
i
i

“output” — 2018/4/12 — 19:30 — page 1 — #1 i
i

i
i

i
i

UNIVERSITÁ DI PISA
DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE

HIGH-PERFORMANCE NETWORK PROGRAMMING FOR

MULTICORE ARCHITECTURES

DOCTORAL THESIS

Author
Nicola Bonelli

Tutor (s)
Prof. Stefano Giordano
Dr. Gregorio Procissi

Reviewer (s)
Prof. Giuseppe Bianchi
Prof. Sandrine Vaton

The Coordinator of the PhD Program
Prof. Marco Luise

Pisa, October 2017

Cycle XXX

i
i

“output” — 2018/4/12 — 19:30 — page 2 — #2 i
i

i
i

i
i

i
i

“output” — 2018/4/12 — 19:30 — page 1 — #3 i
i

i
i

i
i

This thesis is dedicated to my family and friends

i
i

“output” — 2018/4/12 — 19:30 — page 2 — #4 i
i

i
i

i
i

i
i

“output” — 2018/4/12 — 19:30 — page 3 — #5 i
i

i
i

i
i

"The greatest obstacle to discovery is not ignorance.
It is the illusion of knowledge."

Daniel J. Boorstin

i
i

“output” — 2018/4/12 — 19:30 — page 4 — #6 i
i

i
i

i
i

i
i

“output” — 2018/4/12 — 19:30 — page I — #7 i
i

i
i

i
i

Acknowledgements

IWould like to thank the CNIT consortium for the chance I have been given to fuel
my passion and pursue my ambitious sense of research within the BEBA project,
and all the partners involved for their proverbial availability.

I am also grateful to all those people who have supported me in these years and have
endured my critical thinking in order to achieve the best possible results.

I would like to express my gratitude to the staff of the Netgroup Pisa, my tutors Gre-
gorio and Stefano, my reviewer Giuseppe and Sandrine, my colleagues (from UniRoma
and PoliMi), and especially to my parents, my brother, Erika and Cheyenne, for sup-
porting me during the writing of this thesis.

I

i
i

“output” — 2018/4/12 — 19:30 — page II — #8 i
i

i
i

i
i

i
i

“output” — 2018/4/12 — 19:30 — page III — #9 i
i

i
i

i
i

Ringraziamenti

RIngrazio il consorzio CNIT e tutti i partner coinvolti nel progetto BEBA per la
loro proverbiale disponibilità e per avermi concesso la possibilità di accrescere
la passione per la ricerca e perseguire così il mio ambizioso obiettivo.

Sono inoltre grato a tutte quelle persone che, nel corso di questi anni, mi hanno sup-
portato ed hanno sopportato il mio senso critico per consentirmi di ottenere i migliori
risultati possibili.

Infine esprimo la mia gratitudine al personale del Gruppo Reti di Pisa, ai miei tutor
Gregorio e Stefano, ad i revisori Giuseppe e Sandrine, ed ai miei colleghi di UniRoma
e PoliMi. In particolar modo ringrazio i miei genitori, la mamma Giovanna ed il bab-
bo Vittorugo, mio fratello Sandro, Erika e Cheyenne per avermi sostenuto durante la
stesura di questa tesi.

III

i
i

“output” — 2018/4/12 — 19:30 — page IV — #10 i
i

i
i

i
i

i
i

“output” — 2018/4/12 — 19:30 — page V — #11 i
i

i
i

i
i

Summary

OVER the last few years the Internet has become a pervasive network that inter-
connects billions of users and heterogeneous devices. The speed at which ser-
vices mutate and the increasing number of devices (e.g., the advent of Internet

Thing) call for innovative tools of network management and monitoring.
This rapid evolution poses new challenges for the scientific community and the in-

dustry, which are facing similar problems, though with different objectives.
The scientific community has moved to seek accelerated software solutions for the

Internet traffic management on low-cost platforms. The industry, to meet new market
demands, is called to develop more and more efficient products, with flexibility and
reconfigurability as primary goals.

The choice to replace old and expensive equipment with personal computers (PC),
has allowed achieving better performance and functionality, reducing both the devel-
opment times and the production costs. Consequently, the cooperation between the
scientific community and industry has enabled the creation of two new technologies
dedicated to the development of the network and its services: SDN (software defined
network) and NFV (network virtualization function).

In this context, the thesis delves into network programming for multi-core archi-
tectures, with the goal to identify and formalize the techniques required to compete
with the growing speed of the network and the often underused parallelism of modern
commodity hardware.

Most of the general purpose languages adopted for the development of network ap-
plications are still inadequate, due to the complexity of parallel programming. There-
fore developers fail to create applications with the goal of performance, security, and
flexibility at the same time.

On this premise, we set ourselves the goal of making a functional framework for the
Linux operating system, equipped with a specific programming language, allowing a
rapid development of high-performance network applications in a safe and straightfor-
ward manner.

In chapter 1 we introduce the reader to the efficient network programming, and from
that point of view, we eviscerate in the gory details the technicalities of concurrency and

V

i
i

“output” — 2018/4/12 — 19:30 — page VI — #12 i
i

i
i

i
i

parallelism in modern architectures.
The chapters that follow revolve around the key aspects of such a topic.
In chapter 2 we describe the internals of the PFQ framework and in particular its

kernel-bypass architecture, the programming user interfaces and the performance ob-
tainable with its use in network applications.

Later, in chapter 3 we tackle the foundation of traffic distribution and highlight the
benefit deriving from the adoption of PFQ as an accelerated engine to enable parallel
execution of legacy applications. In particular, to exploit the multi-processor architec-
tures, we analyze an extension for the standard libpcap interface with fanout algorithms
based on the "divide and conquer" principle.

Chapter 4 introduces the reader to the DSL (Domain Specific Language) area and
presents a prototyped functional language designed for both stateless and stateful pro-
cessing of network packets. In short, we start with the theoretical background of func-
tional languages and category theory (monads); we give a formal description of the
grammar, and then we evaluate two implementations, for both the kernel- and user-
space, in term of flexibility and performance.

Finally, in chapter 5 we show some use cases and applications related to high-
performance network programming.

We present the BEBA flavor OpenFlow Soft Switch, in which PFQ is used as an
accelerated engine for packet switching. The acceleration obtained – quantified with a
factor between 90 and 100 – is the combined effect of the improvements achieved on a
single core with the parallelism of multiple core architectures.

Afterwards, we describe a scenario where PFQ is deployed as a tool to perform mea-
surements on a 10Gbit network, with the aim to prove the correctness of an algorithm
for enforcing fair-bandwidth among many TCP-like senders. In this case, the use of
the framework is necessary to carry out non-invasive measurements not affecting the
normal operation of the Linux kernel stack.

In the end, we present a system designed for anomaly detection where the framework
is used as a building block of multiple distributed probes intended to collect traffic from
a backbone network and detect different kinds of anomalies. In particular, we present
the library that implements a set of composable probabilistic counters which are used
to spot heavy hitters, taking advantage of their fundamental aggregation property.

VI

i
i

“output” — 2018/4/12 — 19:30 — page VII — #13 i
i

i
i

i
i

Sommario

NEL corso degli ultimi anni Internet è diventata una rete pervasiva che collega
miliardi di utenti e dispositivi tra loro eterogenei. La velocità con cui i servi-
zi vengono aggiornati combinata con l’aumento del numero dei dispositivi di

rete (Internet of Thing) richiede pertanto nuovi strumenti dedicati alla gestione ed il
monitoraggio.

Questa rapida evoluzione pone nuove sfide sia alla comunità scientifica che all’in-
dustria, che si trovano ad affrontare problematiche simili, seppur con obiettivi diversi.

La comunità scientifica è mossa a cercare soluzioni software accelerate per la ge-
stione del traffico Internet su piattaforme di basso costo. L’industria, invece, che deve
far fronte alle esigenze di mercato, sviluppa prodotti sempre più performanti, con la
necessità di mantenere flessibilità e riconfigurabilità tra i principali obiettivi.

La scelta di sostituire i vecchi e costosi apparati con i moderni personal computer
(PC), ha consentito di raggiungere funzionalità e prestazioni migliori, abbattendo sia i
tempi di sviluppo che i costi di produzione. Conseguentemente, la collaborazione tra
comunità scientifica ed industria ha permesso anche la nascita di nuove tecnologie spe-
cifiche per lo sviluppo della rete ed i servizi correlati: SDN (software defined network)
e NFV (network function virtualization).

In questa tesi viene approfondito il tema della programmazione di rete per archi-
tetture multi-core, con l’obiettivo di identificare e formalizzare le tecniche necessarie
per competere con le crescenti velocità delle reti e sfruttare il parallelismo del moderno
hardware di consumo.

La maggior parte dei linguaggi general purpose adottati per lo sviluppo di applica-
zioni di rete, come ad esempio il linguaggio C, risulta infatti inadeguata a causa della
complessità della programmazione parallela. Per questa ragione gli sviluppatori non
sempre riescono a creare applicazioni performanti, sicure e flessibili al tempo stesso.

Sulla base di questa premessa, la tesi si pone come obiettivo quello di realizzare un
framework funzionale per il sistema operativo Linux, equipaggiato con un linguaggio
di programmazione specifico, che consenta un rapido sviluppo di applicazioni di rete
ad alte prestazioni, in modo semplice e sicuro.

VII

i
i

“output” — 2018/4/12 — 19:30 — page VIII — #14 i
i

i
i

i
i

Nel capitolo 1 viene introdotto il lettore alla pratica della programmazione di rete
efficiente, e sono presentate nel dettaglio alcune tecniche avanzate di concorrenza e
parallelismo necessarie per raggiungere prestazioni elevate su moderne architetture di
calcolatori.

I capitoli che seguono ruotano intorno agli aspetti chiave di questo argomento.
Nel capitolo 2 vengono descritti i dettagli interni del framework PFQ, ed in par-

ticolare l’architettura del kernel-bypass, le interfacce utente di programmazione e le
prestazioni ottenibili mediante il suo utilizzo in applicazioni di rete.

Successivamente, nel capitolo 3 vengono affrontati i principi della distribuzione del
traffico ed evidenziati i maggiori vantaggi derivanti dall’adozione di PFQ come motore
per l’esecuzione parallela di applicazioni esistenti. In particolare, viene descritta l’e-
stensione dell’interfaccia pcap con algoritmi di fanout fondati sul principio “divide et
impera” per sfruttare al meglio le architetture multi processore.

Il capitolo 4 introduce il lettore nel mondo del DSL (Domain Specific Language)
presentando il prototipo di un linguaggio funzionale per l’elaborazione dei pacchetti
di rete. Partendo dal background teorico dei linguaggi funzionali e dalla teoria del-
le categorie (monadi), viene fornita una descrizione formale della grammatica, con
semplici esempi e casi d’uso. Successivamente vengono presentate e valutate due im-
plementazioni del linguaggio, una specifica per lo spazio kernel ed una per lo spazio
utente.

Nel capitolo 5 vengono quindi mostrati alcuni casi d’uso ed applicazioni correlate
alla programmazione di rete ad elevate prestazioni.

In particolare, viene prestato uno switch software compatibile OpenFlow (BEBA
Soft Switch), in cui PFQ viene impiegato come motore per l’accelerazione della com-
mutazione dei pacchetti. Le prestazioni del prototipo presentano un fattore di accelera-
zione valutato tra 90x e 100x, e risultano essere l’effetto combinato dei miglioramenti
ottenuti su un singolo core con il parallelismo di più processori.

Successivamente, viene descritto uno scenario in cui PFQ implementa uno strumen-
to di misura su una rete a 10 Gbit, al fine di dimostrare per via sperimentale la corret-
tezza di un algoritmo di fair-bandwidth tra sorgenti TCP-like multiple. In questo caso
il framework è impiegato per effettuare misure non invasive, ovvero che non vadano ad
influenzare il normale funzionamento dello stack di rete del kernel di Linux.

Infine, viene illustrato un sistema progettato per l’individuazione di anomalie di rete.
In particolare viene presentata una libreria che implementa un set di contatori statistici
componibili che vengono utilizzati come blocco funzionale per realizzare sonde desti-
nate alla raccolta del traffico di una rete backbone. L’obiettivo in questo caso è quello di
rilevare anomalie e heavy hitter, sfruttando le proprietà di aggregabilità di tali contatori.

VIII

i
i

“output” — 2018/4/12 — 19:30 — page IX — #15 i
i

i
i

i
i

List of publications

International Journals

1. Bonelli, N., Giordano, S., Procissi, G. (2016). Network traffic processing with
pfq. IEEE Journal on Selected Areas in Communications, 34(6), 1819-1833.

2. Bonelli, N., Giordano, S., Procissi, G. and Del Vigna, F. (2017). Packet fanout
extension for the standard pcap library. IEEE Transaction on Network and Service
Management. Currently under second cycle review.

3. Bonelli, N., Callegari, C., Procissi, G. (2017). A Probabilistic Counting Frame-
work for Distributed Measurements. IEEE Transactions on Network and Service
Management. Submitted.

4. Fernandes, E., Rothenberg, C., Bonelli, N., Kis, Z. L.,Rojas, E. and Sanvito, D.
(2017). SDN prototyping gone wild: Advancing the state of art through the im-
plementation of open networking standard. ACM Sigcomm Computer Communi-
cation Review. In submission.

International Conferences/Workshops with Peer Review

1. Cascone, C., Bonelli, N., Bianchi, L., Capone, A., Sanso’, B. (2017,Jun). Towards
Approximate Fair Bandwidth Sharing via Dynamic Priority Queuing. IEEE Inter-
national Symposium on Local and Metropolitan Area Networks. IEEE ComSoc.

2. Bonelli, N., Giordano, S., Procissi, G. (2017, June). Enabling packet fan-out in
the libpcap library for parallel traffic processing. In Network Traffic Measurement
and Analysis Conference (TMA), 2017 (pp. 1-9). IEEE.

3. Bonelli, N., Giordano, S., Procissi, G. (2017, July). A pipeline functional lan-
guage for stateful packet processing. In Network Softwarization (NetSoft), 2017
IEEE Conference on (pp. 1-4). IEEE.

4. Bonelli, N., Procissi, G., Sanvito, D., and Bifulco, R. (2017, Nov). The accelera-
tion of OfSoftSwitch. IEEE Conference on Network Function Virtualization and
Software Defined Networks. IEEE.

IX

i
i

“output” — 2018/4/12 — 19:30 — page X — #16 i
i

i
i

i
i

Invited talks

1. Bonelli, N. (2016,Sep). Functional Network Programming. Tyrrhenian Interna-
tional Workshop on Digital Communications. Cnit.

2. Bonelli, N. (2017,Feb). Software Accelerations for Network Applications. Tech-
nicolor Workshop on Network Virtualization. IRISA (Technicolor).

X

i
i

“output” — 2018/4/12 — 19:30 — page XI — #17 i
i

i
i

i
i

Contents

Introduction 1

1 Elements of Network Programming 4
1.1 Parallel processing . 5
1.2 Atomics operations . 6
1.3 Memory layout . 7
1.4 Memory allocations . 7
1.5 Two practical examples . 8

1.5.1 Counters . 8
1.5.2 Lock-less queues . 10

1.6 Efficient data structures . 12
1.6.1 Probabilistic counters . 14
1.6.2 Reversible Sketches . 16

1.7 Final remarks . 18

2 Fast Packet I/O 20
2.1 Background and Motivations . 21
2.2 The System Architecture . 23

2.2.1 Three layers of parallelism . 25
2.3 High Speed Packet Capture . 27

2.3.1 Accelerating vanilla drivers . 27
2.3.2 Pool of socket buffer . 28
2.3.3 Batch queues . 29

2.4 Functional processing . 29
2.4.1 Groups and classes . 30

2.5 User to Kernel space communication and APIs 31
2.5.1 User to Kernel space communication 32
2.5.2 Application Programming Interfaces 33

2.6 Packet transmission . 35
2.7 Performance evaluation . 36

2.7.1 10G Speed Tests: Packet Transmission 36

XI

i
i

“output” — 2018/4/12 — 19:30 — page XII — #18 i
i

i
i

i
i

Contents

2.7.2 10G Speed Tests: Packet Capture 37
2.7.3 Up to 40G Speed Tests . 39
2.7.4 Software Acceleration . 40
2.7.5 Libpcap acceleration . 42

2.8 Use-cases . 43
2.8.1 IP address traffic filtering . 44
2.8.2 RTP flow analysis . 44
2.8.3 LTE analyzer . 45
2.8.4 Accelerated Traffic Generation 46

3 Traffic Distribution 49
3.1 Introduction and motivation . 49
3.2 Packet Dispatching in Linux . 51

3.2.1 Linux Default Capture Socket 51
3.2.2 Socket Fanout Modes . 52
3.2.3 Standard pcap interface . 53

3.3 Software acceleration . 53
3.3.1 The PF_RING accelerated socket 55
3.3.2 The PFQ accelerated socket . 55

3.4 Packet fanout support in the pcap interface 57
3.4.1 Legacy application: pcap configuration file 58
3.4.2 Accelerated configuration . 59

3.5 Using the pcap fanout in practice . 61
3.5.1 Applications and Interrupt Affinities 62

3.6 Performance Evaluation . 64
3.6.1 Speed-Tests . 64

3.7 Use-cases . 68
3.7.1 Tstat . 68
3.7.2 Bro . 73

3.8 Towards the integration of passive sockets 75

4 Functional Packet Processing 77
4.1 Introduction . 77
4.2 Functional Packet Processing . 78
4.3 Theoretical Foundations . 83
4.4 The pfq-lang Language . 84

4.4.1 Monadic functions . 85
4.4.2 Non-Monadic Functions . 86

4.5 Implementation . 86
4.5.1 The Embedded DSL . 86
4.5.2 The Functional Engine . 88

4.6 Performance Evaluation . 91
4.7 Use Cases . 95

4.7.1 Port mirroring . 96
4.7.2 Load Balancer . 96
4.7.3 Stateless Firewall . 96
4.7.4 Monitoring . 97

XII

i
i

“output” — 2018/4/12 — 19:30 — page XIII — #19 i
i

i
i

i
i

Contents

4.7.5 Legacy applications . 97
4.8 Stream processing . 98
4.9 Enif-lang at a glance . 98

4.9.1 Functions overview . 99
4.10 Processing Pipelines . 100

4.10.1 Stateful Pipelines . 101
4.11 Use-cases . 103

4.11.1 Stateless processing . 103
4.11.2 Stateful processing . 104

5 Applications 106
5.1 SDN and OpenFlow . 106

5.1.1 Introduction . 106
5.1.2 Related Work . 108
5.1.3 OfSoftSwitch . 108
5.1.4 Software acceleration . 109
5.1.5 Multi-core processing . 110
5.1.6 Code Optimizations . 111
5.1.7 Performance Evaluation . 112

5.2 PFQ as measuring instrument . 114
5.2.1 Introduction . 114
5.2.2 Related work . 117
5.2.3 FDPA Design . 118
5.2.4 Experimental results . 121
5.2.5 Discussion . 124

5.3 Probabilistic counting framework . 124
5.3.1 Two motivating use-cases . 126
5.3.2 The probabilistic counting framework 129
5.3.3 C++ implementation . 133
5.3.4 Experimental results . 138

6 Conclusions 144

Bibliography 148

XIII

i
i

“output” — 2018/4/12 — 19:30 — page 1 — #20 i
i

i
i

i
i

Introduction

The volume of traffic crossing the Internet is continuously growing, with recent reports
from Cisco [34] forecasting up to 3.3 Zettabytes of network traffic by 2021. The het-
erogeneity of traffic is rapidly increasing as well, due to the adoption and spreading
out of new technologies, protocols, and services, bringing new requirements that can
hardly be met by traditional systems and applications.

In the same vein, network applications in charge of performing any processing on
real data must be able to handle vast volumes of heterogeneous traffic on communica-
tion links. This is commonly the case of network monitoring applications, Intrusion
Detection and Prevention Systems, routers, firewall and so forth, that must operate on-
line with packet arrivals and process data in streaming mode to catch—up with traffic
pace and promptly trigger the necessary operations. Finally, the network scenario itself
is changing, with speed of links easily hitting 10+ Gbps and increasing host density in
large data centers.

Applications in charge of processing such amounts of data (for example, traffic mon-
itoring applications) are becoming more and more complex, not only for the service
they are called to provide but also for the increasing speeds of networks they have to
cope with.

A common belief that upgrading the hardware of a server does suffice to improve the
performance of the software is often misleading. While it can be accurate for standard
applications, such as those specific for the scientific calculus or entertainment, it is
almost never the case for network applications, for which a hardware upgrade usually
brings little if nothing in term of performance improvements.

The reason why network applications cannot take a direct advantage of a hardware
upgrade must be sought in the software and the way it interacts with the hardware. It
turns out that most of the already existing network applications were designed in the
last two decades, while the advent of the new technologies, including multi-processor
architectures and network adapters with multi-queues, is relatively new.

As a consequence, the software can no longer be developed with the techniques of
the 1990s, but it demands the adoption of more complicated semantics (e.g., multi-
threading) that requires modification to the source code and the rewriting of those parts
interacting with the hardware.

1

i
i

“output” — 2018/4/12 — 19:30 — page 2 — #21 i
i

i
i

i
i

Contents

Under this light, a network application is made of many software layers, which in-
clude not only the user algorithms but also the network drivers. Although this definition
contrasts with that of a classic computer science – where a clear separation is placed
between user space and the operating system – for us, a network application consists
of multiple software layers; the one that interacts with the network cards, the abstrac-
tions built on top of it (e.g., socket and the user libraries) and the source code of the
application itself.

As the performance is one of the primary goals for a modern network application,
this thesis focuses on how to improve such kind of software at best and take advantage
of the hardware capabilities, all in a simple, safe and reusable manner.

All the software layers are the object of our research, including the network device
drivers, the abstraction layer at kernel space that handles network packets, the way such
packets are delivered to the network stack or userspace queues, and how applications
process them. Everything is done under the fundamental constraint of not twisting
the architecture of the applications or sacrificing the compatibility with the plethora of
hardware already supported by the operating systems.

As such, we decided not to come up with handcrafted versions of network device
drives just to improve the pure I/O performance. Instead, we have privileged the hard
part, the study and the understanding of what the real impairments are in the network
context, with the final aim to develop a general and competitive framework comparable
with other prominent studies (e.g., PF_RING, DPDK, and Netmap).

We propose a software framework specifically tailored to capture, transmit, and dis-
tribute network traffic to multiple instances or threads of network applications, and
we show how this solution can be used efficiently in real-world scenarios, running on
multi-core architectures.

Such a framework is designed to implement new applications natively or can be
plugged transparently into already existing ones, without significant modifications to
the source codes.

Furthermore, we argue that general purpose programming languages, such as C or
C++, are no longer suitable for implementing network applications in a safe and effi-
cient manner.

Chapter 1 raises the light on this topic, presenting the relatively new development
abstractions necessary to build high-performance applications. Starting from the lesson
learned these years, in this chapter we show how difficult it can be to write software for
multi-core architecture using general purpose languages.

Given the recent rise of functional languages, we propose two companion languages
explicitly tailored for networking.

A seminal functional approach towards flexible and programmable networks was
made by SwitchWare [12]. However, back in 1998, the performance of SwitchWare
suffered from the limitations of the underlying OCaml language. In our work, instead,
we aim at proving that the functional approach may well reach top class performance,
just as close as the ones that can be attained by imperative style programming.

We come up with two different implementations, the second one as a natural evolu-
tion of the first, running either in kernel- or user-space.

The first one is equipped with a run-time interpreter and plugged as a functional
engine inside a Linux kernel module, while the second is implemented as pure embed-

2

i
i

“output” — 2018/4/12 — 19:30 — page 3 — #22 i
i

i
i

i
i

Contents

ded DSL in the Haskell language, that can be compiled as a stand-alone library and
executed in standard applications.

3

i
i

“output” — 2018/4/12 — 19:30 — page 4 — #23 i
i

i
i

i
i

CHAPTER1
Elements of Network Programming

Computer network programming involves writing computer programs which enable
processes to communicate with each other across a computer network. A broader def-
inition also covers those applications that interact with the network, not necessarily
with the sole purpose of communication. Network Monitoring applications, Network
Intrusion Detection Systems (NIDS), router, firewalls, to mention a few, are typical
examples of network applications too.

Such applications are mostly designed to run on a general purposes architecture,
and now that personal computers are getting faster and faster, commodity hardware has
gained a significant position in both research and industry, playing a role that is all but
marginal.

For a network application, most challenging aspects comprise the speed of the net-
work, the capabilities of the hardware and the way the software handles the two. Al-
though it can be obvious, what makes a network application unique in comparison to a
standard one is that it is designed to process network packets.

There are real-world contexts where the rate of packets is exceptionally high. This
is due not only to the high-speed of the networks (10/40 and 100 Gbps) but also to
the average packet length of certain protocols (the shortest the length is, the higher the
rate can be). A typical example is that of VoIP, where, depending on the codec in use,
the average length ranges between 100 and 250 bytes. In such a scenario, the inter-
arrival rate can be rather high. It does suffice to apply the trivial formula of the ethernet
throughput 1 to realize that a 10Gbps link can transport several millions of VoIP packets
per second (about 5 to 9 Mpps).

Another aspect to consider is that non-trivial applications can spend several CPU
cycles to handle a packet. Such a cost includes the capture, the pure processing, and

1https://en.wikipedia.org/wiki/Ethernet_frame

4

i
i

“output” — 2018/4/12 — 19:30 — page 5 — #24 i
i

i
i

i
i

1.1. Parallel processing

the optional re-transmission of the packet itself – though not all network applications
are designed to re-transmit the traffic captured.

In each of these stages, the majority of the cycles are spent for I/O operations, either
for the retrieval of the packet’s payload or the state associated with the flow it belongs
to (TCP, UDP flows or any other broad abstraction). Such operations are hugely slow
compared to the billions of instructions that a modern multi-core CPU can process per
second.

The faster the speed of the network, the higher the concurrent number of flow trans-
ported – a 40G LTE link can indeed transport dozens of millions of user flows. Let’s
assume to have a tracking application that associates a state to each stream (which can
be either a simple counter or something more complicated). This application can re-
sult in handling a huge hash table with millions of entries (flow states) indexed by a
canonical tuple – e.g., a 5-tuple, as in protocol, IP addresses source and destination,
port source and destination. Because the flows of packets are usually interlaced each
other, this also results in a continuous cache invalidation, as the CPU has to retrieve the
state associated with each flow, on a per-packet basis.

Furthermore, the CPUs have nearly reached the maximum frequencies possible; it
goes without saying that network applications have a per-core limit (in term of packet
per seconds processed) which is often well below the rate offered by the network. As
an example, a non-trivial application that spends thousands of CPU cycles per packet
and hardly handles more than 3 million packets per second even running on a 3 GHz
CPU core.

The very challenge of a network application is to cope with the packet rate offered
by fast networks. In turn, this shifts into the necessity to exploit the modern hardware,
which nowadays includes NUMA multi-processor architectures, the multi-core CPUs,
and the network cards equipped with multiple hardware queues (e.g., Intel 82599 10G
NIC).

By doing so, a network application is asked to scale linearly with the number of core
involved in the processing stage. To achieve this theoretical result, a software engineer
has to solve a long series of problems and impediments.

This thesis seeks to bring light to this challenge, by proposing effective solutions
that can also be used in other fields of computer engineering. The following sections
summarize such challenges, by dealing with some in-depth and postponing the discus-
sion of others to the chapters that follow.

1.1 Parallel processing

The primary challenge for a network engineer is that of parallel programming, a nec-
essary but not a sufficient condition for applications to use and scale with all cores of a
CPU.

Historically Unix programs are multi-process based, but modern applications tend
to use the relatively new approach of multi-threading. The main difference is that pro-
cesses are implemented with a clear separation of memory, whereas threads share any-
thing with each other.

Apart from this, it is worth mentioning that there are no other significant differences.
As of today, both are implemented in kernel space on top of processes (Linux kernel),

5

i
i

“output” — 2018/4/12 — 19:30 — page 6 — #25 i
i

i
i

i
i

Chapter 1. Elements of Network Programming

and the performance achievable from the two are mostly the same – even the cost of
forking a process and creating a thread is similar.

As in a company where employees work together, a multi-threaded application can
take advantage of multiple contexts, possibly running each on a separate core, to pro-
cess data, produce output, and exchange messages with true parallelism.

Unfortunately, many applications are still written as a single process, and the con-
version to a multi-threaded design requires a significant rework of their internals.

In an ideal world, a thread processes incoming packets in isolation, without requiring
any communication or synchronization with its siblings. To achieve this a certain pre-
partition of the traffic is required.

The reader will often encounter the concept of state-aware traffic split. We will
refer to this concept as the ideal partitioning strategy that lets each thread of execution
process packets, streams, and related states in complete isolation.

Differently, threads that share data structures incur in a race condition when one (or
more of them) performs an update (usually a write to memory) while others are access-
ing it. Since race conditions lead to undefined behaviors, a solution to this problem is
to adopt a mutex to serialize the access to the shared resource.

Unfortunately, as we will show in the section 1.5 mutexes, or their most advanced
counterpart spinlocks, affect the performance in two essential respects. First, they pre-
vent applications to scale linearly with the number of cores, as all threads are therein
serialized, with potential and critical side effects, such as the priority inversion phe-
nomena. Second, the interlocked operations necessary to guarantee the correctness of
a mutex are operation expensive per se and should be avoided as rule of the thumb.

1.2 Atomics operations

CPUs provide a set of lower-level operations that are not affected by data race condition.
These operations are called atomic because they can not be interrupted, and in this
regard, they guarantee the correct execution on multi-processor architectures.

It is possible to avoid mutual exclusion using atomic operations. Indeed, when a
thread performs an atomic operation, other threads see it as happening instantaneously.

Depending on the CPU, the set of atomic instructions may vary. In modern architec-
tures (e.g., Intel), it includes reads and writes to a given memory location, increments
and decrements, the primary mathematics instructions – such as add, sub, multiplica-
tion, and so forth – and the fundamental "exchange" and "compare and swap" (CAS)
operations.

The main advantage of atomic operations is that they are relatively quick compared
to locks. However, in the contest of network programming, even atomic operations are
expensive. As a result, a simple ’atomic’ counter shared among multiple threads can
dramatically affect the overall performance of a system, especially in case of high con-
tention. The example reported in section 1.5.1 shows how a counter can be efficiently
implemented in order not to affect the performance of concurrent incrementing, on a
per-packet basis.

Atomic operations also represent the primary building-blocks for particular data
types called lock-less data structures. A lock-less structure is a collection of informa-
tion shared among multiple threads of execution that allows concurrent online updates

6

i
i

“output” — 2018/4/12 — 19:30 — page 7 — #26 i
i

i
i

i
i

1.3. Memory layout

while other threads are visiting it.
Such a structure is always well defined as the atomic operations – used to access

or manipulate it – guarantee that updates to elements are safe and atomic. A typical
example of a lock-free data structure is that of the queue; a mechanism often used to
allow efficient message passing schemes across multiple threads.

1.3 Memory layout

A second but not less important factor is that of memory layout. How to accommodate
data in memory becomes fundamental in high-performance applications.

The reason should be sought in the current technology with which modern proces-
sors are built. It is well known that CPUs are equipped with few memory levels (we
refer to these with L1, L2, and L3), which are distinguished by size and speed – read
and write latency. In the case of the Intel Xeon processor, for example, L1 is a cache of
a few KB, very fast (a read costs 3 or 4 CPU cycles), L2 is an intermediate level cache,
and L3 is the largest (24 MB in the current versions) but the slowest. There is also the
central memory which, compared to the various cache is huge (Gigabytes) but about 2
or 3 orders of magnitude slower.

There are also NUMA architectures that replicate the same 3-tier model in multi-
ple packages. NUMA introduces impairments in inter-process communications when
the threads are pinned on cores of different packages since the data being exchanged
between the two, across the L3 caches involve more slow communication channels.

The effect of sharing data between threads impacts on the memory in many respects.
Every time a core updates the value of a global variable, for instance, it triggers the
update of its local cache, the actual write to the central memory (possibly deferred)
and the cache invalidation of other cores. This mechanism is governed by the cache
coherence algorithm, which guarantees the uniformity of shared resource data stored in
multiple local caches.

The granularity with which a cache memory maps a memory region is known as a
cache line, and consist of 64 bytes of contiguous, aligned memory – 128 if speculative
memory prefetch is enabled. Every time a single byte is written in one of such addresses
the invalidation of the corresponding line is triggered for all caches in the system.

If such a write is fundamental for the communication between the threads of exe-
cution, the effect cannot be avoided and the delay – the time necessary for such a byte
to travel from a core to another – is a latency that we have to pay – though it can be
amortized with techniques involving batch processing.

Conversely, if such a write is unnecessary for the communication, the pure cache
invalidation is an impairment that can be avoided. This effect is known as false sharing
and applies when threads unconsciously impact the performance of each other while
modifying independent variables sharing the same cache line. As a rule of thumb,
independent variables accessed by different threads should be accommodated in distinct
cache lines.

1.4 Memory allocations

Another aspect of no less importance is the dynamic memory allocation.

7

i
i

“output” — 2018/4/12 — 19:30 — page 8 — #27 i
i

i
i

i
i

Chapter 1. Elements of Network Programming

In a network application, the performance related to the fast data path is affected by
an improper use of memory allocators, as the cost of each single operation – allocation
and deallocation pair – in the current implementations is about 200-500 CPU clock
cycles. If this number does not appear too large, one should think that on a 3Ghz CPU
there are only 1000 clock cycles available to handle a packet at a rate of 3 million per
second 2.

That said, a network application should not use dynamic memory allocation at all,
dot. Even if this can be relatively easy to achieve in new applications, in already existing
ones, it could mean rewriting much of the software that handles packets from scratch.

However, only those applications that can consume packets online can entirely avoid
using dynamic memory. Applications that require the lifetime of the packet content
exceed the time of its processing and cannot get rid of it – e.g., when the payload must
be stored for later use, just like in IP defragmentation.

For these applications, we can try to reduce the number of memory allocations, as
we will see later in the chapter 5, or use allocators particularly optimized for multi-core
architectures (i.e., Jemalloc or TCmalloc).

1.5 Two practical examples

In this section, we present two further examples that demonstrate a direct application
of the elements analyzed so far. In particular, we first analyze the performance of a
simple counter shared among a set of threads which is incremented by all of them.
Subsequently, we present a comparison of some lock-free queue implementations that
can be used in a context of a single producer and a single consumer thread (SPSC).

1.5.1 Counters

Counters are often the only tool available to evaluate the behavior of a network ap-
plication from the field. They are very lightweight mechanisms for instrumenting an
application without affecting performance, and as such, they stand out from any other
debugging mechanism. However, due to the operating mechanisms of memory cache
that govern a CPU, even a simple counter can affect the performance of a multi-threaded
application.

In this section, we will compare the performance achievable by adopting different
types of counters, and we will come up with an implementation that has an almost
negligible impact in term of performance.

The table below reports the list of counters engaged in this test.

counter description
atomic simple atomic counter
mutex simple counter protected by a mutex

spinlock simple counter protected by a ticket spinlock
sparse simple sparse counter

no-sharing simple sparse counter without false sharing

The first one is the atomic counter, that is a global variable shared among some
threads, accessed for individual increments by atomic operations. We compare such a

2the maximum packet rate on a 10G link is indeed 14.88 Mpps

8

i
i

“output” — 2018/4/12 — 19:30 — page 9 — #28 i
i

i
i

i
i

1.5. Two practical examples

Figure 1.1: Counters: performance comparisons

counter with a simple counter protected by a mutex in one case, and with the lightweight
spinlock in the other.

In the test, we have also included two additional counters, whose components are
distributed in memory and where each thread of processing is intended to increment
its component. For this type of counter, the overall value can be roughly obtained by
summing up the value of all components – such operation happens asynchronously
from time to time and hence is not perfect.

The difference between the two is that the first allocates the components of each
thread in a continuous region of memory, while the second accommodates each com-
ponent in a different cache line. The graph in figure 1.1 reports the maximum number of
million of increments per second (using a log scale) each thread can handle, by varying
the number of threads involved.

The graph shows that the distributed version with no false sharing is the only counter
that can guarantee the independence of each thread, that can increase the component
without affecting the performance of others.

Similarly, the graph in figure 1.2 represents the maximum possible rate of incre-
ments for the global counter – still in log fashion and millions per second. This chart is
even more interesting in that it highlights two essential aspects, nonvisible in the first
graph. First, that only the distributed counter without false-sharing can scale with the
number of threads (the trend is logarithmic for the scale); second, that for all the other
counters the maximum rate worsens as soon as the thread count is higher than one, and
in some cases falls below the 10 million per second.

9

i
i

“output” — 2018/4/12 — 19:30 — page 10 — #29 i
i

i
i

i
i

Chapter 1. Elements of Network Programming

Figure 1.2: Counters: performance comparisons

1.5.2 Lock-less queues

Lock-less queues are data structures shared between two or more threads that allow
message passing and whose implementation does not make use of any locking.

Albeit these queues are a relatively new research object, different implementations
depend on the architecture and the number of threads that can use them concurrently.
As expected, not all of them offer the same degree of flexibility and performance –
More details are available at the site 3.

There are facilities with a single consumer and producer (SPSC), other variants with
either multiple-producer or consumer (SPMC or MPSC), and queues with multiple
producers and consumers (MPMC).

SPSC is the most straightforward lock-less queue, as the Intel architecture allows a
trivial implementation for it. Because the compiler usually aligns integers to memory,
and the hardware is not allowed to reorder writes at different memory addresses, it
turns out that such a kind of queue can be implemented without atomic operations – for
the sake of fussiness they require only a compiler barrier. This fact has contributed a
lot to its popularity, although the implementation without atomics is not portable over
different architectures – e.g., popular versions do not work on the ARM.

The queue, depicted in figure 1.3 consists of a circular ring of elements (in this con-
text pointers to packet descriptors) and a couple of indices, one for the producer and one
for the consumer, each incremented (with the modulo operation to handle wraparound)
at the insertion or the removal of an element, respectively.

Each operation always requires reading both the indices since the push method is
supposed to detect when the queue is full, while the pop when it is empty – possibly

3http://www.1024cores.net/

10

i
i

“output” — 2018/4/12 — 19:30 — page 11 — #30 i
i

i
i

i
i

1.5. Two practical examples

Figure 1.3: SPSC queue scheme

Figure 1.4: SPSC variant, with cached indices

to raise an error. Due to the continuous ping-pong for the CPU cache invalidations –
which take place at each insertion or extraction –, the trivial implementation is fast, but
not the fastest.

For this reason, we designed an improved version of this queue represented in figure
1.4. Such an implementation takes advantage of the fact that, in a cache line reserved for
each, producer and consumer retain a copy of the other’s index. This fact significantly
improves the performance of the queue, as each thread can independently pop or push
elements without involving the reading of its counterparty index – which happens from
time to time when the queue appears full or empty. Performance is improved by a
factor 2.2 concerning the basic queue – 310 millions of insertions and removal per
second versus 138 million.

Additional improvements are brought by the adoption of a buffer which delays the
publication of the indexes for both producer and consumer. From an experimental mea-
sure 1.5, it appears that a delay of 32 elements is sufficient to increase the performance
and that 64 or 128 are enough to reach the maximum possible on our architecture,
which is about 500 million insertions/removal per second.

Although these numbers may seem high, in the economy of a high-performance
network application they can still represent a significant cost factor. In absolute terms,

11

i
i

“output” — 2018/4/12 — 19:30 — page 12 — #31 i
i

i
i

i
i

Chapter 1. Elements of Network Programming

Figure 1.5: SPSC queues: performance comparisons

the cost of an insertion and extraction for the first SPSC queue is about 20-25 clock
cycles (estimation for a 3Ghz CPU), which falls to 6 CPU clocks for the queue equipped
with cache and the batch buffer.

For an application designed to perform lightweight processing at very high speed,
even 20 CPU cycles can introduce a significant performance degradation.

1.6 Efficient data structures

Beside the programming best practices above introduced, a significant processing speed-
up can be attained by adopting fast and memory-efficient data structures. Indeed, all
monitoring applications have a specific “ultimate” purpose. This purpose can range
from the need to early detect an attack, to the need to control that traffic flows or ag-
gregates do not exceed a negotiated rate, to the need of recognising some traffic and
prevent that this abuses of the available capacity, and so on. To accomplish these goals,
an application could have to perform several but straightforward tasks. For instance,
a network attack is often preceded by an analysis performed by the attacker to gather
essential information (e.g. ARP scan, port scan, and so forth). The detection of such
scanning in a monitored traffic aggregate suggests that a more in-depth analysis should
be performed on the flows that generate such patterns. Similarly, to understand if a
traffic flow exceeds a given packet rate, it may seem necessary first to measure the rate
of all the traffic flows and then determine (and control) the ones that fail to meet the
pre-established rate constraints.

Frequently, in carrying out such “intermediate” tasks, monitoring applications need
to waste computational resources in processing an unnecessarily enormous amount of
information. If a flow is not performing any port scanning activity, and if the appli-

12

i
i

“output” — 2018/4/12 — 19:30 — page 13 — #32 i
i

i
i

i
i

1.6. Efficient data structures

cation is designed to inspect only scanning flows, then the details of the non-scanning
flows (such as their identifiers) are not needed. Preferably, the only information strictly
needed is that flows identified as, say, A, B, and C are indeed performing scans while all
the others are not: the knowledge of the identifiers A, B, C triggering a more in-depth
analysis and reactive mechanisms.

In most cases, it turns out that a performance-effective solution is to split the opera-
tions of an application according to a two–stages approach. In this paradigm, the first
stage performs a first eventually rough, but very fast, analysis of the data traffic with
the goal of discriminating and isolating flows which are not of utility to the applica-
tion, from the possibly few ones which instead should be further inspected. This latter
category includes flows which may exhibit possible anomalous behaviour, which raise
the suspect of attacks or intrusions, and in most generality flows or patterns which are
specific targets for the monitoring application. The second processing stage receives as
input only the flows or the per-flow information isolated by the first stage and performs
the required analysis, more in-depth.

In both phases, but especially in the first one, the adoption of a system paradigm
aware of the available hardware is a crucial element to attain high performance. In-
deed, to accomplish operations like capturing, classification, anomaly detection, flow
discrimination and isolation at the wire speed, a detailed knowledge of the hardware
capabilities/bottlenecks, as well as the fine-grained analysis of the available time bud-
get for each micro-operation involved are required. In particular, even if CPU speed is
nowadays typically adequate, memory is still a very critical resource, and the proper
use of small but remarkably fast cache memories may dramatically boost the overall
application performance.

The attempt to come up with performance effective solutions must then pursue the
investigation of stateless and memory saving approaches in that they tightly reflect into
faster operations. Therefore, a large room for research is open to any proposals that can
efficiently provide a smart – and possibly statistical – processing of data while requiring
a reasonable level of memory utilisation. In this scenario, a very promising approach
towards packet processing and inspection is based on Bloom Filters (BFs) [18] and their
variations. BFs are compact and fast data structures for approximated set–membership
query and their popularity is rapidly increasing because of their very limited memory
requirements (roughly speaking, they implement the principle of “trading certainty for
time/space” [110]). A BF represents a set of n elements by using a bitmap of m ele-
ments. Each element of the set is mapped to k elements of the bitmap whose position
is given by the result of k hash functions. To check whether an element belongs to
the set one just needs to evaluate the k hash functions and verify if the corresponding
bits of the bitmap are all set. Naturally, the filter allows for false positives, in that the
hash functions of different elements may collide. Nevertheless, a proper choice of both
the length of the bitmap and the number of hash functions minimises the probability
of false positive. However, the use of BFs for sets whose elements may change over
time is not recommendable in that deletion of elements from the bitmap is not allowed.
Counting Bloom Filters (CBFs) (or, similarly, sketches) [45] are simple extensions that
replace the bits of the bitmap with counters (bin). This way, insertions and deletions of
elements are as straightforward as incrementing/decrementing the value of the counter.
The use of CBFs for statistical data processing turns out to be extremely flexible al-

13

i
i

“output” — 2018/4/12 — 19:30 — page 14 — #33 i
i

i
i

i
i

Chapter 1. Elements of Network Programming

though, in its original version, the fixed size of bins causes in many realistic cases an
unnecessary waste of memory. A significant improvement can be obtained by allowing
the dynamic size of bins, compressions, and multi-layering (as in [46, 47]). For exam-
ple, let us think about a set of rules to be checked by the front-end classifier: a CBF can
easily be used to represent the set. To verify whether a packet obeys one of the rules of
the set, a simple lookup operation, which consists of evaluating k hash functions and
check if the corresponding values of bins are all set, is enough. If the result is positive
one may deduce that with a small error probability the packet satisfies the rule and can
be delivered to the second processing stage for a more in-depth analysis.

In the following, two specific types of efficient data structures are described. The
first one is a probabilistic counter, namely the loglog counter which proves to efficiently
estimate the cardinality of large multi-sets in a very memory efficient manner. The
second data structures is a particular type of sketch that can be reversed on–demand.
Both data structures will be later adopted in the practical use case given in the chapter
6.

1.6.1 Probabilistic counters

Probabilistic counters are intended as a class of algorithms that estimate the number of
distinct elements in a set. Naturally, such an objective could be achieved exactly, at the
expenses of a huge memory footprint when the number of elements to count becomes
very large. In fact, this is precisely the case of traffic data on high–speed networks,
especially in the presence of malicious packet flooding.

Probabilistic algorithms like LogLog counters [43], instead, “trade certainty for
time/space” [110] by estimating the number of unique occurrences of elements in large
multisets through impressively compact data structures at the expenses of a small error
rate.

More formally, given a multisetM produced starting from a discrete universe U , the
objective is to estimate the cardinality of the support of M (aka its dimension), namely
the number of distinct elements it comprises. Like in many similar algorithms, even in
this case it can be assumed that a hash function h : U → U is available for transforming
each element of U into sufficiently long binary strings x ∈ U producing a “random”
multiset M = h(M) with n distinct elements. Note that the use of hash functions
allows obtaining strings x with random uniform independent bits.

Given that, let us suppose that the strings are infinitely long, that isM = {0, 1}∞
(this is a convenient abstraction at this stage) and let ρ(x) denote the (1 based) position
of its first 1-bit. Consider now the set P = {ρ1, ρ2, . . . ρn}, with ρi = ρ(xi), xi ∈
M. The elements of P form a sequence of independent and identically distributed
geometric random variables with common pmf:

Pr{ρ = k} =

(
1

2

)k
, k ≥ 1 (1.1)

Hence, the maximum of the set P:

R(M) = max
x∈M

ρ(x) = max
1≤i≤n

ρi (1.2)

14

i
i

“output” — 2018/4/12 — 19:30 — page 15 — #34 i
i

i
i

i
i

1.6. Efficient data structures

has the cumulative distribution function:

Pr{R ≤ k} =
n∏
i=1

Pr{ρi ≤ k} (1.3)

= (Pr{ρi ≤ k})n (1.4)
= 1− (Pr{ρi > k})n (1.5)

=

(
1−

(
1

2

)k)n

(1.6)

and its mean value [106]:

E [R] =
n∑
i=1

Pr{ρi > k} (1.7)

=
n∑
i=1

1−

(
1−

(
1

2

)k)n

(1.8)

≈ log2 n (1.9)

provides a reasonably rough approximation of log2 n. In fact, it turns out [43] that the
additive bias of R in estimating log2 n is about 1.33, while its standard deviation is
around 1.87.

To improve the estimate of n, the elements of M can be divided into m groups
(buckets) (M (j) with j = 1, 2, · · · ,m) and compute the parameter R on the strings
belonging to each bucket. Typically, m = 2k so that we can use the first k bits of x
to represent the binary index of the bucket. For each group, let the registers R(j) =
maxx∈M(j) ρ(x̃), where x̃ is obtained by discarding the first k bits of the strings x ∈
M (j) (indeed, the statistics on the position of the first bit set to 1 do not depend on the
offset).

Then, the arithmetic mean:
1

m

m∑
j=1

R(j) (1.10)

is legitimately expected to approximate log2(n/m), plus an additive bias.
Thus, the estimate of n according to the LogLog algorithm is:

E = αmm2
1
m

∑m
j=1R

(j)

(1.11)

where αm is the bias correction factor in the asymptotic limit and can be evaluated as
follows [43].

αm =

(
Γ(−1/m)

2−1/m − 1

log 2

)−m
(1.12)

Γ(s) =
1

s

∫ ∞
0

e−tts dt (1.13)

Notice that the algorithm needs to store m registers (the values R(j) computed over
each buckets) each of them having potentially unlimited length. The authors of [43]

15

i
i

“output” — 2018/4/12 — 19:30 — page 16 — #35 i
i

i
i

i
i

Chapter 1. Elements of Network Programming

found that collecting only the θ0 = b0.7mc smallest values (truncation rule) and limit-
ing their range to the interval

[
0 . . . dlog2

(
n
m

)
+ 3e

]
(thus limiting their memory occu-

pancy to dlog2dlog2

(
n
m

)
+ 3ee bits) yields an estimation error for the LogLog counter

of 1.05√
m

. They name such an optimized version of this counter Super–LogLogcounter.
A further decrease of the estimation error up to 1.04/

√
m has been achieved in [48]

by introducing an other optimization named Hyper–LogLog counter. Roughly speak-
ing, the performance improvement has been obtained by replacing the arithmetic mean
of the LogLog counter with the geometric mean, namely:

E =
αmm2∑m
j=1 2−R(j)

(1.14)

where αm is given by:

αm =

(
m

∫ ∞
0

(
log2

(
2 + x

1 + x

))m
dx

)−1
(1.15)

More precisely [48], if σ ≈ 1.04/sqrtm corresponds to the standard error, the estimates
provided by the Hyper–LogLog counter are expected to be within ±σ, ±2σ, and ±3σ
of the exact count in 65%, 95%, and 99% of all cases, respectively.

As a final note, it is worth to elaborate upon the memory footprint of such proba-
bilistic counters. Indeed, the main benefit of their use is represented by their extremely
low memory occupancy which, in many cases, allows their placement into a reasonably
small data structure to reside in small memories, such as fast caches or those on board
of IoT devices. The overall memory occupancy of a counter depends on the cardinality
of the support of the multiset to estimate as well as on the required estimation accu-
racy. Indeed, by construction, the memory footprint of any single LogLog counter is
that of m registers (also called small bytes), each of them sized log2 log2N bits, where
N is an a–priori estimate of the multiset dimension. Depending on the application, by
adequately tuning the parameter m may provide a very compact counter and enable a
significant computation speedup.

1.6.2 Reversible Sketches

Sketches have proven to be useful in many data stream computation applications [35],
[36], [49]. Recent work on a variant of the sketch, namely the k-ary sketch, showed
how to detect large changes in massive data streams with small memory consumption,
constant update/query complexity, and provably accurate estimation guarantees [66].

In a nutshell, a sketch (see Fig. 1.6) is a two-dimensional d × w array S[l][j],
where each row l (l = 1, . . . , d) is associated with a given hash function hl. These
functions give an output in the interval (1, . . . , w) and these outputs are associated with
the columns of the array. As an example, the bucket S[l][j] is associated with the output
value j of the hash function l.

Considering the input data as a stream that arrives sequentially, item by item, where
each item consists of a hash key, it ∈ (1, . . . , N), and a weight, ct, when new data
arrive, the sketch is updated as follows:

S[l][hl(it)]← S[l][hl(it)] + ct (1.16)

16

i
i

“output” — 2018/4/12 — 19:30 — page 17 — #36 i
i

i
i

i
i

1.6. Efficient data structures

+ct+ct ...
N

1 2 3 itit

d

N

+ct+ct
+ct+ct

+ct+ct
+ct+ct

w

Figure 1.6: k-ary Sketch

The update procedure is realized for all the different hash functions as shown in
figure 1.6.

However, sketch data structures have a major drawback: they are usually not re-
versible. In other words, a sketch cannot efficiently report the set of all keys that corre-
spond to a given bucket.

Such limitation can be removed by modifying the input keys and hashing functions
to make it possible to recover the keys with certain properties without sacrificing the
detection accuracy. With this approach, the paper [95] proposes a novel algorithm for
efficiently reversing sketches, by modifying the update procedure for the k-ary sketch
through modular hashing and IP mangling techniques.

The modular hashing operates by first partitioning the n-bit long hash key x into q
words x1, x2, . . . , xq of equal length n/q such that x = x1|x2| . . . |xq. Each word is then
hashed separately by using a different hash function, hdi (i = 1, . . . , q), to obtain an
m-bit long output. Finally, these outputs are concatenated to form the final hash value
(see Fig. 1.7):

δd(x) = hd1(x1)|hd2(x2)| . . . |hdq(xq) (1.17)

Hence, the final hash value consists of q ×m bits which, in turn, makes the number of
column of the sketch equal to w = 2q×m.

Note that the use of the modular hashing may cause a highly skewed distribution of
the hash outputs. Consider, as an example, the widely typical case in which IP addresses
are used as hash keys. In network traffic streams there are strong spatial localities in
the IP addresses since many IP addresses share the same prefix. As a result, the first
octets (equal in most addresses) will be mapped to the same hash values increasing the
collision probability of such addresses.

To efficiently resolve this problem, the IP mangling technique has to be applied be-
fore computing the hash functions. By using such a technique, the system randomizes,
in a reversible way, the input data to remove the correlation or spatial locality.

Reversing algorithm. The full description of the algorithm for reversing the sketch
is given in [95]. In a few words, the rationale of the algorithm is to check separately
all possible words of the keys to find a match with the corresponding portion of bucket
address in the sketch. However, the use of hash modularity allows to immediately

17

i
i

“output” — 2018/4/12 — 19:30 — page 18 — #37 i
i

i
i

i
i

Chapter 1. Elements of Network Programming

10010100 10101011 10010101 10100011

h1h1 h2h2 h4h4h3h3

010 110 011 001

010110011001

Figure 1.7: Modular Hashing

prune out of the whole cartesian products of words all of the q-uples in which even
a single word does not hit any sub–address of the buckets to invert. This way the
inversion algorithm converges very quickly and produce all of the keys that may hit to
the selected buckets in the sketches. Note, however, that the output of the algorithm
only depends on the “geometry” of the sketch, namely the bitwise length of the keys
and on the specific hash functions used to populate it. In fact, a subset of the keys
returned by the algorithm may not even be present in the sketch and represents false
positive. A further confirmation stage is therefore needed to check which keys have
been inserted in the sketch. This stage can be efficiently implemented by inserting the
keys into a simple footprint Bloom filter at the same time they are inserted in the sketch.

1.7 Final remarks

The purpose of this first chapter is to introduce the reader to the practice of high-
performance programming for network applications.

For no reason, the chapter aims at presenting the solution to all the problems a
network programmer can face. Some aspects have been left out intentionally as they do
not directly affect the performance itself. Others, which deserve more attention, have
been postponed to the chapters that follow.

It is evident that high-performance network programming requires an in-depth knowl-
edge of the hardware and the low-level mechanisms that govern it. Performance is only
achieved through an in-depth analysis of all these aspects.

At the kernel level, for example, the development is very complicated, kernel mod-
ules are difficult to maintain (given the rapid variability of the APIs) and very annoying
to debug – there is no practical way to look for a bug without running into a kernel
panic.

Huge attention must be paid to concurrent and lock-free programming. These tech-
niques necessarily require the use of assembly code or some extensions recently intro-
duced in the C and C++ languages to shape and control the way writes to memories
propagate to cores (Memory Models). This semantics is hard to implement and is
equally complicated to finalize, as there are no tools that allow verifying the presence

18

i
i

“output” — 2018/4/12 — 19:30 — page 19 — #38 i
i

i
i

i
i

1.7. Final remarks

of a race-condition. This fact, in turn, renders the execution of the application non-
deterministic, or in other words, non deterministically reproducible.

It is straightforward to conclude that this kind of applications requires the adoption
of too much knowledge that, in turn, forces the developer to focus his attention on the
gory details rather than on what he is indeed in charge to design.

Therefore, the experience we matured in the recent years has led us to create a
framework that hides the most complicated details to the programmer, providing high-
level APIs that can be used to implement fast and robust network applications. Such a
framework is presented in the following chapter.

19

i
i

“output” — 2018/4/12 — 19:30 — page 20 — #39 i
i

i
i

i
i

CHAPTER2
Fast Packet I/O

High-speed data availability and efficient data processing call for (at least) two com-
plementary – and somewhat orthogonal – features for a network device in charge of
running one of the above-listed network applications: high-speed traffic capturing and
effective dispatching mechanisms to upper-level applications.

From a technological point of view, in the last years the evolution of commodity
hardware has been pushing parallelism forward as the key factor to allow software-
based solutions to attain hardware-class performance while still retaining its advan-
tages. Indeed, on one side commodity CPUs provide more and more cores, while on
the other side a new generation of NICs support multiple hardware queues that allow
cores to fetch packets concurrently. For these reasons, commodity PCs have recently
become increasingly popular to be the underlying hardware platforms for the develop-
ment of complex and high-performance network applications, switches, middleboxes
and so on.

As CPU speed has nearly reached saturation values, parallel processing emerges as
the natural way to let network applications scale up to multi-gigabit (10/20/40 Gbps)
line speed. Indeed, almost any non-trivial monitoring application in charge of opera-
tions like reconstructing TCP flows, computing statistics, performing DPI and protocol
classification, etc. requires at least a few thousands of clock cycles per each observed
packet. In most cases, a large amount of clock cycles is wasted in accessing the data
structures that contain the state of the flows under investigation rather than in packet
elaboration itself. This way, even a simple application that consumes around 3000 clock
cycles per packet cannot process more than 1 million of packets per second on a 3 GHz
core. In all such cases, distributing the workload to multiple cores is the only viable
approach to improve speed performance and maintain the application usability.

In this chapter, we present a general purpose framework named PFQ for high-speed

20

i
i

“output” — 2018/4/12 — 19:30 — page 21 — #40 i
i

i
i

i
i

2.1. Background and Motivations

packet capturing and distribution to network devices and applications (endpoints) run-
ning on Linux based commodity PCs. The primary objective of PFQ is to handle the
application parallelism by allowing fine-grained configuration of packet dispatching
from the capture interface to user-space processing applications.

The PFQ project [20] started a few years ago and was born as a Linux kernel capture
engine [21]. Since then, the platform has changed quite a lot, and many features have
been added, including an in-kernel programmable stage for early processing [23]. In its
current shape, PFQ enhances network I/O capabilities and enables easy configuration
for user-space parallel processing while preserving the host system normal behavior
(including device drivers and kernel data structures). As such, PFQ masquerades the
low-level capture complexity and exposes a set of processing abstractions to new multi-
threaded applications or legacy single-process programs.

2.1 Background and Motivations

The investigation on software-based approaches to traffic capturing, monitoring and –
more generally – processing running on commodity PCs has recently emerged as an ap-
pealing topic in the research community as a viable and cheap alternative to traditional
hardware solutions. At the lowest level, to overcome the performance limitations of a
general purpose operating system, many techniques have been proposed to accelerate
packet capturing. Most of them rely on bypassing the entire operating system, or at
least its network stack functions. An extensive comparison of such techniques along
with guidelines and possible improvements to reach higher performance can be found
in [26] and more recently in [77] and [51].

PF_RING [50] was one of the first software accelerated engines. It uses a memory
mapped ring to export packets to user space processes: such a ring can be filled by a
regular sniffer or by modified drivers, which skip the default kernel processing chain.
PF_RING works with both vanilla and aware drivers, although its performance makes
it more suitable for 1 Gbps links. PF_RING ZC (Zero Copy)1 [39] and Netmap [93],
instead, memory map the ring descriptors of NICs at user space, allowing even a single
CPU to receive 64 bytes long packets up to full 10 Gbps line speed. A step forward
to network programming is represented by DPDK [42] that, besides accelerating traffic
capture through OS bypassing, adds a set of libraries for fast packet processing on
multicore architectures for Linux. OpenOnLoad [103] provides a high-performance
network stack to accelerate existing applications transparently. However, its use is
strictly limited to SolarFlare products.

HPCAP [78] is a packet capture engine designed to optimize incoming traffic stor-
age into non-volatile devices and to provide timestamping and user-space delivery to
multiple listeners.

Out of the above-listed frameworks, DPDK, PF_RING ZC, and Netmap hit the
best performance in capturing and bringing packets to user-space applications at multi-
gigabit line rates, even with a single capturing CPU.

At a logically higher level, many interesting works have been carried out for de-
signing software-based switches and routers: although their scope is different, several
common grounds with network monitoring are easily found, the most important being

1The successor of the formerly known PF_RING DNA

21

i
i

“output” — 2018/4/12 — 19:30 — page 22 — #41 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

the need for de-queuing packets at wire speed.
Packetshader [55] is a high performing software router that takes advantage of GPU

power to accelerate computation/memory intensive functions. Egi et al. [44] investigate
on how to build high-performance software routers by distributing workload across
cores while Routebricks [40] proposes an architecture to improve the performance of
software-based routing by using multiple paths both within the same node and across
multiple nodes forming a routing cluster.

The last two works rely on the Click modular router [65], a widely known frame-
work that allows building a router by connecting graphs of elements. Several works
have recently focused on the acceleration of Clicks using some of the above listed I/O
frameworks as in [92] and [13]. Furthermore, the Click approach has recently been
complemented to take advantage of GPU computational power in Snap [105]. The
Click modular principle is borrowed by Blockmon [57], a monitoring framework which
introduces the concept of primitive composition on a message passing based architec-
ture. Finally, the Snabb switch [102] combines the kernel bypass mode of Ethernet I/O
with the use of the Lua scripting language to build a fast and easy to use networking
toolkit.

So, why PFQ?
The introduction of a new generation of network cards with multiple hardware

queues has pushed a significant evolution of existing I/O frameworks to support Re-
ceive Side Scale (RSS) [59] technology. As it will be elaborated upon in the following,
RSS uses the Toeplitz hashing mechanism to split the incoming traffic across multiple
hardware queues for parallel processing. The hash is computed by the network card it-
self over the canonical 5-tuple of IP packets and traffic is spread out among cores main-
taining per-core uni-directional flow coherency by default. Besides, the hash algorithm
can be properly tweaked to achieve bi-directional flow coherency [113]. However, in
many real cases, a more refined distribution criteria is required by applications and
multi-core processing management merely based on RSS turns out to be insufficient.
As a simple example, to run multiple instances of the well known NIDS application
Snort [33], a special symmetric hash function to achieve network-level coherency is
required to detect cross-flow anomalies and attacks within a specific LAN properly.

Slightly more complex examples include service monitoring applications that re-
quire either data and control plane packets to be processed by the same thread/process
(e.g. RTP and RTCP or SIP) or tunneled protocols (IPIP, GRE, GTP), whereas RSS
would spread traffic according to the tunnel headers instead of the inner packets fields.

PF_RING supports packets distribution through the commercial PF_RING ZC li-
brary2. According to the documentation [82], the library is equipped with algorithms
for dispatching packets across endpoints. Such functions take an extra user-defined
callback to fully specify the balancing behavior (by a hashing scheme). Also, to ease
the implementation of such callbacks, the library provides helper functions that com-
pute a symmetric hash on top of IP packets, possibly transported by GTP tunnels.

Similarly, the companion Distributor library of DPDK [41] implements a dynamic
load balancing scheme. The module takes advantage of the RSS tag stored in the mbuf
structure to sequence and dispatch packets across multiple workers.

Both the above solutions are designed to embed a packet distribution machinery into
2The evolution of the formerly known libzero library

22

i
i

“output” — 2018/4/12 — 19:30 — page 23 — #42 i
i

i
i

i
i

2.2. The System Architecture

applications to implement multi-threaded packet processing. However, such solutions
are not entirely transparent to the applications which, in turn, need to be adapted to take
full advantage of these mechanisms.

As previously mentioned, the PFQ project started in 2011 and appeared first in [21].
Since its original version, PFQ was designed as a software capture engine with a basic
in-kernel steering stage targeted to allow user-space applications defining their arbi-
trary degree of parallelism. Nevertheless, the initial version of PFQ required modified
network device drivers to reach high performance.

The current version of PFQ, instead, is compatible with a wide plethora of network
devices as it only requires the original vanilla drivers to be recompiled with a script
included in the package to achieve full acceleration. However, PFQ can work with
binary vanilla drivers as well, although I/O performance may drop depending on some
factors, including driver and kernel versions. As an example, the use of the binary 10G
ixgbe Intel driver shipped with Linux kernel 3.16 allows hitting slightly less than half
of the optimal capturing rate.

Generally speaking, the use of existing vanilla drivers might result in limited perfor-
mance figures whenever their quality is not adequate. However, nothing prevents PFQ
from using modified/optimized drivers to further boost performance.

Also, PFQ is equipped with an in-kernel processing stage programmable through
the functional language pfq-lang, available as an embedded Domain Specific Language
(eDSL) for the C++ and the Haskell languages. To further improve usability, an experi-
mental compiler also allows pfq-lang instructions to be scriptable and placed in strings,
configuration files, and JSON descriptions. As a result, no programming skill is needed
to accelerate legacy applications as they do not require any modifications.

The pfq-lang language is extensible and pluggable. Additional in-kernel functions
can be added to the language in separated kernel modules and loaded on the fly as plu-
gins. Moreover, pfq-lang computations are dynamic and hot-swappable (i.e., run-time
atomically upgradable) to be used, for instance, in response to either network events or
configuration updates. As a result, As a whole, up to 64 multi-threaded applications
can be bound to the same network device, each of them receiving an independent and
fully configurable quota of the overall underlying traffic.

This chapter aims at providing a complete overview of PFQ by adding a detailed
description of its architecture and its software acceleration internals to the functional
engine described in [23] and therein assessed in isolation only. Besides, a set of practi-
cal use-cases is presented to show how PFQ can be used in practice and to evaluate its
effectiveness in accelerating new and legacy applications.

2.2 The System Architecture

The architecture of PFQ as a whole is shown in Figure 2.1. In a nutshell, PFQ is a
Linux kernel module designed to retrieve packets from one or more traffic sources,
make some elaborations utilizing functional blocks (the λi blocks in the picture) and
finally deliver them to one or more endpoints.

Traffic sources (at the bottom end of the figure) are represented by Network Interface
Cards (NICs) or – in case of multi-queue cards – by single hardware queues of network
devices.

23

i
i

“output” — 2018/4/12 — 19:30 — page 24 — #43 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

NIC

App

Kernel

Network Stack

Path to endpoint

Path from source

NIC

NIC

App

λ1

App

NIC

λ1 λ1 λ2

batch queue

socket queue

NIC

Sources

e
n
d
p
o
in
ts

endpoints

Figure 2.1: The PFQ system at-a-glance

Endpoints, instead, can be either sockets from user-space applications (top end of the
figure) or network devices, or even the networking stack of the operating system itself
(right end of the figure) for ordinary operations (e.g., traditional routing, switching,
etc.).

The low-level management of NICs is left under the OS control as the network
device drivers are not modified.

A typical scenario for the use of PFQ is that of a multi-threaded network application
in charge of monitoring traffic over one or more network interfaces. Each thread opens
a single socket to the group of devices to monitor and receives a quota (or all) of the
packets tapped from the selected interfaces. On their way to the application, packets
come across functional blocks, that may implement part of the application processing
machinery. The execution of such an early stage of elaboration is instantiated by the
application itself through a functional eDSL. As a result, packets are finally delivered
to the selected endpoints.

It is worth noticing that PFQ does not bypass the Linux kernel, but stands merely
along with it. Packets directed to networking applications are treated by PFQ ex-
clusively, whereas packets destined for other system operations can be transparently
passed to the kernel stack, on a per-packet basis.

Figure 2.2 depicts the complete software stack of the PFQ package. The kernel mod-
ule includes a reusable pool of socket buffers and the implementation of a functional
language along with the related processing engine. In the user-space, the stack includes
native libraries for C++11-14 and C language, as well as bindings for Haskell language,
the accelerated pcap library and two implementations of the eDSL for both C++ and

24

i
i

“output” — 2018/4/12 — 19:30 — page 25 — #44 i
i

i
i

i
i

2.2. The System Architecture

PFQ
C++11

pfq-lang
DLS

libpcap

PFQ libc

Haskell FFI

pfq-lang
DLS

socket buffer pool pfq-lang

Network Device Drivers

λ (functional engine)

kernel space

user space

Figure 2.2: PFQ software stack

Haskell.

2.2.1 Three layers of parallelism

The system architecture depicted in Figure 2.1 reveals three distinct levels of paral-
lelism associated with three different areas:

• at the low (hardware) level, where packets can be retrieved from multiple NICs
and multiple queues of modern network cards;

• at the top level, where multi-threaded applications or multiple single-threaded ap-
plications may want to process packets with a different degree of parallelism;

• at the middle level, where multiple kernel threads running on different cores tap
packets from network cards and serve user-space applications, network cards or
the network stack of the OS.

The above levels of parallelism may additionally get combined in several possible
schemes, as shown in Figure 2.3 where endpoints (E), functional engines (λ) and
sources (S) can be configured according to different degrees of parallelism.

Hardware parallelism. At the hardware level, modern NICs (such as those based on
the Intel 82599, X520 or X710 controller) support multiple queues: multiple cores can
therefore receive and transmit packets in parallel. In particular, incoming packets are
demultiplexed by RSS technology [59] to spread traffic among receiving queues using
a hash function computed over a configurable number of packet fields. Each queue
can be bound to a different core by properly setting its interrupt affinity to balance the
overall capture load among the computation resources of the system.

25

i
i

“output” — 2018/4/12 — 19:30 — page 26 — #45 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

λ

E

S

λ

E

S

λ

E

S

λ

E

S SS

λ

S

λ

E

S

λ

S

E

λ

E

S

E

λ

E

λ

E

S

λ

E

(a) (b) (c)

(d) (e)

Figure 2.3: Three layers of parallelism

In-kernel parallelism. Once the interrupt affinity has been set and the capture paral-
lelism is enabled, each CPU is in charge of processing a quota of the incoming traffic
according to the RSS algorithm.

Here is where PFQ intervenes with its operations. PFQ runs on top of ksoftirqd
threads that retrieve packets in parallel from network device upon receiving an interrupt.
NAPI is used to mitigate interrupt rate as in a standard Linux kernel. Hence, the number
of kernel threads in use, say i, equals the number of NAPI contexts enabled on the
system and throughout the chapter will be referred to as RSS = i (instead, when no
further specification is given, the term thread alone refers to an application thread of
execution).

The combined use of RSS and interrupt affinity allows a fine-grained selection of
the NAPI kernel threads and the hardware queues of network cards. At this stage,
packet payloads are transferred via DMA from the wire to RAM, and the Intel DCA
mechanism makes them available to the CPU cache memory with no need for extra
memory accesses.

Packets handled by PFQ are then processed through the functional engines and op-
tionally steered to endpoints according to application-specific criteria. Upon steering,
however, cache locality cannot be preserved as packet payloads might be transferred to
different cores. This is the necessary price to pay to let user-space applications/threads

Overall, hardware parallelism turns out to be decoupled from the user-space appli-
cations which, in turn, only see the PFQ sockets and the related APIs exposed by the
companion libraries.

The advantage of an in-kernel built-in engine is two-fold: on the one hand, it allows
fine-grained control over the distribution process before packets are delivered to sockets
without extra packet copies. On the other, it is entirely transparent to applications
(including legacy ones) which, in turn, do not require any modification to perform a

26

i
i

“output” — 2018/4/12 — 19:30 — page 27 — #46 i
i

i
i

i
i

2.3. High Speed Packet Capture

proper parallel processing. Also, the steering process brings up the kernel and network
devices along with sockets, which makes it suitable not only for traffic monitoring but
also for more advanced networking applications such as packet brokers, load-balancers,
etc.

Application parallelism. At the top level, network applications (or more generally,
endpoints) are allowed to receive traffic from one or more network devices according
to different schemes. As already mentioned, the typical scenario is that of a multi-
threaded application in which each thread receives a portion of traffic from one or more
network devices. But one may also think of multiple process instances (typically, legacy
applications) that run in parallel and receive a portion of the underlying captured traffic
as well. Or even a single process collecting all of the traffic from multiple network
devices.

As will be elaborated upon in a few sections, all such cases are flexibly handled
by PFQ through the abstractions of groups and classes that provide convenient exten-
sions to the concept of network socket in case of parallel processing. Applications will
only need to register their sockets to specific groups, without any knowledge about the
underlying configuration.

Also, multiple logical schemes from Figure 2.3 may be instantiated at the same time
as different applications may run concurrently to process traffic from the same set of
network devices. PFQ can perfectly cope with this scenario as different applications
will use distinct groups that run orthogonally to each other making any application
behave just as it were the only one running on the system.

2.3 High Speed Packet Capture

This section describes the PFQ internals associated with the operations involved in
the low level packet capture. As introduced above, the design philosophy of PFQ is
to avoid modifications to the network device drivers and their interfaces toward the
operating system.

If on one side the use of vanilla drivers allows a complete compatibility with a large
plethora of network devices, on the other side it could raise performance issues. In-
deed, the standard OS handling of packet capture cannot guarantee decent performance
on high-speed links and successful projects like PF_RING ZC or Netmap have demon-
strated the effectiveness of driver modifications.

However, with the software acceleration techniques implemented in PFQ, it is still
possible to achieve top class capture figures while retaining full compliance with stan-
dard driver data structures and operations. The impact of such acceleration techniques
will be thoroughly assessed in the corresponding section of the performance evaluation
results.

2.3.1 Accelerating vanilla drivers

The first performance acceleration technique introduced by PFQ consists of intercept-
ing and replacing the OS functions invoked by the device driver with accelerated rou-
tines. This way, the kernel operations triggered by the arrival of a packet are by-
passed, and the packet itself gets under the control of PFQ. This procedure does not
require any modification to the source code of NIC drivers which, in turn, only need

27

i
i

“output” — 2018/4/12 — 19:30 — page 28 — #47 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

P

(PFQ/Kernel)

C

(Driver)

SKB SKB SKB

P

(PFQ/Kernel)

C

(Driver)

SKB SKB SKB

Core 1

Core 1

Core 3

Core N

Figure 2.4: Pool of skbuffs

to be compiled against a PFQ header to overload at compile time the relevant system-
calls that i) pass packets to kernel (namely netif_receive_skb, netif_rx and
napi_gro_receive) and ii) are in charge of allocating memory for the packet (e.g.,
netdev_alloc_skb, alloc_skb, dev_alloc_skb, etc.).

Such a static function overloading does not introduce any overhead. Also, the whole
operation is made easier by the pfq-omatic tool included in the PFQ package that
automates the compilation and only needs the source code of the vendor device drivers.

2.3.2 Pool of socket buffer

The typical behavior of a network device driver is to allocate a set of socket buffers
(skbuffs) where the NIC can place (via DMA) the payload of the packets received,
together with additional metadata (timestamp, etc.). Once the skbuffs are ready, they
can then be passed back to the network stack of Linux.

To keep the full compatibility with standard driver operations and to allow a possi-
ble delivery to the system OS (when it acts as an endpoint) PFQ maintains this design,
while accelerating the skbuff memory allocations by making use of pre-allocated pools
of skbuff (Figure 2.4). Such pools have a configurable maximum size and are instanti-
ated one per-core to avoid inter-core data sharing, as opposed to the case of the standard
OS kernel that, instead, implements a single kmem_cache of skbuff for the whole sys-
tem. Initially, each pool is empty and the skbuffs are allocated on-demand by the device
drivers (using the standard memory allocator for skbuff). After the completion of their
processing, the consumed skbuffs are parked in the pool for reuse. After a very short
time, each pool contains enough recycled skbuffs to be reused upon driver request, so
that the kernel allocator is no longer needed.

In queueing terminology, the pool can be modeled as a circular single producer/sin-

28

i
i

“output” — 2018/4/12 — 19:30 — page 29 — #48 i
i

i
i

i
i

2.4. Functional processing

gle consumer queue, in which producer and consumer run on the same core.
As a special case, it is relevant to note that packets forwarded to the kernel

2.3.3 Batch queues

Once an skbuff is received by PFQ it is first placed in a batch queue. PFQ maintains one
batch queue per (active) core. Mainly, these queues are standard FIFO used to place
packets before they are processed in batches by the functional engines (when the queue
is full or when a timeout expires). Batch processing has demonstrated to be a very ef-
fective acceleration technique for at least two reasons. The first reason is that batching
operations always improve the temporal locality of memory accesses that, in turn, re-
duce the probability of cache misses. However, the primary effect is determined by the
dramatic amortization of the cost of the atomic operations involved in the processing
of packets. Indeed, even the simple distribution of packets to sockets requires at least a
per-packet atomic operation. The use of batch processing allows decreasing the cost of
such an overhead of a factor 1/batch_size, with clear performance improvement.

The use of batch processing allows decreasing the cost of such an overhead of a
factor 1/batch_size, with clear performance improvement.

The size of the batch queues is configurable as a PFQ module parameter. The impact
of the batch queue and its length will be next presented and discussed in the perfor-
mance section.

2.4 Functional processing

Packets backlogged in the batch queues wait their turn to be processed by functional
engines. Each functional engine runs up to 64 distinct computations instantiated by up-
stream applications through a functional language. Computations represent the compo-
sitions of primitive functions that take an skbuff as input and return the skbuff possibly
enriched with a context specifying an action, a state and a log for I/O operations. Ac-
tions are associated with the final endpoints and the delivery mode (the packet fanout)
of the packet. The state is associated with annotations of metadata on packets while
logs represent information associated with the packet that is possibly used to generate
I/O.

In the functional world, such primitives are named monadic functions and their com-
position is known as Kleisli composition; a more formal description of the algebra of
PFQ computations is provided in [23]. Besides, traditional functions such as predicates,
combinators, properties, and comparators are also available.

All computations instantiated on a functional engine are executed sequentially on
each packet and in parallel with respect to the other instances of the same computations
running on other cores. However, since the functional paradigm does explicitly forbid
packet mutability, the order of execution of computations on the same core is irrelevant.

Computations are executed at kernel space though they are instantiated at user-space
through the specially developed Domain Specific Language named pfq-lang presented
in section 2.5.2. The use of computations is specially targeted at offloading upstream
applications by providing an early stage of in-kernel processing.

Currently, the PFQ engine integrates about a hundred primitive functions that can
be roughly classified as: protocol filters, conditional functions, logging functions, for-

29

i
i

“output” — 2018/4/12 — 19:30 — page 30 — #49 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

warding (to the kernel or NIC) and fanout functions (mainly, steering).
The last category of functions is particularly relevant as it defines which (and how)

applications endpoints will receive packets. The next section focuses on this central
point of PFQ operations by introducing the concepts of groups and classes.

2.4.1 Groups and classes

One of the key features of PFQ is the high level of granularity that can be specified to
define the final endpoints for packet delivery. This is made possible by the introduc-
tion of a convenient abstraction to let multi-threaded user-space applications share and
spread flows of packets.

Indeed, consider a single threaded application that receives packets from one or
more devices (in standard Linux, it can be either a specific device or all of the devices
installed on the system). Such an operation requires opening a socket and binding it to
the involved devices. The socket itself, hence, acts as the software abstraction for the
pipe where packets are received.

In multi-threaded applications, threads reside on top of multiple cores. In this con-
text, the above abstraction of pipe needs to be extended to let all of the threads involved
in packet handling receive only a portion of the data flowing in the pipe. To this aim,
PFQ introduces the abstraction of group of sockets. Under this abstraction, each end-
point (thread or process) opens a socket and registers the socket to a group. The group
is bound to a set of data sources (physical devices or a specific subset of their hard-
ware queues). Also, each group defines its own (unique) computation; hence, each
socket participating the group receives packets processed by the same computation in
the functional engine.

In a nutshell, a group can be defined as the set of sockets that share the same com-
putation and the same set of data sources.

Different groups behave orthogonally to each other, that is they can transparently
coexist on the same system and implement arbitrarily different parallel schemes. In
particular, they can access at the same time any arbitrary data source and process and
redirect the full amount of retrieved traffic to the registered applications.

The endpoints participating in the same group receive packets according to the
fanout primitives introduced at the end of the previous section. Two basic delivery
modes are:

• Broadcast: a copy of each packet is sent to all of the sockets of the group;

• Steering: packets are delivered to the group of sockets by using a hash-based load
balancing algorithm. Both the algorithm and the hash keys are defined by the ap-
plication through the computation instantiated in the functional engine. For exam-
ple, the function steer_flow spreads traffic according to a symmetric hash that
preserves the coherency of bi-directional flows, while the function steer_ip
steers traffic according to a hash function that uses source and destination IP ad-
dress fields as mega-flows.

Although the concept of group and its delivery modes allow a significant flexibility
to the design of user-space applications, it turns out that in many practical cases they are
not sufficient to cover the fine-grained requirements of many real network applications.

30

i
i

“output” — 2018/4/12 — 19:30 — page 31 — #50 i
i

i
i

i
i

2.5. User to Kernel space communication and APIs

As an example, consider Figure 2.5 where a multi-threaded application is monitoring
the traffic of an arbitrary service from the two network cards reported at the bottom. The
application has reserved the special thread shown in the top right-hand side to receive
the service control plane packets only, while the remaining threads on the left-hand
side are devoted to processing data plane packets. All threads are registered to the same
group i, but none of the delivery modes previously described allows to separate traffic
according to the application requirements.

The concept of classes allows to overcome the problem and increases the granularity
of the delivery modes in an elegant way. Indeed, classes are defined as a subset of sock-
ets of the group (in fact, a subgroup) that receives specific traffic as a result of in-kernel
computations. Again, sockets belonging to the same class may receive traffic either in
broadcast (here called Deliver) mode or in load balancing (here called Dispatch) mode.

Coming back to the example of Figure 2.5, it comes out clearly that the combined
use of groups/classes and the functional computation easily allow fulfilling the appli-
cation requirements. Indeed, traffic captured from the network devices are filtered at
the functional engines: at this stage, data plane packets are sent in steering mode to the
threads belonging to Class 1 (in charge of collecting data plane packets) while control
plane packets are sent to the thread belonging to Class 2 (notice that, in this specific
case, Deliver and Dispatch mode are obviously equivalent).

Once again, Figure 2.5 evidences the total decoupling between application level
and hardware level parallelism allowed by PFQ in which user-space threads join the
group/class and receive traffic according to their need without any knowledge about the
underlying configuration of hardware devices and the parallel scheme implemented at
the kernel level.

The maximum number of groups and classes allowed by the PFQ architecture is 64
for both. Other practical examples of the use of groups and classes will be provided in
the use-cases section 2.8.

Groups access policy. Although the concept of the group allows different sockets
to participate and share common monitoring operations, for security and privacy rea-
sons not all processes must be able to freely access any active group To this aim, PFQ
implements three different group access policies:

• private: the group can only be joined by the socket that created the group;

• restricted: the group can be joined by sockets that belong to the process that cre-
ated the group (hence the group is open to all threads of execution of the process);

• shared: the group is publicly joinable by any active socket on the system.

2.5 User to Kernel space communication and APIs

This section describes how packets distributed from the in-kernel functional engines
reach user-space endpoints and how user-space applications can take advantage of the
flexibility provided by the underlying PFQ computation machinery. As such, the in-
ternal software mechanisms that implement communication between PFQ and user ap-
plications are reported below. Next, the focus of the discussion will turn to the set of
application programming interfaces exposed by PFQ to build network applications.

31

i
i

“output” — 2018/4/12 — 19:30 — page 32 — #51 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

λ1 λ2 λ3

NIC

Group i

Group i

socket…socketsocketsocket

Class 1 (data-plane) Class 2 (control plane)

NIC

Steering
Dispatching

Figure 2.5: PFQ functional processing and fanout

2.5.1 User to Kernel space communication

Packets delivered to user-space sockets are placed on a shared memory between user
and kernel spaces where special multiple producers/single consumers lock-free queues
are allocated. The producers of the queues are the kernel threads running the func-
tional engines while the (single) consumers are the user-space application threads. Each
user-space socket consumes packets from its queue; later, they will be referred to as
socket queues. In modern Linux systems, such queues are allocated on 2 MB large
hugepages [69]; when this is not possible, PFQ automatically rolls back to standard
system pages of 4 KB size.

Socket queues (Figure 2.6) are equipped with a double buffer. The use of such a
dual buffer allows decoupling the operations of producers and consumers. While the
producers fill one buffer with batches of packets, packets from the other buffer are
consumed by the user application. Each time the consumer has exhausted the packets,
it triggers the atomic swap of the buffer and starts pulling packets from the other buffer.

The atomic swap is triggered upon the (atomic) replacement of the index that iden-
tifies the active producer buffer together with a read and immediate reset of the counter
of packets placed in the buffer by producers. This atomic swap is made possible on any
system in that the buffer index and the packet counters are both contained on the same
32-bit integer, in the higher and lower parts, respectively.

As a final remark, note that the socket queue does not prevent packet losses. Indeed,
whenever the consumer becomes slower than the producer, the buffer overflow may
occur, and packets are dropped.

Egress sockets. A specific discussion is needed when the final endpoint is not a

32

i
i

“output” — 2018/4/12 — 19:30 — page 33 — #52 i
i

i
i

i
i

2.5. User to Kernel space communication and APIs

BATCH

P1 P2

C

pkt header

pkt payload

Figure 2.6: Double buffered socket queue

socket, but rather a network device. In such case, the socket queue is not used, and the
communications are implemented differently. To this aim, PFQ implements a proper
abstraction called egress socket that adapts the PFQ interface towards generic endpoints
with no need to change the distribution operations.

2.5.2 Application Programming Interfaces

From the application programmer point of view, PFQ is a polyglot framework that
exposes native libraries for the C and C++11-14 languages, as well as bindings for
Haskell.

Moreover, beside the traditional APIs, PFQ additionally includes a Domain Specific
Language (pfq-lang) that allows programming the kernel-space computations from both
embeddable expressions (C++ and Haskell) and configuration files, using its internal
compiler. Finally, for compatibility with a large number of traditional legacy applica-
tions, PFQ also exposes an adaptation interface towards the standard pcap library.

Native APIs. Native PFQ libraries include a rich set of functions to control the un-
derlying PFQ mechanisms, to handle traffic capture/transmission, to retrieve statistics
and to inject in-kernel pfq-lang computations.

It is worth pointing out that the injection of the computations occurs once its formal
correctness has been validated at compile time by the C++/Haskell compilers, or by the
pfq-lang compiler itself. Additionally, the correctness of the computations is checked
again by the kernel itself before being enabled for execution.

pfq-lang. The packet processing pipeline (computation) executed by functional en-
gines can be described by composing multiple functions implementing elementary op-
erations. pfq-lang provides a rich set of functions and is designed to be extensible;
this allows users to add functions for their specific purposes easily. Like any func-
tional language, pfq-lang supports high—order functions (functions that take or return
other functions as arguments) and currying, that convert functions that take multiple
arguments into functions that take a single argument. Besides, the language includes
conditional functions and predicates to implement a basic code control flow. Since
pfq-lang is used to describe and specify the packet processing logic, its purpose within

33

i
i

“output” — 2018/4/12 — 19:30 — page 34 — #53 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

PFQ is similar to that of P4 [24] and Pyretic [76] in describing the data plane logic
of an SDN network or to that of Streamline [37] to configure I/O paths to applications
through the operating system.

As an example, a simple function that filters IP packets and dispatches them to a
group of endpoints (e.g., sockets) utilizing a steering algorithm is described as:

main = ip >-> steer_ip

where ip is a filter that drops all the packets but IP ones, and steer_ip is a function
that performs a symmetric hash with IP source and destination.

pfq-lang implements filters for the most common protocols and several steering
functions to serve user-space application requirements. In addition, each filter is com-
plemented with a predicate, whose name begins with is_ or has_ by convention.

Conditional functions allow to change the behavior of the computation, depending
on a property of the processed packet, as in the following example:

main = ip >-> when is_tcp
forward "eth1"
>-> steer_flow

The function drops all non-IP packets, forwards a copy of TCP packets to eth1,
and then dispatches packets to the group of registered PFQ sockets in steering mode.

The following example shows a simple in-kernel computation for delivering packets
by keeping subnet coherence to multiple instances of a Network Intrusion Detection
System (e.g., to detect a virus spreading over a LAN):

main = steer_net "131.114.0.0" 16 24

The network under investigation is specified through its address and prefix (131.114.0.0/16).
The second prefix (24) is used as the hash depth to spread packets across the NIDS in-
stances and to preserve class C network coherence.

Libpcap adaptation layer. Legacy applications using pcap library [89] can also be
accelerated by using the pcap adaptation layer that has been extended to support PFQ
sockets. As an example, the availability of the pcap interface allows multiple instances
of single-threaded legacy applications to run in parallel as PFQ shared groups can be
joined by multiple processes.

However, to keep full compatibility with legacy applications, the pcap adaptation
layer is designed to maintain the original semantic and leave the APIs unchanged.
Therefore, some specific options needed by PFQ native libraries (such as the ones as-
sociated with groups/classes handling, computation instantiations, etc.) are specified as
either environment variables or within configuration files.

Pcap acceleration is activated depending on the name of the interface: if it is pre-
fixed by pfq the library automatically switches to PFQ sockets, otherwise, it rolls
back to traditional PF_PACKET sockets. Also, multiple capturing devices can be spec-
ified by interposing the colon symbol (:) between the names of the interfaces (e.g.,
pfq:eth0:eth1).

It is worth noticing that PFQ is transparent to legacy pcap applications running on
top of it. As such, for example, they can generally use Berkeley Packet Filters.

34

i
i

“output” — 2018/4/12 — 19:30 — page 35 — #54 i
i

i
i

i
i

2.6. Packet transmission

In practice, to run on top of PFQ, an arbitrary pcap application such as tcpdump
should equivalently i) be compiled against the pfq-pcap library or ii) be executed by
preloading the pfq-pcap library by means of the LD_PRELOAD environment variable.

The following example shows four sessions of tcpdump sniffing TCP packets from
network interfaces eth0 and eth1. The four sessions run in parallel on group 42 and
receive a load-balanced quota of traffic that preserves the flow coherency. The (first)
master process sets the group number in use, the pfq-lang computation (steer_flow) and
the binding to the network devices. The additional three tcpdump instances specify
the PFQ_GROUP only, in that all parameters are already set.

PFQ_GROUP=42 PFQ_LANG="main = steer_flow"
tcpdump -n -i pfq:eth0:eth1 tcp

PFQ_GROUP=42 tcpdump -n -i pfq
PFQ_GROUP=42 tcpdump -n -i pfq
PFQ_GROUP=42 tcpdump -n -i pfq

2.6 Packet transmission

Although the chapter focuses on the receiving side, it is worth pointing out that PFQ
supports packet transmission as well. As such, this section briefly reports on the mech-
anisms adopted by PFQ for packet transmission.

Roughly speaking, the transmission side of PFQ behaves nearly symmetrically con-
cerning the receiving side.

Socket queues are still double buffered, but the role of producers (the application
threads generating traffic) and consumers (the kernel threads in charge of forwarding
packets to network devices) is now reverted.

Packets placed into socket buffers by user-space applications are spread out over the
different active kernel threads utilizing a hash function that acts as the software dual
of the RSS hardware function (named TSS). In turn, PFQ kernel threads fetch packets
from socket queues and pass them to the network device drivers for transmission.

As such, the transmission capability of PFQ is mainly used in the experimental sec-
tions to feed the PFQ receiving mode with synthetic and real traffic for performance
evaluation purposes. In particular, the application pfq-gen (included in the PFQ dis-
tribution) is used to generate traffic with the desired features (random IP addresses,
different packet lengths, etc.) and to replay real traces at different speeds, with ran-
domized (but flow-coherent) IP addresses, and so on.

Also, the packet transmission capability of PFQ is used to effectively accelerate the
well known Ostinato traffic generator [83]. A detailed report of this practical applica-
tion is provided in section 2.8.4.

Just as in the receiving side, the transmission mechanisms of PFQ use pure vanilla
drivers and take full advantage of bulk network transmission whenever this feature is
supported (as in the latest ixgbe and i40e Intel driver versions). Bulk transmission
perfectly copes with the PFQ architecture, as the batch mechanism is already present
in both the receiving and transmission sides. The experimental investigation reported
in the next section evidences the benefits that this feature brings to PFQ performance.

35

i
i

“output” — 2018/4/12 — 19:30 — page 36 — #55 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

monsters mascarawhiskey

lace

2 x 10G2 x 10G

2 x 40G

Figure 2.7: Experimental field trial

2.7 Performance evaluation

This section aims at assessing the performance of the PFQ architecture under different
hardware, kernel and application parallel schemes. Performance of real applications
running on top of PFQ will be evaluated separately in the section dedicated to use-
cases.

Although PFQ privileges flexibility and usability for bare performance, to be effec-
tive it must be able to reach high-speed capturing and processing figures, possibly at
the expense of a slight extra cost regarding the amount of system resources needed (i.e.,
number of cores). The result reported in the following precisely demonstrates that PFQ
allows commodity hardware to reach top class performance even by using pure vanilla
drivers.

The experimental testbed used throughout the whole set of measurements is shown
in Figure 2.7 and is made up of two pairs of identical PCs. Two (older) PCs (mas-
cara and monsters) with a 6-core Intel Xeon X5650 running at 2.67GHz on board
and equipped with an Intel 82599 10G NIC each, used for traffic generation. Two
(newer) PCs (whiskey and lace) with a 8-core Intel Xeon E5-1660V3 on board running
at 3.0GHz and equipped with an Intel XL710QDA2 40G NIC each and used for traffic
capturing and generation, respectively. Besides, two more Intel 82599 10G NICs were
added to whiskey to receive traffic simultaneously generated by mascara and monster
on two 10 GB NICs at the same time. All of the systems run a Linux Debian stable
distribution with kernel version 3.16.

2.7.1 10G Speed Tests: Packet Transmission

Since PFQ is used to transmit traffic and stress the receiving side, the first set of mea-
surements has the purpose to show that PFQ packet transmission is capable of reaching
line rate speed even in the classical worst-case benchmark scenario of 64 bytes long
packets. As reported in section 2.6, the user-space application in charge of generating
packets and feeding the PFQ transmission engines is pfq-gen, an open-source tool
included in the PFQ distribution.

Figure 2.8 shows that PFQ reaches the theoretical line transmission rate in all but one
case by using a single core (TSS = 1) for transmission. However, line rate performance
is achieved even in the case of 64 long byte packet by simply increasing the transmitting
kernel threads to 2 (TSS = 2).

36

i
i

“output” — 2018/4/12 — 19:30 — page 37 — #56 i
i

i
i

i
i

2.7. Performance evaluation

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2

4

6

8

10

12

14

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
)

Line Rate

TSS = 1

TSS = 2

Figure 2.8: 10G packet transmission

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2

4

6

8

10

12

14

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
)

Line Rate

RSS = 1

RSS = 2

Figure 2.9: 10G packet capture: 1 user space thread

2.7.2 10G Speed Tests: Packet Capture

The following set of tests aims at checking the pure capturing performance of PFQ un-
der different packet sizes, number of capturing kernel threads and application threads.
The user-space application used to receive and compute statistics is pfq-counters,
a multi-threaded open-source tool included in the PFQ distribution.

Figure 2.9 shows the performance of PFQ when pfq-counters uses a single thread
to receive traffic from a 10G network interface for different packet sizes and different
number of hardware queues (i.e., number of cores used for capture).

In the worst case of 64 bytes long packets, PFQ is capable of handling around 8.3
Mpps per core and, indeed, it requires two kernel engines (RSS=2) to reach line rate
performance for all packet sizes.

37

i
i

“output” — 2018/4/12 — 19:30 — page 38 — #57 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

0

5

10

15

20

25

30

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
)

Line Rate (2X)

RSS = 1

RSS = 2

RSS = 3

Figure 2.10: 10G packet capture: 2 user space threads (broadcast)

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2

4

6

8

10

12

14

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
)

Line Rate

RSS = 1

RSS = 2

RSS = 3

Figure 2.11: 10G packet capture: 2 user space threads (steering)

38

i
i

“output” — 2018/4/12 — 19:30 — page 39 — #58 i
i

i
i

i
i

2.7. Performance evaluation

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

5

10

15

20

25

30

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
)

2 x Line Rate

RSS = 1

RSS = 2

Figure 2.12: 20G packet capture

When the application threads (belonging to the same monitoring group) become
two, a slightly different number of kernel threads is needed due to the upstream delivery
mode. Indeed, the broadcast mode (Figure 2.10)) requires PFQ to send a replica of all
packets to both threads (which makes an internal throughput of 20 Gbps at full speed),
while the steering mode (Figure 2.11)) spreads statistically packets to the application
threads. As a result, in our system, broadcasting and steering packets require RSS = 3 to
achieve full-rate figures for all packet sizes. It is worth noticing that in case of multiple
application threads, a small overhead is also introduced by the functional computations
in charge of distributing packets. This is the reason why the extra core is necessary
concerning the previous results of Figure 2.9.

2.7.3 Up to 40G Speed Tests

PFQ capturing performance has also been checked for traffic rates of 20 and 40 Gbps.
The 20 Gbps performance test has been carried out by making pfq-counters

use a single thread to capture traffic from two 10G network interfaces at the same time.
In case of tapping traffic from multiple devices, particular attention must be paid in the
configuration of interrupt affinities (set with the handful tool irq-affinity, shipped with
the framework).

Although it would be possible to use the same kernel threads to fetch packets from
both NICs (suffering a sluggish performance), Figure 2.12 reports the performance with
RSS set to 2 and each MSI-X interrupts bound to different cores (which makes a total
of 4 cores in use).

The results are consistent with the ones shown in Figure 2.9 and demonstrate that
PFQ can seamlessly handle two 10G interfaces independently and reach line rate in
capturing traffic from each of them by using two cores.

When link speed increases up to 40 Gbps, capture performance does not scale as
well. Figure 2.13 shows transmission and capture performance of PFQ by using both
the 1.2.48 and the recently released 1.3.47 versions of the Intel i40e driver. Although

39

i
i

“output” — 2018/4/12 — 19:30 — page 40 — #59 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

10

20

30

40

50

60

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
)

Line Rate

Transmitted Packet Rate - i40e 1.3.47

Transmitted Packet Rate

Received Packet Rate, RSS = 1

Received Packet Rate, RSS = 2

Received Packet Rate, RSS = 3

Received Packet Rate, RSS = 4 - i40e 1.3.47

Received Packet Rate, RSS = 5 - i40e 1.3.47

Figure 2.13: 40G packet capture

Intel claims that XL710QDA2 40G NICs can reach full speed with 128 bytes packet
size, our results show that only PFQ transmission performance gets close to line rate
with such a packet length (with the new driver), while full rate capture is reached for
packet sizes bigger or equal to 256 bytes. By carefully looking at the figure, another
interesting point comes out as well: the sustained packet rate achieved with two hard-
ware queues (RSS=2) is lower than that of 10 Gbps interfaces! However, PFQ is driver
agnostic and does not introduce modifications in its internal mechanisms when the un-
derlying network devices change. The different behavior of 1.2.48 and 1.3.47 driver
versions, however, offers a possible interpretation of such an “inconsistent” behavior.
Indeed, up to RSS = 3, the two drivers perform similarly, while version 1.3.47 improves
the sustained rate by increasing the number of capturing cores up to 5. Version 1.2.48,
instead, does not show any performance improvement for RSS bigger than 3 (the corre-
sponding plots are therefore omitted). This evidence, far from being a definitive proof,
suggests that the observed low capture figures (at small packet sizes) may be caused by
limitations still present in the i40e driver. We expect that performance will significantly
improve as the driver will reach a maturity level compared to that of the ixgbe for the
10 Gbps cards. Conversely, the above results confirm that one of the leading “pros” of
PFQ, namely its full hardware transparency, may turn into a “cons” as its performance
can be significantly affected by the underlying driver efficiency.

2.7.4 Software Acceleration

The performance results so far presented have been obtained with PFQ parameter con-
figuration finely tuned. Such parameters are strictly connected to the software accelera-
tion mechanisms presented in section 2.3 and in section 2.6. The following experiments
aim at evaluating the impact of such acceleration techniques on the overall PFQ perfor-
mance.

Figure 2.14 shows the effectiveness of using the pool of skbuffs in boosting cap-
turing performance. Interestingly, the achieved throughput increases up to a pool size

40

i
i

“output” — 2018/4/12 — 19:30 — page 41 — #60 i
i

i
i

i
i

2.7. Performance evaluation

0 200 400 600 800 1000

skb Pool Size

6

8

10

12

14

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
)

RSS = 1

RSS = 2

Line Rate

Figure 2.14: Skb pool acceleration

0 10 20 30 40 50 60

Batching Queue Size (Pkts)

4

6

8

10

12

14

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
)

Line Rate

RSS = 1

RSS = 2

Figure 2.15: Batch queue acceleration

of 64 skbuffs and then slightly decreases. The most plausible reason for such a
slight performance drop may be found in the way packet payloads are stored upon re-
ception. Indeed, the ixgbe driver allocates the DMA addressable memory in pages of
4096 bytes that can accommodate up to 64 packets of 64-byte size. When the number
of skbuffs exceeds such amount, additional pages must be used, and this may lead
to a little performance decrease.

Similarly, Figure 2.15 depicts the beneficial effect of packet batching in the cases of
one or two cores devoted to capturing. The results show that performance increases by
enlarging the queue length and that a batch size value of 32 packets is enough to reach
the maximum benefit (line rate speed in case of RSS=2).

The beneficial effect of batch transmission is, instead, reported in Figure 2.16. Once

41

i
i

“output” — 2018/4/12 — 19:30 — page 42 — #61 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

0 10 20 30 40 50 60

Transmission Bulk Size (Pkts)

4

6

8

10

12

14

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
)

Line Rate

RSS = 1

RSS = 2

Figure 2.16: Bulk network packet transmission

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2

4

6

8

10

12

14

16

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
)

Line Rate

pcap, RSS = 1

pcap, RSS = 2

pcap, RSS = 3

pcap, RSS = 4

pcap+pfq RSS = 1

pcap+pfq RSS = 2

pcap+pfq RSS = 3

Figure 2.17: Libpcap acceleration

again, performance improves by increasing the transmission bulk size until it reaches a
plateau at the value of 32 at which driver resources clearly saturate.

2.7.5 Libpcap acceleration

The last performance experiment of this section aims at evaluating the effectiveness of
PFQ in accelerating the pcap library. A direct comparison against classic pcap library
is possible in that, similarly to PFQ, the underlying Linux PF_PACKET socket can
take advantage of the multi-queue support provided by the RSS technology. Hence,
the kernel-level capture system can be set to the parallel scheme of Figure 2.3(c) if the
interrupt affinity is properly configured.

Figure 2.17 shows the results achieved by using a small pcap application that simply

42

i
i

“output” — 2018/4/12 — 19:30 — page 43 — #62 i
i

i
i

i
i

2.8. Use-cases

0 2 4 6 8 10 12 14

Backgroud Traffic Rate (Mpps)

50

60

70

80

90

100

C
a

p
tu

re
d

 P
a

c
k
e

ts
 (

%
)

PFQ - RSS = 1

PFQ - RSS = 2

PFQ - RSS = 3

PF_RING - RSS = 1

Figure 2.18: BPF filtered IP traffic with tcpdump

counts packets when running on top of the standard PF_PACKET socket and top of
PFQ, under different traffic packet sizes and different RSS values.

The performance improvement is evident and shows that PFQ can effectively ac-
celerate legacy network applications traditionally based on the pcap library. Also, it is
worth noticing that the multi-queue support provided by the Intel NICs does not signif-
icantly improve the capturing performance of PF_PACKET socket that, indeed, hardly
hits 2 Mpps rate, even with four hardware queues (RSS = 4).

The most likely reason for the observed libpcap performance resides in the imple-
mentation of the PF_PACKET socket and involves explicitly the re-aggregation in a
single queue of skbuffs coming from different queues/cores. Indeed, this operation
is more efficient in PFQ because of its total lock-free architecture and because of the
batch-fashion policy adopted to amortize atomic operations. Notably, both PFQ and
PF_PACKET use a memory mapped area shared between kernel-space and user-space
where packet payloads are copied. However, PFQ uses HugePages (if correctly config-
ured), whereas PF_PACKET uses standard 4k system pages.

2.8 Use-cases

This section presents the use of PFQ in four practical use-cases involving real network
applications with increasing complexity. Along with showing mere performance re-
sults, the other – and somewhat primary – objective of the following presentation is
to evidence the high usability and flexibility of PFQ in common monitoring scenarios
where fine-grained parallel processing schemes are often necessary. The first three use-
cases are related to new and legacy network applications monitoring traffic over a 10
Gbps link. The last use-case, instead, deals with packet transmission and reports on the
acceleration of the widely known traffic generator Ostinato [83].

43

i
i

“output” — 2018/4/12 — 19:30 — page 44 — #63 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

2.8.1 IP address traffic filtering

In this use case, a single instance of the well known tcpdump sniffer is used to tap
real packets of variable length and source IP address set to 1.1.1.1 out of a synthetic
aggregate of 64 bytes long UDP packets. The real trace is played at 1 Gbps while
background traffic is played at increasing packet rates, up to link saturation. tcpdump
runs on top of the pcap adaptation layer of PFQ and packets are filtered using native
BPFs. All this is instantiated through the following simple command line:

tcpdump -n -i pfq:eth3 "host 1.1.1.1" by which the application reg-
isters to the first free group available in the system on the network interface eth3 and
specifies the BPF filter “host 1.1.1.1”.

Figure 2.18 shows (in solid lines) the number of packets received by the sniffer
under a different number of enabled hardware queues. Notice that RSS = 2 is sufficient
to reach full rate filtering up to 6 Mpps of disturbing traffic but the small overhead
introduced by both the pcap adaptation layer and the BPF filter requires an extra core
to achieve full capture rate in all conditions.

Further, Figure 2.18 also reports (in broken lines) the performance of PF_RING ZC
in filtering IP packets. This plot is reported to make clearer the trade-offs introduced
by the PFQ architecture concerning a well-known alternative high-performing capture
engine. The figure shows that PF_RING ZC can sustain a higher traffic rate with one
single core (RSS = 1), reaching more than 70% capture rate in the worst case. However,
to achieve 100% rate, PF_RING would need the use of two cores which, in turn, would
require either to run two instances of tcpdump or to implement an ad hoc software
module to re-aggregate at the user-space the packets previously spread out by the RSS
algorithm. PFQ (and its pcap adaptation layer), instead, dispatches and re-aggregates
packets transparently to user applications: this allows a single instance of tcpdump to
receive all traffic at the cost of an extra core (RSS = 3) to reach full rate performance.

2.8.2 RTP flow analysis

In the second use case, the pcap based tshark sniffer [107] (from the wireshark pack-
age) is used to capture and reconstruct RTP audio flows played at different speeds on
a 10G link up to link saturation, with or without the underlying PFQ support. To this
purpose, an instance of tshark runs with the following command line:

tshark -i eth3 -z rtp,streams -q

Figure 2.19 shows that tshark alone does not catch up with the input traffic pace
and the percentage of captured packets rapidly drops below 50% as the input rate in-
creases.

When PFQ is enabled in the optimal setup of RSS = 2 (as experimentally determined
for this test), tshark performance quickly increases, although a small percentage of
packets are dropped at high traffic speeds. Such packets are not dropped by PFQ (which
can easily handle the 10G rate of packets longer than 64 bytes). In fact, packets are
dropped at the user-space by tshark itself that cannot accomplish its computations
at such a high packet rate. Using PFQ, this problem can be elegantly overcome by
increasing the number of userspace instances of tshark and by letting them join the

44

i
i

“output” — 2018/4/12 — 19:30 — page 45 — #64 i
i

i
i

i
i

2.8. Use-cases

2 3 4 5 6 7 8

Traffic Rate (Gbps)

30

40

50

60

70

80

90

100

C
a

p
tu

re
d

 P
a

c
k
e

ts
 (

%
)

1 tshark session

PFQ + 1 tshark session

PFQ + 2 tshark sessions

Figure 2.19: RTP flow processing with tshark

same group. As a result, the top graph of figure 2.19 shows that the two instances
achieve 100% capture rate by receiving around half of the overall packets to process.

The operation is easily accomplished by launching each of the tshark instances
through the following command line:

LD_PRELOAD=/usr/local/lib/libpcap-pfq.so
PFQ_CONFIG=/etc/pfq.pcap
tshark -i eth3 -z rtp,streams -q

that instructs tshark to use the pcap adaptation layer of PFQ and to retrieve group
parameters and the steer_rtp computation that broadcasts RTCP packets to a spe-
cific control-plane class, and dispatch RTP flows to the user-plane one.

Although the above procedure allows spreading RTP/RTCP traffic to multiple pro-
cess instances, it still does not permit tshark to properly reconstruct flows and pre-
pare a statistic summary. In fact, to accomplish such operations, both tshark in-
stances need to access to SIP messages associated with the RTP flows. PFQ helps to
get around this issues through the use of a more complex computation:

steer_voip = conditional’ is_sip
(class’ class_control_plane >-> broadcast)
steer_rtp

that allows the two instances of tshark to receive (in broadcast) a copy of all SIP
packets as a result of the convenient SIP filtering computation.

The results, shown in Figure 2.19, are obtained under this setup with the two in-
stances of tshark reporting the RTP flow summary statistics at the end of their elab-
orations on the received traffic.

2.8.3 LTE analyzer

The last monitoring use-case consists of a multi-threaded application designed to na-
tively run on top of PFQ to perform per-user LTE traffic analysis and provide statistics,

45

i
i

“output” — 2018/4/12 — 19:30 — page 46 — #65 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

such as number of packets sent and received, per-user TCP flow count, TCP packet
retransmission, etc.. In addition, the application runs some basic security algorithms
(e.g., SYN flood detection) and user protocol classification (through OpenDPI).

As a result, concerning the previous scenarios, this application represents a sig-
nificant step ahead in benchmarking PFQ features and performance, regarding both
(higher) computation resources and fine-grained functional requirements.

Indeed, to complete the overall amount of computations, LTE analyzer needs, on
average, a few (around 10) thousands of clock cycles per each processed packet. As
it will be shown later on, this requires multiple threads to catch up with high traffic
rates. Regarding functional features, instead, the application requirements are directly
induced by the way LTE user plane (UP) traffic is carried over IP.

LTE packets are transported over GTP v1/2 tunnels. As such, per-user analyses can-
not leverage on the rough parallel schemes provided by RSS, nor on steering functions
that spread traffic to application threads by hashing over the canonical IP 5-tuple. The
functional computations of PFQ must, in this case, delve into the payload of GTP pack-
ets and access user-information to distribute packets to upstream applications. Besides,
all application threads must access the GTP control plane data (CP) to accomplish their
analysis.

The above requirements are readily met through the GTP related computations at the
kernel level, and using groups, classes and their configurable delivery mode for packet
distribution.

The results, shown in Figure 2.20, are obtained under a different number of applica-
tions threads (sharing a common monitoring group and registered to a common control
plane class) that receive:

• UP packets on a per-user basis through the gtp_steer kernel computation, in
steering mode;

• all of the CP packets, in broadcasting mode.

A real GTP trace is played by pfq-gen at different speeds over a 10 Gbps link up to
its saturation. PFQ is optimally configured to use two functional engines (RSS=2) that
do not overlap those running the application threads. Figure 2.20 shows the percentage
of received UP packets retrieved by the LTE analyzer application concerning the input
traffic rate and for a different number of application threads.

The significant computation machinery of the application does not allow a single
thread to sustain more than 4 Gbps input traffic. This is a classic case in which the only
way to scale performance is to take advantage of parallelism. In our case, it takes up to
3 application threads (though two threads slightly suffer at full line rate only) to sustain
a traffic rate of 10 Gbps.

2.8.4 Accelerated Traffic Generation

The last use-case refers to packet transmission and aims at assessing the effectiveness of
PFQ in accelerating the well-known traffic generator Ostinato. Ostinato is a highly
configurable open source traffic generator that supports a wide variety of protocol tem-
plates for packet crafting. It is based on a client-server architecture; the server (drone)
runs each engine as a single-thread of execution that uses the pcap library for packet
transmission.

46

i
i

“output” — 2018/4/12 — 19:30 — page 47 — #66 i
i

i
i

i
i

2.8. Use-cases

2 4 6 8 10

Traffic Rate (Gbps)

60

70

80

90

100

C
a

p
tu

re
d

 P
a

c
k
e

ts
 (

%
)

1 thread

2 threads

3 threads

Figure 2.20: LTE analyzer

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2

4

6

8

10

12

14

P
a

c
k
e

t
R

a
te

 (
M

p
p

s
) Line Rate

Ostinato

Ostinato + PFQ, TSS = 1

Ostinato + PFQ, TSS = 2

Ostinato + PFQ, TSS = 3

Ostinato + PFQ, TSS = 4

Figure 2.21: Ostinato packet transmission acceleration with PFQ

Figure 2.21 shows the result of the experiment. Ostinato was first executed alone
with the optimal value of 4 hardware queues for transmission (although, as shown in
section 2.7.5, the number of hardware queues used by the standard PF_PACKET socket
does not make significant differences). The results show that Ostinato alone can hardly
reach near full rate generation speed in the only case of 1500 bytes long packets. In all
other cases, its performance is far from the theoretical physical limit.

The use of PFQ significantly accelerates the application performance, although line
rate is achieved for packet sizes of at least 128 bytes. However, even in the worst
case of 64 bytes long packets, PFQ allows bringing the Ostinato performance above
10 Mpps transmission rate (i.e., yielding an acceleration factor slightly larger than 7)
with three transmitting kernel threads and affinity setup that preserves the engines from

47

i
i

“output” — 2018/4/12 — 19:30 — page 48 — #67 i
i

i
i

i
i

Chapter 2. Fast Packet I/O

running the Ostinato drone itself. Conversely, the figure also shows that no significant
improvement can be noticed by increasing the number of transmitting cores beyond 4.

48

i
i

“output” — 2018/4/12 — 19:30 — page 49 — #68 i
i

i
i

i
i

CHAPTER3
Traffic Distribution

3.1 Introduction and motivation

The technological maturity reached in the last years by general purpose hardware is
pushing commodity PCs as viable platforms for running a whole bunch of network ap-
plications devoted to traffic monitoring and processing. Indeed, the availability of 10+
multi-gigabit network cards allows to easily connect a standard PC to high-speed com-
munication links and potentially retrieve huge volumes [34] of heterogeneous traffic
streams.

In the last few years, the computational power provided by the always increasing
number of cores available on affordable CPUs combined with the hardware multi-queue
support of modern network cards has favored a large interest in the research community
towards software accelerated solutions for efficient traffic handling on traditional PCs
running Unix Operating Systems.

As a result, to date, capturing packets at full-rate over multi-gigabit links is no longer
an issue and it is made possible by several alternatives packet I/O frameworks, each of
them with its own set of features. However, the higher packet rate attained by the ac-
celerated capture engines may not, by itself, guarantee better application performance.
Indeed, computation intensive operations such as those performed by classical network
monitoring applications, Intrusion Detection and Prevention Systems, routers, firewall
and so on, do not often catch up even with the non-accelerated traffic rates provided by
the standard sockets. In all such cases, the use of accelerated capture engines does not
give any benefit as the application would get overwhelmed by an excessive amount of
packets that cannot be handled. In fact, in many cases, the overall performance may
even further degrade as the extra CPU power consumed to accelerate capture operations
is no longer available for the application processing.

When the performance bottleneck is represented by the application itself, the straight-

49

i
i

“output” — 2018/4/12 — 19:30 — page 50 — #69 i
i

i
i

i
i

Chapter 3. Traffic Distribution

forward way of scaling up performance is leveraging on computational parallelism
by spreading out the total workload over multiple workers running on top of different
cores. This, in turn, requires on one hand network applications to be designed according
to multi-thread/multi-process paradigm and, on the other hand, the underlying capture
technology to support packet fanout to split and distribute the total workload among
multiple workers. Currently, albeit with different features and programmable options,
both standard and accelerated sockets support packet fanout. Unfortunately, most of to-
day’s network applications are still single-threaded and access live traffic data through
the pcap library (libpcap) [89] rather than using the underlying sockets. Over the
years, the libpcap library has emerged as the, somewhat, de-facto standard interface
for handling traffic data and, as it will be shown, its use has many practical advantages.
However, the current pcap library does not support packet fanout, thus preventing
transparent applications parallelism.

The objective of this work is to present the implementation of a new pcap library
for the Linux operating system that supports packet fanout while still retaining full
backward compatibility with the current version.

The new library is freely available for download1

The chapter extends the previous conference version [22] in several different di-
rections. First, the new pcap library itself has been extended with a set of APIs to
simplify its use in practical multicore scenarios. The applicability of the library has
also been broadened to include the explicit support of a full set of accelerated sockets.
Besides, the ongoing research on a unified solution for nearly-agnostic support of any
underlying sockets is also given. The experimental part has been significantly extended
by including new sockets in the set of performance tests as well as adding more realist
traffic scenarios in the library assessment in practical use-cases.

More in detail, the standard scheme for accessing live network data on Linux is
first presented in section 3.2. This includes a description of the standard Linux socket
and its packet fanout features as well as a brief introduction to the use of the pcap
library. Section 3.3 presents a concise overview of the available accelerated capture
engines together with their classification into the two broad categories of active and
passive sockets. The section discusses explicitly the different issues that emerge when
trying to enable packet fanout in both classes and provides the reasons for the current
support of active sockets only. Two specific engines (PF_RING and PFQ) from this
category are then briefly introduced as they will be next used in the experiments to
improve the performance of applications using the newly developed library. Section
3.4 represents the core of the chapter and includes the description of the library for
parallelizing native and legacy applications in both standard and accelerated scenarios.
Section 3.5 presents a discussion on how to practically configure software and hardware
resources to effectively take advantage of the new features available from the library.
Experimental assessment is carried out in sections 3.6 and 3.7 that reports on the per-
formance improvement brought by the new library in pure speed tests and practical use
cases involving the well-known applications Tstat and Bro, respectively. Section
3.8 elaborates upon the extensions needed to provide the pcap library with the support
for passive sockets and presents the design of a possible unifying architecture whose
development is currently ongoing.

1repository at https://github.com/awgn/libpcap, branch ’fanout’

50

i
i

“output” — 2018/4/12 — 19:30 — page 51 — #70 i
i

i
i

i
i

3.2. Packet Dispatching in Linux

libpcap

Application

Network Device Drivers

kernel space

user space

Capture socket

Figure 3.1: Network application stack

3.2 Packet Dispatching in Linux

The typical scheme of a network application handling live traffic in the Linux operating
system is shown in Figure 3.1. Upon their arrival at the physical interface, packets are
managed by the device drivers and made available to the application through packet
sockets. The low-level handling of the socket operations can either be performed by the
application through the native socket API or be left to the pcap library interface. This
section aims at describing the main internals of the default Linux socket with a specific
focus on the less known packet dispatching features. The use of the pcap library is
also briefly introduced to point out its current limitations that motivate this work to
achieve a full integration with the standard socket features.

3.2.1 Linux Default Capture Socket

The default Linux socket for packet capture is the AF_PACKET socket and its more
efficient memory mapped variant TPACKET (currently at version 3).

At the lower level, both TPACKET and AF_PACKET support multi-core packet cap-
turing, that is they take advantage of Received Side Scaling technology (RSS) [59]
to retrieve packets in parallel from multiple hardware queues of network interfaces as
shown in Figure 3.2.

Since kernel version 3.1, to scale processing across up-layer computing workers, the
standard Linux socket supports configurable packet fanout to multiple sockets through
the abstraction of fanout group. Each thread/process in charge of processing traffic
from a network device opens a packet socket and joins a common fanout group: as a
result, each matching packet is queued onto only one socket in the group, and the total
workload is spread upon the total number of instantiated threads/processes.

Groups are implicitly created by the first packet socket joining a group, and the
maximum number of groups per network device is 65536. Sockets join a fanout group
by means of the setsockopt system call with the PACKET_fanout option. Con-
versely, packet sockets can leave a group only by closing the socket. When the last

51

i
i

“output” — 2018/4/12 — 19:30 — page 52 — #71 i
i

i
i

i
i

Chapter 3. Traffic Distribution

App

NIC

App

Core 1

App

Core 2 ...

user space

kernel space

Figure 3.2: Standard Linux socket

socket registered to a group is closed, the group is deleted as well. Finally, to join an
existing group, the next packet sockets must obey the set of standard settings already
specified for the group, including the fanout mode.

3.2.2 Socket Fanout Modes

Packet fanout is the straightforward solution to scale processing performance by dis-
tributing traffic workload across multiple threads/processes. The criteria in which pack-
ets are spread out among the workers have a significant impact in both functional and
performance points of view.

The standard Linux socket supports a limited number of algorithms (modes) for
traffic distribution. The available fanout modes are presented in the following list.

• The default mode, namely PACKET_FANOUT_HASH, preserves flow consistency
by sending packets from the same flow to the same packet socket. Practically, a
hash function is computed over the network layer address and (optionally) trans-
port layer port fields. The result (modulo the number of sockets participating the
group) is used to select which socket to send the packet to.

• The PACKET_FANOUT_LBmode simply implements a round-robin load-balancing
scheme to choose the destination socket. This mode is suited for purely stateless
processing as no flow consistency is preserved.

52

i
i

“output” — 2018/4/12 — 19:30 — page 53 — #72 i
i

i
i

i
i

3.3. Software acceleration

• The PACKET_FANOUT_RNDmode selects the destination socket by using a pseudo-
random number generator. Again, this mode only allows stateless processing.

• The PACKET_FANOUT_CPU mode selects the packet socket based on the CPU
that received the packet.

• The PACKET_FANOUT_ROLLOVER mode keeps sending all data to a single
socket until it becomes backlogged. Then, it moves forward to the next socket
in the group until its exhaustion, and so on.

• The PACKET_FANOUT_QMmode selects the packet socket whose number matches
the hardware queue where the packet has been received.

3.2.3 Standard pcap interface

Most of the more popular network monitoring applications (such as tcpdump, wire-
shark, etc.) are written on top of the pcap library [89]. As depicted in Figure 3.1,
the libpcap layer hides low-level traffic capture details to the upper layer application
by providing a standard and unified API for generic packet retrieval and handling. As
such, the use of libpcap eases application portability and adds useful features such as
read/write access to trace files and packet filtering using Berkeley Packet Filters (BPF).

However, as a major drawback, the pcap library lacks the native support for multi-
thread programming. This reason forces developers that need to implement schemes
such as the one shown in Figure 3.3 to provide an additional layer of packet distribution
built into the applications. By default, both threads of the Application 1 would receive
a replica of the same traffic, and so would the two instances of the Application 2.
This design looks even more paradoxical as the default socket used by libpcap in
the Linux version (TPACKET) supports indeed packet fanout. As will be elaborated,
the primary objective of this work is to remove this limitation by providing the fanout
support to the libpcap interface.

3.3 Software acceleration

In the previous sections, packet fanout has been introduced as the straightforward way
of scaling performance by splitting traffic workload among multiple workers, typically
running on different cores or CPUs. However, when link speeds raise up to multi-
gigabit rates, the default sockets may not be able to catch up with the actual packet
arrival rate, causing a significant drop rate at the physical interfaces. In all such cases,
the use of accelerated capture sockets is mandatory to increase the number of packets
captured on the wire and dispatched to the application workers. Notice, however, that
packet capture and packet distribution to up-layer software are independent operations
and very efficient capture sockets may not necessarily support fanout algorithms.

In the last few years, a significant number of accelerated sockets have been proposed
for efficient traffic capture at 10G+ links speed (see references [26,51,77] for a thorough
overview). One of the first software accelerated engines was PF_RING [50] which
proved to be quite successful in case of 1 Gbps links. PF_RING uses a memory mapped
ring to export packets to user-space processes and supports both vanilla (“classic”)
and modified (“aware”) drivers. More recently, PF_RING ZC (Zero Copy) [39], and

53

i
i

“output” — 2018/4/12 — 19:30 — page 54 — #73 i
i

i
i

i
i

Chapter 3. Traffic Distribution

libpcap

App. 1

Network Device Drivers

kernel space

user space

Capture socket

thread 1 thread 2

App. 2 App. 2

Figure 3.3: Multi-workers network applications

Netmap [93], allow a single CPU to retrieve short sized packets up to full 10 Gbps line
rate by memory mapping the ring descriptors of NICs at the user space. DPDK [42]
is another successful solution that bypasses the operating system to accelerate packet
capture. DPDK provides a Linux user-space framework for efficient packet processing
on multi-core architectures based on pipeline schemes. Finally, PFQ [19] is a software
acceleration engine built upon standard network device drivers that primarily focuses
on programmable packet fanout.

Generally speaking, accelerated sockets can be divided into two broad categories to
distinguish those that use an active context to fetch packets from the network card from
those that, instead, execute network device drivers in the calling context – usually the
user-space process. We name the sockets of the first category as active sockets since
they revolve around the concept of a running context (e.g., the NAPI kernel thread).
Conversely, we name as passive the sockets that fall into the second category.

Among the above listed accelerated sockets, the active sockets category includes
the standard Linux PF_PACKET/TPACKET3, PFQ, and PF_RING (both “classic” and
“aware” flavor). Instead, PF_RING DNA, PF_RING ZC, Netmap, and DPDK belong
to the class of passive sockets.

Although under different names, all of the active sockets support packet fanout in
kernel space within the NAPI soft IRQ context. At this stage, the different imple-
mentations allow distributing the incoming packets to a group of sockets, by applying
different balancing schemes.

Passive sockets, instead, target top performance by removing the IRQ latency and
thus relying on a more aggressive polling which executes in the caller context directly2.
This approach prevents implementing packet distribution algorithms except for very
few commercial applications (such as the libzero library of PF_RING ZC) that offer
similar support.

2Aggressive polling is required to cope with the limited amount of packet descriptors available in commodity NICs.

54

i
i

“output” — 2018/4/12 — 19:30 — page 55 — #74 i
i

i
i

i
i

3.3. Software acceleration

In other words, parallelizing a network application on top of a passive socket over
multiple working threads/processes requires the application itself to implement a suit-
able packet distribution scheme. This, in turn, requires a significant rewrite of the ap-
plication code to implement a receiving thread that polls the NIC and performs packet
steering, lock-free queues for packets passing, and so forth – for example, these are typ-
ical issues to be handled when using DPDK. However, this approach harshly clashes
with the design philosophy of both the original pcap library, which aims at simplifying
the life of applications in capturing/injecting packets, and our variant version that, in
addition, target performance scaling by means of the fanout feature with no modifica-
tions to the application source code.

For all the above reasons, the current version of the new pcap library implements
the fanout feature for active sockets only, i.e., the standard Linux socket, PF_RING and
PFQ. To include the support of passive sockets within the same semantic, an additional
fanout abstraction layer (FAL) is required. Although not yet fully implemented, a brief
description of the preliminary architecture of the FAL is reported in section 3.8.

3.3.1 The PF_RING accelerated socket

PF_RING is a popular family of accelerated sockets. The family includes a variety
of sockets (PF_RING, PF_RING DNA, PF_RING ZC), each with different network
device drivers and internal semantics. All the PF_RING variants are supported by a
custom pcap library implemented by the maintainers that makes it easily pluggable
into legacy applications.

As shown in Figure 3.4, the classic PF_RING (also known as vanilla PF_RING)
is an active socket that polls packet from the NIC through the Linux NAPI. Packets
are then copied into circular buffers that are memory mapped to the user-space for
application consumption. As such, PF_RING allows workload distribution to multiple
rings (hence, multiple applications) and support packet fanout through the concept of
clustering. PF_RING clusters are very similar to TPACKET and PFQ groups. Indeed, a
set of applications sharing the same clusterId receive packets coming from one or more
ingress interfaces according to the different balancing algorithms reported in Table 3.1.

In the recent past, the PF_RING package contained a set of hardware-specific op-
timized (aware) device drivers for several NICs that significantly increased capturing
performance. To date, classic PF_RING ships with vanilla driver only, while very top
performance is left to the PF_RING ZC passive socket.

3.3.2 The PFQ accelerated socket

The architecture of PFQ as a whole has been already described in chapter 2 and is
sketched in figure 2.1.

It’s worth mentioning here that the main objective of PFQ is to capture and retrieve
packets from one or more traffic sources, makes some computations with functional
blocks (the λi blocks in the picture) and deliver them to endpoints.

Similarly to the Linux socket, PFQ uses the abstraction of groups as a set of sockets
that share a computation and the same input sources. From the application point of
view, user-space threads open such sockets to join a group and capture packets steered
from kernel–space by PFQ-Lang computations.

55

i
i

“output” — 2018/4/12 — 19:30 — page 56 — #75 i
i

i
i

i
i

Chapter 3. Traffic Distribution

Device Driver

NAPI
polling

Application

PF_RING
polling User space

Kernel spacemmap

Buffer

Figure 3.4: The PF_RING socket

Table 3.1: Packet fanout modes in PF_RING

PF_RING balancing mode Description
round_robin Sends packets to sockets according to round robin

algorithm
flow Sends packets to sockets according to the hash value

computed over the 6-tuple <src ip, src port, dst ip,
dst port, proto, vlan>

flow_2_tuple Sends packets to sockets according to the hash value
computed over source and destination IP addresses

flow_4_tuple Sends packets to sockets according to the hash value
computed over source/destination IP addresses and
source/destination ports

flow_5_tuple Sends packets to sockets according to the hash
value computed over source/destination IP ad-
dresses, source/destination ports and the protocol
field

flow_tcp_5_tuple Same as 5_tuple for tcp protocol, 2_tuple otherwise
inner_flow Same as flow, only for packet headers transported

by tunnel
inner_flow_2_tuple Same as flow_2_tuple, only for packet headers

transported by tunnel
inner_flow_4_tuple Same as flow_4_tuple, only for packet headers

transported by tunnel
inner_flow_5_tuple Same as flow_5_tuple, only for packet headers

transported by tunnel
inner_flow_tcp_5_tuple Same as flow_tcp_5_tuple, only for packet

headers transported by tunnel

The steering functions of PFQ are in some way related to the concept of fanout, as
they fulfill the principle of distributing packets, ensuring in addition different degrees
of flow consistency.

56

i
i

“output” — 2018/4/12 — 19:30 — page 57 — #76 i
i

i
i

i
i

3.4. Packet fanout support in the pcap interface

Table 3.2: Packet fanout modes in PFQ

PFQ steering function Description
steer_rrobin Sends packets to sockets according to round robin

algorithm
steer_rss Sends packets to sockets according to the RSS hash

value computed by the device driver
steer_rx_queue Sends packets to the sockets with index matching

the hardware queue index
steer_link Send packets to the sockets preserving coherency at

link-layer
steer_local_link Like above but with support of double-steering
steer_vlan Sends packets according to vlan tag value
steer_p2p Sends packets according to the symmetric hash

value computed on the pair of source/destination IP
addresses

steer_local_ip Like above but with support of double-steering for
local traffic

steer_flow Sends packets according to the hash value computed
on the packet flow headers

steer_to Sends packets deterministically to a specific socket
steer_field Sends packets according to the hash value computed

on the specified field
steer_field_symmetric Sends packets according to the symmetric hash

value computed on a pair of specified fields
double_steer_mac Sends packets according to the symmetric hash

value computed on the pair source/destination mac
addresses

double_steer_ip Network internal packet (local IP to local IP)
are doubly dispatched on the basis of the pair
source/destination Ip addresses

double_steer_field Packet are doubly dispatched on the basis of the
specified pair of fields

Table 3.2 herein reported lists the main fanout modes already implemented in PFQ
and reports, for comparison, (if any) the analogous modes implemented by the standard
Linux socket.

3.4 Packet fanout support in the pcap interface

As previously mentioned, the current implementation of the libpcap library does
not provide a dedicated API to facilitate multi-core parallel processing. Therefore
the whole traffic stream captured over a physical interface is not split across multiple
threads/processes. In fact, multiple workers bound to the same network interface would
all receive a replica of the whole amount of traffic captured at the physical device. This
section reports on the extension of the existing pcap library to enable packet fanout
and to provide flexible support for multi-core processing.

The starting point was to comply with the basic operation of the underlying Linux
socket TPACKET by integrating the notions of group of sockets and fanout modes into
the pcap library. This implied a significant reworking throughout the whole library

57

i
i

“output” — 2018/4/12 — 19:30 — page 58 — #77 i
i

i
i

i
i

Chapter 3. Traffic Distribution

code. However, all the changes are buried into the library implementation, and packet
fanout can be enabled through the following single API:

int pcap_fanout(pcap_t *p,
int group,
const char *fanout);

Along with the obvious pcap descriptor p, the function requires specifying the (in-
teger) group identifier and a string representing the fanout mode. The function returns
0 in case of success and -1 in case the operation cannot be completed3.

The use of this function enables multiple threads of an application to register to a
specific group and obtain a quota of the overall traffic according to the selected fanout
mode.

When the extended library is used over the standard Linux socket, the fanout mode
should be selected among the ones listed in section 3.2.2 and provided by the socket
itself. When using an alternative socket, fanout modes must comply with the ones
supported by the underlying engine (see Table 3.2 for the main fanout modes available
with PFQ and the equivalent supported by AF_PACKET/TPACKET).

3.4.1 Legacy application: pcap configuration file

The use of the extended API is well suited when writing a new application in a multi-
threaded fashion. However, most widely popular network applications are single threaded
and their rewriting according to a multithreading paradigm is not feasible in most prac-
tical cases.

In all such cases, the extended pcap library still allows attaining parallelism by
running multiple instances of the same application. All processes that join the same
group will then receive a fraction of the total traffic workload, according to a declarative
grammar specified in a configuration file and without requiring modifications to the
application itself.

The grammar of the pcap configuration file has the following syntax:

key[@group] = value[,value, value...]

where the most commonly used keys are:

• def_group: default group associated with the configuration file

• fanout: string that specifies the fanout mode (example: fanout = hash)

• caplen: integer values that specifies the capture snaplen (if not specified by the
application itself)

• group_eth<N> = i: force all sockets bound to the eth<N> interface to join
group i (example):

group_eth0 = 2
group_eth3 = 3

3The specific error string can still be accessed through the function pcap_geterr(p)

58

i
i

“output” — 2018/4/12 — 19:30 — page 59 — #78 i
i

i
i

i
i

3.4. Packet fanout support in the pcap interface

Table 3.3: PCAP environment variables

Environment Variable Description
PCAP_DRIVER Forces the socket type when the device name

cannot be mocked (e.g., PCAP_DRIVER=pfq or
PCAP_DRIVER=pfring)

PCAP_CONFIG Overrides the default configuration files which are "/etc/p-
cap.conf", "/root/.pcap.conf"

PCAP_GROUP Specifies the default group for the application... (e.g.,
PCAP_GROUP=2)

PCAP_GROUP_dev Specifies the group for the sockets bound to the dev device
(e.g., PCAP_GROUP_eth0 = 5)

PCAP_FANOUT Specifies the fanout algorithm
PCAP_CAPLEN Overrides the pcap snaplen value
PCAP_CHANNEL_dev Specifies the number of channels for device <dev> (e.g., RSS)
PCAP_IRQ_dev_0 Sets the IRQ affinity of device <dev> (e.g., eth0) channel 0

Different fanout modes can also be selected for different groups. As an example, the
configuration file may contain the following two lines:

fanout@2 = hash
fanout@3 = rnd

The use of the configuration file is enabled by the environment variable PCAP_CONFIG
that contains the full path to the file. The first time it is invoked, the function pcap_activate
searches for the presence of the environment variable PCAP_CONFIG. If the variable
is specified, the configuration file is open and parsed to retrieve the values of the keys.

Notice that several keys of the configuration file can also be specified on the com-
mand line using additional environment variables, with the consequence of overriding
the correspondent settings in the configuration file. The set of common environment
variables is reported in table 3.3. As an example, a generic instance of the application
foo launched as:

PCAP_FANOUT="rnd" PCAP_GROUP = 3 foo

will receive traffic according to the "rnd" fanout mode on the group 3 regardless of the
values specified in the configuration file.

3.4.2 Accelerated configuration

The combined use of environment variables and the configuration file make applica-
tions running on top of the new pcap library agnostic to the underlying capture engine
and to the way it implements the packet fanout.

As such, although the features of capture engines may be significantly different,
the basic semantic of the pcap configuration does not change, and the common set
of environment variables reported in table 3.3 can be used irrespective of the under-
lying technology. However, specific socket-dependent features can still be enabled by
relying on the environment variables of the different engines and still left available for
compatibility reasons.

This section describes the specific configurations needed to use the pcap library on
top of the PF_RING and PFQ sockets. However, it is worth pointing out that similar

59

i
i

“output” — 2018/4/12 — 19:30 — page 60 — #79 i
i

i
i

i
i

Chapter 3. Traffic Distribution

arguments may be applied to other possible accelerated capture engines if adequately
integrated.

PF_RING configuration.
The standard Linux socket can be effortlessly replaced by PF_RING by merely pre-

fixing with the string “pfring” the names of the network devices to be monitored (as an
example, pfring:eth3). The semantics of the new pcap library allows to configure
the system by selecting the fanout algorithm within the ones listed in table 3.1 and by
choosing the monitoring group of the applications which are transparently mapped into
cluster ID of PF_RING. As an example, the following two lines enable two sessions of
tcpdump to receive a round robin share of the packets arriving at the network interface
eth3 on the common group 42.

PCAP_FANOUT="round_robin" PCAP_GROUP = 42
tcpdump -i pfring:eth3

PCAP_FANOUT="round_robin" PCAP_GROUP = 42
tcpdump -i pfring:eth3

Finally, it is worth noticing that even the PF_RING Zero Copy (ZC) passive socket is
supported through the same semantic and can be activated by simply prefixing with the
string “zc” the name of the network card. However, as discussed in section 3.3, packet
fanout is not available in this case as PF_RING ZC does not implement clustering at a
lower level.

PFQ configuration.
Similarly to PF_RING, the PFQ socket is enabled whenever the network device

name is prefixed by the string “pfq”. However, for applications that do not allow arbi-
trary names for physical devices, it can still be enabled by specifying the name of the
driver by setting PCAP_DRIVER=pfq.

The general syntax of the device name is the following:

pfq:[device[^device..]]

where the character ˆ is used to separate the names of multiple devices.
As previously introduced in section 3.3, the major benefit of using PFQ resides in its

programmable fanout described through the PFQ-Lang functional language. As such,
the packet fanout mode may indeed be specified by a PFQ-Lang program and placed in
the configuration file as in the following example4:

Pcap configuration file (PFQ flavor)

def_group = 11
caplen = 64
rx_slots = 131072

> main = do
> tcp
> steer_flow

In some cases, a given group must be associated with a network device rather than a
process. This association lets a process handle multiple devices at a time, each under a

4Notice the use of the character > to prefix each line according to the Haskell bird style as alternative to the fanout keyword

60

i
i

“output” — 2018/4/12 — 19:30 — page 61 — #80 i
i

i
i

i
i

3.5. Using the pcap fanout in practice

different group of sockets. A typical scenario is that of an OpenFlow Software Switch
(e.g., OFSoftSwitch [3]), in which multiple instances of the switch can run in parallel
using the new pcap library, each of them processing a portion of the traffic over a set
of network devices.

The PCAP_GROUP_devname environment variable (and its group_devname
counterpart keyword in the config file) can be used to override the default group for the
process when opening a specific device, as in the following example:

PCAP_DEF_GROUP=42 PCAP_GROUP_eth0=11
tcpdump -n -i pfq:eth0^eth1

in which the application tcpdump sniffs traffic with the group 11 from device eth0
and with the default group 42 from the device eth1.

Finally, there are cases in which an application needs to open the same device mul-
tiple times under different configuration parameters (e.g., with a different criterion for
packet steering). In all such cases, the proposed pcap-fanout library provides the con-
cept of virtual device, namely a device name postfixed with ’:’ and a number. This is
very similar to the alias device name, but it does not require the user to create network
aliases at the system level. As an example, the next two lines allow to collect traf-
fic from the network device eth0 under two different group (11 and 13) by virtually
renaming the network interface itself.

group_eth0 = 11
group_eth0:1 = 23

3.5 Using the pcap fanout in practice

Although the new pcap library is ready to use in parallel applications, the attained per-
formance significantly varies according to the overall setup of computation resources.

By design, the code of the library is re-entrant, which means that it can be used in
any contest, both in a single and in multi-threaded applications. In other words, it just
suffices to open a socket, bind it to one or more devices, and join a socket group with a
specific fanout algorithm to start receiving a fraction of the incoming traffic.

It goes without saying that a multi-threaded application is expected to open a socket
on a per-thread basis and be assigned a dedicated group. This procedure allows it to cap-
ture the whole traffic coming from a NIC under the specified packet dispatching. Ob-
viously, the same applies for multiple processes of single-threaded applications. New
threads or processes can join a group at any time. In that case, the underlying imple-
mentation adapts the fanout stage to deliver packets to a different number of endpoints.
While this is a desired feature, it may, however, raise issues about flow consistency. For
this reason, applications with strict requirements of flow consistency should restart to
guarantee correct results.

Using more than one group is also possible – if supported by the underlying socket
– and allows multiple multi-threaded applications (or groups of processes) to receive
the traffic coming from the same NIC, possibly under different fanout algorithms and
degrees of parallelism.

61

i
i

“output” — 2018/4/12 — 19:30 — page 62 — #81 i
i

i
i

i
i

Chapter 3. Traffic Distribution

0 1 2

3 4 5 6 7

App. A

t1t1 t2t2 t3t3

App. B App. B

NIC 1 NIC 2

Application Affinity

Interrupt Affinity
RSS = 2 RSS = 1

Figure 3.5: Application and interrupt affinities

3.5.1 Applications and Interrupt Affinities

When dealing with parallel computation, the first critical issue to be addressed is the
configuration of the application affinity, namely selection of the set of CPUs that will
run the threads (or instances) of the application itself.

Such a scenario is depicted in Figure 3.5 in which, as an example, the affinity of
the threads of the application A is set to CPUs 3, 4 and 5 while the affinity of the two
instances of application B is set to CPUs 6 and 7. As a good practice, different workers
(threads/processes) should run on top of different CPUs to take advantage of maximum
computation power. In any case, the application itself is ultimately responsible for
setting its affinity. To this aim, the non-POSIX API pthread_setaffinity_np
as well as the sched_setaffinity system call can be used to assign threads and
processes to specific cores, respectively.

However, the bottom part of Figure 3.5 shows another critical aspect to be addressed
when dealing with packet capturing in general, and in particular with active sockets. In
addition to user-defined threads/processes, the Linux operating system provides a ded-
icated kernel thread for packet capture, called ksoftirqd. Such a thread is designed
to run on top of any CPU serving the soft interrupt (IRQ) scheduled by network cards.
All such CPUs running the capturing kernel thread define the so-called IRQ affinity.

In recent years, modern NICs (like 10/40G Intel cards) support multiple hardware
queues (channels), where packets coming from the network are split into using a pre-
defined load balancing scheme – the RSS (Receive Side Scaling) algorithm based on
the Toeplitz hash function computed over the packet headers. The distribution of traffic
across multiple hardware queues allows multiple ksoftirqd threads to fetch network
packets in parallel, thus improving the receive performance of the system5.

Both the number of channels6 involved in the capturing operations, as well as the
specific CPUs selected to serve them, are fundamental parameters to configure for opti-
mal performance. Again, as a good practice, running an application thread and a kernel
NAPI context on the same CPU is a very bad idea. Alternatively, wherever possible, the

5an analogous behavior occurs in the transmission side
6the number of channels is referred to as RSS, where RSS = n implies that n channels are used on that interface

62

i
i

“output” — 2018/4/12 — 19:30 — page 63 — #82 i
i

i
i

i
i

3.5. Using the pcap fanout in practice

application affinity should be set by avoiding core overlapping with the IRQ affinity.
This latter can be set by using rather naive bash scripts shipped with device drivers

code. However, since such an operation involves the configuration of low-level physical
parameters, we argue that this should be handled by the pcap library by providing a
new set of APIs as a handy tool to let the application select the IRQ affinity on-the-fly.

At first, the following APIs deals with device channels:

int pcap_set_channels(
const char *dev,
struct pcap_channels const * ch,
int channel_mask,
char *errbuf);

int pcap_get_channels(
const char *dev,
struct pcap_channels *info,
char *errbuf);

These two APIs allow to set and get the number of hardware queues for a given
device. In particular, by passing the pcap_channels data structure and the relative chan-
nel_mask, the setter function is allowed to selectively update the number of the sup-
ported channels, that are Rx, Tx, Combined and Other. Conversely, the second function
is used to retrieve the information about such a number and type of channels enabled for
device dev. However, depending on the hardware and the driver in use, some channels
might not be available. For instance, the Intel 10G card supports combined channels
only, and the definition of a different number of Rx and Tx channels is not possible.

Once the information about channels is set, the IRQ affinity can be set/retrieved
through the following APIs:

int pcap_channel_setaffinity(
const char *dev,
int channel_number,
const cpu_set_t *cpuset);

int pcap_channel_getaffinity(
const char *dev,
int channel_number,
cpu_set_t *cpuset);

that allows defining the set of CPUs in charge of handling the IRQs and to retrieve
the actual IRQ configuration, respectively.

As an example, the following snippet sets the number of the combined channels to
2 for the device eth0:

struct pcap_channels ch = \
{ .combined_count = 2 };

if (pcap_set_channels(p, \
“eth0”, &ch, \
PCAP_COMBINED_CHANNELS) != 1)

{ /* error */ }

whereas the statement that follows retrieves the full configuration for the device:

63

i
i

“output” — 2018/4/12 — 19:30 — page 64 — #83 i
i

i
i

i
i

Chapter 3. Traffic Distribution

pcap_get_channels(p, “eth0”, &ch);

Analogously, it is possible to specify the IRQ affinity to a specific set of CPUs for
every single channel. The following example sets the affinity for the channel 0 to core
0 and channel 1 to core 1, respectively:

cpu_set_t cpuset;
CPU_ZERO(&cpuset); CPU_SET(0, &cpuset);
if (pcap_channel_setaffinity(

“eth0”,
0,
&cpuset) != 1) { /* error */ }

CPU_ZERO(&cpuset);
CPU_SET(1, &cpuset);
if (pcap_channel_setaffinity(

“eth0”,
1,
&cpuset) != 1) { /* error */ }

Finally, notice that the whole procedure can also be replicated by declaring a few
keys in the configuration file, as in the example reported next:

combined_channels@eth0 = 2
irq@eth0.0 = 0
irq@eth0.1 = 1

3.6 Performance Evaluation

This section aims at assessing the performance of a simple multi-threaded application
using the new pcap library through the extended API when running on top of the
standard Linux socket as well as PF_RING and PFQ.

The experimental test bed consists of a pair of identical PCs with an 8-core Intel
Xeon E5-1660V3 on board running at 3.0GHz and equipped with Intel 82599 10G
NICs and used for traffic capturing and generation, respectively. Both systems run a
Linux Debian distribution with kernel version 4.9.

3.6.1 Speed-Tests

The first set of tests aims at assessing the impact of fanout in the performance of the
lightweight multi-threaded pcap application captop7 that simply counts the received
packets when running on top of the standard Linux socket, PF_RING and PFQ, under
different packet sizes and number of underlying capturing cores (different RSS values).
Packets are synthetically generated at 10 Gbps full line rate by pfq-gen, an open-
source tool included in the PFQ distribution.

Figure 3.6 shows the result of the speed-test when four working threads of captop
retrieve the packet streams on top of the TPACKET Linux socket according to different
fanout modes. The whole set of measurements is replicated by progressively increasing

7Available at https://github.com/awgn/captop

64

i
i

“output” — 2018/4/12 — 19:30 — page 65 — #84 i
i

i
i

i
i

3.6. Performance Evaluation

 0

 2

 4

 6

 8

 10

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

fa
n
o
u
t =

 h
a
s
h

fa
n
o
u
t =

 rn
d

fa
n
o
u
t =

 q
m

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

fa
n
o
u
t =

 h
a
s
h

fa
n
o
u
t =

 rn
d

fa
n
o
u
t =

 q
m

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

fa
n
o
u
t =

 h
a
s
h

fa
n
o
u
t =

 rn
d

fa
n
o
u
t =

 q
m

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

fa
n
o
u
t =

 h
a
s
h

fa
n
o
u
t =

 rn
d

fa
n
o
u
t =

 q
m

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

fa
n
o
u
t =

 h
a
s
h

fa
n
o
u
t =

 rn
d

fa
n
o
u
t =

 q
m

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

fa
n
o
u
t =

 h
a
s
h

fa
n
o
u
t =

 rn
d

fa
n
o
u
t =

 q
m

64 Bytes 128 Bytes 256 Bytes 512 Bytes 1024 Bytes 1500 Bytes
T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

Fanout Mode

RSS = 1 RSS = 2 RSS = 3 RSS = 4

Figure 3.6: 10 Gbps packet capture with libpcap over standard Linux socket

the number of underlying capturing cores, from 1 to 4 (RSS = 1,. . . ,4), yet keeping the
application and interrupt affinities not overlapped. Moreover, as a reference value, the
theoretical line rate limit as well as the capturing rate of a single-threaded instance of
captop (“no fanout”) are also reported for each packet size.

The performance figures are in line with the expected capabilities of the TPACKET
socket and show that full capture rate is reached at around 128 Bytes long packets when
using the lightest “qm” dispatching algorithm and at the 256 Bytes long packets in all
other cases. However, further interesting insights come out from the figure. Indeed,
especially for short packets, the introduction of fan–out turns out to accelerate the over-
all application capture rate. This effect was somewhat unexpected, as fan–out is used
to distribute traffic among up–layers working threads and should not impact the pure
underlying capture rate. In fact, this beneficial effect is likely due to the internal im-
plementation of the Linux socket that proves to be inefficient in handling contentions
when multiple cores (i.e., NAPI contexts) concurrently inject packets to a single socket
(or to memory mapped rings in the case of TPACKET). With fan–out enabled, when the
number of application sockets increases, the contention on the socket queues among
multiple napi–threads is reduced accordingly, and this determines a beneficial impact
on the performance. In addition, the observed performance acceleration varies with the
fan–out mode, as each algorithm has a different computational cost. As a result, the
lightest “qm” fan–out mode (that simply matches an integer number), proves to outper-
form both the “rnd” and “hash” modes which need to either generate random numbers
or compute hashes functions before dispatching packets to the target sockets.

Figure 3.7 shows the results of the same test when the default Linux socket is re-
placed by PF_RING using the “flow” and the “round_robin” fanout schemes. As ex-
pected, the use of vanilla drivers does not allow to attain stellar performance which, for
small packet sizes, drops below the ones reached by the standard socket. We deem that
much better figures could be reached by using the set of “aware” drivers once shipped

65

i
i

“output” — 2018/4/12 — 19:30 — page 66 — #85 i
i

i
i

i
i

Chapter 3. Traffic Distribution

 0

 2

 4

 6

 8

 10

L
in

e
 R

a
te

Z
e
ro

 C
o
p
y

n
o
 fa

n
o
u
t

ro
u
n
d
 ro

b
in

flo
w

L
in

e
 R

a
te

Z
e
ro

 C
o
p
y

n
o
 fa

n
o
u
t

ro
u
n
d
 ro

b
in

flo
w

L
in

e
 R

a
te

Z
e
ro

 C
o
p
y

n
o
 fa

n
o
u
t

ro
u
n
d
 ro

b
in

flo
w

L
in

e
 R

a
te

Z
e
ro

 C
o
p
y

n
o
 fa

n
o
u
t

ro
u
n
d
 ro

b
in

flo
w

L
in

e
 R

a
te

Z
e
ro

 C
o
p
y

n
o
 fa

n
o
u
t

ro
u
n
d
 ro

b
in

flo
w

L
in

e
 R

a
te

Z
e
ro

 C
o
p
y

n
o
 fa

n
o
u
t

ro
u
n
d
 ro

b
in

flo
w

64 Bytes 128 Bytes 256 Bytes 512 Bytes 1024 Bytes 1500 Bytes

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Fanout Mode

RSS = 1 RSS = 2 RSS = 3 RSS = 4

Figure 3.7: 10 Gbps packet capture with libpcap over PF_RING socket

with the PF_RING release.
However, even in this case, line rate packet capture is still reached for data length

of 256 Bytes and the same beneficial effect of packet fanout on the socket capture
performance is observed.

For reference purposes, Figure 3.7 includes the performance of the passive socket
PF_RING Zero Copy (ZC), running underneath the new pcap library (to which it keeps
semantic compliance), although with no fan–out support. Again, the results are in
line with the expected capture potential of the socket that proves to attain line rate
speed on a single capturing core. However, notice that packet distribution over multiple
application threads would not be possible in this case unless the commercial ZC library
is purchased separately. Without such a library, the application threads can be increased
through the RSS algorithm only, albeit they cannot be decoupled from those fetching
packets from the interface.

Figure 3.8 shows the results of the same test when the PFQ socket is used to cap-
ture packets and distribute them according to analogous fan–out modes (steering algo-
rithms). Again, the performance of the pcap application is consistent with the typical
PFQ capture figures which prove to reach line rate speed even with the shortest packet
size. However, in this case the use of fan–out does not accelerate the application perfor-
mance. This, in fact, is the expected effect of fan–out and it is consistently observed as
the internal lock–free queues of PFQ manages multi–core access contention efficiently.

The last experiment of this section aims at showing the impact of the correct se-
lection of the application affinity on the capture performance. In this test, four captur-
ing cores (RSS = 4) retrieve a full 10 Gbps stream of traffic from the physical device
and distribute the workload according to the “qm” fan–out mode across four working
threads of captop that counts the number of received packets and bytes. The four
threads of the application are allowed to run on top of the capturing cores, so as to
span the full range of overlapping configurations. Figure 3.9 shows the capture speed

66

i
i

“output” — 2018/4/12 — 19:30 — page 67 — #86 i
i

i
i

i
i

3.6. Performance Evaluation

 0

 2

 4

 6

 8

 10

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

s
te

e
rp 2

p
s
te

e
rf lo

w
s
te

e
rr s

s

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

s
te

e
rp 2

p
s
te

e
rf lo

w
s
te

e
rr s

s

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

s
te

e
rp 2

p
s
te

e
rf lo

w
s
te

e
rr s

s

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

s
te

e
rp 2

p
s
te

e
rf lo

w
s
te

e
rr s

s

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

s
te

e
rp 2

p
s
te

e
rf lo

w
s
te

e
rr s

s

L
in

e
 R

a
te

n
o
 fa

n
o
u
t

s
te

e
rp 2

p
s
te

e
rf lo

w
s
te

e
rr s

s
64 Bytes 128 Bytes 256 Bytes 512 Bytes 1024 Bytes 1500 Bytes

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Fanout Mode

RSS = 1 RSS = 2 RSS = 3 RSS = 4

Figure 3.8: 10 Gbps packet capture with libpcap over PFQ accelerated socket

 0

 2

 4

 6

 8

 10

64 128 256 512 1024 1500

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Packet Size (Bytes)

No Overlap
1 Overlap
2 Overlap
3 Overlap

Full Overlap

Figure 3.9: Capture speed vs. application irq affinity

attained when the number of overlapping cores increases from zero (best affinity con-
figuration) to four (worst affinity configuration) for different packet sizes. As expected,
in spite of the light computational burden of captop, the capture performance signif-
icantly degrades when the affinity of application threads and interrupts overlap. This
effect is well visible for short packet length, and vanishes when the packet size increases
due to the lighter effort required to the capturing cores.

67

i
i

“output” — 2018/4/12 — 19:30 — page 68 — #87 i
i

i
i

i
i

Chapter 3. Traffic Distribution

3.7 Use-cases

In this section the performance of the new pcap library in practical use-cases is pre-
sented. To this aim, the two well-known network applications Tstat and Bro have been
selected as they are both single-threaded and support live traffic access through the
libpcap library.

In the following experiments, Tstat and Bro are flooded with different traffic streams
at 10 Gbps speed. Synthetic and real (VoIP) UDP traces with different mean packet
sizes are used in the Tstat experiments, while a real packet trace containing both TCP
and UDP traffic is used with Bro. As will be elaborated upon, in some cases the fanout
alone allows to scale-up the processing power up to full rate capacity while, in another
case, socket acceleration must be enabled to attain top performance figures. In all tests,
the following metrics are observed:

• Link received, the number of packets captured and managed by the socket. Later,
it will be represented as a fraction of the packets that are transmitted by the traffic
generator;

• IF dropped, the number of packets that cannot be handled by the socket and are
dropped at the interface level. Notice that the sum of IF dropped and Link received
is the total number of packets sent;

• App. received, the number of packets processed by the application, represented as
a fraction of the packet received at the socket level (Link received);

• App. dropped, the number of packets dropped because the application is back-
logged. Again, notice that App. received + App. dropped = Link received.

The first two metrics reflect the socket capture efficiency, and can only be improved
by utilizing socket acceleration. Conversely, the remaining metrics are associated with
the application processing speed and can be improved by enabling packet fanout.

In all experiments, both Tstat and Bro were run with their default configurations as
the primary purpose was to show how performance scales up with multiple cores rather
than focusing on any specific application setup.

3.7.1 Tstat

Tstat [9] is a widely popular tool for generic traffic analysis. It includes a large number
of deterministic and statistical algorithms and can be used for the post-processing of
trace files as well as for stream analysis of live data using the pcap library.

In the first experiment, Tstat runs on top of the standard Linux socket (configured
with RSS=3) and is injected with synthetic UDP traffic with an average packet size of
300 Bytes containing up to 4096 different flows. The input traffic rate saturates the full
10 Gbps line speed, with an average packet rate of 3.8 Mpps. The results are shown
in Figure 3.10 and prove that while the Linux socket catches up with the input traffic
speed, a single instance of the application does not, on our hardware. However, by
simply enabling packet fanout, two working instances of Tstat are sufficient to process
all the received packets.

When TPACKET is replaced by PF_RING, the overall performance is somewhat
similar, with two application instances capable of processing most of the offered traffic.

68

i
i

“output” — 2018/4/12 — 19:30 — page 69 — #88 i
i

i
i

i
i

3.7. Use-cases

 0

 20

 40

 60

 80

 100

1 2 3 4

P
a

c
k
e

t
F

ra
c
ti
o

n
 (

%
)

Number of Tstat Instances

Link received
App. received

Figure 3.10: Tstat and Linux socket: 10 Gbps traffic analysis with 300 Bytes average packet size

 0

 20

 40

 60

 80

 100

Zero Copy 1 2 3 4

P
a

c
k
e

t
F

ra
c
ti
o

n
 (

%
)

Number of Tstat Instances

Link received
App. received

Figure 3.11: Tstat and PF_RING socket: 10 Gbps traffic analysis with 300 Bytes average packet size

The figure also shows some fluctuations when using more than two TSTAT workers
which may likely be due to contentions that occur when the three capturing kernel
threads push packets in the application socket queues. Again, the results of PF_RING
ZC are also reported and prove that, despite being able to capture the full amount of
traffic stream, the spare amount of processing resources available on the core used to
fetch data is not enough to allow the application to process all the received packets.

Figures 3.12 and 3.13 report the results of TPACKET and PF_RING when running
the same experiment with average packet size decreased up to 128 Bytes (and corre-

69

i
i

“output” — 2018/4/12 — 19:30 — page 70 — #89 i
i

i
i

i
i

Chapter 3. Traffic Distribution

 0

 20

 40

 60

 80

 100

1 2 3 4 5

P
a

c
k
e

t
F

ra
c
ti
o

n
 (

%
)

Number of Tstat Instances

Link received
App. received

Figure 3.12: Tstat and Linux socket: 10 Gbps traffic analysis with 128 Bytes average packet size

 0

 20

 40

 60

 80

 100

 120

Zero Copy 1 2 3 4 5

P
a

c
k
e

t
F

ra
c
ti
o

n
 (

%
)

Number of Tstat Instances

Link received
App. received

Figure 3.13: Tstat and PF_RING socket: 10 Gbps traffic analysis with 128 Bytes average packet size

sponding average packet rate pushed up to 8.2 Mpps). In both cases, the use of fanout
allows two working instances of Tstat to effectively process all the packets received on
the physical device. However, nearly 40% and 50% of the input packets turn out to
be dropped at the network interface as the input traffic rate exceeds the potential cap-
ture rates of the TPACKET and PF_RING socket, respectively. Also, it can be noticed
that the fraction of data processed by the application is even lower in case of using
PF_RING ZC, due to the higher CPU consumption required by the underlying packet
capturing operations that run on the same CPU.

70

i
i

“output” — 2018/4/12 — 19:30 — page 71 — #90 i
i

i
i

i
i

3.7. Use-cases

 0

 20

 40

 60

 80

 100

1 2 3 4

P
a

c
k
e

t
F

ra
c
ti
o

n
 (

%
)

Number of Tstat Instances

Link received
App. received

Figure 3.14: Tstat and PFQ: 10 Gbps traffic analysis with 128 Bytes average packet size

 0

 20

 40

 60

 80

 100

 120

1 2 3 4

P
a

c
k
e

t
F

ra
c
ti
o

n
 (

%
)

Number of Tstat Instances

Link received
App. received

Figure 3.15: Tstat and Linux socket: Real VoIP trace traffic analysis

To improve the performance of the application, packet fanout can conveniently be
combined with underlying socket acceleration. Indeed, as shown in Figure 3.14, the use
of PFQ allows to avoid packet drop at the lower level and packet fanout allows three
instances of Tstat to successfully process nearly all of the input traffic.

To test the new library performance in a more realistic scenario, we run a further set
of experiments in which TSTAT is called to process a real time traffic trace that contains
around 200K VoIP flows collected over a backbone network. The performance was
recorded by feeding a varying number of TSTAT instances with the VoIP packet data at

71

i
i

“output” — 2018/4/12 — 19:30 — page 72 — #91 i
i

i
i

i
i

Chapter 3. Traffic Distribution

 0

 20

 40

 60

 80

 100

 120

Zero Copy 1 2 3 4

P
a

c
k
e

t
F

ra
c
ti
o

n
 (

%
)

Number of Tstat Instances

Link received
App. received

Figure 3.16: Tstat and PF_RING socket: Real VoIP trace traffic analysis

 0

 20

 40

 60

 80

 100

1 2 3

P
a

c
k
e

t
F

ra
c
ti
o

n
 (

%
)

Number of Tstat Instances

Link received
App. received

Figure 3.17: Tstat and PFQ: Real VoIP trace traffic analysis

around 5 Gbps speed.
Figures 3.15, 3.16, 3.17 show the results of the three experiments when using TPACKET,

PF_RING and PFQ capture sockets, respectively. In the first two cases, the underlying
number of channels was set to 4 (RSS=4) to get the best possible performance, whereas
only two channels (RSS=2) were sufficient to fetch all packets from the network device
when using PFQ.

Overall, the results confirm the findings of the tests previously carried out with syn-
thetic traces. The fan-out feature provided by the pcap library allows TPACKET to

72

i
i

“output” — 2018/4/12 — 19:30 — page 73 — #92 i
i

i
i

i
i

3.7. Use-cases

scale its performance and let four TSTAT instances process nearly all of the traffic.
Notice that the number of instances could not be increased without colliding with the
underlying IRQ affinity – as our architecture is equipped with only eight cores.

Conversely, PF_RING still exhibits performance saturation up to the second fetching
cores, so increasing the number of TSTAT instances beyond two does not increase the
percentage of packets processed by the application. Consistently, the single instance of
TSTAT running on top of PF_RING ZC does not reach 60% of the overall amount of
packets fetched by the socket itself.

Finally, the PFQ socket allows the pcap library to effectively distribute traffic
across the applications instances so starting from two instances of TSTAT is sufficient
to process all of the incoming traffic with two CPUs only (RSS = 2) set to run packet
fetching threads in the kernel space.

3.7.2 Bro

Analogous tests have been carried out to assess the performance of the Bro network
security monitor [1] running on top of the new pcap library.

Bro is a single-threaded computation intensive application that can be run in both
standalone and cluster configuration. In the second case, the total workload is spread
out to multiple instances (nodes) across many cores by a frontend. Messages and logs
generated by all nodes are then collected and synchronized by the broctl manager to
provide a unified output.

To date, the classic pcap library could only be used in the single node configura-
tion. Indeed, to enable parallelism in the cluster deployment, additional on-host load
balancing plugins are required (currently, available plugins are available for PF_RING
and Netmap sockets). The introduction of packet fanout, instead, enables the use of the
libpcap interfaces even in the cluster configuration by only setting a few environ-
ment variables without the need for extra plugins.

In the next experiments, a cluster of Bro nodes using the new pcap library is fed
with a real packet trace played at 2.4 Mpps, corresponding to full 10 Gbps line speed.
The trace was collected over a multi-gigabit link and contained an aggregate of a few
thousand of TCP and UDP flows. However, given the lower PF_RING scaling capabil-
ity, only the TPACKETS and the PFQ sockets were used.

Due to the high computation demand requested by each node, CPU hyperthreading
technology was enabled when the number of Bro instances exceeded the number of
physical cores.

Figure 3.18 shows the cluster performance when the standard Linux socket was used
with two underlying capturing cores (RSS=2). The beneficial effect of fanout is visible
as the fraction of packets received by the application scales up to the whole amount of
packets received by the socket. However, the fraction of packet dropped at the interface
is quite relevant (up to 40%) and raises the need for socket acceleration.

Indeed, Figure 3.19 shows the results obtained when the standard socket is replaced
by PFQ under the same number (two) of capturing cores. The use of the accelerated
socket dramatically reduces the packet drop rate at the interface up to negligible val-
ues. This, in turn, significantly increases the number of packets available to the working
nodes whose performance, indeed, scales linearly up to seven Bro instances. With more
than seven sockets the fraction of packets received by the application still increases lin-

73

i
i

“output” — 2018/4/12 — 19:30 — page 74 — #93 i
i

i
i

i
i

Chapter 3. Traffic Distribution

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
a

c
k
e

t
F

ra
c
ti
o

n
 (

%
)

Number of Bro Instances

Link received
App. received

Figure 3.18: Bro: real traffic analysis with standard Linux socket

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
a

c
k
e

t
F

ra
c
ti
o

n
 (

%
)

Number of Bro Instances

Link received
App. received

Figure 3.19: Bro: real traffic analysis with PFQ

early, but the slope is reduced as the additional cores available through the hyperthread-
ing technology do not have the same computational power of physical CPUs. Finally,
notice that the number of physical cores of the PCs used in the experimental setup lim-
ited the maximum cluster cardinality to 14 nodes, as two of the overall 16 available
cores were dedicated to underlying capturing/steering operations.

74

i
i

“output” — 2018/4/12 — 19:30 — page 75 — #94 i
i

i
i

i
i

3.8. Towards the integration of passive sockets

Figure 3.20: The fanout Abstraction Layer

3.8 Towards the integration of passive sockets

In section 3.3 we have discussed the complexity of providing packet fanout support for
passive sockets, such as netmap and DPDK. This section is meant to further elaborate
upon this topic and to provide a possible unified architecture to include the support of
passive sockets within the pcap library with fan-out feature. Figure 3.20 depicts the
complete scheme of the pcap library as we envision it. The pcap interface stands in
the top part and is made of a set of functions that are invoked by the user-space ap-
plications to manage sockets and receive/injects packets to the network. In fact, such
functions are indeed virtual functions (i.e., function pointers), and their actual imple-
mentations are provided by the underlying blocks. Under the hood, the two families
of passive and active sockets require different management. Since passive sockets lack
active threads that fetch packets from the NIC, it is necessary to build an abstract layer
that can handle traffic data and apply the fanout directives. We named this layer as
fanout Abstraction Layer (FAL). Currently, the blocks on the left-hand side of the fig-
ure (i.e., the ones associated with the active sockets PFQ, PF_RING, and TPACKET)
are fully implemented. On the right-hand side, instead, the fanout abstraction layer is
still under development, and its design is presented here as an ongoing research activ-
ity. In short, the role of the FAL is to hide the underlying machinery of passive sockets
by exposing to the upper layer a abstract active socket (the fal socket itself) that can
be accessed and managed by applications through the pcap library with no specific
modification to their the source code. As such, the FAL layer is responsible for trans-
lating the virtual directives of FAL socket into real operations made onto actual sockets
(netmap, DPDK, etc.) and consists of active poller processes that fetch packets from
the network interfaces, apply the requested packet fanout algorithm, and finally deliver
packets to the applications.

Under the above assumptions, the minimal set of API exposed by the FAL includes
four basic classes of functions for:

• opening/closing the FAL socket (fal_open, fal_close);

75

i
i

“output” — 2018/4/12 — 19:30 — page 76 — #95 i
i

i
i

i
i

Chapter 3. Traffic Distribution

• managing fanout groups and algorithms (fal_fanout, fal_join, fal_leave);

• attaching/detaching the FAL socket to physical network devices (fal_bind,
fal_unbind);

• implement classical I/O primitives for receiving and transmitting packets (fal_recv,
fal_send, fal_dispatch);

Finally, as the system is intended to support both threads and processes, the implemen-
tation of FAL is designed to store the configuration data in a shared memory, possibly
accommodated on top of the Linux HugePages for performance reasons.

76

i
i

“output” — 2018/4/12 — 19:30 — page 77 — #96 i
i

i
i

i
i

CHAPTER4
Functional Packet Processing

4.1 Introduction

The central role of the Internet as the key infrastructure driving global social and eco-
nomic processes makes it the perfect ecosystem for cyber-threats and network attacks
to mutate and become more and more “effective” toward their malicious purposes.

In such a scenario, network nodes – once limited to switches and routers, in charge of
precise operations – see their mission significantly extended and their functions com-
plemented by the adoption of heterogeneous middleboxes providing specific services
such as intrusion detection systems, firewalls, address translation, etc. However, the
appearance of such new devices targeted at very specific functions brings several draw-
backs. At first, middle-boxes are typically proprietary and based on closed source soft-
ware which makes interoperability and management in large-scale multi-vendor scenar-
ios a big issue. Also, their flexibility and programmability are generally pretty limited,
and the programming skills required to customize and configure their operations largely
exceed those of average network administrators. As a result, device programmability
gets significantly impaired and chances for innovation and experimentation reduced.

So far, Openflow [74] is the most effective and convincing answer to the above-
summarized issues. Its pragmatic approach of proposing an open and stateless program-
ming interface to (closed) inner functions of switching nodes was the key to convince
device manufacturers (naturally reluctant to disclose their low-level implementation) to
expose a virtually vendor-neutral API to enable a reasonable degree of programmabil-
ity of network devices. As a result, OpenFlow is today the leading platform to develop
Software Defined Networking (SDN) solutions.

This chapter presents an analogous (software defined) approach to the develop-
ment of generic middleboxes whose behavior can be entirely “defined” by an open
programmable interface equipped with an easy, expressive and robust programming

77

i
i

“output” — 2018/4/12 — 19:30 — page 78 — #97 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

language.
The system herein described consists – at the low level – of a high performing soft-

ware platform implementing a wide variety of primitive functions that exposes – at the
higher level – an interface that can be programmed by a specific functional language.

Why a functional language?
The selection of an adequate programming model for the above-introduced system is

not of secondary importance. At first glance, the choice of a functional model may look
like an unnecessary overkill as it introduces the need to adhere to a strict formalism as
opposed to the pretty loose constraints posed by traditional imperative languages. Such
strict requirements, however, turn out to significantly ease the programming interface,
while providing the user code with the typical robustness of functional programming.
Indeed, as it will be shown in the rest of the chapter, typical packet processing op-
erations will be instantiated by writing a few lines of code only, in which the chain
of packet processing is represented by the composition of elementary operations. As
such operations may be executed in parallel, the immutability of data enforced by the
functional paradigm prevents possible race conditions. Furthermore, before being ex-
ecuted in the underlying processing engine, the user code is formally verified against
the strongly typed language and enforced by the functional model. However, it is worth
mentioning that middlebox programmers are not required to know “gory” details of the
underlying data-plane implementation as such details are entirely hidden behind the set
of instructions exposed by the functional language. Naturally, skilled users may still
extend the number or modify the behavior of the data-plane primitives included in the
system.

The contribution
In practice, the ideal positions expressed so far have been translated into the design

and development of an open platform for the development of a generic network mid-
dlebox on the Linux platform. To this aim, a functional engine implementing generic
data-plane primitives has been integrated on top of PFQ [21], the packet capturing plat-
form presented in chapter 2. The execution of the actual operations performed in the
underlying engine is controlled by programming a functional interface implemented as
a Domain Specific Language (DSL). As a result, the device (middlebox) gets its com-
putation machinery decoupled from its (programmable) control logic, hence enabling a
software-defined approach to packet processing.

The chapter is organized in a top-down fashion, by introducing at first the functional
model (Section 4.2) for packet processing and its theoretical foundation rooted in the
definition of monads (Section 4.3). Section 4.4 presents pfq-lang, the specific func-
tional language developed to program the middlebox behavior, by giving an overview
of the available functions. Section 4.5 delves into the lower level system implemen-
tation with more details on the system’s components. Section 4.6 presents the perfor-
mance of the overall system while Section 4.7 shows a set of simple real use cases,
including monitoring applications, firewalls, legacy applications, and so on.

4.2 Functional Packet Processing

The rationale behind this study comes from the simple intuition that network applica-
tions can be modeled as a packet processing pipeline composed of a sequence of ele-

78

i
i

“output” — 2018/4/12 — 19:30 — page 79 — #98 i
i

i
i

i
i

4.2. Functional Packet Processing

NIC NIC NIC

App App

Network Application

OS

Network Stack

Path to endpoint

Path from source

Figure 4.1: Logical scheme for network applications

mentary operations that consume data (packets) and produce computations, i.e., packets
associated with actions (e.g., forwarding, storing, filtering, etc.).

In this logical scheme (see Figure 4.1), packets are retrieved from one or more
sources (for example, one or more packet queues from a Network Interface Card –
NIC), processed through the pipeline and finally delivered to one or more endpoints.
Possible endpoints can be either network devices to forward packets, or the sockets
of other applications in charge of performing additional processing (e.g., second-stage
applications, GPU accelerated computations, etc.), or the networking stack of the op-
erating system itself for ordinary operations. Along with their way to the destination
endpoints, packets can be subjected to a full gamma of operations that may produce dif-
ferent packets (e.g., NAT, TTL decrement), add annotations on the packets themselves
(e.g., marking as a result of classification), and select the endpoint(s) for delivery.

More in detail, three big classes of operations can be identified within the processing
pipeline:

• operations that compute the final endpoints (and their delivery mode) – i.e., the
packet fanout;

• operations that annotate meta-data on packets (by updating a state);

• operations that log data associated with the packet and possibly generate I/O.

From a functional programming point of view, all these operations (that will here-
after be referred to as actions) can be modeled by using a new data type Action P
built around the data type P used to represent a packet. The goal of this chapter is to
model the elementary operations that compose the packet processing pipeline as pure

79

i
i

“output” — 2018/4/12 — 19:30 — page 80 — #99 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

functions (that is, functions without side effects) f mapping packets (with domain P)
into actions (with domain Action P):

f: P → Action P

As previously mentioned, the first class of operations to be modeled is the one that
defines the fanout of a packet. The fanout is represented by the endpoints (if any) to
which packets are to be delivered, as well as the way this is accomplished.

The elementary fanout operations are:

• Broadcast, which delivers copies of the packet to all the endpoints;

• Deliver class, which deterministically delivers copies of the packet to a sub-
set of endpoints specified by the class parameter;

• Steer hash, which randomly delivers the packet to a picked endpoint out of
all endpoints based on a property of the packet (e.g. symmetric hash of the
canonical 5-tuple);

• Dispatch class hash, which randomly delivers the packet to a picked end-
point out of the class subset of endpoints based on a property of the packet (e.g.
symmetric hash of the canonical 5-tuple);

• Pass, which passes the packet to the next processing stage without specifying
any endpoint;

• Drop, which stops the packet processing, and does not deliver it to any endpoint.

The different packet dispatching modes respond to the possible requirements of
multi-threaded network applications as well as to the wide heterogeneity of network
protocols. In such a framework, the availability of a fine-grained mechanism to handle
parallelism among threads and network devices is crucial to take advantage of powerful
multi-core architectures.

However, at first glance, these operations do not seem to be easily modellable as pure
functions. For example, the fanout operation Drop, which interrupts the processing
pipeline, is hard to implement in a purely functional framework. The definition of a
new data type constructor Fanout helps in addressing this kind of issues.

Definition 4.2.1. Let the Fanout type constructor1 be:

TypeDef Fanout P = Drop | Pass P |
Broadcast P |
Deliver Class P |
Steer Hash P |
Dispatch Class Hash P

where TypeDef is used here to define a new type, while Hash and Class are types
representing the hash value and the class (i.e. subset of endpoints) used to fully specify
the fanout.

1 Notice that the Haskell syntax uses a different construct (data) and requires the parameter following the type constructor
Fanout to be a type variable, hence written as a lowercase letter.

80

i
i

“output” — 2018/4/12 — 19:30 — page 81 — #100 i
i

i
i

i
i

4.2. Functional Packet Processing

This definition indicates that Fanout P is a new data type, parametrized by the
P data type, and enriched by the dispatching modes mentioned above. In particular,
the Deliver and Steer constructors have additional arguments that specify their
behavior: Deliver takes a mask of type Class that identifies a subset of endpoints,
whereas Steer takes a value of type Hash to select a single endpoint (e.g. through a
folding or modulo operation). Finally, Dispatch takes two more parameters, one of
type Class and one of type Hash, and combines the Deliver and Steer fanout.

Along with the newly defined data type, two functions – unit and compose - can
be used to compute a fanout operation (generally called “computation”) from a packet
and to compose two different functions that associate operations to packets (notice that
compose is needed because the functions have different domains and codomains).
The prototypes of unit and compose are:

unit: P → Fanout P
compose: (P → Fanout P) x (P → Fanout P) →

(P → Fanout P)

meaning that unit maps packets (of type P) into computations (of type Fanout P),
while compose maps pair of functions from packets to computations into functions
from packets to computations.

Definition 4.2.2. The unit function is defined as:

unit p = Pass p

The compose function is more difficult to describe, and can be better formulated
in terms of a function indicated as “*” that, given a computation and a function from
packets to computations generates a fanout computation:

*: Fanout P x (P → Fanout P) → Fanout P

Notice that the domain of * is (Fanout P) x (P → Fanout P), which repre-
sents the set of possible pairs (computation, function from packets to computations), as
the x symbol represents the Cartesian product. In the functional programming commu-
nity, such a function (known as bind) is often declared as:

*: Fanout P → ((P → Fanout P) → Fanout P)

by using the so called “currying”: a function f : A×B → C having two arguments (in
the sets A andB) and returning a value in set C is equivalent to a function fcurry : A→
(B → C) having only an argument in set A and returning a function from set B to set
C. However, for the sake of simplicity, in this chapter, we use the more straightforward
notation based on functions with multiple arguments and the Cartesian product.

Definition 4.2.3. The * function is defined as:

81

i
i

“output” — 2018/4/12 — 19:30 — page 82 — #101 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

a * f = case a of
Drop → Drop
Pass p → f p
Broadcast p → case f p of

Pass p → Broadcast p
otherwise → f p

Deliver c p → case f p of
Pass p → Deliver c p
otherwise → f p

Steer h p → case f p of
Pass p → Steer h p
otherwise → f p

Dispatch c h p → case f p of
Pass p → Dispatch c h p
otherwise → f p

According to this definition, * works as follows:

• if a Drop operation is combined with any kind of function using *, the result
is always Drop. This means that once a function drops a packet, the following
functions in the pipeline are not evaluated, because the final result of the pipeline
is Drop anyway;

• if a Pass p operation is combined with a function, the packet p is passed as an
input to such a function, which generates the resulting computation;

• if a Broadcast p, Steer h p, Dispatch c h p or Deliver c p op-
eration is combined with a function, the function is applied to the packet p. The
function can select a new operation for the resulting packet, or can simply keep
the input operation (if the result of the function is Pass p).

Based on *, the compose function can be defined as

(f1 compose f2) p = (f1 p) * f2

The presented Fanout data type constructor allows to model operations to be per-
formed on packets (broadcast, drop, steer, etc.). However, a real packet processing
pipeline has also to perform more complex operations, such as marking a packet, deliv-
ery of a packet to a NIC, associating some information with a packet and so forth. This
can be achieved by extending the Fanout type constructor and adding some notion of
state, to allow the pipeline stages modify such a state. To do this, a more complex data
type constructor, named Action, has to be defined. The complete Action datatype
constructor, which includes the fanout computations, a state and I/O operations, can be
defined by composing Fanout to some other data type constructors. The next section
elaborates upon the theory behind these datatype constructors, proves some relevant
properties of the Fanout type constructor and refers to known theoretical results to
explain how to build Action based on simpler constructors.

82

i
i

“output” — 2018/4/12 — 19:30 — page 83 — #102 i
i

i
i

i
i

4.3. Theoretical Foundations

4.3 Theoretical Foundations

The Fanout data type constructor equipped with the polymorphic versions of the func-
tions unit and * defined in Section 4.2 represents a construct which is well known in
the functional programming community as monad. The monad concept originates in
Category Theory [90] and is defined as a triple composed by a functor and two natural
transformations acting on it.

The mathematical concept of monads has been applied to computer programming
by Moggi [75] and adapted to functional programming by Wadler [111, 112]. In this
context, a monad is defined as a triple (M,unit, ?), where:

• M is a type constructor;

• unit is a function that turns a value from the type a into a computation M a that
only returns that value:

unit : a −→M a

• ? is an operator (also known as bind) that applies a function of type a −→M b to
a computation of type M a:

? : M a × (a −→M b) −→M b

A monad satisfies the following three fundamentals laws:

1. Left unit. For all functions f : a −→M b, and value a of type a:

unit a ? f = f a

2. Right unit. For all computations m of type M a:

m ? unit = m

3. Associativity. For all computations m and functions f : a −→ M b and g : b −→
M c

(m ? f) ? g = m ? (λa.(f a ? g))

where the notation λx.y denotes a (nameless) function computed on the value x
that returns y.

According to the above definition of the monad, we need now to prove that the type
Fanout p introduced in the previous section is indeed a monad, i.e., it satisfies the
above monad laws.

Theorem 4.3.1. The parametric type Fanout P defined in Definition 4.2.1 equipped
with the unit function (Definition 4.2.2) and the ? operator (Definition 4.2.3) is a
monad.

Proof. To prove that the triple (Fanout, unit, ?) is a monad, we need to show that the
three monad laws hold.

Left unit. By the definition of ? given in Definition 4.2.3, it is easy to see that
Pass p ? f = f p, ∀f .

83

i
i

“output” — 2018/4/12 — 19:30 — page 84 — #103 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

Right unit. Again, by Definition 4.2.3, it is easy to verify that m ? unit p = m for
all possible m.

Associativity. To prove associativity, we need to verify the result of the ? operation
for all possible combination of pairs of functions. As we have six possible computations
(Drop, Pass, Broadcast, Steer, Dispatch, Deliver), this makes 36 possible combinations.
A trivial (but way too verbose to be reported here) direct check easily leads to verify
that the associativity property holds.

As already mentioned, the Fanout monad is not sufficient to describe all the possi-
ble operations performed on packets and its effects must be combined with the effects
of other well-known monads, such as the State monad (allowing to associate a state
to each computation) and the IO monad (allowing for computation-driven packet for-
warding). The combination [68] of such monads leads to the definition of a complete
Action monad that will be used throughout the rest of the chapter.

The compose function presented in Section 4.2 operates on pairs of monadic func-
tions. This kind of composition is generally known as Kleisli composition. More for-
mally, given two monadic functions f : a −→ Mb and g : b −→ Mc, the Kleisli
composition ◦:

◦ : (a −→Mb)× (b −→Mc) −→ (a −→Mc)

of f and g is defined2 as:
(f ◦ g)x = (fx) ? g (4.1)

Note that, historically, the triple (M,unit, ?) used to define a monad is known as Kleisli
triple.

The straightforward abstract consequence is to model the pure functions composing
the packet processing pipeline as monadic functions that can be combined through the
Kleisli composition. As a result, application programmers can rely on the functional
modeling based on monads with no need to know any details about the underlying
implementation. Also, this approach prevents irrecoverable errors as the strong type
check of common functional languages (for example, consider the Haskell type system)
guarantees the semantic correctness of compositions at type-level.

4.4 The pfq-lang Language

As discussed in the previous sections, a packet processing pipeline can be described
by composing multiple functions implementing elementary operations. This leads to
the definition of a Domain Specific Language (DSL) designed for packet processing
(pfq-lang).

pfq-lang is based on a set of primitive monadic functions implemented in a func-
tional engine that represent single stages of the processing pipeline. These primitive
functions can be combined by using the Kleisli composition (see Section 4.3), which

2An equivalent definition may be given by using λ notation as:

f ◦ g = λx.fx ? g

84

i
i

“output” — 2018/4/12 — 19:30 — page 85 — #104 i
i

i
i

i
i

4.4. The pfq-lang Language

was introduced as the compose function in Section 4.2 and indicated with the symbol3

>-> in pfq-lang.
A pfq-lang program can be either a single monadic function or a Kleisli composition

of two or more operations, as:

c3 = c1 >-> c2

As primitive operations, pfq-lang provides a rich set of functions. Also, since the
functional engine is designed to be easily extensible, it allows users to add functions
for their specific purposes.

Like any functional language, pfq-lang supports high-order functions (functions that
take or return other functions as arguments) and currying, to convert functions that
take multiple arguments into functions that take a single argument, as explained in
Section 4.2.

A special function named conditional allows to evaluate two different compu-
tations depending on the truth value that a given predicate evaluates to. The syntax of
conditional is:

conditional predicate c1 c2

where predicate is a function that when applied to a given packet, evaluates to a boolean
value, and c1 and c2 are monadic functions. If the predicate evaluates to true, then
the value of conditional is the expression c1, otherwise it is the expression c2. As
shown in the next section, we anticipate that pfq-lang provides a rich set of predefined
predicates (such as is_udp, is_ip, etc...).

For simplicity, two additional functions when and unless are also defined:

when pred c = conditional pred c unit
unless pred c = conditional pred unit c

meaning that when computes c if pred is true or unit otherwise, whereas unless
returns unit when pred evaluates to true or c otherwise.

4.4.1 Monadic functions

From a semantic point of view, monadic functions are implemented as the combina-
tion of the Fanout monad with other well-known monads to functional programming
community (namely, the so-called State monad and the IO monad). Remember that a
monadic function represents a stage of the pipeline, which takes an argument – a packet
– and returns a packet along with an Action (namely, a Fanout operation, a new State
and possible I/O side effects). Such functions allow performing fundamental actions
on top of packets, such as filtering, forwarding, steering, classifying, marking, storing,
copying, and so forth.

As discussed above, thanks to the currying mechanism, nothing prevents a monadic
function from taking additional arguments, provided that they come first in the argu-
ments list.

3 We could not use the more typical >=> symbol as it is already used by Haskell to represent the Kleisli composition.

85

i
i

“output” — 2018/4/12 — 19:30 — page 86 — #105 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

As a final remark, note that pfq-lang does not provide the standard * (bind) function.
Instead, it does provide the Kleisli composition operator, which represents for monads
what the functional composition (.) does for simple functions. While, at first sight, this
may look odd, it becomes more clear when we consider that the bind function takes a
monadic argument (which is a packet along with its context) and that such an argument
is not available at the point where the composition is defined. Instead, the Kleisli com-
position allows composing a pair of monadic functions into a new monadic function
whose effects are chained together. It goes without saying that the bind function (even
if it is not exposed by pfq-lang) is implemented within the functional engine.

4.4.2 Non-Monadic Functions

In addition to monadic functions, pfq-lang provides a set of functions that take arbitrary
arguments (curried from user-space), a packet, and return data. These functions do
not specify any action on packets. Instead, they are passed as argument to high-order
functions to specify their behavior. Non-monadic functions are roughly divided into
the following categories: predicates, combinators, properties and comparators.

Predicates are functions that take a packet and return a boolean value. They are the
fundamental building block for high-order functions, like those expressing conditional
computations (e.g. conditional, when and unless functions). In addition, predicates
can be combined through combinators, which are high-order functions that take one or
possibly a pair of predicates and return a new predicate. pfq-lang implements combi-
nators by overloading the common boolean operators not (!), or (||), and (&&), and
xor (xor).

Similarly to predicates, properties are functions that take packets and return values,
such as a computed hash, a specific field of a network header or, more in general, a
value associated with the packet. Properties can be passed as arguments to comparators,
which are predicates that provide a comparison between the outcome of properties and
their actual arguments. Examples of comparators are: less (<), less equal (<=), equal
(==), not equal (/=), greater (>) and greater equal (>=).

4.5 Implementation

The proposed packet processing architecture has been implemented in a Linux kernel
module, and consists of a functional engine and some user-space bindings (implement-
ing pfq-lang) for various programming languages.

The processing functions and the functional engine are implemented in kernel space
as close as possible to network device drivers and the network stack of the Linux kernel.

At user-space, bindings for the Haskell language (a pure functional language, which
supports monads and their manipulations), for the C++ language, and for the C lan-
guage (with a slightly awkward, but functionally equivalent, syntax) are provided.

The functional engine has been implemented in the PFQ kernel module [20, 21], a
high-performance monitoring framework designed for the Linux operating system.

4.5.1 The Embedded DSL

To create a programming language for a specific domain, we can either implement a
parser along with the related compiler, or exploit the expressiveness of existing lan-

86

i
i

“output” — 2018/4/12 — 19:30 — page 87 — #106 i
i

i
i

i
i

4.5. Implementation

guages
pfq-lang has been implemented as an eDSL primarily because this choice enables

a better integration with general-purpose languages already used for network appli-
cations. The eDLS implementations take advantage of the expressiveness of Haskell
along with some extensions (e.g., Generalized Algebraic Datatypes – GADTs) and of
expression templates for the C++ language. The lack of expressiveness of the C lan-
guage has made the implementation of the eDSL more cumbersome. For example, the
Kleisli composition is implemented as a traditional function instead of using a custom
infix operator.

At the time of writing, pfq-lang implements about a hundred functions, and more
are expected in the future. As previously mentioned, such functions include protocol
filters, steering functions, conditional functions, or forwarding functions either to sock-
ets, devices or the kernel stack. Due to space limitation, only a few functions are shown
in the chapter. The complete reference of the available functions can be accessed at the
pfq-lang wiki page [11].

As an example of pfq-lang expression, a simple function that filters IP packets and
dispatches them to a group of endpoints (e.g., sockets) using a steering algorithm is
described as:

composition = ip >-> steer_ip

where ip is a filter that drops all the packets but IP ones, and steer_ip is a function
that performs a symmetric hash with IP source and destination. Such a composition
can be embedded in a Haskell program, associated with a given group of endpoints
(identified by the gid parameter) and passed to the functional engine in kernel-space
(where it is validated and executed on a per-packet basis) with the following command:

Q.groupFunction q gid composition

where Q is the namespace used for the PFQ and PFQ-Lang symbols, and q is an instance
of a PFQ socket type (used as a handle to the functional engine).

The C++ version of eDSL uses a slightly modified syntax:
auto q = net::pfq();
...
auto composition = ip >> steer_ip;
q.groupFunction(gid, composition);

where, again, q is an object representing a PFQ socket (used to access the functional
engine).

The main difference between the pfq-lang syntax and the C++ eDSL syntax is in the
fact that the Kleisli composition in the C++ eDSL is represented by the >> operator
(other differences are the extra parenthesis in the function used to inject the computation
into the functional engine, but these are not strictly part of the eDSL). Notice that from
now on we will only report examples written in the native pfq-lang syntax (which,
incidentally, coincides to that of Haskell).

pfq-lang implements filters for the most important protocols; to name a few, ip,
udp, tcp, icmp, ip6, icmp6, rtp (heuristic) and so forth. In addition, each filter is
complemented with a predicate, whose conventional name begins with is_ or has_.

87

i
i

“output” — 2018/4/12 — 19:30 — page 88 — #107 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

Conditional functions allow to change the behavior of the computation, depending
on a property of the processed packet, as in the following example:

composition = ip >->
when is_tcp

forward "eth1" >-> steer_flow

The function drops all non-IP packets, forwards a copy of TCP packets to eth1,
and then dispatches packets to the group of registered PFQ sockets in steering mode.
It is worth noticing that since steer_flow works with both TCP and UDP packets,
ICMP packets are implicitly dropped by the steering function.

As another example, the following code marks UDP packets with the number 42
(or returns them to the kernel network stack if non-UDP packets), and then dispatches
them to PFQ sockets preserving the flow integrity:

composition =
conditional is_udp

mark 42
kernel >-> steer_flow

The mark function is used to mark packets with a value that can be read by follow-
ing functions through the has_mark predicate as well as by user-space applications
when packets are received by sockets. This marking mechanism can be used for packet
classification.

Finally, it is worth noticing that the whole Berkeley Packet Filter machinery can be
included into a single monadic function and used in functional compositions.

4.5.2 The Functional Engine

At the bottom of the system, PFQ [21] retrieves packets from NICs data sources. Such
packets are then fed into the functional processing pipeline that provides the kernel
stage of processing (filtering, classification, steering toward upstream applications,
etc.). At the end of the pipeline, PFQ sockets, NICs, or the kernel networking stack
can be used as endpoints to feed applications running in user-space, forward packets,
or return them to the kernel.

User-space applications must register to socket groups to receive packets. Socket
groups allow for multiple multi-threaded (or multi-processes) applications to concur-
rently receive packets from the same set of NICs. As such, each group is served by a
specific processing pipeline (an instance of functional composition).

The engine evaluates the functional composition specified for an endpoint (or a
group of endpoints) on a per-packet basis. The number of instances of the functional
engine available in a system depends on the number of kernel contexts enabled for cap-
turing packets, that in the Linux kernel corresponds to the number of NAPI threads.
A fine-grained approach to interrupt affinity allows selecting the cores where the func-
tional engines are instantiated.

The functional composition is represented by an abstract syntax tree (AST) of func-
tions and arguments, and it is generated in user-space by pfq-lang expressions. The
AST is then represented regarding a collection of meta information to be transferred

88

i
i

“output” — 2018/4/12 — 19:30 — page 89 — #108 i
i

i
i

i
i

4.5. Implementation

to the functional engine (through a specific PFQ socket option). Such information in-
cludes the actual parameters specified in user-space upon their conversion to a memory
layout compliant to the C language.

The eDSL enforces the type level correctness at compile time. Also, for security
reasons, the functional composition is sanity checked at kernel-space to avoid possible
kernel panics. In particular, the signature of the various functions along with their argu-
ment types are verified, and the presence of loops in the tree is avoided. Subsequently,
the descriptors of the various functions undergo a process of transformation through
which the abstract tree is converted into a hybrid data structure, equipped with data and
pointers to executable functions (see Figure 4.2). The addresses of various functions
are resolved by a run-time linker that uses dynamic symbol-tables. Such tables are
populated when either the PFQ kernel module or external modules are loaded. Notice
that external modules can add (and remove) on-the-fly new functions to the system (the
removal is allowed only when no functional engine is running).

The curryfied arguments of such functions are stored in a functional node. For per-
formance reasons, depending on their size (as compared to that of a pointer) either their
value or a pointer to a separate chunk of memory is stored in the node. Once the AST
is converted into the executable program, the functional composition is transactionally
enabled for a specified group of endpoints with a single atomic operation. This enables
computations that can be dynamically updated in real-time, for example in response to
network events.

The primitive operations implemented in the functional engine are divided into dif-
ferent symbol tables based on their prototypes. Monadic functions take as argument a
socket buffer (sk_buff for the Linux kernel) and return the sk_buff enriched with
a context (representing action, state, and logs for I/O). Predicates can receive some op-
tional arguments and a sk_buff and return a boolean value. Properties return a value
associated with the packet. More in general, functions can access the sk_buff, some
arguments specified by the functional composition in user-space (which are curryfied),
possibly additional functions passed as arguments and a state associated with the packet
which is stored in the control buffer of the sk_buff. In particular, the control buffer
hosts some meta information that is used to implement the Fanout, the State and
the IO monads used to perform actions on the packet.

Note that the Action monad includes the effects of a State monad, implementing
two different kinds of states: volatile and persistent. The volatile one is used to store in-
formation related to the current computation and is passed along the chain of functions.
Such a state is available to all the functions and the user-space applications when the
packet and its meta-data are passed to the sockets. The volatile state has a scope limited
to the composition, it is thread-safe and represents a mechanism for classification that
can be triggered by in-kernel functions.

As an example, we report the in-kernel function that is executed once the monadic
function l3_proto is evaluated by the functional engine. The function implements a
filter for the layer 3 protocol specified as argument (e.g., l3_proto 0x800 to filter
for IP packets).

89

i
i

“output” — 2018/4/12 — 19:30 — page 90 — #109 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

when pred left right

is_tcp

forward eth1 next

kernel

ip

101010
010101
101001
010101

tcp_mirror = ip >-> when is_tcp (forward eth1) >->
mark 42 >-> kernel

ip next

function

conditional

predicate

when

101010
010101
101001
010101

is_tcp

101010
010101
101001
010101

forward

101010
010101
101001
010101

kernel

101010
010101
101001
010101

forwarder

forwarder

data:

"eth1"

data2

...

mark

101010
010101
101001
010101

mark 42 next

marker

Figure 4.2: Memory layout of the executable program

90

i
i

“output” — 2018/4/12 — 19:30 — page 91 — #110 i
i

i
i

i
i

4.6. Performance Evaluation

Action_sk_buff
filter_l3_proto(arguments_t args,

struct sk_buff *skb)
{

const u16 type = get_data(u16, args);

if (eth_hdr(skb)->h_proto ==
__constant_htons(type))

return pass(skb);

return drop(skb);
}

The function uses the standard methodology of parsing packets used in the Linux ker-
nel. The return value, instead, specifies a computation by using the functions defined in
the Fanout monad (i.e. pass and drop). The type arguments_t is an additional
argument used to mimicking currying at the kernel level. The function may access to
the curryfied arguments using the appropriate macro, e.g., get_data.

4.6 Performance Evaluation

The performance of the pfq-lang implementation presented in Section 4.5 has been
evaluated through an extensive set of experiments. All the experiments have been per-
formed on a PC equipped with an Intel 82599 10G NIC having 128 hardware queues
and based on a 6-core Intel Xeon X5650 running at 2.67GHz. This means that without
hyper-threading, the maximum number of parallel instances of the functional engine
(processing pipelines) that can be executed simultaneously is 6. Since the more recent
release of PFQ does not benefit from hyper-threading, processing pipelines have been
tested by varying the number of hardware queues (and therefore the NAPI contexts)
from 1 to 6.

The performance has been measured by feeding the PC running PFQ, the functional
engine, and the pfq-lang coded applications, with packets generated at increasing rates,
and measuring the rate of processed packets. The packet length is set to 64 bytes (worst-
case).

In the first experiment, the performance of an empty processing pipeline has been
measured to have some baseline performance to be used as a reference. This experi-
ment measures the PFQ performance in capturing packets and the minimum overhead
introduced by the functional engine. Figure 4.3 shows the results. As can be noticed,
on the hardware available to us, PFQ can capture packets at line rate from a 10Gb Eth-
ernet card by using 4 CPU cores with vanilla drivers (it is worth remembering that this
corresponds to around 14.8 Mpps). When 3 CPU cores are used, PFQ can capture up to
14 Mpps. 2 CPU cores can capture up to 10 Mpps, while a single CPU core can reach
about 5.5 Mpps.

After measuring the performance of PFQ and an empty computation, the perfor-
mance of the simplest possible function (a single unit action) has been evaluated.
The results are reported in Figure 4.4 and show that introducing a simple action in the
pipeline slightly reduces the performance achieved when using 2 CPU cores or 3 CPU
cores, while the performance of a single standalone pipeline does not seem to be sig-
nificantly affected. The functional engine scales (concerning the number of instances)

91

i
i

“output” — 2018/4/12 — 19:30 — page 92 — #111 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

2 4 6 8 10 12 14

Offered Packet Rate (Mpps)

2

4

6

8

10

12

14

P
ro

c
e

s
s
e

d
 P

a
c
k
e

t
R

a
te

 (
M

p
p

s
)

4 Cores

3 Cores

2 Cores

1 Core

Figure 4.3: Empty processing pipeline

2 4 6 8 10 12 14

Offered Packet Rate (Mpps)

2

4

6

8

10

12

14

S
u

s
ta

in
e

d
 P

a
c
k
e

t
R

a
te

 (
M

p
p

s
)

4 Cores
3 Cores
2 Cores
1 Core

Figure 4.4: Processing pipeline consisting of a single unit function

92

i
i

“output” — 2018/4/12 — 19:30 — page 93 — #112 i
i

i
i

i
i

4.6. Performance Evaluation

2 4 6 8 10 12 14

Offered Packet Rate (Mpps)

2

4

6

8

10

12

14

S
u

s
ta

in
e

d
 P

a
c
k
e

t
ra

te
 (

M
p

p
s
)

4 Cores

3 Cores

2 Cores

1 Core

Figure 4.5: Functional computation: (when is_tcp (mark 42)) >-> steer_ip

slightly worse than in the first case, but still scales pretty well.
Then, the performance of the functional engine when executing a more complex

computation (including a conditional action and the delivery of packets to user-space)
has been evaluated. The function used in this case is

(when is_tcp (mark 42)) >-> steer_ip

which marks the TCP packets with value 42 and then delivers all the packets to user-
space by using a steering function. The packet delivery is obtained by calculating a
symmetric hash on the IP source and destination addresses, thus forcing packets gen-
erated between the same pair of hosts to be always delivered to the same endpoint(s).
Figure 4.5 shows that the engine is again able to process (and deliver to user-space)
packets at line rate when using 4 CPU cores. As expected, the performance achieved
when using 1, 2, or 3 CPU cores are slightly worse than in the previous cases, indicating
that the increased complexity of the computation can affect the number of packets per
second that the engine can process.

Figure 4.6 shows the performance of computation which performs forwarding to
a network device, and then drops all the packets (hiding them to the kernel). This
experiment measures the overhead introduced by the I/O monad (the cost of sending a
packet), showing that the system can reach a forwarding rate of around 12 Mpps with
the hardware available to us.

Notice that, so far, all the tested computations consumed a very small amount of
execution time. In the last experiment, the performance achieved when using a CPU-
intensive computation (computing the CRC16 on all of the bytes of each packet) has
been evaluated. The results are reported in Figure 4.7 and show that the system still
scales linearly with the number of cores and reaches around 13 Mpps processing rate
on the hardware available to us.

As a final remark, it is worth noticing that in all the experiments the performance
lines become flat after the peak throughput is reached (in other words, when the max-

93

i
i

“output” — 2018/4/12 — 19:30 — page 94 — #113 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

2 4 6 8 10 12 14

Offered Packet Rate (Mpps)

2

4

6

8

10

S
u

s
ta

in
e

d
 P

a
c
k
e

t
R

a
te

 (
M

p
p

s
)

6 Cores

5 Cores

4 Cores

3 Cores

2 Cores

1 Core

Figure 4.6: Functional computation: forward "eth2" >-> drop

2 4 6 8 10 12 14

Offered Traffic Rate (Mpps)

2

4

6

8

10

12

S
u

s
ta

in
e

d
 P

a
c
k
e

t
R

a
te

 (
M

p
p

s
)

6 Cores

5 Cores

4 Cores

3 Cores

2 Cores

1 Core

Figure 4.7: Heavier functional computation: CRC evaluation

94

i
i

“output” — 2018/4/12 — 19:30 — page 95 — #114 i
i

i
i

i
i

4.7. Use Cases

1 2 3 4 5 6

Number of Cores

2

4

6

8

10

12

14

S
u

s
ta

in
e

d
 P

a
c
k
e

t
R

a
te

 (
M

p
p

s
)

No computation
Unit
Conditional computation
CRC16
Forward

Figure 4.8: Scalability Overview

imum “Processed Packet Rate” is reached, increasing the “Offered Traffic Rate” does
not decrease the performance). This shows that PFQ and pfq-lang work well even in
overload conditions. Figure 4.8 shows the peak throughput measured in the various
experiments as a function of the number of used CPU cores and tells us that the pfq-
lang/PFQ combination can properly scale with the number of cores.

4.7 Use Cases

This section provides some examples of possible network applications that can be im-
plemented by programming the functional engine. Such examples range from packet
forwarding, port mirroring, a load balancer switch, stateless and stateful firewalls, and
two simple early-stage processing applications for network monitoring.

95

i
i

“output” — 2018/4/12 — 19:30 — page 96 — #115 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

4.7.1 Port mirroring

Since it is possible to use a NIC as one of the endpoints, packets can be quickly for-
warded to other machines by merely directing them to the proper endpoint. This strat-
egy allows to efficiently implement the data plane of a switching node through a set of
pure functions.

The combined use of the IO monad [52] and a suitable garbage collector allows
the actual forwarding operations to take place at the end of the processing pipeline,
even if some intermediate stages might return a different packet. This way, the purely
functional “lazy” nature of the pipeline stages is preserved. Furthermore, it turns out
that lazy forwarding leads to performance optimization as, the a posteriori knowledge of
the number of forwarding operations requested for a packet, always saves one shallow
copy of the packet itself.

A mirroring port can then be simply instantiated through the following expression:
forward "eth1" >-> kernel

where the ports to mirror are specified when the group of sockets (for which the func-
tional composition is specified) is bound to a list of devices.

4.7.2 Load Balancer

The use of randomized operations easily allows the implementation of a network load
balancer when endpoints are network devices. To enable this, the application needs to
associate NICs to special endpoints (egress sockets) to be used for the fanout. Hence, a
very simple flow-based load balancer can be implemented by a single steering function:

steer_flow

alternatively, by any other steering or dispatching functions available from the lan-
guage.

4.7.3 Stateless Firewall

A pipeline of purely functional filters can be used to implement a firewall. Filters can
drop packets, or set them to be re-injected in the protocol stack (so that they are received
by the system).

For instance, functional filters can be configured to:

• block the packets explicitly recognized by the pipeline. In this case, all the re-
ceived packets are set by the first stage of the pipeline to be re-injected in the
protocol stack, and some of the following stages can explicitly drop the packets to
be blocked by the firewall;

kernel >-> (when has_port 22 &&
!(address "131.114.0.0" 16) drop)

• block all the packets except for the ones recognized by the pipeline. In this
case, by default, packets are not marked in any way (i.e., by the first stage of
the pipeline), but are explicitly marked as “re-inject in the protocol stack” when
recognized by some filter.

96

i
i

“output” — 2018/4/12 — 19:30 — page 97 — #116 i
i

i
i

i
i

4.7. Use Cases

when has_port 80 kernel

Notice that in this case, the firewall is stateless, because packets are received or
dropped upon their properties, and not by previous packets.

4.7.4 Monitoring

pfq-lang has also been designed for network monitoring. By leveraging the features/per-
formance of PFQ in capturing packets from multiple NICs (or from multiple hardware
queues), pfq-lang enables the creation of efficient early stages computations for more
complex monitoring applications.

pfq-lang includes a set of functions specifically designed for packet filtering and
steering, covering the most used protocols and heuristics. For instance, an early stage
computation suitable for an application that estimates the network parameters of RTP
flows (i.e. packet loss, end-to-end delay and jitter) can be instantiated as:

conditional is_rtp (class 0 >-> steer_rtp)
class 1

The heuristic is_rtp is used to detect VoIP flows even in the absence of RTCP traffic,
and steer_rtp is the steering function used to dispatch RTP/RTCP packets across
the endpoints in use in the class 0 (a subset of endpoints of the group for which the
composition is specified). Traffic not detected as RTP/RTCP is sent to a subset group
of endpoints (class 1) designed to receive packets for other purposes (e.g., debugging).

4.7.5 Legacy applications

PFQ comes with a full-featured pcap library, enabling legacy applications to benefit
from its features. The pcap interface is mapped over the rich PFQ APIs, and when
no match is possible – that is when no pcap function is available to wrap PFQ APIs –
other mechanisms, such as environment variables are adopted. As a result, even legacy
applications can benefit from pfq-lang to create early stages programs for network ap-
plications.

Among the predefined steering functions, a very useful one is steer_net. Such
a function takes a string as network address (IP) along with a prefix (as the second
argument) to identify a network. The last parameter is a second prefix used to further
subnet such a network and to steer the related packets to different endpoints.

steer_net "192.168.0.0" 16 24

In the reported example, the traffic that belongs to the 192.168.0.0/16 network is
selected, split into 256 C-classes, and finally steered to the endpoints.

The PFQ pcap interface is extended with an environment variable that allows launch-
ing applications specifying for them the group id of their sockets. Therefore once the
above program is specified for a group through a control socket, say group 42, it suf-
fices to launch multiple sessions of the legacy applications and let them see the traffic
properly split.

A typical example is that of multiple snort sessions:

97

i
i

“output” — 2018/4/12 — 19:30 — page 98 — #117 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

PFQ_GROUP=42 snort -c /etc/snort.conf \
-l /var/log/snort1/

PFQ_GROUP=42 snort -c /etc/snort.conf \
-l /var/log/snort2/

PFQ_GROUP=42 snort -c /etc/snort.conf \
-l /var/log/snort3/

4.8 Stream processing

The rise of Software Defined Networks (SDN) and Network Function Virtualization
(NFV) as the winning trends for the design and development of network functions and
services has naturally switched the focus of the research community towards network
virtualization and softwarization. Both paradigms propose a dramatic change in the
way network operations and services are conceived and push programmability and re-
configurability as crucial keywords of a new generation of network devices.

This section presents Enif-lang (Enhanced Network processIng Functional Lan-
guage), a natural, expressive and robust programming language specifically tailored to
network traffic processing for multi-core PCs running Linux OS. Originated from the
experience learned with PFQ-Lang [19, 23], the language has evolved quite a lot lately
and the current prototype implements a reference model that enables and automates
state persistent in concurrent programming. Like any functional language, Enif-lang
supports high—order functions (functions that take or return other functions as argu-
ments) and currying, that turns functions that takes multiple arguments into functions
that take a single argument. Moreover, the language includes conditional functions and
predicates to implement a basic code control flow.

Since Enif-lang is used to describe and specify packet processing pipelines, it plays
a similar role to that of the lower level P4 [24] language and to the imperative lan-
guage Pyretic [76] (that belongs to the Frenetic [8] family of network programming
languages) in describing the data plane logic of an SDN network or to that of Stream-
line [37] to configure I/O paths to applications through the operating system. Also,
VPP [10] and eBPF [2] recently proposed alternative approaches for packet processing
and data plane programming.

4.9 Enif-lang at a glance

Enif-lang is a functional language entirely implemented as a declarative Domain Spe-
cific Language (DSL) on top of the Haskell Language and it is designed to ease the
implementation of network applications by leveraging a strong type-safe system and
the functional composition typical of functional programming languages.

Figure 4.9 shows the full Enif-lang abstract processing model implemented in the
runtime. Packets, retrieved at physical network interfaces, traverse a splitting layer
that provides per-flow consistency and are injected into the processing engines (the λi
blocks in the picture). At this stage, the pipelines of computation are executed accord-
ing to the formal description provided by Enif-lang and packets are finally forwarded
to the selected endpoints, i.e., to network cards, application threads, the OS kernel, etc..

In Enif-lang, pipelines are formally expressed as the composition of effectful func-
tions, called actions, that perform network operations on top of packets. In analogy

98

i
i

“output” — 2018/4/12 — 19:30 — page 99 — #118 i
i

i
i

i
i

4.9. Enif-lang at a glance

NIC

App

λ1

λ1

λ2

state-aware split

RSS

S1

S1

S1

enif-lang application layer

NIC

Figure 4.9: The Enif-lang abstract processing model

with PFQ-Lang [23], Enif-lang actions are formally modeled around the concept of
monad, a structure borrowed from the Category Theory and widely used in other lan-
guages, such as Haskell, Scala etc. In short, monads provide the theoretical support for
composing effectful functions (such as those performing I/O, those that handle a state
associated with a packet or flow, and so on) while maintaining the language function-
ally pure. Enif-lang actions include the most common packet processing primitives for
packet forwarding, filtering, steering, logging and statistics retrieval.

At the time of writing, an experimental implementation of the reference architecture
runs on top of the PFQ framework [19] for the Linux operating system. In particular,
the Enif-lang run-time takes advantage of the GHC Haskell compiler to produce inter-
mediate representations of Enif-lang programs that are loaded as shared libraries and
executed in user-space, on a per-packet basis.

The following sections describe the basic grammar and syntax of the language along
with simple snippets for its practical usage.

4.9.1 Functions overview

Enif-lang is equipped with a set of built-in primitives as well as a complete library of
functions to describe generic processing pipelines. In the following, such functions are
roughly divided into different categories according to their purposes.

Predicates. Predicates are pure functions that take an arbitrary number of arguments
(possibly none) plus the current packet and return a Boolean value. Such functions are
either used within the if-then-else statement or passed as an argument to high-
order-functions to specialize their behavior.

The language implements a set of primitive predicates (that cannot be directly im-
plemented in Enif-lang) that compose together to implement more complex ones.

99

i
i

“output” — 2018/4/12 — 19:30 — page 100 — #119 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

The default library includes predicates for the most common protocols. As a con-
vention, the names of such functions are prefixed by is_ or has_, when meaningful.

Examples are is_tcp, is_udp, is_icmp, is_rtp, is_sip, is_gtp
or has_port 80, has_addr "192.168.0.0/24".

Combinators. Enif-lang provides a set of combinators, that is functions designed
to combine predicates together. In particular, the composition of predicates is enabled
by the logical or, and, xor and not functions.

Properties. Properties are functions designed to return a value associated with a
packet. Typical examples are hash functions computed over a portion of a packet,
header field extractors, state retrievals, etc. The Enif-lang library is equipped with
a wide gamma of property functions for the most common protocols (IP, TCP, UDP,
ICMP), as well as with generic functions that extract the field value of arbitrary proto-
cols (by specifying the offset and the size of the field). For example, properties of the
IP header are: ip_ttl, ip_tot_len, ip_id, ip_frag, ip_ttl.

Comparators. Properties are meaningful only when used with comparators, namely
functions that perform a comparison between a given property and a specified value. In
addition to the standard operators <, <=, >, >=, == and /=, the library offers any_bit
and all_bit functions to check whether some (or all) bits of a given mask are set. As
an example, the expression any_bit ip_tos 0x3f is a valid Enif-lang predicate
that tests whether any of the DSCP bits are set in the packet.

Filters. Filters are effectful functions that break the pipeline processing when the
packet does not match a given condition. The Enif-lang library is equipped with a wide
range of filters for the most common protocols. In a nutshell, a filter is a very simple
monadic function, whose output action can be either Pass or Drop. Examples of com-
mon filters are ip, tcp, udp, port, src_port, dst_port, addr, src_addr,
dst_addr, etc.

Monadic functions. Monadic functions take an arbitrary number of arguments and
a packet and return a packet with an associated action. Currently, the available actions
are Pass, Drop (used by filters), Broadcast, Dispatch, Steer and DoubleSteer (used by
steering functions).

Common monadic functions are when and unless, used in conditional state-
ments as well as the family of steering functions, such as steer_flow, steer_p2p,
steer_link, etc., used to balance the traffic among multiple endpoints with different
flow consistency guarantees.

4.10 Processing Pipelines

Actions can be composed together by means of the do notation or through the Kleisli
operator >=>, and follow similar rules of composition set forth in [23].

The overall expressiveness of Enif-lang allows building even complex pipelines
through a very concise grammar. As a first example, the following simple program:

udpCounter = counter 0
enif_main :: Packet -> Action ()
enif_main pkt =

when (is_udp pkt) $ modifyCounter udpCounter (+1)

100

i
i

“output” — 2018/4/12 — 19:30 — page 101 — #120 i
i

i
i

i
i

4.10. Processing Pipelines

which makes use of the predicate is_udp to count UDP packets. The entry point
enif_main is the principal function invoked by the Enif runtime, to which the packets
captured from the NICs are passed.

The next snippet of code, instead, provides a more complex example in which the
processing pipeline takes advantage of a per-computation state – that is a state passed
along the processing stage.

http = dst_port 80
pass_to_kernel =

when (has_state http_traffic)
kernel

mirror_to_port =
when (has_state other_traffic)

(forward “eth2”)
process = if (not is_tcp)

then drop
else do pass_to_kernel

mirror_to_port)
http_traffic = 1
other_traffic = 2

enif_main :: Packet -> Action ()
enif_main pkt = do
if (http pkt)

then put_state http_traffic
else put_state other_traffic

process

From the language point of view, functions like put_state, get_state and
the predicate has_state act as an implicit extra parameter for all of the pipeline
functions. However, the usage of the per-packet state is somewhat limited as it vanishes
after the packet computation expires. As such, it cannot be used in processing pipelines
that require the storage of stateful information across different packets. The solution
of this issue is represented by per-flow persistent states and is described in the next
section.

4.10.1 Stateful Pipelines

Generally speaking, stateful operations in parallel architectures require an effective
management of potential data sharing across multiple threads of execution to avoid
race conditions. In the case of stateful processing pipelines, this would be the case of
different packets belonging to the same flow but processed by different cores concur-
rently.

For network applications, it turns out that, most of the time, it is possible to tackle
the problem in a general and effective way by restricting the association of stateful
information to packet flows only. As a consequence, in many practical applications, it
is possible to partition a-priori the traffic and let all the computation process flows of
packets in parallel and total isolation.

The central concept is here represented by a suitable definition of packet flow. Packet
flows are defined through flow-keys (e.g., IP addresses, canonical 5-tuples, and so on).
In the Enif-lang context, a generic flow-key consists of the concatenation of an arbi-
trary number of packet header fields. Different pipelines may operate different types of

101

i
i

“output” — 2018/4/12 — 19:30 — page 102 — #121 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

Figure 4.10: The Enif-lang distribution model

flows, all of them specified by their flow-keys. The bitwise intersection of all such keys
represents the common flow-key that can be used upon hashing at the splitting stage
(see Figure 4.9) to distribute packets to functional engines. Once traffic is split, the
current abstraction guarantees that packets of the flow are processed in the Enif-lang
stage sequentially, on a single core and in total order.

The figure 4.10 further describes this concept in a block diagram. The key-extractor
is configured with the LCFK (largest-common-flow-key), that is the bitwise represen-
tation of the common mask in use by all applications (app1 and app2 in the figure) to
identify the state associated with a certain representation of the flow.

Such a block, using the bitmask, extracts the essential part of the packet headers
necessary to compute a hash (the algorithm used is not relevant) that later is used in the
fold operation to split the traffic across an arbitrary number of cores. Each core is in
charge to run an independent replica of the applications, sequentially.

This mechanism automatically ensures the flow consistency for all the packets and
their related states and prevents from data-sharing among cores. Notice that multiple
Enif-lang programs can instead run in parallel (on different cores) thanks to the im-
mutability of packets.

However, it is worth noticing that not all configurations can be parallelized as a
common flow-key might not exist, or in other words be empty. This particular case can
be conveniently handled by partitioning the applications in clusters of common sub-
keys and by introducing shallow copies of packets to feed each of them (figure 4.11).
In this example, app1 and app2 sport a common flow mask, whereas app3 is based on
an orthogonal flow-concept, hence, with an independent flow-mask and set of cores
where it runs.

From the language point of view, Enif-lang provides a persistent per-flow state that
is automatically handled by the underlying abstract processing model. A per-flow per-
sistent state is a state shared among all packets that belong to a certain flow. Such a
state information is stored in associative flow-maps, indexed by their own flow-keys.

The Enif-lang library provides several functions for the per-flow state management.
In general, all such functions take a flow map object that contains a table identifier and a
flow-key definition. Furthermore, the language offers a set of predefined keys as well as

102

i
i

“output” — 2018/4/12 — 19:30 — page 103 — #122 i
i

i
i

i
i

4.11. Use-cases

Figure 4.11: The Enif-lang distribution model: two clusters

utilities for building custom keys through the concatenation of arbitrary header fields.
In particular, the function set_fstate is used to set the value of the state associated
with the flow of a packet. Instead, the function get_fstate retrieves the value of the
state associated with the flow the packet belongs to. Other additional functions, such
as incr_fstate, decr_fstate, add_fstate, etc. are used to update the state
information. It is worth noticing that Enif-lang does not limit the number of state tables
whose maximum number is instead enforced by the underlying implementation.

4.11 Use-cases

This section presents the use of Enif-lang in two practical applications. The first ap-
plication is an example of stateless processing and consists of a simple load-balancer
that forwards packets to a cluster of network devices or local applications running Deep
Packet Inspection. The second example, instead, provides the Enif-lang implementa-
tion of the simple stateful firewall based on the port knocking scheme.

4.11.1 Stateless processing

DPI applications typically take advantage of DNS packets to build classification trees
and improve application recognition. As such, the following load-balancer broadcasts
DNS packets to all DPI workers and randomly spreads the remaining packets according
to steer_p2p steering function that preserves layer 3 symmetric flow consistency.

is_dns = has_port 53
enif_main pkt = if(is_dns pkt)

then broadcast
else steer_p2p

103

i
i

“output” — 2018/4/12 — 19:30 — page 104 — #123 i
i

i
i

i
i

Chapter 4. Functional Packet Processing

4.11.2 Stateful processing

The simple port knocking application is presented. The problem, already described
in [16], is to create a simple firewall that permits certain flows to pass only if a known
sequence of TCP packets hit predefined ports (port numbers 5123, 6234, 7345 and 8456
in the example).

The example uses a couple of tables. The first table lists the authorized flow and
is implemented as an associative map based on the classic 5-tuple key (predefined as
TUPLE_5). The second table, instead, is based on the 3-tuple keys (IP_SRC, IP_DST
and PROTOCOL, defined as TUPLE_3) and implements the state machine for tracking
the knocking sequence. Any time the expected destination port is found, the state is
updated through the function next_if until it reaches the state value 4 which opens
the firewall and the corresponding flow is authorized in the auth_flow table.

auth_flow = flow_map 0 TUPLE_5
knock_table = flow_map 1 TUPLE_3
next_if pred =

if pred
then incr_fstate knock_table
else set_fstate knock_table

enif_main :: Packet -> Action IO ()
enif_main pkt =

if (get_fstate auth_flow)
then kernel
else case_of (get_fstate knock_table) $ with
[0 ~> next_if (dst_port. == 5123) >-> drop
, 1 ~> next_if (dst_port. == 6234) >-> drop
, 2 ~> next_if (dst_port. == 7345) >-> drop
, 3 ~> next_if (dst_port. == 8456) >-> drop
, 4 ~> do

next_if (dst_port. == 22)
when (set_fstate knock_table. == 0)
(set_fstate auth_flow 1 >-> kernel)

]

A final example is that a simple flow tracker, whose source code is herein reported.
The program is a simple packet counter, on a per-flow basis.

flowMap :: HashTable FlowKey5 Int
flowMap = newHashTable 1000000

enif_main :: Packet -> Action IO ()
enif_main pkt = do

let key = mkFlowKey5 pkt
e <- lookup flowMap key
case e of

Nothing -> insert flowMap key 1
Just x -> insert flowMap key (x+1)

Here a flowMap is declared as a HashTable with the FlowKey5 tuple as key.
Such a tuple, along with the utility function mkFlowKey5 is implemented in a com-
mon Enif library.

104

i
i

“output” — 2018/4/12 — 19:30 — page 105 — #124 i
i

i
i

i
i

4.11. Use-cases

Figure 4.12: The Enif-lang flow tracker performance

The enif_main program is passed packets, which are parsed to extract the key nec-
essary to increment the corresponding counter or to create an entry and set the related
counter to 1, otherwise.

For completeness, the following snippet presents the implementation of the mk-
FlowKey5 utility function, implemented in the Language.Enif.Flow module.

mkFlowKey5 :: Packet -> FlowKey5
mkFlowKey5 pkt = FlowKey5 byteSwap32 (ipSaddr pkt)

byteSwap32 (ipDaddr pkt)
byteSwap16 (srcPort pkt)
byteSwap16 (dstPort pkt)
protocol pkt

The figure 4.12 reports on the performance achievable on a single core of our 3Ghz
Xeon architecture running the flow tracker example. The test is executed generating a
variable number of random flows, of 64-byte length packets. It is worth noticing that
a single core can track the very worst case of 14.8Mpps when the number of flows is
up to 1024, and the performance degrades, but not excessively until it reaches 11 Mpps
when the number of streams is around 2 Million.

105

i
i

“output” — 2018/4/12 — 19:30 — page 106 — #125 i
i

i
i

i
i

CHAPTER5
Applications

This chapter presents use-cases and applications of the network programming elements
shown in the previous chapters.

In particular, the first use-case presented takes advantage of the PFQ framework
(presented in chapter 2) which is used, along with some additional performance opti-
mization techniques, to speed up a software-based OpenFlow switch.

The second case of use, instead, uses PFQ as a measuring instrument to demonstrate
the validity of a fair-bandwidth allocation algorithm among a set of TCP sources, on a
set of 10G links.

Finally, we conclude with a set of distributed probes that takes advantage of the pro-
prieties of LogLog counters and reversible sketch, to implement a system for network
anomaly detection.

5.1 SDN and OpenFlow

5.1.1 Introduction

The need to quickly adapt network functions to new requirements and emerging ap-
plications has fueled recent research in programming models and abstractions for pro-
grammable network devices’ data planes [16,25,74,96,99]. In this field, an abstraction
based on a pipeline of Match-Action tables (MATs) emerged as an effective way to
model the forwarding behavior of a network function [24].

Software switches are a natural fast prototyping tool for performing research on
MAT abstractions. They typically implement a general forwarding plane that can be
easily modified and used to functionally test new features before embracing longer
development efforts. Nonetheless, the process of designing or modifying an abstrac-
tion very often requires a fine-tuning of a flexibility versus performance trade off [86].

106

i
i

“output” — 2018/4/12 — 19:30 — page 107 — #126 i
i

i
i

i
i

5.1. SDN and OpenFlow

Therefore, functional testing has to be performed together with performance testing.
Unfortunately, wide-spread software switch implementations, such as OpenVSwitch

(OVS), achieve performance by performing some optimizations which are specific to
the implemented forwarding abstraction [88]. For instance, OVS applies a complex
caching strategy tailored to the implemented stateless OpenFlow-like MAT abstrac-
tion. Such strategies, while being effective in providing the required performance,
complicate the process of introducing a new programming model that differs from the
implemented one [60]. On the other side, modular high-performance switches imple-
mentations, such as mSwitch [56], or high-performance packet I/O frameworks, such
as DPDK [42] and netmap [93], provide a better ground to develop a new forwarding
abstraction. Still, they usually require a more substantial development effort, since they
do not necessarily implement a pipeline of MATs, or anyway, they only provide little
auxiliary functions.

In this chapter, we present the results of our efforts in providing the research com-
munity with a useful tool for the rapid prototyping of MAT-based forwarding abstrac-
tions. In a nutshell, our work consisted in accelerating OfSoftSwitch (OFSS) [3], and
in demonstrating that such implementation can be effectively used to implement new
MAT-based forwarding abstractions.

OFSS provides a linear and easy way to modify the implementation of the OpenFlow
specification, which allows a programmer to quickly introduce new functions. How-
ever, it was not originally designed for performance, therefore an out-of-the-box OFSS
can achieve only a very limited forwarding throughput of few thousands of packets per
second (pps). We refactored a large portion of the OFSS’ packet handling code, ap-
plying well-known techniques such as batching, zero-copy, static memory allocation,
etc. Furthermore, we introduced PFQ [19] as packet I/O library to accelerate pack-
ets receive and transmission operations. Contrary to other packets I/O libraries, PFQ
provides some auxiliary functions that help a programmer to quickly scale functions
without dealing with problems such as packet dispatching to CPU’s cores. Our acceler-
ated OFSS (aOFSS) implementation keeps the original OFSS simple code structure but
achieves a throughput of around 4.5 million pps (Mpps) on a single core. Furthermore,
it can scale on multiple cores, achieving nearly 10Gbps line rate with minimum size
packets when using four cores.

To demonstrate how our implementation choices can effectively help the implemen-
tation of new MAT-based abstractions, we also implement OpenState on top of aOFSS.
OpenState is a recently proposed stateful MAT-based abstraction that realizes Finite
State Machines (FSMs) in the data plane. Using aOFSS’s OpenState implementation,
we demonstrate a stateful firewall use case and compare its performance with the one
achieved by Linux’s Netfilter/iptables. While being a fast prototyping tool, our aOFSS
implementation of an OpenState-based firewall provides more than 6x throughput im-
provement when compared to Linux’s iptables.

The rest of this chapter is organized as follows: Sec. 5.1.3 presents OFSS architec-
ture and issues. Sec. 5.1.4 describes the solutions and optimization performed in our
implementation while Sec. 5.1.7 evaluates the achieved forwarding performance.
Open source contribution: aOFSS has been merged as BEBA-EU branch in the of-
ficial OFSS repository and is already available at https://github.com/CPqD/
ofsoftswitch13/tree/BEBA-EU

107

https://github.com/CPqD/ofsoftswitch13/tree/BEBA-EU
https://github.com/CPqD/ofsoftswitch13/tree/BEBA-EU

i
i

“output” — 2018/4/12 — 19:30 — page 108 — #127 i
i

i
i

i
i

Chapter 5. Applications

5.1.2 Related Work

To experiment with MAT abstractions, a possible way is to describe a MATs pipeline
using the P4 [24] language. The P4 description is then compiled to a software imple-
mentation. To the best of our knowledge, PISCES [96] is the only high-performance
implementation of a software switch whose MATs pipeline can be configured with P4.
However, PISCES does not fully support P4 constructs. Most notably it does not im-
plement stateful constructs. In fact, supporting stateful actions in a MATs pipeline
abstractions is still an open research problem [60].

SoftFlow [60] addresses such problems extending OpenVSwitch to integrate more
flexible processing blocks called SoftFlow actions, which can implement complex state-
ful functions. Combining SoftFlow actions with an OpenFlow-like pipeline of MATs
enables a developer to perform arbitrary network functions. However, each SoftFlow
action is, in fact, a black box, which consumes and produces packets, i.e., as if it were
a VM attached to an OpenFlow switch. Click [79] is another tool for fast prototyp-
ing of network functions. Click adopts a model in which arbitrary functional blocks,
called elements, can be composed into graphs. NetBricks [86] defines as abstraction
a set of fine-granular primitives that suitably combined can describe some software
network functions. However, the NetBricks’ model is not specifically tailored for the
implementation of MATs.

Differently, from the cited works, we provide an implementation of a MATs pipeline
that can be easily modified to implement arbitrary network functions and experiment
with variations of such abstraction. SoftFlow, Click, and NetBricks do not implement
a MATs pipeline. For instance, a similar approach in SoftFlow would require modi-
fications to the OVS code, whose complexity and issues we already discussed in the
introduction of this chapter.

To accelerate packets I/O, we use PFQ [19] framework. Many other frameworks
are currently available and an extensive comparison of them can be found in [26, 51,
77]. Relevant ones are PF_RING [50], PF_RING ZC (Zero Copy) [39], Netmap [93],
DPDK [42]. PF_RING ZC, Netmap and DPDK bypass the Operating System by mem-
ory mapping the ring descriptors of NICs at userspace, allowing even a single CPU to
receive 64 bytes long packets up to full 10 Gbps line speed. Also, DPDK adds a set
of libraries for fast packet processing on multi-core architectures for Linux. Netmap
and DPDK have been successfully used in accelerating software switches as in the case
of the VALE [94] switch and mSwitch [56] (netmap) and CuckooSwitch [116] and
DPDK vSwitch [58] (DPDK). Netmap was also used to accelerate packet forwarding
in Click [92] and ClickOS [70]. PFQ, instead, relies on vanilla device drivers and lever-
ages different levels of parallelism to accelerate packet I/O. Besides, PFQ is equipped
with a native functional language to program in-kernel early stage packet processing.

5.1.3 OfSoftSwitch

OfSoftswitch (OFSS) is a userspace software switch implementation of the OpenFlow
1.3 specification. It is a popular tool in the academic community, as it provides a clean
and flexible implementation of a MATs pipeline, which makes it suitable for functional
experimentation. However, OFSS was not originally designed for performance, limit-
ing its applicability as a rapid-prototyping platform to very basic functional evaluations.

108

i
i

“output” — 2018/4/12 — 19:30 — page 109 — #128 i
i

i
i

i
i

5.1. SDN and OpenFlow

ofprotocol

OF Controller

Physical ports

Switching

AF_PACKET sockets

netdev netdev netdev

OF Tables OF meters

netdev

o
fd

a
ta

p
a

th

Figure 5.1: OFSS architecture

E.g., our tests show that OFSS can only forward few thousands of pps (cf. Sec. 5.1.7).
Architecture and Issues The architecture of OFSS is shown in Fig. 5.1 and reflects
the OpenFlow architecture. Data plane and control plane are handled by two dis-
tinct processes: ofprotocol handles general configurations and the communication
with an external controller; ofdata-path implements the switch’s data plane. The
ofdata-path module is designed as a single process application and relies on the
netdev library to access network devices.

The netdev library implements an abstraction layer for network devices. As such,
it contains all the functions for opening/closing devices, receiving/transmitting packets,
managing queueing disciplines, reading devices’ stats, etc. At the link layer, netdev
relies on standard Linux AF_PACKET sockets for receiving and transmitting packets.

Two main issues impact performance in this architecture:

• the use of AF_PACKET sockets is well known to be inefficient regarding I/O
speed.

• the switch runs in a single process/thread; hence, it cannot scale to multi-core
processing.

5.1.4 Software acceleration

As a first step to improve the data plane performance of OFSS, we decided to replace
the underlying AF_PACKET sockets for packet I/O operations. This required the mod-
ification of the netdev abstraction in order to enable the use of software accelerated
frameworks such as PF_RING ZC [50], netmap [93], DPDK [42] or PFQ [23]. In fact,

109

i
i

“output” — 2018/4/12 — 19:30 — page 110 — #129 i
i

i
i

i
i

Chapter 5. Applications

these frameworks introduce mechanisms for kernel bypassing, which help to avoid the
performance bottlenecks of the operating system’s network stack.

Each of the above acceleration engines would require a specific implementation
of the new netdev library. Therefore, we decided to unify the different approaches
by supporting the standard pcap library [89], a cross-platform interface for packet I/O
supported by all of the aforementioned accelerated engines. As a result, the new OFSS’s
data-path is platform independent and can be transparently bound to any underlying
accelerated engine supporting the pcap interface.

5.1.5 Multi-core processing

The I/O acceleration could be provided by any of the several frameworks we previously
mentioned, because of the adoption of the pcap interface. However, supporting multi-
core processing would still require a major refactoring of the OFSS’s data-path. A
refactoring we want to avoid for several reasons, including the ability to support, with
little effort, already existing prototypes built on top of OFSS.

We found a solution to our problem using a particular set of features of the PFQ
framework, which therefore became the framework of choice for our implementation.

The architecture of PFQ is shown in Fig. 2.1 of the chapter 2.
In this context, PFQ is used as an engine to retrieve packets from one or more traffic

sources, make some computations by means of functional engines (the λi blocks in
the picture) and finally deliver the processed packets to one or more endpoints. Traffic
sources are either represented by Network Interface Cards (NICs) or – in case of multi-
queue cards – by single hardware queues of network devices.

The selection of PFQ is motivated by its ability to enable fine-grained parallel com-
putation in a simple and programmable way. While it is in principle possible for other
frameworks to support similar functions, PFQ already integrates an in-kernel process-
ing stage that is fully programmable through a high-level functional language. Such a
processing engine works as a “pre-processing stage” and allows the execution of dy-
namic and hot-swappable (i.e., atomically upgradable at run-time) computations. As
a result, packets can be filtered, logged, forwarded, load-balanced and dispatched on a
per-packet basis to groups of application sockets, to generic endpoints or even to the
kernel.

PFQ integrates several primitive functions that can be roughly classified as: protocol
filters, conditional functions, logging functions, forwarding (to the kernel or NIC) and
fanout functions (mainly, steering). Steering functions are particularly relevant to en-
able parallelism as they allow an application to deliver packets to a group of sockets by
using a hash-based stateless load balancing algorithm. Both the algorithm and the hash
keys are defined through the computation instantiated in the functional engines. For ex-
ample, the function steer_flow spreads traffic according to a symmetric hash that
preserves the coherency of bi-directional flows, while the function steer_ip steers
traffic according to a hash function that uses source and destination IP addresses. More
generally, steering can be performed according to arbitrary criteria with the overall tar-
get of distributing the processing and avoiding state sharing across cores.

Such feature turned out to be straightforwardly applicable to enable the scaling
of stateless OFSS application, such as the standard OpenFlow implementation, but
also very useful to support stateful applications. More specifically, Fig. 5.2 shows

110

i
i

“output” — 2018/4/12 — 19:30 — page 111 — #130 i
i

i
i

i
i

5.1. SDN and OpenFlow

ofprotocol

OF Controller

ofdatapath

Physical ports

ofdatapath ofdatapath ofdatapath

libpcap

PFQ

Figure 5.2: Multi-process OFSS

the multi-core processing scheme we implemented for OFSS. Notice that the multiple
ofdata-path instances (workers) act as independent switches that operate on dis-
joint portions of the overall traffic. Using the steering function of PFQ, the traffic is
distributed across different workers. Applications can scale to multiple cores by con-
figuring the PFQ functional engines according to the application’s specific needs. Such
operation can be easily performed in the ofprotocol module.

For example, stateful abstractions, such as OpenState [16] and FAST [80], separate
state access during packet processing on a per-flow basis. A lookup operation at the
beginning of the MAT identifies the packet’s flow and, consequently, the state that will
be accessed and modified during the packet processing. Such lookup operation can be
used to directly derive the PFQ steering criteria (keys), which in turn guarantees that
PFQ will dispatch a packet to the process that keeps the state required for the processing
of such packet.

5.1.6 Code Optimizations

Although I/O acceleration was the main direction to improve the OFSS data plane per-
formance, a thorough code analysis of the switch implementation revealed a significant
number of additional performance bottlenecks. All such bottlenecks have been exten-
sively investigated, and quite a few sections of the original code have been redesigned
and optimized according to more efficient network programming principles. Later, a
list of the major performance modifications to the original software architecture is re-
ported.
Dynamic Memory Allocation. The data-path of OFSS makes extensive use of dy-
namic memory allocations and related memory releases. This dramatically impacts the
packet forwarding performance as the cost of each pair of calls is around 200-500 CPU
cycles. We implemented a zero-malloc optimization that allows OFSS to run without

111

i
i

“output” — 2018/4/12 — 19:30 — page 112 — #131 i
i

i
i

i
i

Chapter 5. Applications

performing dynamic memory allocations. Whenever required, the semantics of the data
structures have been changed to cope with memory buffers without ownership, which,
in turn, are passed along the data-path as managed memory. Furthermore, the packet
handler has been re-designed to fit into a single chunk of memory, replacing the origi-
nal scattered model. This permits to save two extra additional memory allocations and
de-allocations.
Hash Maps Refactory. Hash maps are pervasively used throughout the OFSS data-
path. Wherever possible, hash maps have been replaced with more efficient struct
data types to save very frequent memory indirections when accessing specific protocol
fields. Also, the remaining hash maps have been equipped with a set of managed small
memory nodes, which are allocated at construction time.

Since hash tables are aware of whether the memory nodes are managed or not (using
an annotation on every single node), they can concurrently use both the small set of pre-
allocated nodes and the additional nodes allocated on-demand. In the case of the hash
tables associated with the packet handler, this optimization allows saving (on average)
up to 3 or 4 table rehashes, as they systematically host around a dozen of entries per
each received packet.
Zero Copy. Both the semantics of pcap and PFQ allow one to take advantage of the
memory persistence of a packet, during the call of a pcap handler. This semantic has
been leveraged to retain from saving a copy of the payload of each packet, when not
strictly required1. Strictly speaking, the zero-copy optimization consists in removing a
pair of malloc/free together with a memcpy.
Batch processing. The original version of OFSS processes one packet at a time. In-
stead, we enabled batch processing of packets. Therefore, the forwarding function of
OFSS has been changed to consume, per each port, a batch of packets up to a con-
figurable number, before switching to another port. The beneficial effects of such an
optimization are mainly due to the increased cache locality that occurs while processing
packets. Also, in modern CPUs, this mode of operation allows one to take advantage
of packet pre-fetching. That is, the CPU is explicitly instructed to pre-fetch data while
doing some other processing. As a result, the CPU can retrieve one or more consecutive
packets while the current one is being processed.

5.1.7 Performance Evaluation

We carried out an extensive experimental campaign, under different scenarios, to un-
derstand the absolute performance of our implemented prototype and its scalability.
The experimental test bed consists of two identical machines with 8-core Intel Xeon
E5–1660V3 CPUs (3.0GHz), equipped with a pair of identical Intel 82599 10G NICs.
One of the machines runs the software switch, the other is a load generator. Both sys-
tems run a Linux Debian stable distribution (kernel v. 3.16). A third server runs the
controller and is connected to the switch’s server using 1G control network interface.
OpenFlow performance. The first set of experiments are pure speed tests to bench-
mark the performance of the accelerated version of OFSS (aOFSS) when running a
standard OpenFlow pipeline. Figure 5.3 shows the achieved throughput when varying
the number of cores and the packet sizes. Both the original OFSS performance and line
rate limits are also reported for comparison. The implemented acceleration techniques

1 E.g., when the packet is consumed in the contest of the forwarding thread of execution.

112

i
i

“output” — 2018/4/12 — 19:30 — page 113 — #132 i
i

i
i

i
i

5.1. SDN and OpenFlow

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 1500

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Packet Size (Bytes)

Line Rate
OFSS

aOFSS - 1 core
aOFSS - 2 cores
aOFSS - 3 cores
aOFSS - 4 cores

Figure 5.3: OpenFlow pipeline throughput

 0

 20

 40

 60

 80

 100

 120

64 128 256 512 937 1024 1500

A
c
c
e
le

ra
ti
o
n
 C

o
n
tr

ib
u
ti
o
n
 (

%
)

Packet Size (Bytes)

PFQ
Zero Malloc
Batch Proc.
Hash Map
Zero Copy

Figure 5.4: Acceleration contributions to OFSS

provide a dramatic performance improvement, with the throughput nearly hitting line
rate in all the cases and up to 96x speedup factor concerning the original OFSS.

The contribution of each optimization technique to the total throughput is reported
in Figure 5.4. The results are obtained by selectively switching off one contribution
at a time on the accelerated version of OFSS running on a single core and measuring
the observed performance drop. Data are finally normalized to give a fair visualization
of each term as a stacked histogram. It is worth noticing that, in this case, multi-
core acceleration is not accounted since the experiment was run on one core. The

113

i
i

“output” — 2018/4/12 — 19:30 — page 114 — #133 i
i

i
i

i
i

Chapter 5. Applications

results show that the generic I/O acceleration provided by PFQ and the zero-malloc
optimization have a mostly equally beneficial impact on the performance boost. For
shorter packet sizes, the impact of the other optimization is all but negligible as they
contribute for up to 40% of the overall performance improvement.
OpenState performance. The second set of experiments measures the aOFSS perfor-
mance when doing stateful operations. In particular, we adopt an OpenState prototype
that was originally built on top of OFSS. Since OpenState can build a pipeline out of
both stateless and stateful MATs we evaluate both cases. Furthermore, we also evaluate
aOFSS performance when the depth of the pipeline changes.

Fig. 5.5 shows the throughput achieved by aOFSS when using stateless OpenState
stages. The system still hits line rate for packets of more realistic sizes of at least 128B.
In the most critical case of shortest packet size, performance decreases with the number
of stages, but still reaching well above 10 Mpps with four running cores. Notice that the
performance for one stage is comparable to the ones of OpenFlow. In fact, a stateless
stage is functionally equivalent to an OpenFlow MAT.

Fig. 5.6 shows the performance for a pipeline of stateful OpenState stages. As ex-
pected, the performance decreases, with line rate achieved for packets of at least 256B
size. The degradation is more significant as the number of stages increases. However,
we remark that in our test we measured a somewhat worst-case behavior. That is, ev-
ery packet performs a change to the switch’s state. For reference, such action, in fact,
corresponds to changing the forwarding entry handling the packets, for each received
packet.

Finally, using the approach presented in [87], we implemented a stateful firewall
function cascading two stateful OpenState stages. The function is equivalent to the one
provided by a Linux iptables/netfilter firewall. In such a setup, and when
processing 65K network flow, our implementation could achieve 8.2 Mpps forward-
ing throughput with minimum sized packets. For comparison, we measured the per-
formance of a Linux system’s network stack, when providing the same function. In
particular, we configured iptables with the following rules:

i p t a b l e s −A FORWARD − i e2 −o e1 − j ACCEPT
i p t a b l e s −A FORWARD − i e1 −o e2 −m s t a t e

− s t a t e ESTABLISHED − j ACCEPT

Linux’s iptables could achieve a 1.3 Mpps throughput when handling the same flows.
I.e., the aOFSS implementation of a firewall is more than 6x faster than a vanilla Linux
implementation2.

5.2 PFQ as measuring instrument

5.2.1 Introduction

It has been reported that TCP traffic represents 80-90% of the packets and bytes flow-
ing today through the Internet [28]. It follows that most of the traffic sources adapt
their sending rate according to the perceived available bandwidth. Indeed, TCP is the

2For a fair comparison; we configured the system in similar ways when doing the two tests, i.e., four cores to perform the
switching and forwarding operation in both cases. Also, notice that iptables implements the stateful firewall relying on the Linux’s
CONNTRACK module.

114

i
i

“output” — 2018/4/12 — 19:30 — page 115 — #134 i
i

i
i

i
i

5.2. PFQ as measuring instrument

 0

 5

 10

 15

 20

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

64 Bytes

128 Bytes

256 Bytes

512 Bytes
1024 Bytes

1500 BytesT
h

ro
u

g
h

p
u

t
(M

p
p

s
)

1 core
2 cores
3 cores
4 cores

Figure 5.5: Stateless OpenState stages throughput

 0

 5

 10

 15

 20

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

L
in

e
 R

a
te

1
 S

ta
g
e

2
 S

ta
g
e
s

3
 S

ta
g
e
s

4
 s

ta
g
e
s

64 Bytes

128 Bytes

256 Bytes

512 Bytes
1024 Bytes

1500 BytesT
h

ro
u

g
h

p
u

t
(M

p
p

s
)

1 core
2 cores
3 cores
4 cores

Figure 5.6: Stateful OpenState stages throughput

instantiation of an important design choice that contributed to the success of the Inter-
net: to leave congestion control to the end-systems, thus permitting a relatively simpler
implementation of the interconnection devices. TCP rate control algorithms, such as
Additive-Increase-Multiplicative-Decrease (AIMD), help maintain a fair allocation of
network resources on a per-flow basis. In the simplest case of multiple TCP streams,
all experiencing the same RTT and sharing the same FIFO queue, each flow tends to
occupy the same portion of the link bandwidth [91].

However, relying only on end-systems to guarantee fairness is not enough due to

115

i
i

“output” — 2018/4/12 — 19:30 — page 116 — #135 i
i

i
i

i
i

Chapter 5. Applications

ill-behaving users and issues intrinsic to TCP-like algorithms. Examples of cases of
unfairness are: (i) applications that open a large number of parallel TCP connections,
e.g. peer-to-peer, or that tweak TCP to get better performances; (ii) non-TCP-like
protocols, i.e. protocols that do not respond to congestion signals such as drops, and
(iii) the dependence of standard TCP to the round-trip times (RTT) [91].

For these reasons, most Internet service providers (ISPs) tend throttle customer traf-
fic at the network edge, limiting the maximum bandwidth of each user to a feasible,
but static network allocation. This approach allows ISPs to leave their core and inter-
connections with other ISPs uncongested at all times. The downside is that the excess
bandwidth remains unused, even in common situations of low usage, such as at night.

Researchers have proposed solutions to enforce a more dynamic bandwidth alloca-
tion in the network interconnection devices. In these approaches, instead of capping
the maximum sending rate at all times, network devices can redistribute the unused ca-
pacity (if any) to those users asking for more. The trick here is to design a bandwidth
enforcement scheme that (i) guarantees that all users can obtain at least the level of
service they paid for, i.e., minimum rate guarantees, and (ii) when unused capacity is
available, that is shared by all users, with no one prevailing on others. Ideally, such
mechanism should be introduced in the network without compromising today’s line
rate requirements, i.e., 10-100 Gbit/s per port.

Fair Queuing (FQ) scheduling [38, 81] is the textbook approach to enforce almost
perfect fairness among different traffic sources, independently of the behavior of the
end-hosts. A switch implementing FQ works by assigning users to different queues,
where a “user" is an arbitrary aggregate of packets, e.g., with the same IP source address
or the same TCP/UDP 5-tuple. FQ provides high precision of bandwidth partitioning
but, unfortunately, such precision comes at a considerable expense: (i) the time to
process a packet depends on the number N of active users, precisely O(log(N)); and
(ii) N per-user queues are required.

The first limitation is important with today’s throughput requirements which drasti-
cally reduce the maximum processing time allowed for a packet, e.g., a switching chip
with aggregate throughput of 1 Tb/s has a time budget of 1 nanosecond to process a min-
imum size packet. The second limitation affects switching hardware implementations.
Here the number of queues impacts both the memory requirements and the combinato-
rial logic necessary to implement the scheduler circuitry. Indeed, for a scheduler to be
work-conserving, i.e., to serve a packet if at least one can be served, all N queues must
be examined at the same time. Thus, the number of wires to implement such a structure
depends on N . As a consequence, it is hard to scale FQ implementations to hundreds,
thousands or more users. For this reason, the number of queues available in commercial
hardware switches is usually bounded to less than ten [6]. This consideration is also at
the base of legacy quality of service (QoS) approaches such as DiffServ, where traffic
is aggregated into few classes.

In this study, our focus is to devise a design for a bandwidth enforcing scheme in
which both time and implementation complexity do not depend on the number of active
users N .

This work is inspired by recent advances in Software-Defined Networking (SDN)
and data plane programmability. Emerging abstractions such as P4 [24], OpenState [16],
OPP [17], FAST [80], and Domino [99] allow network operators to perform flexible

116

i
i

“output” — 2018/4/12 — 19:30 — page 117 — #136 i
i

i
i

i
i

5.2. PFQ as measuring instrument

stateful packet processing inside the network. The statefulness of the aforementioned
approaches lays in the ability to program forwarding rules that read and modify data
plane’s forwarding state. Based on this capability, some studies have been published,
showing how to implement existing and new forwarding functions using programmable
data planes [32, 64, 97, 101].

We follow this path and design a scheme to enforce fair bandwidth sharing that
is amenable with programmable data plane abstractions. To this purpose, we do not
modify the scheduler, and we use, instead, a widely-deployed strict priority scheduler
with only a few queues. Fairness is enforced by dynamically assigning priorities to
users according to their sending rate history. We call our design FDPA (Fair Dynamic
Priority Assignment). In FDPA, packets belonging to a user whose arrival bitrate is
equal or less than its fair share are given priority over those users generating traffic at
higher rates. FDPA does not provide precise bit-level or packet-level fairness, but it
approximates a fair repartitioning over longer timescales, in the order of few RTTs.

The scalability of FDPA does not depend on the number of queues, but instead on
the state available for the rate estimator. Precisely, while the circuitry to implement
a rate estimator can be shared among many flows , the switch is required to maintain
per-user state, i.e., the measured rate. Hence, the only limit of FDPA is the memory
available in a switching chip.

We address the applicability of the FDPA approach by performing experiments on a
10 Gbit/s testbed using a software prototype implementation. Results show that FDPA
produces fairness comparable to other schemes based on scheduling. However, we find
that FDPA introduces a trade-off between fairness and throughput, in which one or the
other are penalized.

To summarize, the contributions of this chapter are:

• Design of FDPA, a scheme to enforce approximate fair bandwidth sharing among
many users. Switch requirements to support FDPA are a (i) strict priority sched-
uler and (ii) the ability to manage data plane’s state to measure the arrival bitrate
of each user.

• Evaluation of FDPA and other Linux’s traffic management schemes using a 10
Gbit/s testbed with real TCP traffic.

We begin by reviewing the related work in subsection 5.2.2, we then introduce
the FDPA design in subsection 5.2.3 and discuss its implementation options with pro-
grammable data planes. In subsection 5.2.4 we present the experimental results from
the 10 Gbit/s testbed, before concluding with a discussion on open questions and future
work in subsection 5.2.5.

5.2.2 Related work

To reduce implementation and time complexity of FQ, some algorithms have been pro-
posed in the literature. Deficit Round Robin (DRR) [98] is probably the most known
and widely-deployed one. DRR was proposed to address the time complexity of FQ.
Indeed, DRR achieves O(1) execution time per packet. However, DRR still requires
per-user queues, greatly limiting the maximum number of distinct users that can be
served by the scheduler.

117

i
i

“output” — 2018/4/12 — 19:30 — page 118 — #137 i
i

i
i

i
i

Chapter 5. Applications

Rate
estimation

1

2

Q

…

a < w1
Queues

SP

Schedulerw1
 ≤ a < w2

wQ-1
 ≤ a

…

q
wq-1

 ≤ a < wqClassific.
[pkt] [pkt, n] [pkt][pkt, a]

n: User ID
a: Arrival rate
wq: Rate thresholds

Figure 5.7: FDPA forwarding pipeline.

To overcome DRR’s limitations, further approximations have been proposed. Stochas-
tic Fair Queuing (SFQ) [71] is a probabilistic variant of FQ. Here traffic streams are
hashed onto a smaller number of queues, and the hash function is periodically per-
turbed to minimize the time where two users collide onto the same queue. Here the
quality of the approximations depends on the number of queues, and the perturbation
interval. Finally, Approximate Fair Dropping (AFD) [84] employs a form of active
queue management (AQM) by dropping packets before being stored in a simple FIFO
queue. Dropping decisions are based on the recent history of packet arrivals, with a
higher probability of drop for users sending at higher rates. AFD has been used in
several switch and router platforms at Cisco Systems [85].

Our approach shares the same design principles of AFD: (i) avoid using per-user
queues in favor of the per-user soft state, and (ii) achieve bandwidth partitioning by op-
portunistically dropping or delaying packets rather than enforcing rate by using schedul-
ing. However, while the AFD design allows for an efficient implementation in a fixed-
function ASIC, its realization with programmable data plane primitives might not be
straightforward. Specifically, AFD requires the implementation of a shadow buffer in
which packets are removed at random. We are not aware of any data plane abstraction
providing native support for such data structure. Its behavior could be approximated
using other primitives, however, this would require a dedicated study. Instead, we pre-
fer to explore the feasibility of FDPA which, as will be discussed in subsection 5.2.3,
requires much simpler primitives exposed already by current data plane abstractions.

Finally, a more recent approach named PIFO has been proposed to address the need
of a programmable scheduler [100]. However, similarly to fixed-function schedulers,
in PIFO the number of distinct flows that can be served with a fair queuing discipline is
bounded by the number of queues. In their proposed design, such bound is 2048 in total
or 32 per port in a 64 port switch. While one could imagine dedicating all 2048 queues
to a port, the authors do not provide any evaluation of their scheduler with realistic
traffic traces.

5.2.3 FDPA Design

In this subsection we describe the design of a packet forwarding pipeline implementing
FDPA. To simplify the exposition and without loss of generality, we assume a switch
with rate controlled only on one egress port.

Figure 5.7 depicts the design of the pipeline. Packets are first classified per user
and then processed by a rate estimator which measures the arrival bitrate of the specific
user. Packets are then stored in one of the Q priority queues such that the higher is the
arrival rate, the lower will be the priority. A strict priority scheduler (SP) serves queues
in priority order: packets of priority q are dequeued only if all other queues with higher

118

i
i

“output” — 2018/4/12 — 19:30 — page 119 — #138 i
i

i
i

i
i

5.2. PFQ as measuring instrument

[bit/s]

…

0
Queue 1

Queue 2

Q

…

L1 [bytes]

B1

B2

BQ
Lowest
priority

Highest
priority

Fair
share

Arrival bitrate

w1

w2

wQ-1

Figure 5.8: Rate bands and queue size in FDPA

priority are empty, where q = 1 is the highest priority.
The measured arrival rate for a given user at a given point in time determines an

active band for that user. Packets arrived in band Bq will be assigned with priority
q (Figure 5.8). The first band B1 represents the minimum guaranteed portion of the
link capacity allocated to each user, for this reason, B1 should be dimensioned such
that N × B1 ≤ LinkCapacity. Moreover, to further penalize ill-behaving users, each
queue has a different size Lq, with smaller values for low priority queues.

Rationale

To discuss the rationale behind this design, we begin with the case of a scheduler with
only two queues (Q = 2), high priority and low priority; we then explain the need for
more queues.

Two priorities. When congestion occurs, users sending below their fair share are
prioritized against others sending at higher rates. Packets with low priority are delayed
and in the worst case of a full buffer, dropped upon arrival. Such an event signals
the TCP source to reduce the transmit rate. With FDPA, this reduction is expected to
continue until the transmit rate hits the first band, in which case the user is prioritized
again. Assuming that all sources are TCP-like and produce long-lived flows, under
severe congestion, we expect traffic sources to shape their transmit rate around their
fair share, i.e., the upper threshold of B1.

Unfortunately, swapping queues can frequently cause packet reordering at the re-
ceiver, confusing TCP congestion control and affecting throughput. The problematic
part is when users are prioritized again, i.e., their assigned queue is changed to the one
with high priority. Here the same burst of consecutive packets might be stored first
in the low priority queue and then in the high priority one, with the effect of having
subsequent packets being transmitted before those arrived earlier. We are interested in
measuring this effect when using FDPA.

In the case of non-elastic sources, e.g., constant bitrate, B1 represents the maximum
rate that a source can send with guarantees of bounded latency and minimum drop
probability. Indeed when a user hits the first band, packets are always served by the
same, maximum priority queue, hence preventing disruption from other TCP sources
aiming to transmit at higher rates.

119

i
i

“output” — 2018/4/12 — 19:30 — page 120 — #139 i
i

i
i

i
i

Chapter 5. Applications

B1Bi
tra
te

Time

TCP timeout due to
lower priority queue Drop due to

full queue

Δ rate

B2

B3
Fair
share

B4

Figure 5.9: Example of 2 TCP sources competing for the excess bandwidth when using more than 2
priorities.

However, if some sources are using less than their fair share or because not all
the link capacity has been reserved, i.e., N × B1 < LinkCapacity, using only two
priorities does not enforce equal distribution of the excess bandwidth. Indeed, if we
assume that capacity has been allocated for many users, but only a few of them are
active and sending TCP traffic, we can expect that those users will be competing in the
same low priority FIFO queue, without any guarantee of fairness.

More priorities. To enforce equal distribution of the excess bandwidth, we need
to introduce more priorities, such that the more a source increases its sending rate, the
lower will be the priority compared to other users. When all sources are TCP-like,
following the same rationale of the previous case, we expect the transmit rate of each
user to converge to a fair share that considers the excess bandwidth. Such fair share
will lay in a rate band other than B1

Figure 5.9 illustrates the expected behavior of 2 TCP-like sources competing for the
excess bandwidth. In this example, one source (1) is ill-behaving as it uses a more
aggressive rate control algorithm (similar to the case of a user opening multiple TCP
streams); the other source (2) is well behaving, as for each congestion signal it halves
its transmit rate. At steady state, both sources tend to share the same queue with prior-
ity 3, however, the different rate-control behavior that they implement causes them to
oscillate around different average values. Indeed, (1) always tends to increase its rate
until it falls in the 4th band, which causes its packets to timeout as the scheduler will
spend as much time as needed to serve packets of higher priority; (2) instead has higher
drop probability when it falls in band B3, as here the queue is monopolized by packets
of (1). However, by always assuring a higher priority for lower rates, the increase of
(2) is always guaranteed at least until the lower threshold of band B3. Intuitively, we
expect that the difference between the average transmit rate (∆rate) will be smaller
with narrower bands, hence producing a more fair allocation.

Unfortunately, as in the case with only two priorities, we expect that multiple nar-
rower bands will increase the risk of packet reordering, affecting the overall throughput.
We are interested in measuring such a trade-off between fairness and throughput.

120

i
i

“output” — 2018/4/12 — 19:30 — page 121 — #140 i
i

i
i

i
i

5.2. PFQ as measuring instrument

Iperf
client

Iptables
+ TC

Open
vSwitch

TCP traffic
generation

Rate estimation
+ band tagging
+ RTT emulation

Enqueuing
based on
band tags

Iperf
server

Fairness/
throughput
measures

TC

Priority
scheduling

Client Switch Server

PFQ
capture

TCP
endpoint

Figure 5.10: Software-based processing pipeline used in experiments.

Implementation with programmable data planes

Classifying packets per user is easy and can be done using a match-action table as
defined by OpenFlow [72] or P4 [24]. Using such tables, one can match on specific
header fields and write the corresponding user ID n on the packet’s metadata.

Estimating the bitrate of a flow might be tricky at line rate. In the simplest case, the
switch needs to maintain for each user a byte counter and a timestamp of the last time
the rate estimation was updated. Updates of the rate values are triggered by packets
arrival if the timestamp of the packet exceeds a predefined interval, i.e., the minimum
interval over which the average bitrate is evaluated. The rate is then computed dividing
the number of bytes by the interval between the packet’s timestamp and the stored
timestamp. While the division is an operation that might be hard to perform in a line
rate switch, in [97] it is shown how this operation can be approximated with reasonable
precision using look-up tables available in programmable data planes. A second match-
action table can then be used to direct packets to the different queues according to the
estimated rate band, written in the packet’s metadata.

Along with programmable data planes, FDPA can be implemented in switches sup-
porting OpenFlow v1.3+. Indeed, OpenFlow defines “meters” that can be configured
with different bands as defined by FDPA, such that packets hitting a given rate can be
marked using the DSCP field.

Finally, priority schedulers are a standard component available in today’s switching
hardware.

5.2.4 Experimental results

We now evaluate the feasibility and performance of FDPA using a software-based pro-
totype implementation. We are interested in measuring the effects of different band
assignment on both fairness and throughput. We also compare FDPA with other ap-
proaches such as DRR.

Testbed

We used three desktop machines with 8-core Intel Xeon E51660V3 CPUs (3.0GHz),
equipped with multiple Intel 82599 10GbE NICs. One machine acts as a switch with
four 10 Gbps ports, another one is used to generate traffic from two ports, while the last
is used to both produce and receive traffic from different ports. Each machine runs a
Debian 9.0 Stretch based on a Linux Kernel v4.9.16.

Figure 5.10 shows the processing pipeline used to emulate FDPA. We use iperf to
generate TCP traffic, Linux’s iptables to estimate the rate and tag packets accord-
ingly. In our design, rate estimation should happen in the switch, however, to simplify

121

i
i

“output” — 2018/4/12 — 19:30 — page 122 — #141 i
i

i
i

i
i

Chapter 5. Applications

the prototype implementation we decided to move it to the client machines. We use
Linux’s tc (Traffic Control) to emulate different RTTs at the clients and to perform
priority scheduling at the switch. Open vSwitch is used to steer packets to the different
queues based on the band tags. Finally, we use PFQ [21], a framework for accelerated
packet I/O, to measure the bitrate of each user. Both clients and server use TCP Cu-
bic, with the default parameters found in the Linux Kernel v4.9.16. We only adjust the
memory available to TCP buffers to allow for a large number of connections. We set
the MTU of all interfaces to 1500 bytes.

We configure sources to experience an emulated RTT of around 5 ms with maxi-
mum 0.25 ms of variable jitter with 25% correlation. TCP increases its sending rate at
RTT timescales, hence for FDPA to promptly respond to rate variations, the estimation
interval should be in the order of few RTTs. For this reason, we set the estimation
interval to 30 ms.

Metrics

We measure the quality of an experiment using two metrics: (i) the aggregate through-
put (TPut) normalized over the link capacity, i.e. bounded between 0 and 1, and (ii) the
Jain’s Fairness Index (JFI) [62]. The JFI is a popular fairness measure defined as:

JFI =
(
∑

n xn)2

N ·
∑

n x
2
n

where xn is the normalized rate of a user n and N is the total number of users. The nor-
malized rate is defined as xn = MeasuredRaten/FairRaten. In our experiments each
user is assigned with the same fair share, i.e. FairRaten = LinkCapacity/N ∀n =
1...N . The JFI is bounded between 0 and 1, where 1 is a fair distribution and 0 is a
discriminating one. In testing FDPA we aim at maximizing both TPut and JFI.

Results

Figure 5.11 shows the results obtained from the experiments. We generate long-lived
TCP traffic varying the number of users to 50, 100 and 200,3 and varying the number
of TCP connections per user based on four scenarios: (i) all users open only one TCP
connection,

i.e., they all well-behave, (ii) 25% of the users misbehave by opening ten parallel
TCP connections, while the remaining 75% only 1 (iii) 50% of them misbehave, and
(iv) the number of connections per user is uniformly distributed between 1 and 10.

We also vary the number and size of rate bands. We use the following notation to
describe an FDPA configuration: F (FirstBand + NumBands ∗ BandSize), where
FirstBand is the size of B1, NumBands is the number of bands following the first
one, each one of size BandSize, except for the last one that has infinite size, i.e. up
to the link capacity. FirstBand and BandSize are expressed as a proportion of the
fair share, e.g. F (1 + 4 ∗ 0.5) describes a configuration where the first band is ex-
actly the fair share, and the other 4 bands have size half of the latter. We perform
experiments with FirstBand ∈ {0.75, 0.85, 1, 1.15, 1.25}, NumBands ∈ {3, 4} and
BandSize ∈ {0.25, 0.33, 0.50, 0.67, 0.75}. For sizing the queues we empirically found

3We put a limit to 200 as we noticed that our experimental setup suffers from performance degradation when emulating more
users.

122

i
i

“output” — 2018/4/12 — 19:30 — page 123 — #142 i
i

i
i

i
i

5.2. PFQ as measuring instrument

1 TCP conn. per user 25% 10 conn. 50% 10 conn. Unif. range 1-10 conn.
50

us
er

s

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(1.25+4*0.25)

F(0.85+4*0.50)

F(1.00+4*0.75)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.75+4*0.25)

F(0.85+4*0.50)

F(1.15+4*0.75)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.75+4*0.25)

F(0.85+4*0.50)

F(1.15+4*0.75)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.85+4*0.25)

F(0.85+4*0.50)

F(1.00+4*0.75)

10
0

us
er

s

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.85+4*0.25)

F(0.75+4*0.25)

F(1.00+4*0.75)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.75+4*0.25)

F(1.00+4*0.25)

F(0.85+4*0.50)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.75+4*0.25)

F(0.85+4*0.50)

F(1.00+4*0.75)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.75+4*0.25)

F(0.85+4*0.50)

F(1.15+4*0.75)

20
0

us
er

s

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.75+4*0.25)

F(1.00+4*0.25)

F(1.15+4*0.75)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.85+3*0.33)

F(0.75+3*0.33)

F(1.15+4*0.50)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.75+3*0.33)

F(1.15+3*0.67)

F(1.15+4*0.25)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
JFI

0.75

0.80

0.85

0.90

0.95

1.00

T
P
u
t

DRR

FIFO

F(0.75+4*0.25)

F(0.85+4*0.50)

F(1.15+4*0.75)

Figure 5.11: Experimental results

that the following rule provides optimal performances: Lq = min(20, BDP/qq), where
BDP is the bandwidth delay product RTT × LinkCapacity. With RTT = 5 ms, the
sizing for 5 queues is L1 = 4166 MTU-size packets, L2 = 1041, L3 = 154, L4 = 20,
and L5 = 20.

At the server, we collect samples of the average bitrate over a 1-second interval, each
second at the same time for all sources, for 50 seconds. We start sampling 30 seconds
after startingiperf, allowing all TCP sessions to converge to their average bitrate.
For each second, we then compute both the JFI and TPut. In the plots, we show the
median of the JFI and TPut samples for each experiment, along with an 80% confidence
interval. For each traffic scenario, we plot only three configurations of FDPA, the one
with the best TPut, the one with the best JFI, and the one that maximizes the product
of both. We also provide a scatter plot of all JFI and TPut values obtained in all FDPA
configurations. This explicitly shows the trade-off between TPut and JFI.

Finally, we compare results with the following cases:
FIFO. All users are served using 1 FIFO queue of size L = BDP , e.g. 4166 MTU-size
packets with RTT = 5 ms. This is our worst case when fairness is not enforced.
DRR. The switch implements DRR scheduling with per-user queues. We use the
tc-drr implementation provided as part of the Linux’s tc suite. We use DRR as the
best case scenario; however this should be considered as an ideal case. Indeed, while it
is still feasible to provide a large number of per-user queues in software, the same does
not apply to hardware switches, where an a-priori instantiation of hardware resources
(memory and logic circuitry) is required for each queue. The reader should remem-
ber that the majority of today’s switching chips provide 10 or fewer output queues per
port [6].

As expected, FDPA holds the promise of enforcing fairness w.r.t. a single FIFO
queue in all scenarios, producing results comparable to the ideal case of a DRR sched-

123

i
i

“output” — 2018/4/12 — 19:30 — page 124 — #143 i
i

i
i

i
i

Chapter 5. Applications

uler with per-user queues. However, with FDPA fairness comes at the expense of
throughput. We observe how configurations of FDPA that use narrower bands pro-
vide more fairness, between 0.95 and 0.99 in most cases. Unfortunately, these settings
systematically incur in throughput degradation, down to 0.85 in some cases, while for
the same scenario DRR achieves almost perfect fairness with throughput comparable
to that of a FIFO queue, i.e., optimal around 0.98, or little less around 0.95. Vice versa,
larger bands improve throughput, at the expense of fairness.

5.2.5 Discussion

How to improve throughput? Preliminary analysis shows that throughput degradation
is mostly caused by packet reordering due to frequent changes in the queue assignment,
which confuses the TCP congestion control. A solution to this problem could be that
of using a flowlet-based approach [63], in which queue assignments are valid for the
whole burst of packets, where bursts are separated by an idle time usually comparable
to the RTT. This would decrease the probability of having back-to-back packets sent
out from two different queues, and hence packet reordering. Detecting flowlets is a
common function implemented by stateful data plane abstractions [31, 64, 97]. We
leave exploring such a more advanced design for future work.
Rate estimation. An alternative to average estimators is the token bucket-based estima-
tor. The advantage of using token buckets lays in their ability to immediately respond to
rate spikes and bursts of packets, while an average estimator might leave enough time
to an aggressive user to congest the highest priority queue. We know that the downside
of frequent band variations is a higher risk of packet reordering, and preliminary results
on our testbed using token buckets show that this is the case. However, we believe that
using token buckets along with per-flowlet queue assignment could help in improving
both fairness and throughput. We leave this for future work.
How to compute the fair share? We envision an external controller (or switch-internal
control plane) that periodically adjusts band sizes by counting the number of active
users. In the case of a service provider network, where the number of active users
varies slowly, we do not expect that the frequency of the estimation process might
be a limit for the scalability of the approach. Indeed, using many priorities helps in
also absorbing minor variations of the fair share. How to efficiently implement user
estimation is outside the scope of this study. However, we note that a controller could
use the same counters instantiated at the switch for the rate estimation process.

5.3 Probabilistic counting framework

Traffic measurements and monitoring are routinely performed by network operators to
assess the operational status of their infrastructure as well as to detect possible misbe-
havior and malicious activity. No matter of the ultimate goal, in the vast majority of the
cases such investigations ultimately involve the primitive of counting packets or flows
of packets having predefined characteristics. The application scopes can be manifold,
from troubleshooting and sanity check, up to traffic profiling for commercial use, or
anomaly detection for network security. In all cases, however, the process of retrieving
statistics from real measurements is dramatically complicated by the ever-increasing
link bandwidth that nowadays requires measurements to be taken on-the-fly on top of

124

i
i

“output” — 2018/4/12 — 19:30 — page 125 — #144 i
i

i
i

i
i

5.3. Probabilistic counting framework

at least 10GB+ network segments.
In such network scenario, even an intuitively easy operation such as counting may

become hard, as the time budget available to i) discriminate the data of interest first
and to ii) select and increment memory registers easily drops below a few nanoseconds.
Besides, high-speed links naturally induce likely large numbers of packets to be filtered
first and counted later. This operation requires larger data structures which, in turn,
must be placed in larger (but slower) DRAM memories. As a result, consolidated
techniques, like those based on traditional hash tables, become practically unfeasible in
many cases.

The whole frame gets further complicated whenever monitoring and measurements
are carried out in a distributed fashion, i.e., by placing probes at multiple vantage points.
In fact, this is now standard practice for network operators whose objective is to come
out with higher-level aggregate statistics from single measurement collections. Cu-
mulative statistics are typically performed by mediators in charge of analyzing and
profiling traffic and possibly generate alerts and execute mitigation actions in case of
detection of suspicious anomalies. At this stage, a big issue to be addressed is to pre-
vent mediators from accounting duplicated flows monitored at different probes. This
problem may be solved either by computational intense post-processing operations on
all single traffic dump or (and this is the solution proposed in this section) by adopt-
ing data structures that automatically discard by design duplicated data when they get
merged.

As a final remark, another big issue that network monitoring practice must meet
is the compliance with current legislation regarding privacy preservation. In particu-
lar, due to current legislation trends (the paper [15] effectively explains the constraints
imposed, for example, by EU legislation), much of the information retrieved from the
captured traffic is considered privacy-sensitive, and its disclosure and storage is sub-
ject to strict rules. Such constraints not only applies to verbose packet traces, but a
huge number of derived metadata (including per-flow counting reports) are considered
to contain privacy-sensitive information and therefore their export and storage (if not
wholly forbidden) is subject to stringent rules. As such, specific details on single flows
should be disclosed only if strictly necessary (necessity principle) and with a level of
granularity that must not be excessive concerning the purposes for which data are col-
lected and further processed (proportionality principle). This last requirement calls
for compact and reasonably “anonymous” data structures that keep aggregate statistics
while still being able to show more specific details on single flows upon request and
proper algorithmic reversal.

In this section we propose a general purpose and flexible counting framework that
addresses the previously discussed requirements, and that can be used in a broad plethora
of network applications. The adopted approach is that of “trading certainty for time/s-
pace” [110] by using probabilistic algorithms at the cost of a small and tolerable error
rate. In a nutshell, the proposed counting framework combines an efficient probabilis-
tic counter (the LogLog counter [43] already shown in chapter 1) to a compact and
privacy-preserving probabilistic data structures sketches, acting as containers, and that
can be “reversed” only upon specific conditions are met. Overall, the whole data struc-
ture inherits the low complexity and memory efficiency of probabilistic counters and
Bloom filter like structures, while proving insensitivity to data duplication and allow-

125

i
i

“output” — 2018/4/12 — 19:30 — page 126 — #145 i
i

i
i

i
i

Chapter 5. Applications

ing the identification of the source of investigated data. Beside the architectural view of
the counting framework, this section presents a practical and efficient implementation
of the proposed data structure, also made available to the community at the address
https://github.com/awgn/pds for free downloading.

This work unifies the previous research presented in [29] and [30] and extends their
finding by refining the overall architecture, by integrating a more efficient counter and
by proposing a real high-performing C++ implementation of the whole counting data-
structure.

5.3.1 Two motivating use-cases

This section presents two real-world use-cases in which network monitoring and secu-
rity applications, respectively, require the use of efficient data structures for high-speed
data processing. As it will be elaborated upon, the first use-case is induced by the
recently emerged Software Defined Networking (SDN) paradigm and the new way of
thinking of network applications themselves according to this philosophy. The second
use-case, instead, refers to a more traditional architecture of anomaly detection through
distributed measurement points over backbone networks. In both cases, it will be evi-
dent that performance is not the only addressed requirement as the management of data
collected from multiple vantage points and privacy preservation are not less important
issues to handle.

SDN and Internet eXchange Points monitoring

According to the Open Networking Foundation [4] a Software Defined Network is de-
fined as an architecture that decouples the network control and forwarding functions
enabling the network control to become directly programmable and the underlying in-
frastructure to be abstracted for applications and network services. Hence, the key point
in such networks is the clear distinction between the control plane and the data plane.
Indeed, while in a “classical" network, the two co-exist in a single apparatus (e.g., the
router), in an SDN the control and the data plane are managed by distinct devices.

From an architectural point of view (as shown in Fig. 5.12), SDN is composed of
three distinct layers. The lowest layer, namely the infrastructure layer, represents the
data plane of the network and it is composed of either real or virtual device, named
switches. Their function is to forward a packet by some rules.

The intermediate level is the control layer, sometimes referred to as Network Oper-
ating System or, just, controller. It is responsible – on one side – to manage the switches
and inject the rules, and – on the other – to provide the upper layer with an abstract view
of the underlying network.

Finally, the top layer, named application layer, is composed of business applications
able to perform a wide range of actions (e.g., path computation, firewall, monitoring).

The communication among the different layers is permitted by the southbound APIs,
between the infrastructure layer and the controller, and by the northbound APIs, be-
tween the controller and the applications. Regarding the southbound API, the most
used protocol is OpenFlow [5] [73], and a device managed through the OpenFlow pro-
tocol is named OpenFlow Switch (simply referred to as switch in the rest of the section).
This kind of switch consists of a flow table (or N flow tables) that specifies the actions

126

i
i

“output” — 2018/4/12 — 19:30 — page 127 — #146 i
i

i
i

i
i

5.3. Probabilistic counting framework

Business

Application
Business

Application

Business

Application

Control Plane

Data Plane Data Plane

Network Device

Network Device

Network Device

Northbound

Southbound

Data Plane

Figure 5.12: SDN Architecture

to be executed on each received packet and a secure channel to communicate with the
controller.

In more detail, a flow table consists of several entries, each composed of fields that
match some packet header fields, counters updated every time such fields are matched,
and actions to be applied to the matched packets. Such tables can be inserted/modi-
fied/deleted by the controller only, which is also able to require some data (e.g., counter
values) from the switch.

Finally, the northbound APIs are used from the application layer to ask the controller
data/information that can be used to perform several tasks (e.g., traffic monitoring,
anomaly detection).

From the functional point of view, upon receiving a packet from the network, a
switch works in the following way (see also Fig. 5.13): first, it parses the packet
headers to check for possible matches between these and the fields specified in any of
the rules stored in the different flow tables. If this is the case, the corresponding actions
(e.g., forward) are undertaken, otherwise the packet is encapsulated into a new packet
and sent to the controller through a secure channel. Hence, the controller will create a
rule for such a packet and will update the switch flow tables accordingly.

It is important to highlight that the number of “unknown" packets (i.e., packets for
which the switch has not a rule that specifies an action) should be low during “normal"
network behavior, for not overwhelming the controller. In any case, such packets can
be considered as representative indications of some anomalous network behavior.

On the Internet, the different “independent" networks are connected through what

127

i
i

“output” — 2018/4/12 — 19:30 — page 128 — #147 i
i

i
i

i
i

Chapter 5. Applications

Packet in from

Network

Parse Header

Fields

Match

Table 0?
Apply

Action

Match

Table 1?

Match

Table N?

yes

yes

yes

no

no

Figure 5.13: Packet Processing in the switch

is known as peer relationships. Hence, packets are forwarded towards the destination,
passing from one network to another, because such networks have a peering relationship
with each other. The point where the different networks interconnect and such peering
relationships are established is named Internet Exchanges Point (IXP).

In a nutshell, at its most basic level, an IXP is a switch into which multiple networks
connect and can then pass bandwidth. More realistically, an IXP is a Layer 2 network.

Given such a definition, it is clear that IXPs represent a “natural" deployment field
for SDN technologies, (as an example, see SDX [54] and CARDIGAN Project [104]).

Such a scenario represents a good use case for our proposed architecture. Indeed, it
is well known that the security problems in an IXP [61] are usually due to:

• Unhygienic routers

• BGP manipulation

• Network capacity theft

While the first two issues can be solved (or, at least, significantly alleviated) using a
meticulous configuration of the IXP apparatus, the network capacity theft is mainly due
to processing and forwarding of traffic flows that are not supposed to get through the
IXP. Hence, it is clear that counting and identifying such “unknown" flows is of primary
interest in such a context. In the following, we will show that thr proposed architecture
proves to be well tailored to this case by providing the details of the algorithms as well
as the results obtained from the experimental analysis.

Anomaly detection in Backbone Networks

In the last few years, Internet has experienced explosive growth. Along with the wide
proliferation of new services, the quantity and impact of attacks have been continuously
increasing. The number of computer systems and their vulnerabilities has been rising,
while the level of sophistication and knowledge required to carry out an attack have

128

i
i

“output” — 2018/4/12 — 19:30 — page 129 — #148 i
i

i
i

i
i

5.3. Probabilistic counting framework

been decreasing, as much technical attack know-how is readily available on Web sites
all over the world.

As a consequence, many research groups have focused their attention on develop-
ing novel detection techniques, able to promptly reveal and identify network attacks,
mainly detecting Heavy Changes (HCs) in the traffic volume [14], [27], [67], [114],
and [109]. Nevertheless, the recent spread of coordinated attacks, such as large-scale
stealthy scans, worm outbreaks, and distributed denial-of-service (DDoS) attacks that
occur in multiple networks simultaneously, makes challenging the detection by using
isolated intrusion detection systems that only monitor a limited portion of the Inter-
net. Hence, the research efforts are now moving to develop distributed approaches to
solving such an issue [115].

In distributed anomaly detection algorithms, multiple detection probes – distributed
in the backbone network – monitor a given portion of the network separately and report
the collected information to a single location (named mediator) that analyzes the data
and generates the alerts. By limiting the scope to the simplest case of anomaly detec-
tion algorithms that analyze traffic volumes only, the data collected by the probes are
represented by the estimation of the number of traffic flows observed in a given time
window. Hence, the first problem to be solved is to provide a reliable estimate of such
quantities. This task, that is not trivial when performed over the multi-gigabits links
of a backbone network, has been discussed in several previous works, and the use of
probabilistic data structure has emerged as a standard approach [49].

This task is performed by the distributed probes, that then forward the estimated data
to the mediator that is responsible for aggregating them. It is worth noticing here that,
when aggregating these structures at the mediator level, the problem of not counting
duplicated flows – i.e., the flows observed by more than a single probe – must be solved.

In general, the counters values associated with specific flows represent sensitive
users information and must not be openly disclosed. The use of probabilistic data
structures like sketches [49] provides an ideal container to keep all such data in an
aggregated way. However, whenever traffic anomalies are detected, a method of iden-
tifying the flows (in particular, IP addresses) responsible for the supposed misbehavior
is needed. As it will be shown, the counting framework hereafter presented solves
this issues by allowing a controlled reversal of suspicious data only, with no impact on
regular (“normal”) traffic.

5.3.2 The probabilistic counting framework

As above discussed, the counting framework proposed is “doubly probabilistic” in that
it comes from the combination of a probabilistic data structure and a probabilistic
counter. At the high level, the data structure is a three-dimensional array SD×W×L,
where each row d (d = 1, . . . , D) is associated with a function δd that takes values in
the interval (1, . . . ,W) that are associated with the columns of the array.

Note that the two-dimensional substructure SD×W is a standard reversible sketch
table. The third dimension L is introduced to integrate the LogLog counting algorithm
in such a sketch table. To this aim, each bucket of the sketch is associated with another
hash function Hdw that gives output in the interval (1, . . . , L), associated with the layer
(depth) of the array. In the construction phase, we have chosen to use hash functions

129

i
i

“output” — 2018/4/12 — 19:30 — page 130 — #149 i
i

i
i

i
i

Chapter 5. Applications

Figure 5.14: SDN-IXP Counter of Different Flows

that belong to the 4-universal hash family4 [108], obtained as:

h(x) =
3∑
i=0

ai · xi mod p mod W (5.1)

where the coefficients ai are arbitrarily chosen in the set {0, 1, . . . , p − 1} and p is
a random prime number (we used the Mersenne ones). Updating the data structure
require first to choose the key of interest and apply mangling and hashing functions to
real data (to be counted) to select a bucket S[d][w][·] and the associated hash function
Hdw. For all the keys that collide in a given bucket, the system computes the flow ID,
typically given by a function of the header fields IP source and destination addresses,
source and destination ports, and protocol. Then, it computes the hash function Hdw of
the flow ID and updates the LogLog counter accordingly.

Depending on the specific applications – this is the case of both the network appli-
cations addressed in this section – there might need to combine several data structures
as a result of multiple instances of traffic measurements. More formally, each counter
of the sketch represents the cardinality of the support of a multiset. When measure-
ments are obtained at different points, and the results combined, each bucket ends up

4A class of hash functionsH : (1, . . . , N)→ (1, . . . ,W) is a k-universal hash if for any distinct x0, · · ·xk−1 ∈ (1, . . . , N)
and any possible v0, · · · vk−1 ∈ (1, . . . ,W):

Prh∈H{h(xi) = vi; ∀i ∈ (1, . . . , k)} = 1
Wk

130

i
i

“output” — 2018/4/12 — 19:30 — page 131 — #150 i
i

i
i

i
i

5.3. Probabilistic counting framework

representing the sum of multisets (namely, a multiset that accommodates the items of
each multiset together with the sum of their multiplicity) whose support is the union
of the supports of all multisets. It is easy to convince ourselves that merging the data
structures by means of the max-merge algorithm:

M [d][w][l] = max
p
Sp[d][w][l] (5.2)

gives an estimation for the cardinality of the support set, that is the number of distinct
elements of the aggregate multiset. Obviously, to allow this operation, all the different
sketches of counters must have been constructed using the same hash functions.

Depending on the applications, a parallel data structure representing a reversible
sketch (RS) [95] may be constructed at each measurements point for identification pur-
poses. Once again, RS must share common hash functions to apply the reverse algo-
rithm.

Counting Unknown Flows in SDN-Based IXPs

The first application of the general purpose probabilistic counters described in the pre-
vious section refers to the SDN-IXP use-case. More precisely, the problem is to re-
alize a monitoring application that estimates the number of different flows in an SDN
network. Our application is developed as a business application on top of the SDN
controller. The overall scheme of the network application is shown in Figure 5.14.

After receiving a packet for which there is no corresponding flow table entry, the
switch sends such a packet to the controller, through the OpenFlow protocol.

Hence, the controller first processes the packet and sets a new entry in the switch
flow table by using OpenFlow, then passes the packet to the counter application that
inserts the related flow key in a footprint Bloom filter and then updates the LogLog
Counting Reversible Sketch table (LLRCS) – the reason why the controller must keep
a distinct table for each switch will be clear in the following.

Once all the LLRCSs corresponding to the different switches have been constructed,
they are merged through (5.2).

At this point, by applying the equation (1.11) to each bucket M [d][w][·], the con-
troller has an estimate of the “unknown” flows that collide in the same bucket. If needed
(e.g., in case they exceed some given threshold), it can identify the flows by applying
the reversible sketch algorithm and checking its output over the footprint Bloom filter.

Notice that such an apparently complex architecture solves the problem of count-
ing the “unknown” flows in an SDN network, and is needed for several reasons, as
discussed in the following points.

• The potentially high number of unknown flows in a network makes the use of
deterministic data structure unfeasible; hence the sketch family data structure rep-
resents an optimal choice for such a kind of a problem.

• The use of a standard sketch for counting the flows (e.g., a count-min sketch [36])
is not satisfactory in our scenario, since they do not offer a means to automatically
discard duplicates (i.e., the same flow traversing more switches).

• The use of a reversible sketch is justified by the fact that, once the unknown flows
are identified, the OpenFlow protocol allows to modify the behavior of the switch
traversed by such flows.

131

i
i

“output” — 2018/4/12 — 19:30 — page 132 — #151 i
i

i
i

i
i

Chapter 5. Applications

• The choice of computing a distinct LLCRS for each switch is needed to isolate the
network segment in which such flows are observed. Note that, in case this is not
strictly necessary, the controller can simply compute a single LLCRS, skipping
the max-merge phase.

It is important to highlight that in several domains (and quite likely in the IXP/SDN
scenarios), to solve the scalability issues typical of SDN networks, more than a single
controller is used – hierarchical architecture. Our solution can easily be adapted to such
a scenario, by observing that the LLCRS computed by a controller can be sent to higher
hierarchical levels for further aggregations.

Probabilistic Counting for Anomaly Detection in Backbone Networks

This section presents the application of the probabilistic counting framework to the
anomaly detection use-case by showing the scheme of a distributed and collaborative
Intrusion Detection system. The overall architecture of the application is shown in
Figure 5.15

Figure 5.15: Anomaly Detection Application

Multiple detection probes – built on-top-of PFQ framework – are distributed in the
network to monitor separate segments and report the collected information to a single
location (mediator) in charge of processing data and raise alerts for suspicious traffic
activity. A backtrack mechanism is then used by the mediator to ask the probes for flow
identification.

Starting from the observed traffic, each probe produces a periodic report that con-
tains information related to the traffic measured in a given time bin, which consists

132

i
i

“output” — 2018/4/12 — 19:30 — page 133 — #152 i
i

i
i

i
i

5.3. Probabilistic counting framework

of a collection of flow keys: 〈IP source address, IP destination address, source Port,
destination Port, Protocol〉.

The periodic reports are passed to the module responsible for the construction and
the update of the LogLog Counting Reversible Sketch, as well as the footprint Bloom
filter. At this stage, each probe has a summary of all the different observed flows,
together with an estimate of their number.

The mediator, responsible for the detection phase, combines the information ex-
ported by each probe through the equation (5.2).

Since the max-merge operation implicitly solves the problem of not counting dupli-
cated flows, the resulting aggregated sketch is precisely equivalent to the one that would
be constructed in an “ideal” case, with the mediator directly observing the whole traffic.
This properity also implies that the estimation error, due to the probabilistic nature of
the data structure, is not worsened by the distributed nature of the application, being
equivalent to that of a single probabilistic counter.

At this point, the mediator counts the number of distinct flows that collide in the
same bucket. This task can be solved by applying equation (1.11) to each bucket
M [d][w][·].

By using a classical detection method (e.g., PCA, wavelet analysis, heavy hitter) the
system can decide whether there are or are not anomalous aggregates in a given time
bin. The output of this phase is a binary matrix (A[d][w]) that contains a “1” if the
corresponding bucket is considered anomalous “0”, otherwise.

Note that, given the nature of the sketches, each traffic flow is part of several random
aggregates (namely D aggregates), corresponding to the D different hash functions.
This means that, in practice, any flow will be checked D times to verify if it presents
an anomaly (this is done because an anomalous flow could be masked in a given traffic
aggregate, while being detectable in another one).

Due to this fact, a voting algorithm is applied to the matrixA. The algorithm verifies
if at least H rows of A contain at least a bucket set to “1” (H is a tunable parameter).
If so the mediator reveals an anomaly, otherwise, the matrix A is discarded.

In case the mediator reveals some anomalous time bin during the detection phase, it
back-propagates the matrix A[d][w] to the probes.

At this point, each probe uses the RS computed for the anomalous time bin and the
footprint Bloom filter to identify the IP addresses responsible for the detected anoma-
lies.

5.3.3 C++ implementation

The probabilistic framework has been implemented in C++ within the pds (Proba-
bilistic Data Structures) library and is freely available for download at [7]. The library
includes the implementation of some randomized data structures, such as Bloom filters,
Counting Bloom filters, Sketches, LogLog counters (and their variants), as well as a set
of utility functions, algorithms, and tests.

The library is designed according to the following principles:

• Generic Programming and Composability. Overall, the library pervasively uses
templates to ease code reusability. All data structures are indeed abstract and
implemented as containers of generic data type that can be specialized upon need.

133

i
i

“output” — 2018/4/12 — 19:30 — page 134 — #153 i
i

i
i

i
i

Chapter 5. Applications

As an example, the sketch buckets may contain any data (e.g., integer, arrays,
LogLog counters, etc.) equipped with proper operations.

• Robustness. The inherent complexity of managing advanced data structures may
easily lead to configuration errors (e.g., types of data, hash functions codomain
bitwise length, etc.). The use of template meta-programming techniques allows
to spot such errors at compile-time and enforce correctness and consistency of the
declared parameters using static asserts.

• Declarative syntax. The properties of all data structures are embedded within their
declaration, as it improves the usability of the library. As an example, a sketch
declaration consists of the size of the sketch itself, the type of data accommodated
in the buckets, the hash functions used in each row together with the codomain
bitwise dimensions.

The following subsections present more details about the implementation of re-
versible sketches and LogLog counters as they are used this work.

LogLog counters

The use of a LogLog counter ll is simply instantiated as follows:

u s i n g LogLog_type =
pds : : LogLog< u i n t 8 _ t

, 1024
, s t d : : hash < s t d : : s t r i n g > >;

LogLog_type l l ;

The statement declares a LogLog counter suitable for estimating the cardinality of
a multiset of strings. The number of “small bytes” is set to 1024 while their type is an
unsigned byte (although 5 bits are sufficient). In the example, the strings are hashed
through the standard hash function for strings, though any other function type can be
used as parameter of the template declaration.

Hyper LogLog counters are also implemented in the library and their use only re-
quires replacing the name HyperLogLog_type to LogLog_type in the above dec-
laration.

Sketches

An example of sketch declaration for string counting is the following:

u s i n g s k e t c h _ t y p e =
pds : : s k e t c h < u i n t 3 2 _ t

, 1024
, BIT_10 (myhash1 < s t r i n g >)
, BIT_10 (myhash2 < s t r i n g >) >;

s k e t c h _ t y p e s ;

The using statement declares a sketch of 1024 columns and two rows, each with a
different user-defined hash function. The BIT_10 macros are herein used to annotate
that the co-domain bit-size of such hash functions is set to 10. At compile-time, suitable
meta-functions evaluate the hash sizes and verify the consistency with the sketch size.

The class provides a broad number of iterators that allows visiting the buckets (one
per line) given a specific element to be inserted in the sketch. For instance, the method

134

i
i

“output” — 2018/4/12 — 19:30 — page 135 — #154 i
i

i
i

i
i

5.3. Probabilistic counting framework

s . f o r e a c h _ b u c k e t (" f o r t y t w o " , [] (i n t &b k t) {
b k t ++;

}) ;

iterates over the all the buckets associated with the string fortytwo and updates
the content using the given lambda function. For standard operations like increment or
decrement, methods like increment_buckets and decrement_buckets are also provided.

Besides, the sketch class provides the count-min estimation, the k-ary estimation,
and a set of more general functions for the sketch management, including filtering
buckets, searching elements and sketches aggregation.

Reversible Sketches

The reverse sketch algorithm [95] requires the bitwise partitioning of the keys (ele-
ments) used to update the sketch and that each part of the keys (word) is hashed sep-
arately. In the library abstraction, elements are represented as tuples of generic types
in which each component of the tuple represents a portion of the original key. The
modular hash is then applied to the tuple as a whole by concatenating the hash values
of each component of the tuple. This representation is particularly convenient in net-
working use cases as standard keys come from the concatenation of different packet
header fields, such as IP addresses, TCP ports, protocol field, and so on. Notice that,
even single field keys (e.g., IP addresses), can be conveniently split into several parts to
improve the efficiency of the algorithm.

As an example, the C++ key for a TCP flow can be represented as:
a u t o key = s t d : : make_ tup le (i p _ s r c . h igh

, i p _ s r c . low
, i p _ d s t . h igh
, i p _ d s t . low
, s r c _ p o r t
, d s t _ p o r t
, p r o t o) ;

where source and destination IP addresses are split into two 16-bits long fields.
The library provides the implementation of a modular hash for genericN component

tuples that is obtained by composing N different hash subfunctions. Each subfunction
is applied to a single component of the tuple; the final result is obtained by concate-
nating the output of all subfunctions. Notice that both the bitwise length of the tuple
components, as well as the bitwise length of the output of the hash subfunction is fully
configurable at compile-time.

For example, the following declaration defines a modular hash function for the
above-presented TCP flow tuple.

u s i n g h a s h _ t y p e = pds : : ModularHash < BIT_4 (H1)
, BIT_4 (H1)
, BIT_4 (H1)
, BIT_4 (H1)
, BIT_3 (H2)
, BIT_3 (H2)
, BIT_3 (H3) >

It is worth noticing that three different functions H1, H2, and H3 are used (but a single
function could have been used as well). The output of H1 is constrained to be 4 bits

135

i
i

“output” — 2018/4/12 — 19:30 — page 136 — #155 i
i

i
i

i
i

Chapter 5. Applications

long, while H2 and H3 produce 3 bits long results each. Overall, the complete hash
functions yields a 25 bits long output and is obviously represented as a 64 bit integer.

Therefore, a reversible sketch s that uses the canonical IP flow can be defined as fol-
lows (for the sake of simplicity, the same hash function is applied to all the components
of the tuple):

pds : : s k e t c h < u i n t 1 6 _ t
, (1 << 21)
, pds : : ModularHash < BIT_4 (H1)

, BIT_4 (H1)
, BIT_4 (H1)
, BIT_4 (H1)
, BIT_3 (H1)
, BIT_3 (H1)
, BIT_3 (H1) >

, pds : : ModularHash < BIT_4 (H2)
, BIT_4 (H2)
, BIT_4 (H2)
, BIT_4 (H2)
, BIT_3 (H2)
, BIT_3 (H2)
, BIT_3 (H2) >

, pds : : ModularHash < BIT_4 (H3)
, BIT_4 (H3)
, BIT_4 (H3)
, BIT_4 (H3)
, BIT_3 (H3)
, BIT_3 (H3)
, BIT_3 (H3) >

, pds : : ModularHash < BIT_4 (H4)
, BIT_4 (H4)
, BIT_4 (H4)
, BIT_4 (H4)
, BIT_3 (H4)
, BIT_3 (H4)
, BIT_3 (H4) >

, pds : : ModularHash < BIT_4 (H5)
, BIT_4 (H5)
, BIT_4 (H5)
, BIT_4 (H5)
, BIT_3 (H5)
, BIT_3 (H5)
, BIT_3 (H5) >

, pds : : ModularHash < BIT_4 (H6)
, BIT_4 (H6)
, BIT_4 (H6)
, BIT_4 (H6)
, BIT_3 (H6)
, BIT_3 (H6)
, BIT_3 (H6) >

> s ;

Sketch updates are made through the increment_buckets method. The fol-
lowing code emulates the TCP flow

< 0xbad, 0xbee, 0xdead, 0xbeef, 6010, 4216, 6 >

and the UDP flow

< 0xdead, 0xbeef, 0xcafe, 0xbabe, 80, 6667, 17 >

both hitting the sketch 1000 times and triggering the increment of the associated buck-
ets, accordingly.

136

i
i

“output” — 2018/4/12 — 19:30 — page 137 — #156 i
i

i
i

i
i

5.3. Probabilistic counting framework

f o r (a u t o n = 0 ; n < 1000 ; n ++)
{

s . i n c r e m e n t _ b u c k e t s (s t d : : make_ tup le (
0 xbad , 0 xbee , 0 xdead , 0 xbeef , 6010 , 4216 , 6)

) ;
s . i n c r e m e n t _ b u c k e t s (s t d : : make_ tup le (
0 xdead , 0 xbeef , 0 xca fe , 0 xbabe , 80 , 6667 , 17)

) ;
}

The method index_buckets is used to compute a predicate (in the example the
passed lambda function) over the whole sketch. In the following example, the method
is used to retrieve the buckets whose content exceeds 500. The result is a matrix (vector
of vectors) that contains the indexes of the buckets that satisfy the predicate.

a u t o i d x = s . i n d e x _ b u c k e t s ([] (a u t o &b)
{

r e t u r n b > 500 ;
}) ;

The final step is to feed the method reverse_sketch with the above-obtained
bucket indexes to obtain the list of the tuples (i.e., keys) that hit the sketch in the selected
buckets. The following code is used to reverse the sketch.

a u t o r e v = pds : : r e v e r s e _ s k e t c h < u i n t 1 6 _ t
, u i n t 1 6 _ t
, u i n t 1 6 _ t
, u i n t 1 6 _ t
, u i n t 1 6 _ t
, u i n t 1 6 _ t
, u i n t 8 _ t >(s , i d x) ;

LogLog Counting Reversible Sketches

The LogLog counting reversible sketch is obtained by wrapping up the previously de-
scribed components and defining each bucket of the sketch to be a LogLog counter.

The following example refers to the simple case of a port scan detector. In this sce-
nario, the attacker is an Internet host that sends SYN packets with different destination
port numbers to check for existing TCP services.

The sketch is then populated by hashing on the pair source and destination IP ad-
dresses that, in the example, are both conveniently split into two parts. The LogLog
counter, instead, is updated by using the pair source/destination ports and will only get
incremented upon ports variation.

u s i n g LogLog_t =
pds : : hyperLogLog < u i n t 8 _ t

, 64
, s t d : : hash < s t d : : t u p l e < u i n t 1 6 _ t , u i n t 1 6 _ t >>
>;

pds : : s k e t c h < LogLog_t
, (1 << 16)
, pds : : ModularHash < BIT_4 (H1)

, BIT_4 (H1)
, BIT_4 (H1)
, BIT_4 (H1) >

, pds : : ModularHash < BIT_4 (H2)
, BIT_4 (H2)
, BIT_4 (H2)

137

i
i

“output” — 2018/4/12 — 19:30 — page 138 — #157 i
i

i
i

i
i

Chapter 5. Applications

, BIT_4 (H2) >
, pds : : ModularHash < BIT_4 (H3)

, BIT_4 (H3)
, BIT_4 (H3)
, BIT_4 (H3) >

, pds : : ModularHash < BIT_4 (H4)
, BIT_4 (H4)
, BIT_4 (H4)
, BIT_4 (H4) >

, pds : : ModularHash < BIT_4 (H5)
, BIT_4 (H5)
, BIT_4 (H5)
, BIT_4 (H5) >

> s ;

The method cardinality is used to retrieve the index of the LogLog counters
with values bigger than 10000.

a u t o i d x = s . i n d e x _ b u c k e t s ([] (a u t o &b)
{

r e t u r n b . c a r d i n a l i t y () > 10000 ;
}) ;

Likewise, the list of candidates is obtained by reverting the sketch through the fol-
lowing code:

a u t o r e v = pds : : r e v e r s e _ s k e t c h < u i n t 1 6 _ t
, u i n t 1 6 _ t
, u i n t 1 6 _ t
, u i n t 1 6 _ t
> (s , i d x) ;

5.3.4 Experimental results

The doubly probabilistic nature of the overall counting framework introduces two pos-
sible levels of errors whose effects are not always easily predictable in practice. The
first obvious source of uncertainty is given by the statistic nature of the counter for
which, however, theoretical bounds are available. The second, and the more subtle,
source of errors is instead given by the collision that may occur when populating the
sketch. Indeed, if erroneously detected keys can be readily discarded by a simple foot-
print Bloom filter, the effect of collisions in a counter of the sketch cannot be depurated
and requires the sketch size to be thoroughly configured according to the application
requirements to avoid measurement corruption.

In this section we present the performance assessment of the proposed system in the
pretty general case of the heavy hitter detector application. The application itself can
run on a single vantage point or in a distributed fashion and is a particular case of the
anomaly detection algorithm presented in section 5.3.2. Upon receiving a packet, the
probes involved in the measurement extract the source IP address and use it as the key
to increment the corresponding buckets of its LLRCS sketch. Each probe periodically
sends the LLRCS up to the mediator that merges the received LLRCSs and check if the
traffic volume recorded in some buckets exceeds a given threshold (typically expressed
as a percentage of the total recorded traffic load). In the affirmative case, the mediator
sends the address of the “anomalous” bucket back to the probes which, in turn, run the
reverse algorithm and refine the results by the footprint Bloom filter to come up with a
list of responsible heavy hitters (IP candidates).

138

i
i

“output” — 2018/4/12 — 19:30 — page 139 — #158 i
i

i
i

i
i

5.3. Probabilistic counting framework

Although quite simple, such a use case involves a complete set of critical parameters
that need to be investigated to assess the performance of the whole system. More in
details, the following performance indexes will be investigated:

• Sketch size

• False alarm rate

All of the two parameters are strictly correlated and point directly to the primary
motivation of this work. Indeed, we advocated the use of our system because of the
compactness of the data structures that, in turn, facilitates their transfer and storage in
small memory devices. However, the size of the data structure is determined by two
factors: i) the size of the sketch (namely, the number of row, 4 in our tests, and columns,
determined by the length of the hash functions) and ii) the depth of the counter (i.e., the
size and the number of the small bytes). Obviously, the smaller the data structure, the
higher the false positive rate (due to the more substantial number of collisions) and the
lower the estimation accuracy (due to the smaller size of the counters).

In all experiments, the application run in stand-alone mode as the distributed behav-
ior would not add any valuable insights to the performance analysis. Hence, a single
probe was fed with the real trace from the MAWI repository [53], containing 928223
distinct flows and 260851 distinct IP source addresses, corresponding to time 14:00 of
September 28, 2016. Also, a trace containing a synthetic heavy hitter was mixed in
case the original trace would not include any high hitting flow to detect.

Starting with the analysis of the sketch size, in Table 5.1 we present the compression
factor achieved by the sketch in comparison with a C++ unordered map (containing the
deterministic and exact counters). We can easily see that the compression rate decrease
when increasing the hash output length (number of columns) or the LogLog bucket size.
Such results are not significant by themselves, since as already stated in the previous
sections the bigger the sketch, the better the performance of the counters, and must be
commented together with the following ones.

Hence, moving to the False Alarm rate, it is worth highlighting that it depends on
three distinct components:

• post-filtering phase performed by means of the footprint Bloom filter (as explained
in Section 1.6.2)

• number of collisions

• Count estimation error

Regarding the first one, Tables 5.2 and 5.3 respectively show the performance achieved
with and without the use of the footprint Bloom filter. In our experiments the BF length
m has been set according to the optimal size ofm = n∗k/ log(2), where k is the number
of hash functions (4 in our case), and n is the expected number of flows, rounded up to
the smallest power of 2 (512kByte in our tests).

It is easy to understand that the post-filtering phase only affects the performance
in case of "short" hash functions and is negligible in all the other cases. Indeed, the
performance is significantly improved for all of the cases corresponding to 8 and 10. It
is worth noticing that in the cases 8, the use of the BFs is of primary importance. Indeed,
without such a filter, not only would the system reveal almost all of the observed flows

139

i
i

“output” — 2018/4/12 — 19:30 — page 140 — #159 i
i

i
i

i
i

Chapter 5. Applications

Table 5.1: Compression Factor

LogLog Bucket Size
Hash Length 32 64 128 256

8 603.0976 301.5488 150.7744 75.3872
10 150.7744 75.3872 37.6936 18.8468
12 37.6936 18.8468 9.4234 4.7117
14 9.4234 4.7117 2.35585 1.177925
16 2.35585 1.177925 0.5889625 0.29448125

Table 5.2: False Alarm Rate (%)

LogLog Bucket Size
Hash Length 32 64 128 256

8 65.38 66.38 66.3777 67.09
10 0.03 0.023 0.017 0.013
12 0.0023 0.0027 0.0034 0.0031
14 0.0019 0.00157 0.0031 0.0027
16 0.0016 0.00157 0.0019 0.0027

as potential candidates, but it would also indicate a large number of unobserved flows
as potential candidates (this is due to the nature of the RS algorithm).

Moving to the impact of the collisions and the estimation error on the false alarm
rate, it is essential to specify that it is not possible to precisely analyze their impact,
separately. Nonetheless, it is very intuitive that collisions depend on the hash length,
while the estimation error depends on the bucket size, as clearly demonstrated by the
results shown in Table 5.2. To better evaluate the Count estimation error, in Tables 5.4,
5.5, and 5.6 we show the percentage of flows that are in within±σ,±2σ and±3σ of the
exact count. As expected we can see that in all of the cases the constraints (described
in Section 1.6.1 of the chapter 1) are met. Such results are also visually depicted in
Figure 5.16 5.17 and 5.18, where we show three reasonable cases (as it will be later
discussed).

Summing up, by inspecting the different performance figures, it is possible to select
a set of cases that offer the best trade-off between memory footprint and detection
probability. In general, all of the cases corresponding to hash length of 10 and 12 bits
provide acceptable performance and the choice among them can be driven by memory
availability. Indeed, taking as an example the case with the hash length of 10 bits

140

i
i

“output” — 2018/4/12 — 19:30 — page 141 — #160 i
i

i
i

i
i

5.3. Probabilistic counting framework

0 2 4 6 8 10 12

Counter Value
×10

4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
e
la

ti
v
e
 S

ta
n
d
a
rd

 E
rr

o
r

Experimental Standard error
±σ

±2σ
±3σ

Figure 5.16: Count error estimation: Hash Length = 10 – Bucket Size = 128

0 2 4 6 8 10 12

Counter Value
×10

4

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

R
e
la

ti
v
e
 S

ta
n
d
a
rd

 E
rr

o
r

Experimental Standard error
±σ

±2σ
±3σ

Figure 5.17: Count error estimation: Hash Length = 10 – Bucket Size = 256

141

i
i

“output” — 2018/4/12 — 19:30 — page 142 — #161 i
i

i
i

i
i

Chapter 5. Applications

Table 5.3: False Alarm Rate (%) – without footprint BF

LogLog Bucket Size
Hash Length 32 64 128 256

8 99.99994 99.99994 99.99994 99.99994
10 0.16369 0.12267 0.07629 0.06670
12 0.00230 0.00268 0.00345 0.00306
14 0.00191 0.00153 0.00306 0.00268
16 0.00153 0.00153 0.00191 0.00268

Table 5.4: Count Estimation within ±σ

LogLog Bucket Size
Hash Length 32 64 128 256

8 0.721875 0.726562 0.735156 0.746094
10 0.726758 0.749805 0.777734 0.805469
12 0.811667 0.827997 0.847474 0.857016
14 0.889683 0.906507 0.924965 0.934547
16 0.92347 0.937113 0.949509 0.949509

and bucket size of 128 bits, the system presents a false alarm rate of 0.017% with a
compression factor of around 37.7, which make the data structure rather thin while still
providing excellent detection performance.

142

i
i

“output” — 2018/4/12 — 19:30 — page 143 — #162 i
i

i
i

i
i

5.3. Probabilistic counting framework

Table 5.5: Count Estimation within ±2σ

LogLog Bucket Size
Hash Length 32 64 128 256

8 0.957812 0.9625 0.964063 0.975
10 0.964063 0.97207 0.981055 0.988477
12 0.981555 0.984064 0.981063 0.977915
14 0.986909 0.986333 0.983464 0.983577
16 0.989282 0.988879 0.987806 0.988549

Table 5.6: Count Estimation within ±3σ

LogLog Bucket Size
Hash Length 32 64 128 256

8 0.989062 0.99375 0.996875 0.999219
10 0.993359 0.996289 0.998633 0.999805
12 0.998033 0.998574 0.998229 0.995672
14 0.999327 0.99686 0.995834 0.993767
16 0.999377 0.996993 0.996048 0.995141

0 2 4 6 8 10 12

Counter Value
×10

4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

R
e
la

ti
v
e
 S

ta
n
d
a
rd

 E
rr

o
r

Experimental Standard error
±σ

±2σ
±3σ

Figure 5.18: Count error estimation: Hash Length = 12 – Bucket Size = 128

143

i
i

“output” — 2018/4/12 — 19:30 — page 144 — #163 i
i

i
i

i
i

CHAPTER6
Conclusions

The continuous growth of internet traffic, coupled with the ever-increasing number of
applications and the speeds of links, calls for the need of purely software solutions that
must be flexible, re-configurable and high-performing by design. As a consequence,
applications in charge of processing such a vast amount of data are becoming more and
more complicated.

The network-oriented software can no longer be developed with the techniques
adopted since the 90’s but still in use today, and require the use of sophisticated se-
mantics to take advantage of the parallelism of modern hardware (e.g., multi-threading,
thread pinning, interrupt affinity, to mention a few).

This thesis aims at analyzing all layers of which a network application is composed,
starting from the lowest one, the network device driver, up to the highest layer, where
the processing of network packets takes place. Our primary goal is to find all the
obstacles and bottlenecks that can affect the performance of applications designed to
work in multi-gigabit environments. Hence, the thesis presents a framework designed
to bypass the inefficiencies of standard applications that provide essential accelerations
without requiring source code intervention.

In the first chapter, we analyze some bottlenecks introduced by well-established
programming techniques applied to multi-processor architectures. We recognize multi-
process and multi-thread programming as a viable and necessary condition for the ex-
ploitation of multi-core architectures. With simple examples, however, we show how
some of these methodologies are no longer suitable in the context of network program-
ming, where speed is one of the primary objectives.

We thus set the key elements to handle shared data structures, without using spin-
lock or mutex to prevent date race conditions. Atomic operations, such as the exchange
or the compare and swap (CAS), become fundamental building-blocks for creating

144

i
i

“output” — 2018/4/12 — 19:30 — page 145 — #164 i
i

i
i

i
i

lock-free or wait-free algorithms.
Besides, we take a look at the use of memory by introducing the true- and false-

sharing concept, providing a strategy for boosting performance with an example of a
distributed counter. Finally, we present a comparison of several implementations of
an SPSC queue, showing how performance can be improved by using a cache-aware
memory allocation and adopting a soft-cache to undermine the issue of lines’ coherence
in multi-core architectures.

In the second chapter, we describe PFQ, an open source network processing frame-
work for the Linux OS designed to provide a flexible and powerful platform for the
development of parallel network applications. At the lower level, PFQ implements a
set of software accelerated techniques to efficiently handle traffic captured and transmit-
ted over standard network device drivers. At a higher level, the platform integrates an
in-kernel programmable engine to perform early-stage processing and custom-defined
distribution to user-space applications which, in turn, can be designed according to any
arbitrary parallel scheme. Besides, PFQ provides software bindings and APIs to several
programming languages (namely C, C++, and Haskell) as well as a fully featured adap-
tation layer to legacy applications based on the pcap library. The system performance is
thoroughly assessed and proves that PFQ reaches top class performance by hitting full
capture, transmission and processing rates on 10/40+ Gbps links in simple speed-test
bench-marking scenarios as well as in practical network use cases.

The most significant success of PFQ is that of traffic distribution; an aspect neglected
if not entirely ignored by any other framework for network programming. With an
extensive set of packet steering algorithms and through a pure functional language, PFQ
allows for fine-grained control over the flows of packets and how they get distributed
to endpoints, providing a broad range of different kinds of coherence at the flow-level.

The primary purpose of PFQ is to enable the execution of more instances of the same
application (or the same worker thread), by partitioning and distributing network pack-
ets in such a way that each thread of execution does not require any synchronization
and can work in complete isolation and autonomy.

Although of fundamental importance, the distribution of traffic is not supported by
interfaces at the highest level of network programming. For example, this is the case of
the pcap library, which has full support for accelerated sockets but does not provide an
adequate interface for fanout and leaves this task to the application. In particular, the
current implementation lacks workload splitting capabilities, thus preventing simple
multi-core traffic processing schemes in legacy applications.

To overcome this limitation, this thesis presents an extension of the libpcap in-
terface that integrates the packet fanout support. The new library enables parallel pro-
cessing for both legacy applications and new multi-threaded ones, through the use of
an extended set of API, as well as utilizing suitable environment variables and config-
uration files. The experimental validation has been extensively carried out in several
scenarios by using standard and accelerated capture sockets.

After acknowledging the possible difficulties that one can face during the devel-
opment of a high-performance network application, chapter 4 presents a functional
programming language suitable for writing network applications in a simple, safe and
performing way.

In particular, the chapter presents a functional language for both stateless and state-

145

i
i

“output” — 2018/4/12 — 19:30 — page 146 — #165 i
i

i
i

i
i

Chapter 6. Conclusions

ful processing pipelines on multi-core platforms. The language presented is grounded
in the theoretical framework of monads borrowed from Category Theory and provides
a formal description of a generic processing machine for network traffic manipula-
tion. This programming model allows the parallelism of processing pipelines thanks
to the immutability of packets, enforced by the functional paradigm, and to a suitable
state-aware traffic splitting across multiple computation resources. A few examples are
reported in the chapter to exemplify the practical language usage.

The language is implemented at two distinct levels of the network stack. At kernel
space, the pfq-lang, which was already introduced in the previous chapter, is explained
in detail. The language is presented as an integral part of PFQ and is intended to provide
a tool for configuring the lower-level of the framework to perform packet filtering,
distribution, load-balancer and network loggers.

However, given the exceptional complication introduced by kernel space program-
ming, pfq-lang is designed to implement only state-less computations that run over
the network-device drivers. For this reason, the same functional principles have been
applied to the user space, where another version of the language is proposed and im-
plemented as eDLS (embedded Domain Specific Language) on-top-of the Haskell lan-
guage: Enif-lang.

This second implementation is intended to add stateful support to language. The
Enif-lang runtime is designed to manage a heterogeneous set of applications that are
deployed to the various cores of a multi-processor architecture, to maximize overall
system performance. The actual implementation takes advantage of the underlying
PFQ socket, to load-balance – and possibly copy – the traffic to a whole set of appli-
cations (or multiple instances of them), each intended to run in perfect isolation, hence
leveraging the state-aware packet steering capabilities of the underlying framework.

At the time of writing, the aggregation of applications has dwindled to the program-
mer, that is in charge of configuring the runtime by choosing the degree of parallelism
and the way they get aggregated together (which applications run on which cores), man-
ually. We are analyzing some algorithms and heuristics that could automate the deploy-
ment of multiple Enif-lang applications. Such algorithms could exploit the Manhattan
distance – computed over the number of bits that differ in the masks that identify the
states associated with the flow – as we already proved it is a valid metric to use within
the K-means clustering algorithm.

The chapter then presents a series of examples in Enif-lang and ends with a flow-
tracker intended to count the number of packets of each TCP stream captured. A mea-
sure is also performed to evaluate the efficiency of the given implementation for a hash
table – based on cuckoo hash scheme – in term of the number of packets per second
processable on a single core, by varying the amount of streams present in the network.

Chapter 5 introduces some use-cases, where the elements of network programming
are used to speed up the performance of existing network applications or to perform
measurements of certain bandwidth algorithms without disrupting the system.

The first use-case presented is that of OpenFlow Soft Switch. The chapter shows in
details the acceleration of OFSS, providing an implementation that can forward more
than 4 Mpps on a single core and scale to run on multiple cores. When compared to
state of the art, the prototype does not shine in terms of absolute performance numbers,
but it provides a fast prototyping tool that is easy to modify and adapt for the exploration

146

i
i

“output” — 2018/4/12 — 19:30 — page 147 — #166 i
i

i
i

i
i

of new MAT abstractions.
We demonstrate such flexibility by porting a stateful MAT abstraction – OpenState

– to the accelerated OFSS implementation. While the porting was effortless, our Open-
State implementation could run a proof-of-concept stateful firewall function with higher
throughput than a vanilla Linux’s iptables implementation. Furthermore, in the process
of accelerating OFSS, we shared our experience with the PFQ framework. In particular,
we identified in the PFQ’s programmable steering and dispatching functions a useful
tool to simplify, and speed-up, network function implementation.

In the second use-case, the chapter presents FDPA, a design for a packet forwarding
pipeline to enforce approximate fair bandwidth sharing. FDPA is based on primitives
common in data plane abstractions such as P4 and OpenFlow. Differently, from other
approaches based on per-packet scheduling, the implementation and time complexity
of FDPA does not depend on the maximum number of active users. We performed ex-
periments on a 10 Gbit/s real testbed, using PFQ as a measuring instrument to evaluate
the performance without perturbing the system. Results show that performance is close
to that of an ideal DRR scheduler with dedicated per-user queues, FDPA instead does
not need per-user queues. We identified a trade-off between fairness and throughput, in
which the throughput is penalized when configuring FDPA for more fairness. Prelim-
inary analysis shows that packet reordering is the cause of such effect. We identified
potential solutions to such problem that we leave for future work.

Finally, we present a system in which a set of distributed probes is deployed to detect
network anomalies. The architecture takes advantage of the LogLog counter mixed
with the Reversible Sketch data structure, which has been shown to be valuable tools
for the anomaly detection and network programming in general. Since the max-merge
operation in LogLog implicitly solves the problem of not counting duplicated data, the
result of the aggregation of every single sketch is equivalent to that constructed with
the mediator observing the total traffic from a single point. It worth noticing that the
reduced memory footprint of such data structures and counters makes it an efficient tool
for distributed systems, as the data that travels over the network for being aggregated
is compressed, trading certainty for time/space. In conclusion, to prove the correctness
of the system, we present an efficient and composable C++ library, as basic building
block of the proposed architecture. Such a library, which implements probabilistic
counters and data structures, is presented in details along with simple use-cases and the
performance evaluation in term of probability and memory pressure.

147

i
i

“output” — 2018/4/12 — 19:30 — page 148 — #167 i
i

i
i

i
i

Bibliography

[1] The Bro network security monitor.

[2] Linux Enhanced BPF (eBPF) Tracing Tools.

[3] OFSoftSwitch. https://github.com/CPqD/ofsoftswitch13.

[4] Open Networking Foundation. https://www.opennetworking.org/.

[5] OpenFlow Archive. http://archive.openflow.org/.

[6] Packet buffers. https://people.ucsc.edu/~warner/buffer.html.

[7] Probabilistic Data Structure (PDS) library. https://github.com/awgn/pds.

[8] The Frenetic Project.

[9] Tstat: TCP STatistic and Analysis Tool.

[10] VPP: https://wiki.fd.io/view/VPP.

[11] PFQ wiki, https://github.com/pfq/pfq/wiki, 2014.

[12] D Scott Alexander et al. The switchware active network architecture. Network, IEEE, 12(3):29–36, 1998.

[13] T. Barbette, C. Soldani, and L. Mathy. Fast userspace packet processing. In Architectures for Networking and
Communications Systems (ANCS), 2015 ACM/IEEE Symposium on, pages 5–16, 2015.

[14] Paul Barford, Jeffery Kline, David Plonka, and Amos Ron. A signal analysis of network traffic anomalies. In
In Internet Measurement Workshop, pages 71–82, 2002.

[15] G. Bianchi, E. Boschi, F. Gaudino, E. A. Koutsoloukas, G. V. Lioudakis, S. Rao, F. Ricciato, C. Schmoll,
and F. Strohmeier. Privacy-preserving network monitoring: Challenges and solutions. In 17th ICT Mobile &
Wireless Communications Summit 2008, 2008.

[16] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone. Openstate: Programming
platform-independent stateful openflow applications inside the switch. ACM SIGCOMM CCR, 44(2):44–51,
4 2014.

[17] Giuseppe Bianchi, Marco Bonola, Salvatore Pontarelli, Davide Sanvito, Antonio Capone, and Carmelo Cas-
cone. Open packet processor: a programmable architecture for wire speed platform-independent stateful
in-network processing. CoRR, abs/1605.01977, 2016.

[18] Burton Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,
13(7):422–426, July 1970.

[19] N. Bonelli, S. Giordano, and G. Procissi. Network traffic processing with PFQ. IEEE Journal on Selected
Areas in Communications, 34(6):1819–1833, June 2016.

[20] Nicola Bonelli. Pfq homepage: http://www.pfq.io.

[21] Nicola Bonelli, Andrea Di Pietro, Stefano Giordano, and Gregorio Procissi. On multi—gigabit packet cap-
turing with multi—core commodity hardware. In Proc. of PAM’2012, pages 64–73. Springer-Verlag, 2012.

148

https://github.com/CPqD/ofsoftswitch13
https://people.ucsc.edu/~warner/buffer.html

i
i

“output” — 2018/4/12 — 19:30 — page 149 — #168 i
i

i
i

i
i

Bibliography

[22] Nicola Bonelli, S Giordano, and Gregorio Procissi. Enabling packet fan-out in the libpcap library for parallel
traffic processing. In Proceedings of the Network Traffic Measurement and Analysis Conference, TMA’17,
pages 1–9, June 2017.

[23] Nicola Bonelli, Stefano Giordano, Gregorio Procissi, and Luca Abeni. A purely functional approach to
packet processing. In Proceedings of the Tenth ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS ’14, pages 219–230, New York, NY, USA, 2014. ACM.

[24] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David Walker. P4: Programming protocol-independent packet
processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95, July 2014.

[25] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast programmable match-action processing in hardware
for sdn. In ACM SIGCOMM ’13, ACM SIGCOMM ’13, pages 99–110. ACM, 2013.

[26] Lothar Braun et al. Comparing and improving current packet capturing solutions based on commodity hard-
ware. In IMC ’10, pages 206–217. ACM, 2010.

[27] Jake D. Brutlag. Aberrant behavior detection in time series for network monitoring. In Proceedings of the
14th USENIX conference on System administration, pages 139–146, Berkeley, CA, USA, 2000. USENIX
Association.

[28] CAIDA. Analyzing UDP usage in Internet traffic. https://www.caida.org/research/
traffic-analysis/tcpudpratio/, 2009.

[29] C. Callegari, A. Di Pietro, S. Giordano, T. Pepe, and G. Procissi. The loglog counting reversible sketch: A
distributed architecture for detecting anomalies in backbone networks. In Communications (ICC), 2012 IEEE
International Conference on, pages 1287–1291, June 2012.

[30] C. Callegari, S. Giordano, M. Pagano, and G. Procissi. Opencounter: Counting unknown flows in software
defined networks. In to appear in Proc. of SPECTS 2015, July 2015.

[31] C. Cascone, L. Pollini, D. Sanvito, and A. Capone. Traffic management applications for stateful sdn data
plane. In EWSDN, 2015.

[32] Carmelo Cascone, Davide Sanvito, Luca Pollini, Antonio Capone, and Brunilde Sansò. Fast failure detection
and recovery in sdn with stateful data plane. International Journal of Network Management, 27(2), 2017.

[33] Cisco Systems. Snort homepage: https://www.snort.org/.

[34] Cisco Systems. Cisco Visual Networking Index: Forecast and Methodology, 2016-2021, June 2016.

[35] Graham Cormode and S. Muthukrishnan. Holistic udafs at streaming speeds. In In SIGMOD, 2004.

[36] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58 – 75, 2005.

[37] Willem de Bruijn, Herbert Bos, and Henri Bal. Application-tailored i/o with streamline. ACM Trans. Comput.
Syst., 29(2):6:1–6:33, May 2011.

[38] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm. ACM SIG-
COMM CCR 19.4, 1989.

[39] Luca Deri. PF_RING ZC (Zero Copy).

[40] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
Routebricks: exploiting parallelism to scale software routers. In ACM SIGOPS, pages 15–28, New York, NY,
USA, 2009. ACM.

[41] DPDK. Distributor module.

[42] DPDK homepage: http://dpdk.org.

[43] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. In In ESA, pages 605–617,
2003.

[44] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, L. Mathy, and P. Papadimitriou. Forwarding path
architectures for multicore software routers. In Proc. of PRESTO ’10, pages 3:1–3:6, New York, NY, USA,
2010. ACM.

[45] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a scalable wide-area web cache
sharing protocol. SIGCOMM Comput. Commun. Rev., 28(4):254–265, 1998.

149

https://www.caida.org/research/traffic-analysis/tcpudpratio/
https://www.caida.org/research/traffic-analysis/tcpudpratio/

i
i

“output” — 2018/4/12 — 19:30 — page 150 — #169 i
i

i
i

i
i

Bibliography

[46] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci. Blooming trees: Space-efficient structures for data
representation. In 2008 IEEE International Conference on Communications, pages 5828–5832, May 2008.

[47] D. Ficara, A. Di Pietro, S. Giordano, G. Procissi, and F. Vitucci. Enhancing counting bloom filters through
huffman-coded multilayer structures. IEEE/ACM Transactions on Networking, 18(6):1977–1987, Dec 2010.

[48] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frederic Meunier. Hyperloglog: The analysis of a near-
optimal cardinality estimation algorithm. In nalysis of Algorithms (AOFA), pages 127–1460, 2007.

[49] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. J. Comput.
Syst. Sci., 31:182–209, September 1985.

[50] Francesco Fusco and Luca Deri. High speed network traffic analysis with commodity multi-core systems. In
Proc. of IMC ’10, pages 218–224. ACM, 2010.

[51] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and Georg Carle. Comparison
of frameworks for high-performance packet io. In Proceedings of the Eleventh ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ANCS ’15, pages 29–38, Washington, DC, USA,
2015. IEEE Computer Society.

[52] Andrew D Gordon and Kevin Hammond. Monadic i/o in haskell 1.3. In Proceedings of the haskell Workshop,
pages 50–69, 1995.

[53] The MAWI Working Group. Packet traces from WIDE backbone. http://mawi.wide.ad.jp/mawi/.

[54] Arpit Gupta, Muhammad Shahbaz, Laurent Vanbever, Hyojoon Kim, Russ Clark, Nick Feamster, Jennifer
Rexford, and Scott Shenker. Sdx: A software defined internet exchange. ACM SIGCOMM, 2014.

[55] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader: a gpu-accelerated software router.
In Proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM, SIGCOMM ’10, pages 195–206,
New York, NY, USA, 2010. ACM.

[56] Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo. mswitch: A highly-scalable, modular
software switch. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, ACM SOSR ’15, pages 1:1–1:13. ACM, 2015.

[57] Felipe Huici et al. Blockmon: a high-performance composable network traffic measurement system. SIG-
COMM Comput. Commun. Rev., 42(4):79–80, August 2012.

[58] Intel Corporation. Packet Processing. Intel DPDK vSwitch - OVS. https://github.com/01org/
dpdk-ovs, 6 2015.

[59] Intel white paper. Improving Network Performance in Multi-Core Systems, 2007.

[60] Ethan J. Jackson, Melvin Walls, Aurojit Panda, Justin Pettit, Ben Pfaff, Jarno Rajahalme, Teemu Koponen,
and Scott Shenker. Softflow: A middlebox architecture for open vswitch. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), USENIX ATC’16, pages 15–28. USENIX Association, 6 2016.

[61] Mike Jager. Securing ixp connectivity. In In APNIC 34, 2012.

[62] Raj Jain, Dah-Ming Chiu, and William R Hawe. A quantitative measure of fairness and discrimination for
resource allocation in shared computer system. CoRR, cs.NI/9809099, 1998.

[63] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. Dynamic load balancing without packet
reordering. ACM SIGCOMM CCR 37.2, 2007.

[64] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer Rexford. HULA: Scalable load
balancing using programmable data planes. In ACM SOSR, 2016.

[65] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The click modular router.
ACM Trans. Comput. Syst., 18:263–297, August 2000.

[66] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-based change detection:
methods, evaluation, and applications. In IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, pages 234–247, New York, NY, USA, 2003. ACM Press.

[67] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide traffic anomalies. In In
ACM SIGCOMM, pages 219–230, 2004.

[68] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters. In Proc. of ACM
SIGPLAN-SIGACT, pages 333–343, 1995.

[69] Linux Kernel. Huge Pages Documentation.

150

https://github.com/01org/dpdk-ovs
https://github.com/01org/dpdk-ovs

i
i

“output” — 2018/4/12 — 19:30 — page 151 — #170 i
i

i
i

i
i

Bibliography

[70] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda, Roberto Bifulco, and
Felipe Huici. Clickos and the art of network function virtualization. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation, USENIX NSDI’14, pages 459–473. USENIX
Association, 2014.

[71] Paul E McKenney. Stochastic fairness queueing. In IEEE INFOCOM, 1990.

[72] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. Openflow: Enabling innovation in campus networks. ACM SIGCOMM CCR
38.2, 2008.

[73] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. Openflow: Enabling innovation in campus networks. SIGCOMM Comput.
Commun. Rev., 38(2):69–74, March 2008.

[74] Nick McKeown et al. Openflow: Enabling innovation in campus networks. SIGCOMM Comput. Commun.
Rev., 38(2):69–74, March 2008.

[75] Eugenio Moggi. Computational lambda–calculus and monads. In LICS, pages 14–23. IEEE Computer Society
Press, 1988.

[76] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker. Composing software-
defined networks. In Proceedings of the 10th USENIX Conference on Networked Systems Design and Imple-
mentation, nsdi’13, pages 1–14, Berkeley, CA, USA, 2013. USENIX Association.

[77] V. Moreno, J. Ramos, P.M. Santiago del Rio, J.L. Garcia-Dorado, F.J. Gomez-Arribas, and J. Aracil. Com-
modity packet capture engines: Tutorial, cookbook and applicability. Communications Surveys Tutorials,
IEEE, 17(3):1364–1390, thirdquarter 2015.

[78] Victor Moreno, Pedro M. Santiago Del Río, Javier Ramos, José Luis García Dorado, Ivan Gonzalez, Fran-
cisco J. Gomez Arribas, and Javier Aracil. Packet storage at multi-gigabit rates using off-the-shelf systems.
In Proceedings of the 2014 IEEE Intl. Conference on High Performance Computing and Communications,
HPCC ’14, pages 486–489, Washington, DC, USA, 2014. IEEE Computer Society.

[79] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The click modular router. SIGOPS
Oper. Syst. Rev., 33(5):217–231, 1999.

[80] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and Ramesh Govindan. Flow-level state
transition as a new switch primitive for sdn. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, ACM HotSDN ’14, pages 61–66. ACM, 2014.

[81] J. Nagle. On Packet Switches With Infinite Storage. IETF RFC 970, 1985.

[82] Ntop. PF_RING API.

[83] Ostinato Team. Ostinato: Packet traffic generator and analyzer.

[84] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. Approximate fairness through differential
dropping. ACM SIGCOMM CCR 33.2, 2003.

[85] Rong Pan, Balaji Prabhakar, Flavio Bonomi, and Bob Olsen. Approximate fair bandwidth allocation: A
method for simple and flexible traffic management. In IEEE Allerton Conference on Communication, Control,
and Computing, 2008.

[86] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and Scott Shenker. Netbricks:
Taking the v out of nfv. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), USENIX OSDI’16. USENIX Association, 2016.

[87] Luca Petrucci, Marco Bonola, Salvatore Pontarelli, Giuseppe Bianchi, and Roberto Bifulco. Demo: Imple-
menting iptables using a programmable stateful data plane abstraction. In To appear in ACM SIGCOMM
SOSR ’17, To appear in ACM SIGCOMM SOSR ’17, 2017.

[88] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and Martin Casado. The design and implementation of
open vswitch. In USENIX NSDI ’15, USENIX NSDI ’15, pages 117–130. USENIX Association, 5 2015.

[89] Phil Woods. libpcap mmap mode on linux.

[90] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.

[91] Lili Qiu, Yin Zhang, and Srinivasan Keshav. Understanding the performance of many TCP flows. Computer
Networks, 37(3–4), 2001.

151

i
i

“output” — 2018/4/12 — 19:30 — page 152 — #171 i
i

i
i

i
i

Bibliography

[92] L. Rizzo, M. Carbone, and G. Catalli. Transparent acceleration of software packet forwarding using netmap.
In INFOCOM, 2012 Proceedings IEEE, pages 2471–2479, March 2012.

[93] Luigi Rizzo. Netmap: a novel framework for fast packet i/o. In Proc. of USENIX ATC’2012, pages 1–12.
USENIX Association, 2012.

[94] Luigi Rizzo and Giuseppe Lettieri. Vale, a switched ethernet for virtual machines. In Proceedings of the
8th International Conference on Emerging Networking Experiments and Technologies, ACM CoNEXT ’12,
pages 61–72. ACM, 2012.

[95] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Reversible sketches for efficient and accurate
change detection over network data streams. In Proceedings of the ACM SIGCOMM conference on Internet
Measurement, IMC ’04, pages 207–212, New York, NY, USA, 2004. ACM.

[96] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster, Nick McKeown, and Jennifer
Rexford. Pisces: A programmable, protocol-independent software switch. In ACM SIGCOMM ’16, 2016.

[97] Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson, Arvind Krishnamurthy, Jacob Nelson, and Si-
mon Peter. Evaluating the power of flexible packet processing for network resource allocation. In USENIX
NSDI, 2017.

[98] Madhavapeddi Shreedhar and George Varghese. Efficient fair queuing using deficit round-robin. IEEE/ACM
Transactions on networking, 4(3), 1996.

[99] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh, Hari Balakrishnan,
George Varghese, Nick McKeown, and Steve Licking. Packet transactions: High-level programming for line-
rate switches. In ACM SIGCOMM ’16, ACM SIGCOMM ’16, pages 15–28. ACM, 2016.

[100] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti, and Nick McKeown. Programmable packet schedul-
ing at line rate. In ACM SIGCOMM, 2016.

[101] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrishnan, and Jennifer Rexford.
Heavy-hitter detection entirely in the data plane. In ACM SOSR, 2017.

[102] SnabbCo. Snabb switch.

[103] SolarFlare. Openonload.

[104] Jonathan Philip Stringer, Qiang Fu, Christopher Lorier, Richard Nelson, and Christian Esteve Rothenberg.
Cardigan: Deploying a distributed routing fabric. In Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13, pages 169–170, New York, NY, USA, 2013.
ACM.

[105] Weibin Sun and Robert Ricci. Fast and flexible: Parallel packet processing with gpus and click. In Proc. of
ANCS ’13, pages 25–36, Piscataway, NJ, USA, 2013. IEEE Press.

[106] W. Szpankowski and V. Rego. Yet another application of a binomial recurrence order statistics. Computing,
43(4):401–410, 1990.

[107] The Wireshark Network Analyzer. tshark.

[108] Mikkel Thorup and Yin Zhang. Tabulation based 4-universal hashing with applications to second moment
estimation. In Proceedings of the annual ACM-SIAM symposium on Discrete algorithms (SODA), pages
615–624, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

[109] M. Thottan and C. Ji. Anomaly detection in ip network. In IEEE Trans. Signal Processing, volume 51, pages
2191–2204, 2003.

[110] George Varghese. Network Algorithmics,: An Interdisciplinary Approach to Designing Fast Networked De-
vices (The Morgan Kaufmann Series in Networking). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2004.

[111] Philip Wadler. The essence of functional programming. In Proc. of ACM SIGPLAN-SIGACT, pages 1–14,
1992.

[112] Philip Wadler. Monads for functional programming. In Advanced Functional Programming, volume 925 of
Lecture Notes in Computer Science, pages 24–52. 1995.

[113] Shinae Woo, Lin Hong, and KyoungSoo Park. Scalable TCP session monitoring with symmetric receive-side
scaling. Technical report, KAIST, 2012.

[114] Yin Zhang, Zihui Ge, Albert Greenberg, and Matthew Roughan. Network anomography. In In IMC, 2005.

152

i
i

“output” — 2018/4/12 — 19:30 — page 153 — #172 i
i

i
i

i
i

Bibliography

[115] C V Zhou, Christopher Leckie, and Shanika Karunasekera. A survey of coordinated attacks and collaborative
intrusion detection. Computers Security, 29(1):124–140, 2010.

[116] Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. Scalable, High Perfor-
mance Ethernet Forwarding with CuckooSwitch. In Proceedings of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, ACM CoNEXT ’13, pages 97–108. ACM, 2013.

153

	Introduction
	Elements of Network Programming
	Parallel processing
	Atomics operations
	Memory layout
	Memory allocations
	Two practical examples
	Counters
	Lock-less queues

	Efficient data structures
	Probabilistic counters
	Reversible Sketches

	Final remarks

	Fast Packet I/O
	Background and Motivations
	The System Architecture
	Three layers of parallelism

	High Speed Packet Capture
	Accelerating vanilla drivers
	Pool of socket buffer
	Batch queues

	Functional processing
	Groups and classes

	User to Kernel space communication and APIs
	User to Kernel space communication
	Application Programming Interfaces

	Packet transmission
	Performance evaluation
	10G Speed Tests: Packet Transmission
	10G Speed Tests: Packet Capture
	Up to 40G Speed Tests
	Software Acceleration
	Libpcap acceleration

	Use-cases
	IP address traffic filtering
	RTP flow analysis
	LTE analyzer
	Accelerated Traffic Generation

	Traffic Distribution
	Introduction and motivation
	Packet Dispatching in Linux
	Linux Default Capture Socket
	Socket Fanout Modes
	Standard pcap interface

	Software acceleration
	The PF_RING accelerated socket
	The PFQ accelerated socket

	Packet fanout support in the pcap interface
	Legacy application: pcap configuration file
	Accelerated configuration

	Using the pcap fanout in practice
	Applications and Interrupt Affinities

	Performance Evaluation
	Speed-Tests

	Use-cases
	Tstat
	Bro

	Towards the integration of passive sockets

	Functional Packet Processing
	Introduction
	Functional Packet Processing
	Theoretical Foundations
	The pfq-lang Language
	Monadic functions
	Non-Monadic Functions

	Implementation
	The Embedded DSL
	The Functional Engine

	Performance Evaluation
	Use Cases
	Port mirroring
	Load Balancer
	Stateless Firewall
	Monitoring
	Legacy applications

	Stream processing
	Enif-lang at a glance
	Functions overview

	Processing Pipelines
	Stateful Pipelines

	Use-cases
	Stateless processing
	Stateful processing

	Applications
	SDN and OpenFlow
	Introduction
	Related Work
	OfSoftSwitch
	Software acceleration
	Multi-core processing
	Code Optimizations
	Performance Evaluation

	PFQ as measuring instrument
	Introduction
	Related work
	FDPA Design
	Experimental results
	Discussion

	Probabilistic counting framework
	Two motivating use-cases
	The probabilistic counting framework
	C++ implementation
	Experimental results

	Conclusions
	Bibliography

