
University of Pisa

Department of Computer Science

Ph.D. in Computer Science

Ph.D. Thesis

Distributed Graph Processing:
Algorithms And Applications

Alessandro Lulli

Supervisor
Laura Ricci

Supervisor
Patrizio Dazzi

iii

Abstract

Thinking Like A Vertex (TLAV) is a popular computational paradigm suit-
able to express many distributed and iterative graph algorithms. It has been
adopted as base computational paradigm for many of the currently available
distributed frameworks and endorsed by numerous industries and academias.
Also, it has been exploited to define algorithms to extract useful information
from the nowadays increasing production of data which can be modeled as
graphs. These facts strengthen the idea that exploiting distributed frame-
works for graph analysis is an hot topic of research. As a matter of fact,
we found that a solution for several algorithms is not always available or
state-of-art algorithms are unsatisfactory, under many points of view.

This thesis aims at providing guidelines for defining distributed graph
algorithms structured according to TLAV and showing their applicability to
real applications. We show how approximation, simplification and versatility
can be combined to define novel distributed algorithms to improve the cur-
rently available solutions with the goal to enhance the functionalities of the
algorithms. We show also how algorithms may be combined to define com-
plex solutions and how they can be employed to solve relevant applications.
In particular, we present novel algorithms for computing betweenness cen-
trality, connected components and clustering. Such algorithms are exploited
for Spam campaign detection, population estimation and hashtag centrality.
To this end, we make use of real large dataset provided from our collabo-
rations, Symantec for Spam emails, a large Italian Mobile Phone provider,
mobile calls, and ISTI, CNR for a two years collection of real tweets from
the Twitter social network.

v

Contents

List of Publications xiii

1 Introduction 1
1.1 Issues affecting existing solutions 3
1.2 Thesis Contributions . 5

1.2.1 Guidelines to define a TLAV algorithm 5
1.2.2 Proposed solutions . 6

1.3 Outline of the Thesis . 9

I Related Works 11

2 The TLAV approach: frameworks and algorithms 13
2.1 The Think Like A Vertex approach 13

2.1.1 Timing . 14
2.1.2 Computation . 15
2.1.3 Communication . 16
2.1.4 Graph partitioning . 16

2.2 Framework for graph processing 16
2.2.1 MapReduce . 17
2.2.2 Pregel . 19
2.2.3 GraphLab . 22
2.2.4 PowerGraph . 23
2.2.5 Apache Spark . 25

2.3 Case studies . 28
2.3.1 Graph Problems . 28
2.3.2 PageRank . 29
2.3.3 Connected Components: hash-to-min 32

2.4 Conclusion . 33

II TLAV Algorithms 35

3 Duckweed: Distributed Current Flow Betweenness Central-
ity 37
3.1 Related work . 38
3.2 Preliminaries . 39

3.2.1 Random Walk Betweenness 39
3.2.2 Current Flow Betweenness 40

3.3 Duckweed . 41
3.3.1 Computational Model 41
3.3.2 The duckweed approach 42
3.3.3 Flow computation . 42
3.3.4 Centrality computation 45

vi

3.4 Experimental evaluation . 46
3.4.1 Evaluation of Correlation 46
3.4.2 Convergence Time . 48
3.4.3 Centrality on Large Graphs 48
3.4.4 Message Volume . 50
3.4.5 Flow Creation Strategy 51

3.5 Duckweed on Apache Spark: the algorithm 52
3.5.1 Reducing the number of messages 52
3.5.2 Reducing the size of the messages 53
3.5.3 Flow Generation . 53
3.5.4 Termination . 53
3.5.5 Implementation Details 54

3.6 Experimental evaluation on Apache Spark 54
3.7 Conclusion . 56

4 Connected Components: Cracker 57
4.1 Related Work . 58
4.2 The CRACKER Algorithm 61

4.2.1 Seed Identification . 62
4.2.2 Seed propagation . 64
4.2.3 Cracker correctness . 64
4.2.4 Cracker computational cost 66
4.2.5 Optimisations to cracker 69
4.2.6 Implementation . 71

4.3 Experimental Evaluation . 71
4.3.1 Dataset Description 72
4.3.2 Evaluation of Optimizations 72
4.3.3 Comparison with the State of the Art 75
4.3.4 Scalability . 78

4.4 Conclusion . 78

5 Clustering 81
5.1 Related Work . 82
5.2 k-NN based clustering . 83

5.2.1 Phase 1: k-NN Graph Construction 83
5.2.2 k-NN Graph Pruning 84
5.2.3 Phase 2: Connected Components 85

5.3 Experimental Setup . 85
5.4 Results . 87
5.5 Conclusion . 90

6 Density Based Clustering 91
6.1 Background and Related Work 92

6.1.1 The DBSCAN Algorithm 92
6.1.2 Distributed Density-Based Clustering 93
6.1.3 Graph-Based Clustering 94
6.1.4 Density-Based Clustering for High-Dimensional Data . 94

6.2 NG-DBSCAN: Approximate and Flexible DBSCAN 94
6.2.1 Overview . 95
6.2.2 Phase 1: Building the ε-Graph 96
6.2.3 Phase 2: Discovering Dense Regions 100

vii

6.3 Experimental Setup . 103
6.3.1 Experimental Platform 103
6.3.2 Evaluation Metrics . 103
6.3.3 The Datasets . 104
6.3.4 Alternative Approaches 104

6.4 Results . 105
6.4.1 Analysis of the Parameter Space 105
6.4.2 Performance in a 2D Space 108
6.4.3 Performance in d-Dimensional Spaces 110
6.4.4 Performance with Text Data 111
6.4.5 Scalability . 113
6.4.6 Discussion . 114

6.5 Conclusion . 115

III Applications 117

7 Spam campaign analysis 119
7.1 Our approach . 119
7.2 Data Description . 120
7.3 Results . 121
7.4 Conclusion . 123

8 Population estimation 125
8.1 Related Work . 125

8.1.1 Mobile phones data analysis 125
8.1.2 Scalable clustering algorithms 127

8.2 Data description . 127
8.3 Preliminaries: Muchness analytical process 129
8.4 From Muchness to Muchness+: a framework for census . . . 130

8.4.1 Improving the clustering algorithm 131
8.4.2 Adapt the metric to the data instead of the algorithm 133

8.5 Experimental evaluation . 136
8.5.1 How to configure Muchness+ 136
8.5.2 Road to Muchness+: evaluating optimizations 137
8.5.3 Studying individuals mobility 138
8.5.4 Comparing with competitors and census data 140
8.5.5 Evaluating individual profiles 141
8.5.6 Scalability . 143

8.6 Conclusions . 143

9 Hashtag centrality 145
9.1 Related works . 145
9.2 Data Description . 146
9.3 Our Approach . 146

9.3.1 Graph Construction 147
9.3.2 Centrality Computation 147

9.4 Validation . 148
9.4.1 Identification of cyclic events 148
9.4.2 Identification of seasons 148

viii

9.5 Conclusion . 150

10 Conclusion 151
10.1 Discussion . 152
10.2 Future Works . 152

10.2.1 Simplifications Techniques 152
10.2.2 From TLAV to Thinking Like a Sub-Graph 153
10.2.3 Algorithms on dynamic graphs 153
10.2.4 Improve Frameworks: Parallelism and Compression . . 153

Bibliography 154

ix

List of Figures

1.1 Thesis workflow . 6

2.1 Synchronous and Asynchronous computation. 15
2.2 An overview of an execution in MapReduce. 18
2.3 Pregel’s superstep as BSP implementation 19
2.4 Superstep: an example . 20
2.5 Differences between vertex cut and edges cuts. 24
2.6 Spark Architecture . 24
2.7 An RDD of Strings partitioned on 4 machines. 26
2.8 Spark Architecture . 27
2.9 Spark Example . 27

3.1 Evolution of a flow from s to t over time 42
3.2 Kendall Tau Correlation with NetworkX 47
3.3 Kendall Tau Correlation: complete vs approximated 48
3.4 Convergence Time . 49
3.5 CC Number (large number is better) 49
3.6 CC Number: Graph Cut While Increasing Duckweed approx-

imation . 50
3.7 Message Volume Evaluation 51
3.8 Evaluation of the approximation. Kendall tau correlation

with NetworkX. 55
3.9 Comparison with competitors and duckweed x, duckweed mp. 55

4.1 cracker: example of seed identification 61
4.2 cracker seed propagation tree 64
4.3 Illustration of algorithm crk on the same graph in Figure 4.1 66
4.4 Seed identification with the ep and os optimizations. 69
4.5 Evaluation of Optimizations 73
4.6 Sensitivity to Diameter . 74
4.7 Sensitivity to Vertices Number 75
4.8 Step By Step Comparison . 75
4.9 Graph Topology Evolution . 76
4.10 Scalability evaluation . 78

5.1 Impact of the pruning phase threshold θ. Impact of number
of iterations for the k-NN graph construction phase of our
algorithm. Clustering quality in terms of clustering Silhouette
for the full Symantec dataset. 85

5.2 Twitter Dataset: Clustering quality in terms of inter and in-
tra cluster similarity, and clustering Silhouette. As for the
Symantec dataset, the algorithm proposed in this work out-
performs the baseline method in all metrics. 88

5.3 Scalability. Our approach scales roughly linearly. 89

x

6.1 Phase 1: ε-graph construction. 97
6.2 Phase 2 – dense region discovery. 101
6.3 Analysis of the termination mechanism. 106
6.4 Analysis of the Parameter Space. 107
6.5 Synthetic datasets plot. 110
6.6 Performance in a 2D space: Scalability. 110
6.7 Performance in a d-dimensional space. 111
6.8 Evaluation of the scalability. 113

7.1 Illustration of our approach 120
7.2 Symantec dataset: feature distribution and average similarity 121
7.3 Symantec Dataset: Clustering quality in terms of inter and

intra cluster similarity, and clustering Silhouette. The algo-
rithm proposed in this work outperforms the baseline method,
and is only marginally affected by approximation quality. . . 122

7.4 Clustering quality in terms of the unique number of features
in each cluster output by clustering algorithms. For manual
inspection to be useful, a small number of unique feature, such
as bot-nets or time-frame of each cluster item, is preferred.
Our approach outperforms the baseline algorithm. 123

8.1 Individuals perform calls under a given cell (relative to a mu-
nicipality). Each call is collected from the Telco operators.
We receive such data and we aggregate the calls of each indi-
vidual creating a user calling profile (ICP). 128

8.2 Amount of calls in the dataset. Darker colors represent an
higher amount of calls collected in the dataset. 128

8.3 In-coming and out-coming workers for the Pisa municipality . 129
8.4 Muchness analytical process. A : for each individual we assign

an ICP. B : each ICP becomes a node in a graph. C : we search
for similar nodes and at the end we prune low similarity edges
(dashed). D : we search for connected components and we
identify outliers (node 2). E : for each cluster we define an
exemplar (icons) classified as Resident, Commuter or Visitor. 130

8.5 How to configure Muchness+: analysing the sampling param-
eter (ρ) . 137

8.6 Studying individuals mobility: Individuals travelling from home
to work . 139

8.7 Studying individuals mobility: Individuals travelling from home
to visit places . 140

8.8 Comparing with competitors and census data 141
8.9 Evaluating individual profiles 142
8.10 Scalability evaluation . 143

9.1 How to construct a co-occurrence graph from raw tweets . . . 147
9.2 Identification of cyclic events 148
9.3 Identification of periods . 149
9.4 Identification of seasons . 149

xi

List of Tables

1.1 TLAV algorithms developed in this thesis 5

2.1 Implementing the TLAV model using RDD. In the example one

RDD composed of two partitions. Each element has a key, the

identifier, and a value, with the adjacency list of the vertex. 25

3.1 Comparison of the flow creation strategies for the Random
graph (in terms of CCs created) 52

3.2 Execution time on real world graphs. 56

4.1 State-of-the-art algorithms . 58
4.2 Datasets description . 71
4.3 Performances with real world datasets: message number and

message volume are values ×106 74

5.1 Twitter Dataset: Manual Investigation 88
5.2 Symantec dataset: breakdown of the algorithm runtime (in

seconds) . 89
5.3 Symantec dataset: K-means, baseline algorithm runtime (in

seconds) . 89

6.1 Overview of parallel density-based clustering algorithms. . . . 93
6.2 How to set ρ. 108
6.3 Performance in a 2D space: Clustering Quality. 109
6.4 Spam and Tweets dataset: manual investigation. 111
6.5 Evaluation using text data: Twitter and Spam datasets com-

parison with k-means. “C” stands for compactness and “S”
for separation. 112

6.6 Distance function comparison for Twitter. 112

7.1 Symantec Dataset: characteristics 120
7.2 Symantec Dataset: Manual Investigation 122

8.1 Overview of frameworks to estimate population 127
8.2 Similar ICPs extracted by expertises. A comparison of simi-

larity values using: euc, jac and euc+jac 134
8.3 Road to Muchness+: adaptive k optimization 137
8.4 Road to Muchness+: early termination 138
8.5 Muchness+ vs Muchness . 138
8.6 Comparing with competitors and census data: Median esti-

mation errors . 140
8.7 Evaluating individual profiles: exemplars 143

xiii

List of Publications

International Journals

J003 A. Lulli, M. Dell’Amico, P. Michiardi, and L. Ricci. NG-DBSCAN:
a Scalable, Approximate Density-Based Clustering Algo-
rithm for Arbitrary Similarity Metrics. Proceedings of the
VLDB Endowment, 10(3), 2016 (to appear)

J002 A. Lulli, L. Ricci, E. Carlini, P. Dazzi, and C. Lucchese. Fast Con-
nected Components Computation in Large Graphs by Ver-
tex Pruning. IEEE Transactions on Parallel and Distributed sys-
tems, 22(6):931–945, 2016 (to appear)

J001 E. Carlini, A. Lulli, and L. Ricci. Dragon: Multidimensional
range queries on distributed aggregation trees. Future Gen-
eration Comp. Syst., 55:101–115, 2016

International Conferences

I have been the presenter author for [C003,C004,C006].

C008 A. Kavalionak, E. Carlini, A. Lulli, G. Amato, C. Gennaro, C. Megh-
ini, and L. Ricci. A prediction-based distributed tracking pro-
tocol for video surveillance. In Networking, Sensing and Control
(ICNSC), 2017 IEEE International Conference on. IEEE, 2017. sub-
mitted

C007 M. Bertolucci, A. Lulli, and L. Ricci. Current flow betweenness
centrality with Apache Spark. In International Conference on
Algorithms and Architectures for Parallel Processing. Springer, 2016
(to appear)

C006 A. Lulli, L. Gabrielli, P. Dazzi, M. Dell’Amico, P. Michiardi,
M. Nanni, and L. Ricci. Improving Population Estimation
From Mobile Calls: a Clustering Approach. In 2016 IEEE
Symposium on Computers and Communication (ISCC), pages 1097–
1102. IEEE, 2016

C005 E. Carlini, P. Dazzi, A. Lulli, and L. Ricci. Distributed graph
processing: an approach based on overlay composition. In
Proceedings of the 31st Annual ACM Symposium on Applied Com-
puting, Pisa, Italy, April 4-8, 2016, pages 1912–1917, 2016

C004 A. Lulli, T. Debatty, M. Dell’Amico, P. Michiardi, and L. Ricci. Scal-
able k-NN based text clustering. In 2015 IEEE International
Conference on Big Data, Big Data 2015, Santa Clara, CA, USA,
October 29 - November 1, 2015, pages 958–963, 2015

C003 A. Lulli, L. Ricci, E. Carlini, P. Dazzi, and C. Lucchese. Cracker:
Crumbling large graphs into connected components. In 2015
IEEE Symposium on Computers and Communication, ISCC 2015,
Larnaca, Cyprus, July 6-9, 2015, pages 574–581, 2015

xiv

C002 M. Bertolucci, E. Carlini, P. Dazzi, A. Lulli, and L. Ricci. Static
and Dynamic Big Data Partitioning on Apache Spark. In
Parallel Computing: On the Road to Exascale, Proceedings of the
International Conference on Parallel Computing, ParCo 2015, 1-4
September 2015, Edinburgh, Scotland, UK, pages 489–498, 2015

C001 A. Lulli, L. Ricci, E. Carlini, and P. Dazzi. Distributed Cur-
rent Flow Betweenness Centrality. In 2015 IEEE 9th Inter-
national Conference on Self-Adaptive and Self-Organizing Systems,
Cambridge, MA, USA, September 21-25, 2015, pages 71–80, 2015

International Workshops

I have been the presenter author for [W001,W002,W003].

W004 E. Carlini, A. Lulli, and L. Ricci. TRACE: generating traces
from mobility models for Distributed Virtual Environments.
In Euro-Par 2016: Parallel Processing Workshops - Euro-Par 2016
International Workshops, Grenoble, France, August 22-25, 2016, Re-
vised Selected Papers, Part I, pages 129–140, 2016 (to appear)

W003 E. Carlini, P. Dazzi, M. Mordacchini, A. Lulli, and L. Ricci. Com-
munity Discovery for Interest Management in DVEs: A
Case Study. In Euro-Par 2015: Parallel Processing Workshops -
Euro-Par 2015 International Workshops, Vienna, Austria, August
24-25, 2015, Revised Selected Papers, pages 273–285, 2015

W002 A. Lulli, P. Dazzi, L. Ricci, and E. Carlini. A Multi-layer Frame-
work for Graph Processing via Overlay Composition. In
Euro-Par 2015: Parallel Processing Workshops - Euro-Par 2015 In-
ternational Workshops, Vienna, Austria, August 24-25, 2015, Re-
vised Selected Papers, pages 515–527, 2015

W001 E. Carlini, P. Dazzi, A. Esposito, A. Lulli, and L. Ricci. Balanced
Graph Partitioning with Apache Spark. In Euro-Par 2014:
Parallel Processing Workshops - Euro-Par 2014 International Work-
shops, Porto, Portugal, August 25-26, 2014, Revised Selected Papers,
Part I, pages 129–140, 2014

Technical Reports

T001 E. Carlini, P. Dazzi, A. Lulli, and L. Ricci. Layered Thinking in
Vertex Centric Computations. ERCIM News, 2015(102), 2015

Submitted papers

S003 E. Carlini, A. Lulli, and L. Ricci. TRACE: Generation and
Analysis of Mobility Traces for Distributed Virtual Envi-
ronments. Concurrency and Computation: Practice and Experience,
2016. submitted

S002 A. Lulli, E. Carlini, P. Dazzi, and L. Ricci. TELOS: An Approach
for Distributed Graph Processing Based on Overlay Com-
position. Scalable Computing: Practice and Experience, 2016. sub-
mitted

xv

S001 A. Lulli, L. Gabrielli, P. Dazzi, M. Dell’Amico, P. Michiardi,
M. Nanni, and L. Ricci. Scalable and flexible clustering so-
lutions for mobile phone based population indicators. Inter-
national Journal of Data Science and Analytics, 2016. submitted

1

Chapter 1

Introduction

The graph abstraction has been largely used since the 18th century, both
in mathematics and science in general. The pervasive usage of graphs has
been motivated by the fact that their structure lets to formally identify the
relationships between objects. In the past century, as soon as computer
science was born, many efforts were focused on identifying and defining ef-
ficient solutions to detect properties and find algorithms for graphs. For
instance, in 1959 Dijkstra [58] published an algorithm to find the Shortest
Paths on a graph. This algorithm is still taught in universities and used in
many application domains, such as the optimization of telecommunication
networks [69].

In recent years, the interest in graphs is getting a renovated momen-
tum and graphs started to be used also in a different manner. In fact, if in
the early ages graphs have been exploited as a common model to visualize
and see relationships, nowadays, although graph visualization is still an im-
portant branch of research, graphs are used to model complex relationships
between different kind of conceptual entities with the objective of extract-
ing valuable information from the continuously increasing amount of data.
This is motivated by the fact that, from the birth of Internet and even more
with Web 2.0 and Social Networks, the amount of information started to
increase with an unprecedented pace. In particular, in the last years, with
the proliferation of different kinds of computational resources, ranging from
computers and IoT devices to mobile phones in everyday life, data has been
produced in many manners and different extents. For instance, users of In-
ternet, generate contents for web pages, post comments and likes on social
networks, perform calls and send messages with mobile phones and countless
more.

A significant portion of such data can be modeled using graphs. For in-
stance, the knowledge of social relationships in a social network dramatically
increases the effectiveness of proposing new products and services tailored for
users in the form of ad-hoc advertisements and search results [191]. Graphs
representing links between web pages have been successfully exploited to de-
velop ranking methods (e.g. PageRank [142]) to improve decision making.
Searching for vulnerability in road networks is used to minimize risks [55],
and many more.

One common trait of these examples is the large size of such graph
data. For instance, a popular dataset containing the follower relationships
in Twitter [101] has around 40 million nodes and 1.5 billion edges. Due
to this, a popular way to perform computation on graphs makes use of
distributed environments to make possible or facilitate the computation of

2 Chapter 1. Introduction

large graphs. One of the most popular forerunner of this kind of compu-
tation is MapReduce framework proposed by Google [51]. This work has
lead the way to many more contributions in the field of distributed com-
putation. Although the first distributed frameworks were general purpose
and not specialized for graph computation, more recently many frameworks
for distributed graph computation have been proposed. Also in this case,
Google has been one of the first to propose a specialized framework called
Pregel [124]. The scientific contributions on this field range from novel
frameworks [112, 78, 193, 186, 157, 33] to optimizations that can be in-
troduced to both facilitate their adoption and to reduce the computational
overhead [184, 189, 46, 158]. The increasing amount of proposals of more
and more specialized and optimized frameworks for graph computation re-
veals the increasing interest on distributed graph computation. In these
frameworks the computation is partitioned on multiple machines and this
requires the definition of suitable models of computation. The majority of
these solutions started to adopt what is called the vertex-centric approach or
Thinking Like A Vertex (TLAV) [131]. The idea is that a program must be
executable from the point of view of a vertex of the graph. To be more pre-
cise, the program must rely only on the local knowledge of a vertex, i.e. its
internal state and the state of its neighbors. Such program will be executed
iteratively on each vertex of the graph until a stopping criteria is met.

The research in this context is manifold, ranging from frameworks im-
provements, to algorithms and applications and many more. For instance,
most graph-based applications may be composed by a different set of mod-
ules, often interplaying in a complex way. Such tasks may be very simple,
in the sense that just one task (algorithm) may be resulting in complex
outcomes for an application. For instance, community discovery has been
successfully used to perform viral marketing [104]. With a similar perspec-
tive, we can observe how triangle counting has been used to determine the
presence of spamming activities in large-scale web graph [16].

On the other end, other applications require more complex chains of tasks
to be solved. One common approach to deal with this kind of applications is
to introduce decomposition, whose main idea is to start from a big task and
to decompose it in smaller ones. Than, each small task is solved in isolation
and finally they are composed to obtain the global solution.

This thesis aims at providing useful guidelines for supporting the design
and implementation of distributed graph-based algorithms and their appli-
cability on real problems. To this end, from the definition of algorithms
following our guidelines, we finally concentrate on applications where our al-
gorithms can be employed for providing the solution to real problems. Such
algorithms can be simple, they solve just one predetermined task, or com-
posed, they use a composition of simple ones collaborating for the achieve-
ment of a solution. We define and develop multiple chains of algorithms
and we show how they can be applied to different applications. Coherently
with the concepts and assumptions underpinning TLAV, our focus is on
algorithms working on large graphs in a distributed environment.

1.1. Issues affecting existing solutions 3

1.1 Issues affecting existing solutions

In order to identify the existing issues on state-of-art solutions and algo-
rithms, structured according to the TLAV approach, and to give our con-
tributions to this field, we performed some preliminary studies on several
distinct existing algorithms and applications exploiting the TLAV approach.
These studies allowed us to identify some of the most critical issues charac-
terizing these solutions.

We started analyzing how an algorithm defined according to the TLAV
approach can be ported to a real framework implementing this paradigm.
In our works, we make use of Apache Spark [193] as the reference archi-
tecture implementing TLAV. To this end, we study an algorithm called Ja-
Be-Ja [148], performing balanced k-way graph partitioning. This algorithm
is commonly undertaken to partition a graph on k machines. We identified
a few notable issues that we addressed, allowing us to achieve good results
when porting it on Apache Spark [35]. Also, we studied many popular al-
gorithms such as PageRank, Triangle Counting, Connected Components and
we gave a proof of the impact of a good partitioning strategy to reduce the
execution time with respect to the most common strategy used in Apache
Spark [20]. We also studied how to query a distributed environment to an-
swer multi attribute range queries [39] and we evaluated and port different
algorithms for community discovery [38]. Finally, to have a deeper knowledge
on the mechanics of a framework supporting TLAV computation, we defined
a layered architecture on a popular distributed frameworks which allows the
definition of multiple graph views in the same algorithm [37, 115, 36].

These problems helped us to understand the importance of graph anal-
ysis and the issues to face when defining it. Due to this, we identified
some guidelines (Section 1.2.1) that we think are important when defining
or porting an algorithm to a distributed environment. Before introducing
the contributions of this thesis in the following section, we summarize the
main issues we identify in the current state-of-the-art solutions.

• does already exist a solution? Although graphs have been around
for many years, some problems still miss a distributed definition and
solution. For instance, when we studied centrality measures on graphs
we found that the current techniques are mainly centralized and not
easily portable to distributed environments. To overcome this lack
of solutions, we propose an approach that exploits the analogy with
electrical circuits to provide an elegant solution perfectly fitting the
TLAV model.

• is it always feasible to re-adapt existing algorithms in TLAV?
Porting sequential algorithms to a distributed context may be either a
straightforward task or a really hard challenge. In fact, single machine
and multiple machines environments have different characteristics and
an algorithm must rely on different assumptions. For instance, it is not
difficult to implement a graph traversal algorithm on a single machine,
where it is possible to access in a uniform way each vertex, but it can
be cumbersome when traversing means jumping the pointer from one
machine to another one.

4 Chapter 1. Introduction

• is an exact solution required? For certain algorithms and ap-
plications, achieving the exact solution is the only viable possibility.
However, in many situations an exact solution is not required. For
instance, when ranking vertices of a graph, it is more important to
obtain a good ranking in an acceptable time, than obtaining all the
exact values of the ranking function. In addition, when working with
large graphs, an approximated solution may be the only viable option.
As a consequence, it is fundamental to identify where approximation
can be introduced without affecting too much the final result.

• is a versatile solution always possible? For versatile solution we
mean a solution able to adapt to more kind of datasets. This is an
important quality of algorithms because many sources of data exists
and may exhibit different characteristics. Easily switching between
different datasets, while preserving the same algorithmic solution, may
facilitate in providing valuable information from the data in less time.

Further, additional issues emerge when dealing with TLAV processing:

• skewed computation load. Many graphs exhibit a power-law dis-
tribution of the number of neighbors of a node. Due to this, some
algorithms accessing the neighbours of each vertex may lead to skewed
computation, caused by the different size of the neighborhood. Due to
this, it is important to adapt the algorithm in order to avoid unbal-
anced computation. This can be achieved in many ways, for instance,
approximation techniques can be introduced to re-size the neighbour-
hood of each vertex or the computation of a vertex can be splitted in
multiple machines.

• data partitioning. One of the key aspect characterizing the dis-
tributed breakdown typical of TLAV approaches, is a proper data par-
titioning. That is a fundamental element for achieving an effective
and efficient distributed computation. The data distribution strate-
gies drive the placement of vertices and edges in a distributed environ-
ment on the available machines. Addressing the problem of a proper
distribution leads to two different perspectives, firstly related to the
proper orchestration of the computation and to the data access pat-
tern, secondly to the efficient decomposition of data to enhance the
performances by exploiting data locality. Usually, existing frameworks
adopt simple and fast data partitioning strategies relying on hashing
the vertex identifier. However, some algorithms may get performance
boosts introducing a more sophisticated partitioning strategy.

• unnecessary computation. The TLAV model of computation re-
quires to iteratively execute a given program on all the vertices of a
graph. However, it may happen that some vertices reach a state in
which further updates on that vertex are not necessary. In such sce-
narios, it is a waste of resources to continue executing the computation
on all the vertices. Instead, simplification techniques can be adopted
to shrink the number of vertices which continue the computation and
continue the execution only where required. This has multiple bene-
fits such as reducing both the time to complete an iteration and the

1.2. Thesis Contributions 5

Name Approximation Simplification Versatility
Current Flow Betweenness (Ch. 3) duckweed X (X) n/a

Connected Components (Ch. 4) cracker - X n/a

Clustering k-NN + CC (Ch. 5) k-NN+CC X - X
Density Based Clustering (Ch. 6) NG-DBSCAN X X X

Table 1.1: TLAV algorithms developed in this thesis.

memory required to save the intermediate data, because less vertices
are involved.

1.2 Thesis Contributions

The goal of the thesis is to show how complex applications may be imple-
mented by composing TLAV algorithms defined following useful guidelines.
Also, as we showed in the previous section, although many works push on
delivering novel solutions, many issues still exists. Due to this, existing
algorithms often lack of specialized solutions or can be improved.

The algorithms we propose have been developed following some com-
mon guidelines that we think are important when defining a novel TLAV
algorithm. In the following of this section, we provide a description of the
guidelines and the algorithms defined.

1.2.1 Guidelines to define a TLAV algorithm

Table 1.1 shows the algorithms developed in this thesis and classify them
according to a set of guidelines which are presented in the following.

• thinking in TLAV (local knowledge). Even if the first guideline
may sound redundant, many state-of-art solutions still rely on assump-
tions that are not always achievable in a distributed environment. For
instance, most existing algorithms exploit a global view of the graph.
Exploiting TLAV implies that each node during its computation may
rely only on its local view of the graph. Due to this, it is infrequent
that sequential solutions for a centralized environment may be easily
adapted to such model. It is required to think about local solutions
for the global problems and this requires to change the point of view
of the algorithm definition.

• approximation. It is one of the most important guidelines when
defining an algorithm. This is of particular importance in large graphs
because some problems are intractable due to their size. Searching for
approximated solutions is, in some scenarios, the only viable solution.
In addition, as we stated in the previous section, sometimes an exact
solution is not required because an approximated one may be enough
for the problem’s objective. Approximation can be achieved in numer-
ous ways. In TLAV, where each vertex relies on its local view, it is
possible to limit its view, for instance, in scenarios where the number
of neighbors is skewed and, as a consequence, the computation would
be unbalanced. This solution has been adopted for the clustering and
the density based clustering presented in Chapter 5 and 6. Another
source of approximation can be the early termination of the algorithm.

6 Chapter 1. Introduction

Application

Composed Algorithm

Single Block Algorithm

Connected
Components

Nearest
Neighbour Graphs

Current Flow
Betweenness

Clustering
KNN + CC

Density Based
Clustering

Spam Campaign
Detection

Population
Estimation Hashtag Centrality

Contribution of this thesis

State-of-art solution

Figure 1.1: Thesis workflow. From single block algorithms
to composed algorithms.

For instance, before reaching convergence, in some cases, a good so-
lution is achieved in a few iterations and most of the remaining time
to reach convergence is spent on minor improvements. Our aim is to
detect when such scenarios occur and stop the computation early.

• simplification. In iterative algorithms implemented according to the
TLAV paradigm, the computation is executed on each node, in each
step of the computation. Simplification techniques can be introduced
to reduce the number of computing nodes, while preserving the quality
of the solution. We noticed that in some algorithms the execution con-
tinues also if the node has reached a local convergence or has already
found an acceptable result. As a consequence, it is of relevant im-
portance to keep active only the nodes which may improve the global
solution. This has great benefits because less nodes means less time to
execute an iteration and less memory to save the intermediate data.
We introduce simplification techniques in the connected components
and density based clustering algorithms shown in Chapter 4 and 6. In
both the algorithms we remove nodes from the computation as soon
as we discover the solution for the node or a solution good enough for
the requisites of the problem.

• versatility. To provide an algorithm capable of handling arbitrary
data is of paramount importance in order to permit the evaluation on
different datasets. However, when studying state-of-art clustering al-
gorithms the majority stems in providing optimizations for particular
kind of data. We introduce the versatility in both the clustering algo-
rithms we propose, respectively, Chapter 5 and 6. We show that such
solutions have comparable computing time with respect to specialized
solutions, although being able to accommodate any kind of data.

1.2.2 Proposed solutions

The contributions and the workflow of the thesis are summarized in Fig-
ure 1.1. We started providing our contributions by exploiting the TLAV
model to solve classical graph problems:

1.2. Thesis Contributions 7

• connected components (cracker) [122, 123]. Although being one
of the most popular analysis on graphs and several distributed algo-
rithms exists, we discovered that state-of-art solutions for the detection
of connected components leave room for improvements. In particular,
in such algorithms it is useless to continue processing nodes that al-
ready discovered the connected component to which they belong. Our
solution is an algorithm, cracker, that employs a simplification tech-
nique by iteratively removing inactive nodes from the computation.
cracker has been proven to return the same exact results as the
other algorithms in literature but using only a fraction of their time.

• betweenness centrality (duckweed) [121, 21]. We studied the cur-
rent flow betweenness centrality where the importance of nodes in a
graph is not evaluated only in term of the number of shortest paths
traversing a node but on all the paths connecting each couple of nodes
in the graph. An interesting property of this kind of betweenness is its
similarity with electrical circuits, because each node can be seen as a
conjunction between two or more resistors and an edge corresponds to
a resistor. Current state of the art solutions for current flow between-
ness centrality are all centralized, and a distributed solution for the
computation of this measure is missing. In duckweed we exploit the
laws of current conservation to calculate the current flow betweenness
using only the local knowledge of each node. Since the computation re-
quires to consider all the possible couples of nodes in the graph, we use
an approximation technique in order to reduce the costs to determine
the solution. We show that, despite the approximation, a good corre-
lation of the ranking achieved by our algorithm with respect to exact
results is obtained. Also, we are able to provide the ranking also for
large graphs where classical algorithms for betweenness centrality fail
to deliver a result in an acceptable time or with an acceptable amount
of resources. In duckweed, we only select a subset of all the possible
flows to determine the betweenness and each flow is iteratively com-
puted by each node until an approximated local convergence is reached,
i.e. the difference in the values between two consecutive iterations is
under a threshold.

Next, we show how the previously defined algorithms may interact to
construct more complex TLAV algorithms:

• clustering (k-NN+CC) [117]. The first task defined by a chain
of TLAV algorithms presented in the thesis is a two phase cluster-
ing. The first phase exploits a parallel adaptation of a popular nearest
neighbour (k-NN) construction graph algorithm. We choose such al-
gorithm because it exploits a local knowledge to reach the solution and
it is versatile, it is possible to accommodate any kind of data. In the
second phase we make use of our cracker algorithm to define each
cluster equal to one connected component of the k-NN graph. The k-
NN phase is approximate since we do not require an exact k-NN graph
to provide a good clustering quality. To this end, we conduct a deep
study on the trade-off between clustering quality and early stop of the
iterative process.

8 Chapter 1. Introduction

• density based clustering (NG-DBSCAN) [118]. Starting from
the previously defined clustering algorithm, we noticed that it has
some similarities with density based clustering. Due to this, we de-
fine an additional clustering algorithm which enhances the previous
two phases clustering to deliver a result which approximates to the
one provided by the DBSCAN algorithm [63]. We call this algorithm
NG-DBSCAN (Neighbour Graph Density Based Clustering) and we
introduce an approximation technique to exploit both a limited view on
each node to avoid skewed computation and an early termination able
to provide a good approximation of the DBSCAN algorithm avoiding
longer running time. Also, we introduce simplification, by stopping
the computation on such nodes that, at a given iteration, have already
collected a number of similar nodes above a certain threshold. Re-
sults show that nodes are incredibly fast in discovering similar nodes
and the majority of nodes stop the computation in the first iterations.
Finally, we borrowed the versatility. Versatility is a plus in this sce-
nario and both k-NN+CC and NG-DBSCAN exploit solutions able
to accommodate arbitrary data. We show also that such solutions
have comparable computing time with respect to specialized solutions
although being able to accommodate any kind of data.

Finally, we applied all the above algorithms to real world applications:

• spam campaign detection [117]. The input of this application is a
set of emails already tagged as SPAM. SPAM campaign detection is
the task of identifying group of emails to perform root-cause analysis of
large scale SPAM email campaigns originated from bot networks. This
is of relevant importance for security providers in order to recognize the
origin of the campaigns. We solved this task by clustering emails shar-
ing similar subjects. This is an adversarial context because spammers
manipulate text to avoid SPAM emails being clustered in the same
campaign. Hence, the similarity metrics used for clustering must cope
with text mangling, which require non-metric distances that disregard
typos, character swapping, and other techniques to avoid detection.
Due to this, the versatility of our proposed clustering algorithm has
been relevant to solve this problem1.

• population estimation [119, 120]. The goal of this application is
to provide to statistical and political authorities a novel method to
estimate the population in an area. This task is usually undertaken in
the form of census activity. However, this is a costly tool and cannot
be done frequently. Due to this, the idea is to exploit mobile calls to
monitor the population living in an area. Thanks to a collaboration
with an Italian mobile phone provider, we are able to obtain the calls
performed in Tuscany. We characterize each user through an aggre-
gated information in order to recognize if a user is living, working or
just visiting a particular municipality. Thanks to the versatility of our
clustering algorithm, we are able to aggregate and count the amount of
people flowing in the municipalities. Results show that our approach
is, with respect to the state-of-art, the one providing the smaller error

1This application has been possible thanks to a collaboration with Symantec Research
Labs that actively collaborates to provide insights and the datasets to perform our analysis.

1.3. Outline of the Thesis 9

in estimating residents and it is able to detect also the commuters.
Finally, such application permits to improve our clustering algorithm.
In particular, we enhance the algorithm to deliver good results without
requiring parameters’ configuration from the users2.

• hashtag centrality. The goal of this application is to identify on a
daily basis which are the most important hashtags in Twitter, i.e. the
hashtags where the majority of the information flows in a specific day.
These may have different meaning, for instance, they may reveal the
main topics discussed in a given day or may be used to inject novel
informations reaching the largest amount of people. We analysed 606
days of tweets previously collected at ISTI-CNR3. Each tweet having
at least two hashtags contributes to construct a graph where a node
corresponds to an hashtag and an edge between two hashtags means
that they co-occur in the same tweet. Results reveal that our algorithm
duckweed is able to identify the most important topic of each day
and to correctly recognize the importance of the hashtags.

1.3 Outline of the Thesis

The remainder of this thesis is structured as follows:
Chapter 2 describes the Think Like a Vertex programming model and

presents the state-of-art frameworks devoted to graph processing. Particular
attention will be spent on Apache Spark because it has been the framework
we choose to implement all the algorithms proposed in this thesis. Finally,
we consider two popular algorithms as case study and we show how it is pos-
sible to implement them by exploiting three different frameworks supporting
TLAV model.

Chapter 3 is the first chapter presenting the core contributions of this
thesis. It presents our algorithm duckweed for the approximation of the
current flow betweenness centrality and how it is possible to port such algo-
rithm on Apache Spark.

The idea, definition and evaluation of duckweed have been published in IEEE

Conference on Self-Adaptive and Self-Organizing Systems with the title “Distributed

Current Flow Betweenness Centrality” [121]. The porting of the algorithm in Apache

Spark has been published in the International Conference on Algorithms and Archi-

tectures for Parallel Processing with the title “Current flow betweenness centrality

with Apache Spark” [21].

Chapter 4 presents the definition of the algorithm called cracker for
the computation of connected components. The chapter presents also an
extensive experimental campaign where we compared cracker with respect
many competitors.

The seminal idea of cracker has been published in the paper “Cracker: Crum-

bling large graphs into connected components” [122] presented at IEEE Symposium

on Computers and Communication. An extension of the algorithm with optimiza-

tions and a theoretical study on the costs of the algorithm has been published in the

2This application has been possible thanks to a collaboration with KDD Lab at ISTI-
CNR.

3http://rojo.isti.cnr.it/

10 Chapter 1. Introduction

journal IEEE Transactions on Parallel and Distributed systems with the title “Fast

Connected Components Computation in Large Graphs by Vertex Pruning” [123].

Chapter 5 presents our first application, text clustering, defined by
composing two TLAV algorithms. The chapter presents also an evaluation
of the trade-off between the approximation when calculating a k-NN graph
and the clustering quality.

The proposal of this clustering algorithm has been published in IEEE Conference

on Big Data with the title “Scalable k-NN based text clustering” [117].

Chapter 6 presents the algorithm NG-DBSCAN to perform density
based clustering, which exploits all the guidelines introduced in Section 1.2.1.

The NG-DBSCAN algorithm has been accepted for publication in the Pro-

ceedings of the VLDB Endowment, Vol. 10, No. 3 with the title “NG-DBSCAN:

Approximate Scalable Density-Based Clustering for Arbitrary Data”.

The Chapters 7, 8, 9 present the three applications we have imple-
mented by exploiting the novel algorithms proposed in the thesis. These
chapters present, respectively, SPAM campaign detection, population esti-
mation and hashtags centrality.

The outcome of the SPAM campaign application has been published in IEEE

Conference on Big Data with the title “Scalable k-NN based text clustering” [117].

The population estimation has been originally presented in the IEEE Symposium on

Computers and Communication with the title “”Improving Population Estimation

From Mobile Calls: a Clustering Approach” [119] and an extension is currently

submitted to a journal [120].

Finally, Chapter 10 presents the conclusion of the thesis, some under-
going works and future works.

11

Part I

Related Works

13

Chapter 2

The TLAV approach:
frameworks and algorithms

The interest for large scale graph processing has noticeably increased. This
is partially motivated by the fact that most of the problems faced in the Big
Data analysis can be easily modeled by graphs. For instance, new graphs are
generated daily to represent relationships in social networks, such as Face-
book and Twitter, road networks and biological systems, such as protein
structures and human brain connectome. All these examples are character-
ized by big datasets represented by graphs with a huge number of vertices
and edges. In most cases the amount of data managed is so huge that a
large graph representing the data either cannot fit in the memory of single
computer or the fitting requires huge costs to manage ad hoc solutions.

In this chapter we introduce the TLAV approach and we present a set of
frameworks implementing it. Furthermore, we review some popular graph
algorithms that have been implemented following the TLAV approach. The
literature related to the algorithms we have implemented is reviewed in the
chapter where the corresponding algorithm is presented.

2.1 The Think Like A Vertex approach

The idea of Think Like a Vertex (TLAV) is to execute iteratively a user-
defined program over the vertices of the graph. Such program must use local
data as input (which include data from adjacent vertices or incoming edges)
and runs a function, called “vertex-update”, on each node of the graph. The
output is communicated to adjacent vertices through outgoing edges. The
goal is to find a solution (sometimes approximated), using a termination
condition such as reaching a fixed number of “iterations” or exploiting halt
voting procedures.

This approach is implemented by high-level frameworks whose focus is
to allow a different kind of programming, focused on the viewpoint of each
single vertex. Indeed, the vertex-centric vision helps in cases where having
a whole comprehension of the entire graph can be difficult (and ”costly”,
programmatically speaking).

The TLAV approach can be analyzed according to four fundamental pil-
lars [131] which are Timing, Computation, Communication and Partitioning,
each one exploring state-of-art solutions and opening a debate on which com-
bination of features could be better than another when working on a specific
algorithm. Please notice that pillars are independent to each other; indeed
there are sets of feature choices that are more reasonable and others that do
not work well intuitively.

14 Chapter 2. The TLAV approach: frameworks and algorithms

2.1.1 Timing

When we speak about running the vertex-update function, we also need to
decide when and which nodes must be chosen for updates. The timing of a
TLAV framework describes the way in which “active” vertices are processed
and handled by the underlying framework’s scheduler. Various models adopt
the synchronous timing, which was first developed by Bulk Synchronous
Parallel (BSP) [175] processing model, thus updating a subset of the active
vertices in parallel and using a global barrier to achieve synchronization. In
BSP, the computation is organized in “super-steps” which roughly corre-
spond to the iterations of an iterative algorithm, and each super-step uses
the output produced in the previous one as input for the vertices that are
scheduled for the current super-step. The barrier prevents the computation
of the next super-step from starting until previous super-step is completed.
Additional details about the BSP model can be found in Section 2.2.2. Ver-
tices are divided among the processing unit (PU), and the order vertices are
scheduled within a PU does not affect the overall output of the computation.

Conversely, asynchronous timing allows an update function to be sched-
uled and run in parallel as soon as a PU is available for it. This way every
vertex update function accesses the most recent state of its neighborhood
when the execution starts. Moreover, computation can evolve without an
explicit scheme, allowing vertices to be scheduled by the algorithm itself.
Figure 2.1 shows the difference between the two models. Data updates are
represented by the dotted arrows. In the synchronous timing, a single PU
can be seen as a worker which executes a pre-determined number of update
functions, and then waits for other workers to synchronize all data. Con-
versely, in the asynchronous setting workers execute the update functions
independently from each other. There is no correlation between the time
a node executes the update and the time its neighborhood changes. The
absence of explicit synchronization barriers poses the typical problems of
concurrency and race conditions on shared data; moreover the scheduler can
reorganize dynamically the vertex execution order. This results in larger
degree of flexibility but, on the other hand, the complexity of the framework
(scheduling and data consistency) increases.

There are also frameworks that use both synchronous and asynchronous
timing, and others that have chosen an hybrid approach, trying to pull out
the best features of each pattern. For example, PowerSwitch [184] uses
heuristics and statistics to predict which timing will perform better, and
evaluations prove that on many benchmarking algorithms this approach per-
forms well. Choosing the best model depends on what one wants to do, and
efficient predictions are not so easy to be made; moreover, there are proper-
ties of the graph that can vary during the computation, thus reducing the
initial advantages of the chosen pattern. We can observe that synchronous
timing can be easier to design and it is almost always deterministic, but in-
troduces trade-off performances; for example the throughput of each super-
step is given by the slowest PU, and the communication between PUs can
generate a significant overhead, so the framework is useful for lightweight
computation with small load variability.

A study whose results are released in [131] has found that running an
instance of “find the shortest path” problem on an highly-partitioned graph,
synchronization accounted for 80% of the total time, thus warning us that we

2.1. The Think Like A Vertex approach 15

Figure 2.1: Synchronous and Asynchronous computation.

have to consider the bigger picture, including all the other pillars of a TLAV
framework. Further, if the workload is not balanced, there is the risk to have
many inactive workers waiting for the overloaded ones, acting as bottlenecks
reducing the effective parallelism. In the asynchronous model, unbalanced
workload is handled much better and generally these frameworks have shown
to outperform the synchronous ones (however, exceptions are common); in
case of vertices that are not always active, the workload can be very variable
and asynchronous solutions could be preferred. Again, all depends from the
specific algorithm: experimental analysis shows that synchronous execution
is generally better for IO-bound algorithms, while asynchronous works well
on CPU-bound algorithms [131].

2.1.2 Computation

The choices regarding the computational model of TLAV regard: i) how
the vertex update is computed and ii) in which ways vertices/edges infor-
mation can be accessed. We start answering the first question by introduc-
ing the One Phase model. The simplest way of TLAV is to acquire input
data from any adjacent edge/vertex, update a vertex value by running the
vertex-update function and finally send the update to the vertex’s neighbors
(modifying edges’ or vertices’ values), all in the same “atomic action”. This
is simple and direct, but there exist more flexible solutions that increase
complexity a bit. This is the case of the Two Phase computational model,
which divides the computation, leaving update-distribution alone in the sec-
ond phase; we indeed speak about a Gather-Scatter model, where Gathering
means getting the input and applying the vertex-function and Scattering is
the last action of “sending” values towards the neighborhood.

Another consideration has to be done exploring in which way information
flows. Basically there are two possible solutions: the pull mode of compu-
tation and the push one [45]. In the pull mode an active node of the graph
can access neighboring vertices values and produce its own value, as well as
ask the system to schedule one or more neighboring vertices, so information
flows from the neighbors to the active vertex. On the contrary, the push
mode makes information flow from active vertices out to near vertices under
the form of messages; it makes possible the aggregation of all parallel up-
dates in a single message from a machine to a remote vertex (this technique
is known as sender-side aggregation and can reduce messages size by 90%).

16 Chapter 2. The TLAV approach: frameworks and algorithms

2.1.3 Communication

This section discusses how communication and data sharing between ma-
chines is realized. The communication can be performed in two different
manners, namely the message passing and shared memory.

First of all, we could think to send messages from a vertex to another
(behaving differently if it is local or remote) and this can be implemented by
a Message Passing framework. A message can hold vertex data, and edges
are seen only as the connection between vertices. Synchronous execution
often implements this communication pattern, in the sense that since value
updates will be visible only in the next super-step, it is reasonable to send a
block of messages during the synchronization barrier; it is shown to ensure
data consistency without low-level implementations and is optimal for IO-
bound algorithms.

The use of a synchronous model enables an optimization, i.e. message
aggregation. The messages that need to reach the same destination can be
combined in one, reducing network traffic at the end of a super-step.

On the other hand, the Shared-Memory pattern, allows to read and mod-
ify the state of neighbors directly without the need to send messages. This
technique requires local data synchronization between multiple machines.

2.1.4 Graph partitioning

The last and deeper pillar is partitioning. This is a complex issue that basi-
cally tries to solve an inherent NP-Hard problem [81], so it is not surprising
that it is the topic of a research field and plenty of heuristics have been
developed. The graph partitioning focuses on obtaining a distribution of a
graph on available machines such that the workload is balanced, while the
number of edge cuts is minimized, in order to avoid networking overhead.
We must notice that this is partially independent from the specific kind of
framework, as all the previous abstractions rely on a given graph partition.
Graph partitioning strongly impacts on the performances, because a well
partitioned graph triggers a chain of runtime gains such as: reduced com-
munication latency, decreased stuck waits on the synchronization barrier (if
present), and so on.

2.2 Framework for graph processing

In the last years many novel solutions addressing parallel processing on
graphs have been proposed. The aim of these techniques is to execute graph
algorithms in a fast and efficient way. Some interesting innovations focus on
smart techniques for graph partitioning and distribution.

In this section we give an overview of how the TLAV paradigm is im-
plemented in real frameworks [51][146][124][113][193]. Crafting a custom
distributed infrastructure, typically requires a substantial implementation
effort. In addition, this process is error prone and requires specialists in
distributed computing. The aim of these frameworks is to help the devel-
opers to focus on the algorithms to be implemented instead of dealing with
low-levels details of the underlying architecture. All the details such as the
creation of threads and processes, the data access, the data distribution and

2.2. Framework for graph processing 17

the managements of machines failures are usually handled by the frame-
work. In the following subsections, we present some of the frameworks that
are currently getting momentum.

In addition, since this thesis focuses on algorithms on large graphs, along
with the presentation of frameworks, we introduce some well known prob-
lems and algorithms and how they can be implemented in some presented
frameworks.

2.2.1 MapReduce

MapReduce [51] aims to process large quantity of data using massive parallel
computation. It is inspired by the map and reduce primitives present in
Lisp [129] and many other functional languages [86]. It has been shown to be
suitable for many real tasks e.g. PageRank [29], K-Means Clustering [108],
Multimedia Data Mining [180], Genetic Algorithms [178] and sometimes for
Graph Analysis [47]. The programs written according to this model can
be easily parallelized to be executed on distributed systems, clusters and
even on commodity machines. The runtime system will take care about all
the issues concerning the partition of the input data, load balancing and
fault tolerance capabilities. Also, it will manage the inter-communication
between machines and all the details that are architecturally dependent. All
these features provided by the runtime enable the programmer to write code
without knowing actually the architecture where the code will be executed
on, and also without deep knowledge of parallel programming. From an high
level perspective, it takes a set of input key/value pairs, and produces a set
of output key/value pairs. The computation is expressed by two functions:

• The Map takes an input key/value pair and produces a set of inter-
mediate key/value pairs;

• The Reduce takes an intermediate key and a set of values for that key
and merges together these values to form a possibly smaller set. Typi-
cally just zero or one output value is produced per Reduce invocation.

The runtime groups together the pairs with the same key that are out-
coming from the map invocation, and gives them to the reduce function.
The final set of key/values pairs out-coming from the reduce execution is
the result of the computation.

At the beginning of a MapReduce computation, the input data is par-
titioned into small blocks. Each idle worker (machine) takes a block and
executes on it the map function and finally writes on disk the intermediate
pairs. After, all the intermediate pairs are stored on disks, all the workers
are idle. At this point, each idle worker takes a block of intermediate data
and executes the reduce function on it and again the result is stored on disk.
The consequence of this writing/reading mechanism of data is to enable the
processing of large quantity of data that does not fit into the physical mem-
ory. Figure 2.2, which is taken from [51], shows the overall architecture in a
possible master-workers fashion. In case of failures of one or more machines,
the runtime system reschedules the map/reduce tasks relying on the fact
they are re-computable, i.e. the model relies on re-execution of tasks as the
primarily mechanism of fault tolerance. This usually forces the tasks to be
independent.

18 Chapter 2. The TLAV approach: frameworks and algorithms

Figure 2.2: An overview of an execution in MapReduce.

In the following we present a concrete example implementing the PageR-
ank algorithm to show the characteristics of the model.

Example (PagerRank). The PageRank of a vertex v is defined by the
following equation:

Rank(v) = α+ (1− α)
∑

u∈Neigh(v)

Rank(u)

OutDegree(u)
(2.1)

where Rank(v) identifies the value of relevance of vertex v, OutDegree iden-
tifies the number of edges outgoing the vertex u, and α is set to 0.15. The
PageRank algorithm iterates on the function 2.1 until convergence. The
convergence is obtained when the value of rank between two consecutive
iterations is less than a fixed value ε.

An high level description of the PageRank algorithm according to the
MapReduce model is presented in Algorithm 2.1. In the pseudo-code are
presented the two mandatory functions Map and Reduce.

The Map function (see Algorithm 2.1 line 1) takes key/value input. The
value part represents an adjacency list, i.e. the identifiers of all its neigh-
bours. In the initialization, each vertex has a rank value equal to 1. The
function call SendMsg (see line 4) is not a communication primitive but it
generates a sequence of (key,value) pairs where the value is the contribution
of the vertex and key is the identifier to which the value must be dispatched.
All the data produced in the above manner are then grouped by key, so
that all the data relative to a vertex are grouped in a same set. After the
map phase, each worker creates an intermediate file organized by key and
such data is the input of the next phase called Reduce. An instance of the
Reduce function is executed for each vertex, it iterates on the contribution
relative to a vertex to generate the rank value (see line 11). At the end a
key/value structure will be the input of an other MapReduce iteration. It
is important to notice that the MapReduce model is stateless. Due to this,

2.2. Framework for graph processing 19

Algorithm 2.1: MapReduce Pagerank
input : Graph G(V,E)
output: Vertices’ rank
/* Map Function */

1 Map (Vertex N, Rank K, Iterator<Vertex> out neighbors) begin
2 Nn ← Size (out neighbors) ;
3 foreach nbr ∈ out neighbors do
4 SendMsg (nbr, Message(N, K / Nn));
5 end
6 SendMsg (N, out neighbors);

7 end
/* Reduce Function */

8 Reduce (Iterator<Message(Vertex K, Rank N)> message) begin
9 RankK ← 0 ;

10 foreach nbr ∈ message do
11 RankK ← RankK + nbr.Rank * 0.85 + 0.15 ;
12 end
13 SendMsg ((K, RankK) → Iterator<Vertex> out neighbors) ;

14 end

Figure 2.3: Pregel’s superstep as BSP implementation

in each phase, the state of a vertex, its adjacency list, must be propagated
again to be available in the following iterations.

2.2.2 Pregel

Pregel [124] is a framework, created by Google, to compute algorithms on
large scale graphs which takes inspiration from the BSP model. The motiva-
tion behind its introduction, as mentioned above, derives from the fact that
the MapReduce is suitable for a large number of graph analysis algorithms,
but not for all of them. Some algorithms use global knowledge of the graph to
compute their result, in that cases MapReduce could suit well. Instead, the
algorithms which are developed according to the TLAV approach may get
benefits in the definition of another framework. In these cases, Pregel could
suit better than MapReduce, because it supplies the “lack of expressiveness”
of MapReduce by changing the abstraction of the data. Pregel’s programs
are vertex-centric, which means the operations are defined as “looking from
the point of view of a vertex”. Being a BSP-inspired model, a Pregel’s com-
putation is divided into supersteps and during each superstep the function
associated to each vertex of the graph is executed. We provide additional
details about the BSP in a subsequent sub-section.

Figure 2.3 shows a superstep from the point of view of the actual com-
putation of Pregel. The result of the total execution is changing the state of

20 Chapter 2. The TLAV approach: frameworks and algorithms

the vertices, for example inner attributes but also the incident edges, i.e. the
topology could be different at the end of the computation. In addition, along
the supersteps, vertices could sum up some values into accumulators which
are global structures managed by the framework safely along the computa-
tions. An accumulator is parametrized by an accumulation function which
has to be associative and commutative, sums up the current accumulator’s
value and the one given as parameter.

Fault tolerance is achieved through checkpoints and re-computation. A
checkpoint saves the data on disks in such a way that, in case of failure, it
limits the number of the vertices that have to be recomputed and also they
have not to be re-computed from the beginning, i.e. superstep 0, but from
the last check-pointed superstep.

Each processor exchanges a lot of messages and it may happen that
a subset of those is redundant. An optimization is the use of combiners
which are executed after the computation and the generation of the out-
coming messages, but before that the communication is actually performed.
Combiners could merge the out-coming messages into a smaller set in such
a way the data communication is lower (e.g. algorithms that perform a
summation of values from incoming messages could create a combiner that
merges out-coming messages that are going to the same vertex into one
message whose value is the sum of the others).

Bulk Synchronous Parallel

The Bulk Synchronous Parallel (BSP) [175] is a bridging model to define par-
allel algorithms. It was originally conceived as a theoretical model, however
recently has gained momentum and implemented on popular graph process-
ing frameworks. The BSP requires the following architectural features:

• components able to compute using local memory;

• a structure able to dispatch and receive messages between two compo-
nents;

• a component demanded to the synchronization of the other compo-
nents.

A computation in BSP is described by a sequence of supersteps (take as
reference Figure 2.4) where each superstep is divided in three phases:

• parallel computation. Each component executes independently us-
ing only its local data.

• communication. At the end of the computation phase each compo-
nent may send messages to other components.

• synchronization barrier. When a component reaches this phase
it waits all the other components before restarting the computation
phase.

The BSP model is implemented on many distributed frameworks because
it is a perfect match to define iterative algorithms on graphs and it permits
to exploit the TLAV model making use of a parallel architecture. There is
a strict correspondence between the BSP model and the TLAV approach

2.2. Framework for graph processing 21

Figure 2.4: Superstep: an example

implemented on a synchronous framework where each vertex is a component
able to perform the computation due to its local memory and its adjacency
list. It provides primitives for communication and synchronization between
the computations executed on the vertices. At the same time the BSP model
may be mapped on a real architecture composed of processors with local
memory and interconnected by a network, where each processor executes
the computation of a set of vertices sequentially.

The BSP model defines a cost model. The cost of a superstep is the sum
of the following terms: Ti is the execution time of the component i, Hi is
the number of messages sent and received by the component i, g is the time
required to send a message, and L the time required to synchronize all the
components. The cost of a generic superstep results in:

Csuperstep = max
i=0..p

(Ti) + max
i=0..p

(Hig) + L (2.2)

Whereas the cost has three major contributors, the first one represents the
longest computation of a component, the second one is the communication
having the largest cost, the last one is the synchronization cost. If the
execution requires S supersteps, the total cost becomes the sum of each
superstep. Calling Ws = maxi=0..p(Ti), the maximum completion time in
superstep s, and Hs = maxi=0..p(Hi) the communication having max cost in
superstep s we get:

Ctot =
S∑
s=1

Ws + g
S∑
s=1

Hs + SL (2.3)

The total cost is Ctot the sum of all the maximum computational times of

each superstep
S∑
s=1

Ws plus the sum of each maximum communication times

g
S∑
s=1

Hs plus each of the synchronization times SL.

22 Chapter 2. The TLAV approach: frameworks and algorithms

Other implementations

Pregel is a closed and proprietary solution developed and used at Google. A
lot of alternative implementations have been developed, each one differing
for its actual implementation, the set of native operations provided to work
on graph, and the fault tolerance mechanism that is employed.

First, it is important to notice that also other solutions exist which pro-
vide similar API to work on large scale graph but are not inspired directly
to the BSP model. The most noticeable is GraphLab [112] which works on
shared memory and it is pretty fast on single machine and clusters. An-
other noticeable alternative is Combinatorial BLAS [31], while widely used
open-source Pregel implementation is Hadoop Hama [162]. Hadoop is the
open-source implementation of MapReduce and Hama is the implementa-
tion of Pregel that runs over Hadoop but does not have any fault tolerance
mechanisms. Yahoo! has also developed its own open-source framework
called Apache Giraph. It runs over Hadoop and performs fault tolerance
through check-pointing. Another framework is “GPS: A Graph Process-
ing System” [157]. It is also BSP inspired and provides a specific domain
language Green-Marl [84] that enables intuitive and simple expression of
complicated algorithms.

2.2.3 GraphLab

GraphLab [112] was developed with the aim to implement parallel machine
learning algorithms efficiently, and to provide scheduler’s customizations and
data consistency to address the needs of a wide range of Machine Learn-
ing problems, whose computational patterns may vary significantly. The
developers of GraphLab also developed GraphChi [102]. The fundamen-
tal building blocks of GraphLab are the data graph (e.g the web graph for
PageRank algorithm, where each vertex corresponds to a web page), a range
of schedulers to express the way computation must evolve, and a vertex-
update function. The update function takes as arguments the vertex and its
scope.

Definition 1 (Scope). The scope Sv of a vertex v is defined as the set
including v, its adjacent edges and its neighboring vertices. Thus, we can
define the vertex function as f(v, Sv)→ (S′v, T ′) where T ′ is a set of vertices
and S′v the new scope. The scope Sv is the set needed from the point of view
of a vertex v to perform its computation, and is the extent of the graph which
can be accessed by v.

Algorithm 2.2: GraphLab execution model.
Input: Data graph G = (V,E,D)
Input: Initial vertex set T = {v1, v2, ...}

1 while T 6= ∅ do
2 v ←RemoveNext(T);

3 (T ′
, Sv)← f(v, Sv);

4 T ← T ∪ T ′
;

5 end

The computation may update the scope Sv and return a set T of ver-
tices which will be added to the scheduler for further execution. The basic

2.2. Framework for graph processing 23

Algorithm 2.3: The GAS interface.
1 interface GASVertexProgram(u)
2 gather (Du, D(u,v), Dv)→ Accum

3 sum (Accum left, Accum right) → Accum

4 apply (Du,Accum) → Dnewu

5 scatter (Dnewu , D(u,v), Dv) → (Fnewu,v , Accum)

execution model of GraphLab is extremely simple and is shown in Algo-
rithm 2.2. Even if this model has to be modified when we consider a dis-
tributed execution, it is presented here to show the basic characteristics of
the framework. The model is thought as a loop that executes sequentially
the update-function of a vertex extracted from T , until T becomes empty.
Other two main features of GraphLab are the definition of data consistency
models and ghost vertices. The programmer can choose among three dif-
ference consistency levels in order to increase or reduce parallelism. The
consistency level can be chosen before the computation starts, according to
the characteristics of the algorithm that has to be run. The higher level of
consistency corresponds to a lower level of parallelism. On the other hand,
ghosts vertices are used to implement the shared-memory pattern, since the
graph can be split across machines cutting a subset of edges. Indeed, ev-
ery ghost represents a specific vertex which resides on a machine and other
ghosts of the same vertex communicate to maintain their values consistent.

2.2.4 PowerGraph

Algorithm 2.4: PowerGraph execution semantics.
Input: Center vertex u

1 if cached accumulator auis empty then
2 forall the v ∈ neighbor(u) do
3 au ← sum(au,gather(Du, D(u,v), Dv));

4 end

5 end
6 Du ← apply(Du, au);
7 forall the v ∈ neighbor(u) do
8 (D(u,v),∆a)← scatter(Du, D(u,v), Dv);

9 if av ∧∆a 6= ∅ then
10 av ← sum(av ,∆a);
11 else
12 av ← Empty;
13 end

14 end

PowerGraph[78] is considered to be the successor of GraphLab, though
it takes some features from Pregel. PowerGraph’s focus is to handle natural
graphs and their power-law distribution. PowerGraph model is also called
the Three Phase Model [131], which is composed by: the Gather phase, the
Apply phase, the Scatter phase. This is why it is also called the GAS model,
introduced for the first time by PowerGraph itself. Like in GraphLab, the
state of a PowerGraph program is stored in the data graph, in vertices and
edges. Every program written in this framework has to implement the in-
terface shown in Algorithm 2.3 including the signature of three functions,
each one corresponding to a GAS phase, plus a “sum” function. The gather

24 Chapter 2. The TLAV approach: frameworks and algorithms

Figure 2.5: Differences between vertex cut and edges cuts.

phase is used to get the necessary information to perform the “apply” func-
tion of the GAS interface. The “gather” function is run in parallel on the
vertex’s neighbors, instead, the “sum” function aggregates values obtained
by the execution of different gather functions. The scatter phase is used to
activate adjacent vertices and update edges values. Although it seems very
similar to GraphLab, the execution model is different, given the fact that,
for example, the engine can be synchronous or asynchronous.

Computation starts activating one or all vertices of the graph, and pro-
ceeds until there are no more vertices to be activated. Every function can
only activate vertices that are accessible to itself, and they will be scheduled
in an order decided by the engine. The power of this abstraction is the fusion
of this kind of model, which allows to execute concurrently the GAS phases,
with the vertex-cut partitioning, which is described afterwards in the sec-
tion. The engine splits the computation of a single vertex among different
machines and this grants PowerGraph an high amount of parallelism, since
these operations can be run concurrently on neighbors. The general execu-
tion semantics is described in Algorithm 2.4, which is independent from the
engine used. Du represents the current value in vertex u, while D(u,v) the
value on the edge (u, v). The execution semantics encapsulates the functions
of the GAS interface defined by the programmer, and an original point to
notice is the use of an accumulator au in the scatter and gather phases.
This particular feature of the framework is called Delta Caching: more in
details, during the Gather phase the vertex takes inputs from adjacent edges
and combines them for next steps. When there is little or no change in
neighboring vertices, a cached accumulator au can be used to maintain the
value computed in the last Gather phase just adding a ∆a value. Rather
than doing another Gather computation, which can be expensive and use-
less since many edges have not changed their value, a vertex can reuse this
accumulator, atomically modified by neighbors over time.

PowerGraph is well suited for natural graphs. To achieve its effectiveness
in this context, the framework makes use of vertex-cuts. This means that
a vertex may be replicated on more machines and its edges distributed on
all these machines. This greatly helps to distribute the edges of high degree
nodes, which characterize power-law graphs, on more machines. Figure 2.5
show a comparison between edge-cuts and vertex-cuts. It can be noticed
that with edge-cuts the number of replicas can be very high, while vertex-
cuts need a very smaller number of “mirrors”. This can greatly reduce the
amount of communication workload and it is one of the most important
features of PowerGraph.

2.2. Framework for graph processing 25

Figure 2.6: Spark Architecture

2.2.5 Apache Spark

All the algorithms presented in the following of this thesis have been imple-
mented by exploiting the Apache Spark framework [193] which is a popular
framework for distributed processing. It is BSP-inspired and, as its website
reports, “Spark is a general engine for large-scale data processing”. Its main
target are distributed systems, especially commodity hardware clusters. It
provides a rich set of API and algorithms ranging from MapReduce to a
large built-in library for machine learning, a concrete integration with SQL
and streaming functionalities. In the following of this section the concept of
Resilient Distributed Datasets (RDD) which are the beating heart of Apache
Spark will be introduced. RDDs define how data are handled and processed.
Then, we describe how an execution works and we provide a description of
the graph processing layer called GraphX, developed over Apache Spark.

Resilient Distributed Datasets (RDD)

Apache Spark exploits data parallelism through Resilient Distributed Datasets
(RDDs) [192]. RDD is a distributed memory abstraction consisting of im-
mutable collection of objects spread across a cluster that are read-only and
can be generated only through deterministic and finite operations from either
a dataset in a stable storage or other existing RDDs. These data structures
enable Spark to store intermediate results in memory between two itera-
tions. This overcomes the limitation of the MapReduce frameworks, where
data have to be stored on disks. A RDD is organised into a number of parti-
tions, which are atomic pieces of information and can be stored on different
nodes of a cluster. RDDs contains all the informations required to derive
the current state of the data from the stable storage.

The parallel distributed computation is expressed by means of operations
over RDDs. These operations, called transformations are computed lazily.
The derivations are computed in a lazy way by exploiting a logging struc-
ture, called lineage, which is also the basic mechanism for fault tolerance,
when fault occurs it is possible to recompute the RDD directly from the
stable storage using the chain of derivation. The usage of checkpoints is also
possible, but it is expensive because of materializing of the intermediate re-
sults. On the other hand, it is useful when the derivation chain is becoming
longer and longer to prevent very long re-computation in case of faults.

The RDD abstraction can be used both with MapReduce, as well as
with the vertex-centric models of computation. Each element of an RDD
can be used to represent a vertex with its own state and its own adjacency
list (see Table 2.1). Next, it is possible to use the rich set of APIs to define
the computation. For instance, the map function can be used to execute

26 Chapter 2. The TLAV approach: frameworks and algorithms

Figure 2.7: An RDD of Strings partitioned on 4 machines.

Partition 1
Id Adjacency list

1 [2]
2 [1, 3, 4]

Partition 2
Id Adjacency list

3 [2, 4]
4 [2, 3]

Table 2.1: Implementing the TLAV model using RDD.
In the example one RDD composed of two partitions. Each
element has a key, the identifier, and a value, with the adja-

cency list of the vertex.

2.2. Framework for graph processing 27

Figure 2.8: Spark Architecture

an user provided function on each vertex. An example is provided by the
function Degree, in Algorithm 2.5, which permits to compute the degree on
each vertex.

Algorithm 2.5: Apache Spark, an example of a function.
/* Degree function. Each vertex computes its number of edges equals to its

degree. */

1 Degree (element < id, adjacencyList >) begin
2 return element.adjacencyList.size()
3 end

To emulate the communication between vertices it is necessary that each
element (vertex) is uniquely identified. A common approach is to assign
to each vertex a unique name (see Table 2.1). Such identifier has a double
scope: (i) it permits an efficient partitioning of the vertices on multiple
partitions (only a few partitioning strategies are built-in in Apache Spark),
(ii) it permits an easy and efficient mechanism of routing messages on each
vertex.

How it works

Spark is written in the Scala language and provides API for Scala, Java
and Python. A collection of Java Virtual Machines is responsible for the
execution of all the programs in Spark.

To make use of the Spark framework, developers write a program called
driver which is connected to the cluster via the master node. Figure 2.8
shows a view of how the machines are organized in Spark. The architecture
includes a cluster manager and multiple worker nodes. The computation is
partitioned by the manager in multiple tasks and each task is assigned to a
worker node. Then, the developer defines in the driver one or more RDDs
through transformations on the data. The methods that can be called on an
RDD can be transformations and actions. Transformations are operations
that take as input an RDD and provide as output a modified RDD, for
instance: map, filter and join. Actions are operations that return values,
for instance, count, first and reduce. It is important to understand that
transformations are lazily evaluated, they are not computed until an action
is called on the specific RDD.

Each action requires the triggering of the job scheduler which needs to
retrieve all the data dependencies of the RDD and creates an execution

28 Chapter 2. The TLAV approach: frameworks and algorithms

Figure 2.9: Spark Example

plan. The operations identified in the execution plan are then assigned to
the workers which receive the operation to be executed on the partition of
data handled by each of them by exploiting both locality of data and load
balancing.

Figure 2.9 presents a fragment of Spark code. Such code shows how to
create, modify and execute transformations and operations on RDDs. The
application takes as input a file containing a graph where each line is a vertex
with its adjacency list. The code in the main is executed on the machine
where the driver program is launched. The reference spark in line 7 is the
point of access to the cluster. In line 8 is created an RDD making use of
the Spark’s API that returns an RDD from a text file where each line is an
element of the RDD. The flatMap at line 9 builds an RDD from another
RDD. Instead, at line 13, is presented an action (count) that counts the
number of elements of the RDD.

GraphX

GraphX [186][185] is a distributed graph computation framework that unifies
graph-parallel and data-parallel computation. In addition to graph computa-
tion it provides also operations for constructing the graph from an external
source and for modifying the graph structure. GraphX presents a unified
abstraction, which allows the same data to be viewed both as a graph and
as a table without requiring any data movement or duplication. In addi-
tion to the standard data-parallel operators such as map, reduce, filter and
join, GraphX introduces a set of graph parallel operators such as subgraph
and mapReduceTriplets which updates graph data through a highly parallel
edge-centric API.

The GraphX system adopts the BSP model and it ensures determin-
istic execution, simplifies debugging and enables fault tolerance. GraphX
is implemented on top of Spark[193] that provides facilities and indexing
to speed up the computation on graph. The data structures of GraphX
are immutable, as a consequence its support to evolving graphs is not effi-
cient because adding or removing edges or vertices requires to rebuild the
indices on every graph modification. This issue limits its usage on those
graph algorithms where the topology of the graph does not change during
the execution.

In GraphX, graph data is represented as a property graph, which as-
sociates user-defined properties with each vertex and edge. Similarly to
PowerGraph the computation is organized making use of the Gather-Apply-
Scatter (GAS) decomposition. The motivation is that most vertex programs

2.3. Case studies 29

interact with neighboring vertices by collecting messages in the form of a
generalized commutative associative sum and then broadcast new messages
in an inherently parallel loop. In addition, such model of computation en-
ables the vertex-cut partitioning. This, in some cases, for instance when
the graph exhibits some vertices with a very large number of neighbours,
permits lower movement of data and to introduce optimizations. Instead
of delivering high degree vertices to each neighbor is enough to mirror such
vertices on multiple machines and synchronize the different mirrors.

2.3 Case studies

This Section presents some popular algorithms that will be analyzed with
respect to their high level programming with TLAV. Also, will be presented
considerations on how the same algorithm can be implemented in different
frameworks supporting TLAV computation and which are the benefits of
the different frameworks. Before we introduce which are the typologies of
problems that is possible to tackle thanks to graph processing.

2.3.1 Graph Problems

In the following we present some classes of problems requiring graphs pro-
cessing, as presented in [59]:

• Traversal operations: are operations that start from a single node and
explore recursively the neighbourhood of a node until a final condition
is reached. An example is the k-core decomposition to compute the k-
coreness measure of each node in the graph, a problem recently studied
in [136].

• Topology analysis: graph analysis includes the study of the topology
of graphs to analyse their complexity. It is conducted to verify some
specific data distributions, to evaluate a potential match against a
specific pattern, or to get detailed information about the role of nodes
and edges. For instance, this analysis is used in Bio-Informatics to find
significant mutations and pathways in cancer genomics [177].

• Connected components: a connected component is a subset of the nodes
composing a graph where there exists a path between any pair of
such nodes. Thus, a node only belongs to a single connected com-
ponent of the graph. Finding connected components is usually crucial
for many operations and it is typically conducted in a pre-processing
phase. Computing connected components is also useful to study the
vulnerability of a graph, or the probability to separate a connected
component into two other components. For instance finding connected
components is crucial to search for critical locations in a spatial net-
work [55].

• Community detection: a community is generally considered to be a
set of nodes where each node is closer to the other ones within the
community than to nodes outside it. Communities can be found in
many real world graphs, for instance social networks. Community
detection is exploited, for example, to find communities devoted to the

30 Chapter 2. The TLAV approach: frameworks and algorithms

discussion of controversial topics, where one can expect to find strong
interactions [30].

• Centrality measures: a centrality measure aims at giving an indication
of the importance of a node based on how well this node connects
the network. The most well-known centrality measures are degree,
closeness and betweenness centrality. As an example, recently the web
graph has been analysed and the ranks returned by different centrality
measures have been compared 1.

• Graph anonymization: is the process of generating a new graph with
properties similar to the original one, avoiding potential intruders to
re-identify nodes or edges. This problem gets more complex when the
nodes and edges contain attributes and the problem goes beyond the
anonymization of the pure graph structure [22]. The anonymization of
graphs becomes important when several actors exchange datasets that
include personal information.

• Clustering : consists in finding groups of related data items, according
to a definition of similarity that is application specific. Clustering al-
gorithms are fundamental in data analysis, providing an unsupervised
way to aid understanding and interpreting data by grouping similar
objects together.

In the following of this section we select several case studies and we show
how is possible to perform their implementation on two different frameworks
supporting the TLAV approach.

2.3.2 PageRank

Known as one of the most popular algorithms, PageRank [142] allows Google
to compute web pages’ ranking. PageRank runs periodically in order to
obtain the updated rank for old and new web pages. The computation of
such large graphs, the graph of web pages has billions vertices and edges, has
conducted Google to develop the MapReduce framework. This, exploiting
commodity hardware and distributing the computation on a large number
of machines, permits to compute the result wherein a single machine would
not be enough due to the size of such data.

Here, we are not going to give an in-depth analysis of PageRank details
of the entire PageRank pseudocode, rather we analyze the “design” power of
its TLAV version. This is a very high level pseudocode, but we are talking
about “designing efficiency”, not creating efficient algorithms. We can briefly
notice that a vertex needs to acquire the rank of the pages that ”point” it
(through the in-edges), compute its new rank and finally send the new value
to the pages it “points” (through the out-edges).

GraphLab. Running PageRank on distributed GraphLab allow to achieve
a parallel exploitation of resources by means of its asynchronous timing.
This is particularly evident when dealing with graphs leading to an unbal-
anced workload. GraphLab requires that programmers ensure data con-
sistency. The most reasonable choice seems to be the edges consistency

1http://wwwranking.webdatacommons.org/

2.3. Case studies 31

Algorithm 2.6: GraphLab pseudocode for PageRank.
Input: R(v): vertex data from Sv ;

1 // Svbeing the scope of vertexv. Input: Edge data {wu,v : u ∈ Neighbor(v)} from Sv ;

2 Rold(v)← R(v);

3 R(v)←
α

n
;

4 forall the u ∈ N [v] do
5 R(v)← R(v) + (1− α) ∗ wu,v ∗R(u);
6 end
7 if |R(v)−Rold(v)| > ε then
8 return {u : u ∈ Neighbor(v)};
9 end

model, since adjacent vertices must not execute concurrently to avoid incon-
sistency. PageRank pseudocode shown in Algorithm 2.6 schedules updates
only if vertex rank changes sufficiently, so this version does not expect keep-
ing vertices active for all computation runtime. A complete implementation
in a GraphLab engine may allow vertices voting to halt the computation,
and the periodical Sync function could check this votes to stop and return
a result. As for communication, the presence of a natural graph such as
the Web, where a few web pages have a huge number of connections, while
many other ones are not linked at all, tends to increase the network overhead
due to an high number of ghosts. Ghost updates are sent before releasing
the lock on a vertex scope, and this permits neighbor vertices that will be
scheduled to read the most updated values.

Algorithm 2.7: PageRank GAS implementation.
1 // in the following Du represents the current state of vertex u procedure

gather(Du, Du,v , Dv)

2 return
Dv .rank

|neighbor(v)|
;

3 //an accumulator

4 procedure sum(Accum a,Accum b)
5 return a+ b
6 procedure apply(Du,Accum a)
7 rnew = 0.15 + 0.85 ∗ a;

8 Du.delta =
rnew −Du.rank
neighbors(u)

;

9 Du.rank = rnew;

10 procedure scatter(Du, Du,v , Dv)
11 if Dv .delta > ε then
12 Activate(v);
13 return Dv .delta;

14 end

PowerGraph. Since this framework relies on the GAS model of compu-
tation, we design PageRank algorithm providing an implementation of the
Gather-Apply-Scatter interface. As we can observe in Algorithm 2.7, the
Gather phase is executed on each vertex v. It returns the contribution that
must be sent to each neighbor. It is calculated dividing the current rank of
v by the number of neighbors. The Apply phase takes care of computing u’s
new rank and also updates delta value, which is responsible for both delta
caching technique and halt voting. Indeed in the scatter phase delta value is
checked to decide if a neighboring vertex v needs to be activated, i.e the value
changes significantly, and also this value is returned to allow PowerGraph

32 Chapter 2. The TLAV approach: frameworks and algorithms

applying delta caching. Notice that vertex-cut and parallel communication
are invisible to the programmer and handled by the engine.

Gather function runs in parallel on u adjacent vertices (or a subset of
them), as well as the scatter one. Intuitively, a PageRank algorithm could
keep vertices always active, and stop the computation when a convergence
criterion is met; this could work also in a synchronous framework where there
is no need to re-activate vertices, given the fact that a barrier semantically
acts as a vertices activation. However, PowerGraph follows GraphLab’s idea
and schedules vertices execution only when ”necessary”, and this is due to
the fact that delta caching helps to reduce the amount of runtime [78].

Apache Spark. Apache Spark provides a rich set of API that can be used
for processing data. As aforementioned, such APIs include but are not lim-
ited to MapReduce. However, when implementing this algorithm on Spark
only the two functions Map and ReduceByKey need to be exploited similarly
as making use of MapReduce. ReduceByKey is the equivalent of the Reduce
function in MapReduce when working with key/value data. In particular,
it permits to use the provided function on each machine and combine the
values directed to one single vertex in only one value before performing the
communication between different machines. Data can be organized accord-
ing to Table 2.1 adding to each vertex a double value representing the rank.
The computation is synchronous, i.e. before executing the ReduceByKey all
the Map function are executed.

Since Apache Spark provides also GraphX, the PageRank algorithm may
be implemented also with such API. The computation is organized similarly
to PowerGraph thanks to the GAS abstraction. However, it is not possible
to use delta caching or vertex activation/deactivation and the function is
executed on all the vertices in each iteration, until a stop criterion is met.
Spark with GraphX comes with the PageRank algorithm built-in. Due to
this, it is required to perform such specific API call equivalently as calling
any other function provided by the API.

Algorithm 2.8: hash-to-min vertex-centric pseudocode for vertex v.
// Initialization

1 Cv = v ∪ neighbors(v);
// Computation

2 if ¬halt then
3 vmin = min(Cv);
4 for u ∈ Cv do
5 emit(u, vmin);
6 end
7 emit(vmin, Cv);

8 end
9 for u ∈ Cv do

10 Cnew = Cnew ∪ Cu;
11 end
12 if Cnew = Cv then
13 halt = true;
14 else
15 Cv = Cnew;
16 halt = false;

17 end

2.3. Case studies 33

2.3.3 Connected Components: hash-to-min

hash-to-min is part of a more general algorithm for computing connected
components in a graph in O(log(n)) rounds (in MapReduce), where n is the
number of nodes in the largest connected component [151]. It was developed
to overcome limitations of its previous version, called Hash-to-All, which is
characterized by an high communication overhead.

The high level description of this algorithm can be given by two functions:
an hashing function h in the mapper phase and a merging function m in the
reducer phase. Take as reference Algorithm 2.8 for an high level description.
Given a connected component Cv, and the minimum node identifier vmin ∈
Cv, the value vmin is sent to all the members of the connected components
and the identifiers of the members of the connected components are sent to
vmin. If we wanted to build this algorithm in a vertex-centric way, we would
need to:

• acquire the most recent connected components from the vertex neigh-
bors;

• merge overlapping sets with the vertex’s one, finding a bigger connected
component;

• send the new connected component of the vertex.

The emit() function and the first loop are the core of the problem, so it
will be described how and if it could be implemented on GraphLab, Power-
Graph and Apache Spark. Please notice that the amount of communication
can become prohibitive, so data compression techniques could be necessary,
but are not covered here.

GraphLab. This framework does not support neither evolving graphs nor
non-neighbor accesses, thus, is difficult to design a proper solution. As for
GraphLab properties, vertices can be active or re-activated until a global
convergence goal is not reached, so we could use the Sync function to perform
this check. Also, the asynchronous computation would be beneficial in this
context because connected components may largely vary in dimension so
that the vertex handling the biggest component requires more execution with
respect to vertices handling small components. Similarly to the PageRank
algorithm, it is preferable to adopt the consistency level that guarantees,
when executing the program on a vertex v, the consistent access to the
contexts of all the neighbours of v.

PowerGraph. In [78] evolving graphs are not handled. Due to this, we
have the same difficulties as in GraphLab. However, the advantages of GAS
model for hash-to-min are considerable, especially for nodes having an
high degree or connected with such kind of vertices. Indeed merging the
neighborhood connected components (CC) can require a non trivial amount
of time, and parallelizing the Gather function, adopting the divide-et-impera
technique, is reasonable and possible by means of vertex-cuts. As for timing,
asynchronous engines are preferable compared to the synchronous one, due
to computation unbalancing and dynamic workload.

Communication overhead is a big issue, so we could try “smart” heuris-
tics that minimize the number of edges/vertices (vertex-cut) shared between

34 Chapter 2. The TLAV approach: frameworks and algorithms

machines, but it would be the same as solving the problem. Every ver-
tex needs to send Cv only one time for each update execution, so it can
be considered the asymptotically superior limit for a vertex communication.
Furthermore, authors of hash-to-min [151] agree that the amount of in-
formation shared between machines will be approximately the same (linear
in the dimension of the biggest connected component). This is a problem
which could require algorithmic optimization in order to perform well under
communication, rather than working on what kind of framework use.

Apache Spark. It is possible to implement hash-to-min within GraphX
however a complete re-indexing of all the RDDs is required in each iteration.

Conversely, the MapReduce paradigm offered by Apache Spark is a per-
fect fit for the hash-to-min algorithm. An implementation of the algorithm
can be found in the following sections because this algorithm is one of the
competitors we have considered when evaluating one of the algorithm of this
thesis. However, due to the hash-to-min nature, this algorithm encounters
unbalance workload, because the components are deployed entirely to the
vertex elected to be the identifier of the component. This can be problem-
atic when a component is of large size. In the original paper [151] this is
mitigated by exploiting a common technique exploited in MapReduce called
secondary indices. This, permits to load the data relative to a vertex in an
ordered way and just one time to avoid memory errors. However, this very
same technique cannot be implemented in Apache Spark. Using the RDD
abstraction, it is not possible to exploit the same feature because data are
kept in memory and the data relative to a partition must fit in the memory
of a single machine.

2.4 Conclusion

In this chapter we set the concepts and the elements underpinning the con-
tributions of this thesis. We covered several frameworks supporting TLAV
and discussed how it is possible to implement selected algorithms on three
of these frameworks.

In this thesis, we choose Apache Spark as the reference architecture.
It is one of the framework having the highest usage increase, in the last
years it has been exploited by many industries and academias. Also, it
provides a rich set of APIs that share a common layer to handle the data.
In conclusion, we believe that this framework is becoming a reference for
the implementation of distributed graph algorithms. Its exploitation enable
us to share our code in a vast community of developers and to compare our
algorithms with different competitors’ implementations.

35

Part II

TLAV Algorithms

37

Chapter 3

Duckweed: Distributed
Current Flow Betweenness
Centrality

Centrality measures are important tools in graph analysis by providing in-
formation on the structural prominence of nodes and edges. They support
the identification of the key elements of the graph. As an example, consider
a social network: it could be interesting to find the most important actors
in large social interaction graphs; or in a data network could be worth to
find the nodes that are subject to the highest traffic to prevent network
congestion and disruption.

In the scientific literature, there are not too many works focusing on
the computation of betweenness centrality in distributed scenarios. There
exist different definitions of betweenness centrality. The mostly used Be-
tweenness Centrality [70] measures the importance of a node by taking into
account the number of times it lies on the shortest path between two other
nodes. A limit of shortest-paths based measures is that they do not take into
account the information spread occurring along non-shortest paths, hence,
they are not the best choice when information conveying is governed by other
rules. To overcome this limitation, in literature have been proposed different
measures based on the information flow along the graph.

One of these measures proposed both by Newman [139] and by Brandes
et al. [27]. They proposed to model the network as an electric circuit where
a current flow is injected to a source node and exits to the target node.
The resulting index, the current flow betweenness named also random-walk
betweenness is able to compute contributions from all paths existing be-
tween the source and the target node. The current state-of-the-art for the
computation of the current flow betweenness includes both exact [140, 27]
and approximated [27, 24, 12] approaches. However, these solutions are all
centralized, and their applicability is limited only to small graphs.

In this chapter we propose duckweed a solution aimed at addressing
such limitations. It consists in a novel algorithm for the distributed compu-
tation of the approximated current flow betweenness centrality. The main
contributions of this chapter are the following:

• to the best of our knowledge duckweed is the first proposal to com-
pute current flow betweenness centrality in distributed environment;

• duckweed makes use of an approximation technique in order to pro-
vide a valuable result of the current flow betweenness centrality in large
graphs;

38Chapter 3. Duckweed: Distributed Current Flow Betweenness Centrality

• duckweed can be implemented in both distributed frameworks [21]
for the analysis of large graphs (such as Apache Spark [193] or Hadoop [164])
and in peer-to-peer networks;

• we show how is possible to port duckweed on a real distributed en-
vironment exploiting the GAS decomposition.

The idea, definition and evaluation of duckweed have been published
in IEEE Conference on Self-Adaptive and Self-Organizing Systems with the
title ”Distributed Current Flow Betweenness Centrality” [121]. The porting
of the algorithm in Apache Spark has been published in the International
Conference on Algorithms and Architectures for Parallel Processing with the
title ”Current flow betweenness centrality with Apache Spark” [21].

3.1 Related work

The computation of the betweenness centrality index is intrinsically expen-
sive. In fact, to be determined it requires the computation of all the shortest
paths. The naive centralized algorithm requires θ(n3) time and θ(n2) space,
where n is the number of vertices. An improvement to the basic solution has
been proposed by Brandes [26] in 2001. In his proposal, he introduces the
notion of vertex dependency, recursively defined on the whole structure of
the graph. Following this approach it is no longer required the combinatorial
counting of all paths and O(n+m) space and O(nm) time bounds, respec-
tively, are obtained for undirected graphs (with m the number of edges).
Another approach is based on the definition of algorithms for computing ap-
proximated values of the index. Riondato et al. [153] proposed two efficient
randomized algorithms for the estimation of betweenness based on random
sampling. These algorithms offer probabilistic guarantees on the quality of
the approximation. To bound the size of the sample exploited to achieve their
approximated result, they rely on the results from the Vapnik-Chervonenkis
theory, which allows to use small sample sizes.

The current flow betweenness centrality has gained momentum in the
last years as an alternative index to measure centrality of nodes in a graph.
Similarly to the classical betweenness centrality, the straightforward algo-
rithm to determine current flow centrality is to compute information flows
for all the possible pairs of node in the graphs. Newman [139] and Brandes et
al. [27] provided a formulation derived from Kirchoff’s law of current conser-
vation, in which edges are resistors with a given conductance, and the nodes
are junctions between resistors. They propose an algorithm for estimating
the current flow betweenness centrality having a computational complexity
of O(I(n− 1) +mn2), where O(I(n− 1)) is the complexity to invert a n×n
matrix. Moreover, they propose an approximated version of the algorithm
that selects uniformly at random a small fraction of all pairs s 6= t ∈ V .
The bound on the number of pairs is computed by exploiting the Hoeffding
bound [83].

Bozzo and Franceschet [24] [25] proposed an algorithm for current flow
betweenness centrality that reduces the complexity deriving from the inver-
sion the Laplacian matrix describing the graph by choosing a subset of its
eigenvalues and eigenvectors. Avrachenkov et al. [12] introduce the α-current
flow betweenness centrality by adding a “ground node” to the original graph,

3.2. Preliminaries 39

and connecting each node to it. The introduction of the ground node sim-
plifies the computation and leads to a reduction of the complexity of the
matrix calculations. In addition, they approximate the betweenness by ran-
domly selecting a subset of all possible pairs, similarly to Brandes et al. [27].
They also introduce the truncated α-current flow betweenness, an approach
in which the scores on the edges starting from the source of the flow are not
considered in the computation of the betweenness. They proved empirically
that the resulting estimation increases the correlation with the exact current
flow betweenness.

Despite the optimizations introduced by the solutions mentioned above,
the computational cost to determine path-based centrality indices requires
the adoption of distributed solutions when dealing with large graphs. Lehmann
and Kaufmann [103] propose a general framework for defining decentralized
algorithms that compute centrality indices. To this end they take into ac-
count four different centralities, closeness, stress, graph and betweenness,
with emphasis on the betweenness centrality.

As far as we know, there is no distributed algorithm for the current flow
betweenness centrality. Rather, novel definitions of the centrality indices
have been proposed, which are suitable to be computed in a distributed
environment. Wehmuth and Ziviani [181] redefined the closeness centrality
index of a vertex by considering its h-neighbourhood, i.e., the vertices within
a radius h around it. The centrality value of each vertex in the network is de-
fined as the sum of the degrees of the vertices in its h-neighbourhood, i.e., the
volume of its h-neighbourhood. This notion of centrality is equivalent to the
degree centrality when h = 0. The distributed algorithm consists in a TTL-
restricted flooding of the degree of each node within its h-neighbourhood.
The experimental results show a high degree of correlation between this
notion of centrality and the closeness centrality. Kermarrec et al. [97] in-
troduces a novel notion of centrality based on random walks, called second
order centrality. According to it, each node computes its centrality index
by starting an unbiased random walker and counting how much time the
walker requires to return to the node. Their approach collects a certain
number of this measure in order to calculate the standard deviation. This
calculation is performed incrementally each time the walker returns to the
node, improving the estimation of the centrality of the nodes over time.

3.2 Preliminaries

In this section we introduce the notions required for the definition of the
main theoretical framework at the basis of our approach. We first introduce
the Random Walk Betweenness and then we present the relation between
elementary electric network theory and random walks, which is at the basis
of the definition of the Current Flow Betweenness.

3.2.1 Random Walk Betweenness

Let us consider a network and suppose that a node s generates an information
(conveyed as a message) whose target is node t. Each node receiving the
message propagates it to one of its neighbours, chosen uniformly at random.
This strategy is usually referred as random walk. The notion of Random
Walk Betweenness Centrality introduced by Newman [140] measures, for a

40Chapter 3. Duckweed: Distributed Current Flow Betweenness Centrality

given a node n, the expected net number of times a random walker passes
through n on its way from s to t, averaged on all s and t. As Newman
states, when computing the net number of times, two visits of the walker
to the same vertex coming from opposite directions must be cancelled out.
This avoid scenarios where the walker passes forth and back a vertex many
times, without actually going anywhere.

3.2.2 Current Flow Betweenness

Doyle and Snell [61] give an exhaustive presentation of the relations existing
between random walks end electric networks. We briefly summarize the main
results of their work in this section.

Let G = (V,E) be an undirected graph, where E ⊆ V ×V , with n = |V |
vertices and m = |E| edges. We assume that there are no self-loops from one
vertex to itself and no pairs of vertices connected by multiple edges. Each
edge (i, j) ∈ E connecting vertices i and j has a weight wi,j . The matrix
Ai,j is the adjacency matrix of the graph, i.e. Ai,j = 1 if and only if there
exist an edge connecting vertices i and j.

An electrical network may be represented by a graph by assigning to
each edge a positive weight indicating the conductance of the corresponding
electric wire (or the resistance of the wire, which is the inverse of the con-
ductance). According to this representation, the vertices of the graph are
junctions between resistors. For the sake of simplicity, we consider unitary
conductance (or resistance), i.e., wi,j = 1, ∀i, j.

In particular, we are interested in how current flows through the network,
when injected to a source node s and picked up at a target node t, for all
possible choices of s and t.

Definition 2. We define a current flow F (s,t) over the graph G as follows:

• s is the source of the flow, the current enters the network through it;

• t is the target of the flow, the current leaves the network through it;

• u(s,t)
i , called supply vector, is a vector such that

∑
i ui = 0 and us =

−ut = 1:

Let v
(s,t)
i be the potential at node i for F (s,t). Kirchhoff’s law of current

conservation states that the current that enters into a node is equal to the
current that flows out of it. This implies that the potentials of a node satisfy
the following equation for every node i:∑

j

Aij(v
(s,t)
i − v(s,t)

j) = u
(s,t)
i (3.1)

v
(s,t)
i =

∑
j Aijv

(s,t)
j + u

(s,t)
i∑

j Aij
(3.2)

By considering only unitary resistances as stated above, we have Aij = 1 if
exists the edge (i, j), otherwise 0 and that

∑
j Aij = deg(i).

Given the above, let us consider the current flow that passes through
the vertex when a unit of current is injected in a source vertex and removed
from a target vertex, averaged over all source-target pairs [27, 140]. Doyle

3.3. Duckweed 41

et al. [61] show that this current flow is equal to the net expected number
of times that a walker, starting at s and walking until it reaches t, will
pass through that vertex. The random walker betweenness can be therefore
computed by considering the electrical circuit associated to the graph and
by applying the laws of electrical circuits. The resulting betweenness index
is also referred as Current Flow Betweenness.

To compute the current flow betweenness of a vertex i, 6= s, t, it is there-
fore required to compute the current flowing through i, which, given a flow
F (s,t), is defined as half of the sum of the absolute values of the currents
flowing along the edges incident on that vertex:

I
(s,t)
i =

1

2

∑
j

Ai,j | v(s,t)
i − v(s,t)

j | (3.3)

The current-flow betweenness centrality bi [27, 140] is the average of the
current flows over all the source-target pairs:

bi =

∑
s<t I

(s,t)
i

(1/2)n(n− 1)
(3.4)

Bozzo et al. [25] show how to solve the system of equations 3.2 by ex-
ploiting classical matrix calculus when considering all the possible source
and target pairs. However, when the graph is very large, this calculus may
exceed the computational capability of a single machine. On the other hand,
we note that a distributed computation of the system of equations 3.2 is fea-
sible, because each node requires only local information, i.e. information
about its neighbours, to iteratively compute the value of its potential for a
given s and t pair, and calculates its betweenness by means of its currents
flowing according to Equation 3.3. This observation is at the base of the
distributed approach we present in the next section.

3.3 Duckweed

As far as we know, current state-of-the-art approaches for current flow be-
tweenness centrality (cfbtw) are centralized, and their applicability is lim-
ited to small graphs [27, 12]. In this work we present our proposal to fill this
gap. We propose duckweed, a novel distributed approach that computes
an estimation of the current flow betweenness centrality, which is suitable for
large graphs. Approximate cfbtw has a practical applicability, essentially
for two reasons: (i) computing a precise cfbtw for a large graph is very
time consuming, and (ii) many applications of centrality indexes require to
find a ranking of the top-most central nodes, rather than the exact values of
centrality for each vertex.

3.3.1 Computational Model

The computation performed by duckweed follows a vertex-centric approach
in which the nodes of the graph are considered as the unity of computation.
We assume that nodes of the graph are processed periodically and asyn-
chronously. Nodes do not have access to the entire graph, but only to their
immediate neighbours in the graph, and to a small set of other nodes, pro-
vided by means of information diffusion protocols. duckweed does not

42Chapter 3. Duckweed: Distributed Current Flow Betweenness Centrality

s

CA B

t

0.613 0.25 -0.584

-1.7230.957

s

CA B

t

0.604 0.329 -0.737

-1.5840.932

s

CA B

t

0.617 0.323 -0.736

-1.6280.989

IA = 0.313
IB = 0.99
IC = 0.976

Current values
relative to the

flow at t+n

s

CA B

t

0.58 0.333 -0.723

-1.5010.893

s

CA B

t

steps
t t+1 t+2 t+n0

Figure 3.1: Evolution of a flow from s to t over time

require any kind of shared memory, as nodes communicate only through
explicit messages. This makes duckweed suitable for graph computing
frameworks, and for peer-to-peer networks, in case each node is assigned to
a peer of the network.

3.3.2 The duckweed approach

The main idea behind duckweed is to exploit Kirchhoff’s law to calculate
the electric potentials of all the vertices, as building blocks for the computa-
tion of cfbtw for the entire graph. The computation is organized in such a
way that each node, locally and autonomously, can compute its own electric
potential and its own value of cfbtw centrality. duckweed is based on the
following two main modules: the Flow computation and the Centrality
computation.

The Flow computation drives the creation of flows and the computation
of potentials. In particular, for a given F (s,t), the corresponding potential can
be computed using Equation 3.2 and exploiting only the knowledge about
the neighbours potentials (due to the fact that the conductance between two
nodes is zero if they are not neighbours, see considerations in Section 3.2).
The detailed description of the Flow computation is given in Section 3.3.3.

For Centrality computation, each node collects the potentials of its neigh-
bours to compute independently the actual values of the cfbtw. In partic-
ular, to compute the incremental cfbtw for a vertex i, Centrality compu-
tation exploits Equations 3.3 and 3.4 in the following way:

bki =
(k − 1)bk−1

i + I
(s,t)
i

k
(3.5)

where k is the amount of computed flows known by the vertex. The fact that
duckweed computes the cfbtw incrementally yields two relevant impacts.
First, it is possible to have an idea of what are the most central nodes
without waiting for the computation to be completed. Second, it is possible
to define an automatic mechanism of termination, so that duckweed stops
the computation when it reaches a given level of approximation. A detailed
description of the Centrality computation is provided in Section 3.3.4.

3.3.3 Flow computation

This section describes in details how the computation of a single generic
flow F (s,t) is realized in duckweed. The computation of a single flow is
then extended to the concurrent computation of n flows, considering that
each flow F (s,t) can be identified uniquely using its source and target vertex,
respectively s and t, by convention s < t.

Algorithm 3.1 shows the pseudo code of the Flow computation in a node.
The node first receives the information about the flows computed at the

3.3. Duckweed 43

Algorithm 3.1: Flow Computation
Data: F : the set of flows known by the node

1 R← receive flows from neighbours
2 N ← flowCreation()

3 F ← F ∪R ∪N
4 forall the f ∈ F do
5 update potential for f
6 ∆f ← difference with potential of the previous iteration;
7 if ∆f < Dε then
8 mark f as completed
9 end

10 end
11 send F to neighbours
12 CentralityComputation()

13 F ← F \ {f is completed}

previous iteration by its neighbours, and then, if necessary, creates new
flows. Subsequently, it updates the potential relative to each flow and marks
a flow as terminated if the changing in potential is under the threshold Dε.
Further, the node sends the set of updated flows to its neighbours, it updates
its current flow betweenness centrality value, and removes the completed
flows from the local state. For the sake of the explanation, we divide the
Flow computation into three main steps: creation, update, and termination.
In the following we describe these three steps.

Creation

The creation of a flow F (s,t) is done locally by each node, by considering
itself as the source s and choosing a target t among the other nodes. Since
the algorithm is fully distributed, deciding when to start a new flow, and
which node to choose as target are relevant aspects.

To define when a node shall create a flow, we designed duckweed such
that the number of concurrent flows in the network are probabilistically
limited in any given point in time, so to avoid to oversaturate the nodes. To
this end, we define the system-wide parameter ϕ as the number of maximum
concurrent flows active on each node; the number of flows active on a generic
node i is defined as ϕi. In addition, to avoid the re-creation of an already
computed flow, each vertex u maintains a list of all the flows processed for
which u is the source or the target of the flow.

The flow creation relies on a combination of different gossip-like proto-
cols, organized in layers (as usual), to realize the distributed computation
of the flows. These protocols are popular in peer-to-peer networks, as they
proved to be efficient solutions to tackle very different problems, ranging
from distributed data clustering [14, 15, 49, 138], resource and service dis-
covery [34, 13], online games [42]. Moreover, they can also be implemented
and exploited in graph computing frameworks. These protocols are based
on a random node sampling layer that provides a selection of random nodes
from the graph, similarly to the random peer sampling gossip protocols used
in distributed applications [89, 179]. In addition, the Flow computation ex-
ploits the following protocols: (i) the size estimator implements a well-know
protocol to count the number of peers in a gossip fashion scenario [126, 88];
note that, at any given time, a node has its own estimation of the graph size,
which in general is different from the one of the other nodes. In the following,
we refer to the size estimation of node i as ni. (ii) The average betweenness

44Chapter 3. Duckweed: Distributed Current Flow Betweenness Centrality

provides an estimation of the average cfbtw of the whole graph. This pro-
tocol is similar to the size estimator protocols, and we refer to the cfbtw
average estimation of node i as BTWi. (iii) The k-partitioning performs a
distributed k-way partitioning on input graph, similar to the one proposed
in [149]. The result of the partitioning is to colour the nodes of the graph
with different colours according to their partition. The k-partitioning and
average betweenness are optional, as they depends on the particular strategy
used for the generation of the flow.

Using these concepts, we defined three different strategies to generate a
new flow:

• random: a node generates a new flow F (s,t) with a certain probability
prandom, computed as the following:

prandom = max

(
0,
ϕ− ϕi
n

)
(3.6)

where n is the number of (estimated) nodes in the graph. If the node
is supposed to create a flow, selects t from its random sampling view.

• adaptive: the aim of this strategy is to favour the creation of flows
between nodes that are at the border of the graph, and to disfavour
flow betweens nodes in the center. Recall that to be source (or target)
of a flow, do not improve its own betweenness value. In other words,
this strategy tries to accelerate the computation of the nodes with
already an higher betweenness. To implement this strategy, a generic
node i considers the local estimation of the average cfbtw for the
whole graph (BTWi). If i has its current centrality value larger than
BTWi, then it generates no flow. Otherwise, it creates a flow with
probability padaptive, defined as the following:

padaptive = max

(
0,
ϕ− ϕi
n/2

)
(3.7)

Note that padaptive is twice prandom, so to compensate the node with
no chance to create a flow. A node u elected to generate a new flow
sets s = u and t equals to the node having the smallest cfbtw value
in its random sampling view.

• partitioner : the aim of this strategy is to favour the generation of flows
with s and t being in different partitions of the graph. Intuitively,
nodes on the path between two nodes of different partitions are more
likely to have higher betweenness centrality. A node u generates a new
flow with a probability equals to prandom and s = u, and exploits the
colouring from the k-partitioning protocol to choose t from the random
sampling view, such as t’s colour is different from s’s colour.

Update

During every step, each vertex collects all the flows received by its neighbour-
hood in the previous step and applies Equation 3.2 to update the potential
of each flow. The updated potentials, along with the flow identifiers, are
then sent to all the neighbourhood to continue the computation in the next

3.3. Duckweed 45

step. This computation can be easily extended to handle weighted graphs
introducing the weights in Equation 3.2 as described by Bozzo et al [25]
using as A the weighted adjacency matrix.

Figure 3.1 depicts a flow computation where a unit of current is injected
in node s and removed from node t. In step t + 1 the node B receives
from its neighbours {A,C, s} the potentials calculated on step t equals to
{0.58,−0.723, 0.893}. It applies Equation 3.2 and it obtains a potential
equals to 0.28. This potential will be available to its neighbours in the
following step.

Termination

The termination of a flow is regulated by the system-wide parameter Dε,
which represent the minimum difference in the potential of a flow between
two consecutive steps. Therefore, on a generic vertex i, the flow F (s,t) is
completed when both the following conditions are verified:

• v(s,t)
i has converged to at least Dε;

• all the neighbours of i have converged to at least Dε.

When a flow is marked as completed, the vertex stops the propagation of
the potential relative to such flow. This eventually terminates the update of
the flow F (s,t) in all the vertices of the graph.

3.3.4 Centrality computation

In the previous section, we described how the computation of a single flow is
performed in duckweed. This section describes how duckweed combines
the results coming from the computation of multiple flows to incrementally
compute the cfbtw for the nodes of the graph.

When the computation of a generic flow F (s,t) is completed (as described

in Section 3.3.3), vertex i uses Equation 3.3 to compute I
(s,t)
i for the F (s,t).

Vertex i then updates its current-flow betweenness bi using I
(s,t)
i and Equa-

tion 3.5. Note that the source s and target t do not consider I
(s,t)
s and I

(s,t)
t

for their betweenness calculation. Since we provide an estimation of the cf-
btw by computing only a subset of the all possible flows, this assumption
is required to avoid biased computation of centrality, which would occur if

considering any value for I
(s,t)
s and I

(s,t)
t , for example equals to 0 or 1 as

suggested in [24]. Figure 3.1 (on the right) show the current flowing on each
node of the graph calculated with Equation 3.3 when the flow is completed
at step t+ n. Considering node B we obtained:

IB =
1

2
(|0.323− 0.617|+ |0.323− 0.949|+ |0.323 + 0.736|)

= 0.99
(3.8)

This value will be used by node B in Equation 3.5 to incrementally calculate
its current flow betweenness value.

The precision of the cfbtw increases as more and more flows are up-
dated and completed. To detect when the results of the cfbtw are precise
enough, and hence to terminate the generation of new flows, it is possible
to define a parameter k to stop the generation of new flows when all the

46Chapter 3. Duckweed: Distributed Current Flow Betweenness Centrality

nodes have already processed k flows. Otherwise it is possible to introduce
more sophisticated techniques to let each node decide autonomously when
stopping flow generation and hence terminate the computation. Note that
the termination of the computation of the cfbtw is different from the ter-
mination of a single flow. In the former case we refer to the termination of
the whole system (i.e. no more flows are created), in the latter (described
in Section 3.3.3) we refer to the termination of a single flow.

In order to equip each node with the possibility of locally terminating the
computation of the cfbtw, we adapt the centralized mechanism introduced
by Brandes et al. [27] to a distribute context. This method exploits the
Hoeffdings bound [82] to identify a value of k such that the error εBTW on
the betweenness values bv on each node is sufficiently small. Hoeffding’s
bound gives:

P

(∣∣∣∣∣c∗k
k∑
i=1

X(i)
v − bv

∣∣∣∣∣ ≥ εBTW
)
≤ 2

n2l
(3.9)

when choosing:
k = l · d(c∗/εBTW)2 logne (3.10)

for arbitrary l, where c∗ = n/(n − 2) and X
(1)
v , ..., X

(k)
v are independent

random variables that return F (s,t), for a pair s 6= t, picked uniformly at
random. We adapted the above calculation to be suited for the distributed
environment of duckweed. To pick a flow uniformly at random we ex-
ploited a random peer sampling layer and each node, for instance using the
random flow creation heuristic, has the same probability to generate a flow
with a node taken from the random peer sampling. Also, each node has its
estimation ki about the number of flows already computed in the system
equals to the number of flows that i has computed. The size of the network
n can be estimated in the same way explained in Section 3.3.3. Given the
above, each node can autonomously calculate k and stop the flow generation
when ki > k.

3.4 Experimental evaluation

The aim of the evaluation is to verify the effectiveness of duckweed both
in terms of the quality of results, and on its applicability on large graphs.
The evaluation of duckweed was conducted by means of simulations. We
implemented duckweed, and all the associated protocols, on the discrete-
event PeerSim [137] simulator.

3.4.1 Evaluation of Correlation

To conduct an evaluation of duckweed we measured the correlation of
the results provided by our approach with the ones given by the other al-
gorithms. To measure the correlation, we use the kendall tau metrics,
which is a measure of rank correlation. It measures the degree of similarity
between two distinct rankings by assigning a value in the range [−1, 1]. If
two rankings have the same values, the coefficient equals to 1, whereas if
the disagreement between the two rankings is perfect (i.e., one ranking is
the reverse of the other) the coefficient has value −1. For this evaluation
we generated 3 graphs of 1000 nodes each, using the Snap library [107] with

3.4. Experimental evaluation 47

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5

K
en

da
ll

T
au

 C
or

re
la

tio
n

Duckweed Decimal Precision

PREF ATTACH
RANDOM

RMAT

Figure 3.2: Kendall Tau Correlation with NetworkX

the following strategies: preferential attachment (Barabasi-Albert), random
(Erdos-Renyi) and RMAT1 [44]. These graphs are purposely small to ease
the computation of exact values for all the centrality measures.

Validation against NetworkX

In this first set of experiments we validate the precision of the current flow
betweenness centrality provided by duckweed against the one provided by
NetworkX [160]. NetworkX is a popular tool to analyse network structure
and it provides an implementation of the algorithm presented by Brandes et
al. [27] to calculate the current flow betweenness centrality. We run Net-
workX on the three aforementioned graphs to compute the exact cfbtw.
Then, we run duckweed on the same graphs, computing all flows and
varying the decimal precision of Dε up to five decimals. We compared the
top 100 nodes of NetworkX and duckweed with the kendall tau metrics.
It is worth to point out that in the context of all our experiments we refer
to the top X nodes to indicate the X nodes that received the highest value
of centrality according to a given measure.

Results are presented in Figure 3.2. It is evident that in all datasets
the correlation increases when increasing the decimal precision. This is
an expected result because increasing the precision on each flow leads to
a more precise calculation of the current flow betweenness. The value of
centrality, computed by duckweed on the preferential attachment graph,
exhibits the best correlation in all the configurations. In fact, even with a
single-decimal precision the value of its correlation with NetworkX is around
0.9. Conversely, the random graph exhibits a correlation of 0.7 when adopt-
ing single-decimal precision, however the correlation value rapidly increases
when using additional decimal precision. It is worth to notice that with a
precision of 4 decimals, all the datasets exhibits a correlation value greater
than 0.9, suggesting that duckweed correctly approximates the current
flow betweenness centrality also with a reasonable value of Dε.

duckweed complete vs approximated

This test compares the complete version of duckweed (i.e. the one in which
all flows are computed), against the approximated version, in which only a
portion of all the flows is computed. The results presented in Figure 3.3 show
the kendall tau correlation of the top 100 nodes between the complete and

1RMAT graphs were generated with parameters (.6, .1, .15, .15)

48Chapter 3. Duckweed: Distributed Current Flow Betweenness Centrality

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000 1200 1400

K
en

da
ll

T
au

 C
or

re
la

tio
n

Flow

PREF ATTACH
RANDOM

RMAT

Figure 3.3: Kendall Tau Correlation: complete vs approx-
imated

the approximated version of duckweed, when the amount of flows executed
varies.

The experimental results show that the correlation increases quite fast
becoming closer to the complete one, even using a number of flows that
represents less than the 1% of all the possible flows. We obtained the best
results when using the preferential attachment graph. As can be observed,
it starts from 0.6 and reach 0.9 in step 200, whereas both the RMAT and
random graphs achieve a correlation value not greater than 0.7.

3.4.2 Convergence Time

In Section 3.4.1 we evaluated the results of duckweed when varying the
Dε parameter. We found that the results achieved using an increased value
of Dε have an increased correlation with the exact values of current flow
betweenness centrality. Here, we evaluate the impact of Dε on the time
spent to terminate a flow. We measure this time in terms of step, i.e., the
number of times duckweed is executed on each node.

Figure 3.4 presents the number of step required by adopting different
values of Dε for the analysis of the very same graph. The results presented are
computed as an average of 1000 flow computations. As expected, an higher
decimal precision corresponds to an higher amount of step. In particular,
a decimal precision greater than 3 leads to a sensible increase of step, that
reach its maximum of 22 step with a decimal precision of 5 on the RMAT
graph. Anyhow, it is worth to notice that with a decimal precision below
3 the amount of step is always less than 5 for any given datasets. This is
quite interesting, in fact with a decimal precision of 3, duckweed already
achieves good correlation values with the exact values.

3.4.3 Centrality on Large Graphs

The evaluation of certain centrality measures in large graphs is an issue by
itself. In fact the exact computation of some centrality measures can be very
costly, from a computational viewpoint, when the size of the graph is large.
A common strategy to evaluate the centrality of a given set of nodes, without
having to compute exact results, is to remove the whole set from the graph
and measure the amount of connected components (CCs) characterising the
graph after this process [12, 55].

3.4. Experimental evaluation 49

 0

 5

 10

 15

 20

 25

 1 2 3 4 5

S
te

p

Duckweed Decimal Precision

PREF ATTACH
RANDOM

RMAT

Figure 3.4: Convergence Time

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

C
C

 N
um

be
r

Nodes Removed

DUCKWEED
DEGREE

(a) Road PA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100

C
C

 N
um

be
r

Nodes Removed

DUCKWEED
DEGREE

(b) Google

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

C
C

 N
um

be
r

Nodes Removed

DUCKWEED
DEGREE

(c) Dblp

Figure 3.5: CC Number (large number is better)

Clearly, an higher number of CCs corresponds to a better identification
of nodes responsible to maintain the network connectivity. In the following
we refer to this metrics as cc number.

Using this metrics we conducted two different sets of experiments. The
first testbed is aimed at evaluating, in terms of cc number, the quality of
the results produced by duckweed with respect to the result obtained by
the Degree centrality. Previous results for cfbtw approximation provided
result for graphs in the order of 103 nodes in Brandes et al. [28] and 3× 103

in Avrachenkov et al. [12]. We chose the Degree centrality as the baseline
since it is the least expensive in terms of computational complexity among
popular centrality measures, and therefore suitable to be computed on large
graphs.

For our evaluation we considered three graphs taken from the SNAP [105]
website: (i) the RoadPA graph represents the roads network of Pennsylvania;
(ii) the DBLP graph provides a co-authorship network of paper indexed by
the DBLP service; (iii) the Google graph represents web pages and hyperlinks
released in 2002 by Google.

From these graphs we extracted each largest connected component, and
we use these as the input for our evaluation. The connected components
were extracted using our algorithm described in Chapter 4, and measure
respectively 1, 087, 562, 317, 080 and 855, 802 nodes.

The results we achieved show that duckweed is able to provide good
results, i.e., identifies nodes with a centrality index sensibly higher than the
one provided by Degree centrality.

The second experiment evaluates the approximation provided by duck-
weed during the simulation. More in details, Figure 3.6 shows the amount
of cc number that would be introduced if the top 100, 50 and 25 rankings

50Chapter 3. Duckweed: Distributed Current Flow Betweenness Centrality

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

C
C

 N
um

be
r

Cycle

TOP 100
TOP 50
TOP 25

(a) Road PA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500

C
C

 N
um

be
r

Cycle

TOP 100
TOP 50
TOP 25

(b) Google

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100 200 300 400 500

C
C

 N
um

be
r

Cycle

TOP 100
TOP 50
TOP 25

(c) Dblp

Figure 3.6: CC Number: Graph Cut While Increasing
Duckweed approximation

were removed by the graph. The timespan considered focuses on the ini-
tial 500 step of the simulation. As expected, the top 25 nodes require less
step to be identified with respect to the top 100. In fact, let us consider,
for instance, Figure 3.6a. It can be noticed how after 50 step the top 25
curve identifies 20 cc number, a value that increases only marginally in the
remaining of the simulation. Conversely, the top 100 curve rapidly increases
till step 200 and then remains stable right to the end. In conclusion, the
results presented in Figure 3.6a show that duckweed is able to achieve a
good level of approximation in a reasonable number of step (around 200).
The results reported in figures 3.6b and 3.6c, are slightly different but still
confirm the ability of duckweed in quickly finding nodes that if removed
lead to the creation of a consistent amount of connected component.

3.4.4 Message Volume

In order to evaluate the cost of duckweed, in terms of messages required
for its execution, we measured the amount of messages as the total number
of flows sent during a single step, and we called this metrics msg volume.
To conduct our evaluation we considered three types of graph, each one gen-
erated according the following models: preferential attachment, random and
RMAT. For each type we generated five graphs each having a different size:
{10000, 20000, 40000, 80000, 160000}. We run the experiments by varying
the number of concurrent flows, per step, in the following set: {10, 20, 40}.

As can be noticed in Figure 3.7a the value of msg volume for the RMAT
graph increases linearly with the graph size (the results obtained using pref-
erential attachment and random graphs are not included because are equiv-
alent to the RMAT ones). This is easy to see in Figure 3.7a, in fact with 10
concurrent flows the msg volume value equals to 2.5× 106 for a graph size
of 80000 nodes and about 5× 106 for a graph of 160000 nodes. Similarly, an
increment on the number of concurrent flows leads to a linear increment of
msg volume.

Figure 3.7b presents the results achieved using different types of graphs
and fixing the number of concurrent flows to 10. We observed that all the
graphs behave a similar way when increasing the network size. However, the
preferential attachment graph requires the largest msg volume, whereas
RMAT the smallest. This is essentially due to the total amount of edges in
each graph: the greatest in preferential attachment and the lowest in RMAT.

Figure 3.7c shows the msg volume per node, with the number of con-
current flows fixed to 10. The results we achieved show that the network

3.4. Experimental evaluation 51

0x100

2x106

4x106

6x106

8x106

10x106

12x106

14x106

16x106

18x106

20x106

20000 40000 80000 160000

M
es

sa
ge

 V
ol

um
e

Graph Size

10 FLOW CONCURRENT
20 FLOW CONCURRENT
40 FLOW CONCURRENT

(a) Increasing graph size

0x100

2x106

4x106

6x106

8x106

10x106

12x106

14x106

20000 40000 80000 160000

M
es

sa
ge

 V
ol

um
e

Graph Size

PREF ATTACH
RANDOM

RMAT

(b) Different Graph Model

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

20000 40000 80000 160000

M
es

sa
ge

 V
ol

um
e

Graph Size

PREF ATTACH
RANDOM

RMAT

(c) Volume Per Node

Figure 3.7: Message Volume Evaluation

size affects only marginally the msg volume per node. In particular, with
the preferential attachment and RMAT the msg volume remains constant,
whereas it slightly increases with random graph. These results suggest that
duckweed scales in terms on msg volume with the size of the graph, which
makes it suitable for computation on large graphs.

3.4.5 Flow Creation Strategy

This last set of experiments is aimed at evaluating the impact of the flow
creation strategies (random, adaptive, partitioner, described in Section 3.3.3)
on the identification of central nodes. To this end we executed a simulation
of 5000 flows with all the graph types, but fixing the graph size to 160000
nodes. The cc number achieved by duckweed were sampled every 10
completed flows by removing the top-{25,50,100} most central nodes. From
the sample, we computed the minimum, maximum, average and standard
deviation. An overview of the results for the Random graph are reported in
Table 3.1 (the results with the other graph types are omitted as the results
were almost the same).

Even if Brandes et al. [28] observed that from a theoretical viewpoint a
random selection of the flow performs better than more complex heuristics,
from the results we achieved it can be observed that the adaptive strat-
egy provides the best result on average. However, some aspects are worth
to notice: (i) the random strategy considered by Brandes et al. exploits
a “perfect” uniform random, rather, the random nodes in duckweed are
taken from the random peer sampling service, that only from a theoretical
point of view converges to an uniform random; (ii) from a temporal analy-
sis of the results, we observed that the differences among the strategies is
more evident during the initial steps of the simulation when the number of
completed flows is still low. Instead, at the end of the simulation all the
strategies achieved similar results.

Overall, these considerations suggest that in a distributed context where
an uniform random distribution is not easily available, a more elaborate
strategies can have an impact on the computation of the cfbtw, especially if
does not require to compute complex global measures of the graph. Instead,
the considerations of Brandes et al. still hold in a controlled environment
that provides an uniform random.

A last consideration can be made about the partitioner strategy, which
appears to be, on average, the least performer. In this case the introduction
of a gossip layer to compute the distributed partitioning of a graph appears
to be not justified, according to the poor performances of the strategy.

52Chapter 3. Duckweed: Distributed Current Flow Betweenness Centrality

TOP 25 TOP 50 TOP 100

MIN MAX AVG SDEV MIN MAX AVG SDEV MIN MAX AVG SDEV

RANDOM 2 11 8.49 2.25 4 12 10.28 1.79 8 18 13.46 2.3

ADAPTIVE 3 14 9.45 2.74 4 17 11.63 2.51 11 21 15.54 2.68

PARTITIONER 3 11 7.48 1.37 5 14 9.24 1.79 7 19 12.28 3

Table 3.1: Comparison of the flow creation strategies for
the Random graph (in terms of CCs created)

Algorithm 3.2: The GAS Duckweed Algorithm
1 def Gather (M1,M2 ← receive messages from neighbours)
2 Map ← old collected message;

3 for ∀F (s,t) ∈M1 ∪M2 do

4 Fold ← Map.get (F (s,t));

5 if F (s,t) isConverged then

6 Fold.PutList (F (s,t))
7 else

8 Fold.PutSum(F (s,t))

9 end

10 end

11 def Apply (F ← aggregated message)
12 forall the f ∈ F do
13 pf ← Update () ;
14 ∆f ← difference between pf and pf of the previous iteration ;
15 if Terminate(∆f) then
16 mark f as terminate
17 end

18 end
19 UpdateCentrality (f) ;

20 def Scatter ()
21 F ← new message with all flows pf updated;
22 Send(F) to neigthbours ;

3.5 Duckweed on Apache Spark: the algorithm

In this section we describe how the computation of the current flow be-
tweenness centrality has been defined by exploiting the GAS (Gather-Apply-
Scatter) model, an iterative graph-parallel paradigm [76] in order to be im-
plemented on real distributed frameworks like Spark and GraphX. In the
following, we present the algorithm, GAS-Duckweed and the optimizations
which exploit the characteristics of the model.

Take as reference Algorithm 3.2, that shows the high level structure of
GAS-Duckweed. The algorithm is splitted into three data-parallel phases:

• Gather combines incoming messages, each message is the potential
value of a neighbour, relative to a specific flow identified by the (s,t)
pair. It optimizes communications by aggregating the potentials rela-
tive to the same flow.

• Apply consumes the aggregated message, in particular it updates all
potentials of the flows, and eventually updates the cfbtw.

• Scatter defines the messages that are dispatched to the neighbours.

3.5.1 Reducing the number of messages

The algorithm is characterized by a neighbour-to-neighbour communication
pattern. In each iteration all vertices receive and send messages through
their edges. The value of a message exchanged between neighbours is a map

3.5. Duckweed on Apache Spark: the algorithm 53

consisting of key-value pairs, where the keys uniquely identify the flows by
s and t, respectively the source and the target of the flow, and the value is
the current potential for that flow. Thanks to pull-based model of message
computation we can reduce the number of the sent messages by applying the
gather function on messages sent to the same vertex.

3.5.2 Reducing the size of the messages

All the messages include information of a set of flows. If all the flows are sent
in all the iterations many duplicate potentials may be sent in consecutive
iterations. We can reduce the size of the messages by avoid re-sending or
combine message tecniques.

Avoid re-sending. Each vertex has a local view of the flows that have
been injected and that are flowing through the graph. Each flow is charac-
terized, by its state, which can be Active, Converged, or Terminated. The
Active state identifies flows currently processed by the vertex. A flow is
considered Converged when the difference of the values of its potential, in
two consecutive iterations, is less than a system-wide parameter Dε. A flow
is considered Terminated when it has reached convergence in i and in all its
neighbours. When a flow F (s,t) is Converged on i but still Active on some

neighbours, such neighbours still requires F
(s,t)
Pi

to continue the computation
in the next iterations. If this is the case, i sends one last time its converged

flow F
(s,t)
Pi

with a flag F
(s,t)
Pi . Thanks to this, all the neighbours knows that

this is the last time that they will receive the potential for such flow from i.
Combine message. In each iteration, each vertex receives the messages

generated in the previous iteration. In GAS-Duckweed during the gather
phase we sum the values of each flow separately to reduce the size of all
messages even more. Note, not all the values of the flow can be aggregated.
The converged flows have to be saved in local memory and thus they must
not be considered in the gather phase. Algorithm 3.2 shows the pseudo code
of the Gather function. This is applied to all messages and reduces both the
number of messages and the size of each message.

3.5.3 Flow Generation

We assume that the vertices are labelled from 0 to n − 1, where n is the
number of vertices in the graph. In order to create the flow F (s,t), the source
and the target are selected by generating a random value ∈ [0, n − 1].We
define a system-wide parameter ϕ equals to the maximum number of flows
in status Active on each node. In each iteration t, duckweed monitors the
average number of flow in status Active on each node equals to At. In each
iteration, k flows are generated by duckweed. k is equal to ϕ−At.

3.5.4 Termination

In each iteration duckweed removes completed flows from the computa-
tion and generates new ones. Due to this, in each iteration, duckweed
can provide an approximation of the cfbtw. Clearly, when more flows are
completed the approximation will be closer to the exact value. We define
the parameter θ equals to the percentage of all possible flows that need to be
calculated before stopping. In each iteration t, duckweed sets the value to
a variable Ft equals to the average number of completed flows on each node.

54Chapter 3. Duckweed: Distributed Current Flow Betweenness Centrality

Given Fall equal to the amount of all the possible flows that can be gener-
ated for the graph G, duckweed stops the computation when Ft = θFall.
The algorithm exploits also a parameter iter to avoid too long executions.
In any case, duckweed stops the execution when iter iterations have been
completed.

3.5.5 Implementation Details

Algorithm 3.3 shows how the GAS functions described in the previous sec-
tions are used to provide two different implementations duckweed x and
duckweed mp. The duckweed x implementation uses the graph model
abstraction provided by GraphX. We exploit the Pregel method, provided
by GraphX, that requires the aforementioned three functions to compute a
graph parallel computation on a graph. Also, we have implemented a differ-
ent version based on Apache Spark using operator like Map, Reduce, Join
without the graph abstraction support. The graph can be logically repre-
sented as a pair of vertex and edge property collections. The main difference
between the two implementation is the data partitioning. GraphX enables
vertex partitioning, whereas duckweed mp exploits an edge partitioning.

Algorithm 3.3: Different Implementation duckweed x, duck-
weed mp
1 def duckweed x (Gather, Apply, Scatter)
2 G ← Graph(V,E);
3 pregel like(G, Gahter, Apply, Scatter);

4 def duckweed mp Gather, Apply, Scatter)
5 (Link, Vertices) ← Graph(V,E);
6 MSGs ← Vertices.join.(Link).flatMap(Scatter);
7 MSGs.reduceByKy(Gather);
8 G.vertices.join(MSGs).map(Apply);

3.6 Experimental evaluation on Apache Spark

In this section, we evaluate the performance of the duckweed x and duck-
weed mp algorithms which are the implementations of the Algorithm 3.2
which make use, respectively, of GraphX and Spark. Evaluations were per-
formed on a cluster of 4 nodes, each having 4 cores and 16 GB of memory.
We compare our approach with two competitors, Betweenness Centrality[70]
2 and K-betweenness[91], both implemented by their proposers in Spark: 3.

Evaluation of the Approximation. We measure the correlation be-
tween the results obtained by our approach and those obtained by Net-
workX [160] which provides an implementation of the algorithm proposed
by Brandes et. al.[27] to compute the cfbtw and returns an exact result.
We generate a preferential attachment graph by means of the Snap library 4.
The size of the graph is restricted to 10 000 nodes, because in NetworkX it
is not possible to obtain the exact value of cfbtw for larger graphs.

Figure 3.8a shows the result returned when using a different number
of concurrent flows with duckweed mp (we obtain analogous result with
duckweed x). The Y axis reports the Kendall Tau correlation of the top

2http://neo4j.com/developer/apache-spark/
3https://github.com/kbastani/neo4j-mazerunner
4http://snap.stanford.edu/

3.6. Experimental evaluation on Apache Spark 55

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 500 1000 1500 2000 2500

K
en

da
ll

T
au

Time (s)

25
150
250
350
600

(a) Concurrent Flows.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 500 1000 1500 2000 2500 3000 3500

K
en

da
ll

T
au

Time (s)

25
100
200
300
500

(b) Iterations.

Figure 3.8: Evaluation of the approximation. Kendall tau
correlation with NetworkX.

(a) Preferential Attachment
graphs.

(b) Comparison between duck-
weed x and duckweed mp.

Figure 3.9: Comparison with competitors and duck-
weed x, duckweed mp.

50 nodes, while the X axis the computational time. We fix the iteration
number to 25. We run the algorithm 4 times for each configuration. We can
observe that the correlation increases very quickly until it reaches the 0,9%.
We obtain the best result with ϕ = 350. Greater values requires more time
to complete and do not bring benefits in terms of quality. Figure 3.8b shows
the results when varying the number of iterations. We fix the number of
concurrent flows to 25 and we increase the number of iterations. Similarly
as before, a high number of iterations does not bring to a large increase of
the correlation value.

Performance Evaluation. We compare the computational time of our
algorithm against the two competitors. Figure 3.9a shows the execution
time of the different algorithms when the size of the graph varies in the set
{250, 500, 750, 1000,
2000, 3000, 5000} for a preferential attachment graph. We omit results for
random graphs that show similar outcome. duckweed mp yields better
completion times in all cases. In addition, the two competitors are unable to
provide a result for the larger graphs due to memory errors. duckweed mp
is able to provide a result 10 times faster with respect to the best competi-
tor. Next, we perform an evaluation using real graphs, results are presented
in Table 3.2. We make use of publicly available graphs by Konect5. We
are unable to run the two competitors on the larger dataset due to mem-
ory errors. Figure 3.9b compares the execution time of duckweed x and

5http://konect.uni-koblenz.de/networks/

56Chapter 3. Duckweed: Distributed Current Flow Betweenness Centrality

Table 3.2: Execution time on real world graphs.

Algorithm Netscience(379) Email(1133) Brightike(56739) WordNet(145145)

Betweenness 62 160 - -

K-Betweenness 30 49 - -

duckweed x 410 110 - -

duckweed mp 33 51 4232 4636

duckweed mp with the same configuration parameters. duckweed mp is
able to calculate the same number of completed flows in less time with re-
spect to duckweed x. For instance, with duckweed mp we calculate 200
flows in 150 seconds whereas duckweed x requires around 400 seconds.

3.7 Conclusion

In this chapter we presented duckweed, a distributed approach to calculate
the current flow betweenness centrality. To the best of our knowledge, it
is the first solution able to compute a centrality index, based on global
properties of the graph, in a fully distribute way.

Each node relies only on local information, i.e. on information stored
by itself or by its neighbours, to adaptively estimate the value of its current
flow betweenness. We empirically prove that duckweed is able to provide
a good approximation of the cfbtw and correctly identifies central nodes
which guarantee network connectivity. duckweed delivers good results also
for large graphs composed by millions of nodes, whereas existing approaches
considered only thousands of nodes. duckweed provides good scalability
figures achieved through its ability to approximate the result computing only
a subset of all the possible flows of the network.

As a future work, we plan to conduct further studies to analyse the
behaviour of our approach for dynamic graphs. Furthermore, we plan to
investigate whether Kirchhoff’s circuit simplification rules can be exploited
to detect block of nodes which can be reduced to a single node, with the
aim of optimizing the overall computation. The aim of introducing such
simplification technique is to continue to provide good result increasing the
level of approximation and simplification.

57

Chapter 4

Connected Components:
Cracker

In this chapter we focus on the problem of finding connected components
(CC) in large graphs by leveraging the TLAV approach. This problem is
of fundamental importance in graph theory and can be applied to a wide
range of different research fields. For example, finding CC is the building
block in many research topics, such as to generate group of features in image
clustering [7], study the analysis of structure and evolution of on-line social
networks [100], derive community structure in social networks [68], group
together similar spam messages to detect spam campaigns (Chapter 7), es-
timate the population from mobile calls (Chapter 8).

In this chapter we propose cracker, a highly-efficient distributed itera-
tive algorithm for the identification of connected components in large graphs.
In the context of this thesis, this work is of paramount importance as it has
been exploited as building block to perform data clustering. cracker works
by iteratively growing a tree for each connected component belonging to the
graph. The nodes added to the trees are no longer involved in the compu-
tation in the subsequent iterations. This corresponds to the simplification
guideline shown in the introduction. By means of trimming the number of
nodes involved during each iteration, cracker significantly reduces the to-
tal computation time as well as the volume of information transferred via
the network.

In order to perform a fair evaluation of cracker, the most relevant
state-of-the-art algorithms have been implemented on the same framework
(i.e. Apache Spark). The evaluation has been conducted exploiting several
synthetic and real-word datasets. The results we achieved show that crack-
er out-performs competitor solutions in a wide range of setups.

The key points characterizing our proposal are the following:

• our algorithm exploits a novel node pruning strategy that allows to
dramatically reduce its computational cost;

• we present an extensive experimental evaluation, conducted both on
synthetic and real-world datasets, where cracker is compared against
state-of-the-art algorithms; the analysis includes both computational
and communication costs and also scalability with respect to graphs
size and complexity; experimental evidence shows that cracker sig-
nificantly improves over the state-of-the-art;

• we provide a complete theoretical analysis of cracker for undirected
graph in terms of (i) correctness, (ii) computational cost and (iii) num-
ber of messages.

58 Chapter 4. Connected Components: Cracker

Table 4.1: State-of-the-art algorithms. d is diameter, n is
the number of nodes, m is the number of edges

communication
pattern

detection
strategy

vertex
pruning

number
of iterations

number of mes-
sages per itera-
tion

pegasus [54] static labelling no O(d)3 O(m + n)3

hash-to-min [151] dynamic clustering no O(log(d))4 2(m + n)

ccmr [161] dynamic labelling no N/A N/A

zones [47] dynamic labelling no O(d)3 O(m + n)3

ccf [93] dynamic labelling limited N/A N/A

alt-opt [99] dynamic labelling no O(logn)5 O(m)

sgc [147] dynamic labelling limited O(logn)6 O(m + n)

cracker dynamic labelling yes O(logn) O(nm
log n

)

• we extend the base algorithm with three optimisations. We provide
experimental evidence that these optimisations greatly improve its per-
formance;

• we give a detailed description of the implementation of the cracker
algorithm on the Apache Spark framework.

In order to make our results reproducible we made publicly available
the source code of cracker1 (as well as the code of all the competitors
used in the comparison) and the graph datasets used in the experimental
evaluation2.

The cracker algorithm has been initially published in the paper ”Cracker:
Crumbling large graphs into connected components” [122] presented at IEEE
Symposium on Computers and Communication. An extension of the algo-
rithm with optimizations and a theoretical study on the costs of the algo-
rithm has been published in the journal IEEE Transactions on Parallel and
Distributed systems with the title ”Fast Connected Components Computa-
tion in Large Graphs by Vertex Pruning” [123].

4.1 Related Work

Finding connected components is a well-known and deeply studied problem
in graph analytics. So far, many different solutions have been proposed.
When the graph can be kept in the main memory of a single machine, a visit
of the graph can find connected components in linear time [85]. Many dis-
tributed approaches have been proposed to tackle the very same problem in
large graphs. Earlier solutions considered the PRAM model [94, 92]. How-
ever, often the implementation of these solutions is complex, error-prone and
not efficiently matching the programming models provided by the current
distributed frameworks [151].

Many proposals dedicated to the problem of finding connected compo-
nents have been thought for today’s distributed frameworks, in particular for
MapReduce platforms. In this section we analyse and compare the proposals
that are most related with cracker.

To structure our comparison, we frame a selection of existing solutions
belonging to the conceptual framework of vertex-centric approaches. Accord-
ing to such model, each vertex of the graph is seen as a computational unit
able to communicate with its graph neighbours. The computation is defined

1
https://github.com/hpclab/cracker

2
http://www.di.unipi.it/ lulli/project/cracker.htm

4.1. Related Work 59

for a generic vertex, and it is repeated by all the vertices in the graph. In
CC discovery algorithms, a vertex usually propagates and maintains infor-
mation about the connected component it belongs to and the computation is
iterated until convergence. Yan et al. [190] introduce the notion of balanced
practical Pregel algorithm to characterize some nice-to-have properties for
CC algorithms making use of this model of computation. For instance,
Feng et al. [66] presents a CC algorithm targeted for Pregel framework with
performance similar to hash-to-min.

In Table 4.1 we provide a characterization of some of the most relevant
state-of-the-art approaches, presenting them on the basis of their qualita-
tive behaviour, i.e. detection strategy, communication pattern and vertex
pruning, and of the theoretical bounds for the number of iterations and of
messages per iteration. Regarding the detection strategy, we distinguish be-
tween labelling and clustering approaches. The former associates, to each
vertex, the id of the CC it belongs to, which is usually given by the smallest
id of the vertices belonging to the CC . The latter assumes that one vertex
for each CC knows the identifiers of all the other vertices of the same CC .
As a consequence, labelling requires to process less amount of information;
however the CC s can be efficiently reconstructed by a post-processing step.

Different communication patterns specify how vertices exchange informa-
tion one to each others. A static pattern happens when each vertex considers
the same set of edges at every iteration, usually its neighbors in the input
graph. This pattern is straightforward to implement, but is characterized
by slow convergence. To address this issue, other approaches employ a dy-
namic pattern, in which the set of edges evolves over time. This approach is
usually more efficient as it can add new connections and remove stale ones,
with the aim of reducing the diameter of the CC and, in turn, speeding up
convergence.

The last feature we consider is vertex pruning, namely the ability of
excluding vertices from computation. State-of-the-art algorithms keep iter-
ating the same vertex-centric computation on all vertices of the graph until
convergence. In this way, a large number of vertices remains involved in the
computation even if they do not provide useful information toward conver-
gence. For instance, a small CC could be excluded from the computation
when it reaches convergence, without affecting the discovery of other con-
nected components.

In 2009, Cohen [47] proposed an iterative MapReduce solution (which
we refer to as zones) that groups connected vertices around the vertex
with the smallest identifier. Initially, the algorithm constructs one zone for
each vertex. During each iteration, each edge is tested to understand if it
connects vertices from different zones. If this is the case, the lower order
zone absorbs the higher order one. When there are no zones to be merged,
each zone is known to be a connected component. The main drawback of
this approach is that all edges are checked during every iteration (no vertex
pruning), resulting in long convergence time.

Seidl et al. [161] proposed an improved version of zones called ccmr.
The idea surrounding ccmr is to add shortcut edges, such that fewer iter-
ations are needed to spread information across the graph. The ccmr algo-
rithm modifies the input graph during each iteration, until each connected
component is transformed in a star-shaped sub-graph where all vertices are

60 Chapter 4. Connected Components: Cracker

connected with the one having the smallest identifier. Thanks to these im-
provements, ccmr yields lower running times with respects to zones.

Deelman et al. proposed an algorithm for the detection of connected
components within the graph mining system pegasus [54]. They employ a
static communication pattern. During each iteration, each node sends the
smallest node identifier it knows to all its neighbours. In turn, each node
updates its knowledge with the received identifiers. The algorithm labels all
nodes with the seed identifier in O(d) MapReduce steps, with d the diameter
of the largest connected component. Similarly, Rastogi et al. [151] proposed
hash-to-min, a vertex-centric algorithm parametrized by an hashing and
a merging function determining the information travelling across the graph.
The hash-to-min algorithm iterates as pegasus by propagating the small-
est node identifier seen so far, but in addition it also communicates the whole
set of known nodes so as to create new connections among nodes being at
more than one hop distance.

Kardes et al. [93] proposed a MapReduce algorithm in two phases named
ccf. The first phase is similar to the hash-to-min approach but they
introduce some improvements that reduce the computation cost in spite of
more MapReduce steps. The second phase of ccf is an optimization that
reduces the amount of duplicated messages. ccf employs vertex pruning
limited to the seed nodes, whereas cracker processes only the relevant
vertices, while discarding vertices that have no useful information to share.

Recently, Kiveris et al. [99] proposed alt-opt. The algorithm selectively
removes edges from the graph, until each connected component is identified
by a star-shaped graph centred on the seed. To avoid unbalanced computa-
tions, it splits vertices with high degree in multiple copies, in fact speeding
up the computation at the expense of more MapReduce steps. alt-opt
shares many traits with cracker, being based on a dynamic communication
pattern and using labelling as the detection strategy. However, cracker
excludes nodes over time, which reduces the overall computational cost and
allows to collapse the computation in a single machine when the number of
active nodes is sufficiently small.

Another recent solution for CC discovery, which we refer to as sgc, has
been presented by Qin et al. [147]. It exploits a set of join operators defined
by the authors for the Hadoop framework to model an iterative MapReduce
computation. Similarly to cracker, their algorithm outputs a forest of
trees, each representing a connected component. Initially each node becomes
part of a tree-like graph by setting as a parent the node in its neighbourhood
with the lower identifier, thus creating a forest of (possibly interconnected)
trees. Then, one-node (i.e. singleton) and non-isolated trees (i.e. connected
by an edge to another tree) are iteratively merged until all trees become
isolated (the hooking phase). Subsequently, each tree is transformed into a
star-shaped graph with the root in the center, so that nodes get to know
the CC they belong (the pointer jumping phase). This last phase has the
same goal of cracker’s seed propagation (see Section 4.2.2) but it requires
to access to the 2-hop neighbourhood of nodes. sgc performs only a limited
amount of vertex pruning by deactivating at each step the nodes that do not
match some criteria. Further, it requires a large number of MapReduce step
in each iteration to verify some properties on each node and to identify if a

4.2. The CRACKER Algorithm 61

0 21

3 54

6 87

0 21

3 54

6 87

0 21

3 54

6 87

0 21

3 54

6 87

0 21

3 54

6 87

0 21

3 54

6 87

Iteration 1 Iteration 2 Iteration 3

G1

(source graph)
H1 G2 H2 G3 H3

MinSelectionMinSelection MinSelectionPruning Pruning

Figure 4.1: cracker: example of seed identification.
Gray vertices are excluded from the computation

tree can be merged.

4.2 The CRACKER Algorithm

Let G = (V,E) be an undirected graph where V is a set of n vertices uniquely
identified by values in Z, and E ⊆ V ×V is the corresponding set of m edges.
A connected component (CC) in G is a maximal subgraph S = (V S , ES)
such that for any two vertices u, v ∈ V S there is an undirected path in S
connecting them. We conform to the convention to identify each CC of the
graph with the smallest vertex identifier belonging to that component. The
vertex having this identifier is the seed of the connected component.

The cracker algorithm (see Algorithm 4.1) achieves the identification
of the CC s into two phases:

• Seeds Identification: for each CC , cracker identifies the seed vertices
of the graph, and it iteratively builds a seed propagation tree rooted

3Not available in the original paper and taken from [151].
4Rastogi et al. [151] conjecture that hash-to-min finishes in 2(log d) iterations on all

inputs. They prove also that hash-to-min terminates in 4(logn) iterations on any path
graph.

5Kiveris et al. show a complexity of O(log2 n) for the algorithm called Two-Phase. Here
we refer to an optimization of it called alt-opt with only a claimed complexity without
any theoretical proof.

6In Qin et al. [147] the proof is omitted due to lack of space.
7In Feng et al. [66] is presented the total communication cost, however in the first

iteration if a node is connected to all the other nodes the BFS cost O(m) message.

Algorithm 4.1: The cracker algorithm

Input : an undirected graph G = (V,E)
Output: a graph where every vertex is labeled with the seed of its CC

1 u.Active = True ∀u ∈ G
2 T ← (V, ∅)
3 t← 1
4 Gt ← G
5 repeat
6 Ht ← Min Selection(u) ∀u ∈ Gt

7 Gt+1 ← Pruning(u, T) ∀u ∈ Ht

8 t← t+ 1

9 until Gt = ∅
10 G∗ ← Seed Propagation(T)
11 return G∗

62 Chapter 4. Connected Components: Cracker

in the seed; whenever a vertex is added to the tree, it is excluded
from computation in the subsequent iterations (see Alg. 4.1 lines 6–
6). When all the vertices are excluded from the computation the Seed
Identification terminates and the Seed Propagation begins.

• Seeds Propagation: propagates the seed to all the vertices belonging to
the CC by exploiting the seed propagation tree built in the previous
phase. (see Alg. 4.1 line 42).

In the following we describe in detail the two phases. The presentation is
given adopting a vertex-centric computing metaphor: at each iteration the
vertices of the input graph are processed independently and in parallel.

4.2.1 Seed Identification

The basic idea of the Seed Identification phase is to iteratively reduce the
graph size by progressively pruning vertices until only one vertex for each
connected component is left, i.e., its seed. When a vertex discovers its own
CC , it is excluded from computation since does not impact on the other
CC s in the graph. In short, a vertex v discovers its CC by interacting only
with its (evolving) neighbourhood. At any iteration, a vertex may discover
in its neighbourhood another vertex q with a lower identifier value. If this
happens, v connects to q. If v is not chosen by any neighbour, v is excluded
from the computation and it becomes the child of q in the seed propagation
tree that, at the end of the algorithm, will include all the vertices of the
connected component.

As shown in Algorithm 4.1, each vertex u ∈ G is initially marked as
active, meaning that at the beginning all vertices participate to the com-
putation. The seed identification is, in turn, an iterative algorithm made
of two steps: MinSelection and Pruning. The Seed Identification phase is
exemplified in Figures 4.1 (Graph) and 4.2 (Tree) and detailed below.

MinSelection

This step serves to identify those vertices that are guaranteed to not be seed
of any connected component (see Algorithm 4.2). From the point of view
of the entire graph, it takes in input a undirected graph Gt at iteration t,
and builds a new directed graph Ht. The edges of Ht are created as the
following. For each vertex u ∈ Gt, the vmin is selected as the vertex with the
minimum id from the set NNGt(u)∪{u} (see line 9 in Algorithm 4.2), where
NNGt(u) is the set of neighbors of u in Gt. The vmin is then notified to all
the neighbours of u and to u itself. This communication is materialised as
the addition of new directed edges v → vmin for every v ∈ {NNGt(u)∪u} (see

Algorithm 4.2: Min Selection (u)

Input : a vertex u ∈ G
1 NNGt(u) = {v : (u↔ v) ∈ Gt}
2 vmin = min(NNGt(u) ∪ {u})
3 forall the v ∈ NNGt(u) ∪ {u} do
4 AddEdge ((v → vmin), Ht)
5 end

4.2. The CRACKER Algorithm 63

line 4 in Algorithm 4.2). After all vertices in Gt completed the MinSelection,
for each vertex u ∈ Ht it holds the following: (i) if u is not a vmin for any
NNGt(u), it has no incoming links; (ii) u has an outgoing link to its vmin and
with the vmin of every node inNNGt(u). According to the algorithm, a vertex
is considered a potential seed if it is a local minimum in the neighbourhood
of some vertex, and in such case, it has at least one incoming edge in Ht.
Therefore, after the MinSelection, the nodes that have no incoming edges
are guaranteed to not be seed of any connected component.

For instance, let us consider vertex 8 in the graph H1 in Fig. 4.1 produced
by the first iteration of the MinSelection. Vertex 8 has three outgoing edges:
(i) 8 → 5, which has been created by 8 itself as 5 was its vmin in the input
graph G1; (ii) 8 → 2, created by 5 connecting its vmin with 8; (iii) 8 → 3,
created by 7 connecting its vmin with 8. Therefore, the knowledge of node 8
about G is improved only by information exchanged with its neighbours. In
the same way all the other nodes improve their knowledge about the graph.

Pruning

The Pruning step (see Algorithm 4.3) removes from Ht, and thereby ex-
cludes, all the vertices that cannot become seeds. The vertices excluded
during the Pruning grow a forest of seed propagation trees T each covering
a distinct CC of the graph. From the point of view of the entire graph, it
takes in input a directed graph Ht and generates a new directed graph Gt.

In the Pruning, each node recomputes vmin considering NNHt(u), which
is composed by all the outgoing edges. Then, for every node v in NNHt(u)
(except vmin), a new undirected edge v with vmin is added to the graph
Gt+1 (see line 5). Note that NNHt(u) is in general different from NNGt(u),
with the former normally having lower identifiers. For example, in Figure
4.1 NNGt(5) = {2, 8} and NNHt(5) = {1, 2}. These undirected edges make
sure that the nodes in Gt+1 are not disconnected in case u is deactivated
and therefore not included in the graph Gt+1. At the end of the Pruning,
the nodes identified as non seed in the MinSelection have no edges and
therefore are excluded by the computation. According to the algorithm of

Algorithm 4.3: Pruning(u, T)

Input : a node u ∈ G and the seed propagation tree T
1 NNHt(u) = {v : (u→ v) ∈ Ht}
2 vmin = min(NNHt(u))
3 if |NNHt(u)| > 1 then
4 forall the v ∈ NNHt(u) \ vmin do
5 AddEdge ((v ↔ vmin), Gt+1)
6 end

7 end
8 if u /∈ NNHt(u) then
9 u.Active = False

10 AddEdge ((vmin → u), T))

11 end
12 if IsSeed (u) then
13 u.Active = False
14 end

64 Chapter 4. Connected Components: Cracker

0 21

3 54

6 87

0 21

3 54

6 87

0 21

3 54

6 87

Tree after iteration 1 Tree after iteration 2 Tree after iteration 3

Figure 4.2: cracker seed propagation tree

the MinSelection, this can be verified by checking whether a node has a self-
link inHt: if it does not it cannot be the minimum of the local neighbourhood
(which includes itself) and can be safely excluded (see line 9). The nodes
marked for exclusion are inserted in the seed propagation tree T (see line
34). Finally, a node is finalized as a seed when it is the only active node in
its neighbourhood NNGt+1(u). It is marked for exclusion and added to T as
the root of a CC .

Now, let us consider again the example in Fig. 4.1. Nodes 4, 6, 7
and 8 are excluded from G2 because they have not been chosen as vmin of
any node at the previous iteration. Graphically, excluded vertices can be
easily spotted as they do not have any ingoing edge. Being excluded, these
nodes are connected to their vmin in the seed propagation tree T as shown
in Fig. 4.2. Specifically, in the propagation tree, the vertex 3 has 6 and 7
as children (being their vmin in H1). Similarly, vertex 2 has vertex 8 as
child, and vertex 1 has vertex 4. Note, G2 preserves the connectivity of the
remaining vertices, and this holds in general for every Gt.

4.2.2 Seed propagation

Please recall that a seed propagation tree for each component of the graph
is incrementally built during the Pruning. When a vertex v is excluded from
the computation, a directed edge vmin → v is added to the tree structure T
(see Line 10 in Algorithm 4.3).

The Seed Propagation phase starts when there are no more active nodes
after the execution of the Pruning. At this there exists in T for each CC a
seed propagation tree rooted in its seed node. Figure 4.2 shows the tree at
each iteration resulting from the example presented in Figure 4.1. Such tree
is then used to propagate the seed identifier to all the nodes in the tree. In
details, the propagation starts from the root of each tree. The roots send
their identifier to their children in one MapReduce iteration, this identifier
will be the identifier of the CC . In every iteration, each node that receives
the identifier propagates it to its children. The execution stops when the
identifiers reach the leaves of the tree.

4.2.3 Cracker correctness

We denote with NNd
Gt(u) the set of vertices at distance at most d from u in

Gt. In the following, we first highlight a few properties which can be derived
from the cracker algorithm.

Property 1 (Active Vertices). An active vertex u ∈ Gt will stay active in
Gt+1 iff it is a local minimum for any of its neighbors or for itself.

4.2. The CRACKER Algorithm 65

Property 2 (New edges). Given a node u ∈ Gt, let u1
min and u2

min be the
smallest nodes in NN1

Gt(u) and NN2
Gt(u), respectively. The graph Gt+1 will

have an edge u1
min ↔ u2

min, and, if u is still active, an edge u↔ u2
min.

Property 3 (Edges of Neighbors). Given two neighboring nodes u, v ∈ Gt,
an edge v1

min ↔ u2
min is created in Gt+1.

The first property holds because a local minimum node is never deac-
tivated. The second property holds because the node u creates links be-
tween its neighbors in Ht (possibly including itself) to the new minimum in
NN2

Gt(u). The third property holds because u’s neighbors in Ht include the
local minimum of v.

We can now prove the following.

Theorem 1 (Path Preservation after Pruning). If a vertex u ∈ Gt be-
comes inactive, other vertices in the same connected component will still be
connected in Gt+1, if active.

Proof. We equivalently prove that if a node u ∈ Gt is removed, its neighbors
that remain active are still connected in Gt+1. According to Property 2,
every such neighbor v of u becomes connected to v2

min and indirectly to v1
min.

Moreover, according to Property 3, v1
min has an edge to u2

min. Therefore, if
active, every neighbor of u is connected to u2

min through a path in Gt+1.

Note that in case of multiple node removals, their local minima are never
removed by cracker, which guarantees that at least one neighbor for each
removed node is kept active at the next iteration. Indeed, the nodes u1

min

and u2
min, for every u ∈ Gt, form the new connectivity backbone of graph

Gt+1.

Theorem 2 (Seed Propagation Tree). Given a connected component, the
seed propagation tree T built by cracker is a spanning tree of the connected
component.

Proof. New edges from inactive to active vertices are generated in the prop-
agation tree T after each iteration. This process has three important prop-
erties. First, according to Theorem 1, the remaining active vertices do not
alter the connectivity of the original CC . Second, at least one vertex is deac-
tivated and added to T after each iteration, i.e., the vertex with the largest
id, until the seed vertex is left. Third, newly added edges of T always link
an inactive vertex to an active one, thus avoiding loops.

The first condition implies that only one tree T is generated as the con-
nected component is never partitioned. The second condition implies that
T is actually a tree, while the third condition implies that every vertex in
the CC is eventually added to T which is rooted at the seed vertex.

Theorem 3 (Correctness). The cracker algorithm correctly detects all the
connected components in the given input graph.

Proof. According to Theorem 2, a propagation tree is built for each CC in
the input graph. Clearly cracker does not add edges in the propagation
trees between two vertices not being in the same connected component, as
they cannot be neighbours at any iteration. Therefore, the propagation trees
built by cracker uniquely identify the CC s in the input graph.

66 Chapter 4. Connected Components: Cracker

L0

L1

L2

L3

L4

from G1 (source graph)

0

2

1

3

5 4

6

8

7

cross
edges

increasing
chains

iteration 1

T1 T3

phase i phase ii

0

1 53 2

L0

L1

0

31

5

2

iteration 3

L0

L1

L2

0

21

54 8

3

6 7

iteration 2

L0

L1

L2

Figure 4.3: Illustration of algorithm crk on the same
graph in Figure 4.1. Grey nodes are deactivated, and gen-
erated new cross-edges. Only the first three iterations are

reported.

4.2.4 Cracker computational cost

In this section we discuss the computational complexity of cracker both
in terms of number of iterations and number of messages. We use Figure 4.3
to exemplify the notations and properties exploited, with reference to the
same graph used in Figure 4.1.

Any given connected graphG can be organized into levels L0, . . . , Li, . . . , Ll−1,
such that level L0 contains nodes u having u1

min = u, while level Li contains
nodes v such as their local minimum v1

min is in level Li−1. If we consider
only edges of the kind v ↔ v1

min, each node in L0 is the root of a tree, where
root-to-leaf paths traverse nodes with increasing ids. Figure 4.3 shows the
two increasing trees present in the exemplifying graph.

Property 4 (Increasing tree cost). The cracker algorithm takes O(log l)
iterations to process an increasing tree of height l.

It can be trivially seen that, according to Prop. 2, after iteration t = 1
each node in level Li is linked to a node Li−2, i.e., its smallest neighbor at 2
hops distance, to a node in Li−4 after iteration t = 2, and to a node in Li−2t

after iteration t, so that after log(l) iterations every node becomes aware
of the root in L0, being the node with the smallest identifier in the tree.
Moreover, when a node becomes a leaf of the tree it is deactivated according
to Property 1. Therefore, after log(l) iterations, all the nodes but u0 are
deactivated and the algorithm completes.

The above property can be easily generalized if we also consider the
edges of the graph not covered by the increasing trees. Indeed, such edges
potentially links two nodes at different levels Li and Lj , and they will gen-
erate edges between levels Li/2 and Lj/2 (or lower) thus speeding up the
convergence to the root node.

In general, any given connected graph can be organized in a set of in-
terlinked increasing trees, with additional edges, named cross-edges, across
those trees. Figure 4.3 illustrates the two cross-edges: (4, 3) and (8, 7). Based
on the notion of increasing trees, we show that at every step of the cracker
algorithm, these trees are reduced in height and merged until only the seed
node is left.

4.2. The CRACKER Algorithm 67

Theorem 4 (Number of Seeds identification iterations). Given a connected
graph G having n nodes, the number of iterations taken by the seed identifi-
cation phase is O(log n).

Proof. Let Th be the set of increasing trees in G having depth ≤ 2h and
not included in Th−1. We show that cracker reduces the height of such
trees after each iteration and merges them until only the seed node is left.
Specifically, we base this proof on a simplified variant of cracker, named
crk, which alternates two phases: (i) one cracker iteration processes
only the increasing trees in T0; (ii) one cracker iteration processes each
increasing tree in the graph.

crk is thus similar to cracker with some limitations. During phase
i, only nodes in T0 trees may find their best local minumum through the
cross edges, and during phase ii, cross-edges are not exploited to find the
new best local minimum, but only to guarantee connectivity when nodes are
deactivated. Such limitations make crk computationally more expensive
than cracker. However, we prove, that crk satisfies the Theorem 4.

Phase i. Let’s consider the increasing trees in T0, i.e., composed of a
single node u. By construction, u has a neighbor v reachable through cross-
edges, with v1

min = z, z < u and z < v. After one iteration node u is
linked to z thanks to Prop. 2, possibly increasing by one the height of the
increasing tree containing z. In Fig. 4.3, in iteration 2, the node 3 has node
1 as neighbor which has local minimum node 0, and therefore node 3 is
linked to node 0. All the increasing tree in T0 are merged with other trees
analogously. Note that if T0 is empty then phase i does not take place.

Phase ii. We consider the increasing trees of G in isolation, i.e., without
exploiting cross-edges to find a new best local minimum. In this setting,
the height of each tree is halved at each iteration according to Prop. 4. In
addition, leaf nodes are deactivated as they are not the local minimum of
any other node (see Prop. 1). In case of deactivation, crk allows to consider
cross-edges for the purpose of preserving connectivity according to Th. 1: a
leaf node u with a cross-edge to v creates a new cross-edge between u2

min

(in u’s tree) and v1
min (in v’s tree). In the example in Fig. 4.3, during the

deactivation of node 4, the cross-edge (4, 3) generates a new cross edge (3, 1),
as 42

min = 1 and 31
min = 3. Similarly, during the deactivation of nodes 8 and

7, the cross-edge (7, 8) generates the two cross edges (5, 3) and (2, 3). After
phase ii, each tree has halved its height, and therefore trees in Th become
trees in Th−1, and in particular trees in T1 become trees in T0 as their leaf
nodes are deactivated.

Note, the tallest increasing tree has height at most n, and therefore it
requires at most dlog2 ne iterations of the two crk phases to be shrunk into a
single node (also according to Prop. 4). Moreover, nodes in T0 may increase
the height of the tallest tree at each iteration. The total number of added
nodes is at most n. Therefore, the algorithm requires less than dlog2 ne
additional iterations of the two phases to process all of such nodes.

We conclude that the number of phases required by crk, and therefore
of cracker iterations, is 2 · dlog2 ne+ 2 · dlog2 ne, i.e., O(log n).

Theorem 5 (Height of seed propagation tree). The height of the seed prop-
agation tree is at most h with h = O(log n).

Proof. Recall that each directed edge (u, v) added to the propagation tree
links a node v being deactivated to a node u which is staying active in the

68 Chapter 4. Connected Components: Cracker

next iteration of the cracker algorithm (see Th.2). This implies that the
height of the propagation tree is at most equal to the number of iterations
taken by the seeds identification phase. Thus, from Theorem 4, it holds that
h = O(log n).

Theorem 6 (Number of cracker iterations). Given a connected graph G
having n nodes, the number of iterations taken by cracker algorithm is
O(log n).

Proof. The proof comes directly from the proofs of Theorem 4 and 5. Since
the two phases of cracker are executed one after the other and both of
them have a cost of, in terms of iterations of O(log n), the total cost of the
cracker algorithm is O(log n).

Theorem 7 (Number of deactivated vertices). Given a connected graph G,
at least 2t − 1 vertices have been deactivated after iteration t.

Proof. Similarly as for Theorem 4, we provide a proof based on the notion
of increasing trees. Note, the smallest number of deactivations is achieved
when only one increasing tree is present in G, otherwise multiple leaf nodes
are deactivated on multiple trees. Recall that after t iterations every node
initially at level Li is linked to a node initially in level Li−2t . This implies
that in an increasing tree of height h, nodes initially in levels from h − 2t

(excluded) to h cannot be a local minimum after t iterations, i.e., they are not
linked to nodes in higher levels. As each level in the initial graph contains at
least one node, we conclude that at least 2t−1 vertices have been deactivated
after t iterations.

Theorem 8 (Number of messages per iteration). Let n be the number of
nodes and m the number of edges in the given graph. The number of crack-
er messages is O(nm

logn).

Proof. As in typical CC discovery algorithms, the creation of edges in each
graph Gt and Ht is implemented with node-to-node messages. Let’s consider
the first iteration. During the MinSelection step, each node first sends a
message to each of its neighbors in G0 and to itself to select the minimum
among them and this requires 2 messages for each edge plus n messages,
thus 2m + n. Then, in the Pruning step each node generates undirected
edges for G1 starting from H0. Each node follows the pattern of generating
an undirected edge between its minimum in H0 and each of its neighbors.
This generates 2m undirected edges in G1 and requires 2 ·2m messages. The
first iteration has thus a total cost of 6m+ n messages and generates a new
graph G1 with 2m edges. By iterating the same argument, we obtain that
the number of edges at iteration t is bounded by 2tm.

Given that the number of iterations is logn, we have that the average
number of messages per iteration is 1

logn

∑logn
t=1

(
2tm

)
≤ 2·2lognm

logn = O(nm
logn).

Finally, the Seed Propagation phase requires n−1 messages to propagate
the seed identifier, as the seed propagation tree contains n − 1 edges, i.e.
O(n). Thus, the seed propagation has no impact on the message complexity.

Note, the actual number of messages is much smaller as by removing
nodes at each iteration also edges are removed. To corroborate the above

4.2. The CRACKER Algorithm 69

0 21

3 54

6 87

H1

0 21

3 54

6 87

G2

0 21

3 54

6 87

G1 (source graph)

Figure 4.4: Seed identification with the ep and os opti-
mizations.

claim, in the experiments we evaluated the number of nodes and edges for
a generic graph (Fig. 4.9a and 4.9b). Results show that the number of
nodes and edges decreases exponentially, dramatically reducing the number
of messages exchanged per iteration. Moreover, cracker always sends a
number of message lower than hash-to-min, for all the tested graphs, as
described in Table 4.3.

4.2.5 Optimisations to cracker

Most of the algorithms we considered in our study, cracker included, ex-
hibit a running time that is highly dependent on the degree of nodes be-
longing to the graph. In addition, most of them, during their computation,
enrich the graph with artificial edges, usually linking the seed with the other
nodes belonging to the CC . As a consequence, the degree of some nodes is
considerably increased, sensibly affecting the computational cost of the algo-
rithms. To address this issue, we introduce in cracker three optimisations,
described in the following.

Edge pruning

Edge Pruning (ep) operates during the MinSelection by reducing the number
of redundant edges created, and therefore speeding up the computation. The
idea is that when a node is already the minimum of its neighbourhood, it does
not need to notify this information to its neighbours as this information is
redundant. In ep, if a vertex u ∈ Gt is a potential seed of its neighbourhood,
then it does not add any edge in Ht, as instead would happen in the ForAll

operation at line 3 in Algorithm 4.2.
More in detail, when a node u is the local minimum in NN(u), i.e.,

u = umin there are two exclusive cases:

• z ∈ NN(u) considers u as the zmin. In such case z creates the directed
edge (z, u). Note that in the original algorithm this edge would be
created twice, one time by z and the other by u.

• z ∈ NN(u) considers another node, say w, as the zmin. In this case z
creates the directed edges (u,w) and (z, w). In the original algorithm
u would have created the edge (z, u), which in this case is useless as
w is a better potential seed than z. Note that the correctness of the
algorithm holds, as u an w are connected both with and without the
optimization.

The second case is shown in Figure 4.4 in H1, in which ep avoids the
creation of the directed edge (4, 3). Instead, in the original algorithm, vertex

70 Chapter 4. Connected Components: Cracker

3 would have created the edge (4, 3), which is useless since vertex 4 knows a
better candidate, i.e. vertex 1.

Oblivious seed

The goal of the Oblivious Seed (os) optimization is to reduce the number
of edges created from potential seeds to other nodes of the CC . This op-
timization operates in the Pruning, specifically at the AddEdge (Line 5) in
Algorithm 4.3. In the original version of cracker, a generic node u creates
a set of undirected edges from NNHt(u) to umin. With os, u would create
only the directed edges from the NNHt(u) to umin, in fact creating a di-
rected graph rather than a undirected one. The effect can be seen in Figure
4.4, in which the G2 graph is a directed graph created by enabling the os
optimization. This optimization yields two benefits:

• reduces the amount of edges created on the potential seed of half.
When CC s are large this amount is significant and speeds up the com-
putation. Note that this does not impact on the correctness of the
algorithm, since nodes still have direct edges connecting them to bet-
ter candidates;

• avoids the creation of stars centered on the potential seeds, which
makes the computation faster by removing the computational bottle-
necks given by potential seeds.

However, the last benefit comes with a cost since the potential seeds
cannot connect directly to other potential seeds. This increases the number
of iterations needed to the algorithm to reaching a convergence state. In
other word, os realizes the tradeoff between the running time of single iter-
ations (due to the large running time of large stars on potential seed) and
the number of iterations. Therefore, os is enabled at the earlier iterations
of the algorithm, when the number of node active is still high and the stars
created on the potential seed can be huge. After few iterations, the amount
of active node decreases according to Theorem 7 and os is disabled to favour
convergence in a minor number of iterations, rather than decreasing their
completion time.

Finish computation sequentially

The third optimisation, Finish Computation Serially (FCS), has been in-
spired from the work of Salihouglu et al. [159] targeting Pregel-like systems.
The assumption is that exist algorithms leading to a fast convergence of most
of the nodes composing the graph (and the subsequent “deactivation” from
computation) but with a small fraction of the graph that requires several
additional steps of computation to converge. The idea surrounding their op-
timisation is to gather into a single machine all the nodes that still require
some processing to converge. By means of this mechanism it is possible to
avoid the execution of super-steps involving a large set of the computational
resources when the actual processing involves only a very small fraction of
the input graph. FCS monitors the size of the active subgraph, i.e., the
fraction of the graph that still did not converge. When the size of the sub-
graph goes below a given threshold K, the subgraph is sent to a machine
that performs the remaining of the processing serially. By construction, in

4.3. Experimental Evaluation 71

Table 4.2: Datasets description

Name |V| |E| β-index ccNumber ccMaxSize diameter AVG degree MAX degree

Italy 19,006,129 19,939,100 0.95 153,876 14,694,405 10,534 2.09 16

Twitter [101] 24,159,954 532,138,866 0.05 14,038 24,129,131 N/A 44.05 1,848,376

LiveJournal [135] 5,204,176 77,402,652 0.07 4,533 5,189,809 17 29.75 15023

PLD [133] 39,497,204 623,056,313 0.06 56,304 39,374,588 N/A 31.55 4,933,011

PPI-All [6] 4,670,194 664,471,350 <0.01 16,018 36,255 4 142.28 8,561

cracker the set of active vertices is monitored in each iteration to check
for the termination (see Algorithm 4.1 Line 6).

4.2.6 Implementation

To validate and fairly evaluate cracker with respect to the existing alter-
native approaches we implemented both our proposed algorithm and all the
other solutions using the same methodology, technologies and running envi-
ronment. All the algorithms have been developed using the Scala language,
a Java-like programming language aimed at unifying object–oriented and
functional programming. All the implementations are organised according
to the MapReduce model exploiting the Apache Spark framework [193]. All
the implementations have been realised without any specific code-level opti-
misation and using the same data structures (i.e. the Set structure provided
by the Scala base class library).

All the implementations of the tested algorithms have been run using the
same installation of Spark, that was already up and running in the computa-
tional resources used during the experimental evaluation. Additional details
on the running environment are presented in the next section.

The graphs used as input were represented using text files organised as
edge-list. Such files have been loaded by Spark framework from an HDFS-
based drive. The graphs have been partitioned in a different number of
slices, depending on the graph size. The amount of slices is independent
from the algorithm, i.e., the amount of partitions in which a graph has been
decomposed is the same for any algorithm used for its processing. We make
use of the default partitioning strategy available in Spark.

Finally, the logging system has been disabled to avoid a potential over-
head, both from the computational and network bandwidth viewpoint.

4.3 Experimental Evaluation

This section evaluates our approach in a wide range of setups. The evaluation
has been conducted using both synthetic and real-world datasets. All the
experiments have been conducted on a cluster running Ubuntu Linux 12.04
consisting of 5 nodes (1 master and 4 slaves), each equipped with 128 GBytes
of RAM and with two 16-core CPUs, inter-connected via a 1 Gbit Ethernet
network.

In evaluating the performance of the different competitors, we considered
several metrics, including: (i) time, as the total time in seconds from the
loading of the input graph until the algorithm terminates; (ii) steps, as
the number of MapReduce steps required; (iii) message number, as the
total number of messages sent between the map and reduce jobs; message
volume: as the amount of vertex identifiers sent. All the values considered
in the evaluation are the average of 10 independent runs.

72 Chapter 4. Connected Components: Cracker

4.3.1 Dataset Description

The following datasets have been chosen to build a comprehensive scenario
to generalise as much as possible the empirical evaluation of cracker. We
made all of them publicly available to foster a fair comparison. A summary
of datasets’ characteristics is presented in Table 4.2.

• Streets of Italy. This graph has been generated starting from the
data harvested from Geofabrik3, which collects data from the Open
Street Map project [79]. From the whole collection, we extracted the
data about Italy. The dataset is characterized by a very large con-
nected component covering the 75% of the entire graph and a large
number of smaller CC .

• Twitter. A Twitter dataset containing follower relationships between
Twitter users has been collected by Kwak et al. [101].

• LiveJournal. This datasets is one of the most used when compar-
ing different algorithms of this kind on social relationship graphs. It
contains social relationships between users of the LiveJournal social
network.

• Pay-level domain (PLD). The graph has been extracted from the
2012 version of the Common Crawl web corpora and it is publicly
available [133]. From the authors’ description, in the dataset each
vertex represents a pay-level-domain (like uni-mannheim.de). An edge
exists if at least one hyperlink was found between pages contained in
a pair pay-level-domains. We use this dataset as an undirected graph.

• PPI-All dataset. The PPI-All dataset is a protein network describing
all the species contained in the STRING database [6]. Vertices corre-
spond to protein and edges correspond to interactions between them
thus forming a protein network. Among those the considered datasets,
PPI-All is the one with the largest number edges (∼665 millions), but
with a diameter as small as 4.

4.3.2 Evaluation of Optimizations

This section discusses the impact of the three optimizations presented in Sec-
tion 4.2: Edge Pruning (ep), Oblivious Seed (os), and Finish Computation
Sequentially (fcs). In order to test each optimization, both in isolation and
in combination, we compare four different versions of the algorithm: (i) the
plain cracker version, (ii) the cracker +ep version, (iii) the cracker
+os version, and the cracker +ep +os version. We call salty-cracker
the version of our algorithm with all the optimizations described in Section
4.2.5. Key findings:

• os allows to reduce both the maximum vertex degree and the num-
ber of edges at the cost of extra steps. However, each of these extra
steps takes considerable less time and they can be cut with the fcs
optimization;

3
http://download.geofabrik.de/

4.3. Experimental Evaluation 73

• ep and os combined give a greater reduction on the completion time
with respect to the simple sum of the reductions obtained by the two
optimizations in isolation.

• salty-cracker is faster than cracker thanks to the optimizations.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12

D
eg

re
e

M
ax

Step

CRACKER
CRACKER+EP
CRACKER+OS

CRACKER+EP+OS

(a) Degree Max with ep
and os

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10 12 14 16 18

T
im

e
M

et
ric

Step

CRACKER
CRACKER+EP
CRACKER+OS

CRACKER+EP+OS

(b) time metric with ep
and os

 0

 10

 20

 30

 40

 50

 60

2 4 6 8 10

S
te

p
M

et
ric

K x 105

CRACKER
SALTY-CRACKER

(c) steps metric with
fcs optimization

Figure 4.5: Evaluation of Optimizations

Edge Pruning and Oblivious Seed

In these experiments we show the effectiveness of the edge pruning and
oblivious seed optimizations. For this evaluation we used the PLD (see Table
4.2) dataset due to its large CC composed by the 99% of the entire graph,
and for the large number of high degree vertices [133].

Figure 4.5a shows the maximum degree in the graph, and we used this
metrics as an indicator of the balance of the computation, as higher values
usually indicates unbalanced computations. In Figure 4.5b we report the
cumulative completion time. Each of these metrics is sampled at each step
of the MapReduce computation, specifically cracker executes two steps
(MinSelection and Pruning) per algorithm iteration.

The main idea of the ep optimization acts when a node is already the
candidate for itself in the MinSelection. In this scenario the node does not
need to notify this information to its neighbours. i.e. it still be active in the
next iteration and will be notified by neighbours if exist a better candidate.
This optimization has few or no impact on balancing as we can see from
Figure 4.5a. In some cases (for instance at the 4th step) the highest degree
is higher than the one measured with plain cracker. However, the number
of edges not generated thanks to ep yields a beneficial, even if limited, impact
on the completion time (-6%).

The aim of the os optimization is to avoid potential seed to collect in-
formation that are redundant for the identification of the CC . With respect
to cracker +ep, the cracker +os version has a greater impact on both
the metrics considered. Regarding the balancing, os minimizes the creation
of high degree vertices at the expenses of few additional steps in the com-
putation. Indeed, while ep converges at the 13th step, os converges at the
18th. However, these extra steps are much faster and this has great benefi-
cial impact on the completion time in the order of -22% with respect to the
plain version and -17% with respect to cracker +ep.

It is interesting to notice that the combination of the ep and os gives
a greater reduction on the completion time with respect to the simple sum
of the reductions obtained by the two optimizations in isolation. It brings a
total improvement of 12% instead of the expected 6%. This confirms that

74 Chapter 4. Connected Components: Cracker

the two optimisations complement each other, in fact allowing for an even
larger reduction in the number of edges created.

 0

 200

 400

 600

 800

 1000

1 2 3 4 5

T
im

e
M

et
ric

Graph Diameter x 106

SALTY-CRACKER
CCF

ALT-OPT

(a) time metric

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

S
te

p
M

et
ric

Graph Diameter x 106

SALTY-CRACKER
CCF

ALT-OPT

(b) steps metric

0.0x100

200.0x106

400.0x106

600.0x106

800.0x106

1.0x109

1.2x109

1.4x109

1 2 3 4 5

M
es

sa
ge

 V
ol

um
e

M
et

ric

Graph Diameter x 106

SALTY-CRACKER
CCF

ALT-OPT

(c) message volume
metric

Figure 4.6: Sensitivity to Diameter

Finish Computation Sequentially

The main goal of the FCS optimization (Section 4.2.5) is the reduction of
MapReduce iterations. From our theoretical demonstration the number of
steps are primarily affected by the diameter of the graph. Therefore, to test
the FCS optimization we synthetically generated a path graph with 5× 106

vertices with randomly distributed identifiers.

Table 4.3: Performances with real world datasets: mes-
sage number and message volume are values ×106

Twitter time steps Msg Vol

salty-cracker 898 9 1589 3520

cracker 1650 (1.84×) 12 1603 4001

ccf 3215 (3.58×) 7 819 5500

alt-opt 2230 (2.48×) 15 4158 8316

hash-to-min 9222 (10.27×) 7 2920 9807

sgc 15409 (17.16×) 72 1946 5743

PLD time steps Msg Vol

salty-cracker 1105 10 2282 5218

cracker 1592 (1.44×) 13 2522 6302

ccf 20742 (18.77×) 7 1796 8690

alt-opt 8583 (16.82×) 15 4477 9378

hash-to-min > 30×
sgc > 30×

PPI-All time steps Msg Vol

salty-cracker 330 6 893 1952

cracker 359 (1.09×) 12 896 2136

ccf 1247 (3.78×) 6 239 3733

alt-opt 797 (2.42×) 15 1887 3774

hash-to-min 415 (1.26×) 6 1104 4360

sgc 1957 (5.93×) 72 359 3799

Italy time steps Msg Vol

salty-cracker 1338 30 745 1479

cracker 1381 (1.03×) 33 780 1734

ccf 1889 (1.41×) 18 1214 4744

alt-opt 2052 (1.53×) 39 1864 3727

hash-to-min 2071 (1.55×) 18 1774 6457

sgc > 30× > 114

LiveJournal time steps Msg Vol

salty-cracker 201 10 246 536

cracker 297 (1.48×) 12 258 639

ccf 313 (1.56×) 6 176 1056

alt-opt 345 (1.72×) 15 462 925

hash-to-min 620 (3.08×) 7 408 1562

sgc 1087 (5.41×) 72 436 1136

4.3. Experimental Evaluation 75

 0

 500

 1000

 1500

 2000

 2500

 3000

221 222 223 224 225 226

T
im

e
M

et
ric

Number of Vertices

SALTY-CRACKER
CCF

ALT-OPT

(a) time Metric

 0

 5

 10

 15

 20

221 222 223 224 225 226

S
te

p
M

et
ric

Number of Vertices

SALTY-CRACKER
CCF

ALT-OPT

(b) steps Metric

0x100

2x109

4x109

6x109

8x109

10x109

12x109

14x109

221 222 223 224 225 226

M
es

sa
ge

 V
ol

um
e

M
et

ric

Number of Vertices

SALTY-CRACKER
CCF

ALT-OPT

(c) message volume
metric

Figure 4.7: Sensitivity to Vertices Number

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16

T
im

e
M

et
ric

Step

SALTY-CRACKER
CCF

ALT-OPT

(a) LiveJournal: time
metric

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

M
es

sa
ge

 N
um

be
r

M
et

ric

Step

SALTY-CRACKER
CCF

ALT-OPT

(b) LiveJournal: mes-
sage number metric

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16

M
es

sa
ge

 V
ol

um
e

M
et

ric

Step

SALTY-CRACKER
CCF

ALT-OPT

(c) LiveJournal: mes-
sage volume metric

Figure 4.8: Step By Step Comparison

The number of steps are reported in Figure 4.5c, as a function of the
parameter K of the FCS optimization, which we varied in the range 0-
1,000,000 (when the number of active vertices is below K we switch to serial
computation). From the figure it is evident that the FCS optimization help
reducing the number of steps. For instance, with K = 2 × 105 the number
of steps halves with respect to the cracker implementation.

4.3.3 Comparison with the State of the Art

We compared salty-cracker with the following competitors: (i) ccf [93],
as we found it to be the best competitor in [122], (ii) alt-opt [99] (their
fastest MapReduce implementation), (iii) sgc [147] as it is the most recent
approach we know of, (iv) hash-to-min [151] because it is the de-facto stan-
dard for CC computation in MapReduce. To conduct a fair comparison, we
implemented all the algorithms within the same Apache Spark [193] frame-
work and with the same code-level optimisations. All source code used for the
experimentation is publicly available. We show below that salty-crack-
er is the best performing algorithm, effectively reduces both the number of
vertices and edges thanks to the proposed pruning strategy.

Performance on Real World Graphs

Table 4.3 presents a summary of the results obtained by the execution of
salty-cracker and the competitors on all the real datasets. In terms of
time, salty-cracker is the fastest approach with all the datasets. Apart
from the plain version of cracker, best competitors are either alt-opt
or ccf, except for PPI-All in which hash-to-min resulted to be the best
competitor, suggesting that it works nice with dense graphs. In terms of
message number ccf is better than salty-cracker in all graph datasets

76 Chapter 4. Connected Components: Cracker

0x100

1x106

2x106

3x106

4x106

5x106

6x106

1 2 3 4 5 6 7 8 9 10 11 12 13

A
ct

iv
e

ve
rt

ic
es

Step

SALTY-CRACKER
CCF

ALT-OPT

(a) LiveJournal: Active
Vertices

106

107

108

1 2 3 4 5 6 7 8 9 10 11 12 13

N
um

be
r

of
 E

dg
es

Step

SALTY-CRACKER
CCF

ALT-OPT

(b) LiveJournal: Number
of Edges

101

102

103

104

105

106

1 2 3 4 5 6 7 8 9

D
eg

re
e

M
ax

Step

SALTY-CRACKER
CCF

ALT-OPT

(c) LiveJournal: Degree
Max

Figure 4.9: Graph Topology Evolution

except Italy, but when considering message volume, salty-cracker is
the most efficient solution in all datasets. Finally, ccf is the best solution
for steps with any dataset. Interestingly, we can observe how ccf adopts
a very different strategy than salty-cracker. While the former sends
large messages in a few number of iterations, the latter sends many small
messages over a large amount of iterations. Conversely, alt-opt employs
a lot of communication over a large number of iterations. However, in our
experimental setup, it is clear that the approach of salty-cracker is the
one guaranteeing the lowest execution times.

Sensitivity to Diameter

To measure the sensitivity to diameter of the algorithms, we generated 5
path graphs with diameter in the order of 106, in which identifiers are ran-
domly distributed. In this experiments we considered ccf and alt-opt,
resulting the best competitors from the performances on real world graphs.
Figure 4.6a depicts the results with the time metric in function of the diam-
eter. salty-cracker outperforms the others, being 3.5 times faster than
the best competitor (ccf) with the largest diameter. In addition, salty-
cracker shows good scalability, as the running time grows slower than
competitor when increasing diameter. Figure 4.6b presents the results for
the steps metric. The results show that the number of steps is stable in all
the approaches, with the alt-opt requiring more steps than ccf and salty-
cracker, which obtains the best results thanks to the FCS optimization. In
terms of message volume (Figure 4.6c), salty-cracker requires 3 times
less messages than the competitors.

Sensitivity to Vertices Number

In order to investigate the scalability of salty-cracker with respect to our
competitors we synthetically generated 6 datasets with an increasing number
of vertices (from 221 to 226), using the Erdos-Renyi random graphs model
bundled with the Snap library [106]. Each graph consists of 100 connected
components approximately of the same size.

Figure 4.7a reports the results for the time metric. With a smaller num-
ber of vertices, until 223, salty-cracker performs similarly to alt-opt.
However, as the graph size increases, the performance of salty-cracker
gets better than alt-opt. The ccf algorithm is always at least 5 times
slower than salty-cracker. In Figure 4.7b we show the results for the
steps metric. ccf and alt-opt are very stable, while salty-cracker

4.3. Experimental Evaluation 77

slightly increases in the number of steps. However, salty-cracker stays
much below the theoretical bound of O(dlog2 de) given in the Theorem 4.
The results of the message volume are presented in Figure 4.7c. salty-
cracker is always the algorithm requiring less communication cost with
respect to the competitors thanks to its pruning mechanism. For instance,
for the dataset having 225 vertices, salty-cracker requires a message
volume of approximately 2×109, instead alt-opt requires 4×109 and ccf
6× 109.

Step by Step Evaluation

This evaluation was conducted by measuring the cumulative of time, mes-
sage number, and message volume metrics. Figure 4.8 reports the results
of the most representative dataset, i.e. the LiveJournal. The other datasets
exhibited similar results. The analysis of the results unravelled several in-
teresting properties of the algorithms.

The cost per steps (in terms of all the metrics considered) is high in the
starting steps for all the algorithms. However, thanks to the pruning mecha-
nism and the optimizations, the performances of salty-cracker increase in
the steps subsequent to the initial ones, while the competitors performances
decrease or remain constant. For example, the time per step between the
3rd and 5th steps is almost zero resulting in a fast regain of computational
time with respect to the closest competitor alt-opt.

An interesting thing to notice is how salty-cracker and alt-opt
groups the time into bunches of three iterations. This is due to the lazy com-
putation mechanism of Spark, which triggers the computations only when
an explicit output is required (i.e. to check the termination). By compari-
son, the ccf algorithm requires an explicit output at every iteration, so its
running time is spread over all the steps.

Regarding salty-cracker, the transition from the seed identification to
the seed propagation phase is clearly visible due to a peak in the computation
time at the 6th step in Figure 4.8a. The reason of the peak is because the
propagation tree is stored in a separate RDD, whose lineage is resolved by
the Spark framework only at the start of the propagation phase, with the
consequent increment in the computational time. To remove this peak, we
experimented with further optimization (e.g., starting the seed propagation
phase while the seed identification was still active) but all of them resulted
in longer total running time.

Graph Topology Evolution

As we described in Section 4.2, one of the innovative features of salty-
cracker is the pruning of vertices. A positive side effect of reducing vertices
is the reduction in the number of edges. Figure 4.9 provides empirical results
about the benefits of the pruning considering the LiveJournal computation.

Figure 4.9a shows that the pruning mechanism of salty-cracker is very
effective in reducing the number of active vertices. For example, after only
one Pruning (at step 3), the number of active vertices is 1/3 of the original
input graph. Rather, in the competitors the number of active vertices is
practically the same during all the computation. Figure 4.9b shows that the
number of edges decreases in the initial steps of the computation for both

78 Chapter 4. Connected Components: Cracker

 4

 8

 16

 32

 64

 128

 4 8 16 32 64 128

S
pe

ed
up

Number of Cores

PLD CRACKER
PLD CCF

Twitter CRACKER
Twitter CCF

Figure 4.10: Scalability evaluation

salty-cracker and alt-opt. Also, thanks to the node pruning, salty-
cracker overperforms alt-opt in the number of edges, although alt-opt
has been designed to reduce edges.

Figure 4.9c shows that, for salty-cracker and alt-opt, the maximum
degree decreases during the computation, and it is small in relation with the
size of the graph. By comparison, the maximum degree of ccf increases
during the computation.

4.3.4 Scalability

Finally, we tested the scalability of salty-cracker, as well as comparing
its performance with ccf, by varying the number of cores in the range [4-
128]. Figure 4.10 depicts the results we achieved with the PLD and Twitter
datasets. Similar patterns have been observed with the other datasets. In all
the tests salty-cracker always provides a better level of scalability than
its competitors. We obtained an almost linear scalability using 8 cores, a
still good level scalability with 16 cores, then the value tends to stabilise,
providing only a small advantage going from 64 to 128 cores.

These results can be motivated with several considerations about the
testing environment. Spark allocates the cores according to a round robin
policy: when using 4 cores Spark exploits one core from each of the 4 ma-
chines. As a consequence, by using only 4 cores (of the 128 available) we
exploit the total amount of memory available in the cluster. Considering
that each machines has two CPUs, we reach the maximum available CPU-
memory bandwidth, and thus linear scalability, when using 8 cores (one core
per CPU). Since finding connected component with Spark is essentially a
memory-bound problem, adding more cores and keeping fixed the amount
of memory scales only marginally.

4.4 Conclusion

In this chapter we described cracker, an algorithm for finding connected
components. The cracker algorithm is organised in two distinct phases.
The first one consists in an iterative process that is, in turn, structured in
two alternating steps. The first step is devoted to the identification of the
vertex having the smallest identifier that will be used as the CC s identifier,
whereas the other step performs the graph simplification through vertices
pruning. The second phase of cracker is aimed at labelling each node
with the id of the CC whom it belongs to.

The experiments have been conducted on a wide spectrum of synthetic
and real-world data. In all the experiments cracker proved to be a very

4.4. Conclusion 79

effective and fast solution for finding CC s in large graphs. In terms of time,
cracker outperforms its competitors in every dataset used. In addition,
cracker generated the least volume of messages among all its competitors.

This algorithm has been important for the outline of this thesis for many
reasons. It exploits a well defined simplification technique that is able to pro-
vide the same result of state of art solution in less time. Also, it arises as the
first building block to construct more complex algorithms like the clustering
algorithms proposed in the following chapters. In such algorithms cracker
implements a fundamental phase in order to achieve good clustering results.

81

Chapter 5

Clustering

Data clustering is a fundamental methodological tool supporting data anal-
ysis that consists in finding groups of related items, according to a given
definition of similarity. Data clustering can be challenging to perform when
dealing with big amount of data: this calls for the design of scalable algo-
rithms, capable of ingesting millions of data points and cluster them in mean-
ingful ways. Scalability, is not the only feature required when developing a
clustering algorithm, also the versatility of the approach is of paramount im-
portance. Most solutions are specialized in clustering items having specific
shapes. For instance, when clustering text data, the widespread K-means
clustering algorithm requires text data to be transformed into d-dimensional
vectors to operate correctly. However, such transformations generally imply
high-dimensional vectors, making distance functions problematic, an issue
known as the “curse of dimensionality” [167]. Similarly, other quite dif-
fused approaches for text clustering, based on frequency analysis of groups
of letters suffers from high-dimensionality problems. Moreover, the common
techniques discussed above are not suitable for non-metric spaces (i.e., those
in which the triangle inequality does not hold), which is a feature of the ap-
plication domain we are considering. As a consequence, this may result in
poor clustering performances.

To overcome this limitations, we conceived and realized a novel approach
to clustering. This work has been defined and developed during my period
abroad spent at Eurecom in Sophia-Antipolis (France), during my second
PhD year. The key point of this work is exploiting already defined algo-
rithm in TLAV to construct larger solutions. In particular, this chapter will
show how to perform clustering making use of the previously defined algo-
rithm for connected components in Chapter 4. The gist of our approach
consists in building an approximate k-NN graph of the input text data, and
compute its connected components, which identify data clusters. Also, we
aim at understanding the trade-off that exists between accuracy, scalability
and, ultimately, clustering quality. To this end, we perform an extensive
experimental evaluation of our method with real, large-scale datasets, using
our implementation for the Apache Spark framework. Finally, one of our
goals is to borrow the versatility from a popular k-NN algorithm and verify
if it is possible to achieve the same versatility in a clustering algorithm.

In summary, the contributions of this work are the following ones:

• we design and implement a scalable algorithm for text clustering, which
works in an “adversarial” setting, and that produces high quality clus-
ters;

• we perform a detailed experimental analysis, where we show the im-
pact of the parameters that govern the degree of approximation of

82 Chapter 5. Clustering

our method. Our results indicate that even rough approximations are
sufficient to obtain high quality clusters;

• we use real-life datasets and evaluate the overall clustering quality
of our approach both using traditional metrics and with the help of
domain experts through manual investigation, highlighting the inter-
pretability of clustering results.

The proposal of this clustering algorithm has been published in IEEE
Conference on Big Data with the title ”Scalable k-NN based text cluster-
ing” [117].

5.1 Related Work

Data clustering has been widely studied in the literature, with nuances rang-
ing from graph theoretic and data mining principles [68, 8] to experimental
approaches [165, 195].

One of the most popular algorithm for clustering is K-means [111], which
is a simple approach that can be used to perform clustering, where K in-
dicates the number of clusters the algorithm produces. Since K-means op-
erates on d-dimensional vectors, text clustering requires a transformation
phase to encode sentences and words into vectors [95, 171]. For example,
Mikolov et al. [134] present an efficient implementation of the continuous
bag-of-words and skip-gram architectures for computing vector representa-
tions of words. In our work, we use such approach as a baseline to which
we compare our method, and show that it suffers from the underlying in-
ability to accept non-metric distance measures, which are essential to detect
similarity between mangled sentences, and from its poor scalability.

Alternative approaches search for frequent terms in the dataset to iden-
tify clusters [18, 17, 127]: the idea is to find subsets of frequent term sets,
which are a proxy for clusters, and map data items containing elements of
such subsets to the same cluster. Such approaches scale poorly, and do not
take into account similarity metrics resilient to mangling.

Other approaches aim to optimize the computation of pairwise similarity
between text items using matrix computations [141]. In this category, re-
cently, Lin et al. [109] present an optimized algorithm to retrieve clustering
of text data from a similarity matrix, using cosine similarity. In general,
such approaches do not accommodate non-metric similarity measures and
are difficult to scale, although recent work [23] has shown the benefits of
approximate matrix operations, which scale better than exact, all-pair sim-
ilarity computations.

An approach that targets goals that are similar to ours is Triage [169],
which addresses the same application domain we target in this chapter. How-
ever, the focus of Triage is on multi-feature data items, and not on scalability:
the authors mainly address problems related to information fusion, by defin-
ing a method to merge several different distance metrics operating on text,
categorical and numerical values. Recently, a parallel version of Triage has
been proposed [163], which partially addresses scalability issues. However,
the approach still computes all-pair similarity among representative, proto-
type items, with an O

(
n2
)

complexity that still makes handling very large
data sets difficult.

5.2. k-NN based clustering 83

5.2 k-NN based clustering

We present our approach for text clustering, which is based on a scalable,
randomized algorithm, and recognizes the role played by approximation
which constitutes an important contribution to our analysis of the trade-
off that exists between clustering quality and the scalability of our method.

The problem of text clustering we consider is particularly challenging due
to the application scenario we study. We face an adversarial setting in which
text data is generated such that finding similar items is cumbersome: SPAM
campaigns introduce text mangling, spelling errors and generally variations
on some baseline text which makes SPAM items belonging to the same cam-
paign appear different one from each other. As a consequence, we need to
use a similarity metric between items that can overcome, or at least mitigate,
the problem.
Similarity Metric. There exist numerous similarity metrics in the vast
literature on the subject of this work. In particular, for text data, the
Hamming distance and Levenshtein distance have been extensively used to
determine the similarity among text items. In this work, for the reasons
illustrated above, we choose the Jaro-Winkler [87, 183] similarity metric
which, simply stated, counts the common characters between two strings
even if they are misplaced, misspelled, and mangled by a “short” distance.
Note that, the Jaro-Winkler metric has a codomain in [−1, 1].

Given the choice of the similarity metric we use in this work, the wide
spectrum of techniques to find clusters of similar text items reduces to few
methods. This is the main driving factor that steers the algorithmic design
choices we make in this work.

5.2.1 Phase 1: k-NN Graph Construction

Algorithm 5.1: k-NN construction

1 procedure Map(Node n, NeighborList(n))

2 forall the u ∈ NeighborList(n) ∪ n do
3 forall the v ∈ NeighborList(n) ∪ n \ u do
4 emit(u, (v, similarity(u, v)))
5 end

6 end

7 procedure Reduce(Node n,List[(Node u, Similarity s)] l)
8 orderedList = orderDESC(l).Limit (k)
9 emit(n, orderedList)

In the first phase of our method, we build a k-NN graph. Essentially,
the construction of a k-NN graph is the process of building a directed graph
from a set of items V , with vertex set equals to V and an edge from each
v ∈ V to its k most similar items in V under a given similarity measure. In
this work, we limit our attention to text features: for example, we extract
the subject of a SPAM email as the only representative feature of the item.
Considering additional, heterogeneous features is outside the scope of this
work, and we defer it to an extension of our approach.

The näıve approach to build a k-NN graph consists in finding all-pairs
similarity among all items of a dataset, then select the k most similar items to
each item. Clearly, this “brute-force” approach is not scalable, as it requires

84 Chapter 5. Clustering

O(n2) similarity computations, where n is the number of items in the dataset.
Note that the “brute-force” algorithm produces exact k-NN graphs, which
we use in this work as a baseline to determine the approximation quality of
our method.

In this work, we design a parallel version of the NNDescent algorithm
[60], which is an elegant, and widely used method to build approximate k-
NN graphs through an iterative procedure.1 From NNDescent, our approach
inherits the capability of using arbitrary similarity metrics, including Jaro-
Winkler. Although alternative approaches to build k-NN graphs exist, for
example using locality sensitive hashing (LSH) [194, 150], such methods do
not extend to arbitrary similarity metrics.2

The main idea behind the k-NN graph algorithm we use in the first phase
of our method is to iteratively improve an initial, random k-NN graph, by
“swapping” the neighborhood of each node, searching for similar candidates
among its two-hop neighborhood. Increasing the number of iterations allows
the algorithm to converge to better approximations of the k-NN graph, at
the cost of higher convergence time.

Algorithm 5.1 illustrates the pseudo-code of a generic iteration of our
parallel k-NN graph algorithm, which we cast through the MapReduce pro-
gramming model. Note that the output of the algorithm is a weighted k-NN
graph, where each edge is labelled with the similarity measure between its
end vertexes. First, we initialize the algorithm by building a random, undi-
rected k-NN graph:3 each node of the graph (i.e. a data item) is assigned k
random neighbors. In the “map phase”, the algorithm accepts as input the
random k-NN graph, explores the two-hop neighborhood of each node and
computes the similarity among each pair, as shown the Map procedure. Note
the vertex-centric nature of the algorithm: each vertex n considers a couple
of its neighbours (u,v) and “unselfishly” computes the similarity between
them. The result of this computation is then sent to the interested nodes
through the EMIT operation. In the reduce phase, Reduce, each node se-
lects its top-k similar nodes, and produces a new approximated k-NN graph,
that is used as an input for the next iteration of the algorithm. Note that
NeighborList is composed of (Node, Similarity) pairs.

In this work we are particularly interested in the role of the number of
iterations of the algorithm, which determines its approximation quality. We
claim that even rough approximations of the k-NN graph are sufficient for
the ultimate goal of our clustering method. Intuitively, the existence of a
path between similar items on the k-NN graph is sufficient for the last phase
of the clustering algorithm we propose.

5.2.2 k-NN Graph Pruning

The iterative procedure to build an approximate k-NN graph may induce
neighboring relations among text items that have a low pairwise similarity.
Indeed, the algorithm necessarily outputs the k most similar neighbors for
each item: any skew in the distribution of the pairwise similarities may

1Although an Hadoop MapReduce version of NNDescent is discussed in [60], we are
not aware of any experimental validation of it. Moreover, in our work we use Spark, a
more efficient MapReduce framework geared toward iterative algorithms.

2We are currently working on an extension of this work to include modern LSH-based
algorithms that can support arbitrary similarity metrics [90, 53, 52] as well.

3We omit the pseudo-code of this phase, as it is trivial.

5.3. Experimental Setup 85

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
od

e
pe

rc
en

ta
ge

Number of edges after pruning

θ = 0.5
θ = 0.6
θ = 0.7
θ = 0.8
θ = 0.9
θ = 1

(a) Edges Removed with
k=5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

C
lu

st
er

in
g

R
ec

al
l

Iteration

K = 5
K = 10
K = 15

(b) Iterations vs. Clus-
tering recall.

Figure 5.1: Impact of the pruning phase threshold θ. Im-
pact of number of iterations for the k-NN graph construction
phase of our algorithm. Clustering quality in terms of clus-

tering Silhouette for the full Symantec dataset.

produce a k-NN graph in which some nodes are only “loosely” similar. We
thus introduce a pruning phase, that uses a parameter θ ∈ [0, 1] to determine
a cut-off similarity value, below which edges between any pair of nodes are
eliminated. The pruning phase inspects each node of the k-NN graph, and
prunes such edges.

Choosing an appropriate threshold θ determines the final output of our
clustering method: as θ → 1 clustering is strict, which leads to a large
number of small clusters of essentially identical items; as θ → 0 clustering is
loose, leading toward the degenerate case of a single, giant cluster.

5.2.3 Phase 2: Connected Components

The second and last phase of our approach uses the pruned k-NN graph, and
outputs its connected components, that we use as a proxy for identifying
clusters of similar items. Recall that the problem of finding the connected
components of a graph amounts to searching for sub-graphs in which any
two vertexes are connected to each other by paths.

Finding connected components in large-scale graphs using scalable al-
gorithms is a well studied and understood problem, as shown in the rich
literature on the subject [151, 99, 122, 123].

Here, we use the connected component algorithm described in Chapter
4 as the building block for the second phase.

5.3 Experimental Setup

This section provides details about our experimental setup, including datasets
used, evaluation metrics, parameters and system environment.
Experimental platform. All the experiments have been conducted on
a cluster running Ubuntu Linux consisting of 17 nodes (1 master and 16
slaves), each equipped with 12 GB of RAM, a 4-core CPU and a 1 Gbit
interconnect.

To implement our approach and the baseline method we use for our
comparative analysis using Apache Spark [2]: our source code is publicly
available4.
Evaluation Metrics. We now discuss the metrics we use to analyse the
parameter space of our approach, and for its global validation in terms of

4
https://github.com/alessandrolulli/knnMeetsConnectedComponents

86 Chapter 5. Clustering

clustering quality. Also, we manually investigate the clusters we obtain,
using domain knowledge to evaluate the goodness of clustering.

We study the role of the parameters of our approach using the following
metrics:

• N. of clusters: measures the number of clusters identified by the
clustering algorithm. If not otherwise stated, we only consider clusters
to be “useful” if they have more than 1,000 elements because small
clusters are not valuable for a manual investigation by expertises;

• Largest cluster size: measures the size of the largest cluster identi-
fied by the algorithm.

We compute clustering quality using well-known metrics [56, 110], that
we report below:

• Compactness: measures how closely related the items in a cluster
are. We obtain the compactness by computing the average pairwise
similarity among items in each cluster. Higher values are preferred.

• Separation: measures how well clusters are separate from each other.
Separation is obtained by computing the average similarity between
items in different clusters. Lower values are preferred.

• Silhouette [155]: constitutes an aggregate metric, that takes into
account the inter- and intra-cluster pairwise similarity between items.
Higher values are preferred.

• Recall: this metric relates two data clustering obtained by different
methods. Using clustering C as a reference, we compute the recall of
clustering D by computing the fraction of items that belong to the
same cluster in both C and D. In particular, we use as a reference the
exact clustering we obtain with the “brute force” approach to compute
the k-NN graph. Higher values of recall are preferred.

It is important to notice that computing the above metrics is computa-
tionally as hard as computing the clustering we intend to evaluate. For this
reason, we resort to uniform sampling: instead of computing the all-to-all
pairwise similarity between items, we pick items uniformly at random, with
a sampling rate of 1%, increasing it up to 10% for small clusters.
The datasets. The main dataset we use in our evaluation consists of a
subset of SPAM emails collected by Symantec Research Labs, between 2010-
10-01 and 2012-01-02, which is composed by 3, 886, 371 email samples. Each
item of the dataset is formatted according to JSON and contains the com-
mon features of an email, such as: subject, sending date, geographical infor-
mation, the bot-net used for the SPAM campaign as labeled by Symantec
systems, and many more. For instance, a subject of an email in the dataset
is “19.12.2011 Rolex For You -85%” and the sending day is “2011-12-19”.
A deeper description of such dataset can be found in Chapter 7 where we
describe the application for Spam Campaign Detection.

To cross-validate our approach on a different dataset, we also use a data
obtained using the Twitter API, and consisting of 1, 530, 623 tweets in JSON
format.

5.4. Results 87

5.4 Results

In this section we present our result, and we organize it as follows. First,
we analyze the parameter space of our algorithm, and discuss the impact
of such parameters on the metrics we defined above. Then, we focus on
clustering quality, and compare the performance of our approach to that
of the baseline algorithm we discuss in section 5.1. Finally, we study the
clustering scalability.
Analysis of the parameter space. First, we summarize the parameters
underlying our algorithm and discuss about their role. Our approach has 3
main parameters: k, the number of neighbors to construct the k-NN graph;
the number of iterations of the first phase of the algorithm; and θ, the
pruning threshold.

The experimental results we show in this section are obtained with a
sampled version of the Symantec dataset, and account for 800,000 data items.
A sampled dataset allows us to execute the “brute force” method to compute
the k-NN graph.

In what follows, we let the number of iterations and θ to be free param-
eters, and instead select a few representative values for k. We chose k to be
small, i.e., we allow a few neighbors per node in the k-NN graph.
Impact of the pruning threshold θ. We now discuss how the pruning
mechanism modifies the k-NN graph, and what is the impact on clustering.
As discussed in section 5.2, as θ tends to 0, pruning is less effective, and the
k-NN graph tends to have a single giant component. Instead, when θ tends
to one, only very similar neighbors survive pruning, and the k-NN graph is
fractioned in a large number of small clusters.

Figure 5.1a shows the fraction of nodes for which a given number of edges
are removed after pruning, as a function of θ. For values of θ < 0.8, pruning
is less effective, as the number of pruned edges is small. Instead, for θ > 0.9,
a large fraction of nodes remain with one or fewer edges after the pruning
phase. This translates in sizes of the largest clusters to approach the entire
dataset, for θ = 0.5 already, or to be extremely small, for θ = 1.
Overall impact of approximation. We now study the impact of the k-
NN graph approximation on clustering quality, by analysing the deviation of
our approach from the results obtained from an exact k-NN graph computed
using the “brute force” approach. Our results indicate that approximate k-
NN graphs obtained with a low k and few iterations are sufficient to obtain
data clustering that is practically indistinguishable from that obtained by
an onerous O(n2) k-NN graph construction phase.

Figure 5.1b shows how clustering recall varies as a function of the k-NN
iterations. As shown in the Figure, k = 10 and 5 iterations are sufficient to
obtain a clustering which is essentially identical to that obtained with the
exact k-NN graph. Even a very low value of k = 5 settles to a 0.8 recall,
after roughly 10 iterations. Even rough approximations of the k-NN graph,
obtained with a small number of iterations, are sufficient for the algorithm
to stabilize.
Analysis of the clustering quality. We now move to a global evaluation
of the algorithm we present in this work, and compare clustering quality
to the baseline algorithm described in section 5.1. In particular, we use
the efficient K-means implementation available in Spark’s MLLib package
[3], and the word2vec package [5], as illustrated in [4]. If not otherwise

88 Chapter 5. Clustering

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.8 0.9 1

S
ep

ar
at

io
n

θ

K = 5
K = 10
K = 15

KMeans

(a) Separation (lower is
better).

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.8 0.9 1

C
om

pa
ct

ne
ss

θ

K = 5
K = 10
K = 15

KMeans

(b) Compactness (higher
is better).

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.8 0.9 1

S
ilh

ou
tte

θ

K = 5
K = 10
K = 15

KMeans

(c) Silhouette (higher is
better).

Figure 5.2: Twitter Dataset: Clustering quality in terms of
inter and intra cluster similarity, and clustering Silhouette.
As for the Symantec dataset, the algorithm proposed in this

work outperforms the baseline method in all metrics.

Table 5.1: Twitter Dataset: Manual Investigation

cluster size sample

1542 Wind 9.1 km/h WSW. Barometer 1002.0 hPa, Falling. Temperature 0.5. Rain today 0.3 mm. Humidity 34%

Wind 0.0 mph —. Barometer 1022.4 mb, Steady. Temperature 21.4. Rain today 0.00 in. Humidity 79%

194
”#IfIHadItMyWay I would have a fast metabolism so I could eat MORE!”

”#IfIHadItMyWay Chicken strips would be served everyday at ranger”

”#IfIHadItMyWay school would be just gym. And back home”

564

”Miami Valley Hospital: CLINICAL NURSE - CNN (#TROY , OH)

http://t.co/adVBYzCK #Nursing #Job #Jobs #TweetMyJobs”

”Miami Valley Hospital: OB SURGICAL TECH (#DAYTON , OH)

http://t.co/Bh80vn0k #Healthcare #Job #Jobs #TweetMyJobs”

228
”#PrettyLittleLiars was intense!!”

”#prettylittleliars marathon!”

”Pretty Little Liars with breakfast :)”

773
”I just became the mayor of Roszkowski Haus on @foursquare! http://t.co/4RzAisZg”

”I just became the mayor of Bertha’s Place on @foursquare! http://t.co/t07P13EL”

”I just became the mayor of Mini Mini Mart on @foursquare! http://t.co/d6xFIIQM”

specified, we set K = 1000 such that the baseline algorithm output 1,000
clusters similarly to our approach. Also, this configuration yields the best
result in term of Silhouette metric.

In this section, we cross-validate our results with the Twitter dataset,
which includes 1, 530, 623 tweets sent in USA and collected on the day
2012/02/21. This dataset is fundamentally more diverse than the Symantec
dataset: the average weight on the generated k-NN graph (i.e., the similarity
of the neighbours) is 0.75, as compared to 0.96 for the Symantec dataset.

Figure 5.2 shows separation, compactness and Silhouette, as a function
of θ, and for various values of k, for both our approach, and for the baseline
algorithm based on K-means (with K = 1000). A glance at the Figure
indicates that our approach achieves similar or better performance than
the baseline method for clustering. It is interesting to notice that for the
Twitter dataset, k = 5 – which produces very rough approximations of the
k-NN graph – achieves better performance than for larger values of k.

We conclude the analysis of the Twitter dataset with a manual inves-
tigation of the clusters, as shown in Table 5.1. We focus on clusters with
at least 100 tweets: in this case, a smaller cluster size is justified by the
lower similarity between tweets as compared to the Symantec dataset. Our
results confirm that clusters are meaningful, for example clustering weather
forecasts in one case and job positions at the Miami hospital in another. We
also have identified clusters related to hashtags such as #IfIHadItMyWay
and a popular TV-series, #PrettyLittleLiars.

5.4. Results 89

Table 5.2: Symantec dataset: breakdown of the algorithm
runtime (in seconds)

k-NN graph phase Iteration
k 5 10 15 20 CC
5 675 2293 3185 4897 66
10 2281 4610 5320 7061 81
15 4061 8475 13594 18203 107

Table 5.3: Symantec dataset: K-means, baseline algorithm
runtime (in seconds)

K time

K-means

1000 3498 (1.53×)
2000 10004 (4.39×)
3000 28411 (12.46×)
4000 56008 (24.55×)

Our approach, k = 10 and 5 iterations 2281

Analysis of algorithm scalability. We study the scalability of our ap-
proach and compare it to the baseline algorithm discussed earlier: first, we
vary the dataset size maintaining the same number of compute machines
that execute the parallel algorithms, then we keep the dataset size constant,
and increase the level of parallelism by adding compute machines.

Figure 5.3a, shows the algorithm runtime with varying dataset sizes,
using 5 different samples of the Symantec dataset of size 100,000, 200,000,
400,000, 800,000 and 1,600,000 emails respectively. All values plotted are the
average of 5 independent executions. Our results indicate roughly a linear
scalability with respect to the size of the dataset, an observation that holds
irrespectively of the value of k.

Figure 5.3b shows the algorithm runtime as the number of cores we devote
to the computation varies between 4 and 64, considering datasets 400,000
and 800,000 items; in both cases, our results indicate a quasi-linear speed-
up, especially for the biggest dataset. For example, increasing doubling the
number of cores from 8 to 16, for the large dataset, cuts almost in half the
algorithm runtime.

Finally, Table 5.2, reports the runtime breakdown of the k-NN graph
construction phase, and of the connected component phase of our algorithm,
for several values of k and for θ = 0.9. Again, all values are the average of
5 independent executions.

As expected, the k-NN graph construction runtime increases both with k

 0

 200

 400

 600

 800

 1000

 1200

 1400

100,000 400,000 800,000 1,600,000

R
un

ni
ng

 ti
m

e
(s

)

Dataset Size

k = 5
k = 10
k = 15

(a) Dataset sizes.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

4 8 16 32 48 64

R
un

ni
ng

 ti
m

e
(s

)

Number of cores

800000
400000

(b) Number of cores.

Figure 5.3: Scalability. Our approach scales roughly lin-
early.

90 Chapter 5. Clustering

and with the iterations number, although more slowly than the worst scale
asymptotic analysis and experimental results presented in [60].5 Note that
the first phase of our approach dominates the overall algorithm runtime, as
computing the connected components is fast. Once the k-NN graph is built,
it is possible to quickly proceed with various versions of the pruning phase
(tuning θ for the application at hand) and obtain different clusters.

Table 5.3 illustrates the runtime of the baseline algorithm that uses K-
means: the table reports the “slow-down” of the baseline algorithm with
respect to our approach, when k = 10 and with 5 iterations, and for different
values of K, the number of clusters K-means constructs. Our approach
outperforms the baseline algorithm in terms of end-to-end clustering times,
even for small values of K.

5.5 Conclusion

In this chapter, we presented a scalable approach for distributed text data
clustering, that accommodates arbitrary similarity measures and that pro-
duces high quality clusters.

To overcome the complexity of typical approaches to text clustering, this
work studied the role of approximation in establishing a trade-off between
high clustering quality and fast algorithmic runtime. We showed, through
a detailed experimental campaign, that our method does not require accu-
rate representations of pairwise similarity across data items to produce high
quality, interpretable clusters.

In addition, the connected component algorithm cracker presented in
Chapter 4 has been successfully integrated in this algorithm to show how it
is possible to give an implementation of a composed task by the composition
of two basic algorithms. Finally, due to the use of k-NN graphs, this solution
can be extended to provide density based clustering. We show how this can
be achieved in the subsequent chapter.

5Recall that we use a different parallel execution framework in our work, Spark, which
is geared towards efficient execution of iterative algorithms.

91

Chapter 6

Density Based Clustering

The clustering algorithm presented in Chapter 5 has been our first approach
to clustering. In this Chapter we define and develop an additional clustering
algorithm making use of the similar building blocks used in the previous
one. In particular, we noticed that, with some improvements, such cluster-
ing algorithm can be extended to perform density based clustering. Also,
it is possible to maintain, and provide, many features missing in most of
the algorithms performing density based clustering. We borrowed from the
previously defined algorithm the versatility. This permits to deal with any
kind of data and perform density based clustering. In addition, we introduce
approximation and simplification techniques which actively help to reduce
the computational cost of the algorithm and to provide a good result in less
time.

The main idea is to adapt the previously defined algorithm to approx-
imate DBSCAN. With DBSCAN, Ester et al. [63] introduced the idea of
density-based clustering: grouping data packed in high-density regions of
the feature space. dbscan is very well known and appreciated (it received
the KDD test of time award in 2014) because of two very desirable features:
first, it separates “core points” appearing in dense regions of the feature
spaces from outliers (“noise points”) which are classified as not belonging
to any cluster; second, it recognizes clusters on complex manifolds, having
arbitrary shapes rather than being limited to “ball-shaped” ones, which are
all similar to a given centroid.

Unfortunately, two limitations restrict DBSCAN’s applicability to in-
creasingly common cases: first, it is difficult to run it on very large databases
as its scalability is limited; second, existing implementations do not lend
themselves well to heterogeneous data sets where item similarity is best rep-
resented via arbitrarily complex functions. We target both problems, propos-
ing an approximated, scalable, distributed, versatile dbscan implementation
which is able to handle any symmetric distance function, and can handle
arbitrary data items, rather than being limited to points in Euclidean space.

NG-DBSCAN is implemented in Spark, and it is suitable to be ported
to frameworks that enable distributed TLAV computation; in our experi-
mental evaluation we evaluate both the scalability of the algorithm and the
quality of the results, i.e., how close these results are to those of an exact
computation of dbscan. We compare NG-DBSCAN with competing dbscan
implementations, on real and synthetic datasets.

Our results show that NG-DBSCAN often outperforms competing db-
scan implementations, while the approximation imposes small or negligible
impact on the results. Furthermore, we investigate the case of clustering

92 Chapter 6. Density Based Clustering

text based on a word2vec embedding: we show that – if one is indeed in-
terested in clustering text based on edit-distance similarity – in the existing
approaches, the penalty in terms of clustering quality is substantial, unlike
what happens with the approach enabled by NG-DBSCAN.

NG-DBSCAN is an approximated and distributed implementation of
dbscan. Its main merits are:

• Efficiency. It often outperforms other dbscan distributed implemen-
tations, while the approximation has a small to negligible impact on
results.

• Versatility. The vertex-centric approach enables distribution with-
out needing Euclidean spaces to partition. NG-DBSCAN allows ex-
perts to represent item dissimilarity through any symmetric distance
function, allowing them to tailor their definition to domain-specific
knowledge.

Our experimental evaluation supports these claims through an extensive
comparison between NG-DBSCAN and alternative implementations, on a
variety of real and synthetic datasets.

The NG-DBSCAN algorithm has been accepted for publication in the
Proceedings of the VLDB Endowment, Vol. 10, No. 3 with the title
“NG-DBSCAN: Approximate Scalable Density-Based Clustering for Arbi-
trary Data”.

6.1 Background and Related Work

In this Section we first revisit the dbscan algorithm, then we discuss existing
distributed implementations of density-based clustering. We conclude with
an overview of graph-based clustering and ad-hoc techniques to cluster text
and/or high-dimensional data.

6.1.1 The DBSCAN Algorithm

Ester et al. defined dbscan as a sequential algorithm [63]. Data points are
clustered by density, which is defined via two parameters: ε and MinPts.
The ε-neighborhood of a point p is the set of points within distance ε from
p.

Core points are those with at least MinPts points in their ε-neighbor-
hood. Other points are either border or noise points: border points have at
least one core point in their ε-neighborhood, whereas noise points do not.
Noise points are assigned to no cluster.

A cluster is formed by the set of density-reachable points from a given core
point c: those in c’s ε-neighborhood and, recursively, those that are density-
reachable from core points in c’s ε-neighborhood. Dbscan identifies clusters
by iteratively picking unlabeled core points and identifying their clusters by
exploring density-reachable points, until all core points are labeled. Note
that dbscan clustering results can vary slightly if the order in which clusters
are explored changes, since border points with several core points in their
ε-neighborhood may be assigned to different clusters.

For 17 years, the time complexity of dbscan has been believed to be
O (n log n). Recently, Gan and Tao [73] discovered that the complexity is in

6.1. Background and Related Work 93

Table 6.1: Overview of parallel density-based clustering
algorithms.

Name Parallel model Implements

dbscan
Approximated Partitioner Data object

type

Distance function

supported

ρ-dbscan [73] single machine yes yes grid point in n-D Euclidean

MR-DBSCAN [80] MapReduce yes no yes point in n-D Euclidean

SPARK-DBSCAN Apache Spark yes no yes point in n-D Euclidean

IRVINGC-DBSCAN Apache Spark yes no yes point in 2-D Euclidean

DBSCAN-MR [48] MapReduce yes no yes point in n-D Euclidean

MR. SCAN [182] MRNet + GPGPU yes no yes point in 2-D Euclidean

PARDICLE [143] MPI yes yes yes point in n-D Euclidean

DBCURE-MR [98] MapReduce no no yes point in n-D Euclidean

NG-DBSCAN MapReduce yes yes no arbitrary type arbitrary symmetric

fact higher – which explains why existing implementations only evaluated
dbscan for rather limited numbers of points – and proposed an approxi-
mate algorithm, ρ-dbscan, running in O (n) time. Unfortunately, the data
structure at the core of ρ-dbscan does not allow handling arbitrary data or
similarity measures, and only Euclidean distance is used in both the descrip-
tion and experimental evaluation.

We remark that the definition of dbscan revolves on the ability of finding
the ε-neighborhood of each data point: as long as a distance measure is
given, the ε-neighborhood of a point p is well-defined no matter what the
type of p is. NG-DBSCAN does not impose any limitation on the type of
data points nor on the properties of the distance function, except symmetry.

6.1.2 Distributed Density-Based Clustering

MR-DBSCAN [80] is the first proposal of a distributed dbscan implemen-
tation realized as a 4-stage MapReduce algorithm: partitioning, clustering,
and two stages devoted to merging. This approach concentrates on defin-
ing a clever partitioning of data in a d-dimensional Euclidean space, where
each partition is assigned to a worker node. A modified version of PDB-
SCAN [187], a popular dbscan implementation, is executed on the sub-space
of each partition. Nodes within distance ε from a partition’s border are repli-
cated, and two stages are in charge of merging clusters between different
partitions. Unfortunately, MR-DBSCAN’s evaluation does not compare it
to other dbscan implementations, and only considers points in a 2D space.

In the Evaluation section, we compare our results to SPARK-DBSCAN
and IRVINGC-DBSCAN, two implementations inspired by MR-DBSCAN
and implemented in Apache Spark.

DBSCAN-MR [48] is a similar approach which again implements dbscan
as a 4-stage MapReduce algorithm, but uses a k-d tree for the single-machine
implementation, and a partitioning algorithm that recursively divides data
in slices to minimize the number of boundary points and to balance the
computation.

MR. SCAN [182] is another similar 4-stage implementation, this time
exploiting GPGPU acceleration for the local clustering stage. Authors only
implemented a 2D version, but claim it is feasible to extend the approach to
any d-dimensional Euclidean space.

PARDICLE [143] is an approximated algorithm for Euclidean spaces,
focused on density estimation rather than exact ε-neighborhood queries. It
uses MPI, and adjusts the estimation precision according to how close the

94 Chapter 6. Density Based Clustering

density of a given area is with respect to the ε threshold separating core and
non-core points.

DBCURE-MR [98] is a density-based MapReduce algorithm which is
not equivalent to dbscan: rather than circular ε-neighborhoods, it is based
on ellipsoidal τ -neighborhoods. DBCURE-MR is again implemented as a
4-stage MapReduce algorithm.

Table 6.1 summarizes current parallel implementations of density-based
clustering algorithms, together with their execution environment, and their
features. In all these approaches, the algorithm is distributed by partition-
ing a d-dimensional space, and only Euclidean distance is supported. Our
approach to parallelization does not involve data partitioning, and is instead
based on a vertex-centric design, which ultimately is the key to support arbi-
trary data and similarity measures between points, and to avoid scalability
problems due to high-dimensional data.

6.1.3 Graph-Based Clustering

Graph-based clustering algorithms [65, 154] build a clustering based on in-
put graphs whose edges represent item similarity. These approaches can be
seen as related to NG-DBSCAN, since its second phase takes a graph as
input to build a clustering. The difference with these approaches, which
consider the input graph as given, is that our approach builds the graph in
its first phase; doing this efficiently is not trivial, since some of the most
common choices (such as ε-neighbor or k-nearest neighbor graphs) require
O(n2) computational cost for generic distance functions; our approximated
approach obtains a substantial cut on these costs.

6.1.4 Density-Based Clustering for High-Dimensional Data

We conclude our discussion of related work with density-based approaches
suitable for text and high-dimensional data in general.

Tran et al. [172] propose a method to identify clusters with different
densities. Instead of defining a threshold for a local density function, low-
density regions separating two clusters can be detected by calculating the
number of shared neighbors. If the number of shared neighbors is below
a threshold, then the two objects belong to two different clusters. Tran et
al. report that their approach has high computational complexity, and the
algorithm was evaluated using only a small dataset (below 1 000 objects).
In addition, as the authors point out, this approach is unsuited for finding
clusters that are very elongated or have particular shapes.

Zhou et al. [196] define a different way to identify dense regions. For
each object p, their algorithm computes the ratio between the size of p’s ε-
neighborhood and those of its neighbors, to distinguish nodes that are at the
center of clusters. This approach is once again only evaluated and compared
with dbscan in a 2D space.

6.2 NG-DBSCAN: Approximate and Flexible DB-
SCAN

NG-DBSCAN is an approximate, distributed, scalable algorithm for density-
based clustering, supporting any symmetric distance function. We adopt

6.2. NG-DBSCAN: Approximate and Flexible DBSCAN 95

the vertex-centric, or “think like a vertex” programming paradigm, in which
computation is partitioned by and logically performed at the vertexes of
a graph, and vertexes exchange messages. The vertex-centric approach is
widely used due to its scalability properties and expressivity [130].

Several vertex-centric computing frameworks exist [125, 77, 1]: these are
distributed systems that iteratively execute a user-defined program over ver-
tices of a graph, accepting input data from adjacent vertices and emitting
output data that is communicated along outgoing edges. In particular, our
work relies on frameworks supporting Valiant’s Bulk Synchronous Parallel
(BSP) model [176], which employs a shared nothing architecture geared to-
ward synchronous execution. Next, for clarity and generality of exposition,
we gloss over the technicalities of the framework, focusing instead on the
principles underlying our algorithm. Our implementation uses the Apache
Spark framework; its source code is available online.1

6.2.1 Overview

Together with efficiency, the main design goal of NG-DBSCAN is flexibility:
indeed, we can handle data of any type and any distance function to represent
dissimilarity between items. The only additional requirement is that the
distance function d should be symmetric: that is, d(x, y) should be equal to
d(y, x) for all x and y. It is technically possible to modify NG-DBSCAN to
allow for asymmetric distance, but for clustering – where the goal is grouping
similar items – asymmetry is conceptually problematic, since it is difficult to
choose whether x should be grouped with y if, for example, d(x, y) is large
and d(y, x) is small. If needed, we advise using standard symmetrization
techniques: for example, defining a d′(x, y) equal to the minimum, maximum
or average between d(x, y) and d(y, x) [67].

The main reason why dbscan is expensive when applied to arbitrary
distance measures is that it requires retrieving each point’s ε-neighborhood,
for which the distance between all node pairs needs to be computed, resulting
in O

(
n2
)

calls to the distance function. NG-DBSCAN avoids this cost
by dropping the requirement of computing ε-neighborhoods exactly, and
proceeds in two phases.

The first phase creates the ε-graph, a data structure which will be used
to avoid ε-neighborhood queries: ε-graph nodes are data points, and each
node’s neighbors are a subset of its ε-neighborhood. This phase is imple-
mented through an auxiliary graph called neighbor graph which gradually
converges from a random starting configuration towards an approximation
of a k-nearest neighbor (k-NN) graph by computing the distance of nodes at
a 2-hop distance in the neighbor graph; as soon as pairs of nodes at distance
ε or less are found, they are inserted in the ε-graph.

The second phase takes the ε-graph as an input and computes the clusters
which are the final output of NG-DBSCAN; cheap neighbor lookups on the
ε-graph replace expensive ε-neighborhood queries. In its original description,
dbscan is a sequential algorithm. We base our parallel implementation on
the realization that a set of density-reachable core nodes corresponds to
a connected component in the ε-graph– the graph where each core node
is connected to all core nodes in its ε-neighborhood. As such, our Phase
2 implementation builds on a distributed algorithm to compute connected

1
https://github.com/alessandrolulli/gdbscan

96 Chapter 6. Density Based Clustering

components, amending it to distinguish between core nodes (which generate
clusters), noise points (which do not participate to this phase) and border
nodes (which are treated as a special case, as they do not generate clusters).

NG-DBSCAN’s parameters determine a trade-off between speed and ac-
curacy, in terms of fidelity of the results to the exact dbscan implementation:
in the following, we describe in detail our algorithm and its parameters; in
Section 6.4.1, we quantify this trade-off and provide recommended settings.

6.2.2 Phase 1: Building the ε-Graph

As introduced above, Phase 1 builds the ε-graph, that will be looked up
to avoid expensive ε-neighborhood queries in Phase 2. We use an auxiliary
structure called neighbor graph, which is a directed graph having data items
as nodes and distances between them as edge weights.

The neighbor graph is initialised by connecting each node to k random
other nodes, where k is an NG-DBSCAN parameter. At each iteration,
all pairs of nodes (x, y) separated by 2 hops in the neighbor graph are con-
sidered: if the distance between them is smaller than the largest weight on
an outgoing edge e from either node, then e is discarded and replaced with
(x, y). Through this step, as soon as a pair of nodes at distance ε or less is
discovered, the corresponding edge is added to the ε-graph.

The neighbor graph and its evolution are inspired by the approach that
Dong at al. [60] used to compute approximated k-NN graphs. By letting
our algorithm run indefinitely, the neighbor graph would indeed converge to
an approximated k-NN graph: in our case, rather than being interested in
finding the k nearest neighbors of an item, we want to be able to distinguish
whether that item is a core point. Hence, as soon as a node has Mmax

neighbors in the ε-graph, where Mmax is an NG-DBSCAN parameter, we
consider that we have enough information about that node and we remove it
from the neighbor graph to speed up the computation. Mmax and k handle
the speed-accuracy trade-off: optimal values may vary depending on the
dataset, but our experimental study in Sections 6.4.1 and 6.4.1, shows that
choosing k = 10 and Mmax = max(MinPts, 2k) provides consistently good
results. We consider automatic approaches to set both variables as an open
issue for further work.

Phase 1 is repeated iteratively: details on the termination condition are
described in Section 6.2.2.
Example. Figure 6.1 illustrates Phase 1 with a running example; in this
case, for simplicity, k = Mmax = 2. The algorithm is initialised by creating
an ε-graph with no edges and a neighbor graph with k = 2 outgoing edges
per nodes chosen at random.

Each iteration proceeds through three steps, indicated in Figure 6.1 with
hexagons labeled 1, 2, and 3. In step 1, the directed neighbor graph is
transformed in an undirected one. Then, through the transition labeled 2,
edges are added to the ε-graph if their distance is ≤ε. For instance, edge
(2, 6) is added to the ε-graph in the first iteration. Finally, in step 3 each
node explores its two-hop neighborhood and builds a new neighbor graph
while keeping connections to the k closest nodes. Nodes with at least Mmax

neighbors in the ε-graph are deactivated (marked in grey) and will disappear
from the neighbor graph in the following iteration.

6.2. NG-DBSCAN: Approximate and Flexible DBSCAN 97

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7

1 2 3

4 5 6

7

1 2 3

4 5 6

7 8 9

1 3

6

1 3

6

1

2

3
1

2

3
1

2

3

Initialization Iteration 1 Iteration 2 Iteration 3

epsilon
graph

neighbor
graph

Figure 6.1: Phase 1: ε-graph construction.

Termination Condition

In addition to having a maximum number iter of iterations to ensure termi-
nation in degenerate cases with a majority of noise points, phase 1 terminates
according to two parameters: Tn and Tr.

Informally, the idea is as follows. Our algorithm proceeds by examin-
ing, in each iteration, only active nodes in the neighbor graph: the number
of active nodes a(t) decreases as the algorithm runs. Hence, it would be
tempting to wait for T ∗ iterations, such that a(t∗) = 0. However, the careful
reader will recall that noise points cannot be deactivated: as such, a sensible
alternative is to set the stop condition to t∗ such that a(t∗) < Tn.

The above inequality alone is difficult to tune: small values of Tn might
stop the algorithm too late, performing long computations with limited value
in terms of clustering quality. To overcome this problem, we introduce an
additional threshold that operates on the number of nodes that has been
deactivated in the last iteration ∆a(t) = a(t− 1)− a(t): we complement our
stop condition by finding T ∗ such that ∆a(t

∗) < Tr.
In Figure 6.3 we see, from an example run of NG-DBSCAN, the number

of active nodes a(t) and of nodes removed from the neighbor graph in the
last iteration, ∆a(t). Neither of the above conditions alone would be a good
termination criterion: both would stop the algorithm too early. Indeed,
∆a(t

∗) < Tr can be satisfied both at the early stage of the algorithm or
toward its convergence, while a(t∗) < Tn makes the algorithm progress past
the few first iterations. Then, towards convergence, the Tr inequality allows
the algorithm to continue past the Tn threshold, but avoids running for too
long.

We have found empirically (see Section 6.4.1) that setting Tn = 0.7n and
Tr = 0.01n yields fast convergence while keeping the results similar to those

98 Chapter 6. Density Based Clustering

of an exact dbscan computation. In general, the former parameter suggests
the minimum number of core nodes available in the dataset whereas the
latter drives the stopping of the algorithm when too few nodes are removed
in an iteration.

Implementation Details

Since NG-DBSCAN accepts arbitrary distance functions, computing some
of them can be very expensive: a solution for this is memoization (i.e.,
caching results to avoid computing the distance function between the same
elements several times). Writing a solution to perform memoization is almost
trivial in a high-level language such as Scala,2 but various design choices –
such as choice of data structure for the cache and/or eviction policy – are
available, and choosing appropriate ones depends on the particular func-
tion to be evaluated. We therefore consider memoization as an orthogonal
problem, and rely on users to provide a distance function which performs
memoization if it is useful or necessary.

To limit the number of message exchanges, we adopt two techniques. The
first is an “altruistic” mechanism to compute neighborhoods: each node com-
putes distances between all its neighbors in the neighbor graph, and sends
them the k nodes with the smallest distance. In this way it is not neces-
sary to collect, at each node, information about each of their neighbors-of-
neighbors. The second technique avoids that a node with many neighbors
sends too many messages. We introduce a parameter ρ to avoid bad perfor-
mance in degenerate cases, limiting the number of nodes considered in each
neighborhood to ρk.

Finally, to avoid memory issues that typically arise in vertex-centric com-
puting frameworks relying on RAM to store messages, we have implemented
an option to divide a single logical iteration (that is, a super-step in the BSP
terminology[130]) into multiple ones. Specifically, an optional parameter S
allows splitting each iteration in t = dn̂/Se sub-iterations, where n̂ is the
number of nodes currently in the neighbor graph. When this option is set,
at most S nodes use the altruistic approach to explore distances between
neighbors in each sub-iteration. Each node is activated exactly once within
the t sub-iterations, therefore this option has no impact of the final results
which are equivalent to the ones with logical iterations only.

Phase 1 in Detail

Algorithm 6.1 shows the pseudocode of the ε-graph construction phase.
For clarity and brevity, we consider graphs as distributed data structures,
and describe the algorithm in terms of high-level graph operations such as
“add edge” or “remove node”. The algorithm is a series of steps, each intro-
duced by the “for . . . do in parallel” loop and separated by synchronization
barriers; since each parallel for loop is logically executed syncronously, mod-
ifications to the graphs are visible only at the end of the loop. For details on
how distributed graph-parallel computation is implemented through a BSP
paradigm, we refer to work such as Pregel [124] or PowerGraph [75].

2See, e.g., http://stackoverflow.com/a/16257628.

6.2. NG-DBSCAN: Approximate and Flexible DBSCAN 99

Algorithm 6.1: Phase 1 – ε-graph construction.

1 εG← new undirected, unweighted graph ; // ε-graph
2 NG← random neighbor graph initialization;
3 for i← 1 . . . iter do

// Add reverse edges

4 for n ∈ active nodes in NG do in parallel
5 for (n, u,w)← NG.edges from(n) do
6 NG.add edge(u, n,w)
7 end

8 end
// Compute distances and update εG

9 for n← active nodes in NG do in parallel
10 N ← at most ρk nodes from NG.neighbors(n);
11 for u← N do
12 for v ← N \ {u} do
13 w ← distance(u, v);
14 NG.add edge(u, v, w);
15 if w 6 ε then εG.add edge(u, v);

16 end

17 end

18 end
// Shrink NG

19 ∆← 0 ; // number of removed nodes

20 for n← active nodes in NG do in parallel
21 if |εG.neighbors(n)| >Mmax then
22 NG.remove node(n);
23 ∆← ∆ + 1

24 end

25 end
// Termination condition

26 if |NG.nodes| < Tn ∧∆ < Tr then break ;
// Keep the k closest neighbors in NG

27 for n ∈ active nodes in NG do in parallel
28 l← NG.edges from(n);
29 remove from l the k edges with smallest weights;
30 for (n, u,w)← l do
31 NG.delete edge(n, u,w)
32 end

33 end

34 end
35 return εG

The algorithm uses the neighbor graphNG to drive the computation, and
stores the final result in the ε-graph εG. After initializing NG by connect-
ing each node to k random neighbors the main iteration starts. In lines 4–8,
which correspond to step 1 of Figure 6.1 on page 97, we convert NG to an
undirected graph by adding for each edge another one in the opposite direc-
tion. Lines 9–18 are the most expensive part of the algorithm, where each
node computes the distances between each pair of neighbors; pairs of nodes

100 Chapter 6. Density Based Clustering

at distance at most ε get added to εG as in step 2 of Figure 6.1. In lines 20–
25, NG is shrunk by removing nodes having at least Mmax neighbors in
εG. The termination condition is checked at line 26, and if the computation
continues the edges that do not correspond to the k closest neighbors found
are removed from NG in lines 27–33, corresponding to step 3 of Figure 6.1.

Complexity Analysis

Unless the early termination condition is met, Phase 1 runs for a user-
specified number of iterations. Since the number of nodes in the neighbor
graph decreases with time, the first iterations are the most expensive (i.e.,
when a node is removed from the neighbor graph, it is never added again).
Hence, we study the complexity of the first iteration, which has the high-
est cost since all nodes are present in the neighbor graph. Note that here
we consider the cost of a logical iteration, corresponding to the sum of its
sub-iterations (see Section 6.2.2) if parameter S is defined.

The loop of lines lines 4–8 requires m steps, where m = kn is the number
of edges in NG. Hence, it has complexity O(kn).

The loop of lines 9–18 computes distances between at most ρk neighbors
of each node, where NG has at most 2kn edges, and each node has at least k
neighbors. The worst case is when neighbor lists are distributed as unevenly
as possible, that is when n/(ρ − 1) nodes have ρk neighbors, and all the
others only have k. In that case, O(n/ρ) nodes would compute O

(
ρ2k2

)
comparisons, and O(n) nodes computing O(k2) comparisons. The result is

O
(
n

ρ
ρ2k2 + nk2

)
= O(ρnk2).

Since each distance computation can add one new edge to NG, the graph
now has at most O(ρnk2) edges. The loops of lines 20–25, and lines 27–33,
each in the worst case act on O(ρnk2) edges. The operations of line 29 can
be implemented efficiently with a total cost of O(ρnk2 +nk log k) = O(ρnk2)
with priority queue data structures such as binary heaps.

In conclusion, the total computational complexity for an iteration of
Phase 1 is O(ρnk2). Note that, in general, ρ and k should take small values
(the default values we suggest in Section 6.4.1 are ρ = 3 and k = 10),
therefore the computation cost is dominated by n.

6.2.3 Phase 2: Discovering Dense Regions

As introduced in Section 6.2.1, Phase 2 outputs the clustering by taking
as input the ε-graph, performing neighbor lookups on it instead of ex-
pensive ε-neighborhood queries. Realizing the analogies between density-
reachability and connected components, we inspire our implementation on
Cracker (Chapter 4).

We attribute node roles based on their properties in the ε-graph: nodes
with at least MinPts− 1 neighbors are considered core;3 between non-core
nodes, those with core nodes as neighbors are considered border nodes, while
others will be treated as noise. Noise nodes are immediately deactivated, and
they will not contribute to the computation anymore.

3The MinPts − 1 value stems from the fact that, in the original dbscan implementation, a
node itself counts when evaluating the cardinality of its ε-neighborhood.

6.2. NG-DBSCAN: Approximate and Flexible DBSCAN 101

1 2 3

4 5 6

7 8 9

Coreness
dissemination

Iteration 1: max
selection step

Iteration 1:
pruning step

Iteration 2: max
selection step

seeds
identification

tree creation /
propagation

1 3

4 5 6

9

1 3

4 5 6

9

1 3

4 5 6

9

1 3

4 5 6

9

3

5

1 3

4 5 6

9

Figure 6.2: Phase 2 – dense region discovery.

Like several other algorithms for graph connectivity, our algorithm re-
quires a total ordering between nodes, such that each cluster will be labeled
with the smallest or largest node according to this ordering. A typical choice
is an arbitrary node identifier; for performance reasons that we discuss in
the following, we use the node with the largest degree instead and resort to
the node identifier to break ties in favor of the smaller ID. In the follow-
ing, we will refer to the (degree, nodeID) pair as coreness; as a result of the
algorithm, each cluster will be tagged with the ID of the highest coreness
node in its cluster. We will call seed of a cluster the node with the highest
coreness.

Phase 2 is illustrated in Algorithm 6.2; the algorithm proceeds in three
steps: after an initalization step called coreness dissemination, an iterative
step called seed identification is performed until convergence. Clusters are
finally built in the seed propagation step. We describe them in the following,
with the help of the running example in Figure 6.2.
Coreness dissemination. In this step, each node sends a message with its
coreness value to its neighbors in the ε-graph. For example. in Figure 6.2,
nodes 3 and 5 have the highest coreness; 1, 4, 6 and 9 are border nodes,
and the others are noise. We omit the pseudocode for brevity. Note that,
although the following step modify the graph structure, coreness values are
immutable.
Seed Identification. This step finds the seeds of all clusters, and builds a
set of trees that we call propagation forest that ultimately link each core and
border node to their seed. This step proceeds by alternating two sub-steps
until convergence: MinSelection and Pruning. The ε-graph is iteratively
simplified, until only seed nodes remain in it; at the end of this step, infor-
mation to reconstruct clusters is encoded in the propagation forest.

With reference to Algorithm 6.2, in the MinSelection each node identifies
the current neighbor with maximum coreness as its proposed seed (Line 9);
each node will create a link between each of its neighbors – plus themselves
– and the seed it proposes. Border nodes have a special behavior (Line
10)): they only propose a seed for themselves and their own proposed seed
rather than for their whole neighborhood (Line 15)). In the first iteration
of Figure 6.2, for example, node 4 – which is a border node – is responsible
for creating edges (4, 5) and (5, 5). On the other hand, node 5 – which is a

102 Chapter 6. Density Based Clustering

Algorithm 6.2: Phase 2 – Discovering dense regions.

1 G = Coreness Dissemination(εG)
2 for n← nodes in G do in parallel
3 n.Active ← True
4 end
5 T ← empty graph // Propagation forest

// Seed Identification

6 while |G.nodes| > 0 do
// Max Selection Step

7 H ← empty graph
8 for n← G.nodes do in parallel
9 nmax ← maxCoreNode(G.neighbors(n) ∪ {n})

10 if n is not-core then
11 H.add edge(n, nmax)
12 H.add edge(nmax, nmax)

13 else
14 for v ← G.neighbors(n) ∪ {n} do
15 H.add edge(v, nmax)
16 end

17 end

18 end
// Pruning Step

19 G← empty graph
20 for n← H.nodes do in parallel
21 nmax ← maxCoreNode(H.neighbors(n))
22 if n is not-core then
23 n.Active ← False
24 T.add edge(nmax, n)

25 else
26 if |H.neighbors(n)| > 1 then
27 for v ← H.neighbors(n) \ {nmax} do
28 G.add edge(v, nmax)
29 G.add edge(nmax, v)

30 end

31 end
32 if n /∈ H.neighbors(n) then
33 n.Active ← False
34 T.add edge(nmax, n)

35 end
36 if IsSeed (n) then
37 n.Active ← False
38 end

39 end

40 end

41 end
42 return Seed Propagation(PropagationTree)

core node – identifies 3 as a proposed seed, and creates edges (4, 3), (5, 3),
and (3, 3).

6.3. Experimental Setup 103

In the Pruning, starting in Line 19, nodes not proposed as seeds (i.e.,
those with no incoming edges) are deactivated (Line 33). An edge between
deactivated nodes and their outgoing edge with highest coreness is created
(Line 34). For example, in the first iteration of the algorithm, node 4 is
deactivated and the (4, 3) edge is created in the propagation forest.

Eventually, the seeds remain the only active nodes in the computation.
Upon their deactivation, seed identification terminates and seed propagation
is triggered.
Seed Propagation. The output of the seed identification step is the propa-
gation forest: a directed acyclic graph where each node with zero out-degree
is the seed of a cluster, and the root of a tree covering all nodes in the clus-
ter. Clusters are generated by exploring these trees; the pseudocode of this
phase is omitted for brevity.

6.3 Experimental Setup

We evaluate NG-DBSCAN through a comprehensive set of experiments,
evaluating well-known measures of clustering quality on real and synthetic
datasets, and comparing it to alternative approaches. In the following, we
provide details about our experimental setup.

6.3.1 Experimental Platform

All the experiments have been conducted on a cluster running Ubuntu Linux
consisting of 17 nodes (1 master and 16 slaves), each equipped with 12 GB
of RAM, a 4-core CPU and a 1 Gbit interconnect. Both the implementation
of our approach and the alternative algorithms we use for our comparative
analysis use the Apache Spark [2] API.4

6.3.2 Evaluation Metrics

We now discuss the metrics we use to analyse the performance of our ap-
proach and the most important parameters of NG-DBSCAN. We also pro-
ceed with manual investigation of the clusters we obtain on some dataset,
using domain knowledge to evaluate their quality.

We study the role of the parameters of our approach and the clustering
quality using well-known measures of quality [56, 110]:

• Compactness: measures how closely related the items in a cluster
are. We obtain the compactness by computing the average pairwise
similarity among items in each cluster. Higher values are preferred.

• Separation: measures how well clusters are separate from each other.
Separation is obtained by computing the average similarity between
items in different clusters. Lower values are preferred.

• Recall: this metric relates two different data clusterings. Using clus-
tering C as a reference, all node pairs that belong to the same cluster
in C are generated. The recall of clustering D is the fraction of those
pairs that are in the same cluster in D as well. In particular, we use

4Precisely, we use the Scala API and rely on advanced features such as RDD caching for
efficiency reasons.

104 Chapter 6. Density Based Clustering

as a reference the exact clustering we obtain with the standard dbscan
implementation of the SciKit library [144]. Higher values are preferred.

Note that computing the above metrics is computationally as hard as com-
puting the clustering we intend to evaluate. For this reason, we resort to
uniform sampling: instead of computing the all-to-all pairwise similarity be-
tween items, we pick items uniformly at random, with a sampling rate of
1%.5

Additionally, we also consider algorithm Speed-Up: this metric mea-
sures the algorithm runtime improvement when increasing the number of
cores dedicated to the computation, using 4 cores (a single machine) as the
baseline.

Our results are obtained by averaging 5 independent runs for each data
point. In all plots we also show the standard deviation of the metrics used
through error bars; we remark that in some cases, they are too small to be
visible.

6.3.3 The Datasets

Next, we describe the datasets used in our experiments. We consider the
following datasets:

• Twitter Dataset. We collected6 5 602 349 geotagged tweets sent in USA
the week between 2012/02/15 and 2012/02/21. Each tweet is in JSON
format. This dataset is used to evaluate NG-DBSCAN in two distinct
cases: (i) using the latitude and longitude values to cluster tweets using
the Euclidean distance metric, (ii) using the text field to cluster tweets
according to the Jaro-Winkler metric [87].

• Spam Dataset. A subset of SPAM emails collected by Symantec Re-
search Labs, between 2010-10-01 and 2012-01-02, which is composed
by 3 886 371 email samples. Each item of the dataset is formatted in
JSON and contains the common features of an email, such as: sub-
ject, sending date, geographical information, the bot-net used for the
SPAM campaign as labeled by Symantec systems, and many more. For
instance, a subject of an email in the dataset is “19.12.2011 Rolex For
You -85%” and the sending day is “2011-12-19”.

In addition we also use synthetically generated input data using the
SciKit library [144]. We generated three different types of input data called,
respectively, circle, moon and blobs. These graphs are usually considered as
a baseline for testing clustering algorithms in a d-dimensional space.

6.3.4 Alternative Approaches

We compare NG-DBSCAN to existing algorithms that produce data clus-
tering. We use the following alternatives:

• dbscan: this approach uses the SciKit library dbscan implementa-
tion [144]. Clustering results obtained with this method can be thought

5We increase the sampling rate up to 10% for clusters with less than 10 000 elements.
6We implemented a simple crawler following the methodology described in [101]. Although

Twitter ToS does not allow such data to be shared, it is rather simple to write such a crawler and
obtain similar data.

6.4. Results 105

of as our baseline, to which we compare NG-DBSCAN, in terms of
clustering recall.

• SPARK-DBSCAN: this approach uses a parallel dbscan implementa-
tion for Apache Spark.7 This work is an implementation of MR-DB-
SCAN. We treat this method as our direct competitor, and compare
the runtime performance and clustering quality.

• IRVINGC-DBSCAN: This is another Spark implementation inspired
by MR-DBSCAN.8 With respect to SPARK-DBSCAN, this imple-
mentation is often faster but limited to 2D data.

• k-means: we convert text to vectors using word2vec [5], and cluster
those vectors using the k-means implementation in Spark’s MLLib
library [3].

Because it is not a parallel algorithm, we do not include here comparisons
to ρ-dbscan by Gan and Tao [73]. As it can be expected from an efficient
single-machine algorithm [132], this algorithm is very efficient as long as its
memory requirement fit into a single machine, since communication costs
are lower by orders of magnitude. We remark that we obtained errors not
allowing us to run ρ-dbscan on data points with more than 8 dimensions; Gan
and Tao’s own evaluation [73] considers only data points having maximum
dimensionality 7.

6.4 Results

Through our experiments, we first study the role of NG-DBSCAN’s param-
eters. Then, we evaluate clustering quality and the scalability with respect to
SPARK-DBSCAN with 2D and n dimensional datasets. Finally, we study
the ability of NG-DBSCAN to use arbitrary similarity metrics, by per-
forming text clustering. Where not otherwise mentioned, we use Euclidean
distance between items.

6.4.1 Analysis of the Parameter Space

NG-DBSCAN has the following parameters: i) Tn and Tr, which regulate
the termination mechanism; ii) k, the number of neighbors per node in the
neighbor graph; iii) Mmax , the threshold of neighbors in the ε-graph to
remove nodes from the neighbor graph; iv) ρ, which limits the number of
comparisons in extreme cases during Phase 1; v) S, which limits the memory
requirements by dividing logical iterations in several physical sub-iterations,
with less nodes involved in the computation.

Termination Mechanism

We start our evaluation by analyzing the termination mechanism; we use
here the Twitter dataset (latitude and longitude values). Figure 6.3 shows
the number of active (Active) and removed (Removed Tot) nodes, and the
removal rate (Removed) in subsequent iterations of the NG-DBSCAN al-
gorithm. To help understanding the analysis, we include in the Figure also

7
https://github.com/alitouka/spark dbscan

8
https://github.com/irvingc/dbscan-on-spark

106 Chapter 6. Density Based Clustering

0x100

1x106

2x106

3x106

4x106

5x106

6x106

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.2

 0.4

 0.6

 0.8

 1

N
od

e
nu

m
be

r

C
lu

st
er

in
g

R
ec

al
l

Iteration number

Tn=0.7

Tn=0.7 and Tr=0.01

Active
Recall

Removed
Removed (Tot)

Figure 6.3: Analysis of the termination mechanism.

the clustering recall that we compute in every iteration of the algorithm.
The results we present are obtained using k = 10 and Mmax = 20; analogous
results can be obtained with different configurations.

In the first 10 iterations, the number nodes in the neighbor graph remains
roughly constant; this is the time required to start finding useful edges.
Then, the number of active nodes rapidly decreases, indicating that a large
fraction of the nodes reach convergence. Towards the last iterations, the
number of active nodes reaches a plateau due to noise points.

As discussed in Section 6.2.2, the Tn threshold, which indicates the num-
ber of active nodes required terminating the algorithm, avoids premature
terminations that might occur if we only used the Tr threshold and the
corresponding inequality. Instead, the Tr parameter, which measures the
rate at which nodes are de-activated in subsequent iterations, avoids both
premature terminations and lengthy and marginally beneficial convergence
processes.

In particular, without the Tr threshold, the algorithm would stop at the
Tn threshold, that is – in our experiment – at iteration 18. As the recall
metric of roughly 0.5 indicates, stopping the algorithm too early results in
poor performance. Instead, with both thresholds, the algorithm stops at
iteration 33, where the recall is greater than 0.9. Subsequent iterations only
marginally improve the recall.

How to Set k

We now consider the k parameter, which affects the number of neighbours in
the neighbor graph, and perform clustering of the Twitter dataset (latitude
and longitude values).

Figure 6.4a depicts the clustering recall we obtained with k ∈ {5, 10, 15},
as a function of the algorithm running time. Clearly k = 5 is not enough
to obtain a good result, which confirms the findings of previous works on
k-NN graphs [116, 60]. However, already with k = 10, the recall is consid-
erably high, indicating that we retrieve approximately the same clusters as
the exact dbscan algorithm. Increasing this parameter improves the quality
of the result only marginally at the cost of a larger amount of algorithm
runtimes. With a standard deviation lower than 1% on recall between dif-
ferent algorithm runs, the quality of results remains stable; running time has

6.4. Results 107

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1400 1500 1600 1700 1800 1900 2000 2100

C
lu

st
er

in
g

R
ec

al
l

Time (s)

k = 5
k = 10
k = 15

(a) How to set k.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 1400 1600 1800 2000 2200 2400 2600 2800 3000

C
lu

st
er

in
g

R
ec

al
l

Time (s)

Mmax = 5
Mmax = 10
Mmax = 15
Mmax = 20
Mmax = 30

(b) How to set Mmax .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

R
ec

al
l

Time (s)

Sub-Iteration
Macro-Iteration

(c) Analysis of sub-
iterations and parameter

S.

Figure 6.4: Analysis of the Parameter Space.

a standard deviation of the order of 6%. Due to the above considerations
we think that k = 10 is an acceptable configuration value.

How to Set Mmax

We analyse the impact of the Mmax parameter using the Twitter dataset,
and set k = 10. Results with different values of k lead to analogous ob-
servations. Figure 6.4b shows the clustering recall achieved for values of
Mmax ∈ {5, 10, 15, 20, 30}, as a function of the algorithm running time.

The recall achieved by NG-DBSCAN is always larger than 0.9 when
the algorithm terminates. Increasing Mmax has positive effects on the recall:
this confirms that a larger Mmax improves the connectivity of the ε-graph
in dense regions. However, there are “diminishing returns” when increasing
Mmax : a larger Mmax value requires more time to meet the termination
conditions because more edges must be collected at each node.

Overall, our empirical remarks indicate that Mmax can be kept similar
to k. In particular, values of Mmax ∈ [10, 20] = [k, 2k] give the better trade-
offs between recall and completion time. Also in this case, the standard
deviations in terms of recall and time are respectively smaller than 1% and
6%.

How to set ρ

The ρ parameter sets a limit to the number of nodes examined in the neigh-
borhood of each node: if this is not done, in degenerate cases where nodes
have a massive degree in the neighbor graph, the worst-case complexity of
the first step of NG-DBSCAN could grow up to O

(
n2
)
. We have found,

however, that our mechanism to remove nodes from the neighbor graph in
practice already avoids the case in our experiments.

In Table 6.2 we show results for values of ρ ∈ {1, 2, 3, 6}. With a value
of ρ = 1, the bound on the size of neighborhoods explored is too stringent,
and NG-DBSCAN cannot explore new nodes quickly enough; as ρ grows,
the algorithm performs better in terms of both recall and runtime.

We set a default value of ρ = 3 to ensure that algorithm terminates fast
with good quality, while avoiding an increase in computational complexity
for degenerate cases.

108 Chapter 6. Density Based Clustering

Table 6.2: How to set ρ.

ρ 1 2 3 6
Time (s) 3 985 2 303 2 233 2 241
Recall 0.089 0.95 0.944 0.951
Sub-Iterations 80 37 33 33

Sub-Iterations and S

Figure 6.4c shows the amount of time to complete a sub-iteration and a
macro-iteration as described in Section 6.2.2. As a reminder, the parameter
S imposes a limit on the number of computing nodes in a given iteration.
In this example run, we set S = 500 000 for the Twitter dataset of 5 602 349
tweets; this means that each sub-iteration involves approximately 500 000
nodes. The number of needed sub-iterations to complete the first macro-
iteration should be d5 602 349/500 000e = 12, but only 11 sub-iterations are
actually necessary because some nodes already get deactivated in the first
sub-iterations. As nodes get deactivated, macro-iterations become less and
less expensive, requiring less sub-iterations and less time to complete. Since
sub-iterations operate on approximately the same number of nodes, they
keep a roughly constant size.

Parameters Discussion

We end this section discussing a set of parameters that we use as default,
and give us a good trade-off between recall and completion time. Tn = 0.7
and Tr = 0.01 stop the algorithm when only very marginal benefit can be
obtained by continuing processing; k = 10, Mmax = 2k and ρ = 3 yield a
good trade-off between recall and run-time. In subsequent experiments we
use the above configuration to evaluate NG-DBSCAN.

6.4.2 Performance in a 2D Space

We now move to a global evaluation of NG-DBSCAN, and compare the
clustering quality we obtain to single-machine dbscan, and to the SPARK-
DBSCAN and IRVINGC-DBSCAN alternatives. We use both syntheti-
cally generated datasets and the latitude and longitude values of the Twitter
dataset.

Clustering Quality

We begin with the synthetically generated datasets (described in Section 6.3.3)
because they are commonly used to compare clustering algorithms. Figure
6.5 presents the shape of the three datasets called respectively Circle, Moon
and Blobs. Each dataset has 100 000 items to cluster: such a small input
size allows computing data clustering using the exact SciKit dbscan imple-
mentation and to make a preliminary validation of our approach. Results
are presented in Table 6.3. NG-DBSCAN obtains nearly perfect clustering
recall for all the datasets, when compared to the exact dbscan implemen-
tation. The completion time of NG-DBSCAN, SPARK-DBSCAN and
IRVINGC-DBSCAN are comparable in such small datasets. It is inter-
esting to note that SPARK-DBSCAN and IRVINGC-DBSCAN perform
comparably better in the Blob dataset, where partitioning can cover each

6.4. Results 109

Table 6.3: Performance in a 2D space: Clustering Quality.

NG-DBSCAN SPARK-DBSCAN IRVINGC-DBSCAN

Time (s) Recall Time (s) Recall Time (s) Recall

Twitter 1 822 0.951 N/A N/A N/A N/A

Circle 96 1 192 1 135 1

Moon 103 1 132 1 72 1

Blob 123 0.92 83 1 61 1

cluster in a different partition. Instead, in the circle and moon datasets,
each cluster covers multiple partition and this slows down the algorithm.

In the Twitter dataset, NG-DBSCAN is able to achieve a good clus-
tering recall, as described also in previous Sections. Instead, SPARK-DB-
SCAN and IRVINGC-DBSCAN are not able to complete the computation
due to memory errors. In the following we dive deeper in this respect, ana-
lyzing the impact of dataset size.

Scalability

We now compare the scalability of NG-DBSCAN to that of SPARK-DB-
SCAN and IRVINGC-DBSCAN. Figure 6.6a shows the algorithm runtime
as a function of the dataset size, while using our entire compute cluster. We
use 6 different samples of the Twitter dataset of size approximately 175 000,
350 000, 700 000, 1 400 000, 2 800 000 and 5 600 000 (i.e., the entire dataset)
tweets respectively. For smaller datasets, up to roughly 1 400 000 samples, all
three algorithms appear to scale roughly linearly, and IRVINGC-DBSCAN
performs best. For larger datasets, instead, the algorithm runtime increases
considerably. In general, we note that SPARK-DBSCAN is always slower
than NG-DBSCAN, by a factor of at least of 1.74; SPARK-DBSCAN
cannot complete the computation for the largest dataset, and with a size
of 2 800 000 it is already 4.43 times slower than NG-DBSCAN. IRVING-
C-DBSCAN cannot complete the computation due to memory errors on
datasets larger than 1 400 000 elements.

Figure 6.6b shows the algorithm speed-up of the three algorithms as
the number of cores we devote to the computation varies between 4 and
64, considering a small dataset of 350 000 tweets and a larger dataset of
1 400 000 tweets. Our results indicate that NG-DBSCAN always outper-
forms SPARK-DBSCAN ans IRVINGC-DBSCAN, which cannot fully
reap the benefits of more compute nodes: we explain this with the fact that
adding new cores results in smaller partitions, which increase the commu-
nication cost. Past the cap of 32 cores, NG-DBSCAN’s speedup grows
more slowly, and doubling the compute cores does not double the speedup;
we attribute this to the fact that communication costs start to dominate
computation costs.

These results indicate that our approach is scalable – both as the dataset
and cluster size grows. The time needed to compute our results with the
configurations of Section 6.4.1 – which proved to be a desirable choice – is
always in the order of minutes, demonstrating that our approach is viable
in several concrete scenarios.

110 Chapter 6. Density Based Clustering

(a) Circle. (b) Moon. (c) Blobs.

Figure 6.5: Synthetic datasets plot.

 0

 1000

 2000

 3000

1.7x105 3.5x105 7x105 1.4x106 2.8x106 5.6x106

T
im

e
(S

ec
)

Dataset Size

NG-DBSCAN
SPARK-DBSCAN

IRVINGC-DBSCAN

(a) Scalability: Dataset
Size.

 0

 1

 2

 3

 4

 5

 6

 7

 4 8 16 32 48 64

S
pe

ed
-u

p
Number of cores

NG-DBSCAN Big
NG-DBSCAN Small

IRVINGC-DBSCAN Big
IRVINGC-DBSCAN Small

SPARK-DBSCAN Big
SPARK-DBSCAN Small

(b) Scalability: Number
of Cores.

Figure 6.6: Performance in a 2D space: Scalability.

6.4.3 Performance in d-Dimensional Spaces

Next, we evaluate the impact of d-dimensional datasets in terms of clus-
tering quality and algorithm running time. For our experiments, we syn-
thetically generate 10 different datasets, respectively of dimensionality d ∈
{2, 3, 4, 5, 6, 8, 10, 12, 14, 16} of approximately 1 500 000 elements each. The
values in each dimension are a sample of the latitude and longitude values
of the Twitter dataset. Unlike other approaches, NG-DBSCAN can scale
to datasets having even higher dimensionality: we discuss in the following a
case of dimensionality 1 000.

Figure 6.7a presents the running time of both NG-DBSCAN and SPARK-
DBSCAN as a function of the dimensionality d of the dataset: we recall
that IRVINGC-DBSCAN only allows 2-dimensional points as data. Re-
sults indicate that our approach is unaffected by the dimensionality of the
dataset: algorithm runtime is roughly similar, independently of d. Instead,
the running time of SPARK-DBSCAN significantly increases as the di-
mensionality grows: in particular, SPARK-DBSCAN does not complete
for datasets in which d > 6. Even for small d, however, NG-DBSCAN
significantly outperforms SPARK-DBSCAN.

Figure 6.7b shows the clustering recall as a function of d. Clustering
quality is not affected by high dimensionality, albeit SPARK-DBSCAN
does not complete for d > 6. The clustering recall of NG-DBSCAN settles
at 0.96, due its approximate nature.

To evaluate NG-DBSCAN on even larger dimensionalities, we gener-
ate a dataset of 100 000 strings taken from the Twitter dataset, and use
word2vec to embed them in a space having 1 000 dimensions. Even in this
case, NG-DBSCAN achieves a recall of 0.96 with a running time of 640
seconds, which is comparable to what is obtained on datasets having lower
dimensionality.

6.4. Results 111

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2 4 6 8 10 12 14 16

T
im

e
(S

ec
)

Number of dimensions

NG-DBSCAN
SPARK-DBSCAN

(a) Time.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2 4 6 8 10 12 14 16

C
lu

st
er

in
g

R
ec

al
l

Number of dimensions

NG-DBSCAN
SPARK-DBSCAN

(b) Clustering Recall.

Figure 6.7: Performance in a d-dimensional space.

Table 6.4: Spam and Tweets dataset: manual investiga-
tion.

Dataset Cluster size Sample

Spam 101 547
“[. . .]@[. . .].com Rolex For You -36%” “[. . .]@[. . .].com Rolex.com For You -53%”

“[. . .]@[. . .].com Rolex.com For You -13%”

Spam 42 315 “Refill Your Xanax No PreScript Needed!” “We have MaleSex Medications No PreScript Needed!”

“Refill Your MaleSex Medications No PreScript Needed!”

Spam 83 841
“[. . .]@[. . .].com VIAGRA Official -26%” “[. . .]@[. . .].com VIAGRA Official -83%”

“[. . .]@[. . .].com VIAGRA Official Site 57% 0FF.”

Twitter 7 017
“I just ousted @hugoquinones as the mayor of Preparatoria #2 on @foursquare! http://t.co/y5a24YMn”

“I just ousted Lisa T. as the mayor of FedEx Office Print & Ship Center on @foursquare! http://t.co/cNUjL2L5”

“I just ousted @sombrerogood as the mayor of Bus Stop #61013 on @foursquare! http://t.co/SwC3p33w”

Twitter 1 033
“#IGoToASchool where your smarter than the teachers !”

“#IGoToASchool where guys don’t shower . They just drown themselves in axe .”

“#IGoToASchool where if u seen wit a female every other female think yall go together”

Twitter 23 884
“I’m at Walmart Supercenter (2501 Walton Blvd, Warsaw) http://t.co/4Mju6hCd”

“I’m at The Spa At Griffin Gate (Lexington) http://t.co/Jb5JU8bT”

“I’m at My Bed (Chicago, Illinois) http://t.co/n9UHV2UK”

In conclusion, NG-DBSCAN performs well irrespectively of the dimen-
sionality of the datasets both in terms of runtime and clustering quality.
This is a distinguishing feature of our approach, and is in stark contrast
with respect to algorithms constructed to partition the data space, such as
SPARK-DBSCAN and the majority of the state of the art approaches (see
Table 6.1), for which the runtime worsens exponentially with the dataset
dimensionality.

6.4.4 Performance with Text Data

We conclude our analysis of NG-DBSCAN by evaluating its effectiveness
when using arbitrary similarity measures. In particular, we perform the
evaluation using text data by means of two datasets: the textual values of
the Twitter dataset, and a collection of spam email subjects collected by
Symantec. As distance metric, we use the Jaro-Winkler edit distance.

Comparison with k-means

Since alternative dbscan implementations do not support Jaro-Winkler dis-
tance (or any other kind of edit distance), we compare our results with those
obtained using k-means on text data converted into vectors using word2vec

using the default dimensionality of 100, as described in Section 6.3.4. To pro-
ceed with a fair comparison, we first run NG-DBSCAN and use the number
of clusters output by our approach to set the parameter K of k-means. We
recall that other dbscan implementations are not viable in this case, since
neither a string data type nor the large dimensionality of word2vec vectors
can be handled by them.

112 Chapter 6. Density Based Clustering

Table 6.5: Evaluation using text data: Twitter and Spam
datasets comparison with k-means. “C” stands for com-

pactness and “S” for separation.

Algorithm Twitter Spam Spam 25%

C S Time C S Time C S Time

NG-DBSCAN 0.65 0.2 2 980 0.88 0.63 4 178 0.88 0.66 654

k-means 0.64 0.42 4 477 N/A N/A N/A 0.84 0.67 27 557

Table 6.6: Distance function comparison for Twitter.

distance #clusters max size C S Time

Jaro-Winkler 1 605 58 973 0.65 0.2 2 980

word2vec +

cosine
3 238 24 117 0.64 0.29 2 908

We begin with a manual inspection of the clusters returned by NG-DB-
SCAN: results are shown in Table 6.4. We report 3 clusters for each dataset,
along with a sample of the clustered data. Note that subjects or tweets are
all related, albeit not identical. Clusters, in particular in case of the Spam
dataset, are quite big. This is of paramount importance because specialists
usually prefer to analyse large clusters with respect to small clusters. For
instance, we obtain a cluster of 42 315 emails related to selling medicines
without prescription, and a cluster of 23 884 tweets aggregating text data of
people communicating where they are through Foursquare.

Next, we compare NG-DBSCAN with k-means using the well-known
internal clustering validation metrics we introduced in Section 6.3.2, basing
them on Jaro-Winkler edit distance. Recall that compactness (C) measures
how closely related the items in a cluster are, whereas separation (S) mea-
sures how well clusters are separated from each other. We perform several
experiments with both Twitter and Spam datasets: Table 6.5 summarizes
our results.

For what concerns compactness, higher values are better and both NG-
DBSCAN and k-means behave similarly. However, in the full Spam dataset,
we are unable to complete the computation of k-means: indeed, the k-
means running time is highly affected by its parameter K. In this scenario
we have K = 17 704 and the k-means computation does not terminate after
more than 10 hours. Hence, we down-sample the Spam dataset to 25% of its
original size (we have the very same issues with a sample size of the 50%).
With such a reduced dataset, we obtain K = 3 375 and k-means manages
to complete, although its running time is considerably longer than that of
NG-DBSCAN. The quality of the clusters produced by the two algorithms
are very similar.

For the separation metric, where lower values are better, NG-DBSCAN
clearly outperforms k-means. In particular in the Twitter dataset we achieve
0.2 instead of 0.42 suggesting that the clusters are more separated in NG-
DBSCAN with respect to k-means.

Impact of Text Embedding

NG-DBSCAN offers the peculiar feature of allowing arbitrary data and
distance functions: we used it in the previous experiment to show that our
algorithm, running directly on the original data, can perform better than

6.4. Results 113

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20% 40% 60% 80% 100%

T
im

e
N

or
m

al
iz

ed
 (

m
ax

 =
 1

)

Dataset Size

HOUSEHOLD
FINEFOODS

NYTIMES

(a) Dataset sizes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
N

or
m

al
iz

ed
 (

m
ax

 =
 1

)

Epsilon

HOUSEHOLD
FINEFOODS

NYTIMES

(b) ε values.

 4

 8

 16

 32

 4 8 16 32 64

S
pe

ed
-U

p

Number of core

HOUSEHOLD
FINEFOODS

NYTIMES

(c) Number of core.

Figure 6.8: Evaluation of the scalability.

existing algorithms which embed strings in vectors on which the cluster-
ing algorithm is run. Here, we perform an experiment aimed at evaluating
this feature, comparing NG-DBSCAN running on raw text, using Jaro-
Winkler distance, against the same algorithm running on the vectors ob-
tained through the word2vec embedding.

Table 6.6 presents the results on the Twitter dataset. They indicate
that, indeed, transforming text to a vector representation induces a cluster-
ing quality loss, when quality is defined using compactness and separation
according to the Jaro-Winkler distance measure: the cluster separation is
worse, and clusters are more fragmented (i.e., more clusters of smaller size)
when NG-DBSCAN uses the traditional word2vec embedding. This result
emphasizes a key feature of NG-DBSCAN: it allows working with arbi-
trary data; the opportunity of tailoring distance metrics to the data allow
obtaining, as a result, clusters with better quality.

6.4.5 Scalability

We now perform an evaluation of the scalability of NG-DBSCAN. We show
how different dataset sizes, ε values and number of cores affect the execution
time of the algorithm. To this end, we choose three datasets from the UCI
Machine Learning web site:

• NYTIMES [11]. The dataset has been constructed removing stopwords
and the vocabulary of unique words was truncated by only keeping
words that occurred more than ten times. The cosine similarity has
been chosen to compare two documents.

• HOUSEHOLD [11]. It is a 7-dimensional dataset with cardinality
2 049 280 which includes all the attributes of the Household database
from the UCI archive [11] except the temporal columns date and time.
This scenario is the very same of the one tested by Gan et al.[73]. We
also make use of the Euclidean distance to compare data.

• FINEFOODS [128]. This dataset consists of reviews of fine foods from
Amazon. The data span a period of more than 10 years, including
all 500 000 reviews up to October 2012. Reviews include product and
user information, ratings, and a plaintext review. We make use of
the plaintext to aggregate the reviews sharing a similar content. We
compare such data with the JaroWinkler [87, 183] similarity metric.

The three datasets span different typologies of data and distance metrics in
order to evaluate how different kind of datasets behaves in such scenarios.

114 Chapter 6. Density Based Clustering

Dataset sizes The first scalability evaluation regards the impact of the
dataset size on the execution time. Figure 6.8a shows the execution time on
the Y axis and the dataset size on the X axis. We sampled the following
different sizes of the original dataset {20%, 40%, 60%, 80%, 100%}. As ex-
pected, the full dataset size is the one requiring the larger execution time.
We normalized the other values on the Y axis setting such max value equals
to 1. The HOUSEHOLD dataset seems the one less affected by the dataset
size. On the other hand, in NYTIMES dataset, the execution time linearly
increases with the size of the dataset. Instead, FINEFOODS is working
better when the dataset size is small and undergoes more with respect to
the other datasets when increasing the dataset size. All the results are the
average of 5 independent runs and we obtain always a standard deviation
less than 1%.

ε values Here, we provide an evaluation of the running time with respect
to different ε values. Figure 6.8b presents the results for the three consid-
ered datasets. We normalized the values setting the value 1 to the longest
execution time. When ε is high NG-DBSCAN needs only few iterations to
complete the first phase because all the nodes find neighbors valid according
to the threshold. This results in shorter running time, for instance, FINE-
FOODS completes 10 times faster with ε ≥ 0.3 with respect to ε = 0.1. As
expected decreasing ε requires longer running time.

Number of cores Finally, we evaluate the speed-up of NG-DBSCAN
using the three datasets. Figure 6.8c shows the algorithm speed-up as the
number of cores varies between 4 and 64. Past the cap of 32 cores, NG-DB-
SCAN’s speedup grows more slowly, and doubling the compute cores does
not double the speedup; we attribute this to the fact that communication
costs start to dominate computation costs. The datasets behave similarly,
however HOUSEHOLD, that considers real points in a ND-space, is less
scalable. We believe that the motivation is the different metric used in such
dataset. The Euclidean distance is the metric requiring less time to compute
with respect to the JaroWinkler and Cosine. In fact, HOUSEHOLD requires
a lower execution time with respect to the other datasets though is the largest
dataset. This suggests that the speed-up of NG-DBSCAN could be more
evident when the size of the dataset is larger.

Considerations These results indicate that our approach is scalable –
both as the dataset and cluster size grows. The time needed to compute our
results is always in the order of minutes, demonstrating that our approach
is viable in several concrete scenarios.

6.4.6 Discussion

We have provided a set of NG-DBSCAN parameters that consistently re-
sult in a desireable trade-off between speed and quality of the results (Sec-
tion 6.4.1); we have found that, using these parameters, NG-DBSCAN
scales better than other dbscan distributed implementations (Section 6.4.2);
its qualities shine in datasets having large and very large dimensionalities
(Section 6.4.3). In Section 6.4.4, we have seen that the ability of working

6.5. Conclusion 115

with arbitrary data and using custom distance functions can enable higher-
quality clustering than in existing approaches.

We summarize our experimental findings by concluding that NG-DB-
SCAN allows performing density-based clustering, approximating with high
fidelity the well-known dbscan algorithm, even in the case of big and high-
dimensional or arbitrary data, which was not handled satisfactorily by ex-
isting dbscan implementations.

6.5 Conclusion

Data clustering and analysis is a fundamental task in data mining and ex-
ploration. However, the need to analyse unprecedented large amounts of
data require novel approaches to algorithm design, often calling for parallel
frameworks that support flexible programming models, while operating on
large scale clusters.

We presented NG-DBSCAN, a novel distributed algorithm for density-
based clustering that produces quality clusters with arbitrary distance mea-
sures. This is of paramount importance because it allows versatility and
separation of concerns: domain experts can chose the similarity function
that is most appropriate for their data, given their knowledge of the con-
text; instead, the burden of parallelism can be addressed by designers who
are more familiar with framework APIs than with the peculiar data at hand.

We showed, through a detailed experimental campaign, that our approx-
imate algorithm is on-par with the original dbscan algorithm, in terms of
clustering results, for d -dimensional data. However, NG-DBSCAN scales
to very large datasets, outperforming alternative designs.

Finally, the simplification technique of NG-DBSCAN permits to im-
prove the performance of the algorithm without affecting the quality of the
results.

117

Part III

Applications

119

Chapter 7

Spam campaign analysis

In this chapter we show how our algorithm presented in Chapter 5 can be
exploited to solve a specific application. In this application, we focus on
a particular data clustering task, which involves grouping text data items.
The application domain of our work stems from the objective of identify-
ing SPAM campaigns: for instance, we focus on data collected by Syman-
tec Research Labs, that perform root-cause analysis of large scale SPAM
email campaigns originated from bot networks. In this adversarial context,
data clustering is even more challenging, because spammers manipulate text
to avoid SPAM emails being identified as originating from the same cam-
paign. As a consequence, the similarity metrics used for clustering must
cope with text mangling, which require non-metric distances that disregard
typos, character swapping, and other techniques to avoid detection.

In summary, the contributions of this application are as follows:

• we show how two algorithms (k-NN and connected components) can
be combined to effectively solve an important application, in particular
we make use of our proposed solution presented in Chapter 5;

• we use a real-life dataset and evaluate the overall clustering quality
of our approach using both traditional metrics, and with the help of
domain experts through manual investigation, highlighting the inter-
pretability of clustering results.

The outcome of this application has been published in IEEE Conference
on Big Data with the title ”Scalable k-NN based text clustering” [117].

7.1 Our approach

We now present our approach for Spam Campaign detection. The idea is
to group emails sharing similar email’s subject. To this end, we perform
text clustering, which is based on the scalable algorithm presented in Chap-
ter 5. The problem of such text clustering is particularly challenging due to
the application scenario we study. We face an adversarial setting in which
text data is generated such that finding similar items is cumbersome: SPAM
campaigns introduce text mangling, spelling errors and generally variations
on some baseline text which makes SPAM items belonging to the same cam-
paign appear different one from each other. As a consequence, we need to
use a similarity metric between items that can overcome, or at least mitigate,
the problem.
Similarity Metric. There exist numerous similarity metrics in the vast lit-
erature on the subject of this work. In particular, for text data, the Hamming
distance and Levenshtein distance have been extensively used to determine

120 Chapter 7. Spam campaign analysis

Figure 7.1: Illustration of our approach

Table 7.1: Symantec Dataset: characteristics

Feature Unique Value 1 Value 2 Value 3 Value 4 Value 5

bot 11669 Lethic 20.41% Unclassified 18.63% Bagle 11.24% Cutwail 9.36% Grum 9.20%

city 33905 16.22% Seoul 3.61% Kiev 2.16% Hanoi 1.76% Moscow 1.70%

country 224 Russian Federation 10.46% India 8.53% Brazil 5.83% Korea, Republic of 5.73% Ukraine 4.62%

day 393 10/31/2010 0.31% 10/30/2010 0.30% 10/23/2010 0.30% 2/19/2011 0.30% 11/3/2010 0.29%

fromDomain 241117 domain555065.com 11.10% domain359761.com 2.22% domain572911.com 0.90% domain425436.com 0.86% domain384117.net 0.56%

host 32915 42.09% airtelbroadband.in 1.71% ukrtel.net 1.67% localhost 1.62% hinet.net 1.40%

ip 2227174 anonymous IP 1 0.04% anonymous IP 2 0.03% anonymous IP 3 0.03% anonymous IP 4 0.02% anonymous IP 5 0.02%

rcptDomain 8641 domain555065.com 81.66% domain806676.fr 3.27% domain946987.org 2.18% domain240360.br 1.93% domain801669.com 1.64%

the similarity among text items. In this application, for the reasons illus-
trated above, we choose the Jaro-Winkler [87, 183] similarity metric which,
simply stated, counts the common characters between two strings even if
they are misplaced, misspelled, and mangled by a “short” distance. Note
that, the Jaro-Winkler metric has a codomain in [−1, 1].
Illustrative example. We provide an overview of our analytical process
to detect spam campaign, and proceed with an illustrative example. Our
text clustering approach works in two phases. In the first phase, it builds
an approximate k-NN graph of text items. The first phase concludes with a
pruning stage, which strives at eliminating spurious links between items with
low similarity. In the second phase, we use a parallel approach to identify
connected components in the k-NN graph, which are a proxy for clusters of
similar items.

Figure 7.1 illustrates the process, where we consider 5 SPAM email sub-
jects: note the swap of letters and typos typical of SPAM emails. Each
email subject corresponds to a node in the intermediate graph structure our
approach builds.

Initially, each node connects to k = 2 randomly chosen nodes. First,
our algorithm iteratively builds an approximate 2-NN graph where edges
having low similarity are dashed: the number of iterations constitutes one
parameter of our approach. At this point, the pruning phase eliminates edges
between nodes that have a low similarity measure, based on a threshold that
constitutes the second parameter of our algorithm. Finally, using the pruned
2-NN graph, our method finds its connected components, which we use as a
proxy of the clusters our method identifies.

7.2 Data Description

In the following of this section we make a deeper analysis and description
about the SPAM dataset used to validate the application.
The dataset. The main dataset we use in our evaluation consists of a subset
of SPAM emails collected by Symantec Research Labs, between 2010-10-01
and 2012-01-02, which is composed by 3, 886, 371 email samples. Each item
of the dataset is formatted according to JSON and contains the common
features of an email, such as: subject, sending date, geographical infor-
mation, the bot-net used for the SPAM campaign as labeled by Symantec

7.3. Results 121

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 101 102 103 104 105 106 107

D
is

tr
ib

ut
io

n

Group Size

IP
BOT

HOST
CITY

COUNTRY
DAY

Feature Similarity
bot 0.6
city 0.49
country 0.49
day 0.5
fromDomain 0.54
host 0.5
ip 0.51
rcptDomain 0.5

Figure 7.2: Symantec dataset: feature distribution and
average similarity

systems, and many more. For instance, a subject of an email in the dataset
is “19.12.2011 Rolex For You -85%” and the sending day is “2011-12-19”.

In this work, we are interested in identifying clusters of SPAM emails
using subjects alone, as they constitute a compact description of the email.
Next, we provide an overview of the dataset we use, to gain a better un-
derstanding of its characteristics; we also proceed with a näıve approach to
clustering emails, by grouping them according to some of their fields.

Table 7.1 illustrates such a preliminary analysis: the “Unique” column
identifies the number of distinct values for each feature we use, whereas
additional columns in the table indicate the top individual values for each
feature. For instance, “grouping by” the feature “bot” indicates that there
are 11,669 unique bot-nets in the dataset, with “Lethic” taking roughly 20%
of the emails, followed by 18% of “Unclassified” bot-nets and 11% from
the “Bagle” bot-net. The dataset contains emails sent from 224 different
countries, as shown when “grouping by” the feature “country”.

Figure 7.2 left side describes how the size of each group is distributed
in the dataset. For example, 90% of the groups having the same bot-net
value have a size lower than 10 emails, indicating skewness when considering
the “bot” feature. Instead, groups having the same “day” feature are more
uniformly distributed: only 10% of the days have less than 104 emails, while
the remaining 90% of the days have similar group size around the value 104.

Finally, we verify if grouping emails according to the features of Table 7.1
results in email having similar subjects: in other words, we are interested in
understanding if using similar subjects to cluster emails would boil down to
simply grouping them by some other features. The right side of Figure 7.2
pinpoints at a negative answer: essentially, grouping by any of such features
results in email subjects being very loosely similar, which is not sufficient to
consider such groups a useful proxy for email clusters.

7.3 Results

We already presented in Section 5.4 results showing the characteristics of
our clustering algorithm, the impact of the different parameters and how to
configure it. In this section we present our result analysing the Symantec
dataset and the outcomes of the spam campaign detection.

We compare clustering quality to a baseline algorithm. In particular,
we use the efficient K-means implementation available in Spark’s MLLib
package [3], and the word2vec package [5]. It is important to note that the
parameter K, in K-means is substantially different from the parameter k of

122 Chapter 7. Spam campaign analysis

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.8 0.9 1

S
ep

ar
at

io
n

θ

K = 5
K = 10
K = 15

KMeans

(a) Separation (lower is
better).

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.8 0.9 1

C
om

pa
ct

ne
ss

θ

K = 5
K = 10
K = 15

KMeans

(b) Compactness (higher
is better).

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.8 0.9 1

S
ilh

ou
tte

θ

K = 5
K = 10
K = 15

KMeans

(c) Silhouette (higher is
better).

Figure 7.3: Symantec Dataset: Clustering quality in terms
of inter and intra cluster similarity, and clustering Silhou-
ette. The algorithm proposed in this work outperforms the
baseline method, and is only marginally affected by approx-

imation quality.

Table 7.2: Symantec Dataset: Manual Investigation

cluster size bot days subjects sample

7255 Grum, Unclassified 2011/12/14-2011/12/20
”17.12.2011 Rolex For You -73%”
”15.12.2011 Rolex For You -89%”
”19.12.2011 Rolex For You -85%”

4512 Rustock, Unclassified 2010/12/04-2010/12/06
”jadevnn, Alena (status-online) invites you for chat.”

”Hi zmes40, Alena (status-online) invites you for chat.”

”keumd,,Alena (status-online) invites you for chat.”

4412 Rustock, Unclassified 2011/01/28-2011/02/01 ”Re: User kilmernn” ”Re: User anguinet” ”Re: User hudnalli”

4116 Rustock, Unclassified 2011/03/12-2011/03/14
”tdwilkey, you have a new PRIVATE MESSAGE”,
”dbeltondd, you have a new PRIVATE MESSAGE”
”bn, you have a new PRIVATE MESSAGE”

2992 Grum, Unclassified 2011/08/19-2011/08/23
”cseeberd@Amega.com VIAGRA ? 84% consensus!”
”Maia@Amega.com VIAGRA ? 50% consensus!”
”zelmo38dd@Amega.com VIAGRA ? 16% consensus!”

the k-NN graph algorithm: it indicates the number of clusters the K-means
algorithm is set to produce. If not otherwise specified, we set K = 1000 such
that the baseline algorithm output 1,000 clusters. This configuration yields
the best result in term of Silhouette metric.

In what follows and if not otherwise specified, we set the operating pa-
rameters of our algorithm as follows: k = 10, and 10 iterations, which are
the parameters that offer a good trade-off between clustering quality, ap-
proximation quality, and algorithm runtime.

Figure 7.3 shows the three main metrics we use to judge clustering qual-
ity, namely separation, compactness and Silhouette, as a function of θ, and
for various values of k. Such metrics are computed both for our approach,
and for the baseline algorithm based on K-means.

The separation metric evaluates how “far apart” the clusters output by
the algorithms are: lower values of separation indicate that the inter-cluster
distance is large, which is a desirable property to distinguish clusters well. As
shown in Figure 7.3a, both our method and the baseline algorithm achieve
good separation, with a slight advantage for the baseline method, that pro-
duces clusters that are more pairwise dissimilar.1

On the other hand, the compactness metric indicates how similar are the
items within a cluster: larger values of compactness are desirable, because
they are indicative of the absence of outliers that could “pollute” the quality
of individual clusters with unrelated items. Figure 7.3b indicates that our
approach is superior to the baseline method with respect to this metric, the

1An “artifact” due to the distance metric used in K-means, which separates text items
even if they differ because of mangling.

7.4. Conclusion 123

 0

 50

 100

 150

 200

 250

 300

1-2 3-4 5-6

N
um

be
r

of
 "

go
od

"
C

lu
st

er
s

(s
iz

e
>

 1
00

0)

bot number range

θ = 0.7
θ = 0.8
θ = 0.9
θ = 1

KMeans

(a) Bot network identi-
fiers.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1-7 8-14 15-21

N
um

be
r

of
 "

go
od

"
C

lu
st

er
s

(s
iz

e
>

 1
00

0)

day number range

θ = 0.7
θ = 0.8
θ = 0.9
θ = 1

KMeans

(b) Days.

Figure 7.4: Clustering quality in terms of the unique num-
ber of features in each cluster output by clustering algo-
rithms. For manual inspection to be useful, a small number
of unique feature, such as bot-nets or time-frame of each
cluster item, is preferred. Our approach outperforms the

baseline algorithm.

latter producing clusters with emails that are unrelated to the majority of
other items in a cluster.

Figure 7.3c illustrates that the clustering Silhouette obtained by our
approach is superior to the baseline algorithm, and this holds for all param-
eter choices. This is confirmed also in Figures 7.4a and 7.4b, which show
the number of “good” clusters (with at least 1,000 items) as determined
by domain knowledge metrics. Essentially, these figures report the number
of clusters amenable to manual inspection of the results, as a function of
features such as the number of bot-nets and the time-frame of a SPAM cam-
paign. For example, in Figure 7.4a, domain experts can extract valuable
information when the number of SPAM bots in a cluster is small, in the
1-2 range: in this case, our approach is superior to the baseline algorithm,
which performs slightly better for the less interesting cases of 3-4 and 5-6
bots. Similarly, Figure 7.4b shows that the number of “good” clusters iden-
tified by our approach is always better than that of the baseline algorithm,
and this is especially true for the 1-7 range, indicating cluster with emails
spanning a 1 week time-frame. In summary, we find that the algorithm we
present in this work performs well, especially when selecting an appropriate
operating point, with θ ∈ [0.8, 0.9].

Finally, we proceed with a manual inspection of the clusters we obtain
with our approach, to further illustrate the “goodness” of the clustering
we achieve, with k = 10, 5 iterations and θ = 0.9. Table 7.2 illustrates
a few email samples in clusters where both the number of bot-nets is less
or equal to 2, and all emails are all sent within one week time-frame. For
instance, we obtain a cluster of 7255 emails sent from the Grum bot-net,
between 2011/12/14 and 2011/12/20: the subjects of the email are related
to a SPAM campaign involving a Rolex discount. Note that subjects are all
related, albeit not identical.

7.4 Conclusion

In this chapter we presented how is possible to identify spam campaigns
starting from emails’ subjects. We showed how our clustering algorithm
presented in Chapter 5 can be successfully exploited for this domain. In
particular we validate the versatility of the approach and the quality of

124 Chapter 7. Spam campaign analysis

result although approximation. We supported our claims using real traces
covering adversarial applications aimed at identifying SPAM campaigns, and
through manual inspection by domain experts of the clusters output by our
algorithm.

125

Chapter 8

Population estimation

This application stems for estimating population making use of clustering
algorithms and using mobile phone data. This application is not just the
mere execution of the clustering algorithm presented in Chapter 5 on a
particular dataset, in fact it introduces many challenges:

• validate the claim that the algorithm is able to work with arbitrary
data;

• construct a begin-to-end application where data needs to be initially
processed and elaborated to be suitable for a clustering algorithm, until
the final analysis of the clusters;

• improve the algorithm in particular to permit its usage in a completely
unsupervised manner;

• study indicators about individuals movements such as the flows be-
tween home and work locations and from home to visit places.

This application has been originally presented in the IEEE Symposium
on Computers and Communication with the title ”Improving Population Es-
timation From Mobile Calls: a Clustering Approach” [119] and an extension
is currently submitted to the journal “Data Mining and Knowledge Discov-
ery”.

8.1 Related Work

Several studies use mobile phone data driven by their large market penetra-
tion in recent years. In fact, many works study all the possible social and
economic indicators that can be extracted by such data. In this Section we
discuss works related to ours about mobile calls data analysis (Section 8.1.1)
and about scalable clustering algorithms (Section 8.1.2).

8.1.1 Mobile phones data analysis

Mobile phone traces have been utilized to monitor the traffic in cities and
analyse tourist movements. In particular two popular works focus on this
issue for the cities of Rome [32] and Graz [152]. From these works, many
others, for instance Ahas et al. [9], analyse that is possible to individuate
which are the places visited by the individuals analysing the calls performed.
In addition, a plethora of works, for instance the winner of the Nokia Mobile
Data Challenge [64], build predictors able to determine the next position of
an individual given the current context.

126 Chapter 8. Population estimation

De Jonge et al. [50] study different approaches making use of two weeks
calls in Netherlands. They give insights on the indicators obtainable analysing
the phone calls. For instance, such data can be used to estimate the level
of the economic activity because the number of phone calls can be an in-
dicator of the economic activity of a certain region. They make use of the
KMeans clustering algorithm to determine day pattern clusters of the call
activity. However, they suggest that a deeper study on the calling behaviour
should be performed on a larger dataset covering multiple weeks to correctly
estimate population density.

One of the first works using mobile data to estimate the population
has been presented by Terada et al. [168]. In this work they monitor the
presence of mobile terminals present in each base station area in different
time intervals. Such data is refined with census information and at the end
the per-cell populations are aggregated in grid sections or municipalities.
This result may be affected by errors. Checking only the presence in a cell
can not detect if an individual is a resident, who should be counted as living
in the area, or just a visitor. Due to this, sub sequent works try to exploit
mobile data in a different manner.

Deville et al. [57] improves the ideas of De Jonge and exploit mobile
phone data for estimating population density. They propose a framework
called MP. According to such methodology, population density is estimated
as a function of the night-time phone calls occurring in a given area. How-
ever, a simple rule-based approach to identify user presence may hinder to
derive some more useful information about the calling behaviour of the users.
For instance, it would be cumbersome to define rules able to characterize in-
dividuals that are Commuters or Visitors.To overcome the aforementioned
limitations, in a seminal work Furletti et al. [71] defined how to build indi-
vidual profiles based on mobile phone calls. Such profiles characterize the
calling behaviour of a user, in different time slots. By analysing these profiles,
it is possible to identify three categories of users: Residents, Commuters or
Visitors. Sociometer [72] focuses on this characterization to aggregate users
having a similar calling behaviour with the k-means clustering algorithm.
The centroid of each cluster is compared with pre-defined archetypes repre-
senting the categories of interest, then, each cluster is classified by means
of the associated archetype. Hereafter we use the term exemplar to refer to
the cluster’s centroid.

Our work Muchness+ advances the achievements of Sociometer in the
following areas: (i) it provides a scalable distributed approach which can
process a sensibly larger collection of data requiring no input from the user;
(ii) it defines a personalized similarity metric that leads to better clustering
results and is able to cluster different kind of data relative to different mobile
calls aggregation strategy; (iii) it automatically removes outliers to improve
the overall quality and to provide a better estimation of the population;
(iv) it does not require to provide in advance the number of clusters as
in k-means; (v) it studies the indicators that can be extracted from mobile
calls such as how individuals move to reach their working location. Table 8.1
shows the main differences between our work and the related works described
in this section.

8.2. Data description 127

8.1.2 Scalable clustering algorithms

Mobile data are usually of large size. In this work, we analyse the phone
calls performed daily in the Italian region of Tuscany. Due to this, when
we need to cluster such amount of data a scalable clustering algorithm is of
paramount importance. In this Section we cover several scalable clustering
algorithms related to ours.

One of the most popular clustering algorithm is k-means which aggre-
gates data around K centroids. It has three main limitations: the K param-
eter has to be user-provided, it is limited to euclidean spaces, it has a bias on
the initial selection of centroids. Moreover, despite parallel and distributed
implementations of k-means exist, they suffer of longer running time when
K is large due to the large number of comparisons.

Another interesting class of clustering algorithm falls in the dbscan fam-
ily, defined by Ester et al. [63]. The underpinning idea is to cluster items
that have at least MinPts neighbours at maximum distance ε. The main
advantages against k-means are the following: (i) it is not required to know
the number of clusters in advantage; (ii) the ability to cluster items with
complex shapes instead of aggregating items that are simply close (accord-
ing to the euclidean distance) to a centroid. MR-dbscan [80] has been the
first proposal targeting a distributed implementation of dbscan, realized as
a 4-stage MapReduce algorithm. This approach focuses on the definition of
an efficient data partitioning in a d-dimensional Euclidean space, where each
partition is assigned to a worker node. This solution is limited, similarly to
k-means, to work on euclidean spaces.

In Chapter 5 we defined a distributed clustering algorithm based on near-
est neighbour graphs able to deal with arbitrary similarity metrics has been
proposed. This is at the basis of the approach of Muchness. Such approach
have several drawbacks that we claim to overcome in this application. Al-
beit it is not necessary to define the number of clusters in advantage, it
requires three parameters to tune the quality and the execution time of the
algorithm. Due to this, in this chapter we extend such algorithm in order to
remove the requirement of input from the user. This will facilitate its usage
and target a good trade-off between clustering quality and execution time.

8.2 Data description

Telco operators collect customer data for billing purposes. Refer to Fig-
ure 8.1 to have an overview of how data are created, collected and aggre-
gated. From one Telco operator in Italy, we received anonymized data of calls
performed in Tuscany (Italy) recorded during the period between February
and March 2014. Each call record is a tuple having the anonymous identifier
of the user, the call timestamps and the cell id. We manage approximately
60× 106 calls (column Telco data in Fig. 8.1). Each cell id can be assigned

Table 8.1: Overview of frameworks to estimate population

Name Method Clustering configurable Residents Commuters

MP [57] rules on each data N/A yes no

Sociometer [72] clustering k-means number of clusters yes yes

Muchness clustering k-NN based 3 main parameters yes yes

Muchness+ clustering k-NN based completely unsupervised yes yes

128 Chapter 8. Population estimation

cell_1 user-id, date, time, cell-id
…….
AAA,03-03-2014,16:10,cell_1
AAA,03-03-2014,16:15,cell_1
BBB,03-03-2014,16:15,cell_3
AAA,03-03-2014,17:20,cell_2
BBB,03-03-2014,18:02,cell_3
…….
AAA,12-03-2014,10:10,cell_1
CCC,12-03-2014,11:12,cell_2
…….

cell_2 cell_3

Individuals Calling Telco Data ICPs

Figure 8.1: Individuals perform calls under a given cell
(relative to a municipality). Each call is collected from the
Telco operators. We receive such data and we aggregate the
calls of each individual creating a user calling profile (ICP).

Figure 8.2: Amount of calls in the dataset. Darker colors
represent an higher amount of calls collected in the dataset.

to a municipality. A municipality is an administrative tessellation of the
territory. Our data span between municipalities having a density of pop-
ulation in the range 6 to 261 individuals per square kilometre. Figure 8.2
describes the amount of calls collected in the dataset for each municipality.
As expected, the cities are characterized by the largest amount of calls with
respect to small municipalities. For each individual, we compute an Indi-
vidual Call Profile (ICP), following the approach defined in a paper from
Furletti et al. [71]. An ICP represents the calling behaviour of an individual
in a municipality (column ICPs in Fig. 8.1). Due to this, each individual
may have multiple ICPs if the user performed calls in different municipalities
in the time period. These are used to identify if an individual is a resident,
commuter or visitor in the municipality. Each ICP is a 30-dimensional array
in which each position represents a specific time slot of the day (morning,
afternoon, evening) discriminating between weekdays and weekends for a to-
tal of the 5 weeks under analysis. A value greater than 0 indicates that the
represented user performed at least one call in a specific time slot. At the
end of the aggregation process we obtain around 2.6×106 ICPs representing
calls generated by about 800k individuals from 115 different municipalities.

The clustering algorithm takes in input the ICPs to provide clusters of

8.3. Preliminaries: Muchness analytical process 129

(a) In-coming workers. (b) Out-coming workers.

Figure 8.3: In-coming and out-coming workers for the Pisa
municipality

individuals and tag such clusters as Resident, Commuter or Visitor. Such
information is eventually processed, to estimate the number of residents,
commuters and visitors for each municipality. It is possible to extract many
useful informations from such data. For instance, check Figure 8.3 where
are described the amount of workers travelling in-coming and out-coming
the municipality of Pisa from the other municipalities. In particular, the
in-coming workers represent the amount of residents that are commuters in
Pisa. It is nice to observe that the majority of the work travellers are from
the surrounding municipalities, principally from Livorno. However, for the
out-coming worker, despite the majority of the Pisa’s resident work in the
surrounding of Pisa, some travel everyday to Florence, the biggest city in
Tuscany.

8.3 Preliminaries: Muchness analytical process

In this Section we provide some details about the Muchness technique tar-
geting population estimation.

Muchness estimates the population in 3 phases:

• individual characterization: we start from raw data about mobile calls
where for each call we have the timestamps, an individual identifier
and the position of the caller. These data are aggregated resulting for
each individual in an individual calling behaviour (ICP) for a given
municipality similarly as in Furletti et al. [71]. An ICP provides in-
formation about the time of the day in which the individual perform
calls.

• clustering : we cluster the ICPs with a specialized similarity metric;

• classification: each cluster is classified as composed of Residents, Com-
muters or Visitors.

Figure 8.4 gives an overview of the whole analytical process of Much-
ness. For each mobile user we build an ICP (see column A). Then, we start
our clustering algorithm that has the peculiarity of accepting an arbitrary
similarity metric. It is a two phase algorithm. First, we build iteratively a
nearest neighbour graph (k-NN), according to the given similarity metric.

130 Chapter 8. Population estimation

1 2

53

6 7

4

1 2

53

6 7

4

1 2

53

6 7

4

1 4

3 6

5 7

A B C D E

Figure 8.4: Muchness analytical process. A : for each in-
dividual we assign an ICP. B : each ICP becomes a node
in a graph. C : we search for similar nodes and at the end
we prune low similarity edges (dashed). D : we search for
connected components and we identify outliers (node 2). E
: for each cluster we define an exemplar (icons) classified as

Resident, Commuter or Visitor.

Second, we search for connected components in the k-NN graph. We make
use of the ICPs to generate the graph. At the bootstrap, we randomly link
each node to few other nodes (see column B). Then, the algorithm iterates,
starting from the initial graph, adjusting the neighbourhood of each node
with the most similar nodes. In the following stage, the edges connecting
nodes which similarity is below a given threshold parameter are pruned (see
column C). The resulting clusters are the connected components (Chapter 4)
derived from the pruned graph (column D). It is worth to notice how in this
phase the nodes without neighbours are identified as outliers (situation rep-
resented in Figure 8.4 by node #2). Finally, for each cluster an exemplar is
generated (column E), used by the automatic classifier to label the clusters
as Resident, Commuter or Visitor.

This solution requires to specify three parameters: k, numIter and ε.

• k represents the number of neighbours for each node in the graph, it
affects both the quality and the execution time of the clustering. In
general is acceptable to set a value ∈ [5, 10] to have a good trade-off
between quality and time;

• numIter fixes the number of iterations performed by the algorithm.
Larger value provides a better k-NN graph at the cost of a longer
running time;

• ε is a threshold parameter that drive the edge pruning process to avoid
that very different nodes would fall in the same cluster.

8.4 From Muchness to Muchness+: a framework
for census

In this section we target to improve the analytical process of Muchness de-
scribed in Section 8.3. In particular, we think it is of paramount importance
to provide a completely unsupervised approach (i.e. where no configuration
is required from the user) to avoid trial-and-error approach when changing
the data to achieve a good result. To this end, we introduce some techniques
to avoid the input of all the parameters required by the previous Muchness

8.4. From Muchness to Muchness+: a framework for census 131

Algorithm 8.1: Muchness+ clustering algorithm.

1 k-NN = RandomInitialization()

2 meanSimilarity = mean(k-NN)
3 tmp = -1
4 while i < numIter ∧ |tmp−meanSimilarity| < 0.01 do
5 meanSimilarity = tmp
6 H = {ReverseMap(n)∀n ∈k−NN}
7 T = {CheckNeighborhood(n)∀n ∈H}
8 k-NN = {ReduceNeighbor(n, l)∀(n, l) ∈T}
9 tmp = meanSimilarity

10 meanSimilarity = mean(k-NN)
11 i = i+ 1

12 end
13 S={n ∈k-NN |su < 1}
14 ε=mean(S)

Algorithm 8.2: Muchness procedures.

1 procedure ReverseMap(Node n)
2 forall the u ∈Neighborhood(n) do
3 emit(n, u)
4 emit(u, n)

5 end

6 procedure CheckNeighborhood(Node n)
7 forall the u ∈ Neighborhood(n).Limit (ρk)∪{n} do
8 l = ∅
9 forall the v ∈ Neighborhood(n) ∪ {n} \ {u} do

10 l = l ∪ ((v, distance(u, v)))
11 end
12 emit(u, l)

13 end

14 procedure ReduceNeighbor(Node n, List〈(Node,Distance)〉 l)
15 localMeanSimilarity=mean(l)
16 if localMeanSimilarity ∼ 1 then
17 orderedList = orderDESC(l).Limit (j/2)
18 emit(n, orderedList)

19 else
20 orderedList = orderDESC(l).Limit (j)
21 emit(n, orderedList)

22 end

approach. We call this new version of the algorithm Muchness+. In addi-
tion, we define how we can find similarity metrics that adapt to mobile data
without choosing them according to the algorithm implementation.

8.4.1 Improving the clustering algorithm

In this section we provide insights in how we improve the algorithm with
respect to the one used in Muchness. In particular we concentrate on the
following aspects:

• avoid bad performance in degenerate cases, bounding the number of
messages to O(ρk) (Section 8.4.1);

132 Chapter 8. Population estimation

• provide a completely unsupervised algorithm, which does not require
parameters from the users. In particular, the previous algorithm re-
quires three parameters that are not required any more in Muchness+:
k the size of the neighbourhood on each node (Section 8.4.1), numIter
the number of iterations (Section 8.4.1), ε to prune low similarity edges
(Section 8.4.1).

We aim to improve the performance of the algorithm reducing the number of
messages produced in the algorithm and reducing the number of iterations.
We aim to achieve a better trade-off between execution time and quality of
the results.

Refer to Algorithm 8.1 for an high level description of the clustering
algorithm. Also, refer to Algorithm 8.2 for the details of the different phases
of the algorithm and the optimizations introduced.

Introducing a sampling mechanism

Before giving the details of the sampling technique introduced in Muchness+,
it is interesting to analyse the number of messages required to build the k-NN
graph. Recall, the directed k-NN graph in each iteration is initially reversed
to construct an undirected graph (see Alg. 8.2 Line 1). Due to this, it may
happen that a node u, if by construction initially has k directed neighbours
like all the other nodes, after the reverse operation in the worst case may
have n − 1 neighbours. If this is the case, O(kn) messages are required in
node u to communicate the 2-hop neighbourhoods to all its n−1 neighbours
(see the Forall at Alg. 8.2 Line 7).

To avoid such degenerate scenarios we introduce a sampling parameter ρ.
After the reverse operation each node keeps uniformly at random a maximum
of ρk neighbours (see Line 7). This operation permits to bound the number
of messages on each node, instead to O(kn), in O(ρk).

Automatic neighbourhood selection

The k parameter in Muchness represents the number of neighbours for each
node in the graph. It affects both the quality and the execution time of the
clustering. In general, it is acceptable to set a value ∈ [5, 10] to have a good
trade-off between quality and time as suggested in Chapter 5. However, this
may require an analysis and an input from the user. Due to this, we provide
an heuristic to avoid such input and we let each node autonomously re-size
its neighbourhood depending on its state.

On each node u, in each iteration t we define the average similarity
between u and all its k neighbours equals to stu. Our algorithm is iterative
and improve the neighbours of each node in each iteration. Due to this
given t′ > t we have st

′
u ≥ stu. Because, if a node u discovers a neighbour v

in iteration t, the neighbour v can be substituted in t′ > t only by a node
z whose similarity with u is greater. Due to this, if u has already collected
enough good neighbours we can limit its view, whereas if u have no good
neighbours we need to keep k large to improve the possibility to discover
better neighbours. Good means a similarity close to 1.

From the above hint, we defined a methodology able to automatically set
on each node a correct value for the parameter k. We set k = j when stu is
low (see Alg. 8.2 Line 20), and we set k = j/2 when stu is high (see Line 17).

8.4. From Muchness to Muchness+: a framework for census 133

We let each node performs computation at two speed, respectively when it
searches neighbours or when it has already found good neighbours. In this
case j can be set to a value large enough to permit to discover many nodes.
From previous evaluation in Chapter 5 is safe to set j = 10. This permits to
perform more computation on nodes that needs to improve the neighbours
and just preserve the connectivity on the other nodes.

Early termination

The numIter parameter defines the number of iterations that the algorithm
performs. Previous results suggest that it is not required to perform a large
number of iterations to obtain a good result. In addition, often a large
part of the running time is spent for marginal improvements. Knowing the
improvement of the solution through time enables the algorithm to decide
on an early termination that may save longer running time. In addition, it
is cumbersome to have a fixed amount of iterations to be performed without
knowing the state of the algorithm.

We remark that our algorithm is improving the approximation in each
iteration, and such approximation can be monitored to decide for an early
termination. As before, we define on each node u, in each iteration t the
average similarity between u and all its k neighbours equals to stu. Also,
we define St equals to the average of all the stu for each node u ∈ G. In
Algorithm 8.1 we make use of the mean function to compute St on each
iteration (see Line 10). When the improvement of St in two subsequent
iterations is less than 0.01 we stop early the computation of the algorithm
(see Line 4). This means that the majority of the nodes do not improve the
neighbours and we can safely stop the computation.

Automatic ε pruning

One of the most important parameters is ε. It is a threshold parameter that
drives the edge pruning process to avoid that very different nodes would
fall in the same cluster. It is affecting the second part of the algorithm
(i.e. the same k-NN graph can be used with different ε values to cut a
different number of edges). However, due to its nature, it is affecting the
result considerably and it requires a trial-and-error approach to be refined.

In Muchness+ we define an heuristic capable of providing a good approx-
imation to the expected value to be assigned to ε. As before, we define on
each node u, in each iteration t the average similarity between u and all its
k neighbours equals to stu. At the end of the k-NN creation phase we collect
the st values of the last iteration and we remove all the st = 1, we call such
set S (see Alg. 8.1 Line 13). Each node u having all the neighbours identical
to u must not affect the result to avoid biases. We set ε = S the average of
the values ∈ S.

8.4.2 Adapt the metric to the data instead of the algorithm

One of the major characteristic of the clustering algorithm described before
is its ability to handle arbitrary similarity metric. This contribution permits
to adapt the similarity metric, used for the clustering algorithm, to the data
instead of the algorithm. Thanks to this, we define and use similarity metric
that are able to extract the most of the information from the data. In the

134 Chapter 8. Population estimation

Table 8.2: Similar ICPs extracted by expertises. A com-
parison of similarity values using: euc, jac and euc+jac

euc jac euc+jac
Residents 0.5 1 0.8

Commuters 0.78 1 0.91

following of this section we describe the similarity metrics used on such data
(Section 8.4.2), how we can analyse each individual (Section 8.4.2) and the
metrics used for that (Section 8.4.2)

Similarity metrics for ICPs

In this section we discuss on the metrics to use for our data. As introduced
before, each ICP is a 30 dimensional array representing the calling behaviour
of an individual. We define the shape of an ICP equal to the positions of
its array where the values are greater than 0. The shape gives an idea
about the presence of an individual in the territory without considering the
amount of calls performed. The Euclidean similarity (euc) is unable to grasp
similarities between ICPs having similar shapes. Due to this, our main idea
is to introduce a metrics able to capture the similarities between individual
sharing a common shape.

A metric able to capture the shape of the array is the Jaccard similarity
(jac). In order to use jac we modify each array in a boolean array where we
set the value 1 in position i if in position i the data has a value greater than
0. However, the jac takes into account exclusively the shape of the profiles
but it loses all the informations about the weights in the array. Therefore we
combine the two similarities, the euc and the jac. We define the euc+jac
similarity as follow:

euc+jac(a, b) = αeuc(a, b) + (1− α)jac(a.b) (8.1)

Our goal is to identify the shape of the ICPs, due to this is acceptable to put
more weight on the jac. After a careful analysis we identified in α = 0.4 an
acceptable configuration.

We provide an example supporting our idea in Table 8.2. Table 8.2
shows examples of the values of the presented similarity metrics for two
residents and two commuters having similar shapes. Table 8.2 represents
in the first two columns the ICPs selected and in the last three columns
the similarity values using different metrics. The ICPs have a very similar
behaviour resulting in similar shapes. For instance, take in consideration
the two residents in the first row of Table 8.2. Although some positions
have different values, note the color darkness representing the value on a
single position of the array, they have an equal shape representing the same
calling behaviour. With the euc we cannot assess that the two ICPs are
similar (only 0.5 similarity) however the jac (giving value 1) suggests that
the two ICPs have identical shapes. With our euc+jac we can take the
benefits of both the metrics and we obtain an high similarity of 0.8. Similar
considerations can be applied also to the commuters example.

8.4. From Muchness to Muchness+: a framework for census 135

Beyond ICPs: individual profiles for individuals analysis

Once we have clustered and classified ICPs as Resident, Commuter or Visitor
it is possible to estimate the population in the region and in each munici-
pality. Another interesting analysis is understanding the different typologies
of individuals. Since one ICP is relative to an individual in a municipality,
an individual may have multiple ICPs, one for each municipality where he
travelled in the period under analysis. To this end, we think is of paramount
importance to identify how each individual moves in the region.

We define an individual profile (IP) for each individual i. It is constructed
from the outcome of the clustering of the ICPs. An IP is a 3 dimensional
array where each position represent the number of times i is respectively
considered a Resident, a Commuter and a Visitor. The aim of this charac-
terization is to identify groups of individuals sharing a common behaviour.
In particular, we would answer the following questions:

• how many individuals are just visitors of the region?

• how do residents of a municipality move in the region?

• do individuals exist visiting many places and performing many calls?
(i.e. maybe some individuals are classified residents in multiple mu-
nicipalities)?

To answer these questions we cluster the IPs in order to aggregate similar
individuals. Since we have specific questions to answer we need to carefully
choose also in this case the correct similarity metric to be used for the IPs.
Again, thanks to our algorithm that support arbitrary similarity metric we
can define a metric suitable for our data without warring about its suitability
in the algorithm. In the following section we define how we choose such
metric.

Similarity metrics for individuals profiles

In this section we define several metric that can be used for clustering IPs.
We think that the most important value in the IP is the number of times an
individual may be considered a Resident. Note, a value of 0 or 1 represent
an individual that is respectively not a resident in the region under exam
and a resident in one of the municipality under exam. However, it may
happens that an individual has a value greater than 1. This means that such
individual is moving in many municipalities and it is performing many calls
in each of the municipalities. For instance, consider salespeople. Individuals
not having a fixed working place and their work is mainly characterized on
meeting people in different places, organize such meetings by phone and keep
in touch with all the customers. Due to this, they are individuals that in our
data will emerge having multiple ICPs and in some of them, where they are
more present, having an high number of calls resulting in a Resident profile.

For all the above motivations we need a metric capable of correctly iden-
tify clusters keeping well separated individuals having a different value in
the Resident slot. The euclidean distance is not enough to grasp such dif-
ferences. For instance, it gives the same importance to the values in the
resident and visitor slot. However, it is more important to differentiate be-
tween an individual being a resident in 2 municipality from an individual

136 Chapter 8. Population estimation

resident in 3 with respect to two individuals being visitors respectively in 0
and 5 municipalities. Due to this, we defined a personalized metric. Such
metric assign a similarity equals to 0 to individuals having a different values
for Resident. Instead, it assigns a value equals to the euclidean distance
between the values of commuters and visitors for those individuals having
the same value in resident.

8.5 Experimental evaluation

All the experiments have been conducted on a cluster running Ubuntu Linux
consisting of 5 nodes (1 master and 4 slaves), each equipped with 128 Gbytes
of RAM and with two 16-cores CPU, inter-connected via a Gigabit Ether-
net network. We implemented our approach using Apache Spark [2], the
source code we used for conducting our experiments is publicly available on
GitHub1.

To study the performances of Muchness with respect to alternative ex-
isting approaches, we compared against the following competitors:

• Sociometer [72] is the primary competitor, it is the most similar to
Muchness; both the approaches are based on clustering and designed
for the same case study;

• MP [57] targets the same problem, however is not based on clustering
but relies on rules, such as the calling hours to identify if an individual
is a resident. Such approach requires the knowledge of additional data
as for instance the total amount of individuals in a region. Since such
data may be affected by fluctuation or can be missing we make use of
a version of MP not requiring additional parameters;

• dbscan, we tried to conduct our experiments with an implementationof
MR-dbscan [80] on Apache Spark, unfortunately we have not been
unable to cluster more than the 10% of the dataset due to memory
errors due to the high dimensionality of the ICPs.

8.5.1 How to configure Muchness+

With the optimizations introduced for Muchness+ we target to remove all
the input from the users to facilitate the usage. Although, in Section 8.4 we
described how to remove all the parameters, that was previously required
by Muchness, we introduced the optional parameter ρ to avoid degenerate
scenario and to perform a trade off between running time and quality. Fig-
ure 8.5 depicts the results when using a value of ρ ∈ {1, 2, 3, 6} compared
with Muchness. We found that ρ = 1 is a too strict configuration and does
not permit to achieve a good result (i.e. the algorithm is not able to esti-
mate correctly the number of residents). However, already with ρ = 2 we
obtained a result comparable with the ones obtained with larger values of
ρ. Also, keeping low ρ permit to have a shorter running time because each
node sends ρk messages. Due to this, we suggest to use ρ = 2 because shows
the better running time and a quality similar to different configurations.

1
https://github.com/alessandrolulli/knnMeetsConnectedComponents

8.5. Experimental evaluation 137

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 1500 2000 2500 3000 3500 4000 4500

N
um

be
r

of
 R

es
id

en
ts

Time (s)

ρ=1
ρ=2
ρ=3
ρ=6

Muchness

Figure 8.5: How to configure Muchness+: analysing the
sampling parameter (ρ)

Table 8.3: Road to Muchness+: adaptive k optimization

Time (s) #cluster Residents Compactness Separation

Muchness 3164 (±183) 569 552829 0.89 0.76

Adaptive k 1873 (±42) 265 632393 0.86 0.72

8.5.2 Road to Muchness+: evaluating optimizations

In this Section we evaluate the impacts of the optimizations introduced in
Section 8.4. We start evaluating each optimization separately. At the end
of the Section we build Muchness+ and we compare it with Muchness. Ac-
cording to the result of the previous Section we set the sampling mechanism
in all the experiments equal to ρ = 2. All the results are the average of 5
independent runs. For the time metric we reported in parentheses also the
95% confidence interval.

Adaptive k

In the first set of experiment we evaluate the adaptive k optimization (Sec-
tion 8.4.1). Table 8.3 depicts some comparison metric with respect to Much-
ness. In particular, with the adaptive k optimization we gain two major
results. First, the time to reach the solution is around the 40% less with
respect to the time of Muchness. This is motivated by two things. The
sampling mechanism as seen in the previous Section has a remarkable im-
pact on the execution time. However, this is not the only cause of the great
gain, note that in Figure 8.5 all the values having ρ = 2 have execution time
> 2000 seconds. Here we get an average execution time of 1873 suggesting
that with respect to the execution time of ρ = 2 we obtain another gain
thanks to the possibility to reduce the neighbour size of a large part of the
nodes in the graph. This has no impact on the quality of the clusters ob-
tained, in fact compactness and separation have similar values with respect
to Muchness. The second gain regards the number of clusters. Keeping the
number of cluster low has some benefits because it permits to analyse a lower
number of clusters if a manual investigation is required.

Early termination

Next, we move to the analysis of the early termination mechanism. This
optimization, described in Section 8.4.1 permits to avoid the use of the
NumIter parameter of Muchness. Despite this advantage, it shows also
execution time advantages. Table 8.4 describes the results and shows a com-
parison with Muchness. As in the previous Section, we obtain a remarkable

138 Chapter 8. Population estimation

Table 8.4: Road to Muchness+: early termination

Time (s) #cluster Residents Compactness Separation

Muchness 3164 (±183) 569 552829 0.89 0.76

Termination 1697 (±80) 293 586398 0.87 0.73

Table 8.5: Muchness+ vs Muchness

Time (s) #cluster Residents Compactness Separation

Muchness 3164 (±183) 569 552829 0.89 0.76

Muchness+ 1309 (±15) 161 634402 0.87 0.71

advantage in terms of execution time. Thanks to the early termination we
finish the computation in half of the time with respect to Muchness. To
be more precise, the early termination ends the computation after 6 itera-
tions. This suggest that the subsequent iterations performed by Muchness
improves only marginally the result obtainable by this approach. Also, this
is another confirmation that monitoring the results on iterative algorithms
permits to have a deeper control about the quality of the results.

All

Finally, we build the Muchness+ algorithm inserting all the previously anal-
ysed enhancements. Here, we add also the optimization to automatically
select the threshold parameter for the pruning mechanism before running
the connected components. Table 8.5 shows the final results. With all the
optimizations the execution time of Muchness+ is around 60% lower than
the execution time of Muchness. In particular, it seems that the contribu-
tions of adaptive k and early termination optimizations are additive and
both contribute to reduce the execution time. We get also a more stable
running time in the 5 executions and we obtain only ±15 for what concern
the confidence interval of the time metric. The number of clusters is sensi-
bly smaller in Muchness+ but this is not affecting the number of residents
estimated by such approach.

8.5.3 Studying individuals mobility

In this set of experiments we aim to answer some questions about the indi-
cators that can be extracted from mobile calls. For instance, it is reasonable
to assume that call activity in commercial or business areas is an indicator
for economic activity. Also, in previous works [50] it has been suggested that
phone calls can be an indicator of economic activity. First of all our method
allows to use the calling behaviour to understand if an individual resides,
works or is a casual visitor in a certain place. Due to this we answer to
the following questions: (i) is it possible to classify regions as residential,
commercial or business? (ii) is it possible to show how individuals move to
reach their working position? (iii) is it possible to check which are the most
visited places?

Using the outcome of Muchness+, we can see how individuals move into
the territory under study. In particular, we analyse how individuals move
from home to the working place or to visit a city. The thickness of the flows
is proportional to the number of individuals travelling the path connecting
the two municipality.

8.5. Experimental evaluation 139

Figure 8.6: Studying individuals mobility: Individuals
travelling from home to work

Individuals travelling from home to work

One possible use of the outcome of Muchness+ might be to systematically
analyse the movement from home to work. This may have multiple advan-
tages such as observe what is the potential market for public transport. Also,
this service can be very useful for statistical institutes. Figure 8.6 shows the
main home to work flows for each municipality in Tuscany. Clearly, Florence,
being the biggest city in Tuscany, is the center of the working activity of the
region. A large part of the individuals of the surrounding municipalities
everyday move to Florence for the working hours. From the Figure also the
other cities of Tuscany are highlighted, in order of importance: Pisa, Lucca
and Livorno. Pisa, despite being smaller than other cities such as Livorno,
is a center of numerous activities and of prestigious universities. Due to this
it seems to be the second municipality, after Florence, to attract workers.
From the figure it is possible to obtain two other major insight. First, the
larger centres of working activities seem to attract workers from their sur-
rounding municipalities, note that the flows directed to the cities are from
the surrounding municipality (the edges have a clockwise direction). Second,
flows exist also between the major cities. For instance, between Livorno and
Pisa or Pisa and Florence. This may show the impact of rail transportation
because a path connecting Livorno, Pisa and Florence by train exists.

Individuals travelling from home to visit places

While some statistics about systematic movements may be extracted also
from census, this is not true for occasional visits. Due to this, it would be
very helpful to know, for instance, who has attended an event and where
they come from or how visitors are attracted in certain municipalities. This
would enable to know the spread and importance of an event by measuring
the attractiveness over the surrounding territory. Figure 8.7 depicts the
flows between the municipality of residence and the visiting places. We
can see that the amount of mobility that is created for occasional reasons is
impressive, and certainly greater than that happening systematically and/or

140 Chapter 8. Population estimation

Figure 8.7: Studying individuals mobility: Individuals
travelling from home to visit places

Table 8.6: Comparing with competitors and census data:
Median estimation errors

Residents ×km2

<50 50 - 100 100 - 150 >150

MP 93% 91% 92% 94%

Sociometer 39% 39% 49% 52%

Muchness 24% 29% 42% 47%

Muchness+ 16% 14% 15% 23%

Commuters ×km2

Sociometer 83% 84% 86% 89%

Muchness 84% 83% 81% 87%

Muchness+ 86% 84% 85% 89%

due to working activities. Again, the figure shows that in particular the
movements involving occasional travels are to the four largest Tuscan cities
considered. These are important destinations for tourism by Italian and
foreign citizens. A difference with the movements for working activity is
that not only the surrounding municipalities but the individuals of quite all
the municipalities travel occasionally to the major cities. For instance, from
Camaiore, a small municipality in the top-left corner of the figure there are
flows directed to all the cities. Also, in the figure many more municipalities
are present with respect to Figure 8.6. We can see that individuals travel
occasionally to many more places than those they visit for working reasons.

8.5.4 Comparing with competitors and census data

In this Section we evaluate how Muchness+ is capable to be an indicator
for measuring the amount of residents in a municipal area by comparing
its results against MP, Sociometer and Muchness. In addition, we evaluate
also the amount of estimated commuters against Sociometer and Muchness.
Note, the MP method is limited and specialized in providing only the number
of residents and does not provide any functionality to estimate commuters.
It is worth to notice that all the estimations have been rescaled using the
market share of our telco provider. The results are compared against official

8.5. Experimental evaluation 141

0 20 40 60 80 100
municipalities

10-1

100

101

102

103

104

re
si

d
e
n
ts

 p
e
r
k
m

2

official residents
muchness
sociometer
mp
muchness+

0 20 40 60 80 100
municipalities

10-2

10-1

100

101

102

103

104

co
m

m
u
te

rs
 p

e
r
k
m

2

official commuters
muchness
sociometer
muchness+

Figure 8.8: Comparing with competitors and census data

census statistics provided by Italian national institute of statistics (ISTAT).
This data includes the amount of residents and commuters belonging to the
115 municipalities we studied.

Figure 8.8 depicts the number of residents identified for each municipal-
ity. On the Y axis we show the estimated population whereas on the X axis
the municipalities ordered from the lowest to the highest population den-
sity. The results are compared with the real census provided by ISTAT. As
it can be noticed, all the methods have spikes in the same municipalities.
This suggests that although the methods are based on different approaches
(MP defines rules, Sociometer and ours on clustering) all identify similar
behaviours on the data and may suggest that census data itself could under
or over estimate population. It is evident that MP is always under estimat-
ing the density with an error that is greater than Sociometer, Muchness and
Muchness+. Muchness+ seems the one closer to the real census data. In
particular for higher dense municipalities.

To have a better insight on the errors performed on the estimations,
Table 8.6 presents the median error on the estimations. We divided the error
on the estimations in 4 areas having different population density. Again,
MP is providing the estimation affected by the larger error. Muchness and
Sociometer provide similar results for the municipalities with higher density
where the volume of available data is large and the clustering can rely on a
rich set of information. Instead, Muchness+, as we noted before, provide a
better estimation in all the municipalities and in particular it improves the
result of Muchness on higher dense municipalities. Finally, we compare the
commuters estimations. Also in this case the results are compared against
real census data. All the approaches give approximately the same results in
terms of estimation errors, for every density range.

8.5.5 Evaluating individual profiles

In Section 8.4.2 we defined the individual profile (IP) to identify different
typologies of individuals and in Section 8.4.2 a metric capable of extracting
useful information from such data. In this section we compare two metric
for clustering individual profiles: the Euclidean distance and the one defined
ad hoc for such data. Initially we take the output of Muchness+ and we
constructed for each individual its IP. We obtained around 800k IP.

142 Chapter 8. Population estimation

(a) Euclidean Distance (b) Personalized Distance

Figure 8.9: Evaluating individual profiles

First of all we compared the clusters obtained with the two metrics.
Figure 8.9 depicts for each cluster a point in a 2D space where on the X axis
is represented the number of times the exemplar of the cluster is a Visitor
and on the Y axis the number of time is a Resident. With the Euclidean
distance we obtained many more clusters with respect to the personalized
metric specific for the data. With the personalized metric we obtain a small
number of clusters and each cluster is well defined and separated from the
others. Thanks to this, the result is easier to be analysed and two clusters
having similar characteristics do not exist.

We then proceed with a manual investigation of the clusters obtained
with the personalized metric. Table 8.7 presents the 6 clusters obtained
with their sizes and the values of the 3 dimensional array. We observe that
more than the half of the individuals (51%) are not residents in the region
under exam. This means that the majority of the people travelling in the
region are living outside the region and visit Tuscany for tourism or for short
periods of time. As expected, the second biggest cluster is the one where
individuals are residents in only one municipality. However, some individuals
exist that are considered Residents in more that one municipality. This is
of paramount interest because this highlight that a part of the population
exist, albeit not being very large, that is used to travel a lot. Such individuals
exhibit a routine in their movements because to be considered a resident in a
municipality an individual must perform many calls in different moments of
the day. Another interesting fact is that the individuals resulting resident in
more than one place are the individuals resulting, on average, visitor of the
highest amount of places. Note that the values of Visitor are increasing when
also the values of Resident are increasing. Also, as expected, the size of the
clusters are decreasing when the values of resident are increasing. Finally,
we noted that the values in the Commuter column is always close to 0. The
motivation is that the number of commuters, as we found when comparing
with real data, is low. Due to this, albeit a part of the population being a
Commuter, when clustered with other individuals the exemplar result in a
value close to 0.

8.6. Conclusions 143

Table 8.7: Evaluating individual profiles: exemplars

Cluster size Exemplar
Resident # Commuter # Visitor

426767 (51%) 0 0.01 1.98

265629 (32%) 1 0.01 1.87

94412 (11%) 2 0.02 2.88

32460 (4%) 3 0.03 3.9

11001 (1%) 4 0.03 5

6744 (<1%) 5.88 0.06 7.98

 4

 8

 16

 32

 64

 128

 4 8 16 32 64 128

S
pe

ed
up

Number of Cores

Muchness+

Figure 8.10: Scalability evaluation

8.5.6 Scalability

Finally, we tested the scalability of Muchness+, by varying the number of
cores in the range [4,128]. Figure 8.10 depicts the results we achieved. Re-
call, Muchness+ has been built taking inspiration of two previous works for
computing connected components (Chapter 4) and text clustering (Chap-
ter 5). In such works similar patterns have been observed when evaluating
the scalability using several different typologies of datasets. We obtained an
almost linear scalability using 8 cores, a still good level scalability with 16
cores, then the value tends to stabilise albeit it is always improving while
adding more cores. These results can be motivated with several consider-
ations about the testing environment. Spark allocates the cores according
to a round robin policy: when using 4 cores Spark exploits one core from
each of the 4 machines. As a consequence, by using only 4 cores (of the
128 available) we exploit the total amount of memory available in the clus-
ter. Considering that each machines has two CPUs, we reach the maximum
available CPU-memory bandwidth, and thus linear scalability, when using 8
cores (one core per CPU).

8.6 Conclusions

This chapter presents an application for estimating the population making
use of mobile calls. With respect to the existing solutions, we presented an
unsupervised clustering algorithm that does not require any input from the
user. It is versatile and able to accommodate arbitrary similarity metric and
it is able to process any typologies of data.

Furthermore, we give an experimental evidence that our approach pro-
vides a very good estimation of the population density within the Italian
region of Tuscany.

145

Chapter 9

Hashtag centrality

This chapter describes an application whose main goal is to identify, on a
daily basis, which are the most important hashtags in Twitter. These are the
hashtags where the majority of the information flows in a specific day [19].
This may have multiple applications such as identifying the topics of a given
day, identifying the key hashtags for a community or maximizing the number
of users reached by a tweet. In addition, central hashtags may be considered
to suggest hashtags that users can track on an ongoing basis or to perform
query expansion.

Our approach is to construct a graph of hashtags and search for the most
central hashtags thanks to the duckweed algorithm presented in Chapter 3.
To this end, we make use of a dataset composed of 606 days of tweets pre-
viously collected at ISTI, CNR. Each tweet including at least two hashtags
contributes to construct a graph where a node is an hashtag and an edge
represents the co-occurrence, in a same tweet, of two hashtags. The main
contributions of our approach are the following:

• we show how our algorithm duckweed to compute the current flow
betweenness centrality can be applied to this application;

• due to the size of the dataset, it is mandatory to use a scalable algo-
rithm able to provide a solution even for large graphs. To this end we
exploit duckweed that by means of the approximation introduced in
its definition, is providing a valuable solution. Also, it confirms that
is able to work on large graphs as demonstrated by the experimental
results of Chapter 3;

• our results reveal that our algorithm duckweed is able to identify
the topic of each day and to correctly recognize the importance of the
hashtags.

9.1 Related works

A Twitter hashtag is a string of characters preceded by the hash (#) charac-
ter. The first usage of an hashtag has been in August 2007 by Chris Messina,
who posted on Twitter the tweet “how do you feel about using # (pound)
for groups? As in #barcamp [msg]?” [145]. Nowadays hashtags have a per-
vasive usage and are used as topical markers, an indication of the context of
the tweet or as the core idea expressed in the tweet, therefore hashtags are
adopted by other users that contribute similar content or express a related
idea. Such usages motivated a rich research about hashtags’ analysis.

Efron et al. [62] focuses on suggesting a list of hashtags that are relevant
to the information need of a query. They use the ranked list of suggested

146 Chapter 9. Hashtag centrality

hashtags for the query expansion task. Similarly, Godin et al. [74] develop
a language classifier in order to recommend hashtags for a given tweet.

Instead, Tsur et al. [173] focus on predicting the spread of ideas in on-
line communities. They use an hybrid approach analysing both the social
graph of Twitter, the graph representing users follower relationships, and the
tweets’ content. An interesting aspect is that they consider Twitter hashtags
as ideas and they evaluate the spread of such kind of idea in a time frame.

Hashtagify [19] is an application more related to ours. It is a popular
application to monitor the importance of hashtags in time, showing many
charts with different characteristics. For instance, it provides the possibility
to analyse hashtag popularity with weekly and monthly variation. It shows
hashtags related to a given one and the trending hashtags. Such application
has been exploited to show that nowadays social media plays a vital role in
socialization [156]. Also, to analyse the trend of health-related posts [174]
to aid in timing interventions.

9.2 Data Description

The dataset is composed of a random sample of the tweets in Twitter which
have been downloaded thanks to the Garden Hose Streaming API provided
by Twitter. Tweets are collected in one file per day, each file is encoded
in JSON. Every day are collected the 1% of the tweets provided by the
streaming API in an unique file, the compressed file size is around 20G and
it contains approx 40M tweets. Such raw data is splitted in three different
dumps, namely:

• English Dump: contains only the tweets written in English, 6/7GB
(compressed) per day, 15M tweets per day;

• Italian Dump: contains only the tweets written in Italian, 250Mb (com-
pressed) per day, 600K tweets per day;

• Georef Dump: contains only the tweets containing geotags latitude and
longitude or the place, 600/700Mb (compressed) per day, 1M tweets
per day.

The data has been collected by HPC Lab at ISTI, CNR and it is available
at http://rojo.isti.cnr.it/.

9.3 Our Approach

In this Section we present our analytical process to identify central hashtags.
The idea is to construct a co-occurrence graph. In details, we build a graph
where each node is an hashtag and an edge exists between two nodes if the
corresponding hashtags co-occurre in a same tweet. In order to evaluate the
fluctuation in the popularity of the hashtags we use a time frame of one day
and we re-build the graph for each day. Central hashtags have important
characteristics:

• trending topics, in similar works [173] hashtags are defined as a way
to represent ideas. Due to this, central hashtags may reveal the most
important topics discussed in a specific day because they are the most
used words to spread the ideas;

9.3. Our Approach 147

The #PhD deadline is
approaching at #unipi.

The #university of #pisa is
one of the largest in #italy.

W #unipi.

Beach Life in
#castiglioncello.

The #PhD deadline is
approaching at #unipi.

The #university of #pisa is
one of the largest in #italy.

W #unipi.

#phd #unipi

#university #pisa #italy
#unipi

#university

#phd

#unipi #pisa

#italy #university

#phd

#unipi #pisa

#italy

A B C D E

Figure 9.1: How to construct a co-occurrence graph from
raw tweets

• key hashtags for a community, if we take all the tweets relative to a
community (e.g. relative to a specific hashtag) the most central hash-
tags are the ones attracting more discussion within the community;

• query expansion, central hashtags may be used to expand a given query
with additional contents. This technique is usually employed to expand
the search query in order to match additional contents. In this sce-
nario additional hashtags matching the text topic may be introduced
to improve the results;

• hashtag suggestion, given a tweet the central hashtags can be used to
enrich the tweet text to reach more people. In this scenario, some
hashtags, related to the text, may be suggested to the writer.

In the following of this section we describe how we construct the hashtag
graph and our approach to identify central hashtags.

9.3.1 Graph Construction

In order to perform a graph analysis, the first step of our approach is to
build the graph starting from raw data which is the Italian dump of daily
tweets collected as described in Section 9.2. For each day we construct a
different graph. This is motivated by the fact that we aim at identifying the
most important hashtags in a given day to show the fluctuation of hashtags’
popularity.

Take as reference Figure 9.1 where Column A presents a sample of 3
tweets. Initially, we preserve only the tweets having at least 2 hashtags
(Column B). For each tweet we maintain only its hashtags list (Column C).
Then, each hashtag becomes a node in a graph and we remove duplicates
(Column D). Finally, an edge is inserted between two hashtags that have
a co-occurrence in at least a same tweet (Column E). The weight of each
edge is equal to the number of tweets in which the two hastags co-occurre.
For instance, node #phd is connected to node #unipi because they initially
appear in the same tweet “The #PhD deadline is approaching at #unipi.”

9.3.2 Centrality Computation

In order to identify which are the most central hashtags in each day we
employ our algorithm to compute the current flow betweenness centrality
defined in Chapter 3. The main contribution of this chapter is to show
how a single algorithm is able to provide a valuable result for an interesting

148 Chapter 9. Hashtag centrality

Figure 9.2: Identification of cyclic events

application domain. Also, thanks to the approximation of duckweed, we
are able to provide results in a reasonable time.

9.4 Validation

In this section we present some case study and information that can be
extracted by our application. In particular, we consider how make use of the
outcome of our analysis and how use our tools in order to get information
about popular hashtags.

9.4.1 Identification of cyclic events

Hashtags, according to many experts and published works [145], can generate
immediate, live, and interactive reactions and responses to specific topics.
People use hashtags while watching their favourite TV program, listening to
a debate on the radio and in other similar situations. Due to this, we evalu-
ated if duckweed is able to identify such trends while they occur. To this
end, we selected three popular TV shows in Italy, namely “La Gabbia”, “Le
Iene” and “Piazza Pulita”. Each of these programs has a specific hashtag
advertised during the show, respectively #lagabbia, #leiene and #piazza-
pulita. We searched for these hashtags in the result provided by duckweed
and the results are presented in Figure 9.2. These hashtags have picks (i.e.
higher ranking) in those days when the TV programs have been displayed,
i.e. one specific day each week. Interestingly, it is evident how the peaks
are repeated every 7 days. All these TV programs, usually, exhibit their
hashtags in the top 100 hashtags used in their specific day. Finally, it seems
that between the two politics related programs considered (#lagabbia and
#piazzapulita), “Piazza Pulita” usually obtains an higher ranking resulting
in an higher volume of tweets relative to it. We repeated this validation also
for other TV programs and we encounter analogous results.

9.4.2 Identification of seasons

In this set of experiments we validate how duckweed is able to recognize
periods and seasons of the year. In the previous section we analysed some

9.4. Validation 149

Figure 9.3: Identification of periods

Figure 9.4: Identification of seasons

hashtags that have a popularity limited in time, they are popular only in
specific situations. Instead, many hashtags have a popularity with an higher
duration in time and may reveal important events that are happening around
us.

For instance, during the year, hashtag can be paired to holiday periods
such as Christmas (#natale), carnival (#carnevale) and August Bank Hol-
iday (#ferragosto). Figure 9.3 presents the ranking of these 3 hashtags in
a time spanning of two years. It is evident how #natale is highly discussed
also more than one month before the 25th of December. In particular, #na-
tale has a solid top 10 position for more than one month over the Christmas
day.

Instead, Figure 9.4 shows how the 4 hashtags representing the seasons
have impact in the tweets’ discussions. We consider 4 tweets regarding the
name of the seasons: summer (#estate), autumn (#autunno), winter (#in-
verno) and spring (#primavera). As expected, each of the hashtag has the
higher ranking in its corresponding season. What is interesting is that peo-
ple seems more likely to speak about summer with respect to winter. The
#estate hashtag, in summer, results to have, on average, an higher rank-
ing with respect to #inverno in winter. This may reflect that people enjoy
discussing about summer more than winter, because it is recognized as an

150 Chapter 9. Hashtag centrality

holiday period, for instance a typical tweet may be “Finally! Summer has
begun! #summer”.

9.5 Conclusion

In this chapter we presented how our algorithm duckweed for the cur-
rent flow betweenness centrality can be exploited to provide informations
about the most discussed topics on Twitter. To this end, we constructed a
co-occurrence graph of the hashtags and we ranked the node according to
duckweed. Results show that our approach is able to deliver useful in-
sight about many applications regarding hashtags, for instance, to find the
trending topics and analyse the flow of information in Twitter.

151

Chapter 10

Conclusion

How should we design applications able to extract valuable information from
large graphs? This thesis shows how to exploit the “Thinking Like A Vertex”
approach (TLAV) to design efficient algorithms supporting the implementa-
tion of applications dealing with graphs. TLAV is a popular approach and
algorithms defined according to such methodology can be implemented on
the majority of the currently available distributed environments. In order
to improve the performances and the usability of the algorithms realized
according to this approach, we identified a set of useful guidelines focused
on approximation, simplification and versatility. Such guidelines have been
exploited for the definition, conception and development of four algorithms,
presented in this thesis for solving problems focused, respectively, on the
detection of connected components, on the computation of the betweenness
centrality, on clustering and on density based clustering. These algorithms
have been leveraged to realize solutions targeting three different applications.

Our algorithm for the detection of connected components outperforms
state-of-art competitors. Such achievement has been obtained by means of
a smart simplification of the graph. It has been also exploited to realize
our clustering algorithms. A remarkable feature of these algorithms is their
versatility to accommodate any kind of data. This permits to achieve good
performances regardless the different datasets that can be provided in input.
Furthermore, we extended the original algorithm to support density based
clustering. Along this, we also introduced a simplification technique aimed
at improving the overall performances. Then, we defined a novel distributed
algorithm for the computation of the current flow betweenness centrality
which targets highly decentralized environments where, to the best of our
knowledge, a distributed solution was missing in the reference literature.

These algorithms have been successfully exploited for developing three
different applications: spam campaign detection, population estimation and
hashtag centrality. All these applications show useful and valuable results.
Even more, the study on the population estimation helped in improving the
clustering algorithm.

Finally, it is worth to point out that one of the major contribution of
the TLAV approach is to push programmers and data scientists to follow
a distributed programming perspective when developing their applications.
Recently, other programming models have been proposed, such as the ones
modifying the granularity of the computation. However, the key features
identified in this thesis remain as useful guidelines to leverage also in slightly
different contexts.

152 Chapter 10. Conclusion

10.1 Discussion

We conclude presenting a final discussion concerning the workflow of the
thesis starting from the considerations described in the introduction. We
can take as reference the very same Figure 1.1. The goal of this thesis
has been showing how simple algorithms can be composed to build complex
ones and how such algorithms are useful in nowadays applications to solve
particular problems.

In the thesis we started presenting such simple algorithms, namely crack-
er and duckweed. Such algorithms provide solutions to extract two im-
portant characteristics of graphs, the connected components and the current
flow betweenness centrality. In many situations, these informations already
provide valuable insights about the graphs analyzed. However, these al-
gorithms may be used to compose and generate additional algorithms. In
particular, cracker has been used in conjunction with another algorithm
for the computation of a k-NN graph to perform clustering. The initial mo-
tivation on the study of this clustering algorithm has been also to show how
to compose already available algorithms. The idea is to create a pipeline of
algorithms where the output of the first one is the input of the second one.
Due to this, we initially compute the k-NN graph with a specified algorithm
where each item is connected to the most similar items and then, we search
for the connected components, whereas each component becomes a cluster.
Such work has been also refined to perform density based clustering in NG-
DBSCAN. Finally, the clustering algorithms have been used successfully to
solve two real applications for detecting spam campaigns and to estimate
the population moving in a region, finding how much residents, commuters
and visitors travel in that area.

Instead, duckweed has been another proof of how a simple algorithm
may be used in real world applications. To this end, our algorithm, has been
successfully exploited to detect the most important hashtags. Such hashtags
reveal, for instance, the topics discussed on a given day in Twitter and may
become the first starting point to perform automatic event detection.

10.2 Future Works

Starting from the results achieved in this thesis, there exist many researches
that can be conducted. In the remaining of this section, we identify a few
potential research subjects and present some still open questions.

10.2.1 Simplifications Techniques

Simplification has an high impact on the performances of our algorithms. In
fact, we think that introducing simplification techniques on the algorithms
greatly improves their suitability for large graphs. For instance, the data
driven simplification technique introduced in our connected components al-
gorithm can be re-adapted to different solutions. It may provide valuable
results also for different kind of graph analysis, such as the diameter esti-
mation [43] or single source shortest path computation. Also, additional
simplification techniques can be defined for different problems. An idea we
are currently studying is to borrow the simplifications commonly used in

10.2. Future Works 153

electric circuits to find a way to simplify the graph partitions assigned to
each distributed node.

10.2.2 From TLAV to Thinking Like a Sub-Graph

As we pointed out in our thesis, the majority of the most popular frame-
works currently support the TLAV programming model. However, recently,
frameworks adopting a different granularity of computation have been de-
fined, for instance, the so called subgraph centric computation. A graph,
can be partitioned into sub-graphs that can be stored into the memories of
the distributed nodes. An interesting consequence is the reduction of edges,
i.e. the connections between sub-graphs would be reduced with respect to
the edges of the original graph [131]. Frameworks supporting such kind of
computation are Giraph++ [170], Blogel [188] and Bladyg [10]. Changing
the granularity of the computation requires the definition of novel algorithms
able to exploit the optimizations introduced by the decomposition. Other
approaches based on increasing the granularity of the computation recently
proposed, are based on paths and sets.

10.2.3 Algorithms on dynamic graphs

In this thesis we defined algorithms working on static graphs that are pro-
cessed using batch jobs. However, in some scenarios, graphs can be dynamic
and change over time. More precisely, a graph may evolve in many ways, for
instance, adding or removing nodes or changing the topology at fixed times
and many more. In all these scenarios, the algorithms adopted should be
aware of this and ready for the changes. Due to this, an interesting area of
research is to define and implement algorithms that dynamically adapt to
the underlying graphs and perform graph analysis in a continuous manner.

10.2.4 Improve Frameworks: Parallelism and Compression

Another line of research could regard the improvements of the frameworks
devoted to the distributed computation. In this area exists a plethora of
different frameworks and possible optimizations. However to wipe the slate
clean and build a completely novel framework requires a huge effort. We
think that exist two major branches of research from where it is possible to
borrow important functionalities.

The first one is parallelism. All the distributed frameworks employ some
sort of parallelism in each of the machine used. For instance, in MapReduce,
after the workload is split on the machines, then all the cores of each machine
execute a predefined task. Nevertheless, if we look at the single machine par-
allel framework literature, a lot of such frameworks are devoted to optimize
the work on the single machine. One idea could be to integrate such kind of
highly parallel single machine frameworks, for instance the ones exploiting
GPUs and FPGAs to be exploited in the distributed frameworks [166].

The second one is compression. One of the largest cost when distributing
the computation on multiple machines is the communication cost. Also in
this case, usually, the distributed frameworks adopt some kind of compres-
sion to reduce the communication cost. However, some specialized compres-
sion strategy may be employed adapted for the TLAV pattern of communi-
cation.

155

Bibliography

[1] Apache Giraph. http://giraph.apache.org/.

[2] Apache spark. https://spark.apache.org.

[3] Apache spark machine learning library.
https://spark.apache.org/mllib/.

[4] Clustering the News with Spark and MLLib.
http://bigdatasciencebootcamp.com/posts/Part 3/clustering news.html.

[5] Word2vector package. https://code.google.com/p/word2vec/.

[6] STRING database. http://string-db.org/, Feb. 2015.

[7] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz,
and R. Szeliski. Building rome in a day. Communications of the ACM,
54(10):105–112, 2011.

[8] C. C. Aggarwal and C. Zhai. Mining text data. Springer Science &
Business Media, 2012.

[9] R. Ahas et al. Using mobile positioning data to model locations mean-
ingful to users of mobile phones. Journal of Urban Technology, 17(1):3–
27, 2010.

[10] S. Aridhi, A. Montresor, and Y. Velegrakis. Bladyg: A novel block-
centric framework for the analysis of large dynamic graphs. In Proceed-
ings of the ACM Workshop on High Performance Graph Processing,
pages 39–42. ACM, 2016.

[11] A. Asuncion and D. Newman. Uci machine learning repository, 2007.

[12] K. Avrachenkov, N. Litvak, V. Medyanikov, and M. Sokol. Alpha
current flow betweenness centrality. In Algorithms and Models for the
Web Graph, pages 106–117. Springer, 2013.

[13] R. Baraglia, P. Dazzi, B. Guidi, and L. Ricci. Godel: Delaunay overlays
in p2p networks via gossip. In IEEE 12th International Conference on
Peer-to-Peer Computing (P2P), pages 1–12. IEEE, 2012.

[14] R. Baraglia, P. Dazzi, M. Mordacchini, and L. Ricci. A peer-to-peer
recommender system for self-emerging user communities based on gos-
sip overlays. Journal of Computer and System Sciences, 79(2):291–308,
2013.

[15] R. Baraglia, P. Dazzi, M. Mordacchini, L. Ricci, and L. Alessi. Group:
A gossip based building community protocol. In Smart Spaces and
Next Generation Wired/Wireless Networking, pages 496–507. Springer
Berlin Heidelberg, 2011.

156 BIBLIOGRAPHY

[16] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-
streaming algorithms for local triangle counting in massive graphs. In
Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 16–24. ACM, 2008.

[17] H. Becker et al. Beyond trending topics: Real-world event identifica-
tion on twitter. In Proc. of ICWSM, 2011.

[18] F. Beil et al. Frequent term-based text clustering. In Proc. of ACM
SIGKDD, 2002.

[19] S. Bennett. Visually explore twitter hashtags and their relationships
with hashtagify, 2012.

[20] M. Bertolucci, E. Carlini, P. Dazzi, A. Lulli, and L. Ricci. Static and
Dynamic Big Data Partitioning on Apache Spark. In Parallel
Computing: On the Road to Exascale, Proceedings of the International
Conference on Parallel Computing, ParCo 2015, 1-4 September 2015,
Edinburgh, Scotland, UK, pages 489–498, 2015.

[21] M. Bertolucci, A. Lulli, and L. Ricci. Current flow betweenness
centrality with Apache Spark. In International Conference on
Algorithms and Architectures for Parallel Processing. Springer, 2016.

[22] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava. Class-
based graph anonymization for social network data. Proceedings of the
VLDB Endowment, 2(1):766–777, 2009.

[23] R. Bosagh-Zadeh and A. Goel. Dimension independent similarity com-
putation. In Journal of Machine Learning Research, 2012.

[24] E. Bozzo and M. Franceschet. Approximations of the generalized in-
verse of the graph laplacian matrix. Internet Mathematics, 8(4):456–
481, 2012.

[25] E. Bozzo and M. Franceschet. Resistance distance, closeness, and be-
tweenness. Social Networks, 35(3):460–469, 2013.

[26] U. Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25:163–177, 2001.

[27] U. Brandes and D. Fleischer. Centrality measures based on current
flow. In Lecture Notes in Computer Science, volume 3404, pages 533–
544, 2005.

[28] U. Brandes and C. Pich. Centrality estimation in large networks. In-
ternational Journal of Bifurcation and Chaos, 17(07):2303–2318, 2007.

[29] S. Brin and L. Page. Reprint of: The anatomy of a large-scale hy-
pertextual web search engine. Computer networks, 56(18):3825–3833,
2012.

[30] M. J. Brzozowski, T. Hogg, and G. Szabo. Friends and foes: ideological
social networking. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 817–820. ACM, 2008.

BIBLIOGRAPHY 157

[31] A. Buluç and J. R. Gilbert. The combinatorial blas: Design, implemen-
tation, and applications. International Journal of High Performance
Computing Applications, page 1094342011403516, 2011.

[32] F. Calabrese et al. Real-time urban monitoring using cell phones: A
case study in rome. Intelligent Transportation Systems, IEEE Trans-
actions on, 12(1):141–151, 2011.

[33] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flinkTM: Stream and batch processing in a single
engine. IEEE Data Engineering Bulletin, 2015.

[34] E. Carlini, M. Coppola, P. Dazzi, D. Laforenza, S. Martinelli, and
L. Ricci. Service and resource discovery supports over p2p overlays.
In Ultra Modern Telecommunications & Workshops, 2009. ICUMT’09.
International Conference on, pages 1–8. IEEE, 2009.

[35] E. Carlini, P. Dazzi, A. Esposito, A. Lulli, and L. Ricci. Balanced
Graph Partitioning with Apache Spark. In Euro-Par 2014: Par-
allel Processing Workshops - Euro-Par 2014 International Workshops,
Porto, Portugal, August 25-26, 2014, Revised Selected Papers, Part I,
pages 129–140, 2014.

[36] E. Carlini, P. Dazzi, A. Lulli, and L. Ricci. Layered Thinking in
Vertex Centric Computations. ERCIM News, 2015(102), 2015.

[37] E. Carlini, P. Dazzi, A. Lulli, and L. Ricci. Distributed graph pro-
cessing: an approach based on overlay composition. In Pro-
ceedings of the 31st Annual ACM Symposium on Applied Computing,
Pisa, Italy, April 4-8, 2016, pages 1912–1917, 2016.

[38] E. Carlini, P. Dazzi, M. Mordacchini, A. Lulli, and L. Ricci. Com-
munity Discovery for Interest Management in DVEs: A Case
Study. In Euro-Par 2015: Parallel Processing Workshops - Euro-Par
2015 International Workshops, Vienna, Austria, August 24-25, 2015,
Revised Selected Papers, pages 273–285, 2015.

[39] E. Carlini, A. Lulli, and L. Ricci. Dragon: Multidimensional
range queries on distributed aggregation trees. Future Gen-
eration Comp. Syst., 55:101–115, 2016.

[40] E. Carlini, A. Lulli, and L. Ricci. TRACE: generating traces from
mobility models for Distributed Virtual Environments. In
Euro-Par 2016: Parallel Processing Workshops - Euro-Par 2016 In-
ternational Workshops, Grenoble, France, August 22-25, 2016, Revised
Selected Papers, Part I, pages 129–140, 2016.

[41] E. Carlini, A. Lulli, and L. Ricci. TRACE: Generation and Anal-
ysis of Mobility Traces for Distributed Virtual Environments.
Concurrency and Computation: Practice and Experience, 2016. sub-
mitted.

[42] E. Carlini, L. Ricci, and M. Coppola. Reducing server load in mmog via
p2p gossip. In Proceedings of the 11th Annual Workshop on Network
and Systems Support for Games, page 11. IEEE Press, 2012.

158 BIBLIOGRAPHY

[43] M. Ceccarello, A. Pietracaprina, G. Pucci, and E. Upfal. Space and
time efficient parallel graph decomposition, clustering, and diameter
approximation. In Proceedings of the 27th ACM symposium on Paral-
lelism in Algorithms and Architectures, pages 182–191. ACM, 2015.

[44] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model
for graph mining. In SDM, volume 4, pages 442–446. SIAM, 2004.

[45] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang,
L. Zhou, F. Zhao, and E. Chen. Kineograph: taking the pulse of a
fast-changing and connected world. In Proceedings of the 7th ACM
european conference on Computer Systems, pages 85–98. ACM, 2012.

[46] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrish-
nan. One trillion edges: graph processing at facebook-scale. Proceed-
ings of the VLDB Endowment, 8(12):1804–1815, 2015.

[47] J. Cohen. Graph twiddling in a mapreduce world. Computing in
Science & Engineering, 11(4):29–41, 2009.

[48] B.-R. Dai et al. Efficient map/reduce-based dbscan algorithm with
optimized data partition. In Cloud Computing, IEEE 5th International
Conference on, pages 59–66. IEEE, 2012.

[49] P. Dazzi, P. Felber, L. Leonini, M. Mordacchini, R. Perego, M. Raj-
man, and É. Rivière. Peer-to-peer clustering of web-browsing users.
Proc. LSDS-IR, pages 71–78, 2009.

[50] E. De Jonge, M. van Pelt, and M. Roos. Time patterns, geospatial
clustering and mobility statistics based on mobile phone network data.
In Paper for the Federal Committee on Statistical Methodology research
conference, Washington, USA, 2012.

[51] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1), 2008.

[52] T. Debatty et al. Building k-nn graphs from large text data. In Proc.
of IEEE BigData, 2014.

[53] T. Debatty et al. Scalable graph building from text data. In Proc.
ACM BigMine, 2014.

[54] E. e. a. Deelman. Pegasus: A framework for mapping complex sci-
entific workflows onto distributed systems. Scientific Programming,
13(3):219–237, 2005.

[55] U. Demšar, O. Špatenková, and K. Virrantaus. Identifying critical
locations in a spatial network with graph theory. Transactions in GIS,
12(1):61–82, 2008.

[56] B. Desgraupes. Clustering indices. University of Paris Ouest, 2013.

[57] P. Deville et al. Dynamic population mapping using mobile phone
data. Proceedings of the National Academy of Sciences, 111(45):15888–
15893, 2014.

BIBLIOGRAPHY 159

[58] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[59] D. Dominguez-Sal, N. Martinez-Bazan, V. Muntes-Mulero, P. Baleta,
and J. L. Larriba-Pey. A discussion on the design of graph database
benchmarks. In Performance Evaluation, Measurement and Charac-
terization of Complex Systems, pages 25–40. Springer, 2011.

[60] W. Dong et al. Efficient k-nearest neighbor graph construction for
generic similarity measures. In Proc. of ACM WWW, 2011.

[61] P. G. Doyle and J. L. Snell. Random walks and electric networks, 2006.

[62] M. Efron. Hashtag retrieval in a microblogging environment. In Pro-
ceedings of the 33rd international ACM SIGIR conference on Research
and development in information retrieval, pages 787–788. ACM, 2010.

[63] M. Ester et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Kdd, pages 226–231, 1996.

[64] V. Etter et al. Where to go from here? mobility prediction from instan-
taneous information. Pervasive and Mobile Computing, 9(6):784–797,
2013.

[65] T. Falkowski et al. Dengraph: A density-based community detection
algorithm. In Web Intelligence, IEEE/WIC/ACM International Con-
ference on, pages 112–115. IEEE, 2007.

[66] X. Feng, L. Chang, X. Lin, L. Qin, and W. Zhang. Computing con-
nected components with linear communication cost in pregel-like sys-
tems. In 32nd IEEE International Conference on Data Engineering,
ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 85–96, 2016.

[67] M. Filippone. Dealing with non-metric dissimilarities in fuzzy central
clustering algorithms. International Journal of Approximate Reason-
ing, 50(2):363–384, 2009.

[68] S. Fortunato. Community detection in graphs. Physics Reports,
486(3):75–174, 2010.

[69] B. Fortz and M. Thorup. Internet traffic engineering by optimizing ospf
weights. In INFOCOM 2000. Nineteenth annual joint conference of
the IEEE computer and communications societies. Proceedings. IEEE,
volume 2, pages 519–528. IEEE, 2000.

[70] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, pages 35–41, 1977.

[71] B. Furletti et al. Use of mobile phone data to estimate mobility flows.
measuring urban population and inter-city mobility using big data in
an integrated approach. In Proceedings of the 47th Meeting of the
Italian Statistical Society, 2014.

[72] L. Gabrielli et al. City users’ classification with mobile phone data. In
Big Data, 2015 IEEE International Conference on, pages 1007–1012.
IEEE, 2015.

160 BIBLIOGRAPHY

[73] J. Gan and Y. Tao. Dbscan revisited: mis-claim, un-fixability, and ap-
proximation. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 519–530. ACM, 2015.

[74] F. Godin, V. Slavkovikj, W. De Neve, B. Schrauwen, and R. Van de
Walle. Using topic models for twitter hashtag recommendation. In
Proceedings of the 22nd International Conference on World Wide Web,
pages 593–596. ACM, 2013.

[75] J. E. Gonzalez et al. Powergraph: Distributed graph-parallel compu-
tation on natural graphs. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12), pages 17–30, 2012.

[76] J. E. Gonzalez et al. Graphx: Graph processing in a distributed
dataflow framework. In (OSDI 14), pages 599–613, 2014.

[77] J. E. Gonzalez et al. Graphx: Graph processing in a distributed
dataflow framework. In 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14), pages 599–613, 2014.

[78] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Pow-
ergraph: Distributed graph-parallel computation on natural graphs.
In Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 17–30, 2012.

[79] M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
Pervasive Computing, IEEE, 7(4):12–18, 2008.

[80] Y. He et al. Mr-dbscan: An efficient parallel density-based clustering
algorithm using mapreduce. In Parallel and Distributed Systems, 2011
IEEE International Conference on, pages 473–480. IEEE, 2011.

[81] B. Hendrickson and R. W. Leland. A multi-level algorithm for parti-
tioning graphs. SC, 95:28, 1995.

[82] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American statistical association, 58(301):13–
30, 1963.

[83] W. Hoeffding. Probabilty inequalities for sums of bounded random
variales. Journal of american Statistical Association, 58:13–30, 1963.

[84] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-marl: a dsl
for easy and efficient graph analysis. In ACM SIGARCH Computer
Architecture News, volume 40, pages 349–362. ACM, 2012.

[85] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient algorithms for
graph manipulation. Commun. ACM, 16(6), June 1973.

[86] P. Hudak. Conception, evolution, and application of functional pro-
gramming languages. ACM Computing Surveys (CSUR), 21(3):359–
411, 1989.

[87] M. A. Jaro. Probabilistic linkage of large public health data files.
Statistics in medicine, 14(5-7), 1995.

BIBLIOGRAPHY 161

[88] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation
in large dynamic networks. ACM Transactions on Computer Systems
(TOCS), 23(3):219–252, 2005.

[89] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. Van Steen. Gossip-based peer sampling. ACM Transactions on
Computer Systems (TOCS), 25(3):8, 2007.

[90] J. Ji et al. Super-bit locality-sensitive hashing. In Proc. of NIPS, 2012.

[91] K. a. Jiang. Generalizing k-betweenness centrality using short paths
and a parallel multithreaded implementation. In ICPP’09, pages 542–
549. IEEE, 2009.

[92] D. B. Johnson and P. Metaxas. Connected components in o(log(3/2
n)) parallel time for the crew pram. journal of computer and system
sciences, 54(2):227–242, 1997.

[93] H. Kardes, S. Agrawal, X. Wang, and A. Sun. Ccf: Fast and scalable
connected component computation in mapreduce. In Computing, Net-
working and Communications (ICNC), 2014 International Conference
on, pages 994–998. IEEE, 2014.

[94] D. R. Karger, N. Nisan, and M. Parnas. Fast connected components al-
gorithms for the erew pram. In Proc. of the 4th Symposium on Parallel
algorithms and architectures, pages 373–381. ACM, 1992.

[95] G. Karypis and E.-H. S. Han. Fast supervised dimensionality reduction
algorithm with applications to document categorization & retrieval. In
Proc. of ACM CIKM, 2000.

[96] A. Kavalionak, E. Carlini, A. Lulli, G. Amato, C. Gennaro, C. Megh-
ini, and L. Ricci. A prediction-based distributed tracking pro-
tocol for video surveillance. In Networking, Sensing and Control
(ICNSC), 2017 IEEE International Conference on. IEEE, 2017. sub-
mitted.

[97] A. Kermarrec, E. L. Merrer, B. Sericola, and G. Trédan. Second or-
der centrality: Distributed assessment of nodes criticity in complex
networks. Computer Communications, 34(5):619–628, 2011.

[98] Y. Kim, K. Shim, M.-S. Kim, and J. S. Lee. Dbcure-mr: an efficient
density-based clustering algorithm for large data using mapreduce. In-
formation Systems, 42:15–35, 2014.

[99] R. Kiveris, S. Lattanzi, V. Mirrokni, V. Rastogi, and S. Vassilvitskii.
Connected components in mapreduce and beyond. In Proc. of the
ACM Symposium on Cloud Computing, pages 1–13. ACM, 2014.

[100] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of
online social networks. In Link mining: models, algorithms, and ap-
plications, pages 337–357. Springer, 2010.

[101] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social
network or a news media? In WWW ’10: Proc. of the 19th intl.
conference on World wide web, pages 591–600, New York, 2010. ACM.

162 BIBLIOGRAPHY

[102] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: large-scale graph
computation on just a pc. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12), pages 31–46, 2012.

[103] K. A. Lehmann and M. Kaufmann. Decentralized algorithms for
evaluating centrality in complex networks. Technical Report WSI-
2003-10, Department of Computer Science, Michigan State University,
Wilhelm-Schickard-Institut, October 2003.

[104] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral
marketing. ACM Transactions on the Web (TWEB), 1(1):5, 2007.

[105] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[106] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Commu-
nity structure in large networks: Natural cluster sizes and the absence
of large well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[107] J. Leskovec and R. Sosič. Snap.py: SNAP for Python, a gen-
eral purpose network analysis and graph mining tool in Python.
http://snap.stanford.edu/snappy, June 2014.

[108] H.-G. Li, G.-Q. Wu, X.-G. Hu, J. Zhang, L. Li, and X. Wu. K-means
clustering with bagging and mapreduce. In System Sciences (HICSS),
2011 44th Hawaii International Conference on, pages 1–8. IEEE, 2011.

[109] F. Lin and W. W. Cohen. A very fast method for clustering big text
datasets. In ECAI, pages 303–308, 2010.

[110] Y. Liu et al. Understanding of internal clustering validation measures.
In Proc. of IEEE ICDM, 2010.

[111] S. P. Lloyd. Least squares quantization in pcm. Information Theory,
IEEE Transactions on, 28(2), 1982.

[112] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: a framework for machine learning
and data mining in the cloud. Proceedings of the VLDB Endowment,
5(8):716–727, 2012.

[113] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Graphlab: A new framework for parallel machine learning.
arXiv preprint arXiv:1006.4990, 2010.

[114] A. Lulli, E. Carlini, P. Dazzi, and L. Ricci. TELOS: An Approach
for Distributed Graph Processing Based on Overlay Composi-
tion. Scalable Computing: Practice and Experience, 2016. submitted.

[115] A. Lulli, P. Dazzi, L. Ricci, and E. Carlini. A Multi-layer Frame-
work for Graph Processing via Overlay Composition. In Euro-
Par 2015: Parallel Processing Workshops - Euro-Par 2015 Interna-
tional Workshops, Vienna, Austria, August 24-25, 2015, Revised Se-
lected Papers, pages 515–527, 2015.

BIBLIOGRAPHY 163

[116] A. Lulli, T. Debatty, M. Dell’Amico, P. Michiardi, and L. Ricci. Scal-
able k-nn based text clustering. In Big Data (Big Data), 2015 IEEE
International Conference on, pages 958–963. IEEE, 2015.

[117] A. Lulli, T. Debatty, M. Dell’Amico, P. Michiardi, and L. Ricci. Scal-
able k-NN based text clustering. In 2015 IEEE International
Conference on Big Data, Big Data 2015, Santa Clara, CA, USA, Oc-
tober 29 - November 1, 2015, pages 958–963, 2015.

[118] A. Lulli, M. Dell’Amico, P. Michiardi, and L. Ricci. NG-DBSCAN: a
Scalable, Approximate Density-Based Clustering Algorithm
for Arbitrary Similarity Metrics. Proceedings of the VLDB En-
dowment, 10(3), 2016.

[119] A. Lulli, L. Gabrielli, P. Dazzi, M. Dell’Amico, P. Michiardi, M. Nanni,
and L. Ricci. Improving Population Estimation From Mobile
Calls: a Clustering Approach. In 2016 IEEE Symposium on Com-
puters and Communication (ISCC), pages 1097–1102. IEEE, 2016.

[120] A. Lulli, L. Gabrielli, P. Dazzi, M. Dell’Amico, P. Michiardi, M. Nanni,
and L. Ricci. Scalable and flexible clustering solutions for mo-
bile phone based population indicators. International Journal of
Data Science and Analytics, 2016. submitted.

[121] A. Lulli, L. Ricci, E. Carlini, and P. Dazzi. Distributed Current
Flow Betweenness Centrality. In 2015 IEEE 9th International
Conference on Self-Adaptive and Self-Organizing Systems, Cambridge,
MA, USA, September 21-25, 2015, pages 71–80, 2015.

[122] A. Lulli, L. Ricci, E. Carlini, P. Dazzi, and C. Lucchese. Cracker:
Crumbling large graphs into connected components. In 2015
IEEE Symposium on Computers and Communication, ISCC 2015,
Larnaca, Cyprus, July 6-9, 2015, pages 574–581, 2015.

[123] A. Lulli, L. Ricci, E. Carlini, P. Dazzi, and C. Lucchese. Fast Con-
nected Components Computation in Large Graphs by Vertex
Pruning. IEEE Transactions on Parallel and Distributed systems,
22(6):931–945, 2016.

[124] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 135–146. ACM, 2010.

[125] G. Malewicz et al. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data, pages 135–146. ACM, 2010.

[126] L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and A. Ganesh. Peer
counting and sampling in overlay networks: random walk methods. In
Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing, pages 123–132. ACM, 2006.

[127] Y. Matsuo and M. Ishizuka. Keyword extraction from a single docu-
ment using word co-occurrence statistical information. International
Journal on Artificial Intelligence Tools, 13(1), 2004.

164 BIBLIOGRAPHY

[128] J. J. McAuley and J. Leskovec. From amateurs to connoisseurs: mod-
eling the evolution of user expertise through online reviews. In Pro-
ceedings of the 22nd international conference on World Wide Web,
pages 897–908. ACM, 2013.

[129] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part i. Communications of the ACM,
3(4):184–195, 1960.

[130] R. R. McCune et al. Thinking like a vertex: a survey of vertex-centric
frameworks for large-scale distributed graph processing. ACM Com-
puting Surveys (CSUR), 48(2):25, 2015.

[131] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR), 48(2):25, 2015.

[132] F. McSherry et al. Scalability! but at what cost? In 15th Workshop
on Hot Topics in Operating Systems, 2015.

[133] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. Graph structure
in the web—revisited: a trick of the heavy tail. In Proceedings of
the 23rd conference on World wide web, pages 427–432. International
World Wide Web Conferences Steering Committee, 2014.

[134] T. Mikolov et al. Distributed representations of words and phrases and
their compositionality. In Proc. of NIPS, 2013.

[135] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee. Measurement and Analysis of Online Social Networks. In
Proceedings of the 5th ACM/Usenix Internet Measurement Conference
(IMC’07), San Diego, CA, October 2007.

[136] A. Montresor, F. De Pellegrini, and D. Miorandi. Distributed k-core
decomposition. IEEE Transactions on parallel and distributed systems,
24(2):288–300, 2013.

[137] A. Montresor and M. Jelasity. Peersim: A scalable p2p simulator.
In Peer-to-Peer Computing, 2009, Ninth International Conference on,
pages 99–100. IEEE, 2009.

[138] M. Mordacchini, P. Dazzi, G. Tolomei, R. Baraglia, F. Silvestri, and
S. Orlando. Challenges in designing an interest-based distributed ag-
gregation of users in p2p systems. In Ultra Modern Telecommunica-
tions & Workshops, 2009. ICUMT’09. International Conference on,
pages 1–8. IEEE, 2009.

[139] M. Newman. A measure of betweeness centrality based on random
walks. Social Networks, 27, 2005.

[140] M. E. Newman. A measure of betweenness centrality based on random
walks. Social networks, 27(1):39–54, 2005.

[141] M. E. Newman. Finding community structure in networks using the
eigenvectors of matrices. Physical review E, 74(3), 2006.

BIBLIOGRAPHY 165

[142] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: bringing order to the web. 1999.

[143] M. M. A. Patwary et al. Pardicle: parallel approximate density-based
clustering. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages
560–571. IEEE Press, 2014.

[144] F. Pedregosa et al. Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12(Oct):2825–2830, 2011.

[145] N. Pervin, T. Q. Phan, A. Datta, H. Takeda, and F. Toriumi. Hashtag
popularity on twitter: Analyzing co-occurrence of multiple hashtags.
In International Conference on Social Computing and Social Media,
pages 169–182. Springer, 2015.

[146] R. Power and J. Li. Piccolo: Building fast, distributed programs with
partitioned tables. In OSDI, volume 10, pages 1–14, 2010.

[147] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin. Scalable
big graph processing in mapreduce. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pages 827–
838. ACM, 2014.

[148] F. Rahimian, A. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi.
Ja-be-ja: A distributed algorithm for balanced graph partitioning. In
Self-Adaptive and Self-Organizing Systems (SASO), 2013 IEEE 7th
International Conference on, pages 51–60, Sept 2013.

[149] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and
S. Haridi. Ja-be-ja: A distributed algorithm for balanced graph parti-
tioning. In Self-Adaptive and Self-Organizing Systems (SASO), 2013
IEEE 7th International Conference on, pages 51–60. IEEE, 2013.

[150] A. Rajaraman et al. Mining of massive datasets, volume 77. Cambridge
University Press Cambridge, 2012.

[151] V. Rastogi, A. Machanavajjhala, L. Chitnis, and A. Das Sarma. Find-
ing connected components in map-reduce in logarithmic rounds. In
Data Engineering (ICDE), 2013 IEEE 29th International Conference
on, pages 50–61. IEEE, 2013.

[152] C. Ratti et al. Mobile landscapes: Graz in real time. Springer, 2007.

[153] M. Riondato and E. M. Kornaropoulos. Fast approximation of be-
tweenness centrality through sampling. In Proceedings of the 7th ACM
Conference on Web Search and Data Mining, WSDM, volume 14, 2013.

[154] L. M. Rocha, F. A. Cappabianco, and A. X. Falcão. Data clustering as
an optimum-path forest problem with applications in image analysis.
International Journal of Imaging Systems and Technology, 19(2):50–
68, 2009.

[155] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied
mathematics, 1987.

166 BIBLIOGRAPHY

[156] M. N. Sadat, S. Ahmed, and M. T. Mohiuddin. Mining the social web
to analyze the impact of social media on socialization. In Informat-
ics, Electronics & Vision (ICIEV), 2014 International Conference on,
pages 1–6. IEEE, 2014.

[157] S. Salihoglu and J. Widom. Gps: a graph processing system. In Pro-
ceedings of the 25th International Conference on Scientific and Statis-
tical Database Management, page 22. ACM, 2013.

[158] S. Salihoglu and J. Widom. Help: High-level primitives for large-
scale graph processing. In Proceedings of Workshop on GRAph Data
management Experiences and Systems, pages 1–6. ACM, 2014.

[159] S. Salihoglu and J. Widom. Optimizing graph algorithms on pregel-like
systems. Proc. of the VLDB Endowment, 7(7), 2014.

[160] D. A. Schult and P. Swart. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the 7th Python in Science
Conferences (SciPy 2008), volume 2008, pages 11–16, 2008.

[161] T. Seidl, B. Boden, and S. Fries. Cc-mr–finding connected components
in huge graphs with mapreduce. In Machine Learning and Knowledge
Discovery in Databases, pages 458–473. Springer, 2012.

[162] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng. Hama: An
efficient matrix computation with the mapreduce framework. In Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second
International Conference on, pages 721–726. IEEE, 2010.

[163] Y. Shen et al. Mr-triage: Scalable multi-criteria clustering for big data
security intelligence applications. In Proc. of IEEE BigData, 2014.

[164] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

[165] M. Steinbach et al. A comparison of document clustering techniques.
In Proc. of KDD workshop on text mining, 2000.

[166] I. Stoica. Trends and challenges in big data processing. Proceedings of
the VLDB Endowment, 9(13), 2016.

[167] S. Suri and S. Vassilvitskii. Counting triangles and the curse of the
last reducer. In Proceedings of the 20th international conference on
World wide web, pages 607–614. ACM, 2011.

[168] M. Terada, T. Nagata, and M. Kobayashi. Population estimation tech-
nology for mobile spatial statistics. NTT DOCOMO Techn. J, 14:10–
15, 2013.

[169] O. Thonnard and M. Dacier. A strategic analysis of spam botnets
operations. In Proc. of ACM CEAS, 2011.

[170] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson.
From think like a vertex to think like a graph. Proceedings of the
VLDB Endowment, 7(3):193–204, 2013.

BIBLIOGRAPHY 167

[171] Z. Toh and W. Wang. Dlirec: Aspect term extraction and term polarity
classification system. In Proc. of SemEval, 2014.

[172] T. N. Tran et al. Knn-kernel density-based clustering for high-
dimensional multivariate data. Computational Statistics & Data Anal-
ysis, 51(2):513–525, 2006.

[173] O. Tsur and A. Rappoport. What’s in a hashtag?: content based
prediction of the spread of ideas in microblogging communities. In
Proceedings of the fifth ACM international conference on Web search
and data mining, pages 643–652. ACM, 2012.

[174] G. M. Turner-McGrievy and M. W. Beets. Tweet for health: using an
online social network to examine temporal trends in weight loss-related
posts. Translational behavioral medicine, 5(2):160–166, 2015.

[175] L. G. Valiant. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8):103–111, 1990.

[176] L. G. Valiant. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8):103–111, 1990.

[177] F. Vandin, A. Papoutsaki, B. J. Raphael, and E. Upfal. Genome-
wide survival analysis of somatic mutations in cancer. In Research in
Computational Molecular Biology, pages 285–286. Springer, 2013.

[178] A. Verma, X. Llorà, D. E. Goldberg, and R. H. Campbell. Scaling ge-
netic algorithms using mapreduce. In 2009 Ninth International Con-
ference on Intelligent Systems Design and Applications, pages 13–18.
IEEE, 2009.

[179] S. Voulgaris, D. Gavidia, and M. Van Steen. Cyclon: Inexpensive
membership management for unstructured p2p overlays. Journal of
Network and Systems Management, 13(2):197–217, 2005.

[180] H. Wang, Y. Shen, L. Wang, K. Zhufeng, W. Wang, and C. Cheng.
Large-scale multimedia data mining using mapreduce framework. In
Cloud Computing Technology and Science (CloudCom), 2012 IEEE
4th International Conference on, pages 287–292. IEEE, 2012.

[181] K. Wehmuth and A. Ziviani. DACCER: distributed assessment of the
closeness centrality ranking in complex networks. Computer Networks,
57(13):2536–2548, 2013.

[182] B. Welton et al. Mr. scan: Extreme scale density-based clustering
using a tree-based network of gpgpu nodes. In Proceedings of the In-
ternational Conference on High Performance Computing, Networking,
Storage and Analysis, page 84. ACM, 2013.

[183] W. E. Winkler. The state of record linkage and current research prob-
lems. In Statistical Research Division, US Census Bureau, 1999.

[184] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen. Sync or async: Time
to fuse for distributed graph-parallel computation. ACM SIGPLAN
Notices, 50(8):194–204, 2015.

168 BIBLIOGRAPHY

[185] R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez, M. J. Franklin, and
I. Stoica. Graphx: Unifying data-parallel and graph-parallel analytics.
arXiv preprint arXiv:1402.2394, 2014.

[186] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. Graphx: A re-
silient distributed graph system on spark. In First International Work-
shop on Graph Data Management Experiences and Systems, page 2.
ACM, 2013.

[187] X. Xu, J. Jäger, and H.-P. Kriegel. A fast parallel clustering algorithm
for large spatial databases. In High Performance Data Mining, pages
263–290. Springer, 1999.

[188] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric frame-
work for distributed computation on real-world graphs. Proceedings of
the VLDB Endowment, 7(14):1981–1992, 2014.

[189] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective techniques for message
reduction and load balancing in distributed graph computation. In
Proceedings of the 24th International Conference on World Wide Web,
pages 1307–1317. ACM, 2015.

[190] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregel algo-
rithms for graph connectivity problems with performance guarantees.
Proceedings of the VLDB Endowment, 7(14):1821–1832, 2014.

[191] W.-S. Yang, J.-B. Dia, H.-C. Cheng, and H.-T. Lin. Mining social
networks for targeted advertising. In Proceedings of the 39th Annual
Hawaii International Conference on System Sciences (HICSS’06), vol-
ume 6, pages 137a–137a. IEEE, 2006.

[192] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proc.
of the 9th USENIX conference on Networked Systems Design and Im-
plementation, pages 2–2. USENIX Association, 2012.

[193] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: cluster computing with working sets. In Proc. of the 2nd
USENIX conf. on Hot topics in cloud computing, pages 10–10, 2010.

[194] Y.-m. Zhang et al. Fast knn graph construction with locality sensitive
hashing. In Proc. of ECML PKDD, 2013.

[195] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of se-
lected criterion functions for document clustering. Journal of Machine
Learning, 55(3), 2004.

[196] S. Zhou et al. A neighborhood-based clustering algorithm. In Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pages
361–371. 2005.

