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Abstract

In the era of Big Data, every single user of our hyper-connected world leaves behind a
myriad of digital breadcrumbs while performing her daily activities. It is sufficient to think
of a simple smartphone that enables each one of us to browse the Web, listen to music on
online musical services, post messages on social networks, perform online shopping sessions,
acquire images and videos and record our geographical locations. This enormous amount
of personal data could be exploited to improve the lifestyle of each individual by extracting,
analyzing and exploiting user’s behavioral patterns like the items frequently purchased, the
routinary movements, the favorite sequence of songs listened, etc. However, even though
some user-centric models for data management named Personal Data Store are emerging,
currently there is still a significant lack in terms of algorithms and models specifically
designed to extract and capture knowledge from personal data.

This thesis proposes an extension to the idea of Personal Data Store through Personal
Data Analytics. In practice, we describe parameter-free algorithms that do not need to be
tuned by experts and are able to automatically extract the patterns from the user’s data.
We define personal data models to characterize the user profile which are able to capture
and collect the users’ behavioral patterns. In addition, we propose individual and collective
services exploiting the knowledge extracted with Personal Data Analytics algorithm and
models. The services are provided for the users which are organized in a Personal Data
Ecosystem in form of a peer distributed network, and are available to share part of their
own patterns as a return of the service providing. We show how the sharing with the
collectivity enables or improves, the services analyzed. The sharing enhances the level of
the service for individuals, for example by providing to the user an invaluable opportunity
for having a better perception of her self-awareness. Moreover, at the same time, knowledge
sharing can lead to forms of collective gain, like the reduction of the number of circulating
cars. To prove the feasibility of Personal Data Analytics in terms of algorithms, models
and services proposed we report an extensive experimentation on real world data.
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Chapter 1

Introduction

“ ... and you’re a detail into the general framework,
that they wish but can’t ignore ... "

— L. Ligabue

Every day we create 2.5 quintillion bytes of data. So much that 90% of the data in the
world today has been created in the last two years. These data come from everywhere:
climatic data from sensors, posts to social media sites, pictures and videos, purchase trans-
actional records, and cell phone GPS signals to name a few. These data are big data [98].
Most of these data are generated from the mobile phones that we use in our everyday life.
In 2000 mobile phone users accounted for 12% of the world’s population. By the end of
2014, this figure reached 97%, i.e., 6.8 billion people. The number of mobile phones is
128% of the inhabitants in developed countries and 90% in developing countries. These
numbers provide a better idea of the impact that mobile phones are having in our life.

In addition to that, there has been an explosive increase in the number of ways our
smartphones can acquire and produce data through their built-in sensors, capable of record-
ing locations (GPS data), acceleration, acquiring images and videos, interacting with other
devices, connecting to the Internet and, obviously making phone calls (GSM data). The
connection to the Internet enables the individuals to use an enormous set of different appli-
cations and services ranging from online social networks and shopping websites to search
engines and online musical services. Hence, in turn, the usage of these applications pro-
duces others tons of personal data like the web pages visited in a browsing session (e.g.
Google), the messages posted on a social network (e.g. Facebook and Twitter), or the
songs listened on an online musical service (e.g. Spotify and LastFM). Furthermore, the
widespread use of fidelity cards in retail market chains and in other services empowers
the personal tracking of data like the purchased items in a shopping basket or the clinical
events in a patient’s history. When it comes to producing data, we are really prolific: it
has been estimated that, at individual level, each person generates an avalanche of infor-
mation, i.e., more than 5 gigabytes of personal data per year, without considering images
and videos. Thus, every one of us is an individual producer of big data.
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The digital breadcrumbs that we leave behind us are probably the most unexpected and
disruptive effect of the emergence of always-connected mankind. As consequence of this
large data production, the world’s technological per-capita capacity to store information
has roughly doubled every 40 months since the 1980s [145]. This storage availability is a
prerogative of service providers, i.e., institutions and companies. They collect our personal
data for creating a mosaic of human behaviors used to extract valuable knowledge for
marketing purposes: our personal data is the new gold. On the other hand, individuals do
not have the tools and capabilities to extract useful knowledge from their personal data.

The knowledge hidden in personal data consists in the patterns people regularly follow
in their routinary life. Personal patterns can be worth for many services and applications
because human behavior is predictable in principle: people are systematic in their everyday
choices and do not change their behavior randomly. In the book “Bursts” [23], Barabasi
presents the theory that human behavior is bursty, i.e., humans have long inactivity in-
tervals separated by moments of rapid activity. Recently, this theory has been repeatedly
tested [22, 292]. Humans are predictable at the individual level. Bursty patterns of activi-
ties have been observed and can be predicted, for instance in writing emails. Also individual
mobility is predictable: most people commute every working day between the same two lo-
cations, and can be predicted to do so with very high accuracy [297]. Moreover, humans are
predictable also at collective level: groups of humans flock together in predictable patterns.
For instance, people are more mobile early in the morning and late in the afternoon.

Therefore, up to now, the highly valuable personal patterns able to predict human
behavior can only be extracted by big companies, which employ this information mainly to
improve marketing strategies. This organization-centric model does not empower to take
full advantage of the possibility of knowledge extraction offered by personal data [158],
mainly because each company has only a limited view on individuals that is restricted to
the type of data for which the company provides services. Moreover, users have a very
limited capability to control and exploit their personal data. To overcome such problems,
in line with the World Economic Forum [161, 239, 250], it has been proposed a change
of perspective towards a user-centric model named Personal Data Store for personal data
management [143]. In this model the user acquires a central role in the control of the
lifecycle of her own personal data [119]. However, despite some novel user-centric model
are being defined, in the current state-of-the-art there is yet a deep lack of algorithms and
models specifically designed to extract knowledge from personal data, that is, automatic
methods which do not need to be managed by an expert, or which require data which are
not own by the user thyself. Data mining applied to personal data, i.e., Personal Data
Mining, is the key for extracting personal patterns and, at the same time, an invaluable
opportunity for individuals to improve their self-awareness and their lifestyle.

Starting from these observations, in this thesis we define how to extend the idea of
Personal Data Store by articulating a Personal Data Analytics approach that seeks to
analyze the digital breadcrumbs an individual leaves behind, and we demonstrate that the
defined approach and the resulting analyses can lead to increased individual and collective
benefits. Indeed, a key element of Personal Data Analytics is the analytical reinforcement
resulting from the synergy of the widespread knowledge in the Personal Data Ecosystem.
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In particular, in order to realize the Personal Data Analytics approach, we design
parameter-free algorithms for Personal Data Mining able to automatically extract from
the user’s Personal Data the user’s behavioral patterns. In addition, we define the user
profile through Personal Data Models which are able to capture and collect the behavioral
patterns containing the user hidden knowledge. Some examples can be the set of items
frequently purchased together, the set of locations frequently visited, or a measure that
expresses the level of repetitiveness with which a user listens to a musical genre, etc.
Moreover, we describe the Personal Data Ecosystem as a peer distributed network of
Personal Data Stores where the users can decide to share the knowledge extracted from
their data. This enables the development of individual and collective services for the users.
Thanks to the knowledge sharing with the collectivity, each user can gather an additional
level of knowledge improving in this way the available services. Personal models can be
exploited to compare the user’s behavior with that of the others and improve the user’s self-
awareness, or to provide personalized services like shopping recommendations or trajectory
prediction. Note how in such a distributed ecosystem there is not need of a central node
providing a service, the user’s collaboration and participation realize it [143, 158].

As concrete example of Personal Data Analytics we can refer to the vision proposed in
[137] with respect to mobility data. In [137] it is proposed a Personal Data Store where
all our movements are stored and Personal Data Analytics provides the algorithms and
models to automatically extract the patterns describing our behavior like the locations
we frequently visit and the time we spend in there, the routes we daily follow for our
commuting, some indicators expressing our level of predictability and how far we move on
average from our home. All these patterns are collected by a Personal Mobility Data Model
defining the user profile. Then, the Personal Data Ecosystem could enable a proactive
carpooling system which automatically links the users that can daily share the car, and
at the same time considers that the suggestions provided are also the best ones for the
collectivity, since they help in minimizing the number of circulating cars.

In this thesis, we demonstrate empirically that Personal Data Analytics is feasible in
a real scenario. We realize several case studies by employing Personal Data Analytics on
various real datasets. In particular, we analyze four different types of data. Mobility data,
that is car movements represented as sequences of GPS points. Transactional data, i.e.,
market retail purchases extracted from fidelity cards containing the items composing the
baskets, the shop where the transaction happened and the time and the day of the shopping
session. Music listening data, that is web listening session relative to the track, artist, genre
and time of the listening. Social network data from Twitter containing opinions, time and
positioning of the tweet besides the social networks of the users analyzed. A characteristic
of these datasets is that, in each dataset, independently of one another, the events (GPS
signal, purchase, listening, tweet) in the dataset can be referenced to a user. This allows
us to recognize the personal data of each user and to extract the user profile.

Thanks to these data, human activities at personal level can be minutely observed and,
therefore, measured, quantified and, ultimately, predicted. It is not surprising how many
aspects of our daily behavior, like our whereabouts and purchases, become predictable,
given the regularity of our routines. By adopting Personal Data Models we estimate the
levels of predictability in listening to a musical genre, in moving to occasional locations and
in purchasing infrequent items in not habitual days. Moreover, the Personal Data Models
summarize the shopping habits of a user in terms of typical basket composition and time
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and day of the shopping session, and condense the mobility habits in the set of route
frequently followed and habitual locations visited. By exploiting these models at collective
level we realized carpooling services minimizing the number of cars and considering at the
same time also the social opinions of the users. The mobility models are used also for
developing a trajectory prediction system, and the prototype of a route planner making
use of the collective awareness. Furthermore, we have been able to provide a reliable
nowcasting of the level of well-being of the user in the Personal Data Ecosystem analyzed.

With Personal Data Analytics we are just at the beginning of a data revolution that
by putting the user at the center of the system will profoundly impact all aspects of the
society: government, business, science and entertainment [12, 119, 181]. The personal big
data we daily produce are the lens of a social microscope able to understand how we behave
individually and collectively and also to predict these behaviors. Thanks to Personal Data
Analytics we can activate this microscope and make it usable to everyone. It will help
us to predict the consequences of our decisions both at collective and individual levels.
Therefore, we will be in a position to make better choices, be more aware, understand and,
perhaps, manage the complexity of the pluralistic and interconnected society we live in. It
will improve our well-being. An entirely “new deal” for personal data is necessary to fully
unleash the power of Personal Data Analytics in a safe ecosystem.

At the same time, we cannot give up the right of managing our personal information
and communications freely and safely, sharing what we want with whom we choose and
like. The Personal Data Ecosystem can be considered “safe” when the users are enabled
with a secure management for their own Personal Data Store. Ethical issues, as well as
privacy and trust must be properly handled. In our proposal, the autofocus algorithms
and methods of Personal Data Analytics enable individuals to derive from their own data
personal models summarizing user’s behavior while revealing fewer details with respect to
the entire raw data. Thus, the opportunity of participating in a collective service by sharing
only the personal models helps in reaching an acceptable trade-off between benefits and
risk in information sharing. In addition, the interplay between privacy and information
exchange becomes even more satisfactory if the models shared are built using privacy-by-
design methodologies [58]. However, ethics, trust, and privacy issues are not the central
point of this thesis, and these analyses are left as future work.

Summing up, in this thesis we define a Personal Data Analytics approach through the
design of Personal Data Mining methods and models to enrich the Personal Data Store with
personal patterns, and through the development of services for the user which capitalize
both on the individual knowledge, and also on the collective knowledge emerging from the
cooperation of the users participating to the Personal Data Ecosystem.

The thesis is organized in four parts. In the first part, Setting the Stage, we introduce
the preliminary notions needed to become familiar with the fields of research covered by
this thesis. In Chapter 2 we recall the basic concepts related to data mining, user profiling,
and clustering, that is one of the techniques most largely used in data mining to extract
user profiles. Chapter 3 reports the current state-of-the-art with respect to personal models
and individual and collective services with a focus on predictions and recommendations
services in the fields of mobility and shopping data. After that, Chapter 4 illustrates the
user-centric model with the current state of Personal Data Stores, which are the available
implementations and what they offer to the customer.
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In the second part, Personal Data Analytics, we present the main contribution of this
thesis: the Personal Data Analytics approach and the Personal Data Ecosystem as a
distributed network of users. Chapter 5 designs our vision of the Personal Data Store
highlighting the differences with the state-of-the-art and by enhancing how Personal Data
Mining is fundamental to extract Personal Data Models. Moreover, we show the Personal
Data Ecosystem, i.e., the distributed network of users interconnected through their Per-
sonal Data Store and which are the potentialities of this approach and the socio-economic
impact. Furthermore, in Chapter 6 we describe the real world datasets used in the analyses
and case studies reported in the subsequent parts of this thesis.

The third part, Algorithms and Models for Personal Data Analytics, presents algorithms
and models for Personal Data Mining. According to Personal Data Analytics, the clustering
algorithms presented in Chapter 7 are auto-adaptive methods that do not require parameter
tuning and that are able to automatically extract the behavioral patterns of each user on
different type of data. In Chapter 8 we formalize some Personal Data Models to represent,
measure and evaluate the systematic behavior of the users with respect to transactional
data, mobility data, and listening data.

In the fourth part, Personal Data Analytics for Individual and Collective Services,
we describe individual and collective services developed for the Personal Data Store and
considering the Personal Data Ecosystem which exploits the models and methods presented
in the previous parts. In Chapter 9 we develop two services for improving personal mobility:
a personalized trajectory prediction system, and a route planner which exploits the wisdom
of the crowd in suggesting the best route to be followed. In Chapter 10 we focus on two
different carpooling services with the purpose of promoting carpooling as an everyday
means of transport. The first carpooling service exploits habitual paths and complex
network analysis to reduce the number of travelers driving alone. The second carpooling
service we propose considers both mobility and social data in order to reduce the reticence
to share the car with strangers together with the number of circulating cars. Chapter 11
shows how a collective analysis of shopping transactions either considering the temporal
dimension or the basket dimension, can lead to a new level of knowledge useful to estimate
the well-being level that can not be reached when only the data of a single individual is
considered. In Chapter 12 we describe the deployment of the Personal Data Analytics
approach in two scenarios for real applications.

Finally, Chapter 13 concludes this thesis by summarizing the main findings, and by
presenting possible future research directions for Personal Data Analytics.

The last three parts of this thesis are based on peer-reviewed papers published in
international conferences and journals. The concepts in Part II relative to Personal Data
Analytics are partly gathered from [137]. In Part III, the algorithm described in Section
7.1 is inherited from [136], the measures of shopping profitability of Section 8.1 comes from
[129], and the personal model for musical listening of Section 8.2 is extracted from [134].
Likewise, in Part IV the trajectory prediction system presented in Section 9.1 is gathered
from [284], the route planner discussed in Section 9.2 is inherited from [128]. Moreover,
Chapter 10 is gathered from the papers published about carpooling [127, 133, 135]. Finally,
the nowcasting of well-being in Section 11.2 is extracted from [130] and the integration of
private and public mobility in Chapter 12 comes from [31, 42]. The papers from which are
extracted Sections 7.2, 8.3, part of Sections 10.2, 11.1, 12.1, and Chapter 5 are currently
under review for international conferences or journals.
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The algorithms, models, services and analytical results reported as contributions of this
thesis are the results of the work done in the following European projects.

The ICON project1 aims at developing a new approach in which gathered data is sys-
tematically analyzed to dynamically revise and adapt constraints and optimization criteria
through a novel Inductive Constraint Programming paradigm that bridges the gap between
the areas of data mining on one hand, and constraint programming on the other hand.
The proactive carpooling system proposed in Section 10.1 extracted from [133], and papers
[132, 173] (not discussed in this thesis) were realized in the ICON project.

The PETRA project2 aims at developing a service platform that connects the providers
and controllers of transport in cities with the travelers in a way that information flows are
optimized, while respecting and supporting the individual freedom safety and security of
the traveler. Cities will get an integrated platform to enable the provision of citizen-centric,
demand-adaptive city-wide transportation services. Travelers will get mobile applications
that facilitate them with personalized travel priorities and choices for route and modality.
In PETRA were realized the following works [128, 284] relative to Chapter 9, [127, 133, 135]
relative to Chapter 10, and [31, 42] relative to Chapter 12. Also [131] (not discussed in
this thesis) was realized in PETRA.

The personal measures of shopping predictability [129] presented in Section 8.1 are a
contribution both to HII and to CIMPLEX. The HII 3 project is an ambitious approach
looking for a European solution to store digital data and contents, so that consumers and
businesses in Europe do not have to worry on where and by whom their valuable digital
age assets are handled, i.e., a prototype of Personal Data Store. The CIMPLEX 4 project
proposes a visionary research to develop modeling, computational, and ICT tools needed
to predict and influence disease spread and other contagion phenomena in complex social
systems. Also [132, 252, 253] (not discussed in this thesis) were realized in CIMPLEX.

Finally, the SoBigData5 project aims at creating the Social Mining & Big Data Ecosys-
tem, i.e., a research infrastructure providing an integrated ecosystem for ethic-sensitive
scientific discoveries and advanced applications of social data mining on the various di-
mensions of social life. We contributed to the SoBigData projects with the personal model
for musical listening [134] illustrated in Section 8.2, and with the nowcast of the well-being
level [130] reported in Section 11.2. Moreover, works under review are part of SoBigData.

1http://www.icon-fet.eu/
2http://www.petraproject.eu/
3http://www.eitictlabs.eu/innovation-entrepreneurship/future-cloud/
4http://www.cimplex-project.eu
5http://www.sobigdata.eu



Part I

Setting the Stage





Chapter 2

Data Mining and User Profiling

In this Chapter we recall the basic notion of data mining and we present an overview of
user profiling models and methods. In particular, we analyze the current state-of-the-art
with respect to personal data models defined to characterize mobility habits and shopping
behaviors. Finally, since clustering is a technique widely used to extract user profiles
through pattern detection, we accurately describe this task and its literature.

2.1 What is Data Mining?

Data Mining is one of the most important parts of the process of Knowledge Discovery in
Databases, the so-called KDD process. The goal of this process is to transform raw data
into useful information. The KDD process, as shown in Fig. 2.1, involves several steps:
(a) data selection, (b) data preprocessing, (c) data mining to extract patterns, (d) and
interpretation of the discovered structures through data analytics.

Data Mining is a technology that blends data analysis methods with sophisticated al-
gorithms for processing large amounts of data. Data mining tasks can be divided into
two main categories: descriptive and predictive tasks. Each category of tasks has different
objectives of analysis and describes different types of possible data mining activities. De-
scriptive tasks have the goal of presenting the main features of the data: they essentially
derive models that summarize the relationship in data, permitting in this way to study the
most important aspects of the data. Predictive tasks have the specific objective of predict-
ing the value of some target attribute of an object on the basis of observed values of other
attributes of the object. Extracting useful information from personal raw data can be hard
and challenging because of data collected by different and automated collection tools, and
of the non-traditional nature of the data that becomes more and more complex. Indeed,
user profiling is accomplished through the application of both descriptive and predictive
data mining technologies. Among various data mining approaches, clustering is one of the
most common and important, especially for user profiling.

2.2 User Profiling through Data Mining

User profiling refers to the process of construction and extraction of a personal data model
representing the user behavior generated by computerized data analysis. A personal data
model contains the systematic behaviors expressing the repetition of habitual actions, i.e.,
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Figure 2.1: The process of Knowledge Discovery in Databases.

personal patterns. These patterns can be expressed as simple or complex indexes, behav-
ioral rules, typical actions, etc. Users’ profiles are employed on one hand to analyze and
understand human behaviors and interactions. On the other hand, profiles are exploited
by real services to make predictions, give suggestions, and to group similar users. Profiles
can be classified as individual or collective according to the subject they refer to [146].

An individual or personal profile is a data model built considering the data of a single
person. This kind of profiling is used to discover the particular characteristics of a certain
individual, to enable unique identification for the provision of personalized services. A
strong point of individual profiling is that the computation is generally not too expensive
in terms of time and space because the data of a single user are limited. Conversely, a
lack of knowledge can affect an individual profile: it could not consider a valuable pattern
recognized by other users because it is not enough systematic for the individual. For
example, if a user u goes occasionally to a lake on Sunday morning this movement can not
be personally considered as a routine or a pattern if compared with the Home-Work-Home
movements. However, if many people move from the same city of u to the same lake on
Sunday morning, then this generates a pattern collectively recognized.

Traditionally, services are based on global profiling, i.e., each person is categorized or
segmented within a certain class, relying on the fact that her behavior outlines with a data
model formed by global patterns constructed on the basis of a massive amount of data
related to many people. A weakness of global profiles is that they do not consider personal
patterns because only the general patterns recognized by all the users emerges from the
mass. Furthermore, it can be computationally hard to extract global profiles because a
large amount of data must be considered all at the same time. Finally, global profiling
requires every user to share all her raw data at the most detailed level.

We can talk about collective data models when personal models generated by individ-
ual profiling are aggregated without distinguishing the individuals. The difference with
global models is that the collective profiles consider the personal patterns extracted from
the individuals as a unique model, while in the global ones the patterns extracted are
those related to the data of all the individuals, representing the behaviors of the mass.

Finally, we can refer to combined or hybrid models when two or more of the previous
ones are merged in some way. Different models are generally combined to overtake weak
points and to exploit strong points. An example of combined approach is the hierarchical
one. It uses the individual profile as long as it is useful to solve the problem of a certain
person, then it switches to collective patterns. Another example in stochastic applications
is to mix the two different profiles according to a certain parameter or probability.

It is worth to notice that, the traditional approach for profiling a set of users through
data mining techniques consists of the selection of a global parameters setting among all
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Figure 2.2: A hierarchical view of the list of
places visited by a student.

Figure 2.3: Covering graph (left) and two similar
paths (right).

the users considered for the extraction of the data model. User profiling and personal
data model extraction have been studied in various fields such as economy, politics, web,
mobility and so on. In the following is deepened the description of users’ profiles defined
to capture behavioral patterns on mobility and shopping data.

2.2.1 Mobility Profiles

Despite user profiling has been deeply studied in fields like economy or in the World Wide
Web, is still quite an emerging field of research with respect to mobility. Mobility user
profiling was not recently investigated, while it was studied several years ago mainly to
provide improvements in mobile phone services. Nowadays, thanks to the great availability
of GPS and GSM data, mobility profiling is an open field of research.

Several works about profiling are related with wireless locations. In [113] it is extracted
a movement pattern profile for each user. A hub list is the actual list of places visited by
a student in a campus on the same day organized in a hierarchical way (see Fig. 2.2).
Even if such hub lists may vary from one day to another, that variation is only marginal.
Therefore, in most cases, a number of hub lists visited by the student over a period of days
may be clustered together and represented by a single weighted hub list, where the weight
associated with each hub denotes the probability of the student visiting that hub within
that period. Such a weighted hub list then becomes the student’s individual mobility profile.
In practice, the authors exploit the fact that over a period of time a user repeatedly follows
a mixture of mobility traces with a certain probability. Also in [7] a user individual mobility
profile is a probabilistic model given by the combination of historical records and patterns
of mobile terminals coming from a mobile wireless network with a cellular infrastructure.
They are developed for estimating service patterns and tracking mobile users through the
characterization of stochastic behaviors.

In [26], considering Long Term Evolution networks, it is presented the notion of indi-
vidual mobile user profile which corresponds to frequent similar movements of a user. Such
a profile is defined in the neighborhood covering graph of a cellular network (Fig. 2.3-left),
as a set of similar sequences of crossed cells from one source cell to one destination cell.
The objective of a user profile is to catch recurrent behaviors like going to the office or
leaving it every day of the week at the same hours and using, more likely, the same paths.
A major difficulty is that a profile does not necessarily translate into a unique path in the
neighborhood graph of cells, repeating regularly the whole user behavior, but as a set of
paths sufficiently close. The changes may come not only from the small variations in the
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Figure 2.4: The individual history (black lines), the clusters identified by the grouping function
(C1, C2, C3) and the extracted individual routines (r1, r2) forming her individual mobility profile.

periodic movements of the user, but also from the variations in the propagation and iden-
tification of the crossed cells. As the behavior of the mobile user is not unique, each mobile
user can be characterized by several paths that she generally follows when moving in the
network coverage. In practice, the profile is defined as a set of similar paths which are
pairwise closed and such that (i) they start at the same source node and end at the same
destination node, (ii) they have at least a minimal number of identical nodes which appear
in the same order in both paths, and (iii) if both paths have two different nodes, between
two consecutive identical nodes, the two different nodes, then they should be connected in
the covering graph (Fig. 2.3-right). The same authors in [27] introduce the notion of global
mobile user profile. The local profiles are associated with a mobile user and correspond to
its frequent and similar movements, whereas the global profile matches with the frequent
and similar movements of the majority of users in the covered area. A global profile ba-
sically is a set of paths frequently followed by a certain percentage of mobile users in the
network. The detection and the construction of the global profile follow the same proce-
dure as local profiles. However, local profiles are not used for the global profile detection
because a path could belong to a global profile without belonging to any local profile.

In [285] the authors present a methodology for extracting individual systematic move-
ments from raw digital GPS traces. We adopt this methodology also in this thesis. Each
movement of a user is described by a sequence of spatio-temporal points called trajectory.
The set of all the trajectories traveled by a user makes her individual history. By defining
a notion of spatio-temporal similarity between two trajectories they group the trajectories
using a clustering algorithm (i.e., density-based Optics [15]) equipped with a certain tra-
jectory distance function, and they obtain a partitioning of the original dataset from which
they filter out the clusters with few trajectories and the one containing noise. Finally, they
extract a representative trajectory from each remained cluster. These representative tra-
jectories are called routines and the set of routines is called individual mobility profile. The
mobility profile describes an abstraction in space and time of the systematic movements:
the user’s real movements are represented by a set of trajectories describing the generic
path followed. Exceptional movements are completely ignored due to the fact they are not
part of the profile. Fig. 2.4 depicts an example of mobility profile extraction.

In [153] user mobility profiles are built by using probabilistic suffix tree after trans-
forming GPS trajectories in sequences of frequent regions. An individual mobility profile
is a data structure which can organize the trajectory patterns of a user. They adopt a
probabilistic suffix tree to manage the trajectories for the profile, and, in light of the tree
structure, they propose a distance function to measure the distance between two proba-
bilistic suffix trees. Explicitly, their design consists of (i) constructing trajectory profiles,
(ii) formulating distance measurements among the trajectories of the profiles, and (iii)
clustering similar trajectory into groups. Given the trajectories of a user, the frequent
regions are first derived using a density-based approach, then is constructed a probabilistic
suffix tree representing each trajectory into a sequence of frequent regions.
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In the literature, we can find also works providing a dual vision. In [51] it is proposed
a model based on both individual and collective behaviors. The model is based on the
person’s past trajectory and the geographical features of the area where the collectivity
moves. The authors model (i) the propensity to change location, and (ii) the type of
geographical areas that are of interest for the collectivity at a given time, both in terms
of land use, points of interest and distance of trips. These features are assumed to be
affecting the mobility choices as a proxy for activities. The idea of using collective be-
havior is not new, however, no information about geography has been combined so far.
Trajectory patterns are instead considered to see whether different cars are moving in the
same direction. They model the individual behavior as the probability of a cell j to be the
next destination of a user in cell j equal to the frequency of visiting cell j starting from cell
i during all the previous k periods considered. On the other hand, the collective behavior
takes into account the collective behavior in two elements: distances being traveled, and
types of places being visited. Since from the mobility traces they are not able to directly
infer the activities that people make, they use information about an area’s resources as a
proxy for it. In other terms, they design the probability to choose a given destination to
be a function of the distance of the destination, the presence of points of interests similar
to the ones the collectivity has visited, and the type of land use the collectivity has been
in. The authors define the user mobility profile as a probabilistic model obtained from the
combination of the individual and collective models simply through a parameter α ∈ [0, 1]
that weights the importance of the individual behavior rather than the collective one.

Trajectory pattern mining is introduced in [118] to extract the mobility behaviors. The
authors propose a global model as concise descriptions of frequent behaviors, in terms
of both space (i.e., the regions of space visited during movements) and time (i.e., the
duration of movements). The new pattern, called trajectory pattern, represents a set of
individual trajectories not necessarily belonging to the same user that share the property
of visiting the same sequence of places with similar travel times. Therefore, two notions
are central: (i) the regions of interest in the given space, and (ii) the typical travel time
of moving objects from region to region. In fact, a trajectory pattern is a sequence of
spatial regions that, on the basis of the source trajectory data considering all the users,
emerges as frequently visited in the order specified by the sequence. In addition, the
transition between two consecutive regions in such a sequence is annotated with a typical
travel time that, again, emerges from the input trajectories. A trajectory pattern does not
specify any particular route among two consecutive regions: instead, a typical travel time
is specified, which approximates the travel time of each individual trajectory represented
by the pattern. Moreover, the individual trajectories aggregated in a pattern are not
necessarily simultaneous: it is only required that such trajectories visit the same sequence
of places with similar transition times, even if they start at different absolute times. In
this thesis, we employed this technique to extract personal mobility patterns.

2.2.2 Shopping Profiles

Customer profiling is a process widely used in economy since long time ago, before the
coming of data mining. It can be used for direct marketing, site selection, and customer
relationship management. This last one, enables the measurement from customers’ pur-
chases data to provide a 360◦ view of the client. Consequently, customer profiling can play
today a very important role, from recommender systems to personalized prices.
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Nowadays the market is characterized by being global, products and services are almost
identical and there is an abundance of suppliers, and because of the size and complexity
of the markets, mass marketing is expensive and the returns on investment are frequently
questioned. Instead of targeting all the customers equally, a company can select only those
customers who meet certain profitability criteria based on their individual needs and buying
patterns [11]. To achieve this goal, the customers must be described by characteristics
valuable for the business, like the demographic ones, the lifestyle, and the shopping habits.
The aforementioned targets can be reached through customer profiling.

In customer relationship management it is worth to distinguish between two different
branches: customer segmentation and customer profiling. Customer segmentation is a
term used to describe the process of dividing customers into homogeneous groups on the
basis of shared or common attributes (habits, tastes etc.) Customer profiling describes
customers by their attributes, such as age, income, lifestyles and, in particular, by their
shopping behavior. This last part of a customer profile can be identified as a shopping
profile. Depending on data available, they can be used to prospect new customers or
to “drop” out existing bad customers. The goal is to predict future purchases based on
the information we have on each customer [34]. From a classical point of view, profiling
is generally performed after segmentation. Segmentation offers to a company a way to
know about loyalty and profitability of their customers. On the other hand, by knowing
the profile of each customer, a company can treat a customer according to her individual
needs in order to increase the lifetime value of the customer [11]. Furthermore, customer
profiling is a key element which impacts into the decisions in product life cycle cost [99].

Customer Segmentation. Segmentation enables more targeted communication with
the customers and describes the characteristics of groups of customers, called segments
or clusters. Segmenting means partitioning the population into segments according to
their affinity or similar characteristics. Customer segmentation can be a preparation step
for classifying each customer according to predefined customer groups. Segmentation is
essential to cope with today’s dynamically fragmenting consumer marketplace. Through
segmentation, companies are more effective in channeling resources and discovering oppor-
tunities [301]. The data mining methods used for customer segmentation belong to the
category of clustering or nearest-neighbors algorithms.

Customer Profiling. Customer profiling provides the basis for companies to “com-
municate” individually with their customers in order to offer them improved personalized
services and to retain them. Customer profiling is also used to prospect new customers us-
ing external sources, such as demographic data. These data are used to break the database
into clusters of customers with shared purchasing traits [4]. Depending on the goal, a com-
pany must select what is relevant. Besides shopping data including also shopping frequency,
preferences, lifestyle, attitudes, etc. needed to build the shopping profile, the features that
can be used for a customer profile are geographical, cultural, ethnic, income, degree of
satisfaction, age, beliefs, level of knowledge, media used, etc. [101].

In the following, we summarize some works on customer profiling from the literature
which propose different personal data models based on associative rules and classification
rules. In [4] it is described a system constructing personal profiles based on transactional
histories. The system uses data mining techniques to discover a set of rules describing cus-
tomers’ behavior and supports human experts in validating rules. The individual profile
model proposed has two parts: factual and behavioral. The factual part contains infor-
mation, such as name, gender, and date of birth. The factual profile can also contain
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information derived from the transactional data, such as the last amount spent or favorite
brand tastes. A shopping profile models the customer’s purchases and is generally derived
from transactional data. Examples of behavioral patterns in shopping are “When purchas-
ing cereal, Bob usually buys milk”. They model customer shopping with various types
of rules, including association and classification rules. The use of rules as data model is
an intuitive and descriptive way to represent shopping patterns, a rule is a well-studied
concept used extensively in data mining, logic programming, and many other areas.

Another profile made by the item purchased by a client is proposed in [71]. This model
is exploited to find segment of similar customers using a neighborhood algorithm. Then
are observed the changes through time of the purchases within the segment and rules as
in the case reported above are retrieved. The main point of this work is that it poses
attention to shopping seasonality repeating the procedure for different seasons.

In [302] the authors attempt to analyze customers’ purchasing behaviors based both
on product profiles and customer profiles. The product profile is characterized by a set
of features describing the product. The customer profile is basically an index expressing
the level of interest in product features calculated using the product profiles. They use a
two-stage clustering technique to find the group of customers that have similar interests
and then extract rules from each cluster. We must notice that these kinds of profiling
approaches are not limited to any specific representation of data mining rules or discovery
method. However, because data mining methods discover rules for each customer indi-
vidually, these methods work well for applications containing many transactions for each
customer, such as credit card, grocery shopping, online browsing, and stock trading appli-
cations. In applications such as a car purchase or vacation planning, individual rules tend
to be statistically less reliable because they are generated from relatively few transactions.

Furthermore, in customer analysis, there are several indexes such as RFM and LTV
that can be regarded as the user profile. RFM analyzes customer value: it is commonly
used in direct marketing and has received particular attention in retail and professional
services industries. RFM stands for: Recency, how recently did the customer purchase,
Frequency, how often do they purchase, Monetary Value, how much do they spend. User
Life Time Value (LTV), is a prediction of the net profit attributed to the future relationship
with a customer. The prediction model can have varying levels of accuracy, ranging from
a crude heuristic to the use of complex predictive analytic techniques.

2.3 Clustering: A Data Mining Technique for User Profiling

Clustering is an unsupervised data mining technique. The task consists of grouping a
set of objects or data event X = {x1, . . . , xn} in such a way that objects in the same
group, called cluster Ci ⊂ X, are more similar to each other than to those in other
groups. Thus a clustering C = {C1, . . . , Ck} is essentially a set of such clusters, usually
containing all objects in the dataset [275]. In general, the notion of a cluster cannot
be precisely defined, it depends on the kind of data analyzed and on the distance func-
tion used. This is one of the reasons why there is a great abundance of clustering algo-
rithms in the literature. Typical clustering models can be classified in centroid models,
distribution models, density models, graph-based models etc., [275]. Some of the most
famous clustering algorithms are: K-Means [141, 196, 275], hierarchical clustering [159],
DBSCAN [102], Optics [15] and Expectation-Maximization [92].
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Clustering is a powerful tool, and, in particular, it is very useful for user profiling. It can
be employed to extract personal data models because it is able to summarize and generalize
users’ behaviors. Given a collection of data representing observations of the user behavior,
though clustering it is possible to group similar observations and summarize them. How-
ever, different types of data and different services require appropriate clustering models.

In the following, we report the state-of-the-art for applications of clustering algorithms
with respect to personal data. The first application we analyze refers to the employment
of clustering algorithms for detecting personal location, while the second one traits the
extraction of clusters and representative transactions from transactional data. Both these
applications, from a personal perspective, face the parameter tuning problem. Indeed, as
enhanced in the following, generic clustering algorithms require parameters to be specified
in order to return the best clustering. However, these parameters are data-dependent
and, in addition, when large databases of users are analyzed they can not be manually
tuned, nor estimation techniques can be used since they are generally time consuming. On
the contrary, the clustering algorithms we propose in this thesis, follow the personal data
mining approach: they are autofocus methods capable to automatically estimate the best
parameter setting for each individual dataset while performing the clustering.

2.3.1 Clustering Personal Mobility Data

A common problem in mobility data mining, especially when mobility profiles must be
built, is the clustering of stop points to detect personal locations. This task is generally
addressed using “generic” clustering algorithms. However, in most cases, the clusterings
produced are conditioned by some assumptions the algorithm makes about the data. Hence,
it often works well on some datasets, yet behaves poorly on several others.

The work in [17] describes a predicting model built on locations automatically discov-
ered and pushed into a Markov model. The authors use a variation of K-Means to detect
the locations. K-Means [275] minimizes the distances between k cluster centroids and the
points which are assigned to them. The main issue is the selection of the number of clusters
k and of the initial centroids. This can be overtaken by making several runs with growing
values of k. The best k can be selected by using the “rule of thumb” [138] or the k in the
knee of the Sum of Squared Error or Silhouette curve [275]. Another limitation is that
K-Means expects the clusters to be of similar size and isotropic shape. In [17] the authors
select k as the first knee of the cluster radius curve. They find the knee by looking at
the point in the curve that exceeds the average number of clusters w.r.t. some threshold.
Thus, the parameter tuning problem is moved from k to the threshold. This threshold is
not personalized for each user but it is fixed once for all.

The authors of [54] apply Mean Shift to detect the locations with the object of building
a system to suggest touristic destinations on a large-scale geotagged web photo collection.
Mean Shift [79] is a non-parametric clustering technique for locating the maxima of a
density function. It is a hill climbing algorithm which involves the shifting of a kernel to
reach a high density region. It often fails to find outliers or those points located between
natural clusters. In an inner step, still in [54], the authors apply Affinity Propagation
[104] based on the concept of communications between observations which locally decide
in which cluster they belong to. Unlike clustering algorithms such as K-Means, it does not
require the number of clusters to be determined or estimated before running the algorithm.
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While the aforementioned methods do not need parameters estimation or it can be
performed with established techniques, the algorithms employed in the following papers
require at least a parameter related to the distance among the observations or with the
distance for dividing the space. Obviously, the usage of such algorithms includes a tuning
phase, which is usually time consuming and needs an analyst level expertise.

In [326] the Grid method is used to discover locations for recommendations. Grid [147]
differs from clustering algorithms because it simply divides the space into cells of size ε and
aggregates them considering their density. It has the obvious drawback of not considering
the observations. The authors set the cell size at 300 meters to cluster the dataset without
any test or tuning phase. This, in general, can greatly affect the results, since points
belonging to different locations may have been put in the same cluster and vice-versa.

In [327] a variant of DBSCAN is employed, which considers also the time besides
latitude and longitude to discover individual gazetteers. DBSCAN [102] is based on points
classification with respect to the density around them. It takes the radius ε and the
minimum number of points MinPts as parameters. It can find arbitrarily shaped clusters
and it is robust to noise. However, it cannot cluster well datasets with large differences in
densities since the combination of ε andMinPts in general cannot be chosen appropriately
for all clusters. Also in this work, the authors ran the algorithm with a unique parameter
setting for all the users (MinPts = 10 and ε = 10) and without any tuning.

In [131] it is employed OPTICS to retrieve the significant points of interest in daily life
from GPS systematic movement data. OPTICS [15] is a variation of DBSCAN able to deal
with clusters with different densities. The points are ordered with respect to the distance
function, and a value for each point is derived, which represents the density needed to be
accepted in a cluster for each point. The clusters, then, correspond to valleys in the plot of
this distance with respect to the ordering. We had to perform an extensive tuning phase
to obtain reliable locations capturing correctly human mobility.

Finally, in [226] the authors need to find home locations of the users analyzed, to
investigate how known mobility models apply to car travels. They used Bisecting K-Means
to detect the locations and then took the most visited one as home. Bisecting K-Means
[272] repetitively applies K-Means with K=2 to subsequent partitions of the dataset. The
clusters correspond to observations which are in the same partition of the lines (or planes)
bisecting the dataset. Instead of fixing the final number of clusters to obtain, the method
uses alternative stop criteria for the bisecting process, like the number of iterations or the
maximum distance ε between observations in the same partition. In particular, the authors
fixed ε=250 meters for all users, without considering individual behaviors.

We underline that the methods discussed above, and those proposed in this thesis, do
not take into consideration geographical contextual information, such as existing points of
interest, road network, etc. In literature, such information is typically used to assign single
stops to a point of interest (e.g. [151]), mainly to enrich trajectories with activity informa-
tion, rather than identifying recurrent locations. How to integrate that within a clustering-
based location extraction process is an open problem that we leave as future work.

2.3.2 Clustering Personal Transactional Data

Transactional data is a special kind of categorical data in the form of sets of event data.
A large amount of personal data generated by each individual consists of transactions like
the items purchased in a shopping session, the web pages visited during a browsing session,
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the songs listened in a time period, etc. Clustering transactional data become essential
when a user profile summarizing the user behavior must be built on these data.

In the literature, there is a great variety of papers proposing approaches to address
the problem of clustering transactional data. Most of the existing algorithms require the
setting of parameters which often may be difficult to be tuned. The first algorithm pro-
posed for clustering transactional data is large item [298]. It requires a support threshold
indicating the minimum number of occurrences for an item to be considered “large”, i.e. to
be representative for a cluster. Through a scanning, it exploits the large items in a global
cost function to evaluate the destination cluster or the creation of a new one. Several other
algorithms like rock and clope were proposed with the same scanning strategy but different
cost functions requiring parameters difficult to be interpreted [125, 311, 312].

Also in transactional clustering the most common parameter is the number of clusters
[152, 304, 319]. Tkmeans [115] is one of the first attempts to use a different tranasctional
clustering strategy by following the K-Means [275] approach. Another algorithm for ex-
tracting centroids from categorical data is k-modes [53]: it employs the mode instead of the
mean. Finally, purtreeclust [66] is a recent method working on categorical data for cluster-
ing customers through their purchase trees which are built on the customers’ transactions.

A further notion used in cost functions is entropy [14, 24, 62, 189]. In [24] the authors
propose coolcat that iteratively chooses the suitable cluster for each transaction such that
at each step the entropy of the resulting clustering is minimized. A similar procedure
is followed by the algorithm limbo in [14]. It uses the notion of entropy to identify the
similarity between data objects and the clustering process minimizes the information loss.
A dual approach is proposed in [189] where starting from a single cluster a Monte Carlo
process selects a transaction and to assigns it to another cluster to decrease the entropy.

Besides parameter tuning, when dealing with transactional data another problem is
high dimensionality. It is often necessary to transform the original dataset into a boolean
dataset. Typically it makes algorithms inefficient in terms of execution time and clustering
quality. To not suffer from high dimensionality, subspace clustering algorithms like [110,
320] have been proposed with the goal to find clusters embedded in subspaces of the original
data space with their own associated dimensions. In the literature, some algorithms like
[35, 93] use bipartite graph theory to cluster datasets. They generate co-clustering results
where columns and rows are simultaneously partitioned. In transactional data, this means
an unnatural split of the clusters that overlap over a few frequent items. However, they
are often memory and time consuming, and inappropriate for clustering large datasets.

Some proposals were made to overcome manual parameter tuning and to automatically
select the number of clusters. In [62] it is proposed an entropy-based clustering working
in a bottom-up manner. It evaluates the similarity with incremental entropy, and finally,
generates a clustering tree containing clusterings with different number of clusters. The
authors of [308] propose to run their algorithm with a different number of clusters and
choose the result that optimizes a specific index of quality. However, in terms of execution
time these methods are clearly inefficient. The first parameter-free transactional clustering
algorithm is atdc [60]. It adopts a top-down strategy resembling a decision tree learn-
ing algorithm. In [44] it is proposed the practical parameter-free method that through
scanning automatically identifies clusters even in presence of rare items. Finally, also the
dhcc algorithm presented in [305] is a parameter-free procedure based on a divisive hier-
archical clustering approach. However, dhcc is especially designed for working on classical
categorical data rather than on transactional data.



Chapter 3

User Profiling for Individual and
Collective Services

In this Chapter we show how personal data models can be exploited by personal services.
A classic usage of a user profile is the prediction of future actions. By accounting on the
systematic repetitions of a user, valuable predictions of what a user is going to do in the
future are enabled by recognizing that the user is acting by following one of her habitual
behaviors. Besides prediction, user profiles are typically adopted in recommendation sys-
tems: personal suggestions are provided to the user according to her data model. In both
cases there are two distinct phases: extraction time when the personal data model is built
or updated, and query time when the profile is used for prediction or recommendation.
The former can require a while but is repeated not frequently because a profile is assumed
to be valid during predefined time intervals. On the other hand, the second one needs to
be fast in order to return a prediction or a recommendation as soon as possible.

3.1 Predicting Human Behavior

A prediction or forecast is a statement about the way things will happen in the future, often
but not always based on experience or knowledge. Although guaranteed information about
the future is in many cases impossible, prediction is necessary to allow plans to be made
about possible developments. Indeed, human predictability can be used to plan events
and infrastructures, both for the public good and for private gains. Predictability is a vast
research field, tackled with a number of approaches and for a number of different reasons.
In the following we present a literature review about prediction methods for services with
respect to the fields of mobility data and shopping transactional data. They all make use
of different notions of user profiles and personal data models.

3.1.1 Prediction in Mobility Services

The approaches proposed in the literature for location and trajectory prediction can be
classified on the basis of the prediction strategy used. In the literature, a lot of works
addressing the location prediction problem propose methods that base the prediction only
on the movement history of the object itself [10, 59, 122, 157, 167, 193, 221, 257, 283, 300,
310]. We say that these approaches use the individual strategy for the prediction of user



38 CHAPTER 3. USER PROFILING FOR INDIVIDUAL AND COLLECTIVE SERVICES

future positions. Some approaches of this category adopt time series analyses [59, 257] to
forecast user behavior in different locations. Time series analyses enable estimations as the
time of the future visits and expected residence time in those locations [257]. In this kind
of works, it is necessary to define the set of interesting locations to be considered in the
analysis. In [59] these locations are areas statically defined, while [257] provides a method
for extracting significant locations among which users move frequently.

Others prediction approaches are based on Markovian processes [221] and on machine
learning techniques such as classification [10, 283]. In particular, in these two last works
the location prediction problem is treated as a classification problem: in [10] the location
information considered for classification refers to the history of user movements, that is
represented by a vector of h time-ordered locations crossed by a user; while in [283] the
classification tree is built based on simple, intuitive features extracted from the user visit
sequence data with associated a semantic meaning. In [193], in order to capture aspects of
the individual’s mobility behaviors, the authors propose a modified Brownian Bridge model
that incorporates linear extrapolation. Other works such as [157, 167] provide methods for
the prediction of the movement ahead of a moving object whose movement is constrained
to a road network. In [167] the authors assume that the objects’ destinations are known.
Considering the road network most of the works in this category transform the trajectory
into a path on the graph representing the road network. This leads to a form of spatial
generalization that we do not apply in our methods. Finally, some works combine historical
spatial and temporal data about the user with contextual data such as accelerometer,
bluetooth and call/sms log [122] or with social relationships with friends [310]. These
approaches are different from those proposed in this thesis because we employ only spatio-
temporal data from user’s movements without any other additional information.

The main problem of approaches implementing the individual strategy is that they fail
in predicting future locations of non-systematic users. In these cases applying a collective
strategy could improve the prediction. Prediction approaches belonging to this category
first extract mobility behavior for each user considering only the user’s movement history,
like in the individual strategy, and then they merge all the individual models for the
construction of the predictor [89, 175, 315]. The main difference with our work is that we
do not apply any spatial generalization on movements data while these works typically use
a grid for obtaining cells instead of points like in [175], or extract semantic places from raw
data by grouping different spatial coordinates that identify a stop [315].

Other approaches address the location prediction problem by using a global strategy,
i.e., they extract movement behaviors from the movement history of all the users in the
database and use this global knowledge to forecast the next location visited by a spe-
cific moving object. The basic assumption, in this case, is that people often follow the
crowd, i.e., individuals tend to follow common paths. This strategy was followed in
many papers; most of them extract frequent patterns and association rules from data
[63, 156, 162, 183, 188, 197, 211, 215, 216, 314] using methods based on Apriori, PrefixS-
pan and FPGrowth techniques. Some recent works instead use probabilistic models and
in particular Markovian models [48, 120, 243, 306]. Some of these approaches are suitable
for predicting the next location by using GSM data [162, 188, 197, 314]; while others work
well with GPS data [63, 120, 156, 183, 211, 215, 216, 243, 306]. Solutions based on GPS
data typically apply a spatial discretization to make easier finding frequent or interesting
locations. Two main types of discretization are applied: the first one extracts interesting
places applying density based clustering techniques [156, 183, 188]; while the second one
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simply uses a grid on the space, determining for each trajectory the sequence of intersected
cells [63, 120, 183, 211, 215, 216]. We highlight that the methods we will present in this
thesis differ from these works because we do not apply apriori spatial discretization al-
lowing us to predict the exact positions visited. Moreover, contrary to most of the above
approaches, we use the temporal information both during the data model extraction and
during the prediction. Some exceptions are [156, 183] which allow choosing the prediction
time specifying the temporal information. Others work such as [211] base their approach
on trajectory patterns which are intrinsically equipped with temporal information.

Another interesting way to exploit user mobility information for predicting the next
user location is based on the idea to combine the global and individual strategies in order
to obtain more accurate predictions. In particular, the idea is to have a global predictor
constructed using all users’ mobility data and for each user also producing a predictive
model based only on her individual movements. Therefore, during the prediction the idea
is to use one of these two predictors: when using the individual predictor is not possible to
provide a valid and accurate prediction then the global predictor is used [17, 27, 64, 324].
Their basic idea is similar to our hybrid strategy where we provide the possibility to combine
individual prediction with either the collective one or the global one. However, our methods
differ from [17, 27, 324] also for the spatial precision of the predictions. Indeed, [17] it is
based on GPS data but applies a discretization based on clustering; while the others are
based on GSM data. In [96] it is used a global model to improve the personalized model:
the prediction score that is a combination of the global score and individual one.

All these methods are tested on synthetic data or on small real dataset. We differ from
them in testing our approaches in a big data context using large real-world datasets.

3.1.2 Prediction in Shopping Services

As for mobility data, there are various works trying to predict customer shopping behavior.
Data mining [6, 165] is the best choice because it can be difficult to create a comprehen-
sive model of overall customer behavior, as each single individual acts according to a very
nuanced and personal utility function. Multiplex approaches are then used [67, 234]. More-
over, recent research showed that it is possible to describe the retail market as a complex
system [235]. These works focus on the detection of regularities in what customers buy.

Interesting studies analyze purchasing transactional data to predict changing in the
customer behavior [65, 270], and if a customer will switch from one brand to another
[139]. In particular, in [65] there is an attempt to integrate typical customer behavioral
variables such as recency and frequency with transactional data to establish a method for
predicting changes in shopping behavior. In [139] it is developed a method for extracting
useful knowledge from individual customers’ purchase histories by combining information
fusion techniques with data mining to predict whether a customer switches from one brand
to another, or becomes loyal to a brand. In [261] the author show how signals of RFID
can be exploited to detect and record how customers browse stores, which items of clothes
they pay attention to, and which items of clothes they usually match with.

One of the most challenging goals with respect to shopping services is the prediction of
the customer shopping list. The shopping list prediction can be developed to provide indi-
vidual and personalized interactions with customers as they “navigate” through the retail
store. In [87] it is described a prototype that predicts the shopping lists for customers in a
retail store. Instead of using traditional approaches such as clustering or segmentation, they
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exploit the massive amounts of data captured, and the relative high shopping frequency of
a grocery store, to build separate classifiers for every customer. This allows them to make
very fine-grained and accurate predictions about which items a particular individual cus-
tomer will buy on a given shopping trip. Thus, in this case, the customer profile corresponds
to the personal classifier built. On the contrary, in [165, 289] are introduced two methods
using supervised learning but that can be categorized as collective since they do not process
each customer individually. In [165] the authors propose a prediction method for customer
purchase behavior that combines in parallel several classifiers using genetic algorithms. In
[289] it is applied an approach using a mix of classification, decision rules and probabilities
to extract customer behavioral patterns. Since the prediction of the shopping list is more
commonly considered as recommendation task, it is treated more deeply in Section 3.2.

A promising line of research investigates where customers go to buy what, i.e., how
much the shops they visit are predictable [176] and how much they are willing to travel to
satisfy their needs [94, 236]. In both cases, customers are shown to be rather predictable
in their movements. The mobility dimension is very important when analyzing personal
shopping for two reasons. First, it resulted to be highly predictable [222, 269]. Second,
it is intimately linked with the social dimension. According to the previous Section, it
has been proved that it is possible to predict the places an individual will visit because
we know that their friends visit them and that social ties are more easily created among
people who travel to the same places [69, 89, 280, 297]. The predictability of the creation
of new social ties by an individual is a classic problem in social network analysis [190, 258].

Another type of data relative to shopping sessions and economy and strongly related
with prediction is time series. Support vector machines (SVM), is a technique widely
used especially to forecast financial time series [55, 166]. In [166] the authors try to
predict the stock price index while in [55] it is studied the feasibility of SVM in financial
forecasting with respect to neural networks methods. In these approaches, all the data
are considered because is estimated the general situation of the market. However, in the
same way, individual indexes could be evaluated by analyzing as input the shopping of
each customer. This is done in [49, 293] where the authors try to predict the customer
potential value in order to estimate the probability of churn, i.e. the expected degree of
abandonment of a certain product or of a certain company from their habitual usage.

Moving from time series, we want to consider the temporal dimension of shopping. In
the literature, there are various works which try to predict the shopping behavior. How-
ever, as reported above, they generally take into consideration aspects related to the items
bought and not only the time. The temporal component of customer purchases is espe-
cially analyzed in [194, 203, 307]. In [307] the authors propose to represent the customer
purchasing behavior using a directed graph retaining temporal information in a purchase
sequence: they apply a graph mining technique to analyze the frequent occurring patterns.
The authors of [203] examine the role of personal characteristics in time spent shopping. In
particular, is analyzed the roles of time perceptions, brand and store loyalty, social, physi-
cal well-being, and demographic variables in predicting reported shopping time, including
the hours spent at search and purchase. [194] studies changes in cluster characteristics of
supermarket customers over a 24 week period by performing a temporal analysis that tries
to detect the migrations of the customers from one group to another group. The temporal
analysis presented is based on conventional and modified self-organizing maps. The per-
sonal models and methods we propose in this thesis, not only help in understanding the
changing in customers’ shopping behaviors and their cyclic succession, but also in unveiling
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and measuring the regularities of these changing if detected.

Finally, there are works aimed at understanding the behavior of customers in online
shopping [140, 192, 224, 288]. Note that in the works reported above the customer behavior
is generalized at global level, while the data model we propose in this thesis to treat the
user shopping behavior is a personal description of the customer habits and preferences.

Nowcasting. Nowcasting is a novel promising field of research. It has been successfully
combined with the analysis of large datasets of human activities. Nowcasting is generally
a collective or global approach since it requires a data model which capture the behavior
of a mass of people. Two famous examples are Google Flu trends [303] and the prediction
of automobile sales [74]. Social media data has been used to nowcast employment status
and shocks [195, 281]. Such studies are not exempt from criticisms: [180] proved that
nowcasting with Google queries alone is not enough and the data must be integrated with
other models. Nowcasting has been applied also to GDP [114]. However, the model uses
a statistical approach that is intractable for a high number of variables, thus affecting the
quality of results. Other examples can be found on the Eurozone [103], or on different
targets such as poverty risk [219] and income distribution [186].

3.1.3 Prediction in Social Network

In social network, the prediction problems are treated as link prediction. Link prediction
strategies may be broadly categorized into four groups: similarity based strategies, maxi-
mum likelihood algorithms, probabilistic models and supervised learning algorithms [198].

The first group defines measures of similarity as a score between each pair of nodes.
All non-observed links are ranked according to their scores, and the links connecting more
similar nodes are supposed to be of higher existence likelihoods. Despite its simplicity, the
definition of node similarity is a non-trivial challenge.

The second set of methods is based on maximum likelihood estimation. Empirical stud-
ies suggest that many real-world networks exhibit hierarchical organization. Indeed, these
algorithms presuppose some organizing principles of the network exploited with the rules
and parameters obtained by maximizing the likelihood of the structure. From the view-
point of practical applications, an obvious drawback of the maximum likelihood methods
is that it is very time consuming and not among the most accurate ones.

The third group of algorithms is based on probabilistic bayesian estimation. Prob-
abilistic models aim at abstracting the underlying structure from the observed network,
and then predicting the missing links by using the learned model. Given a target network,
the probabilistic model optimizes a built target function to establish a model based on a
group of parameters which can best fit the observed data of the target network. Then the
probability that a non-existent link will appear is estimated by the conditional probability.

The last group of methods employs supervised machine learning techniques. Link
prediction through supervised learning algorithms was introduced in [190]. They studied
the usefulness of graph topological features by testing them on co-authorship networks
dataset. In these type of methods, a set of similarity features is proposed for each couple
of node. Then, knowing if a link will be present or not in future, a classifier is trained and
then used to predict new links. After [190], more recently new models have been proposed
using very different approaches. In [39] are used topological features and node attributes
in linear combination applied to a covariance matrix adaptation evolution strategy to
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optimize the prediction. Principal component regression is the algorithm used in [21] to
determine the weight of statistically independent predictor variables used for the prediction.
A rank approach is proposed in [241] to order unlinked nodes according to some topological
measures. At the new instant time each measure is weighted according to its performance
in predicting new links. In [263] the authors use textual and topological features to predict
new citations applying an SVM as supervised learning method. Finally, in [271] it is used
tensor factorization to select the more predictive attributes.

3.2 Recommendation Systems

Recommendation systems are a subclass of information filtering systems that seek to pre-
dict the rating or preference that user would give to an item [248]. They have become
extremely common in recent years, and are applied in a variety of services. The most pop-
ular ones are probably movies, music, news, books, research articles, search queries, and
products in general. A personalized recommendation system can help enterprises launch
one-to-one marketing, i.e., individual marketing. The purpose of launching one-to-one
marketing is to increase customer loyalty and to enhance selling [154]. Differently from
traditional marketing which concentrates on “pushing” products to customers, one-to-one
marketing focuses on understanding customers gradually to actively fulfill their needs by
recommending appropriate products or services [302]. The well-known Pareto 20 − 80
principle states that the 20% of the customers may generate as much as 80% of the com-
pany’s profits. Therefore, in this thesis, we focus on how to provide one-to-one services
or products for existing customers. Recommendation systems typically produce a list of
recommendations in one of two ways: through collaborative or content-based filtering.

Collaborative filtering approaches are based on collecting and analyzing a large amount
of information on users’ behaviors, activities or preferences and employing them to build
a model representing the user’s past behavior. Then, that model is used to predict what a
user may have interested in based on her similarity with other users [45]. A key advantage of
collaborative filtering is that it does not rely on machine analyzable content, and therefore,
it is capable of accurately recommend complex items without requiring an “understanding”
of the item itself. However, despite their success, their use has been constrained by two
major limitations. The first limitation is the sparsity problem [68]. Conventional collabo-
rative filtering recommendation systems require users to explicitly input preference ratings
about many products. The number of ratings received is relatively small compared to
the number of ratings required for prediction. Consequently, predicted ratings accuracy
degrades significantly when the received ratings are sparse. The second limitation is the
scalability problem [72]. As the number of users and targets increase, the computation time
of algorithms, which perform product comparisons grows, respectively [112].

Content-based filtering approaches employ a series of discrete characteristics of an item
in order to recommend additional items with similar properties [214]. These approaches
have its roots in information retrieval and information filtering research. Content-based
filtering methods are based on a description of the item and a profile of the user’s preference
[47]. In other words, these algorithms try to recommend items that are similar to those
that a user liked in the past: candidate items are compared with items previously rated
by the user and the best-matching items are recommended [317]. A weak point of the
content-based approach is the number of features that should be chosen to describe an
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item: the quality of the system is affected by the feature selection process. An example of
profile in content-based recommendation systems can be found in [230] where is presented a
system that creates a profile of the user that describes the types of items the user likes, and
provide a means of comparing items to the user profile to determine what to recommend.
The profiles are often created and updated automatically in response to feedback on the
desirability of items that have been presented to the user.

These approaches are often combined in hybrid recommendation systems. Recent re-
search has demonstrated that a hybrid approach, combining collaborative filtering and
content-based filtering, could be more effective in some cases. Hybrid approaches can
be implemented in several ways: by making content-based and collaborative-based pre-
dictions separately and then combining them, by adding content-based capabilities to a
collaborative-based approach (and vice versa), or by unifying the approaches into one
model [5, 50]. These methods can also be used to overcome some of the common problems
in recommendation systems such as cold start and the sparsity problem.

In the above description, the treatment was made mainly from an economical point-of-
view. Indeed, we used terms such as products and items. However, the entire treatment
could be reformulated using mobility terms such as locations and regions, or social terms
such as interactions and users. In the following, we report the state-of-the-art about
recommendation systems in the field of mobility, shopping, and music.

3.2.1 Recommendation in Mobility Services

In [228] the authors propose a location-based recommendation system using bayesian user’s
preference model in mobile devices. Adopting the collaborative filtering approach, they ex-
ploit mobility user profiles based on factual data and movement preferences to suggest new
destinations that should like the drivers. This idea is confirmed by [247] which illustrates
that there are two groups of factors that influence destination choice: personal features and
travel features. The first group contains both socioeconomic factors (age, education, and
income) and psychological and cognitive ones (experience, personality, involvement, and
so forth). The second group might list travel purpose, travel-party size, length of travel,
distance, and transportation mode. The recommendation system introduced in [46] tries
to integrate classical information retrieval information on web pages, like the number of
clicks per page, the time spent in a page etc., with mobility information, like the position
of the user when visiting a certain page. They use a historic database of locations and
corresponding links used in the past by a set of users, that is profiles, and develop models
relating resources to their spatial usage pattern. These models are used to calculate a pref-
erence metric when the current user is asking for resources of interest being in a certain
location. Something similar is described in [316], where a procedure based on offline and
online part is presented. The authors, in this case, recommend entire itinerary exploiting
other users past experience with location interest graphs and according to classical travel
features: elapsed time, stay time and interest ratio.

Route Planner. A particular type of recommendation systems in mobility are route
planners. They are designed to provide information about the possible journeys in a certain
area. Generally, route planners refer to means of transportation which are either private
or public. The application prompts a user to input an origin and a destination and it
recommends some routes which are considered to be the best for that query.

Route planners generally use some smart variations of well known shortest path algo-
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rithms to search a graph of nodes and edges [185]. Different cost weights such as distance,
cost etc., can be associated with edges and nodes. However, it is generally quite difficult
to plan high-quality routes [204]: (i) the notion of “route quality" is different from person
to person, and (ii) available route networks rarely contain all the information needed for
proposing the best route (e.g. traffic information, road quality etc.). Thus, even though
the search can be optimized with respect to different criteria, e.g. the shortest, the fastest,
the cheapest [233], and even the happiest ones [244], there is not guarantee that the route
provided will be considered “the best” by the majority of the users.

Various efforts in different directions have been made to improve route planning ap-
plications. In particular, personalized route services able to deal with individual users
preferences have been investigated recently. For example, in [209] complex users prefer-
ences are modeled into a route planner by means of the fuzzy set theory. In [191] the
authors provide improved individual route plans for Dublin inhabitants by exploiting both
historical data and estimated traffic flows. Similarly, according to an estimation of future
travels obtained by mining public transport data, in [177] are recommended personalized
tickets for London public transport network., and [318] introduces real-time information
coming from GPS-equipped taxi together with historical data for an improved route plan-
ner which uses traffic conditions and driver behavior for selecting the best path. Finally,
a multi-modal journey planner can consider at the same time various means of transport
and minimize the uncertainty of catching a certain means [43], or it can provide for the
same journey personalized public and private transportation solutions [42].

Carpooling. Besides recommending locations and paths, emerging recommender sys-
tems in mobility services are services related to carpooling. Nowadays, there are many web-
sites already operative throughout the world. All of them allow the user to register, search
for a ride and offer a ride. Anyway, they present several differences. Drivebook, Road-
sharing and Blablacar1 are some of the most famous ones because they are international,
offering intra- and inter-country services. Indeed, they treat mainly long and occasional
trips. Drivebook is characterized by the feature of being linked with various social networks
to improve the confidence among users, while Roadsharing focuses on commuters.

The carpooling phenomenon is a subject widely studied in the literature. It has been
analyzed from various, very different points of view. Carpooling is the second most popular
way of commuting, and maybe one of the least understood – a fact that probably explains
the need for such a large corpus of studies in literature.

An approach widely followed in the literature to analyze carpooling is Agent Based
Modeling (ABM) [16, 30, 70, 107, 108, 260]. A multi-ABM in conjunction with the Dik-
stra’s algorithm is used in [260] to efficiently answer real-time users’ queries. In [16] it is
designed an ABM to optimize transports by the ride sharing of people who usually cover the
same route. The information obtained from this simulator are used to study the function-
ing of the clearing services and the business models. In [30] the authors face the problem
by using a multi-ABM to investigate opportunities among simulated commuters and by
providing an online matching for those living and working in close areas. [70, 109, 107]
present a conceptual design of an ABM for the carpooling application to simulate the inter-
actions of autonomous agents and to analyze the effects of changes in factors related to the
infrastructure, behavior, and cost. They use agent profile and social networks to initiate
the ABM, then employ a route matching algorithm and a utility function to trigger the

1http://www.drivebook.com/,http://www.roadsharing.com/,http://www.blablacar.com/
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negotiation process between agents. In [108] the authors define an ABM for the individual
mobility behavior during carpooling, the criteria and the function to constitute the carpool-
ing community and a protocol for the negotiation of the details of the carpooling trips.

Many carpooling works are related to the study and analysis of mobility data to un-
derstand the carpooling phenomenon [76, 82, 182, 273, 276, 285, 290, 291]. In [276], for
example, the authors describe the characteristics of carpoolers, distinguishing among dif-
ferent types of carpooler, and identifying the key differences between a carpooler, a Single
Occupant Vehicle (SOV), and a transit commuter. They also describe how and why com-
muters carpool. In [285], it is introduced a methodology for extracting mobility profiles
of individuals, and criteria to match common routes in order to develop a carpooling ser-
vice. In [76] the authors derive home and work locations using Twitter and Foursquare
data, then social ties are used to develop an algorithm for matching users with similar
mobility patterns. [82] proposes a study club model to overtake psychological barriers
associated with riding with strangers, to find compatible matches for traditional groups of
users and also to find a ride in alternative groups. Using a multilevel regression model and
a questionnaire which explains the share of carpooling employees at a workplace, [290, 291]
predict the share of carpooling at large workplaces locations, organization and carpooling
promotion. In [36] the authors develop an application for car sharing recommendation by
exploiting a topic clustering algorithm applied to labeled trajectories.

In other studies [80, 169, 182, 202], the authors try to find simulated or theoretical
matches among users asking for a ride in a carpooling scenario and evaluate it in terms of
simulated users’ feedbacks. [202] develops and implements the concept of real carpooling
by allowing a large base of member passengers and drivers that declared their route to
be matched against each other automatically and instantly using mobile phone calls. In
[80], the problem is faced as an optimization task reduced to the chairman assignment
problem [279]. [184] considers simulated straight-line trajectories observing only origin and
destination of trips and classifies users as eligible or ineligible for carpooling by minimizing
the time of the trip. In [169] it is built a user network that represents planned periodic
trips, where the edges are labeled with the probability of negotiation success for carpooling.
The probability values are calculated by a learning mechanism using the registered person
features, the trip characteristics, and the negotiation feedback. The algorithm provides
advice by maximizing the expected value for negotiation success. The differences between
the approach proposed in [169] and ours is that we provide matches between couples of
users in a pro-active way, suggested from data and not advertised from people. Moreover,
[169] uses the network structure to model the negotiation feedback process, while our
approach uses complex networks to model possible carpooling interactions to recommend
possible assignments by taking into account real trajectories and systematic movements.
[182] develops a methodology that finds feature points in trajectories and organizes them
in a trie data structure to speed up and refine geographical queries for carpooling purposes.

3.2.2 Recommendation in Shopping Services

By exploiting both customers and products profile, and by analyzing customer’s preferred
brand or product, in [154] the authors present a recommendation system for one-to-one
marketing able to suggest products to customers either at general or at specific level. In
particular, it is used a product taxonomy to identify customers’ shopping behavior in the
following classes: product addictive, brand addictive or hybrid addictive. Also in [56], it
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is presented a fuzzy-based algorithm for a web marketing system that, by exploiting the
features of a product, it retrieves the optimal products for the customer’s current needs
obtained from the system-user interactions. The authors of [256] propose an item-based
collaborative filtering technique to overtake one of the main issue of traditional collabora-
tive filtering systems: the amount of work increases with the number of participants in the
system. They first analyze the user-item matrix to identify relationship between different
items, and then use these relationships to indirectly compute recommendation for users. In
[323] it is proposed a recommendation system aimed at maximizing customer satisfaction.
By employing an associative classification method based on customers’ characteristics, the
customer’s next product is predicted if the model has a high level of satisfaction.

With respect to the recommendation of products for the customer shopping list, [206]
proposes a memory-based collaborative filtering method on transactional data as an ex-
tension of [256]. In particular, it investigates the suitability of such method for situations
when only binary pick-any customer information (i.e., choice/non-choice of items, such as
shopping basket data) is available. The authors of [246] learn the general taste of a user
by factorizing the matrix over observed user-item preferences. Then, Markov chains are
used to model sequential behavior by learning a transition graph over items. The chain
is used to predict the next action based on the recent actions of a user. The personal
transition graph over underlying Markov chains corresponds to the user profile: for each
user a transition matrix is learned. Thus, in total, the method uses a collective transition
cube. Finally, given a user’s purchase history, the method proposed in [299] employs a
hierarchical representation model for next basket recommendation. The model simultane-
ously considers the sequential behavior, i.e., buy one item leads to buying another next,
as well as the users’ global taste, i.e., what items a user is typically interested in.

Musical listening can be considered as a special kind of transactional data, thus treat-
able as shopping session. The treatment of musical listening is becoming valuable because
in the last decade the music world has started receiving more attention from the scientific
community. In [237] the authors measured different dimensions of social prominence on a
social graph built upon 70k Last.Fm users whose listening were observed for 2 years. By
analyzing the width, the depth, and the strength of local diffusion trees, the authors were
able to identify patterns related to individual music genres. In [225] the authors formally
defined the effect of social influence providing new models and evaluation measures for
real-time recommendations with very strong temporal aspects. The authors of [242] ana-
lyzed the cross-cultural gender differences in the adoption and usage of Last.Fm: (i) men
listen to more pieces of music than women, (ii) women focus on fewer musical genres and
fewer tracks than men. In [37] the authors studied the topology of an online musical social
graph asking for similarities in taste as well as on demographic attributes and local network
structure. Their results suggest that users connect to “online” friends, but also indicate
the presence of strong “real-life” friendship ties identifiable by the multiple co-attendance
to the same concerts. All the global knowledge gathered from these analysis constitutes
the key features to improve recommendation of musical listening.



Chapter 4

Personal Data Store:
A User-Centric Model

In this final background Chapter we outline the concept of Personal Data Store (PDS)
through an overview of the recent literature. A Personal Data Store is a digital space
where each user can store her personal data. It acts as an intermediary between the user
and all the external services requiring user’s data. The goal of PDS is to allow the user to
control her own personal data and to manage authorizations for third-path services in order
to give everyone the right of managing personal information and communications freely
and safely. The user decides if, what, and to whom she wants to share her personal data.

4.1 Towards a User-Centric Model

The raise of smartphones and web services together with their increasing usage on everyday
activities is making possible the large-scale collection of personal data. The availability of
data about people, which enclose information on their choices, preferences, actions, etc.,
represents an invaluable opportunity for the release of personal services. Currently, these
data are gathered and managed mainly by big companies, which keep and exploit users’
information necessary for offering various services. However, the so-called organization-
centric model does not permit to take fully advantage from the potentiality of knowledge
extraction offered by personal data. This happens because of various reasons:

• there are legal implications for possible sharing of data, i.e., entities that own data
tend to keep them locked;

• data, and the knowledge related to them, represent a useful and valuable good, thus
companies do not intend to share information with others;

• each company has only a limited view of individuals, i.e., the dimension described
and captured by the data correlated with its activities (mobility, shopping, social,
etc.), in such way it is not possible to exploit linking among different dimensions;

• users have a limited capability to control and exploit their personal data, thus they
often exhibit skepticism and do not give access to data unless it is strictly necessary.
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In order to overcome the problems listed above, it has been recently proposed a change
of perspective towards a user-centric model for personal data management. This “vision”
is compatible with the one promoted by the World Economic Forum [161, 239, 250].

In this model, the user acquires a central influence and gains an active role through a full
control on the lifecycle of her own personal data. The basic idea is to introduce high levels
of transparency regarding services and real use of data, to enable individuals to control a
copy of their data and finally to give them the right to dispose or distribute data with the
desired privacy level. Since most of the existing solutions consider an architecture where a
central service provider releases the data to the final users only after having made the data
private, this idea of user centrality brings to a change of perspective for privacy problems.
Indeed, in the user-centric model, the privacy transformation is applied at individual level
before the data sharing. The personal control of private data should encourage the users
towards a voluntary participation by limiting the common suspicion associated with data
sharing, and by augmenting the awareness of the profits that can be gained by extracting
knowledge from personal data, both at personal and collective level [119].

The growing quantity and quality of personal data create enormous value for the global
economy [250]: personal data plays a vital role in countless facets of our lives. Medical
practitioners use health data to better diagnose illnesses, develop new cures and address
public health issues. Individuals are using personal and collective data to find relevant
information and services, coordinate actions and connect with people who share similar
interests. Governments are using personal data to protect public safety, to improve law
enforcement and strengthen national security. Businesses are using personal data to inno-
vate, create services and design new products that stimulate economic growth. Moreover,
the emerging communication systems are democratizing the access to information.

Understanding these systems is necessary to make our future stable and safe. We are
getting beyond complexity and data science because we are including people as a key part
of these systems [238]. As we begin to understand them, then we can build better systems,
systems which encounter our needs, systems which are personalized. The promise is to have
financial systems that do not melt down, governments that do not get mired in inaction,
health systems that actually work, etc. Thus, we need technologies which respect the needs
of involved actors and prevent the interesting content of the data.

4.2 What is a Personal Data Store?

The user-centric paradigm can be enabled by empowering individuals with the ability to
control a copy of their personal data, the so-called right-of-copy, and by giving to them
the right to dispose or distribute her data for receiving the desired services.

A Personal Data Store (PDS) is a personal, digital identity management service con-
trolled by an individual. It is based on the user-centric model which gives to the user a
central point of control for their personal information like interests, contact information,
affiliations, preferences, friends, mobility, shopping, music, etc. The user’s data managed
by the service may be stored in a co-located repository, or they may be stored in multiple
external distributed repositories, or a combination of both. Users may be allowed to share
portions of data with other users. However, while the question of data ownership and the
creation of PDS have been discussed for a long time [29, 150] their deployment on large
scale is still an open problem. Privacy and legal concerns, as well as the lack of technical
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Figure 4.1: (Left): openPDS systemâĂŹs architecture. (Right): pillars of Personal Data Store.

solutions for personal data management, are preventing data from being shared and rec-
onciled under the control of the individual [90]. This direction has been studied recently
and in the following we report a detailed overview of the state of the art.

One of the most important examples is the openPDS framework [91, 90]. “Open”,
in openPDS, suggests its open source nature and PDS stands for Personal Data Store.
The openPDS answers questions from external applications or services with answers that
the user allows for being shared. Computations on user data are performed in the safe
environment of the PDS, under the complete control of the user. The idea is that only
the relevant summarized data for providing functionalities to the applications should leave
the boundaries of the user’s Personal Data Stores. In summary, openPDS, is a personal
metadata management framework that allows individuals to collect, store, and give fine
grained access to their metadata to third parties. openPDS is oriented to the protection of
the metadata shared and on the privacy of the data contained in the system. For example,
rather than exporting raw GPS data, it could be sufficient for an application to know if
you are active or which geographic zone you are in. In Figure 4.1 (left), the system is still
exposing personal data of the user, but it is constrained to be what the app strictly needs
to know, rather than the raw data objects the user generates.

Over time, user’s openPDS would be filled with information collected by her phone, but
also information about her tastes or her contacts, as well as a stream of other sensors of
information that the user accumulates in her daily life. The user would have full control over
these data, and could see exactly what data are relative to her phone, or other sensors and
services, gathered about her over time. The PDS has access to historical data of the user,
therefore every service chosen by the user can use all the possible information regarding the
user, and it allows the more innovative companies to provide better data-powered services.

Users must know what data are captured and, on top of that, they must be able to
control how they are shared and enabled to trust how other users employ them. Indeed, a
privacy-preserving PDS like openPDS allows for greater data portability, as the user can
seamlessly interface new services with her openPDS, and will not lose ownership or control
of her personal data. Since the shared information is certified answers instead of raw data,
the distribution and sharing of information could be possible. Finally, the user can decide
whether such services provide enough value compared to the amount of data it asks for.
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The user can reason on questions like “Is it finding out the name of a song worth enough
to me to give away my location?”. The openPDS can help the user in making the best
decision for herself, and, in this way, she can acquire more awareness. The stated core
principles of openPDS are summarized in Fig. 4.1 (right).

The same principles are adopted in [207, 208], where the authors introduce the Bank
of Individuals’ Data (BID) as the provider of PDS features. The BID provides a secure
and trusted space, i.e., a vault, where a person can put her personal data, and can operate
on them by creating, lending or even selling her data. Like banks, the BID can act as
catalysts of new opportunities which bring economic or social advantages to all the actors
of the ecosystem. The proposed framework is organized in five layers, each one provides
specific functions. The data space for managing digital footprint layer is responsible for
data storage, automatic collection of personal data from different sources, enrichment,
e.g., with meta-data, search/retrieval and visualization. The trusted environment for per-
sonal applications layer handles trusted environment, e.g., a sandbox, for the deployment,
management and execution of “personal” applications. The controlled sharing of personal
data layer enables a user-controlled sharing of data in a person’s “digital footprint”; this
defines temporary or permanent relations between an individual and a third-party. The
personal data negotiation layer offers features to manage negotiation on personal data
disclosure: these enable individuals to negotiate the conditions on the disclosure of their
data to third parties, to get some economic or social advantages. Finally, the data aggre-
gation and analytics layer provides features to aggregate personal data. These functions
are in charge of analyzing and processing data provided by groups of individuals: (i)
identifying (homogeneous) groups of people; (ii) creating aggregations of data disclosed
by each of the group members; (iii) providing the aggregations to third-parties, and (iv)
improving the quality of datasets by reducing statistical noisy effects.

Another recent work is [295] where the authors present My Data Store, a Personal Data
Store tool allowing people to control and share their personal data. My Data Store enables
to control and share data organized as a set of web-based services. The main services
released are the following: collection: users can determine which data automatically collect
and store; sharing : users can choose whether to disclose or not their data and in which
detail, e.g. anonymously; deletion: users can delete single records or all data collected
in a specific region and time interval, and views with different levels of aggregation: (i)
individual increasing user’s consciousness; (ii) social using data shared by. In [294], My
Data Store has been integrated into a framework that permits the development of trusted
and transparent services and apps whose behavior can be controlled by the user, allowing
the growth of an eco-system of personal data-based services.

The proposal described in [1] is that each user can select which applications have to
be run on which data, facilitating in this way diversified services on a personal server. In
such a way, the personal server would contain all the user’s favorite applications and all
the user’s data that are currently distributed, fragmented, and isolated. In theory, the user
pays for the server, so the server does what the user wants it to do. The server resides in
the cloud so it can be reached from anywhere. The user chooses the application code to
deploy on the server and the server software is possibly open source. These guidelines are
the proposal to achieve the aforementioned high levels of transparency.

Another aspect of PDS considered in the literature is how the information and the
knowledge collected should be organized. Indeed, Personal Data Store systems require
powerful and versatile tools able to represent a highly heterogeneous mix of data such as
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relational data, transactional data, mobility data, file content, folder hierarchies, emails
and email attachments, data streams, log sessions, etc. [2]. The iDM data model for
personal information management presented in [95] is a data organization model able to
represent unstructured, semi-structured and structured data inside a single model.

Moreover, there are different works in the literature related to the condition of data
disclosure and sharing. In [266], the authors study the problem of budgeted recruitment
of participants in community sensing, which is a paradigm for creating efficient and cost-
effective sensing applications by using the data of large populations of sensors (e.g., earth-
quake detection from the accelerometer data collected by smartphones, or real-time traffic
maps from velocity data from GPS devices). The basic assumption is that each user estab-
lishes both a cost for sharing her data and specific privacy constraints. Authors propose
a greedy algorithm to select a set of participants from a large population, optimizing the
trade-off between total budget and benefits. The authors of [223] show that people’s will-
ingness to share information depends greatly on the type of information being shared,
with whom the information is shared, and how it is going to be used. In [57] is studied
how users value their Personally Identifiable Information (PII) while browsing. The ex-
periments demonstrate that users have different valuations, depending on the type and
information content of private data. Higher valuations are chosen for offline PII, such
as age and address, compared to browsing history. In [267], the authors develop online
incentive-compatible and budget feasible mechanisms for procurement, assuming minimal
information about the distribution of workers’ true costs but using a utility function where
each participant provides a unit value. The authors of [75] study a privacy game in mobile
commerce, where users choose the degree of granularity at which to report their location;
thus the service providers offer them monetary incentives under budget constraints. In
[313], authors discuss approaches to capitalize private data assets. They propose a model
of privacy data negotiation between buyers and sellers. This means that protection of
privacy data is necessary only if there is a group driven to buy the information.

The study of systems based on incentives allows us to encourage users to give access
to her own data, with the desired privacy level, to receive advantages if they disclose them
to a company or a public authority. The user benefits can be of various kinds: discounts
in supermarket in exchange for her purchase history, a free proactive car-pooling service if
she shares her GPS traces, or she could actively participate in the estimation of the social
well-being of the community by sharing information about her posts or social relationships.
In a PDS each user should have the ability to attribute the right value to her own data.

In this thesis we totally embrace this philosophy, and we collocate the users’ PDSs
into an ecosystem which allows users to gather data from different sources, to transform
the data, and to offer an interface through external services. However, it is worth to
notice that the majority of the works in the literature focus their attention on the PDS
architecture and on how to treat data sharing and privacy issues. On the other hand,
rather than in privacy issues, in this thesis, we are focusing on how to extract a Personal
Data Model (PDM) able to summarize and characterize the user behavior in the PDS in
order to obtain an added value from the personal data through the application of data
mining techniques. In our context we would like that a Personal Data Store could allow an
individual not only the storage and management of private data, but also the automatic
extraction of systematic behaviors and the providing of proactive suggestions on the basis
of the user’s profile. Moreover, we show how these model can be exploited by innovative
services developed for the users part of this ecosystem of shared data.
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Personal Data Analytics





Chapter 5

Personal Data Analytics

The challenges posed by the great amount of big data availability at personal level open
a novel and interesting scenario of Personal Data Analytics. Most of the state-of-the-art
analysis and methods are related to global studies of the whole system. The research of
personal patterns and individual systematic behaviors is still unexplored but it is surely a
promising direction. We present the personal data context in Section 5.1, then, in Section
5.2 we describe how personal data mining can be employed to extract personal data models
able to capture behavioral patterns and summarize human behavior for a Personal Data
Store (PDS). In Section 5.3 we illustrate the ecosystem where the users’ PDSs can act
generating a new level of collective awareness. Finally, in Section 5.4 we describe the
impact this change of perspective could have on our society.

5.1 We All Need To Own and Use Our Own Data

Every year, each person leaves behind her more than 5 gigabytes of digital breadcrumbs, dis-
seminated by disparate systems that we use for our daily activities, to travel, communicate,
pay for goods, bills and food, banking, sport, searching the web, listening music, reading,
playing, texting, writing, posting or tweeting, screening our health. Five gigabytes, without
taking into account photos and videos, otherwise numbers would grow considerably. An
avalanche of personal information that, in most cases, gets lost – like tears in the rain. Yet,
only each one of us, individually, has the power to connect all this personal information.
No Google or Facebook has a similar power today, and we should very carefully avoid this
possibility. The fact that in the contemporary initial phase of a measurable society there
are few large harvesters, or “latifundists”, who store data on masses of people in large in-
accessible repositories in an organization-centric model, does not mean that centralization
is the only possible model, nor the most efficient and sustainable.

Nowadays, data and information belong to big organizations which employ top-down
control over these data. For example, users produce personal data like Facebook posts,
or GPS movements using Google Maps, or online shopping through Amazon, and these
data are collected and obscurely employed by these companies for marketing or to produce
services. According to [158], this is a Legrand Star model, i.e., a centralized network model,
where users can not directly control and exploit their own personal data. Data owning and
usage would require not a bottom-up system, but a Baran Web model, i.e., a peer distributed
approach, a network of peers, both individual and companies, in which no single node has
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absolute control of everything but everyone controls thyself, and has only a partial vision
of the surrounding peers. The first brick that must be placed in order to build this Web
and to start a change of perspective, is the development of Personal Data Models which
are sewn on each individual user in order to fit their subjective behaviors.

Data Mining applied to personal data, i.e., Personal Data Mining creates an invaluable
opportunity for individuals to improve their self-awareness, and for enabling personalized
services. However, nowadays users have a limited capability to exploit their personal data.
This is why they require to own and use their data: they need to handle their own personal
data. As already mentioned, these needs are leading to a change of perspective towards a
user-centric model for personal data management. This vision is compatible with the data
protection reform of EU, and is promoted by the World Economic Forum [161, 239, 250].

5.2 Making Sense of Own Personal Big Data

The unstoppable rise of smartphones joint with their increasing ability to collect individual
information is creating a huge increment in the production of personal data. Personal
information like visited locations, web-searches, purchases, phone calls and even music
listening are collected and stored without any clear benefit for the user. Consequently, it is
being defined the need for personal models to manage and exploit these large amounts of
data. As detailed in Section 4, in the last years is taking place the idea of the Personal Data
Store (PDS): a personal, digital identity management service controlled by an individual
where each user can choose at which level she wants to share her own data [90].

Figure 5.1: A Personal Data Store to collect and make sense of own personal data.



5.2. MAKING SENSE OF OWN PERSONAL BIG DATA 57

Our idea, illustrated in Fig. 5.1, is to introduce in such a service a Personal Data
Model (PDM), i.e., a user profile that is automatically extracted trough Personal Data
Mining. Personal Data Mining refers to autofocus methods able to build subjective and
auto-adaptive PDMs. These methods are able to automatically detect and extract the
repetitive and valuable patterns delineating the user’s systematic behaviors. The PDM
can be exploited (i) to improve the user self-awareness thanks to the personal patterns
they unveil, and (ii) to empower personalized services by providing proactive predictions
and suggestions on the basis of the user’s profile. As highlighted by the dotted rectangle
in Fig. 5.1, with Personal Data Analytics we indicate the Personal Data Mining processes
extracting the user profile models, and providing self-awareness and personalized services.

More formally, we define an abstract data type to apply Personal Data Analytics as:

Definition 1 (Individual Data Event). Given a user u, an individual data event x repre-
sents any event or action performed by u with a specific data type.

Examples are a movement between two locations, a purchase of a set of items, or the
listening of a song. Therefore, x can be a simple value like the amount spent in a month,
or can be structured and formed by various components like a sequence of GPS points.
The collection of individual data events forms the Personal Data or individual history :

Definition 2 (Individual History). Given a user u, her individual history Hu = {x0, . . . ,
xn−1} is the set of the individual data event performed by u w.r.t. a certain data type.

Given the individual history of a user u we can extract her Personal Data Model :

Definition 3 (Personal Data Model). Given a user u and her individual data history
Hu, we define Pu = extract(Hu) as the personal data model extracted from Hu, where the
function extract(·) represents a personal data mining algorithm or data analysis process.

Then, the Personal Data Model Pu can be exploited to improve the user self-awareness
and for any kind of personalized service, e.g. predict(Pu, x), recommend(Pu, x), where x
is the current event on which the prediction or recommendation are based on.

In our vision, the Personal Data Store allows an individual not only the data storage
and management, but also Personal Data Analytics that enables the user to make sense
of her own personal data and to exploit it [137]. We report in Fig. 5.1 the overall Per-
sonal Data Analytics approach. The individual data flow into the Personal Data Store and
are collected and stored according to one of the possible technique described in the PDS
literature [90, 295]. From Personal Data we can easily extract simple personal statistics
like the average money spent per purchase, the distribution of the distance traveled, the
most listened musical genre, etc. They can be useful to give a rough description of the
user. However, they are generally not enough detailed to represent and summarize the user
behavior. Therefore, the Personal Data Models forming the user profile are extracted from
Personal Data through Personal Data Mining methods, e.g. clustering algorithms. The
results of these techniques are the patterns and indicators forming the user profile. Along
the analysis of the continuous digital breadcrumbs, the PDS must consider that it does not
exist a unique and constant model describing human behaviors. Indeed, our behaviors will
be never “in equilibrium” because we constantly move, we buy new things, we interact with
our friends, we listen to music, etc., generating in this way a non-interruptible flow of per-
sonal data [20]. Therefore, the PDM must be dynamic and adaptable to continuous changes
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and updates. The user profile described by the PDM can be used both to improve the user
self-awareness and for personalized services yet adopting Personal Data Mining methods.
Self-awareness can be realized for example through a personal dashboard where the user
can navigate and understand her models and patterns. On the other hand, examples of
personalized services can be recommendation systems or predictors of future actions.

5.3 The Personal Data Ecosystem

Such a PDS is not just a place where all our personal data can be stored, but through the
PDM extracted with Personal Data Mining techniques it offers us an augmented image of
ourselves, our image reflected in a digital mirror. This mechanism can help us in under-
standing our behavioral, social, mobile, shopping patterns or, at least, how these emerge
from the digital breadcrumbs we leave behind, and in providing us enhanced self-awareness.
However, passive personal data collection and knowledge mining need to be balanced with
participation, based on a much greater awareness of the value of own personal data for
each one of us and the communities that we inhabit, at all scales.

The Personal Data Analytics approach proposed, provide us the opportunity to com-
pare our individual patterns with the collective patterns of the communities we belong
to, provided we have a way to interact and collaborate with other peers, individuals and
institutions that are, in turn, equipped with their PDS’s and connected to each other in
the social network. In Fig. 5.1 top right is shown how, in order to provide and obtain
improved self-awareness and personalized services, a user can share information and, at
the same time, earn knowledge, by communicating with the collectivity.

This enables a Personal Data Ecosystem (PDE) illustrated in Fig. 5.2. A PDE is a
distributed network of peers, which can be both individual users, and public or private
institutions and companies, each one with their own type of PDS and PDM. The Data-
Service Provider in Fig. 5.2 can represent a public or private institution or company that,
through a distributed data platform, provides to the users a set of services and/or a safe
storage space for the data produced by the service usage and for running the PDS with all
the features of the Personal Data Analytics approach. Each peer is enabled to share (part
of) her knowledge contained in her individual profile Pu with her trusted neighbors, and
the benefits she obtains in return consists in a form of collective awareness:

Figure 5.2: A Personal Data Ecosystem as a decentralized peer-to-peer network.
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Definition 4 (Collective Data Model). Given a set of users U , if they allow sharing their
Personal Data Models Pu ∀u ∈ U , then we can define a collective data model PC =⋃
u∈U Pu obtained as combination of the Personal Data Models shared.

This combination can be a simple union or a more complex approach involving Personal
Data Mining aggregation techniques. Note that the collective data model PC can be calcu-
lated independently from the underlying architecture. An appropriate choice for a totally
distributed environment like the PDE would be a distributed protocol for communicating
among the peers where a user u can start the process, sending her information Pu to some
neighbors they trust, then combine Pu with their own PDMs according to the purpose of
the data sharing, and send the updated information back to u and to their trusted neigh-
bors, and so on and so forth. At a certain point, each peer would receive a collective data
model PC sufficiently enriched with the knowledge of the network to be exploited both
to compare her behavior with those of the collectivity, and to improve some personalized
services exploiting the “wisdom of the crowd”, e.g. predict(Pu, PC , x). How to determine
when exactly a service would have gathered sufficient information in order to exploit in a
reliable way the wisdom of the crowd remains an open question with respect to this thesis.
However, in the following we show the empirical evidence that the collaboration among
users and the sharing of knowledge can markedly improve the analyzed services.

Therefore, the PDE generates an innovative form of collective awareness, characterized
by a self-reinforcing loop where (i) superior individual knowledge is created by compari-
son with collective knowledge, enhancing individual ability to better align own goals with
common interest, and (ii) superior collective knowledge is created through the active partic-
ipation of individuals in a decentralized system, i.e., without centralization of unnecessarily
large amounts of personal information. As an example, imagine a PDE containing PDMs
for analyzing personal mobility data which contains the routine traveling patterns [137].
These, are a key element to show to the user her typical habits (self-awareness), and to
help her to understand how her mobility behavior is positioned in comparison with the
behavior of the mass, of the friends, of similar users and of users in the neighborhood, the
so called “Where I Am” service. Moreover, the routine traveling patterns could be used by
a proactive carpooling service to provide possible matching between drivers and passengers
(collective awareness). Decentralized services like these would empower the individual to
better understand her own role within the collectivity (society) by facilitating a better
alignment of self-interest, e.g. by minimizing the travel time, and to promote a collective
interest for social good, like minimizing the overall traffic congestion and pollution.

Once again, the proposed approach is in line with the peer progressive idea detailed in
[158]: a decentralized network where news, ideas, money, and knowledge come from the
periphery instead of from the center. In [143], Helbing compares the concept of “wise king”
(centralized system) against the Adam Smith’s “invisible hand” regulating a decentralized
self-organizing system. Also in this work is shown how, thanks to the continuous flow of
data and information, nowadays the self-organizing system can beat the centralized one.
Furthermore, the PDE idea outlines the project described in [119] where is advocated
the vision of Nervousnet : a globally distributed, self-organizing, techno-social system for
answering analytical questions about the status of world-wide society, based on social
sensing, social mining and the idea of trust networks and privacy-aware social mining.
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Therefore, the user-centric data management alone is necessary but not sufficient to
realize the Personal Data Analytics approach: data analytics both at individual and collec-
tive level is the key to success. If we help people to understand the importance of personal
data in our daily lives to simplify, be more efficient and diversify, then we may boost the
emergence of a totally different ecosystem, compared with the current mainstream, where
information can flow without the need to concentrate data in large centralized repositories.
An ecosystem where each one of us, rather than giving up own data by agreeing to some
obscure disclaimer, decides whether to answer or not to questions asked by other people
or entities, based on one’s own interest in participating and on the trust we have on the
interlocutors. An ecosystem that, seen from the outside, looks like a large database we
can ask queries to, but in reality is a peer-to-peer network of people with their PDSs,
as depicted in Fig. 5.2, who can choose to cooperate to reply to queries. Scientists like
Philippe Pucheral of INRIA, Alex Pentland of MIT and Dirk Helbing of ETH Zurich are
developing early ideas of architectures concentrating on the “collecting” part of the personal
data (Data Collection and Personal Data in Figure 5.1).

In this thesis we develop the Personal Data Analytics needed for the PDE (dotted
rectangle in Fig. 5.1), a problem hardly tackled so far, which is crucial to boost users’ self-
and collective awareness, together with the capability to obtain higher-quality services.

In the user-centric vision, the user acquires an active role and full control on the life-
cycle of own personal data. This includes enabling individuals to control their data and
the knowledge that can be extracted from it, and granting them the right to dispose or
distribute data, with the desired privacy level, to get the desired services. This sheds a new
light on data protection: most of the existing solutions consider an architecture where cen-
tral sites make the data private before releasing them. In the new model, the privacy-based
transformations must be performed before data leave the user. This should encourage the
voluntary participation of users, reducing the skepticism that often leads people to not
access the benefits of their own data. In this thesis we assume Privacy-by-Design method-
ologies [58] can be applied to prevent privacy attacks and maintain data anonymity in the
PDE. They are proactive approaches where privacy is taken into account throughout the
data mining process. However, we leave as future works a deep investigation of techniques
to perform data and models sharing respecting personal privacy constraints.

What is a possible way to develop the PDE?Which can be a transparent technology able
to regulate the exchange of data and patterns in a safe and ethical context? [264] provides
a framework describing blockchain as a “fifth horizon of networked innovation”. Blockchain
is a peer-to-peer network that broadcasts data to all nodes on the network. It represents
a technology innovation that enables transparent interactions of parties on a more trusted
and secure network which distributes access to data. Although the technical components
have been in existence for decades, blockchain is a novel, resilient, and ubiquitous approach
to data, transaction analytics, and networks. It holds the potential to address inefficiencies,
reduce cost, unlock capital, improve trust in societal fabric, and open new business models.
Blockchain has generated extensive interest and enthusiasm in financial markets because
trust and confidence in the promise to meet the obligations are the cornerstones of any
financial transaction. Blockchain is the technology behind Bitcoin. Bitcoin [217] is a
decentralized electronic fiat currency implemented using cryptography and peer-to-peer
technology, i.e., Blockchain [174]. To prevent double spending, Bitcoin players engage in a
peer-to-peer protocol that implements a distributed timestamp service providing a fully-
serialized log of every Bitcoin transaction ever made. Transactions, i.e., data exchanges,
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are organized in the log into blocks, which contain a sequence number, a timestamp, the
cryptographic hash of the previous block, some metadata, a nonce, and a set of valid Bitcoin
transactions. The blocks form a hash chain: each new block contains the cryptographic
hash of its predecessor, allowing anyone to verify that no preceding block has been modified.
The block chain contains backward links but not forward links (a block cannot link forward
to a future block that has not yet been created) so there is a unique path backward from
each block to the beginning of the log (the genesis block) but the forward path from a
block might not be unique. Thus the log has the form of a tree whose branches fork as it
grows. Therefore, Blockchain’s highly resilient architecture and distributed nature make it
an interesting platform to deliver in the society of the PDE. We reported this technology
because we believe that can be a turning point in the real development of a PDE. However,
as for privacy issues, we leave this aspect for future work, while in this thesis we focus on
Personal Data Analytics algorithms, models, and services.

In summary, the objective of this thesis is the design of Personal Data Mining meth-
ods and models to augment a PDS with personal patterns, as well as the definition of
services which exploit both the individual knowledge, and a collective knowledge emerging
from the cooperation of the users in the PDE. In the following, we show how we apply
Personal Data Analytics through the definition of algorithms, models, and services.

5.4 Potentialities and Socio-Economic Impact

Sir Tim Berners-Lee, in his keynote in Rome on 13 January 2016, set the goal to: “make
people owners of their own data and free to decide if, when and how to share them”. This
reasoning is at the basis of our thesis, which adds to this goal: “make people aware of the
value of their own data for themselves and for the communities they belong to”.

The PDE proposed has the potential to support the development of a new generation
of user-centric, data-driven services that empower people in their interaction with service
providers at all scales. The adoption of a PDE technology would rebalance today’s infor-
mation asymmetry between users and service providers, providing consumers/citizens with
stronger power when negotiating with businesses/institutions. It would also support the
development of so-called “sharing economy”, “peer networks” and “liquid democracy” in all
sectors, because a clearer perception of own behavioral profiles would put users in a better
position to find peers with similar needs and interests, that may want to share and col-
laborate on common goals. Examples range from sharing commuting rides, to supporting
policy options, to funding projects, to negotiating collective deals with businesses.

Personal Data Analytics in PDE has the potential to become an enabler for the so-called
“Collective Awareness Platforms for Sustainability and Social Innovation” (CAPS), at the
center of an initiative of the EU within the H2020 program, aimed at offering collaborative
solutions to complex social sustainability problems based on networks of people and ideas.
CAPS are expected to support self-organizing processes to share knowledge, to promote
changes in lifestyle patterns, and to facilitate participatory processes. In the vision of the
European Commission, as well as an increasing number of scientists in various disciplines,
CAPS platforms may have concrete impacts in emerging socio-economic domain.
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The ultimate goal is to foster a reinforcement spiral between collective awareness of
communities at various scales, from local to global, and individual self-awareness of citizens
obtained through enhanced management and understanding of own personal information;
such spiral is expected to generate higher levels of both collective and self-awareness,
providing a favorable techno-social ecosystem for social innovation and self-organization.

From a scientific/technological perspective, our approach combining Personal Data
Mining within a decentralized peer-to-peer trust-based network has the potential to foster
a new generation of techno-social models for distributed data management, analysis, and
data-driven computing. In particular, it has the potential of inspiring a new generation of
analytical methods capable of producing statistical outputs of high quality while respecting
peers’ privacy and trust choices and minimizing the flow of personal information.

Finally, the successful deployment of a PDE technology across the population would
enormously facilitate programs like United Nations’ Global Pulse or similar innovation
initiatives targeted on harnessing big data safely and responsibly as a public good for
monitoring the health status of our society, for sustainable development and humanitarian
action. A running PDE would enhance the participation of people in producing information
by (automatically) responding through their PDS to continuous surveys by trusted institu-
tions, possibly with secure, anonymity-preserving interaction protocols (e.g. Blockchain).
Also, the PDE technology would enhance the possibility for citizens to become direct users
of the produced statistics and socio-economic-health indicators, using the visualization
tools offered by the PDE for comparing individual and collective statistics.
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Proxies of Human Behavior

The term “Big Data" generally refers to any collection of data so large and complex that
it becomes difficult to process using traditional data tools. We are under the Big Data
microscope: as biologists observe micro-organisms under their microscopes, we can observe
our personal actions under the powerful lenses of Big Data. We are in the Big Data era and
almost everything we do nowadays requires the use of some digital device: from communica-
tions to travels, every human action is digitalized in some form. This digitalization permits
to minutely describe each individual through the personal patterns forming her PDM.

As proxies of human life, in this thesis we focus on four types of data which are generated
by the digitalization of some events or actions.

• Mobility data: car movements are stored in form of GPS points and trajectories.

• Retail Market data: retail purchases are stored in form of shopping sessions.

• Complex Network data: social opinions and status are stored in form of tweets.

• Music listening data: web listening sessions are stored in form of music listenings.

Table 6.1 summarizes the characteristics of the datasets used for the analysis described in
this thesis. In the following, we provide some details for each dataset.

6.1 Human Mobility Data

The Global Positioning System (GPS) is a satellite navigation system that utilizes more
than two dozen satellites. It broadcasts precise timing signals by radio to GPS receivers,
allowing them to accurately determine their spatio-temporal location (longitude, latitude,
timestamp). A GPS receiver calculates its position by precisely timing the signals sent by

Dataset Type Users Events Period Area
Octo GPS traces 150,000 9.8 M 1 month Central Italy
Coop transactions 1,600,000 300.0 M 7 years Central Italy
Twitter tweets & friendship 130,000 3.8 M 3 months Rome & San Francisco
LastFM listenings 30,000 6.0 M 1 year UK

Table 6.1: Information about the datasets used in the thesis.
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Figure 6.1: (Left) Octo dataset: GPS trajectories passed through central Italy in May 2011.
(Right) Coop dataset: geographical distribution of shops (blue) and customers (yellow).

GPS satellites high above the Earth. Each satellite continually transmits messages which
specify the precise positioning information, and the time the massage was transmitted.
The receiver computes the distance to each satellite by determining the transit time of
each message it receives. These distances along with the satellites’ locations are used to
compute the position of the receiver, in form of latitude, longitude and other information
like elevation, direction, and speed. GPS-enabled devices provide us with all the required
information for trajectory tracking, giving access to accurate, time-stamped locations of
each tracked moving point. Nowadays GPS receivers are embedded in many devices we
use every day like smartphones and vehicles, allowing to easily track human mobility.

In this thesis we use a massive real-life GPS dataset, the Octo dataset, obtained from
tens of thousands private vehicles with on-board GPS receivers. The owners of these cars
are subscribers of a car insurance contract, under which the tracked trajectories of each
vehicle are periodically sent to a central server for antifraud and anti-theft purposes. This
dataset has been donated for research purposes by Octo Telematics Italia S.r.l1. The
market penetration of this service is variable on the territory, but in general covers around
3% of the total registered vehicles. The Octo dataset stores information of approximately
9.8 Million different car travels from 150,000 cars tracked during May 2011 in a geographical
area corresponding to Tuscany, central Italy (see Figure 6.1 (left)).

The GPS device automatically turns on when the car starts, and the sequence of GPS
points that the device transmits every 30 seconds to the server forms the historical move-
ment of a vehicle. When the vehicle stops no points are logged nor sent. By employing
an advanced version of [201], we exploit these stops to split the historical movement into
several sub-movements named trajectories, that correspond to the travels performed by the
vehicles. Clearly, the vehicle may have stops of different duration, corresponding to differ-
ent activities. To ignore small stops like gas stations, traffic lights, bring and get activities
and so on, we choose a stop duration threshold of 20 minutes: if the time interval between
two consecutive GPS points is longer than 20 minutes, the first observation is considered

1http://www.octotelematics.it/
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as the end of a trip and the second observation is considered as the start of another trip.
We also perform the extraction of the trips by using different stop duration thresholds
{5, 10, 15, 20, 30, 40} minutes, without finding significant differences in the sample of short
trips and in the statistical analysis we present in the current thesis.

6.2 Retail Market Data

With respect to retail market data, i.e., transactional data, the dataset we employ is the
Coop dataset. UniCoop Tirreno2 is one of the largest Italian retail distribution company.
The market chain serves several million customers covering an extensive part of the Italian
territory. The 138 stores of the company sell about 347,000 different items. In particular,
the stores of the company mainly cover the west coast of central Italy (see Fig. 6.1 (right)).
The shop distribution is not homogeneous: shops are located in a few Italian regions and
therefore, the coverage of these regions is much more significant while customers from other
regions usually shop only during vacation periods in these regions. The chain operates
three different tiers of shops according to their size: Iper shops are the largest, the Italian
equivalent of a US mall; Super are the middle level, a large supermarket; and Small is the
smallest shop type, whose size is comparable to a dollar store. The dataset contains retail
market data in a time window spanning from January 1st, 2007 to June, 30th 2014. The
active and recognizable customers in that interval are about 1,600,000. A customer is active
if she has purchased something during the data time window, while she is recognizable if
the purchase has been made using a membership card. Through the card, customers can
get a discount. The company is able to tie each shopping session to the card. In particular,
for each shopping session, or basket, the company knows:

• which customer made the purchase;

• all single items composing the basket;

• the time and the day of the shopping session;

• in which shop the transaction happened.

6.3 Social-Network Data

Twitter is an online social networking service that enables users to send and read short
140-character messages called tweets3. Registered users can read and post tweets, but those
who are unregistered can only read them. Users may subscribe to other users’ tweet: this
is known as “following" and subscribers are known as “followers". Thus, Twitter generates
a social network of relationships among users sharing comments and opinions. Moreover,
besides the content of each tweet, some other meta-data are available like the tiemstamp of
when the tweet was published and a geo-tag indicating the latitude and longitude with GPS
coordinates. This information is fundamental to analyze areas and periods of interest.

2https://www.unicooptirreno.it/
3https://twitter.com/
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(a) Rome Area (b) San Francisco Bay Area

Figure 6.2: Twitter data: geographical areas analyzed. GPS coordinates bounding box: Rome
(12.234498, 41.655642, 12.85576, 42.141028), San Francisco (-122.667, 36.8378, -121.2949, 38.0771)

We used the Twitter’s Streaming API4 to obtain the Twitter dataset which consists in
two large datasets of geotagged tweets. We queried the API using two bounding boxes on
the area of Rome (Fig. 6.2(a)), and the bay of San Francisco, hereafter referred to as San
Francisco (Fig. 6.2(b)), for 50 days from the beginning of October 2014. As a result, we
collected about 558,000 geo-tagged tweets from 17,600 different users in Rome, and about
3,286,000 geo-tagged tweets from 113,000 different users in San Francisco.

6.4 Music Listening Data

Last.Fm is an online social network platform5, where people can share their own music
tastes and discover new artists and genres basing on what they, or their friends, like. Each
user produces data about her own listening. Each listening is characterized by the song,
artist, album, genre and the timestamp in which the listening took place. For each song,
a user can express her preference and attach tags to each song, describing the subjective
genre of the musical piece. As in other online social networks like Facebook, in Last.FM
users can add friends search for “neighbors”, i.e., other users with similar musical tastes.
Then a user can see, in her homepage, her friends’ activities.

Using Last.Fm APIs6, we extracted the LastFM dataset made of 30,000 users resident
in the UK. We started from an initial seed and we explored the Last.FM network with a
breadth-first approach, up until the fifth degree of separation from the initial seed of users.
Through this procedure, for each user we retrieved (i) friendships connections, and (ii) the
information characterizing the last 200 listenings. In particular, a listening event contains:
the timestamp indicating when the listening occurred, the title of the song, the artist who
sings the song, the album the song belongs to, and the genre associated with the artist.

4https://dev.twitter.com/docs/streaming-apis
5http://www.last.fm/
6http://www.last.fm/api/, retrieval date 2016-04-04
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Chapter 7

Autofocus Algorithms
for Personal Data Mining

The building blocks necessary to obtain a sound and stable user profile are algorithms able
to extract and summarize the user’s behaviors. Autofocus and efficient clustering algo-
rithms are the best methods to capture the Personal Data Model describing the systematic
patterns for a given user, that is the extract function of Personal Data Analytics.

As highlighted in Section 2.3, the vast majority of clustering algorithms present in
the literature suffer from various drawbacks when repeatedly applied to different personal
datasets: either they require a parameter tuning process that is not automatic, or they
require an extremely heavy automated process that not scale to large user databases.
As a consequence, the repeated application for each users’ dataset of any of the existing
procedures for the purpose of finding personal clusters is not feasible in presence of a large
population of users like those part of the PDE. Also, a fixed parameter setting for all
users could lead to misleading patterns since each individual might show specific features
that require a treatment different from the others. Moreover, generic clustering algorithms
are often focused on specific optimization criteria, that is not always the best choice and
therefore the resulting clusters are not a good summary of user’s behaviors even though
they are optimal with respect to the optimization criteria. In addition, in most cases, the
resulting clusters are affected by some assumptions the algorithm makes about the data.

According to the Personal Data Analytics approach, in this thesis we propose two aut-
ofocus and efficient clustering algorithms for mobility data and transactional data respec-
tively. They overcome the issues and weaknesses faced by the existing clustering algorithms
since they are specifically designed for personal data mining and for the extraction of users’
profiles and individual patterns aimed at forming Personal Data Models.

7.1 Clustering Algorithm for Personal Location Detection

One of the key tasks in mobility data analysis for many applications related to GPS mobility
data is users’ locations detection. Its objective is to identify the users’ personal locations,
i.e., the areas where each user performs her activities, based on the analysis of the locations
(essentially, GPS points) where she stopped, here called stop observations. Examples of
locations are home, the workplace, a supermarket, a gym, a fuel-station, etc. Correctly
discovering such personal locations is therefore a very important problem.
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In literature this problem is typically addressed using generic clustering algorithms
(see Section 2.3.1) which are able to group the user’s stop observations by means of some
distance function, thus yielding clusters that will be interpreted as user’s locations. Such
algorithms suffer from various drawbacks. First, some of them are focused on specific
optimization criteria, such as compactness maximization or density connectivity, that not
always correspond perfectly to the notion of locations, and therefore the results, though
optimal w.r.t. its own criteria, are not good locations. Second, in some cases the algorithms
need parameters that are not easy to guess. Indeed, an experienced analyst or some expen-
sive self-tuning procedure might be needed to select accurately the parameters. Also, in
most cases such parameters are fixed for all users, while each individual might show specific
features that require a treatment different from the others. Finally, some algorithms do
not scale well enough to be used on very large datasets. This is especially true for solutions
that include a parameter tuning phase requiring multiple runs of the basic algorithm. To
overcome these drawbacks we designed TOSCA [136], a TwO-Steps Clustering Algorithm
explicitly shaped for user’s locations detection. TOSCA is a robust, efficient, statistically
well-founded and parameter-free personal location detection process. The two steps are
realized with the combination of clustering methods and statistical analysis that enable
TOSCA to produce high quality clusters with a low computational cost.

7.1.1 Problem Definition

In this section we formally define the Locations Detection Problem (LDP). The data event
treated in the LDP are the users’ GPS stop observations:
Definition 5 (User’s Stop Observations). Given a user u, the set of her stop observations
is defined as S = {s1, s2, . . . sn}, where each si = (xi, yi) represents GPS coordinates
expressed as longitude and latitude.

The locations associated with a set of stop observations basically group the latter into
partitions that define the places (or areas) they cover. E.g. a location can be home and
the observations belonging to it are all the parking lots used by the user in the nearby.
Definition 6 (Location set). Given a set of observations S, a location set L for S is a
partitioning of S into disjoint sets: ∀l ∈ L : l ⊂ S,

⋃
l∈L l=S and l, l′ ∈ L∧ l 6=l′ ⇒ l∩ l′=∅.

The locations can be either provided as input, to be considered as ground truth, or
they can be inferred (detected) directly from the stop observations through algorithms:
Definition 7 (Real and Detected Locations). Given a set of observations S we denote the
real locations associated to S as LS = {L1, L2, . . . Lk}, and the locations inferred (detected)
from S through any algorithm with DS = {D1, D2, . . . Dk}.

The Locations Detection Problem, then, is simply defined as the task of inferring loca-
tions as close as possible to the real ones, across all the users:
Definition 8 (Locations Detection Problem). Given a set of users U and their obser-
vations SU={Su}u∈U , the Locations Detection Problem (LDP) consists in producing for
each Su∈SU a partition DS that is similar to the corresponding real partition LS.

We consider the most common case, where no real locations are known a priori, and
therefore the locations detection problem requires to perform an unsupervised learning.
In particular, it can be seen as a partitive clustering task, and is generally solved in
literature through the adoption of a clustering algorithm. The result is a set of clusters of
observations, which correspond to the detected locations, i.e., DS .
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Figure 7.1: Example of personal location detection problem over four real locations (a). Density-
based clustering (b) and center-based clustering (c) are compared with the ground truth (d).

7.1.2 Method

The algorithm we propose is called TOSCA, a two step clustering algorithm for location
detection. The idea behind TOSCA comes from the need to detect the locations of the
users in the PDE (independently from each other) in an efficient way without sacrificing
the clustering quality and, most important, without any tuning phase for the parameters.

Motivations

Figure 7.1 (a) depicts the fictitious example of a user with four real locations (symbols rep-
resent the kind of activity performed there), and her several stop observations distributed
around them. The desired partitioning of observations is shown in Figure 7.1 (d). Simply
applying one of the basic clustering-based solutions present in the state-of-art can correctly
find some locations, yet making mistakes on others. For instance, single linkage hierar-
chical clustering or density-based methods like DBSCAN [102] (Figure 7.1 (b)) might be
able (through an appropriate parameter setting) to group correctly all observations relative
to the work location, despite the fact that some observations are slightly peripheral; yet
the leisure and shopping locations (right-hand of the figure) will probably put together,
since there is no clear separation between the two groups of observations, and therefore
they would be density-connected and put together. Similarly, a center-based clustering
approach like X-Means [232] (Figure 7.1 (c)) might be able to isolate the leisure location,
yet it might easily break down other locations into several small groups of observations,
due to their not perfectly globular shape and not uniform density. TOSCA combines two
algorithms from the two families of methods, each one compensating the shortcomings of
the other one, as described in the following.

Rationale and General Schema of TOSCA

Through a large experimentation emerged that center-based clustering methods tend to
correctly identify subgroups of observations that should belong to the same location. That
is obtained by enforcing a strong compactness of the clusters. The side effect of such
constraints is that the result usually splits real locations into several pieces that are con-
nected with each other in a relatively loose way. On the other hand, single-linkage and
density-based clustering methods are very good in spotting such loose connections, with the
drawback of not distinguishing well those loose connections that are actually boundaries
with other clusters, as in the case of the leisure vs. shopping locations in Figure 7.2. Our
empirical study, yet, revealed that such boundaries become much sharper if we compare
the (usually relatively small) clusters identified by center-based methods. In particular,
the medoids of neighboring sub-groups that should belong to the same location tend to
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Algorithm 1: TOSCA(S, cut-criteria)
Input : S - set of stop observations
Output: DS - set of clusters

1 D∗S ← x-means(S);

 First Step
2 M ← get-medoids(D∗S);
3 D← single-linkage(M);
4 dist← select-cut(D, cut-critera);
5 DM ← cut-dendogram(D, dist);

 Second Step
6 DS ← aggregate-clusters(D∗S ,DM );
7 return DS ;

Algorithm 2: select-cut(D, cut-critera)
Input : D - aggregation dendogram
Output: d - cut distance

1 diffs ← [d1 − d0, . . . , d|D|−1 − d|D|−2];
2 for i ∈ [1, |D| − 1] do
3 if i > ρ then cut← cut-critera(diffs[1..i− 1], diffs[i]);
4 else cut← (di > 2 ∗ di−1);
5 if cut then return di−1;
6 end
7 return 0;

be closer to each other than to those belonging to different clusters. That suggests us to
start from the small clusters obtained by center-based methods and try aggregating them
based on their medoids. This second step can be done through an iterative procedure like
single linkage hierarchical clustering, stopping the aggregation when the effort of merging
two clusters results to be much larger than the previous merges. Detecting the precise
moment such effort becomes critical – i.e., determining the cut threshold – is a non-trivial
issue, since it is generally impossible to fix a priori thresholds. The idea of TOSCA, then,
is to interpret this as an outlier detection problem: the cut should be performed when the
increasing of the distance between two consecutive merges grows abnormally with respect
to previous iterations. For this task, then, we adopt a few statistical tests for anomaly
detection. To summarize, the TOSCA approach is the combination of two steps:

1. extract (sub)clusters and corresponding medoids through center-based methods. In
particular, the X-Means algorithm was selected through empirical evaluations;

2. cluster the medoids through a Single Linkage hierarchical algorithm. Stop the it-
erative clusters aggregation (or, equivalently, cut the dendogram resulting from a
complete run of the algorithm) through a statistically-determined threshold on the
increase of the distance between the clusters to be merged at each iteration.

TOSCA Algorithm

Algorithm 1 summarizes the process performed by TOSCA to detect the locations of a
given set of points, highlighting the two logical steps involved. The input is the set of
stop observations S of a user u and a cut-criteria. From the PDS point of view, the stop
observations S are raw data contained in the user individual history Hu.
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Figure 7.2: Orange points are the stop observations. Blue dotted circles correspond to X-Means
clusters and the blue points to their medoids, which are then processed by Single Linkage. On the
resulting dendogram we highlight the differences among distances. The red line is a possible cut.

Step One. Lines 1–2 perform the first clustering with X-Means on S, and the cor-
responding medoids M are extracted. X-Means [232] is a fast and statistically founded
refined version of K-Means. Given an interval [kmin,kmax] it finds the set of clusters ex-
ploiting the Bayesian Information Criterion (BIC). In the general case, the parameters can
be simply set to kmin=2 and kmax=|P |-1, while smaller intervals can be used if knowledge
about k is available, to reduce the search space and speed-up the computation. X-Means
clusters and medoids are represented by the blue objects in Figure 7.2 (left).

Step Two. Lines 3–6 of Alg. 1 realizes the Single Linkage clustering on the set M of
medoids. Single Linkage [265] is a standard agglomerative hierarchical clustering method
that builds a hierarchy of clusters by progressively joining the two closest elements at each
step. The distance between clusters is computed as the minimum distance between all
pairs of elements taken from the two clusters compared, giving preference to those pairs
that have close borders. The resulting hierarchy is called dendrogram, and it shows the
sequence of cluster fusions and the distance at which each fusion took place (see Fig. 7.2
(left) for an example where the distance is represented by the height of the fusion point).
The final clustering is generated by cutting the dendogram D at distance (height) dist
according to the cut-criteria. The dendogram can be mathematically represented by a
list D=[d0, d1 . . . d|M |−1] of the distances computed by Single Linkage to aggregate the
clusters, i.e., di is the distance at which two clusters are aggregated at iteration i. Note
that, due to the functioning of Single Linkage, the di’s grow monotonically, i.e., di−1≤di for
all i=1 . . . |M | − 1. The cut-criteria selects the distance dist used to cut the dendogram.
The clusters produced by Single Linkage are made by the set of medoids belonging to the
same tree of the cut dendogram. The cutting algorithm, according to the cut-criteria,
decides which set of medoids must belong to the same group. Finally, in line 6 the clusters
generated by X-Means are aggregated according to the clusters produced by Single Linkage.
Fig. 7.2 (right) shows an example where the dendogram is cut and all the observations
associated to medoids in the same cluster are grouped together (red circles).

Cut Criteria. Alg. 2 shows how the value for cutting the dendogram D is selected.
This procedure analyzes the differences between the distances at which two clusters are
aggregated by Single Linkage at each iteration (line 1). The example in Fig. 7.2 (left)
shows them visually on the dendogram as vertical intervals (here, dif0 − 1 stands for
d1 − d0). Then, the first difference that is significantly dissimilar from those observed
so far is selected and the corresponding distance is returned. The procedure takes the
dendogram D and the cut-criteria, and returns the value to cut the dendogram. Lines 3–6
sequentially scan the list of distance differences previously computed, and two different
tests are performed, depending on whether or not the values seen so far are large enough
to apply statistical tests (line 3). ρ indicates the minimum number of observations to do it,
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and in our experiments we fixed ρ=3 (thus not requiring any further parameter selection)
following the indications in [25]. If enough values are available, then the statistical test is
run to decide whether to cut the dendogram (Boolean variable cut). Otherwise, a simple
test is performed, which checks whether the current distance is more than twice the last
one. If the test gives a positive result, the distance di−1 is returned, to be used as cutting
threshold. If no difference passes the test, then no cut is possible, and zero is returned, i.e.
the dendogram is cut at level zero and no aggregation is needed (DP=D∗P ).

From empirical studies on real GPS data, we observed that the dendograms produced
by Single Linkage always have significant high peaks representing possible turning values
for the cut and the statistical criteria select the best one. As preliminary experimentation,
we explored also the option of looking for the cut distance applying the statistical crite-
ria directly on the distances between the medoids D (di) instead of on their differences
(di−di−1). However, in this way the right value for the cut is not well identified, usually
leading to large locations erroneously aggregated. This happens because the distribution
of distances is smooth and it is difficult for the cut-criteria to identify a peak.

The cut-criteria considered in TOSCA come from the outlier detection theory. The idea
behind this choice is the fact that in our empirical experiments we discovered a common
distribution of the value of diffs showing a sudden spike indicating the change of trend in
the aggregations of the clusters. In particular, we adopted the following criteria [25]:
• Thompson Tau Test takes into account the mean µ and standard deviation σ of a

distribution, and provides a statistically determined rejection region τ determined as

τ = tα/2(n− 1)/
√
n
√
n− 2 + t2α/2

where n is the number of values in the distribution, and tα/2 is the critical Student’s t
value based on α = 0.05. Given x, if |(x− µ)/σ| > τ then x is an outlier.
• Interquartile Range defines an interval out of which a value is considered an outlier.

IR = [Q1 − k(Q3 −Q1), Q3 + k(Q3 −Q1)]

where Q1, Q2 and Q3 are, respectively, the 25th, 50th and 75th percentile of the values
distribution, and k is fixed to k = 1.5. Given x, if x 6∈ IR then x is an outlier.
• Chauvenet’s Criterion is based on how many times t the given value x differs from

the mean µ in terms of standard deviations σ. It uses the normal distribution to determine
the probability p that a value will be at the value of x: p is the probability of having a value
at distance t · σ from µ. Then p is multiplied by n (number of values in the distribution),
and if p · n < 0.5 then x is an outlier.

TOSCA can remind the BIRCH algorithm [322]. They both first seeks to do a fine-
grained clustering of points and then a second clustering step is performed. Despite similar
hierarchical approaches, they differ from the second step. TOSCA re-cluster the medoids
of the fine-grained clusters into coarse-grained clusters, while, on the other hand, BIRCH
incrementally and dynamically clusters incoming points by attempting to further refine
the fine-grained clusters by clustering the points inside these clusters.

Complexity
The complexity of TOSCA is dominated by the complexity of X-Means, i.e., O(|S| log(|M |))
[155]. Indeed, single-linkage complexity is O(|M |3) which becomes O(|M |2) if, as in our
case, Sibson’s version is used [265], with |M | � |S|. Finally, get-medoids is linear in |DS |,
select-cut is linear in |D|, and cut-dendogram and aggregate-clusters are linear in |M |.
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Name Measure
δk k − k∗ ∈ (−∞,+∞)

ari ri−E[ri]
max(ri)−E[ri] ∈ [−1, 1]

ami mi−E[mi]
max(H(LP ),H(DP ))−E[mi] ∈ [0, 1]

v −measure 2hc
h+c ∈ [0, 1] h = 1-H(LP ,DP )

H(LP ) c = 1-H(DP ,LP )
H(DP )

f −measure 2pr
p+r ∈ [0, 1] p = TP

TP+FP r = TP
TP+FN

acc TP+TN
TP+TN+FP+FN ∈ [0, 1]

silhouette b−a
max(a,b) ∈ [−1, 1]

sse
∑|P |
i

∑|DP |
j dist(pi, dj) ∈ [0,∞)

Table 7.1: Evaluation measures: top group external, bottom group internal.

7.1.3 Experiments

In this section we provide a broad experimental comparison of TOSCA algorithm against
a wide selection of competitors. The comparison will be performed on synthetic datasets
generated through two different generative models, and the evaluation will be based on
several standard quality measures. Finally, a case study on real GPS data is presented,
with a summary of qualitative and quantitative results.

Evaluation Measures

Clustering evaluation measures evaluate how well a given clustering defines separations of
the data similar to some ground truth set of clusters (external measures), or how much it
meets some specific assumption such that members of the same cluster are more similar
than members belonging to different ones (internal measures). All the measures we adopted
– listed below and formally defined in Tab. 7.1 – quantify the quality of the clustering, i.e.,
the larger the value obtained, the better, with the exception of the first (Delta K) and the
last one (Sum of Squared Error).

In the following definitions, S is a set of stop observations and DS is the set of locations
discovered by an algorithm. External measures assume to know the set LS of real locations.

• Delta K ( δk) is the deviation between the real number of locations k=|LS | and the
number of detected locations k∗=|DS |, the closer is to zero, the better the clustering.

• Adjusted Rand Index (ari) [245] measures the similarity of LS andDS ignoring permu-
tations and normalization. The unadjusted Rand index ri is the percentage of pairs
of elements (a, b) ∈ S2 for which LS and DS agree, i.e. such that a and b belong to
the same location in LS iff they belong to the same location in DS . The adjusted
Rand index is computed as the normalized deviation of ri from its expected value.

• Adjusted Mutual Information (ami) [296] measures the agreement of LS and DS ,
ignoring permutations. The unadjusted mutual information is defined as mi=

∑|LS |
i∑|DS |

j p(Li, Dj) log(
p(Li,Dj)
p(Li)p(Dj)), with p(X)=|X|/|S| and p(Li, Dj)=|Li∩|Dj |/|S|. Such

value is then normalized where H(SS)=
∑|SS |

i p(Si) log(p(Si)).

• V-Measure (v-measure) [251] is the harmonic mean of homogeneity h and complete-
ness c, as defined in the table. Here, H(SS ,QS) = −

∑|SS |
i

∑|QS |
j p(Si, Qj) log(

p(Si, Qj)), while H(SS) and the probabilities p are defined as for ami.
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The following measures are based on precision and recall, which are computed as combi-
nations of True Positive (TP), True Negative (TN ), False Positive (FP) and False Negative
(FN ) rates. They are defined as TP = |SD ∩ SL|, TN = |SD ∩ SL|, FP = |SD ∩ SL| and
FN = |SD ∩ SL|, where SD represents the set of pairs that belong to the same group with
respect to DS , and similarly for SL, while X = S \X.

• F-Measure (f-measure) [240] is the harmonic mean of precision p and recall r.

• Accuracy (acc) [240] is the proportion of true results (i.e. true positives and true
negatives together) over the total number of cases examined.

If the ground truth LS is not known, the evaluation must be performed using only DS .

• Silhouette Coefficient (silhouette) [275] is defined for each point in DS and is com-
posed of: a the mean distance between a point and all the other points in the same
cluster, and b the mean distance between a point and all the other points in the next
nearest cluster. The silhouette for DS is defined as the mean of the silhouette for each
observation. A weakness of silhouette is that it is generally higher for density-based
clusters (e.g. obtained with DBSCAN, OPTICS) than other concepts of clusters.

• Sum of Squared Error (sse) [275]. Let {cj}j=1...|DS | be the centroids of the sets Dj ,
sse evaluates the partitioning of DS . The closer it is to 0.0 the better are the clusters.
A drawback of sse is that it always gets close to zero when the number of clusters
becomes very high (equal to 0.0 if all clusters contain only one observation), yet it
does not mean that DS is a good clustering.

Synthetic Data Generators

Since we have not a ground truth available for real data, in order to apply external evalua-
tion measures we implemented two generative random models to synthesize real locations,
that is we generated synthetic clustered observations LS .

The Null Model (NM) generator randomly generates the centers of k locations in a
[0, 1]2 Euclidean space, and then populates each location with observations around its
center. Such observations are obtained by adding a Gaussian noise to the corresponding
center, and for each location a different standard deviation is randomly selected in order to
simulate different contexts: σ1 . . . σk. A total of N observations are generated, distributed
among the locations in a uniform random way. In our experiments we used the following
intervals of parameter values: k ∈ [15, 30], σ ∈ [0.005, 0.015] and N ∈ [200, 500]. We used
NM to generate the dataset SuNM={L1

S . . .LuS} containing the set of locations for u users.
The Mobility-Like Model (MM) follows three principles described in [268]: (i) the mo-

bility of an individual gravitates around a center of mass with a certain radius of gyration,
(ii) every individual has two main locations that are frequently visited, and (iii) the num-
ber of visits in every location is regulated by a Zipf distribution (few locations are visited
many times and many locations are visited few times). For these reasons, MM creates a
set of observations and clusters that simulate the locations generated by human behavior
according to two statistics extracted from real GPS dataset described in Section 6.1: the
number of observations N , and the radius of gyration R. We extracted from the real data
the distributions of the number of observations and of the radius of gyration in order to
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use them during the generation of the dataset. We discovered that they are not correlated
(Pearson’s coefficient −0.2027), therefore we can select N and R independently from the
distributions. Following principle (i), MM generates observations based on a center of
mass m and the radius of gyration R, besides the parameters (N , k, σi) employed in NN.

For each user, the following steps are performed. First, a Gaussian distribution with
mean m and standard deviation R (chosen from the distribution inferred from real data)
is used to generate the k locations µi. The principle (ii) is taken into account by gen-
erating µ1 and µ2 in such a way that m is their center of mass. To respect (iii) MM
assigns ni observations for each location ∀i=1 . . . k according to a Zipf distribution, where∑
ni=N . The remaining k-2 locations are generated in the space described by N (m,R)

using N (µi, σi) until the center of mass m′ and the radius of gyration R′ of the generated
observations are close to m and R within some thresholds Tm and TR. The observations
generated by MM are expressed as latitude and longitude. We used MM to generate the
dataset SuMM = {L1

P . . .LuP } containing the set of locations for u users. Besides N and R,
which are extracted from data-driven distributions, in our experiments we randomly select
m, k ∈ [15, 30] and σi ∈ [25, 250] ∀i = 1...k, and we set Tm=50m and TR=100m.

Competitors

We evaluated TOSCA in its variants: Thompson Tau Test (TT ), Interquartile Range
(TI ) and Chauvenet’s Criterion (TC ). These different versions of TOSCA were compared
against the following parameter-free and parameters-based methods1:

• Parameter-Free Methods (PFM): Mean Shift (MS ) [79], Affinity Propagation (AP)
[104], Single Linkage (SL) with dendogram cut at the knee of the curve of distances
D, X-Means (XM ) [232], K-means silHouette (KH ) with k selected as elbow of the
silhouette curve, K-means SSE (KS ) with k selected as the knee of the sse curve, and
K-means Rule of thumb (KR) with k =

√
|P |/2. For KH and KS we have multiple

runs of K-Means, with k ∈ [2, |P | − 1] [275].

• Parameter-Based Methods (PBM): Grid (GR) [147], DBSCAN (DB) [102], OP-
TICS (OP) [15] and Bisecting K-means (BI ) [272]. They were tested with ε =
{0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2} in the null model, and ε = {25m, 50m, 100m,
250m, 500m, 1km, 2km} in the mobility-like model. For DB and OP we set MinPts
= 2 and we considered each outlier a cluster.

Performance Evaluation

We evaluated the performances on the datasets generated with the null model S1000
NM and

the one generated with the mobility-like model S1000
MM . Since the two generators use different

coordinates systems we used the Euclidean distance to solve LDP in S1000
NM , and the great-

circle distance to solve LDP in S1000
MM . The experiments were run on a Mac OS X 10.10.2

64 bit, 8 GB RAM, 2.60 GHZ Intel Core i5 processor.
Null Model Dataset. Fig. 7.3 shows the performances of the methods tested w.r.t.

ari and f-measure on the null model dataset S1000
NM . The best results are achieved by SL,

KH, DB and OP with ε=0.025, and BI with ε=0.050. These methods return the correct
clusters for almost all each S∈SNM , as reflected by the high means values and the compact
boxplots in the figure. However, all parameter-based methods prove to be very sensitive to
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Null Model Mobility-Like Model
v-measure ami acc δk v-measure ami acc δk
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

TT 0.93 0.21 0.91 0.24 0.89 0.22 -0.6 4.6 0.97 0.04 0.94 0.07 0.83 0.17 0.7 3.7
TI 0.92 0.22 0.89 0.25 0.87 0.24 -0.6 4.57 0.97 0.04 0.93 0.08 0.83 0.16 0.7 3.7
TC 0.98 0.03 0.95 0.07 0.91 0.10 -0.7 3.6 0.95 0.04 0.90 0.08 0.78 0.16 1.6 4.3
MS 0.57 0.07 0.38 0.08 0.20 0.06 -18.0 5.3 0.76 0.14 0.60 0.18 0.20 0.19 -14.8 6.5
AP 0.84 0.05 0.70 0.13 0.50 0.11 53.8 65.9 0.73 0.08 0.49 0.19 0.13 0.08 65.5 73.4
SL 0.99 0.01 0.98 0.02 0.96 0.04 4.0 3.04 0.89 0.17 0.80 0.22 0.65 0.28 7.2 39.8
XM 0.99 0.01 0.97 0.03 0.94 0.06 2.5 3.11 0.91 0.05 0.80 0.10 0.65 0.15 6.3 4.4
KH 0.99 0.01 0.99 0.02 0.98 0.03 -0.5 0.88 0.97 0.03 0.93 0.05 0.71 0.18 -4.7 3.8
KS 0.98 0.02 0.95 0.06 0.91 0.11 -1.9 3.6 0.93 0.06 0.86 0.11 0.69 0.16 -0.5 6.0
KR 0.89 0.05 0.77 0.10 0.59 0.16 -9.8 5.3 0.92 0.05 0.83 0.10 0.39 0.21 -11.6 5.4

Table 7.2: Mean µ and std deviation σ of v-measure, ami, and δK for TOSCA and the PFMs.
Bold is the best value, italic the second.
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Figure 7.3: Results on S1000NM : ari and f-measure for TOSCA and the PFMs (left), and for the
PBMs varying ε (right). Each box depicts the scores distribution of a method. The mean value,
i.e., the star, is reported at the top.

ε, and even small deviations from the optimal one lead to poor performances, while most
parameter-free methods achieve good results. We notice that on the null model dataset,
the three variants of TOSCA do not yield any improvement to XM . On the contrary, the
second step of TOSCA introduces errors in the clustering, decreasing ari and f-measure by
around 0.05. Tab. 7.2 (left columns) reports the results obtained with the other external
evaluation measures, and shows very good performances of KH algorithm of the K-Means
family. Although TT , TI and TC belong to this family, too, they produce a clustering
with scores of v-measure, ami and acc about 0.1 points lower than KH and XM .

Mobility-like Model Dataset. The improvement introduced by TOSCA w.r.t. XM
to solve the LDP becomes clear when observing the performances in the mobility-like model
dataset S1000

MM (Fig. 7.4 and Tab. 7.2 (right)). Among the parameter-free methods, TT
and TI obtain the best two performances. They have the highest scores in terms of ari,
f-measure, v-measure, ami, and δK improving the results of XM from 0.1 to 0.2 for each
measure. Also, it is important to notice that the box plots of TT and TI are considerably
more compact than those of the others – with the only exception of KH – making TT
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Figure 7.4: Results on S1000MM : ari, f-measure and running time for TOSCA and the PFMs (left),
and for the PBMs varying ε (right). Each box depicts the score distribution of a method. The
mean value, i.e., the star, is reported at the top.

and TI results more robust than competitors. We can observe the same behavior w.r.t.
the standard deviations of the measures in Tab. 7.2. The best competitor in terms of
ari is KH, yet its performances in terms of f-measure are significantly worse and, more
important, KH is slower an order of magnitude w.r.t the others. This is a significant
weakness of KH due to the calculation of the silhouette that is repeated for each point and
for each value of k. These results suggest that, among the parameter-free methods, TOSCA
better achieves the objective of yielding high-quality results and low computation times.

Moving to parameter-based methods, we notice how DB, OP and BI with ε=250
achieve results better than those of TOSCA. This means that with an appropriate pa-
rameter tuning phase they can discover a setting extracting good clusters. As already
discussed, this phase usually is very expensive in terms of time and expertise needed by
the analyst. Moreover, in real cases the ground truth is not available, and therefore it is
impossible to validate the quality of the results or understand how to vary the parameters.
This is a strong limitation in the application of these methods.

Finally, we studied the behavior of TOSCA in terms of internal measures, i.e., silhouette
and sse (see Tab. 7.3). With respect to the parameter-free methods, the three TOSCA
versions achieve scores which are exceeded only by KH and (quite surprisingly) by KR
for the silhouette, and by XM for the sse. Since KH uses the silhouette measure to select
the best clustering, its good results on this value were expected, while the values for KR
are not supported by the external evaluation measures analyzed before. The sse value is
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Mobility-Like Model
silhouette sse
µ σ µ σ

TT 0.79 0.13 5.19e+04 5.64e+04
TI 0.79 0.12 5.05e+04 5.05e+04
TC 0.74 0.14 4.65e+04 3.08e+04
MS 0.69 0.13 6.36e+05 6.59e+05
AP 0.49 0.15 2.40e+05 2.94e+05
SL 0.67 0.20 2.63e+05 5.27e+05
XM 0.62 0.12 4.04e+04 6.20e+04
KH 0.83 0.12 6.53e+04 6.31e+04
KS 0.69 0.17 6.67e+04 7.97e+04
KR 0.80 0.10 1.67e+05 1.46e+05

Table 7.3: Mean µ and std deviation σ of silhouette and sse for TOSCA and the PFMs.
Bold indicates the best value, while italic the second one.
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Figure 7.5: Results on the real dataset: silhouette and sse.

lower for XM than for TOSCA because it has not the second step for the aggregation.
Once again, by considering both the external measures and the see, we can see how the
low level of sse in this case is not indicating good clustering. This shows the weaknesses of
XM for the LDP previously anticipated. As before, the comparison of TOSCA with the
parameter-based methods tells that, for certain values of ε, the performances of the latter
are comparable or even better, but at the cost of an expensive parameter tuning step.

7.1.4 Case Study

In this section we show the results on the real dataset of Section 6.1. Note how, in
this context, for each user u, the set Du of detected locations corresponds to the user
profile Pu, i.e. it is a mobility Personal Data Model capturing the personal locations of
user u. Fig. 7.5 shows the good performances of TOSCA with respect to the internal
evaluation measures. These performances are comparable with those of the mobility-like
model dataset. TOSCA is one of the best performers among the parameter-free methods
both for silhouette and sse. Obviously, KH has the best silhouette but it has an overall
sse higher than TOSCA. DB250m, BI250m and BI500m achieve the best results among the
competitors with parameters. They all have a silhouette higher than TOSCA but they also
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Figure 7.6: (Left) Scatter plot of performances of several runs of three algorithms, with the big
points representing their centers of mass. (Right) Cut distance distribution for TOSCA.

XM DB250m BI250m TT

Figure 7.7: An example of a location detected with XM , DB250m, BI250m and TT .

have a higher sse. Hence, it seems that by considering simultaneously silhouette and sse
TOSCA is the method which returns the best clusters. This behavior is captured by Fig.
7.6 (left). Every point represents a run of TT (red circles), KH (blue triangles) or BI250m

(brown square), which are the best performers for silhouette and sse. The big points are
the centroids of each algorithm. Even though TT has a silhouette slightly worse than the
others, it has a sse considerably lower since the plot is in log scale w.r.t. the sse.

A by-product of TOSCA is the availability of the cut distance dist. Fig. 7.6 depicts the
distributions of the cut distances for the three variants. A peak appears before 50m with a
different shape for the three distributions. The fact that the cut distance is always spread
and not focused on a single value suggests that the use of a fixed value of ε in methods like
DB, OP and BI might be too general, not capturing the variability of mobility behaviors.

Finally, we remark that, good scores in terms of silhouette and sse do not necessarily
mean that the clusters are a good representation of the real locations. Fig. 7.7 illustrates
a case in which TT returns a good approximation of the expected cluster for a certain
location while XM keeps close observations separated, while DB250m and BI250m produce
a large cluster made of observations far away from each other.

7.1.5 Conclusion

We have proposed TOSCA, a two-steps parameter-free clustering algorithm for users’ lo-
cations detection. In contrast to algorithms commonly used in literature, TOSCA auto-
matically detects a good distance threshold for the clusters produced, thus adapting the
clustering to the individual mobility behavior of each user in the data. Therefore, it is per-
fectly suitable as autofocus clustering algorithm to extract Personal mobility Data Models
for the PDSs. We evaluated TOSCA against a large set of competitors over data generated
from a null model and a mobility-like model. The results have shown that in the mobility-
like model and in the real case study TOSCA performs better than the general-purpose
algorithms producing the desirable clustering for personal mobility data mining.
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7.2 Transactional Clustering for Personal Data Mining

Among the large amounts of data generated by each individual, a considerable part con-
sists of transactions, i.e. a special kind of categorical data in the form of sets of events like
the items purchased in a shopping basket, the web pages visited during a browsing session,
the songs listened in a time period, etc. To extract Personal Data Models we need clus-
tering algorithms able to automatically adapt in an efficient way to the wide diversity of
individual behaviors. Transactional clustering is the task of discovering into the collection
of transactions groups of homogeneous transactions sharing many common items [298].

In the state-of-the-art, all existing methods for transactional clustering either require a
parameter tuning process that is not automatic, or require an extremely heavy automated
process that does not scale to large user bases (see Section 2.3.2). As a consequence, the
repeated application for each user’s dataset of any of the existing procedures for the purpose
of finding personal clusters is not feasible in presence of a large population of users. In
the literature, several approaches have been proposed to address the problem of clustering
transactional data. The majority of existing techniques suffer from a drawback: they
are dependent on multiple parameters which are difficult to tune, especially in real-life and
personal applications. In addition, they do not provide a representative transaction of each
cluster, i.e., the set of items that characterize the transactions contained in each cluster.

Consequently, in line with Personal Data Analytics, we propose txmeans, an efficient
and parameter-free method for clustering transactional data in personal data mining ap-
plications. Txmeans overcomes the deficiencies of the existing methods, returns a repre-
sentative transaction for each cluster, and is especially designed for the case where the
clustering must be separately applied to a large set of users like those present in the PDE,
each one with her personal transactional dataset, i.e., mass transactional clustering.

7.2.1 Problem Definition

In this section we define the context and the problem we want to solve. Let B =
{b1, . . . , bN} be a set of N baskets (or transactions) and I = {i1, . . . , iD} a set of D
items. A basket bi is defined as a subset of items where ∅ ⊂ bi ⊆ I.

Personal Transactional Clustering. Given the set of baskets Bu of a user u, the
personal clustering problem consists in partitioning Bu into K of disjoint sets C={C1, . . . ,
CK} and extracting a corresponding set of representative transactions R={r1, . . . , rK} such
that C is optimal in terms of homogeneity and simplicity. This means that the baskets in
each Ci must exhibit a high degree of overlap in comparison to any transaction in B\Ci,
while keeping the clustering structure concise. Notice that, in general, the subset of items
of a cluster Ii ⊆ I might be not disjoint to the subset of items Ij of other clusters.

Mass Transactional Clustering. Given a large set of users U , the mass clustering
problem consists in solving the personal clustering problem for each user u ∈ U .

Since the number of users u ∈ U can be very large, the above problem definition
implies some technical requirements on the methods aimed to solve it. First, the personal
clustering of each different user can yield a different number of clusters, which needs to
be automatically determined, since the intervention of an expert is impractical. Second,
since several runs of the clustering are needed, one for each user, the algorithm needs to
be efficient. Also, each personal dataset can be large, depending on the application and
the temporal period covered by the data, thus the algorithm needs to be scalable and
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Algorithm 3: txmeans(B)

Input : B - set of baskets
Output: C - set of clusters, R - set of representative baskets

1 r ← getRepr(B); // extract representatives
2 Q.push(〈B, r〉); // initialize queue
3 R← ∅; C ← ∅; // initialize result
4 while |Q| > 0 do
5 〈C, r〉 ← Q.pop();
6 I ←

⋂
b∈C ; // calculate common items

7 C∗ ← {c \ I|c ∈ C}; r∗ ← r \ I; // remove common items
8 C ′, C ′′, r′, r′′ ← bisectBaskets(C∗); // split cluster
9 bico ← bic({C∗}, {r∗}, |C∗|N , |C∗|D); // BIC original

10 bics ← bic({C ′, C ′′}, {r′, r′′}, |C∗|N , |C∗|D); // BIC split
11 if bics > bico then
12 C ′ ← {c ∪ I|c ∈ C ′}; r′ ← r′ ∪ I; // restore common items
13 C ′′ ← {c∪I|c∈C ′′}; r′′ ← r′′ ∪ I; // restore common items
14 Q.push(〈C ′, r′〉); Q.push(〈C ′′, r′′〉); // update queue

15 else
16 C ← C ∪ {C}; R← R ∪ {r}; // update result
17 end
18 end
19 return C, R;

applicable to big data. While each of the above requirements is satisfied by some existing
algorithm, there is no approach meeting all of them together. According to Personal Data
Analytics, in the following we introduce an algorithm able to do it, also being competitive
against the state-of-art on each single requirement.

7.2.2 Method

Txmeans: is a parameter-free hierarchical divisive clustering algorithm based on iterative
bisections with the extraction of a representative transaction for each cluster. It implements
a greedy search solution to the personal clustering problem, seeking a local optimum in
terms of the BIC measure. Its primary objective is to reach efficiency without sacrificing
the clustering quality and without any parameter tuning phase.

Txmeans Algorithm

In analogy with [60, 232], we address the clustering problem through a top-down, divide-
and-conquer strategy: we start from an initial set containing a single cluster, then, it-
eratively we try to split a cluster into sub-clusters. In the literature it has been proved
that clustering methods using bisecting strategies [136, 232] are able to produce the best
clusters in several different contexts. The general schema of txmeans, which implements
this approach, is specified in Algorithm 3. The algorithm starts extracting a representa-
tive basket r for the whole dataset B, and puts both B and r into a queue Q (lines 1–2).
The queue Q keeps track of the set of baskets to be considered for splitting. The core of
txmeans is the body of the loop between lines 5 and 16. For each iteration, a cluster C
and its representative r are extracted from the queue (line 5). Then the items I which are



84 CHAPTER 7. AUTOFOCUS ALGORITHMS FOR PERSONAL DATA MINING

Algorithm 4: getRepr(B)

Input : B - set of baskets
Output: r - set of representative baskets

1 I ←
⋃
b∈B b \

⋂
b∈B b; // calculate not common items

2 ∀i ∈ I.freq(i)← |{b ∈ B|i ∈ b}|; // calculate frequencies
3 i← 0; r(i) ←

⋂
b∈B b; d(i) ←∞; // initialize variables

4 while I 6= ∅ do
5 m← argsmaxi∈Ifreq(i); // set of max-freq items
6 r(i+1) ← r(i) ∪m; // update representative
7 d(i+1) ←

∑
b∈B dist(b, r(i+1))

2; // compute SSE
8 if d(i) ≤ d(i+1) then
9 I ← ∅; // best representative found

10 else
11 i← i+ 1; I ← I \m; // update variables
12 end
13 end
14 return r(i);

common to all the baskets are removed from all the transactions of the cluster and also
from the representative. The results are denoted by a star (∗). The point of this task is
that such items (i) provide no useful knowledge for the bisecting step that comes next, and
(ii) a large number of common items might flatten the similarity values, making it more
difficult to appreciate the variability that lies in the other parts of the transactions, and
therefore potentially affecting the cluster splitting step. Then, the partitioning of C into
two disjoint sub-clusters C ′, C ′′ is calculated using bisectBaskets over the clean transac-
tions (line 8). After that, lines 9–10 calculate BIC on the original cluster (bico) and on the
two sub-clusters (bics). Here, |C|N is the number of baskets in C while |C|D is the number
of different items in C. If the split is useful (line 11) the common items are reinserted, and
C ′, C ′′ and r′, r′′ are added to Q (lines 12-14). Otherwise, the original cluster C and its
representative basket r are added to the final sets C and R (line 16).

Txmeans Stopping Criterion

Given a partitioning of cluster C ⊆ B into two sub-clusters C ′, C ′′, we need a criterion to
decide whether the splitting is actually useful, i.e., it significantly improves the homogeneity
of C, in which case it is performed and the procedure reiterates on each sub-cluster. In
the literature various quality measures and cost functions have been proposed. However,
they are all global measures and need to consider the whole partitioning C, and not just
C against C ′, C ′′. A more local measure to drive this decision is the Bayesian Information
Criterion (BIC) [259], which selects the model with the highest BIC value. BIC has been
successfully employed in various clustering contexts to control the splitting process [232],
and to determine the number of clusters. Yet, to the best of our knowledge, it was never
considered for transactional clustering, since it involves a variance computation [163] and
thus requires central values for each cluster which are unavailable in most transactional
clustering methods. The representative baskets computed in our solution provide this kind
of information, thus enabling the use of the BIC criteria for our purpose. We remark
that the Bayesian Information Criterion can be reliably adopted only when the size of the
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data sample is larger than the data dimensionality, which means N�D (see notation in
Tab. 7.4). This requirement is typically satisfied by the input dataset B. Moreover, BIC
is evaluated over each single cluster C, and not the whole dataset (excepted for the first
iteration), therefore the actual dimensionality of the transactions can be reduced to the
number DC of items that appear in at least one transaction of C, usually having DC�D,
since clusters group similar transactions. Txmeans further strengthens this property by
removing the common items in each cluster before splitting.

A crucial aspect of txmeans is the removal of the items that are common to all the
transaction of the current cluster, before computing any similarity. Does this step influence
the splitting mechanism and the computation of BIC ? The answer is that it actually
changes the Jaccard similarity values involved in most computations, and therefore in
theory it can have large effects on both the splitting (bisectBaskets) and the BIC values.
Yet, as we will see later, empirical testing shows that these changes do not really affect the
final outcome, excepted in some cases where the effects are actually positive.

We start by evaluating the effect of common items removal on the Jaccard similarity.
Let consider the case where, right after removing γ items from a cluster, two baskets A
and B are compared. Then, their similarity J will be computed as J = |A ∩ B|/|A ∪
B|, while the similarity we would have without the items removal, called here J (+), is
J (+) = γ+|A∩B|

γ+|A∪B| . Keeping the items leads to an increase of Jaccard similarity equal to

J (+) − J = 1−|A∩B|/|A∪B|
1+|A∪B|/γ , which is larger when the similarity between A and B is small,

when also the two baskets are small and when γ is large. The result is a flattening of
similarities towards the value 1. This also suggests an example where removing items
affects the cluster assignment in bisectBaskets. Let take centroids r′ and r′′, and a basket
A, such that r′ ⊂ A ⊂ r′′ and |r′| = 99, |A| = 200 and |r′′| = 400. We have that
J(A, r′) = 99/200 = 0.495 and J(A, r′′) = 200/400 = 0.5, and therefore A would be
assigned to centroid r′′. Assuming to have removed γ = 10 items, without the removal
the results would be J (+)(A, r′) = 109/210 ' 0.54 and J (+)(A, r′′) = 210/410 ' 0.51,
therefore this time A would be assigned to centroid r′. In this case, r′ was smaller and
therefore the flattening of its J was larger.

Our experiments showed, however, that this kind of situations are uncommon both
in real and synthetic data – notice that no attempts were made to filter them. Indeed,
several ad-hoc tests have been made by running Algorithm txmeans with and without
items removal on the same datasets showed little differences of results. On the side of
BIC computation, we have again that different values can be obtained with items removal,
since it involves the usage of Jaccard similarities. However, (i) removing items increases the
values of BIC, since the dimensionality of data decreases, meaning (from a more theoretical
perspective) a smaller number of free parameters and therefore a better model; and (ii) in
practice, we verified experimentally that at each candidate split the effects of item removal
on the original cluster (bico) and on the new pair of clusters (bics) are usually similar
enough to keep the split decision unchanged.

Txmeans Bisecting Schema

Center-Based Optimization. The cluster splitting process invoked by txmeans tries to
divide the cluster into two compact subgroups. The criteria adopted to do that is based on a
distance function between the cluster elements and a representative basket. More formally,
given a cluster C our problem is to find a partitioning {C ′, C ′′} such that: (i) C ′ and
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Algorithm 5: bisectBaskets(B)

Input : B - set of baskets
Output: C ′, C ′′ - baskets partitioning; r′, r′′ - representatives

1 i← 0; SSE(i) ←∞; // initialize variables
2 r′(i), r

′′
(i) ← selectInitialCentroids(B); // initialize variables

3 while True do
4 {C ′, C ′′} ← assignBasket(B, {r′(i), r

′′
(i)}); // assign baskets

5 r′(i+1)←getRepr(C
′); r′′(i+1) ← getRepr(C ′′); // calc repr

6 SSE(i+1)←
∑
b∈C′

dist(b, r′(i+1))
2+

∑
b∈C′′

dist(b, r′′(i+1))
2;

7 if SSE(i+1) ≥ SSE(i) then
8 return C ′, C ′′, r′(i), r

′′
(i);

9 end
10 i← i+ 1; // update variable

11 end

C ′′ are associated to corresponding representative baskets r′ and r′′; (ii) the partitioning
minimizes the Sum of Squared Errors SSE =

∑
b∈C′ dist(b, r

′)2+
∑

b∈C′′ dist(b, r
′′)2, where

dist(a, b) is a distance function based on the measure of overlap of items between sets a
and b. A consequence of our notion of optimality is that each basket belongs to the cluster
minimizing the distance with its “centroid”, i.e. maximizing the overlap among the items.

Distance Function. While the proposed method could in principle incorporate any
distance function for comparing transactions, in practice the design of txmeans reduces the
number of reasonable choices. In particular, the function should be based on the number
of items shared between the transactions, which suggests measures such as set intersection,
match similarity or Jaccard coefficient. Since the latter is known to be more robust and ad-
equate for sparse vectors (like transactions), txmeans adopts Jaccard distance as default.
We want to stress that a strategy like the one proposed by k-modes algorithm for categorical
data does not work for sparse transactional data. Indeed, if we binarize a sparse transac-
tional dataset in the corresponding categorical dataset, the zeros usually predominate, and
therefore the corresponding modes will be zero for most of the columns, i.e. the centroids
will be empty. Also, alternative approaches where lower thresholds are adopted (i.e. lower
than the 50% involved by the mode) might avoid empty centroids but would introduce a
new parameter to set, since each dataset might require a different threshold value.

Representative Baskets (getRepr function). Following [115], we extract the repre-
sentative baskets with a parameter-free heuristics that first selects the items present in all
the transactions of the cluster (lines 1–3 of Alg. 4), then refines such approximation by
adding the most frequent items (lines 5–6: notice thatm is, in general, a set of items having
the same frequency), iterating the process as long as each step improves the solution in
terms of error (lines 7–8), thus stopping when a locally optimal representative is generated.

Bisecting Schema (bisectBaskets function). In our algorithm we exploit the repre-
sentative baskets for partitioning a given set of baskets B into two disjoint sets C ′ and
C ′′ by means of a bisecting procedure. Alg. 5 reports the pseudo-code of this method.
First of all, two representatives are selected among the baskets of B (line 2). These initial
centroids are selected by function selectInitialCentroids, which randomly picks several
pairs of baskets, and then returns the pair that shows the highest distance value. Then the
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assignBasket in line 4 compares each basket b∈B to the two representative basket and
associate it to the closest one. When all baskets have been assigned to a cluster, the repre-
sentatives are computed through the getRepr function (line 5). The process is reiterated
as long as the SSE error obtained at step i+1 is better than that of step i (lines 6–8).

Txmeans Theoretical Analysis

We provide a few theoretical properties about our algorithms, in terms of termination and
computational complexity.

Theorem 1 (Termination). The txmeans algorithm terminates for any input dataset.

Proof. Both getRepr and bisectBaskets terminate for any input data. Indeed, the stop condition
of the loop in getRepr is that set I becomes empty, since it decreases strictly monotonically at
each iteration (steps 9 or 11–12). Also, bisectBaskets follows the classical k-means structure, and
the loop stops when the SSE does not strictly increase. Since the number of possible clusterings,
and thus of possible SSE values, is finite, the strictly monotonic sequence of SSE values produced
throughout the iterations must eventually reach a (local) minimum in a finite number of steps.
Finally, the loop in Alg. 3 iteratively removes a cluster and replaces it with strictly smaller ones.
In the worst case all clusters will be broken down to singletons in a finite number of steps, then
each set will pass through the else branch of the condition on line 11, since the splitting will result
in another singleton plus an empty set, which does not improve the BIC value. That avoids any
possible unbounded loop, leading to termination.

Theorem 2 (Complexity). The computational complexity of txmeans is O(It · N2 · D),
where It represents the number of iterations required to reach convergence in a single run
of bisectBaskets, N=|B| is the number of transactions in input and D is the number of
distinct items in the dataset.

Proof. In the worst case, txmeans ends only when singletons are obtained, i.e. the tree representing
the bisections is rooted in B and has N leaves. That implies that the number of clusters produced
in the process is O(N), corresponding also to the number of iterations of the loop executed in the
worst case. All the operations performed at each iteration involve scanning the transactions in the
cluster only once, thus the overall cost is O(N ·D), notice that the size of the clusters is always O(N)
in case all iterations produce extremely unbalanced splits. The only exception is the execution of
bisectBaskets. It follows a k-means structure with k=2, and all the operations performed at each
step are linear in the number of transactions and their length. There is no clear bound on the
number of iterations required to converge, which is then kept as a parameter It of the complexity.
That leads to a cost of bisectBaskets equal to O(It · N · D), which dominates the complexity of
each iteration of txmeans. The overall complexity, thus, results to be O(It ·N2 ·D).

The theoretical complexity of txmeans is similar or smaller than most competitors in
the literature2: Tkmeans [115], clope [311] and practical [44] follow a k-means structure,
i.e., O(It·N ·K ·D) that is the same as txmeans; Coolcat [24] has a similar cost, plus a O(S2)
due to the initialization over a sample of size S, that dominates the complexity if S >

√
N ;

Rock [125] has a larger cost, equal to O(N2 ·D · logN); and, Atdc [60] iteratively performs
a partitioning having cost O(It ·N ) followed by a stabilization step O(It ′ ·N ·K ). The
two steps are repeated till convergence over each current cluster, thus leading to an overall
cost of O(It · It ′ · It ′′ ·N 2 ·K 2 ), where It, It′ and It′′ represent the number of iterations
for each component of the algorithm.

2Where not explicitly presented by the authors, we inferred the complexity of each method from the
corresponding papers.
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Algorithm 6: txmeans-sampling(B)

Input : B - set of baskets
Output: C - set of clusters, R - set of representatives

1 S ← selectSample(B); // random sampling
2 〈CS , R〉 ← txmeans(S); // run txmeans
3 C ← assignBasket(B,R); // k-nearest-neighbour
4 return C, R;

We remark that the proof of complexity considers the worst case where all clusters
processed have a size and number of distinct items similar to the input dataset. In practice,
extremely unbalanced splittings, which would produce clusters of large size, are unusual on
real data; also, clusters tend to group together similar transactions that contain a relatively
small subset of items. That is also amplified by the removal procedure of common items
performed in txmeans. The result is that empirical run times tend to grow much more
slowly than what predicted by the theoretical analysis.

Dealing with Large Personal Datasets

The txmeans method has been designed for Personal Data Analytics, therefore in a data
mining context where the transactions of a user are processed separately from the others.
While this situation usually results in executing txmeans on several small- or medium-size
dataset, we might need to move to a Big Data context where each single user has a very
long history of transactions, therefore calling for a scalable approach. The txmeans method
can be easily adapted to integrate a sampling strategy, where the clustering structure is
computed on a subset of transactions, and then it is used to classify (i.e. associate to a
cluster) the rest of the input dataset. That is made efficient thanks to the computation
of representative baskets, which are used to classify transactions following a standard k-
nearest-neighbour strategy with k=1, i.e. each transaction is associated with the closest
representative basket and to its cluster. Alg. 6 shows the structure of the method. Step 1
randomly selects a number SN=|S| of transactions from dataset B. In particular, we follow
the approach proposed in [172], where such number is estimated as SN=ss/(1+(ss−1)/N),
where ss=Z2p(p− 1). Z and p are fixed and set, respectively, to the z-score of confidence
level 99% and to 0.5 (but potentially modifiable for very special cases by expert users).
Steps 2 and 3 cluster the transactions sample and then classify all the dataset through the
procedures txmeans and assignBasket. Empirical results show that, not only the quality
of the results obtained with samples is very high, but also sampling even improves them.
This is mainly due to the presence of noisy rare items, whose impact appears to be reduced
by sampling, since most of them will not appear in the sample and will not distort the
clustering structure. We will refer to Alg. 6 simply as txmeans.

7.2.3 Experiments

In this section we accurately evaluate the performances of txmeans both for personal and
mass transactional clustering. According to the literature [44, 60, 125, 308], we evaluated
our clustering approach and its competitors on both synthetic and real datasets3.

3The python code for the algorithm proposed, the competitors and the synthetic data generators can
be found at https://goo.gl/uuKWSi.
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Evaluation Measures

To evaluate the clustering quality we compared the results of txmeans with the real clusters.
To quantify the similarity between the two sets of clusters we used the Normalized Mutual
Information (NMI) [296]. NMI was preferred over purity because (i) it is more sensitive
than purity to the change in the clustering results, and (ii) it takes into account unbalanced
distributions and does not necessarily improve when the number of clusters increases (as
purity does). Given two sets of clusters C and G, we have

NMI(C,G) =
I(C,G)

0.5 ∗H(C) + 0.5 ∗H(G)
∈ [0, 1]

where I(C,G)=
∑

k

∑
j
|ck∩gj |
N log

N |ck∩gj |
|ck||gj | is the mutual information [296], and H(C) is en-

tropy [262]. Good clusterings have a NMI ∼1, bad clusterings ∼0. In addition, like in
TOSCA, we keep track of the deviation δk between the real number of clusters and the
number of clusters detected, δk=|C|−|G|. Finally, we indicate with RT the running time (in
seconds) for the clustering computation. All experiments were run on a Mac OS v10.11.4,
2,6 GHz Intel Core i5, 8GB DDR3.

Competitors

We evaluated our method against several competitors sharing some features with txmeans,
yet following different algorithmic structures. Algorithms practical [44] and atdc [60] are
both parameter-free. Algorithm practical has two main steps: in the allocation step it
scans the data and assigns each basket to an existing cluster or to a new one according to
a cost function inspired by “tf-idf” [255]; then, through the refinement step it moves the
baskets from a cluster to another one. Note that the structure of practical and txmeans
are completely different. On the other hand, atdc adopts a divisive approach similar to
txmeans, but atdc scans the baskets and iterates between a partitioning and a stabilization
phase. The algorithm tkmeans [115] adapts the definition of distance used in k-means [275]
to represent transactions dissimilarity, and computes centroids using the same approach of
txmeans. Finally, coolcat [24] works on a random sample of the baskets, as txmeans. We
also report the performances of clope [311] and rock [125], since they represent reference
approaches and were thought for market-basket data, which is analyzed in our case study.
Clope requires a repulsion parameter r that is difficult to be interpreted, while rock requires
the number of clusters and a similarity threshold θ. We avoid the comparison with subcad
[110], limbo [14], clicks [320] and largeitem [298] because practical outperforms subcad, atdc
outperforms limbo and clicks, and clope outperforms largeitem.

We must notice that txmeans, practical and atdc automatically estimate the number
of clusters, while tkmeans, coolcat, clope and rock are parameter-based methods. In the
first set of experiments for general purpose applications we advantage this last category by
setting them the optimal parameters: we used the real number of clusters k for tkmeans,
coolcat and rock ; for clope we set as r the value minimizing δk for r∈[1.0, 3.5] (step of 0.1);
and for rock we set as θ the value of the best clustering for θ∈[0.1, 1.0] (step of 0.1). Finally,
for coolcat and rock we selected the sample S using the same function adopted by txmeans.
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Symbol Description
N number of baskets
D number of items
T average length
C number of clusters
P percentage overlap
O outliers percentage

Table 7.4: Symbols and de-
scriptions. Figure 7.8: Structure of synthetic data for DS1, DS2 and DS3.

Personal Clustering Evaluation on Synthetic Datasets

In this section we analyze the standard context of clustering over a single transactional
dataset, corresponding to our personal transactional clustering problem. We used synthetic
data to study the performances of txmeans following the experimental approach of [44,
60, 308]. The advantage of synthetic data is that we can control experiments through
the tuning of the clustering structure. Tab. 7.4 reports the variables analyzed to study
performances variation. We compare the algorithms with respect to cluster quality and
running time. For txmeans we also evaluate scalability and sample size impact.

Synthetic Datasets. We generate three types of synthetic datasets. The first dataset,
named DS1, has a one-layer clustering structure (Fig. 7.8 (left)) with D=75 items and
N=1000 baskets. It has C=3 clusters of the same size. Each basket has length T=5 while
each cluster is characterized by d=D/C=15 different items. Thus, in order to generate
different patterns for each cluster, a basket in the c-th cluster can contain an item j and
j=j′+(c∗d) such that j′∈[0, 15]. The second and third datasets, named DS2 and DS3, are
built in the same way of DS1, but they have a two-layer clustering structure: in DS2 the
top layer has four clusters, two of which have sub-clusters (Fig. 7.8 (center)); in DS3 the
top layer has five clusters, four of which have sub-clusters (Fig. 7.8 (right)). In both cases
the items overlap in sub-clusters is 0.4 and the average basket length is T∈{5, 10}. More
details in Tab. 7.5. These datasets have a well defined clustering structure, and each basket
distinctly belongs to one cluster. For each dataset structure we generate ten datasets.

Besides DS1, DS2 and DS3, we generate another family of datasets, named DS4 by
using the synthetic data generation method described in [60] which was kindly provided
by its authors and employed also in [44]. Besides N , D, T and C, the parameters used by
the synthetic data generator for DS4 are the percentages of outliers O (i.e. proportion of
items that do not contribute to form any cluster), and of of overlap P among transactions
of distinct clusters. Different combinations of O and P allow to simulate various situations,
which enable an objective experimental validation.

Evaluating Cluster Quality. The goal of these experiments is to evaluate the ability
of our algorithm to correctly identify clusters in various situations. In Tab. 7.5 are illus-
trated the performances of txmeans and of the competitors for DS1, DS2 and DS3. The
deviation δk is considered only for parameter-free methods. For each datasetDS1-i, DS2-i,
DS3-i, 1≤i≤10, we run the algorithms ten times and we report in Tab. 7.5 the average for
each indicator. Clope is the best performer but we must consider that the best r is provided
as input. In practice, this requires an extensive tuning. A deep analysis of this aspect is
reported in the next section. The algorithm txmeans is the second best performer w.r.t.
NMI for DS2 and the third for DS1 without requiring any tuning phase. Also tkmeans,
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Algorithm

DS1
(N=1000,D=75,C=3)

DS2
(N=1000,D=100,C=6)

DS3
(N=1000D=125,C=9)

NMI δk RT NMI δk RT NMI δk RT
txmeans 0.66 11.5 0.42 0.87 6.8 0.43 0.83 10.4 0.62
practical 0.57 51.8 20.96 0.73 20.7 6.06 0.68 36.6 12.22
atdc 0.53 49.1 130.86 0.65 48.4 189.52 0.72 49.5 261.92

tkmeans 0.67 - 2.12 0.75 - 3.41 0.86 - 4.79
coolcat 0.01 - 14.4 0.22 - 24.97 0.34 - 31.94
clope 1.00 - 0.16 0.99 - 0.10 0.99 - 0.10
rock 0.00 - 10.73 0.0 - 9.15 0.01 - 8.79

Table 7.5: Performances on DS1, DS2 and DS3. First best performer, second best performer.

Figure 7.9: NMI, δk and RT evaluation for comparing algorithms on synthetic datasets DS4
with N=2000, D=200, T=10 and C=6.

that is a fundamental building block of txmeans, has very good performances. All the
parameter-free algorithms overestimate the number of clusters, but the overestimation of
txmeans is much smaller than that of practical and atdc. Finally, txmeans has the smallest
RT . Since rock performances are very poor we do not report its results in the following.

To provide a variety of data structures we exploited DS4 for generating different groups
of synthetic data sets with controlled overlap percentage P ∈ {0, 10, 20, 30, 40, 50} and
outliers percentage O ∈ {0, 10, 20, 30}. We do not consider baskets containing patterns
with overlap higher than 50% because in real datasets this would not appear frequently.
Similarly, it is quite unreal to have more than 30% of outliers. With respect to the other
dimensions we fixed N = 2000, D = 200, T = 10, and C = 6. We remind that parameter-
based methods are provided with the optimal parameter setting.

Fig. 7.9 delineates the performances through barplots of NMI, and with the δk re-
ported below the bars. When varying the percentage of outliers O for a given levels of
overlap P , the NMI of all the algorithms has small fluctuations. For P=0 we have results
comparable with those of DS3, while the overall level of NMI decreases significantly when
P grows. The two most stable algorithms are txmeans and tkmeans, but the latter is given
the right number of clusters as input. However, txmeans maintains good performances for
P≥30 and O=30 and overcomes also tkmeans. Clope is the best performer when there is
no overlap and no noise, then its performances rapidly decrease for growing P . Coolcat is
always the worst performer. Finally, it is worth to notice that, even though the difference
of NMI between txmeans and practical is not very big, practical has a significant deviation
δk, which represents a clear weakness of this approach. The average RT values are reported
on the right of Fig. 7.9. The algorithm txmeans is the most efficient: its RT is one order of
magnitude smaller than clope and two orders of magnitude smaller than practical. More-
over, like coolcat, due to the sampling function txmeans is also the most constant in RT .
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Figure 7.10: Dataset DS4. From left to
right: scalability w.r.t. clusters C, items D,
and baskets N .

Figure 7.11: NMI and RT by varying sample size
on synthetic datasets DS4 with N=1000, D=100,
T=20,P=20 and O=10.

Evaluating Scalability. We evaluate the performances of txmeans on DS4 by varying
N ,D and C. In all datasets considered we fix T=20, P=20% andO=20%. The first column
of Fig. 7.10 shows the scalability varying C. For NMI we observe that when there are few
clusters there are better performances with small datasets while with many clusters there
are better performances for large datasets. As expected, the RT does not fluctuate when
varying C. In the second column of Fig. 7.10 we find the performances varying D. We
fix N=100, 000. The NMI decreases more slowly for higher number of clusters. The RT
grows less than linearly in D and it is higher for high C. Finally, in the third column we
observe the scalability varying N (we fix D=100). The NMI grows with N : the more the
baskets, the less the noise, and the better are the representatives. The RT grows linearly
and it is not influenced by the number of clusters.

Evaluating Sample Size. In this section we evaluate txmeans on DS4 varying the
size of the sample S. Fig. 7.11 illustrates the NMI and RT when changing the sample
size for T=20, D=100, N=1, 000, P=20, O=10 (left); and T=20, D=1, 000, N=10, 000,
P=20, O=10 (right). As previously, we report the average values of ten runs. A clear
trend appears for both datasets: a peak of high values of NMI is positioned in a range
of sample size between 0.05 and 0.15, then the trend decreases a little before stabilizing.
The range [0.05, 0.15] confirms that the function [172] we adopted to select the size SN of
the sample S is a good choice. Indeed, it returns samples S with a size which is generally
between the 5% and the 20% of the whole dataset. Moreover, we can observe a dual effect
with respect to C: for the “small” dataset (left) we achieve better results when C≤8, vice
versa for the “big” dataset (right) dataset we get better performances with C≥10. Finally,
as expected, the RT grows linearly with the sample size.

Personal Clustering Evaluation on Real Datasets

We used three real datasets: Mushrooms, Congressional Votes and Zoo. They are from the
UCI Machine Learning Repository4. We ignore the class labels during clustering and we
use them as ground truth. For each dataset we perform 100 runs for each algorithm and we
report the average values. As depicted in Tab. 7.6, our algorithm performs well on all the
real-world datasets. The sampling function is employed only for the Mushroom dataset.
For the Mushrooms dataset txmeans is the second best performer with respect to NMI
and δk and the best performer with respect to RT . Good performances are obtained only

4http://archive.ics.uci.edu/ml/
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Algorithm

Mushrooms
(N=8124,D=22,C=2 )

Zoo
(N=435,D=16,C=2 )

Congress
( N=10D=16,C=7 )

NMI δk RT NMI δk RT NMI δk RT
txmeans 0.41 3.5 1.08 0.83 -2.2 0.07 0.36 7.0 0.30
practical 0.01 -0.5 5.76 0.43 -5.3 0.03 0.47 0.3 0.12
atdc 0.22 4.0 33.42 0.74 -3.0 0.09 0.30 1.0 0.32

tkmeans 0.16 - 302.65 0.77 - 2.16 0.48 - 5.45
coolcat 0.01 - 73.18 0.54 - 0.89 0.41 - 13.01
clope 0.42 - 7.75 0.80 - 0.01 0.38 - 0.04
rock 0.01 - 40.60 0.425 - 0.18 0.44 - 12.95

Table 7.6: Clustering performances on real-world data
sets. First best performer, second best performer. Figure 7.12: NMI and RT by

varying sample size onMushrooms.

by txmeans and clope: practical underestimates the number of clusters, while atdc overesti-
mates it. All the parameter-free algorithms underestimate the real number of species in the
Zoo dataset. Despite this fact, txmeans is the best performer and produces a partitioning
even better than parameter-based algorithms for which the number of cluster was correctly
specified. In Congressional dataset our algorithm does not perform well with respect to the
NMI obtained by the others and overestimates the number of clusters. This is probably
due to the nature of the dataset. Overall, the experiments on real datasets suggest that
txmeans provides consistent and stable results in comparison to the competitors. These
results confirm the suitability of our algorithm previously observed on the synthetic data.
Finally, we investigate whether also for real-world datasets there is the same trend observed
on synthetic data when varying the sample size. The result is reported in Fig. 7.12. Since
the trends emerging both for NMI and RT are very similar to those previously observed
we can conclude that this effect is provided by txmeans and is not due to synthetic data.

Mass Clustering Evaluation on Synthetic Datasets

In this section we test txmeans and its competitors in the context of mass clustering, i.e.,
clustering transactions of several users separately. This more realistic setting emphasizes
the challenges that motivated the development of txmeans, i.e. efficiency and freedom from
parameters. Since a real dataset containing customers transactions annotated with cluster
labels is not available, we usedDS4 synthetic data generator. Unlike previous experiments,
in this section we are performing the clustering on a wide set of datasets generated with
random structures and we evaluate the performances considering the personal clusterings
of all the datasets. We generated 10k datasets with characteristics selected uniformly
in N∈[1000, 10000], D∈[100, 1000], T∈[10, 30], C∈[4, 16], P∈[0, 50], O∈[0, 30]. Moreover,
since we are simulating a real application scenario, we are not suggesting the optimal
parameters to parameter-based methods. For these algorithms we adopted two versions:
the fixed parameter (fp) version for which we fix a parameter setting for all datasets, and
the parameter tuning (pt) version for which we simulate the search of the best parameters
for each dataset by running each method several times varying the parameters.

Since in the previous section atdc, coolcat and rock had relatively poor performances,
we do not include them in these experiments. We name the parameter-based competitors
with fixed parameters tkmeans-fp and clope-fp, and those with parameter tuning tkmeans-
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Figure 7.13: NMI, δk and RT evaluation for comparing algorithms on 10k synthetic datasets
DS4 for the mass data mining clustering scenario.

pt and clope-pt. For tkmeans-fp and clope-fp we fixed k=6 and r=2 respectively. We used
the heuristic technique known as “knee method” to select the best k and r. In practice, we
run tkmeans for k ∈ [4, 16] and we store the Sum of Squared Error (SSE) for every run.
Then we select as best k the one corresponding to the point in which the trend of the SSE
curve changes, i.e., the “knee” of the curve [275]. We adopted a similar technique for clope
considering the trend change of the Profit function [311] with r ∈ [0.1, 3.5].

Fig. 7.13 depicts the boxplots of NMI, δk and RT . The numbers reported represents
the median values, i.e., the black straight line in the middle of each boxplot. For this
application txmeans shows the best performances: it is able to return for each dataset the
purest clusters (a median level of 0.97NMI) in a few seconds without any parameter tuning
and it deviates on average only of 2 clusters from the real number. Considering these three
aspects at the same time, this level of performances is reached by none of the competitors.
Practical and tkmeans-pt have aNMI gap w.r.t. txmeans of only 0.03. However, both have
a median RT two orders of magnitude greater than txmeans. Moreover, while tkmeans-pt
succeeds in minimizing δk, practical has an average deviation of ∼50 clusters, that is quite
unacceptable because, even if almost all clusters extracted are pure, they are more than
necessary to describe the patterns contained in a dataset. On the other hand, tkmeans-pt
is highly penalized in terms of RT by the multiple runs for tuning the number of clusters k.
Its counter-part, tkmeans-fp has lower running times, but also lower NMI and higher δk.
Note that, tkmeans-fp has overall good performances because the most frequent number of
clusters for the generated datasets is exactly 6. Clope is not competitive in the parameter
tuning version, nor in the fixed parameters version. Hence, txmeans is the best algorithm
for mass transactional clustering.

7.2.4 Case Study

The efficiency and the freedom from parameters brought by txmeans make it possible to
adopt clustering-based strategies in applications that need to handle massive transactional
personal data like those part of the PDE. In this section we present an application of
this kind, showing a case study in the domain of recommendation systems that requires
analyzing a massive real dataset containing millions of shopping sessions. In this context
transactional data are typically treated with very simple and ad hoc strategies, while more
complex approaches – including clustering at the individual level – are usually avoided
exactly for the same reasons that motivated the development of txmeans: difficulty to tune
parameters, efficiency issues, etc. The solution proposed represents a first attempt to go
in the opposite direction, an approach enabled by the capabilities of txmeans.

The application consists of a Personal Cart Assistant (PCA) service that in real time
suggests to the customers of a retail seller potential products to add to their current
basket. Such suggestions, as detailed below, are based on the users profiling through
the representative baskets (and therefore clusters) obtained from their purchasing history.
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µ σ ν η κ

N 236.04 208.44 172.00 150 2.02
D 140.61 35.05 139.00 139 0.11
T 9.96 5.06 8.83 10 1.35
K 4.45 3.59 3.00 2 1.81

Table 7.7: Statistics: mean µ, stddev σ, median ν, mode η, skewness κ.

In the rest of this section we will describe our solution in detail, introduce alternative
approaches and show comparative empirical results.

Personal Cart Assistant. Given the baskets B of a customer, we process them with
txmeans to obtain clusters C={C1, . . . , Ck} and representatives R={r1, . . . , rk}. According
to the Personal Data Analytics approach, the tuple Pu=〈C, R〉 represents the profile of
customer u, and is used as basis for a model-based collaborative filtering approach [4,
274, 286]. Given the current, incomplete basket L={i1, . . . , in} of the user, we find the
representative ri ∈ R which is closer to L in terms of Jaccard distance, and then use the
transactions in Ci to generate suggestions. A weight is associated with each candidate
item to consider, computed as the sum of similarities between current basket L and all
baskets in Ci that contain the candidate item, and then only the highest-weight items
are suggested. This process can be interpreted as a particular instance of the general
collaborative filtering approach, with a set of users (here corresponding to single baskets),
user’s preferences (the items in L), users selected as similar w.r.t. the user’s preferences
(the baskets in Ci) based on what they bought in the past (ri). A difference from classical
collaborative filtering is the fact that our user’s preferences (i.e., the shopping list L) are
binary instead of scores. An alternative to the users/baskets similarity-based solution
consists of the complementary item similarity-based approach described in [256]. This
approach was tested in our showcase, yet the results were basically the same of the first
one, therefore we omit it here for the sake of space and readability.

Baselines. We compared the performances of our method, named pca, against the
following baselines: last suggests the items in the last basket purchased; rand produces
suggestions by picking random items; most recommends the most frequent items; mbcf is
the memory-based collaborative filtering method on transactional data proposed in [206]
using the whole set B for collaborative filtering. Although other personalized methods exist
in literature for basket recommendation, e.g. [246, 299], none of them try to complete the
current shopping list, and thus cannot be directly compared.

Real Dataset. Experiments have been conducted over the real dataset of shopping
session described in Section 6.2. We considered about 2, 670, 343 shopping sessions that
occurred in Leghron province over the years 2010–2013, corresponding to about 10k loyal
customers, i.e., customers active in at least ten months every year. Tab. 7.7 reports some
data statistics (top 3 lines). The number of shopping session N follows a long-tailed distri-
bution with mode 150. The number of items D is a Gaussian distribution with mode ∼140
and small standard deviation. Finally, the average basket length T is typically ∼10 items.

Recommendation Evaluation. The first three years of data were used to extract the
profiles {Pc}, which were then tested over the last year. The bottom line of Tab. 7.7 shows
that the number of clusters K found for each customer follows a long-tailed distribution
with mode ∼2-3: few patterns are needed to represent the shopping behavior of a customer.
There is a strong correlation, 0.74 with p-value equal to zero, between the number of baskets
N and clusters K, as expected: the higher the number of shopping sessions, the higher the
probability to have many representative baskets.
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Figure 7.14: Recommendation performances as F0.5-measure on real dataset varying minimum
basket length ω (left), and basket split θ (right).

For each customer we tested the recommender systems over each session L, in chrono-
logical order, updating the models as follows: pca assigns L to a cluster with respect to the
representative baskets, mbcf considers also L into the model, most updates the frequencies
of each item in L, last becomes L, rand also consider the items in L in its choices. Only
baskets having length at least ω ∈ [2, 16] were considered for applying the recommender
systems, and the current basket L in the test set was split into two parts w.r.t. a percent-
age θ ∈ [0.2, 0.8]. As quality measure we report the F0.5-measure [200], which puts more
emphasis on precision than recall, aggregated by averaging the scores of all the customers.

Fig. 7.14 shows the performances of the recommender systems varying ω (left) and θ
(right). The pca performs better than the others providing an average improvement of 0.02
with respect to mbcf : it means from 1 to 3 additional items correctly suggested. Fig. 7.14
(left), where ω is varying and θ=0.5, shows that the larger is the minimum basket length
required, the worse are performances. The fact that for short baskets it is easier to predict
the item composition reveals that, with a high probability, frequent items are regularly
purchased. Moreover, as expected, Fig. 7.14 (right) shows that, for ω≥6, the larger is the
portion θ of L considered by the recommender systems, the better are the performances.
Finally, even for low values of θ pca can achieve performances higher than its competitor.

7.2.5 Conclusion

We have presented txmeans a parameter-free clustering algorithm for personal transac-
tional data. Txmeans is able to solve efficiently the mass transactional clustering problem,
i.e., partition efficiently many different personal datasets and provide for each cluster a
representative transaction. Our proposal to avoid parameters applies a bisecting strategy
to find groups of similar transactions and gives the possibility to work on a sample of the
initial data to allow its application also in the context of big data. These features empower
txmeans to outperform existing algorithms both on synthetic and real-world datasets.
Therefore, txmeans becomes an eligible Personal Data Analytics method for Personal Data
Mining transformations, for the extraction of Personal Data Models, and for the creation
of novel personal services in the PDE. Indeed, we have shown an application of txmeans
on a real dataset of shopping sessions. We built on top of txmeans results a personal cart
assistant able to suggest to the customers the items to put in her shopping list. Finally, it
is worth to notice that, due to its ability to efficiently solve both the personal transactional
clustering and the mass transactional clustering, txmeans could be applied in the dis-
tributed environment of the Personal Data Ecosystem both individually by each peer, but
also collectively by some peer charged to collect and process the data for a group of users.



Chapter 8

Personal Data Models

A model is an abstract representation of a real phenomenon able to explain how the phe-
nomenon works. Very often a model is a simplification of the phenomenon and admits a
mathematical formalization. If the phenomena we are trying to explain is completely ran-
dom, then a model for that phenomena can not be formalized. However, to some extent,
human behavior is predictable. Humans do not change their behavior randomly from one
day to the other and their patterns usually follow a given routine. This is true at individual
level: bursty patterns of activities have been observed and can be predicted, for instance in
writing e-mails. Also individual mobility is predictable: most people will commute every
working day between the same two points, and can be predicted to do so with very high ac-
curacy [23, 297]. But humans are also predictable at collective level: groups of humans flock
together in predictable patterns. For instance, people are more mobile early in the morning
and late in the afternoon, around the working day, creating an M-shaped pattern.

Therefore, human predictability, both at individual and at collective level, is a precon-
dition for building a model which catches the bursty behaviors. Through data mining, it
is possible to extract and capture the patterns which represent human behavior, and to
summarize them in usable and understandable data models. For each user u, these pat-
terns are the Personal Data Models forming the user’s individual profile Pu. A profile can
be either formed by a set of indicators describing the user attitudes, or by a complex data
structure capturing the routinary actions performed by the user. However, in both cases
a Personal Data Model is obtained after a Personal Data Mining process applied on the
individual history Hu. In the following, we show how it is possible to outline the Personal
Data Analytics approach for the extraction of diversified Personal Data Models obtained
through different Personal Data Mining processes on distinct types of data.

8.1 Personal Behavioral Entropy and Profitability in Retail

The features describing and summarizing users’ habits are often expressed through complex
indicators. Indicators are a valuable component in a Personal Data Store because through
them a user can quickly understand her own behavior, and improve her self-awareness.
Therefore, expressive indicators capturing complex patterns of human behavior are a fun-
damental component of the models which are part of PDS. In particular, for a user can be
useful to figure out how much she is systematic and repetitive in her daily activities. On
the other hand, comprehending the level of predictability of a set of users can be a great



98 CHAPTER 8. PERSONAL DATA MODELS

value for commercial enterprises because knowing for each customer if she is systematic,
or not, and in which different dimension, might have important consequences for sales.

In this section we consider as users the customers of the retail market chain described
in Section 6.2. A customer might not be predictable at the time of the day she visits the
shop, but she might be highly predictable in the products she always purchases. Having
this information expressed as an indicator of predictability, a customer could consider to
change her dietary habits, or to focus her shopping sessions in a time of the day when the
shops are less crowded instead of going randomly. In addition, from the enterprise point
of view, a systematic customer could be more valuable because she spends more, then the
shop might want to encourage more and more people to be systematic.

By applying Personal Data Mining techniques, we design two personal indicators for
Personal Data Analytic that can be part of the user profile revealing the level of unpre-
dictability of a customer [129]: the Basket Revealed Entropy (BRE) measure of how un-
predictable a customer’s basket is with respect to typical basket compositions, the Spatio-
Temporal Revealed Entropy (STRE) quantifies how unexpected each customer shopping
session in relatively to the spatio-temporal dimension, i.e., the shop, day of the week and
time of the day. Thus, instead of using a pure business intelligence approach that can be
summarized with the OLAP framework [170] to treat retail market data, we use a more data
mining oriented approach. However, we do not use the mined patterns directly as compo-
nent of the user profile Pu, but we use them to construct systemic measures estimating the
degree of an individual’s predictability. Then, on top of these systemic measures, we apply
a collective data mining step, identifying the main customer classes based on their pre-
dictability. The two indicators for the Personal Data Model and the Personal Data Mining
procedure to extract them improve over the state of the art by combining both dimensions:
they evaluate customer predictability in what they buy and in where they buy it.

8.1.1 Dataset

We build these two indicators on the Coop dataset described in Section 6.2. For data
cleaning purposes, we perform a series of filters on this dataset. First, we select all the
observations recorded during 2012. Second, we focus on a narrow area of operation. The
supermarket company was founded in Leghorn and we consider exclusively the shops that
are in this Italian province. We do so because the market penetration of the company
in this province is so high that we can effectively say that all inhabitants of Leghorn are
represented in the data. Finally, we drop all customer who did not perform at least a
shopping session per month. The area around Leghorn has a high influx of tourists from
other areas of Tuscany, so supermarket customers from other provinces might sporadically
use their card in shops in Leghorn province, thus introducing noise in our estimates.

After this filter phase, we have 56,448 customers. We underline that “customers” refers
to customer cards and a card can be shared by an entire family. The province of Leghorn
had a population of 343,003 in 2012. Assuming an average size of three people per house-
hold, we estimate that we cover at least 50% of the population. The total number of distinct
products bought is 84,362. The total item scans in the dataset amount to 71,172,672, and
it has been generated from 23 shops. Fig. 8.1 depicts stylized facts about shopping sessions
(baskets). Fig. 8.1 (a) is the number of baskets per customer. The mode is ∼100, meaning
that customers usually visit the shops around twice a week. The distribution does not
follow the Zipf law because Leghorn does not have enough inhabitants to support it, since
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Figure 8.1: Distributions of baskets per customer (a), distribution of baskets per shop (b), distri-
bution of baskets per weekday (c) and distribution of baskets per time of the day (d).

50% or more of them are actually regulars. Fig. 8.1 (b): the number of baskets per shop.
Each of the 23 shops is represented here. There is a correlation between shop type and
the number of customers it attracts. Fig. 8.1 (c): the number of baskets per weekday.
Customers have a remarkable preference for some days instead of others, also given the
season. Fewer shopping sessions happen on Thursday, while Wednesday is the most pop-
ular day. Fig. 8.1 (d): the number of baskets per time of the day. An M-shaped pattern
appears: most shopping sessions happen in the morning or after working hours. From Fig.
8.1 we see that there are some general patterns in the customer behavior. Customers tend
to shop twice a week, they are likely to be attracted to larger shops, they have favorite
weekdays and time of the day to perform their shopping sessions. On these observations,
we build our personal behavior entropy measures.

8.1.2 Method

The methodology we propose aims at estimating the behavioral entropy of each cus-
tomer. The two entropy measures are the Basket Revealed Entropy (BRE), and the Spatio-
Temporal Revealed Entropy (STRE). These measures tell us respectively how unpredictable
is the basket composition and the visiting pattern of a given customer. Thus, the customer
profile is formed by the couple of these measures, i.e., Pu = 〈breu, streu〉.

Basket Revealed Entropy

The objective of the mining step is to detect what are the behavioral patterns of a customer.
There are two types of behavioral patterns in which we are interested: basket composition
and spatio-temporal behavior. For the basket composition, we apply a frequent itemset
mining algorithm [111]. For each customer, we apply the Apriori algorithm [6] on her
baskets to detect her patterns. We drop the non-frequent patterns, i.e., the ones that are
not present in at least minsup baskets. Then, we assign each of her baskets to the largest
pattern it contains. Note that each basket must be assigned to a pattern, and a pattern
can classify multiple baskets. As alternative, we could have applied the txmeans algorithm
described in Section 7.2. However, it was developed and refined only after the finalization
of the unpredictability measures described in this section.

To better understand the procedure, consider the following example:

1. {Cheese, Banana, Tomato, Bread} 4. {Cheese, Banana, Tomato, Bread}

2. {Cheese, Banana, Tomato} 5. {Cheese, Meat, Shoes, Bread}

3. {Cheese, Banana, Tomato, Coffee}
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Setting minsup=3, i.e., each pattern has to be present in at least three baskets, the mining
algorithm will find the following patterns:

• Support = 5: {Cheese} • Support = 3: {Bread, Cheese}, {Bread}

• Support = 4: {Cheese, Banana, Tomato}, {Banana, Tomato}, {Cheese, Banana},
{Cheese, Tomato}, {Banana}, {Tomato}.

We name those patterns representative baskets. In the following we use patterns and
representative baskets as synonyms. Finally, we classify baskets 1 to 4 with the {Cheese,
Tomato, Banana} representative basket, because it is the longest pattern contained in
them; and basket 5 with the representative basket {Cheese, Bread}. We now have a series
of representative baskets with a given probability of appearance for our customer.

The Basket Revealed Entropy (BRE) is calculated following the information-theoretic
concept of entropy [262] where RB is the set of representative baskets of our customer, rbi
is the i-th representative basket frequency (i.e., number of occurrences), f(rbi) is the repre-
sentative basket’s relative frequency and n=|RB| is the number of representative baskets:

BRE(RB) = −
n∑
i=1

f(rbi) log f(rbi)/ log n ∈ [0, 1]

BRE is normalized with log n, that is the expected entropy of a fully random set of patterns.
In our example we have two representative baskets, with relative frequencies 4/5 and 1/5.
Thus, the BRE of our hypothetical customer is ∼0.72.

Spatio-Temporal Revealed Entropy

The calculation of the Spatio-Temporal Revealed Entropy (STRE) is similar in spirit to the
procedure outlined in the previous section. However, the first computational step is easier.
Here, we connect each basket to its spatio-temporal characteristics. These characteristics
are always represented by a tuple of three elements: the shop in which the basket was
purchased (which provide the spatial dimension), the time of the day and the day of the
week (the temporal dimension). Since all tuples always have three elements, we do not
need to perform a mining step, and we can just count the relative frequency of each possible
tuple. The relative frequencies are then fed into the entropy formula.

Let consider the time and space of the shopping sessions of our hypothetical customer:

1. Shop 25, Weekend, Evening 4. Shop 19, Weekday, Late Afternoon

2. Shop 19, Weekday, Late Afternoon 5. Shop 19, Weekday, Early Morning

3. Shop 19, Weekday, Late Morning

We have four patterns, three with probabilities 1/5 and one with probability 2/5, which
results in an entropy ∼0.96. Note that we aggregate days in two bins, weekday and
weekends, as keeping days separate would generate too many fluctuations.
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Algorithm 7: BRE(baskets, minsup)
Input : baskets - personal set of baskets

minsip - minimum support for representative baskets
Output: bre - basket revealed entropy

1 IS ← getItemSet(baskets,minsup);
2 RB ← getReprBasketsCount(baskets, IS);
3 bre← −

∑
rb∈RB f(rbi) log f(rbi)/ log(|RB|);

4 return bre;

Algorithm 8: getReprBasketsCount(baskets, IS)
1 RB ← ∅;
2 for b ∈ baskets do
3 D ← {rb ∈ IS | rb ⊆ b};
4 if D = ∅ then { RBb ← 1; continue; };
5 D′ ← argmaxrb∈D |rb ∩ b|;
6 if |D′| = 1 ∧D′ = {rb} then {RBrb ← RBrb + 1; continue; };
7 D′′ ← argmaxrb∈D′ sup(rb);
8 if |D′′| = 1 ∧D′′ = {rb} then {RBrb ← RBrb + 1; continue; };
9 D′′′ ← argminrb∈D′′ lift(rb);

10 if |D′′′| = 1 ∧D′′′ = {rb} then {RBrb ← RBrb + 1; continue; };
11 for rb ∈ D′′′ do RBrb ← RBrb + 1

|D′′′| ; ;
12 end
13 return RB

BRE Algorithm

In this section we provide and discuss the pseudocode of our analytic framework. We focus
on pseudocode for BRE as it is the most complex. STRE computation does not require a
mining step and every basket is already naturally associated with its own triple (shop, day-
of-week, time-slot). The full procedure has three logical steps that are reported in Alg. 7.

Step #1 is the detection of the frequent patterns from the baskets of a customer, i.e., the
individual history Hu. It can be implemented with any itemset mining algorithm. In our
experiments we implemented getItemSet(baskets,minsup) with Apriori [6]. In the case of
STRE, we simply calculate the relative frequencies of the triple (shop, day-of-week, time-
slot). The set IS contains all frequent patterns appearing for the customer at leastminsup
times. We want all the patterns returned by Apriori and not only maximal and closed
patterns because otherwise we could not consider useful patterns (e.g. the pattern {Cheese}
in the example). Note that in our experiments we used minsup as a relative frequency.

Step #2 is the core of our contribution. It classifies each basket of the customer with
the maximum matching frequent pattern. Its routine is expanded in Alg. 8. For every
basket, we define set D as the set of all IS patterns that are completely contained in
the pattern. Note that there might be no patterns included, depending on the minsup
threshold choice. In this case we say that this basket can be only represented by itself,
and its frequency is set to 1 (Steps #4). Otherwise we have to extract from D the most
significant representative basket that we use to classify the basket. The cascade of “if”
conditions selects the representative basket rb as the most significant if: (i) there is one
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representative basket larger than any other representative basket in D (i.e., it contains the
absolute highest number of elements, Step #6); (ii) there is one basket with the highest
support (Step #8); (iii) there is one basket with the lowest lift (Step #10). In data
mining, lift tells us how much more than expected a given customer purchased a given
product: lift > 1 means higher than expected, lift < 1 means lower than expected. We
use the lowest lift because being the least unexpected means to be more representative. In
all cases, the representative basket rb is found and its frequency (RBrb) is increased by 1.
If it is impossible to reduce the set of included representative baskets to only one element,
we classify the basket with all the remaining representative baskets, which are weighted
one over the number of surviving representative baskets (Steps #11). Once we have the
frequency of all representative baskets, we calculate BRE in Step #3 of Alg. 7.

Therefore, given a customer u, her Personal Data Model capturing her shopping be-
havior Pu, can be equipped with the shopping unpredictability indexes BRE and STRE
〈breu, streu〉. By oberving these indexes a customer can understand how much is system-
atic in her basket composition and in when and where she purchases.

8.1.3 Case Study

In this section, we deploy our indexes to analyze the relationship between the behavior
of customers and their shopping sessions1. Before moving to the results, we provide our
motivations for the required parameter minsup (see Alg. 7). For this specific study
we wanted a common concept of minimum support among all the customers analyzed,
therefore we did not use a personal strategy like those generally employed in this thesis.
We tested different values for minsup, from 18% to 36%. Note that minusp influences the
average pattern length we found. Higher minsup generates shorter, and less descriptive,
patterns: the more elements a pattern has, the least likely it is to appear in full. Fig. 8.2
(left) depicts this effect. minsup also influences the distribution of BRE values. Higher
minsup generates less patterns and therefore BRE tends to take lower values, as each
pattern is a new symbol and more symbols require more bits to be encoded. Fig. 8.2 (right)
depicts this effect. We chose minsup=24 as a good balance between the expressiveness of
the detected patterns, and it does not skew the BRE distribution too much. Note that
minsup has no effect on STRE, as for STRE we consider all possible triples (shop, day-of-
week, time-slot) and we do not use any frequent itemset mining technique. In particular, in
our experiments we selected day-of-week in {weekday, weekend}, and time-slot in {07:00-
9:30, 09:30-12:00, 12:00-17:00, 17:00-19:30, 19:30-21:00} according to Fig. 8.1 (d).

We calculate the BRE for all customers included in the dataset using minsup = 24%,
Fig. 8.3 (left) depicts the distribution: a skewed bell shape, peaking at 0.79; where 80%
of the customers take values between 0.62 and 0.84. The 10th and 90th percentiles are
highlighted in green and purple, respectively. Customers beyond the 90th percentile are
“casual”, customers below the 10th percentile are “systematic”, and the remaining customers
are “standard”. Fig. 8.3 (right) reports the STRE customer distribution. The distribution
is a skewed bell shape, similar to the one observed for the BRE measure. The peak is now
around 0.85, and 80% of the customers take values between 0.64 and 0.88. Also in this
case, we report the 10th and 90th percentiles with green and purple lines.

1A dataset sample and the code to calculate BRE and STRE are available at https://goo.gl/UCqrUq
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Figure 8.2: The effect of minsup on the length
of the extracted patterns (left) and on the distri-
bution of the BRE values (right).

0.0 0.2 0.4 0.6 0.8 1.0
BRE

0.0

0.2

0.4

0.6

0.8

1.0

cu
st

o
m

e
rs

 r
a
ti

o

sy
st

e
m

a
ti

c

st
a
n
d
a
rd

ca
su

a
l

10th percentile

90th percentile

0.0 0.2 0.4 0.6 0.8 1.0
STRE

0.0

0.2

0.4

0.6

0.8

1.0

cu
st

o
m

e
rs

 r
a
ti

o

sy
st

e
m

a
ti

c

st
a
n
d
a
rd

ca
su

a
l

10th percentile

90th percentile

Figure 8.3: Distributions of the BRE and STRE
measures in our dataset, with highlighted 10th
and 90th percentiles.

Product Sup Product Sup
Bananas 82.44 Fresh Eggs 64.08
Vine Tomatoes 74.22 Parsley 62.71
Sugar 72.04 Nectarines 62.55
Fennels 69.12 Green Tomatoes 62.49
Dark Zucchini 67.80 Fresh Eggs (Organic) 62.23
Bright Zucchini 67.37 Roma Tomatoes 61.49
Cherry Tomatoes 65.52 Melons 61.17

Table 8.1: The list of products of the systematic customers.
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Figure 8.4: SSE for k-means runs.

Systematic Basket

We analyze here the products purchased by the systematic customers. We define a sys-
tematic customer as a customer who is below the 10th percentile either for the BRE or for
the STRE unpredictability measures. Tab. 8.1 reports the list of the systematic products.
We dropped from this list all the meaningless products such as discount coupons and the
plastic shopping bag. From the list, we see that this selection includes mostly perishable
products, from the fruit, vegetable and diary sectors. The only exception is sugar. It ap-
pears that the systematic customer’s basket is characterized by very fresh products, that
have a short shelf life and need to be purchased often.

Customer Classification

We now classify customers according to their observed 〈breu, streu〉 values. We represent
each customer as a point in a two dimensional space. Her coordinates in this space are
her BRE and STRE values. Then, we apply the k-means clustering algorithm [141] to
detect clusters of customers in this space. The k-means algorithm requires to specify k,
the number of clusters, or customer classes. The standard approach for determining k is
to run k-means with varying ks (from 1 to 20 in our case), to calculate the Sum of Squared
Errors (SSE) for each k and choose the highest k beyond which SSE does not improve
significantly. In our case, we have k=5. Fig. 8.4 depicts the evolution of the SSE values.

For each detected cluster, k-means automatically detects the centroid, i.e., the most
representative point of the cluster. If a point x belongs to cluster A, then the centroid of
A is the closest centroid to x. The centroids are also representative of the cluster, as their
BRE and STRE values are the averages of the cluster. In Tab. 8.2 we report the statistics
of the five detected clusters. We can see that the cluster sizes are well balanced, where
three clusters contain around 20% of customers as expected. The exceptions are the larger
C cluster and the smaller E cluster. We also report the normalized BRE and STRE values
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Cluster Size BRE STRE
A 19.5% 0.45 0.57
B 17.3% 1.00 0.84
C 34.6% 0.50 1.00
D 21.7% 0.00 0.81
E 6.9% 0.17 0.00

Table 8.2: Statistics of the detected customer
clusters: relative size, and normalized average
BRE and STRE scores.

STRE
Low Medium High

BRE
High B
Medium A C
Low E D

Table 8.3: The relative positions of the detected
clusters in the BRE-STRE space. Note the trian-
gular structure.

of each cluster’s centroid. The normalization simply rescales BRE and STRE such that
the minimum of all centroids equals to zero and the maximum equals to one.

From these values, we can easily characterize the five clusters. To aid the understand-
ing of our interpretation, we display a simplified representation of the relative position
of the centroids in the two dimensional space in Tab. 8.3. We can see that each clus-
ter can be characterized as follows according to BRE and STRE respectively: A medium
BRE medium STRE; B high BRE high STRE; C medium BRE high STRE; D low BRE
high STRE; E low BRE low STRE. From these results we can infer that the BRE-SPRE
space has a triangular shape. Unpredictability in basket composition implies unpredictabil-
ity also in the spatio-temporal dimension. On the other hand, unpredictability in the
spatio-temporal dimension does not imply anything in the basket dimension (see clus-
ter D for instance): the fact that we cannot predict when and where a customer will
buy next time does not hinder us in predicting what products she is going to buy.

Before looking at more advanced statistics, we point out that the very regular cus-
tomers, the ones characterized by both a low BRE and a low STRE, are the ones classified
in cluster E. Cluster E is the smallest cluster, including the fewest number of customers,
just below 7%. We conclude that the set of very regular customers is actually a large
minority, at least in this supermarket chain. When projecting on one dimension, we see
that the customers with regular basket are less than 29% (clusters D and E), while the
spatio-temporal regular are still just 7%, due to the triangular shape of our space (they
can be found only in cluster E). In fact, we can conclude that most of the customers
are spatio-temporal irregular, but somewhat basket regular. The two largest clusters are
C and D and while they both have high spatio-temporal entropy, they also have low or
medium basket entropy. We can conclude that customers are more predictable in what
they buy, rather than in when and where they perform their shopping sessions.

We can now describe how the behavioral differences of the customers classified in the
various clusters impact the profitability. For each cluster, we can calculate the total and
per capita expenditures generated by customers classified in it, and we can calculate the
total number of baskets and the per capita average. All these statistics are reported in
Fig. 8.5. The most remarkable feature of this Figure is that it shows cluster E scoring
the highest in expenditure per capita. We can calculate each cluster’s leverage, that is
the ratio between revenue share and relative size of the cluster. For E, since it includes
6.9% of customers and the total revenue is 178.41 million euros, the leverage equals to
(15.84/178.41)/0.069=1.29. The second best is cluster D with a leverage of 1.15, while
clusters C and B lag behind with a leverage of 0.9 and 0.79 respectively. This fact is
hinting that the regularity might have a connection to her expenditure.
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Figure 8.5: The characteristics of customers belonging to the different clusters: on the left the
customer expenditures, totals on the left and per capita on the right.
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Figure 8.6: The distributions of the average expenditure (left) and the average number of baskets
(right) for null models “All”, “All except systematic” (“All - S”) and “All except E” (“All - E”).

Looking at the broader picture, we see that there is a negative relationship between
irregularity and per capita expenditure. We sort clusters from the most to the least ir-
regular (by summing their BRE and STRE centroid values): B → C → A → D → E.
We obtain a reverse order with the average per capita expenditure (see Fig. 8.5): E →
D → A → C → B. We already saw that most customers are irregular in their spatio-
temporal patterns. From the Figure, we also see that spatio-temporal irregular customers
visit the stores more sporadically. The average revenue generated per customer is higher
for customers with low behavioral entropy. Cluster E is only two fifths in size of cluster
B, but generates almost two thirds of cluster B’s total revenues. However, the revenue
from regular customers is low in absolute terms. The observed patterns have profound
implications both for individual customers and for the supermarket company.

Validation

We now turn to some sanity checks to understand the significance of cluster E’s observed
profitability. We start our result validation from the systematic basket composition. For
each customer, we calculate the lift measure for the products in Tab. 8.1. We then count
how many systematic customers have lift>1 for each of these products and we compare
the three customer classes: systematic, standard and casual. We see that, on average, for
each product there are 16% (st.dev. 5%) more systematic customers with lift>1 than
casual ones, and 9% (st. dev. 4%) more systematic than standard.
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Figure 8.7: Heatmaps depicting the relationship between the combined behavioral entropy (x axis)
and the expenditure level (y axis, in log scale). We have both the average cluster composition of
the cell (left, from 0 = A , to 4 = E) and the simple count of the number of customers (right).

Now we focus on understanding if cluster E is really the most profitable per capita or
if its expenditure level is not significantly different from a random occurrence. We perform
two tests: a null model validation and a targeted model validation. Finally, we perform
a last validation abstracting from the detected clusters and testing the direct connection
between behavioral entropy and personal expenditure. In the null model validation we want
to explain the expenditure level and the number of baskets of the customers belonging to
cluster E. We create some random E clusters with different characteristics and we observe
their expected characteristics. We define three models called “All”, “All except systematic”
(“All - S”) and “All except E” (“All - E”). We run each model a thousand times and we plot
the distribution of their expenditure levels and the number of baskets in Fig. 8.6. The red
band in Fig. 8.6 is the observed E value. The “All” model constructs a purely random E
cluster. We extract uniformly at random 7% of the customers in our data and we calculate
their average expenditure and their average number of baskets. Fig. 8.6 reports that
this model has an expected expenditure of 3,200 euros, that is slightly more than three
quarters of the actual E expenditures. The “All except systematic” model constructs a
random E cluster by (randomly) selecting customers outside the “systematic” cut, i.e., all
customers that have BRE and STRE values higher than the 10th percentile. By restricting
to these customers we attempt to counter the argument that it is the BRE and STRE values
driving the expenditure and not other common factors of customers included in cluster E.
However, we obtain again a lower expected expenditure: 3,400 euros or just 83% of the
actual expenditure of cluster E. Finally, with the “All except E” we construct a random
E cluster by selecting customers at random from the pool of customers that are not part
of the original cluster E. In this model we investigate if it is likely to find a random
composition of customers outside cluster E that are characterized by higher expenditure
levels than the members of cluster E. This is the model that performs the worst, even
worse than the “All” model, proving that “All” model’s performance was actually driven by
E cluster members. In “All except E”, the expected expenditure is just below 3,000 euros.
The number of baskets of cluster E members is impossible to match too. In this case, the
“All” performs better than “All except systematic”, hinting that the number of baskets is
more dependent on the behavioral entropy than the expenditure level.

Moving to targeted model validations, we define two: one based on expenditure and one
based on the behavioral entropy. Differently from before, we are not composing a random
E model, but we are sorting all customers in descending order of the chosen measure. Start-
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Dependent variable:
log(expenditure) log(baskets)

(1) (2) (3) (4) (5) (6)

BRE −1.123∗∗∗
(0.0021)

−1.124∗∗∗
(0.0020)

STRE −1.152∗∗∗
(0.0026)

−1.738∗∗∗
(0.0024)

BRE * STRE −1.269∗∗∗
(0.0019)

−1.492∗∗∗
(0.0018)

constant 8.738∗∗∗

(0.017)
8.754∗∗∗

(0.020)
8.635∗∗∗

(0.012)
5.360∗∗∗

(0.016)
5.833∗∗∗

(0.019)
5.394∗∗∗

(0.011)
Observations 56,448 56,448 56,448 56,448 56,448 56,448

R2 0.048 0.034 0.071 0.055 0.088 0.112
Adjusted R2 0.048 0.034 0.071 0.055 0.088 0.112

Residual Std. Error 0.676 0.681 0.668 0.631 0.620 0.611
F Statistic 2, 851, 457∗∗∗ 1, 970, 123∗∗∗ 4, 322, 123∗∗∗ 3, 277, 555∗∗∗ 5, 419, 480∗∗∗ 7, 131, 251∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8.4: BRE and STRE effect in predicting the total expenditure level (models 1 to 3) and
the number of baskets (models 4 to 6) of a customer for the year 2012. This is a standard OLS
model. The R2 can be interpreted as the square of the correlation coefficient of the variables.

ing with expenditure, we collect the 7% top-spending customers and we count how many of
them are classified in cluster E. The result is 14.66%, meaning that cluster E is represented
in the top spending customers twice as much as its size would suggest. This confirms the
strong relation between E and high expenditure levels. If we include also the cluster char-
acterized by the second most regular customers, cluster D, the share goes up to 38.7%. The
second targeted model involves selecting the customers in the “systematic" cut regardless
the cluster in which they were classified. Their expenditure levels are very high, higher
than the members of cluster E. This hypothetical super-systematic cluster has an expected
expenditure level of almost 4,600 euros, as the orange band depicts it in Fig. 8.6.

For our last validation step we abstract from the cluster division, to observe the direct
relationship between a customer’s behavioral entropy and her profitability for the retail
company. This is done by plotting the behavioral entropy of a single customer against
her expenditure level. Fig. 8.7 shows two variants of this plot. In both cases we have a
heatmap that groups the customers in a given interval of expenditures and of entropy. The
x axis combines BRE and STRE by multiplying them. The y axis reports the logarithm of
the expenditure level. On the left of Fig. 8.7, we have the average cluster composition of
the cell. To calculate this average each cluster is mapped to an integer. The heatmap has
a left to right gradient, where the lowest values on the x axis correspond to highest clusters
(D and E). The heatmap contains a negative relationship between combined entropy and
expenditure. To better highlight this negative relationship, on the right of Fig. 8.7 we use
a different coloring logic for the heatmap. Instead of reporting the cluster composition, we
color the cell according to its number of customers. Blue means few or no customer, red
means a high concentration of customers. We can see that now the negative relationship is
more clear: the densely populated cells show a downward pattern. To quantify objectively
the size of the effect depicted in Fig. 8.7, we set up a model where we attempt to predict the
logarithm of the customer’s expenditure (or baskets) by using her BRE and STRE level.
First we test the two measures separately, then we create a global measure by multiplying
them. Tab. 8.4 reports the result of this regression. Both BRE and STRE have significant
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effects, with comparable levels. We are using a log-linear space, thus a coefficient of -1.123
means that increasing the entropy level by 1 is associated with an expected expenditure
drop of almost a third (e−1.123 ∼ 0.325)2. An hypothetical perfectly predictable customer
(entropy = 0) would make three times as many profits for the company than a hypothetical
completely unpredictable customer (entropy = 1). Combining BRE and STRE together,
the effect almost reaches a fourfold increase (e−1.269 ∼ 0.281). The effect is stronger if
we predict the number of baskets instead of the expenditure level. The unit decrease in
combined entropy is associated with almost a fivefold increase in the number of baskets
purchased (e−1.492 ∼ 0.225).

8.1.4 Conclusion

We have proposed novel personal indicators of systematic shopping behavior for enriching
the model in the Personal Data Store and we have investigated the effects of customer
predictability in the retail market scenario. We have estimated how much the behavior of
a customer is predictable along two dimensions: basket composition and spatio-temporal,
i.e., where and when a customer purchases the products she needs. We have shown that
it is possible to divide the customers of the PDE at collective level into systematic and
non-systematic, and even define five distinct classes. The systematic customers have been
showed to be a minority, but their per capita expenditure and the expected number of
baskets is much higher than average. Our individual measures have proved to be significant
predictors of the value of a customer for the supermarket and point out that nudging
customers to be regular could be an interesting strategy to increase revenues.

8.2 A Personal Data Model for Musical Preferences

Since music is a pervasive dimension of our life, and due to the abundance of online data
sources like Spotify, iTunes and Last.Fm, we propose a Personal Data Model able to capture
the characteristics and the systematic patterns which are present in our musical listening
behavior. We call this model Personal Listening Data Model (PLDM ) [134]. The PLDM
is built on a set of personal listening represented by an abstract data type taken as input.
A listening is formed by the song listened, the artist of the song, the album, the genre and
the listening time-stamp. According to Personal Data Analytics, the PLDM is a particular
type of the Personal Data Model designed for musical listening data.

The PLDM contains some indicators extracted from the listening features that sum-
marize the listener and explain her level of repetitiveness in the listening. Moreover, the
PLDM is formed by some listening patterns extracted from the listening frequencies. These
patterns are the top listened genre, artist, album etc. and the most representative pref-
erences. In addition, the PLDM contains the frequent listening sequences. Those are the
typical repetitions followed by the user during a listening session.

8.2.1 Personal Listening Data Model

In this section we formally describe the Personal Listening Data Model. By applying the
following definitions and functions of Personal Data Analytics it is possible to build for
each user a listening profile Pu giving a picture of her habits in terms of listening.

2See http://goo.gl/rD6YTy for an explanation of our coefficient.
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Figure 8.8: A listening l = {〈time-stamp, song, artist, album, genre〉} is a tuple formed by the
time-stamp indicating when the listening occurred, the song listened, the artist which sings the
song, the album the song belongs to, and the genre of the artist.

Definition 9 (Listening). Given a user u, we define Lu = {〈time-stamp, song, artist, album,
genre〉} as the set of listening performed by u.

Lu corresponds to Hu w.r.t. listening data. Since a song can belong to more than a
genre and can be played by more than an artist, each listening l (Fig. 8.8) is an abstraction
of a real listening. However, we can assume this abstraction without losing in generality.

From the set of listening Lu, for each user we can extract the set of songs Su, artists Au,
albums Bu and genres Gu. For example, Au={artist|〈·, ·, artist, ·, ·〉 ∈ Lu}, Gu={genre|
〈·, ·, ·, ·, genre〉 ∈ Lu}, etc. Their sizes (| · |) are valuable indicators.

The user behavior can be summarized through frequency dictionaries indicating the
support (i.e. relative number of occurrences) of the listening features.

Definition 10 (Support). The support function returns the frequency dictionary as a
set of couples (item, support) where the support of an item is obtained as the number of
occurring items on the number of listening.

sup(X,L) = {(x, y)|y = |Y |/|L| ∧ x ∈ X ∧ Y ⊆ Ls.t.∀l ∈ Y, x ∈ l} (8.1)

We define the following frequency dictionaries: su=sup(Su, Lu), au=sup(Au, Lu), bu=
sup(Bu, Lu), gu=sup(Gu, Lu), du=sup(D,Lu) and tu=sup(T, Lu) where D={mon, tue,
wed, thu, fri, sat, sun} contains the days of weeks, and T={(2-8], (8-12], (12-15], (15-18],
(18-22], (22-2]} contains the time slots of the day.

These dictionaries can be exploited to extract indicators and patterns.

Definition 11 (Entropy). Given dictionary X = {(x1, y1), . . . , (xn, yn)}, the entropy func-
tion returns the normalized entropy defined as

entropy(X) =
−
∑n

i=1 P(yi) log2 P(yi)

log2 n
∈ [0, 1] (8.2)

The entropy tends to 0 when the user behavior is systematic, tends to 1 when the
behavior is not predictable. These indicators are similar to those related with shopping
behavior described in the previous Section and in [129]. We define the entropy for songs,
artists, albums, genres, days and time-slots as esu=entropy(su), eau=entropy(au), ebu=
entropy(bu), egu=entropy(gu), edu=entropy(du) and etu=entropy(tu).

Figure 8.9: The raw listening of a user Lu can be turned into a Personal Listening Data Store
Pu extracting the songs Su, artists Au, albums Bu and genres Gu and by applying to them the
functions sup, top, repr, entropy, getseq and freqseq.
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Figure 8.10: The PLDM is formed by indicators (|Lu|, |Su|, |Au|, |Bu|, |Gu|, and entropy val-
ues), by frequencies (the support dictionaries) and by patterns (most listened preference, most
representative preferences).

The simplest pattern we consider is the most listened song, artist, genre, etc.

Definition 12 (Top). Given dictionary X = {(x1, y1), . . . , (xn, yn)}, the top function
returns the most supported item. It is defined as:

top(X) = argmax
(x,y)∈X

(y) (8.3)

We define the most listened songs, artists, albums and genres as ŝu=top(su), âu=top(au),
b̂u=top(bu) and ĝu=top(gu), respectively.

Moreover, we want to consider for each user the set of most representative, i.e. signifi-
cantly most listened, subsets of artists, albums and genres.

Definition 13 (Repr). Given dictionary X = {(x1, y1), . . . , (xn, yn)}, the repr function
returns the most representative supported items. It is defined as:

repr(X) = knee
(x,y)∈X

(y) = argmax
(x,y)∈X∗,y′∈X′

(|y − y′|) (8.4)

where X∗ is X sorted with respect to the supports y, X ′ = {y′|y′ = mx′ + n} with
m=(max(sup(X))−min(sup(X)))/|X| and n=min(sup(X)).

The method repr(X) returns a set of preferences with a support higher than the sup-
port of most of the other listening. For example if gu={(rock, 0.4), (pop, 0.3), (folk, 0.1),
(classic, 0.1), (house, 0.1)}, repr(gu) returns {(rock, 0.4), (pop, 0.3)}.

This result is achieved by employing the knee method [275]. Given a dictionary X
of pairs composed by item x and support y, the knee method sorts the pairs (xi, yi)
according to the supports generating X∗. Then, it selects the point x∗k on the support
curve X∗ which has the maximum distance |y∗k − y′k| with the correspondent point x′k in
X ′, where X ′ is the straight line passing through the minimum and the maximum point
of the curve described by X∗. In this way the knee x∗k is different for each user because it
is driven by personal data. Finally, the method returns the pairs with a support greater
or equal than the support yk of the knee xk. We define the most representative songs,
artists, albums and genres as s̃u=repr(su), ãu=repr(au), b̃u=repr(bu) and g̃u=repr(gu),
respectively. Obviously, we have ĝu⊆g̃u⊆gu that holds also for songs, albums and artists.

By applying the definitions described above on the user listening Lu we can turn the
raw listening data of a user into a complex personal data structure (see Fig. 8.9) that
we call Personal Listening Data Model (PLDM). The PLDM characterizes the listening
behavior of a user by means of its indicators, frequencies, and patterns (see Fig. 8.10).

Definition 14 (Personal Listening Data Model). Given the listening Lu of a user u we
define the user personal listening data model as

Pu = 〈|Lu|, |Su|, |Au|, |Bu|, |Gu|, esu , eau , ebu , egu , edu , etu , indicators

su, au, bu, gu, du, tu, frequencies

ŝu, âu, b̂u, ĝu, s̃u, ãu, b̃u, g̃u〉 patterns
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Figure 8.11: Distributions of the number of songs |Su|, artists |Au|, albums |Bu| and genres |Gu|
respectively. The black vertical lines highlight the means.

Figure 8.12: Distributions of entropy for artists eau , genre egu , day of week edu and time of day
etu respectively. The black vertical lines highlight the means.

8.2.2 Case Study

In this section we show the analytical benefits of the application of the PLDMs on the data
extracted from Last.Fm (see Section 6.4). Given the listening Lu, we calculated the PLDM
Pu for each user u ∈ U . The obtained PLDMs allowed us to estimate how the Last.Fm
audience is segmented. Another finding is that the musical profile of each user is best
outlined using a limited set of distinct musical preferences, but not by a unique liking.

Indicators Analysis

The first analysis we report is related to the indicators of the PLDMs {Pu} extracted. In
Fig. 8.11 are reported the distributions of the number of users which have listened a certain
number of songs |Su|, artists |Au|, albums |Bu| and genres |Gu|. The first distribution is
right-skewed, i.e., most of the users have listened to about 140 songs. This implies that
some tracks were listened more than once. On the other hand, the other distributions are
left-skewed: a typical user listens about 60 artists, 70 albums and 10 genres.

Fig. 8.12 depicts the distributions of the entropy.It emerges that users are much more
systematic with respect to the listening time (day of week and time of the day) than with
respect to what they listen. This behavior is in opposition to what happens in shopping
[129]. Since the artist and genre entropy are right-skewed, it seems that most of the users
are not very predictable with respect to the genre or to the artist. This is a first clue that
is very unlikely that exists a unique prevalence towards a unique artist or genre.

Fig. 8.13 (left) shows the heat-map of the correlations among the indicators. Some of
them like |Au|, |Bu| and |Gu| are highly correlated3 (cor(|Au|, |Bu|)=0.86, cor(|Gu|, |Bu|=
0.64)): the higher the number of artists or genres, the higher the number of albums listened.
Other interesting correlations are cor(|Bu|, egu)= − 0.33 and cor(|Bu|, eau)=0.55. Their

3The p-value is zero (or smaller than 0.000001) for all the correlations reported.
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Figure 8.13: Correlation matrix (left)): the darker the more positively correlated, the lighter the
more negatively correlated. Scatter density plots of number of albums |Bu| and genre entropy egu
(center) and number of albums |Bu| and artists entropy eau (right).

etu edu esu eau ebu egu size
A 0.8067 0.8442 0.9744 0.8591 0.8794 0.8461 0.44
B 0.7092 0.7234 0.9305 0.7001 0.6732 0.8862 0.13
C 0.4672 0.3366 0.9254 0.7438 0.7717 0.8751 0.06
D 0.5568 0.7687 0.9748 0.8666 0.8855 0.8383 0.19
E 0.7484 0.5624 0.9775 0.8739 0.8918 0.8306 0.19

Table 8.5: Centroids for the entropy and size of the clusters extracted.

density scatter plots are reported in Fig. 8.13 (center, right). They tell us that the higher
the number of albums listened, the lower the variability with respect to the genre and the
higher the variability with respect to the artists. From this result we understand that a
user listening to many different albums narrows her musical preferences toward a restricted
set of genres, and that she explores these genres by listening various artists of this genre
and not having a clear preference among these artists.

Segmentation Analysis

The second analysis we propose investigates the existence of different groups of listeners
with respect to their indicators in the PLDMs {Pu}. We applied the clustering algorithm
K-Means [275] by varying the number of clusters k ∈ [2, 30]. By observing the trend of the
sum of squared error [97] we decided to select 5 as the number of clusters. In Fig. 8.14 are
described the radar charts representing the centroids while in Table 8.5 are reported the
value of the centroids and the size of the clusters.

The biggest cluster is A. It contains the majority of the listeners. It seems that these
listeners use the web service without a specific listening schema, i.e., they reproduce the
tracks using the random function. However, a peculiarity of these users, is that they are
more repetitive than users in the other clusters with respect to the genres.

In opposition with A, users in clusters B and C do not have a set of genres which is
clearly preferred on top of the others, but they are the most systematic users in terms of
albums and artists listened. This means that they like a concise set of artists regardless of
their genre and they keep listening only them. The main difference between B and C is
that users of cluster B are the most systematic in terms of albums and artists, while those
of clusters C are the most regular with respect listening in specific days and time slots.
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Figure 8.14: Radar charts for the centroids of the clusters extracted on the PMDLs.

Figure 8.15: Frequencies analysis for genre (top row) and artist (bottom row). First column:
distribution of number of users w.r.t the number of representative preferences. Second column:
distribution of number of users w.r.t the maximum difference in frequencies between the listening
preference. Third column: distribution of number of users w.r.t the support given by the repre-
sentative preferences. Last column: density scatter plot between the representative preferences
support and the ratio of their number on the number of all the possible artists or genres.

Finally, users in clusters D and E are similar to those in cluster A with respect to the
level of repetitiveness of listening of genres, artists, and albums. On the other hand, how
is highlighted by the last two radars in Fig. 8.14, they are complementary with respect to
the day of the week and to time of listening. Users in cluster D do not have a specific day
of the week but use the service constantly at the same time (e.g. during gym session or
during specific working areas). Conversely, users in cluster E do not have a specific time
slot but use the service periodically in specific days of the week (e.g. during the weekend).

We can conclude that exists a clear distinction among different groups of listeners.
From the clustering information originated from the Personal Listening Data Model, a
user could learn that is focusing too much on a certain genre or on certain artists and that
is not exploring what is outside her “musical confidence zone”.

Frequency Analysis

In this section we exploit the knowledge of the frequency vectors to demonstrate that
the most listened genre, album, and artist considered alone do not represent properly the
preferences of the users. To this aim we look at the frequency vectors au, gu, the top listened
âu, ĝu, and the most representative ãu, g̃u. In the following discussion we will refer ãu and
g̃u equivalently as x̃ and to the artists and genres contained in such sets as preferences.
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{ĝu} sup {âu} sup {g̃u} sup {ãu} sup
1 Rock 53.86 The Beatles 0.75 Rock 13.41 David Bowie 0.29
2 Pop 19.64 David Bowie 0.72 Pop 9.73 Arctic Monkeys 0.26
3 Hip Hop 5.05 Kanye West 0.56 Hip Hop 5.16 Radiohead 0.24
4 Electronic 2.21 Arctic Monkeys 0.54 Inide Rock 4.39 Rihanna 0.24
5 Folk 2.03 Rihanna 0.51 Folk 4.31 Coldplay 0.23
6 Punk 1.74 Lady Gaga 0.48 Electronic 4.26 The Beatles 0.22
7 Inide Rock 1.65 Taylor Swift 0.47 Punk 4.07 Kanye West 0.21
8 Dubstep 0.90 Radiohead 0.43 House 2.63 Muse 0.19
9 House 0.85 Muse 0.38 R&B 2.53 Florence 0.19
10 Metal 0.84 Daft Punk 0.37 Emo 2.11 Lady Gaga 0.19

Table 8.6: Top ten of top listened ({ĝu}, {âu}) and most representative ({g̃u}, {ãu}).

Fig. 8.15 reports the results for genre (top row) and artist (bottom row).The first
column shows the distribution of the number of users with respect to the number of rep-
resentative genres |g̃u| and artists |ãu|. In both cases the smallest value is larger than 1
indicating that each user has more than a preference. On the other hand, a large part of
all the genres and artists listened are removed when passing from x to x̃. Indeed, the mean
for the genres decreases from 10 to 3, the mean for the artist diminishes from 60 to 10.

The second column (Fig. 8.15) illustrates the distribution of the number of users with
respect to the maximum difference in frequencies between the listening preference obtained
as max(x̃)−min(x̃). For both features the mode of this value is close to zero. This proofs
that the highest preferences are similar in terms of listening for the majority of the users.

The third column shows the distributions of the users with respect to the most listened
artist support, mas=v s.t. (a, v)=âu, and most listened genre support, mgs=v s.t. (g, v)
=ĝu, and the representative artist support, ras=sum(v|(a, v)∈ãu), and representative
genre support, rgs=sum(v|(g, v)∈g̃u). It is evident the increase of the support when not
only the top but also all the representative preferences are considered.

The last column reports a density scatter plot of the representative preferences support
(rgs and ras) and the ratio of their size, i.e., |ãu|/|Au| and |g̃u|/|Gu| respectively. Since the
higher concentration of points tends to be ∼0.2 with respect to the x-axis and ∼0.5 with
respect to the y-axis, we have that for most of the users it is sufficient a limited number
of preferences (but more than one) to reach a very high level of support. This concludes
that each user can be described by few preferences that highly characterize her.

Finally, it is interesting to observe how the total support of the users and consequently
the ranks of the top ten artists and genres change when the preferences in |g̃u| and |ãu| are
considered instead of those in |ĝu| and |âu|. We report in Table 8.6 the top ten of the top
listened genres and artists and the top ten of the most representative genres and artists
with the users support, i.e., the percentage of users having that genre or artist as ĝu or âu,
and g̃u or ãu. We can notice how for the two most listened genres (rock and pop) there is
a significant drop in the total support, vice-versa the other genres gain levels of support.
The overall rank in the genre top ten is not modified very much. On the other hand, a
complete new rank appears for the artists with a clear redistribution of the support out
of the top ten. This last result is another proof that user’s preferences are systematic but
they are not towards a unique genre or artist, while they are towards groups of preferences.

Storage Analysis

To enhance the portability of the PLDM, we report in Fig. 8.16 the boxplots of the storage
occupancy of the data model PLDMs (left) and for the raw listening (right). The storage
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Figure 8.16: Boxplot of the data storage in MegaByte for the data model and for the raw data.

required by the data model is typically one third of the storage required by the raw data.
Moreover, the storage space of the data model will not grow very much when storing more
listening because the number of possible genres, artists, albums, songs is limited, while
the number of listening grows continuously. Thus, an average storage of 0.01Mb together
with a computational time of max 5 sec per user, guarantees that the PLDM could be
calculated and stored individually without the need of a central service.

8.2.3 Conclusion

We have presented the Personal Listening Data Model (PLDM). The PLDM is a Per-
sonal Data Model specifically designed to deal with musical preferences. It is formed
by indicators of the musical behavior, listening patterns and vectors containing the lis-
tening frequencies. By employing the PLDM on a set of 30k Last.Fm users we have
shown how the indicators of PLDM can be exploited to produce a users segmentation
able to discriminate between different groups of listeners. Moreover, the patterns and
frequency vectors of the PLDM have been used to prove that information like the most
listened genre or artist are not enough to represent the musical preferences of a user.

8.3 Towards a Personal Automatic Spatio-Temporal Agenda

As reported in Section 2, in the literature exists a various and large set of patterns and
indicators to describe the personal mobility of a user. However, none of these models
entirely consider all the dimension of human mobility. For instance, large attention is
generally provided to movements, but also the spatio-temporal presence in certain places
provides a worth piece of information. In this section we provide a preliminary descrip-
tion of a Personal Data Model for a mobility profile Pu which is able to summarize and
characterize entirely the typical day of a user in terms of mobility. We call this model for
Personal Data Analytics Personal Mobility Data Model (PMDM) or Personal Agenda. The
Personal Agenda is a sort of container for novel and existing behavioral models and indi-
cators, where all the patterns are in line with the personal perspective and are extracted
by employing personal parameter-free and autofocus algorithms. Parts of this model are
used in the various work described in the next part of this thesis.

8.3.1 Personal Mobility Data Model

The aim of the Personal Data Model we propose is to capture the personal mobility agenda
of a user. Therefore, the model does not consider only the moments or the places visited,
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but it captures the systematic presences of the user during the day. We start by defining
the basic data type of the model and from which the mobility patterns are extracted.

Definition 15 (Trajectory). A trajectory is a sequence of spatio-temporal points a =
{(x0, y0, t0), . . . , (xn−1, yn−1, tn−1)} where the spatial points (xi, yi) are sorted by increasing
time ti, i.e., ∀ 0 ≤ i < n we have that ti < ti+1.

Given a point p = (x, y, t), we refer to its components with p.x, p.y and p.t respectively.
Each point (x, y) represents GPS coordinates expressed as longitude and latitude, while t
represents the time-stamp. Given a trajectory a we refer to a particular point i in a with
a(i). Consequently, a(0) refers to the start point, while a(n − 1) refers to the end point.
Moreover we define start(a) = a(0) and end(a) = a(n − 1) as the functions that given a
trajectory, returns the first and last point respectively.

Definition 16 (Individual Mobility History). Given a user u, her individual mobility
history Ht,t′

u = {a0, . . . , an−1} is the set of the trajectories traveled in the time window
[t, t′), i.e., ∀ a ∈ Hu we have that t ≤ start(a).t < end(a).t < t′.

Definition 17 (Stops Observations). Given a user u, her stops St,t
′

u = {s0, . . . , sn−1} is
the set of points corresponding to the start or end of a trajectory, i.e., ∀ s ∈ St,t

′
u we have

that ∃a ∈ Ht,t′
u s.t. s = start(a) ∨ s = end(s).

We define with getStops(Hu) = Su the function that takes as input the individual
mobility history and returns the set of stops. The locations associated with a set of stops
basically group the latter into partitions that define the places (or areas) they cover. E.g.
a location can be home or work and the stops belonging to it are the parking lots used.

Definition 18 (Locations). Given a user u and her stops Su, her locations Lu = {L0, . . . ,
Lk−1} is a partitioning of Su into disjoint sets: ∀ L ∈ Lu, L ⊂ Su,

⋃
L∈Lu = Su and

L,L′ ∈ Lu∧L 6= L′ ⇒ L∩L′ = ∅, where ∀ L ∈ Lu, L = {s0, . . . , sm}, s.t.
∑k−1

i=0 |Li| = |Su|.

We define with getLoc(Su) = Lu the function that takes as input the stops and returns
the locations. Autofocus properties and the fact that is especially designed exactly for
this task make TOSCA (see Section 7.1) a good candidate for implementing the function
getLoc. It is worth to notice that |Lu| < |Su|.

Definition 19 (Regular Locations). Given a user u and her locations Lu, her regular
locations L<u ⊆ Lu is a subset of Lu containing only the locations visited most frequently.

In order to consider all the trajectories and all the stops, we define a dummy location
containing all the stops which do not belong to a regular location, i.e., the union of the
stops contained into the locations which are not regularly visited as L=u = {s|∃ l ∈ Lu −
L<u s.t. s ∈ L}. Hence we have |L<u | ≤ |Lu| < |Su| and |L<u | + |L=u | = |Lu|. The irregular
location L=u is an abstract location from the mobility point of view but is formed by
real stops to not frequent places. Knowing that the user is in L=u it is a worth information
because means that she is not present in a frequent location. We define with getReg(Lu) =
(L<u , L=u ) the function that takes as input the locations and returns the regular locations
and the not irregular one L=u . An effective technique for distinguishing between regular
and occasional locations is the knee method detailed in Section 8.2.1.
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Each regular location can be interpreted as a subjective point of interest, a place around
which the mobility of that individual gravitates. This allows to study and analyze the
locations which are meaningful only for the individual, like her home, work place, gym,
favorite shop etc. On these locations we define the following indicators and probabilities:

• ωL : L→ N returns the number of times u was observed in location L

• τL : L→ N returns the time spent by u in location L

• ρL,t : L× T → [0, 1] estimates the probability to find u in L at time t

• cmL = ( 1
|SL|

∑
s∈SL

s.x, 1
|SL|)

∑
s∈SL

s.y) center of mass of location L

• nL = |Lu| number of locations

• n
L̃

= |L<u | number of regular locations

• msL minimum number of stops in a locations to be considered regular

• cmL = ( 1
|L|
∑
L∈L

cmL.x,
1
|L|
∑
L∈L

cmL.y) center of mass of u

• cm
L̃

= ( 1
|L<|

∑
L∈L<

cmL.x,
1
|L<|

∑
L∈L<

cmL.y) center of mass of u w.r.t L<

• rgL = 1
|L|
∑
L∈L

(cmL − cm)2 radius of gyration of u

• rg
L̃

= 1
|L<|

∑
L∈L<

(cmL − cm<)2 radius of gyration of u w.r.t L<

• stL =
∑
L∈L

τL total stay time in locations

• st
L̃

=
∑

L∈L<
τL total stay time in regular locations

Besides locations, the mobility of a user is obviously characterized by her movements,
i.e., similar trajectories that start and end in the user’s locations:

Definition 20 (Movements). Given a user u, her mobility history Hu, her regular locations
L<u and the irregular location L=u , her movements Mu={M0, . . . ,Mq} is a partitioning of
Hu into disjoint sets: ∀ M∈Mu,M⊂Hu,

⋃
M∈Mu

=Hu and M,M ′∈Mu ∧ M 6=M ′ ⇒
M∩M ′=∅, where ∀ m∈Mu,m={a0, . . . am}, s.t.

∑k−1
i=0 |mi|=|Hu| and ∀M∈Mu, ∃L,L′ ∈

L<u ∪ L=u ∧ l 6=L′ ∧ ∃a ∈M s.t. start(a) ∈ L ∧ end(a) ∈ L′ ∨ start(a)∈L′ ∧ end(a)∈L.

In summary, a movement is a set of trajectories which start from a location L1 and
arrive in a location L2. Each trajectory belongs only to a movement. In other words,
a movement is an abstract trajectory for which the sequence of spatio-temporal points
is not specified. We define with getMov(Hu,L<u , L=u ) = Mu the function that takes as
input the mobility history, the regular locations and the irregular one and returns the
set of movements. This function can be realized through a simple “group-by” considering
the start and end locations. Like for the locations, also for the movements we define the
following indicators and probabilities:
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• ωM : M → N returns the number of times u followed movement M

• τM : M → N returns the time spent by u traveling along M

• λM : M → N returns the distance traveled by u along M

• ρM,t : M × T → [0, 1] estimates the probability to find u along M at time t

• nM = |Mu| number of movements

• n
M̃

= |M<u | number of movements among regular locations

• msM minimum number of trajectories in a movement to be considered frequent

• ttM =
∑

M∈M
τM total traveling time

• tt
M̃

=
∑

M∈M<
τM total traveling time along frequent movements

• tdM =
∑

M∈M
λM total distance traveled

• td
M̃

=
∑

M∈M<
λM total distance traveled along frequent movements

However, a movement as it is defined is an abstraction revealing only the start location
and the end location. Therefore, we exploit the concept of routine defined in [285].

Definition 21 (Routines). Given a user u and her movementsMu, her routines Ru is a
subset of Mu containing for each movement M ∈ Mu the trajectories R ⊆ M that better
approximate the movement M and which are frequent for the user u, i.e., s.t. |M | ≥ msM .

We define with getRep(Mu) = Ru the function that takes as input the set of movements
and returns the set of routines representing each movement. It is possible to extract a
routine representing a set of movements by applying clustering techniques like those in
[285]. Note that if a movement does not contain enough trajectories then it cannot have
a routine representing it. Moreover, a movement M can be represented by more than one
routine. For example, a user could systematically move from L1 to L2 in two or three
different ways to deal with traffic conditions depending on the time of the day or the day
of the week. The personal threshold to determine when a movement can be represented
through a routine because it is followed by a sufficient number of trajectories, can be
calculated once again by using the knee method. It is worth to specify that, according to
[285], the set of routines Ru of user u can also be extracted directly from the individual
mobility history Hu through an appropriate clustering method with an ad-hoc distance
function between trajectories. This approach enables also to specify a minimum level of
support required by each routine in order to be considered as representative for that user.

All these elements – regular and irregular locations, movements, routines – can be
combined using a network-like data structure. Similar to [249], from a mobility point of
view this data structure links the elements in a natural way, and can be a fundamental
component for the mobility of the Personal Data Store.

Definition 22 (Individual Mobility Network). Given a user u, her regular locations L<u ,
irregular location L=u , and movements Mu, her individual mobility network is a directed
graph Gu=(V,E), where V=L<u ∪ L=u is the set of nodes and E=Mu is the set of edges.
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Figure 8.17: Example of Personal Agenda. This user visited 15 distinct locations. Four of them
are regular locations: blue big circles (Home, Work, Shop, Gym). The remaining locations (small
orange circles) are conceptually grouped into the irregular location. Six movements are detected:
Home-Work and vice-versa, Home-Shop and vice-versa, Home-Gym and Gym-Shop. They are
represented by the light blue straight lines. Finally, four routines – dotted dark blue lines – are the
most frequent and systematic trajectories. The individual trajectory patterns are not highlighted.

Nodes represent locations and edges represent movements between locations. By using
the indicators and functions previously described it is possible to accurately describe both
nodes and edges by means of structural annotations. The individual mobility network of
an individual is an abstraction of her mobility behavior at different layer. The irregular
location is an abstract entity without any reference to the geographic space, while the
regular locations have a well-defined shape and positioning. Similarly, the movements are
an abstraction, while the routines are real trajectories.

Up to now, we have considered only elements and patterns without memory (e.g. loca-
tions and routines), or, according to a Markov models [160], components with one step of
memory (e.g. the probabilities for locations and movements). However, in everyday mobil-
ity, certain behaviors are a consequence of the sequence of movements and locations that
we have followed in the past. This is the reason why it is crucial for a personal mobility
model to capture and extract also the frequent sequences considering both the locations
together with their arrival and leaving time. We define the individual trajectory patterns
of a user, or t-patterns, as follows:

Definition 23 (Individual Trajectory Pattern). Given a user u, her regular L<u and irregu-
lar L=u locations, her individual trajectory pattern Tu = {T0, . . . , Tn} is a set formed by cou-
ples defined as T=(L̄, ᾱ), where L̄=〈L0, . . . , Ln−1〉 is an ordered sequence of locations, and
ᾱ=〈α0, . . . , αn−2〉 is the temporal annotation of the sequence such that ∀≤i<n−1 αi<αi+1

The temporal patterns can be represented also as:

T = (L̄, ᾱ) = L0
α0→ L1

α1→ . . .
αn−2→ Ln−1

Each pattern has a support supT indicating the number of occurrences of that particular
sequence. It is worth to notice that, when a user stops in a location and then move again,
in order to capture the stop and the permanence in that location, the pattern contains a
repetition of the location. Examples of individual trajectory patterns are the following:
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H
[8.00,8.15]-[8.20,8.35]−−−−−−−−−−−−−→ W

[8.20,8.35]-[17.50,18.00]−−−−−−−−−−−−−−→ W
[18.20,18.40]-[8.20,8.35]−−−−−−−−−−−−−−→ H (8.5)

H
[8.00,8.10]-[8.25,8.35]−−−−−−−−−−−−−→W

[8.25,8.35]-[16.30,16.50]−−−−−−−−−−−−−−→W
[16.50,17.10]-[17.30,17.50]−−−−−−−−−−−−−−−→ ...

...→ S
[17.30,17.50]-[18.30,18.35]−−−−−−−−−−−−−−−→ S

[18.30,18.35]-[19.00,19.30]−−−−−−−−−−−−−−−→ H (8.6)

The t-pattern (8.5) represents the pattern Home-Work-Home capturing the behavior of a
typical working day, while t-pattern (8.6) Home-Work-Shop-Home captures the sequences
of the days when the user leave the working place a bit earlier to go to the shop.

In line with the model described in Section 8.2, the applications of various extraction
functions on raw mobility data or on mobility data models lead to capture diversified and
complementary aspects of the user mobility behavior. Hence, we can structure all the
patterns defined for the personal mobility to form the Personal Agenda:

Definition 24 (Personal Agenda). Given the locations L<u and L=u , the movements Mu,
the routines Ru the mobility network Gu and the trajectory patterns Tu we define the
Personal Agenda of user u as the tuple:

Pu = 〈L<u , L=u , locations

Mu, movements

Ru routines

Gu, mobility network

Tu, t-patterns

Iu indicators

Eu〉 probabilities

where Iu = {nL, nL̃,msL, cmL, cmL̃
, rgL, rgL̃, stL, stL̃, nM , nM̃ ,msM , ttM , ttM̃ , tdM , tdM̃}

and Eu = {ωL, τL, ρL,t, ωM , τM , λM , ρM,t}

The whole data model can be recalculated from the raw data by using a moving window
and discarding old information. On the other hand, it can be incrementally updated by
assigning each trajectory to the movement that better represents it by consequently re-
freshing the various supports in the network and in the t-patterns. Figure 8.17 summarizes
and clarifies the concepts and patterns forming the Personal Agenda.

8.3.2 Conclusion

We have presented the Personal Agenda a Personal Mobility Data Model structuring and
organizing different and various mobility patterns and indicators in a unique model. This
model is being entirely employed in an ongoing work to extract a detailed picture capturing
the mobility agenda of each user, and also to build an “agenda planner” that can be
exploited to predict the user movements and activities and to recommend alternative time
schedule and route planning. In the rest of this thesis we employ some mobility patterns
and indicators that we have introduced in this section.
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Personal Data Analytics
for Individual and Collective Services





Chapter 9

Improving Personal Mobility

Mobility is a central dimension of our society and it crosses the choices we make in our
everyday life. Smart Cities applications are fostering research in many fields including
physics, computer science, engineering, but also sociology and psychology. Data Mining is
used to support applications such as optimization of a public urban transit network [33],
carpooling [285], smart traffic monitoring [88], urban event detection [32], and many more.

Personalization is the turning point for improving mobility services. Through Personal
Data Analytics we can exploit Personal Data Models to overcome the limitation of the
classical approaches used for location-based services. Indeed, the “wisdom of the crowd”
can better emerge from the users’ profiles and can be better exploited to satisfy individual
needs and preferences. In this thesis we show how the Personal Mobility Data Models
defined in the previous sections can be exploited in real-world mobility services aimed at
improving personal mobility. In the following, we describe how Personal Data Models
are used to build a trajectory prediction service that could provide a driver information
about activities she may perform in the future locations, or traffic problems that may
occur along the route predicted. Moreover, we demonstrate how the Personal Data Store
and its models can become a fundamental component for a route planner service based on
personal experience, and how the routes suggested differ from those of classical planners.

9.1 Trajectory Prediction through Mobility Profiling

Predicting the future locations of a mobile user is a flourishing research area that is pow-
ered by the increasing diffusion of location-based services. The knowledge of mobile user
positions fosters applications which need to know this information to operate efficiently.
Examples of such services are traffic management, navigational services, mobile phone con-
trol, etc. Many location-based services are based on the current or on future locations of
a user. By using the knowledge about the locations it is possible to fetch relevant infor-
mation such as nearby points of interest and available services. Moreover, predicting the
future positions can inform a driver about services like restaurants, banks, shops which are
present in the future locations, or traffic problems that may occur along her route.

Nowadays, every moving device periodically informs the positioning system of its cur-
rent location. Due to the unreliable nature of mobile devices and to the limitations of the
positioning systems, the location of a mobile object can be often unknown for a long period
of time. In such cases, a method to predict the next position of a moving object is required
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in order to anticipate or to pre-fetch possible services. The strong interest in this kind of
applications led to the study of several approaches in the literature addressing the location
prediction problem. Some of them base the prediction on single users’ movement history,
while others extract common behaviors from the histories of all the users in the system.

In line with Personal Data Analytics, we propose MyWay [284], a system to forecast
the exact future positions. MyWay predictors exploit the individual systematic behaviors
of a single user, the individual systematic behaviors of all the users in the system (called
collective behavior), and a combination of them. To predict the future positions of a user,
MyWay first uses her systematic behaviors and, if they are not sufficient, it exploits the
systematic behaviors of the crowd. This idea is based on the conviction that typically any
user systematically visits a small set of locations and regularly moves between them by
choosing the best movements learned by the daily experience [123, 269]. MyWay requires
that each individual computes an abstract representation of her systematic behavior, i.e.,
the routines which are a component of the Personal Mobility Data Model (PMDM) de-
scribed in Section 8.3. In this section, we refer to them with the expression of individual
mobility profiles. In particular, we consider as individual mobility profile the paths that are
regularly followed by the user, i.e., the routines Ru [285]. Then, at collective level MyWay
requires that the individual mobility profiles are shared among the users of the PDE.

The following prediction strategies are developed. The individual strategy predicts
the future positions using only the routines part of the user’s individual mobility profile.
The collective strategy considers the routines of all users exploiting the possibility that a
user could follow a path which is atypical for her but systematic for another user. The
hybrid strategy uses the collective strategy when the individual one fails. As theorized in
Chapter 5, MyWay exploits the possibility to use two levels of knowledge (individual and
collective), obtaining advantages from the previous strategies. In addition, a great novelty
introduced by MyWay is that it does not apply any apriori spatial discretization. In fact,
most of the works proposed so far in the literature apply a spatial discretization such a
fixed grid on the space [215, 216] or a territory tessellation obtained by clustering spatial
points [18, 156]. The spatial discretization often affects the precision of the prediction that
instead of returning spatio-temporal points returns regions with higher granularity.

Our claim is that the prediction strategy which uses only individual mobility profiles
is comparable with a prediction strategy based on raw movement data. If confirmed, this
approach has two important advantages: (i) it dramatically minimizes the quantity of
information required since a mobility profile is a concise representation of the information
in the user PMDM; and, (ii) it can help to reduce the privacy risks: the mobility profile
represents a systematic behavior, i.e., paths that are regularly followed by the user, but
does not reveal all the details of her past spatio-temporal positions. Moreover, in a mobility
profile the spatial information is a representation of a group of similar raw trajectories,
while the temporal information expresses the relative time and not the absolute one. This
means that given a profile we can know that the user typically visits the place A at 11AM
but, we are not sure if on a specific day he visited that location. Clearly, using the mobility
profile we cannot guarantee a specific privacy protection, but surely the risk is lower than
the one that can derive from the use of raw data. In order to have a formal privacy
guarantee we should adapt one of the possible privacy technologies developed in the last
years for trajectory data [3, 220, 278] or we should design a new one by following the
privacy-by-design approach [212]. However, this aspect is out of the scope of this thesis.
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9.1.1 MyWay Prediction System

Problem Definition

The problem we face consists of predicting the future positions visited by a user at specific
time instants by exploiting the typical mobility behavior of users in the system. The
different formulations of the problem and the possible solutions are determined by the
type of the object, the area in which it is moving, the kind of prediction returned and
how the notion of future is defined. The main challenge of this problem is due to the
complexity and fine granularity of GPS data. Often, most of the works in the literature
apply a spatial discretization by using clustering techniques on spatial points or simply
a grid on the space to reduce the complexity of the problem. Clearly, on one hand, this
makes easier finding frequent or interesting locations and patterns to be exploited in the
prediction; on the other hand, it affects the precision of the prediction that often returns
regions with a granularity imposed by the apriori discretization.

The prediction method proposed does not use any apriori spatial or temporal discretiza-
tion, i.e., it is parameter-free, and, given a user u and her current trajectory m, aims at
forecasting the future exact position visited by the user u at a specific time instant t. This
task is composed of two main steps: (i) learning a prediction model by observing historical
movement data, and (ii) applying the prediction model to forecast the future positions.

MyWay is a system of prediction strategies able to solve this challenging task. It
exploits the users’ systematic mobility stored in their PMDM, i.e., the user individual
mobility profile, and the knowledge coming from the PDE in the form of a collective profile.
To build such models we refer to the mobility profiles presented in Section 8.3 and to the
routines Ru. In the following we define a new distance function between trajectories which
is more efficient and gives a better result in terms of profile quality with respect to the one
used in [285]. Then, we define the prediction method: two basic individual and collective
prediction strategies, and a third strategy that combines the basic ones, called hybrid.

Distance Functions

The mobility profile extraction process uses a distance function during the clustering step
to identify similar trajectories. In practice, the distance function defined between two
trajectories determines if they are representing a similar movement. There are many pos-
sibilities in defining such distance. Some examples are described in [13] (i.e., the one used
in [285]) and in [116], and each one analyzes a different perspective and is used for a par-
ticular objective. Another important aspect to consider is the complexity of such distance
function which greatly affects the performance of the whole process.

We adopt a different distance function from the Route Similarity used in [285] due to
the fact that it assumes that the two trajectories have the same sampling rate. In general,

Figure 9.1: Computation of Interpolated Route Distance. The circular gray points are the real
points, the black squares are the interpolated ones. The dotted lines are the spatial distances.
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Algorithm 9: distanceFunctionIRD(Trajectory t1, T rajectory t2).
Input : t1, t2 - trajectories
Output: d - distance between t1 and t2

1 d← 0;
2 i1 ← 1, i2 ← 1;
3 p1 ← getPoint(t1, i1), p2 ← getPoint(t2, i2);
4 while ¬(i1 = getSize(t1) ∧ i2 = getSize(t2)) do
5 d← d+ sphericalDistance(p1, p2);
6 len1 ←∞;
7 len2 ←∞;
8 if (i1 < getSize(t1)) then
9 len1 ← sphericalDistance(p1, getPoint(t1, i1 + 1));

10 end
11 if (i2 < getSize(t2)) then
12 len2 ← sphericalDistance(p2, getPoint(t2, i2 + 1));
13 end
14 if (len1 < len2) then
15 i1 ← i1 + 1;
16 p1 ← getPoint(t1, i1);
17 p2 ← getNearestPoint(t2, p1);
18 else
19 i2 ← i2 + 1;
20 p2 ← getPoint(t2, i2);
21 p1 ← getNearestPoint(t1, p2);
22 end
23 end
24 return d;

this is not true in real-world datasets and the bias introduced by this assumption may
produce anomalous effects. Moreover, a misleading distance value is produced when the
sampling rate and the frequency of the observations differ in the two trajectories. This is
due to the comparison of the existing raw points (i.e. no interpolation is used) and the
usage of a heuristic applying a penalty when there is a difference in the number of points.

Similar limitations characterize the distance function introduced in [9]. To overcome
these limitations we define a new distance function having the following advantages:

Interpolation: Each point of a trajectory is compared to the closest point over the seg-
ments of the other one. This avoids the asynchronous sampling rate and the different
frequency of points.

Efficiency: Route Similarity is highly inefficient comparing several times the same point
to others in order to find the closest one; in our case the comparisons are equal to
the number of points in the trajectories (in the worst case).

Symmetric: Route Similarity uses a heuristic to give penalty when a point does not find
a correspondence in the other trajectory. This process is not symmetric and this is
not acceptable for a distance function.
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For all these reasons we define a distance function suitable for our purposes called Inter-
polated Route Distance (IRD). The function temporally aligns the first points of the two
trajectories m and p using the initial time, then for each point in m, it interpolates a
point in p – if it does not exist – and vice-versa. Finally, it computes the spatial distance
(spherical) between each pair of aligned points (real or interpolated). When one of the two
trajectories is longer, then the exceeding part is compared with the last point of the short
trajectory (i.e. we consider as if the user stops at the last point when a trajectory ends).
The average of those distances is the result of IRD. Fig. 9.1 and Alg. 9 show how IRD
is computed. In Alg. 9 the getPoint returns the ith point in the trajectory (e.g. i = 1
indicates the first point), sphericalDistance returns the spherical distance between two
points, and getNearestPoint given a point and a trajectory find the nearest interpolated
point to the segments of the second (i.e. the square points in Fig. 9.1).

Moreover, for our purposes we also define a slight variation of IRD. We call this distance
function Constrained IRD (CIRD) since, besides the two trajectories, it takes as input also
two parameters (γ, σ) called respectively tail percentage and prediction threshold. They
are used to verify if in the last γ% of the trajectory m exists a point which is further than
σ meters from the trajectory p. If this happens the distance function returns an infinite
distance, i.e., it considers the two trajectories not comparable. An example of the portion
of trajectory influenced by the constraint is depicted in Fig. 9.1 as a blue box.

The computational complexity of the Alg. 9 depends on the number of spherical dis-
tances and interpolation to be computed. It’s easy to see that in the worst case, i.e. when
none of the points are aligned, the number of interpolation are exactly the same of the
distances to be computed. This number at the maximum is the sum of the points of each
trajectory, therefore removing the constant factor, the complexity is O(l1 + l2) where l1
and l2 are respectively the numbers of point in t1 and t2.

Method

We define the prediction method as a function over a mobility profile which, given the
current trajectory m, returns the exact future position s of the user after a time period
t̂. More in detail, the prediction method is composed of two functions: Match which finds
in the profile the routine most similar to the current trajectory, and LookAhead which
predicts the future position having a routine and the current user position.

Definition 25 (Match). Let γ and σ the CIRD parameters. Given a trajectory m, and
the routines R={r1, . . . , rn} of the mobility profile, the routine r is selected if:

r = Match(m,R, γ, σ) = argminri∈RCIRD(Cut(r,m),m, γ, σ)

In the above definition, Cut(r,m) selects the sub-trajectory of the routine defined
between two points: q that is the closest point (real or interpolated) to the last point of
the trajectory m, and b that is the temporally antecedent point which makes the length of
the sub-trajectory equal to m. If the routine is not long enough b is the first point.

The usage of CIRD (and therefore γ and σ parameters) represents our interest in
eliminating possible false positive matches given by common initial parts of the trajectory
m and of the routines in R. We say that a match Match(m,R, γ, σ) is undefined if R is
empty or CIRD returns an infinite distance for each r ∈ R, i.e. the process ends without
any routine for the match. The process of matching the trajectory m with a routine r is
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Figure 9.2: Match example between the current movement m and the routine r.

shown in Fig.9.2 where in solid black we represent the portions that are compared, while
in dotted red and green the parts ignored for the matching.

Once r is obtained, i.e., the most similar routine to the current trajectory m, then we
can use it to predict the position within a time period as follows:

Definition 26 (LookAhead). Let m be the current trajectory, r a routine, t̂ a time period
and q=(x, y, t) as the closest point in r to the current position, i.e. the last point of m.
Then, we define LookAhead(r,m, t̂)=s, where s is the predicted point in r at time t+t̂. If
the routine is shorter than t+t̂ in time, then as point s is returned the last point of r.

The combination of Match and LookAhead realizes the prediction methods used for all
the strategies in MyWay system. More formally we can define a predictor as:

s = Pred(m,R, t̂, γ, σ) = LookAhead(Match(m,R, γ, σ),m, t̂)

where m is the current trajectory, R the routines, t̂ a time period, and s is the resulting
prediction point. The difference between the three strategies is how the method is used.
We must notice that if the result of Match is undefined, then also the result of Pred, that
is s (the predicted point), is undefined. Note how in this service the Personal Data Model
consists of the individual mobility profile and, in particular, on the user’s routines R.

The individual strategy predicts the future positions of a user by exploiting only the
systematic behavior of the user herself. Therefore, it is particularly suitable for users having
a high degree of systematic mobility. More formally, we define the individual predictor for
a user u as: s = Pred(m,Ru, t̂, γ, σ).

The collective strategy considers the routines of all users for the prediction, thus exploits
the possibility that a user could follow an atypical path for her but systematic for another
user. More formally, we define the collective predictor as: s = Pred(m,RC , t̂, γ, σ).

Finally, we define the hybrid strategy as a composition of the individual and of the
collective ones:

s =

{
Pred(m,Ru, t̂, γ, σ) if not undefined
Pred(m,RC , t̂, γ, σ) otherwise

The hybrid strategy uses the individual predictor when is possible. If an individual predic-
tion is not found, i.e. it is undefined, then the hybrid strategy uses the collective predictor.
The idea behind the hybrid strategy is to recognize the specificity of the individual profile
compared to the collective profile. Indeed, the collective strategy mixes up all the user’s
routines with the routines of the crowd and loses the added value of knowing the individual
mobility profile of a specific user which enables very accurate predictions.

The resulting three predictors are shown in Fig.9.3, here for each predictor a different
color is used: individual history, the individual profile and the individual predictor (red)
are inside the user PMDM, while the collective predictor (blue) is outside and therefore
handled by the PDE through a distributed protocol for sharing the users’ information as
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Figure 9.3: MyWay prediction strategies schema.

well as the hybrid predictor (green). In the hybrid strategy, thanks to the PDE the models
and predictors are stored in the network, every user can use her own PDS, and the query
for the prediction is distributed only in case the individual predictor of a specific user fails.
Our experiments will show how the hybrid strategy achieves the best performances.

9.1.2 Experiments

In the following we evaluate MyWay ’s prediction strategies performances. First of all
we present the measures used to evaluate the predictions, then we describe the dataset
used and the parameter setting, and finally the various prediction experiments against the
competitors and considering different degrees of profile sharing.

Evaluation Measures

It is important to note how MyWay is challenging a very hard prediction problem due
the following considerations: (i) users do not move every time in the same period of the
day (at least not exactly); (ii) movement speed is not constant during the travel, even
following the same trajectory; (iii) possible errors deriving from spatial sampling of the
data could deeply influence the predicted position both in time and space. Consequently, it
is reasonable to consider a set of tolerances to fairly evaluate the results. We use spattol and
temptol to describe the spatial and temporal tolerances which generate a spatio-temporal
area around the real point. This area contains all the values considered correct for the
prediction problem. An example of usage of these tolerances is shown in Fig.9.4.

Definition 27 (Spatio-Temporal Tolerance). Given the predicted position s at time t, the
real position s′ at time t′, and the position s′′ at time t′′ that is the closest real position to
s such that |t′−t′′| ≤temptol, then the prediction is considered correct iff ‖s−s′′‖≤spattol.

It is worth to underline that if temptol=0 then s′=s′′ and thus we are predicting ex-
actly the point where the user will transit in future without any temporal tolerance. To
enhance the importance of spattol we can consider two different environments for applying
prediction: taking into account an academic campus, it is meaningless to adopt spattol
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Figure 9.4: Spatial and temporal tolerances example: the red triangles are the real points s′ and
s′′ such that |t′−t′′| ≤temptol, the green circle is the predicted point such that ‖s−s′′‖≤spattol.

greater than kilometers because nearly every prediction would be classified as correct; on
the other hand, if we are considering toll roads then low spattol would be inadequate.

Furthermore, let T S be the set of trajectories for which we want a prediction, T P
the set of trajectories for which a prediction is provided, and T PC the set of trajectories
for which the future spatio-temporal position is correctly predicted, then the following
validation measures are defined and considered in experiments:

• Prediction rate = |T P|
|T S| allows to estimate the predictive ability and corresponds to

the percentage of trajectories for which a prediction is supplied;

• Accuracy rate = |T PC|
|T P| allows to estimate the prediction goodness and corresponds

to the percentage of future spatio-temporal positions correctly predicted;

• Spatial Error =
∑
∀(s,s′′)‖s−s′′‖
|T P| allows estimating the error of the predictions (both

correct and incorrect).

Dataset

We perform our experiments on the real GPS dataset named Octo described in Section
6.1. From this dataset we selected the users traveling through Pisa province with at least
20 travels considering only weekdays. Considering that in Pisa province there are about
476, 260 trajectories, this led to a dataset with 30% of all the users and 80% of the all
trajectories, that is about 5, 000 users and 326, 000 trajectories. We consider as training
set the first 3 weeks, and as test set the remaining last week. We test MyWay using two
different test sets: one by considering only the first 33% of each trajectory (test33), and one
by considering the first 66% (test66). These two test sets represent two levels of knowledge
of the current movements and we will show how they affect accuracy and prediction rate.
From an analysis of the PMDM extracted from this dataset results that for each user the
routines have a minimum support of five trajectories. The percentage of total trajectories
covered by all the routines RC =

⋃
u∈U Ru is 47.91%, i.e., nearly half of the movements

can be classified as systematic.

Parameter Setting

The parameter setting adopted in the experiments is reported in Tab. 9.1. With respect to
CIRD, from some test on a sample of users we found that γ = 10% and σ = 500 meters are
able to reduce the error in prediction, i.e., the number of false positives (or false matches).
On the other hand, since they are quite restrictive the prediction rate is negatively affected.
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Symbol Description Values
γ tail percentage {5,10, 15, 20, 25} %
σ prediction threshold {0.2,0.5, 1.0, 1.5, 2.0, 5.0, 10.0} km
t lookahead {0, 1, 2, 5,10, 12, 15, 17, 20} min

spattol spatial tolerance {0.05, 0.10,0.25, 0.50, 0.75, 1.00} km
temptol temporal tolerance {0.0,0.5, 1, 2, 5} min

Table 9.1: Set of evaluation parameters. The values in bold represents the default setting.
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Figure 9.5: (Individual) Accuracy rate on
test33(left) and test66 (right) using a temptol of 30 sec,
different spattol values and varying the look ahead.
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Figure 9.6: (Individual) How the prediction thresh-
old affects the prediction and accuracy rate using a
spattol of 250 m and a temptol of 30 seconds.

Finally, we show in the following the performances for the various look ahead and spatial
tolerances and we present results for temporal tolerance equals to 30 seconds even though
for higher values we obtain better performances.

Prediction Evaluation

Individual Strategy. The individual prediction consists in using the mobility profile of
a single user to predict her future positions. In Fig.9.5 the accuracy obtained over the two
test sets test33(left) and test66(right) is shown. Here, different levels of spatial tolerance
spattol are used (from 50 m to 1 km) with a temporal tolerance temptol of 30 seconds. The
first aspect to notice is how the accuracy varies for different time periods t̂ used for the
look ahead: the prediction for very short-term (1-5 minutes) is lower than the mid-term
(5-20 minutes). This is due to the fact that in the short-term predictions the speed of the
current movement may be very different from that in the routine, e.g., an extemporary
acceleration, deceleration or a traffic light may affect the prediction accuracy. On the other
hand, for the mid-term prediction the speed tends to be similar to the average speed and
the prediction becomes more precise. For example, considering a variation of speed of
30km/h in one minute we have a spatial difference of 500 meters. Clearly, using a higher
temporal tolerance this effect disappears, but this strongly depends on the application in
which the prediction is used. The second aspect to notice is the higher accuracy rate in
test66 w.r.t. test33. This happens because in test66 the knowledge on the current movement
is higher and therefore our method is able to better understand which is the best routine
to use. The third aspect, shown in Fig.9.6(left), is the prediction rate that is higher in
test33 than in test66. The limited knowledge of the current movement allows the predictor
to match more routines even though they are not the exact future trajectory. In details,
passing from test33 to test66, we have an increasing of 10− 15% for the accuracy rate and
a decrease of 5 − 8% for the prediction rate. This behavior is really interesting because
highlights how MyWay reacts to the information gained from the query or, in other words,
how it can tune the prediction in a real scenario as the user proceeds along her travel.
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Figure 9.7: (Individual) Predictability of users vs.
prediction rate. Respectively the Pearson coefficients
are 0.6372 and 0.6771.
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Figure 9.8: (Individual) The spatial error using
test33 and test66 varying the temptol(left) and the
prediction threshold (right).
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Figure 9.9: (Collective) Accuracy rate on
test33(left) and test66 (right) using a temptol of 30 sec,
different spattol values and varying the look ahead.
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Figure 9.10: (Collective) How the prediction
threshold affects the prediction and accuracy rate us-
ing a spattol of 250 m and a temptol of 30 seconds.

In Fig.9.6 the prediction rate (left) and the accuracy rate (right) are studied varying the
prediction threshold. We observe that relaxing this threshold the two measures respectively
increase and decrease. Allowing a more loose matching in the end part of the current
trajectory more predictions are produced (due to the constraint in CIRD); on the other
hand, the accuracy rate decreases but it is important to note how this is not proportional.
In other words, it is possible to tune the system according to the application needs in
order to be more conservative - i.e. if the errors in prediction are considered critic fails
- or speculative -i.e. having a prediction is better even if we introduce errors. Note that
the prediction tail γ parameter is not shown due to the lack of space but extensive tests
revealed that it enhances the prediction threshold effect.

To better understand the quality of the prediction, we study the relation between the
users’ predictability and the prediction rate obtained with this strategy. For this analysis
we consider: the prediction rate and the support rate, defined as the ratio between the
number of trajectories represented by the routines and the number of trajectories in the
individual history. The result is shown in Fig.9.7 where each point refers to a user and in
red we represent the linear regression of those points. The dotted black line represents the
performance of a theoretically perfect system which matches exactly all the movements to
the proper routine. If the user’s routines cover k% of her movements, the theoretical system
is able to predict a maximum of k% of the trajectories because the rest is composed by not
systematic movements that are unpredictable using the user’s mobility profile. Comparing
the two lines we can notice how our system is close to the theoretical one.

Finally, we analyze the spatial error of the predictions shown in Fig.9.8. We observe on
the left how the spatial error increases considering higher look-ahead values, and it slightly
decreases with higher value of temptol, while on the right we can see the effect of a higher
prediction threshold which makes CIRD more permissive increasing the spatial error.
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Figure 9.11: (Collective) Predictability of users vs.
prediction rate (Pearson coefficient 0,5165) (left) and
the spatial error varying the temptol (right).
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Figure 9.12: (Hybrid) Accuracy rate on test33(left)
and test66(right) using a temptol of 30 sec.
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Figure 9.13: (Hybrid) The spatial error using test33
and test66 varying the temptol(left) and the predic-
tion threshold (right).
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Figure 9.14: (Global predictor) Accuracy rate on
test66 using a temptol of 30 seconds (left) and compar-
ison between test33 and test66 varying the prediction
threshold σ (right).

Collective Strategy. The collective strategy uses the collective mobility profile com-
posed by the union of all the routines RC . In Fig.9.9 the accuracy and the prediction
rate over the two test sets are reported. We notice how the collective strategy presents a
decrease of 15− 20% in accuracy, while the prediction rate is increased by a 30− 45% ob-
taining values greater than 85% as shown in Fig.9.10. The effect of the collective knowledge
strongly increases the performances, indeed almost all the queries have a prediction even
if their quality decreases. This is due to the fact that we are using strangers behaviors to
predict the user’s movements. Moreover, Fig.9.11(left) shows how this strategy overcomes
the predictability limitation: the red line is over the black dotted one representing the fact
that the prediction rate for most of the users is over the support of their profiles. Looking
at the spatial error, Fig.9.11(right), and comparing it to the individual strategy we note
that it increases following the lower accuracy rate provided by this strategy.

Hybrid Strategy. The idea behind the hybrid strategies is to recognize the specificity
of the individual profile compared to the collective profile, in other words, it consists in
using the user’s individual profile and, in the case it fails, in using the collective profile.
Obviously, this strategy achieves the same prediction rate of the collective one because in
the worst case this last strategy is used while, as expected, the evaluation results show an
increasing of accuracy equal to 10% as shown in Fig.9.12. Therefore, the hybrid strategy
outperforms the basic versions realizing the best trade-off between accuracy and prediction
rate. Analyzing Fig.9.13 we can notice that also the spatial error is mitigated by the two
levels of prediction showing a decreasing in every combination of the parameter values.
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Figure 9.15: (Global predictor) Prediction rate
(left), collective and global coverage (right).
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Figure 9.16: (Hybrid approach with global predic-
tor) Accuracy rate on test33(left) and test66(right)
using a temptol of 30 seconds.

Data Sharing vs Profile Sharing

Now, we want to compare MyWay with a global predictor extracting the routines directly
from raw data. In other words, the profiling process considers all the trajectories of all
the users. In this way we obtain global routines and a global mobility profile. Note that, a
global routine, instead of representing the systematic movement of an individual, represents
a common behavior of the crowd. In Fig.9.14 and 9.15(left) we report the prediction
performances of the global predictor. We observe that its prediction rate is essentially
the same of our collective strategy, and its accuracy rate increases of less than 3%. This
means that for the prediction task the global profile does not increase significantly the
level of knowledge. In other words, compared with the collective profile some routines are
missing due to the higher level of abstraction. Moreover, some new routines, composed by
a common but not systematic behavior, are created but the overall prediction power remains
similar. This is also confirmed in Fig.9.15(right) showing that the collective profile covers
the global profile and viceversa. The containment between them highlights that they
substantially represent the same set of behaviors. Fig. 9.16 shows as the hybrid approach
applied in the global context (individual/global combination) improves the accuracy rate
leading to similar performances of our hybrid strategy.

Furthermore, we observe some advantages of MyWay w.r.t. the global predictor.
Data disclosure. A global predictor requires that the user shares with the coordinator

her individual history that describes in detail all her movements; on the contrary, MyWay,
in the worst case, requires to disclose only the routines, a model that surely reveals the
user mobility behavior with fewer details. This aspect is very important because nowadays,
people are often reluctant to share personal information because in the current systems
users have a limited capability to control and exploit it. Therefore, in order to enable
applications that require the active participation of people, it is necessary to encourage in-
dividuals in contributing with their self-knowledge to improve the quality of services offered
by those applications. The opportunity of sharing models instead of detailed trajectories
without causing deterioration of the performances is a good advantage of our system.

Communications. The need of sharing raw data also raises a problem in the commu-
nications cost needed to transfer all the data from all the users to the coordinator. With
MyWay we can transmit only the information which is really needed for the prediction
leading to a reduction of more than 97% of the data, i.e., spatio-temporal points. This is es-
sential for an application which wants to gather information from a wide number of users.

Computational Cost. The main difference between the hybrid and global predic-
tor is the fact that the model of the first one is composed by the union of the routines



9.1. TRAJECTORY PREDICTION THROUGH MOBILITY PROFILING 135

computed individually by each user, while the model of the second one is extracted from
the whole data computed by a coordinator. The extraction is performed with a clustering
algorithm with a complexity of O(n log(n)), thus it requires O(

∑
u∈U |Mu|log(|Mu|)) for

the hybrid predictor, and O(m log(m)) for the global one, where m=|
⋃
u∈U Mu|. Finally,

the matching phase consists in finding the model routine minimizing the distance with
the current trajectory, hence the complexity is O(|RC |), i.e. the number of routines in
the model. Considering that the number of trajectories per user is significantly lower (of
orders of magnitude) than the entire dataset, we can appreciate the great advantage of
our system in terms of computational cost. We obtained an average runtime of 10 seconds
for the individual routines, and more than 8 hours for the construction of a global profile.
The experiments are executed on a single machine with 4 processors at 4.2 GHz each. The
running time for building all the individual profiles Ru for each u∈U is 7.24 hours, the
collective predictor is simply the union of the individual profile and therefore the building
time is not relevant and finally the time needed to build the global predictor is 8.43 hours.

Model Update. Models extracted cannot last forever: the mobility of the users may
change significantly during different periods, thus it is reasonable to consider a method to
update the profiles in a running system. In the collective strategy we can suppose to have
at individual level a method to check if the last profile is still valid or not - e.g., considering
the profile coverage over the most recent user’s trajectories. In the case of a variation, the
user recomputes a new model, sends it to the coordinator updating the collective profile
by substituting the old user’s profile with the new one. In the global scenario this is
not possible, in fact, the user must send continuously her data to the coordinator which
periodically recomputes the overall profile to remain up-to-date.

Comparing with State-Of-The-Art

We compare the performances of MyWay with individual and global competitors.
Individual Competitor. We compare our prediction system with the machine learn-

ing based individual predictor presented in [10]. Since this method uses an apriori spatial
discretization, for a fair comparison we decided to use a grid that strongly affects our re-
sults. We perform the comparison constructing for each spatial tolerance (250, 500, 1000
meters) two different kinds of grid. The first one has a cell side equals to the square in-
scribed in a circle with radius equals to our spatial tolerance (lower bound xl); while the
second one has a cell side equals to the square inscribing this circle (upper bound xu).

Note that, this approach does not use any notion of lookahead, i.e., it cannot predict
the future position after a specified time interval from the current time, but it can just
predict the next cell. It deals with trajectories represented as sequences of cells in a
grid. We reimplemented and tested this method on our individual routines showing the
performances in Fig. 9.17. As in [10], we discretized the trajectories in sequences of length
h and we studied the goodness of a prediction varying this value. Note that, we used
our individual routines instead of the starting dataset of trajectories because in [10] the
authors state that they use systematic movements. Comparing the performances of our
individual strategy (Fig. 9.5 & Fig. 9.6) with this competitor, we can see that our method
provides more accurate predictions. This is true even if we consider for the competitor the
sequence length that gets the best results. However, the machine learning predictor gets
a higher prediction rate w.r.t. our individual strategy. Nevertheless, as shown above, we
can overtake this lack by using our hybrid strategy. Moreover, we also test our individual
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Figure 9.17: Individual competitor performances
using different values of sequence length and grid side.
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Figure 9.18: WhereNext performances using differ-
ent value of minimum score and grid size.

predictor using an infinite temptol in order to exclude the time dimension (not considered by
the competitor) and using spattol=500 we obtain a prediction rate of 87% and an accuracy
over 70% which are clearly higher than the competitor performances for any value of h.

Global Competitors. We also compare our proposal with method presented in [211],
called WhereNext, that uses a pattern based methodology to predict the next cell of a
movement. This is a global approach and considers all the trajectories to generate trajectory
patterns that contain the information on the travel time between two consecutive cells.
The global method differs completely from the collective one, which combines the set of
individual profiles because only the behavior followed by the crowd will survive to the
process of extraction. WhereNext is just able to predict the next cell and the time spent
on average for moving from the current cell to the next one. Since even this method applies
a spatial discretization, we use the same grid defined above. The goodness of predictions
got by WhereNext depends on the quality of trajectory patterns and on the minimum
score used to consider admissible a prediction. In Fig.9.18 the results of this competitor
are shown for the different grids. Comparing them with MyWay, we can see that our
individual strategy, in general, performs better than WhereNext in terms of both accuracy
and prediction rate. While considering the collective strategy we pay the increasing of the
prediction rate - 40% greater than WhereNext - with decreasing of accuracy which let the
competitor win using the 250 grid with an advantage of 5%. This disadvantage disappears
if we compare WhereNext with the hybrid strategy.

Comparison Summary. To better appreciate the encouraging performances of My-
Way, we compare the various methods in Fig. 9.19. To this end, we select a set of
parameters producing a fair evaluation. In particular, we analyze the performances for 2
and 5 minutes of look ahead by observing a unique value obtained as composition of the
prediction rate and accuracy. Thus, this value is very high when both of these factors are
high while is low when just one between prediction rate and accuracy is low. We observe
the values obtained using a spattol=250 (left) and spattol=500 (right) for MyWay while for
the competitor we use the upper bound cells 250u and 500u. For a small look ahead like
2, MyWay performs dramatically better than the competitors. On the other hand, look-
ing 5 minutes in the future is more difficult and leads to a decrease of the performances.
However, with the exception of the individual strategy performing few points worse than
[10] when considering spattol = 250, the performances of MyWay remain higher than the
others and the hybrid approach performs clearly better than everything else.
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Figure 9.19: Performance comparison for predic-
tion rate times accuracy for spattol=250 (left) and
spattol=500 (right) in test66. Parameters: My-
Way γ=500 m, temptol=30 sec, Individual competitor
sequence length=4, Global competitor min score=4.
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Figure 9.20: Increasing the participation of the
users the prediction rate increase loosing some
accuracy (left), but the overall performance rises
(right).

9.1.3 Participation Analysis

In the experiments we showed before we considered a complete participation of the users,
but in reality the users of the PDE may choose: (i) to contribute to the MyWay service by
sharing their profiles with the collectivity in order to obtaining a better service when using
the hybrid strategy or (ii) to maintain their profile private using only the individual strat-
egy. Therefore, we study how the participation of the user effects the overall performances
by analyzing the prediction rate and the accuracy varying the percentage of users sharing
their profiles. Fig.9.20 shows the two measures and the overall performances in the two test
cases. This result fills the gap between the individual strategy and the hybrid one which
are represented by 0% and 100%, respectively. We observe how a greater sharing of rou-
tines enables better performances. The prediction rate dramatically increases at each step,
while the accuracy slightly decreases. This happens because a larger number of trajectories
become predictable allowing more errors, but the overall performances clearly improve.

From the complexity point of view, more users of the PDE participate, more routines
will be part of the model. As discussed in the computational analysis paragraph for the
collective model the routines are related only to user’s trajectory and computed locally,
therefore the increase will be limited. This is not true for the global one where adding a new
user the complexity increase due to the fact that each new trajectory must be compared
with the entire set (theoretically). Another aspect to be considered is the storage of this
information, even in this case the collective model must store only the new routines while
the global one needs all the trajectories for further recomputation.

9.1.4 Conclusion

We have presented MyWay, a Personal Data Analytics system for predicting future posi-
tions of mobile users at specific time instants. It is based on three strategies that exploit the
individual systematic behaviors of users in the daily mobility, described by their individual
mobility profiles. The individual strategy takes advantage of the single user’s regularity;
the collective strategy exploits individual systematic behaviors of all users, and the hybrid
strategy combines both of them using two levels of knowledge (individual and collective).
We have evaluated our prediction strategies on large real-world trajectory data. Our ex-
periments show that the best prediction strategy is the hybrid one, i.e., the collaboration of
the users in the PDE improves the level of individual awareness with a collective awareness,
and this raises the performance of the prediction system.
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9.2 Towards an Experienced Route Planner

Route planners help users to select a route between two locations. When providing direc-
tions, online mapping services generally suggest the shortest route. Popular route planners
such as Google Maps, Open Street Maps etc. generate diverging directions using powerful
libraries of roads and road attributes [318]. However, they often ignore the preferences of
the users they serve and the paths followed by users living in the area of interest. Since
cities are becoming more and more crowded, smart route planners are gathering an in-
creasing interest. In such a context, a route planner which takes into account personal
users’ preferences [185], and which exploits the crowd expertise in order to identify the
best route, can be more desirable and helpful than an ordinary route planner [117].

A route planner service which exploits Personal Mobility Data Models to improve the
planning can have a real advantage if commuting users do not follow the shortest path in
their systematic movements but deviate from them. Consequently, we tried to understand
and to estimate how much the systematic movements of a user are different from the
shortest paths between the origin and destination locations [128]. The intuition is that a
user which lives and acts in a certain territory do not automatically select the shortest path.
This can be due to the user’s experience of traffic conditions and roads quality, for passing
close to the cheapest petrol station, for avoiding roads with control of speed, etc. However,
independently from the reasons, if there is a divergence between the systematic route with
origin point o and destination point d, and the shortest route from o to d suggested by
a route planner, then also other users could benefit from this kind of knowledge which
comes from individual expertise in a certain area. Therefore, we present an experienced
route planner considering PMDM that can propose as alternatives to the shortest path a
route frequently followed by a user among those in the PDE which participate in the route
planning service.

9.2.1 Trajectory Map Matching Background

Given a trajectory m defined as in Section 8.3, generally does not contain the relative
traversed road network segments. This lack of information can be restored by means of
some map matching techniques. We adopted the gravity model [78] as method to match
each single trajectory point to the road segment it belongs to:

Definition 28 (Gravity Force Attraction). Given a point pi and a set of road segments
describing the road network S = {s1, . . . , sr} where sj = {pstart, pend}, we define the gravity
force attraction of a segment sj for a point pi as:

GFA(pi, sj) = w(pi,sj) = wd(pi,sj) · w
θ
(pi,sj)

where wd(pi,sj) = 1− dist(pi,sj)∑
sk∈S

dist(pi,sk) , w
θ
(pi,sj) = 1− ang(pi,rj)∑

sk∈S
ang(pi,sk) , dist is the euclidean distance

between a point and a segment, and ang is the absolute difference between the direction of
the point and the direction of the segment.

This gravity model can be applied over the whole road network segments S. However,
S is generally very large. Hence, it is possible to use a nearest neighbor approach and
consider only a subset Sk⊂S containing the k segments closest to a given point.
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Given a GPS trajectory m = {p1, . . . , pn} and a set of road segments S, it is possible
to assign each point pi to the segment with the most powerful force s̄j = σ(pi, S, k) =
argmaxsj∈Sk

(GFA(pi, sj)). The Gravity Model adopted can also be used to estimate the
travel time of each matched road segment; once every trajectory point has been matched,
the typical travel time of a segment s, given P the set of points matched to s, is defined as∑

pi ∈ Pspeed(pi) ∗GFA(pi, s)∑
pi ∈ PGFA(pi, s)

Definition 29 (Trajectory Map Matching). Given a trajectory m and a set of road seg-
ments S, we refer to m∗ as the trajectory m on the road segment network S, i.e. the points
of m∗ belong to the segments in S:

m∗ = mapmatch(m,S, k)

where m∗ = [p∗1, . . . , p
∗
n] = [s̄1, . . . , ¯sn−1] and [p∗i , p

∗
i+1] = s̄j = σ(pi, S, k)

Thus, trajectory m can be transformed into the map matched version m∗ = [p∗1, . . . , p
∗
n]

containing points which belong to the road segments S, where p∗1, . . . , p∗n maximize the
attractions with p1, . . . , pn, i.e., m∗ is the best representation of m on S (with k > 0).
A refinement is needed to obtain the map matched trajectory m∗, i.e., a path must be
added for each couple of points which are not directly connected. To find such path, we
used a Time-Aware heuristic as described in [77]. This map-matching method takes the
GPS travel time between the two consecutive GPS points as input and returns the path
connecting the two points that better fit the input travel time. It is worth to consider that
the road network is a directed graph, thus including only one-way segments.

9.2.2 Model

In the following we describe the analytic model adopted. Note how we exploit part of
the Personal Mobility Data Model described in Section 8.3.1, i.e., the Personal Agenda.
Given a set of users U and a set of road segments S, for each user u ∈ U , we calculate the
individual mobility profile Pu. In this work we focus on the routines Ru [285]. Then for each
routine ri ∈ Ru, we map match the routine on the road network r∗i = mapmatch(ri, S, k).
We name map matched routines R∗u = {r∗1, . . . , r∗k} the routines of a user u mapped on S.

Given an origin point o and a destination point d, we define a route planner m̄ =
routeplannertype(o, d, S) as a function which returns the best path m̄ = [o, p̄2, . . . , p̄n−1, d]
with respect to the type of search type ∈ {s, f} (where s stands for shortest and f stands
for fastest) on the road segments S. Then, for each routine r∗i = [oi, . . . , di] ∈ R∗u we
calculate the path returned by the route planner r̄i = routeplannertype(oi, di, S) on the
origin and destination. We indicate with R̄typeu = {r̄1, . . . , r̄k} the shortest/fastest routes
of a user u, containing the paths returned by the route planner.

Summing up, given a set of users U , their individual history Hu∀ u ∈ U , and the road
network segments set S we obtain:

1. Ru ∀ u ∈ U with the routine step extraction from the Personal Mobility Data Model
Pu calculated on Hu for each u ∈ U ;

2. R∗u ∀ u ∈ U through the map matching step as result of the application of mapmatch
for each ri ∈ Ru, ∀ u ∈ U ;
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Figure 9.21: Steps of the analytic mobility model. Input: individual history Hu, road network
segments set S. Output: personal map matched routines R∗u, personal shortest/fastest routes
R̄typeu . Ru is extracted from the Personal Mobility Data Model Pu with the Mobility Profiling
module, through Map Matching we obtain R∗u, and R̄typeu is obtained by using the Route Planner
on the origins and destinations (highlighted in the red dotted circles) of the routines in R∗u.

3. R̄typeu ∀ u∈U by means of the route planner step as result of the application of
routeplanner on the origin and destination points oi, di for each r∗i∈R∗u, ∀ u∈U .

Fig. 9.21 shows the steps of the analytic mobility model. In the next section we will observe
the differences between R∗u and R̄su, R̄

f
u. We remark that the shortest path is the path which

minimizes the distance, the fastest path is the path which minimizes the travel time.

9.2.3 Case Study

In the following, we evaluate how much systematic users described by their map matched
individual mobility profile R∗u deviate from the shortest and fastest routes contained in the
shortest mobility profile Rsu and fastest mobility profile Rfu. Moreover, we analyze which
are the nodes on the road network S, the areas and the flows more affected by deviations.
We accomplish these analyses by considering the trajectories passing through the provinces
of Pisa and Florence on the Octo mobility dataset described in Section 6.1.

Deviation Analysis

We analyze the deviation in terms of space between the routines in R∗u and the shortest
routes in R̄su, and the deviation in terms of time between the routines in R∗u and the fastest
routes in R̄fu. For each user u∈U , for each routine in r∗i ={oi, . . . di} ∈ R∗u, we calculate the
difference with the corresponding route in R̄{s,f}u , i.e. the route r̄i which starts in oi and
ends in di. Note that the following results are biased by the route planner used.

In Fig. 9.22 we can observe the space and time differences distributions. With respect
to the shortest path (left), in both dataset there is a consistent set of routines with space
difference equals to zero. This indicates that 30%-35% of the routines (for Pisa and Florence
respectively) follow the shortest path suggested by the route planner. The remaining
routines differentiate on average of 7 km (see Tab. 9.2). On the other hand, in Fig. 9.22
(center) none of the routines follows exactly the fastest path. Just a few routines, i.e.
the 10%, follow the fastest routes with less than a minute of difference. All the others
differentiate consistently (20 min on average Tab. 9.2). In addition, we can observe that
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Figure 9.22: (Left) Space difference distribution in km between the routines in R∗u and the corre-
sponding routines in R̄su. (Center) Time difference distribution in minutes between the routines in
R∗u and the corresponding routines in R̄fu. (Right) Distribution of the percentage of road traveled
before the routine deviates from the shortest/fastest path.

short - space diff fast - time diff short - pbd fast - pbd
med avg std med avg std med avg std med avg std

Pisa 02.31 07.16 13.56 07.42 26.92 58.13 07.07 25.14 35.52 07.96 23.19 32.33
Florence 03.64 10.22 18.45 07.31 19.06 29.90 02.97 07.58 13.54 01.05 01.58 21.58

Table 9.2: Median, average and standard deviation of the space difference (km), time difference
(min) and relative percentage of road traveled before the deviation (pbd).

the routines of the 15% of the drivers in Pisa and 10% in Florence correspond to the shortest
routes (R∗u=R̄su), but none of the users has all the routines equal to the fastest path.

In Fig. 9.22 (right) is reported the percentage of road traveled before the deviation
(pbd). It is obtained by observing after how much r∗i deviates from r̄i after the start point
oi. We can notice how 20% of the systematic movements deviate from the shortest/fastest
routes at the very beginning. The distribution is a long-tailed power law with average
percentage before deviation of 7% and 3% for Pisa and Florence respectively (see Tab.
9.2). Furthermore, how already observed, there is a consistent subset of routines (12-15%)
which do not deviate from the shortest path. This does not occur for the fastest path.

Hence, systematic drivers generally deviate from the routes suggested by a route planner
at the very beginning of their movements, and do not optimize their travel time but try
to minimize the travel distance. However, even if the drivers deviate from the short/fast
routes, these routes are in many cases very similar to the personal routines.

Towards an Experienced Route Planner

Before presenting the analysis of this section we remark that routines are frequent move-
ments during the observation period. Thus, if drivers systematically deviate from what is
supposed to be the shortest (or the fastest) path there should be a valid reason. Given
a user moving for the first time in a certain area, it could be better for her to follow the
routines described by “expert driver” instead of the routes suggested by a route planner.

A route planner could be boosted through the experience given by personal mobility
models. Such a route planner should consider various information: (i) the road intersec-
tions where the systematic drivers deviate more, (ii) the areas where those intersections are
concentrated, and (iii) the main flows of movement containing deviations. In the following
we analyze these three factors to understand their impact and which are their possible uses.
In particular, we focus on the deviation of the routines against the shortest path.
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Figure 9.23: Deviation nodes supported by with at least 100 deviations.

Figure 9.24: Heatmap of the deviation cells.

We refer to the road intersections as deviation nodes. They correspond to the first nodes
in the set of road segments S from which the routines in R∗u deviate from the route in R̄su.
To count the number of deviations, instead of considering only the number of routines,
we weight each routine r∗i ∈ R∗u with the number of trajectories that support it. In Fig.
9.23 we can observe the deviation nodes in which there are at least 100 trajectories that
deviate. The darker and the bigger is a marker, the higher is the number of deviations
performed by the routines on that node. As expected, for both cities, the highest numbers
of deviation nodes appear into the city center. This confirms the fact that in the city is
very difficult to follow the shortest paths. Moreover, for both provinces we can observe
some particular areas not in the city center (those highlighted in the green dotted squares)
with a high number of deviations. They correspond (i) to the main access points to/from
the city center, and (ii) to the roads close to the airports. This is a signal that these areas
are probably affected by consistent traffic and the systematic users which have to pass
through them prefer longer but less stressful routes.
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Figure 9.25: Number of cells with deviations (left), and number of flows with deviation (right).

To analyze the deviations areas we divide the territory using a grid with cells of 2.5 km
of radius. The heatmap of the deviations is shown in Fig. 9.24. The darker is a cell, the
higher is the number of trajectories which support the routines deviating there. For these
images no filters are applied. The first insight is that the users acting in province of Florence
have an active role even in the mobility of Pisa but the viceversa is not true. Indeed, most
of the cells with more deviation in Pisa occur also in Florence. From the intersection of
the two images emerges that most of the systematic deviations take place along the main
road between Pisa and Florence (named SGC Fi-Pi-Li) with a concentration in the area
around Empoli. This probably happens because most of the people living in Empoli, which
is in province of Florence, go systematically to Pisa for working. For example, instead of
following SGC Fi-Pi-Li that is a highway but has a lot of traffic, many drivers could prefer
as alternative the road SS67 which runs along SGC Fi-Pi-Li but has much more turns and
is not a highway. In Fig. 9.25 (left) we report the distribution of the number of cells per
routines’ deviations. It is a power low distribution indicating that there are few cells where
most of the systematic users decide to take alternative routes. Those are the cells that more
than the others the experienced root planner should consider when suggesting the routes.

We define a flow as a triple of cells (origin, deviation, destination) where origin is the
cell origin of the routine, deviation is the cell where r∗i deviates from r̄i, and destination
is the ending cell of the routine. In Fig. 9.26 we can observe the flows containing the
routines supported by at least 100 trajectories. Through this approach we can observe
the main flows along with most of the drivers deviate from the shortest paths. We can
observe how in Pisa province there are various flows of entrance to and exit from the city
center. The flows with more deviations (the purple biggest arrows) are just under the city
center starting from the airport area up to the suburbs. They are surrounded by a large
number of in-coming and out-coming flows. We remark that in many cases the deviation
from the shortest path appears at the very beginning of the movement. Thus, the flows
reported highlight the part of the movement after the deviation. Some deviation flows do
not have a mutual reverse flow of the same importance. On the other hand, in province
of Florence, the flows in the city center are on average shorter than those outside. In
addition, the biggest flows are present in the airport area (big green arrow in the center)
and close to the exit of the highways (big blue arrow bottom right and big aqua green
arrow in the center). Fig. 9.25 (right) shows the distribution of the number of flows per
routines’ deviations. Similarly to the cells, the distribution is long-tailed indicating a small
set of flows where many routines deviate from the shortest/fastest path.
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Figure 9.26: Deviation flows supported by at least 100 deviations.

Finally, we analyze the difference between the flows described above and the flows
built using only origins and destinations. In other words, given an origin-destination flow
(origin, destination) how many flows (origin, deviation, destination) pass through the
same deviation? We name this indicator flow similarity in deviation. This value gives us a
hint of how much a certain deviation is stable along a flow. A flow similarity in deviation
of X% indicates the percentage of (origin, deviation, destination) flow on the number
of origin-destination flows (origin, destination) which pass through the same deviation
cell. E.g. given the following origin-destination flows {A → B,X → Y } and the flows
{A → C → B,A → C → B,A → D → B,X → Z → Y,X → Z → Y }, then the
percentage of flow difference is 80%. We obtain the following results: Pisa: 83% (short),
78% (fast), Florence: 87% (short), 85% (fast). These high percentages are a clear signal
that the deviations along the various flows are not a matter of individuals, but that are
known and subscribed by the majority of the drivers. It is a sort of “common sense” which
surprisingly emerges at collective level even though all the mobility models used in the
proposed analysis are personal.

9.2.4 Conclusion

By exploiting Personal Data Analytics in the Personal Data Environment of shared knowl-
edge of routines, we have analyzed the deviation of the systematic movements from the
shortest and fastest paths suggested by a route planner on a set of drivers in Pisa and Flo-
rence provinces. We have found that systematic drivers deviate from the routes suggested
by a route planner at the very beginning of their movements, and that they generally try
to minimize the travel distance more than the travel time. Moreover, we have observed
that the shortest paths are in many cases very similar to the systematic movements from
which they deviate. Furthermore, through our model we have been able to select the areas
and the flows with the highest number of systematic deviation and we have discovered that
given a flow from an origin o to a destination d nearly all the users which systematically
move from o to d deviate in the same area. Our analysis has shown that the traveled sys-
tematic movements give to the drivers a feeling that their route is better than the shortest
or fastest paths suggested by a route planner.



Chapter 10

Social and Proactive Carpooling

There is no need to advocate why traffic and its consequences on the environment, our
health and quality of life, and the economy is a major problem for our society. Carpooling,
i.e., the act where two or more travelers share a vehicle in order to reach common or nearby
destinations, is an old idea brought forward, among many others, to reduce traffic and its
externalities. If a large proportion of travelers, especially daily commuters, would adopt
carpooling, a substantial traffic reduction could indeed take place.

Despite its clear advantages in reducing costs, pollution, and time spent in finding a car
park, there are still a few obstacles that prevent it from being the preferred way to move:
safety of passengers, sub-optimal mobility matches, and time flexibility, among others.
Indeed, it has been shown in the literature that it is extremely difficult to boost the adoption
of carpooling to levels that significantly diminish traffic as a whole. There are many reasons
why this happens: psychological, organizational, technological. As a matter of fact, we
do not know much yet about the real carpooling potential that emerges from people’s
mobility. However, through Personal Data Analytics, we propose very preliminary steps
towards designing the right mechanisms and incentives for successful carpooling systems.

Nevertheless, we now have access to the data to observe personal mobility at a mi-
croscopic level and for large populations of travelers, such as the digitized trajectories of
vehicular travels recorded by GPS-enabled onboard devices. By exploiting the Personal
Mobility Data Models of the users in the Personal Data Ecosystem that want to participate
in a carpooling service, we developed different frameworks which try to reduce the number
of circulating cars and, in particular, to reduce the systematic trips.

In this Chapter, in contrast with “on-demand” carpooling setting, where the user typi-
cally has to select origin, destination and departure time, in order to find matching drivers,
we process data in temporal batches and focus on recurring trips by providing proactive
suggestions which minimize the number of drivers driving alone. Moreover, since the ob-
stacles for employing carpooling are related not only to mobility, but also to social aspects
like the reticence to share the car with unknown people, we introduce in our system a
measure to take into account these facts when we assign the passengers to the drivers.
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10.1 Boosting Carpooling with Network Analysis

We analyze the potential impact of carpooling as a collective phenomenon emerging from
people’s mobility, by network analytics. By starting from the routines Ru of the PMDM,
we construct the network of potential carpooling, where nodes correspond to users, and
each link between user u and user v corresponds to the fact that u can take a lift from v,
because there is a trip in v’s profile that can serve u, i.e., u can be a passenger of driver v.
In this carpooling scenario, the network is formed by the participating users of the PDE.

By analyzing the structural properties of this network, we can gain a deeper insight
of the potential impact of carpooling [133]. We adapt network analysis tools such as
community discovery and node ranking to the purpose of highlighting the subpopulations
of travelers that have higher chances to create a carpooling community, and who are the
users that show a higher propensity to be either a driver or a passenger in a shared car. Also,
we can reason about the propensity of geographical units or cities to carpooling, as well
as on the impact on externalities such as CO2 emissions and costs that can be potentially
reduced. Remarkably, our method explores the potentiality of carpooling in systematic
travels, e.g., home-work commuting, as opposed to ride sharing in occasional trips, which
is the approach of several popular works (see Section 3.2.1). Addressing the issue of sharing
systematic trips is more challenging and can have a larger impact on traffic reduction.

An additional contribution of our study is the analysis of the potential aggregated
outcome of a carpooling service in the networks considered, using several empirical simula-
tions, in terms of expected number of single occupancy vehicles (SOV) that we observe as a
result of carpooling matches that take place. We investigate several possible scenarios, and
show how a carpooling assignment that exploits the mentioned network analytic concepts
of communities and node rankings is the one with the best performance. Although much
further work is needed to validate in the real world that mining carpooling networks can
boost the adoption of ride sharing among communities of commuters, our study is a first
in-depth analysis of the potential impact of the approach, which sheds a new, quantita-
tive view of a mechanism that can only be explained in terms of a dynamic network of
interacting actors exhibiting an often surprising aggregated behavior.

10.1.1 Complex Network Analysis Background

In the following we make use of three concepts belonging to complex networks analysis: (i)
node degree, (ii) link analysis, (iii) community discovery. Let G be a directed graph and i a
node of G, we define the incoming degree of i as the number kini of links that point to i, and
the outgoing degree as the number kouti of links that start from i and point to other nodes.

In network science, link analysis is a data-analysis technique used to evaluate relation-
ships, i.e. connections, between nodes. In particular, we used Hyperlink-Induced Topic
Search (HITS ), also known as hubs and authorities, a link analysis algorithm that rates
Web pages, developed in [100]. The algorithm assigns two scores to each page: its author-
ity score, which estimates the value of the content of the page, and its hub score, which
estimates the value of its links to other pages. Authority and hub values are defined in
terms of one another in a mutual recursion: authority values are computed as the sum of
the hub values that point to that page; hub values are the sum of the authority values of
the pages it points to. These hub and authority scores are values that enable us to rank
nodes according to some criteria. We define HITS as a ranking function:
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Definition 30 (Ranking Measure). Given a direct graph G = 〈N,E〉, we define the ranking
function ranking(G) as the algorithm HITS, taking as input G and returning two score
vectors h and a, respectively for hub and authority.

Community discovery is the problem of identifying communities hidden within the
structure of a complex network [83]. A community is a set of entities that, in the network
sense, are closer to the other entities of the community than with those outside it. Thus,
communities are groups of entities that share some common properties and/or play similar
roles. In literature, several popular community discovery algorithms exist [40, 84, 254].
Among them, in this work we choose to adopt Demon for its ability to deal with direct
graphs and for the quality of the communities extracted.

Definition 31 (Community Discovery). Given a direct graph G = 〈N,E〉, we define the
function communities(G) as the algorithm Demon, taking as input G and returning a set
of communities C = {C1 . . . Cn}, where Ci ⊆ N is a set of nodes.

10.1.2 Method

In this section we describe an approach for realizing a proactive carpooling service based
on the identification of pairs of users that could share their vehicle for one or more of their
systematic trips. We propose a procedure for suggesting carpooling assignments among sys-
tematic users, i.e., recommending to drivers that frequently follow the same routes to offer a
ride to other users who will become their passengers. The output of such procedure also pro-
vides the means for studying the potential of carpooling on the area of analysis. The proce-
dure is composed of two main tasks. The first one regards the construction of the carpooling
network, the calculus of the ranking scores and the extraction of the communities. The sec-
ond one concerns the actual assignment of drivers and passengers among the users that form
the carpooling network by exploiting the ranking scores and the communities discovered.

Carpooling Network Construction

We talk about carpooling interaction when a user can get or offer a ride to another one.
The idea is to use complex networks to model the potential carpooling interactions, use the
ranking measures to evaluate how much a user is suitable for being a driver or a passenger,
and employ community detection to characterize groups of users highly related in terms
of carpooling. The starting point of this analysis is the set of routines Ru part of the
user Personal Mobility Data Model Pu. Since mobility profiles represent users’ systematic
behaviors, by comparing them it is possible to understand if a user can be served by another
one. The system can keep reasonably up-to-date routines by executing the profiling process
regularly, for instance every week, over the most recent mobility data.

A basic operation is to test whether a routine is contained in another. If r1 is contained
in r2 then the user systematically following r1 can potentially leave her car at home and
travel with the user systematically following r2. We define routine containment as:

Definition 32 (Routine Containment). Given two routines r1 = {(x(1)
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Figure 10.1: Example of routines containment: r1 is contained in r2 because the starting and
ending points of r1 (circles) are spatially and temporally close enough to some points of r2 (squares).

and a temporal tolerance temptol, we say that r1 is contained in r2, i.e.

contained(r1, r2, spattol, temptol), if ∃ i, j1 ≤ i < j ≤ m Ãěsuch that

||(x(1)
1 , y

(1)
1 )− (x

(2)
i , y

(2)
i )||+ ||(x(1)

n , y(1)
n )− (x

(2)
j , y

(2)
j )|| ≤ spattol ∧

|t(1)
1 − t

(2)
i |+ |t

(1)
n − t

(2)
j | ≤ temptol

where:

• spattol is the maximum total distance that the served user could walk to reach the
pick-up point, and to reach her final destination from the get-off point;

• temptol is the maximum total amount of time that the served user is allowed to waste,
as delay or anticipation of her systematic trip, considering departure and arrival time.

It is important to note that the contained relation is not symmetric, since a routine might
include another one without having the vice versa holding. This can happen when the
routines compared have different lengths, in which case the origin of the user which serves
the other can be very far from the origin of the one who is served, and similarly for
the destination point. Fig.10.1 provides a visual depiction of the containment relation
over a simple example. This formulation assumes that the users served, i.e., the candidate
passengers, are willing to walk and change their time schedule in exchange for the ride they
get, while the users which serve, i.e., the candidate drivers, do not change their routine.

Using the containment relation we can build the carpooling network G=〈N,E〉. Given
the set of collective routines of all the users RC={R1, . . . Rn}, for each pair of different users
u and v, we check the routine containment between every routine rui ∈Ru and every routine
rvj∈Rv. If contained(rui , r

v
j , spattol, temptol) holds, then u,v∈N and {(u, v, rui , rvj )} ∈ E.

Definition 33 (Carpooling Network). A carpooling network G = 〈N,E〉 is a multi-
dimensional graph where N represents the set of all users taking part in at least a carpooling
interaction, E is the set of all labeled edges (u, v, rui , r

v
j ), where rui is a routine of u ∈ N ,

rvj is a routine of v ∈ N , and rui is contained in rvj .

The carpooling network guarantees that, since the links considered are routines, the
movements they represent are systematically repeated. This ensures that a ride is most
likely available or needed. In Fig. 10.2 (left) we have an example of carpooling network. In
practice, we follow the basic idea of creating a network based on containment relationships
[8] with some spatio-temporal variations. Given a carpooling network G we define the
possible passengers and possible drivers as:
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Figure 10.2: Carpooling Network (left), Carpooling User Network (right).

Definition 34 (Possible Passengers). Given a carpooling network G = {N,E}, a user
u ∈ N is a possible passenger if she has at least an outgoing link, that is koutu > 0.

Definition 35 (Possible Drivers). Given a carpooling network G = {N,E}, a user u ∈ N
is a possible driver if she has at least an in-going link, that is kinu > 0.

We denote with PPG the set of all possible passengers and with PDG the set of all possi-
ble drivers in G. Note that it is possible (and actually rather frequent) that PPG∩PDG 6=∅,
thus some users can act both as possible passengers and as possible drivers.

Finally, it is worth to highlight that a carpooling network is in fact a multidimensional
network: users u and v can share for example two routines; the going trip and the return
trip because they take place at different times and also on different roads. However, in
order to use some common network analytic tools we have to transform the carpooling
network in a mono-dimensional network (see Fig. 10.2 (right)).

Definition 36 (Carpooling User Network). Given a carpooling network G = 〈N,E〉,
we define a carpooling user network as a direct mono-dimensional graph G′ = 〈N,E′〉
obtained by collapsing all multi-dimensional edges between the same pair of users, i.e.
E′ = {(u, v)|(u, v, ru1 , rv1) ∈ E}.

Since G′ is direct, then an arc (u, v) is directed from u to v, v is called successor of u.

Greedy Carpooling Assignment Suggestion

Using the carpooling network, we are able to extract potential assignments. The carpooling
assignment method proposed in this section follows a simple heuristic and a greedy idea.
The method takes as input a carpooling user graph G, i.e., multidimensional edges are not
considered, assuming that each pair of users can share only one routine: the general case
will be described later as an extension of the solution depicted here. This first procedure is
applied to a relatively short time window within the day, where it is basically certain that
each user will have at most one active routine, e.g. in a typical situation a time window
covering the period from 8 a.m. to 8:15 a.m. might contain the home-to-work routine of
a commuter, but not the symmetric one, which will likely appear in another time slot in
the afternoon. In the following we describe the overall algorithm that iteratively applies
the present one on different time slots. The output of the method is a classification of the
users taking part in the carpooling network. In particular, the set D contains the drivers
that host some passengers in their car, P contains the passengers that are hosted by some
drivers, and S contains the single-occupant-vehicles (SOV) that drive alone. The three
classes form a partitioning of the users, i.e. N = D ∪ P ∪ S and |N | = |D|+ |P |+ |S|.
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Algorithm 10: calculateGeedyAssignment(G′, f,m, c′, c′′, D, P, S)

Input : G′ = 〈N,E〉 - carpooling user network, c′, c′′ - sorting criteria, f - sorting
function, m - max number of free places, D - set of sets of possible driver
containing the assigned passengers (e.g. Dv is the set of passengers assigned to
driver v), P - set of sets of possible passengers containing the assigned driver (e.g.
if v ∈ Pu it means that passenger u is assigned to driver v, |Pu| ≤ 1 always) S -
set of single occupant vehicle

Output: D,P, S

1 for u ∈ f(N, c′) do
2 if Du 6⊆ D ∧ Pu 6⊆ P then
3 for v ∈ f(successors(u), c′′) do
4 if |Dv| ≤ m then
5 Dv ← Dv ∪ {u};
6 Pu ← {v};
7 break;
8 end
9 end

10 end
11 end
12 for u ∈ N do
13 if Du 6⊆ D ∧ Pu 6⊆ P then
14 S ← S ∪ {u};
15 end
16 end
17 return D,P, S;

The procedure uses a sorting function f to order the possible passengers according to
some criteria c′. It takes the first possible passenger u from the sorted list, and it orders
her possible drivers using f according to another criteria c′′. Then, it takes the first driver
v that still has free places in her car, and assigns u to v. The procedure is repeated until
every user is assigned, or there are no free places left. The greedy assignment method is
illustrated in Alg. 10 where the function successors(u) returns the set of successors of u.

We remark that the algorithm is intended to be applied iteratively on successive time
windows, therefore it takes as input also the output sets obtained from previous iterations,
in order to consider in the matching process all users that are not already and completely
assigned. For example, if a driver has already used all her free places for an active routine,
then she cannot take other passengers, and therefore she is not considered in the matching
at the present iteration. On the other hand, a user that was classified as SOV for an active
routine can still be considered both as a possible passenger and as a possible driver.

The main purpose of this procedure is to reduce the number |S| of systematic cars in
which the driver is driving alone and, in second instance, the total number of systematic
cars in circulation given by |D| + |S|, thus increasing the number of systematic cars that
are not needed anymore – corresponding to the number of users that turned into passen-
gers, |P |. The most important component is represented by |S|, since SOVs do not play
an active role in carpooling although they could potentially share at least one routine with
another user. The algorithm is parametric with respect to the sorting criteria used.
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Although the algorithm has a quadratic complexity, in practical cases it is essentially
linear in the number of nodes analyzed, O(|N |). This happens because if a node has already
been visited, then it cannot be re-analyzed. Also the presence of an inner loop does not
lead to quadratic complexity because this would mean that every possible driver could offer
a lift to all (or a large part of) possible passengers, which is highly improbable. Moreover,
we have to consider the cost of the sorting functions f , which is Θ(NlogN) in the worst
case. The cost of the innermost sorting function could be at worst Θ(N2logN) but, as
above, this would happen if every node links to all the others. In practice, the innermost
sorting function f cost is O(koutu logkoutu ) each time it is repeated, i.e. O(Nkoutu logkoutu ).
Since the average koutu is very low in this kind of networks, we have that O(koutu logkoutu )
can be approximated to a constant c. Thus, the dominant cost remains Θ(NlogN).

The problem analyzed is NP-complete [171], and an optimal approach to solve it is
exponential in the number of edges. Indeed, such an approach should take into account the
fact that every assignment might inhibit any of the others, since each node in the network
can either be a driver or a passenger and once the choice is made it cannot be reversed,
then virtually all combinations must be tried in order to find the best one. Finally, we note
that, in spite of its resemblance with bipartite matching, our formulation of the carpooling
problem cannot be solved just using a maximal matching over the bipartite graph among
possible drivers and possible passengers, because the intersection between possible drivers
and possible passengers is not empty. Thus, in order to reduce it to the bipartite case, we
should evaluate the matching over all its possible bipartite projections, i.e. by assigning all
users to one fixed role, trying all possible combinations. That is computationally equivalent
to the exhaustive, brute force approach mentioned above. For these reasons, the solution
we propose is a heuristics, which trades optimality for scalability.

Ranking Criteria and Problem Partitioning

In order to find the best assignments among the users taking part in the carpooling scenario,
it is useful to discover the best passengers and the best drivers among the candidate ones.
We say that a user is a “good passenger” if she can accept a lift from many “good drivers”,
and mutually, a user is a “good driver” if she can offer a ride to many “good passengers”.
Thus, we analyze the carpooling network to rank a user as a “good passenger” or as a “good
driver”. The idea to reach this goal is to consider the carpooling user graph and the apply
the HITS algorithm [168]. Indeed, the HITS task of extracting hub and authority scores
to estimate the value of a web page can be directly mapped to the carpooling scenario for
measuring how much a user is suitable for being a good passenger or a good driver. In the
context of carpooling networks, we define the hub score as passengerness, i.e. the attitude
of u for being a good passenger, and the authority score as driverness, i.e. the attitude of
u for being a good driver.

Definition 37 (Passengerness and Driverness). Given the carpooling user network G =
〈N,E〉 and its adjacency matrix A, for each user u ∈ N , we define passengerness pu and
driverness du respectively as the hub and authority scores of u in G. Formally, vectors p
and d are eigenvectors such that p = AAT p and d = ATAd.

Even though the passengerness and the driverness are indicators of how much a user
can be a good driver or a good passenger, they do not provide information about which
groups of users could more easily travel together, or which geographical areas could be
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Figure 10.3: Carpooling Temporal Network.

more promising for a carpooling service. Consequently, we extract groups of users sharing
common routines, which have then been analyzed to characterize each group geographically
(to understand whether such groups are localized or dispersed over large areas), and with
respect to their passengerness and driverness.

Definition 38 (Carpooling Community). Given a carpooling user network G′ = 〈N, E′〉
we define a carpooling community C ⊆ N as a group of users who share more routines
with the users inside the community rather than with the users outside the community.

To extract the carpooling communities and to perform the carpooling suggestions with-
out discarding the temporal knowledge we introduce carpooling temporal networks:

Definition 39 (Carpooling Temporal Network). Given a carpooling network G = 〈N,E〉,
a timestamp ts and a temporal duration dur, we define a carpooling temporal network as
a direct graph G′ = 〈N ′, E′〉 such that E′ = {euv ∈ E | isActive(euv, ts, dur)} and N ′ ⊆ N
is the set of all nodes comparing in E′. The isActive operator is defined as

isActive(euv, ts, dur) ≡ (ts ≤ tri1 < ts+ dur) ∧ (ts ≤ trin < ts+ dur)

where tri1 and trin are the timestamps of the first and last point of ri, respectively.

An edge euv is active if the contained routine is not finished in a certain time window.
Note that a carpooling temporal network is a mono-dimensional direct graph if the used
time window is short enough (i.e., dur is relatively small) and there are not two users u
and v that systematically follow two different pairs of matching routines in the same time
window – usually a rather extreme phenomena for reasonable values of dur. A carpooling
network can be seen as a particular carpooling temporal network where every edge is active.
Finally, we highlight that a carpooling temporal network is different from a carpooling user
network, since the second considers every carpooling interaction.

Never Drive Alone Method

In the following, we describe the Never Drive Alone (NDA) method using the measures
and concepts defined up to now. NDA performs the following steps: (i) extracts the
systematic movements; (ii) builds the carpooling network; (iii) calculates the passengerness
and driverness ranking scores; (iv) extracts the carpooling communities; (v) makes the
assignments and classify the users as drivers, passengers or SOVs. The detailed procedure
is described in Alg. 11 and 12. The main difference between these two versions is that the
second one uses the community information, while the first one does not.
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Algorithm 11: NeverDriveAlone(M, dur, f,m)

Input :M - dataset of user movements, ts - start of time window, dur - temporal
duration, f - sorting function, m - max number of free places,

Output: D - set of drivers, P - set of passengers, S - set of SOVs

1 D ← ∅; P ← ∅; S ← ∅;
2 P ← ∅; /* set of PMDM */
3 for Mu ∈M do
4 Pru ← extractProfile(Mu);
5 P ← P ∪ Pru;
6 end
7 G← buildCarpoolingNetwork(P, contained(∗));
8 G′ ← extractCarpoolingUserNetwork(G);
9 kout, kin ← getDegrees(G′); /* calculates out-degree and in-degree values */

10 p, d← HITS(G′);/* calculates passangerness and driverness ranking scores */

11 c′ ← createSortingCriteria(kout, p);/* creates the first sorting criteria */

12 c′′ ← createSortingCriteria(kin, d); /* creates the second sorting criteria */
13 D′ ← ∅; P ′ ← ∅; S′ ← ∅;
14 for selected ts do
15 Gts,ts+dur ← extractCarpoolingTemporalNetwork(G, ts, dur);
16 D′, P ′, S′ ← calculateGeedyAssignment(Gts,ts+dur, f,m, c′, c′′, D′, P ′, S′);
17 D,P, S ← updateAssignments(D,P, S,D′, P ′, D′);
18 D′, P ′, S′ ← removeF inishedInteractions(Gts,ts+dur, D′, P ′, S′, ts, dur);
19 end
20 return D,P, S;

Given a time window defined by the parameters ts and dur discussed in the previous
section, function removeF inishedInteractions removes from D′, P ′, S′ the assignments
that will not be active in the next time window because they end in the current one.
In this way, a driver can offer a lift to more then m (max number of free places) users,
because she might drop-off a passenger and later take another one, also multiple times.
The returned sets classify the user according to their role in the carpooling scenario. That
is, a user will be in S if and only if she is left out from every carpooling interaction in every
time window. If a user can physically act either as a driver or as a passenger then she is
counted as a driver because for at least a systematic trip she offered a ride and thus used
her car. This happens when a user offers a ride to someone in the morning, then returns
to the starting point and finally in the afternoon takes a lift to go somewhere else.

When the procedure is performed taking into account the carpooling communities (see
Alg. 12), for each timestamp considered the communities are extracted and analyzed
in a certain order which can depend on the size of the community. The purpose is to
reduce the focus assignment problem on sets of users that are similar in the carpooling
sense, that is, we give to the edges of nodes belonging to different communities a lower
importance, because they are expected to offer a ride or get a lift with lower probability
– typically because different communities often correspond to different geographical areas.
On the contrary, users in the same communities are similar each other, thus their links are
evaluated with a high importance in suggesting assignments.
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Algorithm 12: NeverDriveAloneCommunities(M, dur, f,m)

Input :M - dataset of user movements, ts - start of time window, dur - temporal
duration, f - sorting function, m - max number of free places,

Output: D - set of drivers, P - set of passengers, S - set of SOVs

1 D ← ∅; P ← ∅; S ← ∅;
2 P ← ∅; /* set of PMDM */
3 for Mu ∈M do
4 Pru ← extractProfile(Mu);
5 P ← P ∪ Pru;
6 end
7 G← buildCarpoolingNetwork(P, contained(∗));
8 G′ ← extractCarpoolingUserNetwork(G);
9 kout, kin ← getDegrees(G′); /* calculates out-degree and in-degree values */

10 p, d← HITS(G′);/* calculates passangerness and driverness ranking scores */

11 C ← extractCommunities(G′); /* extracts the users’ communities */

12 c′ ← createSortingCriteria(kout, p);/* creates the first sorting criteria */

13 c′′ ← createSortingCriteria(kin, d); /* creates the second sorting criteria */
14 D′ ← ∅; P ′ ← ∅; S′ ← ∅;
15 for selected ts do
16 Gts,ts+dur ← extractCarpoolingTemporalNetwork(G, ts, dur);
17 for C ∈ C do
18 Gts,ts+durC ← extractSubGraph(Gts,ts+dur, C);
19 D′, P ′, S′ ← calculateGeedyAssignment(Gts,ts+durC , f,m, c′, c′′, D′, P ′, S′);
20 end
21 D,P, S ← updateAssignments(D,P, S,D′, P ′, D′);
22 D′, P ′, S′ ← removeF inishedInteractions(Gts,ts+dur, D′, P ′, S′, ts, dur);
23 end
24 return D,P, S;

Sorting and Matching Strategies

Both Alg. 11 and 12 rely on the greedy procedure reported in Alg. 10. It is worth to under-
line that this procedure is based on the knowledge extracted form data. Indeed, the struc-
ture of the greedy assignment exploits the fact that the carpooling networks show a power
low distribution of the nodes’ degree (see the detailed study provided in the following). By
using smart sorting criteria, our purpose is to lead the algorithm to consider first the least
“promising” passengers (i.e. the most difficult ones to match), and then by ordering their
drivers, to assign the worst passengers with their least promising drivers. This way, passen-
gers with fewer possibilities to be matched are assigned first, while passengers which have
more opportunities are assigned to the remaining drivers. We can instantiate this reasoning
both using the in/out degrees and using the passengerness/driverness ranking criteria.

We consider the following criteria, in order of complexity:

• (r) random criteria (c′ = {random order}, c′′ = {random order}): users are sorted
randomly both if they are drivers or passengers;

• (g1) degree criteria (c′ = {kout ascending order}, c′′ = {kin ascending order}): users
are sorted according to the carpooling user network out-degree kout and in-degree
kin, i.e. by increasing kout and than, their neighbors are ordered by increasing kin;
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• (g2) degree - ranking scores criteria (c′ = {(kout, p) order}, c′′ = {(kin, d) order}):
users are sorted according to passengerness p and driverness d in addition to kout

and kin, that is, the nodes are sorted in a lexicographical order by increasing (kout, p)
and then, their neighbors are sorted in a lexicographical order by increasing (kin, d).

The methodology described could be applied also switching passengers with drivers, i.e.
by enumerating drivers first, and then matching each of them with her possible passengers.
Yet, preliminary experiments proved that this order is largely less successful.

Another information that can be exploited to guide NDA is the community member-
ship. Therefore, we consider two further variants of the method: a basic one, which is
agnostic of the communities; and a community-driven one, where the matches between
intra-community individuals have priority over all the others:

• (w) plain version, Alg. 11, considering every edge with the same importance;

• (c) prioritized version, Alg. 12, that suggests an assignment to the users inside the
same community and then, if that fails, among users of different communities.

Finally, we adopted two strategies w.r.t. the temporal dimension. The routines linking
any pair of profiles make the carpooling network a summary of a typical day. We can
decompose this day in a series of time slots with a predefined duration (dur), obtaining a
series of carpooling temporal networks. The way the sequence of time slots is produced is
a parameter of the method. We consider two variants of time slots:

• (discrete): they start at discrete time instants, e.g. one every 5 minutes from mid-
night. This produces a sliding window of length dur that moves of step 5 minutes;

• (continuous): they start in correspondence of the last carpooling interaction, i.e. the
time of the last matched routines becomes the next starting time.

In the following we evaluate experimentally each combination of the three parameters
discussed, i.e. sorting criterion, usage of communities, choice of time slots.

10.1.3 Case Study

In this section we illustrate an instantiation of the overall approach proposed on a real
case study, and we show the results obtained. The section is divided into two main parts:
construction of the carpooling networks, and selection of carpooling recommendations.

Dataset

As a proxy of human mobility, we used the real GPS traces dataset Octo described in
Section 6.1. In particular, we focus on the area of Pisa and Florence provinces. Moreover,
since it is commonly observed that during Saturday and Sunday most people leave their
working mobility routines and adopt other more erratic behaviors, we consider only working
days, i.e. from Monday to Friday. Finally, we remove potential noise trajectories by not
considering too short trips (less than 1km). In conclusion, we employ our analytical method
on a total of ∼50, 000 users and ∼1.400.000 trajectories. After the mobility profile exaction
phase, in total we obtain RC = ∼17, 200 routines. On average we have 2.14 routines per
user, i.e. home to work and work to home. Note that routines are not available for all
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Figure 10.4: Distribution of routines per user (left), trajectories and routines start time (right).

Figure 10.5: Network construction, contained parameters test: (left) spattol, (right) temptol.

the users analyzed because for this study we required that a routine must be supported by
at least 8 trajectories in order to consider only very repetitive movements such that the
results are statistically meaningful. Fig.10.4 (left) shows the number of routines per users
in Pisa province, with almost every user having one or two routines, which most likely
correspond to commuting trips between home and work. Fig. 10.4 (right) reports the
temporal distribution of the trajectories and routines. We can see that the profiles follow
the timing of typical working days, highlighting the three peeks during early morning (5–6),
lunchtime (11–12), and late afternoon (17–18).

Carpooling Network

In this section we instantiate the network construction step of the methodology proposed,
and analyze the characteristics of the resulting carpooling networks. First, we focus on the
information that can be inferred from the network, trying to obtain preliminary estimations
of the potential reduction of traffic. Then, we study the topological properties of the
network, computing ranking measures and extracting communities.

Network Construction. The carpooling network is derived by the application of the
function contained. Therefore, the resulting network directly depends on the value used
for its parameters spattol and temptol. In order to find good values for these parameters
and to obtain a sound network made of reliable carpooling interactions, we performed a
network construction test on a sample of 1, 000 mobility profiles. Fig. 10.5 shows how the
containment is affected, in percentage, in terms of routines and mobility profiles that have
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Figure 10.6: Carpoolers classification pie chart for Pisa and Florence.
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Figure 10.7: Routines distribution: length (left), duration (center), time start (right).

at least one match. The default values of spattol and temptol are, respectively, 1 km and
30 minutes. It is worth to notice that by allowing a walking distance (spattol) of 3 km and
a wasting time (temptol) of 30 minutes, about 60% of the profiled users have at least one
match, which decreases to 10% if the walking distance becomes 500 meters. Similarly, by
allowing a walking distance of 1 km and a wasting time of 60 minutes, 30% of the profiled
users have at least one match, which decreases to 10% if the wasting time becomes 15
minutes. This suggests that an increase in the walking distance has a larger impact than
an increase in the wasting time, in terms of number of carpooling matches. Based on these
observations, we built the carpooling networks for Pisa and Florence using a maximum
walking distance of 1 km and a maximum wasting time of 30 minutes.

Network Analysis. By observing the users appearing in the carpooling networks
(among those which have a mobility profile), we can distinguish those that can join others
as passengers or drivers, and those that cannot. In particular, we can classify them into
four categories, based on their in- and out-degree in the network:

• only passengers: they can only get rides, i.e., kin=0 and kout>0.

• only drivers: they can only offer rides, i.e., kout=0 and kin>0;

• passengers and drivers: they can act as passengers and drivers: kout>0 and kin>0;

• no carpoolers: they have systematic movements but do not share any routines with
other users: kout = 0 and kin = 0.

With respect to the definitions introduced in the previous section, users which are only pas-
sengers belong to PP , those which are only drivers belong to PD , and the users which are
passengers and drivers belong to both PP and PD . Fig. 10.6 depicts the pie chart with the
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Figure 10.8: Degree and ranking scores distribution: (left) Pisa, (right) Florence

percentages of different types of users in the carpooling user networks of Pisa and Florence.
We can observe how the carpooling potentiality is different in the two cities, with Florence
showing larger percentages of carpoolers, especially of the driver and passenger type.

In Pisa we obtain around 7, 400 mobility routines, each representing at least 8 single
trips of the user (indeed, minsize=8 in these experiments), for a total of around 59, 200
systematic trips. Also, we discover that around 1, 720 of the routines are actually contained
in at least one other routine, i.e. the user could carpool with another driver, which means
a potential reduction of systematic mobility of about 23%. We finally analyze the spatio-
temporal features of the routines extracted. Fig. 10.7 (left) shows the length distribution
of routines for the categories we described above on the Pisa dataset. We notice that users
who are only passengers mainly have a routine length between 0 and 10 km, while the only
drivers have longer routines, between 5 and 25 km. This fact, confirms by the distribution
of trip durations in Fig. 10.7 (right), meets the intuition that users traveling for longer
distances can more easily offer lifts to others, while short-distance travelers can more easily
be taken as passengers.

The following analysis is focused on some topological features of the carpooling user
networks. In particular, the degree (in-degree kin and out-degree kout) of nodes and their
ranking scores (driverness d and the passengerness p). The ranking scores are calculated
running the HITS algorithm on the carpooling user networks1. Fig. 10.8 shows both the
degrees and the ranking scores distribution for Pisa and Florence, with values rescaled to
the [0, 1] interval in order to make the two plots comparable. Both distributions are long-
tailed, meaning that there few users have high values and many users have low values. As
highlighted in the previous section, some users are only passenger or only driver, and there-
fore their corresponding nodes in the network have kin=0 or kout=0. We can notice that in
Pisa, many users also have a zero driverness d, and, the same happens for passengerness p.
This emphasizes the significant difference that exists between the degree and the ranking
scores, at least in the carpooling user network of Pisa. The conclusion is that, despite
the obvious correlation between kout and p, and between kin and d, they can behave in a
significant different way, and users that can be drivers for many passengers might possibly
be not good drivers, and vice-versa. On the other hand, the carpooling user network of
Florence is denser, and the correlation between degree and ranking scores is higher.

1For this task we adopted the Python implementation of HITS provided by the NetworkX library
(http:networkx.github.io), with a tolerance threshold of 1.0e-8.
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Figure 10.9: Geographical view of some carpooling communities in Pisa province.

The main differences between the two provinces are in the p and d ranking scores. In
Pisa the driverness d rapidly falls down getting close to zero within the first one hundred
users, while in Florence it decreases much more gradually. A similar consideration can be
done by looking at p. Moreover, in Pisa there are few drivers with a high d, suggesting
that only a few of them can serve good passengers, while Florence has more good drivers.
Most of the nodes in the networks considered here have very low degrees, between 3 and 8.
This is probably due to the strict parameters that we adopted in building the carpooling
networks to have reliable interactions. The effect is that the carpooling users networks
are very sparse, which turns to be an advantage for the task of suggesting assignments
since each user has only a small number choices to consider. Finally, both datasets show a
standard deviation of the all features (kin, kout, d and p) larger than their mean, suggesting
that our users are rather heterogeneous. Also, passengerness and driverness appear to be
poorly correlated, resulting in a Kendall’s Tau coefficient 0.134.

Communities. The HITS algorithm returns an indicator of how much a user can be
a good driver or a good passenger. However, these ranking scores do not help in grouping
similar users, that is, users that with a high probability would like to share their travels. For
this purpose, we use carpooling communities, i.e., groups of users who share more routines
with other users inside the group than with users outside the group. Various state-of-art
community discovery algorithms were tested for this purpose, including Infohiermap [254],
Louvain [40] and Demon [84]. Finally, the Demon algorithm was selected, due to its better
performances both in terms of runtimes and quality of the result. Fig. 10.9 shows a sample
of carpooling communities in Pisa province. It is interesting to notice that the carpooling
communities are geographically well localized. Every community acts on a specified area
that contains the systematic movements of its users. This means, for instance, that a user
who is active in the northern area of Pisa can generally disregard the mobility of any user
that is moving in different areas.

The topology of the communities emerging from the network results to be very sim-
ilar to the topology of the original carpooling user network. That is, every community,
from a topological point of view, behaves as the overall network. The average size of the
communities is 30− 40 nodes and the average degree inside a community is around 4 with
a low standard deviation (1.32 on average). Observing the distribution of the driverness
and passengerness scores within each community, shown in Fig. 10.10 for Pisa and Flo-
rence province, we discover that the carpooling communities can be classified into two
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Figure 10.10: Carpooling ranking scores box-plot for Pisa (left) and Florence (right).

(a) Not Autonomous -
Global

(b) Not Autonomous - Local (c) Autonomous - Global (d) Autonomous - Local

Figure 10.11: Pisa, examples of a not autonomous and an autonomous community, showing global
and local ranking scores. Size of nodes represents driverness. Darkness represents passengerness.

categories. Indeed, we can see from the box-plots that the distributions on the different
communities have a high variability, showing a group of communities having consistently
very low values, while the others are made of nodes with (on average) high ranking scores.

Then, we evaluated how much the ranking scores d and p of a node change if they
computed considering only the community it belongs to, i.e. running the HITS algorithm
locally to the sub-network formed by each community. We call the new scores local driver-
ness and local passengerness, to distinguish them from the global values. By analyzing the
Kendall’s tau correlation between the global and local ranking scores for each community
we found that, in the Pisa dataset, there are about 30 communities with a correlation close
to one, while the remaining circa 20 communities have correlations lower than 0.4. That
means that the first group of communities in the PDE are basically autonomous, since they
are very weakly influenced by the nodes outside the community, and therefore could rely
on finding possible assignments without considering inter-community links. On the other
hand, the other communities are not-autonomous, since they can be influenced by inter-
community links and their users could find potential best matches with users belonging to
a different community. Fig. 10.11 shows real examples of a not-autonomous (left) and a
autonomous community (right), depicting both the global ranking scores (left column) and
the local ones (right column). The size of nodes represents the driverness score, while its
darkness represents passengerness. We remark that virtually nothing changes for the au-
tonomous community, whereas completely different scores emerge for the non-autonomous
community, confirming the observations discussed above.
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Pisa Florence

Figure 10.12: Assignment results for all strategies and criteria adopted.

Carpooling Suggestions Performances

In the following we describe the results obtained by performing the Never Drive Alone
procedure on Pisa and Florence datasets. The assignment performance evaluation is done
by measuring the number of resulting SOVs, the number of systematic cars travelling, as
well as evaluating the impact of NDA in economic and environmental terms.

Experiments Setup. The NDA procedure has been tested considering all the variants
previously discussed. Moreover, the vehicle capacity of each user has been fixed to m = 4,
i.e. each vehicle can host four passengers in addition to the driver, which fits quite closely
the local standards of the area under study. Also, the time slot duration for the creation
of temporal networks was fixed to dur = 1 hour , meaning that trips longer than one hour
might be prevented from being matched to others even if the contain relation holds – an
extremely unlikely event in our dataset, since 1-hour routines are very rare.

Results. Fig. 10.12 shows the percentage of passengers P ∗, drivers with passengers on-
board D∗ and SOVs S∗ obtained over Pisa and Florence by applying each combination of
the criteria adopted (abbreviations (r), (g1), etc. are those provided in Section 10.1.2). In
addition, it shows the corresponding number of (systematic) cars on the road (see the dark
line on the top of both pictures). As first evaluation, we see that there are always more than
one third of users that become passengers, in most cases around half of the users become
drivers with passengers, and only a small percentage remains a single-occupant vehicle.

We notice also that, while there are significant differences of performances among the
algorithm variants, the simplest (random) variant already reaches very good results, with
a SOV around 12%. Such result suggests that the networks considered constrain signif-
icantly the assignment phase, leaving few alternative opportunities to explore, although
smarter assignment methods are able to improve the results. More tolerant settings in the
construction of the carpooling network (such as admitting matched with longer distances
to walk to take a lift) are expected to yield networks with more alternatives to explore,
and therefore make the improvement margins over the random solution much larger.

The plots show that the knowledge extracted from the mobility data and refined with
network analysis progressively leads to improvements regarding the minimization of the
number of SOVs. Indeed, we observe that the sorting criterion (g2), gets better results than
the sorting criterion (g1), which in turns outperforms (r). Moreover, Fig. 10.13 also depicts
how the strategy considering the community information (c) slightly reduces the number
of SOVs with respect to the strategy that considers the whole network (w). This suggests
that the carpooling service might be organized in a local way, i.e. it might be convenient to
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Figure 10.13: Assignment results for the strategies (w) and (c), and the three sorting criteria.
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Figure 10.14: SOVs percentage distribution (PDF and CDF) of random assignment tests ran
100,000 times for discrete time strategies. Communities not considered (left) and considered (right).

focus the proactive suggestions mainly among users within the same community, basically
disregarding the others. Also the temporal information contributes with useful suggestions:
considering dynamically each change in the carpooling interactions (d) to compute the
assignments procures a little advantage with respect to the one obtained using fixed time
slots (s). Yet, the calculus with (d) is computationally more expensive, especially in
periods where carpooling interactions are frequent (morning, midday, evening).

So far, our considerations were focused on minimizing the number of SOVs. Anyway,
if we want primarily to minimize the number of systematic cars traveling, and only secon-
darily the number of SOVs, we discover that the best approach still uses the (g2) criteria,
yet this time considering the whole network (w) and static (discrete) time slots. Finally,
Fig. 10.12 also shows that, although Florence has more good drivers and passengers than
Pisa, the two carpooling networks yield comparable results in terms of suggestions.

NDA vs. Random Assignment Approach. In order to better verify that the pro-
vided solution is consistently better than those found by a random exploration of choices,
we report in Fig. 10.14 the results obtained by running 100,000 times NDA with random
sorting criteria (r) on the Pisa carpooling network, considering the whole network without
assignment priorities (left (w)) and prioritizing the assignments between nodes in the same
community (right (c)). What we obtain in both cases is a normal distribution. Regarding
(w) the mean value of SOVs, obtained nearly five thousand times, is 12.44 and the standard
deviation is 1.48. On the other hand, considering (c), the mean value is 12.28, a bit lower
than the previous, but obtained no more than three thousand times and a half, and with
a larger standard deviation of 1.97. The solution provided by NDA considering both car-
pooling ranking measures and community knowledge provides a SOVs percentage slightly
smaller than 4.63%, which is largely better than anyone found by the 100,000 random runs.
Indeed, according to the distributions shown in the figure, the expected probability of find-
ing a SOVs percentage lower than that is around 6.56 · 10−8, therefore very close to zero.
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Comparison with Existing Approaches. As described in the related works, most
of the literature on carpooling is focused either on the simulation of very specific aspects,
such as the impact of high occupancy vehicle lanes on traffic, or on the realization of a real-
time service. On the opposite, our work aims to provide a solution for carpooling matching
and study its impact in a real context. The main works that tackle problems close to ours,
are [135] and [76], which we considered for a comparison of performances. Both works
are based on data sources significantly different from those adopted in our paper: [135] is
tailored around (geo-localized) Twitter data, and exploits the topics of the text messages
posted and the social network of users; [76], instead, is based on a mix of mobile phone
data (CDR traces) and social media (geo-localized Twitter posts and Foursquare check-
ins). That makes a direct (and fair) comparison over a common benchmark very difficult.

Another important difference between our approach and the two competitors consid-
ered, is that the latter aim to maximize the number of users involved in the carpooling,
yet not considering explicitly the overall coherence of the carpooling assignment, i.e. a
passenger for a home-to-work trip needs to be passenger also for the return trip. In the
following summary of results, we call this incomplete form of assignment partial passengers,
in contrast to the complete one, called total passengers. As described in Section 10.1.2,
our approach is focused on the more realistic scenario of total passengers, which is ensured
by requiring that the status of the user (passenger or driver) is kept for the whole day.

Below we provide an indirect comparison of the three methods, summarizing the per-
formance results obtained by each of them over its own datasets:

• CAR-O [135]: 71.95% of users in the Rome dataset and 74.82% of users in San
Francisco become partial passengers. Impact on single trips saved not provided.

• EN-ROUTE [76]: 65% of users in Madrid and 68% in New York become partial
passengers. Impact on single trips saved not provided.

• NDA: 43.83% of users in Pisa and 45.10% in Florence become total passengers.
Impact on single trips is 77.52% in Pisa, and 77.03% in Florence.

These results suggest that the matching strategies provided by our solution can reach an
impact over car traffic that is apparently similar to those obtained by other approaches in
similar contexts, yet providing a more realistic application scenario.

Evaluating the Economic and Environmental Impact of Carpooling

In order to evaluate the practical importance of the carpooling matching discussed in the
previous section, we consider here the best configuration setting for the system and study
its results from several viewpoints. The first one is simply the impact of the carpooling
in terms of reduction of cars on road. Tab. 10.1 summarizes the number of routines with
details on the number of routines that might potentially be served by other drivers (# can
ride), those that might give a lift to other passengers (# can drive) and their union (#
linked). Finally, the number of matches that were actually found by the algorithm, also in
terms of percentage over the maximum theoretical outcome, i.e., the number of potential
passengers. NDA is able to assign most part of the potential passengers in both cities
(around 77% of them), also corresponding to a relevant percentage of total routines (cars
on road) saved, namely 18% in Pisa and 26% in Florence.
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City # routines # linked # can ride # can drive # saved trips
Pisa 7, 383 3, 049 1, 717 1, 995 1, 331 (77.52%)

Florence 9, 801 5, 712 3, 305 4, 140 2, 546 (77.03%)

Table 10.1: Number of routines extracted in the two cities, the routines that are linked to others
in the carpooling network, those that might be served by others, those that might serve at least
another one, and number of matches found by NDA (in percentage w.r.t. potential passengers).

City km min fuel(l) e CO2(kg)

Pisa 10, 868.36 24, 174.58 646.67 1, 001.49 1, 445.49
Florence 16, 748.99 43, 300.28 996.56 1, 543.37 2, 227.62

Table 10.2: Estimates of total potential savings in a normal day obtained by using the proactive
carpooling proposed in this work. Savings are expressed in terms of total kilometers driven, time
spent driving, fuel consumed, its cost and CO2 emissions.

Tab. 10.2 reports the economic and environmental impact of the carpooling on the
traffic reductions. Estimates of such impact are computed considering the most common
car sold in the period of data collection, an average gasoline consumption of 0.0595l/km, a
gasoline cost in the observation period of 1.54869e per liter, and a CO2 emission of 133 g
per km2. Considering that the estimates reported are relative to a single city and a single
(typical) day, the reduction values are very significant, especially towards the environment.

Finally, we show in Fig. 10.15 the spatial distribution of pick-up (top row) and drop-off
(bottom row) points of the solution found by NDA on Pisa (left) and Florence (right). We
can see that in the case of Pisa, carpooling mainly (yet not exclusively) involves several
smaller cities distributed along an important road towards East, connecting Pisa with the
other major cities of the region. For Florence it is interesting to notice that a major
hotspot, even larger than Florence itself, is located in a nearby city, Empoli, characterized
by a huge flow of commuters towards Florence and the surrounding industrial areas. In
general, carpooling is much more concentrated around a few dense areas than what happens
for Pisa. In both cases, the drop-off points appear to be more concentrated around the
main attractors, while pick-up points are slightly more dispersed.

10.1.4 Conclusion

We have proposed NDA, a novel and proactive approach that through Personal Data
Mining, by exploiting the PDS in a PDE, can be used for analyzing the potentiality of
a carpooling service and for suggesting an assignment among systematic car drivers in
order to have them not to drive alone. We underline that such service can be realized
only for the users of the PDE which are available to share their routines. By analyzing
the collective knowledge extracted many useful observations resulted from our study. We
discovered that indicators derived from the carpooling networks, like the number of only
drivers, only passengers, passengers, and drivers, can be used to characterize different
areas and cities in terms of applicability of carpooling. Also, a measure of empirical upper
bound of the potential reduction of cars on the road can be inferred, whose average in
the area of our experimentation is around 23%. The carpooling networks tend to be

2http://www.patentati.it/blog/articoli-auto/classifica-auto-2011.html,
http://dgerm.sviluppoeconomico.gov.it/dgerm/prezzimedi.asp?anno=2011,
http://www.ilsole24ore.com/speciali/emissioni
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Pisa Florence

Figure 10.15: Spatial distribution of pick-up and drop-off points of NDA solution. First row:
pick-up points; second row: drop-off points.

very sparse, and are characterized by long tailed distributions both for the in- out-degree
and for the driverness and passengerness indexes. We showed how ranking measures and
communities extracted from mobility networks can be used to characterize different aspects
of human mobility. By exploiting them, we proposed our approach for boosting carpooling
using network analysis. Furthermore, we have found that carpooling communities can
be classified into autonomous communities, that, being independent from the rest of the
car drivers, are made by many good carpoolers offering and taking lifts to many users,
and non-autonomous communities, that being influenced by extra community car drivers,
cannot be managed on their own. Therefore, if a new carpooling service is to be realized,
a good start point would be autonomous communities. Finally, we saw how the potential
carpooling network can be used to suggest assignments among systematic car drivers and
how ranking measures considered on communities lead to valuable reductions of the cars
employed in systematic mobility. The heuristics for carpooling assignments we developed
greatly benefits from the knowledge provided by the driverness and passengerness scores,
as well as the fragmentation into communities. Performances show a percentage of SOVs as
low as 4.63%, which is less than half of what any random assignment can reach in practice.
As overall result, among the users part of the system, i.e., the systematic users with at
least a carpooling match, about 77% of the trips could be saved on both datasets, and the
estimates of saved kms, time, fuel, money and CO2 emissions are significant.
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10.2 Enjoyable Carpooling from Crowdsourced Data

One of the many obstacles that prevent carpooling from being adopted as an everyday
means of transport is a sort of “psychological barrier” that makes it less attractive. How-
ever, thanks to the advent of online social networks, in the last few years there have
been some social aspects that people intentionally decide to share with the outside world,
including strangers. In fact, interests, pictures, locations, are the basis of the success
of services such as Facebook, Twitter, and Foursquare. The availability of such infor-
mation allows external services and people to use data for third party applications. As
a result, such social aspects can be now measured and exploited to overcome this in-
visible psychological barrier. We model data mobility and social aspects according to
the Personal Data Analytics approach. Our goal is to measure how many users would
enjoy sharing a trip with other people, and exploit the extracted insights to drive a
carpooling optimization model for more enjoyable trips.

Inspired by the literature on carpooling [81, 199, 276, 309], and by the recent work on
data-driven analysis of urban networks [229] and data-driven optimization of urban transit
networks [33, 218], we present a formulation of the carpooling problem taking into account
the above factors. The proposed methodology consists in a PDE that, similarly to the work
presented in Section 10.1, thanks to the Personal Data Models extracted and provided by
each user is able not only to automatically derive mobility matches, but also to consider
social matches to be used as recommendations for the carpooling system.

In the following we present GRAAL, a methodology for GReen And sociAL carpooling
[135, 127]. GRAAL optimizes a carpooling system, at the city level, not only by minimizing
the number of cars needed, but also by maximizing the enjoyability of people traveling
together. We introduce a measure of enjoyability based on people’s interests, social links,
and tendency to connect to people with similar or dissimilar interests. Specifically, our
enjoyability measure takes into account two factors: (i) what we call like-mindness, i.e.,
a topic similarity between any two users; and (ii) what we define as homophily, i.e., the
tendency of a person to group with similar ones. Previous attempts to use social context
in carpooling include putting together in a car people who are friends [76]. However, by
looking at only the direct (or even the two-hop) friends, we may loose good chances for
optimization, as the set of potential drivers (or co-passengers) is usually much larger than
the typical number of friend pairs in a social network. Finally, in GRAAL, we introduce
a multiobjective optimization based on a weighted linear combination of two components:
(i) number of cars (which is minimized) and (ii) total enjoyability of the users in the
system (which is maximized). We present the results of applying GRAAL on real world
crowd-sourced data from Twitter, geo-located in the cities of Rome and San Francisco. In
order to enhance the dualism between individual and collective point of view, results are
presented from both the city-wide perspective, and from the user perspective.

10.2.1 Problem Definition

The objective of the carpooling problem is the minimization of the number of cars, together
with the maximization of the enjoyability experienced by the users. Our goal is to follow
the main advantage of the carpooling idea, i.e. lowering the number of circulating cars,
while ensuring that the passengers will enjoy traveling together. This may serve as an
additional, non-monetary, incentive to motivate people to share a car.
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Preliminaries

Enjoyability. We define a measure of enjoyability that takes into account not only
whether two users share the same interests, but also whether they tend to connect to
people with similar or dissimilar interests.

Let U be a set of users. Every user i ∈ U may consider other users in U as friends, or
interesting in general, and we denote such set of users as Fi. Therefore, the set of friends
Fi is available as component of the PDS for each user i ∈ U . Each user i generates, or is
interested in, a set of articles or documents Di. Given i and Di, we can build for each user
a vector of topics ~ti,where each topic is weighted by its relative importance, i.e., frequency,
within the documents. Once again, for each user, the topics vector ~ti is part of her PDS.

We define a measure, which we call like-mindness, of how much two users are interested
in the same topics, as follows.

Definition 40 (Like-Mindness). Given users i, j we call their like-mindness the number:

lmij = 2
~ti · ~tj
‖~ti‖‖~tj‖

− 1

We say i and j are like-minded, i.e. they share a set of interests, if lmij≈1, not-like-
minded if lmij≈−1. We want to take into account two different categories of people: those
who are more prone to be in contact with other people with similar interests (homopilous
people), and those who tend to connect with people with dissimilar interest (heterophilous
people). We evaluate user’s tendency to connect with people with whom she has a high or
low like-mindness. In social networks, the concept of homophily is well known [205].

Definition 41 (Homophily). Given a user i we compute his/her homophily as the median
of the like-mindness between i and other users in Fi:

hi = median
j∈Fi

lmij

If hi ≈ 1, we say that i tends to be homophilous, while if hi ≈ −1 we say that i tends
to be heterophilous. Our objective is to relate the like-mindness of a pair of users with the
homophily/heterophily of the single user. Thus, we define the enjoyability as:

Definition 42 (Enjoyability). Given two users i, j, their like-mindness lmij and their
homophily values hi, hj, we define the enjoyability of them being together as:

eij =
lmijhi + lmijhj

2

We refer to the set the enjoyabilities computed between each pair of users as E. Note
that eij ≈ 1 if either: (i) both i and j are homophilous and like-minded; or (ii) i and
j are heterophilous and not like-minded. In the other cases, eij ≈ −1. The added value
of social diversity has been studied in social science, and finds applications also in the
scientific community (sometimes referring to “serendipity” when something unexpected
brings added value). Socio-cultural diversity is often considered fundamental [231] to make
people enjoying a discussion.

The objective function we present in Section 10.2.1 is a linear combination of two
components: number of cars and total enjoyability. As we minimize the number of cars,
we take into account the unenjoyability of the system, rather than the enjoyability, to
minimize this as well. The unenjoyability is computed as ēij = 1− 1

2 (eij + 1) .
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Mobility Demand. In this approach we adopt a simplified version of the Personal Mo-
bility Data Model capturing the users’ mobility demand. We define a location l as any
geo-referenced format. We divide the areas of interest in a grid of cells (of either 500m or
70m of width). Each user i can have a different locations l over time. We call time-stamped
location a pair tsl = (l, ts) where l is a location and ts is an associated relative time-stamp.
Two time-stamped locations are defined to be close in space and time as follows:

Definition 43 (Close Time-Stamped Locations). Given two time-stamped locations tsl1 =
(l1, ts1) and tsl2 = (l2, ts2), we say that tsl1 is close to tsl2 (tsl1 'δ,τ tsl2) iff

space-dist(l1, l2) ≤ δ and time-dist(ts1, ts2) ≤ τ

where space-dist(·, ·) and time-dist(·, ·) are two functions of spatial and temporal distance.

The choice of the specific functions is left for the specific application. Examples for
distance calculation include the Euclidean, Spherical, or Manhattan, and for time function
one can consider simply the time difference. In this work, we use the spherical distance
between two rectangular cells of the grid defined above, and the time difference. If ts1 or
ts2 are undefined, then the ' operator considers only space-dist(l1, l2) ≤ δ.

As usual, we name trajectory a sequence tr = {tsl1, . . . , tsln} of time-stamped locations,
and we refer to mobility demand Hi = {tr} as the set of trajectories of user i. The mobility
demand Hi together with the topics vector ~ti form the Personal Data Model Pi adopted.
We indicate with HU = {Ti} the mobility demand of all the users.

Likewise in Section 10.1, we define a “carpooling match” between two trajectories. In
this simplified mobility scenario, we chose to force a matching of the two initial time-
stamped locations of the two trajectories, and allow for a match of the final time-stamped
location of the trajectory of the candidate passenger with any of the locations of the
trajectory of the candidate driver, including (where possible) the final time-stamped one.
In carpooling terms, this means that the driver-passenger pair should depart from their
initial locations, but the driver is allowed to drop the passenger on any of the locations
along the associated trajectory which are close to. More formally, we define the following
condition which is slightly different from the relation of Section 10.1.2.

Definition 44 (Trajectory Containment). Given two trajectories tr′ = {tsl′1, . . . , tsl′n̄} and
tr′′ = {tsl′′1 , . . . , tsl′′m̄}, we say that tr′ contains tr′′ (tr′ vδ,τ tr′′) iff

tsl′1 'δ,τ tsl′′1 and ∃n, 1 < n ≤ n̄ s.t. tsl′n 'δ,τ tsl′′m̄
Yet in line with Section 10.1, we fix the maximum walking distance from the passenger’s

departure/arrival locations to pick-up/drop-off points (set by the driver) as δ and the
maximum time difference in departure and arrival times as τ . Given the above definition,
two users i and j having trajectories tri and trj in their mobility demand, respectively,
generate a recommendation for carpooling if tri is contained in trj or viceversa. More
formally, we define the recommendation as follows.

Definition 45 (Recommendations). Given a set of users U , we define RU as the set of
recommendations with respect to the users in U . RU = {rij} where i, j ∈ U are users and
rij = (i, j, tri, trj) denoting that passenger j is recommended to driver i because

∃ trj ∈ Hj and tri ∈ Hi s.t. tri vδ,τ trj

where Hi, Hj are the mobility demands of i and j, j is the passenger and i is the driver.
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By Def. 44, a passenger has to walk no more than δ, and wait no more than τ . We can
group all the recommendations in a set RU , containing all the possible recommendations
between any pair of users in U . We call D the set of possible drivers and P the set of
possible passengers. For each recommendation we define the variable mij that is computed
as the sum of the walking distances for pick-up and drop-off point and then normalized by
the maximum. This is referred to as normalized distance between trajectories. Note that
mij exists within the interval [0, 1] only if a recommendation between i and j exists.

The objective of the optimization method is to find a set ARU
of assignments containing

a subset of recommendations of RU , such that the total number of cars required to satisfy
HU is minimized, the total enjoyability of the system is maximized and the following
constraints are satisfied: (i) no user is both passenger and driver; (ii) each vehicle holds
no more than γ passengers; (iii) each user can be found in only one vehicle.

Optimization Problem

Given the enjoyability and mobility patterns described above we formulate the problem
using an integer linear program. We start from a set of users that will be grouped together
into cars. Within each car only one of the users is a driver while the other ones are defined as
passengers. The number of drivers in the system indicates the number of cars allocated by
the algorithm for the entire set of users. The grouping process is regulated by two aspects:
(i) trajectory containment; (ii) enjoyability between users. The optimization procedure
takes as input the enjoyability values and the set of recommendations and generates the
optimal assignment ARU

. From the recommendation set RU we can build three sets: D,
the set of candidate drivers in the system; P, the set of candidate passengers (D and P
may overlap in the recommendations, but not in an assignment); C, the set of possible
couples (i, j) driver-passenger. We define the following parameters:

• a parameter mij describing the normalized trajectory distance, with mij ∈ [0, 1] if
driver i can give a ride to passenger j. We set mij > 1 otherwise. We call M the set
of all mij with i, j ∈ U ;

• a parameter ēij that describes the unenjoyability of two users traveling together,
ēij ∈ [0, 1] where 1 indicates that users i and j are not prone to travel together and
0 indicates that users i and j are prone to travel together. Further, ēii = 1 so as to
indicate that a user will not enjoy traveling alone.

Additionally, we also define the following variables:

• a binary variable xij that describes the assignments between drivers and passengers,
xij = 1 if i is the driver of passenger j, xii = 1 if i is a driver and zero otherwise;

• a binary variable yjki indicates whether two passengers share the same car, yjki = 1
if passengers j and k share the same car with driver i, and zero otherwise;

The optimization model finds the minimum over xij of the following objective function:

αρ
∑
i∈D

xii + (1− α)(
∑

(i,j)∈C

ēij · xij +
∑
i∈D

∑
(i,j)(i,k)∈C,j 6=k

ējk · yjki) (10.1)

where the parameter ρ is the cost of adding a new car to the system. The purpose of ρ
it is to balance the two objectives of the optimization function: α and (1− α) are weights
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for the number of cars, and for the total unenjoyability in the system (the lower the better),
respectively. The data-driven method to compute α, and ρ is explained in Section 10.2.4.

The optimization is subject to:∑
j∈P

xij ≤ γxii,∀i ∈ D (10.2)

where the maximum number of passengers per car is set to γ.∑
i∈D

xij = 1,∀j ∈ P (10.3)

where one driver has to be assigned to only one car.

mij · xij ≤ 1, ∀(i, j) ∈ C (10.4)

a limit different than 1, within [0, 1] may be taken instead, to restrict the set of recom-
mendations to take into account. For the sake of broader optimization, we take them all.

yjki ≤ xij (10.5)

yjki ≤ xik (10.6)

yjki ≥ xij + xik − 1 (10.7)

∀i ∈ D, j ∈ P, k ∈ P : (i, j) ∈ C, (i, k) ∈ C, j 6= k

that are used to linearize the relation yjki = xij · xik.
The algorithm proposed aims at minimizing the number of cars jointly with maximiz-

ing the enjoyability of the system (formulated as minimization of the unenjoyability for
convenience here). The output is to group passengers in cars and at the same time ensure
that they will enjoy the ride in each car.

10.2.2 Method

In this section, we present the GRAAL methodology (as well as some baselines), to derive
an optimal assignment starting from Twitter data. While the problem formulation was
intentionally left generic and agnostic to the real dataset used, this methodology assumes
Twitter as sole source of data, although other compatible types can be used.

Assumptions

Twitter may be not the perfect source of data for any of the three dimensions (text,
trajectory, and co-presence) that we need. However, it is among the few public ones
providing some information in all of them. We tackled the problems arising by not having
ideal data as follows:

• Co-presence: we estimate the co-presence of two users in a cell at the same time, and
thus the mobility demand of users, by aggregating several days of data.

• Trajectory: as geo-tagged tweets are too sparse to track users between origin/desti-
nation pairs, we assume every user is following the best path between them, which
we compute by running the same journey planner for every pair of user locations.
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• Topic mining: tweets are short, and the typical usage of Twitter include typos,
abbreviations and slang. However, topic extraction via Latent Dirichlet Allocation
[38] is typical on documents, and shown to be usable also on Twitter [325].

Moreover, we work under the following assumptions, which are common in this context:
(i) we assume all the users in the system travel by car; (ii) we assume all the cars moving
from A to B follow the trajectory returned by a journey planner used by all the cars; (iii)
we assume users accept the recommendations; (iv) we assume to be working on frequent,
recurring mobility, rather than solving the on-demand carpooling problem; (v) having
divided the space into a grid of cells, we perform the geo-match on the center of the cells.

GRAAL Algorithm

Alg. 13 shows the steps performed by our methodology to solve the socially-optimal car-
pooling problem. The algorithm takes five parameters, and in Section 10.2.4 we explain
how to tune the last two in a data driven way through the PDE: (i) the bounding box
where to perform carpooling, (ii) a spatial threshold δ, (iii) a temporal threshold τ to de-
fine the time-stamped locations, and to compute trajectory containment, (iv) α, to balance
enjoyability and number of cars, and (v) ρ, the cost of adding a car to the result. Lines
1− 3 are used to get a geo-tagged corpus of tweets from the bounding box, to derive a set
of users from it, and to filter those users with poor data. Namely, we remove users with an
average tweet per day ratio below a certain threshold (see Section 10.2.4 for details), and
with a ratio between average number of distinct words and number of tweets below 1.

This last step aims at removing automated tweets, and spammers. In lines 4− 10, for
each user, we get her tweets (not necessarily geo-located) to build a larger corpus (geo-
located tweets constitute a small fraction of the entire set of tweets), which we clean by
removing stopwords and performing stemming. Then we get the users’ friends list, i.e.,
the other users that the user is following. In line 7 we compute the vector of most visited
(systematic) time-stamped locations of a user, given δ and τ . In particular, we define
a spatial grid over the boundingbox, consisting in rectangular cells of width δ, while we
slice time in non overlapping slots of duration τ . From this set, in line 8 we query a
journey planner to derive trajectories connecting any two time-stamped locations in each
users’ Lu. Finally, in line 11, we compute the vector of topics contained in the users’
documents. This is done by running a Hierarchical Dirichlet Process (HDP) [277] on
the users’ tweets texts. HDP is a parameter-free version of Latent Dirichlet Allocation
(LDA) [38] that automatically infers the number of topics. Lines 12 − 13 compute the
like-mindness between any two users, and then, for each user, use the median value of it
to compute the homophily in lines 14− 15. In lines 16− 18, we compute the enjoyability
values between any two users. In lines 19 − 21 we generate the recommendations from
the set of mobility demands. In line 22, we build the matrix of mobility matches from
the recommendations. Finally, we perform the multiobjective optimization in line 23 by
finding a set of assignments minimizing our objective function described in Section 10.2.1.

To clarify what happens to each user in the system, let us reason from the user’s
perspective: assuming the user has passed the filter in line 3 (i.e., we have enough data
about this user - this filter may be applied once for all, and could be lifted for different
input data like mobile phone records, user-generated input, etc.), spatio-temporal as well as
social and topic analytics are performed in lines 4-18 and the results associated to this user.
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Algorithm 13: GRAAL (boundingbox, δ, τ, α, ρ)
Input : boundingbox - bounding box, δ - spatial threshold, τ - temporal threshold, α -

balance enjoyability and number of cars, ρ - cost of adding a car to the result,
Output: ARU

- assignments

1 G ← getTweets(boundingbox);
2 U ← getUsers(G);
3 U ← filterUsers(U);
4 for i ∈ U do
5 Di ← getTweets(i);
6 Fi ← getFriends(i);
7 Li ← computeT imeStampedLocations(Di, δ, τ);
8 Ti ← computeTrajectories(Li);
9 TU ← T ∪ Ti;

10 DU ← D ∪Di;
11 end
12 {~ti} ← computeTopics(DU );
13 for i, j ∈ U do
14 lmi,j ← computeLikemindness(~ti, ~ti);
15 end
16 for i ∈ U do
17 hi ← computeHomophily(i, Fi);
18 end
19 for i, j ∈ U do
20 ei,j ← computeEnj(lmi,j , hi, hj);
21 E ← E ∪ ei,j ;
22 end
23 for tri, trj ∈ T do
24 if tri vδ,τ trj then RU ← RU ∪ (i, j, tri, trj) ;
25 end
26 M ← computeMobilityMatches(RU );
27 ARU

← optimize(α, ρ,E,M);
28 return ARU

In lines 19-22 an implicit “labeling” of users as possible passengers and drivers is happening.
In fact, we review all the trajectories mined above, and we find matches between them.
If, for a given user, there are no matches at all, this user will not be in the RU set, and
will be driving a single occupancy vehicle on her own. These users are not considered in
the optimization at all, as no recommendations are possible for them. For every other
users, generally speaking, it is true that they may be considered as either passengers or
drivers. If user A has a trajectory including one of the trajectories of user B, and user B
has a trajectory including one of the trajectories of user C, then A can potentially become
a driver, B can potentially become either a driver or a passenger, and C can potentially
become a passenger. However, the optimization in line 23 takes all these possibilities into
account, and a user is finally either a passenger, or a driver, but cannot be both. In other
words, we do not pre-select who are the drivers, and who are the passengers, but this is
rather automatically discovered by the optimizer.
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Complexity

The complexity of GRAAL is dominated by the optimization step. Optimization problems
involving discrete decision variables are NP-Hard in general [282]. However, as this may be
optionally replaced by heuristic approaches, for the sake of completeness we report also the
complexity of the other relevant steps: computeTimeStampedLocations and computeTrajec-
tories are linear in the number of locations; regarding HDP the time to process individual
documents increases due to increased density, leading in the worst case to a super-linear
increase (cubic in the number of terms) [187]; computeLikemindness is constant, but it is
executed in lines 12− 13 which are quadratic in the number of users; in the same way, the
computation of homophily in line 15 is constant but is repeated linearly in the number of
users; lines 16− 18, computing the enjoyability which takes constant time for each pair of
users, is quadratic in the number of users; line 21 is executed in a nested for loop which is
quadratic in the number of trajectories.

Baselines

We compared GRAAL to a number of baselines, which we describe here informally. We
compared with a random approach, a heuristic approach maximizing the enjoyability, and
against GRAAL used with two particular values of α. Additionally, we used an approach
based on the same rationale behind [76], maximizing the number of friends in a car. How-
ever, as the goal of the latter is different, and as their method also solves a different version
of the carpooling problem, we present different types of results for it in Section 10.2.4.

All the baselines start from a set of recommendations RU computed as described in
this Section. Then, they each return a (potentially different) subset of it, together with the
recommendations on the single occupancy vehicles that constitute different sets of assign-
ments ARU

. To describe the first two baselines, consider the set of recommendations RU
as a directed graph GRU

built by putting a directed edge (i, j) if j can get a ride from i.

• Random: we rank randomly the edges of GRU
, then we take the first edge (i, j) in the

rank and, if i has not been already selected as a passenger and there are less than γ =
4 assignments (see Sec. 10.2.1) with i as driver, then we flip a coin: with probability
0.5, we thus remove all the edges linked to j and produce the assignment (i, j).
Otherwise, we proceed to the next edge, and repeat the procedure for all subsequent
edges in the ranking. If, at the end of the procedure, there are nodes (passengers)
for which no final recommendation was made, they become drivers of SOV.

• Heuristic: we maximize the enjoyability with a greedy approach. We proceed like in
random but the edges of GRU

are ranked by descending enjoyability eij .

• Social : this is GRAAL with α=0, i.e. we maximize only the total enjoyability.

• Green: this is GRAAL with α=1, i.e. we minimize only the total number of cars.

10.2.3 Studying Users Preferences

In order to assess the effect of enjoyability in carpooling compared to other factors like
sustainable mobility, we conducted a survey with potential end-users. The goal of this user
study is to learn a crowd-sourced value for the weight α from the PDE. The survey was sent
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Figure 10.16: Part of the landing web page of the survey

via direct Twitter messages, other social networks (e.g. Facebook, LinkedIn, etc., including
dedicated carpooling groups), and direct e-mail and mailing lists. The webpage containing
the survey is shown in Fig. 10.16. To generate the landing page, we picked a user i ∈ U
from our data, and computed which cars he/she would be assigned to using the two ap-
proaches (one minimizing the number of cars and the other maximizing enjoyability). The
two solutions presented contain the following: (i) a bar indicating the average enjoyabil-
ity among the occupants of the car; (ii) a bar indicating the “greenness” of the solution,
computed as the collective amount of cars saved by the city-wide system if all the users
were to click on this choice. The two cars were presented in random order, to minimize the
probability of clicks performed on a given column. The two presented solutions are referred
to as “social choice” and “green choice”. The first one is the car with higher enjoyability but
lower greenness value (obtained by Social), while the second choice is the car with lower
enjoyability but higher greenness value (obtained by Green). Note that, while the enjoya-
bility is a local property of the car, the greenness is a global, city-wide, property. That is,
there are only two values of greenness for a city: the one obtained if every user were to click
on the social choice, and the one obtained if every user were to click on the green one. After
this step, the users were directed to a subsequent set of general questions on carpooling,
including the following: “which of the following would make carpooling more attractive to
you? Savings, sharing the car with interesting people, or sustainability of the solution?”

We collected 237 answers, with 39% in favor of a social solution. After collecting the
answers, the values are exploited to learn the weight α in the multi-objective optimization
model (i.e., the value of α) which represents how much the users are more likely to prefer
the Social car with respect to the Green one. As mentioned, the page presents two cars with
their enjoyability values of eS (the enjoyability of the Social car) and eG (the enjoyability
of the Green car). If their difference (eS − eG) is high, meaning that the social car has a
high value of enjoyability, while the green car has a low value for it, we may expect the
user to be tempted to click on the social car, rather than the green one. As the greenness
values of the Social and Green car for a given city are fixed (i.e., they do not change if a
different pair of solutions is displayed), we do not take them into account in the learned
weight. Instead, we consider the difference of enjoyabilities between the green and the
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social car, which depends on the pair of solutions displayed. We define the following two
values: for the Green car, the value vG is given as: vG = eS − eG, while for the Social car,
the value vS is computed as: vS = 1 − (eS − eG). Given S, the set of the social choices
that were obtained from the survey and G the set of the green choices, the values vS and
vG are computed on their elements and the weight α is defined as the following ratio:

α =

|G|∑
j=1

vGj

|S|∑
i=1

vSi +
|G|∑
j=1

vGj

10.2.4 Case Study

In the following we report the results of running GRAAL and the baselines on real Twitter
data. We employed the Twitter dataset described in Section 6.3. We present the tools
used, the parameter tuning (this includes the results from the user study), the results
of computing the social measures, and the results of GRAAL and all the baselines. The
results of optimization were assessed from a city-wide collective perspective, i.e., by looking
at the total values of the components of the objective function, and from an individual
user perspective, i.e., looking at the distribution of the enjoyability of single cars and at
the user impact with respect to carpooling.

Tools

GRAAL was written in Java and C, making use of external libraries for specific tasks. We
used a publicly available Java implementation of HDP3, to perform non-parametric topic
modeling. To execute route planning we used OpenRouteService4, a public Java library.
As space-dist and time-dist we used the geo-spherical distance and the absolute difference
respectively. To perform the optimization steps, we used the C APIs of IBM CPLEX 5.

Parameters

To run GRAAL on our data, besides the parameters of Alg. 13, we have to choose a sample
of the data (in number of days) and a number of topics to put in the topic vectors. We de-
cide to leave the bounding box, and the spatio-temporal parameters δ and τ as data driven
tunable parameters of the PDE. This allows to try different optimizations in function of
different temporal and spatial resolutions. In our experiments, we report results for δ set to
500 and 70 meters, and for τ set to 30 or 60 minutes. Note that the combination δ = 500m
and τ = 30min agrees with common sense, or best practice, in journey planning: users are
typically willing to walk distances up to 500 meters, and have a flexibility of waiting up to
30 minutes to find a means of transport [124]. In terms of number of most frequent loca-
tions, we chose 3 as it typically covers home, work, and the so called “third place”. To decide
the number of days of data to take, we saw that the ratio of people for which at least one

3https://github.com/arnim/HDP
4http://openrouteservice.org/
5http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Figure 10.17: Social measures for all the couples of users.

of the top 3 locations changes if we take more than x consecutive days drops dramatically
after x = 40. We thus chose to take 40 consecutive days of data in our sample.

We adopted a nonparametric HDP algorithm to estimate the number of topics auto-
matically. Since HDP is nondeterministic, we ran it 2,000 times on our data, obtaining on
average 25.48 topics (σ=1.56) on Rome and 25.61 (σ=1.54) on San Francisco. According to
this, we selected the results relative to a number of topics of 25, to construct our vectors ~ti.

Parameter ρ is defined as the cost of adding a car to the result. We studied the effects
of varying this parameter, in term of number of cars saved by varying ρ ∈ [0, 10], and
observed that ρ=2 had the largest impact on the number of cars saved.

The α parameter was learned looking at the results of the user study conducted as
described in Section 10.2.3. We collected 237 responses coming from three different sources:
2% came from direct messages sent via Twitter; 12% came from sharing the survey in
other social networks; 86% came from direct e-mail or mailing lists sharing. In total, 39%
of people clicked on the social choice. This is encouraging, as it confirms the need for a
social-aware carpooling system. Another encouraging result was provided by the answers
to the additional survey question: 24% of the people was more attracted by sharing the
car with interesting people, while 41% by the savings provided by carpooling, and 35%
considered the sustainability to be the most attractive aspects of carpooling. We consider
these numbers as a measure of the potential impact of a carpooling system taking into
account also the enjoyability of a car, rather than just minimizing the cars. The final value
we obtained for α, computed as explained in Section 10.2.3 is 0.36.

Results on Social Measures

Fig. 10.17 presents the distributions of like-mindness (top left), homophily (top right) and
enjoyability between pairs of users (bottom row) for all the users. We report no significant
differences in like-mindness and homophily between Rome and San Francisco. We observe
that, computing a similarity based only on the like-mindness may end up recommending
connections in a limited number of pairs of users. On the other hand, from the second
plot, we learn that most of the people are heterophilous. If we combine the two things into
the enjoyability, we see, in the third plot, that there is broader space for recommendations
based on this measure, rather than the like-mindness. Moreover, the combination of the
first two measures produces different distributions for Rome and San Francisco, highlighting
that the enjoyability is capturing a different phenomenon than just the like-mindness.
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δ τ
Rome San Francisco

|RU | |S1| |S2| |Z| |RU | |S1| |S2| |Z|
500 60 6, 883 81.56% 76.04% 18.44% 2, 298 68.63% 57.41% 31.37%
500 30 5, 870 79.84% 73.51% 20.16% 1, 106 54.37% 36.88% 45.63%
70 60 349 26.85% 15.46% 73.15% 245 16.73% 9.60% 83.27%
70 30 309 24.68% 13.92% 75.32% 250 16.44% 9.79% 83.56%

Table 10.3: Statistics on user recommendations by δ and τ for GRAAL. S1 ⊆ U is the set of users
with one or more recommendations, S2 ⊆ U is the set of users with two or more recommendations,
Z ⊆ U contains the users with no recommendations.

Results on Recommendations

Tab. 10.3 reports some statistics for the recommendations using different spatio-temporal
resolutions. The first column reports the number of recommendations, in column S1 we
see the percentage of users with one or more recommendations, in column S2 we see the
percentage of users with two or more recommendations, (for which the optimization has
more impact), while in column Z we report the percentage of users with no recommenda-
tions (these will end up being drivers of single occupancy vehicles in all the models). From
this table, we see the clear effects of taking the same number of users in the two cities
having very different geographical structure. In particular, San Francisco Bay Area is a
much larger area than Rome. As carpooling in San Francisco works actually across the
entire area, while it would not make much sense to keep the same user density per area and
reduce the area over San Francisco, we decided not to take any corrective actions. In this
way, we could also assess the effects of having different recommendation densities on the
performances of the optimization. Thus, we report a larger room for optimization in Rome
in general, and for δ=500m in general as well. In San Francisco, only δ=500m provides sig-
nificant room for optimization. We expect this to be seen in the results at the city level.

Collective City-wide Perspective

All the parameters tuned and the recommendation calculated as explained in the previous
section are then used to run the optimization. We considered them as applied on a single
day of trips. The results are here presented at the city level, i.e., at the level of the entire
optimization. GRAAL is able to save up to 57% of the cars needed in Rome and 40% in
San Francisco, while the total enjoyability is up to double. We studied the variation of
α∈[0, 1] (steps of 0.05), and in particular α=0.36, on the total number of cars saved and the
total enjoyability of the system. We compared GRAAL for α=0.36 with all the baselines.

Fig. 10.18 reports the number of cars saved (in the top row) and the total enjoyability
(in the bottom row) for Rome (in the left column) and San Francisco (in the right one).
As we can see, the best performance is reached for the city of Rome with δ = 500m and
for any values of τ . In all the other cases (and in San Francisco as well) we see a mostly
flat behavior, which means that with less room for optimization, α can not make a big
difference in the results. Moreover, δ = 70 implies the lowest number of cars saved and the
lowest enjoyability in both cities. This agrees with the lowest numbers in the S column
of Tab. 10.3. Moreover, where the Z column of Tab. 10.3 is very high, we see negative
values of enjoyability. This is due to the large number of people going alone, for which we
assign an ejoyability score of −1, as described in Section 10.2.1.
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Figure 10.18: Cars saved (top row) and total enjoyability (bottom row), in Rome (left column)
and San Francisco (right column) by running GRAAL with 20 values of α and different values of
δ and τ . For all the plots, higher is better.
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Figure 10.19: Cars saved (top row) and total enjoyability (bottom row), in Rome (left column)
and San Francisco (right column) by running GRAAL with α = 0.36 and all the baselines. For all
the plots, higher is better.

Fig. 10.19 shows the percentage of cars saved (in the top row) and total enjoyability
(in the bottom row), in Rome (left column) and San Francisco (right column) by running
GRAAL with α = 0.36 and all the baselines. As expected, the highest number of cars is
saved by the Green approach. One encouraging result is that Social saves a significantly
higher number of cars with respect to Random and Heuristic. This is due to the choice
of assigning −1 as enjoyability to a person traveling alone. As a consequence, even if
Social does not directly minimize the number of cars, it tends to put more people together
anyway. The GRAAL approach with α = 0.36 is a trade-off between Social and Green
(which are basically GRAAL with the two possible extreme values for α).

Consider now the bottom row of Fig. 10.19, with δ = 500m. The negative total
enjoyability confirms that in those cases there is a significant number of people going alone.
This is avoided by GRAAL with all alpha values (as reported in Fig. 10.18). In accordance
with Tab. 10.3, reporting a high number of single occupancy vehicles for δ = 70m, we have
only negative total enjoyability for all models for this value of δ.

Finally, we report the results of comparing GRAAL with the Green model minimizing
the number of cars, in terms of two KPIs: additional cars used, and additional km traveled
by the cars in the system. Tab.10.4 reports these values for each city and combination of
δ and τ . In the “% cars” cell, we report the percentage of additional cars used by GRAAL
with respect to Green, normalized by the number of cars needed if all the users were
taking a car. In the “% km” cell, we report the percentage of additional km traveled by
the GRAAL drivers with respect to Green, normalized by the total amount of km traveled
if all the users were taking a car. The first column can be seen as a way to measure the
cost of adding a car to the system (for example, in terms of parking slots needed), while
the second column can be seen as a way to measure the overall cost of the system (for
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δ τ
Rome San Francisco

% cars % km % cars % km
500 60 12.23 3.67 2.63 0.02
500 30 13.70 4.39 0.70 0.43
70 60 2.26 0.35 0.02 0.01
70 30 2.15 0.38 0.10 0.32

Table 10.4: Percentages of additional cars and km needed by GRAAL with respect to the Green.
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Figure 10.20: Enjoyability per cars (min, max, 10th, 25th, 50th, 75th, 90th percentiles, and
average across all cars), for Rome (left) and San Francisco (right). Higher is better.

example, in terms of CO2 emissions). As we see, although we add up to 13% of cars into
the system with GRAAL, they are typically used to cover short distances, as the additional
km traveled, in percentage, are well below the percentage of cars added. We highlight a
detail: in our model, drivers are not allowed to detour to pick up passengers. That is,
giving a lift to someone always subtract distance from the total traveled.

Individual User Perspective

We assess the results from the user perspective, in terms of enjoyability in the single cars.
As aggregates, we report minimum, maximum, average, 90th, 75th, 50th, 25th, and 10th
percentiles of the distribution of the enjoyability across vehicles, in order to understand
the improvement introduced for a user, in Fig. 10.20.

For this assessment, we consider only the users who received a recommendation. That
is, we remove most of the effects of considering an enjoyability equal to−1 for a high number
of people in these plots. The first clear result is that there is a globally higher enjoyability
in San Francisco, compared to Rome. This is coherent with the results on the distribution
of the enjoyability per city reported in Fig. 10.17, which shows both a higher negative
tail in Rome for the enjoyability, and a higher positive tail for San Francisco. Despite the
globally higher enjoyability, there is again the problem of the results being flatter than in
Rome. Consider now the results in Rome, with δ = 500m. In the Green model, where the
optimization disregards the enjoyability, the results are inline with Random, while Heuristic
does a better job. This is also true for the other value of δ, although less evident.

Consider now Tab. 10.5. We want to compare with the method described in [76], which
tries to put friends (i.e., direct Twitter links) together, as their concept of enjoyability. We
evaluate against them in terms of impact on users, reported in Tab. 10.5, which contains
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δ τ
Rome San Francisco

|RU | |S1| |S2| |Z| |RU | |S1| |S2| |Z|
500 60 189 11.36% 7.42% 88.64% 148 7.57% 4.89% 92.43%
500 30 183 11.12% 7.02% 88.88% 120 7.50% 4.23% 92.50%
70 60 53 9.37% 4.40% 90.13% 46 5.82% 2.31% 94.18%
70 30 51 9.40% 4.32% 90.60% 45 4.35% 2.25% 95.65%

Table 10.5: Statistics on user recommendations by δ and τ for [76]. S1 ⊆ U is the set of users
with one or more recommendations, S2 ⊆ U is the set of users with two or more recommendations,
Z ⊆ U contains the users with no recommendations.

the same columns as Tab. 10.3. To produce it, we first ran Green, then we applied brute
force to optimize by friendship (friends are put together in a car). As we clearly see, the
number of recommendations between friends is much smaller than what we can achieve in
GRAAL reported in Tab. 10.3, due to the sparsity of the friendship connections in Twitter
(and in the real world, too), as opposed to the fact that we could compute the enjoyability
between any two users in GRAAL. Thus, the room for optimization here is much smaller,
with numbers in S2 not reaching two digits. We put the S1 column in the two tables to
give more chances to this approach. In fact, even if we can optimize less, with at least one
recommendation we can still put friends together. Nevertheless, numbers go up to slightly
more than 11%. We did not compare with the same approach ran with a 2-hop network
for the following reason: 2-hop friends (i.e., friends of friends), when they are not direct
friends, are people with whom we can not give any guarantee on the enjoyability from
a topic perspective, and neither they are direct friends. On the other side, 2-hop friends
could be at least more trustworthy than unknown (but enjoyable) people. However, neither
our methodology, nor the one in [76] are meant to be seeking a higher trust in the system,
which is then left as future work.

Running Times

GRAAL ran in around 2 minutes with each of the α values under each of the δ and τ
combinations, for both cities. Exceptions were δ = 500m in Rome, where a higher number
of recommendations brought the running times up to 1 hour.

10.2.5 Conclusion

GRAAL is a multiobjective method that, through Personal Data Analytics exploits the
Personal Data Models of the users in the Personal Data Ecosystem at individual and
collective level to optimize carpooling recommendations for a weighted linear combination
of number of cars used (which is minimized) and total enjoyability (which is maximized).
GRAAL takes Twitter data in input, as this contains information on spatio-temporal,
text, and social dimensions of geo-located user tweets. Through a survey we have tuned
the weight of the linear combination in the optimization function. We have presented
the results of the multiobjective optimization in terms of cars saved and enjoyability both
from the city and the user perspective. With the crowd-sourced alpha, GRAAL is able to
save up to 57% of the cars needed among those considered for matching, while the total
enjoyability is up to double. From the user perspective, we have shown how the entire
per-car distribution of enjoyability is increased with respect to the baselines.



Chapter 11

Socio-Economical Analysis of
Well-Being

The availability of huge quantity of retail market data stimulates more and more challeng-
ing questions that can be answered by deep and smart analyses of different aspects related
to shopping sessions of customers. Retail data is a really complex type of data. Indeed,
it contains a wide set of different dimensions that can be analyzed under many points of
views. The main dimensions are: what customers buy, i.e., the basket composition, when
and where they make the purchases and which is the relevance, in terms of money spent or
quantity, of the purchase. The choice of analyzing a set of dimensions rather than another
one depends on the kind of phenomena to be investigated: considering all the dimensions
in the same analysis can lead to very complex models or to weak generalizations.

In the previous part of this thesis we analyzed retail data from an individual point of
view by generating personal indexes able to estimate the level of predictability in shopping
habits. On the other hand, in this chapter we analyze these data from a collective point
of view. In particular, we look for an added level of knowledge generated by the collective
analysis but which starts from individual models. We propose two analysis. In the first one
we develop a Personal Data Model for retail data which captures the temporal dimensions
of shopping and we exploit the patterns extracted to group customers of the PDE having
similar shopping trends. In the second one, we exploit data mining and complex network
analysis to produce from the PDE a collective measure able to nowcast the GDP.

11.1 Discovering Temporal Shopping Regularities

We are interested in understanding whether and when a customer makes typical purchases.
Which of these purchases are more systematic for the customer? Which are the regular
sequences of shopping that the customer performs? To this aim, we define a temporal
purchasing profile for Personal Data Analytics as part of the Personal Data Model that
is able to describe the regular and characteristic temporal behaviors of an individual cus-
tomer. The individual person is the key element that lies in between a single purchase
and a whole customers population, i.e., the Personal Data Ecosystem. Each individual has
her own regularities and habits outlining her behavior and making her a unique part of
the mass. The analysis of individuals provides the basis for understanding routines in the
purchasing behavior both at individual and collective level.
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The “data unit” used is a temporal purchasing footprint, i.e., a vector estimating the
shopping relevance during a time period. Our definition of temporal purchasing footprint of
a customer is similar to the definition of user profile introduced in [105]. In [105] the authors
extract from individual call detail records a profile summarizing the calls of a user. Their
aim is to estimate the proportion of city users that can be classified as residents, commuters,
visitors. We define the temporal purchasing profile of a customer as the set of her temporal
shopping behavioral footprints and her sequence of footprints summarizing whether and
when the customer typically makes a set of similar purchases. Then we define a method
to provide to the individual and not-comparable profiles a collective perspective which
makes them comparable and able to describe the shopping routines shared in a Personal
Data Ecosystem by different customers. Note that most of the works in the literature
are centering their attention on catching and comprehending the behaviors and habits by
analyzing what customers buy [6, 165]. Just a few of them have exploited also the temporal
dimension as a feature for enriching their models based primarily on the items purchased
[129, 194, 203]. However, to the best of our knowledge, there is no previous work focusing
on the temporal dimension i.e., the information about when a purchase is performed) and
using it as the main building block to construct an individual temporal purchasing profile.

Our findings reveals three main typical collective behaviors characterizing the whole
collection of customers on the basis of when they shop: daily spending behavior capturing
purchases made every day; one-shop spending behavior, characterizing a regularity with
a week containing a predominant shopping session; and an occasional spending behavior,
describing a not habitual shopping sessions related to a very small expenditure amount.
Among one-shop spending behaviors the analysis captures a further classification in with
respect to the expenditure amount: normal spending behavior less than e 50, high spend-
ing behavior with a typical expenditure between e 50 and e 100, and big spending behavior
with an expenditure higher than e 100. Finally, the most interesting finding is the iden-
tification of two categories of customers that we name regular and changing. We discover
them by analyzing the number of purchasing behaviors characterizing each customer: a
customer with a high number of behaviors is classified as changing, while a customer with
a small number of temporal shopping behaviors is classified as regular.

11.1.1 Method and Model

We represent a shopping session as a tuple s = 〈customer, timestamp, shop, basket, amount〉
containing information about the customer, the timestamp and the shop of the purchase,
the basket composition and the amount spent. In the following, we do not consider the
items composing the basket and the shop.

Individual Model

For each customer, we summarize the temporal information of a set of shopping sessions
by introducing the notion of temporal purchasing unit (unit in short):

Definition 46 (Temporal Purchasing Unit). Given a period τ of d̄ days, a temporal
purchasing unit U is a matrix U ∈ Rt×d, where d is the number of day-intervals in τ with
d ≤ d̄, t is the number of time windows considered for each day-interval, and Uij estimates
the relevance of the purchases in the i-th time window of the j-th day-interval.
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Figure 11.1: Units with different day-interval granularity: single day (left) and weekdays-weekend (right).

Figure 11.2: Footprints: the darker a cell the higher the relevance for a specific day-time-window.

With day-interval we refer to any aggregation of days, e.g., single day, weekdays-
weekend, etc., while with time window we refer to any aggregation of hours, e.g., single
hour, morning-afternoon, etc. Given a period τ , each unit U captures the relevance of
the customer’s shopping sessions during the period τ discretized into specific temporal
slots. The relevance can be expressed by any value referred to shopping sessions: the total
amount spent, the number of items bought, the number of shopping sessions, etc.

Fig. 11.1 illustrates some examples: on the left, a unit with three time windows
morning, afternoon, and evening and the day-interval granularity set to single day; on the
right, a unit with day-interval set to weekdays-weekend. In the left unit the relevance
in Fij represents the amount spent, while in the right one contains the number of items
bought. The setting of time granularity and relevance depends on the aim of the analysis.

Given a customer c, her sequence of temporally ordered shopping sessions S = {s1, . . . ,
sn}, the temporal granularity for time window and day-interval t and d, and the width of
the time period τ , then S can be segmented into a sequence of units Ŝ = {U (1), . . . , U (m)}
with m ≤ n. For example, if S = {s1 = 〈Mon1 − h9,e 5〉, s2 = 〈Sat6 − h18,e 60〉, s3 =

〈Mon8− h17,e 10〉} with τ = 7, d = 7, t = 3 we obtain Ŝ = {U (1), U (2)} where U (1)
0,0 = 5,

U
(1)
2,5 = 60, U (1)

2,0 = 10 and zeros elsewhere. In other words, Ŝ is an ordered sequence of
matrices modeling and aggregating the shopping sessions according to some parameters.

Our goal is to summarize for each customer the knowledge contained in Ŝ in a tem-
poral purchasing profile describing the customer’s typical temporal behaviors. In order to
introduce the profile we need to define the units which are “distinctive” for the customer.
Given a group G of similar units we define a temporal purchasing footprint (footprints in
short) as the representative of the group G.

Definition 47 (Temporal Purchasing Footprint). Given a group G = {U (1), . . . , U (q)} of
units, its temporal purchasing footprint is defined as the centroid of G, i.e., it is the matrix
F ∈ Rt×d such that

Fij =
1

|G|
∑

∀U(h)∈G

U
(h)
ij ∀i, j

F captures a temporal shopping behavior characterizing the customer. Given a se-
quence of units, we detect groups of units which are similar with respect to a distance func-
tion δ, based on temporal alignment and with respect to the relevant values considered:

Definition 48 (Temporal Purchasing Footprint Groups). Given a sequence of units Ŝ =
{U (1), . . . , U (m)} and a distance function δ : Rt×d × Rt×d → R, the temporal purchasing
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Figure 11.3: Footprint sequence: Z labels footprints indicating no shopping sessions.

Algorithm 14: extractIndividualProfile
Input : S - sequence of temporally ordered shopping sessions,

τ - width of the time period covered by each footprint,
d - days-interval to be set in a footprint,
t - time windows to be set in a footprint,
rel - relevance function,
δ - distance function

Output: P - temporal purchasing profile

1 Ŝ ← segmentIntoUnits(S, τ, d, t, rel);
2 G ← detectGroups(Ŝ, δ);
3 F ← {D(i)| D(i) = getCentroid(Gi) ∀Gi ∈ G};
4 F̂ ← buildSequence(Ŝ,G,F);
5 return P = 〈F , F̂ 〉

footprint groups G = {G1, . . . , Gk}, are defined as a partitioning of Ŝ into disjoint sets of
similar footprints such that ∀Gi, Gj ∈ G, ∀U ∈ Gi, δ(U,F

(i)) < δ(U,F (j)) , where F (i)

and F (j) are the centroids of Gi and Gj.

We name F={F (1), . . . , F (k)} the set of footprints of a customer. Note that we are not
considering the order of the footprints in Ŝ. Fig. 11.2 shows an example of footprints.

Given the groups G and their footprints F , we can replace each unit in Ŝ with the foot-
print representing the group to which it belongs to. We name the new sequence temporal
purchasing footprint sequence (footprint sequence in short).

Definition 49 (Temporal Purchasing Footprint Sequence). Given a customer c, her se-
quence of units Ŝ, her groups G and her footprints D, we define the temporal purchasing
footprint sequence as the sequence F̂ obtained replacing in Ŝ the units with the correspond-
ing footprints in F according to the groups G.

For example, given F={F (1), F (2)}, G={G1, G2} where G1={U (1), U (4)}, G2={U (2),
U (3)}, if Ŝ={U (1), U (2), U (3), U (4)}, we can construct the footprint sequence as F̂={F (1),
F (2), F (2), F (1)}. Fig. 11.3 depicts the footprint sequence using the footprints of Fig. 11.2.

Finally, we define the temporal purchasing profile of a customer (profile in short) as:

Definition 50 (Temporal Purchasing Profile). Given a customer c, her sequence of units
Ŝ, and a distance function δ, the temporal purchasing profile of c is defined as Pc = 〈F , F̂ 〉
where F , is the set of footprints derivable from the groups G detected on Ŝ using δ, while
F̂ is the footprint sequence derivable from G, Ŝ and F .

Extracting Individual Temporal Purchasing Profile

The process for the extraction of the individual profiles is summarized in Alg. 14. The
first step is the segmentation of the sequence of temporally ordered shopping sessions S,
considering d days-intervals, t time-window for each day-interval and the relevant values
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Symbol Description Symbol Description
s shopping session P individual profile
d day-intervals C collective footprint

t time windows L
collective group
of footprint

τ footprint width L collective groups
of footprint

Ŝ sequence of footprints C collective footprints
of all customers

U unit Cc customer collective footprint
F footprint Ĉc collective sequence
G group of footprint Ri regular sub-sequence
G groups of footprints wi support
δ distance function ω support threshold
F footprints Rc regular sub-sequences
F̂ footprints sequence P∗ collective perspective

Table 11.1: Symbols and descriptions.

returned by rel (segmentIntoFootprints function in Line 1). The result is the sequence of
units Ŝ where each unit covers a time period of width τ . Given Ŝ, detectGroups (Line 2)
applies a clustering method to find groups of similar units on the basis of the distance func-
tion δ. An appropriate clustering method and distance function can be selected according
to the aim of the analysis. Once the groups of units G are detected, from each group the
getCentroid function (Line 3) extracts the centroid F (i) representing a footprint. Then,
the footprint sequence F̂ is built considering Ŝ, G and F using the function buildSequence
(Line 4). Finally, F and F̂ form the temporal purchasing profile P. The computational
complexity of Alg. 14 is dominated by the complexity of the detectGroups function that
implements a clustering algorithm. With respect to the data treated in these analyzes, the
profile P constitutes the Personal Data Model.

Collective Perspective of Individual Profiles

To compare individual profiles of different customers we need to provide them a collective
perspective. This means to enable the comparison among footprints and among footprint
sequences of different customers of the PDE such that each customer can benefit of a
collective perspective that allow the comparison with other customers. Given customers b
and c and their profiles Pb, Pc, our aim is to make comparable Fb and Fc, and F̂b and F̂c.
To this end, we propose an approach which outlines the one used for individual models.

We start by comparing the footprints of the customers and by partitioning them into
similar groups. Given a set of customers {c1 . . . cn}, the set of their individual profiles
{Pc = 〈Fc, F̂c〉} and a distance function δ, we define the collective temporal purchasing
footprint (collective footprint in short) and the collective temporal purchasing footprint
groups (collective footprints groups in short) as follows.

Definition 51 (Collective Temporal Purchasing Footprint). Given a collective group L =
{F (1), . . . F (q)} of individual footprints, its collective temporal purchasing footprint is de-
fined as the centroid of L, i.e., it is the matrix C ∈ Rt×d such that

Cij =
1

|L|
∑

∀F (h)∈L

F
(h)
ij ∀i, j
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Algorithm 15: extractCollectiveFootprints
Input : {Pc = 〈Fc, F̂c〉} - profiles of all customers,

δ - distance function,
Output: L - collective groups,

C - collective footprints

1 L ← detectGroups({Fc}, δ);
2 C ← {C(i)| C(i) = getCentroid(Li) ∀Li ∈ L};
3 return 〈L, C〉

Algorithm 16: provideCollectivePerspective
Input : Pc = 〈Fc, F̂c〉 - temporal purchasing profile,

C - collective footprints of all customers,
L - collective groups of footprints of all customers

Output: P∗c = 〈R, Cc〉 - collective perspective

1 Cc ← mapIntoCollective(Fc,L, C);
2 Ĉc ← buildSequence(F̂c,L, Cc);
3 R ← regularSubsequences(Ĉc);
4 return P∗c = 〈Cc,Rc〉

Definition 52 (Collective Temporal Purchasing Footprint Groups). Given a set of indi-
vidual footprints {Fc} and a distance function δ : Rt×d×Rt×d → R, the collective temporal
purchasing footprint groups L = {L1, . . . , Lk}, are defined as a partitioning of {Fc} into
disjoint sets of similar footprints such that ∀Li, Lj ∈ L, ∀F ∈ Li, δ(F,C(i)) < δ(F,C(j)),
where C(i) and C(j) are the centrods of Li and Lj.

We name C = {C(1), . . . , C(k)} the set of collective footprints of all customers. Given
a customer c, her footprints Fc, the collective footprints C and the collective groups L,
we denote the collective perspective of Fc with the customer collective footprints Cc =
{C(1), . . . , C(q)}, where Cc ⊆ C and ∀C(h) ∈ Cc ∃F (i) ∈ Fc s.t. F (i) ∈ Lh with Lh ∈ L and
C(h) is the centroid of Lh. Note that two different footprints F (i) and F (j) in a collective
perspective can belong to the same collective group Lh and thus, they can be represented
with the same collective footprint C(h). We underline that we use the expression customer
collective footprints to indicate Cc and collective footprints of all customers to indicate C.

The customer collective footprints Cc empowers the collective perspective to the se-
quence F̂c. Given the collective groups L and the collective footprints of all the customers
C, we can replace each individual footprint in {F̂c}, with the customer collective footprint
representing the collective group to which it belongs to. Hence, for each customer c her se-
quence F̂c is mapped to an equivalent collective temporal purchasing sequence Ĉc (collective
sequence in short) which is comparable with the sequences of the other customers.

Definition 53 (Collective Temporal Purchasing Sequence). Given a customer c, her foot-
print sequence F̂c, the collective groups L and the collective footprints of all customers
C, the collective temporal purchasing sequence is the sequence Ĉc obtained replacing each
footprint in F̂c with the corresponding collective footprint in C according to L.

To understand which are the sub-sequences most used and shared among customers we
define the regular temporal purchasing sub-sequences (regular sub-sequences in short):
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Definition 54 (Regular Temporal Purchasing Sub-Sequences). Given a customer c, her
collective sequence Ĉc and a support threshold ω, the regular temporal purchasing sub-
sequences is the set Rc = {(R1, w1), . . . , (Rm, wm)}, where each Ri is a sub-sequence of
Ĉc, wi is its support and ∀wi wi ≥ ω.

In other words, among all the possible sub-sequences of Ĉc, Rc contains only the most
representative for customer c. For example, if all the possible sub-sequences of Ĉc are

({C(1), C(1)}, 10), ({C(1), C(1), C(2)}, 8),

({C(1), C(2)}, 2), ({C(2), C(1)}, 2), ({C(2), C(2)}, 1)

where the number is the support, i.e., the number of occurrences of that sub-sequence,
then only the first two sub-sequences are regular and contained in Rc if ω = 5. Given two
customers b and c and Rb and Rc derivable from Ĉb and Ĉc, we can now compare b and c
with a distance function on Rb and Rc like the Jaccard or cosine distance.

Finally, we can define the collective perspective of a profile:

Definition 55 (Collective Perspective). Given a customer c, her temporal purchasing pro-
file Pc = 〈F , F̂ 〉 and the collective footprints of all customers C, the collective perspective
of the individual profile Pc is defined as P∗c = 〈Cc,Rc〉 where Cc ⊆ C are the customer
collective footprints, and Rc is the set of regular sub-sequences.

The collective perspective of a user profile is an example of how the profile of an
individual can be perceived by another user in the Personal Data Ecosystem.

Providing Collective Prospective to Individual Profiles

The process for providing the collective perspective to the individual profiles is summarized
by Alg. 15 & 16. Alg. 15 employs detectGroups to detect from the individual profiles of
all the customers the collective groups of footprints (Line 1). A clustering method is used
to carry out this task. From each group in L the getCentroid function (Line 2) extracts
the centroid C(i). The union of the centroids forms the collective footprints of all the
customers. For each customer, Alg. 16 provides the collective perspective to the individual
profile. Using as input the output of the Alg. 15, it extracts from C the collective footprints
providing the collective perspective to the footprints Fc by considering the groups in L
(Line 1). Then, by using buildSequence (Line 2), the collective perspective is provided
to the footprint sequence F̂c generating the collective sequence Ĉc by means of Cc. The
function extractRegularSubSequences (Line 3) extracts from Ĉc, the regular sub-sequences
of the customer Rc. Finally, Alg. 16 returns the collective perspective of the profile P∗c .

We implement the exaction of the regular sub-sequences by means of a suffix tree [121].
Given a customer c, her collective sequence Ĉc is transformed into a string where each
character corresponds to the label of a customer collective footprint. Hence, we generate
a suffix tree for each customer. Following a branch of the tree from the root to a leaf we
can read a sub-sequence Ri and, on the leaf, we have the support wi of the sub-sequence
generating that branch. We set the support threshold ω in a data-driven way by looking
at the distribution of the support of the customer sub-sequences. In particular, we apply
a technique known as “knee method” [275]. Given a set of pairs composed of items and
their support this method sorts the pairs according to the frequencies and returns the
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Figure 11.4: Dataset distributions: cumulative of shopping sessions removed, shopping sessions
per customer, total amount spent per hours, per time window, per day of week and per shop.

most representative, i.e., the pairs with a support greater or equal than the support ω
corresponding to the knee in the curve of the ordered frequencies. In this way ω is different
for each customer and driven by personal data. For each customer, we cut the suffix tree
considering only the regular sub-sequences, i.e., the sub-sequences Ri with support wi
greater or equal than ω. As for Alg. 14, also the complexity of Alg. 15 is dominated by the
complexity of detectGroups that is implemented with a clustering algorithm; while Alg. 16
has a complexity which depends on the construction of the suffix tree [121].

11.1.2 Case Study

Dataset

We adopted the Coop dataset described in Section 6.2. For data cleaning purposes, we
performed a series of filters on this dataset. We consider the 23 shops that are in Leghorn
province. Indeed, the market penetration of the company in this province is so high that we
can nearly say that all the inhabitants are represented in the dataset. Second, we drop all
customers who did not perform at least ten shopping sessions per year in different months:
sporadic customers might use their card in shops in Leghorn province, thus introducing
noise in our estimates. Finally, for each customer we performed an individual filter aimed
at removing possible errors and outliers: for each customer we analyzed the total amount
spent in every shopping session. In Fig. 11.4 (top left) is reported the percentage of
shopping sessions removed by using the inter-quartile range (IQR) [287] and the median
absolute deviation (MAD) [148]. As the result is comparable but the inter-quartile range
is more conservative we decided to use this approach to clean our data. After this filter
phase, we end up with about 91k customers1. The province of Leghorn had an average
population of about 343, 000 inhabitants during the years observed. Assuming an average
size of two/three people per household, we estimate that we cover at least 60% of the
population. The total number of shopping sessions considered amount at 49, 590, 010.

1Note that “customer” refers to a customer card, and a card can be shared by a family or among flatmates.
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Fig. 11.4 depicts stylized facts about shopping sessions. Fig. 11.4 (top center): the
number of shopping sessions per customer. The mode is ∼350, meaning that customers
usually visit the shops around once a week. In the middle row is shown the total amount
spent per time of the day. An M-shaped pattern appears: most shopping sessions happen
in the morning or after working hours. We can summarize this trend using time win-
dows instead of hours by reducing the intervals through the aggregation of the shopping
sessions according to the data-driven time windows: 7-9, 10-12, 13-15, 16-18, 19-21. In-
deed, the second and the fourth time window captures the peaks in the trend. These
are the time window we are using on our experiments. In Fig. 11.4 (bottom center) is
reported the total amount spent per weekday. Customers have a preference for shop-
ping in days close to the weekend. Fewer shopping sessions happen on Tuesday, while
Saturday is the most popular day. Finally, Fig. 11.4 (bottom right) illustrates the to-
tal amount spent per shop (in semi log-y). Each of the 23 shops is represented here.
There is a correlation between the type of shop and the amount spent.

Experiments Setting

As humans we operate under the cadence of a seven-day week [321]. This cycle of activity is
deeply rooted in human experience and in our psychological habits. Indeed, the weekdays
alternation drives our routinary life. These are the reasons why we decided to set τ = 7
and d = 7, i.e. in our experiments each footprint captures the behavior of a week and each
day-interval corresponds to a single day. In our opinion, it is the best time discretization
because is able to better schedule our life. Choosing month instead of week we might have
the risk to flat the difference between some purchasing behaviors. Similarly, a contraction
in weekdays-weekend would make similar customers shopping on Monday and on Friday.
Thus we decided to adopt a week as time unit.

With respect to the time windows we wanted to adopt a granularity not too fine to avoid
sparse matrices but which is able to capture the general trend. Considering all the hours, or
even a finer granularity, would have generated very sparse matrices F and the need to em-
ploy distance function with slicing window like the dynamic time warping that have a high
computational cost if compared to the Euclidean or to the cosine distance. Consequently,
we applied the time window reported in Fig. 11.4 (bottom left) and we set t = 5.

As relevance function rel we used the total amount spent. We employed the sum as
aggregation function because it is quite unlikely that a customer makes two distinct shop-
ping sessions in the same time window of the same day. In the analysis we did not consider
the number of items bought because is highly correlated with the amount spent for most of
the shopping sessions. The mode of the distribution of this correlation is ∼0.85, and the
average p-value is < 0.00005. Hence, the results of the analysis obtained for the models
considering as relevance the euros spent are comparable with those that we would have
obtained using the number of items bought. We have not used the number of shopping ses-
sions because two shopping sessions of e 50 and e 5 would have been counted both as 1.

We implemented the detectGroups function, both in Alg. 14 & 15, using the k-means
clustering algorithm [275]. The k-means algorithm requires to specify k, the number of
clusters. The standard approach to determine k is to run k-means by varying the k values,
calculate the Sum of Squared Errors (SSE) for each k, and choose the k beyond which the
SSE does not decrease significantly. For the extraction of the individual profiles, the num-
ber of clusters, i.e. the number of footprints, is automatically detected for each customer
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Figure 11.5: Individual distributions: shopping weeks, individual footprints, purity and entropy.

by running the algorithm for k ∈ [2, 50] and selecting as number of cluster the k which can
be considered the “knee” in the SSE curve. We select as knee the point on the SSE curve
having the maximum distance from the straight line passing through the minimum and
the maximum point of the SSE curve. As distance function δ we used the cosine distance
because unlike the Euclidean or Manhattan, it does not suffer the problem of sparseness.
Typically a customer purchases one or two times per week generating very sparse F .

Individual Footprints Analysis

In this section we look at the temporal purchasing profiles extracted employing Alg. 14
for all the customers. The computational time for the extraction of the profiles is about
0.5− 1.0 seconds per customer, depending on the number of non empty footprints. Empty
footprints are clustered by default in the same group and represented by an empty footprint.
For sake of simplicity, if not mentioned, the analysis we report in the following does not
consider empty footprints. In Fig. 11.5 (first) is reported the distribution of the number
of customers having not empty footprints, i.e. the weeks for which at least a purchase was
performed. The distribution is quite uniform ranging from 100 to 4002.

Fig. 11.5 (second) shows the distribution of the number of individual footprints. It is
a Gaussian shape and with mode ∼8. About 80% of the customers must be represented
considering more than five footprints. This happens because even though a customer makes
purchases on a certain day and time window, she can spend sometimes e 50, sometimes e 70
and sometimes e 90. These behaviors appear in the same time slot but they are “distinct”
due to the different nature of the amount spent, and they have a different meaning.

In Fig. 11.5 (third and fourth) are illustrated two indicators: purity (left) and entropy
(right). The purity indicates how much the customer is pure in terms of footprints

purity = max
F∈F

(sup(F ))

The entropy indicates how much a customer is heterogenous in terms of footprints [262]

entropy = −
∑
F∈F

sup(F )log(sup(F )−1)/log(|F|)

sup(F (i)) = |Gi|/|Ŝ| is the relative support of a footprint, i.e. the number of footprints
belonging to F (i). The purity distribution is a Gaussian with mode ∼0.2, while the entropy
has a long-tailed distribution with mean 0.94 and low standard deviation.

2Note that in reality 392 not empty footprints is the maximum number of footprints for our dataset since
we are considering a period including 392 weeks, and that 400 is driven by the binning of the histogram.
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Figure 11.6: Collective distributions: collective footprints, ratio coll-ind, purity and entropy.

Collective Footprints Analysis

In this section we analyze the customers’ collective footprints representing the collective
perspective of each customer. We extracted the collective perspectives starting from the
footprints {Fc} of the customers analyzed by applying in sequence Alg. 15 and Alg. 16.
For the clustering in Alg. 15 we ran k-means with k varying from 2 to 150. Fig. 11.8 (left)
depicts the evolution of the SSE values. We selected k = 45 as number of clusters. In Fig.
11.8 (right) we can observe the size of each collective group. Group (29) contains 500k
footprints, the groups with id from (1) to (36) in the plot are populated by ∼50k footprints,
the rest of the groups contain about 5k elements. We remark that each customer can have
individual footprints represented by different collective footprints, and that each customer
can have more than one individual footprint represented by the same collective footprint.

In Fig. 11.7 we report some of the collective temporal purchasing footprints C of the
collective groups L obtained3. The number in the bottom left square indicates how many
customers have an individual footprint represented by that collective footprint. Nearly all
the collective footprints describe a one-shop behavior with the exception of the collective
footprints (29) and (38). The choice of the day and time window of these one-shop purchase
behaviors is spread among the various days and time windows. For example, customers
having a behavior represented by (1) spend about e 37 on Sat10-12, those having a behavior
represented by (14) spend about e 49 on Fri10-12, and those represented by (4) spend
about e 55 on Fri16-18. As anticipated by the M-shape in Section 11.1.2, the two time
windows mostly used by the customers are 10-12 and 16-18. However, there are also
some collective footprints in “unusual” time windows characterizing a smaller number of
customers, e.g. collective footprints (39) and (40).

In Fig. 11.7 we can notice that shopping behavior for the same day and time window is
captured by different collective footprints. Examples of this are collective footprints (1) and
(2) both acting on Sat10-12, and collective footprints (19) and (12) both acting on Fri16-
18. Collective footprints (2) and (12) have a typical expenditure of e 88 and e 143: they
contain individual footprints for fewer customers and enhance a spending behavior higher
than those of (1) and (19) respectively. In general, observing all the collective footprints,
we can classify these one-shop spending behaviors in three classes according to level of
amount spent in their peak. We name normal spending behavior the collective footprints
lower than e 50, high spending behavior the collective footprints between e 50 and e 100,
and big spending behavior the collective footprints with the peak higher than e 100.

Collective footprint (29) captures occasional shopping sessions where a maximum of
e 3 is spent. There is not a precise day nor a precise time window but 87% of the customers
have this behavior. This indicates that even though each customer has one of the one-
shop behaviors, in some occasions she makes purchases employing an occasional spending

3All the collective footprints can be found at https://goo.gl/i7rRBZ.
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Figure 11.7: Collective footprints: the darker the color, the higher the total amount spent (in e).

Figure 11.8: SSE varying k ∈ [2, 150] (left), clusters sizes (right).

behavior. In practice, each customer sometimes occasionally purchases without following
a fixed schema when she goes to the shop, and she buys only a few products she needs
in that moment. Collective footprint (38) captures the behavior of customers that every
very early morning (7-9) of the week make a purchase spending at most e 16. We name
this behavior daily spending behavior. The customers having this behavior can be retirees
who go to the shopping center every morning to buy only what they need for the day, or
workers going to the supermarket before work for buying their lunch.

Regular and Changing Customers. By analyzing the same indicators, we observed
in the previous section, we discovered that when using the collective perspective customers
can be identified as regular or changing. In Fig. 11.6 (first) is reported the distribution of
the number of customer collective footprints |Cc| of each customer. The already discussed
phenomenon that two individual footprints F and F ′ can be represented by the same
customer collective footprint C affects in a not negligible way a consistent subset of the
customers. However, instead of generating the same Gaussian distribution observed in
Fig.11.5 (second) with an increased skewness, we observe the bi-modal distribution shown
in Fig. 11.6 (first). This phenomenon recalls the explorer-returner phenomenon observed
in mobility behavior [227]. In the same figure we report the null -distribution representing
the number of collective footprints assigned using a null model : for each customer each
individual footprint is assigned randomly to a collective footprint. This distribution is
Gaussian and its mode is ∼7. Since the two distributions are very different we can state
that the result observed is not random. The U-shape of the bi-modal distribution highlights
two set of customers: regular customers are represented by a limited set of behaviors, less
than 5 collective footprints, while changing customers must be represented considering a
higher number of behaviors, more than 4 collective footprints. Using 4 as threshold we
have a 27%-83% partitioning. Thus, regular customers are more predictable than changing
customers since they can adopt a smaller range of characterizing behaviors. Indeed, if we
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Figure 11.9: Selection of representatives regular sub-sequences of the medoids of the collective
clustering. Gray rectangles highlight the weekends.

Figure 11.10: SSE varying k ∈ [2, 80] (left), and clusters sizes (right).

consider only the amount spent, on average, the standard deviation of the amount spent
by regular customer is 7.61, while it is 32.38 for a changing customer.

Fig. 11.6 (second) illustrates the distribution of the ratio between the number of the
customer collective footprints and the number of individual footprints, i.e. |Cc|/|Fc|. For
37% customers each individual footprint belongs to a different collective group, for the rest
the collective perspective changes the personal definition of behavior. This confirms that,
the perception of the temporal purchasing behavior of a customer obtained only observing
her own purchases differs from that one we get observing also the other customers.

It is interesting to notice how the distributions of purity and entropy change as conse-
quence of these phenomena. For the purity we can observe a novel group of more than 10k
pure customers, and the decreasing of the skewness of the curve. The average purity for a
regular customer is 0.94, while it is just 0.19 for a changing customer. A similar effect is
detected w.r.t. the entropy. The entropy distribution for customers’ collective footprints
is “less long-tailed” than the entropy distribution for individual footprints. Once again,
the average entropy for a regular customer is 0.65 while it is 0.91 for a changing customer.
This confirms the higher unpredictability of changing customers. Finally, it is worth to
notice the growth of the standard deviation σ for both measures. It reports the improved
variability of these measures due to the regular-changing diversification.

Collective Sequence Analysis

While the analysis of the collective footprints can reveal a customers segmentation w.r.t.
their temporal purchasing behavior, the analysis of the regular sub-sequences can unveil
also a partitioning which describes for each group the order in which the most meaningful
collective footprints are repeated. To this end, we cluster and analyze the choices of
the regular sub-sequences Rc = {(R1, w1), . . . , (Rn, sn)}. Thus, for each customer c we
consider her regular sub-sequences and their support as statistical unit for the clustering.
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Since given a set of customers represented as set of regular sub-sequences {Rc} is not
possible to define a centroid, we segmented the customers using k-medoids [164] instead of
k-means. We ran k-medoids varying k from 2 to 80. In Fig. 11.10 (left) we can observe
the SSE values: we selected k = 33 as number of clusters. Fig. 11.10 (right) shows the
size of each cluster, i.e., the number of customers. Clusters 25, 21, 31, 22 and 30 contain
more than 2, 000 customers, while all the others contain from 500 to 1, 000 customers.

To analyze the customers segmentation we show in Fig. 11.9 some sub-sequences of
different medoids. For each medoid we report the sub-sequence with the higher trade-off
between length and support. We highlight that the sub-sequences shown in Fig. 11.9 are
not expressing the fact that the customers belonging to that cluster always behave in that
way, but they are only describing one of their most common behavior, i.e. their regularities.

Clusters 30, 22 and 31 are represented by different permutation of the collective foot-
prints (29) and (-1). We indicate with (-1) the collective footprint capturing the no-
shopping behavior. Their most frequent succession of weeks consists of going to the shop
without a very regular pattern for buying only the products they need at that moment.
Then sometimes, without a fixed schema, they adopt one of the one-shop behaviors. These
customers could fall into the category of casual customers defined in [129]. Indeed they are
quite unpredictable in their occasional spending behavior. However, through our approach
we discovered differences among those customers looking outside the week unit: the first
group has a Yes-No-Yes (Y-N-Y) sequence, the second one buys every week (Y-Y-Y), while
the last one is characterized by a N-Y-N sequence. Most of the other clusters are charac-
terized by a repetition of the same collective footprint in the sub-sequences, e.g. clusters
14, 18, 0, 15, 5, 6 and 19. It seems that customers belonging to these clusters have their
preferred time to shop and they need to shop in that particular moment. This behavior
is probably driven by their weekly time table. However, the fact that there are not no-
shopping behavior separating these one-shop behaviors is a signal that they consume all
the products bought and they need to shop every week. Cluster 14 reveals that also the
daily spenders repeat regularly their behavior through the weeks. Finally, clusters 2 and
23 capture two different repetitions of one-shop behavior following a N-Y-N schema, i.e.
these customers depletes her storage in the first week, go to shopping in the second week
(with different level of spending between 2 and 3), and consumes the novel supplies in
the third week. Cluster 4 is complementary to cluster 2. It is interesting to analyze also
clusters 1 and 8. They are specular each other. The first pattern reveals that customers of
cluster 1 do not purchase for two weeks and then, on Saturday morning of the third week
they spent about e 60. On the other hand, customers of cluster 8 have a shopping session
on Monday morning with e 45, and then they do not need to purchases for two weeks.

11.1.3 Conclusion

By adopting a Personal Data Model designed for temporal shopping behavior, we have
investigated the regularities characterizing the temporal purchasing profile of retail cus-
tomers. Then, we have made the profiles comparable among different customers of the
PDE by providing the collective perspectives of the individual profiles. These collective
perspective have enabled the analysis and the segmentation of the customers considered.
Our case study revealed that for most of the customers the vision of the individual profile
is different from its collective perspective and that customers can be classified into regular
and changing according to the number of behaviors needed to describe them.
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11.2 Using Retail Market Data to Nowcast Well-Being

Objectively estimating a country’s prosperity is a fundamental task for modern society.
One such test is the estimation of the Gross Domestic Product, or GDP. GDP is defined
as the market value of all officially recognized final goods and services produced within a
country in a given period of time. The idea of GDP is to capture the average prosperity
that is accessible to people living in a specific region. No prosperity test is perfect, so
it comes as no surprise to reveal that GDP is not perfect either. GDP has been harshly
criticised for several reasons [85]. First: GDP is not easy to be estimated. It takes time
to evaluate the values of produced goods and services, as to evaluate them they first have
to be produced and consumed. Second: GDP does not accurately capture the well-being.
For instance income inequality skews the richness distribution, making the per capita GDP
uninteresting, because it does not describe the majority of the population any more. More-
over, arguably it is not possible to quantify well-being just with the money in someone’s
pocket: she might have dreams, aspirations and sophisticated needs that bear little to
no correlation with the status of her wallet. The critiques to GDP we mentioned have
resulted in the proliferation of alternative well-being indicators. We mention the Index of
Sustainable Economic Welfare (ISEW), the Genuine Progress Indicator (GPI) [178] and
the Human Development Index (HDI)4. A more in depth review about well-being alterna-
tives is provided in [144]. These indicators are designed to correct some shortcomings of
GDP, namely incorporating sustainability and social cost. However, they are still affected
by long delays between measurements and evaluation. They are also affected by other
criticisms: for instance, GPI includes a list of adjustment items that is considered incon-
sistent and somewhat arbitrary. Corrections have been developed [179], but so far there is
no final reason to prefer them to GDP and thus we decide to adhere to the standard and
we consider only the GDP measure, and we remark that no alternative has addressed the
two mentioned issues of GDP in a universally recognized satisfactory way.

Employing data mining tools to nowcast GDP is a promising field of research espe-
cially to resolve the delay issues of GDP. Our proposal is to nowcast the GDP level using
retail data based on the collaborative flows of personal indicators that can emerge from
the Personal Data Ecosystem [130]. Indeed, the approach we follow comes from a recent
branch of research that considers markets as self-organizing complex systems. In partic-
ular, we define two indicators of the Personal Data Model as measures of product and
customer sophistication. The proposed measures are the average sophistication of the sat-
isfiable personal needs of a population. We are able to estimate such personal measure
by connecting products sold in the country to the customers buying them in significant
quantities, generating a customer-product bipartite network. The sophistication measure
is created by recursively correcting the degree of each customer in the network. Customers
are sophisticated if they purchase sophisticated products, and products are sophisticated
if they are bought by sophisticated customers. Once this recursive correction converges,
the aggregated sophistication level of the network is our well-being estimation. In other
words, we produce personal indicators of economic sophistication and we transform an
aggregation of them into a data-driven collective indicator of well-being.

4http://hdr.undp.org/en/statistics/hdi
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The approach we follow was first proposed in [142], where the authors model the global
export market as a bipartite network, connecting the countries with the products they
export. This usage of complex networks has been replicated both at the macro economy
level [52] and at the micro level of retail [61]. Also in [235] was showed the power of measures
calculated following the same approach to explain the distance traveled by customers to
buy the products they need [236]. We borrow these indicators to tackle the problem of
nowcasting GDP. An alternative methodology uses electronic payment data [106]. However,
in this case the only issue addressed is the timing issue, but no attempt is made into making
the measure more representative of the satisfaction of people’s needs.

The average sophistication of the personal satisfiable needs addresses the two issues of
GDP we discussed. First, it shows a high correlation with the GDP of the country, when
shifting the GDP by two quarters. The average sophistication of the bipartite network
is an effective nowcasting of the GDP, making it a promising predictor of the GDP value
the statistical office will release after six months. Second, our measure is by design an
estimation of the sophistication of the needs satisfied by the population.

11.2.1 Dataset

To reach our goal we employed the Coop dataset described in Section 6.2. As time granu-
larity for our observation period we choose to use a quarterly aggregation. This because we
want to compare our results with GDP, and GDP assumes a better relevance in a quarterly
aggregation. For each quarter, we have ∼500k active customers. Since our objective is
to establish a correlation between the supermarket data and the GDP of Italy, we need a
reliable data source for GDP. We rely on the Italian National Bureau of Statistic ISTAT.
ISTAT publishes quarterly reports about the status of the Italian country under several
aspects, including the official GDP estimation. ISTAT is a public organization and its
estimates are the official data used by the Italian central government. We downloaded
the GDP data from the ISTAT website5. As can be observed in Fig. 6.1 (right) the shop
distribution is not homogeneous: shops are located in a few Italian regions. Therefore,
the coverage of these regions is much more significant. Our analysis is performed on na-
tional GDP data, because regional GDP data is disclosed only with a yearly aggregation.
However, the correlation between national GDP and the aggregated GDP of the observed
regions Tuscany, Lazio and Campania during our observation period is 0.95 (p < 0.001).
This is because Italy has a high variation on the North-South axis, which we cover, while
the West-East variation, which we cannot cover, is very low.

Seasonality

Both GDP and the behavior of customers in the retail market are affected by seasonal-
ity. Different periods of the year are associated with different economic activities. This
is particularly true for Italy in some instances: during the month of August, Italian pro-
ductive activities come to an almost complete halt, and the country hosts its peak tourist
population. The number and variety of products available in the supermarket fluctuate
too, with more fruit and vegetables available in different months, or with Christmas season
and subsequent sale shocks. A number of techniques have been developed to deal with
seasonal changes in GDP. One of the most popular seasonal adjustments is done through

5http://dati.istat.it/Index.aspx?lang=en&themetreeid=91, date of last access: Sept 23rd, 2015

http://dati.istat.it/Index.aspx?lang=en&themetreeid=91
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Figure 11.11: The bipartite network connecting customers to the products they buy.

the X-13-Arima method, developed by the U.S. Census Bureau [213]. However, we are
unable to use this methodology because it requires an observation period longer than the
one we have available for this analysis, and because, the methodologies present in literature
are all fine-tuned to specific phenomena that are not comparable to the shopping patterns
we are observing. Thus we cannot apply them to our sophistication timelines. Given that
we are not able to make a seasonal adjustment for the sophistication, we chose to not
seasonally adjust GDP too. We acknowledge this as a limitation of our study and we leave
the development of a seasonal adjustment for sophistication as a future work.

11.2.2 Method

The sophistication indicator is used to objectively quantify the sophistication level of the
needs of the customers buying products. The sophistication index is introduced in [236],
which is an adaptation from [52], necessary to scale up to large datasets. We briefly report
here how to compute the customer sophistication index which would be part of the Personal
Data Model. The starting point is a matrix with customers on rows and products on the
columns. This matrix is generated for each quarter of each year of observation. Each
cell contains the number of items purchased by the customer of the product in a given
quarter (e.g. Q1 of 2007, Q2 of 2007 and so on). We then have 30 of such matrices. The
matrices are very sparse, with an average fill of 1.4% (ranging from 33 to 37 million non
zero values). Our aim is to increase the robustness of these structures, by constructing a
bipartite network connecting customers exclusively to the subset of products they purchase
in significant quantities. Fig. 11.11 provides a simple depiction of the bipartite network.

To filter the edges, we calculate the Revealed Comparative Advantage (RCA, also
known as Lift [6]) of each product-customer cell [19], following [226]. Given a product pi
and a customer cj , the RCA of the couple is defined as follows:

RCA(pi, cj) =
X(pi, cj)

X(p∗, cj)

(
X(pi, c∗)

X(p∗, c∗)

)−1

,

where X(pi, cj) is the number of pi bought by cj , X(p∗, cj) is the number of products
bought by cj , X(pi, c∗) is the total number of times pi has been sold and X(p∗, c∗) is
the total number of products sold. RCA takes values from 0 (when X(pi, cj) = 0, i.e.
customer cj never bought a single instance of product pi) to +∞. When RCA(pi, cj) = 1,
it means that X(pi, cj) is exactly the expected value under the assumption of statistical
independence, i.e. the connection between customer cj and product pi has the expected
weight. If RCA(pi, cj) < 1 it means that the customer cj purchased the product pi less
than expected, and vice-versa. Therefore, we keep an edge in the bipartite network iff its
corresponding RCA is larger than 1. Note that most edges were already robust. When
filtering out the edges, we keep 93% of the original connections.
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Differently from [236] that used the traditional economic complexity [226], we use the
Cristelli formulation of economic complexity [86]. The two measures are highly correlated,
therefore, there is no reason to prefer one measure over the other, and we make the choice
of using only one for clarity and readability. Consider the bipartite network G=(C,P,E)
described by the adjacency matrix M |C|×|P |, where C are customers and P are products.
Let c and p be two ranking vectors to indicate how much a C-node is linked to the most
linked P -nodes and, similarly, P -nodes to C-nodes. It is expected that the most linked C-
nodes connected to nodes with high pj score have a high value of ci, while the most linked
P -nodes connected to nodes with high ci score have a high value of pj . This corresponds to
a flow among nodes of the bipartite graph where the rank of a C-node enhances the rank
of the P -node to which is connected and vice-versa. Starting from i ∈ C, the unbiased
probability of transition from i to any of its linked P -nodes is the inverse of its degree
c

(0)
i = 1

ki
, where ki is the degree of node i. P -nodes have a corresponding probability of

p
(0)
j = 1

kj
. Let n be the iteration index. The sophistication is defined as:

c
(n)
i =

|P |∑
j=1

1

kj
Mijp

(n−1)
j ∀i p

(n)
j =

|C|∑
i=1

1

ki
Mijc

(n−1)
i ∀j

These rules can be rewritten as a matrix-vector multiplication

c = M̄p p = M̄T c

where M̄ is the weighted adjacency matrix. So, like previously we have

c(n) = M̄M̄T c(n−1) p(n) = M̄T M̄p(n−1)

c(n) = Cc(n−1) p(n) = Pp(n−1)

where C(|C|×|C|)=M̄M̄T and P(|P |×|P |)=M̄T M̄ are related to x(n)=Ax(n−1). This makes
sophistication solvable using the power iteration method (and it is proof of convergence).
Note that this procedure is equivalent to the HITS ranking algorithm, as proved in [126].

At the end of our procedure, we have a value of customer and product sophistication
for each customer for each quarter. For the rest of the section we focus on customer
sophistication for space reasons, and because, in line with the Personal Data Analytics
approach, the customer sophistication is, similarly to BRE and STRE, an index part of
the Personal Data Model. Each customer is associated with a timeline of 30 different
sophistications. The overall sophistication is normalized to take values between 0 and 1.
Fig. 11.12 shows the distribution of the customer sophistication per quarter and per year.
We chose to aggregate the visualization by quarter because the same quarters are similar
across years but different within years, due to seasonal effects. To prove the quality of our
sophistication measure in capturing need sophistication, we report in Tab. 11.2 a list of the
top and bottom sophisticated products, calculated aggregating data from all customers.
Top sophisticated products are non daily needed products, while the least complex products
are mostly food items. Being data from Italian retails, pasta is the most basic product.

11.2.3 Case Study

In this section we test the relation between the statistical properties of the bipartite net-
works generated with our methodology and the GDP values. We first show the evolution
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Figure 11.12: The customer sophistication distributions per quarter and per year. Each plot
reports the probability (y axis) of a customer to have a given sophistication value (x axis), from
quarter 1 to quarter 4 (left to right) for each year.

SOP Rank Product SOP Rank Product
1 Cosmetics ... ...
2 Underwear for men -5 Fresh Cheese
3 Furniture -4 Red Meat
4 Multimedia services -3 Spaghetti
5 Toys -2 Bananas
... ... -1 Short Pasta

Table 11.2: The most and least sophisticated products in our dataset.

of aggregated measures of expenditure, number of items, degree and sophistication along
our observation period. Then we test the correlation with GDP, with various temporal
shifts to highlight the potential predictive power of some of these measures.

We already shown that the sophistication distribution is highly skewed and best rep-
resented as an exponential function. The expenditure and the number of items purchased
present a skewed distribution among customers: few customers spend high quantities of
money and buy many items, many customers spend little quantities of money and buy
few items. For this reason, we cannot aggregate these measures using the average over
the entire distribution, as it is not well-behaved for skewed values. To select the data we
use the inter-quantile range, the measure of spread from the first to the third quantile. In
practice, we trim the outliers out of the aggregation and then we compute the average, the
Inter-Quartile Mean, or “IQM”. Assuming n sorted values, the IQM is calculated as:

xIQM =
2

n

3n
4∑

i=n
4

+1

xi

All the timelines we present have been normalized and the variables take values between
0 and 1, where 0 represents the minimum value observed and 1 the maximum. We report
in Tab. 11.3 the abbreviations used in the text and in the captions of the figures

The first relation we discuss is between GDP and the most basic customer variables.
Fig. 11.13 depicts the relation between GDP and the IQM expenditure (left), and GDP and
IQM of the number of items purchased (right). Besides the obvious seasonal fluctuation,
we can see that the two measures are failing to capture the overall GDP dynamics. GDP
has an obvious downward trend, due to the fact that our observation window spans across
the global financial crisis, which hit Italy starting from the first quarter of 2009. However,
the expenditure in the observed supermarket has not been affected at all. Also the number
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Abbreviation Description
IQM Inter-Quartile Mean.
GDP Gross Domestic Product.
EXP IQM of the total expenditure per customer.
PUR IQM of the total number of items purchased per customer.

C-DEG IQM of the number of products purchased in significant quantities
(i.e. the bipartite network degree) per customer.

P-DEG IQM of the number of customers purchasing the product in signifi-
cant quantities (i.e. the bipartite network degree).

C-SOP IQM of the sophistication per customer.
P-SOP IQM of the sophistication per product.

Table 11.3: The abbreviations for the measures used in the experiment section.
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Figure 11.13: GDP and IQM customer expenditure (left) and IQM items purchased (right).

of items has not been affected. If we calculate the corresponding correlations, we notice a
negative relationship which, however, fails to pass a stringent null hypothesis test (p>0.01).

Turning to our sophistication measure, Fig. 11.14 depicts the relation between GDP
and our complex measures of sophistication. On the left we have the measure of cus-
tomer sophistication we discussed so far. We can see that the alignment is indeed not
perfect. However, averaging out the seasonal fluctuation, customer sophistication captures
the overall downward trend of GDP. The financial crisis effect was not only a macroeco-
nomic problem, it also affected the sophistication of the satisfiable needs of the population.

Note that, again, we have a negative correlation. This means that, as GDP shrinks,
customers become more sophisticated. This is because the needs that once were classified as
basic are not basic any more, hence the rise in sophistication of the population. Differently
from before, the correlation is actually statistically significant (p < 0.01).

We also report on the left the companion sophistication measure: since we can define
the customer sophistication as the average sophistication of the products they purchase,
we can also define a product sophistication as the average sophistication of the customers
purchasing them. Fig. 11.14 (right) shows the reason why we do not focus on product
sophistication: the overall trend for product sophistication tends to be the opposite of
the customer sophistication. This anti-correlation seems to imply that, as the customers
struggle in satisfying their needs, the once top-sophisticated products are not purchased
any more, lowering the overall product sophistication index. However, this is only one of
many possible interpretations and we need further investigation in future works.

We sum up the correlation tests performed in Tab. 11.4. We report the correlation
values for all variables. We test different shift values, where the GDP timeline is shifted of
a given number of quarters with respect to the tested measure. When shift = -1, it means
that we align the GDP with the previous quarter of the measure (e.g. GDP Q4-08 aligned
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Figure 11.14: GDP and IQM customer (left) and product (right) sophistication.

Measure
Shift -3 -2 -1 0 1 2

EXP -0.29302 -0.49830 -0.53078∗ 0.23976 -0.27619 -0.37073
PUR -0.27091 -0.49836∗ -0.53046∗∗ 0.18638 -0.30909 -0.32432

C-DEG 0.24624 0.39808 -0.55479∗ 0.13727 0.08191 0.36001
P-DEG -0.12409 -0.26289 -0.57657∗∗ 0.30255 -0.22198 -0.28325
C-SOP -0.32728 -0.67007∗∗∗ 0.23261 0.09251 -0.15844 -0.58773∗∗

P-SOP -0.02675 -0.12916 0.60974∗∗ -0.18587 0.15342 -0.03843
∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 11.4: The correlations of all the used measures with GDP at different shift values. We
highlight the statistically significant correlations.

with measure’s Q3-08). We also report the significance levels of all correlations. Note that
all p-values are being corrected for the multiple hypothesis test. When considering several
hypotheses, as we are doing here, the problem of multiplicity arises: the more hypotheses
we check, the higher the probability of a false positive. To correct this issue, we apply a
Holm-Bonferroni correction. The Holm-Bonferroni method is an approach that controls
the family-wise error rate (the probability of witnessing one or more false positive) by
adjusting the rejection criteria of each of the individual hypotheses [149]. Once we adjust
the p-values, we obtain the significance levels reported in the table. Only one correlation
passes the Holm-Bonferroni test for significance at p < 0.01 and it is exactly the one
involving the customer sophistication with shift equal to -2. This correlation is highlighted
in bold in Table 11.4, and it represents the main result of this analysis.

Note that in the table we also report the correlation values using the IQM for the
customer and product degree measures, of which we have not shown the timelines, due to
space constraints. We include them because, as we discussed previously, our sophistication
measures are corrected degree measures. If the degree measures were able to capture
the same correlation with GDP there would be no need for our more complex measures.
Since the degree measures do not pass the Holm-Bonferroni test we can conclude that the
sophistication measures are necessary to achieve our results.

We finally provide a visual representation of the customer and product sophistication
correlations with GDP at different shift levels in Fig. 11.15. The figure highlights the
different time frames in which the two measures show their predictive power over GDP.
The customer sophistication has its peak at shift equal to -2. The cyclic nature of the
data implies also a strong, albeit not significant, correlation when the shift is equal to 2.
Instead, the product sophistication obtains its highest correlation with GDP with shift
equal to -1. This might still be useful in some cases, as the GDP for a quarter is usually
released by the statistical office with some weeks of delay.
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Figure 11.15: Correlation between average customer sophistication and GDP with different shifts.

11.2.4 Conclusion

We have introduced a personal indicator in the Personal Data Model and we have aggre-
gated them at collective level in the Personal Data Ecosystem for having a fast and reliable
test for estimating the well-being of a population. Traditionally, this is achieved with GDP.
However, GDP is affected by several issues. By using retail information, we have been able
to estimate the overall sophistication of the needs satisfied by a population by constructing
and analyzing a customer-product bipartite network. We have shown that our customer
sophistication measure is a promising predictor of the future GDP value, anticipating it by
six months. It is also a measure less linked with the amount of richness around a person,
and it focuses more on the needs this person is able to satisfy.



Chapter 12

Deployment of
Personal Data Analytics

In the last chapter we present some first attempts of real adoption of Personal Data Ana-
lytics. In the previous sections, the Personal Data Analytics approach has been formulated
at theoretical level, and experiments and case studies have been presented supposing that
each person has her own PDS with their own Personal Data Models. However, in practice,
the datasets analyzed were not distributed but centralized and treated separately for each
person, and the experiments were a sort of “what-if” analysis with respect to certain per-
formance indicators to evaluate the goodness of the method, model, or service proposed.

As a concrete test-bed to experiment and to validate the ideas developed in this thesis,
in April 2015 we founded the LivLab, a living laboratory. The partners of this laboratory
are the KDDLAD of UNIPI and CNR in collaboration with Tim and Unicoop Tirreno, (i.e.,
the largest Italian telecom operator and one of the largest retail distribution companies in
Italy)1. The LivLab aims at creating a participatory eco-system for setting-up experiments
on a trusted user-centric platform, and based on personal mobility and purchasing data.

Moreover, we present a case study of the PETRA project as an additional application
of Personal Data Analytics for improving the benefits of the collectivity. In such scenario,
we consider together the public transportation system of a city with the private one formed
by the drivers eligible for carpooling according to their PDS, and we evaluated the travel
time reduction of the system which uses also the private cars.

12.1 LivLab: The Adoption of the Personal Data Store

The main goals of LivLab are: (i) creating and managing a community of volunteers, (ii)
realizing services built on top of users’ data, and (iii) increasing users’ awareness about
their daily activities. The laboratory is involving customers in the province of Leghorn to
collect GPS signals to track movements, and purchasing data in their PDS, and to offer
them analytical services exploiting these data. The LivLab currently is composed of about
100 active users. Through a web interface or a mobile app, each customer can login to
her home page (Fig. 12.1 (left)). The simplest service implemented is the historical data
visualization where the customer can navigate and consult her own data (purchases, GPS,
calls, etc.) together with basic information (see Fig. 12.1 (right)).

1http://goo.gl/44JnRk, http://goo.gl/OD02nl
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Figure 12.1: PDS LivLab home page. Figure 12.2: Personal statistics.

Figure 12.3: Visualization of individual mobility network.

Figure 12.4: Analysis of purchases and “Where I Am?”, i.e. comparison with the others.

Through Personal Data Analytics, we have applied some of the techniques and models
described in this thesis in order to improve the self-awareness of the customers. Some exam-
ples of services that we have implemented are: (i) visualization on a map of the individual
mobility network (see Section 8.3) with the possibility to filter among frequent/unfrequent
locations (see Fig. 12.3), (ii) self-analysis of purchasing behavior including the BRE and
STRE indicators presented in Section 8.1 together with the most frequent shopping pattern
extracted with the txmeans algorithm (Section 7.2) that are used to recommend the item
for the next shopping list, and statistics about the favorite market category and biological
products (see Fig. 12.4 (left)), and (iii) the “Where I Am?” service, i.e., a comparison of
the personal models and indicators against those of the collectivity, that is the behavior
of other users in the LivLab Personal Data Ecosystem that want to understand how they
behave with respect to the mass (see Fig. 12.4 (right)).

Therefore, by adopting the LivLab PDS, a user can gain the control on her data together
with additional information extracted by using the Personal Data Analytics approach This
knowledge can suggest to the user the adoption of new and different behaviors able to
improve her lifestyle. Moreover, extra advantages are provided by models and data sharing,
enabling the user to understand how much is different or similar to the others.
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12.2 Integration of Private and Public Means of Transport

The development of smart mobility services is mandatory to build our continuously evolv-
ing smart cities. The PErsonal TRansport Advisor (PETRA) EU FP7 project2, has as
main aim the development of an integrated platform to supply urban travelers with smart
journeys and activity advisers, on a multi-modal network, while considering uncertainty.
It is a first prototype of a real service which requires as core component a Personal Data
Ecosystem made of interconnected Personal Data Stores able to share meaningful patterns.

In the following, we briefly describe the architecture of the PETRA platform, and we
present how a journey planner considering public services can be boosted with private
means of transport in form of knowledge coming from the Personal Mobility Data Models
[42]. In particular, we show how by integrating private and individual transport systematic
routines Ru into a public transit network it is possible to devise better collective advises,
measured both in terms of the number of requests satisfied, and in terms of the expected
time of arrivals. Besides validating the utility of the multimodal carpooling system orig-
intaed by the union between private and public means of transports, the experiments we
show in the following are also part of the validation for the PETRA use case on Rome,
where we assess the quality of the advises coming from the innovative integrated platform.

12.2.1 PETRA Journey Planner

Fig. 12.5 shows the diagram of a simplified architecture for PETRA. We describe in the
following the main modules used for private and public means of transport integration.

Data Manager. The PETRA project highlights the need to integrate different types
of urban data, from unstructured data to real-time information retrieved from city sensors.
Handling such large volumes of data requires a tailored and scalable data management plat-
form, from which we highlight the following modules: (i) data acquisition, responsible for
ingesting the heterogeneous city data and needs to consider the case of streaming data
returned from sensors and other city traffic sources; (ii) distributed data storage and in-
dexing, providing indexes designed for the different formats of data that can be handled by
the system (relational, tabular, and graph data), and also their different types (geospatial,
textual, etc); (iii) partitioning, distributing the acquired data across the different nodes
of the data storage; (iv) query and searching, providing a combination of structural query
processing and search techniques in order to answer different kinds of queries. The Data
Manager (DM) exposes its data to the other PETRA components via a set of APIs. In par-
ticular, the Journey Planner (JP) retrieves the required General Transit Feed Specification
(GTFS) data from the DMâĂŹs internal stored version by using the APIs.

Mobility Mining. The Mobility Mining module fetches GPS data about private ve-
hicle trajectories from the DM. It uses a data mining process named mobility profiling to
extract patterns from these traces. This process for each user u∈U , takes as input the user’s
trajectories Hu and returns the set of personal routines Ru describing her systematic move-
ments (see Section 8.3). The set of all the collective routines RC={Ru} can be exploited
as “alternative bus route” by the JP. These newly introduced routes can be exploited as
an embedded carpooling service, transparently available through the PETRA platform.

2http://www.petraproject.eu
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Figure 12.5: Simplified PETRA architecture.

The Multi-Modal Journey Planner Multi-Modal journeys in a city allow to com-
bine, as part of the same trip, multiple transportation modes, such as buses, trams, subways
and trains. In the context of our use case we deploy DOCIT [41] that is a multi-modal
planner taking into account uncertainties related to the expected arrival time of the differ-
ent modes of transport available in a given city. DOCIT provides functions such as journey
plan computation, plan execution monitoring, and replanning. The DOCIT components
that are the most relevant to our scenario are DIJA multi-modal Journey Planner (JP) [43],
which is used for the initial planning of journey, and a simulator for plan execution, which
is used to monitor the validity of active journey plans. To better perform the planning an
simulation task DOCIT requires updated data. To achieve that we created a connection
between DOCIT and the DM, and thus deploying DOCIT in RomeâĂŹs use case.

12.2.2 Case Study

The PETRA platform is being deployed by the partner cities of Rome, Venice, and Haifa.
However, in the following we analyze a use case for the city of Rome. In the Rome’s case
study, the PETRA platform, from the traveler’s individual perspective, provides journey
plans from place A to place B. From the collective perspective of the Personal Data
Ecosystem, this is done by: importing static and real time urban transport data; fusing
private routines into the public transport data; computing uncertainty-aware multi-modal
advises. In the following we describe the data used, how the import step works, and the
results obtained with and without the fusion of private personal routines RC .

Rome Data. The city of Rome, through Agenzia Mobilità, constantly provides up-
dated open data about its public transport systems. Two main sources of information
are offered via its website3: (i) Rome public transport General Transit Feed Specification
(GTFS) data4, which is a static snapshot of the entire public transport network updated
every few weeks and can be downloaded from the website; (ii) Rome public transport
real-time API that consists of a set of XML-RPC methods5, which provide updated trans-
port information e.g., expected arrival times. Moreover, Agenzia Mobilità is gathering a
large collection of GPS traces from private cars, similar to those described in Section 6.1.
These GPS data are used by the mobility mining module to extract the mobility routines.

Importing Rome’s Data. Importing Rome’s data relies on an ad-hoc data acquisi-
tion module (named RDI), that acts as a bridge between the different kinds of data and
the internal DM. Given as initial state the Rome public transport GTFS, we can divide
the work of the RDI in two sub-tasks: (i) the daily update, and (ii) the real-time update.

3See http://www.agenziamobilita.roma.it/
4https://developers.google.com/transit/gtfs/reference
5http://www.xmlrpc.com/spec/
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Figure 12.6: Impact of routines on travel time. Figure 12.7: The PETRA JP application: (left)
the original plan, (right) the adapted plan.

The daily update consists of two steps: discovering bus stops routines and enforcing pri-
vacy over these routines. First, the RDI transforms the private car routines into sequences
of bus stops and combines them as bus lines: each GPS location is mapped to the closest
bus stop within a given radius. Then, the RDI discards any bus stop routines consisting
of one stop, or only two bus stops which are closer than a given threshold. In order to
guarantee car driversâĂŹ privacy, the RDI checks if an external attacker could exploit the
bus stops routines to discover their identity by analyzing their vulnerability against the
linking attack model [210]. To avoid this kind of attack the RDI performs a privacy risk
analysis following a methodology similar to [28], the result of this method is a probability
distribution of the risk of identifying drivers for each routine. If possible, the routines with
an identification probability higher than a given acceptable risk are transformed into a
safer version by removing some bus stops, otherwise they are deleted. Finally, all the valid
bus stop routines are added to the Rome GTFS data and sent to the DM.

In the real-time update, the RDI queries the Rome public transport real-time API
every t minutes and checks if there is any update (e.g. buses which have been delayed or
cancelled) by comparing expected arrival times on the existing GTFS data with real-time
arrivals. Then it converts possible updates into GTFS format, and sends them to the DM.

Impact of Routines in Journey Planning. We ran the planning system in two
different settings. In the NoRo setting, the planner uses all the public transport data
available, but no routines. The Ro setting contains both routines and public transport
data. In each setting, we solved 2,000 queries (instances) with the origins and destinations
generated at random. Instead of using synthetic queries on the city of Rome, we had access
to the logs of the official journey planner of Agenzia Mobilità, among which we selected
a random sample. In a query, users can set parameters such as the maximum walking
time per journey mw, and the maximum number of legs per journey ml. We set mw to
20 minutes, the default planner value. Half of the queries have ml set to 5, and the other
half is for ml = 6. The public transport data we used has 8,896 stops and 391 routes.
Each route is served by a number of trips, to a total of 39,422 trips per day. The Rome
roadmap has 522,529 nodes and 566,400 links. In the GTFS data, we represent routines
with a structure similar to public transport data. Each routine introduces a new route and
a new trip. Our test data contains |RC | = 15, 205 routines.
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Fig. 12.6 illustrates the impact of adding routines as an additional mode. At the left,
we compare the travel time in the Ro and NoRo settings. As expected, in a subset of cases,
the travel time is the same. On the other hand, all points located below the main diagonal
show instances where routines improve the time. In fact, routines can improve both the
travel time and the number of legs per journey. The latter has two advantages. First, it
makes a trip more convenient to the traveler, as it reduces the number of interchanges.
Secondly, it helps increase the set of feasible instances (i.e., instances for which a solution
exists). This is important because user-imposed constraints on ml and mw can restrict
the set of feasible instances. For example, without using routines, in 29.3% of our queries
(instances), it is impossible to complete the journey with at most 20 minutes of walking and
at most 5 legs in the journey. Charts at the right in Fig. 12.6 show instances that become
feasible after adding routines. When ml is set to 5, routines are part of the returned plan
in 17.5% of the instances. Routines increase the percentage of feasible instances by 7.1%,
to a total of 77.8%. In 9.6% of the instances, routines improve the travel time, the average
savings per trip being equal to 25.5 minutes. When ml=6, routines become part of the
plans in 22.3% of the instances. They increase the percentage of feasible instances from
84.5 to 88.9%. In 14.3% of the instances, routines improve the travel time, the average
improvement amounting to 22.05 minutes per trip.

An Example of Reactive Journey Plan. Consider the following example, a user
wants to travel from the bus stop “Zambarelli-Ceres” to “Tagliamento-Chian” at 20:25.
Users of the PETRA mobile application can specify the departure and arrival locations,
departure time, and additional constraints such as the maximum amount of time they want
to spend in the different transport modes. Upon having received the user request the JP
computes the plan using the available information and returns a journey plan, as shown in
Fig. 12.7 (left). If a delay is detected on the next line of the plan while the user is still on
the first bus, the JP automatically calculates a new plan and displays the new choices to
the user (shown in Fig. 12.7 (right)). In this case, along with an alternative bus line, the
user can also select a carpooling option (displayed in orange).

12.2.3 Conclusion

We have presented our results obtained by employing Personal Data Analytics and data
mining on the available types of data, i.e., either individual data from private drivers and
public data from Agenzia Mobilità, and for this special case of mobility recommendation
by running the PETRA platform on the city of Rome for journey planning. Our goal was
to assess the impact of adding the results of the mobility mining module into the data
feeding the journey planner. Our results show an increased number of planning instances
satisfied thanks to the personal mobility routines, along with a reduced average expected
travel time. These analyzes proof that the Personal Data Ecosystem and the sharing of
personal patterns is a crucial point for the development of advanced services in order to
improve the quality of life, to reduce the traffic and the travel times.
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Conclusion

The continuous and unstoppable growth of the digital breadcrumbs that each individual
leaves behind while performing her daily activities constitutes an invaluable source of
unused knowledge. At the current state of the art there are not models and algorithms
specifically designed for personal data, nor services developed by exploiting individual and
collective information. In this thesis, we have proposed to extend the idea of Personal
Data Store by means of the Personal Data Analytics approach that is able to capture
the individual’s behavior through Personal Data Mining algorithms and Personal Data
Models. An additional element consists in the cooperation of the users in the Personal Data
Ecosystem where individual patterns can be shared for leveraging a collective knowledge
in order to enable and improve personal services for providing also collective benefits.

First, we have recalled the basic notions of data mining and user profiling, and we
have presented the relevant literature of personal models and individual and collective
services. Then, we have accurately discussed the current state of Personal Data Stores,
which are the available implementations and what they offer to the user. On top of that,
we have defined our vision of Personal Data Analytics, that is a PDS containing Personal
Data Models extracted with Personal Data Mining algorithms. In order to leverage the
individual awareness with the collective one, we have described the PDS as part of a
Personal Data Ecosystem in form of a distributed network of users.

We have addressed the goals of our thesis by realizing the Personal Data Analytics
approach and by employing it for developing real services. As first step we have defined
innovative parameter-free clustering algorithms for extracting the user profile. These meth-
ods, besides being usable on the datasets of different users without requiring parameter
tuning, are able to overcome the state-of-the-art competitors both in efficiency and quality
of the clusters returned. As second step, we have described Personal Data Models able
to capture and measure systematic behaviors for purchasing transactions, mobility data,
and listening data. These models enable the analysis of individual features which accu-
rately describe each user, and can be used for the development of a personal dashboard for
the user’s self-awareness. As third step, in the last part of this thesis, we have deployed
services on top of the Personal Data Ecosystem which exploit the models and methods
described in the previous part. We have developed individual services for improving per-
sonal mobility: a trajectory predictor and a personalized route planner. Yet exploiting the
systematic movements of the users in the Personal Data Ecosystem, we have constructed a
system providing proactive carpooling suggestions driven by the analysis of habitual paths.
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Furthermore, we have tried to reduce the reticence among the users when sharing the car
with strangers by considering also some social aspects. Then, we have shown how the
application of the Personal Data Ecosystem on shopping transactions can lead to a new
level of knowledge with respect to the temporal dimension of shopping, and how a personal
measure computed at collective level can be used to nowcast the level of well-being of a
society. Finally, we have reported a real case study where a prototype of the PDS proposed
in this thesis is adopted by a small set of users.

The results that we have obtained in this thesis in terms of algorithms, models, and
services represent an example of how Personal Data Analytics can be useful in the devel-
opment of the user-centric perspective. Clearly, we do not intend to conclude our study
on Personal Data and on the dualism between individual and collective with the contents
of this thesis, since many interesting research problems are still open. There are at least
three future research directions for the analytical approaches proposed in this thesis.

As consequence of the massive availability of different types of data for each user, the
first line of research involves the development of personal multidimensional models. Indeed,
besides the mobility and shopping transactional data considered in the LivLab experience
described in Chapter 12, we would like to collect for each user also musical listening, tweets,
messages, phone calls, credit card transactions, health data, etc. In turn, the extraction of
multidimensional models requires ad-hoc algorithms. Therefore, we would like to develop
a novel living laboratory where more different types of data and dimensions are considered
for each user, and these users are observed for a longer period. This novel laboratory
will enable the challenging development of complex models and algorithms to deal with
multidimensional data. Therefore, through these models, we could study how and if the
multidimensional self-awareness, and the awareness of the collectivity, influence the user’s
behaviors. Moreover, we would like to provide to the final users, some real services among
those theorized in this thesis, e.g. a carpooling service.

The second track of research is related to the adaptation of the models developed
with the privacy-by-design paradigm: all the information that a user shares with the
collectivity, either raw data or part of the user profile, should be anonymized in such a way
the user would not be identifiable through her public data. Moreover, multidimensional
data models go over the state-of-the-art with respect to existing privacy preserving method.
Thus, is required the development of novel techniques and the adjustment of the existing
ones. Another question related to privacy left open by this thesis that should be carefully
analyzed in the future is the legality of possession of personal data and patterns and their
use in the courts. Is a PDS a fair game to serve as evidence in a trial or will it be treated
differently? In the US this relates to the age old legal debate of whether such personally
collected data falls under the 4th or 5th amendment of the constitution [73].

Finally, the third track of research involves the study of a technology for the devel-
opment and deployment of the Personal Data Store and of the Personal Data Ecosystem.
Due to its nature, blockchain can be able to regulate the exchange of data and patterns
and can also help in guaranteeing a certain level of privacy. Our final goal will be not only
to provide the scientific community with methods and models able to automatically deal
with personal data during the extraction of personal patterns, but also to offer the basis for
a real paradigm for the development of distributed and privacy preserving services, where
the core of the systems themselves is the user.
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