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Sommario

Il mondo delle telecomunicazioni è alla continua ricerca di innovazioni tecnologiche

che permettano nuovi servizi, da implementare nei nuovi standard di comunicazione

wireless. Questi nuovi servizi possono richiedere requisiti piuttosto stringenti in

termini di throughput, cosicché una possibile soluzione per soddisfare questi requisiti,

aumentando l’efficienza spettrale, è rappresentata dall’impiego di più antenne sia in

trasmissione sia in ricezione. Al tempo stesso aumentando il throughput, aumenta

inevitabilmente la banda di trasmissione, cosicché effetti di canale come fading e

shadowing introducono effetti potenzialmente distruttivi sull’informazione trasmessa.

Per questo motivo nasce la ricerca di nuovi codici a protezione di errore, che cercano

di combattere gli effetti del canale di propagazione.

In questo contesto si inserisce questo lavoro, che si prefigge come obiettivo principale

la combinazione di tecniche MIMO con i codici a protezione di errore LDPC non

binari, basati cioè sull’aritmetica dei campi di Galois. Questo tipo di combinazione

richiede la risoluzione di problematiche legate alla natura non binaria di questi codici,

in particolare il calcolo delle informazioni soft (demapping) da fornire al decoder, che

può risultare assai più complesso rispetto al tipico demapping binario.

In letteratura i principali lavori inerenti i codici LDPC non binari si concentrano

su implementazioni low complexity del decoder, mentre il demapping viene spesso

trascurato. Tuttavia la complessità del demapping non binario può avere un impatto

rilevante sulla complessità totale di un ricevitore non binario. Invece questo lavoro si

dedica interamente all’analisi del mapping e demapping dell’informazione non binaria.

In particolare viene presentata una strategia per garantire un mapping efficiente al

trasmettitore, cos̀ı come algoritmi a bassa complessità per il demapping lato ricevitore.

La soluzione proposta da questo lavoro si propone di ottenere il miglior compromesso

tra prestazioni e complessità del ricevitore per ogni combinazione di ordine di campo

di Galois, modulazione e codice spazio-tempo.





Abstract

Recently, the need for innovative services available for the end users has led to an

increasing demand of higher throughputs of wireless systems. On the other hand

higher throughput means wider bandwidth, so that channel selectivity and fading

might be a severe challenge to combat in order to ensure high level of Quality of

Service (QoS). In this scenario one of the possible approach to increase the system

throughput is the use of multiple antennas, both at the transmitter and the receiver

side. Instead the typical manner to combat channel effects is to employ powerful

channel coding schemes, which target the mitigation of these propagation effects.

This work follows this approach combining the MIMO techniques jointly with the

powerful channel coding scheme of non-binary LDPC. The expression ”non-binary”

refers to the fact that these codes are defined over high order Galois Field. These

codes have been researched in the literature to achieve higher error protection than

conventional binary codes for transmission over different noisy channels.

The main novelty of this work is related to the mapping and demapping of the non-

binary information. Typically the main contributions in the literature focus on the

low complexity decoders, whilst the demapping complexity is neglected. However,

the demapping complexity might become a real bottleneck in the global receiver

complexity, so that we decide to investigate this topic. A strategy is devised to

guarantee an efficient mapping at the transmitter, together with an algorithm for low

complexity soft demapping at the receiver. The proposed solutions target the best

trade-off between performance and complexity, for any combination of the Galois field

order, QAM constellation order, and MIMO scheme.
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Introduction

Motivations

Non-binary Low Density Parity Check (NB LDPC) codes have been researched in

the literature to achieve higher error protection than conventional binary codes for

transmission over different noisy channels [1], [2], [3]. More recently, the European

FP7 DAVINCI project [4] has explored the design of novel outperforming non-binary

LDPC codes with tailored link level technologies over wireless fading channels, whilst

aiming at small added complexity to conventional binary receivers. Specifically, most

of recent works in literature have focused on low complexity decoding algorithms

for high Galois Field (GF) order [5]. Meanwhile the use of multiple antennas in

wireless links with appropriate Space-Time Codes (STC) has become the new frontier

of wireless communications. Traditionally, multiple-antennas have been employed to

combat the channel fading. Each pair of transmit antennas provides a signal path

from the transmitter to the receiver. By sending signals with the same information

through different paths, multiple independently faded replicas of data symbols can

be obtained at the receiver side; hence, more reliable reception can be achieved.

A different approach suggests that if the path gain between individual pairs fade

independently, we can transmit independent information, in order to increase the data

rate. In literature there is also a great amount of works based on the combination of

NB LDPC codes jointly with MIMO techniques, but most of them stick to decoder

implementations, without focusing on mapping and demapping topics. There are some

very recent works partially discussing this topic [6], [7], however they stick to very

specific cases, assuming that one Galois Field symbol is transmitted exactly in one

MIMO codeword. This might lead in same cases to non-practical assumption, such as

MIMO 3x3 or MIMO 4x4. Instead all along this work we will stick to practical MIMO

systems, i.e. MIMO 2x2, focusing on mapping and demapping. We strong believe that
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the complexity of the soft demapper at the receiver might represent a real bottleneck,

especially when one GF symbol spreads across multiple QAM constellation symbols

and MIMO codewords. This motivates us to analyze mapping and demapping issues in

case of non-binary transmissions, with the aim of achieving the best trade-off between

performance and complexity. A strategy is devised to guarantee an efficient mapping

at the transmitter, together with an algorithm for low complexity soft demapping at

the receiver.

Main Contributions

The main contribution of this thesis are listed and detailed below:

a. First of all we investigate different methods for computing the soft information

for non-binary transmissions, deriving a novel approach which is based on a soft

version of the Maximum Likelihood (ML). Specifically, we obtain a generalize

method, which can be used for any combination of Galois Field order, modula-

tion order and MIMO scheme. Previous works instead focused only on the soft

information computation under very particular hyphotesis, i.e. one Galois Field

symbol is transmitted over exactly one MIMO codeword. We generalize this

also for those cases, where one Galois Field symbol is transmitted over different

MIMO codewords.

b. We investigate also the performance of different Space-Time Codes in combina-

tion with NB LDPC codes, and we compare these results at different spectral

efficiencies. This enables us to understand which Space-Time Code is best

suitable with NB LDPC codes.

c. We figure out three heuristic rules, which enable the design of mapping pat-

terns of non-binary information over the MIMO codewords. These rules are

derived aiming at maximizing the diversity of the information of each Galois

Field symbol, with the constraint of the demapping complexity at the receiver

side. For this reason mapping patterns, obtained following these rules, are

not optimum from performance perspectives but they maximize the trade-off

between performance and demapping complexity.



Outline 3

d. We also derive a low complexity demapping algorithm for the MIMO case, which

can be perfectly matched with the mapping pattern definition stated above.

This low complexity algorithm implements a soft version of the Soft ML, but it

exploits the already available soft information to reduce demapping complexity.

This algorithm works perfectly in all the cases where one Galois Field symbol

is transmitted in more than one MIMO codewords.

Outline

This thesis is structured as follows:

a. Chapter1 presents the non-binary LDPC codes, detailing their coding and

decoding. We deeply focus on the DAVINCI NB LDPC codes and their low

complexity implementation. We also present the demapping in case of SISO

transmission, before analyzing the performance of a SISO transmission system,

employing NB LDPC codes. Then we compare their performance with the one

of a very powerful binary FEC scheme, i.e. Duo Binary Turbo Codes (DBTCs).

b. Chapter2 summarizes the main achievements on the multiple antennas topic,

presenting the main parameter to quantify a Space-Time Code, before intro-

ducing the main Space-Time Codes we analyze all along this thesis. Then we

present the universal framework of the Linear Dispersion Codes, before moving

to the Performance analysis. Specifically, we analyze the performance of the

selected Space-Time Codes in case of Maximum Likelihood Receiver and Linear

Equalizers.

c. Chapter3 presents the main issues to be faced when combining NB LDPC

codes with MIMO techniques, especially if it is required to stick to a MIMO

2x2 system (as in our case). We analytically detail two different methods for

computing the soft information in case of MIMO transmission. Later we present

the performance analysis as well as the complexity considerations.

d. Chapter4 first presents the channel capacity considerations and shows how to

derive an adhoc Space-Time Code, which maximizes equivalent channel capacity.

Then we state three heuristic rules, which enable the design of mapping pat-

terns that maximize the trade-off between information diversity and demapping
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complexity. Finally, it presents the low complexity demapping algorithm, before

showing the performance analysis with and without the proposed algorithm.

e. Conclusions concludes this work, highlighting the most relevant achievements

of this thesis.



Chapter 1

Non-binary LDPC coding

In this first chapter we will present the motivation behind the use of non-binary

(NB) Low Density Parity Check (LDPC) codes, focusing on the weak points of the

alternative (to NB LDPC codes) channel coding schemes, i.e. Turbo codes and binary

LDPC codes. Then we will briefly analyze the most significant details of the NB LDPC

codec, before focusing on the performance analysis in the context of SISO systems.

Furthermore, a comparison with a powerful binary channel coding scheme, i.e. Duo

Binary Turbo Codes (DBTC), will be performed for a matter of completeness.

1.1 Motivation behind the use of non-binary LDPC

This section presents the state-of-the-art and the motivation behind the necessity

of further studying the NB LDPC codes. Specifically, with the term ”non-binary”

we mean that each non-zero element in the mapping and demapping matrices is

defined over a Galois Field of order q (GF(q)) with q > 2. The first study of NB

LDPC codes was conducted by Davey and MacKay in 1998 [1]. In this paper, they

generalized the Sum Product Algorithm (SPA) for decoding binary LDPC codes to

decode the q-ary LDPC codes. Later, in 2000, MacKay and Davey introduced a

Fast-Fourier-Transform (FFT)-based method to reduce the decoding computational

complexity [8]. This decoding algorith is referred to as FFT-QSPA. This work was

further improved by Barnault and Declercq in 2003 [9] and by Declercq and Fossorier

in 2007 [3]. Significant works on the design, construction and analysis of NB LDPC

codes did not appear until the middle of 2000. Results in these works are very

promising. They show that NB LDPC codes have a great potential to replace current

channel codes in communication and storage systems. More recently, the European
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FP7 DAVINCI project [4] has explored the design of novel outperforming NB LDPC

codes, aiming at small added complexity compared to conventional binary receivers.

Furthermore, the increasing demand for high-speed wireless communications calls for

efficient technologies in terms of energy expenditure and bandwidth occupation. In

the area of forward error correction (FEC) coding, NB LDPC codes were shown to

bear a potential compared to other techniques [1]. To mention a few, NB LDPC codes

show a lower error floor with respect to their binary counterpart (LDPC codes), while

providing a steep waterfall region in terms of word error rate (WER) compared to

convolutional turbo codes [10]. Although this feature comes at the expense of an

increased complexity at the receiver, NB LDPC coding can be considered as a viable

technology for beyond-4G communication systems [10].

1.2 Introduction of Non-binary LDPC codec

In this section we present a simple transmission system, employing the NB LDPC

codes. This allows us to illustrate the features, the benefits and the complexities of

this kind of system, when NB LDPC are used. According to [10], let us consider the

parity check matrix W associated with a regular NB LDPC code with the parameters

(dv, dc, N) representing the number of non-zero entries of W for the columns, for the

rows and the code length respectively. All the non-zero elements of W are elements

defined over the Galois field GF(q) and belong to the set Ω = {α1, α2, .., αq}, where

αk (with k = 1, .., q) are the primitive element of the Galois Field. The Galois field

(GF(q)), described usually using a polynomial (or vector) representation, can be also

represented using matrices, as shown in [11]. If p(x) = a0 + a1 · x + · · · + xp is a

polynomial of degree p having its coefficients in (GF(2)). The companion matrix of

p(x) is the p × p matrix

Ac =













0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 1

α1 α2 α3 · · · αq













(1.1)

The characteristic polynomial of this matrix is given by

det(Acx · I) = p(x) (1.2)
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where I is the identity matrix. If p(x) is a primitive polynomial, it can be shown [11]

that the matrix Ac is the primitive element of the Galois field (2p) under a matrix

representation and thus the powers of Ac are the non-zero elements of this field,

defining the set M = {0, Ak : k = 1, · · · , q}. Additions and multiplications in the

field correspond to additions and multiplications modulo 2 of these matrices. Based

on the matrix representation of each nonzero entry, we give thereafter the equivalent

vector representation of the parity check equations associated with the rows of W.

Let x = [x0, · · · , xN−1] be a codeword. For the i-th parity equation of W, we have
∑

j:hi,j 6=0

wi,j · xj = 0 (1.3)

Translating (1.4) into the vector domain, we can write
∑

j:hi,j 6=0

Wi,j · xt
j = 0t (1.4)

where Wi,j is the transpose of the matrix representation of the Galois field element

wi,j , xj is the vector representation (binary mapping) of the symbol element xj and t

holds for transpose. The vector 0 is the all zero component vector. Considering the i-

th parity check equation of W, we indicate the equivalent binary parity check matrix

as Wi = [Wi,j0 , · · ·Wi,jm
, · · ·Wi,jdc−1

] , with {jm : m = 0, · · ·dc − 1} the indexes

of the non-zero elements of the i-th row. Now let us define Xi = [xj,0, · · · ,xj,dc−1]

as the binary representation of the symbols of the codeword x involved in the i-th

parity check equation. When using the binary representation, the i-th parity check

equation of W, can be written as

Wi · Xt
i = 0t (1.5)

We define dmin(i) as the minimum distance of the binary code associated with Wi.

Example: Let p(x) = x3 + x + 1 be the primitive polynomial used to generate the

elements of (GF(23)). The primitive element for the matrix representation is given

by

Ac =







0 1 0

0 0 1

1 1 0






(1.6)

Thus, {Ak : k = 0, · · · , 6} are the non-zero elements of (GF(23)) under this matrix

representation and it is readily checked for our example that {Ak · αt
1 = αt

k+l}.
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1.2.1 The DAVINCI NB LDPC codec

In this section we report the main features of the NB LDPC codec, developed and

employed in the context of the DAVINCI project. We focus on the DAVINCI im-

plementation of the NB LDPC codec because we have used this implementation all

along this study. The DAVINCI project [4], funded by the European Community

in the context of the FP7 programme, aimed at setting up foundations of pioneer-

ing Non-Binary Digital Wireless Transmission targeting the high spectral efficiency

requirements of next generation wireless communications. The major achievements

towards the above five main objectives can be summarized as follows: Development

of new structures of non-binary LDPC codes outperforming the binary codes but also

enjoying highly desirable features such as flexibility in trading-off the performance

and complexity, rate-compatibility, reliability in fading scenarios, and compliance

with hardware parallel implementation. The DAVINCI matrices have been designed

over a Galois field of order q = 64, so that Ω = {α1, α2, .., α64}. Each GF(64) symbol

is represented by γ = log2(64) = 6 bits. These codes have been designed with a very

sparse parity check matrix. The variable node degree is fixed to dv = 2 (optimal

when q → ∞ and codeword length N → ∞), whereas the check node degree dc is

variable and adapted to the coding rate (i.e. dc = {4, 6, 8, 12} for channel code rate

Rc = {1/2, 2/3, 3/4, 5/6}, respectively). The DAVINCI codes are obtained as regular

LDPC codes over the Galois Field Ω following the optimization process described

in [10]. The binary images of the (GF(64)) are obtained from the primitive polynomial

below used in the DAVINCI project to optimize the DAVINCI codes [4]:

p(x) = x6 + x + 1 (1.7)

At the encoder side, blocks of K GF(64) symbols are then passed to the non-binary

LDPC encoder, which generates the non-binary codeword of length N GF(64) sym-

bols. The resulting channel code rate is Rc = K
N

. At the receiver side, we use a

reduced complexity non-binary decoder based on the Extended Min-Sum algorithm

proposed in [5] for practical hardware implementation of the DAVINCI codes. This

low complexity decoder takes only the qm (qm < q) highest APP values out of the

q values available at the output of the soft demapper. This truncation of the APP

values at the input of the decoder reduces significantly the decoder complexity at the

cost of slight performance degradation. From now on in this thesis with the expression

”NB LDPC encoder/decoder” we refer to the DAVINCI implementation [5].
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Figure 1.1: SISO system architecture using NB LDPC codec

1.3 Architecture of Non-binary systems

In this section we will analyze the architecture of a typical transmission system,

employing NB LDPC codes as Forward-Error-Correction (FEC) scheme, addressing

the issues arising from the non-binary nature of these powerful codes. Figure 1.1

shows this architecture. The first block generates information bits, which are then

grouped by the Bit2GF(64) block. Each stream of K GF(64) symbols is encoded by

the NB LDPC encoder, presented in the previous section. Specifically, the message

u ∈ ΩK is encoded into a codeword b = [b0, b1, · · · , bN−1] ∈ ΩN , which is interleaved

at GF(64) symbol level. It is known that many communication channels are not

memoryless; this implies that errors typically occur in burst and not independently.

The GF(q) symbol interleaver aims to avoid such kind of burst errors. The output

stream of N interleaved GF(q) symbols is mapped onto modulation symbols by the

QAM Mapper block. As reported in [12] the mapping function µ(·) is responsible

for assigning symbols out of a QAM constellation Ax to the interleaved code GF(q)

symbols which are taken out of a Galois field of order q. Since the cardinality of both

sets is generally not identical, we have to gather m1 coded GF(q) symbols and map

them onto m2 QAM symbols. Specifically, m1 is the minimum number of GF(64)

symbols necessary to have an integer number of modulation symbols, whilst m2 is the

number of modulation symbols necessary to map m1 GF(64) symbols.

µ : Ωm
1 → Am

x 2 (1.8)

In order to have a bijective mapping, the number of elements on both sides must be

equal, i.e. m1 coded GF(64) symbols out of Ω are mapped onto m2 QAM symbols,



10 Non-binary LDPC coding

such that

qm
1 = Mm

2 (1.9)

where M is the cardinality of the QAM modulation. Values of m1 and m2 for different

QAM modulations are reported in Table 1.1.

Table 1.1: Mapping GF(64) symbols over QAM symbols

Modulation QPSK 16-QAM 64-QAM

(m1,m2) (1,3) (2,3) (1,1)

The mapping function hence gathers m1 code symbols to b = [b0, b1, · · · , bm1−1] and

maps them onto m2 QAM symbols:

x = [x0, x1, · · · , xm2−1] = µ(b) = [µ0(b), µ1(b), · · · , µm2−1(b)] (1.10)

Let us note that x in (1.10) is different from x presented in Section (1.2). Specifically,

from now on with the vector x we will refer to the modulation symbols vector. The

resulting stream of modulation symbols is then transmitted over the Single-Input-

Single-Output (SISO) channel, which is first assumed to be Additive-White-Gassian-

Noise (AWGN) and later a temporally uncorrelated fading channel. At the receiver,

the output of the SISO channel, in case of AWGN, is given by:

yi = xi + vi, xi = µi(b) (1.11)

where i = 0, · · · , m2, xi is the transmitted signal (i.e. the modulation symbol) and vi

is the thermal noise, so that each I,Q component of vi is N (0, σ2
v). For the temporally

uncorrelated fading channel, the output becomes:

yi = hi · xi + vi (1.12)

where hi simulates the effects of a frequency-flat, time independent Rayleigh fading

channel, i.e. hi ∈ CN (0, 1). The received signal, represented by (1.11) and (1.12),

is passed to the Soft Demapper, which is responsible of computing the A Posteriori

Probability (APP) information, as it will be detailed in the next section. The APP

information, computed by the Soft Demapper, is passed to the GF(64) symbol de-

interleaver, which performs the de-interleaving operation, counterpart of the one at
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the transmitter side. The de-interleaved APP information is then conveyed to the

NB LDPC decoder, which produces the output stream of GF(64) decided symbols.

Finally, the decided stream of GF(64) symbols is converted into its binary image by

the GF2Bit block, before being collected by the Sink.

1.4 Soft demapping for NB LDPC codes

The Soft Demapper for SISO systems has been investigated in [12]. Its main role

is computing the APP information for each received GF(64) symbols, which, in

the context of non-binary transmissions, is the Logarithmic Likelihood Ratio (LLR)

vector. According to [12], for each (GF(q)) symbol bi ∈ Ω , a vector of q APP values

has to be computed, and each value is defined as:

Li,k = ln

(

P [bi = αk|y]

P [bi = α0|y]

)

(1.13)

where i ∈ 1, · · · , m1, k ∈ 1, · · · , q − 1, y is the received signal, where we omitted

the temporal dependancy. Instead αk are the elements of the Galois Field Ω. Since

generally more than one coded GF(64) symbol is involved in the mapping, in order

to calculate the LLR vector we require a marginalization,

Li,k = ln

∑

b∈Bk
i

P [b|y]

∑

b∈B0

i

P [b|y]
= ln

∑

b∈Bk
i

p[y|b] · P [b]

∑

b∈B0

i

p[y|b] · P [b]
(1.14)

Assuming all the coded symbol vector (with length m1 GF(64) symbols) to be equiprob-

able, i.e. P [b] = q−m1 and the channel memoryless, we can rewrite the (1.14) as:

Li,k = ln

















∑

b∈Bk
i

m2−1
∏

j=0

p(yj |b)

∑

b∈B0

i

m2−1
∏

j=0

p(yj |b)

















(1.15)

where b = [b0, · · · , bm1−1] is the coded GF(64) symbol vector, Bk
i = {b : bi = αk}

is the set of all coded GF(64) symbol vectors where the i-th component equal to αk.
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The pdf of the receiver input can be expressed by:

p(yj |sj) =
1

π · N0
· exp

[

− 1

N0
|yj − hj · xj |2

]

(1.16)

where perfect channel state information is assumed at the receiver side, but not at

the transmitter. In case of AWGN channel, the channel coefficient assumes the value

hj = 1. Let us note that N0 = 2σ2
v. Now substituting (1.16) in (1.15) we obtain:

Li,k = ln

∑

b∈Bk
i

exp



−
m2−1
∑

j=0

|yj − hj · xj |2
N0





∑

b∈B0

i

exp



−
m2−1
∑

j=0

|yj − hj · xj |2
N0





(1.17)

Since the denominator does not depend on k, we can compute only the first term and

then normalize such that Li,0 = 1.

Li,k = ln





∑

b∈Bk
i

exp



−
m2−1
∑

j=0

|yj − hj · xj |2
N0







 (1.18)

1.4.1 Comparison with binary soft demapping

In this paragraph we briefly present a simple binary SISO system, which will be

compared with the NB LDPC-based one just depicted. This approach allows us

to further emphasize the challenges arising from the exploitation of a non-binary

FEC scheme, as the NB LDPC codes. Specifically, in this paragraph we focus on

demonstrating that non-binary systems are intrinsically more complex than a binary

one. This can be simply explained observing that non-binary encoders introduce

a correlation between information bits (i.e. GF(64) symbols), and these GF(64)

symbols might be transmitted over different modulation symbols. It is clear that

this separation of a GF(64) symbol onto different modulation symbols, jointly with

the correlation introduced among information bits are the causes of a complexity

increase at the non-binary receiver side. This complexity increase is mainly related to

the Soft demapper, so that we quickly have an insight at the binary soft demapping in

order to appreciate the differences between binary and non-binary demapping. In this

binary system we employ the DBTCs. The binary system model used for the sake of
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Figure 1.2: SISO system architecture using DBTC codec

comparison with the non-binary system, described in the previous section is depicted

in Figure 1.2. The Bit Info Generator passes K ′ information bits to the DBTC

Encoder, which produces a stream of N ′ coded bits. Then, the Modulation Mapper

maps the coded bits into the modulation symbols (QPSK, 16QAM and 64QAM),

which are transmitted over the SISO channel (AWGN and uncorrelated Rayleigh).

At the receiver side, the Soft Demapper extracts the bit LLR from the receive signal,

as explained below. It is obvious that no correlation among the modulation symbols

is introduced here, so that the bit LLR computation turns out to be simpler than the

non-binary case.

Thanks to the general description of the Soft Demapper introduced in [12] and

followed in the previous section, the Soft Demapper for binary FECs can be easily

derived from (1.15) considering the binary case as a particular case of Galois field

with q = 2, so that we obtain

Li = ln

∑

d∈B1

i

p(y|d)

∑

d∈B0

i

p(y|d)
(1.19)

where d are the bits mapped in a modulation symbol B1
i , B0

i are the sets having the

i-th bit equal to 1 and 0, respectively. Now substituting the pdf of the received signal
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in 1.19, we obtain

Li = ln

∑

d∈B1

i

exp

[

−
∣

∣y − h · s(k)
∣

∣

2

N0

]

∑

d∈B0

i

exp

[

−
∣

∣y − h · s(k)
∣

∣

2

N0

] (1.20)

where k = 0, · · · , M −1. Using the max-Log-MAP approximation for the binary case,

the (1.21) becomes

Li = max
d∈B1

i

[

−
∣

∣y − h · s(k)
∣

∣

2

N0

]

− max
d∈B0

i

[

−
∣

∣y − h · s(k)
∣

∣

2

N0

]

(1.21)

The bit LLR computed by the binary soft Demapper are then sent to the DBTC

decoder, which extracts the decided information bits.

1.5 Performance Analysis

In this section we present the numerical results, obtained simulating the behaviour of

the systems presented in the previous sections. As already mentioned, in the context

of the NB system we use the DAVINCI matrices and the decoder implementation

introduced in [5]. Instead in the binary system we exploit the open-source imple-

mentation of the Coded Modulation Libraries [13]. Table 1.2 and Table 1.3 gives the

list of the parameters used to evaluate the performance of the NB LDPC and DBTC

FEC schemes, respectively, in the SISO context.

Figure 1.3 depicts the performance (in terms of CoWord Error Rate, CWER) of

NB LDPC and DBTCs for a codeword length of Nbin = 576 bits (i.e. equivalent to

N = 96 GF(64) symbols for the NB LDPC), assuming the channel to be AWGN.

We can observe that NB LDPC outperforms DBTC for any analyzed modulation.

Specifically, we can appreciate that the gain of NB LDPC is about 0.1 dB, 0.3 dB

and 0.8 dB for QPSK, 16QAM and 64QAM, respectively. We notice that there is an

increase of the gain whether the modulation order increases. Figure 1.4 compares

the performance in the case of uncorrelated Rayleigh channel. Similarly to the

AWGN case, we can clearly appreciate here that NB LDPC outperforms DBTC for all

constellations in the simulated Rayleigh fading scenario. Specifically, we notice that
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Table 1.2: NB LDPC coding and decoder parameters

Parameter Value

Code Rate 1
2

Galois Field order, q 64

Codeword length, N GF(64) symbols 96

Decoder Type EMS with L-bubble check

Number of decoding iterations 30

LLR vector size per received GF symbol, qm 16

Number of sorting operations 18

Decoder Offset 1.0

Demapping method
Max-Log-Map (16-QAM)

Log-Map (QPSK, 64-QAM)

Table 1.3: DBTC coding and decoder parameters

Parameter Value

Code Rate 1
2

Codeword length (bit), N ′ 576

Number of decoding iterations 8

Number of sorting operations 18

Decoder Offset 0.7

Demapping method Max-Log-Map

NB LDPC outperforms DBTC about 0.1 dB, 0.2 dB and 0.5 dB for QPSK, 16QAM

and 64QAM, respectively. A deeper analysis on the performance comparison between

NB LDPC and DBTC in SISO system could be found in [14].
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Figure 1.3: Performance for SISO systems over AWGN channel

1.6 Conclusions

In this chapter, we have presented the NB LDPC channel coding scheme, highlighting

the codec features, but also deriving the demapping operations for the SISO scenario.

We have also compared them with a binary channel coding scheme, such as DBTCs.

Later we have also carried out a CWER performance analysis by which we can

conclude that for single antenna transmission, NB LDPC codes outperform advanced

binary FEC scheme (DBTC) for all the scenarios. The gain is found to increase with

the constellation order, from 0.1 dB in QPSK to 0.8 dB in 64QAM. The average

gain between NB LDPC and DBTC is found around 0.25 dB, in line with the results

obtained in the DAVINCI project [14]. However, it must be said that in case of NB

LDPC the receiver is more complex than the binary receiver and this complexity

increase can be quantified around 10 times. Considering this complexity increase, we

have decided to further analyze the NB LDPC in a multi-antenna scenario, aiming

to evaluate the evolution of the gain in favor of NB LDPC. Before focusing on the

application of NB LDPC in multiple antenna systems, in the following chapter we will
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Figure 1.4: Performance for SISO systems over Rayleigh channel

briefly analyze the Multiple-Input-Multiple-Output (MIMO) system model without

FEC schemes. Specifically, we will introduce the main parameters enabling to evaluate

the Space-Time codes, the analythical description of the multi-antennas model, before

presenting the selected Space-Time codes.





Chapter 2

MIMO and Space-Time codes

in uncoded systems

In this we first present the motivation behind our choise of employing multi-antennas

techniques. Later we will introduce the multiple-antenna concepts in uncoded systems

and the main parameters necessary to analyze a Space-Time Code (STC), before

presenting the STCs under analysis in this thesis. A STC is a method employed to

improve the reliability or throughput of data transmission in wireless communication

systems using multiple transmit antennas. A general framework based on the Linear

Dispersion codes (LDC) is then presented allowing for universal study of all kinds of

STCs. Later we will show results for the reference STCs and MIMO configurations

considered in our study, before drawing the chapter conclusions.

2.1 Motivation behind the use of MIMO systems

The use of multiple antennas in wireless links with appropiate STC is rapidly becoming

the new frontier of wireless communications. Recent years have seen the field mature

substantially, both in theory and practice. Recent advances in theory include the solid

understanding of capacity and other performance limits of wireless links, propagation

and channel models. A growing awareness of the huge performance gains possible

with STC techniques has spurred efforts to integrate this technology into practical

systems. Traditionally, multiple-antennas have been employed to combat the channel

fading. Each pair of transmit antennas provides a signal path from the transmitter to

the receiver. By sending signals with the same information through different paths,



20 MIMO and Space-Time codes in uncoded systems

multiple independently faded replicas of data symbols can be obtained at the receiver

side; hence, more reliable reception can be achieved. One example of the previous

mentioned integration is the transmit diversity technique currently incorporated into

different 2.5G and 3G standards. A different approach suggests that if the path gain

between individual pairs fade independently, we can transmit independent informa-

tion, in order to increase the data rate. This approach is commonly known as Spatial

Multiplexing (SM). Recent effort have focused on introducing SM concepts into the

UMTS standard for mobile wireless, the IEEE 802.16 standard for fixed and nomadic

wireless and the IEEE 802.11 standard for wireless LANs. Thus, whilst the first

approach, i.e. Diversity technique, aims at improving the performance in terms of

error-protection, the second (SM) rather targets an increase of the data rate. All the

STC existing in the literature attempt to achieve the best trade-off between these

commonly opposing objectives as explained in [15].

2.2 MIMO channel model

In this section we aim to model the MIMO channel we have considered all along

this study. Specifically, let us consider a wireless link with NT transmit antennas

and NR receive antennas. Denoting the channel path coefficient between the j -th

(j = 1, · · · , NT ) transmit antenna and the i-th (i = 1, · · · , NR) receive antenna by

hi,j(t), the MIMO channel is given by the NR × NT H(t) with

H(t) =













h1,1(t) h1,2(t) · · · h1,NT
(t)

h2,1(t) h2,2(t) · · · h2,NT
(t)

...
...

. . .
...

hNR,1(t) hNR,2(t) · · · hNR,NT
(t)













(2.1)

Specifically, each channel path coefficient models the fading effects caused by the

superposition of a large number of independent scattered components, then the in-

phase and quadrature components of each channel path coefficient can be assumed

to be independent zero mean Gaussian processes. The envelope of the channel path

coefficient has a Rayleigh density function given by

f(h) =
2h

σ2
· e−h2

σ2 , h > 0 (2.2)
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where σ2 is the average power of each channel coeffiecient. Furthermore, we assume

the channel path coeffiecients to be temporally independent, i.e. they vary inpen-

dently from a realization to the following one. Moreover, for the rest of this thesis we

will omit the temporal index in the channel path coefficients.

2.3 Definition of the multiple-antenna model

According to [16] in a narrow band flat fading multi-antenna communication system

with NT transmit and NR receive antennas, the received signal can be expressed by:

y =

√

ρ

NT

·H · s + v (2.3)

where y ∈ CNR denotes the vector of complex received signal for each channel use,

s ∈ CNT is the vector of complex transmitted signals, H ∈ CNR×NT denotes the

channel matrix, and v ∈ CNR is the CN (0, 1) (zero-mean, unit variance, complex-

Gaussian) distributed, that is spatially and temporally white. The normalization
√

ρ
NT

ensures that ρ is the SNR at each receive antenna, independently of NT . As

mentioned in the previous section, we assume H to denote the uncorrelated Rayleigh

MIMO channel, i.e. all the entries of the H matrix are CN (0, 1) distributed, spatially

and temporally independent. Furthermore, we assume perfect channel knowledge at

the receiver side, but not at the transmitter side. If the channel is constant for T

channel uses, we can write:

yτ =

√

ρ

NT

·H · sτ + vτ , τ = 1, ..., T (2.4)

Now defining Y = [y1,y2, ...,yT ]t , S = [s1, s2, ..., sT ]t and V = [v1,v2, ...,vT ]t, we

obtain

Yt =

√

ρ

NT

· H · St + Vt (2.5)

It is more convenient to rewrite the previous equation in its transposed form, i.e.

Y =

√

ρ

NT

· S ·H + V (2.6)

where the transpose notation of H is omitted by simply redefining this matrix to have

dimension NT ×NR. The matrix Y ∈ C
T×NR is the received signal, S ∈ C

T×NT is the

transmitted signal and V ∈ CT×NR is the additive noise. The way, the information is

organized within a MIMO codeword, i.e. S, is specific to the given MIMO technique.
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2.3.1 Space-Time Codes parameters definition

In this section we present the main features to analyze any STC . These include the

spatial rate, diversity order, and orthogonality.

a. Time-depth

The Time-depth T of a STC is defined as the number of channel uses over

which a MIMO codeword is transmitted. Normally the channel is assumed to

be constant over T time interval. This is a reasonable assumption, because T

is tipically ≤ 2.

b. Parameter Q

The Q parameter sets the number of modulation symbols transmitted in a

MIMO codeword. This value is normally an even number, tipically 2 or 4.

c. Spatial Rate

The spatial rate is defined as

Rsp =
Q

T · min (NT , NR)
(2.7)

If Rsp = 1 the STC is said to be Full-Rate. This parameter is important as it

reflects how much redundancy lies in the MIMO codeword.

d. Diversity order

The diversity order is given by the number of independent fading experienced

by one transmitted data symbol. The best performance (in terms of error-

protection) is obtained when each symbol experiences independent fading on

all the paths it is transmitted across. The maximum achievable diversity for

different MIMO configurations is given in the Table 2.1.

The employment of a STC with higher Diversity order leads to a Diversity

gain in the error-rate performance. Let us briefly focus on the effects of a

diversity gain. As described in [17], assuming ML detection at the receiver, the

corresponding probability of symbol error is given by

Pe = Ne · Q
(
√

η · d2
min

2

)

(2.8)



2.3 Definition of the multiple-antenna model 23

Table 2.1: Maximum achievable diversity

Configuration Max Diversity

SISO 1

MISO NT

SIMO NR

MIMO NT × NR

where Ne and dmin are the number of nearest neighbors and the minimum

distance of separation of the underlaying scalar constellation, respectively. The

coefficient η is the Effective Signal-to-Interference-plus-Noise-Ratio (ESINR) for

that wireless path. For high SNR regime (ρ >> 1), Eq. (2.8) may be semplified

as

Pe ≤ Ne

(

ρ · d2
min

4NT

)−NT

(2.9)

Diversity hence affects the slope of the error-rate performance, as it will be

shown in the numerical results section fo this chapter. Specifically, the magni-

tude of the slope equals the diversity order.

e. Orthogonality and decoding complexity

A STC is said to be orthogonal if the columns of its encoding matrix, i.e. S

in (2.6), are orthogonal. This means that, for orthogonal schemes, transmitted

symbols can be easily decoupled through a linear operation, i.e. a multiplication

by a matrix. This has an impact on the decoding complexity. In general the

decoding process for a maximum likelihood receiver involves the joint decoding

of Q complex symbols. For example, assuming Q = 4 and 16QAM modulation,

there are 216 possible combinations to explore by the ML search, which reflects

a huge complexity. Having orthogonal encoding matrix can drastically reduce

the complexity thanks to the possibility of performing simple linear operations

at the same performance than the non-linear ML operation.
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2.3.2 Analyzed Space-Time Codes

In this study we consider the following STCs: Alamouti, Spatial Multiplexing and the

Golden Code. Note that all these schemes are considered in WiMAX IEEE 802.16m

standard, as specified in [18].

a. Alamouti Code

This well-known STC was presented in [19] and it has been originally designed

for MISO systems. According to this techniques, two different modulation sym-

bols s1 and s2 are transmitted simultaneously from antennas 1 and 2 respectively

during the first channel use, followed by signals −s∗2 and s∗1 from antennas 1 and

2 respectively during the second channel use. The resulting MIMO codeword

for Alamouti code can be composed as

S =

[

s1 s2

−s∗2 s∗1

]

(2.10)

Eq. (2.10) shows that, for the Alamouti code, the time-depth is T = 2 and

Q = 2. Despite Alamouti code has been designed for MISO transmissions, we

will employ it in MIMO systems, i.e. NR = 2. This scheme is half-rate, i.e.

from (2.7) Rsp = 1
2 . However, it has full-diversity and it is also orthogonal.

This means that for Alamouti the optimal ML decoding performance can be

achieved with linear receivers benefitting of significantly reduced complexity.

b. Spatial Multiplexing

Spatial Multiplexing (SM) offers a linear (in the number of transmit-receive

antenna pairs) increase in the transmission rate (or capacity) for the same

bandwidth and with no additional power expediture. SM is possible only in

MIMO systems. The bit stream to be transmitted is demultiplexed into two

half-rate sub-streams, modulated and transmitted simultaneously from each

transmit antenna. Under favorable channel conditions, we can assume the

received signals (one for each receive antenna) to be independent. The receiver,

having knowledge of the channel, can differentiate between the two co-channel

signals and extract both ones, after which demodulation yields the original sub-

streams that can now be combined to yield the original bit stream. Thus SM

increases transmission rate proportionally with the number of transmit-receive
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antenna pairs. This scheme is designed for T = 1, NT = 2 and Q = 2. The

resulting MIMO codeword for SM can be composed as

S = [ s1 s2 ] (2.11)

Spatial Multiplexing (SM) is full-rate but half-diversity. Specifically, SM has a

diversity order equal to 2, with a potential maximum diversity order of 4 (see

Table 2.1). This explains the expression half-diversity. However, this code is

not orthogonal; this means that non-linear ML decoding must be used in order

to achieve the optimum performance for this STC.

c. Golden Code

The Golden Code (GC) has been first introduced in [20] and it is designed for

MIMO 2 × 2 systems. It is a full-rate STC with diversity order equal to 4

based on the Golden number, i.e. θ = 1+
√

5
2 . This scheme is designed assuming

T = 2, NT = 2 , Q = 4. The GC is not orthogonal, and this might lead to

complexity issues considering that each MIMO CW based on GC encapsulates

4 modulation symbols, i.e. Q = 4, so that the ML decoding requires o(M4)

operations. The resulting MIMO CW for GC can be composed as

S =
1√
5
·
[

α(s1 + s2 · θ) jσ(α) · (s3 + s4 · σ(θ))

α(s3 + s4 · θ) σ(α) · (s1 + s2 · σ(θ))

]

(2.12)

where σ(α) = 1 + j · θ, σ(θ) = 1 − θ and α = 1 + j · σ(θ).

Table 2.2 summarizes the main parameters presented for each analyzed STCs.

Table 2.2: Summary of the selected STCs

Q T Rsp Diversity Order Orthogonality

Alamouti 2 2 1
2 4 Yes

SM 2 1 1 2 No

GC 4 2 1 4 No
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2.4 Universal framework of Linear Dispersion Codes

Linear Dispersion Codes (LDCs) were introduced in [16], and represent an interesting

framework to handle different STCs in a unique manner. Specifically, in this para-

graph first we will detail the analytical model of the LDC and then re-analyze the

selected STCs through the universal framework of the LDC.

2.4.1 Analytical description of Linear Dispersion Codes

Let each space-time transmission matrix S introduced in the previous sections repre-

sents the linear combination of Q modulation symbols, such as PSK or QAM symbols,

which are dispersed over both space and time with the motivation of exploiting both

the spatial and temporal diversity. We simply refer to this structure as Linear Dis-

persion Code (LDC). According to [16], a linear-dispersion codeword can be written

as follows:

S =

Q
∑

l=1

(αl ·Al + j · βl ·Bl) (2.13)

where sl = αl +j ·βl are the modulation symbols, whereas Al and Bl are fixed T ×NT

matrices that characterize each STC. Now the received signal expressed in (2.6) can

be modified as follows:

Y =

√

ρ

NT

·
Q
∑

l=1

(αl · Al + j · βl ·Bl) ·H + V (2.14)

The real and imaginary components of each matrix can then be written as:

YR + j · YI =

√

ρ

NT

·
Q
∑

l=1

[αl · (AR,l + j ·AI,l) + j · βl · (BR,l + j · BI,l)]·

(HR + j ·HI) + (VR + j ·VI) (2.15)

Moreover, we denote the columns of YR, YI , HR, HI , VR, VI as yR,n, yI,n, hR,n,

hI,n, vR,n, vI,n and define

Al =

[

AR,l −AI,l

AI,l AR,l

]

, Bl =

[

−BR,l −BI,l

BI,l −BR,l

]

, hl =

[

hR,l

hI,l

]

(2.16)
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where n ranges within 1, ..., NR (number of receive antennas). Finally, we rewrite

(2.6) into its equivalent real-valued vector form as follows:

y =

















yR,1

yI,1

· · ·
yR,NR

yI,NR

















=

√

ρ

NT

· H ·

















α1

β1

· · ·
αQ

βQ

















+

















vR,1

vI,1

· · ·
vR,NR

vI,NR

















=

√

ρ

NT

· H · s + v (2.17)

where y has dimensions equal to 2 ·NR · T × 1. H is the equivalent 2 ·NR · T × 2 · Q
real-valued channel matrix and it is given by 2.18.

H =







A1 · h1 B1 · h1 · · · AQ · h1 BQ · h1

· · · · · · · · · · · · · · ·
A1 · hNR

B1 · hNR
· · · AQ · hNR

BQ · hNR






(2.18)

H incorporates the effects of the channel matrix H and the dispersion matrices

{Al,Bl}, which are all known to the receiver. Hence the receiver uses (2.18) to

find the equivalent channel matrix H. The system of equations between transmitter

and receiver is not underdetermined as long as

Q ≤ NR · T (2.19)

2.4.2 Reference STCs under the LDC framework

In this paragraph we will reanalyze the selected STCs (presented in the previous

section) with the perspective of the LDC framework. Specifically, we aim to isolate

the linear dispersion matrices for any analyzed STC.

a. Alamouti

The T × NT linear dispersion matrices for Alamouti are reported in (2.20).































A1 =





1 0

0 1



 , B1 =





1 0

0 −1





A2 =





0 −1

−1 0



 , B2 =





0 1

1 0





(2.20)
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b. Spatial Multiplexing

The T × NT linear dispersion matrices for SM are reported in (2.21).

A1 = B1 = [ 1 0 ], A2 = B2 = [ 1 0 ] (2.21)

c. Golden Code

The T × NT linear dispersion matrices for GC are reported in (2.22).















































































A1 = B1 = 1√
5
·





1 + j − j · θ 0

0 1 + j − j · θ





A2 = B2 = 1√
5
·





θ(1 + j − j · θ) 0

0 θ(1 + j − j · θ)





A3 = B3 = 1√
5
·





0 1 + j − j · θ
j(1 + j − j · θ) 0





A4 = B4 = 1√
5
·





0 θ(1 + j − j · θ)
jθ(1 + j − j · θ) 0





(2.22)

2.5 Simulated Scenarios and Performance Analysis

Figure 2.1 depicts the system model used to simulate the transmission chain and

obtain the numerical results. In the baseline MIMO system depicted above, we can

observe that Bit Information is first mapped onto a stream of modulation symbols and

then organized in MIMO codewords by the MIMO Encoder. Specifically, the MIMO

Encoder uses the Linear Dispersion Matrices, presented in the previous section in

order to construct the MIMO codewords. The MIMO codewords are transmitted

over the MIMO Channel specified in Section 2.2. Then, the output of the MIMO

channel is received and processed by the MIMO Receiver in order to recover the

transmitted information. In the analysis of uncoded MIMO systems, we consider two

different receivers, i.e. the cascade Linear Equalizer - Hard Detector and the tradi-

tional Maximum Likelihood (ML). In the following, we briefly specify the operations

carried out by each receiver. The first receiver, i.e. the cascade Linear Equalizer

and Hard Detector, first performs a multiplication between the received signal by the
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Figure 2.1: Architecture of the simulated uncoded MIMO system

equalization matrix, as shown in (2.23).

x̂ = G · y = M · s + G · v (2.23)

where y is specified in (2.17), M is a 2Q×2Q real-values matrix, which links equalized

signal with transmitted signal. Matrix G is the equalization matrix, which could be

defined as GMMSE or GZF , whether the Minimum Mean Square Error (MMSE) or

Zero-Forcing (ZF) technique is selected.



















GMMSE =
√

ρ
NT

·
(

ρ
NT

· HT · H + I2Q

)−1

· HT

GZF =
√

NT

ρ
·
(

HT · H
)−1 · HT

(2.24)

Then, the equalized signal is passed to a Hard Detector, which produces the stream

of decided bits. Instead, if the Maximum Likelihood is employed, the receiver selects

the symbols which minimizes the following:

shd = argmin
s∈Ξ

‖y − ρ

NT

· H · s‖2 (2.25)

(equal to 4) where shd is the hard detected MIMO codeword, i.e. the combination of

Q modulation symbols, that minimizes the euclidean distance from the received signal

y. The term s indicates a possible combination of Q modulation belonging to the set

Ξ. Figure 2.2 shows the performance for a 4 Bits-per-channel-use (Bpcu) in case of

ML receiver. Specifically, we report the SNR vs Bit-Error-Rate (BER) performance,

where SNR = ρ. In this way we perform a fair comparison between the different

STCs analyzed in terms of net spectral efficiency as well as power efficiency. In fact

the BER performance of the analyzed STCs are functions of the SNR, i.e. the global

transmit power normalized by the thermal noise of each receive antenna, so that it

is fair comparing modulation of different orders. We can notice that GC (black line)

performs better than SM (red line) and Alamouti (blue line). In fact GC is a full
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Figure 2.2: Performance of different STCs detected with ML receiver

spatial rate Rsp = 1 and full-diversity (equal to 4) STC, so that it performs better

than SM because GC has a higher diversity order than SM. Alamouti code instead has

full diversity order, but it is an half rate STC and for this reason we need to increase

the modulation order to be fairly compared with SM and GC. Hence the coding gain

between Alamouti and GC at low BER is due to the difference in the spatial rate.

We can also appreciate that the slope of the GC curve is the same as Alamouti, since

both STCs have diversity order equal to 4. The SM instead has a diversity order

equal to 2 which is reflected by lower BER slope compared to Alamouti and GC.

Figure 2.3 shows the performance when the linear receiver is employed. Here we

can observe that only Alamouti achieves the optimum performance in terms of BER.

This is clearly thanks to the orthogonal structure of Alamouti. The other schemes

not orthogonal, suffer from cross-channels interference, which cannot be mitigated

through linear equalization. This explains the strong degradation for SM and GC.

Moreover, the performance gap due to the difference in diversity order between GC

and SM is much reduced due to the dominant interference.
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Figure 2.3: Performance of different STCs detected with MMSE-based receiver

2.6 Conclusions

In this chapter we have introduced the MIMO concepts in uncoded systems, i.e.

without channel coding. Specifically, we have first detailed the MIMO channel model,

which will be used all along this work. Later we have analyzed the multiple-antenna

system model and presented the STCs under analysis. We have also introduced

the universal framework of the LDC, and characterized the selected STCs through

the linear dispersion matrices. From the simulation results we can end up that

Alamouti has been shown to always outperform SM and Golden codes in terms of error

protection at constant spectral efficiency of 4 Bpcu. Linear receivers are verified to

achieve the optimal performance for orthogonal codes. Next, we will show that using

a very powerful channel coding (in combination with these STCs), linear receivers

could still be used to decode non orthogonal codes.





Chapter 3

Exploiting non-binary LDPC

in MIMO systems

In this chapter we analyze the application of the powerful channel coding scheme of

NB LDPC codes in system employing multiple antennas. Specifically, first we describe

a typical system model using NB LDPC codes jointly with MIMO concepts. Second

we state the issues to face when a non-binary channel code is combined with multiple

antennas techniques. Later we present the demapping techniques we have adopted in

order to compute the soft information, which must be passed to NB LDPC decoder in

order to obtain the decided GF(64) stream. Furthermore, we highlight the necessary

changes to apply to this non-binary system whether exploiting a conventional binary

FEC, such as DBTC. Performance analysis and comparison is presented not only from

the error protection perspective but also from complexity point of view.

3.1 System model description

Figure 3.1 shows the system model under analysis in this chapter. A stream of K

information GF(64) symbols is passed to the NB LDPC encoder, which produces a

stream of N coded GF(64) symbols. The coded stream is interleaved by the interleaver

and then mapped onto modulation symbols. The stream of modulation symbols is

later organized in MIMO codewords and transmitted over the channel.

It is worth mentioning that we stick to practical MIMO systems, i.e. 2 transmit

antennas and 2 receive antennas. At the receiver side, the received signal is first

passed in the Soft Information Computation (SIC) block, which extracts the LLR.
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Figure 3.1: Architecture of the transmission system

The soft information is then passed to the de-interleaver, which performs the inverse

operation done at the transmitter side. Finally, the output of the de-interleaver block

is passed to the NB LDPC decoder, which produces the decided stream of GF(64)

symbols. Now let us focus on the system blocks, which we have not detailed in

the previous chapters yet. Specifically, hereafter we will present the interleaver/de-

interleaver, the QAM mapper and the MIMO encoder. Algorithms designed for the

LLR computation (implemented by the SIC block) will be deeply analyzed in the

following of this chapter.

a. Interleaver/De-Interlaver

The interleaver applies an interleaving operation on the stream of N GF(64)

symbols. This interleaving is performed at GF(64) symbol-level. This means

that we are assuming our system to be a Coded Modulation (CM) one . At the

receiver side the de-interleaver performs the inverse of the interleaving operation.

b. QAM mapper

In order to map the stream of coded GF(64) symbols onto the QAM constel-

lation symbols, each GF(64) symbols in the FEC codeword is first converted

back to its binary image of log2(q) bits, so that each group of log2(M) is

mapped onto a modulation symbol, using Gray-mapping. Let us note that

some modulation symbols may carry parts of different GF(64) symbols from

the non-binary codeword.

c. MIMO Encoder

The stream of QAM symbols undergoes spatial coding, which means that QAM

symbols are arranged in groups of Q symbols. Each group is encoded by the

MIMO encoder into a MIMO codeword S of T × NT complex symbols, with

NT being the number of transmitter antennas and T the STC length. In our
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analysis the MIMO encoder can select different STBCs: in the first part of this

chapter we focus only on two of those STBCs, i.e. Alamouti and SM (both

with Q = 2). It is worth noting that Alamouti maximizes the Space-Time

robustness of the information, whereas SM maximizes the throughput. Later

in the following chapter we will include also two additional STBCs, i.e. Golden

Code and an iterative STC (both with Q = 4), presented in [21].

At the receiver side each received MIMO codeword can be expressed by:

Y =

√

ρ

NT

· S ·H + V (3.1)

where H ∈ CNT×NR denotes the Rayleigh fading channel matrix, NR is the number

of receive antennas, V ∈ CT×NR has zero-mean, unit-variance, and spatially and

temporally white distributed entries. Furthermore, the normalization
√

ρ
NT

ensures

that ρ is the SNR at each receive antenna. In the sequel, we assume perfect knowledge

of the channel state information only at the receiver side, but not at the transmitter.

3.2 Problem statement

As suggested in [6], in order to ensure a bijective mapping between GF(64), QAM

symbols and MIMO codewords we have to map first a vector d of m1 GF(64) symbols

onto a vector x = [x1, · · · , xm2] of m2 QAM symbols; then, the vector x must be

mapped onto m3 MIMO codewords, such that the three vectors have the same length

expressed in (coded) bits:

m1 × log2(q) = m2 × log2(M) = m3 × Q × log2(M) (3.2)

Figure 3.2 shows the different layers of encapsulation of the information as also shown

in (3.2). Specifically, we can observe that the stream of K information GF(64)

symbols is first encoded onto N coded GF(64) symbols. Then the binary image

of each coded GF(64) symbol must be explicited in order to be mapped onto QAM

symbols. Finally, the stream x of QAM symbols is organized in MIMO codewords by

the MIMO encoder. In [6], one of the configurations analyzed is based on GF(64),

mapped onto QPSK symbols, and transmitted through Spatial Multiplexing (SM)

with a 3 × 3 MIMO configuration. In this particular case, the above parameters in
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Figure 3.2: Different layers of information encapsulation

(3.2) take the following values: m1 = 1, m2 = 3, m3 = 1. A second case studied in [6] is

based on GF(256), mapped onto QPSK symbols, and transmitted through SM with a

4×4 MIMO configuration. In this second case the parameters in (3.2) take the values:

m1 = 1, m2 = 4, m3 = 1. It is worth noting that in both cases the setting of Galois

Field order, constellation size, and MIMO configuration, is particularly chosen to

yield m1 and m3 both equal to 1, so that the problem of soft information computation

complexity at the receiver is avoided. For those specific cases, where one GF(q) symbol

is transmitted over exactly on MIMO CW, the demapping complexity is extremely

simplified as long as the complexity could have the same order of magnitude of the

SISO case, with equivalent spectral efficiency. However, along this work we consider

those cases as very particular corner cases and we will not focus on them. In this

work, one of the main target is to remove any constraint on such settings and focus

on a more practical MIMO configuration (2 × 2), with different QAM constellation

sizes (QPSK, 16-QAM, 64-QAM) and different STCs. Assuming q = 64, Table 1

gives the values of m1, m2 and m3 for each constellation assuming to use STBCs with

Q = 2 (Alamouti or SM). Assuming a Galois Field order q = 64 with 2 × 2 MIMO
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Table 3.1: Values of m1, m2 and m3

Modulation QPSK 16-QAM 64-QAM

(m1,m2,m3) (2,6,3) (4,6,3) (2,2,1)

configuration and allowing any constellation size, we clearly fall in the general case

where one GF(64) symbol is transmitted over more than one MIMO codewords (e.g.

QPSK and 16QAM in Table 3.1 where m1 6= 1). This is when the complexity of the

soft information computation becomes challenging as detailed and mitigated by the

solutions proposed in the next chapter.

3.3 Soft Information Computation

This section details the Soft Information Computation (SIC) for NB LDPC codes in

multi-antennas systems. Specifically, two solutions are presented: a straightforward

solution based on linear equalizers and a second solution based on a soft version of

maximum likelihood demapper. As known from chapter 1, the NB LDPC decoder

requires, for each received GF(64) symbol, a vector of 64 Logarithmic Likelihood

Ratio (LLR) values. Note that in the binary case only one LLR value is required as

commonly known.

3.3.1 Linear Equalizer-based demapper

In this section we present the first receiver employed in our study. This receiver is

essentially based on a cascade of a MIMO Linear Equalizer and a Soft Demapper.

We divide the analysis of this receiver in two subsections, where the first depicts

the concepts of the MIMO Linear Equalization (coherently with what was presented

in Chapter 2), and the second focuses on the soft demapper, where the analysis per-

formed for the SISO transmission in Chapter 1 will be generalized considering multiple

antennas. For this receiver, we have considered the LDC model more convenient to

handle, so we consider (2.17) as the received signal.
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3.3.1.1 MIMO linear equalization

As explained in chapter 2, MIMO linear decoders represent interesting solutions for

their simplicity. Specifically, the MIMO Linear Equalizer performs simply a multi-

plication by a matrix, which allows to extract modulation symbols from the received

MIMO CW. In fact one additional benefit deriving from the use of the MIMO Linear

Equalizer is that its output is a single stream, as if it has passed through an equivalent

SISO channel. Therefore, soft demappers, previously defined for SISO, can be used

with minor changes. So the received MIMO CW is first equalized, obtaining the signal

in (2.23) and then passed to the soft demapper. Two possible equalizations matrices,

presented in (2.24), have been considered in our study, i.e. ZF and MMSE.

3.3.1.2 MIMO soft demapper

In this paragraph we will generalize the analytical details of the soft demapping,

presented for SISO systems, for the MIMO system using linear equalizers. Assuming

of having received (2.23), eq. (1.13) for SISO can be modified as shown in (3.3).

Li,k = ln

(

P [bi = αk|x̂]

P [bi = α0|x̂]

)

(3.3)

where i ∈ 1, · · · , m1, k ∈ 1, · · · , q − 1. Like the SISO case, generally more than one

coded GF(64) symbol is involved in the mapping, so that, in order to calculate the

LLR vector, we require a marginalization,

Li,k = ln

∑

b∈Bk
i

P [b|x̂]

∑

b∈B0

i

P [b|x̂]
= ln

∑

b∈Bk
i

p[x̂|b] · P [b]

∑

b∈B0

i

p[x̂|b] · P [b]
(3.4)

where b = [b0, · · · , bm1−1] is the coded GF(64) symbol vector, Bk
i = {b : bi = αk}

is the set of all coded GF(64) symbol vectors where the i-th component equal to αk.

Assuming again all the coded symbol vector (with length m1 GF(64) symbols) to be

equiprobable and the channel memoryless, we can rewrite the (3.4) as:

Li,k = ln

















∑

b∈Bk
i

m2−1
∏

j=0

p(x̂j |b)

∑

b∈B0

i

m2−1
∏

j=0

p(x̂j |b)

















(3.5)
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where x̂j is the j -th component of the equalized vector x̂ = [x̂1, · · · , x̂m2]. However,

for a matter of implementation complexity, it is more convenient to rewrite (3.5)

without considering the vector b, but each bi element (with i = {1, · · · , m1}). In

fact each bi element is exactly mapped onto n2 modulation symbols. Specifically, n2

(≤ m2) is the number of modulation symbols over which the i-th GF(q) symbol is

mapped. Hence Eq. (3.5) can be rewritten as

Li,k = ln















n2−1
∏

j=0

p(x̂j |bi = αk)

n2−1
∏

j=0

p(x̂j |bi = α0)















(3.6)

Let us note that (3.5) can be rewritten as (3.6) thanks to the linear equalization,

which allows to decouple modulation symbols from each MIMO codeword, so that

the stream of equalized modulation symbols can be reorganized in order to obtain

each equalized GF(q) symbol. Furthermore, the pdf of the equalized signal can be

expressed by:

p(x̂j |x(k)
j ) =

ρ

π
· exp

[

−ρ
|x̂j − βj · x(k)

j |2
λj

]

(3.7)

where x
(k)
j = µj(αk), being µ(·) the mapping function. The parameter λ takes into

account the effects of the matrix G on the noise realization received on each antenna.

Specifically, the coefficient λ is defined as

λj =
ηj

ρ
(3.8)

where η is the Effective-Signal-to-Interference-plus-Noise-Ratio and is defined as [22]

ηj =
diag[D · DT ]j

diag[ 1
ρ
G · GT + Iself · IT

self ]j
(3.9)

where D = diag[G ·H] and Iself = G ·H−D. The operator diag[.] takes the elements

on the diagonal and creates another matrix having those elements on the diagonal

and null elements elsewhere. According to [23], assuming the exploitation of the ZF

equalization, Eq. (3.9) becomes

η
(ZF )
j =

ρ

[H · HT ]−1
j,j

(3.10)
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Instead eq. (3.9) becomes (3.11) whether the MMSE equalization is used, according

to [23].

η
(MMSE)
j =

ρ

[H · HT + NT

ρ
· I2Q]−1

j,j

− 1 (3.11)

The coefficients β reflect the amplification effect introduced by the equalization matrix

G on the transmitted information signal at each receive antenna. These coefficients

are obtained as:

βj = Mj,j (3.12)

where M has been introduced in (2.23). The coefficients λ and β might be consid-

ered constant for T intervals if the channel is static during T channel uses. Now

substituting (3.7) in (3.6) we obtain:

Li,k = ln





















exp






−ρ

n2−1
∑

j=0

∣

∣

∣x̂j − βj · x(k)
j

∣

∣

∣

2

λj







exp






−ρ

n2−1
∑

j=0

∣

∣

∣x̂j − βj · x(0)
j

∣

∣

∣

2

λj



























(3.13)

Similarly to the SISO case, since the denominator does not depend on k, we can

compute only the first term and then normalize such that Li,0 = 1.

Li,k = ln






exp






−ρ

n2−1
∑

j=0

∣

∣

∣x̂j − βj · x(k)
j

∣

∣

∣

2

λj












(3.14)

Specifically, the general Eq. (3.14) can be specified for any considered modulation,

reminding that the Galois Field order q has been set to 64.

a. QPSK

In this case a GF(64) symbol is mapped exactly onto 3 QPSK symbols, so that

three equalized QPSK symbols need to be considered in the computation of the

LLRs for the given GF(64) symbol. The LLRs for each received GF(64) symbols

can be computed as devised in (3.15).

Li,k = ln






exp






−ρ

2
∑

j=0

∣

∣

∣x̂j − βj · x(k)
j

∣

∣

∣

2

λj












(3.15)
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where all the parameters were presented above. Let us note that all the quan-

tities in (3.15) are complex values.

b. 16-QAM

Here the computation of the LLRs seems to be slightly more complex because

one GF(64) symbol does not match into an integer number of 16-QAM symbols.

However, if we assume to use the Gray mapping, i.e. real and imaginary parts

of the same symbol are uncorrelated, we can assume that each GF(64) symbol

is mapped exactly onto one 16-QAM plus one real or imaginary part. The LLRs

for each received GF(64) symbols can be computed as devised in (3.16).

Li,k = ln






exp






−ρ

2
∑

j=0

(

x̂j − βj · x(k)
j

)2

λj












(3.16)

Unlike the QPSK case the quantities in (3.16) are real values.

c. 64-QAM

Here the computation of the LLRs is simple thanks to the perfect matching

between one GF(64) symbol and a 64-QAM symbol. So the LLRs for each

received signal can be computed according to (3.17).

Li,k = ln






exp






−ρ

∣

∣

∣x̂j − βj · x(k)
j

∣

∣

∣

2

λj












(3.17)

Similarly to the QPSK case all the quantities in (3.17) are complex values.

3.3.2 Soft Maximum Likelihood demapper

In this section we present the second solution for non-binary demapping, which is

based on the ML approach. For uncoded systems (without channel coding) the

ML receiver achieves the best performance for orthogonal and non-orthogonal codes.

However, this ML receiver performs hard decisions and is not suited for the case of

soft-decoders. On the other hand, we observe that the distances in the ML expression

perfectly match what is required for the LLRs computation. This second solution

aims at obtaining the LLR vector directly from the received MIMO codewords with-

out any operation of equalization, thus avoiding potential information losses in any
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intermediate step and hence guaranteeing closer-to-the-optimal performance. This

solution is referred as Soft Maximum Likelihood (SoftML) [24].

3.3.2.1 LLR computation using SoftML

Unlike the previous solution, for this SoftML method we stick to matrix-based multi-

antenna signal model, i.e. we consider (2.6) as received signal. In this paragraph

we will detail the soft demapping, presented for SISO systems for the MIMO system

using softML method. Assuming of having received (2.6), eq. (3.4) for MIMO using

linear equalizers can be modified as shown in (3.18).

Li,k = ln

∑

b∈Bk
i

P [b|Y]

∑

b∈B0

i

P [b|Y]
= ln

∑

b∈Bk
i

p[Y|b] · P [b]

∑

b∈B0

i

p[Y|b] · P [b]
(3.18)

where once again k = 1, · · · , q, b = [b0, · · · , bm1−1] is the coded GF(64) symbol vector

and Y is a vector of m3 matrices, i.e. one for each MIMO codeword. Specifically,

each group b of m1 GF(64) symbols is mapped over a group of m3 MIMO codeword,

denoted Y, where Y = [Y1, · · · ,Ym3
]. Assuming again all the coded symbol vector

(with length m1 GF(64) symbols) to be equiprobable and the channel memoryless,

we can rewrite the (3.18) as:

Li,k = ln

















∑

b∈Bk
i

m3−1
∏

j=0

p(Yj |b)

∑

b∈B0

i

m3−1
∏

j=0

p(Yj |b)

















(3.19)

where Yj is the j -th received MIMO CW in the vector Y. However, for a matter of

complexity, it is more convenient to rewrite (3.19) without considering the vector b,

but each bi element (with i = {1, · · · , m1}). In fact each bi element is mapped onto

n3 MIMO codewords. Specifically, n3 (≤ m3) is the number of MIMO codewords

over which the i-th GF(q) symbol is transmitted. It is fundamental to specify that n3

MIMO codewords do not carry exactly one GF(q) symbol, but they transport a piece
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of information greater or equal to a GF(q) symbol. Eq. (3.19) can be rewritten as

Li,k = ln















n3−1
∏

j=0

p(Yj |bi = αk)

n3−1
∏

j=0

p(Yj |bi = α0)















(3.20)

Let us note that, in this second demapping method, modulations symbols are not

decoupled from the MIMO codewords, so there might be no matching between one

GF(q) symbol and an integer number of MIMO codewords. For this reason we have

specified that n3 MIMO CWs do not necessarely match to one GF(q) symbol, so that

this fact might affect the demapping complexity.In the context of this second method,

the pdf of the received signal (i.e. the received MIMO CW) can be expressed by:

p(Yj |S(k)
j ) =

ρ

π
· exp

[

−ρ

∥

∥

∥

∥

Yj −
√

ρ

NT

· Hj · S(k)
j

∥

∥

∥

∥

2

F

]

(3.21)

where S
(k)
j = φj(µ(αk)), being φ(.) and µ(·) the MIMO coding function and the

mapping function, respectively. Instead the Frobenius norm has been indicated by

‖(.)‖F . Now substituting (3.21) in (3.20) we obtain:

Li,k = ln

















exp



−ρ

n3−1
∑

j=0

∥

∥

∥

∥

Yj −
√

ρ

NT

·Hj · S(k)
j

∥

∥

∥

∥

2

F





exp



−ρ

n3−1
∑

j=0

∥

∥

∥

∥

Yj −
√

ρ

NT

· Hj · S(0)
j

∥

∥

∥

∥

2

F





















(3.22)

Since the denominator does not depend on k, we can compute only the first term and

then normalize such that Li,0 = 1.

Li,k = ln



exp



−ρ

n3−1
∑

j=0

∥

∥

∥

∥

Yj −
√

ρ

NT

·Hj · S(k)
j

∥

∥

∥

∥

2

F







 (3.23)

However, hereafter we present another manner of formulating the LLR extraction [24],

more implementation-oriented. According to [24], the LLR computation using this

method can be splitted into two major steps: i) Euclidean distances computation, and

ii) Marginalization across all possible combinations. In the first step, we compute the



44 Exploiting non-binary LDPC in MIMO systems

distances between each received MIMO CW and any possible combination having the

same bit length. In the second step the LLR vector of any received GF(64) symbol

is computed. This approach limits the number of distances computed to its lower

bound (binary case). Denoting by γ = log2(q) and δ = log2(M)×Q, let us introduce

the two parameters as shown in (3.24).

lmin
i =

⌊

i · γ
δ

⌋

, lmax
i =

⌊

(i + 1) · γ
δ

− 1

⌋

(3.24)

Specifically, parameters lmin
i and lmax

i allow to select the proper MIMO codewords for

any received GF(64) symbol, so that the marginatization for each received GF(64)

symbol is performed only among the n3 MIMO codewords encapsulating it. In (3.24)

the index i ranges from 0 to m1 − 1. For a memoryless MIMO channel, we can write

the k -th (k = 0, · · · , q − 1) LLR value for the i-th (i = 0, · · · , m1 − 1) GF(64) coded

symbol as

Li,k = ln

∑

b∈∆k
i

exp

lmax

i
∑

l=lmin

i

∥

∥

∥

∥

Yl −
√

ρ

NT

· Hl · φl (µ(d))

∥

∥

∥

∥

2

F

∑

b∈∆0

i

exp

lmax

i
∑

l=lmin

i

∥

∥

∥

∥

Yl −
√

ρ

NT

· Hl · φl (µ(d))

∥

∥

∥

∥

2

F

(3.25)

where φl (µ(d)) denotes the l-th MIMO codeword obtained mapping and MIMO

encoding vector d. Instead the set ∆k
i can be computed following the hereafter

detailed steps:

a. Allocate a vector of m3 × log2(M) × Q bits

b. Insert the binary image of the GF symbol αk in the positions [i·γ÷(i+1)·γ−1],

and complete with any possible binary configuration in the remaining positions.

c. Select the [lmin
i · δ ÷ (lmax

i + 1) · δ − 1] bits and discard the others.

The vector d is one combination within the set ∆k
i . Since the denominator in (3.25)

does not depend on k, we can compute only the first term and then normalize such

that Li,0 = 1.

Li,k = ln
∑

b∈∆k
i

exp

lmax

i
∑

l=lmin

i

∥

∥

∥

∥

Yl −
√

ρ

NT

· Hl · φl (µ(d))

∥

∥

∥

∥

2

F

(3.26)
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3.4 Performance Analysis

In this section we present the performance (in terms of Frame-Error-Rate) analysis for

different scenarios. The main goal of this section is to achieve a better understanding

of: i) which demapping strategy produces better results, when combined with non-

binary LDPC codes, ii) which STC is best suited to be integrated in systems employing

non-binary LDPC, iii) how the gain between NB LDPC codes and DBTCs evolves

from SISO scenarios to the MIMO ones. The complete list of analyzed scenarios is

reported in Table (3.2). Specifically, in Table (3.2) we refer to the number of Coded-

Bits-per-Channel-use and to the FEC Codeword Length as CBpcu and Cw Length,

respectively.

Table 3.2: List of simulated scenarios

Scenario CBpcu Code Rate Cw Length

Scenario 1 4 1/2 96 GF(64) symbols

Scenario 2 4 1/2 384 GF(64) symbols

Scenario 3 4 2/3 96 GF(64) symbols

Scenario 4 4 3/4 96 GF(64) symbols

Scenario 5 4 5/6 96 GF(64) symbols

Scenario 6 4 5/6 384 GF(64) symbols

Scenario 7 12 1/2 96 GF(64) symbols

Scenario 8 12 1/2 384 GF(64) symbols

Scenario 9 4 1/2 48 GF(64) symbols

All the simulations have been performed assuming to exploit the max-Log-MAP

approximation of the demapping expression, so that the sum in (3.26) becomes a

comparison. This enables to reduce the receiver complexity without introducing

appreciable degradation.
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3.4.1 Scenarios with spectral efficiency of 2 Bits/s/Hz

The first scenario targets a net spectral efficiency of 2 bits/s/Hz, achieved using STCs

providing 4 CBpcu and having a FEC coding rate equal to 1
2 . The codeword length

is equal to 576 bits (equivalent to 96 GF(64) symbols). We assume a frequency-flat

and time and space independent Rayleigh fading channel. In this first scenario, three

different MIMO configurations are evaluated:

a. First configuration (diamond markers) is based on QPSK with SM, detected by

the cascade of Linear Equalizers (MMSE) and the Soft Demapper;

b. Second configuration (square markers) is based on QPSK with SM detected by

a Soft ML receiver;

c. Third configuration (circular markers) is based on 16-QAM and Alamouti,

detected by the cascade of Linear Equalizer (ZF) and the Soft Demapper.

For each configuration, we include the performance of NB LDPC (continuous lines)

and its binary counterpart (dashed lines), i.e. DBTCs. We also show the SISO curves

(lower triangular markers) at the same spectral efficiency (i.e. 16QAM is used) in

order to quantify the evolution of the performance gap between NB LDPC and DBTC

when moving from SISO to MIMO configurations. The performance for scenario 1 is

depicted in Figure 3.3.

First, let us focus on the non-binary performance and compare the first (a) and

the second (b) configurations. The SoftML demapper is shown to outperform the

MMSE-based one with a gain of around 1.8 dB at FER ∼ 10−3. This coding gain

can be explained mainly by the fact that the SoftML manages to eliminate cross-

channel interference, whilst the MMSE-based demapper does not. This highlight the

main drawback with Linear Equalizers used to demap non-orthogonal STCs. Instead

Alamouti can be detected using linear equalizers (ZF), without any performance loss

(with respect to the SoftML). Let us then compare the second (b) and the third

(c) configurations. We can observe that SM (demapped with SoftML) outperforms

Alamouti with 0.9 dB SNR gain: this could be explained reminding that Alamouti is a

half-rate STC, unlike the SM, which is full-rate. For this reason in order to perform a

fair comparison (at the same spectral efficiency) between Alamouti and SM, we needed

to increase the order of the modulation symbols, transmitted in the Alamouti MIMO
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Figure 3.3: Performance for Scenario 1

CW. However, Alamouti is a good solution, because it can be demapped with linear

equalizers, without any performance detritment, being Alamouti code orthogonal. At

the same time we have proved that that SM jointly with NB LDPC has very interesting

performance. Now with comparison to DBTC, NB LDPC is shown to provide more

gain for the second configuration, i.e. where the SoftML is able to better exploit the

channel diversity. For this second configuration, the gain provided by NB LDPC with

respect to DBTC is around 0.7 dB. In order to better explain the reasons why the gain

between NB LDPC codes and DBTCs is particulary high for the (b) configuration let

us introduce the definition of Diversity-per-GF-symbol.

Definition 1 The Diversity-per-GF-symbol (DGFS) is the number of independent

paths over which a GF(q) symbol is transmitted.

Let us note that this definition is different from the traditional definition of Diversity

in [25]. Specifically, the conventional Diversity definition states that the same signal is

transmitted over different independent paths, equal to the Diversity order. The DGFS

is not the same since one GF(q) symbol might be transmitted in more than one signal
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(i.e. MIMO CW). Even though these two definitions are different, using the term

Diversity (in the acronym DGFS) we want to emphasize that a GF(q) symbol might

be transmitted over different channels, which fade independently. In this way the

robustness of the GF(q) symbol turns out to increase, whether the DGFS increases.

After having introduced the DGFS definition, we can continue with the explaination of

the simulation results for the Scenario 1. Let us observe that for the configuration (b)

each GF(64) symbol is mapped onto three modulation symbols and transmitted over

two MIMO CWs (note that two MIMO CWs carry more than one GF(64) symbol).

So the DGFS is equal to 6 for any transmitted GF(64) symbol. Configuration (a)

has the same DGFS, but the cross-channel interferences introduce here a distructive

effect. Instead for configuration (c) each GF(64) symbol has a DGFS equal to 4,

considering that each MIMO codewords is transmitted over 2 channel uses and also

that the Alamouti code (thanks to its orthogonality) eliminates cross-channel signals.

For the SISO case the DGFS is instead equal to 2. In summary there is more diversity

to be recover for the configuration (b), so that this explains why NB LDPC codes

provide more gain (wrt DBTCs) in this case. Finally, we can also observe that the

gain of NB LDPC increases from SISO to MIMO, when most DGFS is available to

be recovered by the NB LDPC codes, i.e. for the configuration (b).

Let us focus now on the second scenario (Figure 3.4). The second scenario targets

a net spectral efficiency of 2 bits/s/Hz, achieved using STCs providing 4 CBpcu and

having a FEC coding rate equal to 1
2 , but this time the codeword length has been

set to 2304 bits (equivalent to 384 GF(64) symbols). The simulated configurations

are the same of the previous scenario. The main difference from this scenario and

scenario 1 is that the slopes of any simulated configurations are now steeper than

their counterpart of scenario 1. This can be easily explained having increased the

FEC codeword length from 96 GF(64) symbols to 384 GF(64) symbols, so that longer

FEC codewords allow to achieve lower FER performance at lower SNR values. The

remaining conclusions that can be drawn from this scenario are the same drawn from

Scenario 1: configuration (b) in combination with NB LDPC outperforms any other

configurations; NB LDPC are shown to outperform DBTCs with greater gap where

more DGFS is available, i.e. configuration (b). Once again NB LDPC codes are

shown to produce a greater gain (wrt DBTCs) when moving from SISO to MIMO

(when configuration (b) is selected).
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Figure 3.4: Performance for Scenario 2

3.4.2 Scenario with spectral efficiency of 2.66 Bits/s/Hz

In this subsection we present the FER performance of the analyzed configurations at

a net spectral efficiency of 2.66 Bits/s/Hz, achieved using STCs providing 4 CBpcu

and having a FEC coding rate equal to 2
3 . For this scenario the FEC codeword length

is equal to 576 bits (equivalent to 96 GF(64) symbols). Once again we assume a

frequency-flat and time and space independent Rayleigh fading channel. The analyzed

configurations are the same presented in the previous subsection. The performance

for this scenario is depicted in Figure 3.5. First let us observe configuration (a) with

NB LDPC and compare it with configuration (b): we can appreciate that the gain in

favor of configuration (b) now increases up to 2.5 dB at FER ∼ 10−3. This increase

of the SNR gap compared to the two previous scenarios can be explained by the fact

that using a channel coding rate of 2
3 , the information is less protected than in the

first scenario. So, the cross-channel interference introduces here a more destructive

effect than in the first scenario. Similar to our conclusion in the previous scenarios, we

find that configuration (b) is the optimal solution and that NB LDPC codes perform
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Figure 3.5: Performance for Scenario 3

better than DBTCs for any configuration. Specifically, for any configurations we can

also notice that the gap between NB LDPC codes and DBTCs is slighly increased

(about 0.1 dB) wrt the scenarios with spectral efficiency equal to 2 Bits/s/Hz: this

proves that NB LDPC codes perform better than DBTCs for higher code rates.

We can also observe that the slope of the curve representing configuration (c) with

NB LDPC codes is now steeper than the one for configuration (b) (still with NB LDPC

codes): this is due to the fact that Alamouti code has a diversity order of 4, whereas

SM only of 2. This fact does not have any appreciable effect in the previous scenarios,

since the information was well protected by the FEC scheme. Now the FEC scheme,

being the rate higher, protects transmitted information in a less robust manner, so

that the higher diversity of Alamouti permits a steeper slope (than the one for SM)

in the waterfall region of the FER performance. Finally, we can observe that the

gain in favor of NB LDPC increases from SISO to MIMO whether configuration (b)

is employed. This gain for configuration (b) is about 0.9 dB and it can be explained

considering that configuration (b) has more DGFS to be recovered than any other

analyzed configuration.
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3.4.3 Scenario with spectral efficiency of 3 Bits/s/Hz

In this subsection we present the FER performance of the analyzed configurations

at a net spectral efficiency of 3 Bits/s/Hz, achieved using STCs providing 4 CBpcu

and having a FEC coding rate equal to 3
4 . For the fourth scenario the FEC codeword

length is equal to 576 bits (equivalent to 96 GF(64) symbols). Once again we assume a

frequency-flat and time and space independent Rayleigh fading channel. The analyzed

configurations are the same analyzed in the previous scenarios, i.e.

a. First configuration (diamond markers) is based on QPSK with SM, detected by

the cascade of Linear Equalizers (MMSE) and the Soft Demapper;

b. Second configuration (square markers) is based on QPSK with SM detected by

a Soft ML receiver;

c. Third configuration (circular markers) is based on 16-QAM and Alamouti,

detected by the cascade of Linear Equalizer (ZF) and the Soft Demapper.

The performance for this scenario is depicted in Figure 3.6. Let us observe config-

uration (a) combined with NB LDPC and compare it with configuration (b) (still in

combination with NB LDPC): we can appreciate that the gain in favor of configuration

(b) now increases up to 3 dB at FER ∼ 10−3. This increase of the SNR gap can be

explained, coherently with what has been said for the Scenario 3, by the fact that

using a channel coding rate of 3
4 , the information is less protected than in the previous

three scenarios.

Similar to our conclusion in the previous scenarios, we find that configuration (b) is

the optimal solution and that NB LDPC codes perform better than DBTCs for any

configuration. For this scenario we can appreciate that each configuration combined

with NB LDPC codes has an higher slope in the waterfall region of the FER perfor-

mance wrt its counterpart employing DBTCs. This clearly confirms that NB LDPC

codes performs better than DBTCs in higher spetral efficiencies regimes. Coherently

with scenario 3, we can observe that the slope of the curve representing configuration

(c) with NB LDPC codes is even more steeper than the one for configuration (b) due

to the fact that Alamouti code has higher diversity order than SM. Finally, we can

observe that the gain in favor of NB LDPC increases from SISO to MIMO whether

configuration (b) is employed. This gain for configuration (b) is about 0.9 dB and it
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Figure 3.6: Performance for Scenario 4

can be explained considering that configuration (b) has more DGFS to be recovered

than any other analyzed configuration.

3.4.4 Scenario with spectral efficiency of 3.33 Bits/s/Hz

In this subsection we present the FER performance of the analyzed configurations at a

net spectral efficiency of 3.33 Bits/s/Hz, achieved using STCs providing 4 CBpcu and

having a FEC coding rate equal to 5
6 . For the fifth scenario the FEC codeword

length is equal to 576 bits (equivalent to 96 GF(64) symbols). Once again the

analyzed configurations are the same, but we included also the SISO curve at the

same spectral efficiency in order to appreciate the evolution of the gap between NB

LDPC codes and DBTCs when moving from SISO to MIMO. The performance for

this scenario is depicted in Figure 3.7. Let us observe configuration (a) combined

with NB LDPC and compare it with configuration (b) (still in combination with NB

LDPC): we can appreciate that the gain in favor of configuration (b) now increases

up to 4 dB at FER ∼ 10−3. Once again we observe that configuration (b) is the

optimal solution and that NB LDPC codes perform better than DBTCs for any
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Figure 3.7: Performance for Scenario 5

configuration. Coherently with scenario 3, we can observe that the slope of the curve

representing configuration (c) with NB LDPC codes is even more steeper than the

one for configuration (b) due to the fact that Alamouti code has higher diversity order

than SM. Finally, we can observe that the gain in favor of NB LDPC increases from

SISO to MIMO whether configuration (b) is employed. This gain for configuration

(b) is about 0.9 dB and it can be explained considering that configuration (b) has

more DGFS to be recovered than any other analyzed configuration (including SISO).

Figure 3.8 instead reports the performance for Scenario 6, which is based on a

spectral efficiency of 3.33 Bits/s/Hz but the FEC codeword length has been set to

2304 bits (equivalent to 384 GF(64) symbols). The only one significant difference

from this scenario and scenario 5 is that the slopes of any simulated configurations

are now steeper than their counterpart of scenario 5. This can be easily explained

having increased the FEC codeword length from 96 GF(64) symbols to 384 GF(64)

symbols, so that longer FEC codewords allow to achieve lower FER performance at

lower SNR values.
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Figure 3.8: Performance for Scenario 6

3.4.5 Scenarios with spectral efficiency of 6 Bits/s/Hz

In this subsection we present the FER performance of the analyzed configurations at

a net spectral efficiency of 6 Bits/s/Hz, achieved using STCs providing 12 CBpcu and

having a FEC coding rate equal to 1
2 . For the seventh scenario the FEC codeword

length is equal to 576 bits (equivalent to 96 GF(64) symbols). Once again we assume a

frequency-flat and time and space independent Rayleigh fading channel. The analyzed

configurations are:

a. First configuration (diamond markers) is based on 64QAM with SM, detected

by the cascade of Linear Equalizers (MMSE) and the Soft Demapper;

b. Second configuration (square markers) is based on 64QAM with SM detected

by a Soft ML receiver;

The performance for this scenario is reported in Figure 3.9. Once again continuos

lines are the performance for configurations with NB LDPC codes, whilst dashed

lines are for DBTCs. First of all we can observe that the gain between Soft ML and

MMSE is now reduced wrt the previous scenarios. This can be explained considering
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Figure 3.9: Performance for Scenario 7

that the DGFS for both configurations is now only 2. This means that there is less

diversity to be recovered by the Soft ML receiver. However, Soft ML is shown to

provide the optimum solution also for cases requiring very high spectral efficiency. In

fact the slope of the curve for the configuration (b) is higher than the one for the

configuration (a) in the waterfall region. Let us notice that NB LDPC codes perform

better than DBTCs also for this scenario.

For the eighth scenario (see Figure 3.10) the FEC codeword length is equal to

2304 bits (equivalent to 384 GF(64) symbols). For this scenario we can draw similar

conclusions, with the difference that all the curves are now steeper than in the scenario

6. This is because of the longer channel coding codeword.

3.4.6 Scenario with very short codeword length

In this subsection we present the FER performance of the analyzed configurations at

a net spectral efficiency of 2 Bits/s/Hz, achieved using STCs providing 4 CBpcu and

having a FEC coding rate equal to 1
2 . For the seventh scenario the FEC codeword

length is equal to 288 bits (equivalent to 48 GF(64) symbols). Once again we assume a
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Figure 3.10: Performance for Scenario 8

frequency-flat and time and space independent Rayleigh fading channel. The analyzed

configurations are:

a. First configuration (diamond markers) is based on QPSK with SM, detected by

the cascade of Linear Equalizers (MMSE) and the Soft Demapper;

b. Second configuration (square markers) is based on QPSK with SM detected by

a Soft ML receiver;

c. Third configuration (circular markers) is based on 16-QAM and Alamouti,

detected by the cascade of Linear Equalizer (ZF) and the Soft Demapper.

First let us observe configuration (a) with NB LDPC and compare it with configu-

ration (b): we can appreciate that the gain in favor of configuration (b) is equal to

1.8 dB at FER ∼ 10−3. This shows that this gain between configuration (a) and

(b) is independent of the FEC codeword length, as can be observed from Figures

3.3, 3.4 and 3.11. Even for scenarios involving very short FEC codeword lengths,

we notice that configuration (b) is the optimal solution and that NB LDPC codes
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Figure 3.11: Performance for Scenario 9

perform better than DBTCs for any configuration. For this scenario the slopes of any

curves is now lower than in all the previous scenarios, because of the short codeword

length. Now let us observe the three configurations combined with NB LDPC codes:

we notice that Alamouti is now steeper than the other curves. This reflects that the

short codeword length does not allow to achieve the maximum diversity as instead

happened for scenario 1 and 2 (remind that Scenario 1 and 2 have the same spectral

efficiency but longer codeword lengths), where no difference in the slopes (between

the three MIMO configuration) could be appreciated.

3.5 Complexity of the demapping algorithms

In this section we perform a comparison of the analyzed STCs from the receiver

complexity standpoint. First of all we emphasize the causes, which increase the

demapping complexity when passing from a linear equalizers-based approach to the

Soft ML one. Then we quantify the complexity for the both studied methods in case of

different modulation orders. As mentioned in Section 3.3.1 the linear equalizer-based
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demapping allows to decouple modulation symbols from the MIMO codewords, so

that only the modulation symbols carrying the information associated to the GF(64)

symbol under analysis are considered. Hence the complexity of the LLR extrac-

tion using linear equalizers depends on the matching between modulation symbols

and GF(64) symbols. Specifically, one GF(64) symbol perfectly matches with three

QPSK symbols, or one 16QAM plus one real or imaginary part of another 16QAM

symbol (assuming to use Gray mapping), or one 64QAM symbol. For this reason the

complexity of this method does not necessarily increase if the modulation order (M)

increases. We can approximate the complexity of the linear equalizer-based (ΓLEd)

demapping with expression (3.27).

ΓLEd ∼ ΓEq + W

(

γ

ld(M)

)

· q (3.27)

where ΓEq is the complexity of the linear equalization, and it is independent of the

modulation order. The function W (.) takes into account the number of real operation

for each element of the LLR vector and depends only on the matching between GF(64)

symbol and modulation symbols. Instead the Soft ML demapping does not decouple

modulation symbols from MIMO codewords, so that for the computation of the LLR

of each GF(64) symbol it might be necessary to consider also part of the MIMO

codeword carrying part of another GF(64) symbol. The situation can be better

explained through the following Figure 3.12. The stream above represents the m3

MIMO codewords, which encapsulate the m1 GF(64) symbols (represented below the

MIMO CWs stream). Specifically, this figure is specific for 16-QAM with a STC

with Q = 2, i.e. Alamouti or SM, where m1 = 4 GF(64) symbols are mapped

onto m2 = 6 modulation symbols and transmitted over m3 = 3 MIMO CWs. We

can clearly appreciate that GF(64) symbols on the edges (we will refer to them

as GF(64) symbol a and d) are transmitted over one MIMO CW, so that, being

n3 = 1, the marginalization will be worked out over configurations of δ bits. Instead

GF(64) symbols in the middle (we will refer to them as GF(64) symbol b and c) are

transmitted over two MIMO CWs, i.e. n3 = 2, so that these marginalizations are

more complex. In fact they will be worked out over configurations of 2 · δ bits. The

complexity (in terms of performed operations) of the LLR computation using Soft ML

can be determined analyzing the computational weight of (3.26). For each received
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Figure 3.12: Mismatch between GF(64) symbols and MIMO codewords

GF(64) symbol, the complexity (ΓML) of the LLR computationis as follows:

ΓLEd ≤ K (NR, T, Q) · 2MQ + 22δ−γ (3.28)

Table (3.3) reports the complexities for the analyzed demapping methods, in case

of different modulations. Specifically, the complexities of the soft demapping are

expressed in terms of number of real operations per transmitted coded bit (so that

complexities are independent of the FEC rate).

Table 3.3: Complexities for demapping computation

QPSK 16QAM 64QAM

Alamouti 250 110 65

SM-Soft ML 240 9.6 × 103 1.4 × 106

SM-MMSE 300 150 100

Table (3.3) shows that the Alamouti code can be used with any modulations thanks

to the use of (low-complexity) linear equalizers, despite not being the optimum

solution in the simulated scenarios. The same conclusion can be drawn for SM
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detected with MMSE, but this configuration has been proved not to be particularly

interesting from FER perspective. Table (3.3) also shows that SM with Soft ML can

be employed with QPSK without complexity issues. The employment of SM with

Soft ML in combination with 16QAM and 64QAM might turn out to be too complex,

depending on the target hardware and/or application. However, considering that

Soft ML (used to demap SM) produces the best FER performance (as proved all

along Section 3.4) we would like to be able to apply this demapping method for any

modulation orders, without incurring in a complexity bottleneck. For this reason we

decided to investigate low complexity algorithms for reducing the intrinsic complexity

of the Soft ML demapping. This study will be detailed in the following chapter.

3.6 Conclusions

In this chapter we have investigated two different demapping approaches for non-

binary systems, i.e. the linear equalizer-based one and a second technique, which

implements a soft version of the Maximum Likelihood demapper (Soft ML). First

we have detailed these approaches through analythical descriptions. Then we have

compared these methods with their binary counterparts, emphasizing similarities and

differences. Later we have moved to the FER performance analysis, which aims to

better understand which demapping technique is best suited for non-binary trans-

mission. Specifically, different scenarios have been investigated in order to better

understand the general behaviour of the presented methods for different STCs. In

some of the analyzed MIMO scenarios we have included the SISO performance at the

same spectral efficiency in order to perform a more complete analysis. Through the

observation of the simulations results we can draw the following conclusions:

a. The configuration SM with Soft ML has been shown to produce the best results

in terms of FER performance. Specifically, the benefits of this configuration

are more evident whether combined with a low channel code rate (1
2 ). If the

channel code rate increases this configuration keeps on having a coding gain

wrt any other configurations, but the slope in the FER curve is not the steeper

one. In fact Alamouti (independently of the demapping technique, thanks to

the orthogonality) in combination with high channel code rate has been shown

to achieve the highest slope.
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b. Focusing on SM, the coding gain between Soft ML and linear equalizer-based

demapper increases if the channel code rate increases.

c. NB LDPC codes have been shown to outperform DBTCs for any configurations

in any simulated scenarios.

d. The gain between NB LDPC codes and DBTCs increases when moving from

SISO to MIMO whether the configuration SM with Soft ML is adopted.

Later we have also carry out a complexity analysis for both methods, when different

combinations of modulations and STCs are selected. From the complexity analysis

we can end up that:

a. The Alamouti code can be used with any modulations thanks to the use of

(low-complexity) linear equalizers, despite not being the optimum solution.

b. The same conclusion can be drawn for SM detected with MMSE, but this

configuration has been proved not to be particularly interesting from FER

perspective.

c. SM with Soft ML can be employed with QPSK without complexity issues. The

employment of SM with Soft ML in combination with 16QAM and 64QAM

might turn out to be too complex, depending on the target hardware and/or

application.

For all these reasons we have decided to deeper analyze the Soft ML algorithm, trying

to derive sub-optimal versions, which allow to reduce the demapping complexity. This

study will be presented in the following chapter.





Chapter 4

Advances in Mapping and

Demapping non-binary LDPC

In the previous chapter we have analyzed the performance of two STCs, combined

with NB LDPC codes, using two different soft demapping techniques. In this chapter

we will extend our analysis including new STCs, in order to understand which STC

is best suitable for MIMO 2 × 2 systems, employing NB LDPC codes. Then we will

derive a low complexity algorithm for soft demapping, jointly with a set of heuristic

rules, which state how to design efficient patterns for mapping non-binary information

over modulation symbols and/or MIMO codewords.

4.1 Motivation

In chapter 3 we have investigated two different demapping approaches for non-binary

systems, i.e. the linear equalizer-based one and a second technique, which implements

a soft version of the Maximum Likelihood demapper (Soft ML). Specifically, we

have detailed these approaches through analythical and numerical analysis. Different

scenarios have been investigated in order to draw preliminary conclusions on the

combination between NB LDPC codes and MIMO. Basing on these results, we have

realized that different aspects still need to be tackled, i.e.

a. We have observed the performance of two STCs with opposite features, i.e. one

aiming at maximizing the system throughput (SM), whilst the other enabling

the highest system diversity (Alamouti code). We have ended up that SM

is more suitable to be combined in a MIMO 2 × 2 system from performance
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perspective. This is valid only whether SM is demapped using a Soft ML

demapping. However, with the current knowledge we cannot conclude that

SM is the most suitable STC to be combined with NB LDPC codes. For this

reason we still need to analyze the performance of other STCs, which are full

rate, but with an higher diversity order as well, e.g. the Golden Code. It will

be interesting to evaluate the behaviour of other STCs, which do not maximize

throughput or diversity separately, but rather they aim at maximizing the trade-

off between throughput and diversity. It might be also interesting to design an

ad-hoc STC, and use it as a reference in order to evaluate the goodness of the

other STCs.

b. At the end of chapter 3 we have underlined a potential complexity issue, related

to the use of the outperforming Soft ML demapping technique. This complexity

issue occurs with high order modulation. For this reason we will derived a novel

low complexity algorithm, based on the Soft ML.

c. We have also observed that no rules have been devised right now in order to

optimize the mapping of the non-binary information over modulation symbols

and/or MIMO codewords.

4.2 New STBCs combined with NB LDPC codes

In this section we present the STCs, which we investigate in order to have a deeper

understanding of the combination of STCs with NB LDPC codes. The first STC that

we analyze, is the Golden Code, introduced in Chapter 2. We strong believe that

GC will show interesting results, considering that it has the same diversity order of

Alamouti code (i.e. equal to 4), being at the same time full-rate like SM. Furthermore,

we design an ad-hoc STC, which aims at maximizing the equivalent channel capacity,

through an iterative procedure. The choise of designing a STC, which maximize the

channel capacity, has been made because, as known from literature [26], [27], the

performance of a system using LDPC (binary and NB) or turbo codes depends on the

channel capacity. For this reason, before describing the iterative procedure, which

enables to derive the ad-hoc space-time matrix, we briefly discuss about the MIMO

channel capacity.
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4.2.1 Capacity of the MIMO channel

Assuming to have received (3.1), the MIMO channel capacity is defined as [28], [29]

C = max
p(S)

I(S;Y) (4.1)

where p(S) is the probability distribution of the matrix S, whereas I(S;Y) is the

mutual information between matrices S and Y. Let us remind that

I(S;Y) = H(Y) − H(Y|S) (4.2)

where H(Y) is differential entropy of matrix Y, whilst H(Y|S) is the conditional

differential entropy of the vector of matrix Y, given knowledge of matrix S. Since the

matrices S and V are independent H(Y|S) = H(V), Eq. (4.2) becomes

I(S;Y) = H(Y) − H(V) (4.3)

Maximizing the mutual information I(S;Y) is equivalent to maximizing H(Y). Thus,

we can write

RYY =
ρ

NT

H ·RSS ·HH + INR
(4.4)

where RSS = E{SSH} is the covariance matrix of S. From literature is well known

that the differential entropy H(Y) is maximized when Y is Zero-Mean Circulant Sym-

metric Complex Gaussian (ZMCSCG), so that it implies that S must be ZMCSCG.

In this case the differential entropies of matrices Y and V are given by:






H(Y) = log2(det(π · e · RYY))

H(V) = log2(det(π · e · INR
))

(4.5)

Hence the capacity of the MIMO channel can be written as

C = max
Tr(RSS)=NT

log2 det

(

INR
+

ρ

NT

H ·RSS · HH

)

(4.6)

For a fading channel, the channel matrix H is random, and so also the associated

capacity defined in (4.6) is a random variable. For this reason we define the Ergodic

channel capacity as the average of (4.6) over the distribution of H:

CE = max
Tr(RSS)=NT

EH{log2 det

(

INR
+

ρ

NT

H ·RSS · HH

)

} (4.7)
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Figure 4.1: Equivalent end-to-end MIMO channel

In case of perfect Channel State Information (CSI) at the receiver side, it has been

demonstrated that the optimal signal covariance matrix is the identity matrix, i.e.

RYY = INR
. This means that the antennas should transmit uncorrelated streams

with the same average power, so that we can write the Ergodic capacity for systems

with perfect CSI at the receiver side, but not at the transmitter:

CE = max
Tr(RSS)=NT

EH{log2 det

(

INR
+

ρ

NT

H · HH

)

} (4.8)

Assuming to analyze a Coded Modulation (CM) system, we need to compute the

capacity of the equivalent end-to-end MIMO channel, composed by the blocks of QAM

Mapper+MIMO Encoder, the MIMO Channel and the Soft Information Computation

(as shown in Figure 4.1). Considering the CM system, the end-to-end capacity can

be written as [6],

CCM = R0 − EH,S,Y{log2









∑

S′∈Ξ

p(Y|S′,H)

p(Y|S,H)









} (4.9)

where R0 = log2(M)×NT is the total number of transmitted bits per channel use, Ξ is

the set of all the possible MIMO codewords, whereas p(Y|S′,H) is probability density

function of Y given the matrix channel H and the transmitted MIMO codeword S′.

An efficient method, which is specific for the non-binary case, for computing the

end-to-end MIMO channel capacity, instead of working out (4.1), has been proposed

in [30]. This method is substantially based on information averaging. According

to [30], after some analytical manipulations, we can rewrite (4.1) as,

CCM = log2(q) +
1

ζ · ln(2)
E{

q−1
∑

k=0

eLk · (Lk − ζ)} (4.10)
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where

ζ =

q−1
∑

k=0

eLk (4.11)

where Lk is the LLR vector with q components. Thanks to this method a great

complexity reduction in the capacity computation is achieved.

4.2.2 Maximizing the Discrete-input Continuous-output Mem-

oryless Channel capacity

After having introduced the channel capacity, in this section we present the method,

which aims to maximize the Discrete-input Continuous-output Memoryless Channel

capacity. Before detailing this method, we need to slightly modify the LDC model

introduced in 2.4.1. This new LDC model has appeared first on [31]. Following [31]

the transmitted space-time matrix S may be defined as:

S =

Q
∑

l=1

(αl ·Al) (4.12)

More explicitly, each symbol αl is dispersed to the NT spatial and T temporal

dimensions using a specific dispersion matrix Al and the transmission space-time

codeword S is attained by the linear combination of all the weighted dispersion

matrices. Therefore, the codeword is uniquely determined by the set of dispersion

matrices Al that are known to both the transmitter and the receiver, which are

arranged to be linked by NT × NR number of independent paths. Note that in

contrast to Eq. (2.13), this model modulates the real and imaginary parts of the

symbols using the same dispersion matrix Al, rather than using another dispersion

matrix Bl. The transmitted codewords should satisfy the power constraint given by

Tr

(

Q
∑

l=1

AH
l · Al

)

= T (4.13)

At the receiver side we can write the received signal in a vector-based notation as:

y = H · χ · s + v (4.14)

where all the matrices and vectors are complex valued, y ∈ CNR·T×1, H ∈ CNR·T×NT ·T ,

χ ∈ CNT ·T×Q, s ∈ CQ×1 and v ∈ CNT ·T×1. Tipically χ is called Dispersion Character
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Matrix (DCM) and is defined as:

χ = [vec(A1), vec(A2), · · · , vec(AQ)] (4.15)

where we have defined vec(.) operation as the vertical stacking of the columns of the

target matrix. Instead H is obtained as

H = I⊗ H (4.16)

where ⊗ denotes the Kronecker product and I is the identity matrix having a size of

T × T . The ML estimation of the transmitted signal vector s is formulated as:

ŝ = argmin
s∈Ξ

‖y −H · χ · s‖2 (4.17)

where s is an entry belonging to the set Ξ of all the possible MIMO codewords.

Let us now introduce the definition of DCMC capacity, following the notation of [21].

The DCMC capacity of the ML-detected MIMO system using QAM or PSK signalling

is given by:

CDCMC
LDC =

1

T



log2[F ] − 1

F

F
∑

f=1

E{log2[

F
∑

g=1

Υf,g|sf ]}



 (4.18)

where F is number of MIMO codeword transmitted over the channel, f = 1, · · · , F

and

Υf,g = −‖H · χ(sf − sg) + v‖2 + ‖v‖2 (4.19)

After having defined the new LDC model, we can present the random search al-

gorithm (RSA), which targets the maximization of DCMC capacity. This algorithm

was introduced in [31]. The RSA randomly generates a matrix χ from some specific

distribution, for example the Gaussian one. This fact explains the reason why Heath

and Paulraj needed to remodel the LDC: thanks to their new model just one matrix

needs to be randomly searched, whilst with the original LDC model, the RSA would

have required two iterative processes, i.e. one for LD matrix multiplying the real

part of the transmitted symbols and another multiplying the imaginary part. Then,

the corresponding diversity order and the coding gain is maximized by checking the

rank and determinant criteria [32]. The RSA has the advantage of providing a wide

variety of legitimate LDCs. However, since the search is random based, the algorithm
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does not guarantee to find the optimum matrix, i.e. the matrix, which maximizes the

DCMC capacity. Finally, we can state the steps of the RSA:

a. Randomly generate the complex-valued matrix χ ∈ CNT ·T×NT ·T using the Gaus-

sian distribution.

b. If we arrange the system to satisfy Q ≥ NT · T , the candidate DCM χ has to

be a unitary matrix. It has been shown in [33] that a complex-valued matrix

can be factored into the product of a unitary matrix and an upper triangular

matrix using the QR decomposition [33]. Thus, a random dispersion character

matrix can be obtained by χ = 1√
NT

· QR(χ), which satisfies χχH = 1
NT

· I.

c. By contrast, if we confine the LDC schemes to Q < NT · T , the DCM χ has to

satisfy χχH = T
Q
· I and it can be generated by retaining the first Q columns of

the unitary matrix obtained using the QR decomposition of
√

T
Q
· QR(χ).

d. Having searched through the entire set of legitimate dispersion character ma-

trices, we choose that particular one, which maximizes the DCMC capacity.

Following the procedure just described we manage to obtain a linear dispersion code,

which maximizes the DCMC capacity. From now on we will refer to this numerically

derived STC as Random Search-based STC (RS LDC). Figure 4.2 reports the channel

capacities for different STCs, i.e. SM, GC and RS LDC. These curves have been

obtained through numerical simulations of Eq. (4.10). Ergodic curve has been

included as reference. We can clearly appreciate that RS LDC outperforms the other

analyzed STCs in terms of capacity, as expected from the theory described above.

This gain in favor of RS LDC might reach the value of 1 dB in the SNR regime

around 6-10 dB.

Now we concern on the evaluation of the FER performance of the new STCs, in

order to evaluate if a gain in the capacity curve necessarily traduces into a gain in

the FER performance. Results jointly with related conclusions are reported in the

following subsection.

4.2.3 Performance analysis of the new STCs

In this section we evaluate the numerical results of the Soft ML demapping used to

demap the new STCs, i.e. the Golden Code and the RS LDC. For every configuration,
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Figure 4.2: Capacity of different STCs

the NB LDPC block length is Nbin = 576 bits, i.e., 96 coded GF(64) symbols. The

first and the second scenarios present a spectral efficiency of 2 bits/s/Hz and 2.66

bits/s/Hz, obtained with STCs providing up to 4 bits-per-channel-use and adopting

a NB LDPC matrix with code rate equal to 1
2 and 2

3 , respectively. For all the STCs,

apart from Alamouti, we compute the LLRs with the Soft ML technique specified in

the previous section. Performance for the different scenarios is reported in Fig. 4.3

and 4.4, respectively. In Fig. 4.3 we can observe that Spatial Multiplexing (square

markers) has a coding gain of 0.5 dB at FER ∼ 10−4 with respect to the couple

GC (lower triangular markers) and RS LDC (diamond markers). This coding gain is

even more relevant with respect to the Alamouti code (circular markers). Let us now

observe Fig. 4.4: we can appreciate that the coding gain between SM and the couple

GC and RS LDC is now reduced up to 0.1 dB at FER ∼ 10−4. We can also observe

that the curve for the Alamouti code has the higher slope in this scenario.

Fig. 4.5 and 4.6 show the performance of the 3 bits/s/Hz and 3.33 bits/s/Hz

scenarios, respectively. These figures have been obtained with STCs providing 4

Bits-per-channel-use and employing a NB LDPC matrix with code rate equal to 3
4

or 5
6 . In these scenarios GC and RS LDC outperform SM. Specifically, the gain

in favor of GC/RS LDC (wrt SM) is negligible at FER ∼ 10−4 for code rate =
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Figure 4.3: Performance at 2 bits/s/Hz
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3
4 and 0.3 dB at FER ∼ 10−3 for code rate = 5

6 . Our results can be explained

considering that SM has diversity order equal to 2, whereas GC and RS LDC have a

diversity of 4. This difference in diversity order has no impact for those cases where

information is well protected with a low code rate, as shown in Fig. 4.3 and 4.4.

When on the contrary information is less protected by the FEC, the intrinsic higher

robustness of STC with diversity order equal to 4 (GC and RS LDC) outperforms

SM. We also notice that the performance of GC and SM is very similar to that of RS

LDC, in spite of the latter having been explicitly designed to maximize the end-to-

end DCMC capacity: this proves that both GC and SM have excellent performance.

Alamouti code has a diversity order equal to 4, but it is a half rate STC, so it needs a

16QAM modulation in order to be compared with the other STCs at the same spectral

efficiency in terms of bits/MIMO channel use. This increase in the constellation order

affects the performance, so that 16QAM with Alamouti code is outperformed by the

other STCs.

Finally, we compare the analyzed STCs from the receiver complexity standpoint.

The complexity (in terms of performed operations) of the LLR computation for the

STCs, using soft ML and the ZF can be computed as stated by (3.28) and (3.27),

respectively. Table 1 reports the complexities of the soft demapping, in terms of

number of real operations per transmitted coded bit (so that complexities are inde-

pendent of the FEC rate). Table 1 shows that GC and RS LDC used in combination

with 16QAM and 64QAM are unpractical solutions owing to their huge demapping

complexity; the Alamouti code can be used with any modulations thanks to the use

of (low-complexity) linear equalizers, despite being outperformed by the other STCs

in the simulated scenarios. SM can be employed with QPSK and 16QAM without

complexity issues.

Table 4.1: Complexities for demapping computation, including new STCs

QPSK 16QAM 64QAM

Alamouti 250 110 65

SM-Soft ML 240 9.6 × 103 1.4 × 106

GC-Soft ML 2.6 × 104 5.4 × 108 2.4 × 1013

RS LDC-Soft ML 2.6 × 104 5.4 × 108 2.4 × 1013
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Figure 4.5: Performance at 3 bits/s/Hz

In this section we have investigated the combination of NB LDPC codes with MIMO

techniques from the FER performance perspectives, including new STCs. Specifically,

we have derived the performance of the link with different STCs and in scenarios with

spectral efficiencies ≤ 3.33 Bits-per-channel-use. For low channel code rates (≤ 2
3 )

SM outperforms any other STCs by up to 0.5 dB in the waterfall region; for scenarios

with higher channel code rate, GC and RS LDC are shown to have better performance

than SM by about 0.3 dB. Unfortunately complexity analysis of demapping in terms

of the required number of real operations per coded bit shows that SoftML becomes

unaffordable in the case of GC or RS LDC with high order modulations (16QAM and

64QAM). Hence the only concrete possibility for very high spectral efficiencies (up to

10 Bits-per-channel-use), detected with SoftML, is represented by SM, which is not

particularly affected by complexity issues. Alamouti coding is admittedly the least

complex solution, but it is outperformed by the other STCs.
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Figure 4.6: Performance at 3.33 bits/s/Hz

4.3 Design of advanced mapping patterns

In this section we introduce one of the main contribution of this work, i.e. the

definition of a set of rules, which states how to map non-binary information over the

modulation symbols (for the SISO case) and over the MIMO codewords (obviously

in the MIMO case). From now on in this chapter we focus on those cases, where one

GF(q) coded symbol spreads across multiple QAM symbols and MIMO codewords, i.e.

where the complexity of the non-binary soft demapping might be more severe. For this

reason in the mapping patterns definition we do not target the diversity maximization,

rather the optimization of the trade-off between diversity and demapping complexity.

A block diagram, reflecting the changes applied to the non-binary transmitter in order

to implement the ”optimized” patterns, is depicted in Figure 4.7.

In order then to map the non-binary FEC codeword onto the QAM constellation

symbols, each of the GF(q) symbols in the interleaved FEC codeword is first con-

verted back to its binary image of γ bits (using the same primitive polynomial in

(1.7)). The resulting binary stream is then passed to the Intra-block Permutation,

which permutes/rearranges the bits (per block of m1 GF(q) symbols) in the binary
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Figure 4.7: System model including the Intra-block Permutation

stream in accordance with three design rules devised hereafter to achieve the trade-

off between performance and complexity. Next to the intra-block permutation, each

group of log2(M) adjacent bits of the permuted output stream is mapped onto

one QAM constellation symbol. A conventional gray-mapping is used to produce

the stream of complex-valued QAM symbols. The QAM symbols are then directly

sent for transmission over the wireless multi-path fading channel in case of a single

antenna transmission. In the context of multiple multi-antennas transmissionat the

transmitter, the stream of QAM symbols undergoes a further step of spatial encoding

represented by the MIMO encoder depicted in Figure 4.7. The QAM symbols are

arranged in groups of Q symbols, and each group is encoded by the MIMO encoder

resulting into a MIMO codeword, which is then transmitted across the multiple

antennas through the multi-path fading channel.

Let us now detail the Intra-block Permutation, which implements the novel mapping

strategy targeting the maximization of the trade-off between information diversity

and demapping complexity. This mapping strategy has been first introduced in [34].

Once again let us recall that our solution is particularly efficient for those case, where

one GF(q) symbol spreads across different QAM symbols and MIMO codewords (i.e.

m1 > 1). Specifically, the proposed mapping strategy consists of a set rules, which

stem from an in-depth understanding of the APP computation required for non-binary

LDPC coupled with ML detection for MIMO receivers. We can observe that these

rules are designed for MIMO scenarios, but they can be applied even in the SISO

case. Let us now specify that we refer to the in-phase and quadrature components

of a modulation symbol as the I and C component. We use the letter C for the

quadrature component in order to avoid misunderstanding with the term Q, i.e. the

number of modulation symbols in a MIMO codeword.

• First Rule: The I and C component of an QAM symbol should carry

(in part or in full) the binary image of only one GF(q) symbol.
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This rule naturally applies to the particular case of m1 = 1, and can always

be met whenever the number of bits per GF(q) symbol γ is an integer multiple

of the number of bits per I or C component log2(M)/2. Otherwise, the rule

requires mapping as many I and C components as possible to binary sub-parts

issued from the binary image of only one single GF(q) symbol. This ensures

better performance compared to all other schemes not obeying to this rule, as

will be proven shown in Section 4.5.

Assuming SISO 16QAM with m1 = 2 and m2 = 3, Table 4.2 gives four

possible patterns to map the two GF(64) symbols a and b with binary images

respectively, a0a1a2a3a4a5 and b0b1b2b3b4b5, onto the three 16QAM symbols

with I and C components, I0C0, I1C1, and I2C2. Amongst the four patterns

shown in Table 4.2, only P1 and P3 obey the first rule.

Table 4.2: Four mapping patterns for SISO case, specific for q = 64 with 16QAM

Pattern I0 C0 I1 C1 I2 C2

P1 a0a1 a2a3 a4a5 b0b1 b2b3 b4b5

P2 a0b0 a1b1 a2b2 a3b3 a4b4 a5b5

P3 a0a1 b0b1 a2a3 b2b3 a4a5 b4b5

P4 a0b0 b1a1 a2b2 b3a3 a4b4 b5a5

• Second Rule: Map as many I/C components as possible issued from

the same GF(q) symbol onto the same MIMO codeword.

This will ensure a minimum number (n3 ≤ m3) of MIMO codewords to be

considered by the soft demapper for the computation of the APP values of each

GF(q) symbol, and so will contribute to the reduction of the complexity of Soft

ML demapping as proposed in Section 4.4, but to the detriment of limiting the

maximum DGFS that can be achieved within one GF(q) symbol. This is because

ideally by letting each I or C component issued from one GF(q) symbol map

onto different MIMO codewords, we create higher chance for these parts of the

same GF(q) symbol to experience uncorrelated channel fading. This rule clearly

restricts the freedom to let the GF(q) symbol benefit higher channel selectivity,
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but fortunately has the advantage of reducing drastically the complexity of the

soft ML demapper. This is where the complexity of the soft ML demapper is

traded off with the error protection performance of the GF(q) symbols.

• Third Rule: Under the constraint of the second rule, map the I/C

components issued from one GF(q) symbol onto the transmission units

ideally of independent channel fading within the MIMO codeword

carrying this GF(q) symbol.

This rule obviously targets the maximum achievable DGFS for each GF(q)

symbol under the constraint of the second rule. As introduced in Chapter

3, the DGFS is number of independent paths over which a GF(q) symbol is

transmitted. The higher the DGFS, the better error protection performance

is expected to be. The margin for this rule to achieve higher DGFS is clearly

bound by the second rule.

For example, in the case of MIMO spatial multiplexing (Q = 2) and 16QAM where

m1 = 4, m2 = 6, and m3 = 3, we give three possible patterns (Table 4.3 for

mapping the four GF(64) symbols, a, b, c, and d, of binary images respectively,

a0a1a2a3a4a5, b0b1b2b3b4b5, c0c1c2c3c4c5, d0d1d2d3d4d5, onto the six 16QAM symbols

representing three MIMO codewordSTBC codewords. Each MIMO codeword carries

Q = 2 16QAM symbols concurrently transmitted over 2 antennas (A1 and A2).

Table 4.3: Different mapping patterns for MIMO case with 16QAM

Pattern Antenna I0 C0 I1 C1 I2 C2

P1
A1 a0a1 a4a5 b2b3 b4b5 c4c5 d0d1

A2 a2a3 b0b1 c0c1 c2c3 d2d3 d4d5

P2
A1 a0a1 b0b1 a2a3 b2b3 a4a5 b4b5

A2 c0c1 d0d1 c2c3 d2d3 c4c5 d4d5

P3
A1 a0a1 a4a5 b2b3 c0c1 c4c5 d0d1

A2 a2a3 b0b1 b4b5 c2c3 d2d3 d4d5

All three patterns follow the first rule by not mixing bits from different GF(64)

symbols into the same I or C component. Patterns P1 and P3 further obey the second
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rule by mapping as many I/Q components from the same GF(64) symbol as possible

into the same MIMO codeword, whilst pattern P2 does not. For patterns P1 and P3,

GF(64) symbols a and d are carried within one single MIMO codeword, and GF(64)

symbols b and c are mapped onto two MIMO codewords. However, for pattern P2,

each GF(64) symbol is spread out over all of the m3 = 3 MIMO codewords. In terms of

complexity of the soft demapper, patterns P1 and P3 will enable reduced complexity,

whereas the complexity with pattern P2 will be drastically higher, as shown later in

Section 4.4. Now let us observe the first GF(64) symbol a = [a0a1a2a3a4a5] in

Pattern P1 (Table 4.3). This GF(64) symbol is transmitted over two QAM symbols,

within only one MIMO codeword: the first QAM symbol is transmitted over the first

antenna port,so that it is received through 2 independent paths. The second QAM

symbol, containing the remaining part of this GF(64) symbol, is transmitted over the

second antenna port and again received through 2 independent paths. So its total

DGFS is equal to 4. Following this definition, pattern P1 achieves a DGFS=4 for any

transmitted GF symbol, whereas pattern P3 achieves a DGFS=4 for GF(64) symbol

a and d, and a DGFS=6 for GF(64) symbol b and c, with a resulting average DGFS

equal to 5. This difference in DGFS between pattern P1 and P3 is due to the fact

that P3 respects the third rule, whilst P1 does not. Pattern P2 however achieves

the maximum DGFS equal to 6 for all four GF(64) symbols but as highlighted earlier

it breaks the second rule (i.e. requires a much higher complexity at the receiver). In

summary, by obeying all the three rules introduced above, we aim to obtain mapping

patterns which ensure the best trade-off between performance and complexity. This

will be further detailed and proven in the following sections.

4.4 Low complexity soft demapping algorithms

As highlighted in the third Chapter, the soft demapper at the receiver requires two ma-

jor operations for the computation of the LLR values of the GF(q) coded symbols: i)

Euclidean distances computation, and ii) Marginalization across all possible

combinations. The Euclidean distances computation is typically required for ML

hard detector. In our case, since soft values are required, the MIMO ML detection and

non-binary soft demapping are combined together into one single function, referred

to as Soft ML demapping.
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a. Computation of the Euclidean distances

In the decoding of the STC, each received MIMO codeword is processed in-

dividually in order to obtain its distance to all possible transmitted MIMO

codewords. In our non-binary case (q > 2), one GF(q) coded symbol may span

more than one MIMO codeword. Thus, for the computation of the LLRs of one

GF(q) symbol, there is a need to store the Euclidean distances of all the MIMO

codewords which carry the binary image of the given GF(q) symbol. Thanks to

our second rule in the design of the mapper at the transmitter (which limits the

number of MIMO codewords carrying the binary image of one GF(q) symbol

to the minimum possible), only the Euclidean distances of n3 ≤ m3 MIMO

codewords are needed. This clearly reduces the memory requirements at the

receiver.

b. Marginalization across all possible combinations

The marginalization takes the form of a summation in the general case (i.e.

Log-MAP) reflected in eq. (6). Whether the Max-Log approximation is used,

it takes instead the form of a comparison. The marginalization (or summation)

involves the Euclidean distances of n3 ≤ m3 MIMO codewords and the binary

sub-parts of the n1 − 1 (n1 ≤ m1) GF(q) symbols multiplexing with the binary

image of the desired GF(q) symbol in their mapping to the n2 ≤ m2 QAM

symbols and n3 ≤ m3 MIMO codewords.

For the sake of simplicity, let us consider first the case where n3 = 1, i.e. the desired

GF(q) symbol is mapped onto a single MIMO codeword. This is the case of SISO

transmission but also applies for instance to MIMO transmission for the edge GF(q)

symbols a and d in patterns P1 and P3 in Table 4.3. Let us focus first on the simple

case of SISO transmission with 16QAM as in Table 4.2 with the straightforward

mapping P1 for m1 = 2 and m2 = 3. In order to compute the APP values for the

first GF(64) symbol a, the Euclidean distances involving the first n2 = 2 ≤ 3 QAM

symbols are required. For the second GF(64) symbol b, those involving the second

and the third QAM symbols are required. For the computation of the APP values of

a, a marginalization is required across all of the possible combinations of the sub-part

b0b1 from GF(64) symbol b due to its mix with the sub-part a4a5 in the second QAM

symbol (i.e. a4a5b0b1]). The number of all possible combinations is clearly equal to
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22 = 4. The number of operations per received GF(64) symbol is (q − 1) × 22 × 3,

a factor 22/qm1−1 = 4/64 = 1/16. This is thanks to the specific mapping where the

two edge 16QAM symbols carry information from only one single GF(64) symbol.

Consider now the more general case of n3 > 1, for example in the case of MIMO

transmission for the middle GF(64) symbols b and c in patterns P1 and P3 in Table

4.3, the GF(64) symbol b is mapped onto the first (a0a1a2a3a4a5b0b1) and second

(b2b3b4b5c0c1c2c3) MIMO codewords. The marginalization here is required across all

the possible combinations of a0a1a2a3a4a5 due to the mix with the sub-part b0b1 in

the first MIMO codeword, and also across all of the possible combinations of c0c1c2c3

due to the mix with the sub-part b2b3b4b5 in the second MIMO codeword. This adds

up to the total of 26×24 = 1024 combinations per APP value. Demapping complexity

clearly depends on the mapping pattern used. In fact Table 4.4 gives an example of

the number of distances required for marginalization of each APP value for the two

mapping patterns P2 and P3 from Table 4.3.

Table 4.4: Example of number of combinations to be considered for APP marginalization.

Num. of combinations P2 P3

GF(64) symbol a qm1−1 = 262144 22 = 4

GF(64) symbol b qm1−1 = 262144 24 × 26 = 1024

GF(64) symbol c qm1−1 = 262144 24 × 26 = 1024

GF(64) symbol d qm1−1 = 262144 22 = 4

Table 4.4 reflects the huge complexity incurred with mapping pattern P2 (although

as said earlier, this pattern achieves the maximum transmit diversity order 3 for all

the GF(64) symbols). This confirms the tremendous complexity advantage of the

mapping patterns respecting the second rule devised previously. Yet, whilst only

4 combinations are required for the edge symbols a and d, 1024 combinations are

required for the symbols in the middle b and c, which is still relatively a high number.

Still, 1024 is a relatively large number causing excessive complexity. To further

reduce the number of combinations to a relatively low level, we propose the following

algorithm which exploits the correlation existing between GF(64) symbols produced

by the code. The algorithm introduces a threshold parameter called Nm. The
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algorithm proceeds with the following steps:

• Step 1: Set the value of Nm. For example, Nm is set to the value equal to 8.

• Step 2: For any GF(q) symbol entailing a number Ne of combinations required

for marginalization lower than the threshold Nm, obtain the corresponding APP

values using an exhaustive search over all Ne required combinations.

Example: This applies to the edge GF(64) symbols a and d in P1 and P3 in

Table 4.3, where the number of combinations required is Ne = 4 < Nm = 8.

• Step 3: For GF(q) symbols that multiplex only with symbols falling under

Step 2, compute the APPs by limiting the combinations associated with the

GF(q) symbol from step 2 only to the ones yielding the Nm largest APPs for

this symbol.

Example: Assume we are transmitting 3 consecutive GF(256) symbols ε,υ, and

ϕ mapped onto 2 consecutive MIMO codewords with 64QAM symbols. Then

GF(256) symbols ε and ϕ fall under Step 2, while the APPs for υ have to be

computed as above. Assuming Nm = 16, then the marginalization over ε and

υ will be carried out by considering only Nm · Nm = 256 terms instead of the

256 · 256 = 65536 terms of in the exhaustive search.

NB: Switching to GF(256) in this example is simply because no such case occurs

with our default GF(64).

• Step 4: For each remaining GF(q) symbol, not falling under step 2 and 3,

proceed with the following sub-steps:

– Step 4.1: Limit the combinations associated with the multiplexing GF(q)

symbol from step 2 to the ones yielding the Nm maximum APP values for

this multiplexing symbol.

– Step 4.2: Complete the marginalization of the APPs with respect to the

adjacent GF(q) symbol whose APPs are still unavailable with an iterative

procedure for a number r of iterations and depending on a parameter Nq.

At i-th iteration, the marginalization runs across the Nq combinations of

the interleaved symbol with the highest Nq APP values. Such combinations

are those computed in the previous i-1 iteration of the algorithm. At the

initialization stage, the Nq combinations are chosen randomly.
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Figure 4.8: Low complexity algorithm for soft demapping with m1 = 4

Example: Step 4.1 applies to the middle GF(64) symbol b in P1 and P3

in Table 4.3, where marginalization is required across the interleaved edge

GF(64) symbol a. The APP values of the edge GF(64) symbol a are ob-

tained from Step 2. Thus, instead of searching over all the 26 = 64 possible

values of GF(64) symbol a, we only limit the search to the Nm = 8 values of

symbol a yielding the highest APP values (thus 8 highest likelihood values).

Step 4.2 applies to the middle GF(64) symbol b in P1 and P3 in Table

4.3, where marginalization is required across the interleaved other middle

GF(64) symbol c, whose APP values are not available from Step 2. We

start considering Nq = 8 randomly selected APP values for symbol c (out

of the 24 = 16 values theoretically needed) to obtain the (marginalized)

APP values of symbol b. Then, we compute the APP values for symbols b

and c, with the marginalization limited to the Nq random values of each.

We refine then the choice of the Nq combinations used for marginalization

to the ones yielding the highest Nq APP values for symbols b and c. This

is repeated for r iterations.

The above algorithm may be better illustrated with the graph depicted in Figure

4.8, where the nodes represent the computation of the APP values for each GF(64)

symbol, and the arrows indicate the propagation of the most likely combinations of

one GF(64) symbol at a given node to the GF(64) symbol at an adjacent node.

This for the purpose of reduced marginalization according the different steps de-

scribed in the above algorithm. The edge symbols a and d fall under step 2 and will

therefore get their APP values available simply from step 2. The middle symbols b

and c make use of Nm most likely combinations yielding the highest APP values for the
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eddge GF(64) symbol a and d, respectively. The propagation of these combinations

is illustrated in Figure 4.8 by the arrows coming into nodes b (from node a) and c

(from node d). Since symbols b and c multiplex together, then an iterative process

as described in step 4.2 is followed by reusing the Nq most likely combinations of one

symbol for marginalization to obtain the APP values of the adjacent symbol. This

exchange of Nq combinations between GF(64) symbols b and c is illustrasted in the

graph by the arrows connecting node b to node c. Although in the example the same

value (equal to 8) is set for both numbers Nm and Nq, this does not reflect the general

case where these two variables can be set with different values.

Table 4.5 reports the number of combinations to be explored for extracting the q-

ary APP values of each GF(64) symbol first without the low complexity algorithm

and then for two settings of the low complexity algorithm. When the low complexity

algorithm is selected, GF(64) symbols b and c require first a number of operations for

sorting the APP values of GF(64) symbols a and d, respectively. The implemented

algorithm, which is based on Merge and Sort approach, has a complexity of nlog(n)

(with n being the length of the vector to sort). The proposed algorithm reduces the

number of combinations used for marginalization to obtain the APP values of the

middle symbols b and c by a factor of ∼ 7.5 without iterations, and a factor of ∼ 10

with 3 iterations. The impact of the proposed algorithm on the error performance is

assessed in Section 4.5.

4.5 Performance Analysis

In this section we analyze the FER performance of the Soft ML using the proposed

low complexity algorithm as well as different mapping patterns. The idea of this

section is to demonstrate that the mapping strategy stated in Section 4.3 and the low

complexity demapping algortihm can be perfectly combined in order to maximize the

trade-off between information diversity and demapping complexity. For this reason

we will perform a complete analysis, aiming at validating the effectiveness of each

mapping rule as well as the low complexity demapping algorithm. Now let us define

the simulation set up that have been use to derive performance results and validate

the effectiveness of the proposed mapping strategy and the low complexity algorithm.

Both a SISO and a MIMO scenario are considered as representative of next generation

cellular communication systems.
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Table 4.5: Reduction of the number combinations for P1 and P3 from Table 4.4

Num. of

combinations

Without

Algorithm

With Algor.

r = 0,Nm = 8

With r = 3,

Nm = 8,Nq = 8

GF(64) symbol a 64 × 22 = 256 64 × 22 = 256 64 × 22 = 256

GF(64) symbol b 64 × 26 × 24 =

= 65536

64×6+64×Nm×
×24 = 8576

64×3×Nm×Nq+

+2 × 64 × 6 =

= 13056
GF(64) symbol c 64 × 26 × 24 =

= 65536

64×6+64×Nm×
×24 = 8576

GF(64) symbol d 64 × 22 = 256 64 × 22 = 256 64 × 22 = 256

block of m1

symbols

64×2×(210+22) =

= 131584

2 × 64 × (22 + 6 +

Nm × 24) = 17664

2× 64× (22 + 6)+

+64 × 3 × Nm×
×Nq = 13568

The simulation parameters are:

a. FEC encoder

• DAVINCI NB LDPC codes

• GF order q = 64

• Codeword length N = 96 GF(64) symbols = 576 bits

b. FEC decoder

• Extended Min-Sum algorithm

• Number of soft values per symbol fed to the decoder = qm = 16 (highest

values)

• Maximum number of decoding iterations = 30

c. Modulation

• QPSK (only for SISO case), 16QAM, 64QAM

d. MIMO configuration
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• 2 × 2 system

• Spatial multiplexing, i.e. Q = 2

e. Soft demapping parameters

• Soft ML, without and with the proposed low complexity algorithm (with

different combinations of r, Nm, Nq)

First of all we have evaluated the performance of different mapping patterns for

the SISO case, in order to validate the first rule of the proposed set. Figure 4.9

depicts the Frame Error Rate (FER) results obtained in the SISO scenario using two

different patterns to map the GF(64) symbols onto QAM constellation symbols. The

first mapping is an arbitrary mapping which does not respect the first rule devised in

our solution, whereas the second mapping referred to as optimum mapping does. As

illustrated in Figure 4.9, for QPSK and 64QAM, where m1 = 1, there is no significant

difference between the arbitrary and the proposed mapping patterns, since inherently

here only one GF(64) symbol maps onto 3 QPSK symbols or one 64QAM symbol.

However, for 16QAM, where m1 = 2 and m2 = 3, two GF(64) symbols are mapped

onto the same mapping onto one 16QAM symbol, and here the results show clear

SNR gain of 0.5 dB for the mapping respecting the first design rule as compared

to a pattern not respecting this rule, hence validating the merits of this rule. It is

noteworthy here that at this stage, there is no issue of trade-off between performance

and complexity (this will come later when considering the second and third design

rules proposed). We then move to the MIMO context in order to validate the second

and third rules introduced in our mapping strategy, which aim to achieve a trade-off

between performance and complexity. First we analyze the complexity in terms of

number of operations of the APP extraction. Specifically, with the term operation we

refer to a summation or a comparison of real-valued numbers, so either the summation

or comparison operation has the same computational weight. We consider first the

case of 16QAM with the three patterns given in Table 4.3, where patterns P1 and

P3 respect the second rule, but not pattern P2. Figure 4.10 depicts the number of

operations required for marginalization in the computation of the APP values of the

m1 = 4 GF(64) symbols which map together onto m2 = 6 QAM symbols and m3 = 3

MIMO codewords. Four curves show the number of operations (in logarithm scale)

as a function of the threshold Nm introduced in the proposed algorithm. The curves
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Figure 4.9: FER for SISO system, using different mapping pattern N = 96, code rate =
1

2
.

are as follows:

• The first curve in black circular marker gives the number of operations when an

exhaustive search with pattern P2 is performed.

• The second curve in red circular marker gives the number of operations when

an exhaustive search with pattern P1 or P3 is performed.

• The third curve in blue downwards triangular marker shows the number of

operations using the proposed algorithm (Nm = 8) for pattern P1 or P3 without

the iterative step 4 (i.e. simply replace sub-step 4.2 by an exhaustive search).

• The fourth curve in green with diamond markers considers the iterative step 4

of the proposed algorithm with r = 3 iterations, Nm = 8 and Nq = 10 (still for

pattern P1 or P3).

From Figure 4.10, we can clearly appreciate the huge reduction in complexity (cf.

gap between first curve using P2, and the other curves using P1 and P3). This

clearly validates the merit of our second rule from the complexity perspective, since

patterns P1 and P3 respect this second rule, but not pattern P2. Moreover, from



4.5 Performance Analysis 87

0 10 20 30 40 50 60 70
10

3

10
4

10
5

10
6

10
7

10
8

N
m

N
um

be
r 

O
pe

ra
tio

ns
/ m

3 M
IM

O
 C

W
s

 

 

Exhaustive Search; Pattern P1 and P3
r=0; Pattern P1 and P3
r=3; Pattern P1 and P3
Exhaustive Search; Pattern P2

Figure 4.10: Number of operations required for marginalization with and without the

proposed low complexity algorithm.

Figure 4.10, we can also clearly appreciate the significant reduction in complexity

(cf. gap between second curve, and third and fourth curves) brought by the use of

the proposed algorithm (with and without iterations) as compared to the exhaustive

search. The reduction in complexity clearly decreases when increasing the threshold

Nm. For a typical value of Nm = 8, we can appreciate nearly one decay (i.e. a factor

of 10) complexity reduction thanks to the proposed algorithm.

The second aspect to be assessed here is the impact of the proposed mapping strategy

and demapping algorithm on the error protection performance. This is illustrated in

Figure 4.11, for patterns P1 and P3 with different configurations. It is worth noting

here that the pattern P2 could not be evaluated since its breach of the second rule

makes it non practical for computer simulations. Our reference curves are the ones in

red solid line which perform an exhaustive search (i.e. do not implement the proposed

algorithm). In this figure, square marker is used for mapping pattern P1, and circular

marker for mapping pattern P3.

From Figure 4.11, we first compare the performance gap between patterns P1 and

P3 with the exhaustive search used in both. This is in order to appreciate the trade-
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Figure 4.11: FER for 16QAM with patterns P1 and P3 from Table 4.3.

off in performance due to the second rule and the merits of the third rule. The

performance gap between P1 and P3 is almost 0.25 dB, when P1 has a constant

DGFS equal to 4 and P3 has an average DGFS equal to 5 (it is equal to 4 at the

edge GF(64) symbols and 6 at the middle GF(64) symbols). As mentioned previously,

both patterns P1 and P3 respect the second rule, but only P3 respects the third rule.

Hence, from this comparison, the merit of the third rule is clearly appreciated (∼ 0.25

dB SNR gain) at the same level of complexity. The same performance gap is expected

between patterns P2 and P3 (although as said before simulations with pattern P2

are not feasible since it breaches the second rule). This expectation is motivated by

the fact that the gap in DGFS between P2 and P3 is equal to 1, which is the same gap

between P3 and P1 (PS: the average DGFS is equal to 6, 5, and 4, respectively for

patterns P2, P3, and P1). Hence, the penalty in performance of the second design

rule is expected to be around 0.25 dB, compared to a pattern P3 respecting the second

and third design rules, and 0.5 dB compared to a pattern P1 respecting the second

rule but not the third rule. Now let us compare the performance of both patterns

P1 and P3 when using the proposed soft demapping algorithm. From Figure 4.11,

for both patterns P1 and P3, we do not notice any appreciable degradation when
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using the proposed algorithm with threshold Nm = 8, and without using the iterative

process, compared to when using the exhaustive search. This is an important result

as it shows the potential of the proposed algorithm to reduce the complexity by

ten-fold without practical degradation in the FER performance. Further reduction

of the complexity by means of the iterative process for example, does degrade the

FER performance. The degradation of the iterative process in the waterfall region at

target FER of 10−2 appears tolerable (up to 0.5 dB), whilst the degradation in the

error floor region appears significant. This reflects the trade-off someone can obtain

between FER performance and further reduction of the complexity with the iterative

process.

Further analysis was carried out for the case of MIMO 64QAM. In such a case, we

consider two different mapping patterns as illustrated in Table 4.6.

Table 4.6: Different mapping patterns for MIMO case with 64QAM

Pattern Antenna I0 C0

P1
A1 a0a1a2 a3a4a5

A2 b0b1b2 b3b4b5

P2
A1 a0a1a2 b0b1b2

A2 a3a4a5 b3b4b5

Both P1 and P2 respect the first and second rule, but only P2 respects the third

rule. With 64QAM, the proposed algorithm must necessarily use the iterative process,

since there are no edge symbols falling under step 2 of the proposed algorithm.

Similarly to the 16QAM case, the sorting of the APP values should be taken into

account in the computation of the complexity. Table 4.7 below shows a complexity

reduction of 35% with respect to the exhaustive search when Nq is equal to 24 and

44% when Nq is equal to 20.

Figure 4.12 also shows the FER performance results for both patterns with and

without the proposed algorithm in the configurations given in Table 4.7. A circle

marker is used for the curves with pattern P1 and square marker for the curves with

pattern P2. From Figure 4.12, we can first appreciate a gain of nearly 0.8 dB for

pattern P2 as compared to P1. This confirms further the potential of the third rule in
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Table 4.7: Reduction of the number combinations for MIMO with 64QAM

Num. of

combinations

Without

Algorithm

With Algor.

r = 3,Nq = 20

With Algor.

r = 3,Nq = 24

GF(64) symbol a 64 · 26 = 4096 64·3·Nq+2·64·6 =

= 4608

64·3·Nq+2·64·6 =

= 5376GF(64) symbol b 64 · 26 = 4096

block of m1

symbols

2 · 64 · 26 = 8192 64·3·Nq+2·64·6 =

= 4608

64·3·Nq+2·64·6 =

= 5376

achieving much higher diversity. Second, with pattern P2, we can clearly appreciate

a slight degradation in performance nearly 0.2 dB when using the proposed low

complexity iterative demapping algorithm with Nq = 24 (35% complexity reduction).

The degradation becomes higher 0.5 dB for Nq = 20 (44% complexity reduction).

So clearly, there is a trade-off between the tolerable FER performance degradation

and the target complexity reduction, and the proposed mapping strategy and low

complexity demapping algorithm provide the tools to achieve the trade-off desired.

4.6 Conclusions

In the first part of this chapter we have investigated the combination of NB LDPC

codes with different STCs from the FER performance and complexity perspectives.

Specifically, we have derived the performance of the MIMO link in different scenarios

with spectral efficiencies ≤ 3.33 Bits-per-channel-use. For low channel code rates ≤ 2
3

SM outperforms any other STCs by up to 0.5 dB in the waterfall region; for scenarios

with higher channel code rate, GC and RS LDC are shown to have better performance

than SM by about 0.3 dB. Unfortunately complexity analysis of demapping in terms

of the required number of real operations per coded bit shows that Soft ML becomes

unaffordable in the case of GC or RS LDC with high order modulations (16QAM and

64QAM). Hence the only concrete possibility for very high spectral efficiencies (up to

10 Bits-per-channel-use), detected with SoftML, is represented by SM, which is not

particularly affected by complexity issues. Alamouti coding is admittedly the least

complex solution, but it is outperformed by the other STCs.
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Figure 4.12: FER for 64QAM with patterns P1 and P2 from Table 4.6.

Later we have addressed the particular complexity challenge of the soft ML demap-

ping faced with non-binary LDPC codes when one GF(q) symbol spreads across multi-

ple QAM symbols and MIMO codewords. A solution is proposed combining a mapping

strategy based on three design rules at the transmitter, and a low complexity soft ML

demapping algorithm at the receiver. At the transmitter side, the mapping strategy

has introduced three design rules to achieve the best trade-off between performance

and complexity. In the first rule, the I or C component of an QAM symbol should carry

(in part or in full) the binary image of only one GF(q) symbol. This rule was shown

to bring an SNR performance gain of ∼ 0.5 dB compared to mapping patterns not

respecting this rule. In the second rule, the I/C components issued from one GF(q)

symbol are carried into the minimum possible number of MIMO codewords. This

second rule clearly restricts the freedom to let the GF(q) symbol enjoy higher channel

selectivity, but fortunately has the advantage of reducing drastically the complexity

of the soft ML demapper. In the third rule, the I/C components issued from one

GF(q) symbol are mapped onto the transmission units which ideally can experience

independent channel fading within the MIMO codeword carrying this GF(q) symbol.
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This third rule aims at exploiting the last degree of freedom left by the binding

second rule to achieve high channel selectivity within the GF(q) symbol. With

mapping patterns respecting the second rule, it was shown that a ten fold complexity

reduction can be achieved compared to patterns not respecting this second rule. The

trade-off in performance was shown to be small, 0.25 dB and 0.5 dB performance

degradation for the patterns respecting the second rule with and without the third

rule, respectively. At the receiver side, an algorithm was proposed to reduce the

complexity of the soft ML demapper. The algorithm exploits the correlation existing

between GF(q) symbols but also any knowledge available on the APP values of the

GF(q) symbols in the vector of m1 GF(q) symbols, which map together onto the

vector of m2 QAM symbols and further on onto the vector of m3 MIMO codewords.

The algorithm also considers only a limited number of potential combinations for

each GF(q) symbol, those associated with this same limited number of highest APP

values for this symbol. This latter consideration has been inspired from the original

work done by [5], [35] to reduce the complexity of the non-binary LDPC decoder.

Our proposed algorithm was shown to further reduce the complexity of the soft ML

demapper by up to 85%. The proposed solution mitigates the complexity challenge

at the receiver faced with non-binary LDPC codes when one GF(q) symbol spreads

across multiple QAM constellation symbols and STBC codewords, at the expense of

a slight performance degradation but not sacrificing the performance merits of non-

binary LDPC codes. This removess any restriction on the size of the Galois field

order, QAM constellation order, and MIMO scheme, whilst preserving the merits of

non-binary LDPC codes at very reasonable receiver complexity.



Chapter 5

Conclusions and perspectives

In the first chapter, we have presented the NB LDPC channel coding scheme, high-

lighting the codec features, before deriving the demapping operations for the SISO

scenario. We have also compared the non binary demapping with the one necessary

for a binary channel coding scheme, such as DBTCs. Later we have also carried

out a FER performance analysis by which we can conclude that for single antenna

transmission, NB LDPC codes outperform advanced binary FEC scheme (DBTC) for

any analyzed scenario. The gain is found to increase with the constellation order,

from 0.1 dB in QPSK to 0.8 dB in 64QAM. The average gain between NB LDPC and

DBTC is found around 0.25 dB, in line with the results obtained in the DAVINCI

project [14]. However, the correspondent receiver is more complex than the binary

one and this complexity increase might be quantified around one order of magnitude.

In the second chapter we have introduced the MIMO concepts in uncoded systems,

i.e. without channel coding. Specifically, we have first detailed the MIMO channel

model, which will be used all along this work. Later we have analyzed the multiple-

antennas system model and presented the STCs under analysis. We have also in-

troduced the universal framework of the LDC, and characterized the selected STCs

through the linear dispersion matrices. From the simulation results we have ended up

that Alamouti has been shown to always outperform SM and Golden Code in terms

of error protection at the constant spectral efficiency of 4 Bpcu. Linear receivers have

been proved to achieve the optimal performance only for orthogonal codes.

In the third chapter we have investigated the combination between NB LDPC codes

and MIMO techniques. More specifically, we have presented two different demapping

approaches for non-binary systems, i.e. the linear equalizer-based one and a second

technique, which implements a soft version of the Maximum Likelihood demapper
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(Soft ML). First we have detailed these approaches with analythical descriptions.

Then we have compared these methods with their binary counterparts, before focusing

om the FER performance analysis, which aims to better understand which demapping

technique is most suitable for non binary transmission. Specifically, different scenarios

have been investigated in order to better understand the general behaviour of the

presented methods for different STCs. In some of the analyzed MIMO scenarios

we have included the SISO performance at the same spectral efficiency in order to

perform a more complete analysis. Through the observation of the simulations results

we have drawn the following conclusions:

a. The configuration SM with Soft ML has been shown to produce the best results

in terms of FER performance. Specifically, the benefits of this configuration

are more evident whether combined with a low channel code rate (1
2 ). If the

channel code rate increases this configuration keeps on having a coding gain

with respect to any other configuration, but the slope in the FER curve is not

the steeper one. In fact Alamouti (independently of the demapping technique,

thanks to the orthogonality) in combination with high channel code rate has

been shown to achieve the highest slope.

b. Focusing on SM, the coding gain between Soft ML and linear equalizer-based

demapper increases if the channel code rate increases.

c. NB LDPC codes have been shown to outperform DBTCs for any configurations

in any simulated scenarios.

d. The gain between NB LDPC codes and DBTCs increases when moving from

SISO to MIMO whether the configuration SM with Soft ML is adopted.

Later we have also carry out a complexity analysis for both methods, when different

combinations of modulations and STCs are selected. From the complexity analysis

we can end up that:

a. The Alamouti code can be used with any modulation, without complexity issue,

thanks to the use of linear equalizers, despite not leading to the best FER

performance.
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b. The same conclusion can be drawn for SM detected with MMSE, but this

configuration has been proved not to be particularly interesting from FER

perspective.

c. SM with Soft ML can be employed with QPSK without complexity issues. The

employment of SM with Soft ML in combination with 16QAM and 64QAM

might turn out to be too complex for some target hardware and/or application.

For all these reasons we have decided to deeper analyze the Soft ML algorithm, trying

to derive sub-optimal versions, which allow to reduce the demapping complexity. This

study has been presented in the chapter four.

In the fourth chapter we have first investigated the combination of NB LDPC

codes with different STCs from the FER performance and complexity perspectives.

Specifically, we have derived the performance of the MIMO link in different scenarios

with spectral efficiencies ≤ 3.33 Bits-per-channel-use. For low channel code rates

≤ 2
3 SM outperforms any other STCs by up to 0.5 dB in the waterfall region; for

scenarios with higher channel code rate, GC and RS LDC have shown to have better

performance than SM by about 0.3 dB. Unfortunately complexity analysis of the

demapping operation have shown that Soft ML becomes unaffordable in the case of

GC or RS LDC with high order modulations (16QAM and 64QAM). Hence the only

concrete possibility for very high spectral efficiencies (up to 10 Bits-per-channel-use),

detected with SoftML, is represented by SM, which is not particularly affected by

complexity issues.

Later we have addressed the particular complexity challenge of the soft ML demap-

ping faced with non-binary LDPC codes when one GF(q) symbol spreads across multi-

ple QAM symbols and MIMO codewords. A solution is proposed combining a mapping

strategy based on three design rules at the transmitter, and a low complexity soft ML

demapping algorithm at the receiver. This strategy jointly with the low complexity

demapping algorithm have been investigated with SM, but it might be applied to

different STCs. At the transmitter side, the mapping strategy has introduced three

design rules in order to achieve the best trade-off between performance and complexity.

In the first rule, the I or C component of a QAM symbol should carry (in part or

in full) the binary image of only one GF(q) symbol. This rule was shown to bring

an SNR performance gain of ∼ 0.5 dB compared to mapping patterns not respecting

this rule. In the second rule, the I/C components issued from one GF(q) symbol are
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carried into the minimum possible number of MIMO codewords. This second rule

clearly restricts the freedom to let the GF(q) symbol enjoy higher channel selectivity,

but fortunately has the advantage of reducing drastically the complexity of the soft

ML demapper. In the third rule, the I/C components issued from one GF(q) symbol

are mapped onto the transmission units which ideally can expperience independent

channel fading within the MIMO codeword carrying this GF(q) symbol. This third

rule aims at exploiting the last degree of freedom left by the binding second rule to

achieve high channel selectivity within the GF(q) symbol. With mapping patterns

respecting the second rule, it was shown that a ten fold complexity reduction can

be achieved compared to patterns not respecting this second rule. The trade-off in

performance was shown to be small, 0.25 dB and 0.5 dB performance degradation for

the patterns respecting the second rule with and without the third rule, respectively.

At the receiver side, an algorithm was proposed to reduce the complexity of the soft

ML demapper. The algorithm exploits the correlation existing between GF(q) symbols

but also any knowledge available on the APP values of the GF(q) symbols in the vector

of m1 GF(q) symbols, which map together onto the vector of m2 QAM symbols and

further on onto the vector of m3 MIMO codewords. The algorithm also considers only

a limited number of potential combinations for each GF(q) symbol, those associated

with this same limited number of highest APP values for this symbol. The proposed

solution mitigates the complexity challenge at the receiver faced with non-binary

LDPC codes when one GF(q) symbol spreads across multiple QAM constellation

symbols and STBC codewords, at the expense of a slight performance degradation but

not sacrificing the performance merits of non-binary LDPC codes. This removess any

restriction on the size of the Galois field order, QAM constellation order, and MIMO

scheme, whilst preserving the merits of non-binary LDPC codes at very reasonable

receiver complexity.

Finally let us conclude with possible future perspetives opened by this work. The

demapping complexity using the Soft ML approach, when GC with high order modula-

tions (or a similar STC, encapsulating 4 QAM symbols in a MIMO codeword) might be

only partially mitigated through the proposed low complexity algorithm. In fact the

intrinsic complexity of the exhaustive search demapping is huge (o(MQ) = o(164) ∼
65536 for 16QAM, or o(644) ∼ 16777216). For this reason the interested researcher

might focus on the combination of the low complexity demapping algorithm, proposed

in this work, with the well-known sphere demapping. Further analysis on the mapping
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strategy might be performed using the EXIT Charts, according to [36].
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