

UNIVERSITA' DEGLI STUDI DI PISA

DIPARTIMENTO DI PATOLOGIA CHIRURGICA, MEDICA, MOLECOLARE E DELL'AREA CRITICA CORSO DI DOTTORATO IN FISIOPATOLOGIA CLINICA

PhD IN CLINICAL PHYSIOPATHOLOGY

miRNA expression profiling of Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: more light on its behavior.

Candidate: Nicla Borrelli Tutor: Chiar.ma Prof. Gabriella Fontanini

INDEX

A	STRA	CT	4
1	IN	TRODUCTION	4
	1.1	Thyroid Tumors: Classification and General Consideration	6
	1.2	Molecular Genetics of Thyroid Cancer	10
	1.3	Other molecular events: microRNA	11
	1.4 tumo	Follicular variant of papillary thyroid cancer: the borderline category of thyro	id 16
2	Al	IM	20
3	Μ	ATERIALS AND METHOD	20
	3.1	Patients and Study Design	20
	3.2	miRNA Extraction	23
	3.3	NanoString nCounter Assay	24
	3.4	Data normalization	25
	3.5	DNA purification	26
	3.6	BRAF and Ras gene family mutational analysis	27
	3.7	Statistical Analysis	28
4	RI	ESULTS	29
	4.1	miRNAs Differentially Expressed between Follicular Variant of	
	Papil	lary	29
	4.2	Evaluation of Differential miRNA Expression between NIFTPs, Follicular	
	Aden	omas and Infiltrative Follicular Variant of Papillary Thyroid Carcinoma	32
	4.2	2.1 <u>NIFTPs versus Follicular Adenomas</u>	32

	4.3.2 <u>NIFTPs versus infiltrative follicular variant of papillary thyroid</u>
	<i>carcinomas</i>
	4.3.3 Infiltrative follicular variant of papillary thyroid carcinomas versus
	follicular adenomas
	4.3 Differentiating between NIFTPs Versus Follicular Adenomas and Infiltrative
	Follicular Variant of Papillary Thyroid Carcinomas
	4.4 miRNAs involved in the Infiltrative Growth of Follicular Variant of Papillary
	Thyroid Carcinomas
	4.5 Genotyping Analysis
5	DISCUSSION
6	nCounter Human v3 miRNA Expression Assay Transcript List53
7	REFERENCES

ABSTRACT

Follicular variant of PTC (FVPTC) is a variant of well differentiated papillary thyroid carcinoma. FVPTCs comprise encapsulated and infiltrative forms with different histological features and clinical behavior, but according cytomorphological features the forms with indolent behavior are not significant different from those with aggressive phenotype. Since the encapsulated forms with no capsular invasion show an indolent clinical behavior similar to benign lesion, recently , an international panel of pathologists and clinicians has reclassified these lesions as a distinct class of thyroid tumors termed as "Non-invasive follicular thyroid neoplasms with papillary-like nuclear features" (NIFTP).

To better classify these tumors by a molecular viewpoint and to evaluate new diagnostic tool to improve pre-surgical differential diagnosis between NIFTPs, Follicular Adenomas (FAs) and Infiltrative FVPTCs, an expression profiling of 798 miRNAs was performed.

miRNA expression levels were detected in 54 thyroid tumors (18 Follicular adenomas, 19 NIFTPs and 17 Infiltrative FVPTCs) using an highly reproducible and sensitive method, nCounter Nanostring assay.

A set of differentially expressed miRNAs was identified. miR-146-5p, miR-221-5p, miR-222-3p, miR-30e-3p and miR-152-3p were able to discriminate benign from malignant lesions with a very high level of significance (p-value<0.001); miR-146-5p, miR-199a-5p, miR-199b-5p, miR-1915-3p and miR-148b-3p were most probably associated with a infiltrative growth of FVPTCs. miR-152-3p, miR-185-5p, miR-574-3p were found to be strongly down-regulated in NIFTPs compared with FAs whereas a significant overexpression of miR-10a-5p was reported in NIFTPs compared with infiltrative forms of FVPTC.

In conclusion, our data suggest that a panel of these markers could have a high diagnostic potential and could be applied in the preoperative assessment of thyroid nodules, mainly for the lesions that cannot be reliably distinguished on cytology alone and are classified as indeterminate nodules.

1.INTRODUCTION

1.1 Thyroid Tumors: Classification and General Considerations

Thyroid nodules are a common clinical founding, with an estimated prevalence on the basis of palpation that ranges from 3% to 7% [1-5].

The prevalence of clinically inapparent thyroid nodules is estimated with ultrasound examination (US) at 20% to 76% in the general population, with a prevalence similar to that reported from autopsy data. Thyroid cancer is the primary clinical concern in a patient with thyroid nodules, although only 5%–15% of thyroid nodules are malignant [6-8].

The vast majority of thyroid tumors arise from thyroid follicular epithelial cells, whereas 3–5% of cancers originate from parafollicular or C cells (Figure 1).

The follicular cell-derived cancers are further subdivided into well-differentiated, poorly differentiated carcinoma and anaplastic (undifferentiated) carcinoma.

Well differentiated thyroid tumors are subdivided into follicular thyroid adenoma

(FA), follicular thyroid carcinoma (FTC), and papillary thyroid carcinoma (PTC) [9].

Fig.1 Scheme of putative progression and dedifferentiation of follicular cell-derived thyroid tumors.

Approximately 10% to 15% of thyroid cancers are classified as follicular. These tumors are typically encapsulated, solid neoplasms with minimal colloid, microfollicle formation, and variable degrees of nuclear atypia. This histologic pattern is similar in benign and malignant follicular neoplasms; therefore, the distinction between the adenoma and carcinoma is based on identification of vascular and/or capsular invasion by tumor.

Age older than 45, sex, extrathyroid invasion, greater tumor size, completeness of surgery and responsiveness to radioactive iodine at presentation are recognized risk factors for poorer prognosis of FTC [10-13].

The prognosis also depends on the degree of invasiveness of tumors: minimally invasive carcinomas carry a much better prognosis than do widely invasive carcinomas. More recently, it is acknowledged the prognostic importance of angioinvasion [12, 13].

The behavior of follicular cancer is thought to be somewhat worse than papillary carcinoma. However, this may be secondary to an older age and more advanced stage at diagnosis when compared with papillary cancer [14, 15].

When controlled for age, gender, and stage, the prognosis of follicular and papillary cancer are similar. Mazzaferri and Jhiang report similar 30-year survival and recurrence rates for these tumors types after eliminating those patients found to have distant metastatic disease at diagnosis [15].

Papillary thyroid carcinoma is the most common endocrine malignancy (70% of tumors). The nuclear features of papillary carcinoma (e.g., nuclear clearing, grooves, pseudoinclusions) characterize a carcinoma that belongs to the PTC family. By definition, typical PTC often average 2–3 cm, although lesions may be quite large or commonly subcentimeter in size. PTCs measuring less than 1 cm in size are called papillary microcarcinomas, and have been reported in 10% to 30% of autopsy studies [16-18].

In the past, these tumors were incidentally detected in thyroidectomy specimens, but they are now detected with increasing frequency by high-resolution ultrasound. They are believed to have an excellent prognosis, but some may behave more aggressively than previously appreciated, and management remains controversial [19, 20].

8

PTC has an excellent prognosis, with a 5-year survival rate of greater than 97% [21]. Poor prognostic factors in papillary carcinoma include older age at diagnosis, male sex, large tumor size, and extrathyroidal growth. Pathologic variables associated with a more guarded prognosis include less differentiated or solid areas, vascular invasion, and aneuploid cell population [10, 22-24].

Lymphatic metastases are the second most common pathologic feature of papillary thyroid cancer. These occur in >35% of adults with papillary cancer and an even higher proportion, 40% to 75%, in patients older than 40 years of age at diagnosis.) Between 10% and 20% of papillary thyroid cancers will show evidence of local invasion. When this extends beyond perithyroidal fat, adjacent structures may be invaded. Distant metastases are shown in 2 % to 3 % of papillary thyroid cancers at diagnosis. Whether certain subtypes of papillary carcinoma are in and of themselves associated with more aggressive clinical behavior are unclear. However, at least four subtypes should be mentioned in this regard: tall cell variant, diffuse sclerosis variant, solid variant, and follicular variant.

1.2 Molecular Genetics of Thyroid Cancer

The molecular pathogenesis of Thyroid tumors involves several known mutational events, including point mutations in the *BRAF* and *RAS* gene, as well RET/PTC, PAX8-PPAR and TRK rearrangements.

Point mutations in the RAS genes typically occur in codons 12, 13, and 61, and are found in 40-50% of follicular carcinomas and in 10-20% of papillary thyroid carcinomas [21, 25, 26]. RAS-mutated papillary thyroid carcinomas typically are of the follicular variant [27]. RAS mutations are also seen in 20-40% of follicular adenomas [21, 25, 26].

Point mutation in *BRAF* shows a high specificity for PTC, especially the classic variant, whereas it was never found in follicular thyroid carcinoma or in benign thyroid neoplasms. It is found in approximately 45% of papillary thyroid cancers [21, 28, 29]. In nearly all cases (98-99% of cases) activating point mutations of *BRAF* involve codon 600 and result in the V600E mutation, and in 1-2% of cases other *BRAF* mutations such as the K601E mutation, small in-frame insertions or deletions, or *BRAF* rearrangement can occur [30-32].

RET-PTC and TRK rearrangements are specific for papillary thyroid cancer. The former occurs in 10–20% of PTC, while the latter occurs with a significantly lower prevalence (<5%) than *RET/PTC* rearrangements [21, 33, 34].

By contrast, PAX8-PPAR γ is an alteration found in follicular thyroid carcinoma, where it occurs with a frequency of 30–35% [21, 35]. In most studies, this rearrangement has also been found in some (2–13%) follicular adenomas and in a small proportion (1–5%) of the follicular variant of papillary carcinomas [21, 35, 36].

Additional genes mutated in thyroid cancer include *TP53* and *CTNNB1* (betacatenin). TP53 is a tumor suppressor that plays important roles in cell cycle regulation and DNA repair and *CTNNB1* is involved in Wnt signaling. These genes tend to be mutated in more aggressive and advanced thyroid tumors [33, 37, 38].

More recently, novel markers have been identified, including *ETV6/NTRK3*, *STRN/ALK*, and *TERT* [33].

1.3 Other molecular events: microRNAs

Recent studies have revealed the emerging role of microRNAs (miRNAs), a class of non-coding RNAs of 19 to 24 nucleotides that regulate gene expression through post-transcriptional, RNA interference, gene silencing pathways.

Consequently deregulated miRNAs have been linked to a variety of different cancers, including thyroid tumors.

In the latest version of miRBase (v.21) there are currently annotated at more than 1880 human microRNA loci [39].

MicroRNAs are sequentially processed from longer precursor molecules that are encoded by the miRNA genes [40-42] (Figure 2). The encoding DNA sequence is much longer than the mature miRNA. Two ribonuclease enzymes, Drosha and Dicer, subsequently process the primary transcripts (or pri-miRNA) to generate mature miR-NAs. The primary transcripts contain one or more stem-loop structures of about 70 bases. The ribonuclease Drosha excises the stem-loop structure to form the precursor miRNA (or pre-miRNA) [43]. After export into the cytoplasm by RAN-GTP and Exportin-5 [44], the pre-miRNA is cleaved by the ribonuclease Dicer 1 in association with a double-stranded RNA-binding protein, TRBP (TAR (HIV) RNA binding protein 2) to generate a short RNA duplex (21-23 nucleotide long) [45]. These small mature miRNA fragments are then incorporated into RNP (Ribonulcear particle) where the two form the RISC complex (RNA-induced silencing complex). When the Dicerlike endonuclease cleaves the pre-miRNA, only one of the two complementary RNA strands is integrated with the RISC complex [42] and becomes the mature singlestranded miRNA. While the complementary strand, termed miRNA*, is usually rapidly degraded. The responsibility of selecting the guiding strand to incorporate into the RISC belongs to the Argonaute protein, which is the RNase in the RISC complex. MicroRNAs recognize their targets based on sequence complementarity [46]. The mature miRNA is partially complementary to one or more messenger RNAs. In humans, the complementary sites are usually within the 3'-untranslated region of the target messenger RNA. To become effective, the mature miRNA forms a complex with proteins, termed the RNA-induced silencing complex. The miRNA incorporated into the silencing complex can bind to the target messenger RNA by base pairing. This base pairing subsequently causes inhibition of protein translation and/or degradation of the messenger RNA [47] [48].

Fig.2 Canonical biogenesis of miRNA

Thus, microRNA are regulators of gene expression, and have been found to regulate a large number of genes that play roles in fundamental processes – such as development, differentiation, cell proliferation, apoptosis, and stress response some estimates reporting miRNA regulation of up to 60% of the human genome [49, 50]. Given that miRNA transcripts affect nearly every aspect of cellular function, it is not surprising that they play a critical role in the etiology of a wide variety of disease manifestations [15]. Indeed, miRNAs have been implicated in many types of cancers, as well as specific cardiac and neurologic diseases [51-55].

The first direct evidence for an involvement of miRNAs in cancer was reported by Dr. Croce's group [56].

Specific subsets of miRNAs in certain tumors have increased or reduced expression. Some of microRNAs act through reducing the expression of tumor suppressing genes, cell differentiation regulatory genes and apoptosis. Others act through targeting protooncogenic mRNAs and silencing such mRNAs. Thus, altered expression of some miRNAs may cause cells to become cancerous, affect cell growth through interfering with the regulation of cell cycle [57-63]. miRNA profiles can distinguish not only between normal and cancerous tissue and identify tissues of origin, but they can also discriminate different subtypes of a particular cancer, as well as between tumors with distinct biological properties [64] [65-67].

In this regard, thyroid cancer represents an attractive model to study because it include several histopathological tumor types originating from the same cell and tumors with distinct levels of differentiation and different degrees of malignancy.

Over the last years, several independent studies have analyzed miRNA expression in numerous and different types of thyroid tumors, evidencing a miRNAs deregulation in cancer tissues compared to their normal counterparts [68-73].

In details, the majority of known human miRNAs were expressed in normal thyroid tissue, by contrast 32% of miRNAs resulted being upregulated and 38% to be down-regulated with more than a 2-fold change in thyroid neoplasm as compared to normal tissues [74]. As reported by Nikiforova et al the thyroid tumors originating from follicular cell and C-cell-derived Medullary Carcinomas (MCs) showed completely different miRNA expression profiles [68, 74].

14

Moreover, it was reported a significant variability of miRNA expression profile between different kinds of thyroid cancers, even if they originate from the same type of thyroid cells. Follicular adenoma, Follicular Carcinoma and Papillary Thyroid Carcinoma are characterized by a separate clusters.

Most studies have reported comparisons of miRNA profiles between papillary thyroid carcinomas and follicular tumors (adenomas and carcinomas), multinodular goiter, and normal thyroid tissues [69-71, 75]. As a result, a number of miRNAs that are significantly upregulated in papillary thyroid carcinomas have been identified [76, 77]; by contrast, several miRNAs have been found to be downregulated in malignant lesions compared with normal thyroid tissue [69, 70, 78-80]. Other reports have focused on miRNAs profiling of papillary thyroid carcinomas associated with their clinical behavior. In detail, upregulation of miR-31, miR-146, miR-155, miR-221, and miR-222 and downregulation of miR-1, miR-34b, miR-130b, and miR-138 were observed in the aggressive form of papillary thyroid carcinoma compared with non-aggressive tumors [81].

Although most works so far have analyzed miRNA expression profiles in PTC, over the last few years some studies have started to attain deeper knowledge of miRNA deregulation in Follicular Adenoma and FTC, or anaplastic thyroid carcinoma [68, 79, 82].

The most highly unregulated miRNA in FTC were miR-187, miR-225, miR-155, miR-221, and miR-222.

In addition, it were identified some miRNA significantly unregulated in FTC as compared to FA [68, 74, 75].

1.4 Follicular variant of papillary thyroid cancer: the borderline category of thyroid tumor classification

Among all PTC variants, follicular variant of papillary thyroid carcinoma (FV-PTC) is the most common subtype of PTC, constituting between 9% and 22.5% of all PTC cases [83-85]. FV-PTC was first described by Crile and Hazard in 1953[86].

FVPTC are usually an encapsulated tumor (EFVPTC) and less commonly a nonencapsulated infiltrative neoplasm (IFVPTC) [87, 88].

This variant predominantly has a follicular architecture, which is lined by cells with nuclear features of papillary carcinoma. Thus, FVPTC shares with FA and FTC the presence of follicles. Its prognosis definitely falls between that of classical PTC (cPTC) and FTC [89]. FVPTC has lower mortality and less frequent distant metastases than cPTC. FVPTC has fewer lymph node metastases and less frequent infiltrative disease and extrathyroidal extension that cPTC, but more than FTC.

In addition molecular profile of the follicular variant was shown to be close to the follicular adenoma/carcinoma, with a high prevalence of RAS and a very low BRAF mutation rate [21].

Previously studies found also a different distribution of the RAS and BRAF mutations according to presence of tumor capsule. EFVPTC definitely have a molecular profile

16

very close to follicular adenomas/carcinomas (high rate of RAS and absence of BRAF mutations), IFVPTC has an opposite molecular profile closer to classical papillary thyroid carcinoma than to follicular adenoma/carcinoma (BRAF>RAS mutations) [90].

When FVPTC is non encapsulated and infiltrates the surrounding thyroid parenchyma or diffusely involves the thyroid, the diagnosis of carcinoma usually presents no problem.

Otherwise, for the encapsulated tumor without invasion of surrounding thyroid tissue, the diagnosis of malignancy relies solely on the presence of the nuclear features of PTC, which often can be borderline.

Therefore, the diagnosis of noninvasive, encapsulated FVPTC (EFVPTC) versus follicular adenoma is prone to considerable interobserver variability.

A recent multi-institutional study examined a large cohort of well-annotated EFVPTC and established that none of 109 patients with noninvasive EFVPTC followed for 10-26 years developed recurrence or other disease manifestations. Based on this information, the international multidisciplinary group of authors recommended to reclassify these tumors as a distinct class of thyroid tumors with very low risk of adverse outcome, namely "noninvasive follicular thyroid neoplasm with papillary-like nuclear features" (NIFTP) [91].

NIFTP is defined by a set of reproducible diagnostic criteria that include:

¹High Thick, thin, or partial capsule or well circumscribed with a clear demarcation from adjacent thyroid tissue.

This reclassification will have a profound impact on patient management, as the lesions classified as NIFTP will not require completion thyroidectomy or postsurgical radioiodine therapy.

Although histological features of NIFTP have been well characterized, how reliably

these features can be identified in preoperative cytology samples remains unknown.

Thus, yet, the presurgical differential diagnosis of NIFTPs, and invasive or infiltrative

carcinoma is extremely difficult.

Molecular characterization could be definitely useful for classifying these lesions.

²⁻Including microfollicular, normofollicular, or macrofoelicular architecture with abundant colloid. ³Requires adequate microscopic examination of the tumor capsule interface.

⁴High mitotic activity defined as at least 3 mitoses per 10 high-power fields (400×).

From a molecular point of view, the multi-institutional re-examination of these tumors confirmed previously observations demonstrating a high prevalence of RAS mutations PPARg and THADA gene fusions, which have been associated with follicular-pattern thyroid tumors, including follicular adenoma, follicular thyroid carcinoma, and EFVPTC [90, 92].

Therefore these known mutations are not sufficient to definitely classify as NIFTP on FNA.

Consequently, additional methods and other molecular markers should be examined to improve the preoperative diagnosis.

2. AIM

The present study aimed to delineate the molecular profile of the follicular variant of papillary thyroid carcinomas in noninvasive encapsulated and infiltrative forms to better classify the new pathological class of tumors, NIFTPs, into biologically and clinically relevant entity.

In detail, it was performed high throughput miRNA expression profiling to determine and identify a cluster-specific expression and it was evaluated the mutational status to explore the correlation between miRNA expression patterns and specific genetic mutation.

3. MATERIALS AND METHODS

3.1 Patients and Study Design

The study included 18 follicular adenomas and 36 follicular variant of papillary thyroid carcinomas obtained from patients who underwent surgery at the Department of Surgical, Medical, Molecular Pathology and Critical Area of the University of Pisa, Italy, from 2013 to 2015. In the latter group, 19 were diagnosed with NIFTPs and 17 with infiltrative follicular variant of papillary thyroid carcinomas. Tissue samples were fixed in 10% buffered formalin and embedded in paraffin for routine histopathological examination. Histological sections (2–4µm thick) were cut and stained with hematoxylin and eosin (Automatic Stainer Varistain Gemini Sheldon). Hematoxylin– eosin-stained sections of patients from the archives of the Section of Pathology of the University of Pisa were independently re-evaluated by two pathologists (CU and FB). A diagnostic concordance rate of 98% was achieved between the two investigators. Rare, discordant cases were eliminated. Follicular adenomas and infiltrative follicular variant of papillary thyroid carcinomas were classified according to the WHO 2004 histo- pathological criteria and noninvasive encapsulated follicular variant of papillary thyroid carcinomas were re-evaluated (cases without total capsule evaluation were excluded). Noninvasive encapsulated and infiltrative type of follicular variant of papillary thyroid carcinoma are shown in Figure 3.

Fig.3 Follicular variant of Papillary Thyroid Carcinoma: A., B. encapsulated type; C., D. infiltrative type

Institutional approval from the local ethics com- mittee was obtained for this study. Surviving patients gave written informed consent for the use of their tissue specimens in present and future investigations.

3.2 miRNA Extraction

Total RNA, including miRNA, was isolated from formalin-fixed and paraffinembedded tissue using a miRNeasy Mini Kit (Qiagen, Hilden, Germany)

The miRNeasy Mini Kit combines phenol/guanidine-based lysis of samples and silica- membrane-based purification of total RNA. QIAzol Lysis Reagent, included in the kit, is a monophasic solution of phenol and guanidine thiocyanate, designed to facilitate lysis of tissues, to inhibit RNases, and also to remove most of the cellular DNA and proteins from the lysate by organic extraction.

Tissue samples are homogenized in QIAzol Lysis Reagent. After addition of chloroform, the homogenate is separated into aqueous and organic phases by centrifugation. RNA partitions to the upper, aqueous phase, while DNA partitions to the interphase and proteins to the lower, organic phase or the interphase.

The upper, aqueous phase is extracted, and ethanol is added to provide appropriate binding conditions for all RNA molecules from 18 nucleotides (nt) upwards. The sample is then applied to the RNeasy Mini spin column, where the total RNA binds to the membrane and phenol and other contaminants are efficiently washed away. Highquality RNA is then eluted in RNase-free water.

The RNA concentration was assessed using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

The concentration of RNA was determined by measuring the absorbance at 260 nm (A_{260}) .

3.3 NanoString nCounter Assay

The nCounter v3 miRNA Expression Assays used in this study were designed and synthesized by Nano- string Technologies (Nanostring, Seattle, WA, USA).

The miRNA panel consisted of unique oligo- nucleotide tags onto 798 human miR-NAs (from miRBase v21) and five housekeeping mRNAs for reference (ACTB, B2M, GAPDH, RPL19, and RPLP0). Moreover, each assay included 25 control probes that recognize synthetic mRNA or miRNA targets to monitor the efficiency and specificity in each reaction step (nCounter Human v3 miRNA Expression Assay Transcript List at end of text).

Sample preparation involves a multiplexed annealing of specific tags to their target miRNAs, a ligation reaction, and an enzymatic purification step to remove unligated material. Sequence specificity between a miRNA and its synthetic sequence tag is ensured by careful, stepwise control of hybridization and ligation temperatures. Control RNA included in the nCounter Human v2 miRNA Sample Preparation Kit allows for the monitoring of ligation efficiency and specificity throughout each step of the reaction.

After miRNA sample preparation, the expression data were obtained directly the nCounter Analysis System. The nCounter Analysis System delivers direct, multiplexed measurement of miRNA gene expression, providing digital readouts of the relative abundance of hundreds of transcripts simultaneously.

The system is based on target-specific probe pairs that are hybridized to the sample in solution. In detail, the miRNAs were hybridized using 150ng of total RNA in addition

24

to the probe pairs consisting of a Reporter Probe and a Capture Probe. The Reporter Probe carries the fluorescent signal on its 5' end; the Capture Probe, which carries biotin on their 3' end allows the complex to be immobilized for data collection. Moreover, the protocol does not include any amplification steps that might introduce bias into the results. Hybridization was performed for 16 h at 65 °C in a SensoQuest (SensoQuest, Göttingen, Germany) thermal cycler. After hybridization of the Human v2 miRNA CodeSet with the tagged miRNA preparation, samples are transferred to the nCounter Prep Station where excess probes are removed and probe/target complexes are aligned and immobilized in the nCounter Cartridge. Cartridges are then placed in the nCounter Digital Analyzer for data collection. Each miRNA of interest is identified by the "color code" generated by six ordered fluorescent spots present on the Reporter Probe. The Reporter Probes on the surface of the cartridge are then counted and tabulated for each miRNA species.

3.4 Data normalization

Raw data were collected and exported into an Excel worksheet using NanoString nSolver version 1.1 software. The data was normalized using internal positive spike controls to account for variability in the hybridization process and negative spike controls to estimate the background. Sample input amounts were normalized to the geometric mean of five housekeeping mRNA controls (ACTB, B2M, GAPDH, RPL19 and RPL10) included in the assay, and finally to total miRNA count. miRNA input levels were normalized using the geometric mean of the top 100 miR-NAs with the lower variability coefficients according to the manufacturer's protocol.

3.5 DNA purification

Serial 10 µm-thick sections were taken from paraffin blocks for DNA extraction from the primary tumor. The presence of tumor tissue was confirmed in the first and last section for each section series. DNA was purified using the QIAamp DNA Mini Kit (Qiagen GmbH, Hilden, Germany).

The QIAamp DNA purification procedure comprises four steps (lysis of sample, binding to QIAamp silica-gel membrane and two washing steps) and is carried out using QIAamp Spin Columns in a standard microcentrifuge.

The lysate buffering conditions are adjusted to allow optimal binding of the DNA to the QIAamp membrane before the sample is loaded onto the QIAamp Spin Column. DNA is adsorbed onto the QIAamp silica-gel membrane during a brief centrifugation. Salt and pH conditions in the lysate ensure that protein and other contaminants, which can inhibit PCR and other downstream enzymatic reactions, are not retained on the QIAamp membrane. DNA concentration was assessed spectrophotometrically using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA; A260/A230 ratio was over 1.7, and the A260/A280 ratio was greater than 1.8).

3.6 BRAF and Ras gene family mutational analysis

Mutational testing was performed for BRAF, H-N and K-Ras according to the standard procedures using High Resolution Melt (HRM) analysis followed by Sanger sequencing (18,19). Briefly, DNA (~80 ng) was amplified in a final volume of 25 µl containing 12.5 ul Master Mix (Qiagen GmbH, Hilden, Germany) 0·8 µmol/l of each primer and 1 µl of EvaGreen 20X. PCR and HRMA were performed on a Rotorgene 6000[™] realtime analyser (Qiagen GmbH, Hilden, Germany). Postamplification fluorescence melting curve analysis was performed by gradual heating of samples at a rate of 1 C/sec from 45C to 95C. A high-resolution melt was immediately performed from 75°C to 85°C rising at 0.1°C/s. The resulting data were analyzed using Rotorgene Series software V1.7. All HRMA altered and a number of non altered PCR products were sequenced as required. Postamplification fluorescence melting curve analysis was performed by gradual heating of samples at a rate of 1 C/sec from 45C to 95C. A high-resolution melt was immediately performed from 75°C to 85°C rising at 0.1°C/s. The resulting fluorescence melting curve analysis was performed by gradual heating of samples at a rate of 1 C/sec from 45C to 95C. A high-resolution melt was immediately performed from 75°C to 85°C rising at 0.1°C/s. The resulting data were analyzed using Rotorgene Series software V1.7. All HRMA altered and a number of non altered PCR products were sequenced as required.

3.7 Statistical Analysis

The Shapiro–Wilk test was performed to verify the normality of the distributions. The Mann–Whitney test, t-test, Kruskal–Wallis test and ANOVA test were performed; the Dunn's test and the Bonferroni's test were used for the multiple comparisons. Power analyses were conducted to estimate the sample sizes of the groups. The 1- β values of the significant variables were 40.8, assuring a low risk of type II error and appropriate sample sizes. The statistical analysis was performed using IBM SPSS software package, version 17.0.1.

4. RESULTS

The expression profiling of 798 miRNAs was evaluated using a nCounter Nanostring platform on 54 thyroid tumors, including 18 (33%) follicular adenomas, 19 (35%) NIFTPs and 17 (32%) infiltrative follicular variant of papillary thyroid carcinomas. Six-hundred-thirty miRNAs with an average count of less than 20 (mean ± 2 s.d. of negative controls) were excluded to subtract the background noise. The remaining 168 miRNAs were suitable for analyses. Among these, we identified 42 miRNAs with significantly different expression between follicular adenomas and follicular variant of papillary thyroid carcinomas (NIFTPs and infiltrative follicular variant of papillary thyroid carcinomas). In addition, multiple comparison analysis between histological groups was performed to identify miRNAs that could be associated with a specific subtype or were likely involved in the infiltrative growth of follicular variant of papillary thyroid carcinomas.

4.1 miRNAs Differentially Expressed between Follicular Variant of Papillary Thyroid Carcinomas and Follicular Adenomas

As reported in Table 1, 42 miRNAs had significant deregulation between malignant lesions, follicular variant of papillary thyroid carcinomas (NIFTPs and infiltrative follicular variant of papillary thyroid carcinomas), and benign counterparts (follicular adenomas). Nineteen were upregulated in follicular variant of papillary thyroid carcinomas, whereas 23 were downregulated. In detail, miR-146b-5p, miR -221-5p, and miR-222-3p were highly upregulated (P-value <0.001), whereas miR-30e-3p and

miR-152- 3p were downregulated with the same statistical significance. In addition, we found another 37 miRNAs that were significantly deregulated between these two groups; in 11, the P-value was <0.01, whereas in the other 26, the P-value was <0.05.

Up-regulated	Down-regulated				
p value<0.001					
miR-146b-5p	miR-30e-3p				
miR-221-5p	miR-152-3p				
miR-222-3p					
p value<0.01					
miR-135a-5p	miR-22-3p				
miR-181c-5p	miR-148a-3p				
miR-221-3p	miR-185-5p				
miR-551b-3p	miR-195-5p				
miR-3151-5p	miR-204-5p				
p value<0.05	5				
let7c-5p	miR-574-3p				
miR-31-5p	let-7f-5p				
miR-100-5p	miR-7-5p				
miR-125b-5p	miR-19b-3p				
miR-130a-3p	miR-30a-3p				
miR-223-3p	miR-30c-5p				
miR-302d-3p	miR-30e-5p				
miR-424-5p	miR-148b-3p				
miR-548ar-5p	miR-194-5p				
miR-1915-3p	miR-200a-3p				
miR-6721-5p	miR-200b-3p				
	miR-345-5p				
	miR-362-3p				
	miR-423-3p				
	miR-497-5p				

Table1. Deregulated miRNA in FVPTCs vs FAs

Hierarchical clustering according to differentially expressed miRNAs was performed using nSolver Analysis software with Pearson correlation. This approach separated the groups into two different clusters, 14 out of 18 (78%) follicular adenomas and 26 out of 36 (72%) follicular variant of papillary thyroid carcinomas (Figure 4).

Fig.4 Hierarchical clustering of follicular adenomas and follicular variant of papillary thyroid carcinomas using statistically significant deregulated miRNAs. The columns represent the samples and the rows represent the miRNAs. Only those miRNAs with a different expression statistically significant (Pvalueo0.05) between malignant (NIFTPs and IFVPTCs) and benign lesions (FAs) were used for hierarchical clustering. Red and green indicate a high and a low level of expression, respectively.

4.2 Evaluation of Differential miRNA Expression between NIFTPs, Follicular Adenomas and Infiltrative Follicular Variant of Papillary Thyroid Carcinomas

4.2.1 NIFTPs versus Follicular Adenomas

Seven miRNAs exhibited overexpression in NIFTPs compared with follicular adenomas with a very high significant difference in only one miRNA, miR-222-3p. Moreover, 6 miRNAs were upregulated, but they had P-values <0.0167. By contrast, 13 miRNAs were downregulated, but only miR-152-3p, miR-185-5p, and miR-574-3p had P-values <0.001 (Table 2).

Up-regulated	Down-regulated
p value<0.00	1*
miR-222-3p	miR-152-3p
	miR-185-5p
	miR-574-3p
p value<0.016	57*
miR-135a-5p	miR-7-5p
miR-181c-5p	miR-30e-3p
miR-221-5p	miR-194-5p
miR-551b-3p	miR-200b-3p
miR-3151-5p	miR-204-5p
miR-6721-5p	miR-296-5p
	miR-362-5p
	miR-423-3p

Table2. Deregulated miRNAs in NIFTPs vs FAs

*p-values correct for multiple comparisons (Bonferroni)

Eight miRNAs showed upregulation and 5 downregulation in infiltrative follicular variant of papillary thyroid carcinomas compared to NIFTPs (Table 3). Among these miRNAs, miR-10a-5p, miR-199b-5p, miR-1285-5p and miR-320e were highly significant (P-value <0.001).

Up-regulated		Down-regulated
	p value<0.001*	
miR-320-5		
miR-10a-5p		
miR-199b-5p		
miR-1285-5p		
	p value<0.0167*	
miR-135a-3p		miR-32-5p
miR-1915-3p		miR-95-3p
miR-199a-5p		miR-148b-3p
miR-4516		miR519d-3p
		miR-598-3p

Table3. Deregulated miRNAs in IFVPTCs vs NIFTPs

*p-values correct for multiple comparisons (Bonferroni)

4.2.3 Infiltrative follicular variant of papillary thyroid carcinomas versus follicular ade-

<u>nomas</u>

In addition to those reported above, we also analyzed and compared miRNA expression in infiltrative follicular variant of papillary thyroid carcinomas and follicular adenomas. Twenty miRNAs had a different pattern of expression; 11 were upregulated and 9 were downregulated in infiltrative follicular variant of papillary thyroid carcinomas. Further details are provided in Table 4.

Up-regulated	Down-regulated
p value<0	0.001*
miR-146-5p	
miR-199b-5p	
miR-222-3p	
miR-1915-3p	
p value<	0.0167*
miR-31-5p	Let-7f-5p
miR-199a-5p	miR-22-3p
miR-221-3p	miR-30e-3p
miR-221-5p	miR-30e-5p
miR-551b-3p	miR-95-3p
miR-1285-5p	miR-143-3p
miR-4516	miR-144-3p
	miR-148a-3p
	miR-148b-3p

Table4. Deregulated miRNAs in IFVPTCs vs FAs

*p-values correct for multiple comparisons (Bonferroni)

4.3 Differentiating between NIFTPs Versus Follicular Adenomas and Infiltrative Follicular Variant of Papillary Thyroid Carcinomas

The aim of the following evaluation was to identify miRNAs that are specifically deregulated in different lesions. In particular, we focused on miRNAs that are differentially expressed in NIFTPs versus follicular adenomas and in NIFTPs versus infiltrative follicular
variant of papillary thyroid carcinomas. In detail, we found that 16 miRNAs were able to distinguish between NIFTPs and follicular adenomas; we excluded miR-222-3p, miR-221-5p, miR-551b-3p, and miR-30e-3p because their expression levels were also significantly different between follicular adenomas and infiltrative follicular variant of papillary thyroid carcinomas (Table 5).

Up-regulated	Down-regulated
p value<0	.001*
	miR-152-3p
	miR-185-5p
	miR-574-3p
p value<0.	0167*
miR-135a-3p	miR-7-5p
miR-181c-5p	miR-194-5p
miR-3151-5p	miR-195-5p
miR-6721-5p	miR-200b-3p
	miR-204-5p
	miR-296-5p
	miR-362-5p
	miR-423-3p
	miR-497-5p

Table5. Specific miRNAs expression in NIFTPs vs FAs

*p-values correct for multiple comparisons (Bonferroni)

Moreover, six specific miRNAs (miR-10a-5p, miR-132-3p, miR-320e, miR-32-5p, miR-519d-3p, and miR-598-3p) were capable of dividing infiltrative follicular variant of papillary thyroid carcinomas from NIFTPs, as reported in Table 6; seven miRNAs have been excluded from this analysis because they were deregulated in infiltrative follicular variant of papillary thyroid carcinomas versus follicular adenomas.

Up-regulated		Down-regulated
	p value<0.001*	
miR-10a-5p		
miR-320e		
	p value<0.0167*	
miR-132-3p		miR-32-5p
		miR519d-3p
		miR-598-3p

 Table 6. Specific miRNA expression in IFVPTCs vs NIFTPs

*p-values correct for multiple comparisons (Bonferroni)

The hierarchical clustering analysis showed that 16 out of 18 (84%) and 17 out 18 (89%) of NIFTPs were, respectively, separated from follicular adenomas and infiltrative follicular variant of papillary thyroid carcinomas (Figure 3a and b).

b

Fig.5 Hierarchical clustering performed using miRNAs expressed with a significant difference between NIFTPs and FAs (a), NIFTPs and IFVPTCs

4.4 miRNAs involved in the Infiltrative Growth of Follicular Variant of Papillary Thyroid Carcinomas

In comparing infiltrative follicular variant of papillary thyroid carcinomas with all encapsulated tumors (follicular adenomas and NIFTPs), we observed significant differential expression in 33 miRNAs; 14 were upregulated and 19 downregulated (Table 7). miR-222-3p and miR-30e-3p were excluded from this list because they were simultaneously significantly deregulated between follicular adenomas and NIFTPs.

Up-regulated	Down-regulated
	p value<0.001
miR-146b-5p	miR148b-3p
miR-199a-5p	
miR-199b-5p	
miR-1285-5p	
miR-1915-3p	
miR-4516	
I) value<0.01
miR-222-3p	miR-22-3p
miR-320e	miR-95-3p
miR-10a-5p	miR-143-3p
	miR-144-3p
]	p value<0.05
miR-10b-5p	let-7f-5p
miR-21-5p	miR-25-3p
miR-221-3p	miR-30e-3p
miR-1290	miR-30e-5p
miR-1972	miR-32-5p
	miR-98-5p
	miR-126-3p
	miR-141-3p
	miR-148a-3p
	miR-181a-3p
	miR-301a-3p
	miR-519d-3p
	miR-598-3p
	miR-1180-3p

 Table 7. Deregulated miRNAs in IFVPTCs vs Encapsulated Tumors

As reported in Table 8, considering all results of infiltrative follicular variant of papilary thyroid carcinomas versus encapsulated tumors (infiltrative follicular variant of papillary thyroid carcinomas versus follicular adenomas and infiltrative follicular variant of papillary thyroid carcinomas versus NIFTPs), 33 miRNAs (15 upregulated and 18 downregulated) are likely involved in the infiltrative growth of follicular variant of papillary thyroid carcinomas. miR-146b-5p, miR-199a-5p, miR-199b-5p, miR-1285- 5p, miR-1915-3p, and miR-4516 were significantly upregulated (P-value<0.001).

Up- regulated miRNAs	IFVPTCs vs FAs+NIFTPs p-value	IFVPTCS vs FAs p-value*	IFVPTCs vs NIFTPs p-value*	Down- regulated miRNAs	IFVPTCs vs FAs+NIFTPs p-value	IFVPTCs vs FAs p-value*	IFVPTC vs NIFTPs p-value*
miR-199b-5p	<0.001	< 0.001	<0.001	miR148b-3p,	<0.001	< 0.0167	<0.0167
miR-1915-3p	<0.001	< 0.001	<0.0167	miR-95-3p	<0.01	< 0.0167	<0.0167
miR-199a-5p	<0.001	<0.0167	<0.0167	miR-25-3p	<0.05		
miR-4516	<0.01	< 0.0167	<0.0167	miR-98-5p,	<0.05		
miR-1285-5p	< 0.05	<0.0167	<0.001	miR-126-3p	<0.05		
miR-10b-5p	< 0.05			miR-141-3p	<0.05		
miR-1290	< 0.05			miR-181a-3p,	<0.05		
miR-21-5p	< 0.05			miR-301a-3p,	< 0.05		
miR-1972	< 0.05			miR-1180-3p	<0.05		
miR-146b-5p	<0.001	< 0.001		miR-22-3p,	<0.01	<0.0167	
miR-221-3p	<0.05	<0.0167		miR143-3p	<0.01	<0.0167	
miR-31-5p		<0.0167		miR144-3p	<0.01	< 0.0167	
miR-10a-5p	< 0.05		< 0.001	let-7f-5p	<0.05	< 0.0167	
miR-320e	< 0.05		<0.0167	miR-30e-5p	<0.05	< 0.0167	
miR132-3p			<0.0167	miR-148a-3p	<0.05	< 0.0167	
				miR-32-5p	< 0.05		<0.0167
				miR-519d-3p	<0.05		< 0.0167
				miR-598-3p	<0.05		<0.0167

 Table 8. miRNAs involved in infiltrative growth of FVPTCs

*p-values correct for multiple comparisons (Bonferroni)

Among the downregulated miRNAs, only miR-148b-3p was significantly deregulated in infiltrative follicular variant of papillary thyroid carcinomas (P-valueo0.001). Moreover, three upregulated (miR-146b-5p, miR-221-3p, and miR-31-5p) and six downregulated miRNAs (miR-22-3p, miR-143-3p, miR-144- 3p, let-7f-5p, miR-30e-5p, and miR-148a-3p) were differentially expressed when infiltrative follicular variant of papillary thyroid carcinomas were compared with follicular adenomas (Table 8).

When hierarchical clustering analysis was performed using miRNAs involved in infiltrative growth, 36 out of 37 (97%) encapsulated tumors were grouped in a different cluster with respect to infiltrative follicular variant of papillary thyroid carcinomas (Figure 4).

Fig.4 Hierarchical clustering of encapsulated lesions (NIFTPs and FAs) and IFVPTCs using significant miRNAs involved in infiltrative growth..

4.5 Genotyping Analysis

Mutational status of the BRAF and RAS (NRAS, HRAS, and KRAS) genes in follicular adenomas, NIFTPs and infiltrative follicular variant of papillary thyroid carcinomas was tested. In detail, 17 out of 18 (94.4%) follicular adenomas were wild type for BRAF (exon 15) and NRAS, HRAS and KRAS (exons 2 and 3) genes, whereas 1 (5.6%) had BRAF K601E mutation; 9 out of 19 (47.4%) NIFTPs were mutation negative, 8 out of 19 (42.1%) were mutated for RAS genes (5 NRAS Q61R and 3 HRAS Q61R), and 2 out of 19 (10.5%) had a BRAF K601E mutation; finally, as regards infiltrative follicular variant of papillary thyroid carcinomas, we found that 7 out of 17 (41.2%) were wild type for BRAF (exon 15) and NRAS, HRAS, and KRAS (exons 2 and 3) genes, 5 out of 17 (29.4%) were mutated for RAS genes (4 NRAS Q61R and 1 HRAS Q61R), 4 out of 17 (23.5%) had a BRAF V600E mutation and 1 was not evaluable.

5. DISCUSSION

Follicular variant of papillary thyroid carcinomas can have very different clinical behavior and out- comes. Differentiating between follicular variant of papillary thyroid carcinomas (in particular encapsulated forms) and follicular adenoma is sometimes a challenge when considering only the morphological, cytological, or clinical features. It is extensively reported that completely encapsulated follicular variant of papillary thyroid carci- noma is a very low-risk form [88, 93, 94].

One recent noticeable change in thyroid pathology has formally proposed reclassifying noninvasive encapsulated follicular variant of papillary thyroid carcinomas as 'NIFTPs'[91].

For presurgical fine-needle aspiration, the cytological distinction between NIFTP versus invasive and infiltra- tive follicular variant of papillary thyroid carcinoma has been very difficult, although it was recently observed that there is a good correlation between the cytological and histological nuclear features [95]. Therefore, to reduce the number of preoperative indeterminate lesions as much as possible, analysis of mutations and rearrange- ments of specific genes involved in thyroid tumori- genesis have been reported by several studies [96, 97].

Nikiforov's group has extensively reported that improved management for patients who bear thyroid nodules with an indeterminate cytology is now possible using a multi-gene panel of molecular markers with high sensitivity and specificity [96]. Nevertheless, the molecular test results should be interpreted in the context of cytological, clinical, and ultrasonographic examinations [98].

In combination, these reports indicate that the addition of extensive molecular characterization to strictly morphological criteria significantly increases the diagnostic accuracy of follicular lesions in 480% (CI: 88–97%) of the cases. Therefore, ~ 20% of patients undergo unnecessary surgery [96].

Furthermore, mutational analysis is not useful for discriminating between NIFTP versus other follicular-patterned thyroid tumors (follicular carci- nomas and follicular adenomas) because of their similar mutational status [91].

Several studies have evaluated the miRNA profiles of thyroid tumors, highlighting that the miRNA signature could be useful (a) for diagnosis because several miRNAs are deregulated in papillary thyroid carcinoma compare to normal thyroid tissue and (b) for prognosis because miRNA profiles differ in papil- lary thyroid carcinomas that have different clinical behavior [69, 70, 78-80]. Although most prior observations have focused on miRNA expression in papillary thyroid carcinomas, some reports have revealed several miRNA expression differences between follicular carcinoma and follicular adenoma [75, 99].

Interestingly, in situ hybridization analysis has revealed that miR-146b-5p is mainly expressed in papillary thyroid carcinoma, including follicular variant of papillary thyroid carcinoma and is not expressed in most follicular, poorly differentiated, and anaplastic thyroid carcinoma samples [100].

A study by Dettmer et al. showed that miR-146b is consistently overexpressed in both the classical and follicular variants of papillary thyroid carcinoma [101]; moreover, others have reported a correlation between miR-146b deregulation and tumor aggressiveness [76, 81].

miR-146b-5p positively regulates the migration and invasion of normal thyroid and tumor follicular cells through a mechanism involving the actin cytoskeleton [102]. Consequently, miR-146 could be involved in thyroid tumorigenesis considering its important role as a regulator of NF-kb [103, 104], although this mechanism is not completely understood. In addition, it has recently been found that the miRNA-146 family could interfere with the RARb gene, which seems to be involved in promoting tumor growth and the inefficiency of retinoic acid and radioactive iodine treatment [78].

In our study, we found that miR-146b-5p was upregulated in malignant lesions compared to benign tumors. Furthermore, miR-146b-5p seems to be specifically useful in differentiating between the infiltrative form of follicular variant of papillary thyroid carcinomas and follicular adenomas and could be a marker of papillary thyroid carcinoma and infiltrative lesions in presurgical fine-needle aspiration.

Other miRNAs, namely miR-221 and miR-222, seem to have important roles. The deregulation of these miRNAs has been reported in several human cancers (colorectal carcinoma, non-small cell lung carcinoma, breast cancer, pancreatic carcinoma, glioma, hematological malignancies, and thyroid cancer, and so on) [70].

Other different studies have consistently reported the upregulation of miR-221 and miR-222 in thyroid cancer, suggesting that this phenomenon is crucial to thyroid carcinogenesis. The finding that these two miRNAs modulate growth receptors, tran-

scription factors and tumor suppressor genes as well as target genes involved in cell growth and apoptosis may explain, at least in part, their role in tumorigenesis [70].

We confirmed these data, validating that miR-221- 5p and miR-222-3p are upregulated in follicular variant of papillary thyroid carcinomas compared with follicular adenomas. Their upregulation has also been observed in NIFTP compared with folli- cular adenomas as well as in infiltrative follicular variant of papillary thyroid carcinomas compared to follicular adenomas. These data strongly suggest that miR-221-5p and miR-222-3p may be markers of malignancy.

It has been reported that a group of miRNAs is downregulated in malignant lesions compared to normal tissue and benign counterparts [79, 80], suggest- ing that both overexpression and downregulation of miRNAs have important roles in tumorigenesis. In human tumors, miR-30e has been reported to be downregulated and associated with advanced carci- noma, such as anaplastic thyroid carcinoma and advanced breast cancer [105, 106]. Many functional mecha- nisms have been proposed, including miR-30e's role in the mesenchymal-epithelial transition[79] or, more recently, in suppressing proliferation of hepatoma cells via targeting prolyl-4-hydroxylase subunit alpha-1 (P4HA1) mRNA [107]. In addition, in our study, miR-30e-3p was significantly downregulated in follicular variant of papillary thyroid carcinomas compared with follicular adenomas, which strongly correlated with the malignancy of the lesion. Another study demonstrated significant downregu- lation of miR-152, together with other miRNAs (miR-34a, miR-424, and miR-20b) and genes (CCNE2,

COL4A1, TRAF6, and HSP90B1), in papillary thyr- oid carcinoma and found evidence for its association with aggressive clinical features [108]. Likewise, we observed significant downregulation of miR-152-3p in follicular variant of papillary thyroid carcinomas compared with follicular adenomas.

The main aim of our study was to identify a group of molecular markers that are capable of discriminat- ing between encapsulated lesions (NIFTP and follicular adenomas) versus infiltrative forms of follicular variant of papillary thyroid carcinoma, and NIFTP versus either follicular adenomas or infiltrative follicular variant of papillary thyroid carcinomas both in histology and cytology. This is a critical point because, according to a new definition of NIFTP, patients carrying this lesion type could be treated in a conservative manner.

For this reason, we analyzed the miRNA expression profile of follicular adenomas together with NIFTP versus the infiltrative form of follicular variant of papillary thyroid carcinomas. We identified several miRNAs, including miR-146-5p, miR-199a, miR199b, miR-1285-5p, miR-1915-3p, miR-4516, and miR-148b- 3p, that are highly deregulated (some upregulated and others downregulated) and could discriminate between encapsulated lesions (follicular adenomas and NIFTP) and infiltrative follicular variant of papillary thyroid carcinomas.

Recently, Aragon Han et al [109] reported that the expression levels of several miR-NAs, including miR-199b, were significantly associated with aggressive features of thyroid cancer, such as a large tumor size, extrathyroidal extension, multifocality, lymphovascular invasion, lymph node metastases, and distant metastasis. Conversely,

no data have been thus far reported in thyroid tumors for miR-148b, miR-1285-5p and miR-4516, although deregulation of these miRNAs is associated with other cancer types [110-114].

Taken together, our data suggest that evaluating miR-146-5p, miR-199a, miR199b, miR-1285-5p, miR- 1915-3p, miR-4516, and miR-148b could be a useful diagnostic tool for differentiating between encapsu- lated tumors and other more aggressive entities.

In addition to these five miRNAs, we also observed several additional miRNAs (Table 7) that were differentially expressed in the two groups (encapsulated lesions versus infiltrative follicular variant of papillary thyroid carcinomas) albeit with a lower level of significance.

Furthermore, our results suggest that specific miRNA expression patterns could allow us to discri- minate between NIFTP and both follicular adenomas and infiltrative follicular variant of papillary thyroid carcinomas. In detail, miR-152-3p, miR-185-5p, and miR-574-3p are strongly downregulated in NIFTP compared to follicular adenomas. The importance of miR-185-5p and miR-574-3p has also been demon- strated in other human tumors, such as non-small cells lung cancer and breast cancer [115-117]. In the comparison between infiltrative follicular variant of papillary thyroid carcinomas and NIFTP, among six deregulated miRNAs, miRNA-10a-5p and miR-320e were highly upregulated, demonstrating their involvement in a more aggressive form of follicular variant of papillary thyroid carcinomas. Nevertheless, high expression of miR-10a has been already associated with lymph node metastasis in non-small cells

lung cancer through direct targeting of the PTEN/AKT/ERK signaling pathway [118], whereas miR-320e has been reported as a novel prognostic biomarker associated with adverse clinical outcomes in colorectal cancer patients treated with adjuvant chemo-therapy [119].

In conclusion, our data provide evidence for the diagnostic potential of a specific miRNA signature. In details, we have shown that there is differential expression of miR-146-5p, miR-221-5p, miR-222-3p, miR-30e-3p, and miR-152-3p in follicular adenomas versus NIFTPPs and infiltrative follicular variant of papillary thyroid carcinomas, which could aid in discriminating between the lesion types. Moreover, among these miRNAs, miR-146-5p as well as miR- 199a-5p, miR-199b-5p, miR-1285-5p, miR-1915-3p, miR-4516, and miR-148b-3p are associated with the infiltrative growth of follicular variant of papillary thyroid carcinomas. Three downregulated miRNAs, miR-152-3p, miR-185-5p, and miR-574-3p, might facil- itate differential diagnosis between NIFTP and follicular adenomas, whereas the differential expression of miR-10a-5p and miR-320e likely helps discriminate between this new entity, NIFTP, and infiltrative follicular variant of papillary thyroid carcinoma.

Besides, from a practical point of view, the results obtained suggest that a panel of these miRNAs could act as a diagnostic marker in pre-surgical fine-needle aspiration diagnosis improving the preoperative assessment of nodules and the management of patients. Nonetheless our findings require further confirmation in future studies with a large series of well-characterized FNA samples to determine diagnostic accuracy of miRNA signature as a routine diagnostic test for the pre-surgical evaluation of thyroid nodules.

6. nCounter Human v3 miRNA Expression Assay Transcript List

Official Symbol	Accession	Target Sequence
hsa-let-7a-5p	MIMAT0000062	UGAGGUAGUAGGUUGUAUAGUU
hsa-let-7b-5p	MIMAT0000063	UGAGGUAGUAGGUUGUGUGGUU
hsa-let-7c-5p	MIMAT0000064	UGAGGUAGUAGGUUGUAUGGUU
hsa-let-7d-5p	MIMAT0000065	AGAGGUAGUAGGUUGCAUAGUU
hsa-let-7e-5p	MIMAT0000066	UGAGGUAGGAGGUUGUAUAGUU
hsa-let-7f-5p	MIMAT0000067	UGAGGUAGUAGAUUGUAUAGUU
hsa-let-7g-5p	MIMAT0000414	UGAGGUAGUAGUUUGUACAGUU
hsa-let-7i-5p	MIMAT0000415	UGAGGUAGUAGUUUGUGCUGUU
hsa-miR-100-5p	MIMAT0000098	AACCCGUAGAUCCGAACUUGUG
hsa-miR-101-3p	MIMAT0000099	UACAGUACUGUGAUAACUGAA
hsa-miR-103a-3p	MIMAT0000101	AGCAGCAUUGUACAGGGCUAUGA
hsa-miR-105-5p	MIMAT0000102	UCAAAUGCUCAGACUCCUGUGGU
hsa-miR-106a-5p	MIMAT0000103	AAAAGUGCUUACAGUGCAGGUAG
hsa-miR-106b-5p	MIMAT0000680	UAAAGUGCUGACAGUGCAGAU
hsa-miR-107	MIMAT0000104	AGCAGCAUUGUACAGGGCUAUCA
hsa-miR-10a-5p	MIMAT0000253	UACCCUGUAGAUCCGAAUUUGUG
hsa-miR-10b-5p	MIMAT0000254	UACCCUGUAGAACCGAAUUUGUG
hsa-miR-1178-3p	MIMAT0005823	UUGCUCACUGUUCUUCCCUAG
hsa-miR-1180-3p	MIMAT0005825	UUUCCGGCUCGCGUGGGUGUGU
hsa-miR-1183	MIMAT0005828	CACUGUAGGUGAUGGUGAGAGUGGGCA
hsa-miR-1185-1-3p	MIMAT0022838	AUAUACAGGGGGGAGACUCUUAU
hsa-miR-1185-2-3p	MIMAT0022713	AUAUACAGGGGGGAGACUCUCAU
hsa-miR-1185-5p	MIMAT0005798	AGAGGAUACCCUUUGUAUGUU

hsa-miR-1193	MIMAT0015049	GGGAUGGUAGACCGGUGACGUGC
hsa-miR-1197	MIMAT0005955	UAGGACACAUGGUCUACUUCU
hsa-miR-1200	MIMAT0005863	CUCCUGAGCCAUUCUGAGCCUC
hsa-miR-1202	MIMAT0005865	GUGCCAGCUGCAGUGGGGGAG
hsa-miR-1203	MIMAT0005866	CCCGGAGCCAGGAUGCAGCUC
hsa-miR-1204	MIMAT0005868	UCGUGGCCUGGUCUCCAUUAU
hsa-miR-1205	MIMAT0005869	UCUGCAGGGUUUGCUUUGAG
hsa-miR-1206	MIMAT0005870	UGUUCAUGUAGAUGUUUAAGC
hsa-miR-1224-3p	MIMAT0005459	CCCCACCUCCUCUCUCCUCAG
hsa-miR-1224-5p	MIMAT0005458	GUGAGGACUCGGGAGGUGG
hsa-miR-122-5p	MIMAT0000421	UGGAGUGUGACAAUGGUGUUUG
hsa-miR-1226-3p	MIMAT0005577	UCACCAGCCCUGUGUUCCCUAG
hsa-miR-1228-3p	MIMAT0005583	UCACACCUGCCUCGCCCCCC
hsa-miR-1233-3p	MIMAT0005588	UGAGCCCUGUCCUCCCGCAG
hsa-miR-1234-3p	MIMAT0005589	UCGGCCUGACCACCCACCCAC
hsa-miR-1236-3p	MIMAT0005591	CCUCUUCCCCUUGUCUCUCCAG
hsa-miR-124-3p	MIMAT0000422	UAAGGCACGCGGUGAAUGCC
hsa-miR-1244	MIMAT0005896	AAGUAGUUGGUUUGUAUGAGAUGGUU
hsa-miR-1245a	MIMAT0005897	AAGUGAUCUAAAGGCCUACAU
hsa-miR-1245b-3p	MIMAT0019951	UCAGAUGAUCUAAAGGCCUAUA
hsa-miR-1245b-5p	MIMAT0019950	UAGGCCUUUAGAUCACUUAAA
hsa-miR-1246	MIMAT0005898	AAUGGAUUUUUGGAGCAGG
hsa-miR-1247-5p	MIMAT0005899	ACCCGUCCCGUUCGUCCCCGGA
hsa-miR-1248	MIMAT0005900	ACCUUCUUGUAUAAGCACUGUGCUAAA
hsa-miR-1249-3p	MIMAT0005901	ACGCCCUUCCCCCCUUCUUCA
hsa-miR-1249-5p	MIMAT0032029	AGGAGGGAGGAGAUGGGCCAAGUU
hsa-miR-1250-5p	MIMAT0005902	ACGGUGCUGGAUGUGGCCUUU

hsa-miR-1252-5p	MIMAT0005944	AGAAGGAAAUUGAAUUCAUUUA
hsa-miR-1253	MIMAT0005904	AGAGAAGAAGAUCAGCCUGCA
hsa-miR-1254	MIMAT0005905	AGCCUGGAAGCUGGAGCCUGCAGU
hsa-miR-1255a	MIMAT0005906	AGGAUGAGCAAAGAAAGUAGAUU
hsa-miR-1255b-5p	MIMAT0005945	CGGAUGAGCAAAGAAAGUGGUU
hsa-miR-1257	MIMAT0005908	AGUGAAUGAUGGGUUCUGACC
hsa-miR-1258	MIMAT0005909	AGUUAGGAUUAGGUCGUGGAA
hsa-miR-125a-3p	MIMAT0004602	ACAGGUGAGGUUCUUGGGAGCC
hsa-miR-125a-5p	MIMAT0000443	UCCCUGAGACCCUUUAACCUGUGA
hsa-miR-125b-5p	MIMAT0000423	UCCCUGAGACCCUAACUUGUGA
hsa-miR-1260a	MIMAT0005911	AUCCCACCUCUGCCACCA
hsa-miR-1260b	MIMAT0015041	AUCCCACCACUGCCACCAU
hsa-miR-1261	MIMAT0005913	AUGGAUAAGGCUUUGGCUU
hsa-miR-1262	MIMAT0005914	AUGGGUGAAUUUGUAGAAGGAU
hsa-miR-126-3p	MIMAT0000445	UCGUACCGUGAGUAAUAAUGCG
hsa-miR-1264	MIMAT0005791	CAAGUCUUAUUUGAGCACCUGUU
hsa-miR-1266-5p	MIMAT0005920	CCUCAGGGCUGUAGAACAGGGCU
hsa-miR-1268a	MIMAT0005922	CGGGCGUGGUGGGGGGG
hsa-miR-1268b	MIMAT0018925	CGGGCGUGGUGGUGGGGGUG
hsa-miR-1269a	MIMAT0005923	CUGGACUGAGCCGUGCUACUGG
hsa-miR-1269b	MIMAT0019059	CUGGACUGAGCCAUGCUACUGG
hsa-miR-1270	MIMAT0005924	CUGGAGAUAUGGAAGAGCUGUGU
hsa-miR-1271-3p	MIMAT0022712	AGUGCCUGCUAUGUGCCAGGCA
hsa-miR-1271-5p	MIMAT0005796	CUUGGCACCUAGCAAGCACUCA
hsa-miR-1272	MIMAT0005925	GAUGAUGAUGGCAGCAAAUUCUGAAA
hsa-miR-1273c	MIMAT0015017	GGCGACAAAACGAGACCCUGUC
hsa-miR-127-3p	MIMAT0000446	UCGGAUCCGUCUGAGCUUGGCU

hsa-miR-1275	MIMAT0005929	GUGGGGGAGAGGCUGUC
hsa-miR-127-5p	MIMAT0004604	CUGAAGCUCAGAGGGCUCUGAU
hsa-miR-1276	MIMAT0005930	UAAAGAGCCCUGUGGAGACA
hsa-miR-1277-3p	MIMAT0005933	UACGUAGAUAUAUAUGUAUUUU
hsa-miR-1278	MIMAT0005936	UAGUACUGUGCAUAUCAUCUAU
hsa-miR-1279	MIMAT0005937	UCAUAUUGCUUCUUUCU
hsa-miR-1281	MIMAT0005939	UCGCCUCCUCUCCC
hsa-miR-128-1-5p	MIMAT0026477	CGGGGCCGUAGCACUGUCUGAGA
hsa-miR-128-2-5p	MIMAT0031095	GGGGGCCGAUACACUGUACGAGA
hsa-miR-1283	MIMAT0005799	UCUACAAAGGAAAGCGCUUUCU
hsa-miR-128-3p	MIMAT0000424	UCACAGUGAACCGGUCUCUUU
hsa-miR-1285-3p	MIMAT0005876	UCUGGGCAACAAAGUGAGACCU
hsa-miR-1285-5p	MIMAT0022719	GAUCUCACUUUGUUGCCCAGG
hsa-miR-1286	MIMAT0005877	UGCAGGACCAAGAUGAGCCCU
hsa-miR-1287-3p	MIMAT0026738	CUCUAGCCACAGAUGCAGUGAU
hsa-miR-1287-5p	MIMAT0005878	UGCUGGAUCAGUGGUUCGAGUC
hsa-miR-1288-3p	MIMAT0005942	UGGACUGCCCUGAUCUGGAGA
hsa-miR-1289	MIMAT0005879	UGGAGUCCAGGAAUCUGCAUUUU
hsa-miR-1290	MIMAT0005880	UGGAUUUUUGGAUCAGGGA
hsa-miR-1291	MIMAT0005881	UGGCCCUGACUGAAGACCAGCAGU
hsa-miR-129-2-3p	MIMAT0004605	AAGCCCUUACCCCAAAAAGCAU
hsa-miR-1293	MIMAT0005883	UGGGUGGUCUGGAGAUUUGUGC
hsa-miR-1295a	MIMAT0005885	UUAGGCCGCAGAUCUGGGUGA
hsa-miR-129-5p	MIMAT0000242	CUUUUUGCGGUCUGGGCUUGC
hsa-miR-1296-3p	MIMAT0026637	GAGUGGGGCUUCGACCCUAACC
hsa-miR-1296-5p	MIMAT0005794	UUAGGGCCCUGGCUCCAUCUCC
hsa-miR-1297	MIMAT0005886	UUCAAGUAAUUCAGGUG

hsa-miR-1298-5p	MIMAT0005800	UUCAUUCGGCUGUCCAGAUGUA
hsa-miR-1299	MIMAT0005887	UUCUGGAAUUCUGUGUGAGGGA
hsa-miR-1301-3p	MIMAT0005797	UUGCAGCUGCCUGGGAGUGACUUC
hsa-miR-1302	MIMAT0005890	UUGGGACAUACUUAUGCUAAA
hsa-miR-1303	MIMAT0005891	UUUAGAGACGGGGUCUUGCUCU
hsa-miR-1304-3p	MIMAT0022720	UCUCACUGUAGCCUCGAACCCC
hsa-miR-1304-5p	MIMAT0005892	UUUGAGGCUACAGUGAGAUGUG
hsa-miR-1305	MIMAT0005893	UUUUCAACUCUAAUGGGAGAGA
hsa-miR-1306-3p	MIMAT0005950	ACGUUGGCUCUGGUGGUG
hsa-miR-1306-5p	MIMAT0022726	CCACCUCCCUGCAAACGUCCA
hsa-miR-1307-3p	MIMAT0005951	ACUCGGCGUGGCGUCGGUCGUG
hsa-miR-1307-5p	MIMAT0022727	UCGACCGGACCUCGACCGGCU
hsa-miR-130a-3p	MIMAT0000425	CAGUGCAAUGUUAAAAGGGCAU
hsa-miR-130b-3p	MIMAT0000691	CAGUGCAAUGAUGAAAGGGCAU
hsa-miR-1322	MIMAT0005953	GAUGAUGCUGCUGAUGCUG
hsa-miR-1323	MIMAT0005795	UCAAAACUGAGGGGCAUUUUCU
hsa-miR-132-3p	MIMAT0000426	UAACAGUCUACAGCCAUGGUCG
hsa-miR-133a-3p	MIMAT0000427	UUUGGUCCCCUUCAACCAGCUG
hsa-miR-133a-5p	MIMAT0026478	AGCUGGUAAAAUGGAACCAAAU
hsa-miR-133b	MIMAT0000770	UUUGGUCCCCUUCAACCAGCUA
hsa-miR-134-3p	MIMAT0026481	CCUGUGGGCCACCUAGUCACCAA
hsa-miR-134-5p	MIMAT0000447	UGUGACUGGUUGACCAGAGGGG
hsa-miR-135a-5p	MIMAT0000428	UAUGGCUUUUUAUUCCUAUGUGA
hsa-miR-135b-5p	MIMAT0000758	UAUGGCUUUUCAUUCCUAUGUGA
hsa-miR-136-5p	MIMAT0000448	ACUCCAUUUGUUUUGAUGAUGGA
hsa-miR-137	MIMAT0000429	UUAUUGCUUAAGAAUACGCGUAG
hsa-miR-138-5p	MIMAT0000430	AGCUGGUGUUGUGAAUCAGGCCG

hsa-miR-139-3p	MIMAT0004552	UGGAGACGCGGCCCUGUUGGAGU
hsa-miR-139-5p	MIMAT0000250	UCUACAGUGCACGUGUCUCCAG
hsa-miR-1-3p	MIMAT0000416	UGGAAUGUAAAGAAGUAUGUAU
hsa-miR-140-3p	MIMAT0004597	UACCACAGGGUAGAACCACGG
hsa-miR-140-5p	MIMAT0000431	CAGUGGUUUUACCCUAUGGUAG
hsa-miR-141-3p	MIMAT0000432	UAACACUGUCUGGUAAAGAUGG
hsa-miR-142-3p	MIMAT0000434	UGUAGUGUUUCCUACUUUAUGGA
hsa-miR-142-5p	MIMAT0000433	CAUAAAGUAGAAAGCACUACU
hsa-miR-143-3p	MIMAT0000435	UGAGAUGAAGCACUGUAGCUC
hsa-miR-144-3p	MIMAT0000436	UACAGUAUAGAUGAUGUACU
hsa-miR-145-5p	MIMAT0000437	GUCCAGUUUUCCCAGGAAUCCCU
hsa-miR-1469	MIMAT0007347	CUCGGCGCGGGGGCGCGGGGCUCC
hsa-miR-146a-5p	MIMAT0000449	UGAGAACUGAAUUCCAUGGGUU
hsa-miR-146b-3p	MIMAT0004766	UGCCCUGUGGACUCAGUUCUGG
hsa-miR-146b-5p	MIMAT0002809	UGAGAACUGAAUUCCAUAGGCU
hsa-miR-147a	MIMAT0000251	GUGUGUGGAAAUGCUUCUGC
hsa-miR-147b	MIMAT0004928	GUGUGCGGAAAUGCUUCUGCUA
hsa-miR-148a-3p	MIMAT0000243	UCAGUGCACUACAGAACUUUGU
hsa-miR-148b-3p	MIMAT0000759	UCAGUGCAUCACAGAACUUUGU
hsa-miR-149-5p	MIMAT0000450	UCUGGCUCCGUGUCUUCACUCCC
hsa-miR-150-5p	MIMAT0000451	UCUCCCAACCCUUGUACCAGUG
hsa-miR-151a-3p	MIMAT0000757	CUAGACUGAAGCUCCUUGAGG
hsa-miR-151a-5p	MIMAT0004697	UCGAGGAGCUCACAGUCUAGU
hsa-miR-151b	MIMAT0010214	UCGAGGAGCUCACAGUCU
hsa-miR-152-3p	MIMAT0000438	UCAGUGCAUGACAGAACUUGG
hsa-miR-152-5p	MIMAT0026479	AGGUUCUGUGAUACACUCCGACU
hsa-miR-153-3p	MIMAT0000439	UUGCAUAGUCACAAAAGUGAUC

hsa-miR-1537-3p	MIMAT0007399	AAAACCGUCUAGUUACAGUUGU
hsa-miR-154-5p	MIMAT0000452	UAGGUUAUCCGUGUUGCCUUCG
hsa-miR-155-5p	MIMAT0000646	UUAAUGCUAAUCGUGAUAGGGGU
hsa-miR-15a-5p	MIMAT0000068	UAGCAGCACAUAAUGGUUUGUG
hsa-miR-15b-5p	MIMAT0000417	UAGCAGCACAUCAUGGUUUACA
hsa-miR-1-5p	MIMAT0031892	ACAUACUUCUUUAUAUGCCCAU
hsa-miR-16-5p	MIMAT0000069	UAGCAGCACGUAAAUAUUGGCG
hsa-miR-17-5p	MIMAT0000070	CAAAGUGCUUACAGUGCAGGUAG
hsa-miR-181a-2-3p	MIMAT0004558	ACCACUGACCGUUGACUGUACC
hsa-miR-181a-3p	MIMAT0000270	ACCAUCGACCGUUGAUUGUACC
hsa-miR-181a-5p	MIMAT0000256	AACAUUCAACGCUGUCGGUGAGU
hsa-miR-181b-2-3p	MIMAT0031893	CUCACUGAUCAAUGAAUGCA
hsa-miR-181b-5p	MIMAT0000257	AACAUUCAUUGCUGUCGGUGGGU
hsa-miR-181c-5p	MIMAT0000258	AACAUUCAACCUGUCGGUGAGU
hsa-miR-181d-3p	MIMAT0026608	CCACCGGGGGAUGAAUGUCAC
hsa-miR-181d-5p	MIMAT0002821	AACAUUCAUUGUUGUCGGUGGGU
hsa-miR-182-3p	MIMAT0000260	UGGUUCUAGACUUGCCAACUA
hsa-miR-182-5p	MIMAT0000259	UUUGGCAAUGGUAGAACUCACACU
hsa-miR-1827	MIMAT0006767	UGAGGCAGUAGAUUGAAU
hsa-miR-183-5p	MIMAT0000261	UAUGGCACUGGUAGAAUUCACU
hsa-miR-184	MIMAT0000454	UGGACGGAGAACUGAUAAGGGU
hsa-miR-185-5p	MIMAT0000455	UGGAGAGAAAGGCAGUUCCUGA
hsa-miR-186-5p	MIMAT0000456	CAAAGAAUUCUCCUUUUGGGCU
hsa-miR-187-3p	MIMAT0000262	UCGUGUCUUGUGUUGCAGCCGG
hsa-miR-188-3p	MIMAT0004613	CUCCCACAUGCAGGGUUUGCA
hsa-miR-188-5p	MIMAT0000457	CAUCCCUUGCAUGGUGGAGGG
hsa-miR-18a-5p	MIMAT0000072	UAAGGUGCAUCUAGUGCAGAUAG

hsa-miR-18b-5p	MIMAT0001412	UAAGGUGCAUCUAGUGCAGUUAG
hsa-miR-1908-3p	MIMAT0026916	CCGGCCGCCGGCUCCGCCCCG
hsa-miR-1908-5p	MIMAT0007881	CGGCGGGGACGGCGAUUGGUC
hsa-miR-1909-3p	MIMAT0007883	CGCAGGGGCCGGGUGCUCACCG
hsa-miR-190a-3p	MIMAT0026482	CUAUAUAUCAAACAUAUUCCU
hsa-miR-190a-5p	MIMAT0000458	UGAUAUGUUUGAUAUAUUAGGU
hsa-miR-190b	MIMAT0004929	UGAUAUGUUUGAUAUUGGGUU
hsa-miR-1910-3p	MIMAT0026917	GAGGCAGAAGCAGGAUGACA
hsa-miR-1910-5p	MIMAT0007884	CCAGUCCUGUGCCUGCCGCCU
hsa-miR-1915-3p	MIMAT0007892	CCCCAGGGCGACGCGGCGGG
hsa-miR-191-5p	MIMAT0000440	CAACGGAAUCCCAAAAGCAGCUG
hsa-miR-192-5p	MIMAT0000222	CUGACCUAUGAAUUGACAGCC
hsa-miR-193a-3p	MIMAT0000459	AACUGGCCUACAAAGUCCCAGU
hsa-miR-193a-5p	MIMAT0004614	UGGGUCUUUGCGGGCGAGAUGA
hsa-miR-193b-3p	MIMAT0002819	AACUGGCCCUCAAAGUCCCGCU
hsa-miR-193b-5p	MIMAT0004767	CGGGGUUUUGAGGGCGAGAUGA
hsa-miR-194-5p	MIMAT0000460	UGUAACAGCAACUCCAUGUGGA
hsa-miR-195-5p	MIMAT0000461	UAGCAGCACAGAAAUAUUGGC
hsa-miR-196a-3p	MIMAT0004562	CGGCAACAAGAAACUGCCUGAG
hsa-miR-196a-5p	MIMAT0000226	UAGGUAGUUUCAUGUUGUUGGG
hsa-miR-196b-5p	MIMAT0001080	UAGGUAGUUUCCUGUUGUUGGG
hsa-miR-1972	MIMAT0009447	UCAGGCCAGGCACAGUGGCUCA
hsa-miR-1973	MIMAT0009448	ACCGUGCAAAGGUAGCAUA
hsa-miR-197-3p	MIMAT0000227	UUCACCACCUUCUCCACCCAGC
hsa-miR-197-5p	MIMAT0022691	CGGGUAGAGAGGGCAGUGGGAGG
hsa-miR-1976	MIMAT0009451	CCUCCUGCCCUCCUUGCUGU
hsa-miR-198	MIMAT0000228	GGUCCAGAGGGGAGAUAGGUUC

hsa-miR-199a-3p	MIMAT0000232	ACAGUAGUCUGCACAUUGGUUA
hsa-miR-199a-5p	MIMAT0000231	CCCAGUGUUCAGACUACCUGUUC
hsa-miR-199b-3p	MIMAT0004563	ACAGUAGUCUGCACAUUGGUUA
hsa-miR-199b-5p	MIMAT0000263	CCCAGUGUUUAGACUAUCUGUUC
hsa-miR-19a-3p	MIMAT0000073	UGUGCAAAUCUAUGCAAAACUGA
hsa-miR-19b-3p	MIMAT0000074	UGUGCAAAUCCAUGCAAAACUGA
hsa-miR-200a-3p	MIMAT0000682	UAACACUGUCUGGUAACGAUGU
hsa-miR-200b-3p	MIMAT0000318	UAAUACUGCCUGGUAAUGAUGA
hsa-miR-200c-3p	MIMAT0000617	UAAUACUGCCGGGUAAUGAUGGA
hsa-miR-202-3p	MIMAT0002811	AGAGGUAUAGGGCAUGGGAA
hsa-miR-203a-3p	MIMAT0000264	GUGAAAUGUUUAGGACCACUAG
hsa-miR-203a-5p	MIMAT0031890	AGUGGUUCUUAACAGUUCAACAGUU
hsa-miR-204-5p	MIMAT0000265	UUCCCUUUGUCAUCCUAUGCCU
hsa-miR-2053	MIMAT0009978	GUGUUAAUUAAACCUCUAUUUAC
hsa-miR-205-5p	MIMAT0000266	UCCUUCAUUCCACCGGAGUCUG
hsa-miR-206	MIMAT0000462	UGGAAUGUAAGGAAGUGUGUGG
hsa-miR-208a-3p	MIMAT0000241	AUAAGACGAGCAAAAAGCUUGU
hsa-miR-208b-3p	MIMAT0004960	AUAAGACGAACAAAAGGUUUGU
hsa-miR-208b-5p	MIMAT0026722	AAGCUUUUUGCUCGAAUUAUGU
hsa-miR-20a-5p	MIMAT0000075	UAAAGUGCUUAUAGUGCAGGUAG
hsa-miR-20b-5p	MIMAT0001413	CAAAGUGCUCAUAGUGCAGGUAG
hsa-miR-210-3p	MIMAT0000267	CUGUGCGUGUGACAGCGGCUGA
hsa-miR-210-5p	MIMAT0026475	AGCCCCUGCCCACCGCACACUG
hsa-miR-2110	MIMAT0010133	UUGGGGAAACGGCCGCUGAGUG
hsa-miR-2113	MIMAT0009206	AUUUGUGCUUGGCUCUGUCAC
hsa-miR-211-3p	MIMAT0022694	GCAGGGACAGCAAAGGGGUGC
hsa-miR-211-5p	MIMAT0000268	UUCCCUUUGUCAUCCUUCGCCU

hsa-miR-2116-5p	MIMAT0011160	GGUUCUUAGCAUAGGAGGUCU
hsa-miR-2117	MIMAT0011162	UGUUCUCUUUGCCAAGGACAG
hsa-miR-212-3p	MIMAT0000269	UAACAGUCUCCAGUCACGGCC
hsa-miR-214-3p	MIMAT0000271	ACAGCAGGCACAGACAGGCAGU
hsa-miR-215-5p	MIMAT0000272	AUGACCUAUGAAUUGACAGAC
hsa-miR-21-5p	MIMAT0000076	UAGCUUAUCAGACUGAUGUUGA
hsa-miR-216a-5p	MIMAT0000273	UAAUCUCAGCUGGCAACUGUGA
hsa-miR-216b-5p	MIMAT0004959	AAAUCUCUGCAGGCAAAUGUGA
hsa-miR-217	MIMAT0000274	UACUGCAUCAGGAACUGAUUGGA
hsa-miR-218-5p	MIMAT0000275	UUGUGCUUGAUCUAACCAUGU
hsa-miR-219a-1-3p	MIMAT0004567	AGAGUUGAGUCUGGACGUCCCG
hsa-miR-219a-2-3p	MIMAT0004675	AGAAUUGUGGCUGGACAUCUGU
hsa-miR-219a-5p	MIMAT0000276	UGAUUGUCCAAACGCAAUUCU
hsa-miR-219b-3p	MIMAT0019748	AGAAUUGCGUUUGGACAAUCAGU
hsa-miR-221-3p	MIMAT0000278	AGCUACAUUGUCUGCUGGGUUUC
hsa-miR-221-5p	MIMAT0004568	ACCUGGCAUACAAUGUAGAUUU
hsa-miR-222-3p	MIMAT0000279	AGCUACAUCUGGCUACUGGGU
hsa-miR-223-3p	MIMAT0000280	UGUCAGUUUGUCAAAUACCCCA
hsa-miR-22-3p	MIMAT0000077	AAGCUGCCAGUUGAAGAACUGU
hsa-miR-224-5p	MIMAT0000281	CAAGUCACUAGUGGUUCCGUU
hsa-miR-2278	MIMAT0011778	GAGAGCAGUGUGUGUUGCCUGG
hsa-miR-23a-3p	MIMAT0000078	AUCACAUUGCCAGGGAUUUCC
hsa-miR-23b-3p	MIMAT0000418	AUCACAUUGCCAGGGAUUACC
hsa-miR-23c	MIMAT0018000	AUCACAUUGCCAGUGAUUACCC
hsa-miR-24-3p	MIMAT0000080	UGGCUCAGUUCAGCAGGAACAG
hsa-miR-25-3p	MIMAT0000081	CAUUGCACUUGUCUCGGUCUGA
hsa-miR-25-5p	MIMAT0004498	AGGCGGAGACUUGGGCAAUUG

hsa-miR-2682-5p	MIMAT0013517	CAGGCAGUGACUGUUCAGACGUC
hsa-miR-26a-5p	MIMAT0000082	UUCAAGUAAUCCAGGAUAGGCU
hsa-miR-26b-5p	MIMAT0000083	UUCAAGUAAUUCAGGAUAGGU
hsa-miR-27a-3p	MIMAT0000084	UUCACAGUGGCUAAGUUCCGC
hsa-miR-27b-3p	MIMAT0000419	UUCACAGUGGCUAAGUUCUGC
hsa-miR-28-3p	MIMAT0004502	CACUAGAUUGUGAGCUCCUGGA
hsa-miR-28-5p	MIMAT0000085	AAGGAGCUCACAGUCUAUUGAG
hsa-miR-296-3p	MIMAT0004679	GAGGGUUGGGUGGAGGCUCUCC
hsa-miR-296-5p	MIMAT0000690	AGGGCCCCCCUCAAUCCUGU
hsa-miR-297	MIMAT0004450	AUGUAUGUGUGCAUGUGCAUG
hsa-miR-298	MIMAT0004901	AGCAGAAGCAGGGAGGUUCUCCCA
hsa-miR-299-3p	MIMAT0000687	UAUGUGGGAUGGUAAACCGCUU
hsa-miR-299-5p	MIMAT0002890	UGGUUUACCGUCCCACAUACAU
hsa-miR-29a-3p	MIMAT0000086	UAGCACCAUCUGAAAUCGGUUA
hsa-miR-29b-3p	MIMAT0000100	UAGCACCAUUUGAAAUCAGUGUU
hsa-miR-29c-3p	MIMAT0000681	UAGCACCAUUUGAAAUCGGUUA
hsa-miR-300	MIMAT0004903	UAUACAAGGGCAGACUCUCUCU
hsa-miR-301a-3p	MIMAT0000688	CAGUGCAAUAGUAUUGUCAAAGC
hsa-miR-301a-5p	MIMAT0022696	GCUCUGACUUUAUUGCACUACU
hsa-miR-301b-3p	MIMAT0004958	CAGUGCAAUGAUAUUGUCAAAGC
hsa-miR-301b-5p	MIMAT0032026	GCUCUGACGAGGUUGCACUACU
hsa-miR-302a-3p	MIMAT0000684	UAAGUGCUUCCAUGUUUUGGUGA
hsa-miR-302a-5p	MIMAT0000683	ACUUAAACGUGGAUGUACUUGCU
hsa-miR-302b-3p	MIMAT0000715	UAAGUGCUUCCAUGUUUUAGUAG
hsa-miR-302c-3p	MIMAT0000717	UAAGUGCUUCCAUGUUUCAGUGG
hsa-miR-302d-3p	MIMAT0000718	UAAGUGCUUCCAUGUUUGAGUGU
hsa-miR-302e	MIMAT0005931	UAAGUGCUUCCAUGCUU

hsa-miR-302f	MIMAT0005932	UAAUUGCUUCCAUGUUU
hsa-miR-3065-3p	MIMAT0015378	UCAGCACCAGGAUAUUGUUGGAG
hsa-miR-3065-5p	MIMAT0015066	UCAACAAAAUCACUGAUGCUGGA
hsa-miR-3074-3p	MIMAT0015027	GAUAUCAGCUCAGUAGGCACCG
hsa-miR-30a-3p	MIMAT0000088	CUUUCAGUCGGAUGUUUGCAGC
hsa-miR-30a-5p	MIMAT0000087	UGUAAACAUCCUCGACUGGAAG
hsa-miR-30b-5p	MIMAT0000420	UGUAAACAUCCUACACUCAGCU
hsa-miR-30c-1-3p	MIMAT0004674	CUGGGAGAGGGUUGUUUACUCC
hsa-miR-30c-5p	MIMAT0000244	UGUAAACAUCCUACACUCUCAGC
hsa-miR-30d-5p	MIMAT0000245	UGUAAACAUCCCCGACUGGAAG
hsa-miR-30e-3p	MIMAT0000693	CUUUCAGUCGGAUGUUUACAGC
hsa-miR-30e-5p	MIMAT0000692	UGUAAACAUCCUUGACUGGAAG
hsa-miR-3127-5p	MIMAT0014990	AUCAGGGCUUGUGGAAUGGGAAG
hsa-miR-3130-3p	MIMAT0014994	GCUGCACCGGAGACUGGGUAA
hsa-miR-3131	MIMAT0014996	UCGAGGACUGGUGGAAGGGCCUU
hsa-miR-3136-5p	MIMAT0015003	CUGACUGAAUAGGUAGGGUCAUU
hsa-miR-3140-3p	MIMAT0015008	AGCUUUUGGGAAUUCAGGUAGU
hsa-miR-3140-5p	MIMAT0019204	ACCUGAAUUACCAAAAGCUUU
hsa-miR-3144-3p	MIMAT0015015	AUAUACCUGUUCGGUCUCUUUA
hsa-miR-3144-5p	MIMAT0015014	AGGGGACCAAAGAGAUAUAUAG
hsa-miR-3147	MIMAT0015019	GGUUGGGCAGUGAGGAGGGUGUGA
hsa-miR-3150b-3p	MIMAT0018194	UGAGGAGAUCGUCGAGGUUGG
hsa-miR-3151-5p	MIMAT0015024	GGUGGGGCAAUGGGAUCAGGU
hsa-miR-3158-3p	MIMAT0015032	AAGGGCUUCCUCUCUGCAGGAC
hsa-miR-31-5p	MIMAT0000089	AGGCAAGAUGCUGGCAUAGCU
hsa-miR-3161	MIMAT0015035	CUGAUAAGAACAGAGGCCCAGAU
hsa-miR-3164	MIMAT0015038	UGUGACUUUAAGGGAAAUGGCG

hsa-miR-3168	MIMAT0015043	GAGUUCUACAGUCAGAC
hsa-miR-3179	MIMAT0015056	AGAAGGGGUGAAAUUUAAACGU
hsa-miR-3180	MIMAT0018178	UGGGGCGGAGCUUCCGGAG
hsa-miR-3180-3p	MIMAT0015058	UGGGGCGGAGCUUCCGGAGGCC
hsa-miR-3180-5p	MIMAT0015057	CUUCCAGACGCUCCGCCCACGUCG
hsa-miR-3182	MIMAT0015062	GCUUCUGUAGUGUAGUC
hsa-miR-3185	MIMAT0015065	AGAAGAAGGCGGUCGGUCUGCGG
hsa-miR-3190-3p	MIMAT0022839	UGUGGAAGGUAGACGGCCAGAGA
hsa-miR-3192-5p	MIMAT0015076	UCUGGGAGGUUGUAGCAGUGGAA
hsa-miR-3195	MIMAT0015079	CGCGCCGGGCCCGGGUU
hsa-miR-3196	MIMAT0015080	CGGGGCGGCAGGGGCCUC
hsa-miR-3202	MIMAT0015089	UGGAAGGGAGAAGAGCUUUAAU
hsa-miR-320a	MIMAT0000510	AAAAGCUGGGUUGAGAGGGCGA
hsa-miR-320b	MIMAT0005792	AAAAGCUGGGUUGAGAGGGCAA
hsa-miR-320c	MIMAT0005793	AAAAGCUGGGUUGAGAGGGU
hsa-miR-320d	MIMAT0006764	AAAAGCUGGGUUGAGAGGA
hsa-miR-320e	MIMAT0015072	AAAGCUGGGUUGAGAAGG
hsa-miR-323a-3p	MIMAT0000755	CACAUUACACGGUCGACCUCU
hsa-miR-323a-5p	MIMAT0004696	AGGUGGUCCGUGGCGCGUUCGC
hsa-miR-323b-3p	MIMAT0015050	CCCAAUACACGGUCGACCUCUU
hsa-miR-323b-5p	MIMAT0001630	AGGUUGUCCGUGGUGAGUUCGCA
hsa-miR-324-3p	MIMAT0000762	ACUGCCCCAGGUGCUGCUGG
hsa-miR-324-5p	MIMAT0000761	CGCAUCCCCUAGGGCAUUGGUGU
hsa-miR-325	MIMAT0000771	CCUAGUAGGUGUCCAGUAAGUGU
hsa-miR-32-5p	MIMAT0000090	UAUUGCACAUUACUAAGUUGCA
hsa-miR-326	MIMAT0000756	CCUCUGGGCCCUUCCUCCAG
hsa-miR-328-3p	MIMAT0000752	CUGGCCCUCUCUGCCCUUCCGU

hsa-miR-328-5p	MIMAT0026486	GGGGGGGCAGGAGGGGCUCAGGG
hsa-miR-329-3p	MIMAT0001629	AACACCUGGUUAACCUCUUU
hsa-miR-329-5p	MIMAT0026555	GAGGUUUUCUGGGUUUCUGUUUC
hsa-miR-330-3p	MIMAT0000751	GCAAAGCACACGGCCUGCAGAGA
hsa-miR-330-5p	MIMAT0004693	UCUCUGGGCCUGUGUCUUAGGC
hsa-miR-331-3p	MIMAT0000760	GCCCCUGGGCCUAUCCUAGAA
hsa-miR-331-5p	MIMAT0004700	CUAGGUAUGGUCCCAGGGAUCC
hsa-miR-335-5p	MIMAT0000765	UCAAGAGCAAUAACGAAAAAUGU
hsa-miR-337-3p	MIMAT0000754	CUCCUAUAUGAUGCCUUUCUUC
hsa-miR-337-5p	MIMAT0004695	GAACGGCUUCAUACAGGAGUU
hsa-miR-338-5p	MIMAT0004701	AACAAUAUCCUGGUGCUGAGUG
hsa-miR-339-3p	MIMAT0004702	UGAGCGCCUCGACGACAGAGCCG
hsa-miR-339-5p	MIMAT0000764	UCCCUGUCCUCCAGGAGCUCACG
hsa-miR-33a-5p	MIMAT0000091	GUGCAUUGUAGUUGCAUUGCA
hsa-miR-33b-5p	MIMAT0003301	GUGCAUUGCUGUUGCAUUGC
hsa-miR-340-5p	MIMAT0004692	UUAUAAAGCAAUGAGACUGAUU
hsa-miR-342-3p	MIMAT0000753	UCUCACACAGAAAUCGCACCCGU
hsa-miR-342-5p	MIMAT0004694	AGGGGUGCUAUCUGUGAUUGA
hsa-miR-345-3p	MIMAT0022698	GCCCUGAACGAGGGGUCUGGAG
hsa-miR-345-5p	MIMAT0000772	GCUGACUCCUAGUCCAGGGCUC
hsa-miR-346	MIMAT0000773	UGUCUGCCCGCAUGCCUGCCUCU
hsa-miR-34a-5p	MIMAT0000255	UGGCAGUGUCUUAGCUGGUUGU
hsa-miR-34b-3p	MIMAT0004676	CAAUCACUAACUCCACUGCCAU
hsa-miR-34c-3p	MIMAT0004677	AAUCACUAACCACACGGCCAGG
hsa-miR-34c-5p	MIMAT0000686	AGGCAGUGUAGUUAGCUGAUUGC
hsa-miR-3605-3p	MIMAT0017982	CCUCCGUGUUACCUGUCCUCUAG
hsa-miR-3605-5p	MIMAT0017981	UGAGGAUGGAUAGCAAGGAAGCC

hsa-miR-3613-3p	MIMAT0017991	ACAAAAAAAAAAGCCCAACCCUUC
hsa-miR-3613-5p	MIMAT0017990	UGUUGUACUUUUUUUUUUUUUUUUUUUU
hsa-miR-361-3p	MIMAT0004682	UCCCCCAGGUGUGAUUCUGAUUU
hsa-miR-3614-3p	MIMAT0017993	UAGCCUUCAGAUCUUGGUGUUUU
hsa-miR-3614-5p	MIMAT0017992	CCACUUGGAUCUGAAGGCUGCCC
hsa-miR-3615	MIMAT0017994	UCUCUCGGCUCCUCGCGGCUC
hsa-miR-361-5p	MIMAT0000703	UUAUCAGAAUCUCCAGGGGUAC
hsa-miR-362-3p	MIMAT0004683	AACACCUAUUCAAGGAUUCA
hsa-miR-362-5p	MIMAT0000705	AAUCCUUGGAACCUAGGUGUGAGU
hsa-miR-363-3p	MIMAT0000707	AAUUGCACGGUAUCCAUCUGUA
hsa-miR-363-5p	MIMAT0003385	CGGGUGGAUCACGAUGCAAUUU
hsa-miR-365a-3p	MIMAT0000710	UAAUGCCCCUAAAAAUCCUUAU
hsa-miR-365b-3p	MIMAT0022834	UAAUGCCCCUAAAAAUCCUUAU
hsa-miR-365b-5p	MIMAT0022833	AGGGACUUUCAGGGGCAGCUGU
hsa-miR-367-3p	MIMAT0000719	AAUUGCACUUUAGCAAUGGUGA
hsa-miR-3690	MIMAT0018119	ACCUGGACCCAGCGUAGACAAAG
hsa-miR-369-3p	MIMAT0000721	AAUAAUACAUGGUUGAUCUUU
hsa-miR-369-5p	MIMAT0001621	AGAUCGACCGUGUUAUAUUCGC
hsa-miR-370-3p	MIMAT0000722	GCCUGCUGGGGUGGAACCUGGU
hsa-miR-370-5p	MIMAT0026483	CAGGUCACGUCUCUGCAGUUAC
hsa-miR-371a-5p	MIMAT0004687	ACUCAAACUGUGGGGGGCACU
hsa-miR-371b-5p	MIMAT0019892	ACUCAAAAGAUGGCGGCACUUU
hsa-miR-372-3p	MIMAT0000724	AAAGUGCUGCGACAUUUGAGCGU
hsa-miR-373-3p	MIMAT0000726	GAAGUGCUUCGAUUUUGGGGUGU
hsa-miR-374a-3p	MIMAT0004688	CUUAUCAGAUUGUAUUGUAAUU
hsa-miR-374a-5p	MIMAT0000727	UUAUAAUACAACCUGAUAAGUG
hsa-miR-374b-5p	MIMAT0004955	AUAUAAUACAACCUGCUAAGUG

hsa-miR-374c-5p	MIMAT0018443	AUAAUACAACCUGCUAAGUGCU
hsa-miR-375	MIMAT0000728	UUUGUUCGUUCGGCUCGCGUGA
hsa-miR-376a-2-5p	MIMAT0022928	GGUAGAUUUUCCUUCUAUGGU
hsa-miR-376a-3p	MIMAT0000729	AUCAUAGAGGAAAAUCCACGU
hsa-miR-376b-3p	MIMAT0002172	AUCAUAGAGGAAAAUCCAUGUU
hsa-miR-376c-3p	MIMAT0000720	AACAUAGAGGAAAUUCCACGU
hsa-miR-376c-5p	MIMAT0022861	GGUGGAUAUUCCUUCUAUGUU
hsa-miR-377-3p	MIMAT0000730	AUCACACAAAGGCAACUUUUGU
hsa-miR-378b	MIMAT0014999	ACUGGACUUGGAGGCAGAA
hsa-miR-378c	MIMAT0016847	ACUGGACUUGGAGUCAGAAGAGUGG
hsa-miR-378d	MIMAT0018926	ACUGGACUUGGAGUCAGAAA
hsa-miR-378e	MIMAT0018927	ACUGGACUUGGAGUCAGGA
hsa-miR-378f	MIMAT0018932	ACUGGACUUGGAGCCAGAAG
hsa-miR-378g	MIMAT0018937	ACUGGGCUUGGAGUCAGAAG
hsa-miR-378h	MIMAT0018984	ACUGGACUUGGUGUCAGAUGG
hsa-miR-378i	MIMAT0019074	ACUGGACUAGGAGUCAGAAGG
hsa-miR-379-5p	MIMAT0000733	UGGUAGACUAUGGAACGUAGG
hsa-miR-380-3p	MIMAT0000735	UAUGUAAUAUGGUCCACAUCUU
hsa-miR-381-3p	MIMAT0000736	UAUACAAGGGCAAGCUCUCUGU
hsa-miR-381-5p	MIMAT0022862	AGCGAGGUUGCCCUUUGUAUAU
hsa-miR-382-3p	MIMAT0022697	AAUCAUUCACGGACAACACUU
hsa-miR-382-5p	MIMAT0000737	GAAGUUGUUCGUGGUGGAUUCG
hsa-miR-383-5p	MIMAT0000738	AGAUCAGAAGGUGAUUGUGGCU
hsa-miR-384	MIMAT0001075	AUUCCUAGAAAUUGUUCAUA
hsa-miR-3916	MIMAT0018190	AAGAGGAAGAAAUGGCUGGUUCUCAG
hsa-miR-3918	MIMAT0018192	ACAGGGCCGCAGAUGGAGACU
hsa-miR-3928-3p	MIMAT0018205	GGAGGAACCUUGGAGCUUCGGC

hsa-miR-3934-5p	MIMAT0018349	UCAGGUGUGGAAACUGAGGCAG
hsa-miR-409-3p	MIMAT0001639	GAAUGUUGCUCGGUGAACCCCU
hsa-miR-409-5p	MIMAT0001638	AGGUUACCCGAGCAACUUUGCAU
hsa-miR-410-3p	MIMAT0002171	AAUAUAACACAGAUGGCCUGU
hsa-miR-411-3p	MIMAT0004813	UAUGUAACACGGUCCACUAACC
hsa-miR-411-5p	MIMAT0003329	UAGUAGACCGUAUAGCGUACG
hsa-miR-412-3p	MIMAT0002170	ACUUCACCUGGUCCACUAGCCGU
hsa-miR-421	MIMAT0003339	AUCAACAGACAUUAAUUGGGCGC
hsa-miR-422a	MIMAT0001339	ACUGGACUUAGGGUCAGAAGGC
hsa-miR-423-3p	MIMAT0001340	AGCUCGGUCUGAGGCCCCUCAGU
hsa-miR-423-5p	MIMAT0004748	UGAGGGGCAGAGAGCGAGACUUU
hsa-miR-424-5p	MIMAT0001341	CAGCAGCAAUUCAUGUUUUGAA
hsa-miR-425-5p	MIMAT0003393	AAUGACACGAUCACUCCCGUUGA
hsa-miR-4284	MIMAT0016915	GGGCUCACAUCACCCCAU
hsa-miR-4286	MIMAT0016916	ACCCCACUCCUGGUACC
hsa-miR-429	MIMAT0001536	UAAUACUGUCUGGUAAAACCGU
hsa-miR-431-5p	MIMAT0001625	UGUCUUGCAGGCCGUCAUGCA
hsa-miR-432-5p	MIMAT0002814	UCUUGGAGUAGGUCAUUGGGUGG
hsa-miR-433-3p	MIMAT0001627	AUCAUGAUGGGCUCCUCGGUGU
hsa-miR-433-5p	MIMAT0026554	UACGGUGAGCCUGUCAUUAUUC
hsa-miR-4421	MIMAT0018934	ACCUGUCUGUGGAAAGGAGCUA
hsa-miR-4425	MIMAT0018940	UGUUGGGAUUCAGCAGGACCAU
hsa-miR-4431	MIMAT0018947	GCGACUCUGAAAACUAGAAGGU
hsa-miR-4435	MIMAT0018951	AUGGCCAGAGCUCACACAGAGG
hsa-miR-4443	MIMAT0018961	UUGGAGGCGUGGGUUUU
hsa-miR-4448	MIMAT0018967	GGCUCCUUGGUCUAGGGGUA
hsa-miR-4451	MIMAT0018973	UGGUAGAGCUGAGGACA

hsa-miR-4454	MIMAT0018976	GGAUCCGAGUCACGGCACCA
hsa-miR-4455	MIMAT0018977	AGGGUGUGUGUGUUUUU
hsa-miR-4458	MIMAT0018980	AGAGGUAGGUGUGGAAGAA
hsa-miR-4461	MIMAT0018983	GAUUGAGACUAGUAGGGCUAGGC
hsa-miR-448	MIMAT0001532	UUGCAUAUGUAGGAUGUCCCAU
hsa-miR-4485-3p	MIMAT0019019	UAACGGCCGCGGUACCCUAA
hsa-miR-4488	MIMAT0019022	AGGGGGCGGGCUCCGGCG
hsa-miR-449a	MIMAT0001541	UGGCAGUGUAUUGUUAGCUGGU
hsa-miR-449b-5p	MIMAT0003327	AGGCAGUGUAUUGUUAGCUGGC
hsa-miR-449c-5p	MIMAT0010251	UAGGCAGUGUAUUGCUAGCGGCUGU
hsa-miR-450a-1-3p	MIMAT0022700	AUUGGGAACAUUUUGCAUGUAU
hsa-miR-450a-2-3p	MIMAT0031074	AUUGGGGACAUUUUGCAUUCAU
hsa-miR-450a-5p	MIMAT0001545	UUUUGCGAUGUGUUCCUAAUAU
hsa-miR-450b-3p	MIMAT0004910	UUGGGAUCAUUUUGCAUCCAUA
hsa-miR-450b-5p	MIMAT0004909	UUUUGCAAUAUGUUCCUGAAUA
hsa-miR-4516	MIMAT0019053	GGGAGAAGGGUCGGGGC
hsa-miR-451a	MIMAT0001631	AAACCGUUACCAUUACUGAGUU
hsa-miR-4521	MIMAT0019058	GCUAAGGAAGUCCUGUGCUCAG
hsa-miR-4524a-5p	MIMAT0019062	AUAGCAGCAUGAACCUGUCUCA
hsa-miR-452-5p	MIMAT0001635	AACUGUUUGCAGAGGAAACUGA
hsa-miR-4531	MIMAT0019070	AUGGAGAAGGCUUCUGA
hsa-miR-4532	MIMAT0019071	CCCCGGGGAGCCCGGCG
hsa-miR-4536-3p	MIMAT0020959	UCGUGCAUAUAUCUACCACAU
hsa-miR-4536-5p	MIMAT0019078	UGUGGUAGAUAUAUGCACGAU
hsa-miR-454-3p	MIMAT0003885	UAGUGCAAUAUUGCUUAUAGGGU
hsa-miR-455-3p	MIMAT0004784	GCAGUCCAUGGGCAUAUACAC
hsa-miR-455-5p	MIMAT0003150	UAUGUGCCUUUGGACUACAUCG
hsa-miR-4647	MIMAT0019709	GAAGAUGGUGCUGUGCUGAGGAA
-----------------	--------------	--------------------------
hsa-miR-4707-3p	MIMAT0019808	AGCCCGCCCCAGCCGAGGUUCU
hsa-miR-4707-5p	MIMAT0019807	GCCCCGGCGCGGGCGGGUUCUGG
hsa-miR-4741	MIMAT0019871	CGGGCUGUCCGGAGGGGUCGGCU
hsa-miR-4755-5p	MIMAT0019895	UUUCCCUUCAGAGCCUGGCUUU
hsa-miR-4787-3p	MIMAT0019957	GAUGCGCCGCCCACUGCCCCGCGC
hsa-miR-4787-5p	MIMAT0019956	GCGGGGGUGGCGGCGGCAUCCC
hsa-miR-4792	MIMAT0019964	CGGUGAGCGCUCGCUGGC
hsa-miR-483-3p	MIMAT0002173	UCACUCCUCCUCCCGUCUU
hsa-miR-483-5p	MIMAT0004761	AAGACGGGAGGAAAGAAGGGAG
hsa-miR-484	MIMAT0002174	UCAGGCUCAGUCCCCUCCCGAU
hsa-miR-485-3p	MIMAT0002176	GUCAUACACGGCUCUCUCUCU
hsa-miR-485-5p	MIMAT0002175	AGAGGCUGGCCGUGAUGAAUUC
hsa-miR-486-3p	MIMAT0004762	CGGGGCAGCUCAGUACAGGAU
hsa-miR-487a-3p	MIMAT0002178	AAUCAUACAGGGACAUCCAGUU
hsa-miR-487b-3p	MIMAT0003180	AAUCGUACAGGGUCAUCCACUU
hsa-miR-487b-5p	MIMAT0026614	GUGGUUAUCCCUGUCCUGUUCG
hsa-miR-488-3p	MIMAT0004763	UUGAAAGGCUAUUUCUUGGUC
hsa-miR-489-3p	MIMAT0002805	GUGACAUCACAUAUACGGCAGC
hsa-miR-490-3p	MIMAT0002806	CAACCUGGAGGACUCCAUGCUG
hsa-miR-490-5p	MIMAT0004764	CCAUGGAUCUCCAGGUGGGU
hsa-miR-491-3p	MIMAT0004765	CUUAUGCAAGAUUCCCUUCUAC
hsa-miR-491-5p	MIMAT0002807	AGUGGGGAACCCUUCCAUGAGG
hsa-miR-492	MIMAT0002812	AGGACCUGCGGGACAAGAUUCUU
hsa-miR-493-3p	MIMAT0003161	UGAAGGUCUACUGUGUGCCAGG
hsa-miR-494-3p	MIMAT0002816	UGAAACAUACACGGGAAACCUC
hsa-miR-494-5p	MIMAT0026607	AGGUUGUCCGUGUUGUCUUCUCU

hsa-miR-495-3p	MIMAT0002817	AAACAAACAUGGUGCACUUCUU
hsa-miR-495-5p	MIMAT0022924	GAAGUUGCCCAUGUUAUUUUCG
hsa-miR-496	MIMAT0002818	UGAGUAUUACAUGGCCAAUCUC
hsa-miR-497-5p	MIMAT0002820	CAGCAGCACACUGUGGUUUGU
hsa-miR-498	MIMAT0002824	UUUCAAGCCAGGGGGGCGUUUUUC
hsa-miR-499a-3p	MIMAT0004772	AACAUCACAGCAAGUCUGUGCU
hsa-miR-499a-5p	MIMAT0002870	UUAAGACUUGCAGUGAUGUUU
hsa-miR-499b-3p	MIMAT0019898	AACAUCACUGCAAGUCUUAACA
hsa-miR-499b-5p	MIMAT0019897	ACAGACUUGCUGUGAUGUUCA
hsa-miR-5001-3p	MIMAT0021022	UUCUGCCUCUGUCCAGGUCCUU
hsa-miR-5001-5p	MIMAT0021021	AGGGCUGGACUCAGCGGCGGAGCU
hsa-miR-500a-5p	MIMAT0004773	UAAUCCUUGCUACCUGGGUGAGA
hsa-miR-5010-3p	MIMAT0021044	UUUUGUGUCUCCCAUUCCCCAG
hsa-miR-5010-5p	MIMAT0021043	AGGGGGAUGGCAGAGCAAAAUU
hsa-miR-501-3p	MIMAT0004774	AAUGCACCCGGGCAAGGAUUCU
hsa-miR-501-5p	MIMAT0002872	AAUCCUUUGUCCCUGGGUGAGA
hsa-miR-502-3p	MIMAT0004775	AAUGCACCUGGGCAAGGAUUCA
hsa-miR-502-5p	MIMAT0002873	AUCCUUGCUAUCUGGGUGCUA
hsa-miR-503-3p	MIMAT0022925	GGGGUAUUGUUUCCGCUGCCAGG
hsa-miR-503-5p	MIMAT0002874	UAGCAGCGGGAACAGUUCUGCAG
hsa-miR-504-3p	MIMAT0026612	GGGAGUGCAGGGCAGGGUUUC
hsa-miR-504-5p	MIMAT0002875	AGACCCUGGUCUGCACUCUAUC
hsa-miR-505-3p	MIMAT0002876	CGUCAACACUUGCUGGUUUCCU
hsa-miR-506-3p	MIMAT0002878	UAAGGCACCCUUCUGAGUAGA
hsa-miR-506-5p	MIMAT0022701	UAUUCAGGAAGGUGUUACUUAA
hsa-miR-507	MIMAT0002879	UUUUGCACCUUUUGGAGUGAA
hsa-miR-508-3p	MIMAT0002880	UGAUUGUAGCCUUUUGGAGUAGA

hsa-miR-508-5p	MIMAT0004778	UACUCCAGAGGGCGUCACUCAUG
hsa-miR-509-3-5p	MIMAT0004975	UACUGCAGACGUGGCAAUCAUG
hsa-miR-509-3p	MIMAT0002881	UGAUUGGUACGUCUGUGGGUAG
hsa-miR-509-5p	MIMAT0004779	UACUGCAGACAGUGGCAAUCA
hsa-miR-510-3p	MIMAT0026613	AUUGAAACCUCUAAGAGUGGA
hsa-miR-510-5p	MIMAT0002882	UACUCAGGAGAGUGGCAAUCAC
hsa-miR-511-5p	MIMAT0002808	GUGUCUUUUGCUCUGCAGUCA
hsa-miR-512-3p	MIMAT0002823	AAGUGCUGUCAUAGCUGAGGUC
hsa-miR-512-5p	MIMAT0002822	CACUCAGCCUUGAGGGCACUUUC
hsa-miR-513a-3p	MIMAT0004777	UAAAUUUCACCUUUCUGAGAAGG
hsa-miR-513a-5p	MIMAT0002877	UUCACAGGGAGGUGUCAU
hsa-miR-513b-5p	MIMAT0005788	UUCACAAGGAGGUGUCAUUUAU
hsa-miR-513c-3p	MIMAT0022728	UAAAUUUCACCUUUCUGAGAAGA
hsa-miR-513c-5p	MIMAT0005789	UUCUCAAGGAGGUGUCGUUUAU
hsa-miR-514a-3p	MIMAT0002883	AUUGACACUUCUGUGAGUAGA
hsa-miR-514a-5p	MIMAT0022702	UACUCUGGAGAGUGACAAUCAUG
hsa-miR-514b-3p	MIMAT0015088	AUUGACACCUCUGUGAGUGGA
hsa-miR-514b-5p	MIMAT0015087	UUCUCAAGAGGGAGGCAAUCAU
hsa-miR-515-3p	MIMAT0002827	GAGUGCCUUCUUUUGGAGCGUU
hsa-miR-515-5p	MIMAT0002826	UUCUCCAAAAGAAAGCACUUUCUG
hsa-miR-516a-3p	MIMAT0006778	UGCUUCCUUUCAGAGGGU
hsa-miR-516a-5p	MIMAT0004770	UUCUCGAGGAAAGAAGCACUUUC
hsa-miR-516b-3p	MIMAT0002860	UGCUUCCUUUCAGAGGGU
hsa-miR-516b-5p	MIMAT0002859	AUCUGGAGGUAAGAAGCACUUU
hsa-miR-517a-3p	MIMAT0002852	AUCGUGCAUCCCUUUAGAGUGU
hsa-miR-517b-3p	MIMAT0002857	AUCGUGCAUCCCUUUAGAGUGU
hsa-miR-517c-3p	MIMAT0002866	AUCGUGCAUCCUUUUAGAGUGU

hsa-miR-518a-5p	MIMAT0005457	CUGCAAAGGGAAGCCCUUUC
hsa-miR-518b	MIMAT0002844	CAAAGCGCUCCCCUUUAGAGGU
hsa-miR-518c-3p	MIMAT0002848	CAAAGCGCUUCUCUUUAGAGUGU
hsa-miR-518c-5p	MIMAT0002847	UCUCUGGAGGGAAGCACUUUCUG
hsa-miR-518d-3p	MIMAT0002864	CAAAGCGCUUCCCUUUGGAGC
hsa-miR-518d-5p	MIMAT0005456	CUCUAGAGGGAAGCACUUUCUG
hsa-miR-518e-3p	MIMAT0002861	AAAGCGCUUCCCUUCAGAGUG
hsa-miR-518e-5p	MIMAT0005450	CUCUAGAGGGAAGCGCUUUCUG
hsa-miR-518f-3p	MIMAT0002842	GAAAGCGCUUCUCUUUAGAGG
hsa-miR-5196-3p	MIMAT0021129	UCAUCCUCGUCUCCCUCCCAG
hsa-miR-5196-5p	MIMAT0021128	AGGGAAGGGGACGAGGGUUGGG
hsa-miR-519a-3p	MIMAT0002869	AAAGUGCAUCCUUUUAGAGUGU
hsa-miR-519a-5p	MIMAT0005452	CUCUAGAGGGAAGCGCUUUCUG
hsa-miR-519b-3p	MIMAT0002837	AAAGUGCAUCCUUUUAGAGGUU
hsa-miR-519b-5p	MIMAT0005454	CUCUAGAGGGAAGCGCUUUCUG
hsa-miR-519c-3p	MIMAT0002832	AAAGUGCAUCUUUUUAGAGGAU
hsa-miR-519c-5p	MIMAT0002831	CUCUAGAGGGAAGCGCUUUCUG
hsa-miR-519d-3p	MIMAT0002853	CAAAGUGCCUCCCUUUAGAGUG
hsa-miR-519e-3p	MIMAT0002829	AAGUGCCUCCUUUUAGAGUGUU
hsa-miR-520a-3p	MIMAT0002834	AAAGUGCUUCCCUUUGGACUGU
hsa-miR-520a-5p	MIMAT0002833	CUCCAGAGGGAAGUACUUUCU
hsa-miR-520b	MIMAT0002843	AAAGUGCUUCCUUUUAGAGGG
hsa-miR-520c-3p	MIMAT0002846	AAAGUGCUUCCUUUUAGAGGGU
hsa-miR-520c-5p	MIMAT0005455	CUCUAGAGGGAAGCACUUUCUG
hsa-miR-520d-3p	MIMAT0002856	AAAGUGCUUCUCUUUGGUGGGU
hsa-miR-520d-5p	MIMAT0002855	CUACAAAGGGAAGCCCUUUC
hsa-miR-520e	MIMAT0002825	AAAGUGCUUCCUUUUUGAGGG

hsa-miR-520f-3p	MIMAT0002830	AAGUGCUUCCUUUUAGAGGGUU
hsa-miR-520g-3p	MIMAT0002858	ACAAAGUGCUUCCCUUUAGAGUGU
hsa-miR-520h	MIMAT0002867	ACAAAGUGCUUCCCUUUAGAGU
hsa-miR-521	MIMAT0002854	AACGCACUUCCCUUUAGAGUGU
hsa-miR-522-3p	MIMAT0002868	AAAAUGGUUCCCUUUAGAGUGU
hsa-miR-522-5p	MIMAT0005451	CUCUAGAGGGAAGCGCUUUCUG
hsa-miR-523-3p	MIMAT0002840	GAACGCGCUUCCCUAUAGAGGGU
hsa-miR-523-5p	MIMAT0005449	CUCUAGAGGGAAGCGCUUUCUG
hsa-miR-524-3p	MIMAT0002850	GAAGGCGCUUCCCUUUGGAGU
hsa-miR-525-3p	MIMAT0002839	GAAGGCGCUUCCCUUUAGAGCG
hsa-miR-525-5p	MIMAT0002838	CUCCAGAGGGAUGCACUUUCU
hsa-miR-526a	MIMAT0002845	CUCUAGAGGGAAGCACUUUCUG
hsa-miR-526b-5p	MIMAT0002835	CUCUUGAGGGAAGCACUUUCUGU
hsa-miR-527	MIMAT0002862	CUGCAAAGGGAAGCCCUUUC
hsa-miR-532-3p	MIMAT0004780	CCUCCCACACCCAAGGCUUGCA
hsa-miR-532-5p	MIMAT0002888	CAUGCCUUGAGUGUAGGACCGU
hsa-miR-539-3p	MIMAT0022705	AUCAUACAAGGACAAUUUCUUU
hsa-miR-539-5p	MIMAT0003163	GGAGAAAUUAUCCUUGGUGUGU
hsa-miR-541-3p	MIMAT0004920	UGGUGGGCACAGAAUCUGGACU
hsa-miR-542-3p	MIMAT0003389	UGUGACAGAUUGAUAACUGAAA
hsa-miR-542-5p	MIMAT0003340	UCGGGGAUCAUCAUGUCACGAGA
hsa-miR-543	MIMAT0004954	AAACAUUCGCGGUGCACUUCUU
hsa-miR-544a	MIMAT0003164	AUUCUGCAUUUUUAGCAAGUUC
hsa-miR-545-3p	MIMAT0003165	UCAGCAAACAUUUAUUGUGUGC
hsa-miR-548a-3p	MIMAT0003251	CAAAACUGGCAAUUACUUUUGC
hsa-miR-548a-5p	MIMAT0004803	AAAAGUAAUUGCGAGUUUUACC
hsa-miR-548aa	MIMAT0018447	AAAAACCACAAUUACUUUUGCACCA

hsa-miR-548ad-3p	MIMAT0018946	GAAAACGACAAUGACUUUUGCA
hsa-miR-548ah-3p	MIMAT0020957	CAAAAACUGCAGUUACUUUUGC
hsa-miR-548ah-5p	MIMAT0018972	AAAAGUGAUUGCAGUGUUUG
hsa-miR-548ai	MIMAT0018989	AAAGGUAAUUGCAGUUUUUUCCC
hsa-miR-548ak	MIMAT0019013	AAAAGUAACUGCGGUUUUUGA
hsa-miR-548al	MIMAT0019024	AACGGCAAUGACUUUUGUACCA
hsa-miR-548am-5p	MIMAT0022740	AAAAGUAAUUGCGGUUUUUGCC
hsa-miR-548ar-3p	MIMAT0022266	UAAAACUGCAGUUAUUUUUGC
hsa-miR-548ar-5p	MIMAT0022265	AAAAGUAAUUGCAGUUUUUGC
hsa-miR-548av-3p	MIMAT0022304	AAAACUGCAGUUACUUUUGC
hsa-miR-548b-3p	MIMAT0003254	CAAGAACCUCAGUUGCUUUUGU
hsa-miR-548c-5p	MIMAT0004806	AAAAGUAAUUGCGGUUUUUGCC
hsa-miR-548d-3p	MIMAT0003323	CAAAAACCACAGUUUCUUUUGC
hsa-miR-548d-5p	MIMAT0004812	AAAAGUAAUUGUGGUUUUUGCC
hsa-miR-548e-3p	MIMAT0005874	AAAAACUGAGACUACUUUUGCA
hsa-miR-548e-5p	MIMAT0026736	CAAAAGCAAUCGCGGUUUUUGC
hsa-miR-548g-3p	MIMAT0005912	AAAACUGUAAUUACUUUUGUAC
hsa-miR-548h-3p	MIMAT0022723	CAAAAACCGCAAUUACUUUUGCA
hsa-miR-548h-5p	MIMAT0005928	AAAAGUAAUCGCGGUUUUUGUC
hsa-miR-548i	MIMAT0005935	AAAAGUAAUUGCGGAUUUUGCC
hsa-miR-548j-3p	MIMAT0026737	CAAAAACUGCAUUACUUUUGC
hsa-miR-548j-5p	MIMAT0005875	AAAAGUAAUUGCGGUCUUUGGU
hsa-miR-548k	MIMAT0005882	AAAAGUACUUGCGGAUUUUGCU
hsa-miR-548l	MIMAT0005889	AAAAGUAUUUGCGGGUUUUGUC
hsa-miR-548m	MIMAT0005917	CAAAGGUAUUUGUGGUUUUUG
hsa-miR-548n	MIMAT0005916	CAAAAGUAAUUGUGGAUUUUGU
hsa-miR-5480-3p	MIMAT0005919	CCAAAACUGCAGUUACUUUUGC

hsa-miR-5480-5p	MIMAT0022738	AAAAGUAAUUGCGGUUUUUUGCC
hea miD 549a	MIMAT0011162	CUCCUCCA A A CUA AUCCOCC
lisa-iiiik-348q	MINIA 10011105	GEUGOUGEAAAAGUAAUGGEGG
hsa-miR-548t-3p	MIMAT0022730	AAAAACCACAAUUACUUUUGCACCA
hsa-miR-548v	MIMAT0015020	AGCUACAGUUACUUUUGCACCA
hsa-miR-548y	MIMAT0018354	AAAAGUAAUCACUGUUUUUGCC
hsa-miR-548z	MIMAT0018446	CAAAAACCGCAAUUACUUUUGCA
hsa-miR-549a	MIMAT0003333	UGACAACUAUGGAUGAGCUCU
hsa-miR-550a-5p	MIMAT0004800	AGUGCCUGAGGGAGUAAGAGCCC
hsa-miR-551a	MIMAT0003214	GCGACCCACUCUUGGUUUCCA
hsa-miR-551b-3p	MIMAT0003233	GCGACCCAUACUUGGUUUCAG
hsa-miR-552-3p	MIMAT0003215	AACAGGUGACUGGUUAGACAA
hsa-miR-553	MIMAT0003216	AAAACGGUGAGAUUUUGUUUU
hsa-miR-554	MIMAT0003217	GCUAGUCCUGACUCAGCCAGU
hsa-miR-555	MIMAT0003219	AGGGUAAGCUGAACCUCUGAU
hsa-miR-556-3p	MIMAT0004793	AUAUUACCAUUAGCUCAUCUUU
hsa-miR-556-5p	MIMAT0003220	GAUGAGCUCAUUGUAAUAUGAG
hsa-miR-561-3p	MIMAT0003225	CAAAGUUUAAGAUCCUUGAAGU
hsa-miR-561-5p	MIMAT0022706	AUCAAGGAUCUUAAACUUUGCC
hsa-miR-562	MIMAT0003226	AAAGUAGCUGUACCAUUUGC
hsa-miR-563	MIMAT0003227	AGGUUGACAUACGUUUCCC
hsa-miR-564	MIMAT0003228	AGGCACGGUGUCAGCAGGC
hsa-miR-566	MIMAT0003230	GGGCGCCUGUGAUCCCAAC
hsa-miR-567	MIMAT0003231	AGUAUGUUCUUCCAGGACAGAAC
hsa-miR-568	MIMAT0003232	AUGUAUAAAUGUAUACACAC
hsa-miR-570-3p	MIMAT0003235	CGAAAACAGCAAUUACCUUUGC
hsa-miR-570-5p	MIMAT0022707	AAAGGUAAUUGCAGUUUUUUCCC
hsa-miR-571	MIMAT0003236	UGAGUUGGCCAUCUGAGUGAG

hsa-miR-572	MIMAT0003237	GUCCGCUCGGCGGUGGCCCA
hsa-miR-573	MIMAT0003238	CUGAAGUGAUGUGUAACUGAUCAG
hsa-miR-574-3p	MIMAT0003239	CACGCUCAUGCACACACCCACA
hsa-miR-574-5p	MIMAT0004795	UGAGUGUGUGUGUGUGAGUGUGU
hsa-miR-575	MIMAT0003240	GAGCCAGUUGGACAGGAGC
hsa-miR-576-3p	MIMAT0004796	AAGAUGUGGAAAAAUUGGAAUC
hsa-miR-576-5p	MIMAT0003241	AUUCUAAUUUCUCCACGUCUUU
hsa-miR-577	MIMAT0003242	UAGAUAAAAUAUUGGUACCUG
hsa-miR-578	MIMAT0003243	CUUCUUGUGCUCUAGGAUUGU
hsa-miR-579-3p	MIMAT0003244	UUCAUUUGGUAUAAACCGCGAUU
hsa-miR-579-5p	MIMAT0026616	UCGCGGUUUGUGCCAGAUGACG
hsa-miR-580-3p	MIMAT0003245	UUGAGAAUGAUGAAUCAUUAGG
hsa-miR-582-3p	MIMAT0004797	UAACUGGUUGAACAACUGAACC
hsa-miR-582-5p	MIMAT0003247	UUACAGUUGUUCAACCAGUUACU
hsa-miR-584-3p	MIMAT0022708	UCAGUUCCAGGCCAACCAGGCU
hsa-miR-584-5p	MIMAT0003249	UUAUGGUUUGCCUGGGACUGAG
hsa-miR-585-3p	MIMAT0003250	UGGGCGUAUCUGUAUGCUA
hsa-miR-587	MIMAT0003253	UUUCCAUAGGUGAUGAGUCAC
hsa-miR-589-5p	MIMAT0004799	UGAGAACCACGUCUGCUCUGAG
hsa-miR-590-3p	MIMAT0004801	UAAUUUUAUGUAUAAGCUAGU
hsa-miR-590-5p	MIMAT0003258	GAGCUUAUUCAUAAAAGUGCAG
hsa-miR-591	MIMAT0003259	AGACCAUGGGUUCUCAUUGU
hsa-miR-592	MIMAT0003260	UUGUGUCAAUAUGCGAUGAUGU
hsa-miR-593-3p	MIMAT0004802	UGUCUCUGCUGGGGUUUCU
hsa-miR-595	MIMAT0003263	GAAGUGUGCCGUGGUGUGUCU
hsa-miR-596	MIMAT0003264	AAGCCUGCCCGGCUCCUCGGG
hsa-miR-597-5p	MIMAT0003265	UGUGUCACUCGAUGACCACUGU

hsa-miR-598-3n	MIMAT0003266	
пза-ппк-370-эр	WIIWIA 1 0003200	CACCOUNCECCOUCA
hsa-miR-599	MIMAT0003267	GUUGUGUCAGUUUAUCAAAC
hsa-miR-600	MIMAT0003268	ACUUACAGACAAGAGCCUUGCUC
hsa-miR-601	MIMAT0003269	UGGUCUAGGAUUGUUGGAGGAG
hsa-miR-603	MIMAT0003271	CACACUGCAAUUACUUUUGC
hsa-miR-604	MIMAT0003272	AGGCUGCGGAAUUCAGGAC
hsa-miR-605-5p	MIMAT0003273	UAAAUCCCAUGGUGCCUUCUCCU
hsa-miR-606	MIMAT0003274	AAACUACUGAAAAUCAAAGAU
hsa-miR-607	MIMAT0003275	GUUCAAAUCCAGAUCUAUAAC
hsa-miR-608	MIMAT0003276	AGGGGUGGUGUUGGGACAGCUCCGU
hsa-miR-610	MIMAT0003278	UGAGCUAAAUGUGUGCUGGGA
hsa-miR-612	MIMAT0003280	GCUGGGCAGGGCUUCUGAGCUCCUU
hsa-miR-613	MIMAT0003281	AGGAAUGUUCCUUCUUUGCC
hsa-miR-614	MIMAT0003282	GAACGCCUGUUCUUGCCAGGUGG
hsa-miR-615-3p	MIMAT0003283	UCCGAGCCUGGGUCUCCCUCUU
hsa-miR-615-5p	MIMAT0004804	GGGGGUCCCCGGUGCUCGGAUC
hsa-miR-616-3p	MIMAT0004805	AGUCAUUGGAGGGUUUGAGCAG
hsa-miR-617	MIMAT0003286	AGACUUCCCAUUUGAAGGUGGC
hsa-miR-619-3p	MIMAT0003288	GACCUGGACAUGUUUGUGCCCAGU
hsa-miR-620	MIMAT0003289	AUGGAGAUAGAUAUAGAAAU
hsa-miR-624-3p	MIMAT0004807	CACAAGGUAUUGGUAUUACCU
hsa-miR-625-5p	MIMAT0003294	AGGGGGAAAGUUCUAUAGUCC
hsa-miR-626	MIMAT0003295	AGCUGUCUGAAAAUGUCUU
hsa-miR-627-3p	MIMAT0026623	UCUUUUCUUUGAGACUCACU
hsa-miR-627-5p	MIMAT0003296	GUGAGUCUCUAAGAAAAGAGGA
hsa-miR-628-3p	MIMAT0003297	UCUAGUAAGAGUGGCAGUCGA
hsa-miR-628-5p	MIMAT0004809	AUGCUGACAUAUUUACUAGAGG

hsa-miR-629-5p	MIMAT0004810	UGGGUUUACGUUGGGAGAACU
hsa-miR-630	MIMAT0003299	AGUAUUCUGUACCAGGGAAGGU
hsa-miR-631	MIMAT0003300	AGACCUGGCCCAGACCUCAGC
hsa-miR-637	MIMAT0003307	ACUGGGGGCUUUCGGGCUCUGCGU
hsa-miR-638	MIMAT0003308	AGGGAUCGCGGGCGGGUGGCGGCCU
hsa-miR-639	MIMAT0003309	AUCGCUGCGGUUGCGAGCGCUGU
hsa-miR-640	MIMAT0003310	AUGAUCCAGGAACCUGCCUCU
hsa-miR-641	MIMAT0003311	AAAGACAUAGGAUAGAGUCACCUC
hsa-miR-642a-3p	MIMAT0020924	AGACACAUUUGGAGAGGGAACC
hsa-miR-642a-5p	MIMAT0003312	GUCCCUCUCCAAAUGUGUCUUG
hsa-miR-643	MIMAT0003313	ACUUGUAUGCUAGCUCAGGUAG
hsa-miR-644a	MIMAT0003314	AGUGUGGCUUUCUUAGAGC
hsa-miR-648	MIMAT0003318	AAGUGUGCAGGGCACUGGU
hsa-miR-649	MIMAT0003319	AAACCUGUGUUGUUCAAGAGUC
hsa-miR-650	MIMAT0003320	AGGAGGCAGCGCUCUCAGGAC
hsa-miR-6503-3p	MIMAT0025463	GGGACUAGGAUGCAGACCUCC
hsa-miR-6503-5p	MIMAT0025462	AGGUCUGCAUUCAAAUCCCCAGA
hsa-miR-6511a-3p	MIMAT0025479	CCUCACCAUCCCUUCUGCCUGC
hsa-miR-6511a-5p	MIMAT0025478	CAGGCAGAAGUGGGGCUGACAGG
hsa-miR-651-3p	MIMAT0026624	AAAGGAAAGUGUAUCCUAAAAG
hsa-miR-651-5p	MIMAT0003321	UUUAGGAUAAGCUUGACUUUUG
hsa-miR-652-3p	MIMAT0003322	AAUGGCGCCACUAGGGUUGUG
hsa-miR-652-5p	MIMAT0022709	CAACCCUAGGAGAGGGGUGCCAUUCA
hsa-miR-654-3p	MIMAT0004814	UAUGUCUGCUGACCAUCACCUU
hsa-miR-654-5p	MIMAT0003330	UGGUGGGCCGCAGAACAUGUGC
hsa-miR-655-3p	MIMAT0003331	AUAAUACAUGGUUAACCUCUUU
hsa-miR-656-3p	MIMAT0003332	AAUAUUAUACAGUCAACCUCU

hsa-miR-660-3p	MIMAT0022711	ACCUCCUGUGUGCAUGGAUUA
hsa-miR-660-5p	MIMAT0003338	UACCCAUUGCAUAUCGGAGUUG
hsa-miR-661	MIMAT0003324	UGCCUGGGUCUCUGGCCUGCGCGU
hsa-miR-663a	MIMAT0003326	AGGCGGGGCGCCGCGGGACCGC
hsa-miR-664a-3p	MIMAT0005949	UAUUCAUUUAUCCCCAGCCUACA
hsa-miR-664b-3p	MIMAT0022272	UUCAUUUGCCUCCCAGCCUACA
hsa-miR-664b-5p	MIMAT0022271	UGGGCUAAGGGAGAUGAUUGGGUA
hsa-miR-665	MIMAT0004952	ACCAGGAGGCUGAGGCCCCU
hsa-miR-671-3p	MIMAT0004819	UCCGGUUCUCAGGGCUCCACC
hsa-miR-671-5p	MIMAT0003880	AGGAAGCCCUGGAGGGGGCUGGAG
hsa-miR-6720-3p	MIMAT0025851	CGCGCCUGCAGGAACUGGUAGA
hsa-miR-6721-5p	MIMAT0025852	UGGGCAGGGGCUUAUUGUAGGAG
hsa-miR-6724-5p	MIMAT0025856	CUGGGCCCGCGGCGGGGGGGGGGG
hsa-miR-6728-5p	MIMAT0027357	UUGGGAUGGUAGGACCAGAGGGG
hsa-miR-6732-3p	MIMAT0027366	UAACCCUGUCCUCUCCCUCCCAG
hsa-miR-675-5p	MIMAT0004284	UGGUGCGGAGAGGGCCCACAGUG
hsa-miR-708-5p	MIMAT0004926	AAGGAGCUUACAAUCUAGCUGGG
hsa-miR-744-5p	MIMAT0004945	UGCGGGGCUAGGGCUAACAGCA
hsa-miR-758-3p	MIMAT0003879	UUUGUGACCUGGUCCACUAACC
hsa-miR-758-5p	MIMAT0022929	GAUGGUUGACCAGAGAGCACAC
hsa-miR-7-5p	MIMAT0000252	UGGAAGACUAGUGAUUUUGUUGU
hsa-miR-760	MIMAT0004957	CGGCUCUGGGUCUGUGGGGA
hsa-miR-761	MIMAT0010364	GCAGCAGGGUGAAACUGACACA
hsa-miR-764	MIMAT0010367	GCAGGUGCUCACUUGUCCUCCU
hsa-miR-765	MIMAT0003945	UGGAGGAGAAGGAAGGUGAUG
hsa-miR-766-3p	MIMAT0003888	ACUCCAGCCCCACAGCCUCAGC
hsa-miR-766-5p	MIMAT0022714	AGGAGGAAUUGGUGCUGGUCUU

hsa-miR-767-3p	MIMAT0003883	UCUGCUCAUACCCCAUGGUUUCU
hsa-miR-767-5p	MIMAT0003882	UGCACCAUGGUUGUCUGAGCAUG
hsa-miR-769-3p	MIMAT0003887	CUGGGAUCUCCGGGGGUCUUGGUU
hsa-miR-769-5p	MIMAT0003886	UGAGACCUCUGGGUUCUGAGCU
hsa-miR-770-5p	MIMAT0003948	UCCAGUACCACGUGUCAGGGCCA
hsa-miR-7975	MIMAT0031178	AUCCUAGUCACGGCACCA
hsa-miR-802	MIMAT0004185	CAGUAACAAAGAUUCAUCCUUGU
hsa-miR-873-3p	MIMAT0022717	GGAGACUGAUGAGUUCCCGGGA
hsa-miR-873-5p	MIMAT0004953	GCAGGAACUUGUGAGUCUCCU
hsa-miR-874-3p	MIMAT0004911	CUGCCCUGGCCCGAGGGACCGA
hsa-miR-874-5p	MIMAT0026718	CGGCCCCACGCACCAGGGUAAGA
hsa-miR-875-3p	MIMAT0004923	CCUGGAAACACUGAGGUUGUG
hsa-miR-876-3p	MIMAT0004925	UGGUGGUUUACAAAGUAAUUCA
hsa-miR-876-5p	MIMAT0004924	UGGAUUUCUUUGUGAAUCACCA
hsa-miR-877-5p	MIMAT0004949	GUAGAGGAGAUGGCGCAGGG
hsa-miR-885-3p	MIMAT0004948	AGGCAGCGGGGUGUAGUGGAUA
hsa-miR-885-5p	MIMAT0004947	UCCAUUACACUACCCUGCCUCU
hsa-miR-887-3p	MIMAT0004951	GUGAACGGGCGCCAUCCCGAGG
hsa-miR-887-5p	MIMAT0026720	CUUGGGAGCCCUGUUAGACUC
hsa-miR-888-5p	MIMAT0004916	UACUCAAAAAGCUGUCAGUCA
hsa-miR-889-3p	MIMAT0004921	UUAAUAUCGGACAACCAUUGU
hsa-miR-890	MIMAT0004912	UACUUGGAAAGGCAUCAGUUG
hsa-miR-891a-5p	MIMAT0004902	UGCAACGAACCUGAGCCACUGA
hsa-miR-891b	MIMAT0004913	UGCAACUUACCUGAGUCAUUGA
hsa-miR-892a	MIMAT0004907	CACUGUGUCCUUUCUGCGUAG
hsa-miR-892b	MIMAT0004918	CACUGGCUCCUUUCUGGGUAGA
hsa-miR-922	MIMAT0004972	GCAGCAGAGAAUAGGACUACGUC

hsa-miR-924	MIMAT0004974	AGAGUCUUGUGAUGUCUUGC
hsa-miR-92a-1-5p	MIMAT0004507	AGGUUGGGAUCGGUUGCAAUGCU
hsa-miR-92a-3p	MIMAT0000092	UAUUGCACUUGUCCCGGCCUGU
hsa-miR-92b-3p	MIMAT0003218	UAUUGCACUCGUCCCGGCCUCC
hsa-miR-933	MIMAT0004976	UGUGCGCAGGGAGACCUCUCCC
hsa-miR-934	MIMAT0004977	UGUCUACUACUGGAGACACUGG
hsa-miR-935	MIMAT0004978	CCAGUUACCGCUUCCGCUACCGC
hsa-miR-93-5p	MIMAT0000093	CAAAGUGCUGUUCGUGCAGGUAG
hsa-miR-936	MIMAT0004979	ACAGUAGAGGGAGGAAUCGCAG
hsa-miR-937-3p	MIMAT0004980	AUCCGCGCUCUGACUCUCUGCC
hsa-miR-939-5p	MIMAT0004982	UGGGGAGCUGAGGCUCUGGGGGGUG
hsa-miR-940	MIMAT0004983	AAGGCAGGGCCCCCGCUCCCC
hsa-miR-941	MIMAT0004984	CACCCGGCUGUGUGCACAUGUGC
hsa-miR-942-3p	MIMAT0026734	CACAUGGCCGAAACAGAGAAGU
hsa-miR-942-5p	MIMAT0004985	UCUUCUCUGUUUUGGCCAUGUG
hsa-miR-944	MIMAT0004987	AAAUUAUUGUACAUCGGAUGAG
hsa-miR-95-3p	MIMAT0000094	UUCAACGGGUAUUUAUUGAGCA
hsa-miR-9-5p	MIMAT0000441	UCUUUGGUUAUCUAGCUGUAUGA
hsa-miR-96-5p	MIMAT0000095	UUUGGCACUAGCACAUUUUUGCU
hsa-miR-98-3p	MIMAT0022842	CUAUACAACUUACUACUUUCCC
hsa-miR-98-5p	MIMAT0000096	UGAGGUAGUAAGUUGUAUUGUU
hsa-miR-99a-5p	MIMAT0000097	AACCCGUAGAUCCGAUCUUGUG
hsa-miR-99b-5p	MIMAT0000689	CACCCGUAGAACCGACCUUGCG

Non-Mammalian Spike In miRNA probes

ath-miR159a	MIMAT0000177
cel-miR-248	MIMAT0000304
cel-miR-254	MIMAT0000310
osa-miR414	MIMAT0001330
osa-miR442	MIMAT0001605

Internal Reference Genes

ACTB	NM_001101.2
B2M	NM_004048.2
GAPDH	NM_002046.3
RPL19	NM_000981.3
RPLP0	NM_001002.3

7. REFERENCES

- Haugen, B.R., 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: What is new and what has changed? Cancer, 2016.
- Haugen, B.R., et al., 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 2016. 26(1): p. 1-133.
- 3. Mazzaferri, E.L., *Management of a solitary thyroid nodule*. N Engl J Med, 1993. **328**(8): p. 553-9.
- 4. Pitoia, F. and A. Miyauchi, 2015 American Thyroid Association Guidelines for Thyroid Nodules and Differentiated Thyroid Cancer and Their Implementation in Various Care Settings. Thyroid, 2016. **26**(2): p. 319-21.
- Singer, P.A., et al., *Treatment guidelines for patients with thyroid nodules and well-differentiated thyroid cancer*. Archives of Internal Medicine, 1996. 156(19): p. 2165-2172.
- Guth, S., et al., Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest, 2009. 39(8): p. 699-706.
- Rago, T. and P. Vitti, *Role of thyroid ultrasound in the diagnostic evaluation* of thyroid nodules. Best Pract Res Clin Endocrinol Metab, 2008. 22(6): p. 913-28.
- Tan, G.H. and H. Gharib, *Thyroid incidentalomas: management approaches* to nonpalpable nodules discovered incidentally on thyroid imaging. Ann Intern Med, 1997. 126(3): p. 226-31.

- Jossart, G.H. and O.H. Clark, Well-differentiated thyroid cancer. Curr Probl Surg, 1994. 31(12): p. 933-1012.
- 10. Rosai J, C.M., DeLellis R, *Tumors of the Thyroid Gland: Atlas of Tumor Pathology*. Vol. 5. 1992.
- VA, L., Surgical Pathology of The Thyroid. Vol. 22. 1990: WB Saunders Co, Philadelphia.
- 12. J, R., *Surgical Pathology*. 2004: Mosby: London.
- Sobrinho Simões M, A.S., Kroll TG, et al., *Follicular carcinoma*. Vol. Pathology and Genetics Tumours of Endocrine Organs. IARC. 2004: WHO Classification of Tumour.
- Mazzaferri, E.L. and S.M. Jhiang, *Differentiated thyroid cancer long-term impact of initial therapy*. Trans Am Clin Climatol Assoc, 1995. 106: p. 151-68; discussion 168-70.
- Mazzaferri, E.L. and S.M. Jhiang, Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med, 1994.
 97(5): p. 418-28.
- 16. Bradly, D.P., et al., *Incidental papillary carcinoma in patients treated surgically for benign thyroid diseases*. Surgery, 2009. **146**(6): p. 1099-104.
- 17. From, G., et al., *Review of thyroid cancer cases among patients with previous benign thyroid disorders*. Thyroid, 2000. **10**(8): p. 697-700.
- Roti, E., et al., Clinical and histological characteristics of papillary thyroid microcarcinoma: results of a retrospective study in 243 patients. J Clin Endocrinol Metab, 2006. 91(6): p. 2171-8.
- Yu, X.M., et al., Should all papillary thyroid microcarcinomas be aggressively treated? An analysis of 18,445 cases. Ann Surg, 2011. 254(4): p. 653-60.
- 20. Mazeh, H. and H. Chen, *Advances in surgical therapy for thyroid cancer*. Nat Rev Endocrinol, 2011. **7**(10): p. 581-8.

- 21. Nikiforov, Y.E. and M.N. Nikiforova, *Molecular genetics and diagnosis of thyroid cancer*. Nat Rev Endocrinol, 2011. **7**(10): p. 569-80.
- 22. Moreno-Egea, A., et al., *Multivariate analysis of histopathological features as prognostic factors in patients with papillary thyroid carcinoma*. Br J Surg, 1995. **82**(8): p. 1092-4.
- Baloch Z, L.V., *Pathology of the thyroid gland*. Endocrine Pathology. 2002, Philadelphia, PA: Churchill Livingston.
- 24. Joensuu, H. and P.J. Klemi, *DNA aneuploidy in adenomas of endocrine organs*. Am J Pathol, 1988. **132**(1): p. 145-51.
- 25. Lemoine, N.R., et al., *High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis.* Oncogene, 1989. **4**(2): p. 159-64.
- Namba, H., et al., *H-ras protooncogene mutations in human thyroid neoplasms*. J Clin Endocrinol Metab, 1990. **71**(1): p. 223-9.
- 27. Adeniran, A.J., et al., *Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas.* Am J Surg Pathol, 2006. **30**(2): p. 216-22.
- Cohen, Y., et al., *BRAF mutation in papillary thyroid carcinoma*. J Natl Cancer Inst, 2003. 95(8): p. 625-7.
- 29. Kimura, E.T., et al., *High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma.* Cancer Res, 2003. **63**(7): p. 1454-7.
- Soares, P., et al., BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene, 2003. 22(29): p. 4578-80.
- 31. Ciampi, R. and Y.E. Nikiforov, *Alterations of the BRAF gene in thyroid tumors*. Endocr Pathol, 2005. **16**(3): p. 163-72.
- 32. Chiosea, S., et al., *A novel complex BRAF mutation detected in a solid variant of papillary thyroid carcinoma*. Endocr Pathol, 2009. **20**(2): p. 122-6.

- Hsiao, S.J. and Y.E. Nikiforov, *Molecular approaches to thyroid cancer diagnosis*. Endocr Relat Cancer, 2014. 21(5): p. T301-13.
- 34. Santoro, M., et al., *Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype.* J Clin Invest, 1992. **89**(5): p. 1517-22.
- Nikiforova, M.N., et al., RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab, 2003. 88(5): p. 2318-26.
- 36. Nikiforova, M.N., et al., *PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses.* Am J Surg Pathol, 2002. **26**(8): p. 1016-23.
- 37. Dobashi, Y., et al., Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol, 1994. 3(1): p. 9-14.
- Garcia-Rostan, G., et al., Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol, 2001. 158(3): p. 987-96.
- Kozomara, A. and S. Griffiths-Jones, *miRBase: integrating microRNA* annotation and deep-sequencing data. Nucleic Acids Res, 2011. 39(Database issue): p. D152-7.
- 40. Landthaler, M., A. Yalcin, and T. Tuschl, *The human DiGeorge syndrome* critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol, 2004. **14**(23): p. 2162-7.
- 41. Gregory, R.I., et al., *The Microprocessor complex mediates the genesis of microRNAs*. Nature, 2004. **432**(7014): p. 235-40.
- 42. Gregory, R.I., et al., *Human RISC couples microRNA biogenesis and posttranscriptional gene silencing*. Cell, 2005. **123**(4): p. 631-40.

- 43. Lee, Y., et al., *The nuclear RNase III Drosha initiates microRNA processing*. Nature, 2003. **425**(6956): p. 415-9.
- 44. Yi, R., et al., *Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs*. Genes Dev, 2003. **17**(24): p. 3011-6.
- 45. !!! INVALID CITATION !!!
- 46. Brennecke, J., et al., *Principles of microRNA-target recognition*. PLoS Biol, 2005. 3(3): p. e85.
- Jackson, R.J. and N. Standart, *How do microRNAs regulate gene expression?* Sci STKE, 2007. 2007(367): p. re1.
- 48. Bartel, D.P., *MicroRNAs: genomics, biogenesis, mechanism, and function.*Cell, 2004. **116**(2): p. 281-97.
- 49. Lim, L.P., et al., *Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.* Nature, 2005. **433**(7027): p. 769-73.
- 50. Friedman, R.C., et al., *Most mammalian mRNAs are conserved targets of microRNAs*. Genome Res, 2009. **19**(1): p. 92-105.
- 51. Ambs, S., et al., Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res, 2008.
 68(15): p. 6162-70.
- 52. Cohn, D.E., et al., *Comprehensive miRNA profiling of surgically staged* endometrial cancer. Am J Obstet Gynecol, 2010. **202**(6): p. 656 e1-8.
- Iorio, M.V., et al., *MicroRNA signatures in human ovarian cancer*. Cancer Res, 2007. 67(18): p. 8699-707.
- 54. Thum, T., et al., *MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure*. Circulation, 2007. **116**(3): p. 258-67.
- 55. Landi, M.T., et al., *MicroRNA expression differentiates histology and predicts survival of lung cancer*. Clin Cancer Res, 2010. **16**(2): p. 430-41.

- 56. Calin, G.A., et al., Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 2002. 99(24): p. 15524-9.
- 57. Esquela-Kerscher, A. and F.J. Slack, *Oncomirs microRNAs with a role in cancer*. Nat Rev Cancer, 2006. **6**(4): p. 259-69.
- Hanahan, D. and R.A. Weinberg, *Hallmarks of cancer: the next generation*. Cell, 2011. 144(5): p. 646-74.
- 59. Kanellopoulou, C. and S. Monticelli, A role for microRNAs in the development of the immune system and in the pathogenesis of cancer. Semin Cancer Biol, 2008. **18**(2): p. 79-88.
- 60. Kim, M., A.L. Kasinski, and F.J. Slack, *MicroRNA therapeutics in preclinical cancer models*. Lancet Oncol, 2011. **12**(4): p. 319-21.
- 61. Li, M., et al., *microRNA and cancer*. AAPS J, 2010. **12**(3): p. 309-17.
- 62. Ruan, K., X. Fang, and G. Ouyang, *MicroRNAs: novel regulators in the hallmarks of human cancer*. Cancer Lett, 2009. **285**(2): p. 116-26.
- 63. Schaefer, A., et al., *MicroRNAs and cancer: current state and future perspectives in urologic oncology*. Urol Oncol, 2010. **28**(1): p. 4-13.
- 64. Blenkiron, C., et al., *MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype.* Genome Biol, 2007. **8**(10): p. R214.
- 65. Mattie, M.D., et al., Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer, 2006. 5: p. 24.
- 66. Lowery, A.J., et al., MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res, 2009. 11(3): p. R27.
- 67. Iorio, M.V., et al., *MicroRNA gene expression deregulation in human breast cancer*. Cancer Res, 2005. **65**(16): p. 7065-70.

- Nikiforova, M.N., et al., *MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility*. J Clin Endocrinol Metab, 2008.
 93(5): p. 1600-8.
- 69. He, H., et al., *The role of microRNA genes in papillary thyroid carcinoma*.
 Proc Natl Acad Sci U S A, 2005. **102**(52): p. 19075-80.
- 70. Pallante, P., et al., *MicroRNA deregulation in human thyroid papillary carcinomas.* Endocr Relat Cancer, 2006. **13**(2): p. 497-508.
- 71. Tetzlaff, M.T., et al., *Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues.* Endocr Pathol, 2007. **18**(3): p. 163-73.
- 72. Chen, Y.T., et al., *MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma*. Mod Pathol, 2008. **21**(9): p. 1139-46.
- 73. Wilson, C., Cancer: MicroRNA expression provides clues about the aggressiveness of papillary thyroid carcinoma. Nat Rev Endocrinol, 2010.
 6(8): p. 416.
- 74. Nikiforova, M.N., S.I. Chiosea, and Y.E. Nikiforov, *MicroRNA expression profiles in thyroid tumors*. Endocr Pathol, 2009. **20**(2): p. 85-91.
- 75. Weber, F., et al., *A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma.* J Clin Endocrinol Metab, 2006. **91**(9): p. 3584-91.
- 76. Chou, C.K., et al., *miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation.* Thyroid, 2010. **20**(5): p. 489-94.
- 77. Ricarte-Filho, J.C., et al., *Effects of let-7 microRNA on Cell Growth and Differentiation of Papillary Thyroid Cancer*. Transl Oncol, 2009. 2(4): p. 236-41.
- Czajka, A.A., et al., Family of microRNA-146 Regulates RARbeta in Papillary Thyroid Carcinoma. PLoS One, 2016. 11(3): p. e0151968.

- 79. Braun, J., et al., Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene, 2010. 29(29): p. 4237-44.
- Colamaio, M., et al., miR-191 down-regulation plays a role in thyroid follicular tumors through CDK6 targeting. J Clin Endocrinol Metab, 2011.
 96(12): p. E1915-24.
- 81. Yip, L., et al., *MicroRNA signature distinguishes the degree of aggressiveness* of papillary thyroid carcinoma. Ann Surg Oncol, 2011. **18**(7): p. 2035-41.
- 82. Visone, R., et al., *Specific microRNAs are downregulated in human thyroid anaplastic carcinomas.* Oncogene, 2007. **26**(54): p. 7590-5.
- 83. Tielens, E.T., et al., *Follicular variant of papillary thyroid carcinoma. A clinicopathologic study.* Cancer, 1994. **73**(2): p. 424-31.
- 84. Sebastian, S.O., et al., *Papillary thyroid carcinoma: prognostic index for survival including the histological variety.* Arch Surg, 2000. **135**(3): p. 272-7.
- 85. Passler, C., et al., *Follicular variant of papillary thyroid carcinoma: a longterm follow-up.* Arch Surg, 2003. **138**(12): p. 1362-6.
- 86. Crile, G., Jr. and J.B. Hazard, *Relationship of the age of the patient to the natural history and prognosis of carcinoma of the thyroid*. Ann Surg, 1953.
 138(1): p. 33-8.
- 87. Liu, J., et al., Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer, 2006. **107**(6): p. 1255-64.
- 88. Kakudo, K., et al., *Encapsulated papillary thyroid carcinoma, follicular variant: a misnomer.* Pathol Int, 2012. **62**(3): p. 155-60.
- 89. Yu, X.M., et al., Follicular variant of papillary thyroid carcinoma is a unique clinical entity: a population-based study of 10,740 cases. Thyroid, 2013.
 23(10): p. 1263-8.
- 90. Rivera, M., et al., Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs

infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol, 2010. **23**(9): p. 1191-200.

- Nikiforov, Y.E., et al., Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol, 2016. 2(8): p. 1023-9.
- 92. Xing, M., *Molecular pathogenesis and mechanisms of thyroid cancer*. Nat Rev Cancer, 2013. **13**(3): p. 184-99.
- 93. Piana, S., et al., *Encapsulated well-differentiated follicular-patterned thyroid carcinomas do not play a significant role in the fatality rates from thyroid carcinoma*. Am J Surg Pathol, 2010. **34**(6): p. 868-72.
- 94. Vivero, M., S. Kraft, and J.A. Barletta, *Risk stratification of follicular variant of papillary thyroid carcinoma*. Thyroid, 2013. **23**(3): p. 273-9.
- 95. Maletta, F., et al., Cytological features of "noninvasive follicular thyroid neoplasm with papillary-like nuclear features" and their correlation with tumor histology. Hum Pathol, 2016. **54**: p. 134-42.
- 96. Nikiforov, Y.E., et al., *Highly accurate diagnosis of cancer in thyroid nodules* with follicular neoplasm/suspicious for a follicular neoplasm cytology by *ThyroSeq v2 next-generation sequencing assay.* Cancer, 2014. **120**(23): p. 3627-34.
- 97. Nikiforov, Y.E., et al., Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid, 2015. **25**(11): p. 1217-23.
- 98. Nishino, M., Molecular cytopathology for thyroid nodules: A review of methodology and test performance. Cancer Cytopathol, 2016. 124(1): p. 14-27.
- 99. Vriens, M.R., et al., *MicroRNA expression profiling is a potential diagnostic* tool for thyroid cancer. Cancer, 2012. **118**(13): p. 3426-32.

- Guo, Z., et al., In Situ Hybridization Analysis of miR-146b-5p and miR-21 in Thyroid Nodules: Diagnostic Implications. Endocr Pathol, 2015. 26(2): p. 157-63.
- Dettmer, M., et al., Comprehensive MicroRNA expression profiling identifies novel markers in follicular variant of papillary thyroid carcinoma. Thyroid, 2013. 23(11): p. 1383-9.
- 102. Lima, C.R., et al., *MiRNA-146b-5p upregulates migration and invasion of different Papillary Thyroid Carcinoma cells*. BMC Cancer, 2016. **16**: p. 108.
- 103. Bhaumik, D., et al., Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 2008. 27(42): p. 5643-7.
- Visconti, R., et al., Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkappaB p65 protein expression. Oncogene, 1997. 15(16): p. 1987-94.
- 105. Hebrant, A., et al., *miRNA expression in anaplastic thyroid carcinomas*. PLoS One, 2014. 9(8): p. e103871.
- 106. Lin, Z., et al., Abnormal miRNA-30e Expression is Associated with Breast Cancer Progression. Clin Lab, 2016. **62**(1-2): p. 121-8.
- 107. Feng, G., et al., MiR-30e suppresses proliferation of hepatoma cells via targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA. Biochem Biophys Res Commun, 2016. 472(3): p. 516-22.
- 108. Cong, D., et al., Expression profiles of pivotal microRNAs and targets in thyroid papillary carcinoma: an analysis of The Cancer Genome Atlas. Onco Targets Ther, 2015. 8: p. 2271-7.
- 109. Aragon Han, P., et al., MicroRNA Expression and Association with Clinicopathologic Features in Papillary Thyroid Cancer: A Systematic Review. Thyroid, 2015. 25(12): p. 1322-9.

- 110. Sadeghian, Y., et al., *RETRACTED ARTICLE: Profiles of tissue microRNAs; miR-148b and miR-25 serve as potential prognostic biomarkers for hepatocellular carcinoma*. Tumour Biol, 2015.
- 111. Ge, H., et al., *MicroRNA-148b is down-regulated in non-small cell lung cancer and associated with poor survival.* Int J Clin Exp Pathol, 2015. 8(1): p. 800-5.
- 112. Rehbein, G., B. Schmidt, and M. Fleischhacker, *Extracellular microRNAs in* bronchoalveolar lavage samples from patients with lung diseases as predictors for lung cancer. Clin Chim Acta, 2015. **450**: p. 78-82.
- Hidaka, H., et al., Tumor suppressive microRNA-1285 regulates novel molecular targets: aberrant expression and functional significance in renal cell carcinoma. Oncotarget, 2012. 3(1): p. 44-57.
- 114. Bell, E.H., et al., A novel miRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy. PLoS One, 2015. 10(3): p. e0118745.
- 115. Li, S., et al., *MiR-185 acts as a tumor suppressor by targeting AKT1 in nonsmall cell lung cancer cells.* Int J Clin Exp Pathol, 2015. **8**(9): p. 11854-62.
- 116. Wang, R., et al., *MiR-185 is involved in human breast carcinogenesis by targeting Vegfa.* FEBS Lett, 2014. **588**(23): p. 4438-47.
- Chiyomaru, T., et al., Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PLoS One, 2013. 8(3): p. e58929.
- 118. Yu, T., et al., *MiRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN*. Oncotarget, 2015. **6**(30): p. 30239-50.
- 119. Perez-Carbonell, L., et al., *MiR-320e is a novel prognostic biomarker in colorectal cancer*. Br J Cancer, 2015. **113**(1): p. 83-90.