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Introduction

Partial differential equations (PDEs) are mathematical equations that involve an unknown function
ψ depending on different independent variables, for instance the time variable t ∈ R and the spacial
variable x ∈ R, and also its partial derivatives (∂tψ, ∂xψ, ∂xxψ, . . . ). Nevertheless the first trace of
partial differential process dates back to 17th century ([9]), the real study of PDEs dates from the
18th century with the works of Euler, d’Alambert, Lagrange and Laplace with applications on the
mechanics of continua. Through the 19th and the 20th century, thanks to the advance of the functional
analysis and the theory of the self-adjoint linear operators due to Fourier, Poincaré, Hilbert, Banach and
Sobolev, the analysis of PDEs played an important role also within mathematics itself. In particular,
this mathematical setting allows to reformulate many propagation phenomena in physics, chemistry,
biology in the common abstract language of theoretic operators. In [8] one can find an excursus on the
development of the PDEs through 18th and 20th century (models connecting with PDEs, methods and
technique developed to solve problems in PDEs field).

In this work we are interested into the analysis of a particular class of PDEs, the dispersive PDEs.
These equations were introduced to model waves propagation affected by dispersive phenomena, i.e. the
solution (wave phenomenon) spreads out spatially over time when no boundary conditions are imposed
([67], [66]). Let ψ be a complex valued function. A linear dispersive PDE in one dimension (for the sake
of simplicity) has the following structure

∂tψ(t, x) = iP (−i∂x)ψ(t, x), (t, x) ∈ R× R

where P (−i∂x) is a linear differential operator with symbol −P (ξ). The dispersive character of the
equation is captured in the relation τ = P (ξ), where τ is the time Fourier variable. If such a relation is
nonlinear the equation is said dispersive.

The linear Schrödinger (LS) equation

i∂tψ −H0ψ = 0, ψ(0) = ψ0, (t, x) ∈ R× Rn,

is the classical model to explain and to study the dispersive equations. Here H0 = −∆ denotes the
Laplace operator on Rn. This equation is the quantum mechanics model to describe the evolution of a
free particle in a non relativistic regime when the system is initially prepared in the state ψ0. The study
of the linear evolution is strictly connected with the analysis of the free Schrödinger operator H0 and the
free Schrödinger propagator e−itH0 . It is well known that H0 admits a self-adjoint realization in L2(R)
and hence the Stone’s theorem guarantees that the unique solution is given by e−itH0ψ0. Moreover, since
we are on the whole space, the natural tool to study the propagator is the Fourier analysis. From the
kernel expression of the propagator e−itH0

1

(4πit)n/2
e−
|x−y|2

4it

we deduce the dispersive estimate∥∥e−itH0ψ0

∥∥
L∞(Rn)

≤ C 1

tn/2
‖ψ0‖L1(Rn), ψ0 ∈ L1(Rn) ∩ L2(Rn).

Interpolating this decay with the L2-conservation law we get the Lp − Lp′ dispersive estimates∥∥e−itH0ψ0

∥∥
Lp(Rn)

≤ C 1

tn(1/p−1/2)
‖ψ0‖Lp′ (Rn).

The Strichartz estimates follow from dispersive estimates via TT ∗ argument (non endpoint case)∥∥e−itH0ψ0

∥∥
Lq(R;Lr(Rn))

≤ C‖ψ0‖L2(Rn), 2 ≤ r ≤ ∞,
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where the pair (q, r) is admissible with respect to the scaling of the equation. The Strichartz estimates are
a fundamental tool to solve the nonlinear equation (one can see Section 2 in [13] for a complete treatment
of LS equation and we quote [16] for a recent survey on Strichartz estimates for the Schrödinger equation).

Recently many authors studied potential type perturbation of the free Hamiltonian (one can see [56],
[43], [42], [44], [74], [75], [76], [71], [72], [77], [18], [17]). These kind of equations occur to model the
evolution of the quantum particle in presence of a potential V . Mathematically, this means that in the
model equation, the free Hamiltonian H0 is replaced by a perturbed one, H = H0 + V , and hence the
equation becomes

i∂tψ −Hψ = 0, ψ(0, x) = ψ0,

where V is a real valued function. In the following we will call the equation above the perturbed LS
(LSP) equation. An important point is to understand whether or not the decay and Strichartz estimates
can be extended to the LSP problem. We can reasonably expect that certain conditions on spectral
scenario and decay of the potential have to be considered. Here we shall recall some standard relevant
assumptions. A significant decay restriction required is V ∈ L1

γ(Rn) (short range perturbation) where

L1
γ(Rn) =

{
f |
∫

(
√

1 + |x|2)γ |f(x)| dx <∞
}
, γ ≥ 1.

This decay guarantees that the operator H admits a self-adjoint realization in L2(R), moreover the
absolutely continuous spectrum of H is [0,∞) and its point spectrum consists of a finite number of
negative eigenvalues. We immediately note that, if possibly bound states are presents, it is necessary to
remove them considering the ortogonal projection onto the continuous subspace of H, Pac(H). Indeed,
the bound states generate stationary solutions that cannot verify any decay estimates. Finally, from the
spectral view point, we shall also require that the perturbed Hamiltonian H has no resonances, since a
resonance state can be interpreted as an approximation in a suitable norm of a bound state.

The problem to generalize the dispersive estimates for potentials contained in the above specified class
was extensively studied in any dimension [44], [74], [75] (n ≥ 3), [76] (n = 2), [1], [71], [72] (n = 1) (one
can see [62] for a survey on the main techniques used under suitable regularity and decay assumptions
on the potential in different dimensions).

In this thesis we are interested in the one dimensional case: H0 = −∂2
x and H = −∂2

x + V (x), where
x ∈ R. First of all we observe that in a perturbative regime the Fourier analysis is naturally replaced
by the spectral theory. As we can see in [72], [71], [1], [18], the main goal is the analysis of the kernel of
the perturbed resolvent (τ2−H)−1 in terms of the spectral measure. Indeed, in one dimension, we have
the following explicit formula for the resolvent

(τ2 −H)−1(x, y) =
T (τ)

2iτ
m−(x, τ)m+(y, τ)e−iτ(x−y), x < y,

in terms of the modified Just functions m±(x, τ) and of the transmission coefficient T (τ). Here the
modified Jost functions are defined as

m±(x, τ) = e∓ixτf±(x, τ),

− d2

dx2
f± + V f± = τ2f±, f±(x, τ) ≈ e±ixτ as x→ ±∞,

T (τ)f+(x, τ) describes the incoming plane wave sent from −∞ and T (τ)f−(x, τ) describes the incoming
plane wave sent from +∞ (one can see [18] or Chapter 2 of this thesis for the rigorous definition of T (τ)).
In [1] the problem of establishing decay estimates for the perturbed problem is reduced to the problem
to prove the Lp-continuity of the wave operators W±. Here the wave operators are defined by the strong
limits

W± = s− lim
t→±∞

Pac(H)eitHe−itH0

and they intertwine H0 and the absolutely continuous part of H, Pac(H)H, via the following relation

W±f(H0)W ∗± = f(H)Pac(H), f ∈ L∞loc(Rn).
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In [1] it is proved that if the potential V ∈ L1
3(R) and T (0) = 0 (zero is not a resonance) the wave

operators W± are bounded in Lp for 1 < p <∞. The proof is based on the resolvent estimates obtained
by standard properties of the modified Jost functions and of the transmission coefficient ([19]) combined
with the explicit representation of the perturbed resolvent kernel. This result is improved first in [72]
(V ∈ L1

γ(R), γ > 3/2) and then in [18] (V ∈ L1
1(R)). The more relaxed hypotheses on the decay of

the potential follows improving the results in [19] and using Fourier analysis arguments. We note that
the Lp-continuity of the wave operators and the intertwining property immediately imply the decay
estimates for LSP. Similar estimates are also proved in Sobolev spaces W k,p(R) [71] using additional
decay assumptions on the weak k−derivatives of the potential.

Most of this analysis is motivated by the interest in understanding the asymptotic behaviour for
the nonlinear equation. In this respect we introduce the nonlinear problem. The nonlinear Schrödinger
equation (NLS)

i∂tψ −H0ψ = ±|ψ|p−1ψ, ψ(0) = ψ0,

with p > 1, is one of the universal model used to describe the evolution of a wave packet in a weakly
nonlinear dispersive media. Here we focus our analysis on the cubic NLS (p = 3) in one dimension.
The cubic nonlinearity comes from by a simplification process in the description of the N -particles
Schrödinger equation when the interaction potential behaves like a δ function ([66], [51]). This equation
occurs to model several phenomena in quantum optics. Special attention is also paid to the perturbed
NLS (NLSP)

i∂tψ −Hψ = ±|ψ|2ψ, ψ(0) = ψ0,

where the potential V is a small perturbation in the sense above specified. Actually we can work
with more general nonlinearities but here, for the sake of simplicity, we consider just the pure power
nonlinearity.

For cubic NLS in one dimension in absence of potential, V = 0, global well posedness results in Hs(R)
for small data solutions have been established for any s ≥ 0. The case s > 1/2 follows from fixed point
argument combined with the Sobolev embedding Hs(R) ↪→ L∞(R), while for s ≤ 1/2 it is crucial to use
the Strichartz estimates in the auxiliary Sobolev (Hs

p(R)) and Besov (Bsp(R)) spaces. Similarly, if the
potential V satisfies certain decay and spectral assumptions, the generalization of Strichartz estimates
for the perturbed propagator allows to get the analogous well posedness results for NLSP (one can see
Chapter 4 in [13]).

Once the solution exists globally in time, it is natural to ask whether or not this solution has a linear
behaviour. So, the first problem to address to have answers in this direction is to understand if the
solution ψ of NLS (or NLSP) satisfies the decay estimate

‖Ψ(t)‖L∞(R) ≤ C
1

t1/2
‖ψ0‖Hs(R),

for small initial data. The problem of establishing the decay estimate and scattering (existence of
solutions that for large time behave like the solution of LS) for NLS has a large amount of literature [54],
[64], [5], [55], [38]. What it is proved is that for powers 3 < p < 5 the dispersive effect dominates the
equation and the solutions behave like the free ones. By contrast, in the case 1 < p ≤ 3 the nonlinearity
modifies the asymptotics of the solutions. Indeed, in this last case the zero solution represents the unique
solution asymptotically free. Despite this result, in the cubic case, the dispersive estimate holds and it
is possible to construct a modified scattering profile that takes into account the long range interaction
and describes the asymptotics of the solutions. For this reason the cubic power is called critical for the
scattering. In particular, the decay estimate is proved for cubic NLS for small initial data in L2(R) and
H1(R) ([55]) and in weighted Sobolev spaces Hs,s(R) = Hs(R)∩L2(R, 〈x〉s dx) for s > 1/2 ([38]). Their
approach is based on the use of the generators of the pseudoconformal transform.

Analogous problems for the NLSP equation have also been recently studied [10], [11], [17], [12], [28].
In particular, in [10] and [11] local and global well posedness for NLSP equation are discussed for smooth
and possibly unbounded potential in various weighted Sobolev spaces. The problem to generalize de-
cay estimates and scattering results for one dimensional NLSP is addressed in [17]. The authors adapt
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the approach used in [54] to get analogous results for the perturbed equation. A scattering subcritical
nonlinearity is considered, i.e. 3 < p < 5. It is shown that for potential V sufficiently smooth, such
that σ(H) = [0,+∞) and for H without zero resonance (T (0) = 0), the NLSP problem is globally well
posed in Hs,s(R) for s > 1/2 and for small data solutions. Moreover, it is proved that the solutions
have a free asymptotic profile. The main point in this work is to prove the equivalence between classi-
cal homogeneous Sobolev spaces Ḣs(R) and the ones generated by the perturbed Hamiltonian, Ḣs

V (R),

when 0 ≤ s < 1/2. To this end the analysis of the Paley-Littlewood operators ϕ(
√
H) and the condition

of no zero resonance in terms of the transmission coefficient will play a fundamental role. From the
equivalence of the Sobolev spaces Ḣs(R) and Ḣs

V (R) it is possible to deduce the fractional Leibniz rule
for the perturbed Hamiltonian. This tool will be essential to estimate the nonlinear terms.

The aim of this thesis is to present some results concerning with questions related on one side to
LSP, we want to study the continuity of wave operators in homogeneous Besov and Sobolev spaces, and,
on the other side, concerning with NLSP, we want to prove well posedness and decay estimates in the
critical case.

The thesis is divided into three main parts. The first part (Chapters 1, 2, 3) discusses problem strictly
connected with the perturbed Hamiltonian and with the LSP: The sectorial properties and the spectral
scenario (modes and resonances) of the perturbed Hamiltonian are studied. Motivated by the works
[72], [1], [18] we study the continuity of the wave operators in homogeneous Sobolev and Besov spaces.
The second part (Chapter 4) examines one dimensional NLSP with cubic nonlinearity. Motivated by the
analysis in [17] the main goal is to generalize the results obtained in [55] and [38] in presence of short
range potentials. The last part (Appendix A, B, C) is a collection of some fundamental tools and known
results used in the thesis. Moreover all the spaces introduced in the thesis are defined. In order to keep
the presentation of the material short and readable, the third part is not fully rigorous.

In the following we give a more detailed description of the contents in the various chapters.
The first chapter is devoted to the study of the sectorial properties of the perturbed Hamiltonian,

H = H0 + V , when the potential V ∈ L1
γ(R), γ > 1 and the Hamiltonian H has neither point spectrum,

(1.3.2) nor zero resonance (one can see Definition 1.1.7 for the free case, Definition 1.3.6 for the perturbed
one and Proposition 1.3.10 for a characterization). It is shown that these assumptions guarantee that
the perturbed Hamiltonian H is a sectorial operator in Lp spaces with 1 < p ≤ ∞ (Theorem 1.4.6).
In particular this property allows to define the fractional powers of the perturbed Hamiltonian, H−α,
α ∈ (0, 1) by means of the Balakrishnan representation (1.4.15). The chapter is organized as follows: In
Section 1.1 we briefly recall some classical arguments on functional calculus, zero resonance and sectorial
properties for the Laplace operator H0. In Section 1.2 we collect some known results to understand
the spectral scenario of the Hamiltonian H in presence of short range perturbations. In Section 1.3 we
introduce the notion of no zero resonance for the perturbed Hamiltonian in terms of poles of the resolvent
or equivalently in terms of L∞ solutions of the equation Hu = 0 (see Proposition 1.3.10). Finally, in the
last section we establish Lp estimates for the resolvent of the perturbed Hamiltonian. The main result
of the chapter is summarized in the statement of the Theorem 1.4.6.

Chapter 2 considers the case of perturbed Hamiltonian H on the real line, where the potential V
verifies the decay hypothesis V ∈ L1

γ(R) and neither modes nor resonances are allowed for H. The

main goal is to study how the classical homogeneous Besov spaces Ḃsp(R), s ∈ (0, 1), 1 < p < ∞, are
transformed under the action of the wave operators. In particular we show that, under the necessary
restriction s < n/p (in our case we consider n = 1), the homogeneous spaces generated from the perturbed
Hamiltonian are equivalent to the classical ones if V ∈ L1

γ(R) with γ > 1 + 1/p. The plan of the chapter
is the following: In Section 2.1 we first recall some notions and estimates concerning with the Jost
functions, the transmission coefficient and the reflection coefficients ([72], [19]). Then we prove some
improved estimates for the functions just mentioned (one can see Lemma 2.1.3 and Lemma 2.1.9). These
estimates will turn to be crucial in order to establish the equivalence of the norms. To this argument
is devoted the Section 2.2. At first we provide a counterexample to show that the requirement s < n/p
is necessary to guarantee the equivalence of the norms. Then, the functional calculus for the perturbed
Hamiltonian combined with the improved estimates got for the Jost functions, the transmission and
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the reflection coefficients allow us to get appropriate kernel estimates of the operator ϕ(
√
H/2j), where

j ∈ Z and ϕ is the Paley-Littlewood localization function. The equivalence of the norms is established
in Theorem 2.2.4 and as an immediate consequence we have the continuity of the wave operators in
homogeneous Besov spaces (Corollary 2.2.5). From the continuity of the wave operators and the splitting
property (2.2.1) we also get the Strichartz estimates in Ḃsp(R) for the perturbed Schrödinger propagator.

The Chapter 3 follows the same spirit of the previous chapter replacing the homogeneous Besov
spaces with the Sobolev ones. In this chapter we remove the technical assumption that the Hamiltonian
H has no modes. This requires to work with the absolutely continuous part of the Hamiltonian Hac =
Pac(H)H. The main goal is to show the equivalence of the homogeneous Sobolev spaces generated by
the Hamiltonian Hac and the classical ones Ḣs

p(R). This result is established in Theorem 3.1.2 under
the conditions s < 1/p and V ∈ L1

γ(R) with γ = 1+s. From the equivalence of the norms we can deduce
the Hardy inequality for the perturbed Hamiltonian Hac (see inequality (3.1.2)), the fractional Leibnitz
rule (see Corollary 3.1.6) and the continuity of the wave operators in these spaces. Here we outline the
contents of the various sections: In Section 3.1 and Section 3.2 the study of the perturbed Sobolev spaces
is motivated and the main results are exposed. The Section 3.3 and Section 3.4 contain the proof of the
main results of the chapter. Finally, in Section 3.5 a counterexample of the equivalence of the norms in
the case s = n/p is given.

In the last chapter we study the asymptotic behaviour of the solutions of perturbed NLS with cubic
nonlinearity on the real line

i∂tψ −Hψ = ±ψ|ψ|2.
The presence of the potential V breaks the symmetries of the equation. In order to preserve at least
the reflection symmetry we consider even real-valued potential and odd initial data. Finally, we suppose
that V ∈ L1

γ(R), γ = 1 + s, and that the Hamiltonian H has nor modes neither resonances. Since to
characterize the potential without zero resonance is rather tricky, inspired by the work [45], we require
that a small perturbation of the potential V is in the image of the Miura map (see relation (4.1.12))
and that V 6= 0 almost everywhere. In particular these last assumptions guarantee the absence of the
resonance at zero. The assumptions specified above and the additional assumption of smallness on
initial data guarantee the globally well-posedness of the NLSP problem in exams in weighted Sobolev
spaces Hs,s(R), when 1/2 < s < 3/4. Moreover it is shown that the solution verifies the L∞ decay
estimates (one can see Theorem 4.1.1). The sections are organised as follows: In Section 4.1 we expose
the motivations and the state of the art of the problem. Then we discuss in details the assumptions for
the potential and for the initial data. Finally we state the main result (Theorem 4.1.1) and we sketch the
fundamental ideas to prove it. The structure of the potentials connected with the Miura map is analysed
in Section 4.2. In particular we show that if a small perturbation of the potential V lives in the image of
the Miura map (see (4.1.12)) and V 6= 0 a. e. then the perturbed Hamiltonian H has not zero resonance
(Lemma 4.2.2). Moreover, these information are crucial to establish the equivalence of the standard
Sobolev spaces H1(R) and the perturbed ones H1

V (R) when we consider their restrictions on the odd
functions (see Lemma 4.2.3). The Section 4.3 and Section 4.4 are addressed to the construction of the
modified scattering profile for the perturbed problem. Indeed, to prove the main Theorem 4.1.1 we first
transform the original global problem (see (4.1.15)) into a new local one (see (4.1.18)) by means of the
pseudoconformal transformation. Then we construct the modified scattering profile using an approach
based on the two parameters groups, similar groups (see Definition 4.4.1) and splitting generators (see
Definition 4.4.2). Once we have the expression of the solutions of the perturbed problem (see (4.4.11))
in terms of the two parameters groups, the fundamental step will be to define a leading part for the
scattering profile ((4.4.16)) and then prove a priori bounds for the leading term and the remainder. In
Section 4.5 we establish the equivalence between the classical Sobolev norms and the ones generated
by the generator of the two parameters group (see Lemma 4.5.2). The Section 4.5 and Section 4.6 are
devoted to establish a priori estimates for the two parameters group. The fundamental result of this
section is Lemma 4.6.2. The estimates established are the keys to control the Hs and L∞ norms for the
leading and the remainder term of the scattering modified profile. These estimates and the complete
proof of the Theorem 4.1.1 can be found in Section 4.7.

Finally, in the Appendix A we first define the functional spaces and the relative norms used in this
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work. Then we recall classical Sobolev embeddings. In Appendix B the standard well-posedness results
for NLS is briefly exposed. In Appendix C we prove some modification of the Gronwall inequalities on
the real line. For the convenience of an inexpert reader we suggest to find relevant and exaustive material
from the references quoted in the appendices.

For a good understanding of this work it is required a knowledge of classical functional analysis and
basic PDEs theory.
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1

Chapter 1

Sectorial Hamiltonians without zero

resonance in one dimension

In this chapter we recall the concept of resonance and the sectorial estimates for the free Laplacian in

one dimension. Then we introduce the notion of resonance for the one dimensional Laplace operator

perturbed with a short range potential V ∈ L1
a(R), a > 1. We prove that the absence of eigenvalues and

resonances for the perturbed HamiltonianH = −∂2
x+V , combining with the decay hypothesis V ∈ L1

a(R),

guarantee that the perturbed Hamiltonian H is a sectorial operator in Lp(R), with 1 < p ≤ ∞.

1.1 Laplace operator in one dimension

In this Section we collect some known results for Laplace operator on the real line. One can find a

detailed treatment in [58] for the Spectral Theorem and in [39] for the Sectorial properties.

1.1.1 Functional calculus and spectral measure for Laplace operator

We consider the operator H0 = −∂2
x with domain D(H0) the Schwartz functions S(R). The Spectral

Theorem for unbounded self-adjoint operator on Hilbert spaces applied to the case of free Laplacian

establishes that the operator (H0, D(H0)) is essentially self-adjoint with respect to the standard scalar

product of L2(R) and by means of the Fourier transform

F : L2(Rx)→ L2(Rξ),



1.1. Laplace operator in one dimension 2

Fψ(ξ) = ψ̂(ξ) =
1

2π

∫
R
e−ixξψ(x) dx, ψ ∈ L2(R),

it is unitary equivalent to the multiplication operator M|·|2 on L2(Rξ, dξ), where M|·|2φ(ξ) = |ξ|2φ(ξ), for

any φ ∈ L2(Rξ, dξ). Moreover, given f a bounded borel function, f : Rξ → R defined almost everywhere,

we can define the functional calculus as follows

f(H0)ψ = F−1Mf(|ξ|2)Fψ, ψ ∈ L2(R).

The functional calculus allows to build the spectral measure and express the Schrödinger group eitH0

in terms of it. The Spectral Theorem in the projection valued measure form applied to the operator

(H0, D(H0)) establishes that:

Theorem 1.1.1. The operator (H0, D(H0)) is essentially self-adjoint with respect to the standard scalar

product of L2(R). Let B(R) denote the Borel sets on R, and let L(L2(R)) be the set of the bounded

operators on L2(R). Hence, there exists a unique projection valued measure (PVM)

E : B(R)→ L(L2(R)),

such that the following correspondence is verified:

H0 =

∫
R
λdE(λ).

Moreover, if f ∈ B(R), i.e. if f is a bounded Borel function, we have that

f(H0) =

∫
R
f(λ)dE(λ).

Remark 1.1.2. Fixed an initial configuration ψ ∈ L2(R), the above theorem and the Riesz-Markov

representation theorem imply that there exists a unique Baire measure Eψ such that

(ψ, f(H0)ψ) =

∫
R
f(λ) dEψ(λ). (1.1.1)

The measure Eψ is called spectral measure associated to the state ψ. If we consider Ω ∈ B(R) and
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f = χΩ the characteristic function, then we can interpret the spectral measure µψ

Ω 7→ (ψ, χΩ(H0)ψ),

as a tool for quantum measurements. Indeed, this measure represents the probability that the quantum

observable H0, takes values in Ω ⊂ σ(H0), if the system is prepared in the state ψ. Here σ(H0) denotes

the spectrum of H0. (One can see sections VII.2 and VIII.5 in [58] for a proof of the spectral theorems

and [53] for the physical interpretation of the spectral theorems and the more general aspects of the

quantum probability theory.)

The Stone formula provides an explicit representation of the spectral measure associated with the

self-adjoint operator (H0, D(H0)) in terms of its resolvent.

Proposition 1.1.3 (Stone formula). Let a, b ∈ R, a ≤ b. Let (A,D(A)) be a self-adjoint operator on

the Hilbert space H. Then the following formula holds

lim
ε→0+

1

2iπ

∫ b

a

R(λ− iε, A)−R(λ+ iε, A) dλ =
1

2
(E({a}) + E({b})) + E((a, b)), (1.1.2)

where the operator R(z,A) = (z −A)−1 denotes the resolvent operator.

Proof. We first compute the following limit

lim
ε→0+

1

2πi

∫ b

a

1

λ− iε− t
− 1

λ+ iε− t
dλ.

We have that

lim
ε→0+

1

2πi

∫ b

a

1

λ− iε− t
− 1

λ+ iε− t
dλ = lim

ε→0+

1

2πi

∫ b

a

2iε

(λ− t)2 + ε2
dλ

= lim
ε→0+

1

πε

∫ b

a

1

1 +
(
λ−t
ε

)2 dλ
= lim
ε→0+

1

π

∫ b−t
ε

a−t
ε

1

1 + λ2
dλ.

The last integrand is uniformly bounded and the integral converges pointwise. So, computing this integral

and via the spectral theorem

lim
ε→0+

1

2πi

∫ b

a

R(λ− iε, A)−R(λ+ iε, A) dλ = lim
ε→0+

1

2πi

∫ b

a

1

λ− iε− t
− 1

λ+ iε− t
dE(λ)
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we get the Stone formula (1.1.2).

On the other side we can also get an explicit representation formula for the kernel of the resolvent of

the free Laplace operator:

Proposition 1.1.4. Let z be in the resolvent set ρ(H0) = Cr[0,+∞). Then, the resolvent operator of

the Laplacian can be written as an integral operator:

R(z,H0)u(x) =

∫
R
R(z,H0)(x, y)u(y) dy

where u ∈ L2(R) and

R(z,H0)(x, y) =
ei|x−y|

√
z

2i
√
z

.

Notice that
√
z is the analytic branch of z1/2 with branch cut [0,∞) such that the map

z ∈ {z ∈ Cr [0,∞)} =⇒ =
√
z > 0. (1.1.3)

is a well-defined analytic diffeomorphism.

Proof. Let z ∈ ρ(H0). We consider the problem (z − H0)f = u. Our goal is to write f as an integral

operator. Applying the Fourier transform and then the anti Fourier transform, we have that

R(z,H0)(x, y) =
1

2π

∫
R

ei(x−y)ξ

z − ξ2
dξ.

Hence, we need to compute the following integral

∫
R

eixξ

z − ξ2
dξ.

We consider the holomorphic function

F (α) =
eixα

z − α2
, α ∈ Cr {±

√
z}, =

√
z > 0.

Let M > 0. We consider the closed curves γ±M defined as in the figure below.

By the Cauchy’s residue theorem we have that

∫
γ±M

F (α) dα = 2πiRes(F,±
√
z) = 2πi

∓e±ix
√
z

2
√
z

.
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We first consider the case x ≥ 0 and the path γ+
M . It follows that

∫
γ+
M

F (α) dα =

∫ M

−M

eixξ

z − ξ2
dξ +

∫ π

0

eixM(cosθ+i sin θ)

z −M2e2iθ
Meiθ dθ.

Passing to the limit M → +∞ we prove that

2πi
−eix

√
z

2
√
z

=

∫
R

eixξ

z − ξ2
dξ.

If x < 0 we consider the path γ−M and similarly we get

2πi
e−ix

√
z

2
√
z

= −
∫
R

eixξ

z − ξ2
dξ.

This completes the proof.

1.1.2 Meromorphic extension of the free resolvent and resonances

In this section we define the concept of quantum resonance for the free Laplace operator. In physics, the

resonances are related to the existence of meta-stable states (one can see [80] and references therein for

a physical description of resonances). In mathematics, the resonances can be seen as a generalization

of the eigenvalues. Broadly speaking, the eigenvalues of a certain operator are the poles of its resolvent

operator in a suitable space while the resonances will be defined as poles of the meromorphic continuation

of the resolvent in a larger space.

In order to rigorous define the resonances, we firstly reparametrize the complex plane with the

following change of variable:

z 7→ λ2, =λ > 0.
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Hence, we consider the resolvent operator on the complex half plane λ ∈ C, and =λ > 0:

R(λ2,H0) = (λ2 −H0)−1 : L2(R)→ L2(R).

It is a bounded operator on L2(R), meromorphic on C+ and continuous on the real axis, except possibly

at zero. Moreover, as showed in Proposition 1.1.4, we have the following explicit formula for the kernel

of the resolvent

R(λ2,H0)(x, y) =
eiλ|x−y|

2iλ
,

where λ ∈ C, =λ > 0.

This representation of the resolvent suggests us to define a meromorphic extension to the entire complex

plane, λ ∈ C. In order to do this, we consider the cut-off function ϕ ∈ C∞c (R) and we define the cut-off

resolvent ϕR(λ2,H0)ϕ. The kernel of this operator is explicitly given by

ϕ(x)
eiλ|x−y|

2iλ
ϕ(y),

with λ ∈ C,=λ > 0. Hence, it is natural to define the resolvent for λ ∈ C and =λ < 0, as follows

ϕR(−λ2,H0)ϕ.

The operator ϕR(−λ2,H0)ϕ is meromorphic in =λ < 0. We note that, if we consider the operator

defined as ϕR(λ2,H0)ϕ on the positive complex half plane and as ϕR(−λ2,H0)ϕ on the negative one,

we have a discontinuity on the real line.

Proposition 1.1.5. Let λ > 0. Then we have the following jump discontinuity on the real axis at the

point λ:

lim
ε→0+

ϕR((λ+ iε)2,H0)ϕ− ϕR(−(λ− iε)2,H0)ϕ = ϕM(λ)ϕ
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where

M(λ)(x, y) =
ei|x−y|λ

2iλ
+
e−i|x−y|λ

2iλ
=

cos(|x− y|λ)

iλ
.

Proposition 1.1.6. The cut off resolvent

ϕR(λ2,H0)ϕ

admits a unique meromorphic continuation as a compact operator valued function to C. Moreover, the

meromorphic continuation of the cut-off resolvent has an isolated pole of order one at λ = 0.

Proof. We consider the following extension of the resolvent

R̃ϕ(λ2,H0) =


ϕR(λ2,H0)ϕ, =λ ≥ 0,

ϕR(−λ2,H0)ϕ+ ϕM(λ)ϕ, =λ < 0.

By definition, R̃ϕ(λ2,H0) is continuous on the real line. Moreover, let f ∈ L2(R), we have that

R̃ϕ(λ2,H0)f(x) =
ϕ(x)

2iλ

∫
R
ϕ(y)f(y) dy + ϕ(x)

∫
R

eiλ|x−y| − 1

2iλ
ϕ(y)f(y) dy.

Definition 1.1.7. Let z ∈ C. We say that z is a quantum resonance point for the Hamiltonian H0 or

equivalentely we say that the Hamiltonian H0 has a resonance in z, iff the meromorphic continuation of

the cut-off resolvent has a pole in z.

Remark 1.1.8. We note that the free Hamiltonian H0 has a resonance in zero.

One can find a more detailed description of resonances in terms of poles of the resolvent in [40] and

references therein.

1.1.3 Sectorial properties for Laplace operator

In this section we recall some classical results on the sectorial operators. We quote Section 1 in [39] for

the classical theory of sectorial operators and [3] for the fractional calculus defined on sectorial operators.

In the following we denote with (A,D(A)) a closed operator defined on the Banach space X. The

reported results state that, if the spectrum σ(A) is confined in a certain sector of the complex plane,

and the resolvent operator satisfies suitable estimates, then we can define the functional calculus on A.
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Definition 1.1.9. Let (A,D(A)) be a closed densely defined linear operator on the Banach space X. A

is called sectorial operator if there exist θ ∈ (0, π/2), M ≥ 1, a ∈ R such that

(i) Sa,θ = {z | θ ≤ | arg(z − a)| ≤ π, z 6= a} ⊂ ρ(A),

(ii) ‖R(z,A)‖ ≤ M

|z − a|
, ∀z ∈ Sa,θ.

Theorem 1.1.10. Let (A,D(A)) be a sectorial operator. Then −A is the infinitesimal generator of the

analytic semigroup (e−At)t≥0, where

e−tA =
1

2πi

∫
Γ

(z +A)−1ezt dz

where Γ is a contour in the resolvent set ρ(−A) with arg z → ±θ as |z| → +∞ for some θ ∈ (π/2, π). The

operator e−At can be continued analytically into a sector {t 6= 0 : | arg t| < ε}. Moreover, if <σ(A) > b,

then there exists a constant C > 0 such that for any t > 0 we have that

‖e−At‖ ≤ Ce−at, ‖Ae−At‖ ≤ C

t
e−at.

Definition 1.1.11. Let (A,D(A)) be a sectorial operator such that <σ(A) > 0. Then, for any α > 0

we can define the fractional powers of the operator A as follows

A−α =
1

Γ(α)

∫ ∞
0

tα−1e−tA dt.

Theorem 1.1.12. Let (A,D(A)) be a sectorial operator on X with <σ(A) > 0. Then for any α > 0,

the fractional operator A−α is a bounded linear operator on X such that A−αA−β = A−(α+β) for any

α, β > 0. Moreover, if 0 < α < 1 we have the Balakrishnan representation:

A−α =
sin(πα)

π

∫ ∞
0

z−α(z +A)−1 dz.

Corollary 1.1.13. Let us consider (H0, C
∞
c (R)) and z ∈ C be such that | arg z| ≤ θ < π. Then , for

any 1 ≤ p ≤ ∞, the following estimate holds

‖R(z,H0)f‖Lp(R) ≤
C

(cos(θ/2))3/2

1

|z|
‖f‖Lp(R).
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Moreover, the free Hamiltonian H0 is a sectorial operator in the spaces Lp(R), with 1 ≤ p < ∞, in the

spaces of uniformly continuous bounded functions and in the space of continuous functions that vanish

at infinity, with spectrum σ(H0) = [0,∞) in each case.

In [39] one can find a proof of the sectorial estimates for the free Laplacian for any dimensions.

1.2 Spectral properties for the Schrödinger operator on the real

line

Let V : R→ R be a given potential. We consider the Schrödinger operator in one dimension associated

with the potential V ,

H = H0 + V (x),

defined on the space C∞c (R). We are interested in potentials V such that the Hamiltonian H can be

considered as a perturbation of the free Hamiltonian H0. In particular this means that we are interested

in potentials such that the spectral properties of H (eigenvalues and resonances), resemble those of H0.

Now we collect some results that describe the spectral scenario for the perturbed Hamiltonian H

when the potential represents just a small disorder. In this case we will also say that V has short

range effects. In the following we consider potentials bounded from below or that verify certain decay

at infinity (one can see [15] and references therein for a more detailed tour on the spectral properties of

the Schrödinger operator associated with short range potential).

Theorem 1.2.1 (Theorem 3.1 and Theorem 3.2, Chapter 3, [6]). Let V ∈ L∞loc(R) be a locally bounded

potential. Let a ∈ R, such that

lim inf
|x|→∞

V (x) ≥ a.

Then H is essentially self-adjoint on C∞c (R) with discrete spectrum contained in (−∞, a), and for any

a′ < a we have that σ(H)∩(−∞, a′) consists only of a finite number of eigenvalue with finite multiplicity.

Moreover, if z is an eigenvalue with eigenvector u, i.e. Hu = zu, then the eigenvector u has exponentially

decay. In particular the following estimate holds

|u(x)| ≤ Cεe−
√

a−z−ε
2 |x|,

for any ε > 0.
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Figure 1.2.1: Potential bounded from below without decay at infinity.

The next result shows that if additional decay on the negative part of the potential is required then

the spectrum of the perturbed operator resembles the spectrum of the unperturbed one except for a

finite number of negative eigenvalues.

Theorem 1.2.2 (Theorem 5.3, Chapter 2, [6]). Let V ∈ L∞loc(R) such that the following decay hypothesis

are satisfied

V (x) ≥ a, and

∫
R
|x||V−(x)| dx <∞,

where V−(x) = min(V (x), 0) is continuous and a ∈ R. Then the number of the negative eigenvalues

N−(H) is finite and the following bound is proved

N−(H) ≤ 1 +

∫
R
|x||V−(x)| dx.

Figure 1.2.2: Example of a potential bounded from below and with decay at infinity on the negative
part.

Finally, we state the following more general result:

Theorem 1.2.3 (Theorem 10.2, [68]). Let V ∈ L∞(R) + L2(R). Then H is a self-adjoint operator on

H2(R) and essentially self-adjoint on C∞c (R). Moreover

σess(H) = σ(H) r σp(H) = [0,∞) = σ(H0).

In the following we focus our attention on particular potentials V that are space localized and that
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decay at infinity. In particular, we will consider V ∈ L1
γ(R) namely

∫
R
〈x〉γ |V (x)|dx <∞,

with 〈x〉2 = 1 + x2, and γ ≥ 1.

To this end, we state the following result that fix the general spectral scenario for the perturbed

Hamiltonian H in examination:

Theorem 1.2.4. Let V ∈ L1(R). Then H has only point spectrum in (−∞, 0), where 0 is the only pos-

sible accumulation point. Moreover [0,∞) is an essential support for the absolutely continuous spectrum.

If V ∈ L1
1(R) then there are only finitely many bound states.

The potentials V ∈ L1
1(R) can be interpreted as a small disorder that perturbs the free evolution of

the quantum particle.

1.3 Zero resonance for perturbed Laplacian in one dimension

Let V : R→ R be a time independent potential and we suppose that V verifies an infinity decay, namely

following [72], [19] we require

(H1) V ∈ L1
a(R), a > 1. (1.3.1)

We consider the perturbed Hamiltonian

H = −∂2
x + V = H0 + V

and we assume that the point spectrum σp(H) is empty, i.e.

(H2) (H− zI)u = 0, u ∈ L2(R), z ∈ C =⇒ u = 0. (1.3.2)

Now, we are going to introduce heuristically the notion of zero resonance for the perturbed Hamiltonian

H, following the heuristics for the free case.

The free Hamiltonian H0 has resolvent R(z,H0) = (z −H0)−1 well defined in C \ [0,∞) as integral

operator with kernel

R(z,H0)(x, y) =
ei
√
z|x−y|

2i
√
z

. (1.3.3)
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Here and below
√
z is the analytic branch of z1/2 with branch cut [0,∞), such that the map

z ∈ {z ∈ C \ [0,∞)} 7→ λ =
√
z ∈ {=λ > 0} (1.3.4)

is a well-defined analytic diffeomorphism. Let f be a function in a suitable Banach space. Rewriting the

relation (1.3.3) as follows

R(λ2,H0)f(x) =
1

2iλ

∫
R
f(y) dy +

∫
R

eiλ|x−y| − 1

2iλ
f(y) dy, (1.3.5)

we interpret the resonance in zero as the simple pole in zero of the resolvent operator R(λ2,H0). We

note that, if
∫
R f(y) dy = 0, the effects of the pole are nullified.

Now we turn to the perturbed Hamiltonian H = H0 + V , where the potential V satisfies (H1) and

(H2). We want assumptions that guarantee that the spectral scenario (eigenvalues and resonances) of

the operator H resembles the one of the free operator H0. Hence, at least informally, in addition to the

hypotheses (H1) and (H2), we need to require that the resolvent operator R(λ2,H) has not any poles

apart from the one generated by R(λ2,H0). If this last requirement is satisfied, we will say that

(H3) H has no zero resonance.

To formalize this last requirement, we firstly note that on the resolvent set Cr [0,∞), the following

identity is verified

R(λ2,H)
(
I − V R(λ2,H0)

)
= R(λ2,H0). (1.3.6)

Then, we introduce a projector P on the space of the integrable functions L1(R), such that if

f ∈ L1(R) then
∫
R Pf(y) dy = 0. This projector removes the zero resonance generated by the free

Hamiltonian H0. Applying the projector in (1.3.6) we have the following relation

R(λ2,H)
(
I − V R(λ2,H0)P

)
P = R(λ2,H0)P. (1.3.7)

Hence, it is clear that the problem to guarantee the absence of additional resonances in zero for the

perturbed Hamiltonian H is strictly related to the problem of the invertibility of the operator

(
I − V R(λ2,H0)P

)
(1.3.8)

in appropriate Banach spaces.
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In this section we will begin introducing a family of projectors so that it will be possible to give a

first rigorous definition of the zero resonance for the perturbed Hamiltonian. Finally, we will connect

the presence of resonances in zero to the existence of solutions u ∈ L∞(R) of the equation Hu = 0.

Definition 1.3.1. Let δ ∈ (0, 1) and let

S+
δ = {λ ∈ C; |λ| < δ,=λ > 0}.

Let us consider the functions

e0 : R× S+
δ → C,

e : R× S+
δ → C,

such that

(i) e0(λ) = e0(·, λ) ∈ C∞c (R) for any λ ∈ S+
δ and the support of e0(λ) is independent from λ. Moreover∫

R e0(x, λ) dx = 1 for any λ ∈ S+
δ ;

(ii) e0(x) = e0(x, ·) is analytic in S+
δ and continuous in S+

δ for any x ∈ R;

(iii) e(x, λ) = (λ2 −H)e0(x, λ),
∫
R e(x, λ) dx = 1 for any λ ∈ S+

δ and e0(x, λ) satisfies (i) and (ii).

We define the set Eδ as follows

Eδ =
{
e : R× S+

δ → C | (iii) is satisfied
}
. (1.3.9)

Lemma 1.3.2. Let V ∈ L1
1(R). Then for any δ ∈ (0, 1) we have that Eδ is not empty.

Proof. Since the potential V ∈ L1
1(R), there exist 0 < a1 < b1 < a2 < b2 <∞ such that b1−a1 = b2−a2

and
∫ b1
a1
V (x)dx 6=

∫ b2
a2
V (x)dx. To construct e0 as in (i) and (ii), we introduce the bump functions
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ϕ1(x) = ϕV1 (x), ϕ2(x) = ϕV2 (x) ∈ C∞c (R), so that suppϕ1 ⊂ [a1, b1], ϕ2(x) = ϕ1(x − a2 + a1) and∫
R ϕ1(x) dx =

∫
R ϕ2(x) dx = 1. We set

v1 =

∫
R
ϕ1(x)V (x)dx 6=

∫
R
ϕ2(x)V (x)dx = v2 (1.3.10)

and we shall look for e0 = e0(V ) of the following form

e0(x, λ) = c1(λ)ϕ1(x) + c2(λ)ϕ2(x),

where c1(λ) and c2(λ) satisfy the following relations

∫
R
e0(x, λ) dx = 1 =⇒ c1(λ) + c2(λ) = 1, (1.3.11)∫

R
(λ2 −H)e0(x, λ) dx = 1 =⇒ c1(λ)v1 + c2(λ)v2 = λ2 − 1. (1.3.12)

The existence and uniqueness of solutions c1(λ) and c2(λ) is guaranteed by the relation

det

 1 1

v1 v2

 =

∫
R
ϕ2(x)V (x)−

∫
R
ϕ1(x)V (x) = v2 − v1 6= 0 (1.3.13)

that is true due to (1.3.10). Hence we have that

e0(x, λ) =
1− λ2 + v2

v2 − v1
ϕ1(x) +

λ2 − 1− v1

v2 − v1
ϕ2(x).

By construction the requirements (i), (ii) and (iii) are satisfied for any δ ∈ (0, 1). In particular, the

condition |λ| < δ < 1, guarantees that |e0(x, λ)| ≤M , with M > 0 independent from λ.

In the construction of the projector the weighted Lebesgue spaces play a fundamental role. Let

a ∈ [1, 2]. We define the following Banach spaces

L1
a(R) =

{
f ∈ L1(R) | 〈x〉af ∈ L1(R)

}
,

B0
a(R) =

{
f ∈ L1(R) | 〈x〉af ∈ L1(R),

∫
R
f(y) dy = 0

}
.
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Definition 1.3.3. Let δ ∈ (0, 1), e ∈ Eδ and λ ∈ S+
δ . Given a ∈ [1, 2], we define the projector

Pe(λ) : L1
a(R)→ B0

a(R)

as follows

Pe(λ)f(x) : = f(x)− e(x, λ)

∫
R
f(y) dy. (1.3.14)

For fixed e ∈ Eδ and for fixed a ∈ (1, 2] we will define the zero resonance of a-order using the

projector (1.3.14). Then we will prove that the definition is independent from the choice of e ∈ Eδ and

a ∈ (1, 2].

As mentioned in (1.3.7)-(1.3.8), to guarantee that zero is not a resonance, we need to establish the

invertibility of the operator

(I − V R(λ2,H0)Pe(λ)),

as λ goes to zero in a suitable functional space. In order to do this we prove the following estimates for

the operators R(λ2,H0)Pe(λ), with λ ∈ S+
δ .

Lemma 1.3.4. Let a ∈ [1, 2], δ > 0 and e ∈ Eδ. The following properties hold:

(1) There exists a constant Ce > 0 so that for any f ∈ L1
a(R) and for any λ ∈ S+

δ the below estimate

is satisfied

‖R(λ2,H0)Pe(λ)(f)‖L∞(R) ≤ Ce‖f‖L1
a(R); (1.3.15)

(2) There exists a constant Ce > 0 such that for any f ∈ L1
a(R) and any couple λ1, λ2 ∈ S+

δ we have

‖
(
R(λ2

1;H0)Pe(λ1) −R(λ2
2;H0)Pe(λ2)

)
(f)‖L∞(R) ≤ Ce|λ1 − λ2|a−1‖f‖L1

a(R); (1.3.16)

(3) Let V ∈ L1
a(R). Then the operator

Ke(λ) = V R(λ2,H0)Pe(λ) : L1
a(R)→ L1

a(R), (1.3.17)

is compact, analytic in S+
δ for any a ∈ [1, 2] and continuous in its closure S+

δ for a ∈ (1, 2].

Proof. We can use the relations (1.3.3) and (1.3.14) to derive the following relation

R(λ2,H0)Pe(λ)(f)(x) =

∫
R
dy

∫
R
dz

(
eiλ|x−y| − eiλ|x−z|

)
2iλ

f(y)e(z, λ). (1.3.18)
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Let α, β ≥ 0. Since in S+
δ we have that =λ > 0, we can use the following estimates:

|eiλα| ≤ 1, ∀α ≥ 0, ∀λ ∈ C,=λ ≥ 0; (1.3.19)∣∣∣∣eiλα − eiλβ2iλ

∣∣∣∣ ≤ |α− β|2
, ∀α, β ≥ 0, ∀λ ∈ C,=λ ≥ 0. (1.3.20)

The inequality (1.3.19) is trivial. Using this estimate and rewriting the left side in (1.3.20) as follows

(
eiλα − eiλβ

)
2iλ

=
1

2

∫ α

β

eiλτdτ, (1.3.21)

we get (1.3.20).

In order to get (1.3.15) we consider the L∞ norm of (1.3.18) and applying (1.3.20) we have

∥∥R(λ2,H0)Pe(λ)f
∥∥
L∞(R)

≤ 1

2

∫
R
dy

∫
R
dz ||x− y| − |x− z|| |f(y)||e(z, λ)|. (1.3.22)

Hence, to complete the proof of (1.3.15) we note that, since e(λ) verifies the property (iii) in Definition

1.3.1, then there exists a constant Me > 0, such that supp e(λ) ⊂ [−Me,Me] and moreover, if |z| ≤ Me

we have that

||x− y| − |x− z|| ≤ C max(Me, |y|) ≤ Ce〈y〉, (1.3.23)

where Ce > 0.

To prove (1.3.16) we proceed similarly. Let us denote the left side in (1.3.16) as follows:

J(λ1, λ2)f =

∫
R
dy

∫
R
dz Lλ1,λ2,x(y, z)f(y),

where

Lλ1,λ2,x(y, z) =

(
eiλ1|x−y| − eiλ1|x−z|

)
2iλ1

e(z, λ1)−
(
eiλ2|x−y| − eiλ2|x−z|

)
2iλ2

e(z, λ2)

Suppose =λ1 ≤ =λ2. We have that

Lλ1,λ2,x(y, z) =
1

2

∫ |x−y|
|x−z|

eiλ1τ (e(z, λ1)− e(z, λ2))− eiλ1τ (ei(λ2−λ1)τ − 1)e(z, λ2) dτ.

We can estimate the first addend above using the regularity property of e(x, ·) and the inequalities

(1.3.19) and (1.3.23). For the second addend we use the estimate (1.3.20) with β = 0. Then we integrate
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in τ . Operating this computation we get

‖J(λ1, λ2)f‖L∞(R) ≤Ce|λ1 − λ2|‖f‖L1
1(R) + Ce|λ1 − λ2|‖f‖L1

2(R)

≤Ce|λ1 − λ2|‖f‖L1
2(R).

If =λ1 > =λ2 the proof is similar. So, the inequality (1.3.16) has been proved for a = 2. In the case

a = 1 the proof follows by (1.3.15). Slightly modifying the proof of the Riesz-Thorin theorem we can

use the complex interpolation in weighted Lebesgue spaces to deduce the (1.3.16) for any a ∈ [1, 2].

Finally, to complete the proof we have to discuss the compactness of the operator Ke(λ) in L1
a(R),

with a ∈ [1, 2]. Since we are assuming V ∈ L1
a(R), the inequality (1.3.15) implies

Ke(λ) = V R(λ2,H0)Pe(λ) : L1
a(R)→ L1

a(R).

At first we prove the compactness of the operator Ke(λ) for fixed λ ∈ S+
δ . Then, we can pass to the limit

on S+
δ thanks to the inequality (1.3.16).

Let λ ∈ S+
δ , |λ| < δ, and let fn be a bounded sequence in L1

a(R),

‖fn‖L1
a(R) ≤Ma, ∀n ∈ N,

with Ma > 0. Combining the hypothesis V ∈ L1
a(R) and the inequality (1.3.15) we get

‖Ke(λ)fn‖L1
a(R) ≤ CeMa‖V ‖L1

a(R).

We put

R(λ2,H0)Pe(λ)fn = gn ∈ L∞(R).

Since

V : L∞(R)→ L1
a(R),

there exists N(ε) > 0 such that

‖V gn‖L1
a(Ωcε)

≤ ε,
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where Ωε = {x ∈ R||x| ≤ N(ε)} and Ωcε = C r Ωε. On the other side, we know that

Pe(λ)fn = λ2gn + ∂xxgn,

so, we can gain regularity and hence compactness for the sequence gn in bounded domains. Indeed, we

have that

‖∂xxgn‖L1(Ωε) ≤|λ|
2‖gn‖L1(Ωε) + ‖Pe(λ)fn‖L1(Ωε)

≤2δ2|N(ε)|‖gn‖L∞(R) +Ma

≤CeMa|N(ε)|+Ma.

Hence, it is proved that gn ∈ W 2,1(Ωε). The proof follows by the compact embedding W 2,1(Ωε) ↪→↪→

L∞(Ωε). The analiticity of the resolvent operator R(λ2,H0) and of the function e(x, ·) imply the analitic-

ity of the operator V R(λ2,H0)Pe(λ) in S+
δ . The continuity in S+

δ follows by the inequality (1.3.16).

The following Lemma will turn to be crucial to define rigorously the resononace at zero energy.

Lemma 1.3.5. Let V ∈ L1
a(R) and let a ∈ (1, 2]. Suppose that there exist δ > 0, e1 ∈ Eδ such that

(I −Ke1(λ))
−1 there exists in L1

a(R) for any λ ∈ S+
δ . Then, for any 0 < δ′ < δ and for any e ∈ Eδ′ the

operator (I −Ke(λ))
−1 exists in L1

a(R) for any λ ∈ S+
δ′ .

Proof. Suppose that there exist 0 < δ′ < δ, e ∈ Eδ′ and λ ∈ S+
δ′ so that

Ker (I −Ke(λ)) 6= {0}.

Hence, there exists f = fλ ∈ L1
a(R), f 6= 0, such that

f = Ke(λ)f. (1.3.24)

Let ẽ ∈ Eδ′ , ẽ 6= e. Our goal is to construct a function gλ ∈ L1
a(R), gλ 6= 0, such that

Kẽ(λ)gλ = gλ, (1.3.25)

so, the proof will follow by contradiction.



1.3. Zero resonance for perturbed Laplacian in one dimension 19

By definition, we know that there exist e0 and ẽ0 satisfying (ii) and (iii) such that

e(x, λ)− ẽ(x, λ) = (λ2 + ∂2
x − V )(e0(x, λ)− ẽ0(x, λ)).

We can rewrite the equation above as follows

V (e0(x, λ)− ẽ0(x, λ)) = (λ2 + ∂2
x) (e0(x, λ)− ẽ0(x, λ))− (e(x, λ)− ẽ(x, λ)) . (1.3.26)

We define

gλ : = f + (f, 1)V (e0(x, λ)− ẽ0(x, λ)) ,

where (f, 1) =
∫
R f(x) dx. Since V ∈ L1

a(R), we have that gλ ∈ L1
a(R) for any λ ∈ S+

δ . Moreover, using

(1.3.26) we have that ∫
R
V (x) (e0(x, λ)− ẽ0(x, λ)) dx = 0, (1.3.27)

from which it follows that
∫
R gλ(x) dx =

∫
R f(x) dx, and in particular gλ 6= 0. It remains to compute

Kẽ(λ)gλ. Using the definition of gλ we have that

Kẽ(λ)gλ = V R(λ2,H0)Pẽ(λ) [f + (f, 1) [V (e0(λ)− ẽ0(λ))]] .

The relation (1.3.26), the definition of the projector combined with (1.3.27) and the properties

∫
R e(x, λ) dx =

∫
R e0(x, λ) dx = 1, Pe(λ)e(λ) = 0,

lead to the following computation:

Pẽ(λ)gλ = f − (f, 1)ẽ(λ) + (f, 1)
[
(λ2 + ∂2

x)(e0(λ)− ẽ0(λ))− (e(λ)− ẽ(λ))
]
.

From the line above it follows that

Pẽ(λ)gλ = Pe(λ)f + (f, 1)(λ2 + ∂2
x)(e0(λ)− ẽ0(λ)).

Hence, applying the operator V R(λ2,H0) and using (1.3.24) we have

Kẽ(λ)gλ = V R(λ2,H0)Pe(λ)f + (f, 1)V (e0(λ)− ẽ0(λ)) = gλ.
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In particular, since e1 ∈ Eδ ⊂ Eδ′ , we have proved that there exists λ ∈ S+
δ′ ⊂ S

+
δ such that (I −Ke1(λ))

is not invertible.

Thanks to Lemma 1.3.4 and Lemma 1.3.5 we are able to define the notion of zero resonance for the

perturbed Hamiltonian H.

Definition 1.3.6. Let V be a potential such that the hypothesis (H1) is satisfied, namely V ∈ L1
a(R),

a > 1. We say that the Hamiltonian H = −∂2
x + V has zero resonance od a−order, with a ∈ (1, 2], if

there exist δ < 0, e ∈ Eδ and f ∈ L1
a(R) with f 6= 0, such that

(
I −Ke(0)

)
f = 0. (1.3.28)

Now we show that the assumption (H3), 0 is not a resonance, implies some consequences in terms of

the L∞(R) solutions of Hu = 0.

Proposition 1.3.7. Let us suppose that V satisfies the hypothesis (H1). If the Hamiltonian H has a

zero resonance of a−order with a ∈ (1, 2], then there exists u ∈ L∞(R), u 6= 0 solution of the equation

Hu = 0.

Moreover, let f ∈ L1
a(R), f 6= 0, be a zero resonance state od a−order, i.e. there exist δ > 0, e ∈ Eδ

such that

(I −Ke(0))f = 0. (1.3.29)

Then u has the following expression

u(x) = (∂2
x)−1f1 + (f, 1)e0(x, 0), (1.3.30)

with

f1 = Pe(0)f ∈ L1
a(R)

Proof. Let f ∈ L1
a(R), f 6= 0, such that (1.3.29) is verified. Using the definition of the projector we have

that

f = Pe(λ)f + (f, 1)e(λ). (1.3.31)
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Applying (I −Ke(λ)) in the relation above, we get

0 = (I −Ke(λ))Pe(λ)f + (f, 1)e(λ). (1.3.32)

We put

uλ : = R(λ2,H0)Pe(λ)f + (f, 1)e0(λ).

The relation (1.3.32) and the resolvent identity imply that uλ is a solution of the following problem

(λ2 −H)uλ = 0.

Moreover, by Lemma 1.3.4 and by the regularity properties of e0 we have that

u : = R(0,H0)Pe(0)f + (f, 1)e0(0) ∈ L∞(R), (1.3.33)

and

Hu = 0.

Now, to conclude the proof we have to show that u 6= 0. Suppose that u = 0. Then we have that

R(0,H0)Pe(0)f = −(f, 1)e0(0).

So, we have that

R(0,H0)Pe(0)f(x) =

∫
R
dy

∫
R
dz
|x− y| − |x− z|

2
f(y)e(z, 0),

but on the other side, e0(0) is in C∞c (R).

Remark 1.3.8. Let V ∈ L1
a(R), a ∈ (1, 2] and let f ∈ L1

b(R) be a zero resonance state of b-order with

b ∈ (1, a]. Then f ∈ L1
a(R). Indeed, by formula (1.3.32) we have that

(I −Ke(λ))Pe(λ)f = −(f, 1)e(λ).

Since e(λ) ∈ C∞c (R), in particular Pe(λ)f is L1
a(R). This prove that the zero resonance state f lives in

L1
a(R).

Remark 1.3.9. We note that asymptotically the generalized eigenfunction u in (1.3.30) has the following
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structure

u(x) = c∗ +O

(
1

|x|a−1

)
, |x| → ∞,

where c∗ ∈ C. Indeed, using the formula (1.3.33) and the notations of the previous Lemma we have that

u(x) =

∫
|y|≥|x|

dy

∫
Ωe

dz
|x− y| − |x− z|

2
f(y)e(z, 0)

+

∫
|y|<|x|

dy

∫
Ωe

dz
|x− y| − |x− z|

2
f(y)e(z, 0)

+ (f, 1)e0(x, 0),

where Ωe = [−Me,Me], with Me > 0 such that supp e0(λ) ⊂ Ωe for any λ ∈ S+
δ . Since we are interested

in the behaviour for x large we can always consider |x| ≥Me. We have that as |x| → +∞

e0(x, 0) = 0;∫
|y|<|x|

dy

∫
Ωe

dz
|x− y| − |x− z|

2
f(y)e(z, 0)→ c1 ∈ C;∫

|y|≥|x|
dy

∫
Ωe

dz
|x− y| − |x− z|

2
f(y)e(z, 0)→ 0.

Now it remains to check the speed of convergence of the last term. We recall that Pe(0)Pe(0) = Pe(0),

hence

∫
|y|≥|x|

dy

∫
Ωe

dz
|x− y| − |x− z|

2
f(y)e(z, 0) =

∫
|y|≥|x|

dy

∫
Ωe

dz
|x− y| − |x− z|

2
Pe(0)f(y)e(z, 0).

Passing to the modulus we have that

|
∫
|y|≥|x|

dy

∫
Ωe

dz
|x− y| − |x− z|

2
Pe(0)f(y)e(z, 0) | ≤

≤
∫
|y|≥|x|

dy

∫
Ωe

dz
|x− y − x− z|

2
|Pe(0)f(y)||e(z, 0)|.

Furthermore, using the property of e we have that

∫
|y|≥|x|

dy

∫
Ωe

dz
|x− y − x− z|

2
|Pe(0)f(y)||e(z, 0)| ≤ Ce

∫
|y|≥|x|

dy(1 + |y|)|Pe(0)f(y)|.

Since we are in the case |y| ≥ |x|, if we multiply and divide by (1 + |y|)a−1 in the integral on the right
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side we have the following estimate

∫
|y|≥|x|

dy(1 + |y|)|Pe(0)f(y)| ≤
(

1

(1 + |x|)a−1

)
‖Pe(0)f‖L1

a(R).

This prove that

∣∣∣∣∣
∫
|y|≥|x|

dy

∫
Ωe

dz
|x− y| − |x− z|

2
f(y)e(z, 0)

∣∣∣∣∣ ≤ Ce 1

(1 + |x|)a−1
‖f‖L1

a(R).

In the following proposition we give a characterization of the zero resonance for the perturbed Hamil-

tonian H.

Proposition 1.3.10. Let V ∈ L1
a(R), a > 1 and let H = H0 + V be the perturbed Hamiltonian. The

following statement are equivalent:

(a) There exist b ∈ (1, a], f ∈ L1
b(R), f 6= 0 such that f is a zero resonance state of b-order;

(b) There exists u ∈ L∞(R) such that
∫
R V (x)u(x) dx = 0 and Hu = 0;

(c) There exists f ∈ L1
a(R), f 6= 0, such that f is a zero resonance state od a-order.

Proof. The proposition (a) and (c) are equivalent thanks to the Remark 1.3.8. Hence, to prove the

Proposition 1.3.10 we will prove that (b) and (c) are equivalent. We assume the statement (c). The

Proposition 1.3.7 guarantees that in correspondence of a resonance state f ∈ L1
a(R) we can construct

u ∈ L∞(R) such that

u = (∂2
x)−1Pe(0)f + (f, 1)e0(0),

and

Hu = 0.

In particular we have that

V u = ∂2
xu = Pe(0)f + (f, 1)∂2

xe0(0),

from which it follows that ∫
R
V (x)u(x) dx = 0.

Vice versa, if we suppose (b), let c̃ ∈ R and let ẽ0 ∈ C∞c (R). We can define

f1 = V u− c̃∂2
xẽ0,
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and we put

f : = V (∂2
x)−1f1.

By the inequalities (1.3.15), (1.3.16), the hypothesis V ∈ L1
a(R) and the fact that

∫
R f1 = 0 we have

f ∈ L1
a(R). Moreover, since ∂2

xu = V u, and u = (∂2
x)−1f1 + c̃ẽ0 we have that

f1 + c̃∂2
xẽ0 = V (∂2

x)−1f1 + V c̃ẽ0,

and hence

f = f1 + c̃∂2
xẽ0 − V c̃ẽ0.

Finally we note that

Ke(0)f = V (∂2
x)−1Pe(0)f = V (∂2

x)−1f1 = f.

Now we extend the definition of resonances to the positive energies. Then we will prove that the

hypothesis (H1) guarantees that the Hamiltonian H has not positive resonances.

Let α ∈ Rr {0}. The operator

R(α2,H0) =
(
(α+ i0)2 −H0

)−1
f = lim

ε→0

(
(α+ iε)2 −H0

)−1
f =

∫
R

eiα|x−y|

2iα
f(y) dy

is well defined as operator from L1(R)→ L∞(R) and moreover the following estimate holds

∥∥R(α2,H0)f
∥∥
L∞(R)

≤ C

|α|
‖f‖L1(R).

Definition 1.3.11. Let α2 > 0 and let V ∈ L1
a(R), a > 1. We say that α2 is a resonance for the

perturbed Hamiltonian H if there exist b ∈ (1, a], f ∈ L1
b(R), f 6= 0, such that

[
I − V R(α2,H0)

]
f = 0.

The following Lemma guarantees that H does not admit positive resonance points.

Lemma 1.3.12. Let V ∈ L1
a(R), a > 1. Then H has no resonances in (0,∞).

Proof. Suppose that there exists a positive resonance α2 > 0, i.e. there exists a no zero function
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f ∈ L1
b(R), for some b ∈ (1, a], such that f = V R(α2,H0)f . We set u = R(α2,H0)f . Then u solves the

following equation

α2u = Hu.

As in Remark 1.3.9, one can obtain the asymptotic expansions

u(x) = eiαxc+ +O(|x|1−a), u′(x) = iαeiαxc+ +O(|x|1−a), x↗ +∞, (1.3.34)

u(x) = e−iαxc− +O(|x|1−a), u′(x) = −iαeiαxc− +O(|x|1−a), x↘ −∞. (1.3.35)

Let f±(x;λ) be the Jost functions, namely the solutions to

λ2f± = Hf±,

with =λ > 0, such that f±(x, λ) = e±iλxm±(x, λ) and

lim
x↗+∞

|m+(x;λ)− 1|+ |m′+(x;λ)| = 0, lim
x↘−∞

|m−(x;λ)− 1|+ |m′−(x;λ)| = 0. (1.3.36)

Let us denote the Wronskian as follows:

W (v1, v2) = v′1(x)v2(x)− v1(x)v′2(x),

where v1, v2 are two solutions to λ2v = Hv. Since W (f+, f−) 6= 0, we have

u = af+ + bf−.

We remember that the Wronskian is indipendent from x. Hence, using (1.3.34) and (1.3.36), and

computing the Wronskian for x→ +∞, we get W (u, f+) = 0, that implies b = 0. Similarly, (1.3.35) and

(1.3.36), for x→ −∞, imply W (u, f−) = 0. It follows that a = 0 and consequently u = 0.

This completes the proof of the lemma.

We conclude this section noting that, if we suppose that the potential V satisfies the hypotheses (H1),

(H2), (H3), then H has the same configuration in terms of eigenvalues and resonances of H0. Hence, we

can expect to get for R(z,H) estimates similar to the free case.
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1.4 Estimates for the perturbed resolvent

The main goal of this section will be to get sectorial estimates for the perturbed resolvent operator. This

result is presented in Theorem 1.4.6. At first we will prove sectorial estimates close to the origin and

then away from the origin. The hypothesis that zero is not a resonance will turn to be fundamental.

The next results are preparatory for the perturbed resolvent estimates near the origin.

Lemma 1.4.1. Let V be a potential such that the hypotheses (H1), (H2) and (H3) are satisfied. Then,

there exists δ > 0 such that for any e ∈ Eδ there exists Ce > 0 so that for any λ ∈ S+
δ the operator(

I −Ke(λ)

)−1
exists in L1

b(R) and it satisfies the following inequality

‖
(
I −Ke(λ)

)−1
f‖L1

b(R) ≤ Ce‖f‖L1
b(R), b ∈ (1, a]. (1.4.1)

Proof. Since we consider V ∈ L1
a(R) and b ∈ (1, a], by the inequalities (1.3.15), (1.3.16) we deduce that

Ke(λ) : L1
b(R)→ L1

b(R)

is a compact operator, continuous in S+
δ and

‖Ke(λ)f‖L1
b(R) ≤ Ce‖V ‖L1

a(R)‖f‖L1
b(R).

Moreover, the assumption (H3) guarantees that there exist δ > 0 such that for any e ∈ Eδ the operator(
I −Ke(λ)

)
is invertible. Hence we conclude that (1.4.1) is satisfied.

Thanks to Lemma 1.3.5 and Lemma 1.4.1 we are able to derive a kind of limiting absorption principle

for the perturbed Hamiltonian H. This result is described in the following Lemma and it will be the key

tool to establish the sectorial property of the perturbed Hamiltonian.

Lemma 1.4.2. Let V be a potential such that (H1) is satisfied, i.e. V ∈ L1
a(R), with a > 1. Moreover,

the Hamiltonian H satisfies the hypothesis (H2) and (H3). Then there exists δ > 0 such that for any

e ∈ Eδ, for any λ ∈ S+
δ the following resolvent estimate holds

∥∥R(λ2,H)f
∥∥
L∞(R)

≤ Ce‖f‖L1
a(R), (1.4.2)

for any f ∈ L1
a(R).
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Proof. The Lemma 1.4.1 shows that, assigned f ∈ L1
a(R), there exist δ > 0, e ∈ Eδ, gλ ∈ L1

a(R) such

that

f = (I −Ke(λ))gλ,

for any λ ∈ S+
δ . We can rewrite gλ as follows

gλ(x) = Pe(λ)gλ(x) + (gλ, 1)e(λ, x). (1.4.3)

We put

f1(λ)(x) = f1(x, λ) : = Pe(λ)gλ(x).

Hence we have that f1(λ) ∈ B0
a(R) for any λ ∈ S+

δ .

Applying the operator (I −Ke(λ)) in (1.4.3) and using that Ke(λ)e(λ) = 0 we get the following decom-

position of the space L1
a(R):

f(x) = (I −Ke(λ))f1(x, λ) +
(
(I −Ke(λ))

−1f, 1
)
e(x, λ), (1.4.4)

for any x ∈ R, λ ∈ S+
δ . From the resolvent identity

R(λ2,H)(I −Ke(λ))Pe(λ) = R(λ2,H0)Pe(λ)

it follows that

R(λ2,H)f = R(λ2,H0)Pe(λ)f1(λ) +
(
(I −Ke(λ))

−1f, 1
)
e0(λ). (1.4.5)

Moreover, we know that

Pe(λ)(I −Ke(λ))
−1f = Pe(λ)gλ = f1(λ).

Now computing the L∞ norm in (1.4.5), thanks to the estimates (1.3.15), (1.4.1) and to the hypotheses

on e0 we get

‖R(λ2,H)f‖L∞(R) ≤ Ce‖f‖L1
a(R).

Now we prove the sectorial estimates near the origin.

Theorem 1.4.3. Let V be a potential such that (H1) is satisfied. Moreover the Hamiltonian H satisfies
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the hypotheses (H2) and (H3). Then, for any 1 < p ≤ ∞ we have that there exists δ > 0, such that for

any z in the sector Sc,δ

Sc,δ : = {z ∈ C \ [0,∞) | <z ≤ c|=z|, |z| ≤ δ} ,

with c > 0, we have that

‖R(z,H)f‖Lp(R) ≤
C

|z|
‖f‖Lp(R). (1.4.6)

Proof. We use the diffeomorphism

z 7→
√
z = λ

with branch cut [0,∞), such that the map

z ∈ {z ∈ C \ [0,∞)} 7→ λ =
√
z ∈ {=λ > 0}

is well defined and analytic. Using this transformation, we see that the sector Sc,δ is transformed into

S̃θ,δ =
{
λ ∈ C | =λ > θ|λ|, θ = θ(c) ∈ (0, 1), |λ| <

√
δ
}
.

Hence, we have to prove that the inequality

‖R(λ2,H)f‖Lp(R) ≤
C

|λ|2
‖f‖Lp(R), (1.4.7)
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holds for any λ ∈ S̃θ,δ. To prove the inequality (1.4.7) we first consider the cases p = 2 and p =∞.

If p = 2, the operator H is essentially self-adjoint on C∞c (R) with spectrum σ(H) = [0,∞). Let

f ∈ L2(R) and let dEf be the spectral measure associated. The spectral theorem implies the following

estimates

‖R(λ2,H)f‖2L2(R) =
(
(λ2 −H)−1f, f

)
≤
∫ ∞

0

|λ2 − α|−2 dEf

≤ 1

|=λ|4
‖f‖2L2(R)

≤ 1

θ4|λ|4
‖f‖2L2(R).

Now we consider the case p = ∞. The resolvent identity combined with the sectorial estimates for the

free Hamiltonian and with Lemma 1.4.2 give us

‖R(λ2,H)f‖L∞(R) ≤‖R(λ2,H0)f‖L∞(R) + ‖R(λ2,H)V R(λ2,H0)f‖L∞(R)

≤
C(θ, e, ‖V ‖L1

b(R))

|λ|2
‖f‖L∞(R).

Applying the Riesz-Thorin interpolation theorem we get sectorial estimates

‖R(λ2,H)f‖Lp(R) ≤
C(θ, e, ‖V ‖L1

b(R))

|λ|2
‖f‖Lp(R),

for 2 < p < ∞. By duality argument we will prove the estimates for p ∈ (1, 2). Indeed, let we consider

the conjugate diffeomorphism

λ ∈ S̃θ,δ 7→ λ ∈ S̃θ,δ.

We have that

‖R(λ2,H)f‖Lp(R) ≤
C

|λ|2
‖f‖Lp(R),
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for any λ ∈ S̃θ,δ, and 2 ≤ p ≤ ∞. Let p ∈ (1, 2) and let p′ be the conjugate exponent. Since H is a

self-adjoint operator, the following relation holds

(
(λ2 −H)−1f, g

)
=
(
f, (λ2 −H)−1g

)
,

where f ∈ Lp(R) and g ∈ Lp′(R). Therefore we get

‖R(λ2,H)f‖Lp(R) = sup
‖g‖

Lp
′
(R)

=1

∣∣((λ2 −H)−1f, g
)∣∣ ≤ C

|λ|2
‖f‖Lp(R).

This completes the proof.

Now it remains to prove the sectorial estimates away from the origin. In order to do this we will use

that H cannot have positive resonances as proved in Lemma 1.3.12.

We define the operator

K0(λ) = V (λ2 −H0)−1 = V R(λ2,H0),

and the sector

N+
δ = {λ ∈ C | |λ| ≥ δ,=λ ∈ [0, δ], δ > 0} .

As in the previous case, we need some preparatory lemmas to get resolvent estimates.

Lemma 1.4.4. Suppose that the potential V satisfies (H1) and in addition the Hamiltonian H satisfies

(H2) and (H3). Then, for any b ∈ (1, a], there exist C > 0 and δ > 0 such that for any λ ∈ N+
δ the

operator (I −K0(λ))
−1
f exists in L1

b(R) and satisfies the following estimate

∥∥∥(I −K0(λ))
−1
f
∥∥∥
L1
b(R)
≤ C‖f‖L1

b(R). (1.4.8)

Proof. The key point in the proof is the estimate

‖ (K0(α+ iε1)−K0(α+ iε2)) f‖L1
b(R) ≤ C|ε1 − ε2|a−b‖f‖L1

b(R) (1.4.9)
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valid for any b ∈ [1, a], any α ∈ R with |α| ≥ δ/
√

2 and any ε1, ε2 ∈ [0, δ/
√

2]. Using the relation 1.3.3,

we get

K0(λ)(f)(x) = V (x)

∫
R

eiλ|x−y|

2iλ
f(y)dy. (1.4.10)

We can proceed as in the proof of inequality (1.3.16). Let λ1 = α+ iε1, λ2 = α+ iε2, 0 < δ̄ < δ < |λi|,

with i = 1, 2, and let β > 0. Since ε1, ε2 ≥ 0, we have that

∣∣∣∣eiλ1β

λ1
− eiλ2β

λ2

∣∣∣∣ ≤ C

δ̄2
|λ1 − λ2|〈β〉.

Indeed, we have that

eiλ1β

λ1
− eiλ2β

λ2
= i

∫ β

0

eiλ1τ (1− ei(λ2−λ1)τ ) dτ +
λ2 − λ1

λ2λ1
.

Integrating by part we get the following identity

eiλ1β

λ1
− eiλ2β

λ2
=

(
eiλ1β

λ1

)(
1− ei(λ2−λ1)β

)
+ i

∫ β

0

eiλ1τ

λ1
(λ2 − λ1)ei(λ2−λ1)τ dτ +

λ2 − λ1

λ1λ2
.

Hence, passing to the modulus we have that

∣∣∣∣eiλ1β

λ1
− eiλ2β

λ2

∣∣∣∣ ≤2

δ̄
|λ1 − λ2|β +

|λ2 − λ1|
δ̄2

≤C
δ̄2
|λ1 − λ2|〈β〉. (1.4.11)

On the other side we also have ∣∣∣∣eiλ1β

λ1
− eiλ2β

λ2

∣∣∣∣ ≤ C

δ̄2
. (1.4.12)

The inequalities (1.4.11) and (1.4.12) imply

∣∣∣∣eiλ1β

λ1
− eiλ2β

λ2

∣∣∣∣ ≤ C

δ̄2
|λ1 − λ2|θ〈β〉θ,
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for any θ ∈ [0, 1]. Choosing θ = a− b, we have that

‖ (K0(α+ iε1)−K0(α+ iε2)) f‖L1
b(R) ≤

C

δ̄2
|ε1 − ε2|a−b

∫
R
dx〈x〉b|V (x)|

∫
R
dy〈x− y〉a−b|f(y)|

≤C
δ̄2
|ε1 − ε2|a−b

∫
R
dx〈x〉a|V (x)|

∫
R
dy
〈x− y〉a−b

〈x〉a−b
|f(y)|

≤C
δ̄2
|ε1 − ε2|a−b‖V ‖L1

a(R)‖f‖L1
b(R),

for any b ∈ [1, a]. Finally we use that α2 is not a resonance point to derive the invertibility of the

operator I −K0(λ) as well as the estimate (1.4.8). This completes the proof of the Lemma.

In particular we have the following Lemma:

Lemma 1.4.5. There exists δ > 0 so that for any λ ∈ {λ ∈ C;=λ > 0, |λ| > δ} we have the estimate

‖R(λ2,H)f‖L∞(R) ≤ C‖f‖L1
b(R) (1.4.13)

for b ∈ [1, a].

Now we are in position to state and complete the proof of the main theorem of this chapter.

Theorem 1.4.6. [Sectorial estimates] Suppose that the perturbed Hamiltonian H = H0 + V (x) satisfies

the following assumptions:

(H1) V ∈ L1
a(R), a > 1;

(H2) σp(H) = ∅;

(H3) H has no zero resonance.

Then for any 1 < p ≤ ∞, the following resolvent estimate holds:

z ∈ C \ [0,∞),<z ≤ c|=z|,=⇒ ‖R(z,H)f‖Lp(R) ≤
C

|z|
‖f‖Lp(R). (1.4.14)

Proof. The proof of Theorem 1.4.3 establishes this result for z close to the origin. If z is far from the

origin, using Lemma 1.4.5 and hence the estimate (1.4.13) we can complete the proof in the case in which

z is far from the origin.
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Remark 1.4.7. By Theorem 1.1.12 follows that we can define the fractional powers of the perturbed

Hamiltonian H by means of the Balakrishnan representation

H−α =
sin(πα)

π

∫ ∞
0

z−α(z +H)−1 dz, α ∈ (0, 1). (1.4.15)
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Chapter 2

Perturbed Homogeneous Besov

spaces: equivalent norms

In this chapter we consider 1-D Laplace operator with short range potential V and we study homogeneous

Besov type spaces Ḃsp(R) where 0 ≤ s < 1/p, 1 < p < ∞. The main goal is to study how the classical

homogeneous Besov spaces Ḃsp(R) are transformed under the action of the wave operators. We present

the plan of the chapter. In Section 2.1 we recall some classical results concerning with the Jost functions,

the transmission and reflection coefficients. These results are mainly contained in the papers [72], [19].

In Lemma 2.1.2, Lemma 2.1.3 and Lemma 2.1.9 we establish some improved estimates for modified Jost

functions, transmission and reflection coefficients (one can see also [27]). These estimates will be crucial

to reach our goal. The Section 2.3 is devoted to the proof of the main results. In particular it is shown

that non resonance assumption at zero and sufficiently decay of potential at infinity guarantee that the

free Hamiltonian and the perturbed one generate equivalent Besov norms Ḃsp(R), under the condition

s < 1/p. Moreover some relevant counterexample that justify the requirement s < 1/p are given.

2.1 Functional calculus for the perturbed Hamiltonian

We start giving an informal overview on the connection between the functional calculus for the perturbed

Hamiltonian and the Jost functions, the transmission and the reflection coefficients. This connection

will motivate the meticulous study of the aforementioned functions in the following.
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The spectral Theorem 1.1.1 and the Stone formula (1.1.2) imply that for any g ∈ L∞(0,∞) we have

g(H) =
1

2πi

∫ ∞
0

g(λ)Ea.c.(dλ), (2.1.1)

where

Ea.c.(dλ) =
[
(λ+ i0 + ∂2

x − V )−1 − (λ− i0 + ∂2
x − V )−1

]
dλ, (2.1.2)

is the spectral measure. The representation formula for the kernel (λ ± i0 − H)−1(x, y), namely, the

Green function of the operator (λ± i0−H), is given by

(λ± i0−H)−1(x, t) =


f−(x,±

√
λ)f+(t,±

√
λ)

w(±
√
λ)

, if x < t;

f−(t,±
√
λ)f+(x,±

√
λ)

w(±
√
λ)

, x ≥ t.
(2.1.3)

Here,
√
λ is the analytic branch of λ1/2 with branch cut [0,∞), such that the map

λ ∈ {λ ∈ C \ [0,∞)} 7→
√
λ ∈ {=

√
λ > 0} (2.1.4)

is well-defined analytic diffeomorphism. The functions f±(x,
√
λ), known as the Just functions, are the

solutions of the problem

− d

dx2
f± + V f± = λf±,

such that they verify the free asymptotic behaviour f±(x, τ) ≈ e±iτx as x ≈ ±∞. The Wronskian w(λ)

is defined by the relation

w(λ) := [f−, f+] = ∂xf+(x, λ)f−(x, λ)− f+(x, λ)∂xf−(x, λ). (2.1.5)

Operating in (2.1.3) the change of variable λ = τ2, the symmetry of the problem with respect to τ

− d

dx2
f± + V f± = τ2f±,

suggests to introduce the transmission and the reflection coefficients T (τ) and R±(τ) defined later on.

In particular, we could express the Wronskian in terms of the transmission coefficient by means of the

following relation

1

T (τ)
=
w(τ)

2iτ
. (2.1.6)
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Substituting the relations (2.1.3) and (2.1.6) in (2.1.1) we can connect the functional calculus for the

operator H with the functions f±(x, τ), T (τ) and R±(τ). In particular, if x < y we get

g(H)(x, y) = − 1

2π

∫
R

T (τ)g(τ2)f−(x, τ)f+(y, τ)dτ. (2.1.7)

One can proceed similarly for x ≥ y. Furthermore, we define the modified Jost functions m±(x, τ) such

that

f±(x, τ) = e±ixτm±(x, τ) (2.1.8)

and

lim
x→±∞

m±(x, τ) = 1, (2.1.9)

that will turn to be crucial to simplify the problem of studying the properties of the Jost functions.

Finally, for any even function ϕ(τ) ∈ L1(R), we can express the functional calculus for H as follows:

ϕ
(√
H
)

(x, y) = − 1

2π

∫
R
ϕ (τ)T (τ)m+(y, τ)m−(x, τ)e−iτ(x−y)dτ, for x < y. (2.1.10)

Hence, one of the main goal will be to investigate the properties of the functions m±(x, τ), T (τ), R±(τ)

in order to get properties and estimates for the kernel (2.1.10).

2.1.1 An overview on Jost functions, transmission and reflection coefficients

We consider the Sturm-Liouville problem

− d

dx2
f(x, τ) + V (x)f(x, τ) = τ2f(x, τ), (2.1.11)

with the limiting conditions

f+(x, τ) ≈ eixτ , x→ +∞, (2.1.12)

and

f−(x, τ) ≈ e−ixτ , x→ −∞. (2.1.13)

The limiting conditions (2.1.12)-(2.1.13) require a free asymptotic behaviour, that is a natural require-

ment since we are considering short range potentials V ∈ L1
γ(R), with γ ≥ 1. Moreover, we recall that

we have also assumed σp(H) = ∅ and H has no zero resonances, hence the spectral scenario is totally
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similar to the unperturbed one.

At first we prove formula (2.1.3). To this end, we want to write the general expression of the solution

y of the following problem


− d2

dx2 y(x) + (V (x)− τ2)y(x) = F (x),

α1y(−∞) + β1y
′(−∞) = 0,

α2y(+∞) + β2y
′(+∞) = 0,

(2.1.14)

where α1 = iτ , β1 = 1, α2 = −iτ , β2 = 1. If we denote the solutions of the homogeneous problem with

f−(x, τ) and f+(x, τ), then we can look for the solutions y of the form

y(x) = c1(x)f−(x, τ) + c2(x)f+(x, τ). (2.1.15)

Proceeding with the variation of the parameters we get the following system


c′1(x)f−(x, τ) + c′2(x)f+(x, τ) = 0,

c′1(x)f ′−(x, τ) + c′2(x)f ′+(x, τ) = −F (x).

Let us denote the Wronskian w(x, τ) = f−(x, τ)f ′+(x, τ) − f+(x, τ)f ′−(x, τ). The relation (2.1.11)

implies that d
dxw(x, τ) = 0. Hence, we can rename w(x, τ) = w(τ). Solving the system above with

respect to c′1(x), c′2(x) we get

c′1(x) =
f+(x, τ)F (x)

w(τ)
,

c′2(x) = −f−(x, τ)F (x)

w(τ)
.

By the limiting conditions in (2.1.14) follows respectively that c2(−∞) = 0 and c1(+∞) = 0. Then,

integrating, we get

c1(x) = −
∫ +∞

x

f+(t, τ)F (t)

w(τ)
dt,

c2(x) = −
∫ x

−∞

f−(t, τ)F (t)

w(τ)
dt.

Substituting the expressions above in (2.1.15) we deduce the formula for the kernel of the operator
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(τ2 −H)−1:

(τ2 −H)−1(x, t) =


f+(t,τ)f−(x,τ)

w(τ) x < t,

f−(t,τ)f+(x,τ)
w(τ) x ≥ t.

Since the equation (2.1.11) is symmetric with respect to τ , it is evident that also f±(x,−τ) are

solutions of the problem (2.1.11) with limiting conditions (2.1.12), (2.1.13). Moreover, f+(x, τ) and

f+(x,−τ) and respectively f−(x, τ) and f−(x,−τ) are independent solutions for τ 6= 0

[f+(x, τ), f+(x,−τ)] = −2iτ,

[f−(x, τ), f−(x,−τ)] = 2iτ.

Hence, there exist unique functions T±(τ) and R±(τ) such that

f+(x,−τ) = T+(τ)f−(x, τ)−R+(τ)f+(x, τ), (2.1.16)

f−(x,−τ) = T−(τ)f+(x, τ)−R−(τ)f−(x, τ), (2.1.17)

for τ 6= 0. By physical reasons the coefficients T±(τ), R±(τ) are called respectively transmission and

reflection coefficients and they are defined by relations (2.1.16) and (2.1.17).

We note that T−(τ)f+(x, τ) describes a plane wave sent in −∞ that is the overlap of eixτ transmitted

from +∞ and R−(τ)e−ixτ reflected from −∞. Similarly, T+(τ)f−(x, τ) represents a plan wave sent in

+∞ that is the overlap of the plane wave e−ixτ transmitted from −∞ and R+(τ)f+(x, τ) reflected from

+∞.
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Using the relations (2.1.16), (2.1.17) respectively when x ≈ +∞ and x ≈ −∞

f−(x, τ) =
e−ixτ

T+(τ)
+
R+(τ)

T+(τ)
eixτ , x ≈ +∞,

f+(x, τ) =
eixτ

T−(τ)
+
R−(τ)

T−(τ)
e−ixτ , x ≈ −∞,

we can compute the Wronskian w(τ) when x approaches to +∞ or to −∞ and we get the relation

w(τ) =
2iτ

T+(τ)
=

2iτ

T−(τ)
.

It follows that T (τ) := T−(τ) = T+(τ). Moreover, we can easily recover the relations

R+(τ)T (−τ) +R−(−τ)T (τ) = 0,

T (τ) = T (−τ), R±(τ) = R±(−τ),

|T (τ)|2 + |R±(τ)|2 = 1,

computing [f−(x, τ), f+(x, τ)] and [f−(x,−τ), f+(x, τ)]. Hence, for any τ 6= 0 the scattering matrix

defined as

S(τ) =

 T (τ) R−(τ)

R+(τ) T (τ)

 ,

is an unitary matrix (one can see [19] to enter more in details in this direction).

To better understand the properties of the Jost functions f±(x, τ), of the transmission and reflection

coefficients T (τ) and R±(τ) we are going to introduce the modified Jost functions m±(x, τ) defined in

(2.1.8) with limiting conditions (2.1.9).

Substituting (2.1.8) in (2.1.11) we get the following ordinary differential equations


− d
dx

(
e±2iτx d

dxm±(x, τ)
)

+ e±2ixτV (x)m±(x, τ) = 0,

lim
x→±∞

m±(x, τ) = 1, lim
x→±∞

d
dxm±(x, τ) = 0.

Integrating we have

m±(x, τ) = 1±
∫ ±∞
x

D(±(t− x), τ)V (t)m±(t, τ) dt, (2.1.18)



2.1. Functional calculus for the perturbed Hamiltonian 40

where

D(t, τ) =
e2iτt − 1

2iτ
=

∫ t

0

e2isτ ds. (2.1.19)

The following subsections are devoted to the study of the functions m±(x, τ), T (τ) and R±(τ) and their

derivatives ∂kτm±(x, τ), ∂kτ T (τ) and ∂kτR±(τ) for V ∈ L1
γ(R), γ > 1 and k ≤ γ − 1.

2.1.2 Estimates for the Jost functions

Here we recall some preliminary estimates for the modified Just functions and their derivatives under

the classical assumption V ∈ L1
2(R). Then, we improve these estimates in the general case V ∈ L1

γ(R)

with γ ≥ 1.

In the following we set x+ := max{0, x}, x− := max{0,−x}.

The next Lemma contains the main properties and estimates satisfied by the modified Jost functions

m±(x, τ) under the assumption V ∈ L1
2(R).

Lemma 2.1.1. (see Lemma 1 p. 130 [19]) Assume V ∈ L1
2(R). Then we have the properties:

a) For any x ∈ R the function

τ ∈ C± 7→ m±(x, τ), C± = {τ ∈ C;=τ ≷ 0} (2.1.20)

is analytic in C± and C1(C±);

b) There exist constants C1 and C2 > 0 such that for any x, τ ∈ R:

|m±(x, τ)− 1| ≤ C1〈x∓〉〈τ〉−1, (2.1.21)

|∂τm±(x, τ)| ≤ C2〈x〉2. (2.1.22)

Proof. Here, we just recall the main idea of the proof that will be helpful in the following. We consider

m+(x, τ) but there is the obvious analogous for m−(x, τ).

We denote with

Kj
+(x, τ) =

∫
x≤x1≤...≤xj

dx1 ... dxjD(x1 − x, τ) . . . D(xj − xj−1, τ)V (x1)...V (xj), (2.1.23)



2.1. Functional calculus for the perturbed Hamiltonian 41

and we prove that the iterates of the Volterra integral equations

m+(x, τ) = 1 +

+∞∑
j=1

Kj
+(x, τ)

converges. Indeed, considering the trivial estimate

|D(t, τ)| ≤ min

(
t,

1

|τ |

)
,

we have that

|Kj
+(x, τ)| ≤

(∫∞
x

(t− x)|V (t)|
)j

j!
, |Kj

+(x, τ)| ≤ 1

|τ |j

(∫∞
x

(t− x)|V (t)|
)j

j!
.

Then, the Volterra integral converges and moreover the estimates of the terms Kj
+ lead immediately to

a rough version of the desired inequality. Indeed we have

|m+(x, τ)− 1| ≤ e(1+|min (0,x)|)γ(x),

where γ(x) is a bounded function.

From now we suppose V ∈ L1
γ(R) with γ ≥ 1 and we derive some improved estimates.

Lemma 2.1.2. Suppose V ∈ L1
γ(R) with γ ≥ 1. Then we have the following properties:

a) There exists a constant C > 0 such that for any x ∈ R, τ ∈ C±, we have

|m±(x, τ)− 1| ≤ C 〈x∓〉
〈x±〉γ−1

; (2.1.24)

b) There exists a constant C > 0 such that for any x ∈ R, τ ∈ C± r {0}, we have

|m±(x, τ)− 1| ≤ C 〈x∓〉
〈x±〉γ |τ |

; (2.1.25)

c) Let σ ∈ [0, 1). Then there exists a constant C > 0 such that for any x ∈ R we have

‖m±(x, τ)− 1‖C0,σ(C±) ≤ C
〈x∓〉1+σ

〈x±〉γ−1−σ , γ > 1, 0 ≤ σ ≤ γ − 1; (2.1.26)
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d) Let σ ∈ [0, 1). Then there exists a constant C > 0 such that for any x ∈ R we have

‖τ(m±(x, τ)− 1)‖C0,σ(C±) ≤ C
〈x∓〉1+σ

〈x±〉γ−σ
, γ > 1. (2.1.27)

Proof. We can fix for determinacy the sign + in the left sides of the inequalities (2.1.24)-(2.1.27), since

the argument is similar for the term m−. We start proving the (2.1.24). The right side of (2.1.24)

suggests to consider the quantity

v(x, τ) =
〈x+〉γ−1

〈x−〉
|m+(x, τ)− 1|.

We plan to use the integral equation for m+(x, τ) and to check inequalities of type

v(x) ≤ a(x) +

∫ ∞
x

b(t)v(t)dt, (2.1.28)

where b ∈ L1(R). Applying for v(x) a Gronwall type inequality (see Lemma C.0.2), we can derive the a

priori bound v(x) ≤ C(a(x), ‖b‖L1(R)).

The relations

m+(x, τ)− 1 =

∫ +∞

x

D(t− x, τ)V (t)m+(t, τ)dt, (2.1.29)

|D(t− x, τ)| ≤ C〈t− x〉 ≤ C(〈t〉+ 〈x−〉),

imply the following estimate:

v(x, τ) ≤ C
∫ +∞

x

〈x+〉γ−1

〈x−〉
〈t− x〉
〈t〉γ

〈t〉γ |V (t)| (|m+(t, τ)− 1|+ 1) dt.

We set1

c1 = sup
t≥x

〈x+〉γ−1〈t− x〉〈t−〉
〈x−〉〈t〉γ〈t+〉γ−1

∈ R+, γ ≥ 1,

c2 = sup
t≥x

〈x+〉γ−1〈t− x〉
〈x−〉〈t〉γ

∈ R+, γ ≥ 1

and we deduce that

v(x, τ) ≤ c1
∫ +∞

x

〈t〉γ |V (t)|v(t, τ) dt+ c2‖V ‖L1
γ(R).

1To prove that the quantity c1, c2 are finite, we consider three different cases: x < t < 0, 0 < x < t, x < 0 < t
separately. In the last case, we distinguish the behaviour for x ≈ t, |x| << |t| and |t| << |x|.
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Now applying the Gronwall argument of Lemma C.0.2, we find (2.1.24).

We will follow the same idea to prove the other inequalities. Indeed, to get (2.1.25) we define

u(x, τ) = |τ | 〈x+〉γ

〈x−〉
|m+(x, τ)− 1|. (2.1.30)

This time we quote the estimates

|D(t− x, τ)| ≤ C min

(
〈t− x〉, 1

|τ |

)
. (2.1.31)

Hence, by the integral equation (2.1.29) and the estimates above follows

u(x, τ) ≤
∫ +∞

x

〈x+〉γ〈t−〉
〈x−〉〈t+〉γ

|D(t− x, τ)||V (t)|u(t, τ) dτ

+

∫ +∞

x

〈x+〉γ

〈x−〉
|τ ||D(t− x, τ)||V (t)| dτ.

As before2 we can set

c1 = sup
t≥x

〈x+〉γ〈t− x〉〈t−〉
〈x−〉〈t〉γ〈t+〉γ

∈ R+, γ ≥ 1,

c2 = sup
t≥x

〈x+〉γ

〈x−〉〈t〉γ
∈ R+, γ ≥ 1

and via Gronwall argument we get u(x, τ) ≤ C(‖V ‖L1
γ(R)), i.e. (2.1.25).

Similarly to get the (2.1.26) we put

gσ(x, τ1, τ2) =
〈x+〉γ−1−σ

〈x−〉σ+1

|m+(x, τ1)−m+(x, τ2)|
|τ1 − τ2|σ

and by the estimate

|D(t− x, τ1)−D(t− x, τ2)|
|τ1 − τ2|σ

≤ C〈t− x〉1+σ ≤ C(〈t〉1+σ + 〈x−〉1+σ), σ ∈ (0, 1)

we get

gσ(x, τ1, τ2) ≤
∫ +∞

x

〈x+〉γ−1−σ〈t− x〉1+σ

〈x−〉σ+1
|V (t)||m+(t, τ1)| dt+

+

∫ +∞

x

〈x+〉γ−1−σ〈t− x〉〈t−〉σ+1

〈x−〉σ+1〈t+〉γ−1−σ |V (t)|gσ(t, τ1, τ2) dt.

2One can see footnote 1
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Moreover, we can estimate |m+(t, τ1)| with (2.1.24).

If we consider 1 < γ < 2 and σ ≤ γ − 1 or γ ≥ 2 and σ ∈ (0, 1), we have that the following quantities

are finite3

c1 = sup
t≥x

〈x+〉γ−1−σ〈t− x〉γ−1−σ

〈x−〉1+σ〈t〉γ
∈ R+,

c2 = sup
t≥x

〈x+〉γ−1−σ〈t− x〉〈t−〉1+σ

〈x−〉1+σ〈t〉γ〈t+〉γ−1−σ ∈ R+,

c3 = sup
t≥x

〈x+〉γ−1−σ〈t− x〉1+σ〈t−〉
〈x−〉1+σ〈t〉γ〈t+〉γ−1

∈ R+.

Then we have gσ(x, τ1, τ2) ≤ C(‖V ‖L1
γ(R)).

Finally we prove the inequality (2.1.27) for any σ ∈ (0, 1). We rewrite (2.1.29) as

τ (m+(x, τ)− 1) = τ

∫ +∞

x

D(t− x, τ)V (t)dt+ (2.1.32)

+

∫ +∞

x

τD(t− x, τ)V (t) (m+(t, τ)− 1) dt.

Setting now

hσ(x, τ) =
〈x+〉γ−σ

〈x−〉σ+1
‖τ(m+(x, τ)− 1)‖C0,σ(C+) ,

we can use the inequality

‖fg‖C0,σ ≤ C (‖f‖C0,σ‖g‖C0 + ‖f‖C0‖g‖C0,σ )

and arrive at the estimate

hσ(x, τ) ≤
∫ ∞
x

〈x+〉γ−σ

〈x−〉1+σ
‖τD(t− x, τ)‖C0,σ

τ (C+) |V (t)|dt︸ ︷︷ ︸
I(x)

+

+

∫ ∞
x

〈x+〉γ−σ

〈x−〉1+σ
‖τD(t− x, τ)‖C0,σ

τ (C+) |V (t)|‖m+(t, τ)− 1‖C0
τ (C+)dt︸ ︷︷ ︸

II(x)

+

+
〈x+〉γ−σ

〈x−〉1+σ

∫ ∞
x

‖D(t− x, τ)‖C0
τ (C+)

|V (t)|〈t−〉σ+1hσ(t.τ)dt

〈t+〉γ−σ︸ ︷︷ ︸
III(x)

.

3One can see the footnote 3



2.1. Functional calculus for the perturbed Hamiltonian 45

We quote the inequalities

‖τ1−kD(t− x, τ)‖C0,σ(C+) ≤ C〈t− x〉k+σ, k = 0, 1, σ ∈ [0, 1). (2.1.33)

For the term I(x) we use the estimate (2.1.33) with k = 0 and we note that

c1 = sup
t≥x

〈x+〉γ−σ〈t− x〉σ

〈x−〉1+σ〈t〉γ
<∞,

for4 0 ≤ σ ≤ γ, γ ≥ 1. Hence,

I(x) ≤ c1‖V ‖L1
γ(R).

In a similar way, for II(x) we use the estimate (2.1.33) with k = 0 combined with (2.1.24) and using the

estimate

c2 = sup
t≥x

〈x+〉γ−σ〈t− x〉σ〈t−〉
〈x−〉1+σ〈t〉γ〈t+〉γ−1

∈ R+,

for 0 ≤ σ < 1, γ ≥ 1, we arrive at

II(x) ≤ c2‖V ‖L1
γ(R).

Finally, for III(x) we use ‖D(t− x, τ)‖C0
τ (C+) ≤ C〈t− x〉 and from

c3 = sup
t≥x

〈x+〉γ−σ〈t− x〉〈t−〉1+σ

〈x−〉1+σ〈t〉γ〈t+〉γ−σ
<∞,

we deduce

III(x) ≤ c3
∫ ∞
x

〈t〉γ |V (t)|hσ(t, τ)dt.

So, the application of Gronwall inequality implies hσ(x, τ) ≤ C and hence (2.1.27). This complete the

proof.

We can get similar estimates for the derivatives ∂kτ (m±(x, τ)−1). In particular the next result holds.

Lemma 2.1.3. Suppose V ∈ L1
γ(R) with γ ≥ 1. Then we have the following properties:

a) If γ ≥ 2, then for any integer k, 1 ≤ k ≤ γ − 1 the function in (2.1.20) is Ck(C±) and there exists

a constant C > 0 such that for any x ∈ R and τ ∈ (C±) we have

∣∣∂kτ (m±(x, τ)− 1)
∣∣ ≤ C 〈x∓〉1+k

〈x±〉γ−1−k ; (2.1.34)

4the only case, when σ ≤ γ is necessary is the case x < 0 < t, |x| � |t|
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b) For any integer k, 1 ≤ k ≤ γ, then the function in (2.1.20) is Ck(C±) and there exists a constant

C > 0 such that for any x ∈ R and τ ∈ (C± r {0}) we have

∣∣∂kτ (m±(x, τ)− 1)
∣∣ ≤ C 〈x∓〉1+k

〈x±〉γ−k|τ |
; (2.1.35)

c) If γ > 2, then for any integer k, 1 ≤ k ≤ γ − 1 and for any σ ∈ (0, 1) such that 0 ≤ σ ≤ γ − 1− k,

there exists a constant C > 0 such that for any x ∈ R we have

‖m±(x, τ)− 1‖Ck,σ(C±) ≤ C
〈x∓〉1+k+σ

〈x±〉γ−1−k−σ ; (2.1.36)

d) If γ > 1, then for any integer k, 1 ≤ k ≤ γ and for any σ ∈ (0, 1) such that 0 ≤ σ ≤ γ − k, there

exists a constant C > 0 such that for any x ∈ R we have

‖τ(m±(x, τ)− 1)‖Ck,σ(C±) ≤ C
〈x∓〉1+k+σ

〈x±〉γ−k−σ
. (2.1.37)

Proof. The proof of this Lemma follows the same spirit of the proof of the previous one.

We prove the inequality (2.1.34) fixing the sign + in the left side. The arguments are similar for the

estimates involving m−.

The right side in (2.1.34) suggests us to define

v(k)(x) =
〈x+〉γ−1−k

〈x−〉k+1

∣∣∂kτ (m+(x, τ)− 1)
∣∣ .

We intend to prove the (2.1.34), i.e.

v(k)(x) ≤ C(‖V ‖L1
γ(R)), 0 ≤ k ≤ γ − 1, (2.1.38)

by induction in k. The inequality above for k = 0 is already established in (2.1.24). Then we suppose

that it holds for any 0 ≤ k ≤ γ − 1 and so our goal will be to prove that

v(k+1)(x) ≤ C,
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with k + 1 ≤ γ − 1. The key tools here will be to consider the following formula

∂k+1
τ m+(x, τ) =

k+1∑
`=0

ck,`

∫ ∞
x

∂k+1−`
τ D(t− x, τ)V (t)∂`τm+(t, τ)dt (2.1.39)

and to quote the following inequality

∣∣∂kτD(t, x)
∣∣ ≤ C min

{
〈t〉k+1,

〈t〉k

|τ |

}
, k = 0, 1, 2, . . . , τ ∈ C+ r {0}.

Then, from the boundness of the quantities5

c1 = sup
t≥x

〈x+〉γ−2−k〈t− x〉k+2

〈x−〉2+k〈t〉γ
∈ R+,

c2 = max
0≤`≤k+1

sup
t≥x

〈x+〉γ−2−k〈t− x〉k+2−`〈t−〉1+`

〈x−〉2+k〈t〉γ〈t+〉γ−1−` ∈ R+,

combined with a Gronwall argument we get (2.1.34). We do not prove the inequalities (2.1.35), (2.1.36)

and (2.1.37) to avoid the repetition of the same arguments. We just note that for the proof of the

inequalities (2.1.36) and (2.1.37) we need also the following estimate

‖τ1−kD(t− x, τ)‖C0,σ(C+) ≤ C〈t− x〉k+σ, k = 0, 1, σ ∈ [0, 1).

2.1.3 Estimates and expansions for the transmission and the reflection coef-

ficients

In this section we study the transmission coefficient T (τ) and the reflection coefficients R±(τ) defined

by the formulas (2.1.16) and (2.1.17)

T (τ)m∓(x, τ) = R±(τ)e±2iτxm±(x, τ) +m±(x,−τ), (2.1.40)

5To prove that the quantity above are finite, we consider three different cases: x < t < 0, 0 < x < t, x < 0 < t
separately. In the last case, we distinguish the behaviour for x ≈ t, |x| << |t| and |t| << |x|.
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in terms of m±(x, τ). In particular, as x goes to −∞, by Lemma 2.1.1 follows that,

m+(x, τ) = e−2iτx

∫ +∞

−∞

e2iτt

2iτ
V (t)m+(t, τ) +

(
1− 1

2iτ

∫ +∞

−∞
V (t)m+(t, τ)

)
+ o(1).

By formula (2.1.40) and by limiting conditions on m−(x, τ) as x goes to −∞ we have

m+(x, τ) =
R−(τ)

T (τ)
e−2iτx +

1

T (τ)
+ o(1).

Hence, comparing the two last expressions we have that

R−(τ)

T (τ)
=

1

2iτ

∫ +∞

−∞
e2iτtV (t)m+(t, τ) dt,

and

1

T (τ)
= 1− 1

2iτ

∫ +∞

−∞
V (t)m+(t, τ) dt.

Similarly we can get

R+(τ)

T (τ)
=

1

2iτ

∫ +∞

−∞
e−2iτtV (t)m−(t, τ) dt,

1

T (τ)
= 1− 1

2iτ

∫ +∞

−∞
V (t)m−(t, τ) dt.

We summarize in the following Lemma some known results on the transmission and reflection coefficients

proved in [19] and [72].

Lemma 2.1.4. The transmission and reflection coefficients verify the following properties:

a) T,R± ∈ C(R);

b) There exists C1, C2 > 0 such that:

|T (τ)− 1|+ |R±(τ)| ≤ C1〈τ〉−1, (2.1.41)

|T (τ)|2 + |R±(τ)|2 = 1; (2.1.42)

c) If T (0) = 0, (i.e. zero is not a resonance point), then for some α ∈ C\{0} and for some α+, α− ∈ C

T (τ) = ατ + o(τ), 1 +R±(τ) = α±τ + o(τ), (2.1.43)
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for τ ∈ R, τ → 0.

In particular, (2.1.42), (2.1.43) follow from Sect.3 in [19] and (2.1.41) follows from Theorem 2.3 in

[72].

We note that substituting (2.1.6) and (2.1.8) in (2.1.3) we get

(
τ2 −H

)−1
(x, t) = eiτ(t−x)m−(x, τ)m+(t, τ)T (τ)

2iτ
,

if x < t. Similarly if x ≥ t. Hence, the properties of m±(x, τ) (one can see in particular Lemma 2

and Remark 5 in [19]) and the properties of the transmission coefficient T (τ) (one can see in particular

property c) in Lemma 2.1.4) suggest the following definition.

Definition 2.1.5. The origin is a resonance point for the hamiltonian H if and only if

T (0) 6= 0.

Now we are going to use the assumption V ∈ L1
γ(R), γ ≥ 1, to get from Lemma 2.1.2 and Lemma

2.1.3 similar bounds for the transmission and reflection coefficients.

Lemma 2.1.6. Suppose V ∈ L1
γ(R) with γ ≥ 1 and T (0) = 0. Then for any integer k, 0 ≤ k ≤ γ− 1 we

have:

a) T,R± ∈ Ck(R);

b) There exists C > 0 such that for any τ ∈ R we have:

∣∣∣∣ dkdτk T (τ)

∣∣∣∣+

∣∣∣∣ dkdτkR±(τ)

∣∣∣∣ ≤ C, (2.1.44)

∣∣∣∣ dkdτk [τ (T (τ)− 1)]

∣∣∣∣+

∣∣∣∣ dkdτk [τR±(τ)]

∣∣∣∣ ≤ C. (2.1.45)

Proof. The proof is based on the relations

τ

T (τ)
= τ − 1

2i

∫
R
V (t)m+(t, τ)dt, τ ∈ R \ {0}, (2.1.46)

R±(τ) =
T (τ)

2iτ

∫
R
e∓2itτV (t)m∓(t, τ)dt, τ ∈ R \ {0} (2.1.47)
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and the properties of the functions m±(t, τ) from Lemma 2.1.3. Indeed, if we set

Φ(τ) =
1

2i

∫
R
V (t)m+(t, τ)dt,

it is not difficult to use the Lebesgue convergence theorem as well the uniform bounds of Lemma 2.1.3

and see that Φ(τ) ∈ Ck(R) where k is as specified above according with Lemma 2.1.3 and

2∑
k=0

∣∣∣∣ dkdτkΦ(τ)

∣∣∣∣ ≤ C. (2.1.48)

The relation (2.1.46) guarantees that

τ = T (τ)(τ − Φ(τ)). (2.1.49)

Moreover, we know that T (τ) ∈ C(R) and τ −Φ(τ) ∈ Ck(R). The relation (2.1.49) implies in particular

that τ − Φ(τ) 6= 0 for any τ ∈ R \ {0}, so T ∈ Ck(R \ {0}). We have also the estimate

∣∣∣∣ dkdτk T (τ)

∣∣∣∣ ≤ C, |τ | ≥ 1, (2.1.50)

for any k integer as stated in Lemma 2.1.3. To study the differentiability of T near zero, we note that

the assumption T (0) = 0 and (2.1.43) guarantee

lim
τ→0

T (τ)

τ
= α 6= 0 (2.1.51)

and hence

Φ(0) = − 1

α
6= 0.

So we can deduce the differentiability (of class Ck) of

1

τ − Φ(τ)
=
T (τ)

τ

near τ = 0. In this way we can summarize the above argument into the regularity property

T (τ)

τ
∈ Ck(R) (2.1.52)
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and using (2.1.50) we get ∣∣∣∣ dkdτk T (τ)

∣∣∣∣ ≤ C. (2.1.53)

Further, we can use the relation

R±(τ) =
T (τ)

2iτ

∫
R
e∓2itτV (t)m∓(t, τ)dt (2.1.54)

and observe that the inequality

∣∣∣∣ dkdτkΦ±1 (τ)

∣∣∣∣ ≤ C (2.1.55)

with

Φ±1 (τ) =

∫
R
e∓2itτV (t)m∓(t, τ)dt

can be established following the proof of (2.1.48). This estimate and the relation (2.1.54) imply

∣∣∣∣ dkdτkR±(τ)

∣∣∣∣ ≤ C.
For |τ | sufficiently large, we can use the relation

T (τ) =
1

1− τ−1Φ(τ)
= 1 +

∞∑
k=1

(
Φ(τ)

τ

)k
(2.1.56)

and note that the estimate (2.1.48) can be improved for |τ | sufficiently large as follows

∣∣∣∣〈τ〉 dkdτkΦ(τ)

∣∣∣∣ ≤ C. (2.1.57)

Indeed, we can use the estimates (2.1.35), using bounds involving the factor |τ |−1. In this way from

(2.1.56) and (2.1.57) we get (2.1.45) for T (τ).

Remark 2.1.7. It is easy to see that

∣∣∣∣T (τ)

τ

∣∣∣∣+

∣∣∣∣R±(τ) + 1

τ

∣∣∣∣ ≤ C (2.1.58)

and ∥∥∥∥T (τ)

τ

∥∥∥∥
C0,σ(R)

+

∥∥∥∥R±(τ) + 1

τ

∥∥∥∥
C0,σ(R)

≤ C. (2.1.59)
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Indeed (2.1.58) follows from relations (2.1.46), (2.1.54), using the inequality (2.1.24) and the property

(2.1.43) in Lemma 2.1.4. Similarly (2.1.59) follows from relations (2.1.46), (2.1.54), using the inequality

(2.1.26) and the property (2.1.43) in Lemma 2.1.4.

In the same spirit of the Lemma before, we can establish the corresponding Hölder norm estimates

for the transmission and the reflection coefficients.

Lemma 2.1.8. Suppose V ∈ L1
γ(R) with γ > 1 and T (0) = 0. Then for any σ ∈ (0, γ−1] and M ∈ (0,∞)

we have:

a) T,R± ∈ C0,σ(R);

b) For M ∈ (0, 1) we have

‖ϕ(·)T (M ·)‖C0,σ((0,+∞)) + ‖ϕ(·) (R±(M ·) + 1)‖C0,σ((1/2,2)) ≤ CM ; (2.1.60)

c) For M ∈ [1,∞) we have

‖ϕ(·) (T (M ·)− 1)‖C0,σ((0,+∞)) + ‖ϕ(·)R±(M ·)‖C0,σ((1/2,2)) ≤ CM
−1., (2.1.61)

where ϕ is a non negative cutoff, ϕ ∈ C∞0 (R) and supp ϕ ⊆ [1/2, 2].

Proof. The proof is based on the relations

τ

T (τ)
= τ − 1

2i

∫
R
V (t)m+(t, τ)dt, τ ∈ R \ {0}, (2.1.62)

R±(τ) =
T (τ)

2iτ

∫
R
e∓2itτV (t)m∓(t, τ)dt, τ ∈ R \ {0} (2.1.63)

and the properties of the functions m∓(t, τ) from Lemma 2.1.2. Indeed, we can get the estimates

∥∥∥∥ ϕ(·)
T (M ·)

∥∥∥∥
C0,σ([0,4])

+

∥∥∥∥ ϕ(·)
(R±(M ·) + 1)

∥∥∥∥
C0,σ([0,4])

≤ CM−1 (2.1.64)

first. Further, we can use the fact6 that we can control the norm of the inverse of f in the subalgebra

6the problem to have norm-controlled inversion in smooth Banach algebra is well-known and some more general results
and references can be found in [37]
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C0,σ by the norm of f in C0,σ and the norm of 1/f in C(T )

∥∥∥∥ϕ(·)
f(·)

∥∥∥∥
C0,σ([0,4])

≤ C
∥∥∥∥ ϕ̃(·)
f(·)

∥∥∥∥
C0([0,4])

+
‖ϕ̃(·)f‖C0,σ([0,4])

‖f(·)‖2C0([0,4])

,

where ϕ̃ ∈ C∞0 ((0,∞)) has slightly larger support in [1/2−δ, 2+δ] with δ > 0 sufficiently small. Applying

this estimate, the estimate (2.1.64) and the analogous one in C0, all with ϕ replaced by a cut-off function

with slightly larger support, we complete the proof.

Lemma 2.1.9. Suppose V ∈ L1
γ(R) with γ > 1 and T (0) = 0. Then for any integer k, 0 ≤ k < γ − 1

and any σ ∈ (0, 1) ∩ (0, γ − 1− k] we have:

a) T,R± ∈ Ck,σ(R);

b) There exists C > 0 such that for any τ ∈ R we have:

∥∥∥∥ dkdτk T (τ)

∥∥∥∥
C0,σ(R)

+

∥∥∥∥ dkdτkR±(τ)

∥∥∥∥
C0,σ(R)

≤ C, (2.1.65)

∥∥∥∥ dkdτk [τ (T (τ)− 1)]

∥∥∥∥
C0,σ(R)

+

∥∥∥∥ dkdτk [τR±(τ)]

∥∥∥∥
C0,σ(R)

≤ C. (2.1.66)

2.2 Equivalence of homogeneous Besov norms

Here we consider the perturbed Hamiltonian H = H0 + V where V is a short range potential. The wave

operator methods have been used frequently in the study of the evolution flow generated by Hamiltonians

that can be considered as perturbations of free Hamiltonians. The wave operators are defined by the

strong limits

W± = s− lim
t→±∞

eitHe−itH0 .

The existence of the wave operators W± is well known according to the results in [71], [1], [18], so

W± are well defined operators in Lp(R), 1 < p < ∞. Moreover, the mapping properties for the case of

Sobolev spaces W s
p (Rn) are studied in [74] and [71] and they show examples of spaces invariant under

the action of the wave operators. We recall that the results in [71] deal with short range assumptions

that guarantee W k
p (R) boundedness of W±. The Lp(R) boundedness is studied in [18]. Here we analyse

the mapping properties for the case of homogeneous Besov spaces Ḃsp(R).
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The functional calculus for the perturbed operator H can be defined as follows

g(H) = W+g(H0)W ∗+ = W−g(H0)W ∗− (2.2.1)

for any function g ∈ L∞loc(R). So the wave operators map unperturbed Sobolev spaces in the perturbed

ones

W± : D(Hs/20 )→ D(Hs/2).

In [74], [1], [71] it was proved the continuity of the wave operators on general Sobolev spaces and then the

equivalence between perturbed and unperturbed Sobolev norms. The study of the dispersive properties

of the evolution flow in some cases of short range perturbations shows (see [17]) that we have stronger

equivalence between homogeneous Sobolev norms

‖Hs/2f‖L2(Rn) ∼ ‖H
s/2
0 f‖L2(Rn), (2.2.2)

provided s < n/2. Our first goal is to show in Section 2.2.1 that the requirement s < n/2 is optimal at

least for n = 1, 2. Then we study how classical homogeneous Besov spaces Ḃsp(R) are transformed under

the action of the wave operators.

We introduce a Paley-Littlewood partition of unity

1 =
∑
j∈Z

ϕ

(
t

2j

)
, t > 0

for an appropriate non-negative cutoff ϕ ∈ C∞0 (R+), such that suppϕ ⊆ [1/2, 2].

The homogeneous Besov spaces Ḃsp(R) for 1 ≤ p ≤ ∞ and s ≥ 0 can be defined as the closure of

S(R) functions f with respect to the norm

‖f‖Ḃsp(R) =

 ∞∑
j=−∞

22js

∥∥∥∥ϕ(√H0

2j

)
f

∥∥∥∥2

Lp(R)

1/2

. (2.2.3)

Similarly we can define the perturbed homogeneous Besov spaces Ḃsp,H(R) associated with the per-

turbed Hamiltonian H as the closure of S(R) functions f with respect to the norm

‖f‖Ḃsp,H(R) =

 ∞∑
j=−∞

22js

∥∥∥∥∥ϕ
(√
H

2j

)
f

∥∥∥∥∥
2

Lp(R)

1/2

. (2.2.4)
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The splitting property (2.2.1) implies that

W± : Ḃsp(R)→ Ḃsp,H(R), ∀s ≥ 0, 1 < p <∞.

Then, once the equivalence of the homogeneous Besov norms is established

‖f‖2Ḃsp(R) ∼ ‖f‖
2
Ḃsp,H(R) , (2.2.5)

it follows easily that the homogeneous Besov spaces Ḃsp(R) are also invariant under the action of the

wave operators W± under the natural restriction 0 ≤ s < 1/p.

To be more precise, we shall assume

V ∈ L1
γ(R), γ > 1 + 1/p, 1 < p <∞, (2.2.6)

σp(H) = ∅ and 0 is not a resonance point for the perturbed Hamiltonian. Then, our approach to establish

(2.2.5) is based on the study of the Paley-Littlewood localization operators

ϕ

(√
H

2k

)
, ϕ

(√
H

2k

)
ϕ

(√
H0

2j

)
, ϕ

(√
H0

2k

)
ϕ

(√
H

2j

)
, j, k ∈ Z.

The key point is to find an appropriate decomposition for the kernel of the operator ϕ
(
H/2k

)
into a

leading term involving similar estimates for the unperturbed Hamiltonian

∣∣∣∣ϕ(√H0

2j

)
(x, y)

∣∣∣∣ ≤ C2j

〈2j(x− y)〉2
, ∀j ∈ Z (2.2.7)

and a remainder satisfying better kernel estimates. We will treat differently the case of low energy

(Lemma 2.2.2) and high energy (Lemma 2.2.3). Finally we need to get estimates of this kind

∥∥∥∥∥ϕ
(√
H

2k

)
ϕ

(√
H0

2j

)∥∥∥∥∥
Lp(R)

≤ C 1

2|k−j|s
‖f‖Lp(R),

∥∥∥∥∥ϕ
(√
H0

2k

)
ϕ

(√
H

2j

)∥∥∥∥∥
Lp(R)

≤ C 1

2|k−j|s
‖f‖Lp(R),

to prove the equivalence (2.2.5).
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2.2.1 Counterexample for the equivalence of homogeneous Besov spaces

In this section we consider the simplest case p = 2 and we shall prove that the equivalence property

‖(H0 + V )n/4u‖L2(Rn) ∼ ‖(H0)n/4u‖L2(Rn) (2.2.8)

is not true for n = 1, 2. In particular we have the following result.

Theorem 2.2.1. If n = 1, 2, and V (x) is a positive potential such that

∫
Rn
V n/2(x)dx ≤ C <∞, (2.2.9)

then (2.2.2) with s = n/2 is not true.

Proof. Let us suppose that the relation (2.2.8) holds. First, we show that

‖Hz0u‖2L2(Rn) ≥ ‖V
zu‖2L2(Rn), (2.2.10)

with <z = 0 and <z = 1/2. Then, using the Stein interpolation Theorem (one can see [22]), we have

that

‖Ha0u‖2L2(Rn) ≥ ‖V
au‖2L2(Rn), (2.2.11)

with 0 ≤ a ≤ 1/2. It is easy to see that we have the property

‖Hib
0 u‖2L2(Rn) = ‖u‖2L2(Rn), ∀ b ∈ R,

and

‖V ibu‖2L2(Rn) = ‖u‖2L2(R), ∀ b ∈ R,

so we have to check (2.2.11) only for a = 1/2. The equivalence of the norms (2.2.8) implies that

‖H1/2
0 u‖L2(Rn) ≈ ‖ (−∆ + V )

1/2
u‖2L2(Rn) =〈(−∆ + V )u, u〉L2(Rn)

≥〈V u, u〉L2(Rn) = ‖V 1/2u‖2L2(Rn),

and we conclude that (2.2.11) is true. Then, assuming (2.2.8) is fulfilled and applying the proved
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inequality with a = n/4 ≤ 1/2, i.e. n ≤ 2, we get

∫
Rn

(V (x))n/2|u(x)|2dx ≤ C‖Dn/2u‖2L2(Rn), D = (−∆)1/2. (2.2.12)

Taking u in the Schwartz class S(Rn) of rapidly decreasing function, we can apply a rescaling argument.

Indeed, considering the dilation

uλ(x) = u(xλ),

we find

‖Dn/2uλ‖2L2(Rn) = ‖Dn/2u‖2L2(Rn)︸ ︷︷ ︸
constant in λ

and

lim
λ↘0

∫
Rn
V n/2(x)|uλ(x)|2dx =

(∫
Rn
V n/2(x)dx

)
|u(0)|2.

In this way we deduce

|u(0)|2
(∫

Rn
V n/2(x)dx

)
≤ C‖Dn/2u‖2L2(Rn). (2.2.13)

The homogeneous norm ‖Dn/2u‖2L2(Rn) is also invariant under translations, i.e. setting

u(τ)(x) = u(x+ τ),

we have

û(τ)(ξ) = e−iτξû(ξ)

and

‖Dn/2u(τ)‖2L2(Rn) = ‖|ξ|n/2û(τ)‖2L2(Rn) = ‖|ξ|n/2û‖2L2(Rn) = ‖Dn/2u‖2L2(Rn).

Applying (2.2.13) with u(τ) in the place of u, we find

|u(τ)|2
∫
Rn
V n/2(x)dx ≤ C‖Dn/2u‖2L2(Rn),

or equivalently

‖u‖2L∞(Rn) ≤ C1‖Dn/2u‖2L2(Rn), (2.2.14)
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where

C1 =
C

‖V n/2‖L1(Rn)

.

The substitution φ = Dn/2u enables us to rewrite (2.2.14) as

‖In/2(φ)‖2L∞(Rn) ≤ C1‖φ‖2L2(Rn), (2.2.15)

where

Iα(φ)(x) = D−α(φ)(x) = c

∫
Rn
|x− y|−n+αφ(y)dy, α ∈ (0, n)

are the Riesz operators. It is easy to show that (2.2.15) leads to a contradiction. Indeed, taking

φN (x) =

N∑
j=0

|x|−n/2 12j≤|x|≤2j+1(x),

with N ≥ 2 sufficiently large and being 1A(x) the characteristic function of the set A, we can use the

estimates

In/2(φN )(0) ≥

 N∑
j=0

∫ 2j+1

2j

rn−1dr

rn

 ≥ CN
and

‖φN‖2L2(Rn) =

N∑
j=0

∫ 2j+1

2j

rn−1dr

rn
≤ C ′N.

Hence, from (2.2.15) we deduce

CN2 ≤ ‖In/2(φN )‖2L∞(Rn) ≤ C1‖φN‖2L2(Rn) ≤ C2N,

for any N sufficiently big and this is impossible. This completes the proof of the Theorem.

2.2.2 Kernel estimates

In this section we establish an appropriate decomposition for the kernel of the operator ϕ(
√
H/M) where

M > 0. As we have seen in (2.1.7), the kernel ϕ(
√
H/M) has the following representation

ϕ
(√
H/M

)
(x, y) = − 1

2π

∫
R
ϕ (τ/M)T (τ)f+(y, τ)f−(x, τ)dτ, when x < y, (2.2.16)
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and

ϕ
(√
H/M

)
(x, y) = − 1

2π

∫
R
ϕ (τ/M)T (τ)f−(y, τ)f+(x, τ)dτ, otherwise. (2.2.17)

In particular we will find a leading term involving ϕ(
√
H0/M) and a remainder satisfying better estimates.

Using the classical result due to Weder [71] one can derive the following Lp estimate:

∥∥∥∥∥ϕ
(√
H
M

)
f

∥∥∥∥∥
Lp(R)

≤ C‖f‖Lp(R) (2.2.18)

for M > 0, f ∈ S(R), 1 < p <∞, as well the Bernstain inequality.

Here, using the improved estimates established in Lemma 2.1.2 and Lemma 2.1.9 we get the following

low energy and high energy kernel estimates.

Lemma 2.2.2. Suppose the condition (2.2.6) is fulfilled, the operator H has no point spectrum and 0 is

not a resonance point for H. If ϕ is an even non-negative function, such that ϕ ∈ C∞0 (R \ {0}), then for

any M ∈ (0, 1] and σ ∈ (0, 1) ∩ (0, γ − 1] we have

∣∣∣∣∣ϕ
(√
H
M

)
(x, y)−KM (x, y)

∣∣∣∣∣ ≤ (2.2.19)

≤ CM

(∑
±

1

〈M(x± y)〉σ

)(
1

〈x〉γ−σ
+

1

〈y〉γ−σ

)
,

where

KM (x, y) = c

∫
R
e−iτ(x−y)ϕ

( τ
M

)
b(x, y, τ) dτ (2.2.20)

with

b(x, y, τ) =


T (τ) x < 0 < y,

(R+(τ) + 1)e2iτx − e2iτx + 1 0 ≤ x < y,

(R−(τ) + 1)e−2iτy − e−2iτy + 1 x < y ≤ 0.

Lemma 2.2.3. Suppose the condition (2.2.6) is fulfilled and the operator H has no point spectrum. If ϕ is

an even non-negative function, such that ϕ ∈ C∞0 (R\{0}), then for any M ∈ [1,∞), σ ∈ (0, 1)∩(0, γ−1]
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we have

∣∣∣∣∣ϕ
(√
H
M

)
(x, y)− ϕ

(√
H0

M

)
(x, y)

∣∣∣∣∣ ≤ (2.2.21)

≤ C

(∑
±

1

〈M(x± y)〉σ

)(
1

〈x〉γ−σ
+

1

〈y〉γ−σ

)
.

Proof of Lemma 2.2.2. We assume x < y for determinacy and consider three cases:

x < 0 < y, (Case A)

0 ≤ x < y, (Case B)

x < y ≤ 0. (Case C)

In the Case A, we can use the representation

T (τ)m+(y, τ)m−(x, τ) = T (τ) + T (τ)mrem,+
0 (y, τ)︸ ︷︷ ︸
=a1(y,τ)

+

+T (τ)mrem,−
0 (x, τ)︸ ︷︷ ︸
=a2(x,τ)

+T (τ)mrem,+
0 (y, τ)mrem,−

0 (x, τ)︸ ︷︷ ︸
=a3(x,y,τ)

,

where

mrem,±
0 (x, τ) = m±(x, τ)− 1. (2.2.22)

In this way, from (2.2.16), we have the representation

ϕ

(√
H
M

)
(x, y) = c ϕ̂M (x− y) + c

3∑
j=1

IM (aj)(x, y), (2.2.23)

where

IM (a)(x, y) = M

∫
R
ϕ (τ)T (Mτ)a(x, y,Mτ)e−iMτ(x−y)dτ

and

ϕM (τ) = T (τ)ϕ
( τ
M

)
.
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The term ϕ̂M (x− y) is included in the leading term KM (x, y) defined in (2.2.20) since we have

ϕ̂M (x− y) =

∫
R
e−iτ(x−y)ϕ

( τ
M

)
T (τ) dτ.

To estimate the terms IM (aj)(x, y) we are going to use the following fractional integration by parts

estimate7 ∣∣∣∣∫
R
eiτMξg(τ)dτ

∣∣∣∣ ≤ C

〈Mξ〉σ
‖g‖C0,σ(R), ∀σ ∈ (0, 1). (2.2.24)

Hence it follows that

|IM (aj)(x, y)| ≤ C M

〈M(x− y)〉σ

∥∥∥∥ϕ(τ)
T (Mτ)

Mτ
Mτaj(x, y,Mτ)

∥∥∥∥
C0,σ(R)

. (2.2.25)

Then, using the estimates proved in Lemma 2.1.2, combined with the following estimates for T (τ)

∥∥∥∥T (τ)

τ

∥∥∥∥
C0,σ(R)

+

∣∣∣∣T (τ)

τ

∣∣∣∣ ≤ C, σ ∈ (0, 1) ∩ (0, γ − 1]

we get ∥∥∥∥ϕ(τ)
T (Mτ)

Mτ
Mτa1(x, y,Mτ)

∥∥∥∥
C0,σ(R)

≤ C
(

1

〈y〉γ
+

Mσ

〈y〉γ−σ

)
,

∥∥∥∥ϕ(τ)
T (Mτ)

Mτ
Mτa2(x, y,Mτ)

∥∥∥∥
C0,σ(R)

≤ C
(

1

〈x〉γ
+

Mσ

〈x〉γ−σ

)
,

∥∥∥∥ϕ(τ)
T (Mτ)

Mτ
Mτa3(x, y,Mτ)

∥∥∥∥
C0,σ(R)

≤ C
(

1

〈x〉γ−1〈y〉γ
+

1

〈y〉γ−σ〈x〉γ−1
+

Mσ

〈y〉γ〈x〉γ−σ−1

)
,

Turning back to (2.2.23) and using the estimates (2.2.25) together with Hölder estimates above, we

obtain ∣∣∣∣∣ϕ
(√
H
M

)
− cϕ̂M (x− y)

∣∣∣∣∣ ≤ C M

〈M(x− y)〉σ

(
1

〈y〉γ−σ
+

1

〈x〉γ−σ

)
with σ ∈ (0, 1) ∩ (0, γ − 1], and x < 0 < y, i.e. we get (2.2.19) in the Case A.

In the Case B, since we have x ≥ 0, we shall write m−(x, τ) in terms of m+(x,±τ). In order to do

this, we can use the relation

T (τ)m−(x, τ) = R+(τ)e2iτxm+(x, τ) +m+(x,−τ). (2.2.26)

7here g is a compactly supported function in C0,σ(R) such that 0 /∈ suppg.
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Then we can write

T (τ)m+(y, τ)m−(x, τ) =

(R+(τ) + 1)e2iτxm+(y, τ)m+(x, τ)−

−e2iτxm+(y, τ)m+(x, τ) +m+(y, τ)m+(x,−τ).

Using the remainders introduced in (2.2.22) we can represent the kernel ϕ
(√
H
M

)
(x, y) as a sum of kernels

of three types:

IM (x, y) =

∫
R
ϕ
( τ
M

) (
(R+(τ) + 1) e2iτxm+(y, τ)m+(x, τ)

)
e−iτ(x−y)dτ,

IIM (x, y) = Mϕ̂ (M(x− y))−Mϕ̂ (M(x+ y))

IIIM (x, y) =

2∑
j=1

Kj(x, y;M),

where

K1(x, y;M) = M

∫
R
e−iMτ(x−y)ϕ(τ)b1(x, y,Mτ)dτ, (2.2.27)

K2(x, y;M) = −M
∫
R
eiMτ(x+y)ϕ(τ)b2(x, y,Mτ)dτ, (2.2.28)

and

b1(x, y,Mτ) = mrem,+
0 (y,Mτ) +mrem,+

0 (x,−Mτ) +mrem,+
0 (y,Mτ)mrem,+

0 (x,−Mτ),

b2(x, y,Mτ) = mrem,+
0 (y,Mτ) +mrem,+

0 (x,Mτ) +mrem,+
0 (y,Mτ)mrem,+

0 (x,Mτ).

As before, we firstly estimate the terms IM (x, y) and IIIM (x, y) with fractional integration by parts

estimate (2.2.24) and then we use Lemma 2.1.2 combined with the estimates

∥∥∥∥R±(τ) + 1

τ

∥∥∥∥
C0,σ(C±)

+

∣∣∣∣R±(τ) + 1

τ

∣∣∣∣ ≤ C, σ ∈ (0, 1) ∩ (0, γ − 1],

and the properties of the function ϕ to prove (2.2.19) in the Case B. Here

b(x, y, τ) = (R+(τ) + 1)e2iτx − e2iτx + 1
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and 0 ≤ x < y.

In the Case C we follow the argument used in the Case B, but this time we replace (2.2.26) by

T (τ)m+(y, τ) = R−(τ)e−2iτym−(y, τ) +m−(y,−τ), (2.2.29)

to derive (2.2.19). This completes the proof of Lemma 2.2.3.

Proof of Lemma 2.2.3. In the high energy domain M > 1 we can follow the proof of Lemma 2.2.2. Using

the estimates

T (τ) = 1 +O(τ−1), R(τ) = O(τ−1)

near τ →∞ we can absorb the factor M > 1 that appears in

ϕ

(√
H
M

)
(x, y)− ϕ

(√
H0

M

)
(x, y) =

= M

∫
R
ϕ(τ) [T (τM)m+(y, τM)m−(x, τM)− 1] e−iτM(x−y) dτ.

Then, proceeding as in the proof of Lemma 2.2.2 we obtain the following estimate

∣∣∣∣∣ϕ
(√
H
M

)
(x, y)− ϕ

(√
H0

M

)
(x, y)

∣∣∣∣∣ ≤
≤ C

(∑
±

1

〈M(x± y)〉σ

)(
1

〈x〉γ−σ
+

1

〈y〉γ−σ

)
.

i.e. the inequality (2.2.21).

2.2.3 Equivalence of the norms

In this section we prove the equivalence of the homogeneous Besov norms and hence the invariance of

the homugeneous Besov spaces under the action of the wave operators.

Theorem 2.2.4. Suppose

V ∈ L1
γ(R), γ > 1 + 1/p, 0 ≤ s < 1/p, p ∈ (1,∞),
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the operator H has no point spectrum and 0 is not a resonance. Then we have

‖f‖Ḃsp,H(R) ∼ ‖f‖Ḃsp(R).

As immediate consequence we have the following result.

Corollary 2.2.5. Suppose the assumptions of Theorem 2.2.4 are fulfilled. Then for any p ∈ (1,∞), any

s ∈ [0, 1/p), we have

W± : Ḃsp(R)→ Ḃsp(R).

In order to prove Theorem 2.2.4 we recall that the comparison of homogeneous Besov spaces Ḃsp(R)

and Ḃsp,H(R) is closely connected with the definition and properties of fractional power of the Hamilto-

nians H and H0. As studied in Chapter 1, for sectorial operators A in Lp(R) introduced in Definition

1.1.9 we can define for any σ ∈ (0, 1) the fractional negative powers of A as follows

A−σ =
sin(πσ)

π

∫ ∞
0

λ−σ(λ+A)−1dλ.

Sectorial properties of H are studied in Chapter 1 under the assumption that 0 is not a resonance for

H. In particular, if s ∈ [0, 1) and σ = 1− s/2, by Theorem 1.4.6, it follows that

Hs/2 = H−σH =
sin(πσ)

π

∫ ∞
0

λ−σH(λ+H)−1dλ. (2.2.30)

As mentioned before, using the existence of the wave operators, its boundness in Lp(R) and the splitting

property, one can derive the following Lp estimate (partial case of Bernstein inequality)

∥∥∥∥∥ϕ
(√
H
M

)
f

∥∥∥∥∥
Lp(R)

≤ C‖f‖Lp(R) (2.2.31)

for M > 0 and f ∈ S(R). Moreover, from Lemma 2.2.3 combined with Young convolution inequality we

get the Bernstain inequality for M > 1

∥∥∥∥∥ϕ
(√
H
M

)
f − ϕ

(√
H0

M

)
f

∥∥∥∥∥
Lp(R)

≤ CM1/p−1/q−δ‖f‖Lp(R), (2.2.32)

where 1 ≤ p ≤ q ≤ ∞ and δ > 0, δ = s− σ according with the notations used in Lemma 2.2.3.
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Now we are going to get some estimates for the operators

ϕ

(√
H
M

)
ϕ

(√
H0

Λ

)
, ϕ

(√
H0

M

)
ϕ

(√
H

Λ

)
, M,Λ > 0.

We start with the case of low energy domain M ≤ 1.

Lemma 2.2.6. Assume that V ∈ L1
γ(R) with

γ > 1 + 1/p, 0 < s <
1

p
, 1 < p <∞.

Then for any even function ϕ(τ) ∈ C∞0 (R \ 0) there exists a constant C = C(‖V ‖L1
γ(R)) so that for any

pair of real positive numbers Λ,M such that 0 < Λ ≤ M,M ≤ 1 and for any f ∈ S(R), the following

inequality holds: ∥∥∥∥∥ϕ
(√
H
M

)
ϕ

(√
H0

Λ

)
f

∥∥∥∥∥
Lpx(R)

≤ C Λs

Ms
‖f‖Lpx(R). (2.2.33)

Proof. We can assume that the support of ϕ is in [1/2, 2]. Firstly we note that if Λ/4 ≤ M ≤ 4Λ,

or M/4 ≤ Λ ≤ 4M the Lp boundness of the operators ϕ(
√
H/M) and ϕ(

√
H0/Λ) imply the estimate

(2.2.33). Now we prove the estimate in the remaining cases.

Since V ∈ L1
γ(R) with γ > 1 + 1/p and 0 < s < 1/p, then V ∈ L1

1+s(R). Our first step is the proof

of (2.2.33), assuming

Λ < M/4. (2.2.34)

Our goal is to check the inequality

∥∥∥∥∥
∫
R
ϕ

(√
H
M

)
(x, y)fΛ(y)dy

∥∥∥∥∥
Lp(R)

≤ C
(

Λ

M

)s
‖f‖Lp(R) (2.2.35)

where fΛ = ϕ(
√
H0/Λ)f .

We can apply the kernel estimate (2.2.19) from Lemma 2.2.2 so we get

∥∥∥∥∥
∫
R

[
ϕ

(√
H
M

)
(x, y)−KM (x, y)

]
fΛ(y)dy

∥∥∥∥∥
Lp(R)

≤

≤CM
∥∥∥∥∫

R

|fΛ(y)|dy
〈M(x− y)〉σ〈x〉1+s−σ

∥∥∥∥
Lp(R)

+ CM

∥∥∥∥∫
R

|fΛ(y)|dy
〈M(x− y)〉σ〈y〉1+s−σ

∥∥∥∥
Lp(R)

, (2.2.36)

for any σ ∈ (0, s]. The terms in the right side of the inequality above can be evaluated using Hardy-
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Sobolev estimates. To be more precise, the equivalence between the Lebesgue spaces Lp(R) and the

Lorentz ones Lp,p(R) in the case 1 < p < ∞ (one can see [7]) allows us to use the sharp inequalities in

Lorentz spaces. Indeed, we recall that |x|−1/β ∈ Lβ,∞(R), for any β ≥ 1. Using the relation

1 +
1

p
= σ + (1 + s− σ) +

(
1

p
− s
)
, (2.2.37)

we are in position to apply Young and Hölder inequalities in Lorentz spaces to get

∥∥∥∥∫
R

|fΛ(y)|dy
|M(x− y)|σ|y|1+s−σ

∥∥∥∥
Lp,p(R)

≤ C 1

Mσ

∥∥∥∥ 1

|x|σ

∥∥∥∥
L

1
σ
,∞(R)

∥∥∥∥ 1

|y|1+s−σ

∥∥∥∥
L

1
1+s−σ ,∞(R)

‖fΛ‖Lq,p(R).

where

1

q
=

1

p
− s.

This estimate can be combined with the Sobolev embedding in Lorentz spaces

‖f‖Lq,p(R) ≤ C‖Dsf‖Lp,p(R),
1

q
=

1

p
− s, 0 < s < 1/p (2.2.38)

so that we obtain that the second term in the right side in (2.2.36) is bounded from

CM1−σΛs‖f‖Lp(R) ≤ CΛs‖f‖Lp(R).

One can proceed similarly to find

∥∥∥∥∫
R

|fΛ(y)|dy
|M(x− y)|σ|x|1+s−σ

∥∥∥∥
Lp(R)

≤ C 1

Mσ
Λs‖f‖Lp(R).

At this point we have proved that, for 0 < Λ < M ≤ 1, the inequality

M

∥∥∥∥∫
R

|fΛ(y)|dy
|M(x− y)|σ|x|1+s−σ

∥∥∥∥
Lp(R)

+M

∥∥∥∥∫
R

|fΛ(y)|dy
|M(x− y)|σ|y|1+s−σ

∥∥∥∥
Lp(R)

≤ (2.2.39)

≤ C M

Mσ
Λs ‖f‖Lp(R) ,

holds, where 0 < σ ≤ s.
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Now we go further to estimate the leading terms

AM,Λ(f)(x) =

∫
R
KM (x, y)fΛ(y)dy, (2.2.40)

caracterized in (2.2.20). We start with the study of the kernel

K
(1)
M (x, y) = 1x>01y>0

∫
e−iτ(x−y)ϕ

( τ
M

)
dτ. (2.2.41)

At first we look for the kernel K̃M,Λ(x, y), such that

A
(1)
M,Λ(f)(x) =

∫
K̃

(1)
M,Λ(x, y)f(y) dy

and then we will find suitable bounds for |K̃(1)
M,Λ(x, y)| in order to estimate ‖A(1)

M,Λ(f)‖Lp(R). We can

neglect the characteristic function 1x>0. On the other side, the presence of 1y>0 and the integration in

dy imply that

A
(1)
M,Λ(f)(x) =

∫∫
e−iτxϕ

( τ
M

) 1

τ − ξ
ϕ

(
ξ

Λ

)
f̂(ξ) dξ dτ.

We note that τ−ξ 6= 0 since we are considering the case Λ < M/4. By definition of the Fourier transform

f̂(ξ) = c

∫
e−iyξf(y) dy,

we get the expression of the kernel

K̃
(1)
M,Λ(x, y) = c

∫∫
e−iτxe−iyξϕ

( τ
M

)
ϕ

(
ξ

Λ

)
1

τ − ξ
dξ dτ. (2.2.42)

Operating the changes of variables τ 7→Mτ and ξ 7→ Λξ we obtain

K̃
(1)
M,Λ(x, y) = cMΛ

∫∫
e−iτMxe−iyΛξϕ (τ)ϕ (ξ)

1

Mτ − Λξ
dξ dτ.

Integrating two times by parts in τ and then in ξ we find the following estimate

|K̃(1)
M,Λ(x, y)| ≤ C MΛ

〈Mx〉2〈Λy〉2

∫∫ ∣∣∣∣∂2
ξ∂

2
τ

(
ϕ (τ)ϕ (ξ)

Mτ − Λξ

)∣∣∣∣ dξ dτ (2.2.43)

≤ C ΛM

〈Mx〉2〈Λy〉2
1

max (M,Λ)
.
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Now we can apply Hölder inequality to get

‖A(1)
M,Λ(f)‖Lp(R) ≤ C

Λ

M1/pΛ1−1/p
‖f‖Lp(R). (2.2.44)

We can proceed similarly for the kernels

K
(2)
M (x, y) = 1x<01y>0

∫
e−iτ(x−y)ϕ

( τ
M

)
T (τ) dτ (2.2.45)

and

K
(3)
M (x, y) = 1±x>01±y>0

∫
e−iτ(x±y)ϕ

( τ
M

)
(R±(τ) + 1) dτ (2.2.46)

using the assumption T (τ) ∼ τ , (R±(τ) + 1) ∼ τ near τ = 0 and fractional integration by parts.

Indeed, from the Theorem 2.3 in [72] we have that T (τ) is C1(R) and R±(τ) ∈ C0,α(R) with α < γ−1.

Applying α integration by parts we have that

|K̃M,Λ(x, y)| ≤ C ΛM

〈Mx〉α〈Λy〉α
1

max(M,Λ)

and

‖AM,Λ(f)‖Lp(R) ≤ C
Λ

M1/pΛ1−1/p
‖f‖Lp(R),

where we have chosen α > max(1/p, 1/p′) thanks to the hypothesis γ > 1 + 1/p. In conclusion the

estimate (2.2.33) is checked and it holds whenever 0 < Λ ≤M ≤ 1.

Our proof of the equivalence of the high energy part of the homogeneous Besov norms (2.2.5) for

the perturbed Hamiltonian and the corresponding unperturbed homogeneous Besov norms is based on

(2.2.31). More precisely, we have the following estimates.

Lemma 2.2.7. Assume that V ∈ L1
γ(R), γ > 1 + 1/p, the operator H has no point spectrum and

resonance at zero. Then for any even function ϕ(τ) ∈ C∞0 (R\0) there exists a constant C = C(‖V ‖L1
γ(R))

so that for any pair of real positive numbers Λ,M and for any f ∈ S(R), the following inequalities hold:

∥∥∥∥∥ϕ
(√
H
M

)
ϕ

(√
H0

Λ

)
f

∥∥∥∥∥
Lpx(R)

≤ C
(

Λ

M

)1/p

‖f‖Lpx(R), ∀ 0 < Λ ≤M,M ≥ 1 (2.2.47)

and ∥∥∥∥∥ϕ
(√
H
M

)
ϕ

(√
H0

Λ

)
f

∥∥∥∥∥
Lpx(R)

≤ C
(
M

Λ

)1/p

‖f‖Lpx(R), ∀ Λ ≥M,M ≥ 1, (2.2.48)
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with 1 < p <∞.

Proof. We shall prove in details (2.2.47), since the proof of (2.2.48) is similar. We take p ∈ (1,∞),

f, g ∈ S(R) and we set

fΛ(x) = ϕ

(√
H0

Λ

)
f.

We are considering the case

Λ ≤M, M ≥ 1. (2.2.49)

Now we use the relation

ϕ

(√
H
M

)
fΛ = M−sϕ1

(√
H
M

)
Hs/20 fΛ +M−sϕ1

(√
H
M

)(
Hs/2 −Hs/20

)
fΛ,

where s > 0 will be chosen later on and

ϕ1 (τ) = ϕ (τ) τ−s. (2.2.50)

Hence we have the representation formula

ϕ

(√
H
M

)
fΛ = M−sϕ1

(√
H
M

)
(H0)s/2fΛ +GM,Λ(f), (2.2.51)

where

GM,Λ = M−sϕ1

(√
H
M

)(
Hs/2 −Hs/20

)
ϕ

(√
H0

Λ

)
. (2.2.52)

By (2.2.31), we can write

∥∥∥∥∥M−sϕ1

(√
H
M

)
Hs/20 fΛ

∥∥∥∥∥
Lp(R)

≤ C

Ms

∥∥∥Hs/20 fΛ

∥∥∥
Lp(R)

≤ CΛs

Ms
‖f‖Lp(R)

so we have the estimate

∥∥∥∥∥M−sϕ1

(√
H
M

)
Hs/20 fΛ

∥∥∥∥∥
Lp(R)

≤ CΛs

Ms
‖f‖Lp(R). (2.2.53)

The operator Hs/2 −Hs/20 , entering in the right side of (2.2.52) can be substituted by

C

∫ ∞
0

λ−1+s/2
[
H(λ+H)−1 −H0(λ+H0)−1

]
dλ =
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= C

∫ ∞
0

λs/2(λ+H)−1V (λ+H0)−1dλ

due to (2.2.30). Hence

‖GM,Λ(f)‖Lp(R) ≤
C

Ms

∫ ∞
0

λs/2h(λ,Λ,M)dλ, (2.2.54)

where

h(λ,Λ,M) =

∥∥∥∥∥ϕ1

(√
H
M

)
(λ+H)−1V (λ+H0)−1fΛ

∥∥∥∥∥
Lp(R)

.

By (2.2.32) and the standard estimate

∥∥∥∥ϕ(√H0

Λ

)
(λ+H0)−1f

∥∥∥∥
Lq(R)

≤ CΛ1/p−1/q

λ+ Λ2
‖f‖Lp(R), (2.2.55)

we can write

h(λ,Λ,M) =

∥∥∥∥∥ϕ1

(√
H
M

)
(λ+H)−1V (λ+H0)−1fΛ

∥∥∥∥∥
Lp(R)

≤

≤ CM1−1/p

λ+M2

∥∥V (λ+H0)−1fΛ

∥∥
L1(R)

≤

≤ CM1−1/p

λ+M2

∥∥(λ+H0)−1fΛ

∥∥
L∞(R)

≤ CM1−1/pΛ1/p

(λ+M2)(λ+ Λ2)
‖f‖Lp(R) .

So, we derive from (2.2.54) the inequality

‖GM,Λ(f)‖Lp(R) ≤ CM1−1/p−sΛ1/p

∫ ∞
0

λs/2dλ

(λ+M2)(λ+ Λ2)
‖f‖Lp(R) . (2.2.56)

The following estimate

∫ ∞
0

λs/2dλ

(λ+M2)(λ+ Λ2)
≤
∫ ∞

0

λs/2−1dλ

(λ+M2)
= CMs−2 (2.2.57)

and (2.2.56) imply

‖GM,Λ(f)‖Lp(R) ≤ CM−1−1/pΛ1/p ‖f‖Lp(R) . (2.2.58)

Taking s = 1/p, via identity (2.2.51) and inequality (2.2.53) we obtain

∥∥∥∥∥ϕ
(√
H
M

)
fΛ

∥∥∥∥∥
Lp(R)

≤ CΛ1/p

M1/p
‖fΛ‖Lp(R) +

CΛ1/p

M1+1/p
‖f‖Lp(R) ≤

CΛ1/p

M1/p
‖f‖Lp(R) ,
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for M ≥ 1.

We can proceed similarly in the case Λ ≥M , M ≥ 1. Indeed we can use the relation

ϕ

(√
H
M

)
fΛ = Msϕ1

(√
H
M

)
H−s/20 fΛ +Msϕ1

(√
H
M

)(
H−s/2 −H−s/20

)
fΛ,

where

ϕ1 (τ) = ϕ (τ) τs.

We can write H−s/2−H−s/20 and H−s/20 via (2.2.3). Then operating computations similar to the previous

case and using M ≥ 1, we get

∥∥∥∥∥ϕ
(√
H
M

)
fΛ

∥∥∥∥∥
Lp(R)

≤ CM
s

Λs
‖f‖Lp(R),

for any s ∈ (0, 1). In particular it holds for s = 1/p.

Corollary 2.2.8. Assume that V ∈ L1
γ(R) with

γ > 1 + 1/p, 0 < s <
1

p
, 1 < p <∞,

and assume that the operator H has no point spectrum and no resonance at zero. Then for any even

function ϕ(τ) ∈ C∞0 (Rr 0) there exists a constant C = C(‖V ‖L1
γ(R)) so that for any pair of real positive

numbers Λ,M such that 0 < Λ ≤M , M ≤ 1 and for any f ∈ S(R), the following inequality holds:

∥∥∥∥∥ϕ
(√
H0

M

)
ϕ

(√
H

Λ

)
f

∥∥∥∥∥
Lpx(R)

≤ C Λs

Ms
‖f‖Lpx(R). (2.2.59)

Proof. By Lemma 2.2.2 we have that

ϕ

(√
H

Λ

)
= KΛ + RemΛ,

where the kernel KΛ(x, y) is defined in (2.2.20) and the kernel of the remainder RemΛ(x, y) satisfies the
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estimate (2.2.19). We first estimate the remainder term. By (2.2.19) we have

∥∥∥∥ϕ(√H0

M

)
RemΛf

∥∥∥∥
Lpx(R)

≤

≤ CΛ

∥∥∥∥∥
∫
R

(∑
±

1

〈Λ(x± y)〉σ

)(
1

〈x〉γ−σ
+

1

〈y〉γ−σ

)
|f(y)| dy

∥∥∥∥∥
Lp(R)

,

where σ ∈ (0, 1) ∩ (0, γ − 1] will be choose small enough. Applying Hölder and Young inequalities in

Lorentz spaces with the following indices relation

1

p
+ 1 = σ + (1− σ) +

1

p
,

we get ∥∥∥∥ϕ(√H0

M

)
RemΛf

∥∥∥∥
Lp(R)

≤ C Λ

Λσ
‖f‖Lp(R) ≤ C

Λs

Ms
‖f‖Lp(R).

Now we turn to estimate the leading term. We consider

KΛ(x, y) = c1x>01y>0

∫
R
e−iτ(x−y)ϕ

( τ
Λ

)
dτ

since we can proceed similarly for the other terms defined in (2.2.20). We look for the kernel K̃M,Λ(x, y)

such that

ϕ

(√
H0

M

)(∫
R
KΛ(·, y)f(y) dy

)
(x) =

∫
R
K̃M,Λ(x, y)f(y) dy.

We put

h(x) =

∫
dy

∫
dτ e−i(x−y)τϕ

( τ
Λ

)
f(y)1y>0

and

g(x) = c1x>0h(x).

Using the notation above we have that

ϕ

(√
H0

M

)
g(x) = c

∫
eixξϕ

(
ξ

M

)
ĝ(ξ) dξ

and

ĥ(η) = cϕ
( η

Λ

)∫
dyeiyηf(y)1y>0.
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Hence we deduce

ϕ

(√
H0

M

)
g(x) =

∫
dy

∫
dξ

∫
dηeixξeiyηϕ

(
ξ

M

)
ϕ
( η

Λ

) 1

ξ − η︸ ︷︷ ︸
K̃M,Λ(x,y)

f(y)1y>0.

Then, as in (2.2.42), integrating by parts we get

∣∣∣K̃M,Λ(x, y)
∣∣∣ ≤ C MΛ

〈Mx〉2〈Λy〉2
1

max(M,Λ)
.

We note that we are considering the case 0 < Λ < M ≤ 1. Then, using Hölder inequality combined with

a scaling argument we get

∥∥∥∥ϕ(√H0

M

)
g

∥∥∥∥
Lp(R)

≤ C Λ

M1/pΛ1−1/p
‖f‖Lp(R).

Corollary 2.2.9. Assume that V ∈ L1
γ(R), γ > 1 + 1/p, the operator H has no point spectrum and no

resonance at zero. Then for any even function ϕ(τ) ∈ C∞0 (R\0) there exists a constant C = C(‖V ‖L1
γ(R))

so that for any pair of real positive numbers Λ,M and for any f ∈ S(R), the following inequalities hold:

∥∥∥∥∥ϕ
(√
H0

M

)
ϕ

(√
H

Λ

)
f

∥∥∥∥∥
Lpx(R)

≤ C
(

Λ

M

)1/p

‖f‖Lpx(R), ∀ 0 < Λ ≤M,M ≥ 1 (2.2.60)

and ∥∥∥∥∥ϕ
(√
H0

M

)
ϕ

(√
H

Λ

)
f

∥∥∥∥∥
Lpx(R)

≤ C
(
M

Λ

)1/p

‖f‖Lpx(R), ∀ Λ ≥M,M ≥ 1, (2.2.61)

with 1 < p <∞.

Proof. The proof of the inequalities (2.2.60) and (2.2.61) follows repeating the same arguments of Lemma

2.2.7 and replacing H with H0 and vice versa.

Now we turn to the proof of the main theorem.

Proof of Theorem 2.2.4. We have to prove the equivalence of the norms in (2.2.3) and (2.2.4), i.e.

∞∑
k=−∞

22ks

∥∥∥∥∥ϕ
(√
H

2k

)
f

∥∥∥∥∥
2

Lp(R)

∼
∞∑

j=−∞
22js

∥∥∥∥ϕ(√H0

2j

)
f

∥∥∥∥2

Lp(R)

. (2.2.62)
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We set

ak =

∥∥∥∥∥ϕ
(√
H

2k

)
f

∥∥∥∥∥
Lp(R)

, bj =

∥∥∥∥ϕ(√H0

2j

)
f

∥∥∥∥
Lp(R)

.

Using the Paley-Littlewood partition

f =

∞∑
j=−∞

fj =

∞∑
j=−∞

ϕ

(√
H0

2j

)
f,

we take ψ(τ) ∈ C∞0 (R+) such that ψ(τ) = 1 on the support of ϕ. Then we can use the identity

ϕ

(√
H

2k

)
f =

∞∑
j=−∞

ϕ

(√
H

2k

)
ψ

(√
H0

2j

)
fj . (2.2.63)

We distinguish the two cases k ≥ 0 and k < 0.

Let k ≥ 0 be fixed. We can apply Lemma 2.2.7 and we obtain that

ak =

∥∥∥∥∥ϕ
(√
H

2k

)
f

∥∥∥∥∥
Lp(R)

≤ C
∞∑

j=−∞
2−|k−j|(1/p) ‖fj‖Lp(R) = C

∞∑
j=−∞

2−|k−j|(1/p)bj .

From this we deduce that ∥∥2ksak
∥∥
`2
k≥0

≤ C
∥∥2jsbj

∥∥
`2j (Z)

. (2.2.64)

Indeed we have

∥∥2ksak
∥∥
`2
k≥0

(Z)
≤ C

∥∥∥∑
j∈Z

2−|j−k|(1/p)2−(j−k)s2js‖fj‖Lp(R)

∥∥∥
`2
k≥0

. (2.2.65)

Using the discrete Young inequality combined with the estimate

∥∥∥2−|n|(1/p)−ns
∥∥∥
`1n(Z)

≤ C, (2.2.66)

with 0 < s < 1/p, we get the inequality (2.2.64).

Let k < 0 be fixed. Then we write

2ksak ≤ 2ks
∑
j≤k

∥∥∥∥∥ϕ
(√
H

2k

)
ψ

(√
H0

2j

)
fj

∥∥∥∥∥
Lp(R)

+

+2ks
∑
j≥k

∥∥∥∥∥ϕ
(√
H

2k

)
ψ

(√
H0

2j

)
fj

∥∥∥∥∥
Lp(R)

.
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Now we estimate the `2k≤0 norm of the two addends above. We can estimate the first addend as in the

case k > 0 using the inequality (2.2.59) and the index s′ such that 0 < s < s′ < 1/p. Then we can

proceed as in (2.2.65), (2.2.66) replacing 1/p with s′. For the second addend the prove of the estimate

is simpler. Indeed, using (2.2.31) we have

2ks
∑
j≥k

∥∥∥∥∥ϕ
(√
H

2k

)
ψ

(√
H0

2j

)
fj

∥∥∥∥∥
Lp(R)

≤ C
∑
j≥k

2ks2−js2js‖fj‖Lp(R). (2.2.67)

Since we are considering the case j ≥ k and k < 0, we can estimate the right side above with the sum

C
∑
j∈Z

2−|k−j|s2js‖fj‖Lp(R).

Now, computing the `2k norm and applying the discrete Young inequality we complete the proof of the

estimate ∥∥2ksak
∥∥
`2k(Z)

≤ C
∥∥2jsbj

∥∥
`2j (Z)

. (2.2.68)

To prove that ∥∥2jsbj
∥∥
`2j (Z)

≤ C
∥∥2ksak

∥∥
`2j (Z)

, (2.2.69)

we use Corollary 2.2.8 and Corollary 2.2.9. Indeed, if we write

ϕ

(√
H0

2j

)
f =

∞∑
k=−∞

ϕ

(√
H0

2j

)
ψ

(√
H

2k

)
fk,

where

fk = ϕ

(√
H

2k

)
f,

as before we can distinguish the case j ≥ 0 and j < 0. Computations similar to the ones used to prove

(2.2.68) conclude the proof.
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Chapter 3

Hardy inequality and fractional

Leibnitz rule for perturbed

Hamiltonians on the line

In this chapter we consider the perturbed Hamiltonian H = H0 + V on the real line, where V is a short

range potential, V ∈ L1
γ(R), γ ≥ 1. We assume that the Hamiltonian H has no zero resonances and

that the point spectrum of H consists of just real negative numbers with absolutely continuous part

[0,∞). Our main goal will be to prove that the perturbed homogeneous Sobolev norms generated by

the absolutely continuous part of the Hamiltonian Hac = Pac(H)H are equivalent to the classical ones.

The plan of the chapter is the following. In Section 3.1 we motivate the study of the problems and

we expose the main results. In Section 3.2 we outline the idea that we follow to prove the main results

of the chapter. The Section 3.3 and Section 3.4 are devoted to the proof of the equivalence of the

norms. Finally, in Section 3.5 we provide a counterexample that shows that some requirements on the

relationship between the regularity index, the integrability index and the dimension of the homogeneous

Sobolev spaces are necessary to guarantee the equivalence of the norms.
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3.1 Motivation, assumptions and main results

The uncertainty principle in quantum mechanics is frequently associated with Hardy type inequality

‖ |x|−sf‖Lp(Rn) ≤ C‖H
s/2
0 f‖Lp(Rn), s ∈ [0, n/p), (3.1.1)

where H0 = −∆ is the free Hamiltonian in Rn, n ≥ 1. The presence of a perturbed Hamiltonian H =

H0 + V (x) with a short range real-valued perturbation potential V (x) leads to the natural question to

verify if Hardy type inequality is true for this perturbed Hamiltonian. The appearance of eigenvectors

of H is an obstacle to have Hardy type inequality or to establish existence and completeness of the wave

operators in the whole Lp(Rn) space, so it is natural to look for estimates of type

‖ |x|−sf‖Lp(Rn) ≤ C‖Hs/2ac f‖Lp(Rn), s ∈ [0, n/p), (3.1.2)

where Hac is the absolutely continuous part of the perturbed Hamiltonian and f is in the domain of

Hac. Our key goal in this work is to study the equivalence of the following homogeneous Sobolev norms

‖Hs/2ac f‖Lp(R) ∼ ‖H
s/2
0 f‖Lp(R), (3.1.3)

since this equivalence property (in the case n = 1) shows that (3.1.1) implies (3.1.2).

Another motivation to study the equivalence property (3.1.3) is connected with the necessity to

generalize so called fractional Leibnitz rule, used as a basic tool in rigorous analysis of local well-posedness

of nonlinear dispersive equations, to the case of fractional Hamiltonians of typeHs/2ac . To be more precise,

the following estimate is known as fractional Leibnitz rule or Kato-Ponce estimate (one can see [36])

‖Hs/20 (fg)‖Lp(R) ≤ C‖H
s/2
0 f‖Lp1 (R)‖g‖Lp2 (R) + C‖f‖Lp3 (R)‖H

s/2
0 g‖Lp4 (R), (3.1.4)

where the parameters s, p, pj , j = 1, . . . , 4, satisfy

s > 0, 1 < p, p1, p2, p3, p4 <∞,
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

The estimate can be considered as natural homogeneous version of the non-homogeneous inequality

of type (3.1.4) involving Bessel potentials (1 − H0)s/2 in the place of Hs/20 , obtained by Kato and

Ponce in [48] (estimates of type (3.1.4) are also called Kato-Ponce estimates). More general domains for
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parameters can be found in [34]. A more precise estimate can be deduced when 0 < s < 1. In particular,

Kenig, Ponce, and Vega [50] obtained the estimate

‖Hs/20 (fg)− fHs/20 g − gHs/20 f‖Lp(R) ≤ C‖H
s1/2
0 f‖Lp1 (R)‖H

s2/2
0 g‖Lp2 (R), (3.1.5)

provided

0 < s = s1 + s2 < 1, s1, s2 ≥ 0,

and

1 < p, p1, p2 <∞,
1

p
=

1

p1
+

1

p2
. (3.1.6)

Therefore, one can pose the question to find appropriate short range assumptions on the perturbed

Hamiltonian so that the fractional Leibnitz rule (3.1.4) or the more precise bilinear estimate (3.1.5) are

valid for this perturbed Hamiltonian. This problem can be solved again by using (3.1.3).

We can make another interpretation of (3.1.3) in terms of the invariance of homogeneous Sobolev

spaces Ḣs
p(R) with norms

‖f‖Ḣsp(R) = ‖Hs/20 f‖Lp(R)

under the action of the wave operators

W± = s− lim
t→±∞

Pac(H)eitHe−itH0 ,

where s − lim means strong limit. The existence and completeness of the wave operators in standard

Hilbert space (typically Lebesgue space L2) in case of short range perturbations is well known (see

[52], [58], [41] and the references therein). The functional calculus for the absolutely continuous part

Hac = Pac(H)H of the perturbed non-negative operator H can be introduced with a relation involving

W±

g(Hac) = W+g(H0)W ∗+ = W−g(H0)W ∗−, (3.1.7)

for any function g ∈ L∞loc(0,∞). Moreover, the wave operators map unperturbed Sobolev spaces in the

perturbed ones,

W± : D(Hs/20 )→ D(Hs/2ac )
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and we have

W± : Ḣs
p(R)→ Ḣs

p,Hac(R), ∀s ≥ 0, 1 < p <∞,

where Ḣs
p,Hac(R) is the perturbed homogeneous Sobolev space generated by the Hamiltonian Hac. More

precisely, Ḣs
p,Hac(R) is the homogeneous Sobolev spaces associated with the absolutely continuous part

Hac of the perturbed Hamiltonian H = H0 + V . This is the closure of functions f ∈ S(R) orthogonal1

to the eigenvectors of H with respect to the norm

‖f‖Ḣsp,Hac (R) =
∥∥∥Hs/2ac f

∥∥∥
Lp(R)

. (3.1.8)

The equivalence property (3.1.3) implies that the homogeneous Sobolev space Ḣs
p(R) is invariant

under the action of the wave operators W± for 0 ≤ s < 1/p.

The study of the dispersive properties of the evolution flow in some cases of short range perturbed

Hamiltonians H shows (see [17], [29]) that homogeneous Sobolev norms for perturbed and unperturbed

Hamiltonians are equivalent

‖Hs/2ac f‖L2(Rn) ∼ ‖H
s/2
0 f‖L2(Rn), (3.1.9)

provided s < n/2. Our goal is to extend this equivalence to the case

‖Hs/2ac f‖Lp(Rn) ∼ ‖H
s/2
0 f‖Lp(Rn), (3.1.10)

with s < n/p.

First, we shall show that the requirement s < n/p is optimal, i.e. we shall prove the following result:

Theorem 3.1.1. If n ≥ 1 and V (x) is defined as follows

V (x) =
1

1 + |x|3
, (3.1.11)

then (3.1.3) with s = n/p ≤ 2 is not true.

Next we turn to the proof of (3.1.3) for the case n = 1 and we shall describe the assumptions on the

potential V.

We shall assume that the potential V : R → R is a real-valued potential, V ∈ L1(R) and V is

decaying sufficiently rapidly at infinity, namely following [72] we require V ∈ L1
γ(R), with γ ≥ 1. The

1 the precise definition of eigenvectors is given below in (4.1.8)
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key assumption is to suppose that H has no zero resonance using Definition 2.1.5. This definition is

expressed in terms of the transmission coefficient

T (0) = 0.

Moreover the point spectrum of H consists of real numbers λ ∈ (−∞, 0], such that

Hf − λf = 0, f ∈ L2(R), (3.1.12)

and absolutely continuous part [0,∞). We shall denote by L2
pp(R) the linear space generated by the

eigenvectors f in (3.1.12). This is finite dimensional space and its orthogonal complement in L2 is the

invariant subspace, where the perturbed Hamiltonian H is absolutely continuous.

The key tool to prove the Hardy inequality and the fractional Leibnitz rule (3.1.5) is the following

estimate.

Theorem 3.1.2. Suppose

V ∈ L1
γ(R), γ > 1, s = γ − 1 < 1/p, p ∈ (1,∞)

and the perturbed Hamiltonian H has no resonance at the origin. Then there exists a positive constant

C = C(s, p) > 0 so that we have

‖(Hs/2ac −H
s/2
0 )f‖Lp(R) ≤ C‖f‖Lq(R),

for 1/p− 1/q = s and f ∈ S(R).

It is natural to use a Paley-Littlewood localization associated with the perturbed Hamiltonian. Here

and below ϕ(τ) ∈ C∞0 (Rr 0) is a non-negative even function, such that

∑
j∈Z

ϕ
( τ

2j

)
= 1 , ∀ τ ∈ R \ 0 (3.1.13)

and

ϕ
( τ

2k

)
ϕ
( τ

2`

)
= 0, ∀ k, ` ∈ Z, |k − `| ≥ 2. (3.1.14)
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We set

πack = ϕ

(√
Hac
2k

)
, π0

k = ϕ

(√
H0

2k

)
. (3.1.15)

We have the following equivalent norm (see [79])

‖f‖Ḣsp,Hac (R) ∼

∥∥∥∥∥∥
( ∞∑
k=−∞

22ks |πack f |
2

)1/2
∥∥∥∥∥∥
Lp(R)

. (3.1.16)

Our approach to prove Theorem 3.1.2 is based on establishing estimate of the type.

Lemma 3.1.3. If the assumptions of Theorem 3.1.2 are fulfilled, then for any s ∈ (0, 1/p) and q ∈ (1,∞)

defined by

1

p
− 1

q
= s

we have ∥∥∥∥∥2ks
(
πack − π0

k

)
f
∥∥
`2k

∥∥∥
Lpx(R)

≤ C‖f‖Lq(R). (3.1.17)

Indeed if this estimate is verified, via (3.1.16), combined with (3.1.13) and (3.1.15) we can deduce

the assertion of Theorem 3.1.2. Therefore, the estimate (3.1.17) is the key point in the proof of Theorem

3.1.2.

Corollary 3.1.4. If the assumptions of Theorem 3.1.2 are fulfilled, then the equivalence property (3.1.3)

holds.

Proof. The results in [19], [71], [1], [18], [79] imply the existence and continuity of the wave operators in

Lp, 1 < p <∞, so one can deduce Bernstein inequality

‖πack f‖Lq(R) ≤ C(2k)1/p−1/q‖f‖Lp(R), 1 ≤ p ≤ q ≤ ∞, k ∈ Z (3.1.18)

and via the equivalence property (3.1.16) we deduce the Sobolev estimate

‖f‖Lq(R) ≤ C‖H
s/2
ac f‖Lp(R), 1 < p < q <∞, s =

1

p
− 1

q
. (3.1.19)

From the estimate of Theorem 3.1.2 now we can write

‖(Hs/2ac −H
s/2
0 )f‖Lp(R) ≤ C‖f‖Lq(R) ≤ C‖Hs/2ac f‖Lp(R),
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so we have

‖Hs/20 f‖Lp(R) ≤ C‖Hs/2ac f‖Lp(R).

The opposite estimate can be deduced in the same way from Theorem 3.1.2 and from the ”free” Sobolev

estimate

‖f‖Lq(R) ≤ C‖H
s/2
0 f‖Lp(R), 1 < p < q <∞, s =

1

p
− 1

q
. (3.1.20)

This completes the proof.

Theorem 3.1.2 has also the following simple consequences.

Corollary 3.1.5. If the assumptions of Theorem 3.1.2 are fulfilled, then the Hardy inequality (3.1.2)

holds.

Corollary 3.1.6. If the assumptions of Theorem 3.1.2 are fulfilled, then we have the fractional Leibnitz

rule, i.e.

‖Hs/2ac (fg)− fHs/2ac g − gHs/2ac f‖Lp(R) ≤ C‖Hs1/2ac f‖Lp1 (R)‖Hs2/2ac g‖Lp2 (R), (3.1.21)

provided

0 < s = s1 + s2 < 1, s1, s2 ≥ 0,

and

1 < p, p1, p2 <∞,
1

p
=

1

p1
+

1

p2
. (3.1.22)

3.2 Idea to prove the key Lemma 3.1.3

Our main tool to study the kernel

ϕ

(√
Hac
M

)
(x, y)

is the following representation of the kernel as filtered Fourier transform

Fϕ,M (a)(ξ) =

∫
ϕ
( τ
M

)
a(τ)e−iξτdτ (3.2.1)
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of symbols a(τ) represented as linear combinations with constant coefficients of functions in the set

A = { 1, T (τ), R±(τ) } , (3.2.2)

or more generally of symbols involving functions a(x, τ) represented as linear combinations with constant

coefficients of functions in the set

B = {m̃±(x, τ), T (τ)m̃±(x, τ), R±(τ)m̃±(x, τ) } , (3.2.3)

where m̃±(x, τ) = m±(x, τ)− 1, m± are modified Jost functions, while T,R± are the transmission and

reflection coefficients.

It is simple to establish that the kernel ϕ(
√
Hac/M)(x, y) can be decomposed as follows (one can see

Section 2.2.2 in the previous chapter):

Lemma 3.2.1. If ϕ is an even non-negative function, such that ϕ ∈ C∞0 (R \ {0}), then for any M > 0

we have

ϕ

(√
Hac
M

)
(x, y) = K0

M (x, y) + K̃M (x, y), (3.2.4)

where K0
M (x, y) can be represented as sum of the terms

1ε1x>01ε2y>0Fϕ,M (a)(ε3x+ ε4y) (3.2.5)

and the term K̃M (x, y) is represented as sum of the terms

1ε1x>01ε2y>0Fϕ,M (b1(x, ·))(ε3x+ ε4y) + 1ε1x>01ε2y>0Fϕ,M (b2(y, ·))(ε3x+ ε4y)+ (3.2.6)

+1ε1x>01ε2y>0Fϕ,M (b3(x, ·)b4(y, ·))(ε3x+ ε4y),

where εi = ±1, for i = 1, . . . , 4, a(τ) represents a linear combination with constant coefficients of

functions in the set A in (3.2.2) and bi, for i = 1, . . . , 4, are linear combinations with constant coefficients

of functions in the set B in (3.2.3).

Remark 3.2.2. We shall call the term K0
M (x, y) the leading one, with the following exact representation

K0
M (x, y) = c

∫
R
e−iτ(x−y)ϕ

( τ
M

)
α(x, y, τ) dτ (3.2.7)
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with symmetric kernel α(x, y, τ) = α(y, x, τ) and

α(x, y, τ) =


T (τ) x < 0 < y,

(R+(τ) + 1)e2iτx − e2iτx + 1 0 ≤ x < y,

(R−(τ) + 1)e−2iτy − e−2iτy + 1 x < y ≤ 0.

The term K̃M (x, y) will be called the remainder one. In Lemma 3.2.1 to simplify the notation we

neglected the symbolism a±, b±i .

A priori estimates for the remainder term are obtained using the estimates of the filtered Fourier

transform which will be established in Lemma 3.3.4 and Lemma 3.3.5.

Lemma 3.2.3. Suppose V ∈ L1
γ(R), γ ≥ 1 + s, s ∈ (0, 1), the operator H has no point spectrum and 0

is not a resonance point for H. If ϕ is an even non-negative function, such that ϕ ∈ C∞0 (R \ {0}), then

for any p ∈ (1, 1/s), any M ∈ (0,∞) and for any b±(x, τ), b±1 (x, τ), b±2 (x, τ) in the set (3.2.3) we have

∥∥∥∥∫
R
1±x>0Fϕ,M (b±(x, ·))(x± y)f(y)dy

∥∥∥∥
Lpx(R)

+ (3.2.8)

+

∥∥∥∥∫
R
1±y>0Fϕ,M (b±(y, ·))(x± y)f(y)dy

∥∥∥∥
Lpx(R)

≤ C

〈M〉
‖f‖Lq(R),

and ∥∥∥∥∫
R
1±x>01±y>0Fϕ,M (b±1 (x, ·)b±2 (y, ·))(x± y)f(y)dy

∥∥∥∥
Lpx(R)

≤ C

〈M〉
‖f‖Lq(R), (3.2.9)

where 1
q = 1

p − s.

According with the notation introduced in (3.1.15), we set

πac≤k =
∑
j≤k

πacj , πac≥k =
∑
j≥k

πacj . (3.2.10)

fk = πack f, f≤k =
∑
j≤k

πacj f, f≥k =
∑
j≥k

πacj f, fk1,k2
=

∑
k1≤j≤k2

πacj f

and respectively f0
k , f0

≤k, f0
≥k, f0

k1,k2
defined as before replacing πacj with π0

j .

Hence, the decomposition (3.2.4) can be rewritten as follows

πack = Ik + (πack − Ik),
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where the operator Ik represents the operators involved in the leading kernel and (πack − Ik) is the

remainder term.

To prove Lemma 3.1.3 we will establish the following inequalities:

∥∥∥∥∥2ks (πack − Ik) f
∥∥
`2k

∥∥∥
Lpx(R)

≤ C‖f‖Lq(R), (3.2.11)

∥∥∥∥∥2ks
(
Ik − π0

k

)
f
∥∥
`2k

∥∥∥
Lpx(R)

≤ C‖f‖Lq(R), (3.2.12)

with 1/p = 1/q + s and Ik are the operators

Ik(f)(x) =

∫
R
K0

2k(x, y)f(y)dy

with kernels representing the leading term (3.2.5) in the expansion of Lemma 3.2.1 of πk.

3.3 Estimates of the filtered Fourier transform of m± − 1

Given a bump function ϕ ∈ C∞0 (R), we define the corresponding filtered Fourier transform as in (3.2.1).

We shall distinguish two different cases. If the bump function ϕ ∈ C∞0 ((0,∞)) is such that (3.1.13) and

(3.1.14) are satisfied, then we can assert that ϕ(τ/M) has a support with τ ∼M .

The integral equation

m±(x, τ)− 1 =

∫ ∞
x

D(t− x, τ)V (t)m+(t, τ) dt,

can be rewritten as

m̃+(x, τ) =

∫ ∞
x

∫ t−x

0

e2iτyV (t)dydt+

∫ ∞
x

∫ t−x

0

e2iτyV (t)m̃+(t, τ)dydt, (3.3.1)

where

m̃+(x, τ) = m+(x, τ)− 1.

If we assume that V ∈ L1
γ(R), γ = 1 + s, then the assertion of Lemma 2.1.2 guarantees that m̃+(x, τ) is

in L1
x>0(R). Applying the filtered Fourier transform and setting

gM (ξ;x) =

∫
R
e−iτξm̃+(x, τ)ϕ

( τ
M

)
dτ = Fϕ,M (m̃+(x, ·))(ξ),
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we get

gM (ξ;x) =M

∫ ∞
x

∫ t−x

0

V (t)ϕ̂(M(ξ − 2y))dydt︸ ︷︷ ︸
aM (ξ;x)

+ (3.3.2)

+

∫ ∞
x

∫ t−x

0

V (t)gM (ξ − 2y; t)dydt.

We have the following pointwise estimates.

Lemma 3.3.1. If ϕ ∈ C∞0 (R), satisfies (3.1.13), (3.1.14) and V ∈ L1
γ(R), γ = 1 + s, s ∈ (0, 1), then for

M ∈ (0, 1) the filtered Fourier transform

Fϕ,M (m̃±(x, ·)) (ξ) =

∫
R
e−iτξm̃±(x, τ)ϕ

( τ
M

)
dτ

satisfies the pointwise estimates:

• one can find functions

F±M (ξ) ∈ L1(R), ‖F±M‖L1(R) ≤ C(‖V ‖L1
1+s(R))‖ϕ̂‖L1(R),

so that

1{±x>0}〈x〉s |Fϕ,M (m̃±(x, ·))(ξ)| ≤ F±M (ξ). (3.3.3)

Proof. We choose the sign + in (3.3.3) for determinacy. To prove (3.3.3) we set

GM (ξ;x) = 1{x>0} sup
η<ξ
|gM (η;x)|〈x〉s,

where gM (ξ;x) is the Filtered Fourier transform of the remainder m̃+(x, τ) = m+(x, τ) − 1, satisfying

the integral equation (3.3.2). The function

FM (ξ) = M

∫ ∞
0

〈t〉s|V (t)|
∫ t

0

|ϕ̂(M(ξ − 2y))|dydt, (3.3.4)

satisfies

FM (ξ) ∈ L1(R), ‖FM‖L1(R) ≤ ‖V ‖L1
γ(R)‖ϕ̂‖L1(R). (3.3.5)
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Moreover, since we are considering the case x > 0 we get easily the following estimates

|1x>0〈x〉saM (ξ;x)| ≤ FM (ξ),

where aM (ξ;x) is defined in (3.3.2). Hence, coming back to GM (ξ;x) and recalling (3.3.2) we have

GM (ξ;x) ≤FM (ξ) +

∫ ∞
x

〈t〉|V (t)|GM (ξ; t)dt, ∀x > 0. (3.3.6)

Applying the Gronwall lemma we get

GM (ξ;x) ≤ CFM (ξ),

where C is a positive constant depending on ‖V ‖L1
1(R) and FM (ξ) satisfies (3.3.4) and (3.3.5). This

completes the proof.

If M ≥ 1 and ϕ satisfying (3.1.13) and (3.1.14), then we can improve the results of Lemma 3.3.1.

Indeed, the term aM (ξ;x) in (3.3.2) can be rewritten as follows

aM (ξ;x) = M

∫ ∞
x

dt

∫
R
dτV (t)e−iτMξϕ(τ)

e2iMτ(t−x) − 1

2iMτ
.

Hence we have that

|1x>0〈x〉saM (ξ;x)| ≤ F (1)
M (ξ),

where

F
(1)
M (ξ) =

∫ ∞
x

〈t〉s+1|V (t)||ϕ̂(Mξ)| dt (3.3.7)

and

‖F (1)
M (ξ)‖L1(R) ≤

1

M
‖V ‖L1

s+1(R)‖ϕ̂‖L1(R).

Proceeding as in the proof of Lemma 3.3.1 we get the following result.

Lemma 3.3.2. If ϕ satisfies (3.1.13) and (3.1.14) and V ∈ L1
γ(R), γ = 1 + s, s ∈ (0, 1), then for

M ∈ (0,∞) the filtered Fourier transform

Fϕ,M (m̃±(x, ·))(ξ) =

∫
R
e−iτξ (m̃±(x, τ))ϕ

( τ
M

)
dτ
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satisfies the pointwise estimates:

• one can find functions

F±M (ξ) ∈ L1(R), ‖F±M‖L1(R) ≤
1

〈M〉
C(‖V ‖L1

1+s(R))‖ϕ̂‖L1(R),

so that

1{±x>0}〈x〉s |Fϕ,M (m̃±(x, ·))(ξ)| ≤ F±M (ξ). (3.3.8)

One can use a Wiener type argument and deduce estimates for T (τ), R±(τ) + 1.

Lemma 3.3.3. (see [18], [79]) If ϕ ∈ C∞0 (R) obeys (3.1.13), (3.1.14) and V ∈ L1
γ(R), γ = 1 + s,

s ∈ (0, 1), then for M ∈ (0,∞) the filtered Fourier transforms

Fϕ,M (T (·))(ξ) =

∫
R
e−iτξT (τ)ϕ

( τ
M

)
dτ

and

Fϕ,M (R±(·) + 1)(ξ) =

∫
R
e−iτξ(R±(τ) + 1)ϕ

( τ
M

)
dτ

are in L1(R) and the following inequality are satisfied

‖Fϕ,M (T (·))(ξ)‖L1(R) + ‖Fϕ,M (R±(·) + 1)(ξ)‖L1(R) ≤ C(‖V ‖L1
1+s(R))‖ϕ̂‖L1(R), M ∈ (0, 1),

‖Fϕ,M (T (·)− 1)(ξ)‖L1(R) + ‖Fϕ,MR±(·)(ξ)‖L1(R) ≤
1

〈M〉
C(‖V ‖L1

1+s(R))‖ϕ̂‖L1(R), M > 1.

Turning to the estimates (3.3.3), we see that

a(x, ξ) = 1{±x>0}Fϕ,M (m̃±(x, ·))(ξ)

satisfies estimate

|a(x, ξ)| ≤ a1(x)a2(ξ), a1 ∈ L1/s,∞(R), a2 ∈ L1(R), (3.3.9)

where a1(x) = 〈x〉−s. Lemma 3.3.3 guarantees that

b(ξ) = Fϕ,M (T (·))(ξ) ∈ L1(R).
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Since

1{±x>0}Fϕ,M (T (·)(m̃±(x, ·)))(ξ) = a(x, ·) ∗ b(·)(ξ),

we see that

|a(x, ·) ∗ b(·)(ξ)| ≤ a1(x) a2 ∗ |b|︸ ︷︷ ︸
ã2

(ξ), a1 ∈ L1/s,∞(R), ã2 ∈ L1(R),

since

L1 ∗ L1 ⊂ L1

due to the Young inequality.

The above inclusion actually can be modified in a suitable way for our a priori estimates as follows

(
L1 ∩ L∞

)
∗
(
L1 ∩ L∞

)
⊂
(
L1 ∩ L∞

)
. (3.3.10)

This observation leads to the following result.

Lemma 3.3.4. If ϕ ∈ C∞0 (R), V ∈ L1
γ(R), γ = 1 + s, s ∈ (0, 1), and a±(x, τ) is any function in the set

{m̃±(x, τ), T (τ)m̃±(x, τ), (R±(τ) + 1)m̃±(x, τ)} , (3.3.11)

then for M ∈ (0,∞) the filtered Fourier transform

Fϕ,M (a±(x, ·))(ξ) =

∫
R
e−iτξa±(x, τ)ϕ

( τ
M

)
dτ

satisfies the pointwise estimates:

1{±x>0}
∣∣Fϕ,M (a±(x, ·))(ξ)

∣∣ ≤ f1(x)f
(M)
2 (ξ), (3.3.12)

where

f1(x) ∈ L1/s,∞(R) ∩ L∞(R), f
(M)
2 (ξ) ∈ L1(R)

and ‖f (M)
2 ‖L1(R) ≤ C/〈M〉.

Finally we consider products of type a±(x, τ)b±(y, τ), where a, b are in the set (3.3.11) and we have

the following estimates.

Lemma 3.3.5. If ϕ ∈ C∞0 (R) is a bump function satisfying (3.1.13), (3.1.14), V ∈ L1
γ(R), γ = 1 + s,
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s ∈ (0, 1), then for M ∈ (0,∞) the filtered Fourier transform of a±(x, τ)b±(y, τ) satisfies the pointwise

estimate:

1±x>01±y>0

∣∣Fϕ,M (a±(x, ·)b±(y, ·))(ξ)
∣∣ ≤ f1(x)f

(M)
2 (ξ)f3(y), (3.3.13)

where

f1, f3 ∈ L1/s,∞(R) ∩ L∞(R), f
(M)
2 (ξ) ∈ L1(R), ‖f (M)

2 ‖L1(R) ≤
C

〈M〉

with some constant C > 0 independent of M.

Now we can proceed with the proof of Lemma 3.2.1.

Proof of Lemma 3.2.1. To fix the idea and to simplify the notation we consider the case involving

b+(y, τ) = b(y, τ). We separate two cases: M ∈ (0, 1] and M ≥ 1. For M ∈ (0, 1] our first step is

to prove

∥∥∥∥∫
R
1y>0Fϕ,M (b(y, ·))(x± y)f(y)dy

∥∥∥∥
Lpx(R)

≤ C‖f‖Lq(R). (3.3.14)

We use the pointwise estimate (3.3.12) so we can write

1y>0 |Fϕ,M (b(y, ·))(x± y)| ≤ B(M)
1 (x± y)B2(y),

where

B
(M)
1 ∈ L1(R), ‖B(M)

1 ‖L1(R) ≤ C, B2 ∈ L1/s,∞(R)

and (3.3.14) follows from Young inequality

∥∥∥B(M)
1 ∗ (B2f)

∥∥∥
Lpx(R)

≤ C‖B(M)
1 ‖L1(R)‖B2f‖Lp(R), (3.3.15)

and the Hölder estimate

‖B2f‖Lp(R) ≤ C‖f‖Lq(R), B2 ∈ L1/s,∞(R),
1

q
=

1

p
− s. (3.3.16)

Similarly, to prove

∥∥∥∥∫
R
1x>0Fϕ,M (b(x, ·))(x± y)f(y)dy

∥∥∥∥
Lpx(R)

≤ C‖f‖Lq(R) (3.3.17)
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we use the pointwise estimate (3.3.12) again, so we can write

1x>0 |Fϕ,M (b(x, ·))(x± y)| ≤ B(M)
1 (x± y)B2(x),

where

B
(M)
1 ∈ L1(R), ‖B(M)

1 ‖L1(R) ≤ C, B2 ∈ L1/s,∞(R).

This time we have to estimate the term

∥∥∥B2(B
(M)
1 ∗ f)

∥∥∥
Lpx(R)

so first we apply Hölder estimate (3.3.16) and then the Young convolution inequality.

Finally, the estimate (3.2.9) follows from (3.3.13) since we have

1x>01y>0 |Fϕ,M (b1(x, ·)b2(y, ·))(x± y)| ≤ B(M)
1 (x± y)B2(y)B3(x),

where

B
(M)
1 ∈ L1(R), ‖B(M)

1 ‖L1(R) ≤ C, B2(y), B3(x) ∈ L1/s,∞(R) ∩ L∞(R).

This completes the proof for the case M ∈ (0, 1]. For M ≥ 1, we note that, we can also use the fact that

we have better estimate

‖B(M)
1 ‖L1(R) ≤ CM−1

and we can prove (3.2.8) and (3.2.9) assuming V ∈ L1
1(R) only. This completes the proof.

3.4 Equivalence of homogeneous Sobolev norms

In this section we are going to prove Lemma 3.1.3.

Proof of the inequality (3.2.11). The relation (3.2.6) guarantees that

πack (f)(x)− Ik(f)(x)
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can be represented as a sum of remainder terms of the form

∑
ε1,...,ε4=±1

1ε1x>0

∫
R
1ε2y>0Fϕ,M (b1(x, ·))(ε3x+ ε4y)f(y) dy+

+
∑

ε1,...,ε4=±1

1ε1x>0

∫
R
1ε2y>0Fϕ,M (b2(y, ·))(ε3x+ ε4y)f(y) dy+

+
∑

ε1,...,ε4=±1

1ε1x>0

∫
R
1ε2y>0Fϕ,M (b3(x, ·)b4(y, ·))(ε3x+ ε4y)f(y) dy,

such that the estimates of Lemma 3.2.3 imply

‖(πack − Ik) f‖Lp(R) ≤
C

〈2k〉
‖f‖Lq(R),

with

1

q
=

1

p
− s.

Using the inequalities

∥∥∥∥∥2ks (πack − Ik) f
∥∥
`2k

∥∥∥
Lpx(R)

≤
∥∥∥∥∥2ks (πack − Ik) f

∥∥
`1k

∥∥∥
Lpx(R)

≤

≤
∥∥∥∥∥2ks (πack − Ik) f

∥∥
Lpx(R)

∥∥∥
`1k

≤
∥∥∥∥ 2ks

〈2k〉

∥∥∥∥
`1k

‖f‖Lqx(R) ,

we deduce (3.2.11). This completes the proof.

Proof of Lemma 3.1.3. Our main goal is to establish the following estimate

∥∥∥∥∥2ks(πack − π0
k)f
∥∥
`2k

∥∥∥
Lp(R)

≤ C‖f‖Lq(R), (3.4.1)

with 1/q = 1/p− s.

We start proving that ∥∥∥∥∥∥2ks(πack − π0
k)f
∥∥
`2
k≤0

∥∥∥∥
Lp(R)

≤ C‖f‖Lq(R). (3.4.2)

In particular, it will be enough to prove

∥∥∥∥∥∥2ks(Ik − π0
k)f
∥∥
`2
k≤0

∥∥∥∥
Lp(R)

≤ C‖f‖Lq(R),

since the estimate (3.2.11) has been just established above.
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Using the decomposition

f =
∑
j∈Z

f0
j ,

we have that (
Ik − π0

k

)
f =

(
Ik − π0

k

)
f0
k−2,k+2. (3.4.3)

Indeed, if follows from

(
Ik − π0

k

)
f0
≤k−2(x) = c

∫ ∫
ei(x+y)τϕ

( τ
2k

)
α(x, y, τ)f0

≤k−2(y) dτ dy = 0

and (
Ik − π0

k

)
f0
≥k+2(x) = c

∫ ∫
ei(x+y)τϕ

( τ
2k

)
α(x, y, τ)f0

≥k+2(y) dτ dy = 0,

where α(x, y, τ) has been defined in Remark 3.2.2. Moreover, the expression of the leading term shows

that the kernel
(
Ik − π0

k

)
(x, y) can be also represented as sum of the terms

1ε1x>01ε2y>0Fϕ,M (a)(ε3x+ ε4y),

where εj = ±1, j = 1, . . . , 4, according with Remark 3.2.2, and the symbol a is a linear combination with

constant coefficients of functions in the set A defined in (3.2.2).

For simplicity we consider the case a = 1, εj = 1, ∀j = 1, . . . , 4, and we shall estimate the term

∫
1x>01y>0e

iτ(x+y)ϕ
( τ
M

)
dτ.

Then, we can proceed similarly for the other terms.

Integrating by parts and using Lemma 2.1.2, we get

∥∥∥∥2ks
∫ ∫

1x>01y>0e
iτ(x+y)ϕ

( τ
2k

)
f0
k (y) dτ dy

∥∥∥∥
`2
k≤0

≤

≤ C
∫ ∥∥∥∥2k(s+1)1x>01y>0

〈2k(x+ y)〉1+s
f0
k (y) dy

∥∥∥∥
`2
k≤0

dy

≤ C
∫ ∥∥∥∥2k(s+1)1x>01y>0

〈2k(x+ y)〉1+s

∥∥∥∥
`∞
k≤0

∥∥f0
k

∥∥
`2
k≤0

dy.
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From the trivial inequality ∥∥∥∥ 2k(s+1)

〈2kx〉1+s

∥∥∥∥
`∞
k≤0

≤ C

|x|1+s

combined with the Young inequality in Lorentz spaces we have

∥∥∥∥∥
∥∥∥∥2ks

∫ ∫
1x>01y>0e

iτ(x+y)ϕ
( τ

2k

)
f0
k (y) dτ dy

∥∥∥∥
`2
k≤0

∥∥∥∥∥
Lp(R)

≤ C
∥∥∥∥∥∥f0

k (y)
∥∥
`2
k≤0

∥∥∥∥
Lq(R)

,

with 1/q = 1/p− s and 0 < s < 1/p.

The case k ≥ 0 follows similarly using the estimate

∣∣(πack − π0
k)f(x)

∣∣ ≤ C ∫ f(y)

〈2k(x± y)〉s

(
1

〈x〉
+

1

〈y〉

)
dy.

This complete the proof.

3.5 Counterexample for equivalence of homogeneous Sobolev

spaces

In this section we consider the case p ∈ [n/2,∞) ∩ (1,∞) and we shall prove Theorem 3.1.1, therefore

we shall show that the equivalence property

‖(H0 + V )n/(2p)u‖Lp(Rn) ∼ ‖(H0)n/(2p)u‖Lp(Rn) (3.5.1)

is not true for n ∈ N.

Proof of Theorem 3.1.1. Let us suppose that the relation (3.5.1) holds. Choosing positive potential

V (x) =
1

1 + |x|3
,

we can apply the heat kernel estimate obtained in [78], i.e.

C1e
−c1|x−y|2/4t

tn/2
≤ e−tH(x, y) ≤ C2e

−c2|x−y|2/4t

tn/2
. (3.5.2)
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This estimate and the relation

H−α =
1

Γ(α)

∫ ∞
0

tα−1e−tHdt

imply ∣∣(H0 + V )−1u(x)
∣∣ ≤ C ∣∣(H0)−1u(x)

∣∣
so taking the Lp norm and using a duality argument, we can write

‖V (H0 + V )−1f‖Lp(Rn) ≤ C‖f‖Lp(Rn), (3.5.3)

so we have

‖V g‖Lp(Rn) ≤ C‖(H0 + V )g‖Lp(Rn). (3.5.4)

Interpolation argument and the assumption p ≥ n/2 combined with the equivalence property (3.5.1)

lead to ∫
Rn

(V (x))n/2|u(x)|pdx ≤ C‖Hn/(2p)0 u‖pLp(Rn). (3.5.5)

Taking u in the Schwartz class S(Rn) of rapidly decreasing function, we can apply a rescaling argument.

Indeed, considering the dilation

uλ(x) = u(xλ),

we find

‖Hn/(2p)0 uλ‖pLp(Rn) = ‖Hn/(2p)0 u‖pL2(Rn)︸ ︷︷ ︸
constant in λ

and

lim
λ↘0

∫
Rn
V n/2(x)|uλ(x)|pdx =

(∫
Rn
V n/2(x)dx

)
|u(0)|p.

In this way we deduce

|u(0)|p
(∫

Rn
V n/2(x)dx

)
≤ C‖Hn/(2p)0 u‖pLp(Rn). (3.5.6)

The homogeneous norm

‖Hn/(2p)0 u‖pLp(Rn)

is also invariant under translations, i.e. setting

u(τ)(x) = u(x+ τ),
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we have

û(τ)(ξ) = eiτξû(ξ)

and

‖Hn/(2p)0 u(τ)‖pLp(Rn) = ‖Hn/(2p)0 u‖pLp(Rn),

so applying (3.5.6) with u(τ) in the place of u, we find

|u(τ)|p
∫
Rn
V n/2(x)dx ≤ C‖Hn/(2p)0 u‖pLp(Rn),

or equivalently

‖u‖pL∞(Rn) ≤ C1‖Hn/(2p)0 u‖pLp(Rn), (3.5.7)

where

C1 =
C

‖V n/2‖L1(Rn)

.

The substitution φ = Hn/(2p)0 u enables us to rewrite (3.5.7) as

‖In/p(φ)‖pL∞(Rn) ≤ C1‖φ‖pLp(Rn), (3.5.8)

where

Iα(φ)(x) = H−α/20 (φ)(x) = c

∫
Rn
|x− y|−n+αφ(y)dy, α ∈ (0, n)

are the Riesz operators.

It is easy to show that (3.5.8) leads to a contradiction. Indeed, taking

φN (x) =

N∑
j=0

|x|−n/p 12j≤|x|≤2j+1(x)︸ ︷︷ ︸
χj(x)

,

with N ≥ 2 sufficiently large and being 1A(x) the characteristic function of the set A. Since the functions

χj have almost disjoint supports and they are non-negative, for almost every x ∈ R we have

N∑
j=1

χpj (x) =

 N∑
j=1

χj(x)

p

.
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so

‖φN‖pLp(Rn) =

N∑
j=0

∫ 2j+1

2j

rn−1dr

rn
≤ C ′N.

Further, we can use the estimates

In/p(φN )(0) ≥

 N∑
j=0

∫ 2j+1

2j

rn−1dr

rn

 ≥ CN.
Hence, from (3.5.8) we deduce

CNp ≤ ‖In/p(φN )‖pL∞(Rn) ≤ C1‖φN‖pLp(Rn) ≤ C2N,

for any N sufficiently big and this is impossible. This completes the proof of the Theorem.
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Chapter 4

On gauge invariant NLS with short

range potential

In this Chapter we consider the 1D Schrödinger equation with a gauge invariant nonlinearity and with

Hamiltonian with short range potential without zero resonances. The aim will be to prove that the

quantity sup
t>0

(1 + t)1/2‖ψ(t, ·)‖L∞(R) is bounded if the initial data are chosen small enough in a suitable

norm.

4.1 Introduction

We consider the nonlinear Schrödinger (NLS) equation with gauge invariant nonlinearity

i∂tψ −Hψ = ψF (|ψ|2), (4.1.1)

where the Hamiltonian H = H0 + V (x) can be considered as a real valued potential perturbation of the

free hamiltonian H0 = −∂2
x on the real line x ∈ R. We will explain the properties of the nonlinearity

function F later on. For the moment we can keep in mind the classical semilinear Schrödinger equation

with pure power nonlinearity. We are interested in the asymptotic behaviour in time of the solution ψ of

(4.1.1) when the initial data are suitably chosen. It is well-known that, in the case of free Hamiltonian,

the cubic nonlinearity

i∂tψ −H0ψ = ±ψ|ψ|2, (4.1.2)
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is critical for the scattering in one dimension. At least heuristically, we can guess that the cubic case is

critical. Indeed, let us consider the Cauchy problem


i∂tψ −H0ψ = ±|ψ|p−1ψ

ψ(0) = ψ0,

and its integral formulation

ψ(t) = e−itH0ψ0 ∓ i

∫ t

0

e−i(t−s)H0ψ|ψ|p−1 ds, (4.1.3)

where 1 < p < 5. We note that, the free L∞ estimate could be verified also in the nonlinear case if the

following estimate holds ∫ t

t/2

ds

sp/2
≤ C 1

t1/2
.

Hence, in one dimension, if the exponent p is greater than 3 we can expect asymptotic decay close to

the free one. Moreover, we also expect that p = 3 is a threshold exponent in the study of the asymptotic

behaviour of the solution, and in this case we will call this exponent critical for the scattering.

We are going to focus our attention to the one dimensional case. For the other dimensions it is

possible to find the state of the art of the problem in [17] and references therein. It is well known that,

if we consider initial data of small size in a suitable Sobolev norm, for 3 < p < 5, the solution of the

problem (4.1.3) verifies the decay estimate

‖ψ(t)‖L∞(R) ≤ C,

one can see [54]. On the other hand, in [64] and [5] one can find a proof that, if 1 < p ≤ 3, then

the zero solution is the only one asymptotically free. In [17] and references therein one can find a

more complete list of the literature connected with the problem of the decay of the solutions and the

existence of the scattering operators for NLS. We also quote [55], where the existence and the form of

the scattering operator are obtained and [38] in which the completeness of the scattering operator and

the decay estimate are proved. In presence of a perturbed operator, H, there is a narrower literature.

Indeed, as far as we are concerned, for p > 3, the problems of establishing decay estimates and of proving

the scattering of the small data solutions were addressed in [17]. If the potential verifies suitable decay

hypotheses and there are neither eigenvalues nor resonances, then the solutions scatter if the initial data
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are small in the energy-variance space. Our goal will be to prove decay estimates in critical regime with

perturbed Hamiltonians.

Now we come back to the problem (4.1.1). We consider F : R→ R such that

F ∈ C1(R), F (u) = Cu+O(uq) 1 < q < 2, for 0 < u < 1, (4.1.4)

with C ∈ Rr {0}, so that we can consider as typical example

F (|ψ|2) = C|ψ|2 + C1|ψ|2q, 1 < q < 2, C1 ∈ R,

when the nonlinearity is gauge invariant, but the scale invariance of (4.1.2) is broken. The presence of

the potential V brakes also the translation invariance of the NLS.

In this chapter we consider

V : R→ R, (4.1.5)

i.e. real valued potential, that is even function

V (x) = V (−x). (4.1.6)

This assumption enables us to preserve at least the reflection symmetry, i.e. if the initial data of the

problem (4.1.1) are odd functions

ψ(0, x) = ψ0(x) ∈ Hs
odd(R) = {f ∈ Hs(R); f(−x) = −f(x)} ,

then the solution flow preserves this symmetry, i.e.

ψ(t, x) = −ψ(t,−x)

for any time interval, where the solution flow of (4.1.1) is well defined. We deal with potentials decaying

sufficiently rapidly at infinity, namely following [72] and the previous chapter we require

V ∈ L1
γ(R), γ = 1 + s. (4.1.7)
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Our next spectral assumptions concern the self-adjoint operator

H = H0 + V (x),

namely we require that

σp(H) = ∅. (4.1.8)

Finally, we assume that 0 is not a resonance for H. This practically means that V is of generic type, i.e.

the transmission coefficient T (τ) defined in [19] satisfies

T (0) = 0. (4.1.9)

Characterizing such potentials is rather tricky. We note that the assumption (4.1.7) is equivalent to

H ≥ 0, if we add the requirements that zero is neither eigenvalue nor resonance for H. A reasonable

characterization appeared only recently in [45]. It is shown that for potentials with reasonable decay at

±∞, such as (4.1.7), we have

H = −∂2
x + V ≥ 0⇐⇒ V (x) = w′(x) + w2(x) = Miura(w). (4.1.10)

In other words, V generates a non-negative Schrödinger operator, if and only if V is in the image of the

Miura map, that it will be denoted with Image(Miura). In fact, we observe that (4.1.10) implies in

particular that

H = (∂x + w)(−∂x + w) = MM∗. (4.1.11)

For technical reasons, instead of assuming (4.1.10), we make a slightly more general assumption (one

can see Lemma 4.2.2 for a proof), namely for some ε > 0, we require that (1 + ε)V ∈ Image(Miura),

that is

(1 + ε)V (x) = w′(x) + w2(x). (4.1.12)

We will show below that this is slightly more general property than just V ∈ Image(Miura). Indeed,

the condition V ∈ Image(Miura) guarantees the absence of negative eigenvalues whereas the condition

(4.1.12) implies (4.1.10), see Lemma 4.2.2. Moreover, in Lemma 4.2.2 we also show that, under the

additional assumption, V 6= 0 a.e. (and still in tandem with (4.1.12)), we can guarantee the absence

of resonance at zero. It gives the equivalence of the norms of the twisted Sobolev spaces H1
V (R) with
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the standard H1(R) (we note that in Chapter 3 we established the equivalence of homogeneous Sobolev

norms in the case s < 1/p, 1 < p ≤ ∞). Finally, regarding the non-resonance condition (4.1.9), this is

equivalently defined by saying that the equation H[f ] = 0 does not have bounded solutions (it follows

from Proposition 1.3.10 in Chapter 1, relation (2.1.10) and Lemma 2 in [19]). The connection between

the Miura map and the solutions of H[f ] = 0 is described in [45], Lemma 3.1. In particular the following

relation between the resonance state f and the generating function ω is established:

ω(x) =
d

dx
(ln f(x)) .

The non-resonance condition is essentially requiring that the generating function w in (4.1.10) does not

have an integrable decay.

Our goal is to study the asymptotic behavior of small data solutions to the Cauchy problems, under

suitable smallness assumptions on the initial data.

In the following, for simplicity, we consider a time translation and we assume the initial data is given

at t = 1, ψ1.

The following is the main result of this chapter.

Theorem 4.1.1. Let s ∈ (1/2, 3/4). Let V be a potential such that (4.1.6), (4.1.7) and (4.1.12) are

satisfied and V 6= 0a.e. Then one can find constants C > 0 and δ > 0 so that whenever

e
ix2

4 ψ1 ∈ Hs
odd(R), ‖e ix2

4 ψ1‖Hsodd(R) ≤ ε, (4.1.13)

the unique global solution ψ ∈ C([0,∞);Hs
odd(R)) ∩L∞(R;L∞(R)) to the Cauchy problem (4.1.1) exists

and moreover it satisfies

sup
t>0

(1 + t)1/2‖ψ(t, ·)‖L∞(R) ≤ Cε. (4.1.14)

In the following of this section we are going to give the main idea of the proof.

For simplicity of the explanation we consider only the case

F (u) = u.

We can define ψ(t) as a solution to the integral equation

ψ(t) = e−i(t−1)Hψ1 ∓ i

∫ t

1

e−i(t−s)Hψ(s)|ψ(s)|2ds, t > 1. (4.1.15)



4.1. Introduction 103

If the initial data are in the weighted Sobolev spaces Hs,s(R) = Hs(R) ∩ L2(R, 〈x〉s dx) with norm

small enough and V = 0, then it is proved in [38] that the solutions live in the space C(R;Hs,s(R))

and moreover the free decay estimate (4.1.14) holds. In [38] is also proved the existence of modified

scattering states. Our main goal will be to control the decay of the L∞-norm of the solution provided

we have small initial data as stated in (4.1.13).

In the following we will outline the main ideas of the proof.

We first operate the transform

(t, ψ) =⇒ (T,Ψ),

where

t =
1

T
, Ψ(T, x) = ψ

(
1

T
, x

)
. (4.1.16)

Then, we can rewrite the solution (4.1.15) as follows

Ψ(T ) = eiH( 1
T −1)ψ1 ± i

∫ 1

T

eiH( 1
T −

1
S )Ψ(S)|Ψ(S)|2 dS

S2
. (4.1.17)

In other words, we passed from the set of threes, time, space and real part of the wave function

(t, x,<ψ(t, x)),

to the set of threes, frequency, space and real part of the wave function

(T, x,<Ψ(T, x)).

Next, the key point is the construction of an appropriate isometry for the spacial distance,

B(T ) : L2(R)→ L2(R),

so that

Φ(T ) = B(T )Ψ(T ),

satisfies the integral equation

Φ(T ) = U(T, 1)B(1)ψ1 ± i

∫ 1

T

U(T, S)Φ(S)|Φ(S)|2 dS
S
, (4.1.18)
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and the two-parameter group U(T, S) has property very close to the two-parameter group ei(T−S)H.

To be more precise, we choose

U(T, S) = B(T )eiH/T e−iH/SB∗(S), (4.1.19)

where B(T ) is defined by

B(T ) = M(T )σT , (4.1.20)

with

M(T )f(x) = ei x
2

4T f(x), σT (f)(x) =
1

T 1/2
f
( x
T

)
. (4.1.21)

The introduction of the isometry B(T ), transforms the set of threes, frequency, space and real part of

the wave function into the set of threes, frequency, momentum and the real part of the backward wave

function

(T,X,<Φ(T,X)).

In this way, the proof of Theorem 4.1.1 is reduced to the proof of the following estimate.

Theorem 4.1.2. Suppose the conditions (4.1.6), (4.1.7) and (4.1.12)are fulfilled. Hence the operator

H has no point spectrum and 0 is not a resonance for H. Let Φ(T ) be the solution to the integral

equation (4.1.18) with initial data φ1(x) = e
ix2

4 ψ1(x) and let (4.1.13) be verified. Then the following

decay estimate holds

‖Φ(T, ·)‖L∞(R) ≤ Cε. (4.1.22)

To prove this a priori bound we are going to introduce a leading term for the asymptotic wave profile.

Indeed we are interested in establishing the leading part of the backward wave function.

To be more precise, since we looking for B(T ) such that the property of U(T, S) are very close to the

one of e−iH(T−S), we can define the leading term when T ≈ 0 as specified in the following lines. If the

existence of U(0, S), with S ∈ (0, 1), can be justified, we set

Φ0 = U(0, 1)B(1)ψ1 ± i

∫ 1

0

[U(0, S)− I] Φ(S)|Φ(S)|2 dS
S
. (4.1.23)

Then, we define the leading term of the asymptotic wave profile as

Φlead(T ) = Φ0 ± i
∫ 1

T

|Φ|2Φlead(S)
dS

S
,
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namely,

Φlead(T ) = Φ0e
±iΘ(T ), (4.1.24)

where

Θ(T ) =

∫ 1

T

|Φ(S)|2 dS
S
. (4.1.25)

To prove the Theorem 4.1.1, and in particular to control the L∞ norm of the solution, we are going

to establish the following a priori bounds:

sup
T∈[0,1]

(
T θ/N‖Φlead‖Hs−θ(R)

)
+ ‖Φlead‖L∞([0,1]×R) ≤ Cε, (4.1.26)

and

sup
T∈[0,1]

(
T θ/N‖Φ(T )− Φlead(T )‖Hs−θ(R)

)
+ ‖Φ(T )− Φlead(T )‖L∞([0,1]×R) ≤ Cε, (4.1.27)

where θ ∈ [0, 1] is such that 1/2 < s− θ < 3/4, N will be chosen big enough and we are supposing that

the condition (4.1.13) on the initial data is verified.

4.2 Spectral assumptions and Hardy type inequality

In this section we want to establish the equivalence between the norms ‖
√
H0‖L2(R) and ‖

√
H‖L2(R) for

a wide class of potentials.

Now, with a variational approach, we will show that the absence of eigenvalues and zero resonances

for the operator H, give us information on the whole family of operators H0 + gV as g is close to 1. This

information will be crucial to get an Hardy type inequality.

Lemma 4.2.1. Suppose that the operator H satisfies the assumptions (4.1.8), (4.1.9) and

V ∈ L1
γ(R),

with γ > 1. Then there exists δ0 > 0, so that

‖∇f‖2L2(R) + (1 + δ0)

∫
R
V (x)|f(x)|2dx ≥ 0, ∀f ∈ H1(R). (4.2.1)
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Proof. Define the functional

Eδ(f) =
1

2
‖∇f‖2L2(R) +

(1 + δ)

2

∫
R
V (x)|f(x)|2dx, f ∈ H1(R).

We argue by contradiction. Suppose the assertion of the Lemma is not true. Then we can find a sequence

fn ∈ H1(R), ‖fn‖2L2(R) = 1,

so that

E1/n(fn) < 0.

Then the problem

Iδ = inf
f∈H1(R), ‖f‖L2(R)=1

Eδ(f) (4.2.2)

has negative minimum. Let gn ∈ H1(R) be the minimum with constraint ‖gn‖L2(R) = 1. Hence we have

that

I1/n = E1/n(gn) < 0.

Rewriting the line above as follows

E1/n(gn) = I1/n‖gn‖L2(R),

and computing the first variation of the functional we get

−∂2
xgn +

(
1 +

1

n

)
V (x)gn = 2I1/ngn, ‖gn‖L2(R) = 1.

We can renormalize this relation as

(
µn − ∂2

x

)
hn +

(
1 +

1

n

)
V (x)hn = 0,

∫
R
V (x)|hn(x)|2dx = 1, (4.2.3)

taking hn proportional to gn. Here and below, taking suitable monotone subsequences, we can assume

the sequence

µn = −2I1/n > 0
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is decreasing (thanks to the renormalization) and convergent, so we have

µn = −2I1/n ↘ µ ≥ 0. (4.2.4)

If µ > 0, then we can use (4.2.3) and see that

µn‖hn‖2L2(R) + ‖∂xhn‖2L2(R) = O(1),

∫
R
V (x)|hn(x)|2dx = 1

as n→∞. So taking again subsequence, we can assure the weak convergence

hn ⇀ h∗

and the renormalization condition gives us

1 = lim
n→∞

∫
R
V (x)|hn(x)|2dx =

∫
R
V (x)|h∗(x)|2dx.

In this way we find a nontrivial function h∗ ∈ H1(R) so that

(
µ− ∂2

x

)
h∗ + V (x)h∗ = 0

and this contradicts the assumption (4.1.8).

Therefore, it remains to consider only the case µ = 0 in (4.2.4). In this case we can use the fact that

(4.2.3) implies that (
µn − ∂2

x

)
hn + V (x)hn = − 1

n
V (x)hn

and we are in position to use the assumption that zero is not a resonance and apply the resolvent estimate

obtained in Lemma 1.4.2

∥∥(λ2 −H)−1f
∥∥
L∞(R)

≤ C ‖〈x〉γf‖L1(R) ∀λ ∈ C,=λ > 0, (4.2.5)

where γ > 1. So, choosing λ = i
√
µn we get

‖hn‖L∞(R) ≤
C

n
‖〈x〉γV hn‖L1(R) ≤

C

n
‖〈x〉γV ‖L1(R) ‖hn‖L∞(R) .
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Since V ∈ L1
γ(R), we can take n sufficiently large and deduce

‖hn‖L∞(R) = 0

that is in contradiction with the normalization condition

1 = lim
n→∞

∫
R
V (x)|hn(x)|2dx.

Remark 4.2.1. The connection between the creation and annihilation of resonance at zero and the point

spectrum of the family of operators

H0 + gV

as g → 1, is studied in [57]. The result established in Theorem 3 in [57] requires however exponential

decay of the potential, while the assumptions of the last Lemma just require the weaker assumption

V ∈ L1
γ(R), with γ > 1. In particular, we have proved that, if V ∈ L1

γ(R), with γ > 1 and the

Hamiltonian has nor zero resonances neither eigenvalues, then there exists δ0 > 0 such that

−∆ + (1 + δ0)V ≥ 0.

Conversely, now we discuss the structure of the potentials connected with the class Image(Miura)

V (x) = w′(x) + w(x)2, (4.2.6)

its relations to the Hardy inequality and how it is connected with the positivity of the operator H. In

particular, we will establish an equivalence between the standard Sobolev space H1(R) and the twisted

Sobolev space H1
V (R).

In this way we choose the potentials that are in the image of the Miura transform. More precise

information for the image of the Miura transform can be found in [45].

We can infer the equivalence of the norms above supposing that a small perturbation of the potential

lives in Image(Miura).

Lemma 4.2.2. Let q > 0 and qV ∈ Image(Miura). Then for every p : 0 < p < q, pV ∈ Image(Miura),

and under the additional assumption that V (x) 6= 0 a.e., one can infer from (1 + ε)V ∈ Image(Miura)



4.2. Spectral assumptions and Hardy type inequality 109

that H = H0 + V does not support resonances at zero.

In particular, our assumption (4.1.12) guarantees that V ∈ Image(Miura), which by (4.1.10) implies

that H = H0 + V ≥ 0.

Proof. We have that there exists w, so that

qV (x) = w′(x) + w2.

Thus,

pV =
pw′(x)

q
+
p2w2(x)

q2
+ w2(x)

(
p

q
− p2

q2

)
= Miura

(
pw

q

)
+ w2(x)

(
p

q
− p2

q2

)
.

But p
q −

p2

q2 > 0, so we have (in operator sense)

− ∂2
x + pV =

[
−∂2

x +Miura

(
pw

q

)]
+ w2(x)

(
p

q
− p2

q2

)
≥ −∂2

x +Miura

(
pw

q

)
≥ 0, (4.2.7)

where in the last step, we have used (4.1.10) in that −∂2
x + Miura(W ) ≥ 0. Using again the other

direction of the equivalence (4.1.10), we conclude pV ∈ Image(Miura).

Let V 6= 0 a.e. and (1 + ε)V ∈ Image(Miura). Assume for a contradiction that f 6= 0, f ∈ L∞(R),

is a resonance function for H, that is H[f ] = 0. We take a positive cutoff function H : ϕ(x) = 1, |x| < 1,

ϕ(x) = 0, |x| > 2 and we put ϕN (x) = ϕ(x/N). We can evaluate for any large N >> 1, 〈H(fϕN ), fϕN 〉.

Since f is a resonance, we must have

lim
N→∞

〈H(fϕN ), fϕN 〉 = 0.

Following the line of reasoning of (4.2.7) however (with p = 1, q = 1 + ε), we have

〈HV (fϕN ), fϕN 〉 ≥ 〈[−∂xx +Miura((1 + ε)−1w)](fϕN ), fϕN 〉+

+ ε(1 + ε)−2〈w2fϕN , fϕN 〉 ≥
ε

(1 + ε)2

∫
R
w2(x)|f(x)|2|ϕN |2dx ≥ 0.

It follows that ∫
R
w2(x)|f(x)|2dx = lim

N→∞

∫
R
w2(x)|f(x)|2|ϕN (x)|2dx = 0.
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Hence we have that ω = 0 a.e. on supp{f}. On the other side, since f is a resonance we have that

∫
|∇f |2 dx+

∫
ω′|f |2 dx = 0.

The line above implies that ω′ is negative a.e. on supp{f}. This is in contradiction with the statement

ω = 0 a.e. on supp{f}.

Our next result establishes the equivalence of the Sobolev spaces H1
V (R) ∩ L2

odd(R) and H1
odd(R),

under the assumptions put forward in Theorem 4.1.1.

Lemma 4.2.3. Assume that V satisfies (4.1.7) and (4.1.12). Then, there exists a constant C, so that

for all odd Schwartz functions f ,

1

C
‖f ′‖L2(R) ≤ ‖

√
Hf‖L2(R) ≤ C‖f ′‖L2(R). (4.2.8)

In other words, ‖f‖H1
V (R)∩L2

odd(R) ∼ ‖f‖H1(R).

Proof. We have

‖
√
Hf‖2L2(R) = 〈Hf, f〉 =

∫
R
|f ′(x)|2dx+

∫
R
V (x)|f(x)|2dx.

The right-hand side inequality in (4.2.8) is a direct consequence of the Hardy inequality. Indeed, by

(4.1.7), |V (x)| ≤ C1|x|−2. Thus, by the standard Hardy’s inequality, we have

∫
R
V (x)|f(x)|2dx ≤ C1

∫
R

|f(x)|2

|x|2
dx ≤ C2

∫
R
|f ′(x)|2dx.

whenever f(0) = 0 (which is of course satisfied if f is odd to begin with). This shows

‖
√
Hf‖L2(R) ≤

√
C2 + 1‖f ′‖L2(R).

For the left-hand side inequality of (4.2.8), we argue from −∂2
x + (1 + ε)V ≥ 0, which is a consequence

of our assumption (4.1.12). This implies

0 ≤ 〈(−∂2
x + (1 + ε)V )f, f〉 = ‖f ′‖2L2(R) + (1 + ε)

∫
R
V (x)|f(x)|2dx.
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Since we have

(1 + ε)‖
√
Hf‖2L2(R) = ε‖f ′‖2L2(R) + ‖f ′‖2L2(R) + (1 + ε)

∫
R
V (x)|f(x)|2dx,

follows that

‖f ′‖2L2(R) ≤
(

1 +
1

ε

)
‖
√
Hf‖2L2(R) ≤ (1 + C2)

(
1 +

1

ε

)
‖f ′‖2L2(R).

Dividing by (1 + 1/ε) we get (4.2.8).

4.3 Heuristic idea to define modified scattering profile.

In this section, we want to define heuristically the modified scattering profile of the unperturbed problem,

using an approach that involves the two parameters groups.

The flow map associated with cubic NLS is determined by the group e−itH with generator −iH. How

anticipated in the introduction to this chapter, the most important step is to define a family of unitary

operators

B(T ) : L2(R)→ L2(R) (4.3.1)

so that the new two parameters group

U(T, S) = B(T )eiH( 1
T −

1
S )B∗(S), 0 < T, S ≤ 1

has properties very close to the original group

e−iH(T−S).

The same question is meaningful for the unperturbed Hamiltonian H0 and can be posed in the following

way. We are looking for a continuous family of unitary operators (4.3.1), so that the generator of

U0(T, S) = B(T )eiH0( 1
T −

1
S )B∗(S), 0 < T, S ≤ 1 (4.3.2)
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is exactly −iH0, and hence we can write

B(T )eiH0( 1
T −

1
S )B∗(S)︸ ︷︷ ︸

U0(T,S)

= e−iH0(T−S). (4.3.3)

One can see that the generator of this two parameters group U0(T, S) is i∆, provided

B(T ) = M(T )σT ,

where

M(T )f(x) = ei x
2

4T f(x), σT (f)(x) =
1

T 1/2
f
( x
T

)
. (4.3.4)

Indeed, taking f ∈ D(H0) and using (4.3.2) we see that

U0(T, 1)f︸ ︷︷ ︸
Φ(T )

= B(T ) eiH0( 1
T −1)B∗(1)f︸ ︷︷ ︸

Ψ(T )

. (4.3.5)

Hence

Ψ(T ) = eiH0( 1
T −1)B∗(1)f

formally solves the Cauchy problems

∂TΨ(T ) = − i

T 2
H0Ψ(T ), Ψ(1) = B∗(1)f. (4.3.6)

Setting

Φ(T ) = U0(T, 1)f = M(T )σTΨ(T ),

we obtain (the detailed proof is given in Lemma 4.4.5 below)

∂TΦ(T ) = i∆Φ(T ), Φ(1) = f. (4.3.7)

This observation proves (4.3.3).

The solution to the Cauchy problem


∂tψ = −iH0ψ(x)∓ iψ|ψ|2, (t, x) ∈ R× R

ψ(1, x) = ψ1(x),

(4.3.8)
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can be rewritten as a solution to the integral equation

ψ(t) = e−i(t−1)H0ψ1 ∓ i

∫ t

1

e−i(t−s)H0ψ(s)|ψ(s)|2ds. (4.3.9)

We can make the simple transform

(t, ψ) =⇒ (T,Ψ)

where

t =
1

T
, Ψ(T, x) = ψ

(
1

T
, x

)
(4.3.10)

and we can rewrite (4.3.9) as follows

Ψ(T ) = eiH0( 1
T −1)ψ1 ± i

∫ 1

T

eiH0( 1
T −

1
S )Ψ(S)|Ψ(S)|2 dS

S2
. (4.3.11)

Now setting

Φ(T ) = B(T )Ψ(T ),

we can recover Ψ(T ) by the aid of the relation

Ψ(T ) = B∗(T )Φ(T ), B∗(T ) = M∗(T )σ∗T ,

where

M∗(T )f(x) = e−i x
2

4T f(x), σ∗T (f)(x) = T 1/2f(Tx).

To this end we use the relation

Ψ(S)|Ψ(S)|2 =
[
B∗(S)Φ(S)|B∗(S)Φ(S)|2

]
= SB∗(S)

[
Φ(S)|Φ(S)|2

]
(4.3.12)

and via (4.3.3) we find

Φ(T ) = e−iH0(T−1)B(1)
(
ψ1

)
± i

∫ 1

T

e−iH0(T−S)Φ(S)|Φ(S)|2 dS
S
. (4.3.13)

The free group U0(T, S) satisfies the estimates

∥∥∥(1−∆)
α/2

[U0(T, S)− I] g
∥∥∥
L2(R)

≤ C|T − S|θ/2
∥∥∥(1−∆)

(α+θ)/2
g
∥∥∥
L2(R)

(4.3.14)
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for any θ ∈ (0, 1) and for any T, S ∈ (0, 1].

Hence, the integral formulation (4.3.13) suggests us to define the leading term of the asymptotic

profile as follows. Setting

Φ0 = eiH0B(1)
(
ψ1

)
± i

∫ 1

0

[
eiH0S − I

]
Φ(S)|Φ(S)|2 dS

S
,

we can define the leading term Φlead(T ) of the solution Φ(T ) as the solution of the integral equation

Φlead(T ) = Φ0 ± i

∫ 1

T

Φlead(S)|Φ(S)|2 dS
S
. (4.3.15)

If we choose θ ∈ [0, 1] sufficiently small such that

3/4 > α = s− θ > 1/2,

then, using (4.3.14) we can prove the estimates (4.1.27) and (4.1.26) provided the initial data satisfy the

following smallness condition

‖e−ix
2/4ψ1‖Hs(R) ≤ ε.

The presence of the norm ‖e−ix2/4ψ1‖Hs(R) in the estimates above, due to the introduction of the unitary

operators B(T ), explains the use of weighted Sobolev spaces Hs,a(R) equipped with norm

‖f‖Hs,a(R) = ‖〈x〉af‖L2(R) + ‖(1−∆)s/2f‖L2(R), s ≥ 0, a ≥ 0.

4.4 Modified profile for the perturbed Hamiltonian

Now, following the free case, we want to construct the modified scattering profile for the perturbed

problem. As before, we define the two parameters group

U(T, S) = B(T )eiH( 1
T −

1
S )B∗(S), 0 < T, S ≤ 1,

where

B(T ) = M(T )σT ,

and M(T ), σT are defined according to (4.3.4).
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The generator of the two parameters group U(T, S) is

i∆(T ),

where

∆(T ) = − 1

T 2
σTHσ∗T = ∆− 1

T 2
V
( x
T

)
. (4.4.1)

Indeed, taking f ∈ L2(R), so that B∗(1)f ∈ D(H), we see that

U(T, 1)f︸ ︷︷ ︸
Φ(T )

= B(T ) eiH( 1
T −1)B∗(1)f︸ ︷︷ ︸

Ψ(T )

, (4.4.2)

Hence,

Ψ(T ) = eiH( 1
T −1)B∗(1)f,

solves the Cauchy problem

∂TΨ(T ) = − i

T 2
HV Ψ(T ), Ψ(1) = B∗(1)f. (4.4.3)

Setting

Φ(T ) = U(T, 1)f = M(T )σTΨ(T ),

we obtain (the detailed proof is given in Lemma 4.4.5 below)

∂TΦ(T ) = i∆(T )Φ(T ), Φ(1) = f. (4.4.4)

Using the fractional calculus for the perturbed Hamiltonian H, one can define the fractional powers

of (−∆(T ))s/2 and (1−∆(T ))s/2 as follows

(−∆(T ))s/2 =
1

T s
σTHs/2σ∗T , (1−∆(T ))s/2 =

1

T s
σT (T 2 +H)s/2σ∗T . (4.4.5)

Of special importance is the following estimate (for detailed proof see Lemma 4.5.2)

C−1‖(1−∆(T ))s/2f‖L2(R) ≤ ‖(1 +H0)s/2f‖L2(R) ≤ C‖(1−∆(T ))s/2f‖L2(R) (4.4.6)
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for any s ∈ [0, 1].

Turning to the Cauchy problem


∂tψ = −iHψ(x)∓ iψ|ψ|2, (t, x) ∈ R× R

ψ(1, x) = ψ1(x),

(4.4.7)

we follow the same steps already done for the free Hamiltonian. So, we rewrite (4.4.7) as follows

ψ(t) = e−i(t−1)Hψ1 ∓ i

∫ t

1

e−i(t−s)Hψ(s)|ψ(s)|2ds. (4.4.8)

The transformation

(t, ψ) =⇒ (T,Ψ)

defined by

t =
1

T
, Ψ(T, x) = ψ

(
1

T
, x

)
. (4.4.9)

leads to the integral equation

Ψ(T ) = eiH( 1
T −1)ψ1 ± i

∫ 1

T

eiH( 1
T −

1
S )Ψ(S)|Ψ(S)|2 dS

S2
. (4.4.10)

Further, we defined

Φ(T ) = B(T )Ψ(T ),

and from (4.3.11) we find Ψ(T )

Ψ(T ) = B∗(T )Φ(T ), B(T )∗ = M∗(T )σ∗T .

This observation leads to the integral equation

Φ(T ) = U(T, 1)φ1 ± i

∫ 1

T

U(T, S)Φ(S)|Φ(S)|2 dS
S
, (4.4.11)

where

φ1(x) = B(1)ψ1(x) = e
ix2

4 ψ1(x). (4.4.12)
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The perturbed group U(T, S) satisfies the estimates

∥∥∥(1−∆(T1))
α/2

[U(T1, T2)− I] g
∥∥∥
L2(R)

≤ C|T1 − T2|θ/8
∥∥∥(1−∆)

(α+θ)/2
g
∥∥∥
L2(R)

(4.4.13)

provided g is an odd function and 0 < T2, T1 ≤ 1, α ∈ [0, 3/4), θ ∈ [0, 1] sufficiently small. One can see

the hypotheses in Lemma 4.6.2 for the sharp constrains on θ and α.

If we can justify the existence of the strong limits

U(0, 1)f = lim
ε→0

U(ε, 1)f, (4.4.14)

and ∫ 1

0

[U(0, S)− I]Φ(S)|Φ(S)|2 dS
S

= lim
ε→0

∫ 1

ε

[U(ε, S)− I]Φ(S)|Φ(S)|2 dS
S
, (4.4.15)

then, in the same spirit of the free case, we can define

Φ0 = U(0, 1)φ1 ± i

∫ 1

0

[U(0, S)− I]Φ(S)|Φ(S)|2 dS
S
.

By means of Φ0, we can go further and we define the leading term Φlead(T ) of the solution Φ(T ) as in

(4.3.15), i.e.

Φlead(T ) = Φ0 ± i

∫ 1

T

Φlead(S)|Φ(S)|2 dS
S
. (4.4.16)

By the line above we find

Φlead(T ) = Φ0e
±iΘ(T ), (4.4.17)

where Θ(T ) is defined in (4.1.25).

Our goal is to prove some a priori bounds (4.1.26), (4.1.27), for the leading term Φlead defined in

(4.4.17), and for the remainder

Φrem(T ) = Φ(T )− Φlead(T ).

Taking the difference between the equation (4.4.11) and the equation (4.4.16), we find

Φrem(T ) = [U(T, 1)− U(0, 1)]φ1 ± i[U(T, 0)− I]

∫ 1

T

U(0, S)Φ(S)|Φ(S)|2 dS
S
∓

∓i

∫ T

0

[U(0, S)− I]Φ(S)|Φ(S)|2 dS
S
± i

∫ 1

T

Φrem(S)|Φ(S)|2 dS
S
.
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This equation suggests to consider the linear operator

L : f × F ∈ Hs
odd(R)× C([0, 1];Hs

odd(R))→ C([0, 1];Hs
odd(R)),

defined as follows

L(f, F )(T ) = (4.4.18)

[U(T, 1)− U(0, 1)]f ± i[U(T, 0)− I]

∫ 1

T

U(0, S)F (S)
dS

S
∓

∓i

∫ T

0

[U(0, S)− I]F (S)
dS

S
.

We can rewrite the equation for the remainder term as follows:

Φrem(T ) = L(φ1,Φ|Φ|2)(T )± i

∫ 1

T

Φrem(S)|Φ(S)|2 dS
S
,

where φ1 is defined in (4.4.12).

Hence, we can express the remainder by the identity

Φrem(T ) = G(T )± i

∫ 1

T

e±i(Θ(T )−Θ(S))G(S)|Φ|2 dS
S
, (4.4.19)

where

G(T ) = L(φ1,Φ|Φ|2)(T ).

Our next step is to choose, as in the free case, the parameter θ ∈ [0, 1] sufficiently small such that we

can select α = s− θ ∈ (1/2, 3/4).

Using (4.4.13) we can show the estimates (4.1.27) and (4.1.26), provided the initial data satisfy

‖e−ix
2/4ψ1‖Hsodd(R) ≤ ε.

4.4.1 Similar Orbits and Splitting Generators

In this section we will give a rigorous justification of the formulas (4.3.9) and (4.3.13) for the free case,

and then we analyse the perturbed case. In both cases, we are going to show the relation between the

two two parameters groups that appear in the integral expressions of Ψ(T ) and Φ(T ).
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After the change of variable (4.3.10), the integral equation (4.3.9) suggests us to consider the two

parameters group eiH0( 1
T −

1
S ).

Moreover, as explained in the section above, we are looking for a suitable unitary operator B(T )

ables to simplify the group eiH0( 1
T −

1
S ) and the integral equation (4.3.9). Now we give two equivalent

definitions to connect two two parameters groups.

Definition 4.4.1 (Similar groups). Let 0 ≤ T, S ≤ 1. Let U(T, S) and U0(T, S) be two two parameters

groups with generators −iA(T ) and −iA0(T ) having respectively dense domains D(T ) and D0(T ) on the

Hilbert space H. We say that U(T, S) and U0(T, S) are similar if there exists a unitary operator

B(T ) : H → H,

such that

U0(T, S) = B(T )U(T, S)B∗(S), (4.4.20)

and

D0(T ) = B(T )D(T ).

Definition 4.4.2 (Splitting operators). Let A(T ) and A0(T ) be self-adjoint operators with dense domains

D(T ) and D0(T ) on the Hilbert space H. We say that the couple (A(T ), A0(T )) is splitting if there exists

a unitary operator

B(T ) : H → H,

such that

B(T ) : D(T )→ D0(T ),

and

B′(T ) = i [B(T )A(T )−A0(T )B(T )] . (4.4.21)

Remark 4.4.3. We can verify that the two two parameters groups are similar if and only if the couple of

the generators is splitting. The key is to compute ∂TU0(T, S) using (4.4.20) and (4.4.21).

At first we consider the unperturbed HamiltonianH0. In the following Lemma we prove that
(H0

T 2 ,H0

)
is a splitting couple.
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Lemma 4.4.4. Let H0 = −∂2
x. Then, one can find a unitary operator

B(T ) : L2(R)→ L2(R),

so that for any T, S ∈ (0, 1] we have the relation

B(T )eiH0( 1
T −

1
S )B∗(S)g = e−iH0(T−S)g. (4.4.22)

Proof. We consider the two-parameter groups

U0(T, S) = eiH0(1/T−1/S), U1(T, S) = e−i(T−S)H0

with generators

−iH0(T ) = −i
H0

T 2
, −iH1(T ) = −iH0.

It is easy to show that the similarity condition for the two two parameters groups, (4.4.22) will follow

from

B′(T ) = i

[
B(T )

H0

T 2
−H0B(T )

]
. (4.4.23)

We follow (4.1.20), (4.1.21) so we can choose

B(T ) = M(T )σT , (4.4.24)

where

M(T )f(x) = e
ix2

4 f(x), σT (f)(x) =
1

T 1/2
f
( x
T

)
. (4.4.25)

We have to check the identity (4.4.23) with this choice of B(T ). For this we take g(x) ∈ S(R) and

use the relations

B′(T )g = − ix2

4T 2
B(T )g(x) +M(T )

d

dT

[
1

T 1/2
g
( x
T

)]
=

= − ix2

4T 2
B(T )g(x)− 1

2T
B(T )g(x)− x

T 2
M(T )T−1/2g′

( x
T

)
so setting

L = x∂x, (4.4.26)
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we find

B′(T )g = − ix2

4T 2
B(T )g(x)− 1

2T
B(T )g(x)− 1

T
B(T )L(g)(x).

In this way we arrive at the relation

B′(T ) =

(
− ix2

4T 2
− 1

2T

)
B(T )− 1

T
B(T )L. (4.4.27)

Further, we have

H0B(T )g(x) = −∂2
x

(
M(T )

1

T 1/2
g
( x
T

))
=

= − 1

T 1/2
∂2
x

(
e

ix2

4T g
( x
T

))
=

= − 1

T 1/2
g
( x
T

)
∂2
x

(
e

ix2

4T

)
− 2

1

T 1/2

[
∂xg

( x
T

)]
∂x

(
e

ix2

4T

)
−

− 1

T 1/2
e

ix2

4T ∂2
x

[
g
( x
T

)]
=

=
x2

4T 2T 1/2
e

ix2

4T g
( x
T

)
− i

2T 1+1/2
e

ix2

4T g
( x
T

)
−

− i

T 1+1/2
e

ix2

4T (Lg)
( x
T

)
+

1

T 1/2+2
e

ix2

4T (−∂2
xg)
( x
T

)
.

In this way we obtain

1

T 2
B(T )H0 −H0B(T ) =

[
− x2

4T 2
+

i

2T

]
B(T ) +

i

T
B(T )L. (4.4.28)

The relations (4.4.27) and (4.4.28) imply

B′(T ) = i

[
1

T 2
B(T )H0 −H0B(T )

]
, (4.4.29)

so we have (4.4.23). This completes the proof of the Lemma.

Now we proceed similarly for the perturbed case. We consider the perturbed Hamiltonian H =

−∂2
x + V (x). We can consider the two parameters group defined by

U(T, S) = B(T )eiH/T e−iH/SB∗(S), (4.4.30)
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where B(T ) and B∗(T ) is defined as in (4.4.24). We shall see that this two-parameter group has generator

i∆(T ), ∆(T ) = − 1

T 2
σTHV σ∗T , (4.4.31)

where

∆(T ) = − 1

T 2
σT
(
−∂2

x + V
)
σ∗T = ∆− 1

T 2
V
( x
T

)
.

Lemma 4.4.5. Let H = −∂2
x + V, and let B(T ) be defined as in (4.4.24). Then, the genarator of the

two-parameter group

U(T, S) = B(T )eiH/T e−iH/SB∗(S) (4.4.32)

is the operator i∆(T ) defined in (4.4.31), i.e. for any g ∈ H2(R) we have

d

dT
U(T, S)g = i∆(T )U(T, S)g. (4.4.33)

Proof. Again the relation (4.4.33) will follow from (4.4.32) and the splitting relation

B′(T ) = i

[
B(T )

H
T 2

+ ∆(T )B(T )

]
. (4.4.34)

We know from Lemma 4.4.4 that

B′(T ) = i

[
B(T )

H0

T 2
+ ∆B(T )

]
.

Hence, the line above and the trivial identity

B(T )
V

T 2
− 1

T 2
V
( ·
T

)
B(T ) = 0, (4.4.35)

imply (4.4.34). The thesis follows computing

d

dT
U(T, S)g =

d

dT

[
B(T )eiH/T

(
eiH/SB∗(S)g

)]
,

with g ∈ H2(R) and using (4.4.34).
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4.5 Equivalent Sobolev norms

Once established the relation (4.4.32), and keeping in mind the integral equation (4.4.11), it is useful to

look for estimates for the Sobolev norms

‖U(T, S)f‖Hs(R) , (4.5.1)

where 0 < T < S ≤ 1 and 0 ≤ s ≤ 1. In this section we want to establish an equivalence relation

between the classical Sobolev norms defined by H0 and the modified ones defined by ∆(T ). This result

will turn to be crucial to get estimates for the norms (4.5.1) that we will study in the next section.

Fixed s ∈ [0, 1], we introduce the fractional powers (−∆(T ))s/2, of the generator ∆(T ) of the two

parameters group U(T, S). We recall that these operators are defined by

(−∆(T ))
s/2

=
1

T s
σTHs/2σ∗T , s ∈ [0, 1]. (4.5.2)

The following Lemma will give us an integral formulation of the operator (−∆(T ))s/2U(T, S), with

s ∈ [0, 1].

Lemma 4.5.1. Let 0 < S ≤ 1 be fixed. If f ∈ Hs(R), then for any s ∈ [0, 1] the function

Φs(T ) = (−∆(T ))s/2U(T, S)f

satisfies the integral equation

Φs(T ) = U(T, S)(−∆(S))s/2f −
∫ S

T

U(T, τ)στA(s)σ∗τU(τ, S)f
dτ

τs+1
, (4.5.3)

where

A(s) = sHs/2 + [L,Hs/2], (4.5.4)

A(s) : L∞(R)→ L1(R),

is a bounded operator.

Proof. The function

Φ(T ) = U(T, S)f
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is a solution to the equation

i∂TΦ(T ) + ∆(T )Φ(T ) = 0, (4.5.5)

if f is sufficiently regular, namely f ∈ H2(R). If s ∈ [0, 1], then we can use a density argument and

assuming f ∈ H2+s(R), we can assert that Φ(T ) ∈ C([0, 1];H2+s(R)) satisfies (4.5.5).

The proof of (4.5.3) can be reduce to the proof of the commutator relation

[
∂T , (−∆(T ))s/2

]
= − s

T
(−∆(T ))s/2 − 1

T s+1
σT [L,Hs/2]σ∗T , (4.5.6)

where L = x∂x is the delation operator. Hence we show that (4.5.6) is verified. The fractional powers

(−∆(T ))
s/2

=
1

T s
σTHs/2σ∗T ,

involve the operators σT and Hs/2 so we can use the following relations:

[∂T , σT ] = − 1

T
σTL−

1

2T
σT , [∂T , σ

∗
T ] =

1

T
Lσ∗T +

1

2T
σ∗T . (4.5.7)

To prove (4.5.6) we can use (4.5.7) combined with the definition of the commutator. In this way we

find

[
∂T , (−∆(T ))s/2

]
=

[
∂T ,

1

T s
σTHs/2σ∗T

]
= − s

T s+1
σTHs/2σ∗T−

− 1

T s+1
σTLHs/2σ∗T −

1

2

1

T s+1
σTHs/2σ∗T+

+
1

T s+1
σTHs/2Lσ∗T +

1

2

1

T s+1
σTHs/2σ∗T .

Hence we obtain [
∂T , (−∆(T ))s/2

]
= − s

T
(−∆(T ))s/2 − 1

T 1+s
σT [L,Hs/2]σ∗T .

To complete the proof we note that

1

T s+1
σTA(s)σ∗T =

s

T
(−∆(T ))s/2 +

1

T 1+s
σT [L,Hs/2]σ∗T , (4.5.8)

where A(s) is defined in (4.5.4). One can find a proof of boundness of A(s) in [17]. Now, computing
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∂TΦs(T ), and using (4.5.6) and (4.5.8) we get

i∂TΦs(T ) + ∆(T )Φs(T ) = − i

T s+1
σTA(s)σ∗TU(T, S)f, (4.5.9)

provided f ∈ H2+s(R). This equation and the definition of the two parameters group U(T, S) give the

integral equation (4.5.3). Now using density argument, we can assert that it is true for f ∈ Hs(R).

In order to control the norm (4.5.1) thanks to the results of Lemma 4.5.1, we want to establish the

following equivalence relation

‖
√
H0

s
f‖L2(R) ≈ ‖

√
−∆(T )

s
f‖L2(R),

with s ∈ [0, 1]. Using the equivalence property of Lemma 4.2.3 as well as the fact that

√
−∆(T ) =

1

T
σT
√
Hσ∗T

with

σT : L2(R)→ L2(R)

an isometry, we deduce the following estimate

‖
√
H0f‖2L2(R) ≤

(
1 +

1

δ0

)
‖
√
−∆(T )f‖2L2(R) ≤ 2

(
1 +

1

δ0

)
‖
√
H0f‖2L2(R), (4.5.10)

for any f ∈ H1
odd(R). An interpolation argument implies the following result.

Lemma 4.5.2. Suppose that the operator H satisfies the assumptions (4.1.7), (4.1.8) and (4.1.9). Then

for any s ∈ [0, 1], there exists C > 0, so that

C−1‖Hs/20 f‖L2(R) ≤ ‖ (−∆(T ))
s/2

f‖L2(R) ≤ C‖H
s/2
0 f‖L2(R), (4.5.11)

for any f ∈ Hs
odd(R).
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4.6 Estimates for the two parameters group U(T, S)

In this section we derive some a priori estimates for the group U(T, S) and we prove the main technical

lemmas essential to establish our main a priori estimates (4.1.27), (4.1.26).

4.6.1 Linear Strichartz estimates

Here we recall the classical Strichartz estimates for the Schrödinger group and then we get Strichartz

type estimates for the two parameters group.

The Strichartz estimates for the free Hamiltonian in any time interval (0, A) are

∥∥e−iH0tf
∥∥
Lp((0,A);Lq(R))

≤ C‖f‖L2(R), (4.6.1)

where here and below the pair (p, q) verifies the admissibility relation

2 ≤ q ≤ ∞, 2

p
+

1

q
=

1

2
. (4.6.2)

A standard T − T ∗ argument implies the following estimate on the Duhamel term

∥∥∥∥∫ t

0

e−iH0(t−s)F (s)ds

∥∥∥∥
Lp1 ((0,A);Lq1 (R))

≤ C‖F‖Lp2 ((0,A);Lq2 (R)), (4.6.3)

where

2 ≤ q1 ≤ ∞,
2

p1
+

1

q1
=

1

2
, (4.6.4)

1 ≤ q2 ≤ 2,
2

p2
+

1

q2
=

5

2
.

For similar Strichartz estimate for the perturbed Hamiltonian H we can refer to [72] and Chapter

2 and 3. One can make a time shift and assume the initial data at t = 1. Then if we assume (4.1.7),

(4.1.8) we shall have the estimates

∥∥∥e−iH(t−1)f
∥∥∥
Lp((1,A);Lq(R))

≤ C‖f‖L2(R), ∀A > 1, (4.6.5)
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provided the pairs (p, q) satisfy (4.6.2) and

∥∥∥∥∫ t

1

e−iH(t−s)F (s)ds

∥∥∥∥
Lp1 ((1,A);Lq1 (R))

≤ C‖F‖Lp2 ((1,A);Lq2 (R)), (4.6.6)

when (4.6.4) holds.

Now we turn to the two parameters group U(T, S), introduced in (4.1.19), (4.1.20), (4.1.21). Our

first step is to check the estimate

‖U(T, 1)f‖Lp((a,1);Lq(R)) ≤ C‖f‖L2(R), (4.6.7)

where 0 < a < 1 and (p, q) satisfy (4.6.2). Setting

g(t, x) = eiH(t−1)B∗(1)f(x),

we can see that

‖U(T, 1)f‖Lp((a,1);Lq(R)) =
∥∥M(T )σT (g(T−1, ·))

∥∥
Lp((a,1);Lq(R))

,

so, using the relation

∥∥M(T )σT (g(T−1, ·))
∥∥
Lq(R)

=
∥∥σT (g(T−1, ·))

∥∥
Lq(R)

= T−1/2+1/q
∥∥g(T−1, ·)

∥∥
Lq(R)

and (4.6.2), we obtain ∥∥σT (g(T−1, ·))
∥∥
Lq(R)

= T−2/p
∥∥g(T−1, ·)

∥∥
Lq(R)

.

To this end we can set

h(t) = ‖g(t, ·)‖Lq(R) ,

so we use the relation ∥∥∥T−2/ph(T−1)
∥∥∥
Lp(a,1)

= ‖h(t)‖Lp(1,A) , A = 1/a

and in this way we arrive at

‖U(T, 1)f‖Lp((a,1);Lq(R)) =
∥∥∥e−iH(t−1)B∗(1)f

∥∥∥
Lp((1,A);Lq(R))

so applying the Strichartz estimate (4.6.5), since B∗(T ) is an isometry in L2(R), we find (4.6.7).
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In a similar way, we can check the other Strichartz estimate

∥∥∥∥∫ 1

T

U(T, S)F (S)dS

∥∥∥∥
Lp1 ((a,1);Lq1 (R))

≤ C‖F‖Lp2 ((a,1);Lq2 (R)) (4.6.8)

for any a ∈ (0, 1) and for p1, q1, p2, q2, satisfying (4.6.4). Indeed, thanks to relation (4.6.7) we have that

∥∥∥∥ 1

t1/2t2
F

(
1

t
,
x

t

)∥∥∥∥
Lp2 ((1,A);Lq2 (R))

= ‖F‖Lp2 ((a,1);Lq2 (R)) .

Hence, operating the change of variable, T 7→ 1
t , in the right side of (4.6.8) and, using (4.6.3), we get

the inequality (4.6.8).

4.6.2 Some a priori estimates

In the following we collect some important estimates for the two parameters group U(T, S) that we are

going to use for the proof of the Theorem 4.1.1.

The Strichartz estimates (4.6.7), (4.6.8) and the equivalence property of Lemma 4.5.2 imply the

following result.

Corollary 4.6.1. For any S, 0 < S ≤ 1 and for any f ∈ Hs
odd(R), we have that:

a) If s ∈ [0, 1] and 0 < T < S, then

‖U(T, S)f‖Hs(R) ≤ C

‖f‖Hs(R) +

(∫ S

T

dτ

τs
4
3

)3/4

‖U(τ, S)f‖L∞((T,S);L∞(R))

 ; (4.6.9)

b) If s ∈ (3/4, 1], then

‖U(T, S)f‖Hs(R) ≤ C

(
‖f‖Hs(R) +

(
1

T

)s−3/4

‖U(τ, S)f‖L∞((T,S);L∞(R))

)
; (4.6.10)

c) If 0 ≤ s < 1/2 or 1/2 < s < 3/4 and 0 < T < S, then

‖U(T, S)f‖Hs(R) ≤ C‖f‖Hs(R). (4.6.11)

Proof. We consider s ∈ [0, 1]. It is well known that

‖g‖Hs(R) = ‖g‖L2(R) + ‖Hs/20 g‖L2(R).
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Moreover, Lemma 4.5.2 and equation (4.5.3) imply that

‖(−∆(T ))s/2U(T, S)f‖L2(R) ≤

≤ ‖U(T, S)(−∆(S))s/2f‖L2(R) +

∥∥∥∥∥
∫ S

T

U(T, τ)στA(s)σ∗τU(τ, S)f
dτ

τs+1

∥∥∥∥∥
L2(R)

.

Using the Strichartz estimates (4.6.7), (4.6.8) we get the estimate (4.6.9). The estimate (4.6.10) is a

trivial consequence of the estimate (4.6.9) in the case s ∈ (3/4, 1]. To complete the proof we note that,

if 0 ≤ s < 1/2, we have

‖U(T, S)f‖Hs(R) ≤ ‖U(T, S)f‖L2(R) + C‖(−∆(T ))s/2U(T, S)f‖L2(R)

≤ ‖f‖L2(R) + ‖f‖Ḣs(R) +

∥∥∥∥ 1

τs+1
στA(s)σ∗τU(τ, S)f

∥∥∥∥
L4/3((S,T );L1(R))

≤ ‖f‖Hs(R) +
∥∥∥ τ

τs+1τ1/2
τ1/2U(τ, S)f

∥∥∥
L4/3((S,T );L∞(R))

≤ ‖f‖Hs(R) +
∥∥τ−s∥∥

L2(S,T )
‖U(τ, S)f‖L4((S,T );L∞(R) .

The Strichartz estimates and the condition s < 1/2 imply the inequality (4.6.11). On the other side, if

1/2 < s < 3/4, we use the interpolation Sobolev estimate

‖g‖L∞(R) ≤ C‖g‖
1/2

H1/2−δ(R)
‖g‖1/2

H1/2+δ(R)
,

for g = U(τ, S)f and 1/2 + δ < s. Hence, the inequality (4.6.9) and the interpolation Sobolev estimates

above combined with Young inequality

ab ≤ a2

2ε
+
εb2

2
, a, b > 0, ε > 0,

imply (4.6.11). This complete the proof of the Corollary.

Now we want to get Hα(R) estimates, with α > 1/2, for the operators involved in the expression of

the remainder Φrem(T ) (4.4.19).

We prove the fundamental lemmas to get the estimates (4.1.26) and (4.1.27).

Lemma 4.6.2. Let g ∈ Hα
odd(R). The perturbed group U(T, S) satisfies the estimates

‖[U(T1, T2)− I] g‖Hα(R) ≤ C|T1 − T2|θ/8 ‖g‖Hα+θ(R) (4.6.12)
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provided

α ∈ [0, 3/4), θ ∈ [0, 1],
4α

3
+ θ < 1, 0 ≤ T2, T1 ≤ 1. (4.6.13)

Proof. We can consider the operator

B(α, θ) = |T1 − T2|−θ/8(1−∆)α/2 [U(T1, T2)− I] (1−∆)−(α+θ)/2

and show that (4.6.12) follows from the fact that it is L2 − L2 bounded operator. We have also the

following simple observation: if

B(α, θ) : L2(R)→ L2(R)

is bounded for some α, θ ∈ R, then the operator

B(α+ iτ, θ + iτ) : L2(R)→ L2(R)

is bounded operator for any τ ∈ R. This observation and the Stein interpolation theorem guarantee that

it is sufficient to show the L2 boundedness of B(α, θ) at three points

(α, θ) = (0, 0), (α, θ) = (3/4− ε, 0), (α, θ) = (0, 1),

with ε > 0 arbitrarily small. Hence, we have to check (4.6.12) for the three points written above. The

estimate (4.6.12) is trivial in the point (0, 0). Moreover, it is valid for the case θ = 0, α ∈ [0, 3/4) due to
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the estimate (4.6.11) of Corollary 4.6.1. Therefore it only remains to prove the case (α, θ) = (0, 1), i.e.

‖[U(T1, T2)− I] g‖L2(R) ≤ C|T1 − T2|1/8 ‖g‖H1(R) , 0 < T2 < T1 ≤ 1. (4.6.14)

To verify this estimate we note that

‖[U(T1, T2)− I] g‖2L2(R) =

∫ T1

T2

d

dτ

(
‖[U(τ, T2)− I] g‖2L2(R)

)
dτ. (4.6.15)

We compute the derivative

d

dτ
‖[U(τ, T2)− I] g‖2L2(R) = lim

ε→0

∫
R

|(U(τ + ε, T2)− I) g|2 − |(U(τ, T2)− I) g|2

ε
dx,

and we get

d

dτ
‖[U(τ, T2)− I] g‖2L2(R) =

= 2<
(∫

R
i∆(τ)U(τ, T2)g · U(τ, T2)g dx

)
+ 2=

(∫
R
i∆(τ)U(τ, T2)g · g dx

)
= 2<

(
−i
∫
R

∣∣∣(−∆(τ))1/2U(τ, T2)g
∣∣∣2 dx)+ 2=

(
−i
∫
R

(−∆(τ))1/2U(τ, T2)g · (−∆(τ))1/2g dx

)
= 2=

(
−i
∫
R
(−∆(τ))1/2U(τ, T2)g · (−∆(τ))1/2g dx

)
.

Now, coming back to (4.6.15) and applying (4.6.10) we get

‖[U(T1, T2)− I] g‖2L2(R) ≤
∫ T1

T2

dτ

∣∣∣∣∫
R

(−∆(τ))1/2U(τ, T2)g · (−∆(τ))1/2g dx

∣∣∣∣
≤ ‖g‖H1(R)

∫ T1

T2

(
1 +

1

τ1/4

)
‖g‖H1(R) dτ

≤ ‖g‖2H1(R)

(
(T1 − T2) +

4

3
(T

3/4
1 − T 3/4

2 )

)
≤ C (T1 − T2)

1/4 ‖g‖2H1(R).

Hence we deduce (4.6.14). The Stein interpolation theorem proves that the estimate (4.6.12) holds for

any α ∈ [0, 3/4), α ∈ [0, 1] and θ < − 3
4α+ 1.

As consequence, we can justify the limits (4.4.14) and (4.4.15). More precisely, we have

Corollary 4.6.3. Let f ∈ Hα+θ
odd (R) and let F (T ) ∈ C

(
(0, 1];Hα+θ

odd (R)
)
, with α + θ < 3

4 , α > 1
2 and
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θ ≥ 0, such that

sup
T∈(0,1]

T θ/N‖F (T )‖Hα+θ
odd (R) ≤ C <∞, (4.6.16)

with N > 16. Then we have:

a) Given any S ∈ (0, 1] the function

T ∈ (0, 1] 7→ U(T, S)f (4.6.17)

can be extended as a Hölder continuous function in C0,θ/8 ([0, 1];Hα
odd(R)) ;

b) The function

T ∈ (0, 1] 7→
∫ 1

T

[U(T, S)− I]F (S)
dS

S
(4.6.18)

can be extended as a continuous function in C0,θ/8−θ/N ([0, 1];Hα
odd(R)) ;

c) The function

T ∈ (0, 1] 7→
∫ T

0

[U(0, S)− I]F (S)
dS

S
(4.6.19)

can be extended as a continuous function in C0,θ/8−θ/N ([0, 1];Hα
odd(R)) .

Proof. We shall prove the point a). We take 0 < T1 < T2 ≤ 1 and then we have the relation

U(T1, S)f − U(T2, S)f = [U(T1, T2)− I]U(T2, S)f.

Taking

α+ θ <
3

4
, α >

1

2
, θ ≥ 0,

and applying Lemma 4.6.2 we find

‖U(T1, S)f − U(T2, S)f‖Hα(R) ≤ C|T1 − T2|θ/8 ‖U(T2, S)f‖Hα+θ(R) .

So, the assumption

0 ≤ α+ θ <
3

4
,

and the inequality (4.6.11) of the Corollary 4.6.1 below imply

‖U(T1, S)f − U(T2, S)f‖Hα(R) ≤ C|T1 − T2|θ/8 ‖f‖Hα+θ(R) (4.6.20)
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and this completes the proof of the point a). To prove b) we note that

∫ 1

T1

[U(T1, S)− I]F (S)
dS

S
−
∫ 1

T2

[U(T2, S)− I]F (S)
dS

S
=

=

∫ T2

T1

[U(T1, S)− I]F (S)
dS

S
+

∫ 1

T2

[U(T1, S)− U(T2, S)]F (S)
dS

S
.

Hence, using (4.6.12) and (4.6.20) we have that

∥∥∥∥∫ 1

T1

[U(T1, S)− I]F (S)
dS

S
−
∫ 1

T2

[U(T2, S)− I]F (S)
dS

S

∥∥∥∥
Hα(R)

≤

≤ C
∫ T2

T1

(S − T1)θ/8

S
‖F (S)‖Hα+θ(R) + C

∫ 1

T2

(T2 − T1)θ/8
‖F (S)‖Hα+θ(R)

S
dS.

If we choose N > 16, we have that

∥∥∥∫ 1

T1
[U(T1, S)− I]F (S)dSS −

∫ 1

T2
[U(T2, S)− I]F (S)dSS

∥∥∥
Hα(R)

≤

≤ C|T1 − T2|θ/8−θ/N sup
T∈(0,1]

T θ/N‖F (T )‖Hα+θ(R)) +

+C|T1 − T2|θ/16 sup
T∈(0,1]

T θ/N‖F (T )‖Hα+θ(R)).

Similarly, we prove c). Indeed, if N > 8 we have that

∥∥∥∥∥
∫ T1

0

[U(0, S)− I]F (S)
dS

S
−
∫ T2

0

[U(0, S)− I]F (S)
dS

S

∥∥∥∥∥
Hα(R)

=

=

∥∥∥∥∥
∫ T2

T1

[U(0, S)− I]F (S)
dS

S

∥∥∥∥∥
Hα(R)

≤

≤ C|T1 − T2|θ/8−θ/N sup
T∈[0,1]

T θ/N‖F (T )‖Hα+θ(R).

4.7 Bound of the L∞ - norm

In this section we prove the Theorem 4.1.1, i.e. Theorem 4.1.2. In particular we are going to prove the a

priori estimates (4.1.27) and (4.1.26), when the initial datum φ1(x) = eix
2/4Ψ1(x) verifies the hypothesis

(4.1.13). Hence we are going to control the quantities on the left sides in (4.1.26) and (4.1.27). We recall

the expressions in (4.4.19) and (4.4.17) that define respectively Φrem and Φlead.
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Before starting with the proof, we need some additional estimates. Indeed, by the expression (4.4.19),

we note that we need estimates of the Sobolev norms of products of the type

g(x) = eiΘ(x)f(x),

for a real valued function Θ(x). For this purpose, we use the following equivalent norm of the Sobolev

space Hs(R) with 0 < s < 1,

‖g‖Hs(R) = ‖g‖L2(R) +

(∫
R

∫ 1

−1

∣∣∣∣g(x+ h)− g(x)

hs

∣∣∣∣2 dhdx|h|
)1/2

. (4.7.1)

The definition and the equivalence properties of Sobolev and other interpolation spaces are discussed

in details in [69], [59], [60].

Lemma 4.7.1. If Θ(x) is a real valued function and

Θ ∈ Hs(R), f ∈ Hs
odd(R) ∩ L∞odd(R),

for some s ∈ [0, 1), then

∥∥eiΘf
∥∥
Hs(R)

≤ C‖f‖Hsodd(R) + C‖Θ‖Hs(R)‖f‖L∞odd(R). (4.7.2)

By Sobolev embedding ( for s > 1
2 , ‖f‖L∞(R) ≤ Cs‖f‖Hs(R)),

∥∥eiΘf
∥∥
Hs(R)

≤ C(1 + ‖Θ‖Hs(R))‖f‖Hsodd(R). (4.7.3)

Proof. We use the inequality

∣∣eia1 − eia2
∣∣ ≤ |a1 − a2|, ∀a1, a2 ∈ R,

and we have the inequalities

∣∣∣eiΘ(x+h)f(x+ h)− eiΘ(x)f(x)
∣∣∣ ≤ ∣∣∣eiΘ(x+h)f(x+ h)− eiΘ(x+h)f(x)

∣∣∣+
+
∣∣∣eiΘ(x+h)f(x)− eiΘ(x)f(x)

∣∣∣ ≤ |f(x+ h)− f(x)|+ |Θ(x+ h)−Θ(x)| ‖f‖L∞(R)
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so we can apply the equivalence property (4.7.1) to obtain (4.7.2) and complete the proof of the Lemma.

Finally, in order to prove the estimates (4.1.26), (4.1.27), we will also need the following Lemma.

Lemma 4.7.2. If Φ(T ) is a solution to the integral equation (4.4.11), i.e.

Φ(T ) = U(T, 1) (φ1)± i
∫ 1

T

U(T, S)Φ(S)|Φ(S)|2 dS
S
,

then for any s ∈ (1/2, 3/4) we have

‖Φ(T )‖Hs(R) ≤ C‖φ1‖Hs(R) + C

∫ 1

T

‖Φ(S)‖Hs(R)‖Φ(S)‖2L∞(R)

dS

S
. (4.7.4)

Proof. The estimate (4.7.4) follows directly from the estimate (4.6.11) of the Corollary 4.6.1 and from

the fractional Leibnitz rule

‖fg‖Hs(R) ≤ C‖f‖Hs(R)‖g‖L∞(R) + C‖g‖Hs(R)‖f‖L∞(R), (4.7.5)

(more details on fractional Leibnitz rule can be found in [48], [50] or [35]). This completes the proof of

the Lemma.

Remark 4.7.3. A simple computation shows that

∫ 1

T

‖Φ(S)‖Hs(R)‖Φ(S)‖2L∞(R)

dS

S
≤ C 1

T θ/N
sup
S∈[0,1]

(
Sθ/N‖Φ(S)‖Hs(R)‖Φ(S)‖2L∞(R)

)
.

Indeed, we have that

∫ 1

T

‖Φ(S)‖Hs(R)‖Φ(S)‖2L∞(R)

dS

S
≤

≤ C sup
S∈(0,1)

(
Sθ/N‖Φ(S)‖Hs(R)

)
‖Φ‖L∞((0,1);L∞(R))

∫ T

1

dS

Sθ/N+1

≤ C 1

T θ/N
sup

S∈(0,1)

(
Sθ/N‖Φ(S)‖Hs(R)

)
‖Φ‖L∞((0,1);L∞(R)).

Now we can start with the proof of the inequality (4.1.27).
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First of all, we note that from Corollary 4.6.3, we have

‖U(T, S)f − U(0, S)f‖Hα(R) ≤ CT θ/8‖f‖Hα+θ
odd (R), (4.7.6)

provided f ∈ Hα+θ
odd (R) and 0 < T ≤ S ≤ 1. Taking into account Corollary 4.6.3 b) and c), we get

‖L(f, F )(T )‖Hα(R) ≤ CT θ/8‖f‖Hα+θ(R) + CT θ/8−θ/N sup
S∈(0,1]

Sθ/N‖F (S)‖Hα+θ(R), (4.7.7)

where L(f, F )(T ) is defined in (4.4.18). Replacing F by |Φ|2Φ and using the fractional Leibnitz rule

(here we need α+ θ < 1)

‖|Φ|2Φ‖Hα+θ(R) ≤ C‖Φ‖Hα+θ(R)‖Φ‖2L∞(R), (4.7.8)

we obtain

‖L(f, |Φ|2Φ)(T )‖Hα(R) ≤ CT θ/8‖f‖Hα+θ(R) + (4.7.9)

+ CT θ/8−θ/N supS∈(0,1]

(
Sθ/N‖Φ(S)‖Hα+θ(R)‖Φ(S)‖2L∞(R)

)
.

Our next step is to estimate

∫ 1

T

G(S)
|Φ|2(S)

S
exp (±i(Θ(T )−Θ(S))) dS,

where Θ(T ) is the real-valued function defined in (4.1.25).By (4.7.3), we have

‖
∫ 1

T

e±i[Θ(T )−Θ(S)]L(f, |Φ|2Φ)(S)
|Φ|2(S)

S
dS‖Hα(R) ≤ (4.7.10)∫ 1

T

(1 + ‖Θ(T )−Θ(S)‖Hα(R))‖L(f, |Φ|2Φ)(S)‖Hα(R)‖Φ(S)‖L∞(R)‖Φ(S)‖Hα(R)
dS

S
.

This necessitates estimating ‖Θ(T )−Θ(S)‖Hα(R). We have by the fractional Leibnitz rule

‖Θ(T )−Θ(S)‖Hα(R) ≤
∫ S

T

‖Φ(z)Φ̄(z)‖Hα(R)
dz

|z|
≤ (4.7.11)

≤ C| ln(T )| sup
z∈[T,S]

(‖Φ(z)‖Hα(R)‖Φ(z)‖L∞(R)),
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since 0 < T < S ≤ 1. To simplify the notation we put for a while

K2 = K2(‖Φ‖Hα(R)) = sup
z∈[T,S]

(‖Φ(z)‖Hα(R)‖Φ(z)‖L∞(R)),

K3 = K3(‖Φ‖Hα+θ(R)) = sup
S∈(0,1]

[
Sθ/16‖Φ(S)‖Hα+θ(R)‖Φ(S)‖2L∞(R)

]
.

Moreover we note that

K2 ≤
1

Sθ/N
K̃2 =

1

Sθ/N
sup
S∈[0,1]

(
Sθ/N‖Φ(S)‖Hα+θ(R)‖Φ(S)‖L∞(R)

)
.

Hence, entering the estimate (4.7.11) together with (4.7.10) and (4.7.9) we get

‖
∫ 1

T

e±i[Θ(T )−Θ(S)]L(φ1, |Φ|2Φ)(S)
|Φ|2(S)

S
dS‖Hα(R) ≤

≤
∫ 1

T

(
1 + | ln(T )| K̃2

Sθ/N

)
K̃2

Sθ/N

(
Sθ/8‖φ1‖Hα+θ(R) + Sθ/8−θ/NK3

) dS
S
.

So, choosing N big enough the following estimate holds

‖
∫ 1

T

e±i[Θ(T )−Θ(S)]L(φ1, |Φ|2Φ)(S)
|Φ|2(S)

S
dS‖Hα(R) ≤ (4.7.12)

≤ C
(

1 + | ln(T )|K̃2

)
K̃2

(
‖φ1‖Hα+θ(R) +K3

)
.

On the other side, we note that, the control of the L∞ norm of the term above is easier. Indeed, we

have that

‖
∫ 1

T

e±i[Θ(T )−Θ(S)]L(φ1, |Φ|2Φ)(S)
|Φ|2(S)

S
dS‖L∞(R) ≤ (4.7.13)

≤ C‖Φ‖2L∞([0,1]×R)

(
‖φ1‖Hα+θ(R) +K3

)
.

Thus, it becomes clear that we need an estimate of the term

sup
S∈(0,1]

(
Sθ/N‖Φ(S)‖Hα+θ(R)

)
, (4.7.14)

where N is chosen enough big. For the purpose we shall apply the result of Lemma 4.7.2. Indeed, turning
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back to the estimate (4.7.14), we find

sup
T∈(0,1]

(
T θ/N‖Φ(T )‖Hα+θ(R)

)
≤ C‖φ1‖Hα+θ(R)+

+C sup
S∈(0,1]

(
Sθ/N‖Φ(S)‖Hα+θ(R)

)
‖Φ‖2L∞((0,1]×R).

Setting

|||Φ|||α,θ = sup
T∈(0,1]

(
T θ/N‖Φ(T )‖Hα+θ

odd (R)

)
+ ‖Φ‖L∞((0,1]×R), (4.7.15)

we can rewrite the last estimate as

sup
T∈(0,1]

(
T θ/N‖Φ(T )‖Hα+θ

odd (R)

)
≤ C‖φ1‖Hα+θ

odd (R) + C|||Φ|||3α,θ. (4.7.16)

Now, combining the estimates (4.7.9) and (4.7.12) and using the notation in (4.7.15), we deduce

‖[Φ(T )− Φlead(T )]‖Hαodd(R) ≤CT
θ/8‖φ1‖Hα+θ(R) + CT θ/8−θ/N |||Φ|||3α,θ+

+ C
(

1 + | ln(T )||||Φ|||2α,θ
)
|||Φ|||2α,θ

(
‖φ1‖Hα+θ(R) + |||Φ|||3α,θ

)
.

On the other side, using (4.7.13), we can easily estimate the L∞ norm of the reminder as follows

‖Φ(T )− Φlead(T )‖L∞(R) ≤ C‖φ1‖Hα+θ(R) + C|||Φ|||3α,θ + C|||Φ|||2α,θ
(
‖φ1‖Hα+θ(R) + |||Φ|||3α,θ

)
.

Since T θ/N | ln(T )| is bounded for T ∈ [0, 1], we have that

|||Φrem|||α,θ ≤ C‖φ1‖Hα+θ(R) + C|||Φ|||3α,θ + C(1 + |||Φ|||α,θ)|||Φ|||
2
α,θ(ε+ |||Φ|||3α,θ).

Now we want to estimate the leading term (4.1.24). Using the established estimates for the perturbed

group U(T, S), we get

‖Φlead(T )‖L∞(R) ≤ C‖φ1‖Hα+θ(R) + C|||Φ|||3α,θ,

and

‖Φlead(T )‖Hα(R) ≤ C
(

1 + | ln(T )||||Φ|||2α,θ
)(
‖φ1‖Hα+θ(R) + |||Φ|||3α,θ

)
.
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From the previous estimates we conclude that

|||Φ|||α,θ ≤ C‖φ1‖Hα+θ(R) + C|||Φ|||3α,θ + C
(

1 + |||Φ|||α,θ
)
|||Φ|||2α,θ(‖φ1‖Hα+θ(R) + |||Φ|||3α,θ).

Provided that the initial data φ1(x) = eix
2/4ψ1(x) verify

‖φ1‖Hα+θ(R) ≤ Cε,

with ε small enough, we have the uniform bound

|||Φ|||α,θ ≤ Cε,

for any α ∈ (1/2, 3/4) and θ ∈ [0, 1] sufficiently small such that

3/4 > α+ θ = s > 1/2.
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Appendix A

Functional spaces and classical

embeddings

One of the main point when we work with PDEs is to set the problem in the appropriate functional

spaces. Since the initial data and the solutions of the evolution equations are functions that model

waves, we need to set the problem in some Banach (or Hilbert) spaces able to quantify the size of these

functions in terms of measure of their integrability and of their derivability.

We start enumerating the definitions of the functional spaces used in this work. In the following

we use the letters s, k, α as regularity indices and the letters p, q to denote integrability indices. Let

f(x) : Rn → C be a Borel-measurable functions and n ∈ N, n ≥ 1. We recall the following spaces.

- Lebesgue spaces: Lp(Rn) =
{
f |‖f‖Lp(Rn) <∞

}
,

‖f‖Lp(Rn) =

(∫
Rn
|f |p dx

)1/p

, 1 ≤ p <∞,

‖f‖L∞(Rn) = supessRn |f |;

- Schwartz spaces:

S(Rn) = {f ∈ C∞(Rn) |a(x)P (D)f(x) ∈ L∞(Rn)} ,

for all a, P polynomial functions. Here Dα = ∂α1
x1
. . . ∂αnxn with α = (α1, . . . , αn) ∈ Nn;
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- Hölder spaces: Ck,α(Rn) = {f | fcontinuous, ‖f‖Ck,α <∞}, k ∈ N, 0 < α < 1,

‖f‖C0,α(Rn) = sup
x∈Rn

|f(x)|+ sup
x,y∈Rn,x 6=y

|f(x)− f(y)|
|x− y|α

‖f‖Ck,α(Rn) =
∑
|β|≤k

‖Dβf‖C0,α(Rn);

- Sobolev spaces: W k,p(Rn) =
{
f |‖f‖Wk,p(Rn) <∞

}
, k ∈ N, 1 ≤ p <∞,

‖f‖Wk,p(Rn) =

‖f‖pLp(Rn) +
∑
|α|≤k

‖Dαf‖pLp(Rn)

1/p

,

where Dα denotes the weak derivatives. Similarly we can define the spaces W s,p(Rn), s ∈ R

considering the fractional derivative Ds;

- Tempered distributions:

S′(Rn) = {L : S(Rn)→ R | L is a linear continuous functional in S (Rn)} .

Since we are basically dealing with waves function, it is helpful to introduce functional spaces that

control the regularity of the functions in the frequency space. Thanks to the Fourier transform

and to the classical localization procedure in frequency space (Paley-Littlewood theory) we can

introduce the Sobolev and Besov norms (semi-norms) and their homogeneous counterparts. Then

the relatives functional spaces are the set of the tempered distributions f ∈ S′(Rn) such that the

connected norm is finite.

- Sobolev and homogeneous Sobolev norms:

‖f‖Hs(Rn) = ‖F−1[〈ξ〉sFf ]‖L2(Rn) = ‖〈ξ〉sFf‖L2(Rn), s ∈ R,

‖f‖Ḣs(Rn) = ‖F−1[|ξ|sFf ]‖L2(Rn) = ‖|ξ|sFf‖L2(Rn), s ∈ R,

where 〈ξ〉 =
√

(1 + |ξ|2), and F is the Fourier transform defined in (B.1.2),

‖f‖Ḣsp(Rn) =

∥∥∥∥∥
∥∥∥∥2ksϕ

(√
H0

2j

)
f

∥∥∥∥
`2k

∥∥∥∥∥
Lp(Rn)

, s ≥ 0, 1 ≤ p ≤ ∞;
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- Homogeneous Besov norms:

‖f‖Ḃsp(Rn) =

∥∥∥∥∥2ks
∥∥∥∥ϕ(√H0

2j

)
f

∥∥∥∥
Lp(Rn)

∥∥∥∥∥
`2k

, s ≥ 0, 1 ≤ p ≤ ∞.

Here ϕ(ξ) ∈ C∞0 (Rr 0) is a non-negative even function, such that

∑
j∈Z

ϕ

(
ξ

2j

)
= 1 , ∀ξ ∈ R \ 0,

H0 = −∂2
x and F

(
ϕ(2−j

√
H0)f

)
(ξ) = ϕ(2−jξ)f̂(ξ).

Figure A.0.1: Functional Spaces

We can also define more refined spaces if we introduce a second integrability index. Spaces of this

kind are for instance the Lorentz spaces Lp,q(Rn), or the two indices Sobolev and Besov spaces

Ḣs
p,q(Rn), Ḃsp,q(Rn). One can see [7] and [2] for a definition of these spaces. For a more complete

diagram of the functional spaces one can see Terence Tao’s web site, section ”A type diagram for

function spaces”.

An important point is to understand the relations between the spaces. It is well known that there

https://terrytao.wordpress.com/tag/besov-spaces/
https://terrytao.wordpress.com/tag/besov-spaces/
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Figure A.0.2: Functional spaces

are no inclusions between spaces with different inegrability index, i.e. in general Lp(Rn) * Lq(Rn)

and Lq(Rn) * Lp(Rn) if 1 ≤ p 6= q ≤ ∞. Indeed, if we fix the integrability index p, the spaces with

more regularity are contained in the spaces with less regularity, for instance, H2(Rn) ↪→ H1(Rn).

Now we are interested to recall the most important embeddings between spaces with different

integrability and regularity indices. One can find a brief exposition of the most relevant Sobolev

inequalities in Section 1.3 and Section 1.4 in [13]. For a proof of these inequalities the classical

books suggested are [21], [7] and references therein.

The critical Sobolev embeddings

Hn/2(Rn) ↪→ Lp(Rn),

holds for any 2 ≤ p <∞. Representing this critical embedding in the plane (1/p, s), we note that

it is possible to recover all the numerology of the main Sobolev embeddings from this.

Indeed, fixed a Sobolev space W s1,p1(Rn) (similarly for Ḣs1
p1

, Ḃs1p1
), the numerology of the relative

sharp embedding can be recovered intersecting the line s − s1 = n(1/p − 1/p1) with the s-axis if

s1 > n/p1 or intersecting the line s − s1 = n(1/p − 1/p1) with the 1/p-axis if s1 < n/p1. In this
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Figure A.0.3: Critical Sobolev embedding

way, we can easily remember the well known Sobolev embeddings with this graphic method:

s < n/p W s,p(Rn) ↪→ Lq(Rn), p ≤ q ≤ p∗, p∗ =
np

n− sp
;

s = n/p W s,p(Rn) ↪→ Lq(Rn), p ≤ q <∞;

s > n/p W s,p(Rn) ↪→ Ck,α(Rn), k = [s− n/p], α = s− n/p− k.

Figure A.0.4: Sobolev embeddings

We note that any pair (1/p, s) does not identify a unique functional space but several of them.

Here we just mention the relations between homogeneous Sobolev and homogeneous Besov spaces

identified by the same pair (1/p, s). Firstly it is well known that Ḣs
2(Rn) ≈ Ḃs2(Rn) ≈ Ḣs(Rn)
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(one can see Section 1.4 in [13]). In general, the following relations are satisfied:

Ḣs
p(Rn) ↪→ Ḃsp(Rn), 1 < p ≤ 2,

Ḃsp(Rn) ↪→ Ḣs
p(Rn), 2 ≤ p <∞.

Figure A.0.5: Homogeneous Sobolev and Homogeneous Besov spaces

The spaces introduced up to now are spaces that take into account the spacial variable x ∈ Rn.

When we study the evolution equations, is appropriate to introduce the Bochner spaces that

consider also the time variable. Let us denote with the generic notation (Z(Rn), ‖ · ‖Z(Rn)) one of

the Banach spaces introduced above. Let 0 < T ≤ ∞, n ∈ N, n ≥ 1 and let g(t, x) : [0, T ]×Rn → C.

The Bochner spaces are the spaces X([0, T ],Rn) =
{
g | ‖g‖X([0,T ],Rn) <∞

}
, where ‖ · ‖X([0,T ],Rn)

denotes one of the following norms:

‖g‖Lq([0,T ],Z(Rn)) =

(∫ T

0

‖g(t)‖qZ(Rn) dt

)1/q

, 1 ≤ q <∞;

‖g‖L∞([0,T ],Z(Rn)) = supess[0,T ]‖g(t)‖Z(Rn);

‖g‖C([0,T ],Z(Rn)) = sup
[0,T ]

‖g(t, ·)‖Z(Rn).
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Appendix B

Classical latter for NLS

In this appendix we recall some general facts about the dispersive PDE. In particular we summarize the

main ideas and the main tools to approach the linear and the nonlinear Schrödinger Cauchy problem to

get local and global well posedness results. The reader can find an in-depth discussion of these arguments

in [13], [67], [63].

B.1 A dispersive model: Linear Schrödinger equation

The linear Schrödinger equation

i∂tΨ +
1

2
∂2
xΨ = 0, (t, x) ∈ R× R, (B.1.1)

is the Quantum Mechanics model to describe the evolution of a free particle in a nonrelativistic regime

and it is the classical model to explain the dispersive equations. According to this presentation, we will

consider only the one dimensional case.

If we are on the whole space R, we can solve the equation (B.1.1) by means of the Fourier transform.

We define the Fourier transform of f ∈ S (R) and its inverse as follows:

F [f ](ξ) = f̂(ξ) =
1

(2π)1/2

∫
R
e−ix·ξf(x) dx, (B.1.2)

F−1[f ](x) = f̌(x) =
1

(2π)1/2

∫
R
eix·ξf(ξ) dξ,

and then we can extend this operator on tempered distribution space S′(R).
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The space Fourier transform is a kind of change of variable able to simplify the problem.

Let f ∈ S(Rn) be the initial datum. It can be regarded as a wave packet

f(x) =
1

(2π)1/2

∫
R
eixξ f̂(ξ) dξ.

Then, thanks to Fourier transform, by ordinary differential equation theory, we can prove that the

Cauchy problem 
i∂tΨ + 1

2∂
2
xΨ = 0

Ψ(0, ·) = f,

has a unique solution

Ψ(t) = S(t)f,

where

S(t) = ei
∂2
x
2 t : S(Rn)→ S(Rn),

is defined via Fourier transform as follows:

S(t)f(x) = F−1(e−i
|ξ|2

2 tf̂(ξ))(x) =
1

(2π)1/2

∫
R
ei(xξ−

ξ2

2 t)f̂(ξ) dξ. (B.1.3)

We can interpret the solution (B.1.3) as a superposition of plane waves, where ξ is the wave number

(equivalently the momentum by De Broglie relation), ω = ξ2/2 is the angular frequency (or equivalently

the energy), f̂(ξ) is the amplitude. We can see that the phase velocity, vp = ω(ξ)
ξ , depends on the wave

number, so, waves with different wave number go to different velocities. The group velocity, vg = ∂ξω(ξ),

is the velocity at which energy is conveyed along the wave. If the group velocity vg depends on ξ, as in

this case, the equation is dispersive and the relation ω = ω(ξ) is called the dispersive relation.

We can think to the dispersive PDEs as to the equations which solutions are waves that spread out

spatially as long as no boundary conditions are imposed as a result of different frequency components of

the wave packet travelling at different velocities.

Always informally, we can also characterize the dispersive PDEs as follows. Let us consider the

general linear evolution equation

∂tΨ = iP (−i∂x)Ψ (B.1.4)

where P (−i∂x) is a linear differential operator of symbol P (ξ), and F (P (−i∂x)Ψ)(ξ) = P (ξ)Ψ̂(ξ). Then,
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using the space-time Fourier transform

Ψ̃(τ, ξ) =
1

2π

∫
R

∫
R
e−i(tτ+xξ)Ψ(t, x) dt dx,

we get

(iτ − iP (ξ))Ψ̃(τ, ξ) = 0.

The space-time Fourier transform of the solution has to be supported on the surface

Σ = {(τ, ξ) | τ = P (ξ)}

that lives in the phase space R × R (energy - momentum). Hence, always informally, we can also say

that the evolution equation (B.1.4) is dispersive if the surface Σ is curved (the energy is not a linear

function of the momentum). The relation τ = τ(ξ) = iP (iξ) is called the dispersive relation.

To work with the nonlinear problem a preliminary step is to solve the non homogeneous Cauchy

problem 
i∂tΨ + 1

2∂
2
xΨ = F (t, x), (t, x) ∈ R+ × R,

Ψ(0, ·) = 0.

Interpreting the driving force F as a superposition of initial pulses in time we can produce the formula

for the solution. Indeed, we rewrite the driving force as follows

F (t, x) =

∫ ∞
0

F (s, x)δ(t− s) ds

and we look for a partial solution Ψ(t, x; s) such that

∂tΨ(t, x; s) = −iF (s, x)δ(t− s) + i
1

2
∂2
xΨ(t, x; s).

Suppose that the system is completely at rest in the distant past and that at some time s the driving
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force F (t, x) starts to operate. Hence, we look for the partial solution Ψ(t, x; s) such that


Ψ(t, x; s) = 0 t < s

Ψ(t, x; s) = −iF (s, x) t = s

i∂Ψ + ∂2
xΨ = 0 t > s.

By the Duhamel’s principle we have that the solution of the non homogeneous problem Ψ(t, x), is

obtained as a superposition of the partial solution Ψ(t, x; s)

Ψ(t, x) =

∫ ∞
0

Ψ(t, x; s) ds = −i
∫ t

0

S(t− s)F (s, x) ds.

This principle will turn to be crucial to introduce the definition of the solution of the Cauchy problem

in the nonlinear contest. The ideas summarized in this section are broadly discussed in [21], [61], [23].

B.2 Abstract formalization of the nonlinear problem

In this section we recall the classical theory to prove the well-posedness of the nonlinear problem.

Let us consider the nonlinear Cauchy problem


i∂tΨ + 1

2∂
2
xΨ = N(Ψ)

Ψ(0) = f,

(B.2.1)

where N is a nonlinear function with respect to Ψ. In particular, since we are considering N nonlinear

only with respect to Ψ but linear with respect to all its derivatives, the PDE is said to be semilinear.

The semilinear Schrödinger type equations are employed to model many quantum physical phenomena.

Since it is a mathematical model, many physical laws have been simplified, hence it is necessary to verify

the well-posedness of the problem before passing to any other questions.

First of all we have to define what we mean by a solution of the problem. So, we have to introduce

suitable Hilbert space H in which the initial data live. Then, in order to have the well posedness of the

problem, we want that the following features have to be satisfied:

- The model is coherent, i.e. the solution exists at least for short time T > 0 and its evolution in

time lives in the same Hilbert space of the initial data, Ψ(t, x) ∈ C([0, T ], H);
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- The mathematical model fits well in the numerical simulations, i.e. the uniqueness and the stability

of the solution are satisfied.

Let H be an Hilbert space such that the initial datum f ∈ H (keep in mind H = Hs(R)). Let X be

a Banach space such that the solution Ψ(t, x) ∈ X (keep in mind X = C([0, T ], H)) for some positive

time T > 0. Now we want to formalize the definition of the solution of the Cauchy problem (B.2.1). Let

us introduce the operators T and T ∗:

T : H → X

f 7→ S(·)f,

T ∗ : X∗ → H

F 7→
∫
R
S(−s)F (s) ds,

and we define a restricted version of the operator TT ∗ as follows:

[(TT ∗)RF ](t) =

∫ t

0

S(t− s)F (s) ds.

Definition B.2.1. Let f ∈ H and let H be the operator defined as follows

H : X → X

H (Ψ) = Tf − i(TT ∗)RN(Ψ).

We say that Ψ ∈ X is a solution of the nonlinear Cauchy problem (B.2.1) if Ψ is a fixed point of the

map H , i.e. H (Ψ) = Ψ.

Once we assume the initial data f ∈ H and once we define the notion of solution we can deal with

the following classical problems:

- Local well possedness: Check if there exists 0 < T < ∞ such that the (B.2.1) admits a unique

solution Ψ ∈ C([0, T ], Hs(R)). Check if the solution depends continuously on the initial data.

- Global well posedness: Check if the maximal existence time can be extended to T =∞.

- Behaviour near the maximal time: Understand as the solution looks near the maximal time and if

scattering or blow up phenomena can occur.
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B.3 Tool box: Fixed point theorem - Dispersive estimates -

Strichartz estimates

In this section we collect the main tools useful to prove well posedness theorems with the techniques

introduced by Kato [47]. Moreover, we just give a sketch to underline the main keys and to show how

these tools are used.

The main machinery used to prove well posedness is the fixed point theorem.

Theorem B.3.1 (Banach’s fixed point theorem: Théorème 6, [4]). Let (X, d) be a complete metric space

and H : X → X. If there erists a constant K < 1 such that

d(H (Ψ1),H (Ψ2)) < Kd(Ψ1,Ψ2)

for all Ψ1,Ψ2 ∈ X, then H has a unique fixed point Ψ ∈ X; i.e., there exists a unique Ψ ∈ X such that

H ∈ X.

The key properties of this theorem used to prove local well posedness are the following:

- (X, d) is a complete metric space;

- H is a contraction;

- The proof of existence is obtained by successive approximations (Picard iteration).

Here we state the fixed time estimates (Dispersive estimates):

Theorem B.3.1. Let f ∈ L1(Rn) ∩ L2(Rn), 1 < p < ∞, and 1
p + 1

p′ = 1. Then, there exists a postive

constant C > 0, such that the Schrödinger group S(t) = T (·)(t) satisfies the following estimates:

‖Tf(t)‖L∞(Rn) ≤ C
1

tn/2
‖f‖L1 ,

‖Tf(t)‖L2(Rn) = ‖f‖L2(Rn),

‖Tf(t)‖Lp(Rn) ≤ C
1

tn/2−n/p
‖f‖Lp′ .

These estimates give an a priori precise decay-rate on the linear solution and they have some strong

consequences about the boundeness of some global norms (space-time) of nonlinear solution. On the

other hand, these estimates is not quite handy for dealing with the nonlinearity.



B.3. Tool box: Fixed point theorem - Dispersive estimates - Strichartz estimates 152

Indeed, for the nonlinear case, the space-time integrability properties (Strichartz estimates) will turn

to be crucial.

Definition B.3.2. Let n ≥ 2. We say that a couple of number (q, r) is Schrödinger admissible if the

following relations hold:

2

q
=
n

2
− n

r
, q ≥ 2, (q, r, n) 6= (2,∞, 2).

Let n = 1. We say that a couple of number (q, r) is Schrödinger admissible if the following relations

hold:

2

q
=

1

2
− 1

r
, q ≥ 4.

The pairs (p, q) = (2, 2n
n−2 ) in dimension n ≥ 2 are called endpoint pairs.

Theorem B.3.3 (Strichartz estimates). For any (q, r), (q̃, r̃) Schrödinger admissible pairs one has the

homogeneous Strichartz estimates

(T ) ‖Tf(t)‖Lq(R,Lr(Rn)) ≤ C‖f‖L2(Rn);

the dual homogeneous Strichartz estimates

(T ∗) ‖T ∗F‖L2(Rn) ≤ C‖F‖Lq̃′ (R,Lr̃′ (Rn));

the inhomogeneous (retarded) Strichartz estimates

(TT ∗) ‖(TT ∗)RF‖Lqt (R,Lrx(Rn)) ≤ C‖F‖Lq̃′ (R,Lr̃′ (Rn)).

The proof of this theorem is due to different authors. In the original version, elaborated by Strichartz

in [65], the statement is proved in the case q = r = 2(n+2)
n and q̃′ = r̃′ = q′ = r′ = 2(2+n)

n+4 . The non-

endpoint case is proved in [32] and the end-point case is proved in [49]. For the nonlinear application is

crucial the fact that the pairs (q, r) and (q̃, r̃) are not related to each other in the (TT ∗) estimate.

Remark B.3.4. We note that, the Schrödinger operator T (·)(t) commutes with the Fourier multipliers like

|D|s = F−1(|ξ|sF ) or 〈D〉s = F−1(〈ξ〉sF ). Hence, we easily get Strichartz estimates for Sobolev spaces

substituting the spaces L2(Rn), Lr(Rn), Lr̃
′
(Rn) with the Sobolev spaces Hs(Rn), Hs

r (Rn), Hs
r̃′(Rn) or
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their homogeneous counterparts Ḣs(Rn), Ḣs
r (Rn), Ḣs

r̃′(Rn). Similarly, using the Minkowski’s inequality

∥∥‖gk(t)‖`2(Z)

∥∥
Lq(R)

≤
∥∥‖gk(t)‖Lq(R)

∥∥
`2(Z)

,

where q ≥ 2, combined with the fact that the Schrödinger group commutes with the Fourier multipliers,

we get the Strichartz estimates in Besov and homogeneous Besov spaces.

We note that the Strichartz estimates in homogeneous Besov spaces implies the Strichartz estimates

in homogeneous Sobolev spaces since the following embeddings hold

Ḃsp(Rn) ↪→ Ḣs
p(Rn), 2 ≤ p <∞,

Ḣs
p(Rn) ↪→ Ḃsp(Rn), 1 < p ≤ 2.

B.4 Semilinear Schrödinger equation and classical results

We recall some classical results about the model case of the pure power nonlinearity, well known as

semilinear Schrödinger:


i∂tΨ + 1

2∂
2
xΨ = α|Ψ|γ−1Ψ,

Ψ(0) = f,

(B.4.1)

with γ > 1 and α = ±1.

These equations are one of the universal model to describe the evolution of a wave packet in a weakly

nonlinear and dispersive media. In particular, the case γ = 3 occurs to model different physical phe-

nomena: the propagation of waves in optical fibers for n = 1, the focusing of laser beams for n = 2, the

Bose-Einstain condensation phenomenon for n = 3, see [66], [46] and references therein.

As we can see in (B.4.1), the evolution is a competition between the linear part and the nonlinear one.

So we can expect that the evolution can assume different behaviours: a linearly dominated behavior or a

nonlinearly dominated behavior or also an intermediate behavior. In order to understand the behaviour,

we shall classify the nonlinearity. Two basic features are crucial: the conservation laws and the natural

scale-invariance of the equation. The structure of (B.4.1), in H1(R), implies the mass conservation

‖Ψ(t)‖L2(R) = ‖Ψ(0)‖L2(R),
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and the energy conservation

E(Ψ(t)) =
1

4
‖∇Ψ(t)‖2L2(R) ±

1

γ + 1
‖Ψ(t)‖γ+1

Lγ+1(R) = E(Ψ(0)).

Using the scale-invariance for (B.4.1)

Ψλ(t, x) = λ2/(1−γ)Ψ(
t

λ2
,
x

λ
), (B.4.2)

where λ > 0, we can classify the conservation laws as subcritical, critical (scale-invariant), or supercritical.

In particular, in one dimension, using L2(R)-conservation (similarly for Hs(R) conservation), we have

‖Ψλ(t, ·)‖L2(R) = λ
5−γ

2(1−γ) ‖Ψ(t, ·)‖L2(R). (B.4.3)

We can give the following definition:

Definition B.4.1. Let γ > 1, we say that

- γ is L2-subcritical if 1 < γ < 5,

- γ is L2-critical if γ = 5,

- γ is L2-supercritical if γ > 5.

The adjective critical in this context concerns with the well posedness theory in L2. Indeed, the

scaling relation (B.4.3), could be interpreted as follows: in subcritical case, the norm of the initial data

can be made small while the interval of time is made longer, in the critical case, the norm is invariant

while the interval of time is made longer or shorter and finally in supercritical case, the norm grows as

the time interval gets longer. In the last two cases we could find some problems for the well posedness.

Another important point is to distinguish if the equation is focusing (α = −1) or defocusing (α = 1).

We can not make an exact theoretical distinction, but, in the defocusing case, since the nonlinearity

has the same sign as the linear component, we guess that the dispersive effects of the linear equation

are amplified. On the contrary, in the focusing case the dispersive effects can be attenuated, halted

(stationary or travelling waves) or reversed (blow up of solution in finite time). For some literature on

local existence results in the subcritical case, one can see [30], [47], [70] and [13]. For local existence in

the critical case, one can see [14], [13]. Finally, for the global critical case one can see [31], [13].
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Now we state a fundamental result based on the fixed point method and we give a sketch of the

strategy of the proof underlining where the critical effects come out. As we will see, the problem of the

well-posedness is closely intertwined with the quantitative estimates (a priori estimates).

Theorem B.4.2 (Tsutsumi [70]). Assume that 1 < γ < 1 + 4/n. Then, for any f ∈ L2(Rn) there exists

a time T = T (γ, n, ‖f‖L2(Rn)) > 0 such that (B.4.1) has a unique local solution Ψ(t):

(i) Ψ ∈ C([0, T ], L2(Rn)) ∩ Lq([0, T ], Lr(R)), for any (q, r) admissible pair;

(ii) Ψ(t) = Tf(t)− i(TT ∗)R(|Ψ|γ−1Ψ)(t);

(iii) Ψ depends continuosly on f in the following sense: Let fn, f ∈ L2(Rn) be such that fn → f, (n→

∞), in L2(Rn). Let Ψ ∈ C([0, T ], L2(Rn)) be the solution of (NLS) with initial data f . Then, the

solutions Ψn(t) with initial data fn there exist in [0, T ] and Ψn → Ψ, (n→∞), in C([0, T ], L2(Rn));

(iv) ‖Ψ(t)‖L2(Rn) = ‖f‖L2(Rn), for each t ∈ [0, T ].

We outline here the strategy of the proof since it is a classical argument.

Let f ∈ L2(Rn) and let (q, r) be an admissible pair. We take T be a positive time (it will be

determined later), and we consider the functional space X = L∞([0, T ], L2(Rn)) ∩ Lq([0, T ], Lr(Rn)).

We define H : X → X

H (Ψ) = Tf − i(TT ∗)RN(Ψ),

where N(Ψ) = α|Ψ|γ−1Ψ. The first step is to introduce the ball XB

XB =
{

Ψ ∈ X|‖Ψ‖L∞([0,T ],L2(Rn)) + ‖Ψ‖Lq([0,T ],Lr(Rn)) ≤ 2C‖f‖L2(Rn)

}
,

with C > 0 and to prove that (XB , d) is a complete metric space, where d is the distance defined as

follows

d(Ψ1,Ψ2) = ‖Ψ1 −Ψ2‖XB = ‖Ψ1 −Ψ2‖L∞([0,T ],L2(Rn)) + ‖Ψ1 −Ψ2‖Lq([0,T ],Lr(Rn)).
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Then we need to show that H : XB → XB is a contraction, i.e. we need to verify the following properties

(1) ‖Tf‖XB ≤ C‖f‖L2(Rn);

(2) ‖N(Ψ)‖Lq̃′ ([0,T ],Lr̃′ (Rn)) ≤ CT
4+n(1−γ)

4 ‖Ψ‖γLq([0,T ],Lr(Rn));

(3) ‖(TT ∗)RN(Ψ)‖XB ≤ C‖N(Ψ)‖Lq̃′ ([0,T ],Lr̃′ (Rn));

(4) d(H (Ψ1),H (Ψ2)) ≤ CT
4+n(1−γ)

4

(
‖Ψ1‖γ−1

Lq([0,T ],Lr(Rn)) + ‖Ψ2‖γ−1
Lq([0,T ],Lr(Rn))

)
d(Ψ1.Ψ2),

where (q̃, r̃) is an admissible pair with γr̃′ = r. Hence, we can choose T = T (γ, n, ‖f‖L2(Rn)) sufficiently

small in order to apply the Theorem B.3.1. This implies that there exists a unique Ψ ∈ XB such that

H (Ψ) = Ψ. We note that this argument works in subcritical regime or in critical regime with small

data. Now we can prove uniqueness for small time. Suppose that there are two solutions Ψ1,Ψ2 ∈

C([0, T ], L2(Rn)) ∩ Lq([0, T ], Lr(R)). The following estimate

‖Ψ1 −Ψ2‖X = ‖H (Ψ1)−H (Ψ2)‖X ≤ ‖N(Ψ1)−N(Ψ2)‖Lq̃′ ([0,T ],Lr̃′ (Rn)),

combined with estimate (2) gives the uniqueness for small time. A contradiction argument shows unique-

ness in the interval [0, T ]. Finally, to have the local well posedness we have to establish the continuous

dependence of the solutions on the initial data. Let f1, f2 ∈ L2(Rn) and let Ψ1(t),Ψ2(t) be the corre-

sponding solutions. For some time T depending on ‖f1‖L2(Rn), ‖f2‖L2(Rn) we have

d(Ψ1,Ψ2) ≤ C‖f1 − f2‖L2(Rn).

The mass conservation is proved under more regularity condition. Indeed, we assume the solution

Ψ ∈ C([0, T ], H1(Rn)) and we multiply by Ψ̄ the equation in (B.4.1) and we integrate by parts. The

general statement is proved by density arguments combined with continuous dependence. One can see

[70], [13] for a detailed proof.

We summarize the fundamental results of L2(R) and H1(R) theory in the following theorems:

Theorem B.4.1 (L2(R) well-posedness). (Cazenave [13], Section 4.6) Let f ∈ L2(R). The following

statements hold:

• Let 1 < γ < 5 and α = ±1. Then there exists a unique global solution Ψ ∈ C(R, L2)∩Lq(R, Lr(R));

• Let γ = 5 and α = ±1. Then there exists δ > 0, quite small, such that, if ‖f‖L2 ≤ δ we have a
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unique global solution Ψ ∈ C(R, L2) ∩ Lq(R, Lr(R)).

In addition, the following conservation law holds:

M(t) = ‖Ψ(t)‖L2(Rn) = ‖f‖L2(Rn),

for each t ∈ R.

Theorem B.4.2 (H1(R) well-posedness). (Cazenave [13], Section 4.4) Let f ∈ H1(R). The following

statements hold:

• Let 1 < γ < 5 and α = ±1. Then there exists a unique global solution Ψ ∈ C(R, H1) ∩

Lq(R,W 1,r(R));

• Let γ = 5 and α = −1. Then there exists δ > 0, quite small, such that, if ‖f‖L2 ≤ δ we have a

unique global solution Ψ ∈ C(R, H1) ∩ Lq(R,W 1,r(R)).

In addition, the following conservation laws hold:

M(t) = ‖Ψ(t)‖L2(Rn) = ‖f‖L2(Rn),

E(t) =
1

4
= ‖∇Ψ(t)‖L2(Rn) +

α

γ − 1
‖Ψ(t)‖γ+1

Lγ+1 = E(0),

for each t ∈ R.

We underline here the fundamental steps to reach the results quoted above.

To pass from a local result to a global one the tools are the blow up alternative and the conservation

laws.

Proposition B.4.3 (Blow-up alternative). Let Tmax < ∞ (respectively , if Tmin < ∞ ), then, under

the hypothesis of the Theorem B.4.2 we have

lim
t↗Tmax

‖Ψ(t, ·)‖L2(R) =∞ ( lim
t↘Tmin

‖Ψ(t, ·)‖L2(R) =∞).

In the critical case, as we remarked before, in the estimates 2. and 3. the time disappears, T
4+n(1−γ)

4 =

T 0, so we cannot play on the smallness of time. The absolute continuity of the Lebesgue integral helps

us to establish local result. In the critical case the existence time T = T (γ, n, f) depends on the shape of

the initial data and so we cannot extend the local result to global one. The results in the space H1(R)

are proved using Strichartz estimates in H1(R).
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Appendix C

Gronwall’s inequality on the real line

In this appendix we shall recall the classical Gronwall inequality and some modifications of its on R.

We state the classical Gronwall’s inequality in the integral form.

Lemma C.0.1. Let v : [x0, x1] → R+ be continuous and non-negative function and suppose that v

satisfies the following inequality

v(x) ≤ a+

∫ x

x0

b(s)v(s) ds

for all x ∈ [x0, x1], where a ≥ 0 and b : [x0, x1]→ R+ is continuous and non negative. Then, we have

v(x) ≤ a exp

(∫ x1

x0

b(s) ds

)

for all x ∈ [x0, x1].

This simple result is very useful in both the ordinary differential equations and the partial differential

equations. Indeed, in the ODEs theory this result provide some control of the solution in terms of the

initial data and of the linear perturbation. In the PDEs theory it is a very useful tool to get uniqueness

results or to assure the absence of blow up in suitable norms.

The next Lemma is a slightly modified version of the previous one. It is a fundamental step to get the

improved results on the modified Jost functions m± presented in Chapter 2, Lemma 2.1.2 and Lemma

2.1.3.

Lemma C.0.2. If v(x), a(x), b(x) are continuous non-negative functions on R, and for any real r we
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have

a(x), v(x) ∈ L∞((r,∞)), b(x) ∈ L1((r,∞)) (C.0.1)

that satisfy the inequality

v(x) ≤ a(x) +

∫ ∞
x

b(t)v(t)dt, (C.0.2)

then we have

v(x) ≤ a(x) +

∫ ∞
x

a(t)b(t) exp

(∫ t

x

b(s)ds

)
dt. (C.0.3)

Proof. We shall sketch the proof for completeness. Set

ϕ(x) =

∫ ∞
x

b(t)v(t)dt.

The function is well-defined and C1(R) due to the assumption (C.0.1). Then

ϕ′(x) = −b(x)v(x) ≥ −b(x)(ϕ(x) + a(x))

and (
e−B(x)ϕ(x)

)′
≥ −e−B(x)b(x)a(x)

with B(x) =
∫∞
x
b(t)dt. Integrating this inequality in the interval (x,R), we get

ϕ(x) ≤ eB(x)−B(R)ϕ(R) +

∫ R

x

eB(x)−B(t)a(t)b(t)dt.

Using again the assumption (C.0.1), we see that

lim
R↗∞

B(R) = 0, lim
R↗∞

ϕ(R) = 0

so we get

ϕ(x) ≤
∫ ∞
x

eB(x)−B(t)a(t)b(t)dt.

Then (C.0.2) implies v(x) ≤ a(x) + ϕ(x) and we arrive at (C.0.3). This completes the proof.

Since in the PDEs field the Lebesgue’s spaces Lp(R) play a fundamental rule, some generalization

of the Gronwall’s inequality for Lp(R) functions are also very useful. One can see [73] and references

therein for this kind of generalizations of the Gronwall’s inequality and their discrete analogues. One
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can compare the Gronwall type estimate proposed below with Theorem 2 in [73] for example.

We shall assume v(t) ∈ C([0,+∞)) and a(t) ∈ L∞loc((0,+∞)) are non-negative functions that satisfy

the inequalities

0 < t ≤ 1 =⇒
(∫ t

0

v(τ)pdτ

)q/p
≤ C1, (C.0.4)

t > 1 =⇒
(∫ t

0

v(τ)pdτ

)q/p
≤ C1 +

∫ t

1

a(τ)v(τ)qdτ, (C.0.5)

where 1 ≤ q < p ≤ ∞ (with obvious modifications for p =∞.)

Lemma C.0.3 (Lp − Lq Gronwall’s Lemma). Suppose that 1 ≤ q < p ≤ ∞ and C0 > 0. If v(t) ∈

C([0,+∞)) and a(t) ∈ L∞loc((0,+∞)) are non -negative functions that satisfy the inequalities (C.0.4),

(C.0.5), then

(∫ t

0

v(τ)pdτ

)q/p
≤
(

p

p− q

)q/p
C1 exp

((
p

q

)q/(p−q) ∫ t

1

ap/(p−q)(τ)dτ

)
. (C.0.6)

Proof. First, we shall consider the case 1 < p < +∞, q = 1. Then the inequality (C.0.5) can be rewritten

as

t > 1 =⇒ ‖v‖Lp(0,t) ≤ C1 +

(∫ t

1

a(τ)v(τ)dτ

)
. (C.0.7)

Set

ϕ(t) = C1 +

∫ t

1

a(τ)v(τ)dτ.

Then ϕ(t) is increasing function and we have the relation

v(t) =
ϕ′(t)

a(t)
,

so, we have

t > 1 =⇒
∥∥∥∥ϕ′a

∥∥∥∥
Lp(1,t)

≤ ϕ(t). (C.0.8)

Further we can use the inequality (C.0.8) and we can derive the estimates

ϕ(t)p =ϕ(1)p + p

∫ t

1

ϕ′(τ)ϕp−1(τ)dτ =

=Cp1 + p

∫ t

1

ϕ′(τ)ϕp−1(τ)dτ ≤ Cp1 + p

∥∥∥∥ϕ′a
∥∥∥∥
Lp(1,t)

∥∥aϕp−1
∥∥
Lp′ (1,t)

≤

≤Cp1 + pϕ(t)
∥∥aϕp−1

∥∥
Lp′ (0,t)

.
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Hence we have

ϕ(t)p ≤ Cp1 + pϕ(t)

(∫ t

1

a(τ)p/(p−1)ϕp(τ)dτ

)(p−1)/p

. (C.0.9)

We can use the Young inequality

ab <
ap

p
+
bp
′

p′

so setting

A(t) = p

(∫ t

1

a(τ)p/(p−1)ϕp(τ)dτ

)(p−1)/p

,

we can write

ϕ(t)p ≤ Cp1 + ϕ(t)A ≤ Cp1 +
ϕ(t)p

p
+
Ap
′

p′
,

so we get

ϕ(t)p ≤ p′Cp1 +Ap
′

=

= p′Cp1 + pp
′
(∫ t

1

a(τ)p/(p−1)ϕp(τ)dτ

)
,

and we are in position to apply Gronwall’s inequality and to derive the following estimate

ϕp(t) ≤ p′Cp1 exp

(
pp
′
∫ t

1

ap/(p−1)(τ)dτ

)
. (C.0.10)

The line below

ϕ(t) ≤ C1

(
p

p− 1

)1/p

exp

(
p1/(p−1)

∫ t

1

ap/(p−1)(τ)dτ

)
, (C.0.11)

and the inequality (C.0.7) completes the proof for the case q = 1. For the case 1 < q < p < ∞ we can

set

ϕ(t) = C1 +

∫ t

1

a(τ)v(τ)qdτ

and repeating the above argument, we arrive at (C.0.6) for the case 1 < q < p < ∞. Finally, the case

1 < q < p =∞ is well-known (see [73]) and can be reduced to the classical L∞ − L1 Gronwall estimate

by the aid of the same transform vq(t) = u(t). This completes the proof of the Lemma.

We show an interesting application of the Lp − Lq Gronwall’s Lemma that provide a control of the

L∞ norm of the solution of the Schrödinger equation.

Corollary C.0.4. Let ψ1 = ψ(1, ·) ∈ L2(R) and suppose V a potential continuing to support the
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assumptions made in Chapter 4. Then the unique solution of the integral equation

ψ(t) = e−i(t−1)Hψ1 ∓ i
∫ t

1

e−i(t−s)Hψ(s)|ψ(s)|2ds, t > 1, (C.0.12)

ψ(t, x) ∈ C([1,∞);L2(R)) ∩ L4([1,∞);L∞(R)) satisfies the following control estimate

(∫ t

1

‖ψ(s)‖4L∞(R)ds

)1/4

≤ C1‖ψ1‖L2(R) exp
(
C2‖ψ1‖3L2(R)t

)
, (C.0.13)

for some positive constants C1, C2.

Proof. The local and global existence in the Banach space C([1,∞);L2(R)) ∩L4([1,∞);L∞(R)) can be

derived using a fixed point argument in L∞([1,∞);L2(R))∩L4([1,∞);L∞(R)) and Strichartz estimates

(one can see Appendix B). Applying the Strichartz estimates to the integral equation (C.0.12) we get

‖ψ‖L4((1,τ);L∞(R)) ≤ C‖ψ1‖L2(R) + C‖ψ1‖2L2(R)‖ψ‖L4/3((1,τ);L∞(R)),

for any τ > 1. Setting

χ(t) = ‖ψ(t)‖L∞(R)

we rewrite the inequality above as follows

(∫ t

1

χ(s)4ds

) 1
4 ·

4
3

≤ C‖ψ1‖4/3L2(R) +

∫ t

1

(C‖ψ1‖2L2(R)χ(s))4/3ds.

Using the Lp − Lq Gronwall estimate of Lemma C.0.3 we complete the proof of the Corollary.
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[36] L. Grafakos, Z. Si, The Hörmander multiplier theorem for multilinear operators, J. Reine Angew.

Math., 668 : 133− 147, (2012).
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