buffer sizes. 83

5.7 Difference in data transfer between a generic NIC 4.3(a) and NaNet 4.3(b). 84
5.8 Pictorial view of GPU-based Trigger. 85

i
i

“main” — 2017/1/11 — 15:05 — page XVI — #22 i
i

i
i

i
i

5.9 difference between the TS of the primitive and the TS of when is was
MGP product for a period of 6.4us. 86

5.10 difference between the TS of the primitive and the TS of when is was
MGP product for a period of 12.8us. 86

5.11 The MGP format. 87
5.12 The M2EGP data format. 88

i
i

“main” — 2017/1/11 — 15:05 — page XVII — #23 i
i

i
i

i
i

List of Tables

2.1 NA62 beam composition . 17

3.1 Number of channels and typical hit rates of NA62 sub-detectors 33

XVII

i
i

“main” — 2017/1/11 — 15:05 — page XVIII — #24 i
i

i
i

i
i

i
i

“main” — 2017/1/11 — 15:05 — page XIX — #25 i
i

i
i

i
i

Contents

Acknowledgements I

Summary V

Summary of PhD Achievements IX

List of Figures XIII

List of Tables XVII

1 Trigger and Data Acquisition system in High Energy Physics 1
1.1 Introduction . 1
1.2 Historical approach to DAQ system 6

1.2.1 HEP in the 1960s and 1970s . 6
1.2.2 DAQ and trigger systems in the 1980s 7
1.2.3 State of the art . 8

1.3 The integrated fully-digital system approach 10
1.3.1 NA62 experiment . 11

2 NA62 apparatus overview 13
2.1 The beam line . 17
2.2 Detectors upstream the decay region 17

2.2.1 KTAG . 17
2.2.2 GTK . 19
2.2.3 CHANTI . 19

2.3 Detectors downstream the decay region 21
2.3.1 Photon veto system . 21
2.3.2 STRAW . 24
2.3.3 RICH . 24
2.3.4 CHOD . 26
2.3.5 NEW CHOD . 27
2.3.6 The muon veto system . 28

XIX

i
i

“main” — 2017/1/11 — 15:05 — page XX — #26 i
i

i
i

i
i

3 TDAQ system 32
3.1 Introduction . 32
3.2 The TTC system . 32
3.3 The trigger system . 34

3.3.1 L0 trigger . 34
3.3.2 L1 and L2 triggers . 36

3.4 Data acquisition system . 37
3.5 The TDC Board . 38

3.5.1 HPTDC . 40
3.5.2 The TDCC-FPGA firmware . 42
3.5.3 TDCB test . 44

3.6 The TEL62 board . 47
3.6.1 The TEL62 firmware . 51
3.6.2 TEL62 tests . 59

4 The trigger approach in NA62 62
4.1 Introduction . 62
4.2 L0 hardware trigger . 62

4.2.1 L0 Trigger for the RICH . 63
4.3 The RICH primitives generator firmware: standard version 64

4.3.1 PP firmware . 64
4.3.2 SL firmware . 65

4.4 The NEW-RICH firmware . 67
4.4.1 PP and SL firmware . 69

4.5 L1/L2 Software Trigger . 75

5 GPU 76
5.1 Introduction . 76
5.2 GPUs in high energy physics . 76
5.3 NA62 GPU trigger . 79
5.4 Data input to GPUs . 81

5.4.1 Input . 82
5.4.2 NaNet and GPUs . 82

5.5 GPU-RICH firmware . 85
5.5.1 Data preparation for GPU . 85

6 Conclusions 89

7 Appendix A 91

Bibliography 148

i
i

“main” — 2017/1/11 — 15:05 — page XXI — #27 i
i

i
i

i
i

i
i

“main” — 2017/1/11 — 15:05 — page 1 — #28 i
i

i
i

i
i

CHAPTER1
Trigger and Data Acquisition system in High

Energy Physics

1.1 Introduction

Particle physics is the branch of physics that studies the most basic constituents of mat-
ter and their interactions. Modern particle physics research is focused on subatomic
particles, i.e. particles with dimensions and mass smaller than atoms, including atomic
constituents such as electrons, protons and neutrons and particles produced by radiative
and scattering processes, such as photons, neutrinos and muons. Since many elemen-
tary particles do not occur under normal circumstances in nature, to allow their study
they are created and detected by means of high energy collisions of other particles in
particle accelerators: therefore, particle physics is often referred to as High Energy
Physics (HEP). The purpose of particle physics is to investigate the fundamentals of
matter in order to address unanswered key questions about nature and origin of the
Universe, such as symmetries in physical laws, the origin of mass, the nature of dark
matter and dark energy, possible existence of extra dimensions and so on; the final,
ambitious objective would be the creation of a general theoretical model that is able to
describe and explain all physical phenomena in an unified and coherent vision.
The main instruments for High Energy Physics are therefore particle accelerators, large
and complex machines that produce beams of particles and provide them with the high
energies needed for HEP experiments. Accelerators typically employ electric fields to
increase kinetic energy of particles and magnetic fields to bend and focus the beam,
which is then collided against a fixed target or with another particle beam: the high en-
ergy collision produces the new particles and events that must be detected and studied.
Beside the use in particle physics, the applications of accelerators nowadays span from
industry (e.g. ion implantation in electronic circuits) to medicine (radiotherapy), with

1

i
i

“main” — 2017/1/11 — 15:05 — page 2 — #29 i
i

i
i

i
i

different ranges of energy for the different fields application. Current accelerators for
High Energy Physics work in the GeV and TeV energy range (referring to the energy
provided to particle beams) and typically treat beams of electrons, hadrons 1 and heavy
atomic nuclei; the structure can be linear (LINAC, LINear ACcelerator), with the par-
ticle beam traveling from one end to the other and colliding against a fixed target, or
circular (cyclotrons, synchrotrons), with the beams traveling repeatedly around a ring,
gaining more energy at every loop and colliding with other beams running in opposite
direction (see figure 1.1, 1.2 and 1.3)

Figure 1.1: Aerial view of the Large Hadron Collider at CERN, that is an example of circular accelerator

Figure 1.2: Aerial view of the Tevatron at Fermilab, that is an example of circular accelerator

1Hadrons are the subnuclear particles that are subject to the strong force, and are constituted by quarks. The family of hadrons
is then divided in two subsets: baryons, comprising neutrons and protons, and mesons, including pions and kaons.

i
i

“main” — 2017/1/11 — 15:05 — page 3 — #30 i
i

i
i

i
i

Figure 1.3: Aerial view of the Stanford Linear Accelerator Center (SLAC), an example of LINAC

The major research centers for High Energy Physics nowadays include, among the
others:

• The European Organization for Nuclear Research (CERN), located near Geneva,
Switzerland: its main facilities included LEP (Large Electron Positron collider),
which was dismantled in 2001 and substituted with LHC (Large Hadron Collider)
that is now the world’s most energetic accelerator;

• the Fermi National Accelerator Laboratory (Fermilab), located near Chicago, USA;

• he Stanford Linear Accelerator Center (SLAC), located near Palo Alto, USA: it
hosts the longest linear accelerator in the world, colliding electrons and positrons;

• the INFN (Istituto Nazionale di Fisica Nuleare) center in Frascati, Italy, that hosts
DAFNE (Double Annular ring For Nice Experiments) a circular accelerator for
the collision of electrons and positrons.

High Energy Physics experiments thus consist in colliding particle beams in accel-
erators and studying the results of the collisions by means of particle detectors that
surround the interaction point. Particle detectors are devices used to track and identify
high-energy particles produced in collisions, also measuring their attributes like mo-
mentum, charge and mass. A particle detector is typically made up of different layers
of sub-detectors, each specialized in revealing and measuring different particles and
properties of particles: normally the innermost layer (i.e. the nearest to the interac-
tion point) is the tracking device, that has the task of revealing the paths of electrically
charged particles through the trails they leave behind; in the outer layers calorimeters
are typically placed, that measure the energy lost by particles that go through them.
To help identify the particles produced in the collisions, the detector usually includes a
magnetic field that bends the path of charged particles: from the curvature of the path,
it is possible to calculate the particle momentum which helps in identifying its type.
Particles with very high momentum travel in almost straight lines, whereas those with
low momentum move forward in tight spirals.
To record and analyze events produced by collisions in an experiment, information
about particles detected by sensors in the detector are converted into electric signals,
which are then collected by dedicated electronic components embedded in the detector

i
i

“main” — 2017/1/11 — 15:05 — page 4 — #31 i
i

i
i

i
i

and located in close contact with the sensors themselves: these devices, usually called
Front-End (FE) electronics, deal with the proper conditioning of signals (e.g. amplifica-
tion, shaping, buffering, analog to digital conversion) and their transmission to remote
data acquisition systems that perform data analysis and storage. However, some means
is needed to reduce the amount of data that must be transferred from the detector to the
remote system, that is extremely large in every HEP experiment. In fact, to increase the
probability of occurrence of rare, interesting events, the number of interactions per sec-
ond is made very high (a typical order of magnitude is billions of particle interactions
per second); a measure of collision rate is the so-called luminosity, which is usually
expressed in cm−2s−1 and for a two-beam collider is defined as the number of parti-
cles per second in one beam multiplied by the number of collisions per unit area in the
other beam at the crossing point. Collision rates of this order of magnitude produce
amounts of raw data that range from tens of terabyte to a petabyte per second, which
is beyond the possibility of any data acquisition and storage system. Therefore, since
the interesting events are a very small fraction of the total, the total amount of data is
filtered by means of a trigger system: raw data are temporarily buffered in the FE elec-
tronics while a small amount of key information is used by trigger processors (located
at various hierarchical level inside the detector and in the remote elaboration center)
to perform a fast, approximate calculation and identify significant events: the result
of this processing is a trigger signal that is sent back to FE electronics to command a
data readout, i.e. the transferring of a selection of the buffered data towards the remote
system. This way, the amount of data to be transferred is reduced to rates that can be
handled by the readout system (a typical order of magnitude is hundreds of MB/s from
each FE device), and only the interesting events are selected.
A typical control and readout system for a HEP experiment can be schematized as in
1.4:

Signals generated by the interaction with sensors of particles produced in the beam
collisions are handled by Front-End electronics embedded in the detectors and trans-
ferred to remote data acquisition (DAQ) systems, that are placed far away from the
experiment area to keep them in an environment that is free from the intensive levels of
radiation that are present in the proximities of the interaction point: typically the trans-
fer is carried out by means of electrical links for a first stretch inside the detector, and
then through optical links that allow to cover the long distances (hundred of meters)
from the experiment area to the remote DAQ system, and provide the large bandwidth
needed (up to tens of Gbit/s). A subset of the transferred data is used to perform trigger
calculation, and the generated trigger command is sent back to FE electronics along
with timing (clock) and control signals by a remote control system, also called TTC
(Timing, Trigger and Control) system, that manages the configuration and monitoring
processes in the Front-End electronics.
High Energy Physics experiments constitute a very challenging application for elec-
tronics, since the equipment must deal with large amounts of data and high data rates,
with tight timing and data integrity constraints and operate in an environment that is in-
trinsically hostile due to the high levels of radiation. Typical requirements for detector
electronics and data transmission links in a HEP experiment are:

• radiation hardness: electronic devices and systems must tolerate high levels of

i
i

“main” — 2017/1/11 — 15:05 — page 5 — #32 i
i

i
i

i
i

Figure 1.4: Typical architecture of the control and readout system for a HEP experiment

ionizing radiations and the associated Total Dose Effects (e.g. threshold voltage
drift and sub-threshold current increase in MOS devices) and Single Event Effects
(e.g. Single Event Upset in flip- flops and SRAM cells);

• small size: the space available for devices and cabling inside a particle detector is
usually very limited due to the large amount of different components (readout and
control systems, cooling systems, mechanical structures and so on) that must be
integrated in a small area around the interaction point; additionally, bulky equip-
ments are undesired because any non-sensor material interferes with the measure
by deflecting and absorbing the particles that must be detected (the amount of ma-
terial surrounding the interaction point, characterized with the radiation thickness
of each component/layer, is usually referred to as material budget);

• low power dissipation: due to the high concentration of electronic equipment in-
side the detector, power density is a major issue because it dictates the cooling
requirements; cooling system is a critical aspect in HEP experiments because it
complicates the material budget and the mechanical requirements;

• constant trigger latency: the trigger signal must be delivered to all Front-End de-
vices with a fixed and known latency, to command the readout of selected data
thus allowing precise reconstruction of significant events;

i
i

“main” — 2017/1/11 — 15:05 — page 6 — #33 i
i

i
i

i
i

• capability of handling high data rates: readout electronics must be able to elab-
orate and transfer large amount of data in a limited time to allow a continuous
data flow during the running of the experiment, with minimal loss of information;
for the same reason, adequately high bandwidth in electrical and optical links are
required;

• data integrity: appropriate methods must be employed in transmission links to
protect data against transmission errors, and in storage elements to deal with data
corruption due to radiation.

1.2 Historical approach to DAQ system

The search for new physics and rare phenomena with low cross sections has demanded
progressively higher beam interaction rates and luminosities in order to maintain ac-
ceptable event rates and thus collect the required number of events during the lifetime of
an experiment. Greater beam energies were also required as experiments targeted par-
ticles and interactions that required higher energies. These needs stimulated advances
in a number of engineering fields, such as electronics, microwaves, superconductivity,
magnet design, vacuum, and cryogenics. This has enabled the construction of modern
accelerators. The combination of high luminosity and low cross section for interesting
events implies that these events are masked by a large background of uninteresting, but
higher cross section, interactions. From the data acquisition and trigger system point of
view this implies a number of problems:

• Event reconstruction becomes more complex, as interesting tracks and particles
become only a small fraction of the observed events;

• High luminosity can cause multiple events per beam interaction, complicating
trigger algorithms and making event reconstruction more difficult

• Channel occupancy in the subdetectors (understood as the percentage of beam in-
teractions in which a channel carries data) increases and so DAQ system through-
put increases;

• Radiation levels in the vicinity of the detectors increase, posing radiation-hard or
radiation-tolerant requirements for the front-end electronics;

But luminosity and cross section are not the only basic parameters to take into consid-
eration when studying the evolution of HEP experiments from the DAQ system point
of view. To understand modern DAQ systems, the ever growing beam interaction rate
and detector channel count must also be taken into account. In the late sixties just a
hundred data channels were read at low rates (a few hertz), and this meant a single
minicomputer could handle the readout. Nowadays, large experiments have millions of
channels read at megahertz rates. Today’s DAQ systems feature distributed processing,
complex trigger systems for event filtering, switch networks, and PC-based computer
farms.

1.2.1 HEP in the 1960s and 1970s

In a typical HEP experiment of the late sixties and seventies, the front-end electronics
were read out by a single minicomputer. This architecture (see figure 1.5) lacked par-

i
i

“main” — 2017/1/11 — 15:05 — page 7 — #34 i
i

i
i

i
i

allelism and only allowed data rates of kilobytes per second. A common trigger signal
distributed to all sub-detectors was used for system synchronization and timestamping.
Analog signal path delays were equalized with tens of meters of cable per channel.
Signals coming from multiwire chamber anodes were amplified and converted into co-
ordinates via time-to-digital converters. Scintillators were connected to counters. Data
from each front-end module (event fragment) were read out by a minicomputer at a
fixed time after the trigger signal to ensure data availability. Event fragments consisted
basically of raw physics data with little or no formatting. Both the read out bus and the
front-end electronics used non-standard interconnects and modules, generating con-
fusion and inefficiency.

Figure 1.5: DAQ architecture in the seventies

1.2.2 DAQ and trigger systems in the 1980s

The following trends can be observed during the eighties:

• An increase in detector resolution increased the number of channels. The study
of rare events made it necessary to increase the event rate to achieve the required
statistics. The combination of these two parameters caused an increase in DAQ
system bandwidth requirements to several MByte/s;

• Permanent storage bandwidth was around 100 KByte/s, thus requiring a data rate
reduction by filtering out non interesting events in the so called trigger systems.
Event filtering was carried out in hardware at the front- end level and in software
at the main read out computer, leading to multilevel trigger systems. This scheme
required more complex data formats in the DAQ system for event timestamping
and synchronization;

• The above mentioned increase in sub-detector complexity justified the DAQ be-
ing partitioned into several DAQ systems which could work autonomously during
development and commissioning phases, as well as for calibration and tests dur-

i
i

“main” — 2017/1/11 — 15:05 — page 8 — #35 i
i

i
i

i
i

ing operation. All the DAQ partitions (which grouped all channels from a sub-
detector) could, of course, work together in a single DAQ system;

Typical DAQ architectures had a hierarchical tree-like structure. A good example
can be found in the CERN’s ALEPH DAQ System. ALEPH was designed with a three-
level trigger system. The first two levels were implemented in hardware and reduced
the rate from 50 KHz to 500 Hz (Level 1); and down to 10 Hz (Level 2) which is
the DAQ rate. Level 3 reduction takes place in the Main Readout Computer and this
lowers the rate to 1 Hz; thus matching bandwidth to tape storage capabilities (around
100 KBytes/s).

1.2.3 State of the art

During the nineties several ideas and trend were introduced for DAQ and trigger archi-
tectures, these were implemented in later years and are currently the base of the running
experiments. In particular:

• Collecting data techniques were discussed and push architectures were studied;

• Expensive computing facilities were replaced by PC-based computer farms run-
ning Linux, and inter-connected via network technologies such as Ethernet;

• Several experiments, normally located on the same accelerator, shared the same
DAQ and trigger infrastructure, to reduce costs and developing time. This is the
case of all the LHC experiments ATLAS,CMS,LHCb,and TOTEM [4, 29, 41, 47,
48];

The basic idea for the trigger and DAQ systems is shown in figure 1.6
In detail:

• Digitized data are stored in distributed pipelines, normally located in custom ASIC
near the detector. The pipeline depth varies depending on the detector but is nor-
mally on the order of hundreds of samples;

• The same custom ASIC is capable of generating a fast subset of the detector sig-
nals, significative of the full set. This can be for example a logical AND of the
discriminated signals. These fast signals are sent to the low level trigger systems;

• The trigger system receives the subset of data, quickly analyze it and generates
the event accept/reject signal;

• This signal is sent back to the ASIC front end, with a fixed delay (µs) so that the
event at the output of the pipeline is related to this same signal;

An example of this particular architecture is currently in use in the LHC experiment
TOTEM. I’ve collaborated at the TOTEM DAQ design several year ago.

TOTEM DAQ

TOTEM readout electronics [12] is shown in picture 1.7
The main component is the VFAT2 chip which is a "trigger and tracking front-

end ASIC" (250 nm CMOS technology Rad hard). It provides both trigger and data

i
i

“main” — 2017/1/11 — 15:05 — page 9 — #36 i
i

i
i

i
i

Figure 1.6: Trigger and Data Acquisition architecture for LHC experiments schematic view

acquisition functions. It has 128 analog input channels each of which are equipped with
a very low noise pre-amplifier and shaping stage plus comparator. Signal discrimination
on a programmable threshold provides binary “hit” information which passes through
a synchronization unit and is then stored within a SRAM (SRAM1) until a trigger is
received. The same discrimined signals can be combined in groups of programmable
"fast OR", to generate trigger informations. These are immediately sent to the first level
trigger systems board, that combine all the received "fast OR" signals to generate the
L1 trigger accept signal, which is sent back to the VFAT2 chips, with a fixed latency, so
that the corresponding word can be extracted from the SRAM1 and copied to SRAM2

i
i

“main” — 2017/1/11 — 15:05 — page 10 — #37 i
i

i
i

i
i

Figure 1.7: Totem readout architecture

(adding in the meantime a timestamp).

1.3 The integrated fully-digital system approach

The idea is to realize an integrated and fully-digital trigger and data acquisition system,
instead of a custom distributed system in which only a part of the digitized data can be
used to generate the trigger signal. The project aims at using powerful programmable
systems in the first stages of the data collection and selection process in particle experi-
ments at accelerators, i.e. the use of hardware processors based on Field-Programmable
Gate Arrays (FPGAs) and Graphic Processing Units GPUs. The FPGAs can be placed
at the front-end stage of detectors, immediately after digitization, thus allowing data
processing at an earlier stage of the acquisition and trigger chain (3).

Figure 1.8: Trigger and DAQ integrated system architecture proposed

TDAQ scheme proposed has two key differences from the schemes used currently
in experiments of this type (1.2.3):

• The digitization is always enabled

i
i

“main” — 2017/1/11 — 15:05 — page 11 — #38 i
i

i
i

i
i

• The same data digitized are the inputs for L0 and L1 levels

• All digitized data are available and can be analyzed in real time by specific algo-
rithms, and these algorithms can decide whether to accept or reject the event with
a fixed latency (ms);

• The trigger algorithms can be more complex and easily reconfigurable (1.2.3);

The electronic modules of the TDAQ are directly part of the trigger system and are
designed to allow simultaneous processing of data for acquisition and for trigger pur-
poses, with no dead time introduced by the second. Adequate data buffers must be
foreseen for both type of processing. In particular the digitized analog detector signals
are stored in a circular buffer (see Fig.1.8). If the trigger logic decided that the event
should be accepted the data would be extracted from the circular buffer and sent to a
PC-Farm for a further selection and subsequent storage.

The experiments with a relatively large number of channels and high event rates,
such as those in High Energy Physics(HEP) are good candidate for this innovative
architecture. In fact, the HEP experiments are quite far from reaching the goal of im-
plementing their entire trigger and DAQ system on commodity processors (so-called
"trigger-less"), because the size of the required computer farms would be in most cases
impractically large. A reliable trigger and data acquisition system and an efficient on-
line selection of candidates represents an important issue for HEP experiment because
of the large reduction to be applied on data before tape recording. On the other hand,
a loss-less data acquisition system is mandatory to avoid adding artificial detector in-
efficiencies when vetoing background particles; this last requirement is less common
in standard readout and trigger systems. For the above reasons the detectors and the
TDAQ systems are integrated in a completely unified digital system where the trigger
is structured in a three level system, in order to reduce the event rate from dozen of
MHz to tens of kHz. The first level (L0) will be completely hardware based while
the other levels (L1 and L2) will be based on software: the L1 decision is taken on
single subdetector reconstructed quantities, while the L2 decision is taken on the fully
reconstructed event with high resolution.

To demonstrate the feasibility and the reliability of this system the TDAQ for the
CERN NA62 experiment was designed, realized and tested.

1.3.1 NA62 experiment

The NA62 experiment is located in the CERN North Area SPS extraction site and aims
at measuring the Branching Ratio of the ultra-rare decay K+ → π+νν, as a highly sen-
sitive test of the standard model (SM), collecting about 100 events in two years of data
taking. Since the detection of this process is very challenging due to the smallness of
the signal and the presence of a very sizable background, a very low DAQ inefficiency
(below) is a key point of the experiment. The intense flux of NA62 dictates the need for
a high-performance triggering and data acquisition system in order to minimize dead
time and maximize data collection. A unified trigger and data acquisition (TDAQ) sys-
tem was designed in order to address such requirements in a simple and cost-effective
manner. The system was implemented with a single hardware trigger level (called L0)

i
i

“main” — 2017/1/11 — 15:05 — page 12 — #39 i
i

i
i

i
i

with a maximum latency time of 1 ms. With an estimated 13 MHz rate of decays in
the detector, the L0 hardware trigger maximum rate was chosen to be 1 MHz In NA62
TDAQ the hardware L0 trigger is performed by evaluating conditions on the same com-
plete set of digitized data which is eventually readout. NA62 TDAQ system is rather
unique in allowing such fully-digital flexibility on this scale, in which any information
available from the detector can be used to be triggered on. This feature is particularly
important in view of a constant evolution of trigger. After L0 data is moved to PCs and
two further software-based trigger levels are implemented. A central trigger proces-
sor will asynchronously match fine-time L0 trigger primitives generated by a few fast
sub-detectors, and dispatch a (synchronous) L0 signal to every board through the same
system that distributes the clock to all detectors. The L0 trigger primitives are con-
structed in the same board (TEL62) in which the data are stored to wait for the trigger
decision.

i
i

“main” — 2017/1/11 — 15:05 — page 13 — #40 i
i

i
i

i
i

CHAPTER2
NA62 apparatus overview

The NA62 experiment is placed in the ECN3 zone in the CERN North Area Intensity
Facility (see figure 2.1) and it uses the Super Proton Synchrotron accelerator extraction
line already used by the NA48 experiment.

The detectors used to detect the kaon decay products are spread along a 170 m long
region starting about 100 m downstream of the target. The fiducial decay region is 60
m long and starts 105 m after the target. The largest detectors have an approximately
cylindrical shape around the beam axis with a diameter up to about 2 m and down to
10 cm in order to let the very intense flux of undecayed beam particles pass through
without affecting the active area.

The experimental setup (see figure 2.3) consists in:

• the Kaon TAGger (KTAG) that uses a C̆erenkov Differential counter with Achro-
matic Ring focus (CEDAR) to identify K+ in the hadron beam;

• the GigaTracKer (GTK), a tracking detector for beam particles upstream the decay
region and composed of three silicon micro-pixel stations and a set of achromatic
magnet;

• the CHarged ANTIcounter (CHANTI) a set of six stations of plastic scintillator
detectors useful for vetoing charged particles generated in the last station of the
GTK.

• a photon veto system that guarantees an angular coverage from 0 mrad up to
50 mrad through 12 Large Angle Veto (LAV), a Liquid Krypton electromagnetic
calorimeter (LKr), an Inner Ring Calorimeter (IRC) to cover the annular region

13

i
i

“main” — 2017/1/11 — 15:05 — page 14 — #41 i
i

i
i

i
i

Figure 2.1: Schematic view of the CERN accelerator complex (not to scale). The NA62 experiment is
located in the North Area SPS extraction line.

around the beam and a Small Angle Calorimeter (SAC) located at the end of the
experimental hall to cover the small angle region;

• the STRAW magnetic spectrometer for charged particles originating in the decay
region;

• a Ring Imaging C̆erenkov (RICH) to separate π+ from µ+ in the momentum re-
gion between 15 GeV/c to 35 GeV/c, which can also measure particle direction
and velocity;

• the Charged Hodoscope (CHOD), a segmented plastic scintillator detector con-
ceived for triggering purpose.

• a muon veto system composed of three stations.

i
i

“main” — 2017/1/11 — 15:05 — page 15 — #42 i
i

i
i

i
i

Figure 2.2: Gigapanorama of the NA62 cavern, in which all detectors can be roughly seen.

i
i

“main” — 2017/1/11 — 15:05 — page 16 — #43 i
i

i
i

i
i

Figure 2.3: Schematic longitudinal view of the NA62 experimental setup.

i
i

“main” — 2017/1/11 — 15:05 — page 17 — #44 i
i

i
i

i
i

2.1 The beam line

It is convenient to use a high energy proton beam in order to maximize the production
of positive kaons by beam interactions on a beryllium target [33].

The highest kaon production is achieved at PK/Pp ' 0.35, where Pp is the central
proton beam momentum and PK is the momentum of the produced kaons. Furthermore,
the use of high energy kaons increases the detection efficiency of most sub-detectors.
Due to these considerations, a central beam momentum 75 GeV/c.

The choice of positive kaons is due to the ratio particles abundances in a hadron
beam produced by 400 GeV/c protons [32]:

K+

K− ' 2.1 (2.1)

K+/π+

K−/π− ' 1.2 (2.2)

Tab. 2.1 shows the different components of the beam.

Momentum 75± 0.9 GeV/c

Rate 750 MHz

70% π+

23% p+Composition
6%K+

1% other

Table 2.1: NA62 beam composition

2.2 Detectors upstream the decay region

2.2.1 KTAG

One disadvantage of high-energy beams is that kaons cannot be efficiently separated
from other beam particles. So the detection of kaons before decay is a crucial aspect
for the experiment. A detector called Kaon TAGger (KTAG) was built to identify the
kaons in the beam and to measure their time with good resolution. The KTAG is a NA62
upgrade of a ChErenkov Differential counter with Achromatic Ring focus (CEDAR) [?]
[?]. A schematic view of a standard CERN SPS CEDAR is shown in figure 2.4.

The CEDAR is a steel vessel of 55.8 cm external (53.4 cm internal) diameter and 4.5
m length, was used at CERN since the early ’80s for SPS secondary beam diagnostics,
and is designed to identify particles of a given mass by making the detector blind to
the C̆erenkov light produced by particles of different masses. The C̆erenkov angle of
the light, emitted by a charged particle traversing a gas of a given refraction index n,
is a function of the gas pressure, the beam momentum and the mass of the particle.
The CEDAR is filled with nitrogen gas (0.03X0), whose refractive index n is set by

i
i

“main” — 2017/1/11 — 15:05 — page 18 — #45 i
i

i
i

i
i

Figure 2.4: Schematic layout of the optical system located inside the CEDAR.

choosing the gas pressure (see figure ??), for the kaon mass and the beam momentum
(75 GeV/c). The CEDAR could be even filled with hydrogen to minimise material on
the beam line, and hence reduce multiple Coulomb scattering.

Figure 2.5: Pressure scan, done during the 2015 run, with different requirerments on the number of
sectors coincidences: the 1st peak corresponds to the pion peak, the 2nd to the kaon peak, and the
3rd one to the proton peak.

At the end of the CEDAR vessel, a spherical mirror reflects the C̆erenkov light onto
a ring-shaped diaphragm of 100 mm radius, located at the vessel entrance. The aperture

i
i

“main” — 2017/1/11 — 15:05 — page 19 — #46 i
i

i
i

i
i

width of the diaphragm is adjustable to optimize the selection of the kaons. A chro-
matic corrector lens, designed to match the dispersion curve of the gas, is positioned
between the mirror and the diaphragm: it ensures that light of all wavelengths arrives
at the same radius on the diaphragm plane. After the diaphragm, 8 photomultipliers are
placed behind 8 annular slits to detect the light. Light from other beam components hits
the diaphragm plane at a different radius and does not pass through the aperture and in
this way it does not contribute to the detector rate.

The upgrade of the CEDAR, the KTAG, was built to cope with the challenging 45
MHz kaon rate and to achieve the required time resolution. The KTAG replaced the
original 8 photomultipliers with 384 divided in 8 sectors with an average rate of about
4 MHz on a single PMT (see figure ??).

The efficiency in kaon tagging required for the KTAG is above 95% with a kaon
time resolution of the order of 100 ps, and the pion mis-identification probability has to
be below 10−3. The front-end electronics system is based on 8 boards (one per sector)
using 8 ultra fast NINO amplifier/discriminator chips [22], to benefit from the fast
photomultiplier response. The CEDAR uses the common TDC-based readout system
TDCB+TEL62 described in chapter 3.

2.2.2 GTK

The GigaTracKer (GTK) detector provides precise measurement of angle, momentum
and time of the crossing particle.

In order to limit hadronic interactions and to preserve the beam divergence, the GTK
is composed of three station (3 is the minimum number of station to have a spectrome-
ter) for a total thickness less than 0.5X0 [32]. Each station contains 18000 300 × 300
µm2 silicon micro-pixels 200 µm thick, bump-bonded to 10 readout ASIC chips 100
µm thick. The three stations of the GTK are mounted inside the vacuum tank preceding
the decay region, and they are interlaced with 4 achromat magnet pairs as shown in Fig
2.7.

2.2.3 CHANTI

The reduction of accidental backgrounds to a level of 10−11 is a crucial point for the
experiment. The purpose of the CHANTI is to detect charged particles due to inelas-
tic interactions between beam and collimator or upstream material at an angle larger
than that allowed for the beam as they emerge from the last GigaTracker station. The
CHANTI is made of six double-layer stations [32]. Each station is a 30×30 cm2 square
with a 90× 50 mm2 hole to allow the passage of the beam and each layer is composed
of 24 (22) scintillator bars aligned to the x axis (y axis). A sketch of the CHANTI is
shown in Fig 2.8.

i
i

“main” — 2017/1/11 — 15:05 — page 20 — #47 i
i

i
i

i
i

Figure 2.6: A schematic view of KTAG

Figure 2.7: Sketch of the Gigatracker stations

i
i

“main” — 2017/1/11 — 15:05 — page 21 — #48 i
i

i
i

i
i

Figure 2.8: Sketch of CHANTI stations on the beam line [32].

2.3 Detectors downstream the decay region

2.3.1 Photon veto system

The photon veto system is needed to reduce the background events coming from kaon
decays and interactions before the decay region. In order to efficiently reject the pho-
tons originating from K+ → π0π+ a photon veto system was developed, that ensures
a rejection inefficiency lower than 10−7. The photon veto detector cover a 50 mrad
angular range around the beam.

The photon veto system is composed by four sub-detectors that cover different an-
gular region between 0÷ 50 mrad

• Large Angle Veto (LAV), cover the angular region between 8.5 and 50 mrad.

• Liquid Krypton Calorimeter (LKr) covers angles between 1 and 8.5 mrad.

• Inner Ring Calorimeter (IRC) and Small Angle Calorimeter (SAC) cover the inner
region, from about 0 to 1 mrad.

LAV

The Large Angle Vetoes are 12 stations (LAV1-12, see figure 2.9): the first eleven LAV
are installed in the NA62 vacuum tank, while the last one is located in air outside of the
tank between the RICH and the CHOD.

LAV stations are made of rings of lead-glass blocks (see figure 2.9) that were recov-
ered from electromagnetic calorimeter barrel of the OPAL experiment [?]. Each block
is a trapezoidal C̆erenkov counter exploiting lead-glass1 as active material; it is read
out at one side by a photomultiplier coupled via a 4 cm long cylindrical light guide of
the same diameter as the photomultiplier (see figure 2.9). The front and rear faces of
the blocks measure about 10 X 10 cm2 and 11 X 11 cm2 respectively and the blocks
length is 37 cm. A LAV station is made by arranging these blocks around the inside
of a segment of vacuum tank: the blocks are aligned radially to form a ring. Multiple

1This material is about 75% lead oxide by weight and has a density ρ = 5.5 g cm3 and a radiation length X0 = 1.50 cm; its
index of refraction is n ≈ 1.85 at λ = 550 nm and n ≈ 1.91 at λ = 400 nm.

i
i

“main” — 2017/1/11 — 15:05 — page 22 — #49 i
i

i
i

i
i

Figure 2.9: A LAV block (left). The LAV1 station, with 32 X 5 lead glass calorimeter blocks (right).

rings are used in each station to provide total minimum effective depth of 21 radiation
lengths for incident particles. The blocks in successive rings are staggered and the rings
are spaced longitudinally by about 1 cm.

The LAV provide time and energy measurements using the time-over-threshold
(ToT) technique. The time resolution obtained for a single block is

σt =
220ps√
E(GeV)

⊕ 140ps.

The front-end electronics is a custom discriminator board (called LAV front-end [3])
which converts the analog signals to low-voltage differential signals (LVDS). These
signals sent to the common TDCB+TEL62 system which is used for readout and trigger
purpose.

LKr

The LKr calorimeter (see figure 2.10) is mainly used as a photon veto in the forward
angle region (1.5 mrad < θ < 8.5 mrad). The LKr is also an important element for
the L0 trigger reduction of K+ → π+π0 decays.

The experiment [?] needed an electromagnetic calorimeter with good energy, po-
sition and time resolution, precise charge calibration, long-term stability and a fast
read-out to study direct CP violation. The experiment chose a liquid Krypton almost
homogeneous ionisation chamber to meet these requirements [?].

When a photon or an electron enters the calorimeter active volume, it produces an
electromagnetic shower via pair production and Bremsstrahlung processes until the en-
ergy of the particles falls below the critical energy. The charged particles of the shower
can ionise Krypton atoms producing a number of electron-ion pairs proportional to the
deposited energy. The produced electrons drift towards the anode where are collected
before they can recombine. A liquefied noble gas was chosen to obtain a good reso-
lution and energy linearity, with absence of ageing problems. Furthermore the relative

i
i

“main” — 2017/1/11 — 15:05 — page 23 — #50 i
i

i
i

i
i

Figure 2.10: The LKr electrode structure and a detail of the LKr cells showing the ribbons structure
(left). A picture of the LKr (right).

short radiation length of the liquid Krypton allows a compact design.

The low boiling temperature of Krypton (120 K) entails that the whole detector has
to be kept inside a cryostat: only temperature variations of few per mille are allowed
not to have big variations of the drift velocity.

The LKr is read-out in a current-sensitive mode: the initial induced current is pro-
portional to the ionisation generated by the electromagnetic shower and so to the energy
of the crossing particle. The signal is sampled and digitized every 25 ns by a flash ADC-
based calorimeter readout module (CREAM) [5]. To reduce the number of read cells
and the output bandwidth, a zero suppression is applied to the cells with pulse height
below a certain threshold.

IRC and SAC

The two small-angle veto calorimeters, IRC (see figure ??) and SAC (see figure ??),
are "shashlik" type calorimeters, i.e. detectors made of lead absorber layers with plastic
scintillator plates used as active material.
The IRC is placed around the beam line in front of the LKr, and covers the angular
region between LKr and the SAC. A dipole magnet bends the beam so that charged
particles cannot hit the SAC, the most forward detector in the NA62 setup.

The IRC and SAC read-out uses a CREAM module.

i
i

“main” — 2017/1/11 — 15:05 — page 24 — #51 i
i

i
i

i
i

Figure 2.11: IRC and SAC scheme

2.3.2 STRAW

The purpose of the STRAW magnetic spectrometer is to measure the directions and mo-
menta of kaon decay products. The kinematical constraint needed to reject most of the
background requires an accurate reconstruction of the secondary particles tracks. The
full spectrometer consists of four straw chambers. A dipole magnet, placed between
the second and the third chamber, generates a vertical field of 0.36 T, corresponding
to a kick of 270 MeV/c along the x-axis. Each chamber is composed of four "views"
(x, y, u and v). Each view is made of 256 straw tubes. Fig. ?? shows the four views of
a STRAW chamber.

The read-out electronics was designed in order to cope with an overall particle rate
of about 15 MHz and a single straw maximum rate of 700 kHz. The front-end elec-
tronics called COVER is placed directly on the detector, sealing the gas volume [13].
A COVER can read-out 16 channels using 2 8-channel CARIOCA chips developed for
LHCb [42]. The chip amplifies, shapes and discriminates the current signal induced
on the wire chamber electrodes. The discriminator output is sent to the LVDS driver
that provides the CARIOCA output signal. The time measurement is performed on an
FPGA located directly on the COVER board. Leading and trailing are treated in paral-
lel and the time to digital converter time resolution is of 0.78 ns. After the digitization
of the signals and the time measurements, the data are sent to the Straw Read-out Board
(SRB). Each SRB can read-out 16 COVERs (256 channels), it selects and packages the
data to send it to the PC Farm.

2.3.3 RICH

A Ring-Imaging CHerenkov counter (RICH) is the main particle identification detec-
tor of NA62; it is employed to obtain π − µ separation and to achieve a precise time
measurement of the pion candidate. Because of its good time resolution, it is one of the
reference detectors in order to tag the passage of a charged particle and partially reject
the multi-track events.

The RICH consists of a 17 m long vessel (see figure 2.13), with 3.8 m diameter,
filled with Neon gas at atmospheric pressure (5.6% of a radiation length) and crossed
by the beam pipe that allows the beam to pass through.

The internal optics is made of a mosaic of 20 hexagonal spherical mirrors (see fig-
ure 2.14a) that reflects and convoys the C̆erenkov light towards the upstream part of
the detector where the photomultipliers are placed. The mirrors are divided into two

i
i

“main” — 2017/1/11 — 15:05 — page 25 — #52 i
i

i
i

i
i

Figure 2.12: The four view of a STRAW chamber [32]. In the bottom right corner the four view are
super-imposed.

Figure 2.13: A picture of the RICH installed in the NA62 cavern.

spherical surfaces with centre of curvature respectively on the left and on the right of
the beam pipe, in this way the absorption of reflected light by the beam pipe is avoided.

In the the upstream part of the detector, two flanges (see figure 2.14b) host 960 pho-
tomultipliers each to collect the C̆erenkov light. Each flange has a diameter of about
0.7 m and its centre is at a transverse distance of 1.2 m from the beam pipe axis. The
active area of each photomultiplier has a diameter of 8 mm and a Winston cone is used
to collect the light from a pixel of 18 mm diameter.

A charged particle, traversing a medium of refraction index n, with a velocity βc

i
i

“main” — 2017/1/11 — 15:05 — page 26 — #53 i
i

i
i

i
i

(a) . (b) .

Figure 2.14: The RICH mirrors (a), a laser was used to calibrate the mirrors alignment. One photomul-
tiplier flange (b).

higher than the speed of light in the medium, emits a e.m. radiation at an angle cos θc =
1/(nβ). The light cone is reflected by the mirrors toward the photomultipliers placed
on the mirror focal plane where the cone image is a ring of radius r = f tan θc ∼ fθc
(f is the focal length). In this way the ring radius depends only on the particle velocity:
this means that, for a particle of momentum p, the radius r depends only on its mass m

r ≈ f

√
2(n− 1)

n
− m2

np2
.

Using this information it is possible to obtain a pion-muon separation in the mo-
mentum range between 15 GeV/c and 35 GeV/c. Figure 2.15 shows the C̆erenkov ring
radius as a function of momentum (measured by the STRAW spectrometer) obtained
with data of 2015 run and without any selection on particle type: electrons, muons,
charged pions and scattered charged kaons can be seen.

Cutting on the reconstructed mass, charged pions can be selected and muons can be
rejected: with 2015 data a 86% pion efficiency and a 1.3% muon survival probability
were measured. It must be noted that in 2015 the RICH mirrors alignment was not
optimal and the need for better pion-muon separation was the main reason for detector
maintenance carried out during the 2015-2016 winter shutdown.

The measured RICH time resolution was 65 ps and this leads to the choice of the
RICH as one of the possible reference positive detectors for the L0 trigger (see section
3.3.1).

The front-end electronics uses the same NINO chip [22] as for the CEDAR to pro-
cess the photomultiplier signals; the readout of the about 2000 channels is done through
the TDCB+TEL62 common system.

2.3.4 CHOD

A plastic scintillator hodoscope provides a fast signal to trigger data acquisition on the
passage of a charged particle. The CHOD inherited by the NA48 experiment, is com-

i
i

“main” — 2017/1/11 — 15:05 — page 27 — #54 i
i

i
i

i
i

Figure 2.15: C̆erenkov ring radius as a function of particle momentum; electrons, muons and charged
pions can be seen; charged kaons from the scattered beam can also be seen. Particles with momentum
higher than 75 GeV/c are due to background muons from the experiment target. Data obtained in the
2015 run.

posed of two planes of 64 + 64 plastic scintillator bars aligned respectively to the x and
y directions.

With this time resolution the CHOD is another possible reference positive detector
for the main L0 trigger (see section 3.3.1).

The detector uses the LAV front-end electronics [3] and is read-out by the common
TDCB+TEL62 system.

2.3.5 NEW CHOD

A new charged hodoscope was designed and was used for the first time in the 2016 run
together with the old CHOD. The main reason to build the NEW CHOD is the high hit
rate at which the long slabs (1 m) of the CHOD are exposed. The intrinsic dead time
and the light transit time inside the scintillator are not compatible with the expected
overall rate on the detector above 10 MHz.

The NEW CHOD is a two-dimensional array of 152 scintillator tiles (see figure
2.17) installed after the LAV12. In each quadrant, a 30 mm thick plastic scintillator
is divided into 38 tiles. The scintillation light is collected and transmitted by 1 mm
diameter wavelength shifting fibres to be detected by arrays of 3 X 3 mm2 silicon pho-
tomultipliers (SiPMs) on mother-boards located on the periphery of the detector. A
maximum rate of the order of 500 kHz is expected on the tiles close to the beam pipe.

i
i

“main” — 2017/1/11 — 15:05 — page 28 — #55 i
i

i
i

i
i

Figure 2.16: Sketch of the CHOD (front and side). One can see the horizontal and vertical planes.

The signals are shaped using constant fraction discriminators to improve the time
resolution, and read out by the common TDCB+TEL62 system.

2.3.6 The muon veto system

A further reduction of the K+ → µ+νµ background is achieved by the MUon Veto
system, composed of three detectors (MUV1, MUV2, and MUV3). The MUV1 and
MUV2 are downstream of the LKr calorimeter and work as hadronic calorimeters mea-
suring the deposited energies and the shower shapes of incident particles, the MUV3 is
instead located behind a 80 cm thick iron wall and is employed as a fast muon veto in
the lowest trigger level (L0) and for offline muon identification (see figure 2.18).

MUV1 and MUV2

Both are iron-scintillator sandwich calorimeters; they have 24 (MUV1) and 22 (MUV2)
layers of plastic scintillator strips alternated with iron plates. The plates have dimen-
sion 2600 X 2600 X 25 mm3; a central hole of diameter 212 mm allows the beam pipe
passage. The scintillator strips of both modules are alternately horizontal and vertical.

The MUV1 consists of 48 X 24 strips (1152 in total) of about 6 cm width. Light
is read by two wavelength-shifting fibers per scintillator strip. The fibers of one longi-

i
i

“main” — 2017/1/11 — 15:05 — page 29 — #56 i
i

i
i

i
i

Figure 2.17: Sketch of the NEW CHOD, front and side views.

tudinal row of scintillators are bundled together to direct the light to one single photo-
multiplier, therefore no longitudinal segmentation exists.

The MUV2 is composed of 44 strips of about 11 cm width, each one spanning half
of the transverse size of the detector. Consecutive strips with identical transverse posi-
tions are coupled to the same photomultiplier using plexiglass light-guides.

These two detectors are read-out with the CREAM modules [5] used by the LKr
calorimeter.

MUV3

The MUV3 detector (see figure 2.19) consists of an array of 12 x 12 plastic scintillator
tiles, 5 cm thick, with a transverse area of 22 x 22 cm2. Eight smaller tiles are mounted
around the beam pipe to cover the region with a higher rate.

The light produced by traversing charged particles is collected by two photomulti-
pliers positioned about 20 cm downstream. The maximum time jitter between photons
produced is below 250 ps, in this way the required time resolution is preserved. The
only error in the time measurement could be due to particles traversing the photomulti-
plier windows: these particles produce C̆erenkov photons who arrive earlier than those
produced in the scintillators, with typical time differences of about 2 ns. To overcome
this problem each scintillator tile is read out by two photomultipliers. The output time
of the two photomultiplier signals coincidence, corresponds to the time defined by the
photomultiplier which is unaffected by the Cerenkov photons. The time resolution of
the MUV3 is below 500 ps, sufficient to keep the random veto probability at a low level.

i
i

“main” — 2017/1/11 — 15:05 — page 30 — #57 i
i

i
i

i
i

Figure 2.18: Sketch of the Muon Veto System.

The photomultiplier output signals are sent to constant fraction discriminators (CFD)
which are then read-out through the common TDC-based system TDCB+TEL62.

i
i

“main” — 2017/1/11 — 15:05 — page 31 — #58 i
i

i
i

i
i

Figure 2.19: MUV3 detector picture (a) and layout (b).

i
i

“main” — 2017/1/11 — 15:05 — page 32 — #59 i
i

i
i

i
i

CHAPTER3
TDAQ system

3.1 Introduction

The high event rate (about 13 MHz) and the number of detectors in NA62 result in
a large amount of output data (∼ 30 GB/s) that is difficult to store without filtering.
The total number of channels in NA62 is above 90000: considering the detector rate
and size of each subdetector packet, the system produces a raw data bandwidth of the
order of 2 TB/s. The number of channels and the typical hit rates of the detector are
presented in table 3.1. A high performance trigger and data acquisition (TDAQ) system
is therefore necessary, which must minimize dead time and maximize data collection
rate. To do that, NA62 developed an unified trigger and data acquisition system: trigger
is integrated inside the DAQ system, allowing to have a good control of the trigger, that
use the same data available at readout, and a excellent flexibility. The trigger system is
organised in three levels: the lowest-level trigger (L0) is hardware and is followed by
two software high-level triggers (L1 and L2) implemented in a PC farm.

The common clock of the experiment is provided by the Timing, Trigger and Control
(TTC) system used in LHC experiments [15], its frequency is close to 40 MHz and is
the common unity reference for all time measurements, which are defined by a 32-bit
timestamp, with 25 ns LSB (Least Significant Bit), plus 8 bit of fine time with 100 ps
LSB covering the duration of an entire SPS spill (which is of the order of 10 s).

3.2 The TTC system

The Timing, Trigger and Control (TTC) system [15], developed for the LHC exper-
iments, provides the timing of the experiment with a common, centrally generated,
free-running synchronous 40.079 MHz clock. This clock is the unique reference for
time measurements of all the experiment. The above frequency is the exact bunch-

32

i
i

“main” — 2017/1/11 — 15:05 — page 33 — #60 i
i

i
i

i
i

Sub-detector Total channels Hit rate (MHz)
CEDAR 240 50
GTK 54000 2700
LAV 4992 11
CHANTI 276 2
STRAW 7168 240
RICH 1912 11
CHOD 128 35
NEWCHOD 304 45
IRC 20 4.2
LKr 13248 40
MUV 432 30
SAC 4 2.3

Table 3.1: Number of channels and typical hit rates of NA62 sub-detectors

crossing frequency of the LHC but in NA62 the kaon beam is unbunched, and this is
just the reference clock frequency of a free running clock. The clock produced by the
TTC system is distributed all over the experiment through optical fibers to detectors
DAQ and the L0 Trigger Processor (L0TP). The NA62 TTC system (shown in figure
3.1) is composed of a central clock source and many sets of LTU + TTCex modules.

Figure 3.1: The NA62 TTC system.

These modules encode and send clock and triggers to the readout electronics of the
detectors.

A back pressure system of CHOKE and ERROR signals is implemented : they are
produced in case of exceedingly high rate or errors by the data acquisition boards and
the Local Trigger Unit (LTU) propagates them to the L0TP to momentarily stop L0
triggers.

The LTU [36], a 6U VME module, is an updated version of the local trigger unit de-
signed for the ALICE experiment. An on-board FPGA on the LTU receives the clock

i
i

“main” — 2017/1/11 — 15:05 — page 34 — #61 i
i

i
i

i
i

from the TTCex and is programmed to perform the following tasks: dispatch triggers
received from the L0TP (L0 Trigger Processor, see the next section) to the TTCex for
optical encoding, in the form of a trigger signal and a trigger message containing 8 bits;
propagate the back pressure CHOKE and ERROR signals to the L0TP; deliver syn-
chronously to the readout systems the Start Of Burst (SOB) and End Of Burst (EOB)
signals, received from the SPS, as special trigger messages: these signals respectively
start and end the data acquisition operations inside a single burst synchronously to the
entire system. In the trigger messages the lowest two LSB bits are reserved to encode
SOB and EOB signals, the remaining 6 bits represent the Level 0 trigger type (up to 63
different types).

The TTCex module [46] is a 6U board: it receives the main clock which drives an
internal QPLL, and is linked to the LTU to receive trigger signals and trigger infor-
mation messages. The module provides several optical fibre outputs in which clock,
trigger signals and trigger messages are encoded together.

All the subdetectors front-end subsystems are endowed with a TTC interface con-
taining an optoelectronic receiver and a TTCrx chip [21] which decodes the L0 trigger
information.

The trigger word can encode several physics triggers belonging to different condi-
tions and subdetectors, as well as some service triggers, e.g. signal useful to synchro-
nize all the detector together, to monitor the the noise or the background in the detectors
and the CHOKE/ERROR signals which represent a warning or a problem in the general
data acquisition and they says to the read-out board to pause or stop the data acquisition.

3.3 The trigger system

The general Trigger and Data AQuisition (TDAQ) structure of a modern high energy
experiment is organized on more levels: the detectors data are stored if they satisfy
some requirements established by several sequential trigger levels. The NA62 trigger
system is structured in 3 levels that have to reduce the event rate from about 13 MHz
to some kHz. The number of detectors channels and their high rates led the NA62
collaboration to choose for the first level (called L0) a fully hardware trigger; after the
L0 trigger, the sub-detectors transfer the data to a pc farm where the L1 and L2 trigger
are implemented. The L1 is based on the information computed by each complete sub-
system. The L2 uses assembled and partially reconstructed events with the possibility to
use correlations between different sub-detectors. The NA62 trigger hierarchy is shown
schematically in figure 3.2.

3.3.1 L0 trigger

The L0 trigger is digitally implemented on hardware in the common TEL62 board, it’s
based mainly on input from CHOD, MUV, RICH, LKr and LAV12, and with the goal of
reducing the event rate from about 13 MHz to 1 MHz. The default L0 trigger algorithm
consists in requiring a single charged track in the CHOD and RICH, nothing in the
MUV3 and in the LAV12, and an amount of energy in the LKr and in the MUV1 com-

i
i

“main” — 2017/1/11 — 15:05 — page 35 — #62 i
i

i
i

i
i

Figure 3.2: Schematic view of NA62 TDAQ system

patible with a charged pion. Together with this main trigger, other L0 trigger could be
implemented to acquire a selection of events useful for different physical goals respect
to the branching ration measurement of the K+ → π+νν decay. The signals of the
CHOD and RICH will allow to tag a charged particle within the detector acceptance,
reducing the rate due to K decays downstream of the final collimator. It is possible to
use, in addition, the hits multiplicity to select multi-track events. The fast third station
of the muon veto (MUV3) is used to reject the high rate of muons due to the major
background decay K+ → µ+νµ (about 63% of Branching Ratio) and the muon halo
components from decays upstream of the final collimator. The LKr and MUV1 are use-
ful to suppress the rate due to the other background decay K+ → π+π0, by requiring
the energy released corresponding to the charged pion electromagnetic shower. An on-
line cluster counting with a time resolution of 1 ns can allow a good rejection and at the
same time give useful information for several other sets of physics triggers. The RICH
is able to contribute by exploiting hits multiplicity, for the reduction of the background
due to multi-track events, and giving a very precise time measurement O(300 ps); we
are not able to use the particle identification in the L0 trigger because it requires the
correlation with the information from other sub-detectors like the measurement of the
particles momentum from the slow magnetic spectrometer. The RICH trigger condition
is computed in a single TEL62 board, called RICH MULTI, that collect the signal of all
the detector super-cells (a super-cell is the digital OR of 8 RICH PMs). The last station
of the LAV veto (LAV12) is used to reject at the L0 a part of the events with photons
in the final state. The other stations are used inside the L1 trigger condition. It is not
possible at the moment to use all the LAV station in the L0, but is under development
a system that will allow the firmware communication between the LAV TEL62 board

i
i

“main” — 2017/1/11 — 15:05 — page 36 — #63 i
i

i
i

i
i

to generate a common trigger condition. The new-CHOD detector is been installed for
the 2016 RUN; it could be used, simultaneously, with the old CHOD detector to select
single charged tracks. The new-CHOD trigger and read-out efficiency will be tested in
the first period of the run.

The electronic boards connected to these sub-detectors inside the trigger system
produce L0 trigger primitives with timestamp and fine time to allow the time matching.
The L0 trigger primitives are managed by a central L0 Trigger Processor (L0TP). The
L0TP used during the 2015 run is a FPGA system based on the Altera R©development
DE4 board [7] which accommodates a Stratix R©IV FPGA [11], plus a TTC [21] in-
terface card and daughter-cards for 8 Gigabit ethernet ports used for trigger primitives
reception. The received primitives are stored in RAMs implemented in the FPGA,
with a RAM address depending on the primitive time. The timestamps of a reference
(positive element) detector are stored in a FIFO, and subsequently read to search for
primitive matching in times from other detectors; different trigger masks coexist for
different physics goals, and a look up table is implemented inside the FPGA for this
multiple matching purpose. After the matching, if the trigger conditions are satisfied the
L0TP generates a L0 trigger signal followed by a trigger type word that is dispatched
by the TTC system back to all detectors. When the detector boards receive this signal
they read-out the data inside a programmable number of time slots (each one of 25 ns)
around the trigger time. The data, waiting for the L0 trigger signal, is stored into some
memory buffer (on the TEL62 boards is a DDR2 memory).

The maximum L0 trigger latency was set to 1 ms and it is limited by the memory
inside the L0TP indeed the read-out electronics of the detectors can currently store data
for more time like the DDR2 memory in the TEL62 (∼ 50 ms) and the memory in the
readout board used by the LKr (∼ 10 ms).

3.3.2 L1 and L2 triggers

The sub-detector data, after the L0 trigger signal, are extracted from memories and sent
to the PC farm where the L1 and L2 triggers are implemented. The L1 algorithms
check data quality conditions and then requires simple correlations between conditions
computed by single sub-detectors. The L1 trigger uses the KTAG to cut the non-kaon
component of the beam, the LAV stations to reject events with photon and the CHOD
to reduce multi-tracks events. A significant part of the rejection power is obtained us-
ing STRAW informations that help to cut events with a decay vertex out of the fiducial
region, due to beam particles that are inside the detector acceptance and multi-body
decays. The L1 trigger is necessary to achieve an overall trigger rate below 100 kHz.
In case of positive L1 decision, a complete event reconstruction at L2 will be done.

The L2 takes care of accepting, for the main trigger, events with only a single iden-
tified charged pion. These two software level triggers are both implemented inside the
same PCs, so useless data transfers are avoided. All the events accepted by the L2 trig-
ger are finally stored on tape. The available bandwidth for data storage is about 100
MB/s, this limits the final output trigger rate to about 10 KHz.

i
i

“main” — 2017/1/11 — 15:05 — page 37 — #64 i
i

i
i

i
i

The NA62 Pisa group is developing a parallel fast online trigger system using com-
mercial graphic processors (GPUs) [17]. This system could support some L1 and L2
trigger algorithms acting as a Level 0.5 trigger between the hardware level and the soft-
ware levels. Two low latency applications under evaluation in NA62 are the RICH on-
line ring-finding, both for L0.5 and L1, and a L1 tracks reconstruction for the STRAW
spectrometer.

3.4 Data acquisition system

The high hit rate and the consequent need of a good time resolution to have an efficient
selection of the events, led the collaboration to approve the implementation of a TDC-
based system for many detectors. A TDC-based system can also provide pulse-height
information using a time-over-threshold approach: both leading and trailing edges of
pulses should be measured to utilize this method. Consequently most of the detectors
of the experiment (CEDAR, CHANTI, LAV, RICH, CHOD, NEWCHOD and MUV3)
adopted a TDC and FPGA-based common readout composed of the TEL62 carrier
board [24] [14] and the TDCB daughter-card [20]. A part of my PhD work consisted of
the firmware development of these two boards; this will be described in sections 3.5.2
and 3.6.1.

Due to specific needs, some detectors chose to adopt a different custom TDC system
or an ADC based readout instead and these read-out systems are briefly described in the
rest of this section. The readout of the Gigatracker is based on a TDCPix chip that pro-
vides, in addition to the hit time, the time-over-threshold self-triggered measurement
for 360 channels, the pre-amplification and the discrimination of the signal [37]. The
TDCPix time bin size is about 100 ps, the expected rate is about 210 MHits/s and the
output is given by four 3.2 Gbit/s serial links. Taking into consideration the propagation
of the signal through the chip and the relative time correction the chip time resolution is
about 70 ps. The four output serial links send data to a carrier GTK-RO VME 6U board
where it is stored waiting for a L0 trigger decision. After the reception of a L0 trigger
signal the data inside a 75 ns time windows are sent to the readout PC. There is also on
the board a TTC interface to receive triggers from the central L0 Trigger Processor and
to send the clock to the TDCpix.

The STRAW spectrometer electronics [13] is based on a 8-channel analogue front-
end chip, the CARIOCA chip [42],containing a fast pre-amplifier, semi-Gaussian shaper,
a tail cancellation circuitry, base-line restorer and a discriminator. Two CARIOCA
chips are integrated in a custom COVER board [44] together with an Altera R©Cyclone R©III
FPGA [6]. The COVER board houses 16 pairs of TDC implemented within the FPGA
with de-randomizers and an output link serializer. The full system is composed of
14236 TDCs producing a data rate of order 2 GB/s. The back-end VME 9U Straw
Readout Board (SRB) receives data from 16 COVER boards for processing (in FP-
GAs) and storage in DDR3 memories. A TTC interface is also present, to optically
receive the clock and the L0 trigger signal. After receiving a L0 trigger, data are ex-
tracted from the buffers and sent to the PC farm.

i
i

“main” — 2017/1/11 — 15:05 — page 38 — #65 i
i

i
i

i
i

The LKr, the MUV 1 and MUV2 use a Flash Analog to Digital Converter (FADC)
based readout. The readout board is the Calorimeter Readout Module (CREAM) [5]
developed by CAEN (see figure 3.3). The CREAM is a VME 6U board able to digitise
32 LKr channels at 40 MHz using four 8-channel, 14-bit ADCs. Four hundred and
fourteen such boards are needed to read out all the calorimeter cells (13248). After
signal digitalization, samples are stored in a circular buffer built inside a DDR3 mod-
ule, waiting for the L0 trigger signal. Upon reception of such signal through a custom
backplane, data is moved to the L0 buffer, also built in the same DDR3 module, where
it waits for a L1 trigger signal. This is one main differences with respect to other de-
tectors: due to the high data rate, the LKr is only read out at the reduced L1 trigger
rate (below 100 kHz). When such signal is received, the corresponding data is finally
sent to the PC farm. The CREAM module also computes digital sums of 4 × 4 chan-
nels, called Super-cells, for L0 trigger purposes: two Super-cells are read out by each
CREAM, and digital sums are sent every 25 ns to a system based on 36 TEL62s and
custom interface mezzanine boards, where LKr L0 trigger primitives, based on energy
deposits and cluster identification, are generated.

Figure 3.3: Logical scheme and photo of a Calorimeter Readout Module.

At present, the IRC and SAC small angle photon veto detectors use two different
readout system together: the TDCB-TEL62 and the CREAM board systems. Both IRC
and SAC have only 4 channels, this number is linked to the transversal dimension of
an electromagnetic shower indeed a greater segmentation of these detectors would not
have diminished the single channel rate.

3.5 The TDC Board

The TDC Board (TDCB) is a high-density (10 layers printed circuit) mezzanine daughter-
card for the TEL62 carrier motherboard, designed in Pisa for precision time measure-
ments. The board design (see figure 3.4) was driven by the desire to integrate a high

i
i

“main” — 2017/1/11 — 15:05 — page 39 — #66 i
i

i
i

i
i

number of channels within the same processing board, in order to ease triggering is-
sues [20].

Figure 3.4: The TDC Board.

The desire for a compact and common electronics and the short distance (order of
meters) between subdetectors and readout electronics, with no space constraints, led
to the choice of having digitizers on the readout board rather than on the detector thus
leaving only analog front-end electronics on each individual subdetector in a potentially
higher radiation environment and making all digital electronics common and located on
the same boards, at the price of having to transmit analog pulses on the 5 m LVDS ca-
bles between the two.

The requirements of a good time resolution and high channel integration led to the
choice of the CERN High Performance Time to Digital Converter (HPTDC) [16] as
time digitizers (see figure 3.5).

Figure 3.5: Schematic view of the TDCB architecture.

With a fast front-end electronics providing adequately time-stretched LVDS dis-
criminated pulses, the measurement of both the leading and trailing edge times allows
obtaining analog pulse-height information by the time-over-threshold method: HPT-
DCs can indeed digitize the time of occurrence of both signal edges, provided they are
separated by a minimum time (about 7 ns); the resulting time measurements (made with
respect to clock edges) can be combined into a single word to reduce the required data
bandwidth.

The board houses four 68-pin VHDCI connectors for input signals, each of them
delivering 32 LVDS signals to one TDC, with two spare pairs being used to provide
additional grounding (one pair) and to allow user-defined back communication from

i
i

“main” — 2017/1/11 — 15:05 — page 40 — #67 i
i

i
i

i
i

the TDCB to the front-end electronics (one pair). This latter feature can be used to
trigger the injection of calibration pulses in the subdetector or calibration patterns in
the front-end (as two single-ended lines allowing bidirectional communication, or as
a LVDS pair towards the front-end). This choice allows in principle the use of high-
performance cables, if required by the intrinsic resolution of a subdetector, as well as
cheaper solutions.

The TDCB houses a dedicated Altera R©Cyclone R©III EP3C120 FPGA [6], named
TDC Controller (TDCC-FPGA) which can handle the configuration of the four HPT-
DCs via JTAG, read the data they collect, and possibly pre-process it. A 2 MB external
static RAM block is also available and will be used for online data monitoring purposes
and low-level checks on data quality.

The TDCC-FPGA can be configured from an on-board flash memory (Altera R©EPCS64
[9]), which can be loaded using an external programmer via an on-board connector or
through JTAG, either using a JTAG port on the TEL62 board, or through its Credit
Card PC (CCPC). Communication between each TEL62 FPGA and the correspond-
ing TDCC-FPGA on the daughter-board proceeds through a 200-pin connector with 4
independent 32-bit single-ended LVTTL parallel data buses (one for each TDC, run-
ning at 40 MHz, for a total bandwidth of about 5 Gbit/s) and a few dedicated lines for
synchronous commands and resets. The TDCC-FPGA on the TDC daughter-card can
also be accessed from the TEL62 CCPC card via a dedicated I2C connection for slow
operations.

The individual TDCs are configured via JTAG, with the TDCC-FPGA acting as
the JTAG master: the configuration bits are sent to the TDCC-FPGA from the TEL62
CCPC card via I2C, and are then uploaded to the TDCs. A second working mode al-
lows inserting both the TDCC-FPGA and the four HPTDCs into a global JTAG chain
which also includes all the TEL62’s devices, and which can be driven by the TEL62
CCPC card.

The contribution of the digitizing system to the time resolution ultimately depends
on the random jitter of the reference clock against which the measurement is performed.
The 40 MHz clock optically distributed by the TTC is received through the TEL62 and
is cleaned by the on-board QPLL [43] to reduce the jitter below 50 ps. This clock signal
drives the internal logic and is distributed to each TDCB, where it can be configured to
go through more jitter-cleaning stages: these are the internal PLL of the TDCC-FPGA
and a second on-board QPLL.

3.5.1 HPTDC

The HPTDC [16] can work in an un-triggered mode, in which all available data is deliv-
ered at every readout request, or in a trigger-matching mode, in which a readout request
follows a trigger pulse, and the TDC only delivers the data which matches in time the
trigger occurrence, within some programmable time windows. Trigger-matching mode
was implemented to allow HPTDCs to work as front-end buffers, storing data in a buffer
(called L1 buffer, but have no relation to the NA62 L1 trigger) while a trigger signal

i
i

“main” — 2017/1/11 — 15:05 — page 41 — #68 i
i

i
i

i
i

was generated (see figure 3.6); however, in a modern experiment such as NA62, the
latency of the lowest trigger level (1 ms) is much longer than the typical time it takes to
fill TDCs’ buffers (order of tens of µs in our experiment).

Figure 3.6: Schematic view of the HPTDC architecture. The input for the TDC from the subdetector
front-end electronics are at the top left and are called Hit[31:0]. At the bottom there are the link
(called in the scheme Read-out) with the TDCC-FPGA.

The TDCBs therefore normally use TDCs in trigger-matching mode just as a way
of obtaining properly time-framed data, but triggers are actually sent to HPTDCs in a
continuous periodic stream, with no relation whatsoever to the trigger of the experi-
ment (data storage during trigger latency being actually provided on the carrier TEL62
board with much larger buffers). The time-matching parameters in the TDCs have to
be properly set in order to allow readout of all hits which occurred since the previous
trigger (time-matching window set equal to trigger period): in this way the TDCs are
periodically triggered and readout, receiving all hits corresponding to a time frame of
length equal to the triggering period, in a continuous sequence. Since the range of time

i
i

“main” — 2017/1/11 — 15:05 — page 42 — #69 i
i

i
i

i
i

measurement within the TDC chips is limited (to 51.2 µs at most), and therefore a roll-
over of the TDC time word frequently occurs, only by exploiting this working mode
one can be guaranteed (by the TDCs themselves) that all the data are being read.

Each HPTDC provides 32 TDC channels when operated in fully digital mode at 98
ps LSB resolution, with some internal buffering for multi-hit capability and a trigger-
matching logic allowing the extraction of hits in selected time windows. Four such
chips, for a total of 128 channels, are mounted on each TDCB, resulting in a grand total
of 512 TDC channels per fully-equipped TEL62 carrier-board; as an example, the entire
RICH detector can be handled by 4 TEL62 boards only, while most small subdetectors
only require a single TEL62 board.

3.5.2 The TDCC-FPGA firmware

We used the software tools HDL Designer R© [27], Modelsim R© [28] (from Mentor
Graphics R©) and Quartus R©II [8] (from Altera R©) to develop the firmware for the TDC
Board’s TDCC-FPGA (and for the FPGAs of the TEL62 carrier-board). The main
TDCC-FPGA firmware [31] parts and functionalities are shown in a block diagram in
figure 3.7.

Figure 3.7: Block diagram of the TDCC-FPGA firmware.

To have a good resolution for the time measurement we have chosen a TDC config-
uration, in which the chip produces two 32 bit-long words for each signal, one word
for the leading and one for the trailing edge. The number of bits dedicated to time
measurement are 19 out of 32, the other being used identify the channel (5 bits), the
TDC inside the board (4 bits) and the type of data word (4 bits). The possible types of
words are 5: leading or trailing edge, error words and TDC frame timestamps and word
counters. Inside the FPGA the data are are packed in 6.4 µs frame, each frame have a
header word (TDC frame timestamps) and a trailer word (word counters).

The TDCC-FPGA firmware performs several operations:

i
i

“main” — 2017/1/11 — 15:05 — page 43 — #70 i
i

i
i

i
i

• Packing the data stream from the TDCs. The TDCC-FPGA receives the data
sent by the HPTDCs through a 32-bit parallel block writing protocol. The TDC
time measurement rolls over every 51.2 µs, while the SPS spill is several seconds
long. To cope with these different time scales, in the TDC control block we add a
timestamp to the data in such a way that the TDC time measurement is unambigu-
ously associated to an “absolute” time for the whole length of the spill. This is
achieved by periodically triggering the TDCs with a period shorter than the TDC’s
roll-over (we chose a period of 6.4 µs) and adding a frame timestamp at the begin-
ning of the data stream associated with each frame. Then at the end of the frame
data stream we add a word counter indicating the number of words received by
the TDC plus the frame timestamp itself. The roll-over of the frame timestamp
(whose least significant bits corresponds to 400 ns) is 228× 400 ns ≈ 107 s, much
longer than the SPS spill duration.
In the TDC control block 2, of the 4 bits that identify the TDC inside the board,
are replaced with 2 parity bits. These parity bit are useful to verify if the data were
altered (e.g. corruption or bit-flips) during the data flow. A mathematical function
returns a 2 bits result for each data word (usually a the XOR of the data word bits);
these 2 bits can be checked off-line to test the integrity of the each data word.

• Configuring TDCs and communicating with the CCPC on the motherboard.
As mentioned before, configuration data is sent to the TDCB from the CCPC on
the TEL62 through I2C. An I2C slave controller has been implemented in the
firmware, through which internal registers are both written and read. A JTAG
master controller is implemented in the TDCC-FPGA to transmit and receive the
configuration to and from the TDC chips.

• HPTDC emulator. Two different HPTDC emulators are contained in the TDCB
firmware: one was developed to send some simple repeating pattern on selected
TDC channels (called single-channel TDC emulator), the other allows to load
some amount of data words from a file into memory and repeatedly send it (called
data emulator).
The data emulator generates data packets containing a variable number of words
per frame as required by the user, sending one data packet for each frame to which
the header (timestamp) and trailer (word count) are automatically added; This
emulator is directly linked to the TDCC output FIFO (called transfer FIFO). The
data words are read from four (one for each TDC) 32-bit wide and 1 K deep pattern
memories and modified so that the upper bits of the TDC time field do match the
current frame timestamp (so the data words will not repeat exactly). The data
emulator read from the memory and puts in each frame a number of words as read
from a 9-bit wide and 1 K deep count memory (0 value in a line of this memory
will generate an empty frame with only the header and the trailer). It is even
possible to set the data emulator to repeat the same sequence continuously. The
data emulator is used to test parts of the firmware of the TDCB or of the TEL62,
using patterns written ad hoc to stress the firmware and the electronics, such ad
the TEL62 output links.

• The on-board RAM. The data stream can be optionally split and sent to the
TDCB’s on-board static RAM during the acquisition, to possibly store a frac-

i
i

“main” — 2017/1/11 — 15:05 — page 44 — #71 i
i

i
i

i
i

tion of it for reading it and analysing it off-line. This can be useful for debugging
or monitoring purposes. The RAM space is equally subdivided among the four
TDCs. In the final implementation, it will be possible to choose between filling
the RAM with the data from the first part of the spill, the last one or only with the
frames that exceed same defined rate.

• Front-end pulser. The TDCC-FPGA can drive a spare output LVDS pair of the
TDC connector, that allows to trigger the front-end boards for sub-detectors’ cal-
ibration. Some front-end boards can send data signals to the TDCs in response
to that stimulusS: this is useful for debugging purposes and to test the hardware
connections. The Front-end pulser is driven by a mask register which is compared
with a timestamp counter. An alternative working mode generates the output sig-
nal when the TDCC receives a special command from the motherboard.

3.5.3 TDCB test

Once the TDCB design was finalized various tests were performed in order to verify that
the system complies with the experiment’s requirements. These tests were performed in
the laboratory of Pisa INFN, using a test setup which may reproduce conditions similar
to the experiment environment, and at CERN during a test beam [20].

Time resolution

An important figure is the intrinsic contribution of the board to the time resolution. It
was evaluated in the laboratory by pulsing TDC channels with signals of fixed duration
generated by an FPGA-based test board working on the same clock used by the TDCB,
and by measuring the time differences between the trailing and leading times of a LVDS
pulse with nominal 25 ns duration. In a first test we pulsed 32 TDC channels at a time:
we observed that the RMS of the measured pulse width on a single channel was 61 ps
(figure 3.8 left) and the average was 25.18 ns on a sample of 105 pulses. In a second
test we pulsed simultaneously only 1 every 4 TDC channels (8 in total) with the same
signals of the previous case (figure 3.8 right) and found comparable results.

Figure 3.8: Distribution of times-over-threshold for digital 25 ns wide signals as measured by the TDCB,
with 32 channels pulsed (left) and 8 channels pulsed (right).

No spurious hits were detected on channels which were not pulsed, over a sample
of 107 events. We checked other possible cross-talk effects by comparing the channel

i
i

“main” — 2017/1/11 — 15:05 — page 45 — #72 i
i

i
i

i
i

time resolution in the previous two tests: all the 32 TDC channels pulsed with signals of
constant width (25 ns) or only 8 TDC channels (1 every 4) pulsed. We didn’t observe
differences in the time resolution (see figure3.8) when other channels were pulsed,
concluding that no significant cross talk effects are present.

Channel efficiency

Hit losses are expected at high rates due to the limited amount of buffering present in
the HPTDC. In the HPTDC the 32 channels are divided in four independent groups of
8 channels each, and hits are buffered at different stages: per channel, per group of 8
channels, per full chip (respectively Hit registers, L1 buffer and Readout FIFO in fig-
ure 3.5); apart from the first buffering stage, the other ones are monitored for overflow
conditions.

The data transfer efficiency is defined as the ratio between the number of hits deliv-
ered by the system and the number of input pulses. It was measured in the laboratory
both using only one single channel (1 of every group of 8 for a total of 4 TDC channels)
and using two neighbouring channels (channels 0 and 1 of every group of 8 for a total
of 8 TDC channels). We use these configurations because inside the HPTDC every
group of 8 channels shared a 256 words deep level 1 buffer [16]. When several hits are
waiting to be written inside the level 1 buffer an arbitration between pending requests
is performed. Arbitration between channels in the active request queue is done with a
simple hard-wired priority (channel 0 highest priority, channel 7 lowest priority). In this
way the first channels in each group of 8 are serviced faster than the last ones. At high
rates this gives an advantage to the low-numbered high-priority channels which can use
their channel de-randomizers more efficiently, while in such conditions lower-priority
channels appear like they have smaller de-randomizing capability and therefore slightly
higher data losses. The results of the measurement and different channels efficiency are
shown in figure 3.9.

No data losses were observed for input rates below 17.5 MHz in the first case (sin-
gle channel). In the case of two adjacent channels being pulsed, no data losses were
observed for input rates below 8.5 MHz per channel; above such value data losses start
to appear at slightly different levels depending on the pulsed channel.

Test beam results

In November and December 2012 a test run with beam was performed at the CERN
SPS. The main measurements performed during of this test run were the response of
the detector and the front-end, the rates and efficiencies of the detectors and the TDAQ
system, the time and space correlations between the detectors. The setup in the test
beam was similar to the experiment, with the secondary kaon beam of 75 GeV/c pro-
duced by protons from the SPS. The test was carried out with a low intensity beam
(1/50 of nominal rate foreseen for NA62). Figure 3.10 shows the event time difference
distribution between the fast and high-resolution detectors CHOD and CEDAR, which
had a fitted standard deviation of 410 ps. This value is compatible with the intrinsic
detector resolutions, confirming a negligible contribution from the electronics and the
read-out board.

i
i

“main” — 2017/1/11 — 15:05 — page 46 — #73 i
i

i
i

i
i

Figure 3.9: TDCB hits efficiency pulsing one and two channels.

Figure 3.10: Distribution of event time differences between CHOD and CEDAR detectors (2012 test
beam).

Run 2014

During the 2014 Run it became evident that, even at low beam intensities (about ∼ 12
% of the nominal), intensity peaks are present in the beam time structure. These peaks

i
i

“main” — 2017/1/11 — 15:05 — page 47 — #74 i
i

i
i

i
i

can reach and exceed the DAQ design limit (∼ 39 Mword per second per TDC) and
the initial version of the firmware was not able to sustain this rate. We measured a
firmware limit of ∼ 34 Mword per second per TDC and when this limit was reached
the TDC board was not able to recover smoothly. So we made some improvements to
the firmware to reach the design limit and prevent failures when this limit is exceeded.
A reshaping of the TDC control block allowed to reach the limit of ∼ 39 Mword per
second per TDC and the addition of two new blocks gave the possibility of managing
the data frame when the limit is surpassed. These two blocks (which can be enabled
via registers) approach the problem in different way:

• Data limiter This block limits the number of words written in TDCC output FIFO
for a single frame. The maximum value is set by a register; any words (excluding
header and trailer) exceeding such value are thrown away, an error word is inserted
in the frame and the frame is completed with the correct word count.

• Data suppressor When this block is active and one of the input FIFOs storing
TDC data becomes almost full (at a pre-defined level), further data from TDCs
will be ignored (although TDCs are still read) and an error word is written into the
FIFO until the filling of both such input FIFOs falls below a (lower) threshold.

Using either of this two blocks we are able to prevent blocking failures in the TDC
Board.

3.6 The TEL62 board

The TEL62 board (see figure 3.11) is the common multi-purpose FPGA-based mother-
board [24] [14]; it is used in the NA62 experiment both for trigger primitive generation
and for data acquisition. It is used by several NA62 detectors with a total number of
about 100 installed card.

This board has been developed in Pisa and it is a highly-improved version of the
TELL1 board designed by EPFL Lausanne for the LHCb experiment at CERN [25].
The design exhibits a similar overall architecture, but the board is based on much more
powerful and modern devices, resulting in more than eight times the computation power
and more than twenty times the buffer memory of the original, plus several other im-
provements in terms of connectivity.

While a large number of TEL62 board are used for the implementation of the calori-
metric trigger, we mostly focus here on their use when equipped with TDCB boards.

The TEL62 is a standard 9U Eurocard, with a 16 layers printed circuit with all lines
impedance (50Ω) controlled and the clock tree routing done with special care to avoid
introducing signal jitter. This motherboard can handle up to 4 mezzanines (like the
TDCB), for a total of 512 input channels and houses 5 FPGA of the same type. The 4
Pre-Processing (PP) FPGAs are connected to a single Sync-Link (SL) FPGA; each PP
is directly connected to one of the TDCB mezzanine (see figure 3.12).

Depending on the subdetector, the TDCs can send an amount of data up to some tens
of MB/s per channel. Data are organized in packets, each one related to time frames of
6.4 µs duration. The 4 PP-FPGAs have the role of collecting and merging the data and

i
i

“main” — 2017/1/11 — 15:05 — page 48 — #75 i
i

i
i

i
i

Figure 3.11: The TEL62 motherboard.

Figure 3.12: Layout of the TEL62 board architecture. FPGAs are shown in yellow, memory buffers in
orange, other chip and daughter-card connectors are in green. Lines represent data bus links between
devices.

later organizing them on the fly in a 2 GB DDR2 memory, where each time slot corre-
sponds to a single 25 ns time window. Data are stored in the DDR2 memory waiting

i
i

“main” — 2017/1/11 — 15:05 — page 49 — #76 i
i

i
i

i
i

for a L0 trigger request; at the trigger arrival, the data within a programmable number
of 25 ns time windows around the trigger timestamp are read from the DDR2, packed
and sent to the SL-FPGA. In the SL-FPGA, the data from the 4 PP are merged, syn-
chronized and stored in a 1 MB QDR SDRAM temporary buffer. Later, the data are
extracted for formatting into Ethernet data packets and sent through 4 Gigabit Ethernet
links hosted on a custom daughter-card to a computer farm. The board can sustain, by
design, 1 MHz of L0 trigger rate for standard-size events.

The fundamental components of the board (see figure 3.13) are shown below:

Figure 3.13: Main components of the TEL62.

• The 4 PP FPGA are Altera R©Stratix R©III FPGAs EP3SL200F1152 [10], each one
containing an embedded memory of 9396 kbit and 198 900 equivalent logic ele-
ments. Each PP elaborates the data from the 4 TDCs of one TDCB that is con-
nected through a 200-pin connector, using 4 32-bit wide data buses. Each bus
transmits data from one TDC, at 40 MHz for a total bandwidth of about 5 Gbit/s.
Each PP is also linked to a DDR2 memory buffer of 2 GB with a 64 bit bus with
a clock frequency of 640 MHz, resulting in a memory bandwidth of ∼ 41 Gbit/s.
Furthermore the 4 FPGA are interconnected in a row (see figure 3.12) with 2 x 16
bit buses (input and output).

• The SL FPGA is also an Altera R©Stratix R©III FPGAs EP3SL200F1152 [10] with
the same hardware characteristics of the PP-FPGA. It is connected to each of the
4 PPs through two independent data and trigger primitives buses, 32 bits wide

i
i

“main” — 2017/1/11 — 15:05 — page 50 — #77 i
i

i
i

i
i

and operating at a clock frequency of 160 MHz, for a total bandwidth of about
10 Gbit/s per connection. All signal lines are properly terminated and equalized
in length to handle this clock speed; moreover we added in the firmware a set of
time constraints to guarantee the functionalities of the board. The SL-FPGA is
linked to a Quad Data Rate (QDR) Synchronous Pipelined Burst SRAM of 1 MB,
read and written at 120 MHz clock frequency and used like temporary buffer in
the data flow. The data packets generated in the SL are sent to a custom Gigabit
Ethernet (GbE) mezzanine.

• The custom mezzanine is a Quad GbE [35] (the same card used in the TELL1);
this card hosts four 1 Gbit Ethernet channels used to send data packets to the PC
farm, trigger primitives to the L0 Trigger Processor (L0TP) or data packets to
other TEL62s in a daisy chain configuration.

• A standard optical TTC link distributes the main 40 MHz clock and the L0 trig-
gers, which are then decoded by a TTCrx chip [21].

• An on-board QPLL [43] reduces the signal jitter of the input clock to few tens of
ps.

• A commercial Credit Card PC (CCPC) [38] is a SM520PC SmartModule pro-
duced by Digital-Logic, Inc. running a Scientific Linux operating system mounted
from an external CCPC boot server through a dedicated Ethernet link, and a cus-
tom input/output interface card named Glue card [23] (same as in the TELL1
board) handle the slow control, the monitoring and the configuration of the TEL62.
These two mezzanine cards communicate among them through PCI buses. The
Glue card use and distribute to the other devices and connectors three different
communication protocols: ECS is a custom parallel bus used to configure or read
the FPGAs’ internal registers and to control or monitor the board functionalities,
I2C is used to control the TDC Board and JTAG allows to configure and pro-
gram remotely the FPGAs on the TEL62 and on the mezzanines, by loading the
firmware on the respective EEPROMs.

• Two 64 Mbit EEPROMs (Altera R©EPCS64 [9]), one for the 4 PPs and one for the
SL, store the FPGA configurations.

• Dedicated auxiliary connectors with two independent 16-bit buses allow to link
several TEL62 in a daisy chain: it could be useful to merge the L0 trigger primi-
tives from different TEL62 of a single detector and to use only one Gigabit link,
to send them to the L0TP.

i
i

“main” — 2017/1/11 — 15:05 — page 51 — #78 i
i

i
i

i
i

3.6.1 The TEL62 firmware

Like for the TDCB, we use HDL Designer R©, Modelsim R©and Quartus R©II to develop
the firmware of the PP-FPGAs and the SL-FPGA.

The PP-FPGAs

All the 4 PP-FPGAs use the same firmware, which can be divided in 4 parts: the data
flow upstream the DDR (inside the red square in figure 3.14), the one downstream the
DDR (inside the blue square in figure 3.14), the trigger primitive flow (inside the green
square in figure 3.14) and the part related to testing of the FPGA and the connections
(inside the brown squares in figure 3.14).

The upstream data flow. The PP-FPGA receives the data from four buses linked to the
TDCB mezzanine card (one per TDC). Each bus fills a dedicated derandomizer IB
(Input Buffer) FIFO with a clock frequency of 40 MHz. The data from the TDCB are
packed in 6.4 µs data frames. The OB (Output Buffer) block merges, at 160 MHz, data
of frames with the same timestamp from the four IB buffers; a bigger frame containing
all the hits of the daughter-card is created, and it is stored in two copies of the Output
Buffer (OB) FIFO, one of them reserved and used for monitoring purposes. Then the
data packets are compressed to be stored inside the DDR2 memory. This is one of the
most complex part of the firmware, indeed it has been the subject of two important
revisions during the evolution of the firmware itself. The difficulty consists in packing
the data in order to minimize the number of accesses to the DDR2. Each access requires
a relatively large time (3 clock cycles for a write access and 33 clock cycle for a read
access) that could slow down the data flow; I have to maximize the time efficiency of
DDR2 writing and reading operations because the structure must sustain an input data
flow of 160 Mword per second and a trigger rate of 1 MHz. The first version (V1) of
the firmware organized the data of each 6.4 µs frame in fixed-size area related to 25 ns
time slots, for a total of 256 slots. Each time slot was reserved a memory amount equal
to 128 x 32-bit words, so each frame required 1 Mbit of memory. I implemented two of
these memories to avoid interruptions in the data flow: while one memory was written
by the Data Organizer, the other was read by the DDR writer.The Data Organizer vhdl
code - as an example - is shown in (7) I reserved 128 words per 25 ns time slot, as a
compromise between the need to sustain high instantaneous rates (i.e. up to 2.56 GHz
of hit) and the available memory in the FPGA (2 Mbit is about a quarter of the total
memory). Half of the DDR2 (1 GB) was reserved for memory data storage and half
was used for 8-bit counters, that indicated the actual number of words of each time
slot. In the second half of the DDR, the counters were organized as 8 DDR locations
of 256 bit (16 counters per location) per frame. The use of data counters optimized the
DDR reading because only the relevant part of each time slot was read. These numbers
defined the maximum latency of the system, that is the time after that data is overwritten
(and lost if a L0 trigger did not arrive).

1 GB

1 Mbit / 6.4µs
=

8 Gb

1 Mbit / 6.4µs
= 51.2 ms

At L0 trigger arrival, a module, the DDR reader, reads up to three 25 ns slots of data in
a single access and packed the data to send them to the SL-FPGA.

i
i

“main” — 2017/1/11 — 15:05 — page 52 — #79 i
i

i
i

i
i

Figure 3.14: Block diagram of the PP-FPGA firmware version 3.

i
i

“main” — 2017/1/11 — 15:05 — page 53 — #80 i
i

i
i

i
i

After some test I realized that this data organization presented some problem at high
trigger rate: the DDR writer needed 257 accesses (256 time slots + the counter part)
to write one frame and the DDR reader module had to perform 2 memory accesses
(counter + data) for each trigger. The DDR2 access latency for a write operation is 3
clock cycles (the clock period is 6.25 ns) and it needs 1 further clock cycle per DDR
line (8 words of a timeslot) to be written. So for each 6.4 µs frame the total write time
was:

all slots empty : (3 × 257 + 8) × 6.25 ns ∼ 5µs

design rate (160MHz words) : (3 × 257 + 256) × 6.25 ns ∼ 6.4µs

all slots completely full : (3 × 257 + 4096) × 6.25 ns ∼ 30µs

The DDR2 access latency for a read operation is 33 clock cycles and it has to read 49
lines (16 line per 3 slot to read the data and 1 line to read the counters). The total read
time for a trigger was:

empty slot : (33 + 1) × 6.25 ns ∼ 0.2µs

design rate (160MHz word) : (33 × 3 + 49) × 6.25 ns ∼ 0.9µs

slot not empty : (33 × 3 + 49) × 6.25 ns ∼ 0.9µs

These values were not compatible with the design trigger rate limit of 1 MHz. Indeed at
1 MHz of trigger rate, the time to write and read an empty frame should be about 6.3 µs
(5 µs to write an empty frame and 0.2 µs × 6.4 trigger in average) that is almost all the
available time (6.4 µs) without considering the DDR refresh time and other operation
latencies. The L0 trigger limit measured for this first version was about 700 KHz
of triggers with empty events (the limit decreased with non-empty events). Another
problem of this firmware version was the limited number of slots that could be read for
each trigger, because some detectors (for example the LAV) need more than 3 slots to
measure the hit time over threshold.

For these reasons I developed a second version of time DDR data organization. I
introduced a new block, the data compressor (see figure 3.15), to better pack the data
frame.

In this version, each 25 ns time slot is not allocated in a pre-defined space: data was
written in adjacent 256 DDR locations with flags pointing to the end of the slot. The
memory space allocated for a frame remained the same as in the previous version (1
Mbit for 6.4 µs) but the second area of the DDR2 now contained 8-bit addresses instead
of counters. The addresses, related to a time slot, represented the starting address of
the next non-empty slot in the DDR2 data area. Figure 3.16 shows an example of the
compressor output for a frame with 3 non-empty time slots: slot 1 has 3 data words,
slot 2 has 9 words and slot 5 has 2 words; slot 0 is empty so the address of the next
non-empty slot is 0, instead for slot 2 the next slot address is 3.

This version resulted in a vast improvement because the DDR writer block needed
only one access to write all the data part and one to write the address part. So for each
6.4 µs frame this version had a total write time of:

all slots empty : (3 × 2 + 8) × 6.25 ns ∼ 90 ns

design rate (160MHz words) : (3 × 2 + 128 + 8) × 6.25 ns ∼ 900 ns

i
i

“main” — 2017/1/11 — 15:05 — page 54 — #81 i
i

i
i

i
i

Figure 3.15: Layout of the second version of DDR organization.

Figure 3.16: Example of data distribution in the DDR2 for a frame with 3 not empty slots, firmware
version 2.

all frame completely full : (3 × 2 + 256 + 8) × 6.25 ns ∼ 1.7µs

The DDR reader part was also improved removing 3 slots limit (in this version the limit
was 30 time slots), only 1 access and 2 reads to get all the needed addresses and only
one access (in some particular cases 2 accesses) to have all the data words of the time
slots triggered. The total read time for a trigger and 3 time slots was:

empty slot : (33 + 1) × 6.25 ns ∼ 0.2µs

design rate (160MHz word) : (33 × 2 + 5) × 6.25 ns ∼ 0.4µs

slot not empty : (33 × 2 + 49) × 6.25 ns ∼ 0.7µs

Version 2 was able to sustain a trigger rate of 1 MHz.

i
i

“main” — 2017/1/11 — 15:05 — page 55 — #82 i
i

i
i

i
i

During the 2014 RUN even this version (V2) was shown to be unable to reach the
required rate. The PP should be able to sustain the same rate of the TDC Board i.e.
4 × 39Mword/s = 156Mword/s while it reached only 116 Mword/s. This high rate
could be reached even at intensities below nominal due to the highly non-uniform spill
structure (see figure 3.17) that presents a 50 Hz modulation and some high peaks (see
figure 3.18).

Figure 3.17: Example of burst structure.

Figure 3.18: Zoom of the burst structure showing the large 50 Hz modulation and the intensity peaks.

I re-designed again the core firmware of the TEL62 to obtain the (final) V3 version.
To stand rate, the data had to be more compressed in the DDR and I had to remove the

i
i

“main” — 2017/1/11 — 15:05 — page 56 — #83 i
i

i
i

i
i

end-of-slot flag (it wasted 1 clock cycle per each non-empty time slot). The data words
of each slot are now one after the other without empty space or flags and in the address
word I added 4 bits to specify the position of the slot first data within the row (see figure
3.19). Having reached this compression, it was even possible to increase the capacity
of a frame up to 4096 words compared to the 2048 of the V2. The code - as an example
- is shown in (7)

Figure 3.19: Example of data distribution in the DDR2 of a frame with 3 slot not empty, firmware version
3.

The 2015 Run showed the design rate achievement for this firmware version.

The downstream data flow. The firmware part after the DDR2 takes care of elaborating
the trigger requests from the SL-FPGA and reading the corresponding data from the
DDR2. Trigger requests are received by the Trigger Receiver (TrigRX) block that
decodes the trigger type and the trigger timestamp. The trigger type can be either
physics or a special purpose one. In case of physics triggers (32 possible different
types), a request is forwarded to the DDR Reader which starts to read a programmed
number of 25 ns time slots around the trigger timestamp (the centre of these windows
with respect to the trigger time can be also chosen by register). In the version 3, the
firmware can extract up to 32 time slots, for a total of 800 ns: such large window is
useful to test and study the detector response. The DDR Reader vhdl code is complex
and it is was obtained through five finite state machines interconnected. The code - as
an example - is shown in (7). The DDR data read are stored in the Data Output FIFO
to be transferred to the SL-FPGA.

Monitoring and testing tools. I implemented a lot of debugging and testing tools in the
firmware to check its performance during the data acquisition. The CCPC can access
the FPGAs via the ECS bus and read the internal registers and the status of FIFOs
or memories. An useful tool is the logger system that stores in memory informations
about specific error conditions, to be later checked using the CCPC. Time was dedi-
cated to implement and optimize a tool to test the communication between PP-FPGA
and TDCC-FPGA or between PP-FPGA and SL-FPGA. It’s important to find a perfect
coupling between the input and output lines of different FPGA, since a single error
can cause some word to be misinterpreted. To test the communication system I imple-
mented random generators using the same seed: the first sends data from the FPGA to
another and the second checks the correctness of the arriving data.

i
i

“main” — 2017/1/11 — 15:05 — page 57 — #84 i
i

i
i

i
i

Trigger primitive generation The compressor module has a second output toward a FIFO,
used to provide data to trigger primitive generators. Since the FIFO is written after the
organizer module, in such FIFO all the data of a 6.4 µs frame is organized in a sequence
ordered of 25 ns slot. The ordering simplifies the following elaboration because it is
easier to work on 25 ns slots of data to obtain more precise clusters (like 3 ns of res-
olution) or further data sorting. Only detectors involved in the L0 trigger developed
this firmware part: RICH, CHOD, new-CHOD, MUV3, LAV12. Some firmware han-
dles channels matching or time slewing correction (see next chapter). After primitive
building, these data are sent to the SL-FPGA for further processing.

The SL-FPGA

Also the SL-FPGA firmware can be divided in four parts: the trigger and data flow,
the trigger primitive generation and the testing tools. Figure 3.20 shows the firmware
blocks dedicated to the data flow (red square), the trigger flow (inside the blue squares)
and the testing tools (inside the brown squares); figure 3.21 shows the trigger primitive
generation flow.

Trigger and data flow The SL-FPGA receives the trigger, the start of burst (SOB) and the
end of burst signals from the on-board TTCrx chip. The TTC interface block handles
the communication with the on-board TTCrx chip. It decodes the signals and propa-
gates the result to the remaining parts of the board. In this way at the time of SOB all
the blocks are reset and the data acquisition starts, while the EOB signal stops the data
acquisition. An internal timer, reset with the SOB signal, produces a timestamp that
is assigned to each trigger and is used for debug and monitoring reasons. The trigger
requests, from the TTC interface, are dispatched towards the PP-FPGAs where the cor-
responding data are read out. The data belonging to a trigger coming from the four PPs
are merged in the SL-FPGA data merger block, that works in the same way of the OB
block in the PP. The resulting event is stored in the Event Data FIFO. Multiple events
can be packed in a single Multi-Event Packet (MEP) to optimize the output link band-
width, limiting the fraction used by the packet header (42 B) rather than the payload.
After MEP assembly the packets are temporarily stored in the external 1 Mbit QDR
memory, written in a circular way: at each time it contains several readable for debug-
ging purposes. The MEP packet is then extracted from the QDR, formatted in a UDP
packet and passed to the SPI3 interface. This module takes care of the communication
with the GbE output mezzanine that finally sends the packet to the PC farm.

Trigger primitive generation The trigger primitives follow a similar path to that of the
data. The primitives coming from the PPs are merged by the primitive merger block
and then they undergo further processing stages like multiplicity counting in the RICH
or the cluster identification in the LAV. A communication interface between different
TEL62 boards is under development: it could be useful for the generation of trigger
primitives for detectors that use more than one TEL62 (like LAV, RICH and KTAG).

The triggers, like the data, are packed in Multi-Trigger Packets (MTPs) which are
formatted as UDP packets and sent via dedicated Ethernet ports of the GbE to the L0
Trigger Processor.

i
i

“main” — 2017/1/11 — 15:05 — page 58 — #85 i
i

i
i

i
i

Figure 3.20: Data flow block diagram of the SL-FPGA firmware.

i
i

“main” — 2017/1/11 — 15:05 — page 59 — #86 i
i

i
i

i
i

Monitoring and testing tools. The SL-FPGA, like the PP, has a lot of modules dedicated
to testing the board interconnections and to monitoring the data acquisition status. It is
possible to generate trigger patterns via CC-PC control to test the trigger and the data
readout system. A tool in the SL allows to produce fake trigger primitives, overriding
the primitive generation in the PP-FPGA, for the development and testing of the L0
Trigger Processor.

3.6.2 TEL62 tests

The performances of the TEL62 were tested at the end of 2013 during one of the TDAQ
commissioning phases. We tested the output data bandwidth of the board (see figure
3.22) with a standalone data acquisition system, using the TDC emulators (inside the
TDCC-FPGA) for data production and the LTU standalone mode1 as trigger source.

Results were in good agreement with expectations: the small gap between the ex-
pected upper rate limit value and the measured values indicates that the firmware could
be further optimized even if there is some irreducible limitation introduced by the data
formatting and other operations that prevents to reach the theoretical link bandwidth.

Figure 3.23 shows the maximum data payload (that is without including IP and UDP
packet headers) for a given trigger rate using 4 Ethernet ports and assuming one data
packet for each incoming trigger. The measured values lie on a hyperbola: the product
between the trigger rate and the payload size is the effective data output bandwidth.

The TDAQ system (TDCB and TEL62) was extensively tested through some Tech-
nical Run, Test Beam and Data Taking (Run). In the last Run the system still showed
some rate inefficiency, which is currently under investigation, in the part that selects the
Ethernet ports and sends the data packet to the GbE output mezzanine.

The measured time resolution is compatible with the intrinsic detector resolutions,
with a negligible contribution from the TDCB. The TEL62 reached the design perfor-
mance in the DDR2 memory data storage (160 Mword per second) and in the data
extraction with a trigger rate up to 1 MHz.

1In the standalone mode, the LTU can emulates the L0TP protocol and generates programmable trigger sequences.

i
i

“main” — 2017/1/11 — 15:05 — page 60 — #87 i
i

i
i

i
i

Figure 3.21: Trigger primitive generation flow block diagram of the SL-FPGA firmware.

i
i

“main” — 2017/1/11 — 15:05 — page 61 — #88 i
i

i
i

i
i

Figure 3.22: TEL62 output bandwidth as function of the number of used Gigabit ports. The blue line
indicates the expected upper limit value (1 Gbit/s = 125 MB/s per port), while red points refers to the
measured values.

Figure 3.23: TEL62 data packet maximum payload size as function of the trigger rate using 4 output
links.

i
i

“main” — 2017/1/11 — 15:05 — page 62 — #89 i
i

i
i

i
i

CHAPTER4
The trigger approach in NA62

4.1 Introduction

In NA62 the high rate of events and the presence of 12 sub-detectors results in a high
output data rate that it is impossible to store on disk without filtering. A multi levels
trigger is therefore needed, which should identify the events to be saved and reject the
rest. The NA62 trigger is made of three logical levels:

• L0: a hardware trigger, based on the input from few sub-detectors. Rate reduction
from 10 MHz to 1 MHz, with a maximum latency of 1 ms;

• L1: a software trigger, based on information computed independently by each
sub-detector system. Rate reduction from 1 MHz to 100 kHz;

• L2: a software trigger, based on assembled and partially reconstructed events, in
which informations from different from sub-detectors are used. Rate reduction
from 100 kHz to about 15 kHz;

4.2 L0 hardware trigger

The L0 hardware trigger will be mainly based on input from the CHOD, the MUV3, the
LKr, the RICH and the LAV. These detectors will continuously evaluate their incoming
data for the fulfillment of certain condition (called primitives in TDAQ) and associated
time. Trigger primitive will be packed in Multi Trigger Packet Format (MTP) [30] and
sent through standard Ethernet links to L0 Trigger Processor (L0TP).

The L0TP time-matches different sub-detectors primitive checking if L0 trigger con-
ditions have been satisfied, in case of positive response, L0TP will issue a L0 trigger.

62

i
i

“main” — 2017/1/11 — 15:05 — page 63 — #90 i
i

i
i

i
i

4.2.1 L0 Trigger for the RICH

My work is focused on the L0 trigger firmware for the RICH. Two version of the
firmware were developed: one used during the 2015 NA62 data taking (standard ver-
sion) and one used in 2016 NA62 data taking (NEW RICH version). Before describing
in detail the firmware, I’m going to describe in more detail how the L0 RICH trigger
works.

The standard RICH L0 trigger is based on hits multiplicity or SuperCell (digital OR
of 8 PMTs) multiplicity.

In case hits multiplicity is used four TEL62 are needed to fully cover the 1952
RICH channels. Each TEL62 receives data only from half flange, Figure 4.1 shows the
different area assigned at each board.

Figure 4.1: The Figure shows how RICH channels are divided between four TEL62s, two dedicated to
the Jura side flange (blue ones) and two to the Salève side flange (red ones).

Instead if SuperCells multiplicity is used, a fifth TEL62 is needed.The fifth board
receives the data from RICH SuperCells (digital OR of 8 channels), so only 244 readout
channel are needed.

The trigger primitive of the RICH is based on SuperCells multiplicity and encoded
in the way described below:

• R1 number of SC hits between 2÷ 9;

• R2 number of SC hits between 9÷ 33;

• R3 number of SC hits between 33÷ 59;

• RS is the single ring trigger and is R1 OR R2;

• RM is the multi ring trigger R2 OR R3;

• MB for minimum bias trigger R1 OR R2 OR R3;

i
i

“main” — 2017/1/11 — 15:05 — page 64 — #91 i
i

i
i

i
i

4.3 The RICH primitives generator firmware: standard version

The RICH sub-detector primitives generator firmware is used to extract trigger infor-
mation from the data and send to the L0TP a digest of this information in order to
decide if the data are significant or not. A preliminary version of the RICH firmware
was developed for the 2015 data taking, in particular the trigger algorithm was based on
the clustering of hits coming from the TDCB boards and on the computation of cluster
average time and multiplicity. The clustering of the hits is done in the PP-FPGA (3)
and then the sub-cluster produced by different PPs are combined inside the SL-FPGA
(see figure 4.2). Both time window used for clustering and sub-cluster merging are
programmable such as other firmware parameters.

Figure 4.2: RICH firmware scheme.

4.3.1 PP firmware

The firmware developed for the PP-FPGA implements the clustering operation on the
hits coming from the TDCBs, the most important are:

• t0 correction: a correction time is added to the hit time in order to take into ac-
count the average response time of each channel (see figure 4.4). By applying
only positive time correction, all the channel answer time will be aligned to the
slowest, however in the primitive builder block another time correction is available
to compensate this offset. This correction time is read from a memory accessible
via ECS (3) so it is possible to update this corrections at any time. To take into
account the possibility for a hit near the data frame edge to slide to the next frame
due to the correction, the “current” data frame is buffered and it will be written
to the output only after the reception of the entire “next” data frame. In the t0
correction only the leading words are considered while the trailing are dropped.
To avoid useless data transmission, empty data frames are dropped in this module
(TBM);

• Sorter: due to the algorithm used to read the data from the TDC in the TDCB

i
i

“main” — 2017/1/11 — 15:05 — page 65 — #92 i
i

i
i

i
i

board, the hits arrive to the PP-FPGA in a disordered way with respect to the
arrival time of the signals to the input of the TDCs. To simplify the clustering
logic, a sorting of the hits is performed. The sorter module is based on a chain of
sorter unit modules, each one of them store an hit in an internal buffer and put on
the output the smallest between the stored data and the input one. Due to the daisy
chain connection scheme the sorter module has some clock cycle of latency that
can be computed as 2×n with n number of sorter units in the chain. The number
of sorter units should be set equal to the maximum number of leading in a data
frame (to limit tha latency introduced by this module a reasonable peak of rate
should be considered instead of the maximum TEL62 rate);

• Data Converter: this module keeps the clustering logic simple, in fact having the
hits divided into data frames, for hits on the edge of a data frame, it is complicated
to check the time distance (both timestamp distance and fine time distance should
be considered), so the data are converted from this structure to self consistent
absolute time by concatenating timestamp and fine time (considering some bit
overlapping). The bit width of the data is increased (from 32 to 53 bits), the header
and the footer are maintained and, for this two types of words, the additional bit
are added right after the word ID (and are all equal to 0);

• Cluster finder: in this module the hits are clustered and either the cluster average
time and the multiplicity are written to the output. When the first hit arrives its
time is set as the start time of the cluster, subsequent hits are compared with him
and if the time distance is less than the clustering time the hit time is added to an
accumulator register and the multiplicity counter is increased by one. When a hit
with a time “too far” from the cluster start time arrives the cluster average time
is computed, and the current hit will be the first of a new cluster. There are two
special case to take into account when the cluster average time is computed: one
or two hits cluster.If the cluster is composed by one hit than cluster average time is
the hit time, while for the two hits cluster the average time is computed by shifting
the time sum by one position to the right. For a generic cluster (multiplicity > 2) a
division is performed and the latency of this operation is about 24 clock cycle. The
data frame header and footer are used in this block only to check data correctness:
a timestamp word is expected after a words count word and the number in the
words count word is compared with an internal counter to check that all the data
words has been received and processed;

• PP output data format (see figure ??): it is composed by two 32 bit data words:
in the first one, the bit from 0 to 7 contains the cluster average fine time with a
resolution of 100 ps (full resolution) and the bits 16 to 23 contains the cluster
multiplicity, while the second words contains the timestamp of the cluster at a
resolution of 25 ns;

4.3.2 SL firmware

The clusters coming from different PPs (sub-clusters) are merged into SL firmware.
The cluster generated is used to produce the corresponding trigger primitive. The merg-
ing operation is done by checking the time distance of the sub- clusters, if two or more

i
i

“main” — 2017/1/11 — 15:05 — page 66 — #93 i
i

i
i

i
i

Figure 4.3: PP firmware: t0 corrector block diagram.

Figure 4.4: PP firmware: trigger data format.

sub-cluster are closer in time, the sub-clusters multiplicity are summed and the cluster
time is computed by applying a weight average operation. The trigger word is then
generated from the cluster information (see figure 4.5).

Figure 4.5: SL firmware block scheme.

In detail:

• Cluster Merger: used to merge the information from the sub-clusters coming from
different PPs. To merge two or more sub-cluster, the smallest time among the

i
i

“main” — 2017/1/11 — 15:05 — page 67 — #94 i
i

i
i

i
i

words read from the PPs is computed. Then, by a comparison of the smallest
time with all the others, the decision of which sub-cluster to merge is taken. To
merge sub-clusters each average time is first multiplied by the multiplicity and
then summed to the others, the result is then divided by the sum of the multiplicity
(cluster multiplicity). The cluster information are then written in the output fifo.

• Primitive Builder: takes the cluster information generated by the cluster merger
and generates the primitive trigger word; There are two modes of primitive gener-
ation: debug mode and trigger primitive mode (see figure 4.6).

Figure 4.6: SL Rich trigger firmware: primitive generation modes.

In debug mode the cluster information are copied in the output word; in this way
it is possible to read the results of the clustering algorithm and, by knowing the
input words, understand if it worked. In primitive trigger mode, a trigger word is
generated in the format compliant to the L0TP. In this mode four registers in the
ECS contain four multiplicity thresholds (n 1 , n 2 , n 3 , n 4), these thresholds are
used to encode the multiplicity information in the primitive ID;

4.4 The NEW-RICH firmware

For the 2016 data taking a new version of firmware for the RICH trigger was developed.
The aim of the NEW RICH L0 primitive-generating firmware is to produce clusters of
groups of hits belonging to the same Cherenkov circle. However, no spatial information
is used and only time clusters are produced. This makes this firmware very simple and
at the same time very general, making it suitable for more detectors, if necessary. In
the PP FPGA, a preliminary clustering is performed and, in the SL, clusters coming
from the 4 PPs are merged together. In the final stage of the SL, the average time of
the clusters is computed and they are used to produce primitives to be sent to the L0TP
(see figure 4.7).

In case of a multi TEL62 setup, that foresees the use of InterTEL boards, only the
last TEL62 sends primitives to L0TP, while the others just send cluster data from one
to another in a daisy-chain fashion. Time clusters are made of 32-bit data word coded
in a common data format called RICH format (see figure 4.8).

In the RICH format, there are two types of words identified by the word ID (bit 31,
30, 15,14):

• Timestamp, identified by bits 0 0 0 1;

• Data word, identified by bits 1 0 1 1

i
i

“main” — 2017/1/11 — 15:05 — page 68 — #95 i
i

i
i

i
i

Figure 4.7: NA62 2016 Data Taking: NewRich primitives transmitted to L0TP as a function of the
number of the burst received.

Figure 4.8: RICH format.

The timestamp is a 28-bit word with 400 ns of resolution. It is sent only if needed,
i.e. there will never be a timestamp that is not followed by a data word. Every data
word - identifying a time cluster - contains:

• The cluster-seed fine Time (12 bit, 100 ps resolution, up to 400 ns) called T;

• The cluster hit-multiplicity (8 bit, from 1 to 255 hits), i.e. the Number of hits
belonging to that cluster, called N;

• The so-called Sum (8 bit signed) which is the sum of the differences between the
cluster-seed time and the hits belonging to the cluster, called S;

Being S signed, on average, its value should remain small even if the cluster is made
of a significant number of hits. Every module implemented in the RICH firmware
must be able to accept the RICH format as input and output. In this way, modules can
be moved around with ease. The RICH data-format gives the possibility to split 32-bit

i
i

“main” — 2017/1/11 — 15:05 — page 69 — #96 i
i

i
i

i
i

data-words into two 16-bit words to be sent through the InterTEL 1 bus. For this reason,
the RICH format uses the peculiar double word ID separated between bits 31,30 and
15,14. A special cluster with N=0, S=0, and T=0xfff is created when the end-of-frame
word (starting with 0xb) is received from the TDCs. This is done to ensure a proper
PP-SL communication without any timeout mechanism, as explained later on. This
word is also referred to as end-of-frame word (or EOF).

4.4.1 PP and SL firmware

The new RICH firmware exploits the recent (2016 run) sorting of input data. TDC
data are now provided to the primitive-generating firmware in sorted frames of 25 ns.
These frames are not separated by special words, on the contrary TDC words simply
come partially sorted up the 25 ns bit (9 th bit). A scheme of the PP and one of the
SL firmware is shown in figure 4.9 and figure 4.10 respectively. Internal memories are
represented in purple, custom RICH blocks in yellow and ECS registers/FIFOs in red.

Figure 4.9: NEW RICH PP firmware.

Data Converter

The PP Data Converter (DC) reads TDC data (sorted in frames of 25 ns) from a TDCB
fifo and converts them into RICH format. In order to do that it produces absolute time
words (40-bit words) merging TDC timestamps and fine times and stores them into an
internal FIFO. The FULL signal of this FIFO is connected to bit 8 of the error word,
in order to detect a potential error in the data-flow. From these data, the DC produces
clusters made by one hit, i.e. with N=1, S=0, and T=TDC time. When it is needed, it
produces the 400-ns timestamp word. When the DC creates a timestamp, it loses one
clock cycle, otherwise it reads and writes one word per clock cycle. Within a 6.4 µ
s frame there might be at most 16 timestamps so this module is designed to handle a
maximum of 1024˘16 = 1008 words per 6.4 µ s frame. When the End Of Frame (EOF)

1The InterTEL bus is a bus that is able to connect the SL FPGAs of many TEL62s in a daisy-chain fashion. It works at a
frequency of 40 MHz with data words of 16 bits. It has never been used so far (April 2016).

i
i

“main” — 2017/1/11 — 15:05 — page 70 — #97 i
i

i
i

i
i

Figure 4.10: NEW RICH SL firmware.

word arrives from the TDCB board, the DC produces a timestamp and an EOF with the
highest cluster seed.

Data Validator

The Data Validator module (DV) parasitically validates the data flow between two mod-
ules. Thanks to the standard RICH format, it can be plugged anywhere inside the
firmware. The performed checks are the following:

• Consistency of the input write-request: the write request should always be ‘1’ or
‘0’. The module raises an error flag when the write request has other values, e.g.
high impedance (this statement it is only true in reference to simulation of the
module);

• Consistency of the format: checks if every input word is either a timestamp or a
cluster. If not, an error flag is raised;

• Consistency of the data flow: checks if after a timestamp there is always at least
one cluster. Raises an error flag when it detects two consecutive timestamps;

• Time of the timestamps always increasing: the 400 ns timestamps must have an
increasing time; if the time of a timestamp is equal or lower than the previous
timestamp, an error flag is raised;

• Time seed of the clusters always increasing: clusters must have time seed that is
equal or greater than the previous cluster. If not, an error flag is raised;

In both the PP and the SL FPGAs, there are two validators: one in input and one
after the clustering module. For the PP, the input validator is right downstream of the
converter, where the RICH format is used for the first time. It checks whether the data
converter is working properly and if the input data are sorted at 25 ns. In the SL, the
validator is connected between the data merger and the clustering module, checking the

i
i

“main” — 2017/1/11 — 15:05 — page 71 — #98 i
i

i
i

i
i

output of the PPs and the proper behavior of the data merger. The output of the DV is
also connected to a FIFO readable from ECS. In addition to the error flags, the output
word contains also some other information, depending on the error type. The error flags
are connected to the same bits as the error word, both in the PP and in the SL FPGAs.
In detail, they are:

• Consistency of the input write-request: bit 20 for the cluster validators and bit 15
for the input validators. The error code for the output word is “01000” and all the
other bits are 0;

• Consistency of the format: bit 21 for the cluster validators and bit 16 for the input
validators. The error code for the output word is “10000” and the other bits report
the 27 MSBs of the input word;

• Consistency of the data flow: bit 19 for the cluster validators and bit 14 for the
input validators. The error code for the output word is “00100” and the other bits
report the 27 LSBs of the input word. This error could happen together with the
next one;

• Time of the timestamps always increasing: bit 18 for the cluster validators and bit
13 for the input validators. The error code for the output word is “00010” and the
other bits report the 27 LSBs of the input word. This error could happen together
with the previous one;

• Time seed of the clusters always increasing: bit 17 for the cluster validators and
bit 12 for the input validators. The error code for the output word is “00001” and
the other bits report the 23 LSBs of the timestamp and the 4 MSBs of the cluster
(in order to know its 25-ns time);

Data Merger

The Data Merger’s (DM) goal is to read the 4 input FIFOs of the SL and to merge them
into one single FIFO preserving the order at 25 ns level. This task, that may seems
apparently trivial, is fairly complex if one considers that the maximum throughput is
needed. The DM, indeed, reads and writes one word per clock cycle 2 . It is purely
combinatorial in order to be fast enough and waste zero clock cycles. It does not repli-
cate timestamps or end-of-frames words. The data coming out of the module are sorted
at the 25 ns level. This is done in order to perform smaller bit comparisons and to
reduce path length in the FPGA. The merger is internally composed of sub modules
performing binary comparisons, as shown in figure 4.11. The DM starts to operate as
soon as both its input FIFOs (IB) are not empty. This cannot be avoided because, being
the DM purely combinatorial, it does not have memory of data read in the past. If we
imagine that a PP receives a lower rate than the others do, the proper behavior of the
DM would be compromised, as one of the two FIFOs would get empty preventing the
other to be read out. In the worst-case scenario, the IB belonging to the higher rate PP
would get full while the other is still empty. In order to avoid this, as explained before,
some dummy data words called end-of-frame words are produced by the DC every 6.4

2Actually the reading operation may be even faster. When two timestamps or two end of frames are read, only one is written
out so that the throughput is 0.5 in those cases

i
i

“main” — 2017/1/11 — 15:05 — page 72 — #99 i
i

i
i

i
i

us, i.e. when an end-of-frame word is received by the TDC. In this way the IBs are
never empty for more than 6.4 us. The end-of-frame words contain T=0xfff, i.e. bigger
than any other T value that might be present in the other FIFO, making the DM reading
the other FIFO first, until the end of the frame is reached.

Figure 4.11: Data Merger block diagram.

Average Calculator

The Average Calculator (AC), receives and sends clusters in RICH format. It transforms
the RICH cluster in the following way:

Tnew = Told +
Sold

Nold

Nnew = Nold

Snew = 0

By doing this, the new cluster is fully compatible with other clusters (even not av-
eraged),so that one may in principle perform clustering on averaged and non-averaged
clusters together, without any complications. The AC is used both in the final part of
the PP and in the final part of the SL, before the primitive builder. The AC in the PP is
not strictly needed, but it is useful to avoid the overflow in the S register of the clusters,
that may occur when two physical adjacent clusters are merged together.

Primitive Builder

The Primitive Builder (PB) builds the trigger primitives in the standard NA62 MTP
format. Primitive ID depends upon multiplicity with thresholds programmable in the
same register. Incoming clusters are written into an internal FIFO, containing their 40-
bit time and multiplicity. This FIFO could go to the full state, and when this happens,
bit 10 of the error word is asserted. As the MTP format requires three words for one
primitive, a good fraction of throughput is lost in this stage. Nevertheless, the 66 per
cent of 160 MHz is still a big rate with respect to the gigabit Ethernet limit. The module
performs some checks to guarantee its proper behavior. At first, checks whether the
input data has a valid ID (cluster, timestamp) or not. If not, asserts the bit 11 of the
error word of the SL. Input data should not have multiplicity zero, due to the clustering
module; if it happens PB asserts bit 9 of the error word.

i
i

“main” — 2017/1/11 — 15:05 — page 73 — #100 i
i

i
i

i
i

Clustering Module

The RICH Clustering Module (CM) is the most important block of this firmware. It
performs cluster of clusters if they are closer than a certain value. The comparison is
performed only on the T value (the time seed) while the sum is completely disregarded.
During the merging operation of the clusters N and S are also taken into account. The
CM is divided in sub-blocks as shown in figure 4.12.

Figure 4.12: Clustering Module block diagram.

The Data Distributor (DD) handles incoming data (in RICH format) and feeds them
into the clustering rows. The clustering rows are 16 rows, each one made of 4 cells
and taking in input hits belonging to a specific 25 ns frame. The DD rearranges data
into 8 bit 100 ps fine time and 32-bit 25 ns timestamp, which are sent to the time stamp
register rather than to the clustering row. In this way, all the operations inside the row
are done on 9 bits only (8 bit plus one to handle adjacent time frames, as we will see
right in the figure 4.13). In order to handle border effects, the DD must send the hits
belonging to clusters split into two adjacent 25-ns frames to the proper row.

Figure 4.13: Data Distributor graphical view.

To this aim, for each 25-ns frame, the DD stores the value of the greatest time
received into a register (current biggest). When it switches to the next row, (only if
the two rows are handling frames that are adjacent in time) it compares every time to
the previous biggest register. When a time hit is close enough to the previous biggest,
with respect to the clustering time, the DD sends it to the previous row instead of
to the current. The figure 4.13 and figure 4.14 explain this method with a graphical

i
i

“main” — 2017/1/11 — 15:05 — page 74 — #101 i
i

i
i

i
i

Figure 4.14: Data Distributor graphical view: merger window.

representation. DD checks if the input words are either a timestamp or a cluster; if
they’re not one of them, bit 1 of error word is asserted. The core part of the CM is the
clustering cell. The comparison of the Ts and the merging of the clusters are performed
by the cell. Each cell stores the first T (9 bit) received and forms a cluster that will
become the new cluster seed 3 . If the T value of the next clusters received matches
the stored T, (within a programmable time window) the cell stores the cluster values for
merging. When merging clusters, the cell changes the stored values using the following
rules:

S += N new * (T new – T) + S new;

N += N new;

If the incoming T does not match the stored value, the cluster is sent to the next cell
that performs the same operation. When a time is not accepted for merging and it is
sent to the next cell, if T is bigger than the stored value, an internal position register
is increased. In this way, in the end every cell in the row will “know” its position
with respect to the others. By construction, the clustering module cannot handle more
than 4 clusters per 25-ns frame. All the clusters after the fourth are discarded, while
the bit 7 of the error word is asserted. Each cell checks the overflows of the result
of the multiplication and of the global correction that has to be applied to the cluster
seed. Also N and S fields overflow are checked. Every time an overflow occurs, the
corresponding bit is asserted; the bits are, respectively, number 5, 4, 3 and 2 of the error
words. When the nth row is filled, the (n-2)th is ready to be emptied. This is done by
“flushing” the row. When the flush-mode is enabled, the cells act as a shift register,
giving as output all the cluster times and number of events per cluster. The cluster data,
plus the position (going from 0 to 3), is now sent into the FIFO at the output of the
row. The admitted values of position are 0 to 3, because there are only four words in
each row. If the value is greater, bit 6 of the error words (PP and SL) is raised. In
order to perform the multiplication, every cell is divided into two independent blocks,
connected by a FIFO:

• The matching block, handling the comparison between stored and input time;

• The merger block, handling the calculation involved in the merging, containing a
multiplier;

3The seed value does not get updated during the clustering operation. It gets updated only in the average calculator. This is
due to the fact that a dynamic update of the seed would result in big cost in term of complex operations like multiplications and
divisions.

i
i

“main” — 2017/1/11 — 15:05 — page 75 — #102 i
i

i
i

i
i

The internal data format is made of:

• Time (8+1 bit): the 9 th bit is used to handle time coming from the following
frame;

• Position (3 bit);

• N (8 bit);

• S (8 bit, signed);

The throughput of the clustering module (like any other module in the RICH firmware)
is kept at 1 clock cycle. For this reason, 16 clustering rows are needed to take into ac-
count the filling time of a row. The emptying operations on a row should be finished
before the row needs to be written again. Moreover, two rows are filled “at the same
time” to take care of border effect, as previously explained. Once the second row is
completed, the first can be read out. 16 rows are enough to compensate for the latency
of the cell being given by: (2d + m) where d is the depth of the row and m is the la-
tency of the multiplier. In our case (2*4 + 3 = 11 < 16), so the there will always be
a free row to fill. Finally, the data collector (DC) retrieves data from the row FIFOs
and sorts them according to the position register. The DC module is divided into three
independent parts:

• The first part reads data from the FIFOs, sorting them, and writes the output in ab-
solute time (40 bits) into an internal FIFO FULL signal of this FIFO is connected
to the bit 0 of the error word, in order to detect a potential error in the data-flow;

• The second part discards the clusters that have multiplicity outside a predefined
range, settable by a dedicated register for both PP and SL. If the multiplicity of
the cluster is outside this range, the cluster is discarded, while if it is in the range
the whole cluster is written to another internal FIFO;

• The last part of the DC reads the absolute data from the FIFO and formats the
output in the RICH format;

4.5 L1/L2 Software Trigger

After a positive L0 trigger, all sub-detectors data are moved to PCs for processing. If
the L1 trigger condition are fulfilled, each sub-detector sends a L1 trigger primitive
to the L1 Trigger Processor PC. The L1 Trigger Processor will match these primitive
and issue a L1 decision, at which time the data will be further processed(in case of a
positive L1) or discarded (in the case of a negative L1 verdict).

By correlating information between different sub-detectors, the events will be par-
tially reconstructed and made available for the L2 trigger decision. All data satisfying
the L2 trigger condition will be saved to disk. While In case L2 conditions are not
satisfied, the data will be deleted.

i
i

“main” — 2017/1/11 — 15:05 — page 76 — #103 i
i

i
i

i
i

CHAPTER5
GPU

5.1 Introduction

In recent years the use of commercial graphics cards "Graphic Processing Units" (GPUs)
for scientific computing has grown considerably. Although GPUs have been designed
for three-dimensional graphics and are produced mainly for the video game market,
their parallel structure for data processing and their computing power can be used in
several applications in the scientific field (for example in medical physics, astrophysics,
quantum mechanics, molecular chemistry, etc. [1]). For these reasons a branch of
computing research called General-Purpose Computing on Graphics Processing Units
(GPGPU) was developed: it has the goal of using GPUs for computations that require a
lot of processing power. GPUs have a different structure compared to the CPU (Central
Processing Unit which is the processor of standard computers) with more chip area de-
voted to the computing unit with respect to flow control or caching, making the device
more appropriate to highly parallelizable tasks (see Figure 5.1).

From a comparison between the GPU and CPU (see Figure 5.2) we note that the
computing performance of GPUs exceeds by a factor 6 that of CPUs at present.

GPUs could be used to fill the lack of commercial processing devices on which the
lowest level trigger of a high-energy experiment can be implemented and to reduce the
size of PC farm used for the high level triggers [17].

5.2 GPUs in high energy physics

In the past decades High-Energy Physics experiments exploited custom-built proces-
sors with the most recent technology for the trigger and data acquisition systems.
Lately, the large distribution of mass-market electronic devices changed this trend,

76

i
i

“main” — 2017/1/11 — 15:05 — page 77 — #104 i
i

i
i

i
i

Figure 5.1: GPU and CPU architectures showing the ammount of chip area devoted to the different
parts. The largest area (green) GPU chip is devoted to ALU (Arithmetic and Logic Unit) circuits
that are fundamental block for computing operation; Flow control (yellow) and caching (red) units
occupy a little fraction of the chip area.

Figure 5.2: Time evolution of floating-Point Operations per Second for CPUs and GPUs in recent years.

since commercial hardware manufacturers now lead the development of the most per-
forming digital computing devices. Moreover, the development of these perform de-
vices with the latest silicon technology involves costs usually not affordable for re-
search groups.

These facts pushed the scientific community to evaluate commercial solutions in-
stead of custom electronic systems for a growing part of TDAQ system. The obvious
advantages of such trend lie in an optimization of the costs, installation and mainte-

i
i

“main” — 2017/1/11 — 15:05 — page 78 — #105 i
i

i
i

i
i

nance issues, as well as the possibility of easy upgrade, since more powerful devices
become available every year at the same (or lower) price.

The only exception is given by very specific front-end electronics. Indeed until now
it was not possible to implement the entire trigger and data acquisition system on a
commercial processor for a triggerless approach, because the computer farm required
would have an impractically large size.

GPUs can fill the missing gap between custom front-end electronics and commercial
devices. They can be used to implement low level triggers or to reduce the size and the
cost of computer farms used for running high level triggers.

The main problem with this approach is that GPUs are not designed for low latency
response, since their target applications have only to deal with video frames at rates
usually below a hundred Hz. The first level trigger of a HEP experiment must instead
handle event rates even higher than 10 MHz in a maximum latency that is defined by
the size of the buffer memories where data are stored. In recent HEP experiments this
latency is of the order of 1÷ 10µs even if there are some experiments, like NA62, with
latencies that reach 1 ms.

Every year the computing power of GPUs increases so fast that their intrinsic time
latencies approach the requirements of HEP lowest level triggers. Indeed in the last
years the interest of the High-Energy Physics community for these devices grew con-
siderably [18].

The LHC luminosity upgrade foreseen for the next years could profit from GPU de-
velopments; the improvement of highly selective algorithms will be essential to obtain
a sustainable trigger rate. To exploit these more complex algorithms a large computing
performance is needed, which can’t be any more obtained by increasing of CPU clock
frequency. Indeed until few years ago the CPUs performance improved mostly with
the increases of the clock frequency. Now the CPU clock frequency can’t be increased
due to physical constraints (the CPU power consumption increase with the CPU clock
frequency) and increases in computing capabilities can be obtained only by using more
cores and processors together. Several experiments are studying algorithms and devel-
oping the environment to use GPUs in their high-level trigger.

• The ATLAS experiment is studying a GPU implementation for the muon selection
[39] and the track reconstruction for its Inner Detector [19] [40]. The muon trigger
algorithm is at the moment implemented as a simplified version in the ATLAS
level 2 trigger system and it is based on the repeated execution of the same particle
trajectory reconstruction. The high computing capability of GPUs will allow to
use a more refined muon algorithm for better selection and efficiency. Concerning
the track reconstruction algorithm the parallelization of the data preparation step
on a GPU reached a speed-up of up to 26x over the serial CPU version and the
implementation of a Reference Kalman-Filter on the GPU achieved a speed-up of
16x compared to a single threaded CPU version [40].

• CMB (Compressed Baryonic Matter), a future heavy-ion experiment, is study-
ing the implementation of its online First Level Event Selection on a dedicated
many-core CPU/GPU cluster. This system should be able to elaborate a huge data
quantity of up to 1 TB/s [?].

i
i

“main” — 2017/1/11 — 15:05 — page 79 — #106 i
i

i
i

i
i

• The LHCB experiment in its upgrade phase is developing a trigger-less data ac-
quisition system to read-out all the detector at the bunch-crossing rate of 40 MHz.
The events that LHCB stores have a small size (order of 100 kB) so it is relatively
easy to use GPUs or multi-core CPUs to process many events in parallel for a
real time selection without lose time in the bottleneck due to the transfer speed
to the GPUs. Moreover this possible solution might reduce the cost of the High
Level Trigger (HLT) Farm. Since the vertex finding and the track reconstruction
algorithms are the more time consuming threads running in the HLT, they will be
probably the first to be implemented on GPUs. Preliminary results show a speed-
up of a factor 3 with respect to CPUs obtained using the GPU for the tracking
algorithm respect to the sequential one [45].

• The CMS experiment is studying the benefits of using GPUs to reconstruct high
energy tracks in the core of high PT jets coming from the heavy quarks. In-
deed the tracks from B-decays, ad high transverse momentum, become more col-
limated, reducing the efficiency of the standard track-finding algorithms. The
combinatorial complexity of such algorithms could profit from an implementation
on GPUs [18].

• The PANDA hadronic physics experiment, under construction at FAIR (the Fa-
cility for Antiproton and Ion Research in Darmstadt) will not use hardware-based
triggering but sophisticated software-based online event triggers. They are inves-
tigating three different GPU-based algorithms for the track reconstruction [34]:
the Hough transform (a method that allows to detect edges in images), a Rie-
mann Track Finder (which uses the projection of two dimensional hit points onto
a Riemann surface) and a Triplet Finder (an algorithm specifically designed for
the PANDA straw Tube Tracker that analyses only small subsets of data at time).
Using the Triplet Finder algorithm, a cluster of O(100) GPUs seems sufficient for
the PANDA trigger system to cope with the expected rates.

5.3 NA62 GPU trigger

In a standard trigger system for a high energy physics experiment, the complexity in
primitive generation and trigger decision is limited by the time available as defined
by latency requirements. Usually in trigger levels with fixed small latency, the trigger
primitives are quantities related to multiplicity and hit patterns. The trigger decision is
defined with rough conditions, not allowing high rejection factors and selection power.

In many cases the definition of trigger primitives can be reduced to pattern recogni-
tion issues. This is the case for charged particle track identification in magnetic spec-
trometers, trajectories in silicon strip trackers or photon rings in C̆erenkov detectors.
The RICH detector in the NA62 experiment falls into this last category.

A project is being developed within the NA62 collaboration, which aims to integrate
GPUs into the lowest-level trigger for the first time in High Energy Physics [26]. The
use of GPUs in such a hard real-time system has not been attempted so far, but it
looks like a realistic and challenging possibility. The online use of GPUs would allow
the computation of complex trigger primitives at the L0 trigger level, with resolution
comparable to offline analysis. NA62 is considered a test bench for the use of GPUs in

i
i

“main” — 2017/1/11 — 15:05 — page 80 — #107 i
i

i
i

i
i

lowest level trigger. In this work we aim at demonstrating that GPUs can be usefully
employed in a low level trigger more than to prove that the computing power available
in the present generation of video cards is enough for the NA62 needs. There are two
different way to insert GPUs in the NA62 context.

In the first option - the more challenging - the GPUs perform two different works
Fig 5.3:

• compute the data received from the TEL62 boards (see sec. 3.6) of all the detec-
tors contributing high quality primitives to the L0 decision (rings, clusters, tracks)

• substitute the L0TP (see Sec. 3.2), matching the primitives create in the previous
first step and issue a trigger decision

Since neither the Host CPU nor the GPU have the necessary precision of 25 ns, for
sending the trigger synchronously with the clock experiment an FPGA is needed.

Figure 5.3: The GPU is located inside a Host PC, and receives the primitives from all the detectors
participating the L0, to issue a trigger decision, and sends it to the TEL62. According to the trigger
decision data will be discarded or sent to L1 PC farm.

The second option, is illustrated in Fig. 5.4. The GPUs are inserted between the
TEL62 boards and the L0TP. In this scenario the work of GPUs is simpler with respect
to the one described above. The GPUs receives only the data from the RICH detector,
process it and then sends a primitive compatible with the L0TP format, after this the
L0TP issues a decision and sends it to the TEL62 boards.

In both cases described above the time passed from when a primitives is sent by the
TEL62 to a trigger decision is returned to the boards should be less than the maximum
latency of 1 ms, so the computation time performed by the GPUs should be less than
1ms (more specifically should be below 206µs, see Sec. 5.4).

i
i

“main” — 2017/1/11 — 15:05 — page 81 — #108 i
i

i
i

i
i

Figure 5.4: The GPU is located inside a Host PC, and receives the data only from the RICH detector,
and sends primitives to the L0TP, where will be matched with the ones from the others detectors for
issue a L0 trigger decision. According to the trigger decision data will be discarded or sent to L1 PC
farm.

As a first implementation of a low-level L0 trigger on GPUs in NA62, we decided
to focus on the fitting of rings on the RICH detector generated from charged particles
crossing its volume.

This information can be employed at the trigger level to increase the purity and
the rejection power for many triggers of interest. In the standard L0 trigger the RICH
information is only used to generate a PMT hit multiplicity but this information is
barely connected to the number of rings in the detector and is not very useful.

With a ring fitting one can have a better discrimination of between multi-track and
single-track events; extracted parameters might be used in later software trigger levels
to perform particle identification with spectrometer data. The input rate to the RICH
trigger is expected to be ∼ 11 MHz with an average hits multiplicity of ∼ 20 hits for
events. The amount of data to be processed is enormous, making this application a
good test bench for a first level trigger based on GPUs.
In order to be used in a lowest-level trigger, a ring fitting algorithm needs to be:

seedless : it will be fed with raw RICH data with no previous information on the ring
position from other detectors;

fast : it will run concurrently with the hardware L0 trigger, with a maximum latency
of 1 ms (decision making time) and an input event rate about of 10 MHz;

5.4 Data input to GPUs

In order to use GPUs in the RICH L0 trigger two main aspects need to be defined:

Input: how the data from readout boards are sent to GPUs

Data format: how the data sent to GPUs are arranged

i
i

“main” — 2017/1/11 — 15:05 — page 82 — #109 i
i

i
i

i
i

5.4.1 Input

The data from readout boards need to be transferred in the GPU memory. The copy
process need to have a deterministic low latency: the contribution to the total latency
has to be low enough in order to respect the requirement of latency < 1ms.

Data on RICH PMT hits are produced within the TEL62 boards (5.5) and they are
made available to the GPU trigger system through standard 1Gb/s ethernet links. In
the standard way, data are sent to a Network Interface Control (NIC) from the readout
boards, then the NIC would copy the data via PCIExpress (PCIe) into the CPU memory
and finally data would be copied in the GPU memory to be processed.

This solution has two major problems:

• the multiple copies to write data in GPU memory: NIC→CPU→RAM→GPU ;

• the non-deterministic latency time, due to CPU running concurrently many differ-
ent processes.

One approach for addressing the first issue is to speed up the transfer by reducing
the multiple copies using a non-standard driver software on the host, such as PF_RING
[?]. The other approach, which addresses both issues , is to avoid the copy to host
completely, and this is the one adopted in NA62.

5.4.2 NaNet and GPUs

In order to overcome the above limitations an approach was considered in which data
are transferred directly to the GPU without action from the host. This is possible be-
cause NVIDIA GPUs implement P2P(Peer to Peer)/RDMA (Remote Direct Memory
Access) protocol, this means GPUs connected via the same PCIe bus can access to each
others’ memories without involving the CPU (Fig. 5.5).

One implementation of this is a FPGA-based Network Interface Card with GPUDi-
rect P2P/RDMA capabilities, named NaNet [2] developed by INFN within the project
APEnet+. This essentially means that NaNet can copy data directly into GPU memory,
because it’s seen by the video card as another GPU device and can use the data sharing
mechanism between GPUs.

Using this solution data are sent to NaNet, then NaNet copies data directly into GPU
memory, without involving the CPU in the process. In this way data are transferred with
a low and deterministic latency time as intended [?]. Figure 5.6 shows how, for a buffer
size smaller than 8KB, the transfer time is below 100 µs. The 8KB was chosen as the
maximum buffer size of the data transmitted by NaNet.

i
i

“main” — 2017/1/11 — 15:05 — page 83 — #110 i
i

i
i

i
i

Figure 5.5: NVIDIA GPUDirect Peer-to-Peer (P2P) Communication Between GPUs on the Same PCIe
Bus.

Figure 5.6: The latency time to transfer data from NaNet to GPU memory for different buffer sizes.

i
i

“main” — 2017/1/11 — 15:05 — page 84 — #111 i
i

i
i

i
i

The difference in data copying between NaNet and a standard NIC is shown in
Fig.5.7

Figure 5.7: Difference in data transfer between a generic NIC 4.3(a) and NaNet 4.3(b).

i
i

“main” — 2017/1/11 — 15:05 — page 85 — #112 i
i

i
i

i
i

5.5 GPU-RICH firmware

RICH data are read by on five different TEL62 boards (512 channel per board): the
first four boards receive signals from single PMT; the fifth board receives data from the
SuperCells (OR of 8 PMTs) and it is the one used for the standard L0 trigger based on
FPGA.

Figure 5.8: Pictorial view of GPU-based Trigger.

The ring fitting algorithm based on GPUs needs to use the data from the first four
boards to have all the information on the individual channel hits (see Fig.5.8). The
standard version of RICH firmware (4.3), the same used for RICH data acquisition, is
used for this purposes. In the GPU-RICH version the information on hits that have
contributed to the primitive is requested. In the PP firmware PP in addition to the
transmission of the timestamp and fine-time it is also transmitted the multiplicity of
hits and all channels used for the formation of the primitive. The channel information
is compressed so a 32 bit word for 3 channels (9 bit each) can be used. The sub-
clustering process is the same used in RICH standard and the cluster is formed inside
the SL. In fact once data passed in the SL the primitive parts are joined together to
form the final primitive. Furthermore in GPU-RICH the multiplicity of partial hits are
summed to obtain the total and the channels are merged keeping the same formatting.
The plots in Figures 5.9 and 5.10 are the result of the tests performed and indicate how
all the produced primitives, are contained inside two frames and the time 0 does not
frame dependent.

5.5.1 Data preparation for GPU

Each TEL62 board sends to NaNet the individual PMT hit data in a Multi GPU Packet
(MGP) format shown in Fig 5.11. This format with PMT IDs coded with 9 bits has
been chosen to optimize the bandwidth used by TEL62 boards. The various field of the
MGP format are described below

Source-ID =0x1C, is the RICH detector identifier

Source sub-ID 0x0, 0x1, 0x2, 0x3, is the identifier of the RICH TEL62 board sending
the data

i
i

“main” — 2017/1/11 — 15:05 — page 86 — #113 i
i

i
i

i
i

Figure 5.9: difference between the TS of the primitive and the TS of when is was MGP product for a
period of 6.4us.

Figure 5.10: difference between the TS of the primitive and the TS of when is was MGP product for a
period of 12.8us.

Total number of hits sum of all hits in the MGP(control purpose)

Counter progressive number of the MGP (4-bit, wrapping every 16 MGP)

i
i

“main” — 2017/1/11 — 15:05 — page 87 — #114 i
i

i
i

i
i

Number of events number of events in the MGP

Event Timestamp : timestamp of the event with 25 ns LSB

Event Fine time : fine time of the event with 100 ps LSB

Event Number of hits : total number of hits in the event

Hit ID : PMT number (9 bit), the full identification number of the RICH PMT is ob-
tained adding in front of the Hit ID the 7 LSB of the source SUB-ID field from
the MGP header.

Figure 5.11: The MGP format.

The first NaNet preprocessing tasks is to merge the data received from the four RICH
boards according to the time stamp to make it usable by GPU kernel. NaNet takes
the first events sent by each TEL62 board and searches for the one with the smaller
Timestamp + Finetime, then it opens a programmable time window around such time
(5 Finetime units, ∼ 500 ps). All the events with a Timestamp + Finetime in the time
window are merged in the same event, stored in a buffer called CLOP (Circular Lists
Of Persistent receiving buffers) and sent to GPU for processing. The data are sent to
GPU either after a certain programable timeout period (206µs at this time, the timeout
start after the first MGP is arrived from the TEL62 boards) or when a buffer size of
8KB is reached. The NaNet timeout is also the maximum time available to a kernel for
processing the events. If during the computation this limits it’s exceed repeatedly, data
would be overwritten while are read by the kernel, causing in most cases a crash. The
only way to prevent the crash is keep the computing time of the kernel below 206µs.

The data format for each event is shown in Fig. 5.12
The data format called Merged Multi Event GPU Packet(M2EGP) has 128 bit long

header containing

• the TIMESTAMP (32bit) of the merged event corresponds to the 24 LSB bits of
MGP Timestamp + Finetime of the event with smaller value. Only events with

i
i

“main” — 2017/1/11 — 15:05 — page 88 — #115 i
i

i
i

i
i

Figure 5.12: The M2EGP data format.

a Timestamp + Finetime value within a programmable time window are used for
the event

• the WINDOW (8bit) field contains the size of time window used for merging, with
100 ps LSB

• the TOTAL HIT (16bit) field contains the total number of hits of the merged event

• the fields STR X HIT(8 bit) have the information on the hits received from board
X

• the fields STR X MGP(8 bit) contains the information on the number of MGP
received from board X

• the fields STREAM (TEL62 board) X; HIT Y (16 bit) contain the ChannelID of
individual hits

i
i

“main” — 2017/1/11 — 15:05 — page 89 — #116 i
i

i
i

i
i

CHAPTER6
Conclusions

THE The work reported in this thesis was performed within the project “Experi-
ment to detect KL Very Rare decays” (KLEVER. KLEVER aims at using pow-
erful programmable systems in the first stages of the data collection and se-

lection process in particle experiments at accelerators, i.e. the use of hardware pro-
cessors based on Field-Programmable Gate Arrays (FPGAs) and Graphic Processing
Units GPUs. My work has focused on the development of the Trigger and Data Ac-
quisition System for the experiment NA62 and it covers almost all the aspects of the
common Trigger and Data Acquisition of the NA62 experiment that has as main goal
the measurement the Branching Ratio of the ultra-rare K+ → π+νν decay, very useful
to obtain a stringent test of the Standard Model.

This PhD work began with the design, the development and the testing of the hard-
ware and firmware of common boards of the NA62 TDAQ system: TDCB and TEL62.
The TDCB is a daughter-board of the TEL62 and measures the detector hit times. The
TEL62 processes and stores the received data in a buffer memory; at the arrival of a
L0 trigger request, it extracts the data within a programmable time window around the
trigger time to send them to the PC farm. The TEL62s of some detectors also take care
of producing the L0 trigger primitives that are merged and processed to generate L0
trigger requests.

In this thesis is described (Chapter 3) the significant contribution given to the de-
veloping, the testing and the commissioning of the TDCB and TEL62 hardware and
firmware. Since the first Technical Run to the 2016 Run the system that I have devel-
oped was tested, and evolved to be compatible with the detector input rate and the beam
at growing intensity up to nominal. After three main versions the system composed by
TDCB and TEL62 manages to cope with the design rate.

Once the work on the Data Acquisition system was concluded, my research activities

89

i
i

“main” — 2017/1/11 — 15:05 — page 90 — #117 i
i

i
i

i
i

were focused on the development of NA62 L0 standard trigger and L0 trigger based on
GPU. In particular I have worked on L0 trigger firmware for RICH detector. Two
versions of the standard firmware for the RICH detector were developed: one used
during the 2015 NA62 data taking (standard version) and one used in 2016 NA62
data taking (NEW RICH version). The standard L0 firmware trigger is described in
chapter 4. About the L0 trigger based on GPU, NA62 is considered test-bench for the
use the GPUs in lowest level trigger. In this work we aim at demonstrating that GPUs
can be usefully employed in a low level trigger. The studies on the performance of a
L0 trigger based on GPU are currently underway. The work I have done during my last
year of PhD is explained in Chapter 5.

i
i

“main” — 2017/1/11 — 15:05 — page 91 — #118 i
i

i
i

i
i

CHAPTER7
Appendix A

−−
−− VHDL A r c h i t e c t u r e common_pp_lib . pp_da ta_compres sor_v3 . s t d
−−
−− Crea ted :
−− by − E . P e d r e s c h i and J . P i n z i n o (UMMO)
−− a t − 1 0 : 3 3 : 2 3 6 / 2 / 2 0 1 5
−−
−− u s i n g Mentor Graph ics HDL D e s i g n e r (TM) 2013 .1 b (B u i l d 2)
−−
l i b r a r y a l t e r a ;
use a l t e r a . a l l ;
l i b r a r y a l t e r a _ m f ;
use a l t e r a _ m f . a l l ;
l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . s t d _ l o g i c _ a r i t h . a l l ;
use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

l i b r a r y common_TEL62_lib ;
use common_TEL62_lib . common_defs . a l l ;
use common_TEL62_lib . memory_map . a l l ;

l i b r a r y common_mgwz_generated ;
use common_mgwz_generated . a l l ;

e n t i t y p p _ d a t a _ c o m p r e s s o r _ v 3 i s
port (

c l o c k : in s t d _ l o g i c ;
r e s e t : in s t d _ l o g i c ;
r e s e t _ e r r o r : in s t d _ l o g i c ;
s o f t _ r e s e t : in s t d _ l o g i c ;
r e c o v e r y : in s t d _ l o g i c ;
e n a b l e : in s t d _ l o g i c ;
i n b u r s t : in s t d _ l o g i c ;
i n e n d b u r s t : in s t d _ l o g i c ;
f r e e z e : in s t d _ l o g i c ;
a l i v e : out s t d _ l o g i c ;

91

i
i

“main” — 2017/1/11 — 15:05 — page 92 — #119 i
i

i
i

i
i

done : out s t d _ l o g i c ;
l i m i t e r _ n o t r i g : in s t d _ l o g i c ; −− S k i p da ta t o p r i m i t i v e FIFO i f l i m i t e r

i s ON
l i m i t e r _ n o d a t a : in s t d _ l o g i c ; −− S k i p da ta t o DDR w r i t e r i f l i m i t e r i s

ON
−− From / t o o r g a n i z e r
o r g _ s l o t _ t i m e s t a m p : in s t d _ l o g i c _ v e c t o r (31 downto 0) ; −− Must be read and

changed t o g e t h e r w i t h RAM banks
o r g _ d a t a _ c o u n t e r : in s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s l o t _ c o u n t e r s : in d a t a o r g _ c o u n t e r s _ a r r a y _ t y p e ;
s t a r t : in s t d _ l o g i c ;
r e a d y : out s t d _ l o g i c ;
o rg_emptyf rame : in s t d _ l o g i c ;
f b _ r d a d d : out s t d _ l o g i c _ v e c t o r (14 downto 0) ;
f b _ r d d a t a : in s t d _ l o g i c _ v e c t o r (31 downto 0) ;
n e x t _ s l o t : in d a t a o r g _ n e x t s l o t _ a r r a y _ t y p e ;
−− From / t o DDR w r i t e r
d d r _ s l o t _ t i m e s t a m p : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
d d r _ w r _ s t a r t : i n o u t s t d _ l o g i c ;
dd r_wr_ ready : in s t d _ l o g i c ;
ddr_wr_emptyf rame : out s t d _ l o g i c ;
cb_rdadd : in s t d _ l o g i c _ v e c t o r (8 downto 0) ;
c b _ r d d a t a : out s t d _ l o g i c _ v e c t o r (255 downto 0) ;
w o r d _ a d d r e s s : out a d d r e s s _ s l o t _ a r r a y _ t y p e ;
−− From / t o p r i m i t i v e t r i g g e r f i f o
p r i m _ f i f o _ f u l l : in s t d _ l o g i c ;
p r i m _ f i f o _ e n a b l e _ i n : in s t d _ l o g i c ;
p r i m _ f i f o _ w d a t a : i n o u t s t d _ l o g i c _ v e c t o r (31 downto 0) ;
p r i m _ f i f o _ w r e q : i n o u t s t d _ l o g i c ;
t d c _ w a r n i n g : in s t d _ l o g i c ;
−− M o n i t o r i n g
p r o c _ t o t : i n o u t s t d _ l o g i c _ v e c t o r (31 downto 0) ;
proc_num : i n o u t s t d _ l o g i c _ v e c t o r (31 downto 0) ;
proc_max : i n o u t s t d _ l o g i c _ v e c t o r (15 downto 0) ;
p r o c _ o v f : out s t d _ l o g i c ;
da t acmp_f rame_ t ime : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
da tacmp_frame_words : out s t d _ l o g i c _ v e c t o r (15 downto 0) ;
−− Error
e r r o r : out s t d _ l o g i c ;
comp_err_word : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
−− Logging
l o g _ p e r m i t : in s t d _ l o g i c ;
l o g _ l e v e l : in s t d _ l o g i c _ v e c t o r (1 downto 0) ;
l o g _ d a t a : out s t d _ l o g i c _ v e c t o r (LOG_DATASIZE−1 downto 0) ;
l o g _ v a l i d : i n o u t s t d _ l o g i c ;
log_more : out s t d _ l o g i c ;
l o g _ a c k : in s t d _ l o g i c

) ;
end e n t i t y p p _ d a t a _ c o m p r e s s o r _ v 3 ;

a r c h i t e c t u r e s t d of p p _ d a t a _ c o m p r e s s o r _ v 3 i s

type READER_TYPE i s (
IDLE ,
WAIT_REG,
START_STATE ,
READ_0 ,
READ_1 ,
WAIT_EMPTY,
END_FRAME_WAIT_DDR_WRITER

) ;
s i g n a l r e a d e r _ s t a t e : READER_TYPE ;
s i g n a l r e a d e r _ a l i v e : s t d _ l o g i c ;

type WRITER_TYPE i s (
IDLE ,
WRITE_EMPTY,
WRITE_DATA,

i
i

“main” — 2017/1/11 — 15:05 — page 93 — #120 i
i

i
i

i
i

LAST_DATA,
END_FRAME_WAIT_DDR_WRITER,
ERR_STATE

) ;
s i g n a l w r i t e r _ s t a t e : WRITER_TYPE ;
s i g n a l w r i t e r _ a l i v e : s t d _ l o g i c ;

−− I n t e r a c t i o n s i g n a l s
s i g n a l w r i t e _ s h i f t 0 : s t d _ l o g i c _ v e c t o r (1 downto 0) ;
s i g n a l w r i t e _ s h i f t 1 : s t d _ l o g i c _ v e c t o r (1 downto 0) ;
−−s i g n a l w r i t e r _ r e a d y : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l t i m e _ w i n d o w _ s h i f t 0 : s t d _ l o g i c _ v e c t o r (7 downto 0) ;
s i g n a l t i m e _ w i n d o w _ s h i f t 1 : s t d _ l o g i c _ v e c t o r (7 downto 0) ;
s i g n a l t i m e _ w i n d o w _ s h i f t 2 : s t d _ l o g i c _ v e c t o r (7 downto 0) ;
s i g n a l s t a r t _ w r i t e r 0 : s t d _ l o g i c ;
s i g n a l s t a r t _ w r i t e r 1 : s t d _ l o g i c ;

−− Ar ra ys
s i g n a l w o r d _ a d d r e s s _ i n t : a d d r e s s _ s l o t _ a r r a y _ t y p e ;
s i g n a l word_add re s s0 : a d d r e s s _ s l o t _ a r r a y _ t y p e ;
s i g n a l word_add re s s1 : a d d r e s s _ s l o t _ a r r a y _ t y p e ;

−− Memories
s i g n a l bank : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l a b 0 _ a d d r e s s : s t d _ l o g i c _ v e c t o r (2 downto 0) ;
s i g n a l a b 1 _ a d d r e s s : s t d _ l o g i c _ v e c t o r (2 downto 0) ;
s i g n a l c b 0 _ a d d r e s s : s t d _ l o g i c _ v e c t o r (8 downto 0) ;
s i g n a l c b 1 _ a d d r e s s : s t d _ l o g i c _ v e c t o r (8 downto 0) ;
s i g n a l a b 0 _ r d d a t a _ i n t : s t d _ l o g i c _ v e c t o r (255 downto 0) ;
s i g n a l a b 1 _ r d d a t a _ i n t : s t d _ l o g i c _ v e c t o r (255 downto 0) ;
s i g n a l c b 0 _ r d d a t a _ i n t : s t d _ l o g i c _ v e c t o r (255 downto 0) ;
s i g n a l c b 1 _ r d d a t a _ i n t : s t d _ l o g i c _ v e c t o r (255 downto 0) ;
s i g n a l cb_wradd : s t d _ l o g i c _ v e c t o r (8 downto 0) ;
s i g n a l cb_wrda t a : s t d _ l o g i c _ v e c t o r (255 downto 0) ;
s i g n a l cb_wrreq : s t d _ l o g i c ;
s i g n a l cb0_wrreq : s t d _ l o g i c ;
s i g n a l cb1_wrreq : s t d _ l o g i c ;
s i g n a l cb_wrby teena : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l cb0_wrby teena : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l cb1_wrby teena : s t d _ l o g i c _ v e c t o r (31 downto 0) ;

−− P r i m i t i v e g e n e r a t o r FIFO
s i g n a l p r i m _ f i f o _ w r e q _ i n t : s t d _ l o g i c ;

−− Timestamp frame
s i g n a l s l o t _ t i m e s t a m p _ 0 : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l s l o t _ t i m e s t a m p _ 1 : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l emptyframe_0 : s t d _ l o g i c ;
s i g n a l emptyframe_1 : s t d _ l o g i c ;
s i g n a l emptyframe : s t d _ l o g i c ;

−− Reader s i g n a l s
s i g n a l window_counter : s t d _ l o g i c _ v e c t o r (6 downto 0) ; −− c o n t a t o r e p a r o l e s i n g o l a

f i n e s t r a
s i g n a l e m p t y _ c o u n t e r _ r e a d e r : s t d _ l o g i c _ v e c t o r (1 downto 0) ;
s i g n a l t ime_window_0 : s t d _ l o g i c _ v e c t o r (7 downto 0) ;
s i g n a l next_ t ime_window_0 : s t d _ l o g i c _ v e c t o r (8 downto 0) ;
s i g n a l t ime_window_1 : s t d _ l o g i c _ v e c t o r (7 downto 0) ;
s i g n a l next_ t ime_window_1 : s t d _ l o g i c _ v e c t o r (8 downto 0) ;
s i g n a l nword_window_0 : s t d _ l o g i c _ v e c t o r (6 downto 0) ;
s i g n a l nword_window_1 : s t d _ l o g i c _ v e c t o r (6 downto 0) ;
s i g n a l o r g a n i z e r _ d a t a _ c o u n t e r : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
−− s i g n a l s t a r t _ i n t 0 : s t d _ l o g i c ;
−− s i g n a l s t a r t _ i n t 1 : s t d _ l o g i c ;

−− W r i t e r s i g n a l s
−−s i g n a l e m p t y _ c o u n t e r _ w r i t e r : s t d _ l o g i c _ v e c t o r (2 downto 0) ;
−−s i g n a l w o r d _ w r i t t e n : s t d _ l o g i c _ v e c t o r (6 downto 0) ;

i
i

“main” — 2017/1/11 — 15:05 — page 94 — #121 i
i

i
i

i
i

s i g n a l word_addr : s t d _ l o g i c _ v e c t o r (12 downto 0) ;
s i g n a l t r a i l e r _ w o r d : s t d _ l o g i c _ v e c t o r (31 downto 0) ; −− puo ’ d i v e n t a r e l a p a r o l a che

c o n t i e n e g l i e r r o r i

−− Error s i g n a l s
s i g n a l e r r o r _ s t a t e : s t d _ l o g i c ;
s i g n a l e r r o r _ o v e r f l o w : s t d _ l o g i c ;
s i g n a l f r a m e _ e r r o r _ o v e r f l o w : s t d _ l o g i c ;
s i g n a l e r r o r _ t i m e s l o t : s t d _ l o g i c ;
s i g n a l f r a m e _ e r r o r _ t i m e s l o t : s t d _ l o g i c ;
s i g n a l e r r o r _ d a t a m a t c h : s t d _ l o g i c ;
s i g n a l f r a m e _ e r r o r _ d a t a m a t c h : s t d _ l o g i c ;
s i g n a l e r r o r _ b a d w o r d : s t d _ l o g i c ;
s i g n a l f r a m e _ e r r o r _ b a d w o r d : s t d _ l o g i c ;
s i g n a l v i o l a t i o n _ e r r o r : s t d _ l o g i c ;
s i g n a l c o m p r e s s o r _ c o u n t e r _ e r r o r : s t d _ l o g i c ;
s i g n a l p r i m i t i v e _ f i f o _ e r r o r : s t d _ l o g i c ;

−− M o n i t o r i n g
s i g n a l p r o c _ c u r : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l proc_temp : s t d _ l o g i c _ v e c t o r (17 downto 0) ;
s i g n a l p r o c e s s i n g : s t d _ l o g i c ;
s i g n a l p r o c e s s i n g _ p r e v : s t d _ l o g i c ;
s i g n a l w a i t i n g : s t d _ l o g i c ;
s i g n a l f i r s t _ n o t _ e m p t y : s t d _ l o g i c ;
s i g n a l second_no t_empty : s t d _ l o g i c ;
s i g n a l c o m p r e s s o r _ t i m e s t a m p : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l c o m p r e s s o r _ d a t a _ c o u n t e r : s t d _ l o g i c _ v e c t o r (31 downto 0) ;

s i g n a l t d c _ w a r n i n g _ p r i m : s t d _ l o g i c ;
s i g n a l t d c _ w a r n i n g _ d a t a : s t d _ l o g i c ;

−− Logger i n t e r f a c e
s i g n a l l ogd : LOGDATA_TYPE;
s i g n a l l ogn : s t d _ l o g i c _ v e c t o r (LOG2(LOG_MAXWORDS)−1 downto 0) ;
s i g n a l l o g i t : s t d _ l o g i c ;
s i g n a l l o g b u s y : s t d _ l o g i c ;
s i g n a l l o g d _ r d : LOGDATA_TYPE;
s i g n a l l o g n _ r d : s t d _ l o g i c _ v e c t o r (LOG2(LOG_MAXWORDS)−1 downto 0) ;
s i g n a l l o g i t _ r d : s t d _ l o g i c ;
s i g n a l logd_wr : LOGDATA_TYPE;
s i g n a l logn_wr : s t d _ l o g i c _ v e c t o r (LOG2(LOG_MAXWORDS)−1 downto 0) ;
s i g n a l l o g i t _ w r : s t d _ l o g i c ;
s i g n a l rdbusy , wrbusy : s t d _ l o g i c ;

−− t e n t a t i v o
s i g n a l c o u n t e r s _ r e g : d a t a o r g _ c o u n t e r s _ a r r a y _ t y p e := (o t h e r s => (o t h e r s => ’ 0 ’)) ;
s i g n a l n e x t _ s l o t _ r e g : d a t a o r g _ n e x t s l o t _ a r r a y _ t y p e := (o t h e r s => (o t h e r s => ’ 0 ’)) ;

−− a t t r i b u t e s y n _ e n c o d i n g OF READER : TYPE IS " s a f e " ;

begin

a l i v e <= r e a d e r _ a l i v e and w r i t e r _ a l i v e ;

p r i m _ f i f o _ w r e q <= p r i m _ f i f o _ w r e q _ i n t and (not p r i m _ f i f o _ f u l l) and
p r i m _ f i f o _ e n a b l e _ i n ;

−− E r r o r s
e r r o r <= e r r o r _ s t a t e or e r r o r _ o v e r f l o w or e r r o r _ t i m e s l o t or e r r o r _ d a t a m a t c h or
e r r o r _ b a d w o r d or c o m p r e s s o r _ c o u n t e r _ e r r o r or (p r i m i t i v e _ f i f o _ e r r o r and

p r i m _ f i f o _ e n a b l e _ i n) ;
−− B i t s t o e r r o r da ta word
v i o l a t i o n _ e r r o r <= f r a m e _ e r r o r _ t i m e s l o t or f r a m e _ e r r o r _ b a d w o r d ;
comp_err_word <= X" 0 " & " 000 " & v i o l a t i o n _ e r r o r & f r a m e _ e r r o r _ d a t a m a t c h &

f r a m e _ e r r o r _ o v e r f l o w & " 00 " & X" 00000 " ;

i
i

“main” — 2017/1/11 — 15:05 — page 95 — #122 i
i

i
i

i
i

t d c _ w a r n i n g _ p r i m <= t d c _ w a r n i n g and l i m i t e r _ n o t r i g ;
t d c _ w a r n i n g _ d a t a <= t d c _ w a r n i n g and l i m i t e r _ n o d a t a ;

−−
−− Frame b u f f e r RAM r e a d e r p r o c e s s
−−
READER : p r o c e s s (c l o c k)
begin

i f (r i s i n g _ e d g e (c l o c k)) then

i f (r e s e t = ’ 1 ’) then
w r i t e _ s h i f t 0 <= (o t h e r s => ’ 0 ’) ;
w r i t e _ s h i f t 1 <= (o t h e r s => ’ 0 ’) ;
t i m e _ w i n d o w _ s h i f t 0 <= (o t h e r s => ’ 0 ’) ;
t i m e _ w i n d o w _ s h i f t 1 <= (o t h e r s => ’ 0 ’) ;
t i m e _ w i n d o w _ s h i f t 2 <= (o t h e r s => ’ 0 ’) ;
e m p t y _ c o u n t e r _ r e a d e r <= (o t h e r s => ’ 0 ’) ;
r e a d e r _ s t a t e <= IDLE ;
window_counter <= " 0000001 " ;
s t a r t _ w r i t e r 0 <= ’ 0 ’ ;
t ime_window_0 <= (o t h e r s => ’ 0 ’) ;
next_ t ime_window_0 <= (o t h e r s => ’ 0 ’) ;
t ime_window_1 <= (o t h e r s => ’ 0 ’) ;
next_ t ime_window_1 <= (o t h e r s => ’ 0 ’) ;
nword_window_0 <= (o t h e r s => ’ 0 ’) ;
nword_window_1 <= (o t h e r s => ’ 0 ’) ;
l o g i t _ r d <= ’ 0 ’ ;
f o r i in 0 to LOG_MAXWORDS−1 loop

l o g d _ r d (i) <= (o t h e r s => ’ 0 ’) ;
end loop ;
e r r o r _ t i m e s l o t <= ’ 0 ’ ;
f r a m e _ e r r o r _ t i m e s l o t <= ’ 0 ’ ;
r e a d e r _ a l i v e <= ’ 0 ’ ;
c o u n t e r s _ r e g <= (o t h e r s => (o t h e r s => ’ 0 ’)) ;
n e x t _ s l o t _ r e g <= (o t h e r s => (o t h e r s => ’ 0 ’)) ;
o r g a n i z e r _ d a t a _ c o u n t e r <= (o t h e r s => ’ 0 ’) ;

e l s i f (r e s e t _ e r r o r = ’ 1 ’) then
e r r o r _ t i m e s l o t <= ’ 0 ’ ;
f r a m e _ e r r o r _ t i m e s l o t <= ’ 0 ’ ;
l o g i t _ r d <= ’ 0 ’ ;

e l s i f (f r e e z e = ’ 0 ’) then
l o g i t _ r d <= ’ 0 ’ ;
w r i t e _ s h i f t 1 <= w r i t e _ s h i f t 0 ;
t i m e _ w i n d o w _ s h i f t 1 <= t i m e _ w i n d o w _ s h i f t 0 ;
t i m e _ w i n d o w _ s h i f t 2 <= t i m e _ w i n d o w _ s h i f t 1 ;
s t a r t _ w r i t e r 1 <= s t a r t _ w r i t e r 0 ;
r e a d e r _ a l i v e <= e n a b l e ;
c o u n t e r s _ r e g <= s l o t _ c o u n t e r s ;
n e x t _ s l o t _ r e g <= n e x t _ s l o t ;

i f (e n a b l e = ’ 1 ’) then

case r e a d e r _ s t a t e i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when IDLE =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r e a d y <= ’ 1 ’ ;
window_counter <= " 0000001 " ;
e m p t y _ c o u n t e r _ r e a d e r <= (o t h e r s => ’ 0 ’) ;
w r i t e _ s h i f t 0 <= (o t h e r s => ’ 0 ’) ;
w r i t e _ s h i f t 1 <= (o t h e r s => ’ 0 ’) ;
t i m e _ w i n d o w _ s h i f t 0 <= (o t h e r s => ’ 0 ’) ;
t ime_window_0 <= (o t h e r s => ’ 0 ’) ;
next_ t ime_window_0 <= (o t h e r s => ’ 0 ’) ;
t ime_window_1 <= (o t h e r s => ’ 0 ’) ;

i
i

“main” — 2017/1/11 — 15:05 — page 96 — #123 i
i

i
i

i
i

next_ t ime_window_1 <= (o t h e r s => ’ 0 ’) ;
s t a r t _ w r i t e r 0 <= ’ 0 ’ ;
nword_window_0 <= (o t h e r s => ’ 0 ’) ;
nword_window_1 <= (o t h e r s => ’ 0 ’) ;
f b _ r d a d d <= (o t h e r s => ’ 0 ’) ;
i f (s t a r t = ’ 1 ’) then

r e a d e r _ s t a t e <= WAIT_REG ;
e l s e

r e a d e r _ s t a t e <= IDLE ;
end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when WAIT_REG =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
next_ t ime_window_0 <= n e x t _ s l o t _ r e g (0) ;
nword_window_0 <= c o u n t e r s _ r e g (0) ;
o r g a n i z e r _ d a t a _ c o u n t e r <= o r g _ d a t a _ c o u n t e r ;
r e a d e r _ s t a t e <= START_STATE ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when START_STATE =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s t a r t _ w r i t e r 0 <= ’ 1 ’ ;
emptyframe <= org_emptyf rame ;
−− R e s e t f rame e r r o r f l a g s
f r a m e _ e r r o r _ t i m e s l o t <= ’ 0 ’ ;
i f (o rg_emptyf rame = ’ 1 ’) then

r e a d e r _ s t a t e <= WAIT_EMPTY;
e l s e

i f (nword_window_0 = " 0000000 ") then
next_ t ime_window_1 <= n e x t _ s l o t _ r e g (c o n v _ i n t e g e r (next_ t ime_window_0 (7

downto 0))) ;
t ime_window_1 <= next_ t ime_window_0 (7 downto 0) ;
nword_window_1 <= c o u n t e r s _ r e g (c o n v _ i n t e g e r (next_ t ime_window_0 (7

downto 0))) ;
r e a d e r _ s t a t e <= READ_1 ;

e l s e
r e a d e r _ s t a t e <= READ_0 ;

end i f ;
end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when WAIT_EMPTY =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r e a d y <= ’ 0 ’ ;
w r i t e _ s h i f t 0 <= " 11 " ;
e m p t y _ c o u n t e r _ r e a d e r <= e m p t y _ c o u n t e r _ r e a d e r + " 01 " ;
i f (e m p t y _ c o u n t e r _ r e a d e r = " 10 ") then

r e a d e r _ s t a t e <= END_FRAME_WAIT_DDR_WRITER;
e l s e

r e a d e r _ s t a t e <= WAIT_EMPTY;
end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when READ_0 =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r e a d y <= ’ 0 ’ ;
f b _ r d a d d <= time_window_0 & (window_counter − " 0000001 ") ;
t i m e _ w i n d o w _ s h i f t 0 <= time_window_0 ;
i f (window_counter = nword_window_0 or nword_window_0 = " 0000000 ") then

i f (next_ t ime_window_0 = " 100000000 ") then
w r i t e _ s h i f t 0 <= " 10 " ;
r e a d e r _ s t a t e <= END_FRAME_WAIT_DDR_WRITER;

e l s e
i f (next_ t ime_window_0 (7 downto 0) <= time_window_0) then −− Next

t i m e s l o t i s e a r l i e r than t h e one j u s t p r o c e s s e d
e r r o r _ t i m e s l o t <= ’ 1 ’ ;
f r a m e _ e r r o r _ t i m e s l o t <= ’ 1 ’ ;

i
i

“main” — 2017/1/11 — 15:05 — page 97 — #124 i
i

i
i

i
i

i f (r d bu sy = ’ 0 ’) then
l o g d _ r d (0) <= LOGMSG_DATACMP_TIMESLOT;
l o g n _ r d <= c o n v _ s t d _ l o g i c _ v e c t o r (1 , 3) ;
l o g i t _ r d <= ’ 1 ’ ;

end i f ;
end i f ;
next_ t ime_window_1 <= n e x t _ s l o t _ r e g (c o n v _ i n t e g e r (next_ t ime_window_0 (7

downto 0))) ;
t ime_window_1 <= next_ t ime_window_0 (7 downto 0) ;
nword_window_1 <= c o u n t e r s _ r e g (c o n v _ i n t e g e r (next_ t ime_window_0 (7

downto 0))) ;
window_counter <= " 0000001 " ;
w r i t e _ s h i f t 0 <= " 10 " ;
r e a d e r _ s t a t e <= READ_1 ;

end i f ;
e l s e

window_counter <= window_counter + " 0000001 " ;
w r i t e _ s h i f t 0 <= " 01 " ;
r e a d e r _ s t a t e <= READ_0 ;

end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when READ_1 =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r e a d y <= ’ 0 ’ ;
f b _ r d a d d <= time_window_1 & (window_counter − " 0000001 ") ;
t i m e _ w i n d o w _ s h i f t 0 <= time_window_1 ;
i f (window_counter = nword_window_1 or nword_window_1 = " 0000000 ") then

i f (next_ t ime_window_1 = " 100000000 ") then
w r i t e _ s h i f t 0 <= " 10 " ;
r e a d e r _ s t a t e <= END_FRAME_WAIT_DDR_WRITER;

e l s e
i f (next_ t ime_window_1 (7 downto 0) <= time_window_1) then −− Next

t i m e s l o t i s e a r l i e r than t h e one j u s t p r o c e s s e d
e r r o r _ t i m e s l o t <= ’ 1 ’ ;
f r a m e _ e r r o r _ t i m e s l o t <= ’ 1 ’ ;
i f (r d bu sy = ’ 0 ’) then

l o g d _ r d (0) <= LOGMSG_DATACMP_TIMESLOT;
l o g n _ r d <= c o n v _ s t d _ l o g i c _ v e c t o r (1 , 3) ;
l o g i t _ r d <= ’ 1 ’ ;

end i f ;
end i f ;
next_ t ime_window_0 <= n e x t _ s l o t _ r e g (c o n v _ i n t e g e r (next_ t ime_window_1 (7

downto 0))) ;
t ime_window_0 <= next_ t ime_window_1 (7 downto 0) ;
nword_window_0 <= c o u n t e r s _ r e g (c o n v _ i n t e g e r (next_ t ime_window_1 (7

downto 0))) ;
window_counter <= " 0000001 " ;
w r i t e _ s h i f t 0 <= " 10 " ;
r e a d e r _ s t a t e <= READ_0 ;

end i f ;
e l s e

window_counter <= window_counter + " 0000001 " ;
w r i t e _ s h i f t 0 <= " 01 " ;
r e a d e r _ s t a t e <= READ_1 ;

end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when END_FRAME_WAIT_DDR_WRITER =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
w r i t e _ s h i f t 0 <= " 00 " ;
r e a d y <= ’ 0 ’ ;
s t a r t _ w r i t e r 0 <= ’ 0 ’ ;
i f (dd r_wr_ ready = ’ 1 ’) then
−− i f (w r i t e r _ r e a d y = ’ 1 ’) t h e n
r e a d e r _ s t a t e <= IDLE ;

e l s e
r e a d e r _ s t a t e <= END_FRAME_WAIT_DDR_WRITER;

i
i

“main” — 2017/1/11 — 15:05 — page 98 — #125 i
i

i
i

i
i

end i f ;

end case ;
end i f ;

end i f ;
end i f ;

end p r o c e s s ;

−−
−− Frame b u f f e r RAM w r i t e r p r o c e s s
−−
WRITER : p r o c e s s (c l o c k)
begin

i f (r i s i n g _ e d g e (c l o c k)) then

i f (r e s e t = ’ 1 ’) then
−−e m p t y _ c o u n t e r _ w r i t e r <= (o t h e r s => ’ 0 ’) ;
word_addr <= (o t h e r s => ’ 0 ’) ;
cb_wradd <= (o t h e r s => ’ 0 ’) ;
cb_wrreq <= ’ 0 ’ ;
cb_wrda t a <= (o t h e r s => ’ 0 ’) ;
d d r _ w r _ s t a r t <= ’ 0 ’ ;
w r i t e r _ s t a t e <= IDLE ;
cb_wrby teena <= (o t h e r s => ’ 0 ’) ;
s l o t _ t i m e s t a m p _ 0 <= (o t h e r s => ’ 0 ’) ;
s l o t _ t i m e s t a m p _ 1 <= (o t h e r s => ’ 0 ’) ;
bank <= ’ 0 ’ ;
done <= ’ 0 ’ ;
w r i t e r _ a l i v e <= ’ 0 ’ ;
l o g i t _ w r <= ’ 0 ’ ;
f o r i in 0 to LOG_MAXWORDS−1 loop

logd_wr (i) <= (o t h e r s => ’ 0 ’) ;
end loop ;
−−w r i t e r _ r e a d y <= ’ 0 ’ ;
w o r d _ a d d r e s s _ i n t <= (o t h e r s => (o t h e r s => ’ 0 ’)) ;
e r r o r _ s t a t e <= ’ 0 ’ ;
e r r o r _ o v e r f l o w <= ’ 0 ’ ;
f r a m e _ e r r o r _ o v e r f l o w <= ’ 0 ’ ;
e r r o r _ d a t a m a t c h <= ’ 0 ’ ;
f r a m e _ e r r o r _ d a t a m a t c h <= ’ 0 ’ ;
e r r o r _ b a d w o r d <= ’ 0 ’ ;
f r a m e _ e r r o r _ b a d w o r d <= ’ 0 ’ ;
c o m p r e s s o r _ t i m e s t a m p <= (o t h e r s => ’ 0 ’) ;
c o m p r e s s o r _ d a t a _ c o u n t e r <= (o t h e r s => ’ 0 ’) ;
c o m p r e s s o r _ c o u n t e r _ e r r o r <= ’ 0 ’ ;
p r i m _ f i f o _ w r e q _ i n t <= ’ 0 ’ ;
p r i m _ f i f o _ w d a t a <= (o t h e r s => ’ 0 ’) ;
p r i m i t i v e _ f i f o _ e r r o r <= ’ 0 ’ ;

e l s i f (r e s e t _ e r r o r = ’ 1 ’) then
l o g i t _ w r <= ’ 0 ’ ;
e r r o r _ s t a t e <= ’ 0 ’ ;
e r r o r _ o v e r f l o w <= ’ 0 ’ ;
f r a m e _ e r r o r _ o v e r f l o w <= ’ 0 ’ ;
e r r o r _ d a t a m a t c h <= ’ 0 ’ ;
f r a m e _ e r r o r _ d a t a m a t c h <= ’ 0 ’ ;
e r r o r _ b a d w o r d <= ’ 0 ’ ;
f r a m e _ e r r o r _ b a d w o r d <= ’ 0 ’ ;
p r i m i t i v e _ f i f o _ e r r o r <= ’ 0 ’ ;

e l s i f (f r e e z e = ’ 1 ’) then
l o g i t _ w r <= ’ 0 ’ ;
cb_wrreq <= ’ 0 ’ ;
d d r _ w r _ s t a r t <= ’ 0 ’ ;

e l s e
l o g i t _ w r <= ’ 0 ’ ;

i
i

“main” — 2017/1/11 — 15:05 — page 99 — #126 i
i

i
i

i
i

w r i t e r _ a l i v e <= e n a b l e ;

done <= ’ 1 ’ ; −− To be changed t o i n d i c a t e t h a t a l l i s f i n i s h e d a f t e r EOB . . .

i f (cb_wrreq = ’ 1 ’) then
c o m p r e s s o r _ d a t a _ c o u n t e r <= c o m p r e s s o r _ d a t a _ c o u n t e r + ’ 1 ’ ;

end i f ;

i f (d d r _ w r _ s t a r t = ’ 1 ’) then
i f (c o m p r e s s o r _ d a t a _ c o u n t e r = o r g a n i z e r _ d a t a _ c o u n t e r) then

c o m p r e s s o r _ c o u n t e r _ e r r o r <= c o m p r e s s o r _ c o u n t e r _ e r r o r ;
e l s e
−− Counter mismatch
c o m p r e s s o r _ c o u n t e r _ e r r o r <= ’ 1 ’ ;
i f (c o m p r e s s o r _ c o u n t e r _ e r r o r = ’0 ’ and wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATACMP_CNTERR;
logd_wr (1) <= c o m p r e s s o r _ d a t a _ c o u n t e r ;
logd_wr (2) <= o r g a n i z e r _ d a t a _ c o u n t e r ;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (3 , 3) ;
l o g i t _ w r <= ’ 1 ’ ;

end i f ;
end i f ;

end i f ;

−− P r i m i t i v e g e n e r a t o r FIFO f u l l
i f (p r i m _ f i f o _ f u l l = ’1 ’ and p r i m _ f i f o _ e n a b l e _ i n = ’ 1 ’) then

p r i m i t i v e _ f i f o _ e r r o r <= ’ 1 ’ ;
i f (p r i m i t i v e _ f i f o _ e r r o r = ’0 ’ and wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATACMP_PRIFIFO ;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (1 , 3) ;
l o g i t _ w r <= ’ 1 ’ ;

end i f ;
end i f ;

i f (e n a b l e = ’ 1 ’) then
cb_wrreq <= ’ 0 ’ ;
d d r _ w r _ s t a r t <= ’ 0 ’ ;
p r i m _ f i f o _ w r e q _ i n t <= ’ 0 ’ ;
cb_wrby teena <= (o t h e r s => ’ 0 ’) ; −−i m p o r t a n t e per a z z e r a r e g l i a l t r i b i t

r i s p e t t o a q u e l l i s e l e z i o n a t i s u l momento

case w r i t e r _ s t a t e i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when IDLE =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− R e s e t f rame e r r o r f l a g s
f r a m e _ e r r o r _ o v e r f l o w <= ’ 0 ’ ;
f r a m e _ e r r o r _ d a t a m a t c h <= ’ 0 ’ ;
f r a m e _ e r r o r _ b a d w o r d <= ’ 0 ’ ;
−−w r i t e r _ r e a d y <= ’ 0 ’ ;
−−e m p t y _ c o u n t e r _ w r i t e r <= (o t h e r s => ’ 0 ’) ;
w o r d _ a d d r e s s _ i n t <= (o t h e r s => (o t h e r s => ’ 0 ’)) ;
word_addr <= (o t h e r s => ’ 0 ’) ;
d d r _ w r _ s t a r t <= ’ 0 ’ ;
c o m p r e s s o r _ d a t a _ c o u n t e r <= (o t h e r s => ’ 0 ’) ;
p r i m _ f i f o _ w d a t a <= (o t h e r s => ’ 0 ’) ;

i f (s t a r t _ w r i t e r 1 = ’ 1 ’) then
c o m p r e s s o r _ t i m e s t a m p <= o r g _ s l o t _ t i m e s t a m p ;
i f (bank = ’ 0 ’) then

s l o t _ t i m e s t a m p _ 0 <= o r g _ s l o t _ t i m e s t a m p ;
e l s e

s l o t _ t i m e s t a m p _ 1 <= o r g _ s l o t _ t i m e s t a m p ;
end i f ;
i f (t d c _ w a r n i n g _ d a t a = ’ 0 ’) then

case w r i t e _ s h i f t 1 i s
when " 11 " =>

i
i

“main” — 2017/1/11 — 15:05 — page 100 — #127 i
i

i
i

i
i

p r i m _ f i f o _ w d a t a <= TDC_FRAMETIME & o r g _ s l o t _ t i m e s t a m p (31 downto 4) ;
p r i m _ f i f o _ w r e q _ i n t <= ’ 1 ’ ;
w r i t e r _ s t a t e <= WRITE_EMPTY;

when " 01 " =>
w r i t e r _ s t a t e <= WRITE_DATA;
p r i m _ f i f o _ w d a t a <= TDC_FRAMETIME & o r g _ s l o t _ t i m e s t a m p (31 downto 4) ;
p r i m _ f i f o _ w r e q _ i n t <= ’ 1 ’ ;

when " 10 " =>
w r i t e r _ s t a t e <= LAST_DATA;
p r i m _ f i f o _ w d a t a <= TDC_FRAMETIME & o r g _ s l o t _ t i m e s t a m p (31 downto 4) ;
p r i m _ f i f o _ w r e q _ i n t <= ’ 1 ’ ;

when o t h e r s =>
w r i t e r _ s t a t e <= IDLE ;

end case ;
e l s e

w r i t e r _ s t a t e <= WRITE_EMPTY;
end i f ;

e l s e
w r i t e r _ s t a t e <= IDLE ;

end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when WRITE_EMPTY =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− w o r d _ a d d r e s s _ i n t <= (o t h e r s => (o t h e r s => ’ 0 ’)) ;
w r i t e r _ s t a t e <= END_FRAME_WAIT_DDR_WRITER;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when WRITE_DATA =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (word_addr = X" 1000 ") then

e r r o r _ o v e r f l o w <= ’ 1 ’ ;
f r a m e _ e r r o r _ o v e r f l o w <= ’ 1 ’ ;
i f (wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATACMP_OVERFLOW;
logd_wr (1) <= X" 000000 " & t i m e _ w i n d o w _ s h i f t 2 ;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (2 , 3) ;
l o g i t _ w r <= ’ 1 ’ ;

end i f ;
f o r i in 0 to 15 loop

f o r j in 0 to 15 loop
i f ((i = c o n v _ i n t e g e r (t i m e _ w i n d o w _ s h i f t 2 (7 downto 4)) and
j >= c o n v _ i n t e g e r (t i m e _ w i n d o w _ s h i f t 2 (3 downto 0))) or
i > c o n v _ i n t e g e r (t i m e _ w i n d o w _ s h i f t 2 (7 downto 4))) then
w o r d _ a d d r e s s _ i n t (i) (255−(j ∗16) downto 240−(j ∗16)) <= X" 1000 " ;

end i f ;
end loop ;

end loop ;
w r i t e r _ s t a t e <= END_FRAME_WAIT_DDR_WRITER;

e l s e
i f (f b _ r d d a t a (31 downto 28) = TDC_LEADING or f b _ r d d a t a (31 downto 28) =

TDC_TRAILING) then
word_addr <= word_addr + X" 1 " ;
−−cb_wradd <= window_addr + c o n v _ s t d _ l o g i c _ v e c t o r (c o n v _ i n t e g e r (

w o r d _ w r i t t e n) / 8 , 8) ;
−− cb_wradd <= (word_addr + X " 1 ") (11 downto 3) ;
−− i f (word_addr (2 downto 0) = " 1 1 1 ") t h e n
−− cb_wradd <= word_addr (11 downto 3) + X " 1 " ;
−− e l s e
cb_wradd <= word_addr (11 downto 3) ;
−− end i f ;
cb_wrda t a <= f b _ r d d a t a&f b _ r d d a t a&f b _ r d d a t a&f b _ r d d a t a&f b _ r d d a t a&f b _ r d d a t a

&f b _ r d d a t a&f b _ r d d a t a ; −− b y t e e n a w r i t e s j u s t one word i n t h e r i g h t
p l a c e

cb_wrreq <= ’ 1 ’ ;

case c o n v _ i n t e g e r (word_addr (2 downto 0)) i s
when 0 => cb_wrby teena (31 downto 28) <= X"F" ;

i
i

“main” — 2017/1/11 — 15:05 — page 101 — #128 i
i

i
i

i
i

when 1 => cb_wrby teena (27 downto 24) <= X"F" ;
when 2 => cb_wrby teena (23 downto 20) <= X"F" ;
when 3 => cb_wrby teena (19 downto 16) <= X"F" ;
when 4 => cb_wrby teena (15 downto 12) <= X"F" ;
when 5 => cb_wrby teena (11 downto 8) <= X"F" ;
when 6 => cb_wrby teena (7 downto 4) <= X"F" ;
when 7 => cb_wrby teena (3 downto 0) <= X"F" ;
when o t h e r s => cb_wrby teena <= (o t h e r s => ’ 0 ’) ;
end case ;

i f (t d c _ w a r n i n g _ p r i m = ’ 0 ’) then
p r i m _ f i f o _ w d a t a <= f b _ r d d a t a ;
p r i m _ f i f o _ w r e q _ i n t <= ’ 1 ’ ;

end i f ;

−− Check f o r word n o t b e l o n g i n g t o c u r r e n t t i m e s l o t
i f (f b _ r d d a t a (15 downto 8) /= t i m e _ w i n d o w _ s h i f t 2 and f b _ r d d a t a (18 downto

16) /= c o m p r e s s o r _ t i m e s t a m p (10 downto 8)) then
e r r o r _ d a t a m a t c h <= ’ 1 ’ ;
f r a m e _ e r r o r _ d a t a m a t c h <= ’ 1 ’ ;
i f (wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATACMP_MISMATCH;
logd_wr (1) <= f b _ r d d a t a ;
logd_wr (2) <= X" 000000 " & t i m e _ w i n d o w _ s h i f t 2 ;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (3 , 3) ;
l o g i t _ w r <= ’ 1 ’ ;

end i f ;
end i f ;

e l s e
−− Unknown word
e r r o r _ b a d w o r d <= ’ 1 ’ ;
f r a m e _ e r r o r _ b a d w o r d <= ’ 1 ’ ;
i f (wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATACMP_BADWORD;
logd_wr (1) <= f b _ r d d a t a ;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (2 , 3) ;
l o g i t _ w r <= ’ 1 ’ ;

end i f ;
end i f ;

i f (w r i t e _ s h i f t 1 = " 01 ") then
w r i t e r _ s t a t e <= WRITE_DATA;

e l s i f (w r i t e _ s h i f t 1 = " 10 ") then
w r i t e r _ s t a t e <= LAST_DATA;

e l s e
w r i t e r _ s t a t e <= ERR_STATE ;

end i f ;
end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when LAST_DATA =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (word_addr = X" 1000 ") then

e r r o r _ o v e r f l o w <= ’ 1 ’ ;
f r a m e _ e r r o r _ o v e r f l o w <= ’ 1 ’ ;
i f (wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATACMP_OVERFLOW;
logd_wr (1) <= X" 000000 " & t i m e _ w i n d o w _ s h i f t 2 ;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (2 , 3) ;
l o g i t _ w r <= ’ 1 ’ ;

end i f ;
f o r i in 0 to 15 loop

f o r j in 0 to 15 loop
i f ((i = c o n v _ i n t e g e r (t i m e _ w i n d o w _ s h i f t 2 (7 downto 4)) and
j >= c o n v _ i n t e g e r (t i m e _ w i n d o w _ s h i f t 2 (3 downto 0))) or
i > c o n v _ i n t e g e r (t i m e _ w i n d o w _ s h i f t 2 (7 downto 4))) then
w o r d _ a d d r e s s _ i n t (i) (255−(j ∗16) downto 240−(j ∗16)) <= X" 1000 " ;

i
i

“main” — 2017/1/11 — 15:05 — page 102 — #129 i
i

i
i

i
i

end i f ;
end loop ;

end loop ;
w r i t e r _ s t a t e <= END_FRAME_WAIT_DDR_WRITER;

e l s e

word_addr <= word_addr + X" 1 " ;
−−cb_wradd <= window_addr + c o n v _ s t d _ l o g i c _ v e c t o r (c o n v _ i n t e g e r (w o r d _ w r i t t e n)

/ 8 , 8) ;
−− cb_wradd <= (word_addr + X " 1 ") (11 downto 3) ;
−− i f (word_addr (2 downto 0) = " 1 1 1 ") t h e n
−− cb_wradd <= word_addr (11 downto 3) + X " 1 " ;
−− e l s e
cb_wradd <= word_addr (11 downto 3) ;
−− end i f ;
cb_wrda t a <= f b _ r d d a t a&f b _ r d d a t a&f b _ r d d a t a&f b _ r d d a t a&f b _ r d d a t a&f b _ r d d a t a&

f b _ r d d a t a&f b _ r d d a t a ; −− b y t e e n a w r i t e s j u s t one word i n t h e r i g h t p l a c e
cb_wrreq <= ’ 1 ’ ;

case c o n v _ i n t e g e r (word_addr (2 downto 0)) i s
when 0 => cb_wrby teena (31 downto 28) <= X"F" ;
when 1 => cb_wrby teena (27 downto 24) <= X"F" ;
when 2 => cb_wrby teena (23 downto 20) <= X"F" ;
when 3 => cb_wrby teena (19 downto 16) <= X"F" ;
when 4 => cb_wrby teena (15 downto 12) <= X"F" ;
when 5 => cb_wrby teena (11 downto 8) <= X"F" ;
when 6 => cb_wrby teena (7 downto 4) <= X"F" ;
when 7 => cb_wrby teena (3 downto 0) <= X"F" ;
when o t h e r s => cb_wrby teena <= (o t h e r s => ’ 0 ’) ;
end case ;

i f (t d c _ w a r n i n g _ p r i m = ’ 0 ’) then
p r i m _ f i f o _ w d a t a <= f b _ r d d a t a ;
p r i m _ f i f o _ w r e q _ i n t <= ’ 1 ’ ;

end i f ;

−− Check f o r word n o t b e l o n g i n g t o c u r r e n t t i m e s l o t
i f (f b _ r d d a t a (15 downto 8) /= t i m e _ w i n d o w _ s h i f t 2 and f b _ r d d a t a (18 downto 16)

/= c o m p r e s s o r _ t i m e s t a m p (10 downto 8)) then
e r r o r _ d a t a m a t c h <= ’ 1 ’ ;
f r a m e _ e r r o r _ d a t a m a t c h <= ’ 1 ’ ;
i f (wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATACMP_MISMATCH;
logd_wr (1) <= f b _ r d d a t a ;
logd_wr (2) <= X" 000000 " & t i m e _ w i n d o w _ s h i f t 2 ;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (3 , 3) ;
l o g i t _ w r <= ’ 1 ’ ;

end i f ;
end i f ;

f o r i in 0 to 15 loop
f o r j in 0 to 15 loop

i f ((i = c o n v _ i n t e g e r (t i m e _ w i n d o w _ s h i f t 2 (7 downto 4)) and
j >= c o n v _ i n t e g e r (t i m e _ w i n d o w _ s h i f t 2 (3 downto 0))) or
i > c o n v _ i n t e g e r (t i m e _ w i n d o w _ s h i f t 2 (7 downto 4))) then
w o r d _ a d d r e s s _ i n t (i) (255−(j ∗16) downto 240−(j ∗16)) <= " 000 " & word_addr

(12 downto 0) + X" 1 " ;
end i f ;

end loop ;
end loop ;
i f (w r i t e _ s h i f t 1 = " 01 ") then

w r i t e r _ s t a t e <= WRITE_DATA;
e l s i f (w r i t e _ s h i f t 1 = " 10 ") then

w r i t e r _ s t a t e <= LAST_DATA;
e l s i f (w r i t e _ s h i f t 1 = " 00 ") then

w r i t e r _ s t a t e <= END_FRAME_WAIT_DDR_WRITER;
e l s e

w r i t e r _ s t a t e <= ERR_STATE ;

i
i

“main” — 2017/1/11 — 15:05 — page 103 — #130 i
i

i
i

i
i

end i f ;
end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when END_FRAME_WAIT_DDR_WRITER =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (dd r_wr_ ready = ’ 1 ’) then

p r i m _ f i f o _ w d a t a <= TDC_FRAMECOUNT & c o m p r e s s o r _ d a t a _ c o u n t e r (31 downto 4) ;
p r i m _ f i f o _ w r e q _ i n t <= ’ 1 ’ ;
d d r _ w r _ s t a r t <= ’ 1 ’ ;
−−w r i t e r _ r e a d y <= ’ 1 ’ ;
bank <= not bank ;
da t acmp_f rame_ t ime <= c o m p r e s s o r _ t i m e s t a m p ;
da tacmp_frame_words <= " 000 " & word_addr ;
w r i t e r _ s t a t e <= IDLE ;

e l s e
w r i t e r _ s t a t e <= END_FRAME_WAIT_DDR_WRITER;

end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when ERR_STATE =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
w r i t e r _ a l i v e <= ’ 0 ’ ;
e r r o r _ s t a t e <= ’ 1 ’ ;
i f (wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATACMP_STATE;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (1 , 3) ;
l o g i t _ w r <= ’ 1 ’ ;

end i f ;

end case ;
end i f ;

end i f ;
end i f ;

end p r o c e s s ;

−−
−− Compressed da ta b u f f e r s i n s t a n c e s
−−
CB0 : e n t i t y common_mgwz_generated . ram_256x512
port map (

a d d r e s s => c b 0 _ a d d r e s s ,
b y t e e n a => cb0_wrbyteena ,
c l o c k => c lock ,
d a t a => cb_wrda ta ,
wren => cb0_wrreq ,
q => c b 0 _ r d d a t a _ i n t

) ;

CB1 : e n t i t y common_mgwz_generated . ram_256x512
port map (

a d d r e s s => c b 1 _ a d d r e s s ,
b y t e e n a => cb1_wrbyteena ,
c l o c k => c lock ,
d a t a => cb_wrda ta ,
wren => cb1_wrreq ,
q => c b 1 _ r d d a t a _ i n t

) ;

−−
−− Mux and demux f o r f rame b u f f e r s and DDR w r i t e r
−−
COUNTER_PROC : p r o c e s s (c l o c k)
begin

i f (r i s i n g _ e d g e (c l o c k)) then
i f (bank = ’ 1 ’) then

emptyframe_0 <= emptyframe_0 ;

i
i

“main” — 2017/1/11 — 15:05 — page 104 — #131 i
i

i
i

i
i

emptyframe_1 <= emptyframe ;
word_add re s s0 <= word_add re s s0 ;
word_add re s s1 <= w o r d _ a d d r e s s _ i n t ;

e l s e
emptyframe_0 <= emptyframe ;
emptyframe_1 <= emptyframe_1 ;
word_add re s s0 <= w o r d _ a d d r e s s _ i n t ;
word_add re s s1 <= word_add re s s1 ;

end i f ;
end i f ;

end p r o c e s s ;

d d r _ s l o t _ t i m e s t a m p <= s l o t _ t i m e s t a m p _ 0 when bank = ’1 ’ e l s e s l o t _ t i m e s t a m p _ 1 ;
c b 0 _ a d d r e s s <= cb_wradd when bank = ’0 ’ e l s e cb_rdadd ;
c b 1 _ a d d r e s s <= cb_wradd when bank = ’1 ’ e l s e cb_rdadd ;
c b _ r d d a t a <= c b 0 _ r d d a t a _ i n t when bank = ’1 ’ e l s e c b 1 _ r d d a t a _ i n t ;
cb0_wrby teena <= cb_wrby teena when bank = ’0 ’ e l s e (o t h e r s => ’ 0 ’) ;
cb1_wrby teena <= cb_wrby teena when bank = ’1 ’ e l s e (o t h e r s => ’ 0 ’) ;
cb0_wrreq <= cb_wrreq when bank = ’0 ’ e l s e ’ 0 ’ ;
cb1_wrreq <= cb_wrreq when bank = ’1 ’ e l s e ’ 0 ’ ;
−− empty f rame_0 <= empty f rame when bank = ’0 ’ e l s e empty f rame_0 ;
−− empty f rame_1 <= empty f rame when bank = ’1 ’ e l s e empty f rame_1 ;
ddr_wr_emptyf rame <= emptyframe_0 when bank = ’1 ’ e l s e emptyframe_1 ;
w o r d _ a d d r e s s <= word_add re s s0 when bank = ’1 ’ e l s e word_add re s s1 ;
−− word_address0 <= w o r d _ a d d r e s s _ i n t when bank = ’0 ’ e l s e word_address0 ;
−− word_address1 <= w o r d _ a d d r e s s _ i n t when bank = ’1 ’ e l s e word_address1 ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PROC_LATCH : p r o c e s s (c l o c k)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

i f (r i s i n g _ e d g e (c l o c k)) then
i f (r e s e t = ’ 1 ’) then

p r o c e s s i n g <= ’ 0 ’ ;
w a i t i n g <= ’ 0 ’ ;

e l s e
i f (d d r _ w r _ s t a r t = ’ 1 ’) then −− d d r _ w r _ s t a r t i s a s s e r t e d f o r 1 c y c l e o n l y

p r o c e s s i n g <= ’ 1 ’ ;
end i f ;
i f (p r o c e s s i n g = ’1 ’ and w a i t i n g = ’0 ’ and ddr_wr_ ready = ’ 0 ’) then

w a i t i n g <= ’ 1 ’ ;
end i f ;
i f (w a i t i n g = ’1 ’ and ddr_wr_ ready = ’ 1 ’) then

p r o c e s s i n g <= ’ 0 ’ ;
w a i t i n g <= ’ 0 ’ ;

end i f ;
end i f ;

end i f ;
end p r o c e s s ;

−−−−−−−−−−−−−−−−−−−−−−−−−−
PROC_CNT : p r o c e s s (c l o c k)
−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

i f (r i s i n g _ e d g e (c l o c k)) then
i f (r e s e t = ’ 1 ’) then

p r o c e s s i n g _ p r e v <= ’ 0 ’ ;
p r o c _ c u r <= (o t h e r s => ’ 0 ’) ;
p roc_ temp <= (o t h e r s => ’ 0 ’) ;
p r o c _ t o t <= (o t h e r s => ’ 0 ’) ;
proc_max <= (o t h e r s => ’ 0 ’) ;
proc_num <= (o t h e r s => ’ 0 ’) ;
p r o c _ o v f <= ’ 0 ’ ;

e l s i f (r e s e t _ e r r o r = ’ 1 ’) then
p r o c _ o v f <= ’ 0 ’ ;

e l s i f (f r e e z e = ’ 0 ’) then

i
i

“main” — 2017/1/11 — 15:05 — page 105 — #132 i
i

i
i

i
i

p r o c _ c u r <= proc_temp (17 downto 2) ;
p r o c e s s i n g _ p r e v <= p r o c e s s i n g ;
i f (p r o c e s s i n g = ’ 1 ’) then

i f (p r o c e s s i n g _ p r e v = ’ 0 ’) then
proc_temp <= " 00 " & X" 0001 " ;

e l s i f (p r o c _ c u r = X" FFFF " & " 11 ") then
proc_max <= X" FFFF " ;
p r o c _ o v f <= ’ 1 ’ ;

e l s e
proc_temp <= proc_temp +1;

end i f ;
e l s i f (p r o c e s s i n g _ p r e v = ’ 1 ’) then

i f (p r o c _ c u r > proc_max) then
proc_max <= p r o c _ c u r ;

end i f ;
i f (p r o c _ t o t /= X" FFFFFFFF ") then

p r o c _ t o t <= p r o c _ t o t + p r o c _ c u r ;
e l s e

p r o c _ o v f <= ’ 1 ’ ;
end i f ;
i f (proc_num /= X" FFFFFFFF ") then

proc_num <= proc_num +1;
e l s e

p r o c _ o v f <= ’ 1 ’ ;
end i f ;

end i f ;
end i f ;

end i f ;
end p r o c e s s ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LOGMUX : p r o c e s s (c l o c k)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

i f (r i s i n g _ e d g e (c l o c k)) then
i f (r e s e t = ’ 1 ’) then

l ogd <= l o g d _ r d ;
l ogn <= l o g n _ r d ;
l o g i t <= ’ 0 ’ ;
rd bu sy <= ’ 0 ’ ;
wrbusy <= ’ 0 ’ ;

e l s i f (r d bu sy = ’ 1 ’) then
i f (l o g i t _ r d = ’0 ’ and l o g b u s y = ’ 0 ’) then

l o g i t <= ’ 0 ’ ;
rd bu sy <= ’ 0 ’ ;

end i f ;
e l s i f (wrbusy = ’ 1 ’) then

i f (l o g i t _ w r = ’0 ’ and l o g b u s y = ’ 0 ’) then
l o g i t <= ’ 0 ’ ;
wrbusy <= ’ 0 ’ ;

end i f ;
e l s i f (l o g i t _ r d = ’ 1 ’) then

l ogd <= l o g d _ r d ;
l ogn <= l o g n _ r d ;
l o g i t <= ’ 1 ’ ;
rd bu sy <= ’ 1 ’ ;

e l s i f (l o g i t _ w r = ’ 1 ’) then
l ogd <= logd_wr ;
l ogn <= logn_wr ;
l o g i t <= ’ 1 ’ ;
wrbusy <= ’ 1 ’ ;

e l s e
l o g i t <= ’ 0 ’ ;
rd bu sy <= ’ 0 ’ ;
wrbusy <= ’ 0 ’ ;

end i f ;
end i f ;

end p r o c e s s ;

i
i

“main” — 2017/1/11 — 15:05 — page 106 — #133 i
i

i
i

i
i

−−−
LOG_INT : e n t i t y common_ te l62_ l ib . l o g g e r _ i n t e r f a c e
−−−
port map (

c l k => c lock ,
r e s e t => r e s e t ,
e n a b l e => l o g _ p e r m i t ,
l ogd => logd ,
l ogn => logn ,
l o g i t => l o g i t ,
l o g b u s y => logbusy ,
l o g _ d a t a => l o g _ d a t a ,
l o g _ v a l i d => l o g _ v a l i d ,
log_more => log_more ,
l o g _ a c k => l o g _ a c k

) ;

end a r c h i t e c t u r e s t d ;

−−
−− VHDL A r c h i t e c t u r e common_pp_lib . p p _ d a t a _ o r g a n i z e r _ v 3 . s t d
−−
−− Crea ted :
−− by − E . P e d r e s c h i and J . P i n z i n o (KAON02)
−− a t − 1 3 : 1 0 : 0 9 1 6 / 0 4 / 2 0 1 5
−−
−− u s i n g Mentor Graph ics HDL D e s i g n e r (TM) 2010 .3 (B u i l d 21)
−−
l i b r a r y a l t e r a ;
use a l t e r a . a l l ;
l i b r a r y a l t e r a _ m f ;
use a l t e r a _ m f . a l l ;
l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . s t d _ l o g i c _ a r i t h . a l l ;
use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

l i b r a r y common_TEL62_lib ;
use common_TEL62_lib . common_defs . a l l ;
use common_TEL62_lib . memory_map . a l l ;

l i b r a r y common_pp_lib ;
use common_pp_lib . a l l ;

l i b r a r y common_mgwz_generated ;
use common_mgwz_generated . a l l ;

e n t i t y p p _ d a t a _ o r g a n i z e r _ v 3 i s
port (

c l o c k : in s t d _ l o g i c ;
r e s e t : in s t d _ l o g i c ;
r e s e t _ e r r o r : in s t d _ l o g i c ;
s o f t _ r e s e t : in s t d _ l o g i c ;
r e c o v e r y : in s t d _ l o g i c ;
e n a b l e : in s t d _ l o g i c ;
i n b u r s t : in s t d _ l o g i c ;
i n e n d b u r s t : in s t d _ l o g i c ;
f r e e z e : in s t d _ l o g i c ;
a l i v e : out s t d _ l o g i c ;
done : out s t d _ l o g i c ;
−− From o u t p u t b u f f e r
ob_empty : in s t d _ l o g i c ;
o b _ d a t a : in s t d _ l o g i c _ v e c t o r (31 downto 0) ;
o b _ r d r e q : i n o u t s t d _ l o g i c ;
−− From / t o compres sor (ex ddr w r i t e r)
s l o t _ t i m e s t a m p : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s l o t _ c o u n t e r s : out d a t a o r g _ c o u n t e r s _ a r r a y _ t y p e ;

i
i

“main” — 2017/1/11 — 15:05 — page 107 — #134 i
i

i
i

i
i

n _ n e x t _ s l o t : out d a t a o r g _ n e x t s l o t _ a r r a y _ t y p e ;
c o m p r e s s o r _ s t a r t : i n o u t s t d _ l o g i c ;
c o m p r e s s o r _ r e a d y : in s t d _ l o g i c ;
compres so r_empty f rame : i n o u t s t d _ l o g i c ;
f b _ r d a d d : in s t d _ l o g i c _ v e c t o r (14 downto 0) ;
f b _ r d d a t a : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
d a t a _ c o u n t e r : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
−− S i g n a l s t o / from l o g i c (b u i l d v e r s i o n r e g i s t e r)
c h i p _ a d d r e s s : in s t d _ l o g i c _ v e c t o r (2 downto 0) ;
−− To e r r o r h a n d l e r
t d c _ e r r o r _ 1 : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
t d c _ e r r o r _ 2 : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
t d c _ e r r o r _ 3 : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
t i m e s t a m p _ e r r : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
o r g _ e r r _ w o r d : out s t d _ l o g i c _ v e c t o r (31 downto 0) ;
t d c _ w a r n i n g : out s t d _ l o g i c ;
−− Error
e r r o r : out s t d _ l o g i c ;
−− Logging
l o g _ p e r m i t : in s t d _ l o g i c ;
l o g _ l e v e l : in s t d _ l o g i c _ v e c t o r (1 downto 0) ;
l o g _ d a t a : out s t d _ l o g i c _ v e c t o r (LOG_DATASIZE−1 downto 0) ;
l o g _ v a l i d : i n o u t s t d _ l o g i c ;
log_more : out s t d _ l o g i c ;
l o g _ a c k : in s t d _ l o g i c

) ;

end e n t i t y p p _ d a t a _ o r g a n i z e r _ v 3 ;

a r c h i t e c t u r e s t d of p p _ d a t a _ o r g a n i z e r _ v 3 i s

type STATE_TYPE i s (
IDLE ,
WAIT_DATA,
READ_TIMESTAMP,
READ_DATA,
WRITE_DATA,
END_FRAME_WAIT_DDR_WRITER,
ERROR_STATE

) ;
s i g n a l c u r r e n t _ s t a t e _ r e a d e r : STATE_TYPE ;
s i g n a l c u r r e n t _ s t a t e _ w r i t e r : STATE_TYPE ;
s i g n a l r e a d e r _ a l i v e : s t d _ l o g i c ;
s i g n a l w r i t e r _ a l i v e : s t d _ l o g i c ;
s i g n a l e r r o r _ b a d t s : s t d _ l o g i c ;
s i g n a l f r a m e _ e r r o r _ b a d t s : s t d _ l o g i c ;
s i g n a l e r r o r _ c n t o v f : s t d _ l o g i c ;
s i g n a l f r a m e _ e r r o r _ c n t o v f : s t d _ l o g i c ;
s i g n a l e r r o r _ c h k t d c : s t d _ l o g i c ;
s i g n a l f r a m e _ e r r o r _ c h k t d c : s t d _ l o g i c ;
s i g n a l f r a m e _ e r r o r : s t d _ l o g i c ;
s i g n a l o b _ e m p t y _ i n t : s t d _ l o g i c ;
s i g n a l o b _ r d r e q _ i n t : s t d _ l o g i c ;
s i g n a l o b _ r d r e q _ 1 : s t d _ l o g i c ;
s i g n a l o b _ r d r e q _ 2 : s t d _ l o g i c ;
s i g n a l o b _ d a t a _ r e g : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l c o u n t e r s _ r e g : s t d _ l o g i c _ v e c t o r (6 downto 0) ;
−−s i g n a l c o u n t e r s _ t e m p : s t d _ l o g i c _ v e c t o r (6 downto 0) ;
s i g n a l c o u n t e r s 0 : d a t a o r g _ c o u n t e r s _ a r r a y _ t y p e := (o t h e r s => (o t h e r s => ’ 0 ’)) ;
s i g n a l c o u n t e r s 1 : d a t a o r g _ c o u n t e r s _ a r r a y _ t y p e := (o t h e r s => (o t h e r s => ’ 0 ’)) ;
s i g n a l c o u n t e r s _ i n t : d a t a o r g _ c o u n t e r s _ a r r a y _ t y p e := (o t h e r s => (o t h e r s => ’ 0 ’)) ;
s i g n a l n e x t _ s l o t 0 : d a t a o r g _ n e x t s l o t _ a r r a y _ t y p e := (o t h e r s => (o t h e r s => ’ 0 ’)) ;
s i g n a l n e x t _ s l o t 1 : d a t a o r g _ n e x t s l o t _ a r r a y _ t y p e := (o t h e r s => (o t h e r s => ’ 0 ’)) ;
s i g n a l n e x t _ s l o t _ i n t : d a t a o r g _ n e x t s l o t _ a r r a y _ t y p e ;
−− s i g n a l e n a b l e _ n e x t : s t d _ l o g i c ;
−− s i g n a l r e s e t _ n e x t : s t d _ l o g i c ;
s i g n a l s l o t _ t i m e s t a m p _ 0 : s t d _ l o g i c _ v e c t o r (31 downto 0) := (o t h e r s => ’ 0 ’) ;
s i g n a l s l o t _ t i m e s t a m p _ 1 : s t d _ l o g i c _ v e c t o r (31 downto 0) := (o t h e r s => ’ 0 ’) ;

i
i

“main” — 2017/1/11 — 15:05 — page 108 — #135 i
i

i
i

i
i

s i g n a l d a t a _ p r o c e s s : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l d a t a _ p r o c e s s _ r e g : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l fb_wradd : s t d _ l o g i c _ v e c t o r (14 downto 0) ;
s i g n a l f b _ w r a d d _ i n t : s t d _ l o g i c _ v e c t o r (14 downto 0) ;
s i g n a l f b _ w r r e q : s t d _ l o g i c ;
s i g n a l fb0_wr req : s t d _ l o g i c ;
s i g n a l fb1_wr req : s t d _ l o g i c ;
s i g n a l f b _ w r d a t a : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l f b _ w r d a t a _ i n t : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l fb_bank : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l f b 0 _ a d d r e s s : s t d _ l o g i c _ v e c t o r (14 downto 0) ;
s i g n a l f b 1 _ a d d r e s s : s t d _ l o g i c _ v e c t o r (14 downto 0) ;
s i g n a l f b 0 a _ w r r e q : s t d _ l o g i c ;
s i g n a l fb0b_wr req : s t d _ l o g i c ;
s i g n a l f b 1 a _ w r r e q : s t d _ l o g i c ;
s i g n a l fb1b_wr req : s t d _ l o g i c ;
s i g n a l f b 0 a _ r d d a t a _ i n t : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l f b 0 b _ r d d a t a _ i n t : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l f b 1 a _ r d d a t a _ i n t : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l f b 1 b _ r d d a t a _ i n t : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l f b 0 _ r d d a t a _ i n t : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l f b 1 _ r d d a t a _ i n t : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l emptyframe : s t d _ l o g i c _ v e c t o r (1 downto 0) := " 11 " ;
s i g n a l r d _ w a i t : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l mem_error_temp1 : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l mem_error_temp2 : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l mem_error_temp3 : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l t d c _ w a r n i n g _ i n t : s t d _ l o g i c ;
s i g n a l f b _ w r i t e r _ r e a d y : s t d _ l o g i c ;
s i g n a l o b _ d a t a _ c o u n t e r : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l o b _ o t h e r w o r d _ c o u n t e r : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l o r g a n i z e r _ d a t a _ c o u n t e r : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l o r g _ c o u n t e r _ e r r o r : s t d _ l o g i c ;
s i g n a l o r g a n i z e r _ d a t a _ c o u n t e r _ 0 : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l o r g a n i z e r _ d a t a _ c o u n t e r _ 1 : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l p r e v i o u s _ s l o t : s t d _ l o g i c _ v e c t o r (8 downto 0) ;
−− s i g n a l e r r _ t e m p : s t d _ l o g i c ;
s i g n a l s h i f t 0 a : s t d _ l o g i c ;
s i g n a l s h i f t 0 b : s t d _ l o g i c ;
s i g n a l s h i f t 1 a : s t d _ l o g i c ;
s i g n a l s h i f t 1 b : s t d _ l o g i c ;
−− Logger i n t e r f a c e
s i g n a l b a d t s _ l o g : s t d _ l o g i c ;
s i g n a l c n t o v f _ l o g : s t d _ l o g i c ;
s i g n a l l ogd : LOGDATA_TYPE;
s i g n a l l ogn : s t d _ l o g i c _ v e c t o r (LOG2(LOG_MAXWORDS)−1 downto 0) ;
s i g n a l l o g i t : s t d _ l o g i c ;
s i g n a l l o g b u s y : s t d _ l o g i c ;
s i g n a l l o g d _ r d : LOGDATA_TYPE;
s i g n a l l o g n _ r d : s t d _ l o g i c _ v e c t o r (LOG2(LOG_MAXWORDS)−1 downto 0) ;
s i g n a l l o g i t _ r d : s t d _ l o g i c ;
s i g n a l logd_wr : LOGDATA_TYPE;
s i g n a l logn_wr : s t d _ l o g i c _ v e c t o r (LOG2(LOG_MAXWORDS)−1 downto 0) ;
s i g n a l l o g i t _ w r : s t d _ l o g i c ;
s i g n a l rdbusy , wrbusy : s t d _ l o g i c ;

begin

a l i v e <= r e a d e r _ a l i v e and w r i t e r _ a l i v e ;

−− E r r o r s
e r r o r <= e r r o r _ b a d t s or e r r o r _ c n t o v f or e r r o r _ c h k t d c or o r g _ c o u n t e r _ e r r o r ;
−− B i t s t o e r r o r da ta word
f r a m e _ e r r o r <= f r a m e _ e r r o r _ b a d t s or f r a m e _ e r r o r _ c h k t d c ;
o r g _ e r r _ w o r d <= X" 00 " & " 00 " & f r a m e _ e r r o r & f r a m e _ e r r o r _ c n t o v f & X" 00000 " ;

o b _ r d r e q <= o b _ r d r e q _ i n t and not ob_empty ;

i
i

“main” — 2017/1/11 — 15:05 — page 109 — #136 i
i

i
i

i
i

−−
−− Outpu t b u f f e r f i f o r e a d e r p r o c e s s
−−
OB_READER : p r o c e s s (c l o c k)
begin

i f (r i s i n g _ e d g e (c l o c k)) then

r e a d e r _ a l i v e <= e n a b l e ;

i f (r e s e t = ’ 1 ’) then
fb_bank <= ’ 0 ’ ;
e r r o r _ b a d t s <= ’ 0 ’ ;
f r a m e _ e r r o r _ b a d t s <= ’ 0 ’ ;
o b _ r d r e q _ i n t <= ’ 0 ’ ;
c u r r e n t _ s t a t e _ r e a d e r <= IDLE ;
d a t a _ p r o c e s s <= ’ 0 ’ ;
s l o t _ t i m e s t a m p _ 0 <= (o t h e r s => ’ 0 ’) ;
s l o t _ t i m e s t a m p _ 1 <= (o t h e r s => ’ 0 ’) ;
r d _ w a i t <= ’ 0 ’ ;
done <= ’ 0 ’ ;
t i m e s t a m p _ e r r <= (o t h e r s => ’ 0 ’) ;
r e a d e r _ a l i v e <= ’ 0 ’ ;
l o g i t _ r d <= ’ 0 ’ ;
f o r i in 0 to LOG_MAXWORDS−1 loop

l o g d _ r d (i) <= (o t h e r s => ’ 0 ’) ;
end loop ;
c o m p r e s s o r _ s t a r t <= ’ 0 ’ ;
o b _ d a t a _ c o u n t e r <= (o t h e r s => ’ 0 ’) ;
o b _ o t h e r w o r d _ c o u n t e r <= (o t h e r s => ’ 0 ’) ;

e l s i f (r e s e t _ e r r o r = ’ 1 ’) then
e r r o r _ b a d t s <= ’ 0 ’ ;
f r a m e _ e r r o r _ b a d t s <= ’ 0 ’ ;
l o g i t _ r d <= ’ 0 ’ ;

e l s i f (f r e e z e = ’ 0 ’) then
done <= ’ 1 ’ ; −− To be changed t o i n d i c a t e t h a t a l l i s f i n i s h e d a f t e r EOB . . .
l o g i t _ r d <= ’ 0 ’ ;
c o m p r e s s o r _ s t a r t <= ’ 0 ’ ;
i f (e n a b l e = ’ 1 ’) then

o b _ r d r e q _ i n t <= ’ 0 ’ ;
o b _ e m p t y _ i n t <= ob_empty ;
d a t a _ p r o c e s s <= ’ 0 ’ ;
c o m p r e s s o r _ s t a r t <= ’ 0 ’ ;

case c u r r e n t _ s t a t e _ r e a d e r i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when IDLE =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
o b _ o t h e r w o r d _ c o u n t e r <= (o t h e r s => ’ 0 ’) ;
i f (ob_empty = ’ 0 ’) then

o b _ r d r e q _ i n t <= ’ 1 ’ ;
i f (o b _ r d r e q _ i n t = ’ 1 ’) then

d a t a _ p r o c e s s <= ’ 1 ’ ;
c u r r e n t _ s t a t e _ r e a d e r <= READ_TIMESTAMP;

e l s e
c u r r e n t _ s t a t e _ r e a d e r <= IDLE ;

end i f ;
e l s e

c u r r e n t _ s t a t e _ r e a d e r <= IDLE ;
end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when READ_TIMESTAMP =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− R e s e t f rame e r r o r f l a g s

i
i

“main” — 2017/1/11 — 15:05 — page 110 — #137 i
i

i
i

i
i

f r a m e _ e r r o r _ b a d t s <= ’ 0 ’ ;
i f (o b _ d a t a (31 downto 28) = TDC_FRAMETIME) then

d a t a _ p r o c e s s <= ’ 1 ’ ;
t i m e s t a m p _ e r r <= o b _ d a t a (27 downto 0) & X" 0 " ;
o b _ o t h e r w o r d _ c o u n t e r <= X" 00000001 " ;
i f (fb_bank = ’ 0 ’) then

s l o t _ t i m e s t a m p _ 0 <= o b _ d a t a (27 downto 0) & X" 0 " ;
e l s e

s l o t _ t i m e s t a m p _ 1 <= o b _ d a t a (27 downto 0) & X" 0 " ;
end i f ;
i f (ob_empty = ’ 0 ’) then

o b _ r d r e q _ i n t <= ’ 1 ’ ;
end i f ;
c u r r e n t _ s t a t e _ r e a d e r <= READ_DATA;

e l s e
e r r o r _ b a d t s <= ’ 1 ’ ;
f r a m e _ e r r o r _ b a d t s <= ’ 1 ’ ;
i f (r d bu sy = ’ 0 ’) then

l o g d _ r d (0) <= LOGMSG_DATAORG_BADTS;
l o g d _ r d (1) <= o b _ d a t a ;
l o g n _ r d <= c o n v _ s t d _ l o g i c _ v e c t o r (2 , 3) ;
l o g i t _ r d <= ’ 1 ’ ;

end i f ;
c u r r e n t _ s t a t e _ r e a d e r <= ERROR_STATE ;

end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when READ_DATA =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (o b _ d a t a (31 downto 28) = X" 6 " and o b _ r d r e q _ 1 = ’ 1 ’) then

o b _ o t h e r w o r d _ c o u n t e r <= o b _ o t h e r w o r d _ c o u n t e r + X" 00000001 " ;
end i f ;

i f (ob_empty = ’ 0 ’) then
i f (o b _ d a t a (31 downto 28) = TDC_FRAMECOUNT) then

o b _ d a t a _ c o u n t e r <= X" 0 " & o b _ d a t a (27 downto 0) − o b _ o t h e r w o r d _ c o u n t e r ;
c u r r e n t _ s t a t e _ r e a d e r <= END_FRAME_WAIT_DDR_WRITER;
r d _ w a i t <= ’ 0 ’ ;

e l s e
d a t a _ p r o c e s s <= ’ 1 ’ ;
o b _ r d r e q _ i n t <= ’ 1 ’ ;
c u r r e n t _ s t a t e _ r e a d e r <= READ_DATA;

end i f ;
e l s e

d a t a _ p r o c e s s <= ’ 1 ’ ;
c u r r e n t _ s t a t e _ r e a d e r <= READ_DATA;

end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when END_FRAME_WAIT_DDR_WRITER =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (f b _ w r i t e r _ r e a d y = ’ 1 ’) then

fb_bank <= not fb_bank ;
t d c _ w a r n i n g <= t d c _ w a r n i n g _ i n t ;
c o m p r e s s o r _ s t a r t <= ’ 1 ’ ;
i f (o b _ r d r e q = ’0 ’ and o b _ d a t a (31 downto 28) /= TDC_FRAMETIME) then

c u r r e n t _ s t a t e _ r e a d e r <= IDLE ;
e l s e

d a t a _ p r o c e s s <= ’ 1 ’ ;
i f (ob_empty = ’ 0 ’) then

o b _ r d r e q _ i n t <= ’ 1 ’ ;
end i f ;
c u r r e n t _ s t a t e _ r e a d e r <= READ_TIMESTAMP;

end i f ;
e l s e

c u r r e n t _ s t a t e _ r e a d e r <= END_FRAME_WAIT_DDR_WRITER;
i f (o b _ e m p t y _ i n t = ’0 ’ and r d _ w a i t = ’0 ’ and o b _ d a t a (31 downto 28) /=

TDC_FRAMETIME) then
r d _ w a i t <= ’ 1 ’ ;

i
i

“main” — 2017/1/11 — 15:05 — page 111 — #138 i
i

i
i

i
i

o b _ r d r e q _ i n t <= ’ 1 ’ ;
end i f ;

end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when ERROR_STATE =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r e a d e r _ a l i v e <= ’ 0 ’ ;
c u r r e n t _ s t a t e _ r e a d e r <= ERROR_STATE ;
−− change . . .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when o t h e r s =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c u r r e n t _ s t a t e _ r e a d e r <= IDLE ;

end case ;

end i f ;
end i f ;

end i f ;
end p r o c e s s ;

−−
−− Frame b u f f e r RAM w r i t e r p r o c e s s
−−
FB_WRITER : p r o c e s s (c l o c k)
begin

i f (r i s i n g _ e d g e (c l o c k)) then

w r i t e r _ a l i v e <= e n a b l e ;

i f (r e s e t = ’ 1 ’) then
fb_wradd <= (o t h e r s => ’ 0 ’) ;
f b _ w r r e q <= ’ 0 ’ ;
f b _ w r d a t a <= (o t h e r s => ’ 0 ’) ;
c o u n t e r s _ i n t <= (o t h e r s => (o t h e r s => ’ 0 ’)) ;
c o u n t e r s _ r e g <= (o t h e r s => ’ 0 ’) ;

−− c o u n t e r s _ t e m p <= (o t h e r s => ’ 0 ’) ;
emptyframe <= " 11 " ;
c u r r e n t _ s t a t e _ w r i t e r <= IDLE ;
e r r o r _ c n t o v f <= ’ 0 ’ ;
f r a m e _ e r r o r _ c n t o v f <= ’ 0 ’ ;
e r r o r _ c h k t d c <= ’ 0 ’ ;
f r a m e _ e r r o r _ c h k t d c <= ’ 0 ’ ;
mem_error_temp1 <= (o t h e r s => ’ 0 ’) ;
mem_error_temp2 <= (o t h e r s => ’ 0 ’) ;
mem_error_temp3 <= (o t h e r s => ’ 0 ’) ;
t d c _ e r r o r _ 1 <= (o t h e r s => ’ 0 ’) ;
t d c _ e r r o r _ 2 <= (o t h e r s => ’ 0 ’) ;
t d c _ e r r o r _ 3 <= (o t h e r s => ’ 0 ’) ;
f b _ w r i t e r _ r e a d y <= ’ 0 ’ ;
o b _ d a t a _ r e g <= (o t h e r s => ’ 0 ’) ;
d a t a _ p r o c e s s _ r e g <= ’ 0 ’ ;
t d c _ w a r n i n g _ i n t <= ’ 0 ’ ;
−− e r r _ t e m p <= ’ 0 ’ ;
f o r i in 0 to 255 loop

n e x t _ s l o t _ i n t (i) <= " 100000000 " ;
end loop ;
l o g i t _ w r <= ’ 0 ’ ;
f o r i in 0 to LOG_MAXWORDS−1 loop

logd_wr (i) <= (o t h e r s => ’ 0 ’) ;
end loop ;
w r i t e r _ a l i v e <= ’ 0 ’ ;
o r g a n i z e r _ d a t a _ c o u n t e r <= (o t h e r s => ’ 0 ’) ;
o r g _ c o u n t e r _ e r r o r <= ’ 0 ’ ;
p r e v i o u s _ s l o t <= (o t h e r s => ’ 0 ’) ;

i
i

“main” — 2017/1/11 — 15:05 — page 112 — #139 i
i

i
i

i
i

e l s i f (r e s e t _ e r r o r = ’ 1 ’) then
e r r o r _ c n t o v f <= ’ 0 ’ ;
f r a m e _ e r r o r _ c n t o v f <= ’ 0 ’ ;
e r r o r _ c h k t d c <= ’ 0 ’ ;
f r a m e _ e r r o r _ c h k t d c <= ’ 0 ’ ;
l o g i t _ w r <= ’ 0 ’ ;

e l s i f (f r e e z e = ’ 1 ’) then
f b _ w r r e q <= ’ 0 ’ ;
l o g i t _ w r <= ’ 0 ’ ;

e l s e
l o g i t _ w r <= ’ 0 ’ ;
f b _ w r d a t a _ i n t <= f b _ w r d a t a ;
f b _ w r a d d _ i n t <= fb_wradd ;
o b _ r d r e q _ 1 <= o b _ r d r e q ;
o b _ r d r e q _ 2 <= o b _ r d r e q _ 1 ;
o b _ d a t a _ r e g <= o b _ d a t a ;
d a t a _ p r o c e s s _ r e g <= d a t a _ p r o c e s s ;

−− OLD
−− c o u n t e r s _ r e g <= c o u n t e r s _ i n t (c o n v _ i n t e g e r (ob_data (15 downto 8))) ;
−−
−− i f (ob_rdreq = ’1 ’ and (ob_data (31 downto 28) = TDC_LEADING or ob_data (31

downto 28) = TDC_TRAILING)) t h e n
−− i f (c o u n t e r s _ i n t (c o n v _ i n t e g e r (ob_data (15 downto 8))) = DDR_MAXWORDSPERSLOT

) t h e n
−− e r r o r _ c n t o v f <= ’ 1 ’ ;
−− f r a m e _ e r r o r _ c n t o v f <= ’ 1 ’ ;
−− i f (wrbusy = ’ 0 ’) t h e n
−− logd_wr (0) <= LOGMSG_DATAORG_CNTOVF;
−− −−logd_wr (1) <= ob_da ta_reg ;
−− logd_wr (1) <= x "000000" & ’0 ’ & c o u n t e r s _ t e m p ;
−− logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (2 , 3) ;
−− l o g i t _ w r <= ’ 1 ’ ;
−− end i f ;
−− e l s e
−− c o u n t e r s _ i n t (c o n v _ i n t e g e r (ob_data (15 downto 8))) <= c o u n t e r s _ i n t (

c o n v _ i n t e g e r (ob_data (15 downto 8))) + "0000001" ;
−− c o u n t e r s _ t e m p <= c o u n t e r s _ i n t (c o n v _ i n t e g e r (ob_data (15 downto 8))) +

"0000001" ;
−− end i f ;
−− end i f ;
−− NEW TRIAL

i f (o b _ r d r e q _ 1 = ’1 ’ and (o b _ d a t a (31 downto 28) = TDC_LEADING or o b _ d a t a (31
downto 28) = TDC_TRAILING)) then

i f (o b _ d a t a (15 downto 8) = p r e v i o u s _ s l o t (7 downto 0) and p r e v i o u s _ s l o t (8) =
’ 1 ’) then

i f (c o u n t e r s _ r e g /= DDR_MAXWORDSPERSLOT) then
c o u n t e r s _ r e g <= c o u n t e r s _ r e g + " 0000001 " ;

end i f ;
e l s e

c o u n t e r s _ r e g <= c o u n t e r s _ i n t (c o n v _ i n t e g e r (o b _ d a t a (15 downto 8))) ;
p r e v i o u s _ s l o t <= ’1 ’ & o b _ d a t a (15 downto 8) ;

end i f ;
end i f ;

i f (o b _ r d r e q _ 2 = ’1 ’ and (o b _ d a t a _ r e g (31 downto 28) = TDC_LEADING or
o b _ d a t a _ r e g (31 downto 28) = TDC_TRAILING)) then

i f (c o u n t e r s _ r e g = DDR_MAXWORDSPERSLOT) then
e r r o r _ c n t o v f <= ’ 1 ’ ;
f r a m e _ e r r o r _ c n t o v f <= ’ 1 ’ ;
i f (wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATAORG_CNTOVF;
−−logd_wr (1) <= ob_da ta_reg ;
logd_wr (1) <= x " 000000 " & ’0 ’ & c o u n t e r s _ r e g ;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (2 , 3) ;

i
i

“main” — 2017/1/11 — 15:05 — page 113 — #140 i
i

i
i

i
i

l o g i t _ w r <= ’ 1 ’ ;
end i f ;

e l s e
c o u n t e r s _ i n t (c o n v _ i n t e g e r (o b _ d a t a _ r e g (15 downto 8))) <= c o u n t e r s _ r e g + "

0000001 " ;
end i f ;

end i f ;

i f (f b _ w r r e q = ’ 1 ’) then
o r g a n i z e r _ d a t a _ c o u n t e r <= o r g a n i z e r _ d a t a _ c o u n t e r + ’ 1 ’ ;

end i f ;

i f (e n a b l e = ’ 1 ’) then
f b _ w r r e q <= ’ 0 ’ ;
−− ppmemfrerr_wreq <= ’ 1 ’ ;
−− e n a b l e _ n e x t <= ’ 0 ’ ;
−− r e s e t _ n e x t <= ’ 0 ’ ;

case c u r r e n t _ s t a t e _ w r i t e r i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when IDLE =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− R e s e t f rame e r r o r f l a g s
f r a m e _ e r r o r _ c n t o v f <= ’ 0 ’ ;
f r a m e _ e r r o r _ c h k t d c <= ’ 0 ’ ;
mem_error_temp1 <= (o t h e r s => ’ 0 ’) ;
mem_error_temp2 <= (o t h e r s => ’ 0 ’) ;
mem_error_temp3 <= (o t h e r s => ’ 0 ’) ;
c o u n t e r s _ i n t <= (o t h e r s => (o t h e r s => ’ 0 ’)) ;
o r g a n i z e r _ d a t a _ c o u n t e r <= (o t h e r s => ’ 0 ’) ;

−− c o u n t e r s _ t e m p <= (o t h e r s => ’ 0 ’) ;
c o u n t e r s _ r e g <= (o t h e r s => ’ 0 ’) ;
p r e v i o u s _ s l o t <= (o t h e r s => ’ 0 ’) ;
t d c _ w a r n i n g _ i n t <= ’ 0 ’ ;
i f (d a t a _ p r o c e s s = ’ 1 ’) then

c u r r e n t _ s t a t e _ w r i t e r <= WAIT_DATA;
e l s e

f b _ w r i t e r _ r e a d y <= ’ 1 ’ ;
c u r r e n t _ s t a t e _ w r i t e r <= IDLE ;

end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when WAIT_DATA =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r i in 0 to 255 loop

n e x t _ s l o t _ i n t (i) <= " 100000000 " ;
end loop ;
emptyframe (c o n v _ i n t e g e r (fb_bank)) <= ’ 1 ’ ;
f b _ w r i t e r _ r e a d y <= ’ 0 ’ ;
c u r r e n t _ s t a t e _ w r i t e r <= WRITE_DATA;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when WRITE_DATA =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (d a t a _ p r o c e s s _ r e g = ’ 1 ’) then

i f (o b _ r d r e q _ 2 = ’1 ’ and (o b _ d a t a _ r e g (31 downto 28) = TDC_LEADING or
o b _ d a t a _ r e g (31 downto 28) = TDC_TRAILING)) then

fb_wradd <= o b _ d a t a _ r e g (15 downto 8) & c o u n t e r s _ r e g ; −− A t i m e s l o t can
ho ld a t most DDR_MAXWORDSPERSLOT=128 words

−− F i r s t f rame b u f f e r

−− i f (c o u n t e r s _ r e g = DDR_MAXWORDSPERSLOT) t h e n
−− e r r o r _ c n t o v f <= ’ 1 ’ ;
−− f r a m e _ e r r o r _ c n t o v f <= ’ 1 ’ ;
−− i f (wrbusy = ’ 0 ’) t h e n
−− logd_wr (0) <= LOGMSG_DATAORG_CNTOVF;

i
i

“main” — 2017/1/11 — 15:05 — page 114 — #141 i
i

i
i

i
i

−− logd_wr (1) <= ob_da ta_reg ;
−− logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (2 , 3) ;
−− l o g i t _ w r <= ’ 1 ’ ;
−− end i f ;
−− e l s e
−− c o u n t e r s _ i n t (c o n v _ i n t e g e r (ob_da ta_reg (15 downto 8))) <=

c o u n t e r s _ r e g + "0000001" ;
−− end i f ;

i f (c o u n t e r s _ r e g /= DDR_MAXWORDSPERSLOT) then
f b _ w r d a t a <= o b _ d a t a _ r e g ;
f b _ w r r e q <= ’ 1 ’ ;
end i f ;

f o r i in 0 to 255 loop
i f (i < c o n v _ i n t e g e r (o b _ d a t a _ r e g (15 downto 8)) and n e x t _ s l o t _ i n t (i)

> ’0 ’ & o b _ d a t a _ r e g (15 downto 8)) then
n e x t _ s l o t _ i n t (i) <= ’0 ’ & o b _ d a t a _ r e g (15 downto 8) ;

end i f ;
end loop ;

i f (emptyframe (c o n v _ i n t e g e r (fb_bank)) = ’ 1 ’) then −− da l e v a r e , non
n e c e s s a r i o , l a s c i a r e s o l o l ’ o p e r a z i o n e d e n t r o l ’ i f

emptyframe (c o n v _ i n t e g e r (fb_bank)) <= ’ 0 ’ ;
end i f ;

e l s i f (o b _ r d r e q _ 2 = ’1 ’ and o b _ d a t a _ r e g (31 downto 28) = TDC_ERROR) then
i f (o b _ d a t a _ r e g (27 downto 26) /= c h i p _ a d d r e s s (1 downto 0)) then

e r r o r _ c h k t d c <= ’ 1 ’ ;
f r a m e _ e r r o r _ c h k t d c <= ’ 1 ’ ;
i f (wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATAORG_ERRWORD;
logd_wr (1) <= o b _ d a t a _ r e g ;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (2 , 3) ;
l o g i t _ w r <= ’ 1 ’ ;

end i f ;
end i f ;
i f (o b _ d a t a _ r e g (14 downto 0) = ZERO(14 downto 0)) then

i f (o b _ d a t a _ r e g (16 downto 15) /= X" 0 ") then
t d c _ w a r n i n g _ i n t <= ’ 1 ’ ;

end i f ;
i f (o b _ d a t a _ r e g (25 downto 24) = X" 3 ") then

mem_error_temp3 <= mem_error_temp3 or (ZERO(31 downto 26) &
o b _ d a t a _ r e g (16 downto 15) & ZERO(23 downto 0)) ;

e l s i f (o b _ d a t a _ r e g (25 downto 24) = X" 2 ") then
mem_error_temp3 <= mem_error_temp3 or (ZERO(31 downto 18) &

o b _ d a t a _ r e g (16 downto 15) & ZERO(15 downto 0)) ;
e l s i f (o b _ d a t a _ r e g (25 downto 24) = X" 1 ") then

mem_error_temp3 <= mem_error_temp3 or (ZERO(31 downto 10) &
o b _ d a t a _ r e g (16 downto 15) & ZERO(7 downto 0)) ;

e l s i f (o b _ d a t a _ r e g (25 downto 24) = X" 0 ") then
mem_error_temp3 <= mem_error_temp3 or (ZERO(31 downto 2) &

o b _ d a t a _ r e g (16 downto 15)) ;
end i f ;

e l s e
i f (o b _ d a t a _ r e g (25 downto 24) = X" 1 ") then

mem_error_temp1 <= mem_error_temp1 or (ZERO(31 downto 30) &
o b _ d a t a _ r e g (29 downto 15) & ZERO(14 downto 0)) ;

e l s i f (o b _ d a t a _ r e g (25 downto 24) = X" 0 ") then
mem_error_temp1 <= mem_error_temp1 or (ZERO(31 downto 15) &

o b _ d a t a _ r e g (14 downto 0)) ;
e l s i f (o b _ d a t a _ r e g (25 downto 24) = X" 3 ") then

mem_error_temp2 <= mem_error_temp2 or (ZERO(31 downto 30) &
o b _ d a t a _ r e g (29 downto 15) & ZERO(14 downto 0)) ;

e l s i f (o b _ d a t a _ r e g (25 downto 24) = X" 2 ") then
mem_error_temp2 <= mem_error_temp2 or (ZERO(31 downto 15) &

o b _ d a t a _ r e g (14 downto 0)) ;
end i f ;

end i f ;

i
i

“main” — 2017/1/11 — 15:05 — page 115 — #142 i
i

i
i

i
i

end i f ;
c u r r e n t _ s t a t e _ w r i t e r <= WRITE_DATA;

e l s e
t d c _ e r r o r _ 1 <= mem_error_temp1 ;
t d c _ e r r o r _ 2 <= mem_error_temp2 ;
t d c _ e r r o r _ 3 <= mem_error_temp3 ;
c u r r e n t _ s t a t e _ w r i t e r <= END_FRAME_WAIT_DDR_WRITER;
i f (o r g a n i z e r _ d a t a _ c o u n t e r = o b _ d a t a _ c o u n t e r) then

o r g _ c o u n t e r _ e r r o r <= o r g _ c o u n t e r _ e r r o r ;
e l s e

o r g _ c o u n t e r _ e r r o r <= ’ 1 ’ ;
i f (wrbusy = ’ 0 ’) then

logd_wr (0) <= LOGMSG_DATAORG_CNTERR;
logd_wr (1) <= o r g a n i z e r _ d a t a _ c o u n t e r ;
logd_wr (2) <= o b _ d a t a _ c o u n t e r ;
logn_wr <= c o n v _ s t d _ l o g i c _ v e c t o r (3 , 3) ;
l o g i t _ w r <= ’ 1 ’ ;

end i f ;
end i f ;

end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when END_FRAME_WAIT_DDR_WRITER =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (c o m p r e s s o r _ r e a d y = ’ 1 ’) then

f b _ w r i t e r _ r e a d y <= ’ 1 ’ ;
c u r r e n t _ s t a t e _ w r i t e r <= IDLE ;

e l s e
c u r r e n t _ s t a t e _ w r i t e r <= END_FRAME_WAIT_DDR_WRITER;

end i f ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when o t h e r s =>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c u r r e n t _ s t a t e _ w r i t e r <= IDLE ;

end case ;

end i f ;
end i f ;

end i f ;
end p r o c e s s ;

−−
−− Frame b u f f e r s
−−
FB0A : e n t i t y common_mgwz_generated . ram_16384x32
port map (

a d d r e s s => f b 0 _ a d d r e s s (13 downto 0) ,
c l o c k => c lock ,
d a t a => f b _ w r d a t a _ i n t ,
wren => fb0a_wrreq ,
q => f b 0 a _ r d d a t a _ i n t

) ;

FB0B : e n t i t y common_mgwz_generated . ram_16384x32
port map (

a d d r e s s => f b 0 _ a d d r e s s (13 downto 0) ,
c l o c k => c lock ,
d a t a => f b _ w r d a t a _ i n t ,
wren => fb0b_wrreq ,
q => f b 0 b _ r d d a t a _ i n t

) ;

FB1A : e n t i t y common_mgwz_generated . ram_16384x32
port map (

a d d r e s s => f b 1 _ a d d r e s s (13 downto 0) ,
c l o c k => c lock ,

i
i

“main” — 2017/1/11 — 15:05 — page 116 — #143 i
i

i
i

i
i

d a t a => f b _ w r d a t a _ i n t ,
wren => fb1a_wrreq ,
q => f b 1 a _ r d d a t a _ i n t

) ;

FB1B : e n t i t y common_mgwz_generated . ram_16384x32
port map (

a d d r e s s => f b 1 _ a d d r e s s (13 downto 0) ,
c l o c k => c lock ,
d a t a => f b _ w r d a t a _ i n t ,
wren => fb1b_wrreq ,
q => f b 1 b _ r d d a t a _ i n t

) ;

−−
−− Mux and demux f o r f rame b u f f e r s and DDR w r i t e r
−−
s l o t _ t i m e s t a m p <= s l o t _ t i m e s t a m p _ 0 when fb_bank = ’1 ’ e l s e s l o t _ t i m e s t a m p _ 1 ;
s l o t _ c o u n t e r s <= c o u n t e r s 0 when fb_bank = ’1 ’ e l s e c o u n t e r s 1 ;
n _ n e x t _ s l o t <= n e x t _ s l o t 0 when fb_bank = ’1 ’ e l s e n e x t _ s l o t 1 ;
f b 0 _ a d d r e s s <= f b _ w r a d d _ i n t when fb_bank = ’0 ’ e l s e f b _ r d a d d ;
f b 1 _ a d d r e s s <= f b _ w r a d d _ i n t when fb_bank = ’1 ’ e l s e f b _ r d a d d ;
f b _ r d d a t a <= f b 0 _ r d d a t a _ i n t when fb_bank = ’1 ’ e l s e f b 1 _ r d d a t a _ i n t ;
f b0_wr req <= f b _ w r r e q when fb_bank = ’0 ’ e l s e ’ 0 ’ ;
fb1_wr req <= f b _ w r r e q when fb_bank = ’1 ’ e l s e ’ 0 ’ ;
compres so r_empty f rame <= emptyframe (1) when fb_bank = ’0 ’ e l s e emptyframe (0) ;
d a t a _ c o u n t e r <= o r g a n i z e r _ d a t a _ c o u n t e r _ 1 when fb_bank = ’0 ’ e l s e

o r g a n i z e r _ d a t a _ c o u n t e r _ 0 ;

−− c o u n t e r s 0 <= c o u n t e r s _ i n t when fb_bank = ’0 ’ e l s e c o u n t e r s 0 ;
−− c o u n t e r s 1 <= c o u n t e r s _ i n t when fb_bank = ’1 ’ e l s e c o u n t e r s 1 ;
−− n e x t _ s l o t 0 <= n e x t _ s l o t _ i n t when fb_bank = ’0 ’ e l s e n e x t _ s l o t 0 ;
−− n e x t _ s l o t 1 <= n e x t _ s l o t _ i n t when fb_bank = ’1 ’ e l s e n e x t _ s l o t 1 ;

−− f b0a_wrreq <= fb0_wrreq when f b 0 _ a d d r e s s (1 4) = ’0 ’ e l s e ’ 0 ’ ;
−− f b0b_wrreq <= fb0_wrreq when f b 0 _ a d d r e s s (1 4) = ’1 ’ e l s e ’ 0 ’ ;
−− f b1a_wrreq <= fb1_wrreq when f b 1 _ a d d r e s s (1 4) = ’0 ’ e l s e ’ 0 ’ ;
−− f b1b_wrreq <= fb1_wrreq when f b 1 _ a d d r e s s (1 4) = ’1 ’ e l s e ’0’;−−
f b 0 _ r d d a t a _ i n t <= f b 0 a _ r d d a t a _ i n t when s h i f t 0 b = ’0 ’ e l s e f b 0 b _ r d d a t a _ i n t ;
f b 1 _ r d d a t a _ i n t <= f b 1 a _ r d d a t a _ i n t when s h i f t 1 b = ’0 ’ e l s e f b 1 b _ r d d a t a _ i n t ;

−−−
−− C o u n t e r s
−−−
COUNTER_PROC : p r o c e s s (c l o c k)
begin

i f (r i s i n g _ e d g e (c l o c k)) then
i f (fb_bank = ’ 1 ’) then

c o u n t e r s 0 <= c o u n t e r s 0 ;
c o u n t e r s 1 <= c o u n t e r s _ i n t ;
n e x t _ s l o t 0 <= n e x t _ s l o t 0 ;
n e x t _ s l o t 1 <= n e x t _ s l o t _ i n t ;
o r g a n i z e r _ d a t a _ c o u n t e r _ 0 <= o r g a n i z e r _ d a t a _ c o u n t e r _ 0 ;
o r g a n i z e r _ d a t a _ c o u n t e r _ 1 <= o r g a n i z e r _ d a t a _ c o u n t e r ;

e l s e
c o u n t e r s 0 <= c o u n t e r s _ i n t ;
c o u n t e r s 1 <= c o u n t e r s 1 ;
n e x t _ s l o t 0 <= n e x t _ s l o t _ i n t ;
n e x t _ s l o t 1 <= n e x t _ s l o t 1 ;
o r g a n i z e r _ d a t a _ c o u n t e r _ 0 <= o r g a n i z e r _ d a t a _ c o u n t e r ;
o r g a n i z e r _ d a t a _ c o u n t e r _ 1 <= o r g a n i z e r _ d a t a _ c o u n t e r _ 1 ;

end i f ;
end i f ;

end p r o c e s s ;

ADDR0_PROC : p r o c e s s (c l o c k)
begin

i f (r i s i n g _ e d g e (c l o c k)) then

i
i

“main” — 2017/1/11 — 15:05 — page 117 — #144 i
i

i
i

i
i

i f (fb_wradd (1 4) = ’1 ’) then
fb0b_wr req <= fb0_wr req ;
f b 0 a _ w r r e q <= ’ 0 ’ ;

e l s e
fb0b_wr req <= ’ 0 ’ ;
f b 0 a _ w r r e q <= fb0_wr req ;

end i f ;
end i f ;

end p r o c e s s ;

ADDR1_PROC : p r o c e s s (c l o c k)
begin

i f (r i s i n g _ e d g e (c l o c k)) then
i f (fb_wradd (1 4) = ’1 ’) then

fb1b_wr req <= fb1_wr req ;
f b 1 a _ w r r e q <= ’ 0 ’ ;

e l s e
fb1b_wr req <= ’ 0 ’ ;
f b 1 a _ w r r e q <= fb1_wr req ;

end i f ;
end i f ;

end p r o c e s s ;

−−
−− Frame b u f f e r RAM w r i t e r p r o c e s s
−−
FB_SHIFTER : p r o c e s s (c lock , r e s e t)
begin

i f (r e s e t = ’ 1 ’) then
s h i f t 0 a <= ’ 0 ’ ;
s h i f t 0 b <= ’ 0 ’ ;
s h i f t 1 a <= ’ 0 ’ ;
s h i f t 1 b <= ’ 0 ’ ;

e l s i f (r i s i n g _ e d g e (c l o c k)) then
s h i f t 0 a <= f b 0 _ a d d r e s s (1 4) ;
s h i f t 0 b <= s h i f t 0 a ;
s h i f t 1 a <= f b 1 _ a d d r e s s (1 4) ;
s h i f t 1 b <= s h i f t 1 a ;

end i f ;
end p r o c e s s ;

−−
LOGMUX : p r o c e s s (c l o c k)
−−
begin

i f (r i s i n g _ e d g e (c l o c k)) then
i f (r e s e t = ’1 ’ or l o g _ p e r m i t = ’ 0 ’) then

l ogd <= l o g d _ r d ;
l ogn <= l o g n _ r d ;
l o g i t <= ’ 0 ’ ;
rd bu sy <= ’ 0 ’ ;
wrbusy <= ’ 0 ’ ;

e l s i f (r d bu sy = ’ 1 ’) then
i f (l o g i t _ r d = ’0 ’ and l o g b u s y = ’ 0 ’) then

l o g i t <= ’ 0 ’ ;
rd bu sy <= ’ 0 ’ ;

end i f ;
e l s i f (wrbusy = ’ 1 ’) then

i f (l o g i t _ w r = ’0 ’ and l o g b u s y <= ’ 0 ’) then
l o g i t <= ’ 0 ’ ;
wrbusy <= ’ 0 ’ ;

end i f ;
e l s i f (l o g i t _ r d = ’ 1 ’) then

l ogd <= l o g d _ r d ;
l ogn <= l o g n _ r d ;
l o g i t <= ’ 1 ’ ;
rd bu sy <= ’ 1 ’ ;

e l s i f (l o g i t _ w r = ’ 1 ’) then

i
i

“main” — 2017/1/11 — 15:05 — page 118 — #145 i
i

i
i

i
i

l ogd <= logd_wr ;
l ogn <= logn_wr ;
l o g i t <= ’ 1 ’ ;
wrbusy <= ’ 1 ’ ;

e l s e
l ogd <= (o t h e r s => (o t h e r s => ’ 0 ’)) ;
l o g i t <= ’ 0 ’ ;
rd bu sy <= ’ 0 ’ ;
wrbusy <= ’ 0 ’ ;

end i f ;
end i f ;

end p r o c e s s ;

−−−
LOG_INT : e n t i t y common_ te l62_ l ib . l o g g e r _ i n t e r f a c e
−−−
port map (

c l k => c lock ,
r e s e t => r e s e t ,
e n a b l e => l o g _ p e r m i t ,
l ogd => logd ,
l ogn => logn ,
l o g i t => l o g i t ,
l o g b u s y => logbusy ,
l o g _ d a t a => l o g _ d a t a ,
l o g _ v a l i d => l o g _ v a l i d ,
log_more => log_more ,
l o g _ a c k => l o g _ a c k

) ;

end a r c h i t e c t u r e s t d ;

−−
−− VHDL A r c h i t e c t u r e common_pp_lib . pp_ddr_reader_v3 . s t d
−−
−− Crea ted :
−− by − Elena P e d r e s c h i (NBPEDRESCHI)
−− a t − 1 4 : 3 0 : 5 1 1 0 / 0 2 / 2 0 1 5
−−
−− u s i n g Mentor Graph ics HDL D e s i g n e r (TM) 2010 .3 (B u i l d 21)
−−

l i b r a r y a l t e r a ;
use a l t e r a . a l l ;

l i b r a r y a l t e r a _ m f ;
use a l t e r a _ m f . a l l ;

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . s t d _ l o g i c _ a r i t h . a l l ;
use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;
use i e e e . s t d _ l o g i c _ m i s c . a l l ;

l i b r a r y common_TEL62_lib ;
use common_TEL62_lib . common_defs . a l l ;
use common_TEL62_lib . memory_map . a l l ;

l i b r a r y common_pp_lib ;
use common_pp_lib . a l l ;

l i b r a r y common_mgwz_generated ;
use common_mgwz_generated . a l l ;

e n t i t y p p _ d d r _ r e a d e r _ v 3 i s
port (

c l o c k : in s t d _ l o g i c ;
r e s e t : in s t d _ l o g i c ;

i
i

“main” — 2017/1/11 — 15:05 — page 119 — #146 i
i

i
i

i
i

e r r o r _ r e s e t : in s t d _ l o g i c ;
s o f t _ r e s e t : in s t d _ l o g i c ;
r e c o v e r y : in s t d _ l o g i c ;
e n a b l e : in s t d _ l o g i c ;
i n b u r s t : in s t d _ l o g i c ;
i n e n d b u r s t : in s t d _ l o g i c ;
a l i v e : out s t d _ l o g i c ;
done : out s t d _ l o g i c ;
f r e e z e : in s t d _ l o g i c ;
e r r o r : out s t d _ l o g i c ;
−− To / From t r i g g e r r e c e i v e r communica t ion (t r i g _ i n f o _ r x module)
f i r s t _ s l o t _ t i m e s t a m p : in s t d _ l o g i c _ v e c t o r (31 downto 0) ;
n u m b e r _ o f _ s l o t s : in s t d _ l o g i c _ v e c t o r (5 downto 0) ; −−max number−of−s l o t s =

32
d d r _ r d _ s t a r t : in s t d _ l o g i c ;
dd r_ rd_done : out s t d _ l o g i c ;
i d e n t i f i e r : in s t d _ l o g i c _ v e c t o r (7 downto 0) ;
r e a d e r _ f i r s t _ w o r d : in s t d _ l o g i c _ v e c t o r (35 downto 0) ;
−− To / From a r b i t e r
r d _ r e q u e s t : out s t d _ l o g i c ;
r d _ g r a n t : in s t d _ l o g i c ;
−− To / From DDR
d d r _ r d _ a v l _ r e a d _ r e q : out s t d _ l o g i c ;
d d r _ r d _ a v l _ b u r s t b e g i n : out s t d _ l o g i c ;
d d r _ r d _ a v l _ a d d r : out s t d _ l o g i c _ v e c t o r (25 downto 0) ;
a v l _ r d a t a : in s t d _ l o g i c _ v e c t o r (255 downto 0) ;
d d r _ r d _ a v l _ s i z e : out s t d _ l o g i c _ v e c t o r (8 downto 0) ;
a v l _ r e a d y : in s t d _ l o g i c ;
a v l _ r d a t a _ v a l i d : in s t d _ l o g i c ;
w r i t e r _ t i m e s t a m p : in s t d _ l o g i c _ v e c t o r (31 downto 0) ;
−− FIFO s i g n a l s

−−
d d r _ r d _ f i f o _ m o n : out s t d _ l o g i c _ v e c t o r (9 downto 0) ;

−− To / From d a t a f i f o _ a r b i t e r (new module)
−− s i g n a l s from / t o da ta f o r m a t f i f o

−−−
d f _ r d a t a : out s t d _ l o g i c _ v e c t o r (35 downto 0) ;
d f _ r d r e q : in s t d _ l o g i c ;
df_empty : i n o u t s t d _ l o g i c ;
−− s i g n a l s from f i r s t word from t r i g i n f o _ r x and t o t a l number o f word

−−−−−−−−−−−−−−−−−−−
nw_rda ta : out s t d _ l o g i c _ v e c t o r (35 downto 0) ;
nw_rdreq : in s t d _ l o g i c ;
nw_empty : i n o u t s t d _ l o g i c ;
−− Logging
l o g _ p e r m i t : in s t d _ l o g i c ;
l o g _ l e v e l : in s t d _ l o g i c _ v e c t o r (1 downto 0) ;
l o g _ d a t a : out s t d _ l o g i c _ v e c t o r (LOG_DATASIZE−1 downto 0) ;
l o g _ v a l i d : i n o u t s t d _ l o g i c ;
log_more : out s t d _ l o g i c ;
l o g _ a c k : in s t d _ l o g i c ;
−− Memory e r r o r
p p m e m f r e r r _ r a d d r : out s t d _ l o g i c _ v e c t o r (PP_MEM_FRERR_ASIZE−1 downto 0) ;
p p m e m f r e r r _ r d a t a : in s t d _ l o g i c _ v e c t o r (PP_MEM_FRERR_DSIZE−1 downto 0)

) ;
end e n t i t y p p _ d d r _ r e a d e r _ v 3 ;

a r c h i t e c t u r e s t d of p p _ d d r _ r e a d e r _ v 3 i s

−− S i g n a l d e f
type STATE_TYPE i s (S0 , S0_WAIT1 , S0_WAIT ,

S1 , S1_WAIT , S1_WAIT0 , S1_WAIT1 ,
S2 , S2_WAIT , S2_WAITDR , S2_WAIT1 ,
S3 , S3_WAIT , S3_WAIT1 , S3_WAIT2 , S3_WAIT3 ,
S4 ,
S5 ,
S6 , S6_WAIT ,

i
i

“main” — 2017/1/11 — 15:05 — page 120 — #147 i
i

i
i

i
i

S7 , S7_WAIT ,
S8 ,
S9 , S9_WAIT ,
S10 , S10_WAIT1 ,
S11 , S11_WAIT ,

S12) ;
s i g n a l DDR2RD_STATE : STATE_TYPE ; −− DDR2 Read
s i g n a l DDR2AVLRD_STATE : STATE_TYPE ; −− DDR2 a va lo n read
s i g n a l DDR2NOWTR_STATE : STATE_TYPE ; −− DDR2 Number Of Word To Read

i n each s l o t
s i g n a l ERRORS_STATE : STATE_TYPE ; −− ERRORS (read from RAM e r r o r)
s i g n a l DF_STATE : STATE_TYPE ; −− DATA FORMAT
s i g n a l DATA_STATE : STATE_TYPE ; −− DATA FIFO
−− FSM S t a r t S i g n a l s −−−
s i g n a l a v l _ s t a r t : s t d _ l o g i c ;
s i g n a l ddr2_ reg_ok : s t d _ l o g i c ; −− DDR2NOWTR FSM s t a r t s i g n a l
s i g n a l e r r o r _ s t a r t : s t d _ l o g i c ; −− ERROR FSM s t a r t s i g n a l
−− p a r i t y s i g n a l s

−−
s i g n a l d a t a p a r i t y i n : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l d a t a p a r i t y o u t : s t d _ l o g i c ;
s i g n a l d a t a p a r i t y i n n w : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l d a t a p a r i t y o u t n w : s t d _ l o g i c ;
−− DDR2 Read F i f o FSM S i g n a l s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s i g n a l ddr_ row_cn t : s t d _ l o g i c _ v e c t o r (8 downto 0) ; −− number o f

row t o read c o u n t e r
s i g n a l d d r 2 _ a d d _ r d d a t a _ r e g : s t d _ l o g i c _ v e c t o r (767 downto 0) ; −− 16 f e b

2015
s i g n a l f i r s t l i n e t o r e a d : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l f i r s t l i n e t o r e a d _ f f : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l n u m b e r o f w o r d t o r e a d _ f f : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l n u m b e r _ o f _ s l o t s _ s f : s t d _ l o g i c _ v e c t o r (5 downto 0) ;
s i g n a l n u m b e r o f w o r d t o r e a d _ s f : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l numbero fword to read : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l f i r s t _ s l o t _ t i m e s t a m p _ s f : s t d _ l o g i c _ v e c t o r (31 downto 0) ; −− f i r s t

s l o t t i m e s t a m p second frame
s i g n a l n u m b e r o f l i n e _ i n t : s t d _ l o g i c _ v e c t o r (15 downto 0) ; −− number o f

row t o read (c o u l d be <256 or <512)
s i g n a l n u m b e r o f l i n e _ i n t _ f f : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l n u m b e r o f l i n e _ i n t _ s f : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l n u m b e r o f l i n e : s t d _ l o g i c _ v e c t o r (9 downto 0) ; −− number o f

row t o read (c o u l d be <256 or <512)
s i g n a l n u m b e r o f l i n e _ f f : s t d _ l o g i c _ v e c t o r (9 downto 0) ;
s i g n a l n u m b e r o f l i n e _ s f : s t d _ l o g i c _ v e c t o r (9 downto 0) ;
s i g n a l two_frame : s t d _ l o g i c ;
s i g n a l f f _ e m p t y : s t d _ l o g i c ;
s i g n a l s f_empty : s t d _ l o g i c ;
s i g n a l t f _ e m p t y : s t d _ l o g i c ;
s i g n a l f f _ e m p t y _ r e g : s t d _ l o g i c ;
s i g n a l s f _ e m p t y _ r e g : s t d _ l o g i c ;
s i g n a l n u m b e r _ o f _ s l o t s _ f f : s t d _ l o g i c _ v e c t o r (5 downto 0) ;
s i g n a l d d r 2 r d _ o f f s e t : s t d _ l o g i c _ v e c t o r (2 downto 0) ; −− f i r s t t i m e

stamp : p o s i t i o n o f t h e f i r s t word i n t h e f i r s t row
s i g n a l a d d r e s s _ f l a g : s t d _ l o g i c _ v e c t o r (1 downto 0) ; −− check DDR

a d d r e s s near t h e r o l l o v e r
−−

==

s i g n a l f i r s t _ s l o t _ t i m e s t a m p _ p r e c : s t d _ l o g i c _ v e c t o r (31 downto 0) ; −− p r e v i o u s
t i m e stamp

−−
==

−− DDR2 Number Of Word To Read (DDR2NOWTR) FSM S i g n a l s −−−−−−−−−−
s i g n a l s l o t _ c n t : s t d _ l o g i c _ v e c t o r (5 downto 0) ;
s i g n a l c u r r _ s l o t _ c o u n t e r : s t d _ l o g i c _ v e c t o r (5 downto 0) ;
s i g n a l n e s _ c n t : s t d _ l o g i c _ v e c t o r (5 downto 0) ; −− n o t empty

s l o t c o u n t e r

i
i

“main” — 2017/1/11 — 15:05 — page 121 — #148 i
i

i
i

i
i

s i g n a l n o t e m p t y s l o t : s t d _ l o g i c _ v e c t o r (5 downto 0) ; −− number o f
n o t empty s l o t s

s i g n a l f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l n u m b e r _ o f _ s l o t s _ f f _ r e g : s t d _ l o g i c _ v e c t o r (5 downto 0) ;
s i g n a l n u m b e r _ o f _ s l o t s _ s f _ r e g : s t d _ l o g i c _ v e c t o r (5 downto 0) ;
s i g n a l n o w t r _ d a t a _ i n t : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
−− ERROR FSM S i g n a l s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s i g n a l e r r _ l i n e _ c n t : s t d _ l o g i c _ v e c t o r (2 downto 0) ; −− each frame

has 4 e r r o r o l i n e s
s i g n a l f r e r r _ o k : s t d _ l o g i c ;
s i g n a l t o t a l e r r o r _ f f : s t d _ l o g i c _ v e c t o r (2 downto 0) ;
−−s i g n a l t o t a l e r r o r _ s f : s t d _ l o g i c _ v e c t o r (2 downto 0) ;
s i g n a l t o t a l c n t e r r o r : s t d _ l o g i c _ v e c t o r (3 downto 0) ;
s i g n a l c n t _ e r r o r : s t d _ l o g i c _ v e c t o r (3 downto 0) ; −− each frame

has 4 e r r o r o l i n e s r e s e r v e d => max 8 t o t a l e r r o r l i n e s i f t h e r e are 2 f ram es
s i g n a l h e a d e r _ e r r o r _ w o r d s _ r e g : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
−− Data Format FSM s i g n a l s −−
s i g n a l f i r s t _ s l o t _ t i m e s t a m p _ r e g : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l n u m b e r _ o f _ s l o t s _ r e g : s t d _ l o g i c _ v e c t o r (5 downto 0) ; −− number o f

s l o t s r e q u e s t e d
s i g n a l n u m b e r o f l i n e _ r e g : s t d _ l o g i c _ v e c t o r (9 downto 0) ;
s i g n a l i d e n t i f i e r _ r e g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;
s i g n a l number_of_word_ to_read : s t d _ l o g i c _ v e c t o r (7 downto 0) ;
s i g n a l num ber_ o f_w ord_ t o_ re ad_ re g : s t d _ l o g i c _ v e c t o r (15 downto 0) ; −− t o t a l

number o f words t o read
s i g n a l n u m b e r _ o f _ w o r d _ t o _ r e a d _ i n t : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l n u m b e r _ o f _ w o r d _ t o _ r e a d _ c n t : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l number_of_word : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l h e a d e r : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l c u r r e n t _ s l o t _ t i m e _ c h e c k : s t d _ l o g i c _ v e c t o r (10 downto 0) ;
s i g n a l c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r : s t d _ l o g i c := (’ 0 ’) ;
s i g n a l r e a d _ l i n e _ c n t : s t d _ l o g i c _ v e c t o r (9 downto 0) ;
s i g n a l e r r o r _ r c n t : s t d _ l o g i c _ v e c t o r (3 downto 0) := " 0000 " ; −−

c o u n t e r e r r o r read
s i g n a l e r r o r _ w c n t : s t d _ l o g i c _ v e c t o r (3 downto 0) := " 0001 " ; −−

c o u n t e r e r r o r w r i t e
s i g n a l e a r l y _ t i m e s t a m p _ e r r o r : s t d _ l o g i c := ’ 0 ’ ;

−−−
−−s i g n a l a v l s i z e _ e r r o r _ f l a g : s t d _ l o g i c := ’ 0 ’ ; −− i f

a s s e r t e d an e r r o r i n t h e ava lo n s i z e o c c u r r e d (a v l s i z e can ’ t be 0)
s i g n a l e r r o r f r a m e _ f l a g : s t d _ l o g i c := ’ 0 ’ ; −− i f

t h e e r r o r f rame i s p r e s e n t
−− DDR2 READ (dr) FIFO SIGNALS 2048 x256
−−−
s i g n a l d r _ w r d a t a : s t d _ l o g i c _ v e c t o r (255 downto 0) ;
s i g n a l d r _ r d r e q : s t d _ l o g i c ;
s i g n a l d r _ w r r e q : s t d _ l o g i c ;
s i g n a l d r _ a f u l l : s t d _ l o g i c ;
s i g n a l dr_empty : s t d _ l o g i c ;
s i g n a l d r _ r d a t a : s t d _ l o g i c _ v e c t o r (255 downto 0) ;
s i g n a l dr_usedw : s t d _ l o g i c _ v e c t o r (10 downto 0) ;
−−−
−−DATA FORMAT FIFO (d f) SIGNALS 16384 x36
−−−

s i g n a l d f _ w r d a t a : s t d _ l o g i c _ v e c t o r (35 downto 0) ;
s i g n a l d f _ w r d a t a s h o r t : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l sopeop : s t d _ l o g i c _ v e c t o r (1 downto 0) ;
s i g n a l d f _ w r r e q : s t d _ l o g i c ;
s i g n a l d f _ f u l l : s t d _ l o g i c ;
s i g n a l d f _ a f u l l : s t d _ l o g i c ;
s i g n a l df_usedw : s t d _ l o g i c _ v e c t o r (13 downto 0) ;
−−−
−−FIRST WORD FROM TRIGINFO_RX AND TOTAL NUMBER OF WORD FIFO (nw) 32 x36
−−−
s i g n a l nw_wrdata : s t d _ l o g i c _ v e c t o r (35 downto 0) ;
s i g n a l n w _ w r d a t a s h o r t : s t d _ l o g i c _ v e c t o r (33 downto 0) ;

i
i

“main” — 2017/1/11 — 15:05 — page 122 — #149 i
i

i
i

i
i

s i g n a l nw_wrreq : s t d _ l o g i c ;
s i g n a l n w _ f u l l : s t d _ l o g i c ;
s i g n a l nw_usedw : s t d _ l o g i c _ v e c t o r (4 downto 0) ;

−−
−− NUMBER OF WORD TO READ FOR EACH TIME STAMP REQUESTED FIFO 128 x16
−−−
s i g n a l n o w t r _ w r d a t a : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l n o w t r _ r d r e q : s t d _ l o g i c ;
s i g n a l nowt r_wr req : s t d _ l o g i c ;
s i g n a l n o w t r _ a f u l l : s t d _ l o g i c ;
s i g n a l n o w t r _ r d a t a : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
s i g n a l nowtr_empty : s t d _ l o g i c ;
s i g n a l nowtr_usedw : s t d _ l o g i c _ v e c t o r (6 downto 0) ;

−−−
−− NOT EMPTY SLOT FIFO S i g n a l s
s i g n a l n e s _ w r d a t a : s t d _ l o g i c _ v e c t o r (5 downto 0) ;
s i g n a l n e s _ r d r e q : s t d _ l o g i c ;
s i g n a l nes_wr req : s t d _ l o g i c ;
s i g n a l n e s _ f u l l : s t d _ l o g i c ;
s i g n a l n e s _ r d a t a : s t d _ l o g i c _ v e c t o r (5 downto 0) ;
s i g n a l nes_empty : s t d _ l o g i c ;
s i g n a l nes_usedw : s t d _ l o g i c _ v e c t o r (3 downto 0) ;

−−−
−− ERROR FIFO 32X36
−−−
s i g n a l e r r o r _ w r d a t a : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l e r r o r _ r d r e q : s t d _ l o g i c ;
s i g n a l e r r o r _ w r r e q : s t d _ l o g i c ;
s i g n a l e r r o r _ a f u l l : s t d _ l o g i c ;
s i g n a l e r r o r _ e m p t y : s t d _ l o g i c ;
s i g n a l e r r o r _ r d a t a : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l e r r o r _ u s e d w : s t d _ l o g i c _ v e c t o r (4 downto 0) ;

−−−
−− ERROR HEADER FIFO 16X32
−−−
s i g n a l e r r o r h e a d _ w r d a t a : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l e r r o r h e a d _ r d r e q : s t d _ l o g i c ;
s i g n a l e r r o r h e a d _ w r r e q : s t d _ l o g i c ;
s i g n a l e r r o r h e a d _ e m p t y : s t d _ l o g i c ;
s i g n a l e r r o r h e a d _ f u l l : s t d _ l o g i c ;
s i g n a l e r r o r h e a d _ r d a t a : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
s i g n a l e r r o r h e a d _ u s e d w : s t d _ l o g i c _ v e c t o r (3 downto 0) ;

−−−
−− LOGGER INTERFACE
−−−
s i g n a l l ogd : LOGDATA_TYPE := ((o t h e r s => (o t h e r s = > ’0 ’))) ;
s i g n a l l ogn : s t d _ l o g i c _ v e c t o r (LOG2(LOG_MAXWORDS)−1 downto 0) ;
s i g n a l l o g i t : s t d _ l o g i c := (’ 0 ’) ;
s i g n a l l o g b u s y : s t d _ l o g i c ;

s i g n a l e r r o r _ i n t : s t d _ l o g i c := (’ 0 ’) ;

s i g n a l t emp_wrda ta1 : s t d _ l o g i c _ v e c t o r (15 downto 0) := X" 0000 " ;
s i g n a l t emp_wrda ta2 : s t d _ l o g i c _ v e c t o r (15 downto 0) := X" 0000 " ;

begin

a l i v e <= ’ 1 ’ ;

d d r _ r d _ f i f o _ m o n <= (d r _ a f u l l & dr_empty & n o w t r _ a f u l l & nowtr_empty & e r r o r _ a f u l l &
e r r o r _ e m p t y & d f _ a f u l l & df_empty & n w _ f u l l & nw_empty) ;

done <= ’ 1 ’ ;

i
i

“main” — 2017/1/11 — 15:05 — page 123 — #150 i
i

i
i

i
i

d f _ w r d a t a <= ’0 ’& d a t a p a r i t y o u t&sopeop&d f _ w r d a t a s h o r t ;
d a t a p a r i t y i n <= d f _ w r d a t a s h o r t ;

nw_wrdata <= ’0 ’& d a t a p a r i t y o u t n w&n w _ w r d a t a s h o r t ;
d a t a p a r i t y i n n w <= n w _ w r d a t a s h o r t (31 downto 0) ;

e r r o r <= e r r o r _ i n t ;

−−
RD_LOGIC : p r o c e s s (c lock , r e s e t , e r r o r _ r e s e t)
−−
begin

i f (c l o c k = ’1 ’ and c lock ’ e v e n t) then
i f ((r e s e t = ’ 1 ’) or (e r r o r _ r e s e t = ’ 1 ’)) then

e r r o r _ i n t <= ’ 0 ’ ;
e l s e

e r r o r _ i n t <= (e r r o r _ i n t or c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r or d r _ a f u l l or
n o w t r _ a f u l l or e r r o r _ a f u l l or d f _ a f u l l or n w _ f u l l or e a r l y _ t i m e s t a m p _ e r r o r
) ;

−− e r r o r _ i n t <= (e r r o r _ i n t or c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r or
e a r l y _ t i m e s t a m p _ e r r o r) ;

end i f ;
end i f ;

end p r o c e s s RD_LOGIC ;

−−
−− FSM
−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− DDR2 READ FSM
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DDR2RDFSM : p r o c e s s (r e s e t , c l o c k) −−read from ddr2 and p u t t h e da ta i n a 512 x256

f i f o (DDR2RDFIFO) once a l l t h e da ta are c o p i e d i n t h e f i f o t h e s i g n a l done i s
a s s e r t e d

v a r i a b l e l a s t _ t i m e s t a m p _ r e q : i n t e g e r range 0 to 511 := 0 ;

begin
i f (r e s e t = ’ 1 ’) then

l a s t _ t i m e s t a m p _ r e q := 0 ;
d d r 2 _ a d d _ r d d a t a _ r e g <= (o t h e r s => ’ 0 ’) ;
r d _ r e q u e s t <= ’ 0 ’ ;
a v l _ s t a r t <= ’ 0 ’ ;
d d r _ r d _ a v l _ a d d r <= (o t h e r s => ’ 0 ’) ;
d d r _ r d _ a v l _ s i z e <= (o t h e r s => ’ 0 ’) ;
f i r s t l i n e t o r e a d <= (o t h e r s => ’ 0 ’) ;
f i r s t l i n e t o r e a d _ f f <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f w o r d t o r e a d _ f f <= (o t h e r s => ’ 0 ’) ;
n u m b e r _ o f _ s l o t s _ s f <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f w o r d t o r e a d _ s f <= (o t h e r s => ’ 0 ’) ;
numbero fword to read <= (o t h e r s => ’ 0 ’) ;
f i r s t _ s l o t _ t i m e s t a m p _ s f <= (o t h e r s => ’ 0 ’) ;
d r _ w r r e q <= ’ 0 ’ ;
dd r_ rd_done <= ’ 0 ’ ;
f i r s t _ s l o t _ t i m e s t a m p _ p r e c <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ f f <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ s f <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ i n t <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ i n t _ f f <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ i n t _ s f <= (o t h e r s => ’ 0 ’) ;
dd r_ row_cn t <= (o t h e r s => ’ 0 ’) ;
dd r2_ reg_ok <= ’ 0 ’ ;
n u m b e r _ o f _ s l o t s _ f f <= (o t h e r s => ’ 0 ’) ;
two_frame <= ’ 0 ’ ;
f f _ e m p t y <= ’ 1 ’ ;

i
i

“main” — 2017/1/11 — 15:05 — page 124 — #151 i
i

i
i

i
i

s f_empty <= ’ 1 ’ ;
t f _ e m p t y <= ’ 1 ’ ;
d d r 2 r d _ o f f s e t <= (o t h e r s => ’ 0 ’) ;
e r r o r _ s t a r t <= ’ 0 ’ ;
e a r l y _ t i m e s t a m p _ e r r o r <= ’ 0 ’ ;
a d d r e s s _ f l a g <= " 00 " ;

DDR2RD_STATE <= S0 ;
e l s e

i f (c l o c k = ’1 ’ and c lock ’ e v e n t) then

ddr2_ reg_ok <= ’ 0 ’ ;

case DDR2RD_STATE i s
−−

−−

when S0 => −− w a i t s f o r a s t a r t from t r i g _ i n f o rx module (P h y s i c s)

l a s t _ t i m e s t a m p _ r e q := 0 ;
d d r 2 _ a d d _ r d d a t a _ r e g <= (o t h e r s => ’ 0 ’) ;
r d _ r e q u e s t <= ’ 0 ’ ;
a v l _ s t a r t <= ’ 0 ’ ;
d d r _ r d _ a v l _ a d d r <= (o t h e r s => ’ 0 ’) ;
d d r _ r d _ a v l _ s i z e <= (o t h e r s => ’ 0 ’) ;
f i r s t l i n e t o r e a d <= (o t h e r s => ’ 0 ’) ;
f i r s t l i n e t o r e a d _ f f <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f w o r d t o r e a d _ f f <= (o t h e r s => ’ 0 ’) ;
n u m b e r _ o f _ s l o t s _ s f <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f w o r d t o r e a d _ s f <= (o t h e r s => ’ 0 ’) ;
numbero fword to read <= (o t h e r s => ’ 0 ’) ;
f i r s t _ s l o t _ t i m e s t a m p _ s f <= (o t h e r s => ’ 0 ’) ;
d r _ w r r e q <= ’ 0 ’ ;
dd r_ rd_done <= ’ 0 ’ ;
f i r s t _ s l o t _ t i m e s t a m p _ p r e c <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ f f <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ s f <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ i n t <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ i n t _ f f <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ i n t _ s f <= (o t h e r s => ’ 0 ’) ;
dd r_ row_cn t <= (o t h e r s => ’ 0 ’) ;
dd r2_ reg_ok <= ’ 0 ’ ;
n u m b e r _ o f _ s l o t s _ f f <= (o t h e r s => ’ 0 ’) ;
two_frame <= ’ 0 ’ ;
f f _ e m p t y <= ’ 1 ’ ;
s f_empty <= ’ 1 ’ ;
t f _ e m p t y <= ’ 1 ’ ;
d d r 2 r d _ o f f s e t <= (o t h e r s => ’ 0 ’) ;
e r r o r _ s t a r t <= ’ 0 ’ ;
a d d r e s s _ f l a g <= " 00 " ;

i f (d d r _ r d _ s t a r t = ’1 ’ and e n a b l e = ’1 ’ and f r e e z e = ’ 0 ’) then −− w a i t i n g
f o r d d r _ r d _ s t a r t from t r i g _ i n f o module and enab le , t h e f r e e z e s i g n a l has

t o be 0

DDR2RD_STATE <= S0_WAIT1 ;

end i f ;
−−

−−−

when S0_WAIT1 =>

i f (d r _ a f u l l = ’0 ’ and n o w t r _ a f u l l = ’ 0 ’) then −− i f t h e a l m o s t f u l l
s i g n a l s are a s s e r t e d t h e o p e r a t i o n can ’ t s t a r t

i
i

“main” — 2017/1/11 — 15:05 — page 125 — #152 i
i

i
i

i
i

r d _ r e q u e s t <= ’ 1 ’ ;
f i r s t _ s l o t _ t i m e s t a m p _ p r e c <= c o n v _ s t d _ l o g i c _ v e c t o r ((c o n v _ i n t e g e r (

f i r s t _ s l o t _ t i m e s t a m p)) − 1 , 32) ;

i f (w r i t e r _ t i m e s t a m p < f i r s t _ s l o t _ t i m e s t a m p) then
e a r l y _ t i m e s t a m p _ e r r o r <= ’ 1 ’ ;

end i f ;

DDR2RD_STATE <= S0_WAIT ;

end i f ;
−−

−−−

when S0_WAIT =>

−− In t h e a d d r e s s s i d e :
−− b i t s (3 downto 0) (200 ns) −> TS p o s i t i o n i n t h e row
−− b i t s (27 downto 4) −> row p o s i t i o n
−− b i t 32 ="1" −> DDR a d d r e s s

−− A row : 16 words o f 16 b i t s

−− 3 DDR Row f o r 32 TS (256 b i t s) => a v l _ s i z e = 3 (n o t t r u e near a d d r e s s
r o l l o v e r)

i f (r d _ g r a n t = ’1 ’ and f i r s t _ s l o t _ t i m e s t a m p _ p r e c (28 downto 4) = ’1 ’& X" FFFFFF
" and a d d r e s s _ f l a g = " 00 ") then

d d r _ r d _ a v l _ a d d r <= ’1 ’ & f i r s t _ s l o t _ t i m e s t a m p _ p r e c (28 downto 4) ;
d d r _ r d _ a v l _ s i z e <= " 000000001 " ;
a v l _ s t a r t <= ’ 1 ’ ;
a d d r e s s _ f l a g <= " 01 " ;
DDR2RD_STATE <= S1 ;

e l s i f (r d _ g r a n t = ’1 ’ and f i r s t _ s l o t _ t i m e s t a m p _ p r e c (28 downto 4) = ’1 ’& X"
FFFFFF " and a d d r e s s _ f l a g = " 01 ") then

d d r _ r d _ a v l _ a d d r <= " 10 " & X" 000000 " ; −− second t i m e goes t o a d d r e s s 0
d d r _ r d _ a v l _ s i z e <= " 000000010 " ;
a v l _ s t a r t <= ’ 1 ’ ;
a d d r e s s _ f l a g <= " 00 " ;
DDR2RD_STATE <= S1_WAIT ;

e l s i f (r d _ g r a n t = ’1 ’ and f i r s t _ s l o t _ t i m e s t a m p _ p r e c (28 downto 4) = ’1 ’& X"
FFFFFE " and a d d r e s s _ f l a g = " 00 ") then

d d r _ r d _ a v l _ a d d r <= ’1 ’ & f i r s t _ s l o t _ t i m e s t a m p _ p r e c (28 downto 4) ;
d d r _ r d _ a v l _ s i z e <= " 000000010 " ;
a v l _ s t a r t <= ’ 1 ’ ;
a d d r e s s _ f l a g <= " 10 " ;
DDR2RD_STATE <= S1 ;

e l s i f (r d _ g r a n t = ’1 ’ and f i r s t _ s l o t _ t i m e s t a m p _ p r e c (28 downto 4) = ’1 ’& X"
FFFFFE " and a d d r e s s _ f l a g = " 10 ") then

d d r _ r d _ a v l _ a d d r <= " 10 " & X" 000000 " ; −−second t i m e goes t o a d d r e s s 0
d d r _ r d _ a v l _ s i z e <= " 000000001 " ;
a v l _ s t a r t <= ’ 1 ’ ;
a d d r e s s _ f l a g <= " 00 " ;
DDR2RD_STATE <= S2 ;

e l s i f (r d _ g r a n t = ’ 1 ’) then
d d r _ r d _ a v l _ a d d r <= ’1 ’ & f i r s t _ s l o t _ t i m e s t a m p _ p r e c (28 downto 4) ;
d d r _ r d _ a v l _ s i z e <= " 000000011 " ;
a v l _ s t a r t <= ’ 1 ’ ;
a d d r e s s _ f l a g <= " 00 " ;
DDR2RD_STATE <= S1 ;

e l s e
DDR2RD_STATE <= S0_WAIT ;

end i f ;

f i r s t _ s l o t _ t i m e s t a m p _ s f <= ((f i r s t _ s l o t _ t i m e s t a m p (31 downto 8) + X" 000001 ")
& X" 00 ") ;

l a s t _ t i m e s t a m p _ r e q := c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p (7 downto 0)) +
c o n v _ i n t e g e r (n u m b e r _ o f _ s l o t s) − 1 ;

i
i

“main” — 2017/1/11 — 15:05 — page 126 — #153 i
i

i
i

i
i

−−
−−

when S1 => −− r e q u e s t b u r s t read t o t h e DDR2 ADDRESS SECTOR
a v l _ s t a r t <= ’ 0 ’ ;
i f ((r d _ g r a n t = ’ 1 ’) and (a v l _ r d a t a _ v a l i d = ’ 1 ’)) then −− av a l on bus gran ted

, s t a r t s DDR2 read r e q u e s t

d d r 2 _ a d d _ r d d a t a _ r e g (767 downto 512) <= a v l _ r d a t a ; −− 16 a d d r e s s was read
each a d d r e s s i s 16 b i t l ong (256 b i t t o t)

i f (a d d r e s s _ f l a g = " 01 ") then
DDR2RD_STATE <= S0_WAIT ;

e l s e
DDR2RD_STATE <= S1_WAIT ;

end i f ;
e l s e

DDR2RD_STATE <= S1 ;
end i f ;

−−
−−−

when S1_WAIT => −− w a i t s f o r b u r s t s been a c c e p t e d
a v l _ s t a r t <= ’ 0 ’ ;
i f ((r d _ g r a n t = ’ 1 ’) and (a v l _ r d a t a _ v a l i d = ’ 1 ’)) then

d d r 2 _ a d d _ r d d a t a _ r e g (511 downto 256) <= a v l _ r d a t a ;

i f (a d d r e s s _ f l a g = " 10 ") then
DDR2RD_STATE <= S0_WAIT ;

e l s e
DDR2RD_STATE <= S2 ;

end i f ;
e l s e

DDR2RD_STATE <= S1_WAIT ;
end i f ;
−−

−−−

when S2 => −− w a i t s f o r b u r s t s been a c c e p t e d

a v l _ s t a r t <= ’ 0 ’ ;
i f ((r d _ g r a n t = ’ 1 ’) and (a v l _ r d a t a _ v a l i d = ’ 1 ’)) then

d d r 2 _ a d d _ r d d a t a _ r e g (255 downto 0) <= a v l _ r d a t a ;
DDR2RD_STATE <= S3 ;

end i f ;

−−
−−−

when S3 =>

e r r o r _ s t a r t <= ’ 1 ’ ; −− s t a r t f o r ERROR FSM
i f l a s t _ t i m e s t a m p _ r e q > 255 then −− === 2 FRAME

==================================

two_frame <= ’ 1 ’ ;
f i r s t l i n e t o r e a d _ f f <= d d r 2 _ a d d _ r d d a t a _ r e g ((7 6 7 − ((c o n v _ i n t e g e r (

f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16))) downto
(752 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16)))) ;

i f (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (7 downto 0) > X"EF") then
−− l a s t l i n e t o r e a d _ f f <= (d d r2 _a dd _r d da ta _r eg (527 downto 512)) ; −−

u s e f u l
−−n u m b e r o f w o r d t o r e a d _ f f = l a s t l i n e t o r e a d _ f f − f i r s t l i n e t o r e a d _ f f

i
i

“main” — 2017/1/11 — 15:05 — page 127 — #154 i
i

i
i

i
i

n u m b e r o f w o r d t o r e a d _ f f <= ((d d r 2 _ a d d _ r d d a t a _ r e g (527 downto 512)) −
d d r 2 _ a d d _ r d d a t a _ r e g ((7 6 7 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3

downto 0)) ∗ 16))) downto
(752 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16))))) ;

e l s e
−− l a s t l i n e t o r e a d _ f f <= (d d r2 _a dd _r d da ta _r eg (271 downto 256)) ; −−

l a s t l i n e t o read i n t h e F i r s t Frame (f f)−−u s e f u l
n u m b e r o f w o r d t o r e a d _ f f <= ((d d r 2 _ a d d _ r d d a t a _ r e g (271 downto 256)) −
d d r 2 _ a d d _ r d d a t a _ r e g ((7 6 7 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3

downto 0)) ∗ 16))) downto
(752 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16))))) ;

end i f ;
d d r 2 r d _ o f f s e t <= d d r 2 _ a d d _ r d d a t a _ r e g ((7 5 4 − ((c o n v _ i n t e g e r (

f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16))) downto
(752 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16)))) ;
n u m b e r _ o f _ s l o t s _ s f <= c o n v _ s t d _ l o g i c _ v e c t o r ((l a s t _ t i m e s t a m p _ r e q −255) ,

6) ; −−number o f s l o t s i n t h e Second Frame
n u m b e r _ o f _ s l o t s _ f f <= (n u m b e r _ o f _ s l o t s − c o n v _ s t d _ l o g i c _ v e c t o r ((

l a s t _ t i m e s t a m p _ r e q −255) , 6)) ; −−number o f s l o t s i n t h e F i r s t Frame
i f ((f i r s t _ s l o t _ t i m e s t a m p _ p r e c (7 downto 0) > X"EF") and (

l a s t _ t i m e s t a m p _ r e q > 271)) then −− f i r s t f rame f i r s t row / second frame
t h i r d row

n u m b e r o f w o r d t o r e a d _ s f <= d d r 2 _ a d d _ r d d a t a _ r e g ((2 5 5 − ((
l a s t _ t i m e s t a m p _ r e q −272) ∗ 16)) downto (240 − ((l a s t _ t i m e s t a m p _ r e q
−272) ∗ 16))) ; −− number o f word t o read i n t h e Second Frame =

e l s i f ((f i r s t _ s l o t _ t i m e s t a m p _ p r e c (7 downto 0) > X"EF") and (
l a s t _ t i m e s t a m p _ r e q < 271)) then −− f i r s t f rame f i r s t row / second frame

second row
n u m b e r o f w o r d t o r e a d _ s f <= d d r 2 _ a d d _ r d d a t a _ r e g ((5 1 1 − ((

l a s t _ t i m e s t a m p _ r e q −256) ∗ 16)) downto (496 − ((l a s t _ t i m e s t a m p _ r e q
−256) ∗ 16))) ; −− number o f word t o read i n t h e Second Frame =

e l s i f (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (7 downto 0) < X" F0 ") then −− f i r s t f rame
second row / second frame t h i r d row

n u m b e r o f w o r d t o r e a d _ s f <= d d r 2 _ a d d _ r d d a t a _ r e g ((2 5 5 − ((
l a s t _ t i m e s t a m p _ r e q −256) ∗ 16)) downto (240 − ((l a s t _ t i m e s t a m p _ r e q
−256) ∗ 16))) ; −− number o f word t o read i n t h e Second Frame =

end i f ;

e l s e
−− === 1 FRAME ==================================

n u m b e r _ o f _ s l o t s _ f f <= n u m b e r _ o f _ s l o t s ;
i f (f i r s t _ s l o t _ t i m e s t a m p (7 downto 0) = " 00000000 ") then −− f i r s t s l o t i s

s l o t 0

f i r s t l i n e t o r e a d <= (o t h e r s => ’ 0 ’) ;
d d r 2 r d _ o f f s e t <= (o t h e r s => ’ 0 ’) ;
numbero fword to read <= d d r 2 _ a d d _ r d d a t a _ r e g ((7 6 7 − (((c o n v _ i n t e g e r (

f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) + c o n v _ i n t e g e r (n u m b e r _ o f _ s l o t s
)) ∗16))) downto

−−
−−

e l s e −− f i r s t s l o t i s n o t s l o t 0
f i r s t l i n e t o r e a d <= d d r 2 _ a d d _ r d d a t a _ r e g ((7 6 7 − ((c o n v _ i n t e g e r (

f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16))) downto
(752 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16)))) ;
numbero fword to read <= (d d r 2 _ a d d _ r d d a t a _ r e g ((7 6 7 − (((c o n v _ i n t e g e r (

f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) + c o n v _ i n t e g e r (n u m b e r _ o f _ s l o t s
)) ∗16))) downto

(752 − (((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) +
c o n v _ i n t e g e r (n u m b e r _ o f _ s l o t s)) ∗16))))) −

(d d r 2 _ a d d _ r d d a t a _ r e g ((7 6 7 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3
downto 0)) ∗ 16))) downto

(752 − (((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16)))))) ;
−− t o t a l number o f word t o read

i
i

“main” — 2017/1/11 — 15:05 — page 128 — #155 i
i

i
i

i
i

d d r 2 r d _ o f f s e t <= d d r 2 _ a d d _ r d d a t a _ r e g ((7 5 4 − ((c o n v _ i n t e g e r (
f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16))) downto

(752 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c (3 downto 0)) ∗ 16)))) ;
end i f ;

end i f ;
DDR2RD_STATE <= S3_WAIT ;

−−
−−

when S3_WAIT =>

i f (numbero fword to read = X" 0000 ") then
n u m b e r o f l i n e _ i n t <= X" 0000 " ;

e l s e
n u m b e r o f l i n e _ i n t <= numbero fword to read + (X" 000 " & ’0 ’ & d d r 2 r d _ o f f s e t) + X

" 0007 " ;
end i f ;
i f (n u m b e r o f w o r d t o r e a d _ f f = X" 0000 ") then

n u m b e r o f l i n e _ i n t _ f f <= X" 0000 " ;
e l s e

n u m b e r o f l i n e _ i n t _ f f <= n u m b e r o f w o r d t o r e a d _ f f + (X" 000 " & ’0 ’ &
d d r 2 r d _ o f f s e t) + X" 0007 " ;

end i f ;
n u m b e r o f l i n e _ i n t _ s f <= n u m b e r o f w o r d t o r e a d _ s f + X" 0007 " ;

DDR2RD_STATE <= S3_WAIT2 ;

−−
−−

when S3_WAIT2 =>

n u m b e r o f l i n e _ f f <= n u m b e r o f l i n e _ i n t _ f f (12 downto 3) ;
n u m b e r o f l i n e _ s f <= n u m b e r o f l i n e _ i n t _ s f (12 downto 3) ;

i f (two_frame = ’ 1 ’) then
i f (n u m b e r o f l i n e _ i n t _ f f (12 downto 3) > " 0000000000 ") then

f f _ e m p t y <= ’ 0 ’ ;
e l s e

f f _ e m p t y <= ’ 1 ’ ;
end i f ;
i f (n u m b e r o f l i n e _ i n t _ s f (12 downto 3) > " 0000000000 ") then

s f_empty <= ’ 0 ’ ;
e l s e

s f_empty <= ’ 1 ’ ;
end i f ;

numbe ro fword to read <= n u m b e r o f w o r d t o r e a d _ f f + n u m b e r o f w o r d t o r e a d _ s f ;

n u m b e r o f l i n e <= n u m b e r o f l i n e _ i n t _ f f (12 downto 3) + n u m b e r o f l i n e _ i n t _ s f (12
downto 3) ;

e l s e

i f (n u m b e r o f l i n e _ i n t (12 downto 3) > " 0000000000 ") then
f f _ e m p t y <= ’ 0 ’ ;

e l s e
f f _ e m p t y <= ’ 1 ’ ;

end i f ;
n u m b e r o f l i n e <= n u m b e r o f l i n e _ i n t (12 downto 3) ;

end i f ;

DDR2RD_STATE <= S4 ;

−−

i
i

“main” — 2017/1/11 — 15:05 — page 129 — #156 i
i

i
i

i
i

−−−

when S4 =>
i f (n u m b e r o f l i n e > " 0000000000 ") then

t f _ e m p t y <= ’ 0 ’ ;
e l s e

t f _ e m p t y <= ’ 1 ’ ; −− t o t a l f rame (t f) empty
end i f ;
dd r2_ reg_ok <= ’ 1 ’ ; −− s t a r t f o r DDR2NOWTRFSM (Number Of Word To Read i n

each t i m e stamp r e q u e s t e d)
e r r o r _ s t a r t <= ’ 0 ’ ;
d r _ w r r e q <= ’ 1 ’ ; −− DDR2 READ FIFO w r i t e r e q u e s t a s s e r t e d

d r _ w r d a t a (255 downto 0) <= ((X" 00000000 ") &(X" 00000000 ") &(X" FFFFFFFF ") &(X"
00000 "&i d e n t i f i e r)&

(r e a d e r _ f i r s t _ w o r d)&
(f i r s t _ s l o t _ t i m e s t a m p)&
(X" 000000 "&" 00 "&n u m b e r _ o f _ s l o t s)&
(" 0000 " & sf_empty & f f _ e m p t y & n u m b e r o f l i n e & numbero fword to r ead)) ;
i f l a s t _ t i m e s t a m p _ r e q > 255 then −− 2 frame −> more than one a c c e s s i s

r e q u i r e d (one or two f o r each frame)

i f (n u m b e r o f l i n e _ f f > X" 0000 ") then −− f i r s t f rame n o t empty
i f (n u m b e r o f l i n e _ f f < 256) then −− o n l y one a c c e s s i s r e q u i r e d i n t h e

f i r s t f rame
d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) &

f i r s t l i n e t o r e a d _ f f (11 downto 3)) ;
d d r _ r d _ a v l _ s i z e <= n u m b e r o f l i n e _ f f (8 downto 0) ;
a v l _ s t a r t <= ’ 1 ’ ;
DDR2RD_STATE <= S5 ;

e l s e −− two a c c e s s e s are r e q u i r e d i n t h e
f i r s t f rame

d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) &
f i r s t l i n e t o r e a d _ f f (11 downto 3)) ;

d d r _ r d _ a v l _ s i z e <= " 100000000 " ;
a v l _ s t a r t <= ’ 1 ’ ;
DDR2RD_STATE <= S6 ;

end i f ;
e l s e −− f i r s t f rame i s empty

i f (n u m b e r o f l i n e _ s f > X" 0000 ") then −− second frame n o t empty
i f (n u m b e r o f l i n e _ s f < 256) then −−o n l y one a c c e s s i s r e q u i r e d i n t h e

second frame
d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & (f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) + X"

0001 ") & " 000000000 ") ; −− f i r s t l i n e t o r e a d _ s f (11 downto 3)) ;
d d r _ r d _ a v l _ s i z e <= n u m b e r o f l i n e _ s f (8 downto 0) ;
a v l _ s t a r t <= ’ 1 ’ ;
DDR2RD_STATE <= S8 ;

e l s e −− two a c c e s s e s are r e q u i r e d i n t h e
second frame

d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & (f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) + X"
0001 ") & " 000000000 ") ; −− f i r s t l i n e t o r e a d _ s f (11 downto 3)) ;

d d r _ r d _ a v l _ s i z e <= " 100000000 " ;
a v l _ s t a r t <= ’ 1 ’ ;
DDR2RD_STATE <= S9 ;

end i f ;
e l s e −− second frame i s empty

DDR2RD_STATE <= S12 ;
end i f ;

end i f ;
e l s e −− 1 frame (one or two a c c e s s)

i f (n u m b e r o f l i n e > X" 0000 ") then −− f rame n o t empty
i f (n u m b e r o f l i n e < 256) then −− o n l y one a c c e s s i s r e q u i r e d

d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) &
f i r s t l i n e t o r e a d (11 downto 3)) ;

d d r _ r d _ a v l _ s i z e <= n u m b e r o f l i n e (8 downto 0) ;
a v l _ s t a r t <= ’ 1 ’ ;
DDR2RD_STATE <= S10 ;

i
i

“main” — 2017/1/11 — 15:05 — page 130 — #157 i
i

i
i

i
i

e l s e −− two a c c e s s e s are r e q u i r e d i n t h e
f i r s t f rame

d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) &
f i r s t l i n e t o r e a d (11 downto 3)) ;

d d r _ r d _ a v l _ s i z e <= " 100000000 " ;
a v l _ s t a r t <= ’ 1 ’ ;
DDR2RD_STATE <= S11 ;

end i f ;
e l s e −− f rame i s empty

DDR2RD_STATE <= S12 ;
end i f ;

end i f ;

when S5 => −− r e q u e s t b u r s t read t o t h e DDR2 DATA SECTOR
a v l _ s t a r t <= ’ 0 ’ ;
d r _ w r r e q <= ’ 0 ’ ;
i f (a v l _ r d a t a _ v a l i d = ’ 1 ’) then −− av a l on bus gran ted , s t a r t s DDR2 read

r e q u e s t
d r _ w r r e q <= ’ 1 ’ ;
d r _ w r d a t a <= a v l _ r d a t a ;
dd r_ row_cn t <= ddr_ row_cn t + ’ 1 ’ ;
i f (dd r_ row_cn t = c o n v _ s t d _ l o g i c _ v e c t o r ((c o n v _ i n t e g e r (n u m b e r o f l i n e _ f f)) −

1 , 9)) then
ddr_ row_cn t <= (o t h e r s => ’ 0 ’) ;
DDR2RD_STATE <= S7 ;

end i f ;
end i f ;

when S6 =>
a v l _ s t a r t <= ’ 0 ’ ;
d r _ w r r e q <= ’ 0 ’ ;
i f (a v l _ r d a t a _ v a l i d = ’ 1 ’) then −− av a l on bus gran ted , s t a r t s f i r s t DDR2

read r e q u e s t
d r _ w r r e q <= ’ 1 ’ ;
d r _ w r d a t a <= a v l _ r d a t a ;
dd r_ row_cn t <= ddr_ row_cn t + ’ 1 ’ ;
i f (dd r_ row_cn t = X"FF ") then

DDR2RD_STATE <= S6_WAIT ;
dd r_ row_cn t <= (o t h e r s => ’ 0 ’) ;
d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) & (

c o n v _ s t d _ l o g i c _ v e c t o r (c o n v _ i n t e g e r (f i r s t l i n e t o r e a d _ f f (11 downto 3)
+256) , 9))) ;

d d r _ r d _ a v l _ s i z e <= c o n v _ s t d _ l o g i c _ v e c t o r ((c o n v _ i n t e g e r (n u m b e r o f l i n e _ f f
)) − 256 , 9) ;

a v l _ s t a r t <= ’ 1 ’ ;
end i f ;

end i f ;
when S6_WAIT =>

a v l _ s t a r t <= ’ 0 ’ ;
d r _ w r r e q <= ’ 0 ’ ;
i f (a v l _ r d a t a _ v a l i d = ’ 1 ’) then −− av a l on bus gran ted , s t a r t s second DDR2

read r e q u e s t
d r _ w r r e q <= ’ 1 ’ ;
d r _ w r d a t a <= a v l _ r d a t a ;
dd r_ row_cn t <= ddr_ row_cn t + ’ 1 ’ ;
i f (dd r_ row_cn t = c o n v _ s t d _ l o g i c _ v e c t o r ((c o n v _ i n t e g e r (n u m b e r o f l i n e _ f f)

−256) − 1 , 9)) then
DDR2RD_STATE <= S7 ;

end i f ;
end i f ;

when S7 =>
d r _ w r r e q <= ’ 0 ’ ;
i f (n u m b e r o f l i n e _ s f > X" 0000 ") then −− second frame n o t empty

i f (n u m b e r o f l i n e _ s f < 256) then −−o n l y one a c c e s s i s r e q u i r e d i n t h e
second frame

d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & (f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) + X" 0001 ")
& " 000000000 ") ; −− f i r s t l i n e t o r e a d _ s f (11 downto 3)) ;

d d r _ r d _ a v l _ s i z e <= n u m b e r o f l i n e _ s f (8 downto 0) ;

i
i

“main” — 2017/1/11 — 15:05 — page 131 — #158 i
i

i
i

i
i

a v l _ s t a r t <= ’ 1 ’ ;
DDR2RD_STATE <= S8 ;

e l s e −− two a c c e s s e s are r e q u i r e d i n t h e
second frame

d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & (f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) + X" 0001 ")
& " 000000000 ") ; −− f i r s t l i n e t o r e a d _ s f (11 downto 3)) ;

d d r _ r d _ a v l _ s i z e <= " 100000000 " ;
a v l _ s t a r t <= ’ 1 ’ ;
DDR2RD_STATE <= S9 ;

end i f ;
e l s e −− second frame i s empty

DDR2RD_STATE <= S12 ;
end i f ;

when S8 =>
a v l _ s t a r t <= ’ 0 ’ ;
d r _ w r r e q <= ’ 0 ’ ;
i f (a v l _ r d a t a _ v a l i d = ’ 1 ’) then −− av a l on bus gran ted , s t a r t s DDR2 read

r e q u e s t
d r _ w r r e q <= ’ 1 ’ ;
d r _ w r d a t a <= a v l _ r d a t a ;
dd r_ row_cn t <= ddr_ row_cn t + ’ 1 ’ ;
i f (dd r_ row_cn t = c o n v _ s t d _ l o g i c _ v e c t o r ((c o n v _ i n t e g e r (n u m b e r o f l i n e _ s f)) −

1 , 9)) then
ddr_ row_cn t <= (o t h e r s => ’ 0 ’) ;
DDR2RD_STATE <= S12 ;

end i f ;
end i f ;

when S9 =>
a v l _ s t a r t <= ’ 0 ’ ;
d r _ w r r e q <= ’ 0 ’ ;
i f (a v l _ r d a t a _ v a l i d = ’ 1 ’) then −− av a l on bus gran ted , s t a r t s f i r s t DDR2

read r e q u e s t
d r _ w r r e q <= ’ 1 ’ ;
d r _ w r d a t a <= a v l _ r d a t a ;
dd r_ row_cn t <= ddr_ row_cn t + ’ 1 ’ ;
i f (dd r_ row_cn t = X"FF ") then

DDR2RD_STATE <= S9_WAIT ;
dd r_ row_cn t <= (o t h e r s => ’ 0 ’) ;
d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & (f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) + X" 0001 ")

& " 100000000 ") ; −− f i r s t l i n e t o r e a d _ s f (11 downto 3)) + 256;
d d r _ r d _ a v l _ s i z e <= c o n v _ s t d _ l o g i c _ v e c t o r (c o n v _ i n t e g e r (n u m b e r o f l i n e _ f f)

− 256 , 9) ;
a v l _ s t a r t <= ’ 1 ’ ;

end i f ;
end i f ;

when S9_WAIT =>
a v l _ s t a r t <= ’ 0 ’ ;
d r _ w r r e q <= ’ 0 ’ ;
i f (a v l _ r d a t a _ v a l i d = ’ 1 ’) then −− av a l on bus gran ted , s t a r t s second DDR2

read r e q u e s t
d r _ w r r e q <= ’ 1 ’ ;
d r _ w r d a t a <= a v l _ r d a t a ;
dd r_ row_cn t <= ddr_ row_cn t + ’ 1 ’ ;
i f (dd r_ row_cn t = c o n v _ s t d _ l o g i c _ v e c t o r ((c o n v _ i n t e g e r (n u m b e r o f l i n e _ f f)

−256) − 1 , 9)) then
ddr_ row_cn t <= (o t h e r s => ’ 0 ’) ;
DDR2RD_STATE <= S12 ;

end i f ;
end i f ;

when S10 =>
a v l _ s t a r t <= ’ 0 ’ ;
d r _ w r r e q <= ’ 0 ’ ;
i f (a v l _ r d a t a _ v a l i d = ’ 1 ’) then −− av a l on bus gran ted , s t a r t s DDR2 read

r e q u e s t
d r _ w r r e q <= ’ 1 ’ ;
d r _ w r d a t a <= a v l _ r d a t a ;
dd r_ row_cn t <= ddr_ row_cn t + ’ 1 ’ ;
i f (dd r_ row_cn t = c o n v _ s t d _ l o g i c _ v e c t o r ((c o n v _ i n t e g e r (n u m b e r o f l i n e)) −

i
i

“main” — 2017/1/11 — 15:05 — page 132 — #159 i
i

i
i

i
i

1 , 9)) then
ddr_ row_cn t <= (o t h e r s => ’ 0 ’) ;
DDR2RD_STATE <= S12 ;

end i f ;
end i f ;

when S11 =>
a v l _ s t a r t <= ’ 0 ’ ;
d r _ w r r e q <= ’ 0 ’ ;
i f (a v l _ r d a t a _ v a l i d = ’ 1 ’) then −− av a l on bus gran ted , s t a r t s f i r s t DDR2

read r e q u e s t
d r _ w r r e q <= ’ 1 ’ ;
d r _ w r d a t a <= a v l _ r d a t a ;
dd r_ row_cn t <= ddr_ row_cn t + ’ 1 ’ ;
i f (dd r_ row_cn t = X"FF ") then

DDR2RD_STATE <= S11_WAIT ;
dd r_ row_cn t <= (o t h e r s => ’ 0 ’) ;
d d r _ r d _ a v l _ a d d r <= (’ 0 ’ & f i r s t _ s l o t _ t i m e s t a m p (23 downto 8) & (

c o n v _ s t d _ l o g i c _ v e c t o r (c o n v _ i n t e g e r (f i r s t l i n e t o r e a d (11 downto 3)
+256) , 9))) ;

d d r _ r d _ a v l _ s i z e <= c o n v _ s t d _ l o g i c _ v e c t o r (c o n v _ i n t e g e r (n u m b e r o f l i n e) −
256 , 9) ;

a v l _ s t a r t <= ’ 1 ’ ;
end i f ;

end i f ;
when S11_WAIT =>

a v l _ s t a r t <= ’ 0 ’ ;
d r _ w r r e q <= ’ 0 ’ ;
i f (a v l _ r d a t a _ v a l i d = ’ 1 ’) then −− av a l on bus gran ted , s t a r t s second DDR2

read r e q u e s t
d r _ w r r e q <= ’ 1 ’ ;
d r _ w r d a t a <= a v l _ r d a t a ;
dd r_ row_cn t <= ddr_ row_cn t + ’ 1 ’ ;
i f (dd r_ row_cn t = c o n v _ s t d _ l o g i c _ v e c t o r ((c o n v _ i n t e g e r (n u m b e r o f l i n e) −256) −

1 , 9)) then
ddr_ row_cn t <= (o t h e r s => ’ 0 ’) ;
DDR2RD_STATE <= S12 ;

end i f ;
end i f ;
−−

−−

when S12 =>
d r _ w r r e q <= ’ 0 ’ ;
i f (DDR2NOWTR_STATE = S0 and ERRORS_STATE = S0) then

DDR2RD_STATE <= S0 ;
dd r_ rd_done <= ’ 1 ’ ;

end i f ;
−−

−−

when o t h e r s =>
DDR2RD_STATE <= S0 ;

end case ;
end i f ;

end i f ;
end p r o c e s s DDR2RDFSM;

−−
−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− DDR2 AVALON READ FSM
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DDR2AVLRDFSM : p r o c e s s (r e s e t , c l o c k)

i
i

“main” — 2017/1/11 — 15:05 — page 133 — #160 i
i

i
i

i
i

begin
i f (r e s e t = ’ 1 ’) then

d d r _ r d _ a v l _ r e a d _ r e q <= ’ 0 ’ ; −− read s i g n a l
d d r _ r d _ a v l _ b u r s t b e g i n <= ’ 0 ’ ; −− s t a r t b u r s t r e q u e s t

DDR2AVLRD_STATE <= S0 ;
e l s e

i f (c l o c k = ’1 ’ and c lock ’ e v e n t) then
case DDR2AVLRD_STATE i s

−−
−−

when S0 =>

i f ((r d _ g r a n t = ’ 1 ’) and (a v l _ s t a r t = ’ 1 ’)) then −− av a l on bus gran ted ,
s t a r t s DDR2 read r e q u e s t

d d r _ r d _ a v l _ r e a d _ r e q <= ’ 0 ’ ; −− read s i g n a l
d d r _ r d _ a v l _ b u r s t b e g i n <= ’ 0 ’ ;
DDR2AVLRD_STATE <= S0_WAIT ;

e l s e
d d r _ r d _ a v l _ r e a d _ r e q <= ’ 0 ’ ; −− read s i g n a l
d d r _ r d _ a v l _ b u r s t b e g i n <= ’ 0 ’ ;
DDR2AVLRD_STATE <= S0 ;

end i f ;

−−
−−

when S0_WAIT => −−w a i t i n case o f s t a r t d u r i n g a va lon n o t ready

i f ((r d _ g r a n t = ’ 1 ’) and (a v l _ r e a d y = ’ 1 ’)) then −− av a l on bus gran ted ,
av a l on bus ready

d d r _ r d _ a v l _ r e a d _ r e q <= ’ 1 ’ ; −− read s i g n a l
d d r _ r d _ a v l _ b u r s t b e g i n <= ’ 1 ’ ; −− s t a r t b u r s t r e q u e s t
DDR2AVLRD_STATE <= S1 ;

e l s e
d d r _ r d _ a v l _ r e a d _ r e q <= ’ 0 ’ ; −− read s i g n a l
d d r _ r d _ a v l _ b u r s t b e g i n <= ’ 0 ’ ;
DDR2AVLRD_STATE <= S0_WAIT ;

end i f ;

−−
−−

when S1 =>

d d r _ r d _ a v l _ b u r s t b e g i n <= ’ 0 ’ ; −− remove b u r s t r e q u e s t
i f (a v l _ r e a d y = ’ 1 ’) then −− b u r s t r e q u e s t has been a c c e p t e d

d d r _ r d _ a v l _ r e a d _ r e q <= ’ 0 ’ ; −− read s i g n a l d e a s s e r t e d
end i f ;
DDR2AVLRD_STATE <= S0 ;

−−
−−−

when o t h e r s =>
DDR2AVLRD_STATE <= S0 ;

end case ;

end i f ;

i
i

“main” — 2017/1/11 — 15:05 — page 134 — #161 i
i

i
i

i
i

end i f ;
end p r o c e s s DDR2AVLRDFSM;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− DDR2 Number Of Word To Read FOR EACH TIME STAMP FSM
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DDR2NOWTRFSM : p r o c e s s (r e s e t , c l o c k)

v a r i a b l e temp : i n t e g e r range 0 to 1024 := 0 ;

begin

i f (r e s e t = ’ 1 ’) then

s l o t _ c n t <= (o t h e r s => ’ 0 ’) ;
n e s _ c n t <= (o t h e r s => ’ 0 ’) ;
nowt r_wr req <= ’ 0 ’ ;
nes_wr req <= ’ 0 ’ ;
f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g <= (o t h e r s => ’ 0 ’) ;
n o w t r _ d a t a _ i n t <= (o t h e r s => ’ 0 ’) ;

DDR2NOWTR_STATE <= S0 ;

e l s e
i f (c l o c k = ’1 ’ and c lock ’ e v e n t) then

case DDR2NOWTR_STATE i s

when S0 =>
s l o t _ c n t <= (o t h e r s => ’ 0 ’) ;
n e s _ c n t <= (o t h e r s => ’ 0 ’) ;
n o w t r _ d a t a _ i n t <= (o t h e r s => ’ 0 ’) ;
nowt r_wr req <= ’ 0 ’ ;
ne s_wr req <= ’ 0 ’ ;
i f ((dd r2_ reg_ok = ’ 1 ’) and (n o w t r _ a f u l l = ’ 0 ’)) then

f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g <= f i r s t _ s l o t _ t i m e s t a m p _ p r e c ;
DDR2NOWTR_STATE <= S1 ;

end i f ;

when S1 =>
nowt r_wr req <= ’ 1 ’ ;
n o w t r _ w r d a t a <= ’0 ’ & X" 000 " & d d r 2 r d _ o f f s e t ; −− I t i n d i c a t e s t h e r e a d i n g

s t a r t p o i n t i n t h e f i r s t DDR row

−− c a l c u l a t i o n o f words t o be read f o r each TS r e q u e s t w i l l be per fo rmed i n
t h e s t a t e S2

i f (f i r s t _ s l o t _ t i m e s t a m p (7 downto 0) = " 00000000 ") then −− f i r s t t i m e stamp
r e q u e s t e d i s 0

n o w t r _ d a t a _ i n t <= d d r 2 _ a d d _ r d d a t a _ r e g ((7 5 1 − (c o n v _ i n t e g e r (
f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) ∗ 16)) downto

(736 − (c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) ∗ 16))) ;
e l s e

n o w t r _ d a t a _ i n t <= d d r 2 _ a d d _ r d d a t a _ r e g ((7 5 1 − (c o n v _ i n t e g e r (
f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) ∗16)) downto

(736 − (c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) ∗16))) −
d d r 2 _ a d d _ r d d a t a _ r e g ((7 6 7 − (c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3

downto 0)) ∗16)) downto
(752 − (c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) ∗16))) ;
−−c u r r e n t a d d r e s s l e s s than t h e p r e v i o u s

end i f ;

s l o t _ c n t <= s l o t _ c n t + ’ 1 ’ ;

i f (t f _ e m p t y = ’ 0 ’) then
DDR2NOWTR_STATE <= S2 ;

e l s e
DDR2NOWTR_STATE <= S4 ;

end i f ;

i
i

“main” — 2017/1/11 — 15:05 — page 135 — #162 i
i

i
i

i
i

when S2 =>

nowt r_wr req <= ’ 1 ’ ;
n o w t r _ w r d a t a <= n o w t r _ d a t a _ i n t ;

i f (n o w t r _ d a t a _ i n t = x " 0000 ") then
n e s _ c n t <= n e s _ c n t ; −− s l o t empty

e l s e
n e s _ c n t <= n e s _ c n t + ’ 1 ’ ; −− s l o t n o t empty c o u n t e r

end i f ;

i f (s l o t _ c n t = n u m b e r _ o f _ s l o t s _ f f) then
i f (two_frame = ’ 1 ’) then

s l o t _ c n t <= " 000001 " ;

n o w t r _ d a t a _ i n t <= d d r 2 _ a d d _ r d d a t a _ r e g ((7 5 1 − ((c o n v _ i n t e g e r (
f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) + c o n v _ i n t e g e r (
n u m b e r _ o f _ s l o t s _ f f)) ∗16)) downto

(736 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) +
c o n v _ i n t e g e r (n u m b e r _ o f _ s l o t s _ f f)) ∗16))) ;

DDR2NOWTR_STATE <= S3 ;
e l s e

DDR2NOWTR_STATE <= S4 ;
end i f ;

e l s e

n o w t r _ d a t a _ i n t <= d d r 2 _ a d d _ r d d a t a _ r e g ((7 5 1 − ((c o n v _ i n t e g e r (
f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) + c o n v _ i n t e g e r (s l o t _ c n t))
∗16)) downto

(736 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) +
c o n v _ i n t e g e r (s l o t _ c n t)) ∗16))) −

d d r 2 _ a d d _ r d d a t a _ r e g ((7 6 7 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3
downto 0)) + c o n v _ i n t e g e r (s l o t _ c n t)) ∗16)) downto

(752 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) +
c o n v _ i n t e g e r (s l o t _ c n t)) ∗16))) ;

s l o t _ c n t <= s l o t _ c n t + ’ 1 ’ ;

DDR2NOWTR_STATE <= S2 ;
end i f ;

−−
−−−

when S3 =>
nowt r_wr req <= ’ 1 ’ ;
n o w t r _ w r d a t a <= n o w t r _ d a t a _ i n t ;

i f (n o w t r _ d a t a _ i n t = X" 0000 ") then
n e s _ c n t <= n e s _ c n t ; −− s l o t empty

e l s e
n e s _ c n t <= n e s _ c n t + ’ 1 ’ ; −− s l o t n o t empty c o u n t e r

end i f ;

i f (s l o t _ c n t = n u m b e r _ o f _ s l o t s _ s f) then
DDR2NOWTR_STATE <= S4 ;

e l s e

n o w t r _ d a t a _ i n t <= d d r 2 _ a d d _ r d d a t a _ r e g ((7 5 1 − ((c o n v _ i n t e g e r (
f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) + c o n v _ i n t e g e r (
n u m b e r _ o f _ s l o t s _ f f) + c o n v _ i n t e g e r (s l o t _ c n t)) ∗16)) downto

(736 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) +
c o n v _ i n t e g e r (n u m b e r _ o f _ s l o t s _ f f) + c o n v _ i n t e g e r (s l o t _ c n t)) ∗16))) −

d d r 2 _ a d d _ r d d a t a _ r e g ((7 6 7 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3

i
i

“main” — 2017/1/11 — 15:05 — page 136 — #163 i
i

i
i

i
i

downto 0)) + c o n v _ i n t e g e r (n u m b e r _ o f _ s l o t s _ f f) + c o n v _ i n t e g e r (s l o t _ c n t))
∗16)) downto

(752 − ((c o n v _ i n t e g e r (f i r s t _ s l o t _ t i m e s t a m p _ p r e c _ r e g (3 downto 0)) +
c o n v _ i n t e g e r (n u m b e r _ o f _ s l o t s _ f f) + c o n v _ i n t e g e r (s l o t _ c n t)) ∗16))) ;

s l o t _ c n t <= s l o t _ c n t + ’ 1 ’ ;

DDR2NOWTR_STATE <= S3 ;
end i f ;

−−
−−

when S4 =>
nowt r_wr req <= ’ 0 ’ ;
i f (n e s _ f u l l = ’ 0 ’) then

nes_wr req <= ’ 1 ’ ;
n e s _ w r d a t a <= n e s _ c n t ;
DDR2NOWTR_STATE <= S0 ;

end i f ;

when o t h e r s =>
nowt r_wr req <= ’ 0 ’ ;
DDR2NOWTR_STATE <= S0 ;

end case ;
end i f ;

end i f ;
end p r o c e s s DDR2NOWTRFSM;

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− −− TDCB / PP e r r o r s FSM
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ERRORSFSM : p r o c e s s (r e s e t , c l o c k)

begin
i f (r e s e t = ’ 1 ’) then

e r r _ l i n e _ c n t <= (o t h e r s => ’ 0 ’) ;
f r e r r _ o k <= ’ 0 ’ ;
t o t a l e r r o r _ f f <= (o t h e r s => ’ 0 ’) ;
−− t o t a l e r r o r _ s f <= (o t h e r s => ’ 0 ’) ;
c n t _ e r r o r <= (o t h e r s => ’ 0 ’) ;
e r r o r _ w r r e q <= ’ 0 ’ ;

ERRORS_STATE <= S0 ;

e l s e
i f (c l o c k = ’1 ’ and c lock ’ e v e n t) then

case ERRORS_STATE i s

−−
−−

when S0 =>

e r r _ l i n e _ c n t <= (o t h e r s => ’ 0 ’) ;
f r e r r _ o k <= ’ 0 ’ ;
t o t a l e r r o r _ f f <= (o t h e r s => ’ 0 ’) ;
−− t o t a l e r r o r _ s f <= (o t h e r s => ’ 0 ’) ;
c n t _ e r r o r <= (o t h e r s => ’ 0 ’) ;
e r r o r _ w r r e q <= ’ 0 ’ ;
e r r o r h e a d _ w r r e q <= ’ 0 ’ ;

i f ((e r r o r _ s t a r t = ’ 1 ’) and (e r r o r _ a f u l l = ’ 0 ’)) then
ERRORS_STATE <= S1 ;

end i f ;

i
i

“main” — 2017/1/11 — 15:05 — page 137 — #164 i
i

i
i

i
i

−−
−−

when S1 =>
e r r o r _ w r r e q <= ’ 0 ’ ;
i f (e r r _ l i n e _ c n t = " 100 ") then

t o t a l e r r o r _ f f <= c n t _ e r r o r (2 downto 0) ; −− number o f e r r o r word i n
f i r s t f rame

i f two_frame = ’0 ’ then −− o n l y one frame
−− t o t a l e r r o r _ s f <= (o t h e r s => ’ 0 ’) ;
e r r o r h e a d _ w r r e q <= ’ 1 ’ ;
e r r o r h e a d _ w r d a t a <= ((X" 000 " & (c n t _ e r r o r + " 0001 ")) & (X" 000 ") & (

c n t _ e r r o r)) ; −−number o f e r r o r words t o t & t o t a l e r r o r _ s f &
t o t a l e r r o r _ f f

ERRORS_STATE <= S0 ;
e l s e −− two frame

c n t _ e r r o r <= (o t h e r s => ’ 0 ’) ;
e r r _ l i n e _ c n t <= (o t h e r s => ’ 0 ’) ;
ERRORS_STATE <= S3 ;

end i f ;
e l s e

p p m e m f r e r r _ r a d d r <= (f i r s t _ s l o t _ t i m e s t a m p (15 downto 8) & e r r _ l i n e _ c n t (1
downto 0)) ; −−e r r o r memory a d d r e s s i s p r e p a r e d

e r r _ l i n e _ c n t <= e r r _ l i n e _ c n t + ’ 1 ’ ;
ERRORS_STATE <= S1_WAIT ;

end i f ;
−−

−−

when S1_WAIT =>
ERRORS_STATE <= S1_WAIT0 ; −− e r r o r memory a d d r e s s i s r e g i s t r e d
−−

−−

when S1_WAIT0 =>
ERRORS_STATE <= S1_WAIT1 ; −− e r r o r memory a d d r e s s i s r e g i s t r e d
−−

−−

when S1_WAIT1 =>
f r e r r _ o k <= o r _ r e d u c e (p p m e m f r e r r _ r d a t a (PP_MEM_FRERR_DSIZE−3 downto

0)) ; −− i f f r e r r _ o k i s a s s e r t e d t h e e r r o r l i n e i s n o t empty
−− t h e 2 MSB are n o t computed i n o r _ r e d u c e
ERRORS_STATE <= S2 ;
−−

−−

when S2 =>
i f (f r e r r _ o k = ’ 1 ’) then −− i f f r e r r _ o k a s s e r t e d t h e r e i s an e r r o r word

e r r o r _ w r r e q <= ’ 1 ’ ;
e r r o r _ w r d a t a <= p p m e m f r e r r _ r d a t a ; −− t h e e r r o r word i s w r i t t e n i n

e r r o r f i f o
c n t _ e r r o r <= c n t _ e r r o r + ’1 ’ ;

end i f ;
ERRORS_STATE <= S1 ;
−−

−−−

when S3 =>
e r r o r _ w r r e q <= ’ 0 ’ ;
i f (e r r _ l i n e _ c n t = " 100 ") then
−− t o t a l e r r o r _ s f <= c n t _ e r r o r (2 downto 0) ;
e r r o r h e a d _ w r r e q <= ’ 1 ’ ;
e r r o r h e a d _ w r d a t a <= ((X" 000 " & ((’ 0 ’ & t o t a l e r r o r _ f f) + c n t _ e r r o r + " 0001 "

)) & (" 0000 " & c n t _ e r r o r) & (" 00000 " & t o t a l e r r o r _ f f)) ; −−number o f
e r r o r words t o t & t o t a l e r r o r _ s f (c n t _ e r r o r) &t o t a l e r r o r _ f f

ERRORS_STATE <= S0 ;
e l s e

i
i

“main” — 2017/1/11 — 15:05 — page 138 — #165 i
i

i
i

i
i

p p m e m f r e r r _ r a d d r <=(f i r s t _ s l o t _ t i m e s t a m p _ s f (15 downto 8) & e r r _ l i n e _ c n t (1
downto 0)) ; −−e r r o r memory a d d r e s s i s p r e p a r e d

e r r _ l i n e _ c n t <= e r r _ l i n e _ c n t + ’ 1 ’ ;
ERRORS_STATE <= S3_WAIT ;

end i f ;
−−

−−

when S3_WAIT =>
ERRORS_STATE <= S3_WAIT1 ; −−a d d r e s s r e g i s t r e d
−−

−−

when S3_WAIT1 =>
ERRORS_STATE <= S3_WAIT2 ; −−a d d r e s s r e g i s t r e d
−−

−−

when S3_WAIT2 =>
f r e r r _ o k <= o r _ r e d u c e (p p m e m f r e r r _ r d a t a (PP_MEM_FRERR_DSIZE−3 downto

0)) ; −− i f f r e r r _ o k i s a s s e r t e d t h e e r r o r l i n e i s n o t empty
−− t h e 2 MSB are n o t computed i n o r _ r e d u c e
ERRORS_STATE <= S3_WAIT3 ;
−−

−−

when S3_WAIT3 =>
i f (f r e r r _ o k = ’ 1 ’) then

e r r o r _ w r r e q <= ’ 1 ’ ;
e r r o r _ w r d a t a <= p p m e m f r e r r _ r d a t a ; −− t h e e r r o r word i s w r i t t e n i n e r r o r

f i f o
c n t _ e r r o r <= c n t _ e r r o r + ’1 ’ ;

end i f ;
ERRORS_STATE <= S3 ;

when o t h e r s =>
ERRORS_STATE <= S0 ;

end case ;
end i f ;

end i f ;
end p r o c e s s ERRORSFSM;

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− −− Data Format FSM
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DFFSM : p r o c e s s (r e s e t , c l o c k)

begin

i f (r e s e t = ’ 1 ’) then
d r _ r d r e q <= ’ 0 ’ ;
e r r o r _ r d r e q <= ’ 0 ’ ;
e r r o r h e a d _ r d r e q <= ’ 0 ’ ;
n o w t r _ r d r e q <= ’ 0 ’ ;
d f _ w r r e q <= ’ 0 ’ ;
nw_wrreq <= ’ 0 ’ ;
i d e n t i f i e r _ r e g <= (o t h e r s => ’ 0 ’) ;
f i r s t _ s l o t _ t i m e s t a m p _ r e g <= (o t h e r s => ’ 0 ’) ;
n u m b e r _ o f _ s l o t s _ r e g <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ r e g <= (o t h e r s => ’ 0 ’) ;
num ber_ o f_w ord_ t o_ re ad_ re g <= (o t h e r s => ’ 0 ’) ;
h e a d e r <= (o t h e r s => ’ 0 ’) ;
number_of_word_ to_read <= (o t h e r s => ’ 0 ’) ;
n u m b e r _ o f _ w o r d _ t o _ r e a d _ i n t <= (o t h e r s => ’ 0 ’) ;
n u m b e r _ o f _ w o r d _ t o _ r e a d _ c n t <= (o t h e r s => ’ 0 ’) ;
c u r r _ s l o t _ c o u n t e r <= (o t h e r s => ’ 0 ’) ;
number_of_word <= (o t h e r s => ’ 0 ’) ;
d f _ a f u l l <= ’ 0 ’ ;
c u r r e n t _ s l o t _ t i m e _ c h e c k <= (o t h e r s => ’ 0 ’) ;

i
i

“main” — 2017/1/11 — 15:05 — page 139 — #166 i
i

i
i

i
i

c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r <= ’ 0 ’ ;
e r r o r _ r c n t <= " 0000 " ;
e r r o r _ w c n t <= " 0001 " ;
n o t e m p t y s l o t <= (o t h e r s => ’ 0 ’) ;
r e a d _ l i n e _ c n t <= (o t h e r s => ’ 0 ’) ;
t o t a l c n t e r r o r <= (o t h e r s => ’ 0 ’) ;
h e a d e r _ e r r o r _ w o r d s _ r e g <= (o t h e r s => ’ 0 ’) ;
f f _ e m p t y _ r e g <= ’ 1 ’ ;
s f _ e m p t y _ r e g <= ’ 1 ’ ;
l o g i t <= ’ 0 ’ ;

DF_STATE <= S0 ;
e l s e

i f (c l o c k = ’1 ’ and c lock ’ e v e n t) then
sopeop <= " 00 " ;
l o g i t <= ’ 0 ’ ;
i f (df_usedw > X" 7FE") then

d f _ a f u l l <= ’ 1 ’ ;
e l s e

d f _ a f u l l <= ’ 0 ’ ;
end i f ;

case DF_STATE i s

−−
−−

when S0 =>
d r _ r d r e q <= ’ 0 ’ ;
e r r o r _ r d r e q <= ’ 0 ’ ;
e r r o r h e a d _ r d r e q <= ’ 0 ’ ;
n o w t r _ r d r e q <= ’ 0 ’ ;
d f _ w r r e q <= ’ 0 ’ ;
nw_wrreq <= ’ 0 ’ ;
i d e n t i f i e r _ r e g <= (o t h e r s => ’ 0 ’) ;
f i r s t _ s l o t _ t i m e s t a m p _ r e g <= (o t h e r s => ’ 0 ’) ;
n u m b e r _ o f _ s l o t s _ r e g <= (o t h e r s => ’ 0 ’) ;
n u m b e r o f l i n e _ r e g <= (o t h e r s => ’ 0 ’) ;
h e a d e r <= (o t h e r s => ’ 0 ’) ;
number_of_word_ to_read <= (o t h e r s => ’ 0 ’) ;
n u m b e r _ o f _ w o r d _ t o _ r e a d _ i n t <= (o t h e r s => ’ 0 ’) ;
n u m b e r _ o f _ w o r d _ t o _ r e a d _ c n t <= (o t h e r s => ’ 0 ’) ;
c u r r e n t _ s l o t _ t i m e _ c h e c k <= (o t h e r s => ’ 0 ’) ;
c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r <= ’ 0 ’ ;
c u r r _ s l o t _ c o u n t e r <= (o t h e r s => ’ 0 ’) ;
number_of_word <= (o t h e r s => ’ 0 ’) ;
e r r o r _ r c n t <= " 0000 " ;
e r r o r _ w c n t <= " 0001 " ;
n o t e m p t y s l o t <= (o t h e r s => ’ 0 ’) ;
r e a d _ l i n e _ c n t <= (o t h e r s => ’ 0 ’) ;
t o t a l c n t e r r o r <= (o t h e r s => ’ 0 ’) ;
h e a d e r _ e r r o r _ w o r d s _ r e g <= (o t h e r s => ’ 0 ’) ;
f f _ e m p t y _ r e g <= ’ 1 ’ ;
s f _ e m p t y _ r e g <= ’ 1 ’ ;

i f (dr_empty = ’0 ’ and d f _ a f u l l = ’0 ’ and n w _ f u l l = ’0 ’ and nes_empty = ’0 ’
and e r r o r h e a d _ e m p t y = ’ 0 ’) then

d r _ r d r e q <= ’ 1 ’ ; −− read r e q u e s t f o r DDR2RD (dr) FIFO a s s e r t e d
e r r o r h e a d _ r d r e q <= ’ 1 ’ ;
r e a d _ l i n e _ c n t <= " 0000000001 " ;
n o w t r _ r d r e q <= ’ 1 ’ ; −−read r e q u e s t f o r NUMBEROFWORDTOREAD (nowtr) FIFO

a s s e r t e d
n e s _ r d r e q <= ’ 1 ’ ;
DF_STATE <= S1 ;

end i f ;
−−

−−−

i
i

“main” — 2017/1/11 — 15:05 — page 140 — #167 i
i

i
i

i
i

when S1 =>
d r _ r d r e q <= ’ 0 ’ ; −− read r e q u e s t f o r DDR2RD (dr) FIFO d e a s s e r t e d
e r r o r h e a d _ r d r e q <= ’ 0 ’ ;
n o w t r _ r d r e q <= ’ 0 ’ ;
n e s _ r d r e q <= ’ 0 ’ ;
DF_STATE <= S2 ;
−−

−−−

when S2 =>
i f (n w _ f u l l = ’ 0 ’) then

nw_wrreq <= ’ 1 ’ ;
n w _ w r d a t a s h o r t <= d r _ r d a t a (129 downto 96) ; −− r e a d e r _ f i r s t _ w o r d (e v e n t

number) i s w r i t t e n
i d e n t i f i e r _ r e g <= d r _ r d a t a (139 downto 132) ;
f i r s t _ s l o t _ t i m e s t a m p _ r e g <= d r _ r d a t a (95 downto 64) ; −− f i r s t s l o t t i m e

stamp
n u m b e r _ o f _ s l o t s _ r e g <= d r _ r d a t a (37 downto 32) ; −− number o f s l o t

r e q u e s t e d
s f _ e m p t y _ r e g <= d r _ r d a t a (2 7) ; −− second frame

empty
f f _ e m p t y _ r e g <= d r _ r d a t a (2 6) ; −− f i r s t f rame

empty
n u m b e r o f l i n e _ r e g <= d r _ r d a t a (25 downto 16) ; −− number o f l i n e

t o read
num ber_ o f_wo rd_ t o_ re ad_ re g <= d r _ r d a t a (15 downto 0) ; −− t o t a l number o f

word t o read
number_of_word <= (number_of_word + n o w t r _ r d a t a) ; −− n o w t r _ r d a t a i n S2 i s

t h e number o f word i n s i d e a row n o t f u l l (o f f s e t)
n o t e m p t y s l o t <= n e s _ r d a t a ;
t o t a l c n t e r r o r <= e r r o r h e a d _ r d a t a (19 downto 16) − X" 1 " ;
h e a d e r _ e r r o r _ w o r d s _ r e g <= e r r o r h e a d _ r d a t a ;
i f (e r r o r h e a d _ r d a t a (19 downto 16) = X" 1 ") then

e r r o r f r a m e _ f l a g <= ’ 0 ’ ;
e l s e

e r r o r f r a m e _ f l a g <= ’ 1 ’ ;
end i f ;
DF_STATE <= S2_WAIT ;

end i f ;
−−

−−−

when S2_WAIT =>
nw_wrreq <= ’ 1 ’ ;
i f (t o t a l c n t e r r o r /= X" 0 ") then

n w _ w r d a t a s h o r t <= c o n v _ s t d _ l o g i c _ v e c t o r ((1 + c o n v _ i n t e g e r (n o t e m p t y s l o t) +
c o n v _ i n t e g e r (d r _ r d a t a (15 downto 0)) + 1 + c o n v _ i n t e g e r (t o t a l c n t e r r o r))
, 3 4) ;

e l s e
n w _ w r d a t a s h o r t <= c o n v _ s t d _ l o g i c _ v e c t o r ((1 + c o n v _ i n t e g e r (n o t e m p t y s l o t) +

c o n v _ i n t e g e r (d r _ r d a t a (15 downto 0))) , 3 4) ;
end i f ;

d f _ w r r e q <= ’ 1 ’ ;
d f _ w r d a t a s h o r t <= " 0000000 " & e r r o r f r a m e _ f l a g & " 000000 " &

d r _ r d a t a (133 downto 132) & (X"FF ") & " 00 " & n o t e m p t y s l o t ; −−FPGA header
(d r _ r d a t a (133 downto 132) i s i d e n t i f i e r (1 downto 0) ;

−−(n o t e m p t y s l o t i s number o f s l o t s w i t h da ta)
i f (n o t e m p t y s l o t = " 000000 ") then

DF_STATE <= S2_WAIT1 ; −− w a i t s t a t e : t o watch e r r o r memory
e l s e

i f (f f _ e m p t y _ r e g = ’1 ’) then
d r _ r d r e q <= ’ 0 ’ ;
DF_STATE <= S2_WAIT1 ;

e l s e
i f (dr_empty = ’ 0 ’) then

d r _ r d r e q <= ’ 1 ’ ;
r e a d _ l i n e _ c n t <= r e a d _ l i n e _ c n t + " 0000000001 " ;

i
i

“main” — 2017/1/11 — 15:05 — page 141 — #168 i
i

i
i

i
i

DF_STATE <= S2_WAIT1 ;
e l s e

d r _ r d r e q <= ’ 0 ’ ;
DF_STATE <= S2_WAITDR ;

end i f ;
end i f ;

end i f ;
−−

−−

when S2_WAITDR =>
d f _ w r r e q <= ’ 0 ’ ;
nw_wrreq <= ’ 0 ’ ;
i f (dr_empty = ’ 0 ’) then

d r _ r d r e q <= ’ 1 ’ ;
r e a d _ l i n e _ c n t <= (r e a d _ l i n e _ c n t + " 0000000001 ") ;
DF_STATE <= S2_WAIT1 ;

e l s e
d r _ r d r e q <= ’ 0 ’ ;
DF_STATE <= S2_WAITDR ;

end i f ;
−−

−−

when S2_WAIT1 =>
d f _ w r r e q <= ’ 0 ’ ;
nw_wrreq <= ’ 0 ’ ;
d r _ r d r e q <= ’ 0 ’ ;
c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r <= ’ 0 ’ ;
i f (c u r r _ s l o t _ c o u n t e r = n u m b e r _ o f _ s l o t s _ r e g or n o t e m p t y s l o t = " 000000 ")

then −− f i n i s h e d r e a d i n g t h e s l o t
i f (t o t a l c n t e r r o r /= X" 0 ") then

d f _ w r r e q <= ’ 1 ’ ;
d f _ w r d a t a s h o r t <= h e a d e r _ e r r o r _ w o r d s _ r e g ; −− (h e a d e r _ e r r o r _ w o r d s _ r e g <=

((X"000" & c n t _ e r r o r) & ("000 00" & t o t a l e r r o r _ s f) & ("00 000" &
t o t a l e r r o r _ f f))

e r r o r _ r d r e q <= ’ 1 ’ ;
e r r o r _ r c n t <= (e r r o r _ r c n t + " 0001 ") ;
DF_STATE <= S5 ;

e l s e
DF_STATE <=S7 ;

end i f ;
e l s e

n o w t r _ r d r e q <= ’ 1 ’ ; −− nowtr FIFO read req a s s e r t e d (read how many words)
n u m b e r _ o f _ w o r d _ t o _ r e a d _ c n t <= X" 0000 " ; −−r e s e t c o u n t e r
DF_STATE <= S3 ;

end i f ;
−−

−−

when S3 =>
n o w t r _ r d r e q <= ’ 0 ’ ;
DF_STATE <= S3_WAIT ;
−−

−−

when S3_WAIT =>
number_of_word_ to_read <= n o w t r _ r d a t a (7 downto 0) ;
i f (n o w t r _ r d a t a = X" 0000 ") then

n u m b e r _ o f _ w o r d _ t o _ r e a d _ i n t <= X" 0000 " ;
e l s e

n u m b e r _ o f _ w o r d _ t o _ r e a d _ i n t <= n o w t r _ r d a t a − X" 0001 " ; −−number o f word t o
read i n t h e s l o t

end i f ;
DF_STATE <= S3_WAIT2 ;
−−

−−

i
i

“main” — 2017/1/11 — 15:05 — page 142 — #169 i
i

i
i

i
i

when S3_WAIT2 =>

i f (number_of_word_ to_read = 0) then −− t h e s l o t i s empty
i f ((f i r s t _ s l o t _ t i m e s t a m p _ r e g (7 downto 0) + (" 00 " & c u r r _ s l o t _ c o u n t e r)) =

X"FF") then −−s p e c i a l case : b e g i n s t h e n e x t f rame
i f (dr_empty = ’0 ’ and s f _ e m p t y _ r e g = ’ 0 ’) then

number_of_word <= X" 0000 " ;
c u r r _ s l o t _ c o u n t e r <= (c u r r _ s l o t _ c o u n t e r + " 000001 ") ;
i f ((f f _ e m p t y _ r e g = ’ 0 ’) and (number_of_word = X" 0000 ")) then −− I t

has a l r e a d y been a c c e s s e d one row a t t h e end o f a s l o t ,

−−
−− b u t has n o t y e t been used
d r _ r d r e q <= ’ 0 ’ ;

e l s e
d r _ r d r e q <= ’ 1 ’ ;
r e a d _ l i n e _ c n t <= (r e a d _ l i n e _ c n t + " 0000000001 ") ; −−i n c r e a s e t h e l i n e

end i f ;
DF_STATE <= S2_WAIT1 ;

e l s i f (s f _ e m p t y _ r e g = ’ 1 ’) then
number_of_word <= X" 0000 " ;
c u r r _ s l o t _ c o u n t e r <= (c u r r _ s l o t _ c o u n t e r + " 000001 ") ;
DF_STATE <= S2_WAIT1 ;

e l s e
DF_STATE <= S3_WAIT2 ;

end i f ;
e l s e

DF_STATE <= S2_WAIT1 ;
c u r r _ s l o t _ c o u n t e r <= (c u r r _ s l o t _ c o u n t e r + " 000001 ") ;

end i f ;
e l s e

d f _ w r r e q <= ’ 1 ’ ;
d f _ w r d a t a s h o r t <= ((X" 00 " & number_of_word_ to_read) + X" 0001 ") & ((

f i r s t _ s l o t _ t i m e s t a m p _ r e g (15 downto 0)) + (X" 00 " & " 00 " &
c u r r _ s l o t _ c o u n t e r)) ; −− s l o t header

c u r r _ s l o t _ c o u n t e r <= (c u r r _ s l o t _ c o u n t e r + " 000001 ") ;
c u r r e n t _ s l o t _ t i m e _ c h e c k <= ((f i r s t _ s l o t _ t i m e s t a m p _ r e g (10 downto 0)) + (

" 00000 " & c u r r _ s l o t _ c o u n t e r)) ; −− LOGGER check s u l l a t i m e s t a m p d e i
d a t i

DF_STATE <= S3_WAIT3 ;
end i f ;

−−
−−−

when S3_WAIT3 =>
i f (n u m b e r _ o f _ w o r d _ t o _ r e a d _ c n t = n u m b e r _ o f _ w o r d _ t o _ r e a d _ i n t) then −−

f i n i s h e d r e a d i n g t h e s l o t
d f _ w r r e q <= ’ 1 ’ ;
d f _ w r d a t a s h o r t <= d r _ r d a t a ((255 −(32 ∗ c o n v _ i n t e g e r (number_of_word)))

downto (224−(32 ∗ c o n v _ i n t e g e r (number_of_word)))) ;

−−−−−−−START LOGGER
−−

i f (d r _ r d a t a ((242 −(32 ∗ c o n v _ i n t e g e r (number_of_word))) downto (232−(32 ∗
c o n v _ i n t e g e r (number_of_word)))) = c u r r e n t _ s l o t _ t i m e _ c h e c k) then

c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r <= ’ 0 ’ ;
e l s e

c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r <= ’ 1 ’ ;
i f (l o g b u s y = ’ 0 ’) then

l ogd (0) <= LOGMSG_DDRRD_TIMEMIS;
logd (1) <= (f i r s t _ s l o t _ t i m e s t a m p _ r e g + (X" 000000 " & " 00 " & (

c u r r _ s l o t _ c o u n t e r − " 000001 "))) ;
l ogd (2) <= X" 00000 " & ’0 ’ & c u r r e n t _ s l o t _ t i m e _ c h e c k ;
logd (3) <= X" 00000 " & ’0 ’ & (d r _ r d a t a ((242 −(32 ∗ c o n v _ i n t e g e r (

number_of_word))) downto (232−(32 ∗ c o n v _ i n t e g e r (number_of_word)))
)) ;

l ogn <= c o n v _ s t d _ l o g i c _ v e c t o r (4 , 3) ;

i
i

“main” — 2017/1/11 — 15:05 — page 143 — #170 i
i

i
i

i
i

l o g i t <= ’ 1 ’ ;
end i f ;

end i f ;
−−−−−−−END LOGGER

−−−

i f ((f i r s t _ s l o t _ t i m e s t a m p _ r e g (7 downto 0) + (" 00 " & c u r r _ s l o t _ c o u n t e r)) =
X" 00 ") then −−s p e c i a l case : b e g i n s t h e n e x t f rame

i f (dr_empty = ’0 ’ and s f _ e m p t y _ r e g = ’ 0 ’) then
number_of_word <= X" 0000 " ;
d r _ r d r e q <= ’ 1 ’ ;
r e a d _ l i n e _ c n t <= (r e a d _ l i n e _ c n t + " 0000000001 ") ; −−i n c r e a s e t h e row l a

r i g a
DF_STATE <= S2_WAIT1 ;

e l s i f (s f _ e m p t y _ r e g = ’ 1 ’) then
number_of_word <= X" 0000 " ;
DF_STATE <= S2_WAIT1 ;

e l s e
d f _ w r r e q <= ’ 0 ’ ;
DF_STATE <= S3_WAIT3 ;

end i f ;
e l s i f (number_of_word = X" 0007 ") then −− i f t h e e n t i r e row i s been a c c e s s e d

i f (r e a d _ l i n e _ c n t = (n u m b e r o f l i n e _ r e g + " 0000000001 ")) then −− i f a l l
t h e rows are been a c c e s s e d

number_of_word <= X" 0000 " ;
DF_STATE <= S2_WAIT1 ;

e l s i f (dr_empty = ’ 0 ’) then
number_of_word <= X" 0000 " ;
d r _ r d r e q <= ’ 1 ’ ;
r e a d _ l i n e _ c n t <= (r e a d _ l i n e _ c n t + " 0000000001 ") ;
DF_STATE <= S2_WAIT1 ;

e l s e
d f _ w r r e q <= ’ 0 ’ ;
DF_STATE <= S3_WAIT3 ;

end i f ;
e l s e

number_of_word <= (number_of_word + X" 0001 ") ;
DF_STATE <= S2_WAIT1 ;

end i f ;
e l s e −− t h e s l o t i s n o t f i n i s h e d

d f _ w r r e q <= ’ 1 ’ ;
d f _ w r d a t a s h o r t <= d r _ r d a t a ((255 −(32 ∗ c o n v _ i n t e g e r (number_of_word)))

downto (224−(32 ∗ c o n v _ i n t e g e r (number_of_word)))) ;

−−−−−−−START LOGGER
−−

i f (d r _ r d a t a ((242 −(32 ∗ c o n v _ i n t e g e r (number_of_word))) downto (232−(32 ∗
c o n v _ i n t e g e r (number_of_word)))) = c u r r e n t _ s l o t _ t i m e _ c h e c k) then

c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r <= ’ 0 ’ ;
e l s e

c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r <= ’ 1 ’ ;
i f (l o g b u s y = ’ 0 ’) then

l ogd (0) <= LOGMSG_DDRRD_TIMEMIS;
logd (1) <= (f i r s t _ s l o t _ t i m e s t a m p _ r e g + (X" 000000 " & " 00 " & (

c u r r _ s l o t _ c o u n t e r − " 000001 "))) ;
l ogd (2) <= X" 00000 " & ’0 ’ & c u r r e n t _ s l o t _ t i m e _ c h e c k ;
logd (3) <= X" 00000 " & ’0 ’ & (d r _ r d a t a ((242 −(32 ∗ c o n v _ i n t e g e r (

number_of_word))) downto (232−(32 ∗ c o n v _ i n t e g e r (number_of_word)))
)) ;

l ogn <= c o n v _ s t d _ l o g i c _ v e c t o r (4 , 3) ;
l o g i t <= ’ 1 ’ ;

end i f ;
end i f ;
−−−−−−−END LOGGER

−−−

i f (number_of_word = X" 0007 ") then −− i f t h e e n t i r e row i s been a c c e s s e d
i f (dr_empty = ’ 0 ’) then

i
i

“main” — 2017/1/11 — 15:05 — page 144 — #171 i
i

i
i

i
i

DF_STATE <= S4 ;
n u m b e r _ o f _ w o r d _ t o _ r e a d _ c n t <= (n u m b e r _ o f _ w o r d _ t o _ r e a d _ c n t + X" 0001 ") ;
number_of_word <= X" 0000 " ;
d r _ r d r e q <= ’ 1 ’ ;
r e a d _ l i n e _ c n t <= (r e a d _ l i n e _ c n t + " 0000000001 ") ;

e l s e
DF_STATE <= S3_WAIT3 ;
d f _ w r r e q <= ’ 0 ’ ;

end i f ;
−− end i f ;

e l s e −− −− i f t h e e n t i r e row i s n o t been a c c e s s e d
n u m b e r _ o f _ w o r d _ t o _ r e a d _ c n t <= (n u m b e r _ o f _ w o r d _ t o _ r e a d _ c n t + X" 0001 ") ;
number_of_word <= (number_of_word + X" 0001 ") ;
DF_STATE <= S3_WAIT3 ;

end i f ;
end i f ;
−−

−−−

when S4 =>
c u r r e n t _ s l o t _ t i m e _ c h e c k _ e r r o r <= ’ 0 ’ ;
d r _ r d r e q <= ’ 0 ’ ;
d f _ w r r e q <= ’ 0 ’ ;
DF_STATE <= S3_WAIT3 ;
−−

−−

when S5 =>
i f ((e r r o r _ r c n t) = t o t a l c n t e r r o r) then

e r r o r _ r d r e q <= ’ 0 ’ ;
e l s e

e r r o r _ r d r e q <= ’ 1 ’ ;
e r r o r _ r c n t <= (e r r o r _ r c n t + " 0001 ") ;

end i f ;
d f _ w r r e q <= ’0 ’ ;
DF_STATE <= S6 ;
−−

−−

when S6 =>
i f ((e r r o r _ r c n t) = t o t a l c n t e r r o r) then

e r r o r _ r d r e q <= ’ 0 ’ ;
e l s e

e r r o r _ r d r e q <= ’ 1 ’ ;
e r r o r _ r c n t <= (e r r o r _ r c n t + " 0001 ") ;

end i f ;

d f _ w r r e q <= ’ 1 ’ ;
d f _ w r d a t a s h o r t <= e r r o r _ r d a t a ;
e r r o r _ w c n t <= (e r r o r _ w c n t + " 0001 ") ;
i f ((e r r o r _ w c n t) = t o t a l c n t e r r o r) then

DF_STATE <=S7 ;
e l s e

DF_STATE <=S6 ;
end i f ;
−−

−−

when S7 =>
d f _ w r r e q <= ’ 0 ’ ;
i f (n w _ f u l l = ’ 0 ’) then

d f _ w r r e q <= ’ 1 ’ ;
d f _ w r d a t a s h o r t <= X" 00000000 " ;
sopeop <= " 01 " ; −− t h e end b i t i s a s s e r t e d
DF_STATE <= S0 ;

end i f ;
−−

−−

i
i

“main” — 2017/1/11 — 15:05 — page 145 — #172 i
i

i
i

i
i

when o t h e r s =>
DF_STATE <= S0 ;

end case ;
end i f ;

end i f ;
end p r o c e s s DFFSM;

−−
−−−

−−
−−−

−− FIFO i n s t a n c e s
−−

−−−

−−
−−−

−− "DDR2 READ" (DR) FIFO
−−

DDR2RDFIFO : e n t i t y common_mgwz_generated . f i f o _ 2 0 4 8 x 2 5 6
port map (

a c l r => r e s e t ,
c l o c k => c lock ,
d a t a => dr_wrda t a ,
r d r e q => d r _ r d r e q ,
wrreq => dr_wrreq ,
a l m o s t _ f u l l => d r _ a f u l l ,
empty => dr_empty ,
q => d r _ r d a t a ,
usedw => dr_usedw

) ;

−−−
−−DATA FORMAT FIFO (d f)
−−−
DATAFORMATFIFO : e n t i t y common_mgwz_generated . f i f o _ 1 6 3 8 4 x 3 6 −− 4096 words w i l l be

checked
port map (

a c l r => r e s e t ,
wrc lk => c lock ,
r d c l k => c lock ,
d a t a => df_wrda t a ,
r d r e q => d f _ r d r e q ,
wrreq => df_wrreq ,
q => d f _ r d a t a ,
rdempty => df_empty ,
w r f u l l => d f _ f u l l ,
wrusedw => df_usedw

) ;
−−−
−− TOTAL NUMBER OF WORD FIFO
−−
FIRSTWORDTOTALNUMBEROFWORDFIFO : e n t i t y common_mgwz_generated . f i f o _ 3 2 x 3 6
port map

(
a c l r => r e s e t ,
wrc lk => c lock ,
r d c l k => c lock ,
d a t a => nw_wrdata ,
r d r e q => nw_rdreq ,
wrreq => nw_wrreq ,
rdempty => nw_empty ,

i
i

“main” — 2017/1/11 — 15:05 — page 146 — #173 i
i

i
i

i
i

w r f u l l => nw_fu l l ,
q => nw_rdata ,
wrusedw => nw_usedw

) ;

−−
−− DDR2 number o f word t o read i n each t i m e stamp r e q u e s t e d FIFO
−−
NUMBEROFWORDTOREADEACHTIMESTAMPFIFO: e n t i t y common_mgwz_generated . f i fo_128x16_nw
port map

(
a c l r => r e s e t ,
c l o c k => c lock ,
d a t a => nowt r_wrda ta ,
r d r e q => n o w t r _ r d r e q ,
wrreq => nowtr_wrreq ,
a l m o s t _ f u l l => n o w t r _ a f u l l ,
empty => nowtr_empty ,
q => n o w t r _ r d a t a ,
usedw => nowtr_usedw

) ;
−−−
−− NOT EMPTY SLOT FIFO
−−
NOTEMPTYSLOTFIFO : e n t i t y common_mgwz_generated . f i fo_16x6_nw
port map

(
a c l r => r e s e t ,
c l o c k => c lock ,
d a t a => nes_wrda ta ,
r d r e q => n e s _ r d r e q ,
wrreq => nes_wrreq ,
f u l l => n e s _ f u l l ,
empty => nes_empty ,
q => n e s _ r d a t a ,
usedw => nes_usedw

) ;

−−
−− ERROR FIFO
−−−
ERRORFIFO : e n t i t y common_mgwz_generated . f i fo_32x32_nw
port map

(
a c l r => r e s e t ,
c l o c k => c lock ,
d a t a => e r r o r _ w r d a t a ,
r d r e q => e r r o r _ r d r e q ,
wrreq => e r r o r _ w r r e q ,
a l m o s t _ f u l l => e r r o r _ a f u l l ,
empty => e r r o r _ e m p t y ,
q => e r r o r _ r d a t a ,
usedw => e r r o r _ u s e d w

) ;

−−
−− ERROR HEADER FIFO
−−−
ERRORHEADERFIFO : e n t i t y common_mgwz_generated . f i fo_16x32_nw
port map

(
a c l r => r e s e t ,
c l o c k => c lock ,
d a t a => e r r o r h e a d _ w r d a t a ,
r d r e q => e r r o r h e a d _ r d r e q ,
wrreq => e r r o r h e a d _ w r r e q ,
empty => e r r o r h e a d _ e m p t y ,
f u l l => e r r o r h e a d _ f u l l ,

i
i

“main” — 2017/1/11 — 15:05 — page 147 — #174 i
i

i
i

i
i

q => e r r o r h e a d _ r d a t a ,
usedw => e r r o r h e a d _ u s e d w

) ;

−−
PARITY_GEN : e n t i t y common_ te l62_ l ib . p a r i t y _ g e n
−−
port map (

d a t a => d a t a p a r i t y i n ,
p a r i t y => d a t a p a r i t y o u t

) ;
−−
PARITY_GEN_2 : e n t i t y common_ te l62_ l ib . p a r i t y _ g e n
−−
port map (

d a t a => d a t a p a r i t y i n n w ,
p a r i t y => d a t a p a r i t y o u t n w

) ;

−−−
LOG_INT : e n t i t y common_ te l62_ l ib . l o g g e r _ i n t e r f a c e
−−−
port map (

c l k => c lock ,
r e s e t => r e s e t ,
e n a b l e => l o g _ p e r m i t ,
l ogd => logd ,
l ogn => logn ,
l o g i t => l o g i t ,
l o g b u s y => logbusy ,
l o g _ d a t a => l o g _ d a t a ,
l o g _ v a l i d => l o g _ v a l i d ,
log_more => log_more ,
l o g _ a c k => l o g _ a c k

) ;
end a r c h i t e c t u r e s t d ;

i
i

“main” — 2017/1/11 — 15:05 — page 148 — #175 i
i

i
i

i
i

Bibliography

[1] General-purpose computing on graphics processing units.

[2] NaNet overview. http://apegate.roma1.infn.it/mediawiki/index.php/NaNet_
overview.

[3] A.Antonelli et al. The na62 lav front-end electronics. JINST, 7:C01097, 2012.

[4] M Abolins et al. Integration of the trigger and data acquisition systems in atlas. Journal of Physics: Conference
Series, 119, 2008.

[5] A.Ceccucci et al. The na62 liquid krypton calorimeter’s new readout system. JINST, 9(01):C01047, 2014.

[6] Altera R©. Cyclone iii device handbook.

[7] Altera R©. De4 board user manual.

[8] Altera R©. Quartus ii software.

[9] Altera R©. Serial configuration (epcs) devices datasheet.

[10] Altera R©. Stratix iii device handbook.

[11] Altera R©. Stratix iv device handbook.

[12] G. Anelli et al. The totem electronics system. 2008 JINST 3 S08007, pages 205–210, 2007.

[13] N. Azorskiy et al. The na62 spectrometer acquisition system. Journal of Instrumentation, 11(02):C02064,
2016.

[14] B.Angelucci et al. Tel62: an integrated trigger and data acquisition board. In Proceedings, 2011 IEEE Nuclear
Science Symposium and Medical Imaging Conference (NSS/MIC 2011), pages 823–826, 2011.

[15] S. Baron. Timing, Trigger and Control (TTC) Systems for the LHC. Organization, CERN, 2013.

[16] J. Christiansen. Hptdc, high performance time to digital converter, 2004.

[17] G. Collazuol et al. Fast online triggering in high-energy physics experiments using gpus. Nucl. Instrum. Meth.,
A662:49–54, 2012.

[18] DESY. Proceedings, GPU Computing in High-Energy Physics (GPUHEP2014). DESY, 2015.

[19] D Emeliyanov and J Howard. Gpu-based tracking algorithms for the atlas high-level trigger. Journal of
Physics: Conference Series, 396(1):012018, 2012.

[20] E.Pedreschi et al. A high-resolution tdc-based board for a fully digital trigger and data acquisition system in
the na62 experiment at cern. IEEE Trans. Nucl. Sci., 62(3):1050–1055, 2015.

[21] J. Christiansen et al. Ttcrx reference manual, 2004.

[22] F.Anghinolfi et al. Nino: An ultra-fast and low-power front-end amplifier/discriminator asic designed for the
multigap resistive plate chamber. Nucl. Instrum. Meth., A533:183–187, 2004.

[23] F.Fontanelli et al. Cc-pc gluecard application and user’s guide, 2003.

148

http://apegate.roma1.infn.it/mediawiki/index.php/NaNet_overview
http://apegate.roma1.infn.it/mediawiki/index.php/NaNet_overview

i
i

“main” — 2017/1/11 — 15:05 — page 149 — #176 i
i

i
i

i
i

[24] F.Spinella et al. The tel62: A real-time board for the na62 trigger and data acquisition. data flow and firmware
design. In Proceedings, 19th Real Time Conference (RT2014), 2014.

[25] G.Haefeli et al. The lhcb daq interface board tell1. Nucl. Instrum. Meth., A560:494–502, 2006.

[26] G.Lamanna et al. Gpus for fast triggering and pattern matching at the cern experiment na62. Nuclear In-
struments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 628(1):457 – 460, 2011.

[27] Mentor Graphics R©. Hdl designer.

[28] Mentor Graphics R©. Modelsim R©.

[29] B. Green et al. Atlas trigger/daq robin prototype. IEEE Trans. Nucl. Sci., 51:465–469, 2004.

[30] TDAQ Working group. NA62 data formats. https://twiki.cern.ch/twiki/pub/NA62/
TdaqSystem/DataFormats.pdf.

[31] The NA62 Pisa group. Tdcb documentation, 2016.

[32] F Hahn, F Ambrosino, A Ceccucci, H Danielsson, N Doble, F Fantechi, A Kluge, C Lazzeroni, M Lenti,
G Ruggiero, M Sozzi, P Valente, and R Wanke. NA62: Technical Design Document. Technical Report NA62-
10-07, CERN, Geneva, December 2010.

[33] H.Atherton et al. Precise measurements of particle production by 400 GeV/c protons on beryllium targets.
CERN, 1980.

[34] Andreas Herten. GPU-based Online Tracking for the PANDA Experiment. In Proceedings, GPU Computing
in High-Energy Physics (GPUHEP2014), pages 57–63, 2015.

[35] H.Muller et al. Quad gigabit ethernet plug-in card.

[36] P. Jovanovic. Local trigger unit preliminary design review.

[37] A. Kluge, G. Aglieri Rinella, S. Bonacini, P. Jarron, J. Kaplon, M. Morel, M. Noy, L. Perktold, and K. Poltorak.
The {TDCpix} readout asic: A 75 ps resolution timing front-end for the {NA62} gigatracker hybrid pixel
detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, De-
tectors and Associated Equipment, 732:511 – 514, 2013. Vienna Conference on Instrumentation 2013.

[38] LHCb. Credit-card pcs as ecs interface.

[39] M.Bauce et al. The gap project: Gpu applications for high level trigger and medical imaging. In Proceedings,
GPU Computing in High-Energy Physics (GPUHEP2014), pages 3–8, 2015.

[40] M.Bauce et al. Use of hardware accelerators for atlas computing. In Proceedings, GPU Computing in High-
Energy Physics (GPUHEP2014), pages 48–54, 2015.

[41] S. Minutoli et al. The electronics system of the totem t1 telescope. Nucl. Instrum. Meth., A718(3):223–225,
2013.

[42] D. Moraes, W. Bonivento, Nicolas Pelloux, and W. Riegler. The CARIOCA Front End Chip for the LHCb
muon chambers. 2003.

[43] P. Moreira. Qpll project, 2005.

[44] P.Lichard et al. Performance evaluation of multiple (32 channels) sub-nanosecond tdc implemented in low-cost
fpga. JINST, 9:C03013, 2014.

[45] S.Gallorini. Track pattern-recognition on gpgpus in the lhcb experiment. In Proceedings, GPU Computing in
High-Energy Physics (GPUHEP2014), pages 38–43, 2015.

[46] B. G. Taylor. Ttc laser transmitter (ttcex, ttctx, ttcmx) user manual.

[47] J. Vermeulen et al. Atlas data flow: The read-out subsystem, results from trigger and data-acquisition system
testbed studies and from modeling. IEEE Trans. Nucl. Sci., 53(3):912–917, 2006.

[48] J. Vermeulen et al. The lhcb daq interface board tell1. Nucl. Instrum. Meth., A560:494–502, 2006.

https://twiki.cern.ch/twiki/pub/NA62/TdaqSystem/DataFormats.pdf
https://twiki.cern.ch/twiki/pub/NA62/TdaqSystem/DataFormats.pdf

	Acknowledgements
	Summary
	Summary of PhD Achievements
	List of Figures
	List of Tables
	Trigger and Data Acquisition system in High Energy Physics
	Introduction
	Historical approach to DAQ system
	HEP in the 1960s and 1970s
	DAQ and trigger systems in the 1980s
	State of the art

	The integrated fully-digital system approach
	NA62 experiment

	NA62 apparatus overview
	The beam line
	Detectors upstream the decay region
	KTAG
	GTK
	CHANTI

	Detectors downstream the decay region
	Photon veto system
	STRAW
	RICH
	CHOD
	NEW CHOD
	The muon veto system

	TDAQ system
	Introduction
	The TTC system
	The trigger system
	L0 trigger
	L1 and L2 triggers

	Data acquisition system
	The TDC Board
	HPTDC
	The TDCC-FPGA firmware
	TDCB test

	The TEL62 board
	The TEL62 firmware
	TEL62 tests

	The trigger approach in NA62
	Introduction
	L0 hardware trigger
	L0 Trigger for the RICH

	The RICH primitives generator firmware: standard version
	PP firmware
	SL firmware

	The NEW-RICH firmware
	PP and SL firmware

	L1/L2 Software Trigger

	GPU
	Introduction
	GPUs in high energy physics
	NA62 GPU trigger
	Data input to GPUs
	Input
	NaNet and GPUs

	GPU-RICH firmware
	Data preparation for GPU

	Conclusions
	Appendix A
	Bibliography

