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Summary

THE use of the lithium-ion technology in energy storage systems has enabled the
spreading of small portable devices, like smartphones and laptops, but also of
medium-power devices, electric mobility, and renewable energies, where bat-

teries are built by connecting together a large number of lithium-ion cells. This thanks
to higher energy and power densities, longer cycle life, and lower self-discharge with
respect to the other battery chemistries. However, they need to be monitored by an
electronic system, the so called Battery Management System (BMS), in order to work
in a safe and effective way. In fact, lithium-ion batteries can be subjected to degra-
dation or hopelessly damaged if they work outside of their safe operating area. The
BMS constantly measures all the cell physical quantities, such as current, voltage, and
temperature, and estimates the internal state of all the cells composing the battery pack,
including the State Of Charge (SOC) and the State Of Health (SOH). The required ac-
curacy of the measurement and of the estimate depends on the final application. As an
example, in automotive applications, an accurate estimation of the charge stored into
the battery allows a better knowledge of the remaining driving range. Furthermore, the
estimation of the grade of degradation in terms of internal resistance increasing and
capacity fading enables the possibility to reuse the cells that have reached the end of
life in this application (around the 80 % of the nominal capacity) for building second
life batteries for other fields, such as the stationary energy storage. This because sec-
ond life batteries must be composed by cells with a homogeneous degradation level to
guarantee the best performance.

Algorithms for an accurate estimation of the internal battery state require a signif-
icant computational power to be executed online during the battery operation, espe-
cially when the number of cells that compose the battery is large. For SOC estimation,
an effective solution is the use model-based estimation algorithms since they are char-
acterised by a good trade-off between accuracy and complexity, particularly when an
equivalent circuit model is used. The model is used in a closed-loop to correct the
estimated value, and the accuracy of the estimation depends on the model capability
to reproduce the cell behaviour. To improve the model performance, an online model
parameter estimation algorithm can be flanked to the model-based technique to track
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the parameter variations with the operating conditions of the battery, such as SOC, tem-
perature, and current. We developed two promising solutions for SOC and parameter
co-estimation: the Adaptive Mix Algorithm (AMA) and the Dual Extended Kalman
Filter (DEKF). The AMA is based on the joining of the mix algorithm for SOC esti-
mation and the moving window least squares for parameter identification, while in the
DEKF these two tasks are performed by two cooperative EKFs. Both the algorithms
have been implemented as hardware accelerators on a Field-Programmable Gate Array
(FPGA) to improve the estimation performance in terms of execution time with respect
to their implementation in software and to be used besides a controller that simultane-
ously performs the other BMS safety and management functions. The performance in
terms of execution time are promising and the DEKF performs better than the AMA.
This because the AMA is more complex than the DEKF even if allows a better tuning
of the algorithm parameters. To this aim we also developed a procedure that allows
the designer to choose the best set of AMA parameters starting from the current and
voltage profiles representative of the target application.

During the development of these algorithms and the verification phases we em-
ployed a communication-based Hardware-in-the-Loop (HiL) platform that has been
developed to simulate the behaviour of a complete configurable battery used in an elec-
tric vehicle under many different operating conditions and to analyse the estimator im-
plementation executed on a real BMS. Thanks to this platform we validated both the
hardware estimators, and we have been able to compare their performance in terms
of execution time, estimation accuracy, and wrong SOC initialization recovery time.
The use of large set of scenarios highlighted the necessity to analyse the algorithms in
different conditions, since the algorithms behave in different ways. In particular, the
AMA provides better results on urban cycles, whereas the DEKF is more reliable for
motorway schedules, when the required electric power is higher and the speed profile
more static.

Using an FPGA instead of a microcontroller in a BMS brings to various advantages,
besides the increase of the computational power, such as a higher flexibility and recon-
figurability of the BMS. In this work, two BMS implementations with an FPGA-based
architecture are reported: a basic BMS which uses stack monitors to manages groups of
cells, and an advanced one which uses smart cells. The first has been developed for an
e-bike, a case study that allowed us to test the BMS on the field during real utilization.
The e-bike battery is composed of 10 cells, managed by a single stack monitor, an in-
tegrated circuit able to measure all the cell voltages, but also additional signals such as
the output of a current sensor, and to send the acquired information to the main unit of
the BMS. This is based on an Intel Cyclone® V system on chip FPGA with a hard-core
ARM® Cortex™ A9 used to execute the software functions. Results have assessed the
BMS implementation and showed the effectiveness of the AMA hardware estimator.
The same hardware estimator is also used in the advanced BMS, so called Research
BMS, built for the 3Ccar project which aims at investigating a new battery architecture
based on smart cells. The latter are cells provided with some electronics which allows
the execution of various functions, such as the measurement of the cell current, voltage,
and temperature, and to communicate with the Research BMS. The BMS main unit be-
longs to the same family of that of the BMS described above, where the hard-core is
also used to run the estimation algorithms developed by the project partners, such as the
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Temperature Prediction Algorithm used to predict the cell core temperatures. Besides
the Research BMS, we developed a framework composed of three parts: a LabVIEW
user interface, which has been also used during the battery experimental tests to man-
age the BMS, a LabVIEW smart cells emulator, which emulates the communication
with the smart cells, and an emulator of the ARM® hard-core, used by the partners to
create their own algorithms. The battery assembly has been carried out during the final
tests, where the Research BMS has been connected to the smart cells developed by the
project partners. The performed tests demonstrated the correct battery operation, for
both hardware and software components.
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Sommario

I sistemi di accumulo dell’energia basati sulle batterie agli ioni di litio hanno per-
messo la diffusione di piccoli dispositivi portatili, come smartphone e laptop, ma
anche di dispositivi di media potenza, della mobilità elettrica e delle energie rinno-

vabili, applicazioni in cui le batterie sono costruite con un gran numero di celle agli ioni
di litio connesse tra loro. Questo perché, rispetto alle altre chimiche, esse hanno una
densità di energia e di potenza più elevata, un maggior numero di cicli di carica/scarica
e un’autoscarica minore. Ad ogni modo, queste batterie necessitano di un monitorag-
gio costante da parte di un sistema elettronico, chiamato Battery Management System
(BMS), in modo da garantire un funzionamento sicuro ed efficiente. Infatti, se le batte-
rie agli ioni di litio lavorano fuori dalla loro area operativa sicura possono degradarsi o
subire danni irreparabili.

Il BMS misura costantemente tutte le grandezze fisiche delle celle che compongono
il pacco batteria, come corrente, tensione e temperatura, e stima il loro stato interno,
incluso lo stato di carica (State Of Charge, SOC) e lo stato di salute (State Of Health,
SOH). L’accuratezza richiesta per la misura delle grandezze e per la stima delle va-
riabili di stato dipende dall’applicazione. Per esempio, nelle applicazioni automotive,
una stima accurata della carica immagazzinata nella batteria permette una conoscenza
migliore dell’autonomia residua del veicolo. Inoltre, una stima del grado di invecchia-
mento della batteria, in termini di aumento della resistenza interna e di diminuizione
della capacità, permette di riutilizzare le celle che hanno raggiunto la fine della loro
vita. In applicazioni automotive, questo equivale a dire che le celle hanno raggiunto un
valore di capacità pari all’80 % della loro capacità nominale. Queste celle sono comun-
que ancora usabili per costruire batterie utili in altri campi, come l’immagazzinamento
dell’energia in applicazioni stazionarie. Una stima accurata dell’invecchiamento è utile
in quanto in queste batterie le celle devono avere una degradazione omogenea in modo
da consentire le migliori prestazioni.

Una stima accurata dello stato può essere ottenuta con l’esecuzione di algoritmi
che possono richiedere una capacità computazionale significativa, soprattutto quando
il numero di celle che compongono il pacco batteria è elevato. Per quanto riguarda
la stima del SOC, una soluzione efficace è quella di usare algoritmi di stima di tipo
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model-based, in quanto caratterizzati da un buon rapporto tra accuratezza e complessità,
in particolare quando viene usato un modello elettrico equivalente. Il modello viene
inserito in un ciclo di retroazione per correggere il valore della stima e l’accuratezza
del risultato dipende dalla capacità del modello di riprodurre il comportamento della
cella. Per migliorare le prestazioni del modello circuitale si può affiancare alla tecnica
di stima model-based un algoritmo d’identificazione online dei parametri del modello in
modo da tenere traccia delle variazioni del valore di questi parametri con le condizioni
operative della batteria, come SOC, temperatura e corrente.

Sono state sviluppate due promettenti soluzioni per la stima congiunta di SOC e pa-
rametri: l’Adaptive Mix Algorithm (AMA) ed il Dual Extended Kalman Filter (DEKF).
L’AMA si basa sull’unione del Mix Algorithm per la stima del SOC e dell’algoritmo del
Moving Window Least Squares per l’identificazione dei parametri, mentre nel DEKF
questi due compiti vengono svolti da due filtri di Kalman estesi che lavorano in maniera
cooperativa. Entrambi gli algoritmi sono stati implementati come acceleratori hardware
su una Field-Programmable Gate Array (FPGA) per migliorare le prestazioni della sti-
ma in termini di tempo di esecuzione rispetto alla loro implementazione in software,
ed in modo da poter utilizzare questi acceleratori affianco ad un controllore che è li-
bero di eseguire contemporaneamente tutte le altre funzioni di sicurezza e gestione del
BMS. Le prestazioni ottenute in termini di tempo di esecuzione sono promettenti e il
DEKF risulta essere più efficiente dell’AMA. Questo perché l’AMA è più complesso,
anche se permette di scegliere in maniera più efficace i parametri dell’algoritmo. A
questo scopo, è stata sviluppata una procedura che permette al progettista di scegliere
la migliore combinazione di tali parametri, partendo dai profili di corrente e tensione
acquisiti dall’applicazione di riferimento.

Durante le fasi di sviluppo e verifica è stata utilizzata una piattaforma hardware-in-
the-loop, realizzata per simulare il comportamento di una batteria completamente con-
figurabile durante il suo utilizzo in un veicolo elettrico e in molte condizioni operative
diverse, in modo da analizzare l’implementazione dello stimatore eseguito in un vero
BMS che comunica direttamente con la piattaforma. Grazie a quest’ultima sono stati
validati entrambi gli stimatori e siamo stati capaci di comparare le loro prestazioni per
quanto riguarda i tempi d’esecuzione, l’accuratezza della stima e il tempo di correzione
a fronte di un’inizializzazione sbagliata dello stato di carica. Analizzando gli algoritmi
in diversi scenari, simulati dalla piattaforma, si è potuto notare come i risultati ottenuti
dipendono dalle diverse condizioni operative. In particolare, l’AMA produce risultati
migliori durante i cicli urbani, mentre il DEKF è più affidabile nei cicli autostradali,
quando la potenza elettrica richiesta è più alta e il profilo di velocità più statico.

L’utilizzo di una FPGA invece di un microcontrollore in un BMS porta a vari van-
taggi come una maggiore flessibilità e riconfigurabilità del BMS, oltre all’incremento
delle capacità computazionali. In questo lavoro sono riportate due implementazioni di
BMS con architettura basata su FPGA: un BMS basilare che utilizza degli stack monitor
per gestire gruppi di celle e un BMS avanzato che utilizza delle smart cell.

Il primo è sviluppato per una bici elettrica, un caso studio particolare che ci ha per-
messo di testare sul campo il sistema durante un reale utilizzo. La batteria della bici
elettrica è composta da 10 celle gestite da un solo stack monitor, un circuito integrato
capace di misurare tutte le tensioni di cella, ma anche segnali addizionali, come l’u-
scita di un sensore di corrente, e di inviare le informazioni acquisite all’unità centrale
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del BMS. Quest’ultima è basata su un system on chip FPGA Intel Cyclone® V con
all’interno un processore hardware ARM® Cortex™ A9 usato per eseguire le funzio-
ni software. I risultati ottenuti hanno validato l’implementazione del BMS e hanno
mostrato l’efficienza dello stimatore hardware che implementa l’AMA.

Lo stesso stimatore è stato implementato anche nel BMS avanzato, chiamato Re-
search BMS, realizzato per il progetto 3Ccar, che ha lo scopo di investigare una nuova
architettura basata su smart cell. Le smart cell sono equipaggiate con dell’elettronica
che permette di eseguire varie funzioni, come la misura della corrente, della tensione e
della temperatura della cella, e di comunicare con il Research BMS. L’unità centrale del
BMS appartiene alla stessa famiglia di quella descritta in precedenza, dove il processo-
re hardware è anche usato per eseguire degli algoritmi di stima sviluppati dai partner del
progetto, come il Temperature Prediction Algorithm usato per stimare la temperatura
all’interno della cella. Oltre al Research BMS è stato anche realizzata una piattaforma
di sviluppo che comprende tre parti: un’interfaccia utente basata su LabVIEW, utilizza-
ta anche per gestire il BMS durante i test sperimentali finali, un emulatore delle smart
cell sempre basato su LabVIEW, capace di emulare la comunicazione con le celle, e
un emulatore del processore hardware ARM®, usato dai partner per sviluppare i propri
algoritmi. L’assemblaggio della batteria è stato realizzato durante i test finali, dove il
Research BMS è stato connesso alle smart cell sviluppate dagli altri partner del pro-
getto. I test eseguiti hanno dimostrato il corretto funzionamento della batteria, sia per
quanto riguarda le componenti hardware, che quelle software.
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CHAPTER1
Introduction

Nowadays, electric devices with a local Energy Storage System (ESS) are widespread.
Good examples are electronic portable devices like laptops, tablets and smartphones,
but also medium-power tools like drills and lawn-mowers. Other fields in which the
ESS is a key component are the electric mobility and the stationary applications. The
number of electric vehicles is rapidly growing in the last years. In fact, the data pub-
lished by the International Energy Agency shows that in the world there are about 3.1
millions of electric cars and in the 2017 the sells grew up of about 54 % with respect of
2016 [65]. The increment of the electric transportation, the decentralization of the elec-
trical energy generation and the digitalization are the causes of the diffusion of smart
grids, in which the ESSs are used to support the energy distribution.

The main components used to store energy in an ESS are batteries that can be based
on different technologies. The most employed are the lead acid, the nickel-metal hy-
dride (NiMH) and the Lithium-ion (Li-ion) batteries. The Li-ion technology presents
various advantages with respect to the others and for this reason it enables the electri-
fication of vehicles and devices used in different fields. In fact, Li-ion batteries have
higher energy and power densities, longest cycle and calendar life, and lower self-
discharge compared to the other battery technologies. However, this technology has
some limitations that require Li-ion batteries to be equipped with an electronic control
board called Battery Management System (BMS). The main objective of the BMS is to
ensure a safe battery operation and to allow the battery lifetime extension. In fact, the
battery can be subjected to an accelerated ageing or serious damages if it works out of
its safe operating area in terms of voltage, temperature, and current. The BMS main
unit also estimates the internal state variables of the battery in order to avoid these dan-
gerous situations and to obtain useful battery information, such as the remaining stored
charge, quantified by the State Of Charge (SOC), or the degradation grade, expressed
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Chapter 1. Introduction

by the State Of Health (SOH) variable.
During this Ph.D. program, different state estimation algorithms and BMS archi-

tectures for medium and large-format batteries have been analysed and developed. In
particular, two model-based algorithms, the Adaptive Mix Algorithm (AMA) and the
Dual Extended Kalman Filter (DEKF), have been implemented in hardware on a Field-
Programmable Gate Array (FPGA) in order to meet with their computational require-
ments and to enable the state estimation of a large number of cells. Both algorithms are
closed-loop techniques which employ an electrical model of the cell flanked to an on-
line model parameter identification algorithm to improve the SOC estimation accuracy.

Furthermore, a Hardware-in-the-Loop (HiL) platform able to emulate a configurable
battery during its use in an electric vehicle has been developed in MATLAB/Simulink®

environment and used to test the hardware estimators during their implementation. The
model used to emulate the battery behaviour has been made available in order to allow
the users to build their own simulation platform that can be adapted to test different
BMSs and used for different purposes. The main advantage of the developed platform is
that it can be used to verify a BMS in a large number of simulated operating conditions
with completely safe tests, since there is no power exchange between the BMS and the
simulator.

Besides to a higher computational power, the use of an FPGA as the main unit of a
BMS allows the system to be more flexible and reconfigurable with respect to a BMS
based on a microcontroller. In this way, a BMS can be easily adapted for other batteries
or applications. Furthermore, it can execute more complex and accurate estimation al-
gorithms in order to prevent negative situations and to accurately know the degradation
grade of the battery, enabling also the reuse of the cells in other applications. We build
two innovative BMSs with the main unit based on an FPGA, where the SOC estima-
tion is executed by the AMA hardware accelerator, and each BMS has been validated
by using a particular case-study. The first one has been implemented to test the basic
functions of a BMS and the SOC estimator during the real utilization of an electric bike
on the road. The second BMS has been developed for a 48 V smart battery within the
3Ccar European project, which aims at investigating the use in automotive applications
of an architecture based on the concept of smart cells, i.e., cells provided with an elec-
tronic board and some sensors, and able to communicate information to the BMS. The
latter can run complex estimation algorithms developed both as hardware estimator and
software applications.

The thesis first reports on the main characteristics of the Li-ion technology and the
functionalities and the various architectures of the BMS in Chapter 2. At the end of this
chapter, we also introduced the concept of BMSs based on an FPGA. The explanation
of the two implemented SOC estimation algorithms is reported in the third chapter. The
fourth and the fifth chapters report on the hardware implementation of the SOC esti-
mation algorithms and their verification by using the HiL platform. The development
and the verification of two BMSs which use an FPGA have been described in Chapter
6, in which two different demonstrators have been used to analyse their performance.
Finally, some considerations are summarised in the conclusion chapter.
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CHAPTER2
Lithium-ion energy storage systems

2.1 Introduction

This chapter aims at reporting on the basic information about the lithium-ion technol-
ogy. In particular, after a brief introduction on the structure of the Li-ion cells, Section
2.2 describes and compares the advantages and the limitations of the various lithium-
ion typologies available on the market. One of the main limitations is the necessity to
equip the Li-ion batteries with an electronic control board called BMS in order to ensure
a safe functioning of the battery pack. The main functions of the BMS are described
in Section 2.3, that highlights the importance of the battery state estimation, especially
regarding the state of charge and the state of health variables. These functions can be
implemented using different BMS architectures, as explained in Section 2.4.

2.2 Lithium-ion technology

Li-ion batteries are widely used in many applications thanks to various advantages in-
troduced with respect to the lead acid and NiMH chemistries. They present a low
self-discharge rate, a higher nominal voltage and a longer cycle life. Furthermore, they
have a higher energy and power densities with respect to volume and weight [29, 33].
This allows to build lighter and smaller ESSs and to increase the portability in portable
devices and the driving range in Electric Vehicles (EVs).

Depending on the application, batteries are composed by connecting together a cer-
tain number of Li-ion cells, in series in order to reach the desired voltage and in parallel
to increment the battery capacity. Usually, cells are grouped in modules for a better
organization of the battery. The Li-ion cell structure and functioning is shown in Fig-
ure 2.1. Each cell is composed by a negative electrode (often referred to as the anode),
usually made of graphite, and a positive electrode (often referred to as the cathode) that
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can be realized using different materials, characterizing the Li-ion technology as shown
in Table 2.1 [55, 137].

Figure 2.1: Representation of the internal structure and functioning of a Li-ion cell [151].

The electronic separation between the two electrodes is guaranteed by a micro-
porous separator soaked in an electrolyte in order to allow the ions exchange during
the cell charge/discharge. In particular, lithium ions go from cathode toward the anode
during the charging phase and vice versa during the discharge. The ions flow causes
a current of electrons collected by two current collectors, one made of copper for the
anode and one of aluminium for the cathode [29].

Table 2.1: Lithium-ion chemistries and their properties [55, 137].

Abbrev LCO NCA NMC LMO LFP LTO
Name Lithium Lithium nickel cobalt

aluminum oxide
Lithium nickel
manganese cobalt oxide

Lithium Lithium Lithium
titanatecobalt manganese iron

oxide spinel phosphate
Positive LiCoO2 Li(Ni0,85Co0,1Al0,05)O2 Li(Ni0,33Mn0,33Co033)O2 LiMn2O4 LiFePO4

LMO
electrode NCA
Negative Graphite Graphite Graphite Graphite Graphite Li4Ti5O12electrode
vn (V) 3.7-3.9 3.65 3.8-4.0 4.0 3.3 2.3-2.5
Energy

200 250 180 140 120 80density
(Wh/kg)
Power normal high normal normal normal very high
Safety low normal normal good very good very good
Lifetime low good normal normal good very good
Cost high high high normal high normal
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Table 2.1 highlights the differences among the various chemistries that make them
suitable for different applications. The lithium iron phosphate (LFP) cells are widely
used in large format ESSs where a high energy density and a good safety are required.
The lithium nickel manganese cobalt oxide (NMC) batteries are typically used in low
and medium power devices thanks to their very good energy density which allows to
build very small ESSs. The lithium titanate (LTO) are used in applications where a
high maximum charge current is required [87]. The maximum current is the value that
can flows through the cell without damages. It is usually expressed in C-rate, where a
current of 1 C is the one that discharges a fully-charged cell in one hour. Therefore,
it depends on the cell nominal capacity Qn, i.e., the charge that can be drained from a
cell starting from a fully-charged state until to the fully-discharged one in determined
operating conditions defined by the manufacturer [148]. Another important parameter
is the nominal voltage vn, i.e., the voltage at the equilibrium between terminals when
the cell has been charged to an average value, and it is inside the range from 2.3 V to
4.0 V.

The cell voltage is related to the concentration of lithium particles that changes
during the charging/discharging phase. For example, the NMC safe operating voltage
is about in the range between 2.7 V and 4.2 V and if the cells work outside of this range,
they can be subjected to serious damages such as thermal runaway or explosion, or to
the degradation of capacity and performance. For this reason, these batteries must be
equipped with a BMS that aims at monitoring the cell voltages, but also temperature
and current, and to guarantee that all the cells in the battery pack work in their Safe
Operating Area (SOA).

2.3 Battery management system

The BMS is an electronic circuit provided with opportune sensors and actuators which
allow a control unit to monitor and manage the battery by using dedicated algorithms, in
order to guarantee a safe and optimized operation [13]. This system consists of one or
more electronic boards, as described in Section 2.4, that communicate with the central
unit of the application to optimizing the battery functioning. To perform the mentioned
tasks a BMS usually may contain the following features [115]:

• Cell monitoring: measurement of the voltage, current, and temperature of the cells
with a suitable accuracy;

• State estimation: estimation of the internal state of the battery, such as the SOC,
SOH, Remaining Useful Life (RUL), and application runtime;

• Safety: protection from over-charge, over-discharge, and short circuit;

• Charge equalization: reduction of the energy mismatch among the cells compos-
ing the battery pack;

• Communication and data management: integration of the ESS in the application
system by using affordable communication links in order to exchange important
information, battery data that are periodically stored in a local memory, and com-
mands.

These features have been described in details in the following Sections.
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2.3.1 Cell monitoring

The BMS can execute its tasks by using as inputs the physical quantities directly mea-
surable from the cells. As said above, these quantities are the voltages between the cell
terminals, the current, and the temperature.

In particular, voltage can be measured with custom solutions that employ an Analog-
to-Digital Converter (ADC), especially when the battery contains few cells, or using
dedicated integrated circuits, called stack monitors. A stack monitor allows to measure
a certain number of cell voltages with an accuracy that can reach a value of ±1 mV
in some conditions. More details about stack monitors have been presented in Section
2.4.

Current is usually acquired using two types of sensor: shunt-resistor or Hall effect
based sensors. In the first case, the output of the sensor is the voltage across the shunt-
resistor due to the current to be measured, while in the second one the sensor output
voltage depends on the variations of a magnetic field caused by the current flow. The
required accuracy of current measurement depends on the application. For example in
automotive applications, where current can reach hundreds of amps, the target value
can go from 0.5 up to 1 % [115].

BMSs usually incorporate various temperature measurement points. Different types
of sensors can be used to measure temperature, but the most widespread in embedded
systems for industry applications, including automotive field, are thermistors, charac-
terised by a resistance value which changes with temperature.

These quantities can be used by the controller of the BMS to perform the estimation
algorithms. In this case, the accuracy of the measurements affects the accuracy of the
estimation and each measurement must be acquired simultaneously.

2.3.2 State estimation

The internal state of the cells which compose the battery is described by state variables.
These are computed by the controller of the BMS by using estimation algorithms and
the quantities measurable directly on the cells. The two most important state variables
are SOC and SOH. SOC is related to the charge stored into the battery, while SOH is an
indicator of the battery ageing. Both variables are used by the BMS to execute all the
managing tasks, such as balancing and safety functions. Furthermore, they are inputs
for the algorithms that compute other very useful information related to the application,
such as the power that the battery can provide for a time interval without exceeding the
determined SOC and voltage limits (State Of Power, SOP) [143], the remaining time in
which the battery is estimated to be able to work in accordance with some specification
(RUL), and the State Of Energy (SOE) used to determine the runtime or the remaining
driving range for an EV.

State Of Charge

The SOC is usually defined as the quantity of charge that can be extracted from a cell,
normalized to its nominal capacity [104, 155]. The BMS computes the SOC for all the
cells contained in the pack in order to define the extractable charge of the battery. In
literature, there are different kinds of algorithms for SOC estimation [88, 119, 155].
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The discharge test method consists in a complete discharge of the cell in controlled
conditions and with a constant current. The obtained results are very accurate, but
it is time consuming and can be executed only offline in laboratory (not during the
battery functioning on the application), because of the required conditions that are very
restrictive.

The Coulomb Counting (CC) is the most simple and diffused technique, since it is
easy to implement and requires a low computational power. It is based on the SOC
definition, represented in Eq. (2.1), where the SOC is computed starting from its initial
value SOC0 (the SOC at time t = 0) and integrating the cell current iL over time,
normalized with respect to the nominal capacity [82, 92].

SOC(t) = SOC0 −
1

Qn

∫ t

0

iL(τ)dτ (2.1)

The obtained results can be very precise if the current is acquired with a high ac-
curacy [146]. In fact, errors like an offset on the sensor acquisition can cause the
divergence of the integration that can be restored only with a periodic calibration of the
calculation during a known state of the battery. However, this operation is not possible
in some applications. Moreover, the used values of SOC0 and Qn also affect the ac-
curacy and these quantities are not easy to estimate, since they depend on the battery
ageing.

Figure 2.2: OCV–SOC curves of two different battery chemistries [115]. (a) LFP battery OCV–SOC.
(b) NMC battery OCV–SOC.

Another technique easy to implement and that provides very accurate results is the
Open Circuit Voltage (OCV or VOC) method [55]. It is based on the measurement of
the cell OCV that is mainly related to the SOC [102]. The OCV-SOC relationship is a
non-linear function that slightly changes with respect to the battery temperature, ageing
and manufacturing process tolerances [102]. Moreover, it changes its shape with the
battery chemistry [44]. For example, the curve for LFP batteries is flatter than NMC
chemistry between 20 and 80 % of the SOC, which is the typical operating range of the
batteries, as shown in Figure 2.2. This fact brings to a higher error in the inversion of the
OCV-SOC relationship during the computation of the SOC value. Another drawback of
this technique is the time that the cell employs to reach the equilibrium condition when
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the current goes to zero [154]. In fact, this time can be very long, making not possible
the usage of this technique in applications where the load current has a high dynamic.
Furthermore, for some chemistries the OCV measurement must take in consideration
also that the characteristic can present the hysteresis phenomena, i.e., the OCV-SOC
curve is different between the charge and discharge phases [51, 120].

Figure 2.3: Functioning diagram of the model-based algorithms.

The most promising solutions that overcome the problems of these techniques are
the model-based algorithms. Their functional block diagram is shown in Figure 2.3.
The basic idea is to relate the SOC estimate to the measured battery voltage by means
of a battery cell model. In fact, they operate in closed-loop where the error signal vε
is generated, by comparing the cell voltage vM predicted by the model to the measured
value, and used to correct the estimate of the state variables. In this way, the estimation
error due to inaccuracies in the measured signals is reduced. Examples of model-based
algorithms are the artificial neural networks and fuzzy logic approaches, but they usu-
ally require high performance because of the use of complex models and require a
long time and a large amount of data to perform the training procedure [68, 128, 149].
Another widespread model-based technique is the Kalman Filter, especially in its ex-
tension for non-linear systems. It is called EKF and is adopted in [91,94,99,108], while
its adaptive version, called AEKF, in [34, 56, 145]. To overcome the limitations of the
first order Taylor series linearisation applied in the EKF, derivativeless filters known
as Sigma Point Kalman Filter (SPKF) have been considered for SOC estimation. In
particular, the use of the Unscented Kalman Filter (UKF) is presented in [5, 59, 152],
while the adaptive UKF (AUKF) is implemented in [101] and a Log-normalized UKF
(Ln-UKF) in [9]. In [110, 111], the UKF is compared with their square root form,
called SR-UKF or SR-SPKF. Another adaptive filter is the H∞ (H-infinity) filter used,
for instance, in [153] and the Particle Filter (PF) [118, 155]. Other solutions employ a
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compensator or an observer to correct the SOC computation done in the model using
the CC method [35, 73]. In [89, 91, 92], the compensator gain of the Mix Algorithm is
designed to counteract the offset affecting the battery current reading, while an optimal
observer based on the linear quadratic (LQ) approach is adopted in [114]. In [96], the
authors employed instead a Sliding Mode Observer (SMO).

An important factor that determines the performance of the model-based algorithms
is the capability of the model to reproduce the cell behaviour. Many models with dif-
ferent characteristics have been presented in the literature [116]. Usually, the more the
model is complex, the more it is accurate but difficult to implement in an embedded sys-
tem like the BMS. These models must take into account also that the model parameters
are not fixed and change with the operating conditions, i.e., current-rate, SOC, tem-
perature and ageing of the battery. These parameters can be stored in Look-Up Tables
(LUTs) with their dependency on the cell operating point. This solution requires low
computational resources but also a very extensive and time consuming offline charac-
terization [12]. Furthermore, it is very difficult to include also the parameter variations
due to manufacturing process tolerances and ageing of the battery. These problems are
overcome by employing an online identification technique in order to track the model
parameter variations with the operating point. This approach leads to a problem where
the states and the parameters are jointly estimated, which is solved with an appropriate
algorithm, like adaptive filters, such as the Kalman [9, 62, 94] and the H∞ [153] filters,
alone or in combination with a least squares technique [35, 152].

Table 2.2: Comparison of the SOC estimation methods [55, 82].

Method Applications Inputs Advantages Disadvantages
Discharge
test

Measure of the cell
capacity

Remaining charge Accurate, easy Long time needed, of-
fline, energy loss

CC Any kind of systems Current, capacity, ini-
tial SOC

Accurate, easy Needs high accurate
measurement of the
current. Depends on
SOC0. Periodic cali-
bration.

OCV
method

Systems that allow to
have long rest periods

Rest time, voltage Accurate, easy, very
low resource usage

Needs long periods
with zero current.
Requires very ac-
curate measurement
for some kinds of
batteries.

Model-
based

Any kind of systems Current, voltage. Bat-
tery model.

Accurate, insensitive
of the SOC0 value,
suitable for high
dynamics systems.
Some of this algo-
rithms also perform
the model parameter
identification.

Sensitive to the mea-
sure noise, not easy
to implement. Some
of this algorithms re-
quire a training proce-
dure.

The different SOC estimation algorithms are compared in Table 2.2 [55, 82]. An-
other solution for SOC estimation is to combine two or three algorithms to create hybrid
methods that exploit their advantages. For example, the OCV method can be used to
reset the integration in the CC technique and to find the value of the initial SOC [67].
This combination is used together with the KF in [30], where the KF is used to reduce
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the error in SOC estimation.

State Of Health

This variable is an indicator of the Li-ion cell ageing with respect to its fresh state.
Both industry and research fields do not give a unique and universal definition of SOH.
However, the two most used definitions are based on the cell capacity and internal
resistance [85, 95, 109]. For this reason, the estimation of the battery SOH can be
reduced to the identification of the battery capacity and/or impedance depending on the
employed definition [138].

The SOH is defined as the ratio between the actual cell capacity and the capacity in
the fresh state (Qn,new), if the cell capacity fading is taken into consideration, as shown
in Eq. (2.2) [72].

SOH(t) =
Qn(t)

Qn,new

(2.2)

The cell is considered in a healthy state if the actual capacity has a value greater than
a determined percentage of the capacity in the new state. For example, in automotive
applications batteries are used until their SOH reaches a value of 80 % [156]. However,
the retired batteries can be employed in other applications such as in stationary field
for energy storage and power backup. The second life batteries must be composed by
cells with a homogeneous SOH level to guarantee the best performance [86]. For this
reason, the state estimation of each cell in the battery pack must be performed with an
appropriate accuracy.

The estimation of the cell internal resistance R0 is necessary to relate the cell SOH
to the performance degradation because of the resistance increasing with ageing. In
this case SOH is defined as in Eq. (2.3), where R0,new is the internal resistance in the
fresh state and R0,EOL is considered the resistance at the end of cell life [37].

SOH(t) =
R0,EOL −R0(t)

R0,EOL −R0,new

(2.3)

In this case, in the healthy state the cell is able to provide the power demanded by the
application. Therefore, the application defines the minimum power that the battery has
to guarantee and thus the value of R0,EOL.

Cell Models

Models capable of reproducing the Li-ion cells behaviour are very important in estima-
tion algorithms, but also during the offline characterization of a cell or their construc-
tion. Various kinds of models have been presented in literature [28, 67], which can be
classified as follows:

• Electrochemical models: they describe the mechanisms of power generation by
using equations that connect the macroscopic information (e.g., voltage and cur-
rent) with the microscopic ones (e.g., the electrons exchange during the electro-
chemical reactions and the ionic concentrations) [100, 122, 147]. The model pa-
rameters are hardly identifiable because they require a deep knowledge of the cell
structure.
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• Mathematical models: in these models the cell behaviour is computed with em-
pirical equations that are usually designed for a specific battery under particular
conditions and applications [26,107]. Sometimes there is not correspondence with
the physical phenomena.

• Electrical models: they reproduce the cell by using an electric equivalent model
with lumped parameters [76, 95].

Highly accurate models, such as the single-particle and multiphysics electrochem-
ical models, tend to be very complex and thus suitable for the offline analysis of the
behaviour of a cell [49]. In contrast, Electrical Circuit Models (ECMs) are suitable to
be implemented in a real-time embedded system, like a BMS based on a micro con-
troller [57, 94] or a low-cost FPGA device [92]. They can provide good accuracy with
affordable complexity [63] by using various combinations of passive components, like
resistors and capacitors, and controlled voltage generators to mimic the static and dy-
namic behaviour of the battery cells with different degrees of fidelity [95].
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C1

VOC(SOC)

+ -

v1

R2

C2

+ -

v2

+

-

VM

iL

+

-

Rint

1 RC

2 RC

Figure 2.4: Rint model and Thevenin models with one and two RC branches.

Very simple ECM configurations are the combined model [153] and the internal
resistance or Rint model [58,59]. As shown in Figure 2.4, the Rint model describes the
cell behaviour by using just a voltage source OCV and a series resistor R0. The value
of the open circuit voltage OCV depends on SOC. This relationship can be modelled in
different ways, for example by using a LUT [12]. The combined model is a particular
type of the Rint model, which uses a combination of the Sherpherd model, Unnewehr
and Nasar model and the Nernst model to describe the behaviour of OCV:

vM =K0 −
K1

SOC
−K2SOC +K3 ln(SOC)+

K4 ln(1− SOC)− iLR0

(2.4)

where K0, K1, K2, K0 and K4 are fitting constants. The SOC is an internal state
variable of ECM models, evaluated using the CC method as in Eq. (2.1).

To account for the dynamic behaviour of a lithium-ion cell, one or more RC branches
can be added to the Rint model to consider the charge transfer, the double-layer, and
the charge diffusion phenomena. This leads to the model with one or two RC branches
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shown in Figure 2.4, often referred to as Thevenin model [23,63], which yield different
degrees of accuracy and computational complexity.

Thevenin model with one RC branch provides a good trade-off in many applica-
tions, especially when fast transients are relevant. It is indeed employed in the state
estimation algorithms developed in [46, 56, 57, 99, 145]. A second RC branch can be
used to increase the accuracy of the model by reproducing slower dynamics associated
to charge diffusion into the electrodes [5, 34, 35, 58]. Voltages v1 and v2 on the RC
branches model the relaxation effects [95]. A model obtained through the star-delta
transformation of the Randles’ circuit is used in [101].

The Enhanced Self-Correcting (ESC), which includes effects due to OCV, internal
resistance, voltage time constants, and hysteresis has been proposed in [108, 110, 111].
A first-order differential equation is used to describe the hysteresis effects.

The model parameters can be extracted by characterizing the cell in different oper-
ating conditions. For each of these conditions, a particular current profile is applied to
the cell, while the characterization setup acquires and store the voltage, current, and
temperature of the cell. Then, these data are used to identify the model parameters.
The Pulsed Current Test (PCT) is used at different temperatures and current C-rate
in [11, 12]. In this test the temperature is kept to a constant value by using a thermo-
static chamber and the current profile is made of pulses of given duration followed by
a rest time [64], as shown in Figure 2.5. The voltage and current profiles are acquired
with high accuracy sensors, in order to allow a reliable characterization and SOC com-
putation, by using the CC technique.
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Figure 2.5: Current and voltage profiles during a pulsed current discharge test.

The pulse duration allows the system to discharge the cell of a precise SOC value
and so to obtain the parameter value for different SOC points by analysing the cell
behaviour during the pause. The voltage response during a pause, after a discharging
current pulse have been applied, is reported in Figure 2.6. The voltage raise ∆V0 at the
begin of the pause is due to the cell ohmic resistance, while the other model parameters
can be extracted by executing an opportune exponential fitting of the voltage during the
raise indicated with ∆V1.
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ΔV0

ΔV1

Figure 2.6: Voltage response during a pause, after a discharging current pulse.

In order to give an indication of the dependency of the ECM parameters on the oper-
ating point of the cell, the behaviour ofR0 as function of SOC and temperature is shown
in Figure 2.7 for a Kokam SLPB723870H4 1.5 A h NMC cell [12]. We can note that
the value of this resistance noticeably changes when SOC varies from 20 % to 100 %
and the temperature from 10 ◦C to 35 ◦C. This shows that ECMs can provide good
accuracy only if their parameters are made vary with the battery operating conditions.
Thus, ECMs need to be combined with an online parameter identification technique.
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Figure 2.7: Behaviour of R0 as function of SOC measured at three temperatures on a Kokam
SLPB723870H4 1.5 A h NMC cell.

2.3.3 Safety

One of the main function of a BMS is to protect the battery from dangerous operating
conditions due to its chemical characteristics that can be hazardous also for the users.
These conditions may occur when a cell works outside of its SOA in terms of voltage
and SOC (over-charged or discharged conditions), temperature, and current, when it is
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higher than the maximum charge/discharge values. Usually, batteries are provided with
a power switch, used by the BMS to protect the cells.

Safety must be guaranteed during the entire battery lifetime, so also the hardware
and software components of the BMS must be very reliable and need specific safety fea-
tures. For example, automotive applications require compliance with the International
Organization for Standardization (ISO) 26262 functional safety standard.

2.3.4 Charge equalization

As said in Section 2.2, cells are usually connected in series and in parallel in order to
increment the battery voltage and capacity, respectively. This solution may introduce
different issues when the used cells have some characteristics that differ from their
nominal values. In particular, in series-connected cells, the ageing, the internal resis-
tance mismatch, and the temperature gradient can cause the unbalancing of the stored
energy [18, 115]. In this situation, the charge and discharge phases can be executed
until one of the cells in the series reaches the upper and the lower voltage threshold,
respectively. This does not allow the full charge or discharge of the battery, resulting
in a reduction of the energy that can be stored in the battery pack. Various solutions
have been implemented on BMSs to equalize the energy among cells and to make their
SOC as close as possible. They can be divided in two big categories: the passive and
the active balancing [25, 77].

Passive technique equalizes the stored energy by dissipating it on bleeding resistors
that are connected to the most charged cells using dedicated switches [8, 157]. This
solution is usually adopted in small/medium batteries because of its low cost and simple
implementation especially when the currents that flow into the resistors are low. A more
complex thermal management is needed for high balancing currents, since the energy
is dissipated as heat directly on the BMS board.

On the other side, active balancing techniques allow to improve the equalization
efficiency since the energy is moved from the most charged cells to the others [50].
However, the circuital complexity is higher with respect to the passive balancing, and
the challenge is to find a good trade-off between complexity and efficiency. Promising
solutions are those where energy transfer is executed in a module-to-cell or a battery-
to-cell configuration by employing a DC/DC converter [14, 25, 112].

2.3.5 Communication and data management

An important feature of the BMS is the managing and the storage of the measured and
computed data, such as cells voltage, current, SOC, SOH, and fault codes [55,74]. This
task can be very difficult, especially in batteries with a large number of cells, because
of the large amount of data that must be exchanged and the large amount of memory
needed to store these information. These data are then used by the other components
of the system to analyse the battery state and to perform the standard tasks. In fact,
BMS must guarantee the integration with the internal modules of the application, such
as the motor control and the central unit of an EV. Furthermore, it must be able to
communicate with external components, such as a charging station to allow the data
and commands exchange and the managing of the charging phase. In automotive and
industrial applications, the most used communication protocol is the Controller Area
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Network (CAN bus) because of its robustness [22, 74]. Other diffused links are the
UART, the SPI, and the Ethernet.

2.4 BMS architectures

In battery-powered applications, the various architectures of a BMS mainly differ on the
distribution of the BMS functions among different hierarchical levels, and the choice
depends on the number of cells composing the battery pack. Each topology has differ-
ent:

• Complexity: number of boards and components, communication and power ca-
bling, software;

• Flexibility: possibility to easily reconfigure the BMS for different batteries and
applications;

• Robustness: ability to cope with failures during the battery functioning. These
failures can occur due to issues on the Li-ion cells, on the BMS boards, or on the
communication link;

• Computational power: capability of executing algorithms for accurate and reliable
cells state estimation;

• Cost: for design, manufacturing, and maintenance.

The most common typologies are usually composed by one or two hierarchical lev-
els. A monolithic architecture is an example of the first typology where all the functions
are developed in a single board, while BMSs based on two levels have a distributed ar-
chitecture, whose most lower level comprises boards that are directly connected to the
cells and that can be organised in modules usually managed by a stack monitor or can
use cells with some logic inside.

As said in Sections 2.3, stack monitors are dedicated integrated circuits able to mon-
itor a group of cells. They are provided with a series of inputs dedicated to the cell
voltages measurement to which each cell terminal must be connected. The acquired
data are sent to a control unit through a serial interface and used to execute the BMS
algorithms and procedures. Moreover, they can use these information also to alert the
main unit about some dangerous situations, such as the detection of under-voltage or
over-voltage conditions, by using dedicated error signals. They can also implement
other useful functions such as the acquisition of a certain number of analog inputs that
can be used to acquire other cell quantities (e.g., the temperature and current), and the
control of some digital outputs. Furthermore, they can be able to manage the balancing
circuit, which is usually implemented with a passive technique. The main functions and
a comparison among the most used stack monitors in research and commercial fields
are reported in Table 2.3. Each stack monitor can manage a number of cells belonging
to a determined range, where the low limit is due to minimum allowed supply voltage
of the chip, since it is directly powered by the cells, while the high limit is due to the
number of measurement inputs.

Nevertheless, a battery composed by a large number of cells can be managed by
connecting together more stack monitors, since they can be connected in daisy-chain
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Table 2.3: Characteristics comparison of commercial stack monitors.

Name BQ76PL455A-Q1 LTC6813-1 ISL78610
Manufacturer Texas Instruments Analog Devices Renesas
Number of cells from 6 to 16 up to 18 up to 12
ICs daisy-chain up to 16 up to 17 up to 14
Additional inputs 8 analog + 6 GPIOs 9 GPIOs/analog 4 analog
ADC 14 bit 3 x 16 bit 13 bit
Measurement time for all
cells

2.40 ms 0.29 ms 0.24 ms

Accuracy (depends on the
ADC configuration from ±1 mV to ±7 mV from ±2 mV to ±6 mV ±10 mV

and temperature range)
Communication with host UART (1 Mb/s) SPI (1 Mb/s) SPI (2 Mb/s)
Communication through
daisy-chain

proprietary differential isoSPI proprietary differential

Balancing Passive Passive Passive
Compliance AEC-Q100 ISO 26262 AEC-Q100
Cost 12e 13e 8e

to allow the control unit to communicate with each single chip. As we can see in
Table 2.3, there is also a maximum number of chips that can be connected in daisy-
chain because of the limits in the communication. However, the daisy-chain connection
of a large number of stack monitors can bring to a problem of data synchronization
since messages like the measurement trigger message, sent by the main unit to the
nearest stack monitor in the communication bus, can be propagated with a significant
delay, and thus the acquisition of the cell voltages is executed in different moments with
respect to the measurement of the battery current. The consequence of this problem can
be an error in the state estimation algorithms which assume a perfect correspondence
between the input samples. To avoid this problem, some new stack monitors, such as
the BQ76PL455A-Q1 by TI shown in Table 2.3, allow the broadcast communication of
the commands sent by the main unit.

The BMS is a monolithic system in small-format batteries, where all the functions
are grouped in a single board in order to reduce costs, that are very important in these
cases, since these kind of ESS usually equips low-cost systems [135]. This kind of
architecture is used in [8, 78, 157] where the described BMSs manage a low number
of cells (from three to seven cells). The main unit is based on microcontrollers that
acquires the voltage and the current of the cells with the integrated ADC and uses
them to perform the inevitable safety functions and the basic estimation of the SOC
with the CC technique. A monolithic architecture for medium-format batteries able
to manage 12 series-connected groups of two parallel-connected cells is presented in
[41]. In this case, the microcontroller acquires the cell voltages and some point of
temperature inside the battery pack by using a stack monitor. In general, balancing
techniques are absent or based on very simple passive circuits. These architectures
have low complexity and present a low flexibility, since they are built for a defined
number of cells to minimize their costs. Furthermore, they introduce a single point of
failure since only one central control unit is present.

Different considerations must be done for large-format batteries, where the high
cost is due to the large number of lithium-ion cells, to the cabling, and to the large
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2.4. BMS architectures

number of critical components necessary to manage the high required power such as
contactors, current sensors, balancing circuits, appropriate enclosures, and isolation
systems. In these batteries, the BMS is physically organized in two or more hierar-
chical levels where the cells are usually grouped in modules provided with a Module
Management Unit (MMU) which communicates with a central unit, the Pack Man-
agement Unit (PMU). Here, the functions of the BMS can be distributed among the
different hierarchical levels, starting from MMUs able to measure only the main cell
quantities that are elaborated by the PMU (Figure 2.8.(a)) and arriving to intelligent
MMUs (Figure 2.8.(b)) able also to execute different algorithms [135].
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Figure 2.8: Distributed topologies based on (a) MMUs with a stack monitor, (b) MMUs with a stack
monitor and a microcontroller, and (c) Smart Cells.

In the first case, MMUs can be based on stack monitors able to execute the measure-
ments and to perform a reliable communication with the PMU. The latter needs a high
computational power since it has to compute the state of all the battery cells and for
this reason it must be based on a microcontroller with a suitable computational power,
like in [53].

In the case of Figure 2.8.(b), some of the PMU functions can be demanded to the
MMUs in order to distribute the tasks. Here, all the management units can be built
using microcontrollers with an appropriate computational power. In [80, 105, 150], the
Analog Devices stack monitors or the BQ76PL455A-Q1 by Texas Instruments are used
together to a basic microcontroller that has the task to collect the acquired data and to
send them to the PMU over CAN communication, while in [22] the MMUs also manage
the balancing procedure. A different approach is used in [40,71], where the MMUs are
provided with a more powerful microcontroller, like the LPC1754 by NXP, in order to
perform most of the BMS tasks at module level. In fact, each MMU is able to monitor
and manage the module cells and to compute their internal state, communicating the
results to the PMU over CAN. The possibility to use the CAN communication instead
of the daisy-chain connection improves the reliability of the communication and the
synchronization of the data acquisition.

Furthermore, in literature there are many works which explore the idea of Smart
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Chapter 2. Lithium-ion energy storage systems

Cell (SC) [81, 121, 125, 126], where every single cell is provided with a Cell Manage-
ment Unit (CMU), i.e., a board with microcontroller able to execute some functions
and to communicate with the PMU, as shown in Figure 2.8.(c). In these works, the
basic functions of the SCs are the voltage and temperature measurement and the com-
munication with the PMU, but additional tasks can be demanded to the CMU, like the
current measurement, and the execution of the state estimation algorithms, reaching a
considerable complexity at CMU level. This solution allows the PMU to be very simple
and to perform only the data collecting, the communication with external systems, and
the managing of the main switches.

Recent works have presented a new architectural approach: a distributed BMS with
the main unit based on an FPGA or on a System on Chip in an FPGA device (SoC-
FPGA), where the FPGA fabric is flanked to a hard-core processor or used to instantiate
a soft-core processor. The use of these devices in industrial and transportation applica-
tions is continuously growing [134], such as in motor control [21, 47, 75], robotic arms
control and precise positioning [38, 132], control of power quality [54, 141], and fault
verification and railway safety [20,52]. In some cases these devices are going to replace
microcontrollers [21] thanks to a substantial reduction of costs and to the introduction
of high level design flows for improving the time to market [123, 124], as the design
flow introduced by Intel and described in Section 4.2.
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Figure 2.9: Distributed architecture with an FPGA-based PMU and battery cells organised in modules.

The use of an SoC-FPGA in a BMS allows us to obtain a more flexible system
with a higher computational power. Two different architectures have been analysed
by using an FPGA device as PMU control unit: a distributed topology where cells are
organised in modules managed by a stack monitor (very similar to the architecture of
Figure 2.8.(a)) and an architecture which uses the concept of smart cell (like the one of
Figure 2.8.(c)).

A schematic representation of the distributed architecture which uses an FPGA-
based PMU and stack monitors to manage group of cells is shown in Figure 2.9. The
hard/soft-core processor and its peripherals can be used to implement the basic func-
tions of the BMS, while the FPGA is used to instantiate state estimation hardware
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co-processors, to extend the peripheral set of the hard-core processor, and to instantiate
further soft-core processors that can be used for redundancy reasons in order to improve
the BMS safety and robustness. A distributed architecture which jointly employs the
concepts of the use of an SoC-FPGA and SCs is shown in Figure 2.10.
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Figure 2.10: Distributed architecture with an FPGA-based PMU and smart cells.

2.4.1 Discussion

The choice of the BMS architecture to be used in a specific application depends on
many factors. A comparison of the different architectures can be very useful to the
designer in choosing the BMS architecture to be used for a specific battery, depending
on particular requirements. A monolithic architecture is very convenient for small-
format batteries (up to about 20 cells), while for large-format batteries, like those used
in automotive applications, the most employed solution is the distributed topology.

The most simple and cost-effective architecture is the one with the MMUs with only
a stack monitor and a microcontroller-based PMU. This because of the low circuital
complexity dues to the low number of components, the low complexity of the commu-
nication cabling, and the necessity to develop the firmware only for one microcontroller.
On the other hand, this architecture provides the worst performance in flexibility, com-
putational power, and robustness. In general, architectures which use stack monitors
instead of smart cells have a lower scalability with the number of cells since there
are some restrictions on the maximum and the minimum number of cells that can be
managed and on the number of stack monitors that can be connected in daisy-chain.
Furthermore, it is convenient to use module with the same number of cells to avoid
different unbalancing of the cells among modules. Another issue of this architecture
is that it can only allow the execution of simple algorithms, since complex techniques
executed for a large number of cells may require a long execution time if the compu-
tational power is not adequate. Better computational power is achieved by the other
architectures thanks to the use of more computational units or an FPGA that enables
the hardware acceleration, reaching higher performance thanks to parallel computing
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and pipeline architectures. Furthermore, the use of various control units brings to more
robust BMSs, thanks to the possibility to implement further safety and redundant func-
tions that can allow the battery to keep working even in presence of failures, until the
application reaches a safety situation. In this regard, the up-and-coming architectures
which use SCs are the most well-performing and present a reduced sense cabling com-
plexity, since each CMU in a smart cell can be directly connected to the cell terminals,
but the high costs make it not suitable for many current applications. However, higher
integration of some hardware components and higher volume of manufacturing can
allow in future a reduction of the costs and so the use in different applications [81].

The use of an FPGA-based PMU offers a very good flexibility thanks to the high
grade of reconfigurability of the device that also allows the developer to change its in-
ternal peripherals, enabling for example the use of MMUs with a different communica-
tion protocol or more instances of the same peripheral to parallelize the data acquisition
or the execution of some functions. Moreover, another technique that can be employed
to improve the estimation capability and the flexibility of this architecture is the dy-
namic reconfiguration of the FPGA during run-time as demonstrated in [140], in which
various algorithms are executed in time division multiplexing from time to time.

Currently, the architecture whit an FPGA-based PMU and SCs has the advantages
of both the SCs and the FPGA, but it is very expensive for industrial applications.
However, it can be very useful for research reasons or during the development of new
BMS functions and algorithms thanks to the available computational power and the
highly flexible architecture. In fact, we developed a BMS based on this architecture
within the 3Ccar European research project, which aims at investigating the use of this
kind of advanced architecture for automotive applications.
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CHAPTER3
Advanced state estimation algorithms

3.1 Introduction

Regarding the SOC estimation, the advantages introduced by the model-based tech-
niques are very significant, as previously described in Section 2.3.2. This because of
their capability to match various computational and accuracy requirements. In fact,
the accuracy of the estimation can be improved by using either a complex model or a
simple one in combination with an online parameter estimation algorithm.

The brief state of the art description of the model-based algorithms reported in the
previous chapter highlights that the most used technique for SOC and parameter esti-
mation is the Kalman filter, used alone or in combination with a least squares technique.
A detailed description of this co-estimation algorithm, especially in the dual extended
version, is reported in Section 3.2, where either the generic functioning and the specific
implementation for estimating the SOC and the model parameter of a Li-ion cell have
been reported [91].

1V SOC

R0

R1

C1
Qn 

iL
+

-

+

- VOC
+ -

v1

+

-

vM

iL

1V

Figure 3.1: Thevenin model with one RC branch.

The Li-ion cells have been modelled by using the Thevenin model with one RC
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branch introduced in Section 2.3.2 and shown in Figure 3.1, because of its suitability
for application with fast transients, such as in automotive field. The left-hand side of the
circuit models the cell capacity and the SOC. The latter is calculated as Q/Qn, where
Q is the residual charge. On the other side, the cell terminal voltage vM is generated
as the sum of the voltages v1, the open-circuit voltage VOC and the voltage across the
ohmic resistance R0, due to the flow of the cell current iL. The state space equations of
the model are reported in (3.1), where τ1 = R1C1.

dSOC

dt
= − iL

Qn

dv1
dt

= −v1
τ1

+
iL
C1

vM = VOC −R0iL − v1

(3.1)

The DEKF presents some issues, such as the choice of some algorithm’s parameters,
that can be solved in the AMA to the detriment of a major complexity. This algorithm
employs the same ECM shown above, as described in details in Section 3.3 together
to a procedure to opportunely tune the algorithm parameters in relation with the target
application.

3.2 Dual Extended Kalman Filter

The EKF estimates the internal state of a system by using recursive equations and the
acquired measurements at each sampling time step. Let the state-space (or process) and
the measurement discrete time equations for a time varying non-linear system be:

xk+1 = f(xk, uk) + ξk (3.2)

yk = g(xk, uk) + ψk (3.3)

where subscript k indicates the discrete time, xk is the state variable vector, uk is
the input vector, and yk is the model output vector. Vectors ξk and ψk are the process
noise and the measurement error assumed to be Gaussian random processes with zero
mean and covariance matrices R and Q, respectively. Under these assumptions, if the
system is linear the KF provides the optimal Bayesian solution for the unmeasured state
xk [70, 106]. However, results presented in literature confirmed that this estimator is
very effective also for non-linear systems with non-Gaussian distributions [118].

In the EKF, the non-linear functions g and f are linearised by using the first-order
Taylor expansion. This yields the following state space linearised representation:

xk+1 = Akxk +Bkuk + ξk (3.4)

yk = Hkxk +Dkuk + ψk (3.5)

where Ak, Bk, Hk and Dk are Jacobian matrices. The state vector is computed by
cyclically repeating a prediction and a correction phase as shown in Figure 3.2, after
having initialised the state vector and its covariance matrix Pk.
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Figure 3.2: Diagram of the EKF algorithm.

During the prediction phase, the prediction of xk and Pk, denoted by superscript
“−”, is computed:

x−k = Ak−1x
+
k−1 +Bk−1uk−1 (3.6)

P−k = Ak−1P
+
k−1A

T
k−1 +Q (3.7)

In the correction step, the prediction is corrected by using the Kalman gain Lk and
the output measurement Yk, obtaining the estimation of xk and Pk, denoted by super-
script “+”:

yk = Hkx
−
k +Dkuk (3.8)

Lk = P−k H
T
k (HkP

−
k H

T
k +R)−1 (3.9)

x+k = x−k + Lk(Yk − yk) (3.10)

P+
k = (I − LkHk)P

−
k (3.11)

The EKF can be used to estimate both the cell state and the model parameters of
a cell. This problem can be approached by using two different techniques: the Joint
and the Dual estimation [109]. In both cases, uk is composed only of the cell current
iL, while yk of the model voltage vM. In the Joint estimation, xk comprises the state
variables, such as SOC and v1, and the parameters. Instead, in the DEKF there is a
second filter which is used in cooperation with the first one for the parameter estimation.
Usually, the Joint estimation provides more accurate results than the Dual one because
it takes into account the correlation between the state and the parameters. It is also
more intuitive to implement. Unfortunately, the use of a single state vector leads to
larger matrices and to a poor numeric conditioning. These disadvantages are solved in
part by using a Dual estimation algorithm, at the expense of a loss of accuracy, due to
the neglection of the cross-correlation between state and parameters [110, 111]. The
DEKF is built by using the following equations:

pk+1 = pk + χk (3.12)

xk+1 = f(xk, iL,k, pk) + ξk (3.13)

vM,k = g(xk, iL,k, pk) + ψk (3.14)
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The state evolution is computed by equations (3.13) and (3.14), which build the first
filter, while the model parameters, contained in vector pk, are computed by the second
filter, composed by Eq. (3.12), where χk is the noise on the parameters with zero mean
and covariance matrix Qp, and the same measurement equation. Since there is not a
state-space description for the ECM parameters, the prediction phase just maintains the
last computed value and the update of the parameters is executed in the correction step
only. The full DEKF algorithms is as below:

1. Initialization:

x0, P0, p0, Pp0 (3.15)

2. Prediction step:

p−k = p+k−1 (3.16)

P−pk = P+
pk−1

+Qp (3.17)

x−k = f(x+k−1, uk−1, p
+
k−1) (3.18)

P−k = AkP
+
k−1A

T
k +Q (3.19)

3. Correction step:

Lk = P−k C
T
k (CkP

−
k C

T
k +R)−1 (3.20)

x+k = x−k + Lk(yk − g(x−k , uk, p
+
k−1)) (3.21)

P+
k = (I − LkCk)P−k (3.22)

Lpk = P−pkC
T
pk

(CpkP
−
pk
CT
pk

+R)−1 (3.23)

p+k = p−k + Lpk(yk − g(x−k , uk, p
+
k−1)) (3.24)

P+
pk

= (I − LpkCpk)P−pk (3.25)

where the subscript p indicates that variables are related to the KF which computes
the model parameters. The value of the matrices used in these equations can be derived
from the discrete time state space equations of the model [131], starting from (3.1):

xk =f(SOCk, v1,k, iL,k) =[
SOCk

v1,k

]
=

[
SOCk − T

Qn
iL,k

v1,k−1e
−T/τ1,k +R1(1− e−T/τ1,k)iL,k

]
(3.26)

vM,k = g(SOCk, v1,k, iL,k) = VOC(SOCk)−R0,kiL,k − v1,k (3.27)

where T is the sampling time and the OCV-SOC relationship has been mapped by using
a degree seven polynomial function, which allows us to obtain a good trade-off between
complexity and fitting accuracy:

VOC(SOC) =P0 + P1SOC + P2SOC
2 + P3SOC

3 + P4SOC
4+

P5SOC
5 + P6SOC

6 + P7SOC
7

(3.28)
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From (3.26) and (3.28) we obtain:

xk = [SOCk; v1,k] (3.29)

pk = [R0,k; 1/τ1,k;R1,k] (3.30)

Ak =

[
1 0

0 e−T/τ1,k

]
(3.31)

Ck =
[
dVOC(SOC)

dSOC
−1
]

(3.32)

Cpk =
[
iL,k 0 0

]
+ Ck

dx−k
dp

(3.33)

where R ∈ R1×1, Q,P ∈ R2×2, Qp, Pp ∈ R3×3, since they depend on the number of
the system outputs, states and parameters of the model, respectively, and:

dx−k
dp

= Ak
dx+k−1
dp

+

[
0 0 0

0 Te−T/τ1,k(R1iL,k − v1,k−1) 1− τ1,kiL,k

]
(3.34)

The DEKF can provide very good results, but the determination of the covariance
matrices to be used in the algorithm is very tricky and it is usually performed by using
an empirical approach [131]. Their values strongly depend on the application and can
influence the numerical stability of the filter and the convergence rate towards the true
value of the estimate [9, 24, 139]. They are diagonal matrices, where the j-th diagonal
element mainly characterises the filter estimation of the state variable or parameter
reported in the j-th position of the state or parameter vector, respectively. As largely
proved in literature, higher values of the covariance usually allow a faster response
of the filter. However, the performance improvement is not significant after a certain
covariance limit and the filter can become not stable if the covariance value is too
high [103]. The covariance values contained in the matrices Q and Qp used in this
work have been reported in Table 3.1, while R matrix is set equal to 3 · 10−3 V2.

Table 3.1: Values of the covariance matrices of the DEKF algorithm.

State variable/Parameter SOC v1 (V2) R0 (Ω2) τ1 (s2) R1 (Ω2)
Variance 8 · 10−6 6 · 10−5 1 · 10−10 4 · 10−6 7 · 10−10

The approach followed in this work is to execute the DEKF algorithm offline on an
emulated profile, usually similar to a real profile typical of the considered application,
tuning the covariance values in relation to the filter response and the considerations
reported above.

3.3 Adaptive Mix Algorithm

The AMA block diagram is shown in Figure 3.3. It is an enhanced version of the Mix
Algorithm (blue box), a model-based technique presented by Codeca et al. in 2008 [32],
in which the ECM of Figure 3.1 is used with constant parameters.
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Figure 3.3: Adaptive Mix Algorithm block diagram.

In this work, the algorithm accuracy has been improved by taking into account the
parameter variations due to changes in SOC, temperature, and current, with an online
parameter identification technique, as introduced in Section 2.3.2. The employing of an
online identification technique makes the algorithm adaptive, since it allows the model
to adapt its parameters to the actual operating point. To this aim, the AMA integrates
the Moving Window Least Squares (MWLS) method [113, 114], represented by the
orange block in Figure 3.3.

We developed a simple procedure for setting the algorithms parameters in a more
appropriate way with respect to the DEKF. In fact, the AMA has a reduced number
of parameters that can be tuned in according with the target application by using the
procedure described in Section 3.3.3. Moreover, the MWLS offers better stability and
has potentially less divergence problems at the expense of a higher computational effort
due to the inversion of large matrices [138].

A detailed description of the AMA has been reported in the following Sections, by
separately analysing the SOC estimation part and the ECM parameter identification
one.

3.3.1 SOC estimation

As said above, the SOC estimation is computed by the Mix Algorithm [32]. The ECM
is used to predict the Li-ion cell behaviour. Its output voltage vM is compared with the
voltage across the cell terminals vT and the generated error signal is amplified by the
observer gain L and subtracted to the measured cell current iL. The resulting signal is
then integrated in order to compute the SOC with the conventional CC method.

This algorithm can be seen as an improved CC since it is able to reduce the sensi-
tivity to uncertainties over current measurements and the SOC initial value thanks to
the feedback loop. To prove these characteristics, we can analyse the stability of this
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algorithm and the sensitivity to different error sources (on current measurement Ierr,
voltage measurement Verr, and wrong SOC initialization SOCerr), performed in the
Laplace domain by linearising the OCV-SOC relationship [31]:

VOC(s) = α0 + α1SOC(s) (3.35)

where α0 and α1 change with the operating point.

Stability analysis

The system stability can be evaluated by testing the effect of each input (iL and vT) in
according to the superposition principle. In fact, the algorithm is asymptotic stable if
the transfer functions with respect its inputs are asymptotic stable.

The model voltage and the SOC in the Laplace domain can be obtained from the
state space model (3.1):

VM(s) = VOC(s)− ZS(s)IL(s) = α1SOC(s)− ZS(s)IL(s) (3.36)

SOC(s) = −IL(s)

sQn

(3.37)

where ZS(s) = R0 + (R1/(1 + R1C1s)) is the small-signal output impedance of the
linearised cell model, while the coefficient α0 is neglected in this analysis.

The transfer function WV (s) between the SOC and VT is obtained by considering
IL = 0:

SOC(s)|IL=0 =
L

sQn

(VT(s)− α1SOC(s)) (3.38)

WV (s) ≡ SOC(s)

VT(s)
=

L

Qn

1

s+ Lα1

Qn

(3.39)

while the transfer function WI(s) between the SOC and IL is obtained by considering
VT = 0:

SOC(s)|VT=0 = − 1

sQn

(IL(s) + Lα1SOC(s)− LZS(s)IL(s)) =

= IL(s)

(
LZS(s)− 1

sQn

)
− Lα1SOC(s)

sQn

(3.40)

WI(s) ≡
SOC(s)

IL(s)
=
LZS(s)− 1

Qn

1

s+ Lα1

Qn

(3.41)

Both transfer functions have the same denominator where the sign depends on the
term Lα1/Qn and in particular on the sign of L, since α1 and Qn are always positive.
We can note that if L = 0 the algorithm works in open-loop and the SOC is computed
by the CC method, while if L > 0 the system is asymptotic stable.
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Sensitivity to a wrong SOC initialization

In order to analyse the algorithm behaviour in presence of an error in SOC initialization,
we can add an error SOC0,err at the input of the integration block. In this way, a new
transfer function can be obtained:

SOC(s) = SOC0,err −
Lα1SOC(s)

sQn

⇒ SOC(s)

SOC0,err

=
s

s+ Lα1

Qn

(3.42)

The steady-state value of the SOC error SOCerr = SOCtrue−SOC, where SOCtrue
is the real value and SOC is the estimated one, is obtained from (3.42) using the final
value theorem:

lim
t→∞

SOCerr(t) = lim
s→0

sSOCerr(s) = lim
s→0

s
SOC0,err

s

s

s+ Lα1

Qn

= 0 (3.43)

This means that the Mix algorithm is capable of fully correcting a bad SOC initial-
ization independently of L, reaching the correct value with an exponential trend with a
time constant equal to Lα1/Qn.

Sensitivity to measurement errors

The same procedure previously applied for the analysis in case of an error in SOC
initialization can be also used to determine the algorithm performance in presence of a
constant error Verr on the voltage measurement:

SOCerr =
Verr
s
WV (s) =

Verr
s

L

Qn

1

s+ Lα1

Qn

(3.44)

The steady-state value of the SOC error is:

lim
t→∞

SOCerr(t) = lim
s→0

sSOCerr(s) = lim
s→0

s
Verr
s

L

Qn

1

s+ Lα1

Qn

=
Verr
α1

(3.45)

An error in the cell voltage measurement leads to a non-zero steady-state error,
which is proportional to the slope α1 of the OCV-SOC curve in the actual SOC operat-
ing point.

Finally, the SOC steady-state error due to a static offset Ierr in the cell current mea-
surement can be obtained in the same way:

SOCerr =
Ierr
s
WI(s) =

Ierr
s

LZS(s)− 1

Qn

1

s+ Lα1

Qn

(3.46)

lim
t→∞

SOCerr(t) = lim
s→0

sSOCerr(s) = lim
s→0

s
Ierr
s

LZS(s)− 1

Qn

1

s+ Lα1

Qn

=

=Ierr
LZS(0)− 1

Lα1

(3.47)

where ZS(0) = R0 + R1. Equation (3.47) demonstrates that the steady-state error due
to errors on current measurement can be cancelled with an appropriate choice of the
gain value:

LZS(0)− 1 = 0⇒ L =
1

R0 +R1

(3.48)
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Note that this value is not constant and depends on the resistive components of the
ECM which vary during the algorithm execution, since they are computed online by
the parameter identification block.

3.3.2 Online parameter identification

The functioning diagram of the parameter identification block is shown in Figure 3.4.
It executes the online estimation of the ECM parameters R0, R1, and C1 by using the
MWLS technique applied to the AutoRegressive eXogenous (ARX) structure of the
ECM. The inputs are the samples of the cell current iL and terminal voltage vT. The
signal conditioning block filters with a third-order Butterworth low-pass filter and dec-
imates the input samples. This avoids aliasing and allows noise, affecting the measured
voltage and current signals, and the dynamics out of interest to be filtered out.

Signal 

conditioning

ARX model 

parameter 

identification

Back 

substitution
iL

vT

[a1,b0,b1,b2] R0

R1

C1

Figure 3.4: Diagram of the MWLS algorithm.

The estimation of the model parameters is performed by using a certain number
M of conditioned samples, belonging to a temporal window of length LW = M · T ,
where T is the sampling time after decimation. At each time step, the temporal window
is updated by using the new acquired current and voltage samples. This operation is
equivalent to a time shifting of the window and allows to track the parameter variations
during the cell operation.

In the ARX model the actual value of the output y(k) depends on its Na past values
and the actual and the Nb past value of the exogenous input u(k):

y(k) =
Na∑
i=1

aiy(k − i) +

Nb∑
i=0

biu(k − i− d) (3.49)

where ai and bi are the coefficients of the ARX model, and d represents the mini-
mum delay between the input and the output. This representation can be obtained by
linearising the model around the operating point as in Section 3.3.1, since it slowly
changes over time in a Li-ion cell [92]. Then, the discrete-time transfer function of the
linearised ECM is obtained using the bilinear transform

s→ 2

T

1− z−1

1 + z−1
(3.50)

from Eq. (3.1):
Y (z−1)− α0

U(z−1)
= −b2z

−2 + b1z
−1 + b0

a2z−2 + a1z−1 + 1
(3.51)

where Y (z−1) and U(z−1) are the z-transforms of the voltage output vT and current
input iL, respectively [13]. The coefficients of the discrete-time transfer function (3.51)
can be written as follows:
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Chapter 3. Advanced state estimation algorithms

a1 = − 4τ1
2τ1 + T

(3.52)

a2 =
2τ1 − T
2τ1 + T

(3.53)

b0 = −
[
4R0 + 2T

(
α1

Qn

+
R0

τ1
+

1

C1

)
+
α1T

2

Qnτ1

]
γ (3.54)

b1 = −
(

2α1T
2

Qnτ1
− 8R0

)
γ (3.55)

b2 = −
[
4R0 − 2T

(
α1

Qn

+
R0

τ1
+

1

C1

)
+
α1T

2

Qnτ1

]
γ (3.56)

where γ = τ1/(4τ1 + 2T ). The discrete-time transfer function (3.51) is used to obtain
the second order ARX model of the system:

y(k) =− a1y(k − 1)− a2y(k − 2) + α0(1 + a1 + a2)

+ b0u(k) + b1u(k − 1) + b2u(k − 2)
(3.57)

Equations (3.52) and (3.53) yield 1 + a1 + a2 = 0, thus (3.57) simplifies as follows:

y(k)− y(k − 2) =a1(y(k − 2)− y(k − 1)) + b0u(k)

+ b1u(k − 1) + b2u(k − 2)
(3.58)

Equation (3.58) is used to build an overdetermined linear system, which is solved to
obtain the vector x = [a1, b0, b1, b2] ∈ R4. The Least Squares (LS) technique has been
employed to solve the overdetermined linear system Ax = b, where A ∈ RM×4, and
b ∈ RM . Vector x is obtained by performing the QR decomposition of the matrix A. In
this way, the system is decomposed in the following one:

Ax = b⇒ QRx = b⇒ Rx = QT b⇒ Rx = d (3.59)

where Q ∈ RM×M is an orthogonal matrix and R ∈ RM×4 has the higher submatrix
Ru ∈ R4×4 upper triangular. The LS solution of the system is those that minimize the
quantity

||Ax− b||2 = ||Rx− d||2 =∣∣∣∣∣∣∣∣[ Ru

0

]
x−

[
du

dl

]∣∣∣∣∣∣∣∣
2

= ||dl||2 + ||Rux− du||2
(3.60)

where du ∈ R4 and dl ∈ RM−4. The minimum of ||Ax− b||2 is equal to ||dl||2, and
it is obtained for values of x that allow Rux− du to be equal to zero.

There are different methods which can be used to compute QR decomposition in-
cluding Gram-Schmidt Orthonormalization, Householder Reflections, and the Givens
Rotation. In the AMA, the QR decomposition is executed by using the Givens Rota-
tion, since it is considered numerically stable and easy to implement with pipelining
and ASIC fabrication [6, 144]. The Givens Rotation algorithm can be described with
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3.3. Adaptive Mix Algorithm

Algorithm 1 Givens Rotation algorithm.

Q = Im

for j = 1 : n

for i = m : −1 : (j + 1)

[c, s] = givens(A(i− 1, j), A(i, j))

A(i− 1 : i, j : n) =

[
c s

−s c

]T
A(i− 1 : i, j : n)

Q(i− 1 : i, j : n) =

[
c s

−s c

]
Q(i− 1 : i, j : n)

end

end

the MATLAB-like code reported in Algorithm 1, where the givens function, reported
in Algorithm 2, computes the values of c and s such that:[

c s

−s c

]T [
a

b

]
=

[
r

0

]
(3.61)

Algorithm 2 Givens function.

function[c, s] = givens(a, b)

if b = 0

c = 1; s = 0

else

if |b| > |a|

τ = −a/b; s = 1/
√

1 + τ2; c = sτ

else

τ = −b/a; c = 1/
√

1 + τ2; s = cτ

end

end

The vector containing the ARX model coefficients is then used during a back sub-
stitution phase, described in Algorithm 3, in which the ECM parameters are computed
by inverting equations (3.52), (3.53), (3.54), (3.55), and (3.56).
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Algorithm 3 Back substitution algorithm.

x=[0; 0; 0;d(k, 1)/R(k, k)]

for k = n− 1 : −1 : 1

x(k, 1) = d(k,1)−R(k,k+1:n)x(k+1:n,1)
R(k,k)

end

The MWLS has some parameters that can be tuned in relation with the target appli-
cation, such as the length of the identification window LW and the cut-off frequency of
the low-pass filter fc. A procedure for tuning these parameters has been presented in
the following Section.

3.3.3 MWLS tuning procedure

The procedure for tuning the MWLS parameters has been presented in [90] and uses
a typical current profile of the battery in the considered application. The number of
samples and the sample time depend on the BMS platform. In fact, the sample time
is fixed by the sampling period of the monitoring circuit in the BMS and is typically
between 10 ms and 100 ms. The number of samples M in the identification window is
determined by the trade-off between complexity and accuracy that offers the processing
unit of the BMS. A better accuracy can be reached by using a high value of M because
the estimation is computed starting from a larger set of input samples. However, this
value affects the memory utilization and the computational effort of the Givens Rotation
algorithm, as described in Section 3.3.2, and so it is fixed by the available hardware
resources. The only tunable algorithm’s parameters are LW and fc. The procedure is
the following:

1. Determine a range of reasonable values of LW:

(a) The maximum value of LW has to be chosen so that the assumption of con-
stant model parameter values still holds in the identification window;

(b) Regarding its minimum value, we observe that the equations used to compute
the vector [R0, R1, C1], obtained from equations (3.52), (3.54), (3.55) and
(3.56), depend on the term a1/(2 + a1). The value of a1 should thus be
sufficiently far from -2 to obtain a non ill-conditioned problem. Hence, from
(3.52), the value of T should not be much less than τ1, i.e., T ≥ τ1/10. This
implies that LW ≥M · (τ1/10).

2. Determine a range of reasonable values of fc:

(a) The maximum value of the cut-off frequency has to satisfy the Shannon the-
orem (fc ≤ 1/(2T )), thus fc ≤M/(2LW);

(b) The minimum value is obtained considering that it cannot be too low in order
to preserve the fast dynamics of the battery, so fc ≥ 0.5/(2πτ1).

3. A tuning phase is carried out by using a load current profile typical of the target
application.
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3.3. Adaptive Mix Algorithm

4. The best combination of LW and fc is found by evaluating the rms error of the
ECM predicted voltage, when LW and fc vary in their defined ranges, and by
choosing the couple of values that minimise this error. The latter is computed as
the difference between the measured voltage and the one predicted by the ECM,
when the parameters R0, R1 and C1 are identified by the MWLS algorithm.
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Figure 3.5: Cell parameters extracted from a PCT test executed at room temperature.

A gardening application is taken as a case study to verify the tuning procedure,
assessing also the algorithm performance. Battery powered gardening tools can provide
different types of power profiles, which allow us to explore different battery operating
conditions. In particular, two tools with different power requirements are considered
[39, 79]. The battery consists of 24 Li-ion cells, manufactured by LG Chem. The
cells are arranged in 12 series-connected groups of two parallel-connected cells. The
battery is monitored by a BMS, which measures the voltage, current and temperature
of each cell group. A cell group has been characterised using a PCT, which has been
presented in Section 2.3.2. The parameters measured at room temperature are shown
in Figure 3.5. Four tests have been selected to tune the validation procedure. They all
start with a fully charged battery, which is completely discharged operating the tool in
its normal use. The current profiles acquired by the BMS during a part of the four tests
are shown in Figure 3.6. The first two tests (test 1 and test 2) have been carried out
on a tool with a low power requirement of 160 W. The others two (test 3 and test 4)
come from the second tool, which has a rated power absorption of 320 W. The tuning
procedure has been performed on test 1 and the selected parameters are used for the
model parameter identification of the 12 series-connected groups in the four tests.

The ranges’ bounds are calculated by following the steps 1 and 2 of the presented
procedure and considering that a new sample is acquired every 100 ms and that the
identification window is composed by M = 20 samples. The values of LW and fc are
varied in the ranges of 60 to 540 s and 2 to 14 mHz, respectively. After the execution
of the steps 3 and 4 we obtain a map of the rms error as function of LW and fc. The
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Chapter 3. Advanced state estimation algorithms

Figure 3.6: Current profiles acquired by the BMS during the four tests carried out on the two tools.

error computed considering the first group of two parallel-connected cells, using test
1, is shown in Figure 3.7. This figure highlights an area around LW = 210 s and
fc = 5 mHz, where the error is low and the values of the MWLS parameters should be
chosen.

Figure 3.7: rms error of the voltage predicted by the ECM, as function of the identification window
length LW and of the cut-off frequency fc of the filter.
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3.3. Adaptive Mix Algorithm

Therefore, these values have been selected and used to apply the algorithm on all
the battery cell groups in each test in order to verify the effectiveness of the procedure.
Figure 3.8 shows a comparison between the voltage rms errors obtained by using the
parameters identified by the MWLS and those extracted offline from the PCT. The
errors obtained with online identification are clearly lower in the third and fourth test.
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Figure 3.8: Comparison of the voltage rms error obtained by using the parameters of the MWLS and
those extracted offline. Each point corresponds to a group of two parallel-connected cells.

As these tests have been executed on the tool with the higher mean power absorp-
tion, a battery temperature increase of about 30 ◦C is observed, as shown in Figure 3.9
for test 3, where it is also reported the comparison between the ECM parameters esti-
mated online by the MWLS and those obtained by running the ECM with the parameter
extracted offline and the same current acquired during the test, for the first group of
two parallel-connected cells. During this test, the current becomes equal to zero after
minute 38. For this reason, the temperature slightly decreases and the parameters ob-
tained offline remain constant. It is worth noting that MWLS is able to take into account
the variations of the model parameters due to the temperature change during the use,
providing better results in the cell voltage prediction. In more detail, the parameters
are close to those extracted by the PCT in the first half of the test, but they are quite
different at the end of the test where the battery temperature reaches about 50 ◦C. This
result clearly shows the benefits of using an online parameter identification algorithm.

The situation is slightly different for the other tool (test 1 and test 2). In this case,
the online identified parameters are similar to those extracted from the PCT at room
temperature and the rms errors are comparable. Indeed, the battery temperature remains
almost constant to the ambient value during these tests, as the power absorbed by the
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Figure 3.9: Temperature and ECM parameters estimated online by the MWLS compared with those
extracted offline in test 3 for the first group of two parallel-connected cells.

tool is relatively low.
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CHAPTER4
Hardware acceleration of the battery state

estimators

4.1 Introduction

As said in Chapter 2, using FPGA and SoC-FPGA instead of a microcontroller in a
BMS enables the possibility to increase its flexibility, reconfigurability, and estimation
capability. Thanks to their higher performance with respect to microcontrollers [42,
69, 97] and parallelism, complex and accurate algorithms can be executed for a large
number of cells without interfering with the other BMS functions. In fact, a BMS can
be equipped with custom peripherals in order to perform specific operations. Many
works in literature show the advantages of implementing complex, accurate, and robust
state estimation algorithms in hardware by using FPGAs, like different versions of the
Kalman Filter for SOC and cell parameter estimation [34,131], and the Mix Algorithm
[16] or other observers [98, 136] for SOC estimation.

In this work, both the DEKF and the AMA algorithms, explained in Sections 3.2 and
3.3, respectively, have been implemented as hardware estimators by using Intel FPGA
devices, such as a low cost Intel MAX® 10 FPGA. A high-level design flow provided by
Intel has been used to this aim, in order to reduce the developing time and to guarantee
an easy and fast portability among all the devices of the producer.

The high-level developing process and its advantages is explained in detail in the
next section, while the implementation of the two hardware estimators are explained in
sections 4.3 and 4.4.
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Chapter 4. Hardware acceleration of the battery state estimators

4.2 Design flow

The high-level design flow provided by Intel and drawn in Figure 4.1 includes the DSP
Builder tool that allows us to describe the algorithm by using a Simulink model and the
blocks provided in the DSP Builder Advanced Blockset and to automatically generate
the low-level hardware description [123].
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MATLAB® 

Algorithm 
in ‘C’ 

Algorithm 
using 
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Embedded Design 
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Qsys System 
Integration Quartus II 

Software 

FPGA 

Model 
System 

Algorithm in 
Software 

Integrate with 
Application Software 

Optimize Algorithm 
In Hardware 

Integrate in 
Hardware 

Compile 
Design 

System 
Placement 

Figure 4.1: High level design flow based on DSP Builder.

The generated hardware components are then provided with an interface that allows
it to be connected to other components in the system, including a Nios II 32-bit soft pro-
cessor, JTAG and memory, by using the Qsys system integration tool. In Intel FPGAs,
system components provided with different interfaces can communicate through the
Avalon bus. As an example, the Avalon Memory Mapped Interface (Avalon-MM)
shown in Figure 4.2 allows an address-based read/write communication typical of mas-
ter–slave connections.

Hardware component

Avalon-MMCore

Inputs

Outputs

Figure 4.2: Hardware component provided with the Avalon Memory Mapped Interface.

The complete design is synthesized and programmed for the target FPGA using
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4.3. Adaptive Mix Algorithm

Quartus II design software. For algorithms which includes application software running
on Nios II soft-core, Embedded Design Suite compiles the C software and launches the
compiled application on the FPGA. The procedure is the same for devices equipped
with the ARM® hard-core, where the software is compiled by using the DS-5 suite.

In addition to the reduction of the design effort, this tool allows the automatic gen-
eration of the components for user-defined FPGA device. This ensures the portability
of the hardware system for various Intel FPGA families. The design is optimized for
performance and resource by applying pipelining, time-division multiplexing/folding
and customizing precision, optimizing the hardware module performance and resource
usage depending on the tool parameter settings. Furthermore, DSP Builder is also opti-
mized for floating-point designs. Usually, FPGAs can achieve high performance, espe-
cially when the workloads are highly parallelizable, but the performance are limited in
floating-point designs due to long processing latencies and routing congestion. More-
over, the register-transfer-level description in Verilog or VHDL is not suitable to imple-
ment complex floating-point algorithms. In case of a series of elementary floating-point
operators, DSP Builder overcomes these problems by generating a fused datapath that
combines elementary operators into a single and simpler function or datapath.

4.3 Adaptive Mix Algorithm

The hardware component is composed by the estimator which implements the AMA
and the a Avalon-MM slave interface used to integrate the component in an embedded
system, as shown in Figure 4.2. As an example, the peripheral can be managed by both
the Nios II or the hard-core processors which are provided with an Avalon-MM master
interface, allowing the user to access to the data stored in the peripheral using simple
read/write software functions. The estimator is composed by three blocks (Figure 4.3):
the low-pass filter, the MWLS block, and the Mix algorithm one. The input and the
output values are collected by the Avalon-MM interface which also allows the user
to change the algorithm and the filter coefficients via software, making the estimator
suitable for different applications and battery cell technologies.

MWLS

QRD Comp.

Ifilt

Vfilt

iL

vT

Filter 
coefficients

IIR 
Filter

Mix
algorithm

R0

R1

C1

iL

vT

Algorithm 
coefficients

SOC

Figure 4.3: Block diagram of the implemented AMA hardware estimator.

The input of the MWLS block are the filtered and decimated voltage and current
samples. The samples are filtered by a third-order Butterworth low-pass filter. This
avoids aliasing and allows noise and the dynamics out of interest to be filtered out. The
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cut-off frequency of the filter can be selected by changing the filter coefficients, and
it can be obtained with the procedure described in Section 3.3.3. The filter has been
realized by using a two-stages biquad architecture.

Figure 4.4: Flow graph of a biquad filter.

A single-stage biquad filter has the architecture shown in Figure 4.4 and the follow-
ing discrete-time function:

H(z) =
b0 + b1z

−1 + b2z
−2

a0 + a1z−1 + a2z−2
(4.1)

where usually a0 = 1, i.e., the coefficients are normalised with respect to a0.

Figure 4.5: Implementation of the filter in the Intel DSP Builder tool.

The DSP Builder implementation of the filter is shown in Figure 4.5. The two biquad
stages are visible in the figure and they can be used for a configurable number of input
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channels. Each channel is selected by using a dedicated input. The filter is optimised
for resource usage since the ALU folding block is inserted in the design. It enables
the possibility of the architecture folding which reduces the number of implemented
elementary operators by using them in time multiplexing.

The MWLS block can be further divided in two sections. The first one, so called
QRD in Figure 4.3, composes the linear system with the collected samples and solves
it by using the QR decomposition, as shown in equation (3.59). The various phases
are managed by a state machine. The output values are the coefficients of the ARX
model which are used by the second part of the MWLS block which computes the back
substitution by inverting equations (3.52), (3.53), (3.54), (3.55), and (3.56). These sub-
blocks implement the algorithms described in Section 3.3.2.

The SOC estimation is computed by the Mix algorithm block. It takes as inputs the
samples of the cell voltages and current and the last valid parameter values computed
by the MWLS block. The estimator is very similar to that presented in [16] and its DSP
Builder implementation is reported in Figure 4.6.

Figure 4.6: Implementation of the Mix algorithm in the Intel DSP Builder tool.

The integration of the current is executed by the CC block by using equation (3.37).
The latter can be reported in the discrete-time domain using the bilinear transform (Eq.
(3.50)):

SOC(z) = −IL(z)

Qn

T

2

1 + z−1

1− z−1
(4.2)

from which we can obtain the operation computed by the CC block:

SOC(z) = SOC(z)z−1 − T

2Qn

IL(z)(1 + z−1) (4.3)
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In this equation, the term T/2Qn does not change during the operation of the estima-
tor, thus it is provided to the estimator as a fixed value (E1) during the initialization
phase. At each time step, the model cell voltage is computed as sum of the OCV value,
obtained by using a LUT addressed by the SOC estimate, the voltage across the se-
ries resistance and the voltage across the RC branch. The latter is computed by using
equation (3.1), that in the Laplace domain is:

sV1(s) = −V1(s)
τ1

+
IL(s)

C1

(4.4)

The discrete-time equation is obtain in the same way explained above:

V1(z)
2

T

1− z−1

1 + z−1
= −V1(z)

τ1
+
IL(z)

C1

(4.5)

and then the final equation can be write as follows:

V1(z) =
1

2τ1
[(2τ1 − T )V1(z)z−1 +R1TIL(z)(1 + z−1)] (4.6)

The model voltage is used by the gain_loop block to generate the correction term which
is applied to the current measurement, after the multiplication by the gain L.

Table 4.1: AMA Resource Usage for the 10M50DAF484C6GES FPGA.

System Logic 9-bit Memory
entity Elements Multiplier bits
Mix algorithm 7.5 k 23 36 Kb
MWLS 30 k 196 134 Kb
Filter 3.5 k 7 5 Kb

Total 41 k/50 k 226/288 175 Kb/1638 Kb
(82 %) (79 %) (11 %)

As an example, Table 4.1 reports the resource usage by entity of the AMA hardware
estimator implemented for a 12-cell battery and developed in a low cost Intel MAX® 10
FPGA (10M50DAF484C6GES device). This device targets low-cost applications and
includes non-volatile memory and integrated ADCs. The execution time to update both
the state and the parameters of one single cell is 34 µs, measured with a clock frequency
of 100 MHz. This very short execution time makes it possible to use the same module
in time multiplexing for estimating a large number of cells.

4.4 Dual Extended Kalman Filter

The DEKF hardware estimator has been developed in collaboration with Intel. The
work has been developed into a reference design that is freely available and can be run
on low-cost hardware, such as the FPGA device presented in the previous section. The
estimator can be executed by using a HiL platform available in the reference design and
that can be used to develop a full FPGA-based BMS [89, 131]. Further details on this
platform has been reported in Chapter 5.

The implementation carried out by using the DSP Builder tool in shown in Fig-
ure 4.7, where the two EKFs, which implement the discrete-time equations presented
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Figure 4.7: Implementation of the dual extended Kalman filter in the Intel DSP Builder tool.

in Section 3.2, are clearly visible. Also in this case, the input/output operations are
carried out by using an Avalon-MM interface.

The resource usage of the DEKF estimator implemented for a 12-cell battery is re-
ported in Table 4.2 for the Intel MAX® 10 10M50DAF484C6GES device. It is notice-
able that the used resources in terms of logic elements and multipliers are lower than
the resources employed by the AMA estimator, while the AMA requires less memory
bits.

Table 4.2: DEKF Resource Usage for the 10M50DAF484C6GES FPGA.

System Logic 9-bit Memory
entity Elements Multiplier bits

DEKF 23 k/50 k 39/288 230 Kb/1638 Kb
(46 %) (14 %) (26 %)

Besides the fully DSP Builder implementation, the DEKF has been developed in
three different ways:
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• In software, executed by the Nios II soft-core with floating point acceleration.

• A solution that implements some functions in software, executed by the Nios II
soft-core with floating point acceleration, and the matrix operations in hardware
by using a floating point matrix processor. The matrix processor has been devel-
oped by Intel using the DSP Builder Advanced Blockset. It can perform sequences
of different matrix operations in parallel to the Nios II core.

• In software, executed by a custom processor. This solution has been implemented
by using the Intel’s ASIP tool that converts a C description (with restrictions) of
the algorithm into a program which runs on a custom processor.

The time that the various implementations employed to update the SOC and the
parameters of a single cell is reported in Table 4.3. As expected, the fully hardware
solution has the best performance, while the pure software implementation has the
longest execution time. However, this comparison can be very useful in order to allow
a designer to choose a balance between calculation time and resource usage [131].

Table 4.3: Execution time for each implementation method measured at 100 MHz.

Implementation method Time (µs)
DSP Builder IP 16.5
Software 44.9
Software with matrix processor 33.8
ASIP core 21.5
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CHAPTER5
Hardware-in-the-loop platform for hardware

estimators assessment

5.1 Introduction

During the estimator development and verification phases, the designer should verify
that the algorithm provides reliable results in any realistic condition. To this aim, we
developed a HiL platform able to reproduce the usage of a battery in an EV. It has been
used to test and tune both the AMA and the DEKF algorithms.

HiL simulation platforms generally can be categorised in: Power-HiL (PHiL) and
communication-based HiL [17]. In particular, PHiL platforms allow the BMS hard-
ware to be tested when the power fluxes from/to the battery are real and not simulated.
Instead, the BMS control algorithms are tested by substituting the battery power path
with simulated battery data (i.e., voltage, current, and temperature of each battery cell),
provided via a communication link, in the communication-based HiL platforms.

Different PHiL testing platforms are described in [7, 27, 36, 41, 60, 83, 153], where
the battery state estimators are tested by using specific current profiles and including
in the loop a real battery or an emulator able to reproduce the battery behaviour. In
[60], a profile based on the electric power measured on an EV driving the Federal Test
Procedure (FTP) has been used, while the current has been generated starting from the
combination of the Extra-Urban Driving Cycle (EUDC) and the Economic Commission
for Europe urban (ECE) driving schedules in [83]. A current profile typical for the use
of a smartphone is employed in [7], whereas a dynamic stress test is applied in [153] and
[27]. In these works, the implemented systems include complex instrumentation like
cyclers or programmable loads and chargers, in order to apply the selected profiles to
the battery, and accurate measurement equipment to acquire the cell quantities. In [36],
the HiL system is based on an emulator able to reproduce the battery cell dynamics to

45



Chapter 5. Hardware-in-the-loop platform for hardware estimators assessment

validate the functions of voltage monitoring, active and passive cell balancing. A low-
cost battery emulator with basic functionalities is used in [41] for the functional testing
of a BMS at the end of the production line. It can be very useful in many medium power
applications, characterized by rather low production volumes, where the investments in
the design of the system should be limited and classic solutions for HiL testing might
not be affordable.

Communication-based platforms allow less expensive, faster and safer tests than
those performed on real batteries, because the battery itself belongs to the simulated part
of the testing loop. The obvious disadvantage of the communication-based platforms
is the impossibility to test some hardware parts of the BMS, such as the measurement
and the balancing circuits. On the contrary, any possible load power profile can easily
be applied to analyse the BMS behaviour and to validate the battery state estimators in
the most demanding situations. Moreover, not using a real battery in the HiL platform
also allows the saving of the battery charging time period, so successive profiles can be
applied to the battery without pauses. Communication-based platforms are presented
in [117,127]. A simple battery model composed by 96 cells is used in [127] to perform
a functional test of the BMS, while a 12-cell SOC estimation algorithm implemented on
a microcontroller is tested in [117] by using a cell ECM that does not take into account
the parameter variation with SOC and temperature.

The simple models used in these two works are inadequate when high reliability and
accuracy of the BMS algorithms is required. Some of these limitations are overcome
with the communication-based platform developed in this work in which the modelled
EV and its battery parameters are fully configurable and the temperature effects are also
considered by using a simple thermal model of the battery and temperature-dependent
cell model parameters. In this way, the battery behaviour is reproduced considering a
large set of conditions, such as the charge unbalance among the battery cells, the param-
eter variations due to their operating conditions and ageing, and different current loads.
In fact, the HiL platform allows us to simulate an EV in many different driving scenar-
ios and thus with different power dynamics. Furthermore, since the communication-
based platforms directly send the acquired quantities to the main unit of the BMS, the
acquisition chain and the actuators of the BMS are out of the loop and thus neglected
in the tests. This problem has been solved by introducing a model of the voltage and
current acquisition chain in this platform. The implemented simulation framework, in-
cluded the battery and the electric traction models, has been presented in sections 5.2
and 5.3. The HiL platforms presented in literature [117, 127] usually use external de-
vices to perform the test in real-time. To this aim, this instrumentation is provided with
high computational power, multicore processors, high speed communication links, and
real-time operating systems. In our case, the entire system can be built in Simulink in
order to obtain a low cost software platform, without using additional devices. How-
ever, this does not guarantee the real-time execution of the model and the simulation
performances depend on the computational power of the used computer and on the type
of digital communication link used to send the simulated data to the hardware estimator
under test.

We reported the capabilities of the developed HiL platform in Section 5.4, besides
the analysis and the comparison of the results obtained from the AMA and the DEKF
algorithms.
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5.2 Hardware-in-the-loop platform design

The communication-based HiL platform (Figure 5.1) has entirely been implemented in
the MATLAB/Simulink® environment. The driving schedule block allows us to select
a standard speed profile, which is the input of the EV model block. The latter generates
the input signals for the estimation algorithms, which are simultaneously executed by
both the BMS hardware and the platform software. In fact, the algorithms under test are
also implemented with MATLAB scripts and integrated in the Simulink framework, in
order to compare their results with those obtained from the BMS and to validate their
hardware implementation.

Figure 5.1: Block diagram of the developed communication-based hardware-in-the-loop simulation
platform.

The communication with the BMS hardware is performed by the communication
layer. This part of the HiL platform aims at sending the generated battery quantities
to the BMS hardware under test by using a digital link. A large set of communication
typologies is supported by the MATLAB environment, such as serial interfaces, CAN-
bus, and Ethernet, but also a custom interface available from a third-party can be added.

5.2.1 Driving schedules

The Driving Schedules block provides the speed values relative to the driving cycle
selected among the 18 available profiles, however further driving cycles from regulation
authorities or custom choices can easily be added to the default portfolio. The selected
driving cycles are usually used for vehicle emission and fuel economy assessment and
are representative of various driving situations. Their main characteristics are collected
in Table 5.1 that shows a significant variation in the average speed and, thus, in the
electric power required from the traction battery. These cycles are defined by various
specialised organisations, therefore they can be classified according to the geographical
areas to which they belong.

Worldwide

The Worldwide harmonized Light vehicles Test Procedures (WLTP) is maintained by
the UNECE World Forum for Harmonization of Vehicle Regulations [2]. The class de-
termines the power-to-mass ratio of the vehicles. In particular, class 3 is representative
of European and Japanese vehicles.
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Table 5.1: Main characteristics of the driving schedules included in the platform.

Geographical Driving Duration Distance Average speed
area schedule (min) (km) (km h−1)
Worldwide WLTP class 3 30 23.3 46.5

United
States

UDDS 23 12.1 31.5
HWFET 13 16.8 77.5
FTP 31 17.6 34.1
IM240 4 3.1 47.1
SFTP US06 10 12.9 77.2
SFTP SC03 10 5.8 34.5
NYCC 10 1.9 11.4
LA92 24 15.8 39.6
LA92 short 16 11.1 41.8

European
Union

EUDC 7 6.8 58.6
NEDC 20 8.5 25.4
ECE R15 3 0.8 16.5
ArtUrban 17 5.0 17.6
ArtRoad 18 17.2 57.4
ArtMw130 18 29.0 96.8
ArtMw150 18 29.8 99.5

Japan J1015 15 6.4 25.6

United States

The Urban Dynamometer Driving Schedule (UDDS), the Highway Fuel Economy Test
(HWFET), the Federal Test Procedure (FTP), the two Supplemental Federal Test Pro-
cedures (SFTP US06 and SC03), the New York City Cycle (NYCC) and the Inspection
and Maintenance (IM240) driving cycle are defined by the U.S. Environmental Pro-
tection Agency [4]. The UDDS has been developed to test heavy-duty vehicles. All
the FTP cycles are variants of the UDDS one, used to test light-duty vehicles in urban
scenarios. For example, the SFTP US06 represents aggressive, high speed and/or high
acceleration driving behaviours, whereas the SFTP SC03 also takes into consideration
the engine load due to the use of air conditioning. Another cycle useful to test urban
profile is the NYCC, whereas the HWFET is used for simulating highway scenarios.
The IM240 is usually employed for emission testing. The LA92 and the LA92 short
(which consists of the first 969 s of the LA92) are developed by the California Air
Resources Board [1]. They are mostly used for simulating urban driving.

European Union

The New European Driving Cycle (NEDC), the Extra-Urban Driving Cycle (EUDC)
and the Economic Commission for Europe urban driving cycle (ECE R15) are main-
tained by the United Nations Economic Commission for Europe (UNECE) [3]. The
Urban cycle (ArtUrban), the Rural road cycle (ArtRoad) and the Motorway cycles
(ArtMw130 and ArtMw150, with a maximum speed of 130 and 150 km/h, respec-
tively) are included in the Common Artemis Driving Cycles (CADC), developed within
the European Artemis (Assessment and Reliability of Transport Emission Models and
Inventory Systems) project.
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Japan

The 10-15 cycle (J1015) had been used in Japan for emission and fuel economy testing
of light duty vehicles.

5.2.2 Electric vehicle model

The EV model consists of three blocks, as shown in Figure 5.2, which are executed
with a 100 ms integration time step. This value is considered sufficient to capture the
system dynamics of interest. The battery current Ib is computed as the ratio of the
electric power Pe to the battery voltage Vb, given by the sum of the cell voltages V
computed by the Battery Model block. Pe is generated by the Electric Traction block
starting from the speed values v coming from the Driving Schedules block according
to the selected driving cycle. The Battery Model block also provides the vector of
the ECM parameters p and the SOC value for each battery cell, which constitute the
reference values to be compared to the estimates computed by the BMS under test.
Finally, the Sensor Model block generates a noisy version of the battery current and
cell voltages, Îb and V̂ , respectively, which form the input of the BMS under test. A
detailed description of each block of the implemented EV model is reported below.

Figure 5.2: Block diagram of the EV Model.

5.2.3 Electric traction model

The electric traction model block simulates an EV travelling on a flat road by using
the simplified dynamic model of an EV presented in [13, 142]. The use of this model
allows us to obtain a likely realistic value of the electric power starting from the vehicle
speed profile. The mechanical power Pm is computed by (5.1), where the two frictional
forces are due to the air and rolling resistances.

Pm = Fv =

(
Mv̇ +

1

2
ρairSCXv

2 + αRMg

)
v (5.1)

The symbols used in this equation are defined in Table 5.2.
Then, the electric power Pe is obtained from Pm by using (5.2), in which two dif-

ferent energy efficiency values are taken into consideration, ηwheel for the traction and
ηreg for the regenerative braking. They are considered as constant values instead of a
function of the utilization regime in order to not increase the model complexity.
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Table 5.2: Electric traction model parameters for Nissan Leaf.

Symbol Description Value
M Kerb weight 1525 kg
S Frontal area 2.27 m2

CX Drag coefficient 0.29
αR Rolling resistance 0.01
ρair Air density 1.2 kg m−3

g Gravity acceleration 9.82 m s−2

ηwheel Efficiency from battery to wheels 0.7
ηreg Efficiency from wheels to battery 0.5

Pe =

(
1

ηwheel

1 + sgn(Pm)

2
+ ηreg

1− sgn(Pm)

2

)
Pm (5.2)

The default model parameters used in (5.1) and (5.2) are chosen to resemble a com-
mercial electric car (Nissan Leaf) and they are reported in Table 5.2 [13]. These param-
eters can easily be changed by the user to fit the model to other vehicles.

5.2.4 Battery model

The battery model is capable of simulating a battery composed of M modules, each of
them consisting of K series-connected cells, for a total of N = MK cells. The only
input is the battery current Ib, which is the same for all the series-connected cells, as
shown in Figure 5.3(a).

(a) (b)

Figure 5.3: Electrical (a) and thermal (b) organisation of the simulated battery.

The cell model is composed of two main parts, i.e., the ECM and the Cell Thermal
Model (CTM), and their interaction is shown in Figure 5.4. At each time step, the
N instances of the ECM generate the cell voltage and SOC value arrays, as well as
the present values of the model parameters and, at the same time, the temperature of
each cell is determined by the CTM. This allows the simulator to track the temperature
distribution inside the battery pack.

The modules are assumed to be thermally isolated to each other in the battery pack
(see Figure 5.3(b)). Moreover, the K cells contained in a module are placed side by
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Figure 5.4: Integration of the electric model with the thermal one.

side, so each CTM interacts with the nearest two cells only, in order to simulate the cell-
to-cell heat transfer. The inputs of the CTM are the left and right surface temperatures
Tls and Trs of the considered cell, the ambient temperature Ta and the cell current Ib,
terminal voltage V , and open circuit voltage VOC, provided by the ECM, while the
output is the cell core temperature Tc. The surface temperatures of each internal cell
are equal to the corresponding surface temperatures of the neighbouring cells.
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Figure 5.5: Electric circuit model with two RC branches (a) and electrical equivalent thermal model (b)
of the battery cells.

The battery cell electric model is the ECM previously shown in Figure 2.4 with two
RC branches, and reported in Figure 5.5(a). The model with two RC branches allows
us to increase the accuracy of the emulated battery, tacking into account more battery
phenomena with respect to the model with a single RC branch, as also explained in
Section 2.3.2. The higher computational demand can be satisfied thanks to the higher
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performance provided by the PC processor with respect to an embedded system. The
terminal voltage V is the sum of the open-circuit voltage VOC and a dynamic term,
which incorporates the voltage across the internal ohmic resistance R0 and the double
layer (V1) and diffusion (V2) effects occurring in a Li-ion battery during charging and
discharging. As the parameters [R0, R1, R2, C1, C2] depend on temperature, SOC and
current, their values are stored in 3D LUTs. As far as the open-circuit voltage is con-
cerned, the dependency on SOC is only considered, while the capacity is kept constant
during the tests.

The temperature of each cell is determined by the CTM, based on the thermal models
developed in [12, 64, 130]. The CTM is an electrical equivalent model of the thermal
system, as shown in Figure 5.5(b). It considers the heat exchange between the cells
and the external environment and also the cell-to-cell exchange in the battery module.
This rather simple thermal model takes into account the main thermal exchanges while
maintaining the computational load affordable, also when the number of cells becomes
large. The thermal resistances Θcs modelling the core-to-surface thermal paths have the
same value. The cell-to-air thermal path is modelled by the thermal resistance Θca. The
cell core temperature Tc is represented by the voltage at the top terminal of the thermal
capacitance Cth. The current generator Q̇ models the cell self-heating [45]. It is the
sum of a reversible contribution, the entropic heat flow, and an irreversible part, due to
the ohmic losses inside the cell, as shown in (5.3).

Q̇ = IbTc
∂VOC

∂Tc
+ Ib(VOC − V ) (5.3)

Pulsed current tests were performed at different temperatures and pulse amplitudes
on a 1.5 A h NMC cell to extract the default ECM parameters that fill the LUTs [12].
The measured parameters are scaled to represent a cell from the same technology but
with different capacity, by proportionally scaling the parameter values with the cell ca-
pacity, inversely for the resistive elements and directly for the capacitive ones [13]. The
different current and voltage profiles measured during these tests have been also used in
the cell thermal characterisation in order to obtain the default thermal parameters. The
different temperatures are set by using an ad-hoc designed and implemented thermo-
static chamber provided with temperature sensors [12]. The initial value of the thermal
parameters is optimized with a recursive least square method by using the MATLAB
framework [84]. However, different types of cells can be simulated by simply using
data provided by characterisation tests performed on other chemistries.

The default cell model has then been validated by using the stepwise current test
shown in Figure 5.6. The current measured in the real test is used as input of the
model, configured to simulate only one cell. We note in the figure that the predicted
cell voltage is in very good agreement with the measured one, resulting in maximum
and rms errors of 149 mV and 20.4 mV, respectively. Good results are also achieved for
the cell temperature prediction, as the maximum and rms errors are 1.7 ◦C and 0.48 ◦C,
respectively.

5.2.5 Sensor model

As described in Section 2.3, in real applications, the measurements are performed by an
acquisition system composed by current and voltage sensors and one or more ADCs that
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Figure 5.6: Comparison of the model and measured voltages and temperatures.

convert the analog signals into digital values. As this process introduces measurement
errors and noise, a model of the acquisition system that considers these phenomena has
been developed to check the algorithm performance in a real system.

This model takes as input the current Ib and the cell voltages V generated by the
battery model and provides as output the acquired current Îb and voltages V̂ , as shown
in Figure 5.2. Measurement noise and offset errors are added to the simulated quanti-
ties, then converted into digital values by means of an ADC with a given number of bits
and an ideal characteristic. The offset and standard deviation of the measurement noise,
as well as the ADC bits are independently configurable for the voltage and current ac-
quisition channels. In this way, the real current and voltage sensors can individually be
modelled in accordance with their characteristics.

5.3 Developed Simulink Library

The models described in the previous section have been implemented as configurable
Simulink custom blocks and grouped in the library shown in Figure 5.7, which is avail-
able online [133].

The Battery Electric model implements the series connection of the ECMs, where
the number of cells can be configured by the function block parameters window. The in-
puts of this block are the battery current and the array of the cell temperatures provided
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with the Battery Thermal block. The latter is organised as described in Figure 5.3(b),
implementing a configurable number of Module Thermal blocks which emulate the
temperature exchange in a module composed by a certain number of CTMs.

Figure 5.7: Developed Simulink library.

The possibility to connect the blocks in different combinations and to change the
configurable parameters allows the user to create a simulation platform specific to the
BMS under test. For example, the user can choose to not include the thermal model
or the model of the sensors. This allows the reduction of the platform complexity and
hence of the simulation time.

5.4 HiL platform for validating hardware estimators

5.4.1 BMS hardware

The BMS under test is based on the Intel MAX® 10 FPGA (10M50DAF484C6GES
device) introduced in Section 4.3. This BMS has been used to validate the hardware
implementation of the AMA and DEKF estimators and to assess their performance
without any power path. Besides the estimators, the Nios II soft-core processor and a
JTAG module are hardware programmed into the FPGA to allow the communication
with the Simulink framework (Figure 5.8). These peripherals are provided with an
Avalon-MM interface in order to be connected to the other components of the system
via the FPGA Avalon Bus.

FPGA

Avalon Bus

JTAG
module

Embedded
memory

Nios II
processor

Hardware
Estimator

Figure 5.8: Block diagram of the FPGA-based BMS hardware.
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5.4.2 HiL platform instance

The user interface of the developed HiL platform is visible in the photograph of Fig-
ure 5.9, the bottom of which also shows the FPGA-based BMS board.

Figure 5.9: Hardware-in-the-loop platform in action.

The library blocks shown in Figure 5.7 have been used to assemble a platform able to
simulate the Nissan Leaf traction battery. This battery has the same structure described
in Section 5.2.4, and it has been build by using the Battery Electric and the Battery
Thermal blocks of the library. The block parameters have been changed in order to
emulate 96 series-connected NMC cells with a capacity of 66.2 A h, obtaining a battery
with a nominal voltage of 355.2 V. From a thermal point of view, there are 8 modules
of 12 series-connected cells. All the executed simulations consist of the repetition of
one of the driving schedules listed in Table 5.1, until the SOC battery reaches 20 %,
starting from 80 %. The length of the moving window in the AMA is set to 90 s and the
noise covariance matrices in the DEKF have been reported in Table 3.1.

Table 5.3: Platform single step execution phases during the test of the AMA estimator.

Step phase Execution time per cell
1 - Computation of the battery state
and electrical quantities

208 µs

2 - Sending data to the estimator 2.3 ms
3 - Algorithm execution 35 µs
4 - Reading data from the estimator 3.53 ms

The simulations have been executed on a computer with an Intel® Core™ i7-4790
processor and 16 GB of RAM. The platform employs about 6 ms per cell to execute
a single simulation step, with the AMA estimator. This time includes the computa-
tion of the cell state and electrical quantities, the sending of the simulated data to the
FPGA, the execution of the algorithm on the FPGA and the receiving of the computed
results. Table 5.3 shows that the limiting factor of the platform performance is the time
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employed by the communication layer. These considerations are the same also for the
DEKF algorithm. In this platform instance, the interface between the Simulink frame-
work and the BMS hardware is obtained with a communication layer mapped on the
JTAG link. The software that allows the use of this link is contained in the System
Console API provided by Intel. This is a set of commands which allows the real-time
interaction between the MATLAB environment and the FPGA thanks to the use of a
memory mapped interface.

The implementation validation of both estimators is carried out by comparing the
results coming from the FPGA and those obtained from the software-executed algo-
rithms. Various scenarios have been simulated in order to demonstrate the capability
offered by the HiL platform in assessing the algorithm performance and to analyse and
compare the behaviour of the two algorithms.

5.4.3 Noiseless acquisition system

The algorithms have first been tested in case of noiseless sensors, in which the acquisi-
tion system only introduces the quantisation error. Here, the simulations are performed
on identical cells that all start from the same SOC. For this reason, all the battery mod-
ules behave in exactly the same way. As an example, Figure 5.10 shows the simulation
results in SOC estimation for one of the two central cells in a battery module during the
UDDS cycle. The estimated SOC is in good agreement with the reference one com-
puted by the HiL battery model. The estimate is less accurate in the SOC range from
50 % down to 25 % because the SOC is poorly observable from the cell voltage there
due to the VOC-SOC curve that is almost flat [91].
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Figure 5.10: Behaviour of SOC for one of the two central cells of the first module, during a UDDS test.

The temperature of all the cells has been calculated by the thermal model, starting
from a steady-state of 10 ◦C, which is the value chosen for the ambient temperature.
This ambient temperature value emphasises the cell parameter variations induced by
self heating. Figure 5.11 shows the end of test temperature of the 12 cells contained
in a module. We note that the external cells show a temperature lower than the others
as expected, because of their larger heat dissipation to the ambient. Furthermore, the
higher heating of the central cells with respect to the external ones allows us to observe
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the temperature induced variations of the battery parameter values and to test the ca-
pability of the algorithms in tracking different parameter changes during the same test.
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Figure 5.11: Final temperature of each cell in one module in the UDDS test.
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Figure 5.12: Temperature and ECM parameters for one of the two central cells and one of the two
external cells of the first module, during a UDDS test.
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Figure 5.12 shows the temperature and the identified ECM parameters for one of
the two external cells (cell 1) and one of two central cells (cell 6) in the module. It
can be observed that both estimators well identify the series resistance R0, also in the
last part of the discharge when it changes significantly because of the variation of the
electrolyte resistance due to the variation of the ionic concentration [66]. This is a
remarkable achievement, as R0 significantly affects the model accuracy and is a good
figure of battery ageing, as explained in Section 2.3.2. The time constant τ1 = R1C1

of the single RC branch in the ECM is compared to the values used in the HiL battery
model (the fastest time constant is considered). We can note that its estimation appears
to be more noisy with respect to the series resistance estimation because the battery
model response is less sensitive to this parameter [93].

Moreover, the presented platform has been used to test the algorithms implemented
on the FPGA by using a wider set of driving cycles in different operating conditions.
The maximum and rms SOC errors are reported in Figure 5.13 (empty markers), where
the driving schedules are sorted according to their average speed. The rms error is
always below 5.1 % and 2.9 % for the AMA and DEKF, respectively, indicating that a
good SOC estimation is achieved by both estimators in all the driving cycles.
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Figure 5.13: SOC estimation errors for the AMA and DEKF algorithms. The empty markers refer to
the case of noiseless sensors, whereas the filled markers to the case of noisy sensors (with standard
deviation of 2 A and of 5 mV on the current and voltage measurement, respectively).

Finally, we note that the properties of the driving cycle and thus of the corresponding
electric power and dynamic affect the performance of the state estimator. In fact, the
AMA has better results on urban cycles, whereas the DEKF is slightly more reliable for
motorway driving schedules where the requested electric power is higher, and the speed
profile is usually more static. The algorithms behaviour is attributable to the settings
used in these simulated tests.
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5.4.4 Noisy acquisition system

As the implemented platform is able to simulate non-ideal sensors, it can also be used to
analyse the algorithm behaviour in presence of measurement noise. In our case study,
the platform has been configured to simulate two ADCs with a resolution of 16 bits and
a full scale value FS Ib of 400 A for the current sensor and FSV of 5 V for the voltage
sensor. Furthermore, the sensor models introduce no offset and a white Gaussian noise
whose standard deviation is chosen as a reasonable percentage of the full scale values.
We considered a standard deviation of σIb = 2 A (0.5 % FS Ib) on the current and of
σV = 5 mV (0.1 % FSV) on the voltage measurements.

The estimation errors obtained in these noisy conditions for every driving schedules
are reported in Figure 5.13 (filled markers). Both algorithms show a slight degradation
of the accuracy in SOC estimation. However, the degradation is not large because the
AMA and DEKF methods are capable of rejecting the noise on the current measure-
ment, while they suffer from some sensitivity to errors on the voltage measurement [43].

5.4.5 Unbalanced cells

The series connection of the cells, together with the strict operating ranges, is critical as
it introduces the well-known issue of cell unbalancing [15]. This phenomena can easily
be reproduced by the developed HiL platform by using different SOC initial values for
the cells. This feature allows us to analyse the response of an estimation algorithm
to uncertainty in the initial SOC value in a much more effective way than using PHiL
testing platforms.

Figure 5.14: SOC correction after a wrong initialisation compared to the value estimated when the right
initialisation value is used.

To this aim, Figure 5.14 shows the SOC estimation computed by the two algorithms
when the SOC of two cells is initialised with different values of 85 % (Cell 6) and 75 %
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(Cell 7) instead of 80 %, as for the other cells in the simulated battery pack. The SOC
initialization value of the algorithms are set to 80 %, since the cell unbalancing is an
unpredictable state.

However, we can note that both algorithms are able to correct wrong SOC initial-
isations and that the DEKF is faster than the AMA [91]. Let us consider the wrong
estimation to be fully recovered when the difference between the present value and that
obtained with the correct initialisation is lower than 1 %. Thus, the DEKF employs
322 s to recover the wrong SOC initialisation of the cell 6, instead of 798 s needed by
the AMA for the same cell. In any case, the recovering time is small compared to the
overall discharge time, which is longer than 3 h.
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6.1 Introduction

In Section 2.4, we have presented two different distributed architectures with an FPGA-
based PMU that we have employed to develop two demonstrators. The first one uses
the PMU to manage the battery cells organised in modules. As a case study, it has
been implemented for the battery of an e-bike that allowed us to validate the BMS
implementation and to test the AMA hardware estimator during real utilization on the
road. The details of this BMS and the experimental results are reported in Section 6.2.
A BMS which employs the concept of smart cells, so called Research BMS, has been
implemented within the 3Ccar European project which aims at investigating this new
architecture for automotive batteries. In this project, this architecture has been applied
to a case study of a 48 V smart battery. Besides the Research BMS, we also developed
a framework to allow the project partners to implement and test their own estimation
algorithms. The description of the Research BMS and of the developed framework is
reported in Section 6.3. Both the implementations use a device belonging to the Intel
Cyclone® V family. These devices are system on chips which are composed of an
FPGA used to implement the AMA hardware SOC estimator and a dual-core hardware
processor ARM® Cortex™ A9 used to execute the software functions.

6.2 Basic FPGA-based BMS: e-bike case study

A basic FPGA-based BMS has been built to manage a 10-cell battery pack for an elec-
trically assisted bike. This solution only implements the basic functions of the BMS and
allows us to verify the hardware estimator on more than one cell in real road tests. The
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SOC estimation is demanded to the hardware estimator which executes the AMA algo-
rithm in time division multiplexing for all the cells in the battery pack. This is possible
thanks to its short execution time (61 µs with a clock frequency equals to 50 MHz). The
main unit is based on an Intel SoC-FPGA device belonging to the Cyclone® V family
which equips the SoCkit development board. The hardware estimator resource usage is
reported in Table 6.1.

Table 6.1: Estimator resource usage implemented on the 5CSXFC6D6F31C6N device.

Logic utilization (in ALMs) 17244/41910 (41 %)
Variable-precision DSP Block 36/112 (32 %)
Memory bits 723 Kb/5530 Kb (13 %)

(a)

(b)

Figure 6.1: Photographs of the demonstrator setup.
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Two photos of the demonstrator are shown in Figure 6.1. The electric bike is an
Atala E-Scape (see Figure 6.1(a)), a city bike with aluminum frame. The bike is
equipped with a brushless DC motor with a nominal power of 250 W. The battery
pack consists of 10 Li-ion series-connected cells, yielding a nominal voltage of 36 V
and a rated capacity 10 A h. The entire setup, including the battery pack, was arranged
on the bike rack, as shown in Figure 6.1(b). A 14-pin connector allows us to access
the battery cells’ terminals. A ratiometric Hall effect current sensor from Allegro Mi-
crosystems is used to measure the battery current. Its full scale range is ±12.5 A, with
an internal resistance of 1.2 mΩ and a sensitivity of 110 mV/A (for a supply voltage
of 3.3 V). The cells and current sensor output voltages are acquired by a DC1894B
demo board. This Linear Technology board is equipped with an LTC6804 battery stack
monitor capable of measuring up to 12 series connected cells with a total measurement
error of less than 1.2 mV. The LTC6804 is also provided with two auxiliary analog in-
puts, which are used to accurately acquire the output and supply voltages of the current
sensor. All the measurements take 11 ms to complete.

The battery was preliminary characterized in the laboratory with a PCT profile at
25 ◦C [91]. The input current and the output voltages during the test are used to deter-
mine the AMA initialization parameters, i.e., the VOC-SOC relationship, the capacity
of the cells and the initialization values of the ECM parameters. The VOC-SOC curve
is considered invariant for every cell and it is shown in Figure 6.2. The extracted cell
capacities are very similar to each other and are around the rated value of 10 A h, except
for the second cell which has a 9.4 A h capacity. These results, together with the average
values of the ECM parameters (R0 = 24.5 mΩ, R1 = 13.3 mΩ and C1 = 6945 F), are
used to initialize the algorithm implemented on the FPGA. Furthermore, the other al-
gorithm parameters have been tuned by using the procedure described in Section 3.3.3.
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Figure 6.2: Open circuit voltage VOC, as a function of SOC.

The Allegro current sensor, the DC1894B and the SoCkit boards form a basic BMS,
useful to test the hardware estimator. Figure 6.3 shows a block diagram of it. When
the board is turned on, the Linux Ångström distribution, based on a real-time kernel, is
booted from a partition on the Micro SD card and the main application is launched. The
application manages the acquisition of the cell data, their logging and the communica-
tion with the user interface. The current and voltage samples are read from the battery
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stack monitor connected to an SPI port. The samples are then sent to the estimator, im-
plemented on the FPGA, via the Avalon-MM interface, and the computation is started.
The operation is cyclically executed every 0.1 s, yielding an acquisition sample rate of
10 Hz. When all the cell states are computed, the application saves the samples and the
estimation results in a log file, which can be downloaded directly from the SD card or
by using the Secure Copy Protocol (SCP) through the Ethernet port. The user interacts
with the system via the push buttons on the board. The main battery information, such
as the battery SOC, voltage, and current, are shown on the LCD display and LEDs on
the development board. The bike acceleration, speed, and position useful for a better
analysis of the data, are captured by a GPS unit.
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Figure 6.3: Basic BMS block diagram.

6.2.1 Validation methodology

The implemented SOC estimator is validated in field tests, i.e., riding the e-bike as
in every day use. To evaluate the SOC estimation error, the SOC estimate needs to
be compared with a reference value [10]. The common approach is to use the CC
technique to obtain the SOC reference value, as shown in (6.1) that is equal to Eq. (2.1)
(it has been reported here for simplicity).

SOCref(t) = SOC0 −
1

Qn

∫ t

0

iL(τ)dτ (6.1)

As said in Section 2.3.2, Eq. (6.1) can provide a reliable SOC reference SOCref , as-
suming that the initial SOC value SOC0, the normalization capacity Qn and the battery
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current iL are known precisely.
The battery current should therefore be acquired by a highly accurate current sensor,

different from the one used within the BMS, which feeds the SOC estimator. This is
an important aspect, often neglected in literature, which makes it possible to assess the
robustness of the estimator against errors in the current measurement effectively. In this
work, iL in (6.1) is measured by a National Instrument (NI) 9227 module mounted on a
NI cDAQ-9178 chassis. The latter is also equipped with three NI 9215 modules, which
are used to acquire the voltage of the 10 cells and to verify the LTC6804 stack monitor
behavior (see Figure 6.1(b)). The cDAQ-9178 is powered by a supplementary battery
and connected to a laptop, carried by the cyclist in a backpack, which runs a LabVIEW
application for data acquisition and logging (see Figure 6.1(a)).
SOC0 is taken equal to 100 %, as tests are started after a full charge of the battery.

Qn is assumed to be equal to either the rated battery capacity or the capacity measured
in a preliminary characterization test. These assumptions however may lead to inaccu-
racies in the computation of SOCref . Inhomogeneities in the cells of the battery pack
can cause not all the cells to be fully charged to 100 % SOC. Moreover, the maximum
charge that can be extracted from each cell during a validation test (we refer to this
value as the real capacity) may differ from that measured during a characterization test,
because of different discharge rates and temperature.

To overcome these problems, we propose to combine the CC and VOC estimation
techniques for computing SOCref . These two techniques are used to define two al-
ternative metrics for assessing the SOC estimator errors [10], whereas here they are
merged in a unique definition of SOCref . The basic idea is to set SOC0 and Qn in
(6.1), so that SOC computed by (6.1) coincides with the estimate obtained through VOC

at the beginning and end of the validation test. This does not require any specific con-
dition during the execution of the test, apart from the fact that the test starts with the
battery in a rested state and ends in an SOC region where it is possible to reliably ex-
tract SOC from the VOC-SOC relationship, once the battery has reached the steady state
after discharge.

Let VOC = f(SOC) express the VOC-SOC relationship shown in Figure 6.2. For
each cell, we can compute SOC before and after the validation test by inverting the
VOC-SOC relationship, i.e., SOC0 = f−1(V start

OC ) and SOCend = f−1(V end
OC ), where

V start
OC and V end

OC are the cell voltages measured, when the battery is in a steady state,
before and after the validation test, respectively. Given the above definition, we can
compute the real cell capacity related to a validation test, which coincides with the
desired normalization capacity to be used in (6.1), by the following equation [48].

Qreal =

∫ tend
t0

iL(τ)dτ

SOC0 − SOCend

(6.2)

6.2.2 Experimental results

Several road tests have been carried out, proving both the functionality of the basic
BMS provided with the AMA estimator and the effectiveness of the designed exper-
imental setup. As a representative example, we discuss the results obtained during a
validation test, consisting of the repetitions of a cycling period followed by a rest pause.
The electric power Pe provided by the battery pack and the speed measured by the GPS
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data logger during the test are shown in Figure 6.4. First of all, we compute the initial
SOC and the real capacity of each cell of the battery pack from the data acquired by
the NI cDAQ-9178 chassis. Then, we evaluate the corresponding SOC reference using
(6.1).
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Figure 6.4: Electric power and speed during the discussed validation test.

Figure 6.5 shows the real cell capacity, for the discussed test, and compares it to
the value obtained in the PCT characterization test. Apart from the second cell, which
presents a pronounced degradation of the cell capacity, there is only a slight difference
between the PCT, rated and real cell capacities, as expected by the high Coulombic
efficiency provided by the Li-ion battery technology.
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Figure 6.5: Capacities of the cells extracted using the PCT and the discussed validation test.

The computed SOCref(t) for each cell is reported in Figure 6.6, where it is evident
that the SOC of the second cell corresponds to the battery SOC, as the second cell is
the first cell to reach the discharge cut-off voltage. With the availability of the SOC ref-
erence, we can calculate the estimation error introduced by the AMA. The AMA SOC
estimate for the second cell is shown in Figure 6.7 and is very close to the reference
value during all the test. On the contrary, the pure uncompensated CC, computed by
using the current measured by the BMS, drifts over time. This clearly demonstrates
that the AMA is capable of correcting the uncertainties in the current measurement (es-
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pecially the offset of the current sensor, as demonstrated in Section 3.3.1) and in the
real capacity of the cell.
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Figure 6.6: SOC behavior of the 10 cells during the discussed validation test.
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Figure 6.7: Comparison of the SOC estimation results for the second cell.

Table 6.2 shows the maximum and rms errors of the AMA and CC SOC estimations.
The AMA provides a more reliable estimation than CC, being its rms error below 2 %
and the maximum absolute error around 3 %, for all the battery cells. This is a valuable
achievement, as it is obtained in road tests, when the battery is subjected to the real
application load. In fact, if we consider the SOC estimation errors reported in [129]
for a similar application, AMA outperforms EKF, as the latter introduces a maximum
SOC error well above 5 %. Better performance in terms of maximum error is obtained
in [129] using an Adaptive EKF, at the expense of higher complexity. It is worth noting
that the results reported in [129] refer to laboratory tests and not to road tests.
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Table 6.2: SOC estimation errors.

AMA CC
Max (%) rms (%) Max (%) rms (%)

Cell 1 2.4 1.2 2.7 1.5
Cell 2 3.0 1.7 9.3 5.9
Cell 3 3.2 1.7 2.8 1.6
Cell 4 2.2 1.1 3.1 1.8
Cell 5 3.2 1.5 2.4 1.3
Cell 6 3.4 1.7 3.1 1.8
Cell 7 3.1 1.6 3.4 2.0
Cell 8 2.6 1.3 2.5 1.4
Cell 9 2.7 1.3 2.1 1.1
Cell 10 2.5 1.2 3.2 1.9

Finally, Figure 6.8 shows the R0 and τ1 ECM parameters identified by the AMA for
the second cell. These results refer to a window length of 20 min and an LS matrix with
30 rows. This implies that the ECM parameters are updated every 40 s. While the R0

identification seems to be very robust, τ1 identification is less reliable, especially when
the window overlaps a rest period.

10

15

20

25

30

R
0
 (

m
Ω

)

Time (min)

0 25 50 75 100 125
0

25

50

75

100

τ
1
 (

s
)

Figure 6.8: ECM parameters estimated online by the AMA for the second cell.

6.3 FPGA-based BMS with Smart Cells

A BMS with an FPGA-based PMU and the lower hierarchical level based on smart
cells, the so called Research BMS, has been developed within the 3Ccar project, which
aims at investigating this new kind of architecture for automotive applications. This
section aims at reporting on the hardware and software architecture of the Research
BMS implemented for a case study of a 48 V smart battery system. The latter is com-
posed of 12 SCs that embed electronic circuits and sensing elements to acquire a broad
range of cell-related quantities, such as voltage, current, pressure, and impedance, by
using the Electrochemical Impedance Spectroscopy (EIS) technique. These data are
made available to the Research BMS by means of a Power Line Communication (PLC)
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channel. A schematic representation of the smart battery system has been reported in
Figure 6.9. The system also integrates a DC/DC converter able to provide a 12 V out-
put voltage. It is a 4-phase synchronous 48 V to 12 V buck converter designed to be
integrated in the smart battery housing provided with a heat sink that keeps the DC/DC
converter temperature below a safe value under full load condition (1 kW power) with-
out any forced cooling.

Figure 6.9: Architecture of the 48 V smart battery system.
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Figure 6.10: Hardware architecture of the Research BMS.
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The Research BMS must allow the execution of complex algorithms implemented in
hardware or in software by the project partners, besides the execution of the basic BMS
functions. Our work focused on the development of this BMS, as well as of a frame-
work which allows the partners to develop and test their algorithms. A general repre-
sentation of the hardware architecture of the Research BMS is shown in Figure 6.10.
The main unit is an Intel SoC FPGA of the Cyclone® V family, mounted on a DE1-SoC
development board. The use of a development board simplifies the hardware design of
the BMS making it possible to focus the efforts on the most innovative aspects of the
smart battery system. As said, the devices belonging to this family consist of an FPGA
and a dual-core hardware processor. These features provide the required computational
resources and the flexibility to implement the estimation and control algorithm effec-
tively. The FPGA fabric can be used to build hardware accelerators in order to execute
complex operations in the estimation algorithms. In fact, the system is provided with a
hardware co-processor which executes the AMA algorithm for SOC estimation, which
has been tuned by using the procedure described in Section 3.3.3. The hardware esti-
mator resource usage is reported in Table 6.3.

Table 6.3: Estimator resource usage implemented on the 5CSEMA5F31C6N device.

Logic utilization (in ALMs) 18395/32070 (57 %)
Variable-precision DSP Block 37/87 (43 %)
Memory bits 712 Kb/3970 Kb (18 %)

Using a hardware accelerator for the SOC estimation algorithm, the computational
effort is distributed between the hardware accelerators and a processor. In fact, the
hardware processor is employed to execute the other estimation algorithms, developed
by the project partners, and the basic functions of the BMS. The various software tasks
are coordinated by means of a Linux-based OS, whose kernel is stored on a Micro SD
card besides to the the software application and the log files.

The FPGA fabric and the processor’s peripherals are used to interact with the other
components of the Research BMS. In particular, a CAN interface is employed to com-
municate with the reference current sensor and an SPI interface is used to manage a
battery stack monitor. The latter is connected to the board by using a dedicated con-
nector and provides a backup measurement of the cell voltages. The reference current
sensor and the battery stack monitor implement the verification function of the Research
BMS. The reference current sensor is used to have a reliable current value in order to
validate the measured current values of each smart battery cell. Thus, an automotive
certified and commercially available shunt based Isabellenhütte IVT-Mod current sen-
sor has been selected. The current sensor is triggered and read by the BMS via CAN.
The communication with the SCs through the PLC channel is achieved by means of the
PLC modem, which acts as a transceiver, hiding the PLC physical layer by providing a
standard UART interface towards the BMS, as well as the SCs.

The CAN and the UART signals are routed by using the two 40-pin expansion head-
ers of the DE1-SoC board which allow the connection to an auxiliary board. The latter
has been built to manage the signals routing, especially with the SCs, to connect two
NTC thermistors for measuring two temperature points, properly positioned into the
battery pack, and to manage the power supply generation and distribution. As an ex-
ample, the DE1-SoC board and the reference current sensor are supplied by a 12 V
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DC input voltage provided by a dedicated DC/DC converter mounted on the auxiliary
board, which takes the 48 V battery voltage as input.

The Research BMS can also exchange data through an Ethernet link. This enables
algorithms with a low update frequency to be executed on a remote PC making the
tuning of the algorithm easier and more effective, as this procedure can exploit data
collected from different batteries. Moreover, the Ethernet link can be used to provide a
user interface with which monitoring the BMS behaviour and configuring its parame-
ters, and to download the log files.

The BMS executes its main functions and the estimation algorithms thanks to dedi-
cated software applications. The used OS is the Linux Ångström distribution for ARM
platforms based on the LTSI Real Time kernel v3.10 with pre-emption. The use of this
OS allows us to establish an SSH or an SCP connection via ETH in order to execute
remote commands and to transfer files.
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Figure 6.11: Software organization of the Research BMS.

The software architecture is based on the client-server paradigm. All the BMS func-
tionalities, including the software estimation algorithms, are developed as separated
clients that communicate with a server, called BMS server (Figure 6.11). The latter
is lunched as the first process by the OS. The main function of the BMS server is to
manage the data flow between the client processes. The communication is based on
a Unix domain socket used for exchanging data between processes executing on the
same host OS. The input/output values of each client are organised in structures and
sent by using the SOCK_SEQPACKET communication semantic, which allows the re-
liable transmission of ordered datagrams. For example, the Backup Measurement client
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manages the acquisition of the cell voltages, temperatures, from the LTC6804, and the
current from the Isabellenhütte IVT-Mod current sensor. This process acquires the val-
ues every 0.1 s, thanks to a timer and sends them to the BMS server in a dedicated data
structure. Furthermore, the partner’s estimation algorithms have been implemented as
separate clients. The BMS executes the following applications:

• The sensorless temperature estimation algorithm implies deriving the temperature
of a cell from its impedance measured at one or more frequencies at the given
SOC value of the cell at the moment the temperature is calculated [19].

• The Thermal Prediction Algorithm (TPA) is used to predict the battery core and
surface temperature [61].

• The Aging-sensitive Operation Window (AOW) algorithm uses the battery EIS
data to determine a battery operation window. The EIS data of a battery will
change with respect to its age, either calendar age or cycle age. Therefore, the
AOW algorithm will provide an operation window which is aging-sensitive.

Another client application is the User Interface (UI) client that sends all the acquired
values and the computed results to a Host PC where a LabVIEW graphical user in-
terface is executed. The UI process has as inputs a fusion of all the structures of the
other client processes. The values are converted in strings and sent to the PC by using
the client-server paradigm. In particular, this process creates a socket with a static IP
address which is used to connect to the LabVIEW UI application. Furthermore, this
client also manages various keys and LEDs which have been used to implement a basic
user interface of the Research BMS, useful during the debug phase.

6.3.1 Developed framework

The Research BMS has been validated by developing a framework, shown in Fig-
ure 6.12, which emulates the smart battery behaviour. The developed framework is
mainly composed with two parts, a Smart Cell emulator and the UI, both based on
LabVIEW applications.

12x Smart Cell Emulator Research BMS User Interface

UART

ETH

DE1-SoC Board

Figure 6.12: Implemented framework for BMS developing and verification.

The Smart Cell emulator is used to emulate the communication between the BMS
main control unit and the SCs, by implementing the same communication protocol
on the UART link. The communication is organised as a master-slave-bus, where the
Research BMS is the master and each SC is a slave. The bus features cell addressing as
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well as broadcast messages to synchronize, e.g., measurements. Usually, the Research
BMS sends commands to the SCs (e.g., trigger voltage measurement) and the SCs send
the answers (e.g., measured cell voltage) back to the Research BMS. The cell current,
voltage, and temperature samples are stored in a text file which can be selected by using
the user interface of the emulator in order to allow us to use different test profiles.

The UI is used for visualising the Research BMS main information, the estimation
algorithm results, and for managing the BMS operations. It can be executed on a host
PC connected to the Research BMS by using the ETH link. It has been used for both
validation and during the final test phases.

Figure 6.13: SoC virtual platform block diagram.

Besides this verification framework, we provided to partners a virtual platform which
simulates the SoC-FPGA and reproduces the BMS software applications. It has been
used to allow the algorithms to be tested in situations close to the real one. The virtual
platform is based on the Mentor Embedded technology and provides the capability to
develop and test software for Intel Arria® 10 SoC devices. This family has a structure
very similar to the Cyclone® V devices. Figure 6.13 shows the diagram of the structure
of these devices, where the blocks highlighted in yellow are modelled in the virtual
platform. In particular, the hardware processor is the same of those installed in the
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device used for the Research BMS. Thus, the virtual platform allows us also to run an
OS, such as the Linux Ångström distribution.

Dummy backup
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Results file

Samples file

Figure 6.14: Block diagram of the demo software.

We also provided a pre-built image of this OS for use with the virtual platform
together with a demo software environment which reproduces the final application. It
is composed by the BMS server process and a dummy measurement client. The latter
is able to read current and voltages samples from a text file and to send them to a
consumer, which is the client that executes the algorithm developed by the partner (see
Figure 6.14). In this way, the developer has to build an application that receives the
inputs from the BMS server, computes the algorithm and saves the data in a log file for
validating the algorithm and future processing.
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Figure 6.15: Cell current and voltage profile in five consecutive UDDS cycles.

As an example, here is reported the validation of the TPA and the AMA hardware
estimator implemented on the Research BMS and tested with the setup reported in
Figure 6.12, by simulating the battery usage in an automotive environment. The first
algorithm is implemented in software by following the procedure described above and

74



6.3. FPGA-based BMS with Smart Cells

using the provided virtual platform. On the other hand, the AMA is implemented as a
hardware accelerator managed by an application client which allows the data exchange
with the hardware module. The Smart Cell emulator uses as input a text file contain-
ing the current and voltage profiles of the battery cells, which are representative for a
battery used in an EV driven in an urban environment, i.e., the UDDS driving schedule
described in Section 5.2.1. In particular, the battery starts the test with an SOC equal to
80 % and the UDDS cycle is repeated until the SOC reaches the value of 20 %. These
profiles (see Figure 6.15) are generated by using the battery model including the ther-
mal description of the cells described in Section 5.2.2. The thermal part of the battery
model allows us to have a reference for the core temperature prediction, as drawn in
Figure 6.16, while the electrical one is used to generate the reference values of SOC
and model parameters shown in Figure 6.17.
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Figure 6.16: Comparison between the simulated and the predicted cell core temperature.
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Figure 6.17: Comparison between the simulated and the estimated cell SOC and model parameters for
one of the twelve cells in the emulated battery pack.

Figure 6.16 shows the temperature predicted by the TPA for one of the 12 simulated
SCs. For this test, the update interval has been set to 100 s. From the graph, it is
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visible that the predicted temperature is coherent with the simulated one. The results
of the AMA are shown in Figure 6.17. The estimated SOC is in good accordance with
the simulated one, resulting in an rms error of 2.8 %, and very good results are also
achieved in the estimation of the series resistance R0 and the time constant τ1 = R1C1,
even if the latter is more noisy because the battery model response is less sensitive to
this parameter [93].

6.3.2 Experimental results

The final phase of the 3Ccar project focused on the system assembly and a preliminary
verification, in order to allow us to validate all the hardware and software components
of the smart battery system.

Figure 6.18: Photograph of the smart cell assembly.

The SC assembly is shown in Figure 6.18. Each SC comprises a conventional pouch
packed Li-ion cell, an MCU with its own communication interface and several sensors
into one single BEV4 sized enclosure. To fully take advantage of the SC concept, the
battery cell was equipped with several sensors, connected to the local MCU. In partic-
ular, cell voltage and reference electrode voltage measurement is performed with the
MCU built-in 16 bit ADC that is also used in combination with an analog multiplexer
to perform the measurements of six NTC thermistors distributed over the pouch cell
surface and on the tabs. In each SC there is also a pressure sensor with an analog in-
terface that detects a possible inner overpressure of the SC, and a current sensor placed
in the current path from the pouch cell to the SC enclosure that reads the individual
cell current even in parallel connected cells. Moreover, other functionalities have been
implemented, such as the power supply circuit (implemented as a boost DC/DC con-
verter) to generate a constant 5 V output, the impedance measurement system, and a
passive cell balancing circuit.
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The Research BMS has been mounted on a plate (see Figure 6.19) that has been
positioned on the top of the smart battery. In the photograph reported in Figure 6.19 we
can identify the three boards that compose the Research BMS: the DE1-SoC develop-
ment board, the auxiliary board, and the LTC6804 demo board.

Figure 6.19: Photograph of the Research BMS assembly.

Figure 6.20: Photograph of the experimental test bed.

Figure 6.20 shows a photograph of the experimental setup, in which it is possi-
ble to note the Research BMS on top of the 48 V battery assembly and the host PC,
which executes the developed LabVIEW UI. In the experimental setup is also visible
an ELEKTRO-AUTOMATIK EA-EL 9080-400 programmable electronic load used to
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perform discharge tests with variable currents. Thanks to this setup, all the BMS have
been verified successfully, especially the communication with the SCs that has proven
to be reliable, the power cabling, the operation of the sensors embedded in the SCs,
the BMS monitoring and control strategies, and the DC/DC converter that has been
successfully tested with no errors or signs of overheating of the PCB.
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Figure 6.21: Cell current and voltage profile during one of the experimental tests for the first cell.

Moreover, the performed tests, consisting of different discharge cycles at different
discharge currents, have allowed the acquisition of a wide set of data, consisting of the
data sensed by the SCs and the results of the algorithms computed by the Research
BMS. For the sake of clarity, we reported in Figure 6.21 the current and the voltage
acquired during one of these tests only for one of the twelve SCs. The battery has been
discharged with a current that changes in a range from 0 to about 30 A.

Time (s)

0 500 1000 1500 2000 2500

T
e

m
p

e
ra

tu
re

 (
°C

)

28

30

32

34

36

38

40

Actual Surface

Predicted Surface

Predicted Core

Figure 6.22: Comparison between the measured and the predicted cell temperature for the first cell.

Figures 6.22 and 6.23 show the results obtained by the TPA and the AMA in cell
temperature and SOC estimation, respectively. Regarding the TPA estimation algo-
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rithm, we can only measure the cell surface temperature, therefore we have a reference
for the predicted surface temperature and not for the predicted cell core temperature.
However, the algorithm seems to work in an effective way. We can also note a sharp
temperature increase in the last part of the test, due to the increased power delivered to
the load. At the same time, the difference between the estimated core temperature and
the measured surface one increases as expected.
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Figure 6.23: Comparison between the reference and the estimate cell SOC for the first cell.

Instead, the SOC reference values is computed by using the CC technique applied
on the current measured by the reference current sensor which provides a very accurate
current measurement. Also in this case, the AMA algorithm works in an effective way
since the SOC rms error is of about 1 %.
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CHAPTER7
Conclusions

The aim of the Ph.D. study presented in this thesis was the analysis of the state of the
art of the BMSs and the battery state estimation algorithms, and the development of
advanced solutions to improve the SOC estimation performance and the functionalities
of these systems, by exploring novel architectures based on an SoC-FPGA.

The literature widely reports on the Li-ion technology advantages that make it suit-
able for a large number of applications, such as the electric mobility and the stationary
energy storage. In these applications, batteries are composed of a large number of cells
opportunely connected to reach the desired voltage and power levels. However, a safe
and effective usage can be possible only with the presence of battery management sys-
tems. They have been studied in many works which also presented different techniques
for managing the battery cells and to estimate their internal state, such as SOC and
SOH. Usually, the solutions presented in literature describes BMS with an architec-
ture distributed on different hierarchical levels which presents on the top a PMU able
to manage the cells by using a microcontroller that also executes the estimation algo-
rithms. This kind of architecture can become even more limiting, especially with the
growing necessity to have more accurate and complex estimation algorithms that must
work for each single cell in the battery pack.

These limitations can be overcome by using an SoC-FPGA instead of the microcon-
troller in the PMU, that is the solution investigated in this thesis. The resulting BMSs
are more flexible and highly reconfigurable, thus they can be easily adapted to different
applications or batteries. Furthermore, the possibility to implement algorithms as hard-
ware accelerator in the FPGA fabric enables the use of complex estimation algorithms.
Among all, in this Ph.D. study, the SOC online estimation problem has been addressed
by employing model-based techniques which are suitable for embedded systems and
use an electrical model of a cell, whose parameters are identified online to track their
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variations with the operating conditions of the battery, to improve the SOC estimation
accuracy.

Two model-based techniques for SOC estimation have been developed and imple-
mented in hardware on an FPGA: the AMA and the DEKF. The hardware implemen-
tations of these two algorithms are characterised by good performance in terms of ex-
ecution time and thus they can be used in time division multiplexing for estimating
the SOC and the model parameters of a large number of cells. The development and
verification phases have been carried out by using a HiL platform, built for simulating
the behaviour of a battery during its usage on an EV in order to test both estimators in
various operating conditions. In fact, the HiL platform can provide the current, voltage,
and temperature profiles representative of the different simulations that can vary in the
driving style, ambient temperature, type of vehicle and battery conditions. The results
obtained by both the algorithms are very convincing in both the SOC and the param-
eter estimation. The achieved results allow us to use the identified parameters, such
as the series resistance, to implement in future reliable SOH estimation algorithms.
Moreover, the simulated scenarios allowed us to compare the behaviour of the two al-
gorithms which mainly differs in terms of SOC correction time against a wrong SOC
initialization and estimation accuracy in function of the used driving cycle. However,
thanks to this HiL platform, both estimators have extensively been assessed in different
situations without the need of a real battery and in a completely safe environment. The
simulations enabled by the HiL platform has allowed us to show that these estimators
are suitable for battery state and ECM parameters estimation in EVs.

The AMA hardware estimator has been used in two different BMS architectures
with a PMU based on an SoC-FPGA which mainly differ on the organization of the
lower hierarchical level. In the first one the cells are organised in module managed
by stack monitors which communicate with the PMU using an SPI link. The second
uses the concept of smart cell, i.e., cells with a CMU provided with some sensors and
able to communicate with the PMU. These two architectures have been applied to two
case studies. The first one has been tested on an electric bike during a real utilization
on the road, while the second has been used for a 48 V smart battery developed within
the 3Ccar European project, where the BMS was able to execute advanced estimation
algorithms implemented in hardware and software by the project partners. Both the
implementations have been successfully tested in their hardware and software com-
ponents, thanks to the tests performed in real application scenarios and in laboratory.
During the final review of the 3Ccar project, the 48 V smart battery has been showed to
the project officers and reviewers that provided very good comments.

In conclusion, we have discussed two innovative BMS architectures which use SoC-
FPGA to address the more computational effort required by the estimation algorithms
implementation. Moreover, we presented a HiL platform, highlighting its benefits in
the development and assessment of the BMS functionalities. Finally, the obtained good
results demonstrate the capabilities of these architectures and enable further future ad-
vances in the developing of ESSs based on the Li-ion technology.
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