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Words mean more than what is set down on paper. It takes the human voice to infuse

them with shades of deeper meaning.

Maya Angelou

But some emotions don’t make a lot of noise.

Ernest Hemingway
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In this thesis, voice signal is investigated with the aim of characterizing subjects’ emo-

tional state and patients’ mood state. Speech signal is a nonstationary signal that is

generated by a complex phenomenon that is influenced by the autonomic and somatic

nervous systems, through the modulation of breathing activity, vocal muscles tension,

salivation and mucus secretion. Generally, phonatory system can be modelled according

to the so-called source-filter theory of speech production. In this model the source is

represented by pulsatile airflow or turbulent airflow generated by the modulating action

of the vocal folds. In fact, by means of their closing and opening motion, vocal folds

are able to modulate the airflow coming from the lungs. Such a source, generated by

the vocal folds, is hence filtered according to the resonance characteristics of the supra-

glottal vocal tract. Its resonances depend on its size and shape and generally they are

continuously modified to allow the emission of specific sound targets.

Eckman stated that moods are emotional feelings lasting for an extended period of

time, while emotions are temporary feelings that tend to come and go quite quickly.

Speech can be usefully investigated to give a characterization of the emotional and/or

mood state of the speakers. Many studies have been conducted to characterize both

of them. Emotions can be studied by using several kinds of database where emotions

can be natural, acted or induced. Moods usually are investigated in relation with some

mental disorder. Especially, bipolar disorder is characterized by a great variability of

moods, since bipolar patients experience sudden and sometimes extreme mood swings.

Notwithstanding, in the literature the major efforts were made on the studies of patients

affected by depression.
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Generally, speech-related features can be thought as divided into three main categories.

The first category is aiming the investigation of the prosodic dynamics of the speech. For

this purpose, perceived rhythm, stress, intonation, pitch, speaking rate, and loudness are

some of the possible cues that can be studied. The second one is related to the source of

voice production and to the airflow streaming from the lungs through the glottis. Source

features are also investigated to obtain information about voice quality, i.e. the auditory

perception of the modification of vocal fold vibration and vocal tract shape. Finally, the

third category is related to the spectral analysis of the speech signals.

Voice signal is a nonstationary signal that can be considered stationary if it is analysed

over a sufficiently short period of time. When this kind of signal is investigated, it

is important to perform a proper detection and segmentation of the voiced segments.

The minimization of the rate of segment mislabelling is mandatory to achieve reliable

estimates of the investigated features. Moreover, since voice signal is characterized by an

high intra- and inter-day variability, it is crucial detecting carefully the features. For this

purpose, features should be able to highlight statistically significant differences related

to the emotion or mood state transitions, while they would show a robust behaviour

with regard to the natural daily variability. In this frame, when a signal is recorded, it

is fundamental to take into account also the environmental condition. Environmental

noise and/or reverberation can severely alter the acquired signal, resulting in misleading

results and conclusions.

In this thesis, speech signals were investigated to recognize/characterize emotional states

in actors and mood states in patients affected by bipolar disease. The investigation was

performed at different levels of description. Micro-prosodic and higher level phenomena

were studied. Small changes of the glottal cycle related to emotion and mood were

observed in the initial investigations. Then, global prosodic and vocal quality studies

were conducted later. More in details, four different methods related to three different

description levels have been investigated in this study. The first method is focussed on

vocal features (lower description level) and is concerning the investigation of glottal

features. These features are: mean and standard deviation of fundamental frequency

and jitter. Then, two methods were focussed on prosodic features (mid description

level). The first one took into account a prosodic analysis within every voiced segment,

while the second considered globally the whole prosodic behaviour of the speech. Finally,

the last method aimed at investigating the voice quality (higher description level) by

means of the Long-Term Average Spectrum of Voice.

Synthetic datasets, healthy control subjects, and a neutral database providing both

audio and electroglottographic (EGG) recordings (CMU Arctic Database) were used

to test the developed algorithms. Emotional studies were conducted on the German



Emotional database, formed by actors playing different emotions. At the end, the mood

investigation was performed on a database of audio samples acquired on bipolar patients.

The patients were enrolled within the PSYCHE European project and performed two

different vocal tasks: text reading and free image commenting.

Concerning the German Emotional database, the obtained results showed that the pro-

posed and developed methods were able to highlight statistically significant differences

among emotional speeches according to the arousal level of the acted emotion: the more

the subjects are aroused, the more their speech features exhibit differences with low

arousal states.

As regards the analysis on Bipolar Data, even if the limited number of enrolled pa-

tients does not allow to generalize, the obtained results showed that some statistically

significant differences can be observed at every different description level. Some feature

trends were observed, but some of them were not always coherent among the enrolled

patients or the investigated tasks. Some features trends might be patient or task spe-

cific. Notwithstanding, it is important to highlight that at higher description levels some

features showed coherent trends. In fact, differently from the features investigated at

lower description levels, that showed some patient-specific trends, at higher levels some

of the inter-state analysis highlighted coherent feature trends among the enrolled pa-

tients. These results could mean that a higher level of description might be needed to

overcome the problem of high vocal variability. For this purpose, some higher levels of

description could still be taken into account. For instance, the information gathered by

a semantic analysis of the speech, together with the approaches here investigated, could

lead to obtain an interesting and deeper knowledge of these phenomena.
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Chapter 1

Fundamental of voice studies

1.1 The Process of Speech Production and Perception in

Human Beings

The fundamental purpose, behind the production of a speech, is communicating, trans-

mitting messages. In Figure 1.1 a simple diagram representing the process of speech

production and the process of speech perception is reported. Speech-generation process

begins with the talker’s action of formulating, in his/her mind, a message that he/she

wants to transmit to the listener by means of his/her speech. A mechanical equivalent

of this process, consisting in the formulation of a message, would be the creation of a

linguistic message that is expression of the thought message in words [14]. Then, in the

next step the message is converted into an oral code. Such a step can be represented as

a conversion of the linguistic code of the thought message into a set of sounds (phoneme

sequence) that combine into words. In this step, the prosodic markers associated with

the sounds and providing information about duration of sounds, loudness of sounds, and

pitch accent, have to be produced together with the phonemes. At this point, since the

oral code is ready to be emitted, the talker has to activate a series of muscles to allow

vocal folds vibrating, when appropriate, and to shape the vocal tract to generate the

suitable sequence of speech sounds, producing as final output an acoustic signal. The

activated muscles have to simultaneously control articulatory motion, such as lips, jaw,

tongue and velum.

As soon as the speech signal is produced, emitted and propagated to the listener, the

speech-perception process starts. First of all, the acoustic signal is processed by the

listener along the basilar membrane in the inner ear, which is able to implement a

running spectrum analysis of the received signal. Then the spectral decomposition of

the signal at the output of the basilar membrane is transformed into activity signals on

1
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Figure 1.1: Mechanisms involved in the production and the perception of speech.

the auditory nerve. Such conversion is called neural transduction and corresponds to a

feature extraction process. At this point, a not well understood process takes place. In

fact, the neural activity along the auditory nerve is converted into a linguistic code at

the higher centres of processing within the brain, and finally the message is understood.

Figure 1.2: The Speech Chain: message, speech signal, and understanding [6].

A possible different way to view the speech-production/ speech-perception process is

the one reported in Figure 1.2 [6]. In this figure all the steps previously described are

reported along a line corresponding to the basic information rate of the signal at various

stages of the process. Regarding the speech production, it is possible to estimate the
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rate of information [6] assuming that the written message is formed of about 32 sym-

bols, i.e. about 32 letters. In fact, in English there are 26 letters, but considering simple

punctuation the number of symbols can be considered as equal to 32=25. Moreover, on

average the speaking rate is about, at a first approximation, 10 symbols per second.

Therefore, if independent letters are assumed as a simple approximation, the base infor-

mation rate of the written message can be considered to be equal to about 50 bps, i.e.

5 bits per symbol times 10 symbols per second. Then, at the following step, the text

representation is converted into phonemes and prosody markers, e.g. pitch and stress.

Here the information rate increases by a factor of 4 to about 200 bps.

In the first two stages of the speech chain, the representation of the information, that

the speaker wants to convey, are discrete. Hence an estimation of the rate of information

flow can be readily reached providing that some simple assumptions are made. In the

next steps, where speech is produced, the representation becomes continuous, since

articulatory motions produce the signal. The variation of the acoustic waveform appears

to be faster than the articulatory movement. Some estimation of the bandwidth and

required accuracy suggested that the data rate of the sampled articulatory control signal

is about 2000 bps [11]. Hence, the spoken message requires a much higher rate than the

rate that was estimated for the transmission of the written message. Such a high data

rate is needed to represent the continuously varying signal. It is important to notice that,

here, the term data rate refers to discrete representations, while the term information

rate refers to the message. Finally, the data rate of the sampled speech waveform can

be anywhere from 64000 to more than 700000 bps. In fact, for instance, in telephony it

is required a “telephone quality” whose bandwidth is 0−4 kHz, with a sampling rate

of 8 kHz, and a resolution of 8 bits on a log scale. Such a quality results in a bit rate

equal to 64000 bps. Such a representation of the speech signal is highly intelligible, but

most listeners will be able to detect some differences with the original speech. Some

other format of audio signals can be of higher quality: “CD quality” with a sampling

rate equal to 44100 Hz and a bit resolution of 16 bit has a data rate of 705600 bps.

Lately “high fidelity pure audio” systems are able to acquire and reproduce an audio

signal with a resolution of 24 bits and sampled at a frequency equal to 192 kHz.

Moving through the speech chain, from the message to speech waveform, it is possible to

observe a encoding of the message into an acoustic wave that can be propagated toward

the listener. At this point the acoustic wave will be robustly decoded by the hearing

mechanism of the listener. The above shows that the data rate can increase by a factor of

10000 passing from the linguistic code to the sampled speech waveform. Such increase in

data rate can be partially explained taking into account some important characteristics

of the talker, such as emotional state, speech mannerisms, accent, etc..
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On the other hand, regarding speech perception, the model is formed by a series of steps

from capturing speech at the ear to understanding the message encoded. Equally they

can also be represented in terms of data or information rates. Hence, the continuous data

rate at the basilar membrane is about 30000−50000 bps, while at the neural transduction

stage it is about 2000 bps. At the end, at the higher-processing-level within the brain,

the neural signals is converted into a discrete representation, which can be decoded into

a low-bit-rate message.

1.2 Voice production

In order to well understand the voice signal, it is very important to have clearly in

mind how breathing works, since the source providing the raw power for speech and

voice production is the lungs. Surely the main purpose of the breathing system is not

speaking, but providing periodically the necessary amount of oxygen by means of the

gas exchanges happening into the lungs, the sense of smell, and finally the regulation of

temperature by means of the air flowing [7]. In this frame, the most important actors

on the scene are the lungs, the muscle of the chest wall and the muscle of the abdomen.

The lungs (Figure 1.3) are a complex network whose wide surface is the place where the

gas exchange occurs. They are supported by the diaphragm (Figure 1.3) and enclosed

by twelve pairs of ribs since they do not have any muscles of their own (Figure 1.3).

The link between chest wall and lungs is made by the pleurae (Figure 1.3). In fact two

layers, visceral pleura next to the lungs and parietal pleura next to the chest wall, are

separated by a small layer of fluid. Such a structure allows either lungs and chest wall

to slide against each other, but avoids that they separate. Therefore when the ribcage

modifies its volume, the lungs are compressed or stretched accordingly.

All the ribs but two are connected to the sternum to form a closed cage. The other two,

that are the lowest ones, are called free ribs because they are not attached as the others.

Such a structure is flexible due to the cartilaginous attachments that allow the ribs to

move. Each ribs is connected to other two: the one above and the one below. Such a

connection is made by the intercostal muscles. The external intercostal muscles run

from the bottom of one rib to the top of the next lower rib. The contraction of such

muscles is responsible of the elevation of the ribs that expand the chest cavity. On the

other hand, the internal intercostal muscles run from the bottom of each rib to the top

of the next higher rib. The contraction of this kind of muscle results in a reduction of

the size of the chest cavity. In Figure 1.4 intercostal muscles are shown.
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Figure 1.3: Lungs, pleurae, ribs, diaphragm, and intercostal muscles.

Figure 1.4: The ribs and intercostal muscles.

1.2.1 Breathing: in quiet condition and during speech

The air in the lungs, like any gas, is intrinsically elastic. The relation between pres-

sure and volume at a constant temperature is determined according to Boyle’s Law as

inversely proportional. Therefore if the lungs expand, the pressure decreases. On the

contrary, if the lungs reduce their volume, the pressure increases. Air always tries to

reach an equilibrium point if this is possible, by flowing from a high pressure region to

a low pressure one.

Within the lungs, pressure changes are created by means of the action of the respiratory

system. The speaker can allow air flowing into or out of the lungs, by generating a
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difference between the air pressure inside and outside the lungs. A lower inner pressure,

with respect to the outer atmospheric air pressure, generates an air flow entering into

the lungs. On the contrary, if the inner pressure is higher than the atmospheric one,

air will flow out of the lungs. When respiration is quiet, the action of the respiratory

muscles is able to increase the volume of the thoracic cavity, and therefore the lungs’ one,

and to decrease the air pressure in the lungs with respect to the atmospheric pressure.

Such decreasing will generate an airflow into the lungs through the mouth and/or nose.

Instead, when the chest cavity volume is decreased by the action of the respiratory

system, the muscles compress the lungs. As a result the inner pressure will increase

with respect to the outer one and the air will be forced out of the lungs. To sum up, the

action of the muscles involved in respiration is not directly responsible of the air flowing

into or out of the lungs. In fact, such muscular actions modify the thoracic cavity and

the shape of the lungs. Such modifications generate a difference in air pressure that is

able to activate in-and-out flow of air. On the other hand, when people inspire air, an

active muscular contraction is always required. Such inspiration requires the contraction

of external intercostal muscles. Their activity will expand the chest activity. Another

muscle that may be involved is the diaphragm (Figure 1.3). The diaphragm is a muscle

that, thanks to its dome-shape, separates the chest from the abdominal cavity. Its

contraction performs a downward movement that is able to flatten out the dome, to

push out the abdomen, to increase the size of the chest cavity, and therefore to create a

suction which draws in the air by expanding the lungs.

On the contrary, when people exhale, both muscular action and passive forces can play

a role. In fact, on one hand an active muscular contraction can reduce the size of the

chest cavity by pulling the ribcage down. In this case the internal intercostals and

the muscles of the back are the effectors of such active movement. In addition, by

allowing the diaphragm to relax and return to its resting position, the same result can

be reached. The reason is that the diaphragm can only contract downward, it cannot

rise by itself, but the abdominal muscles are able to push the guts upward, pressing up

on the diaphragm and thus inducing a decrease in the size of the chest cavity. On the

other hand, the properties of the lung tissue can push air out of the lung without the

application of any muscular forces. In fact, the naturally elastic property of lung tissue

can contribute to pressing air out of the lungs. When stretched, this tissue will shrink

back to its original shape. Such a property is called elastic recoil. In addition, the

ribcage shows some elastic properties too. In fact the ribs’ cartilaginous attachments

allow the ribs to return to their resting configuration if no muscular action is opposed.

In such a context, gravity also tends to pull the ribs down in absence of muscular

contraction, while the contents of the abdomen might press upward on the diaphragm

at the end of inhalation, shrinking the chest cavity. Such forces are dependent on the
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quantity of air in the lungs. In fact, according to the elastic properties of the tissues,

air, lung-stretching and passive recoil forces are directly proportional. In Figure 1.5 a

scheme explaining the respiratory mechanism is shown.

Figure 1.5: Scheme of muscular activation during respiration.

It is important to notice that, in absence of muscular effort, the quantity of air conveyed

from the lungs to the vocal tract depends on the volume of air in the lungs [7]. The

maximum recoil pressure is generated when the lungs are full of air. In fact, in such a

case, the air pressure within the lungs is the highest possible and the lungs deliver the

highest volume of flow. Alike, if the lungs are about in their resting state, the pressures

are lower and the flow decreases.

People do not usually breath in a deep way during quiet respiration. Therefore elastic

recoil, torque from the ribs, which rotate slightly on inspiration, and gravity are able

to develop a pressure. Such a pressure is sufficient to induce an outward flow of air.

Hence, expiration muscles are usually not necessary to breath out. Anyway, muscular

activation is required to allow the thorax expanding for breathing in or breathing deeply

out.

Breathing during speech is very different from quiet respiration. First of all, people when

they are planning to speak, they usually breathe in more air than they do during quiet

respiration [7]. This is also noticeable if relative durations on inhalation and exhalation

are observed. When people breathe quietly, about 40% of a breath cycle is dedicated

to inspiration and the remaining 60% of the cycle is dedicated to expiration. Instead,

during speech, the inspiration phase can last only about 10% of a breath cycle. In fact,
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exhalation takes longer to allow the production of on utterances with minimal interrup-

tion, and often it extends beyond the normal resting capacity of the lungs [20]. Often an

expiratory muscular effort is needed in speech breathing. Such effort aims at producing

enough airflow to complete an utterance. In fact, elastic recoil alone is not enough to

induce an airflow able to perform a very long uninterrupted monologue. Moreover, a

fairly constant relative pressures above and below the vocal chords is required by speech

[21]. On the other hand, airflow and pressure during quiet respiration show a greater

variability from the beginning to its end. Finally, the resistance to the flow above the

vocal folds is modified continuously during speech. Such changes are originated by the

movements of the tongue, lips, jaw and soft palate. Pressure will increase throughout

the system when the airway is constricted or is blocked (for example, during the phona-

tion of the sounds [t] or [s]). Instead, the opening of the vocal tract will decrease the

pressure (phonation of a neutral vowel). For these reasons, maintaining a consistent

pressure below the vocal folds is tricky. In conclusion, speech breathing is much more

complicated than quiet respiration, since it is not just “breathe in and then relax” [7].

The respiratory system needs a dynamic balance between active muscular control and

the forces due to the varying passive elastic recoil in order to maintain a relatively con-

stant pressure below the vocal folds [22–24]. Notwithstanding, the pattern of muscular

activity, used to control air pressure, is not well known. Usually, an inspiratory effort

can be required to mitigate the excessive expiratory pressure, due to a high lung volume

and hence high recoil forces, during exhalation, while, on the contrary, an expiratory

effort can be required when low lung volumes generate little or no recoil forces. Anyway,

some studies report that the continuous balancing of recoil forces requires the use of

both inspiratory and expiratory muscles throughout a respiratory cycle [24–26]. These

small muscular adjustments are aimed at providing a fast and continuous correction of

sub-glottal pressure (the air pressure measured below the vocal folds). Such adjust-

ments are provided to respond to the varying supra-glottal resistance during speech. In

particular, during the expiratory phase of speech breathing, the abdominal muscles are

active and help to control the sub-glottal pressure [25, 26]. The precise timing of these

muscular activation is unknown, but they are thought to be speaker dependent.

This is a simplified and brief description of the respiratory activity during speech. In

reality, speech is more complicated. Speakers, individually, prefer different muscular ac-

tivity, and therefore, their muscular patterns can be significantly different. The greater

variability in speaking was measured in the elderly [27]. The organization of breathing

patterns for speech can differ in speakers. Many people organize the air intake in accor-

dance with the length of the planned utterance [28, 29]. When people are asked to read

out loud, they have different strategies. People usually vary, in a person-specific way,

the lung volumes to perform louder utterances, inspirations at sentence and paragraph
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boundaries, and length of utterance [30]. Some speakers can use their abdominal mus-

cles for breathing, while others rely primarily on ribcage motions to vary the volume of

the chest cavity. Such different behavior begin in infancy [31] and seem to persist during

adulthood. Other factors influencing the pattern of muscular activation and thoracic

wall movement are the speaker’s age, body type and shape and finally the posture. For

example, when the speaker is upright, gravity acts on the diaphragm and ribs. Respi-

ratory activity can also influence the loudness. Moreover, a particular airflow can be

requested to generate a particular sound: more airflow is required to produce [h] than

to produce [t]. Lung volume can be influenced by linguistic factors, such as structural

(clausal) boundary [28, 32]. Speaking seems admitting different breathing patterns.

During listening to a conversational interaction, the duration of inspiratory acts were

seen to be quite similar to the ones observed during speaking, while the breathing cycles

of the partners became synchronous [33]. Several topics can be addressed in this research

area. In fact, studies on the movements of the thoracic wall or of the abdomen could

usefully be conducted jointly with other ones on the action potentials of respiratory

muscles (for example, [34]).

1.3 Larynx and Phonation

When the respiratory system has generated a controlled airflow from the lungs, vocal

folds can convert it to a sound. V ocal folds are located within the larynx, also known

as voice box. They can be referred to as vocal cords, but anyway, the term folds should

be preferred since it provides a better description of the involved structures. In fact,

vocal folds are small folds of tissue, not strings, that oscillate alternatively to close and

open the air-path. Such oscillations continuously interrupt the flow of air from the lungs

and create air pressure changes that listeners can hear as a sound. The so described

process of modulation of airflow, performed by the vocal folds, is called phonation. In

addition, the sounds that are produced by such modulating actions of the vocal folds

are known as voiced. In order to understand the complex process behind the voice

production, it is important to know about the anatomy of the vocal tract and about the

biomechanics of vocal fold vibration. Not all the sounds that one can produce can be

defined as voiced. Sounds like [a], [z], and [m] are all produced by making vibrate the

vocal fold, but other ones, for instance [h], and [s] are not produced with the vibrating

vocal folds. Therefore they are known as voiceless or unvoiced. They are part of human

speech. The vocal folds vibration, responsible of the production of voiced sounds, can

be perceived touching with the fingers the neck close to the larynx.
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1.3.1 The larynx

The transducer involved in voice production is located within the larynx. In fact, this

is the place where the vocal folds are suspended by muscles, ligaments and membranes

from the hyoid bone in the neck (see Figure 1.6).

Figure 1.6: Location of the larynx and hyoid bone in the neck.

The larynx is fundamental in voice production, but its most important function is con-

cerning the respiratory system. In fact the larynx completely seals the airway to protect

both airway and lungs from foreign materials, particularly during swallowing. The lar-

ynx works also as a controlling valve of the quantity of airflow through the system. In

fact, for example, the breathy voice produced during running, is caused by the larynx

during increased rate of gas exchange during physical activity. Normal phonation can

be produced during a consistently conditioned pace. Therefore, the vocal function of the

larynx is simply supplementary to these older, more elemental, and biologically essen-

tial functions. Any structural change must maintain the fundamental ability to protect

the airway, and hence the sound-producing potentialities of laryngeal structures has a

limited extent. In fact, from a evolutionary perspective, the larynx is a rather conser-

vative structure, and its anatomy is quite similar across all mammalian species [35]. A

different structure is observable in birds. Birds have both a larynx and a separate organ,

the syrinx, that is the dedicated organ to sound production. Since the syrinx is free of

“multi-use constrains”, its structure evolved considerably in different ways across birds

species [35, 36].

A set of interconnected cartilages composes the larynx. They are placed in the airway

below the pharynx and above the trachea (windpipe) in the neck. Its position in the

neck is easily detectable, since if we try saying “ah”, we can feel some vibration when

placing our fingers on the neck. In fact, moving toward or away from the larynx, we

should feel the vibration getting stronger or weaker. Moreover, during swallowing we

can feel our fingers moving upward and downward.

The larynx is placed in the neck in suspension from the hyoid bone (Figures 1.6 and

1.7), placed just under and approximately parallel to the jaw. This bone serves a unique
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Figure 1.7: Disassembled (a) and reassembled (b) laryngeal cartilages, including the
hyoid bone [7].

function, as no other one, since it does not connect or form a joint directly with any

other bone or cartilage in the body. The hyoid bone is a point where more than twenty

different muscles are attached. In addition, this bone can also protect the airway from

injury.

The thyroid cartilage is the largest laryngeal cartilage (Figure 1.7). Its shape is some-

thing like a opened shield towards the back. On the back of the thyroid cartilage two

sets of horns, or cornua, are placed. More specifically, two of them are placed on top

(superior) and the other ones on the bottom (inferior). The superior cornua are con-

nected to the hyoid bone by means of ligaments, while the inferior cornua are attached

to the cricoid cartilage, as described subsequently. The union of the two sides (laminae)

of the shield form an angle called the thyroid prominence, which is easily detectable in

many men as “Adam’s apple” (see Figure 1.8). Although it is less visible in women and

children, it can still be located easily by touching that area of the neck. Usually the

angle between the two laminae ranges from about 90◦ in men to about 120◦ in women

[7]. This is the largest of the laryngeal cartilages, but it is still quite small. Size can vary

considerably across persons, but the largest differences are between men and women.

In males the average distance from the tips of the inferior cornua to the tips of the

superior ones is 44 mm, while in females it is equal to 38 mm. In addition, the average

anterior-posterior dimension is 37 mm in males, and 29 mm in females [37].

The cricoid cartilage is the second laryngeal cartilage. This is a signet-ring-shaped

cartilage, whose broad part faces towards the rear. On average, the width at the back

of the cricoid cartilage is 25 mm, while in front it is 8 mm [38]. Large differences can be

detected across people [38]. The attachment of the thyroid cartilage, by means of the

inferior cornua, to the cricoid cartilage is know as the cricothyroid joint (Figure 1.16).

The larger posterior part of the cricoid cartilage is made to fit the back opening of the

thyroid cartilage, while the front part of the cricoid cartilage fits just below the lower
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Figure 1.8: Position of “Adam’s apple” in the neck.

part of the thyroid cartilage. The thyroid and cricoid cartilages can oscillate about the

cricothyroid joint.

The final major components of the laryngeal framework are the two arytenoid cartilages.

These paired cartilages are shaped like three-sided pyramids. On average, in men their

height is about 18 mm, while in women it is 13 mm [37]. The arytenoid cartilages are

placed on the top of the back of the cricoid cartilage. Each arytenoid cartilage forms

with the cricoid cartilage a joint that is known as the cricoarytenoid joint. These joints

are characterized by an extreme flexibility, since the arytenoids can move in several

directions. Such a motion is usually defined as “rocking and gliding”. Two small bumps

(processes) project from the base of each arytenoid. Themuscular processes are located

at the back of each arytenoid cartilage, and at the front of the thyroid cartilage.

Figure 1.9: Location of the vocal folds in the larynx. View from above.

The vocal folds are placed across the airway, running from just below the thyroid notch

to the arytenoid cartilages, where they attach to the vocal processes (Figure 1.9). The

vocal folds are tiny. On average, their length is from about 17 mm to about 24 mm

in males, while in females their length is about 13−17 mm [39, 40]. Anyway they are

characterized by a certain degree of flexibility, since they can stretch by about 3−4 mm.

Usually the space between the two vocal folds is know as the glottis, while supraglottal
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is called the space above them, and subglottal the space below them (Figure 1.10).

Around two-thirds of the glottal opening, usually referred as the membranous glottis,

run between the vocal folds. The remaining one-third of the glottis runs between the

two arytenoid cartilages, which project into the airway. Cartilaginous glottis is how

this part is called. Laryngeal ventricle, or ventricle of Morgagni is the name of the

space just above the folds, while above the ventricle the ventricularfolds (also called

the false vocal folds) are placed. Conus elasticus is the name of the space below the

vocal folds.

Figure 1.10: Supraglottal, glottis and subglottal spaces.

The structure of the vocal folds is quite complex and layered (Figure 1.11), and it is

described by the body−cover model [41, 42]. The top layer of the vocal folds, i.e. the

cover, is formed by two different parts: the ephitelium and the lamina propria. The

ephitelium is a thin, stiff layer (about 0.05 mm thick) whose aim is protecting the folds

from impact stresses and friction. The lamina propria, is about 1.5−2 mm thick and it is

characterized by a layered structure. Each layer has small difference in its composition.

These differences results in a distinctive vibratory behaviour. The mucosa, i.e. the

topmost layer of the lamina propria, is very squishy and stretchable in all directions.

On the contrary, the middle layer can be only stretched along the anterior-posterior

axis, while the deepest layer resists stretching altogether. The body of the vocal folds

is located below the cover, and it consists of the thyroarytenoid muscles, also known

as vocalis muscle. Technically, only the median part of the thyroarytenoid muscle is

referred as “vocalis”, but the term are often used interchangeably (anatomic details

of this muscle are discussed in [43]). This muscle is the bulk of the vocal folds. The

different mechanical properties of these layers of tissue entail that the body of the vocal

folds can be stiffened, while, on the contrary, the external cover remains loose and is

free to move around the body. This mechanical property is fundamental for phonation.
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Figure 1.11: Structure of vocal folds: body-cover model [8].

The laryngeal muscles can be divided into two groups: the intrinsic laryngeal muscles

and the extrinsic laryngeal muscles.The role of the extrinsic muscles is connecting

the larynx to other parts of the body, stabilizing its position and moving it up and

down. Instead, the role of the intrinsic muscles is connecting the different cartilages and

changing their relative positions. This latter kind of muscles is formed by some of the

smallest and fastest muscles in the body. Moreover, these muscles provide very quick

and precise control of position of the laryngeal cartilages. As a result, during breathing

the vocal folds are able to produce complete glottal opening, or complete glottal closure

to support lifting or protect the airway. In addition, these muscles may favour vocal

fold vibration to produce sound, or narrow the glottal opening to produce whisper.

In Figure 1.12 the movements of the vocal folds are shown during breathing. Instead,

during phonation the folds must be positioned at midline and they must move apart

for the next breath. Usually these two different functions are reflected in two different

sub-groups of intrinsic muscles. The laryngeal adductors aim at bringing the folds

together, while the abductors’ aim is pulling them apart. The position of these muscles

are displayed in Figures 1.13, 1.12, 1.14, 1.15, 1.16 [39].

The interarytenoid and the lateral cricoarytenoid muscles are the two primary laryngeal

adductors. Usually, muscles are named taking into account the structures they connect.

Therefore, the lateral cricoarytenoid is the muscle running between the muscular process

of each arytenoid and the side of the cricoid cartilage, while the interarytenoid muscle

is the one running between the muscular process of the two arytenoid cartilages (Figure

1.13).

The backs of the arytenoids slide towards each other when contracting the interarytenoid

muscle. As a result, a gap may appear in the membranous glottis. During the contraction

of the interarytenoid muscle, the position of the membranous vocal folds change just
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Figure 1.12: Vocal fold motion during breathing.

Figure 1.13: The lateral cricoarytenoid muscle (a), the interarytenoid (b) muscles
and the muscular actions being able to produce the so calling “rocking and gliding”

motion of the arytenoid cartilages [7].

a little. Moreover, when the interarytenoid and lateral cricoarytenoid are contracted

together, the posterior part of the glottis is closed by their joint action, but a medial

gap between the vocal folds may remain.

The thyroarytenoid muscle is located between the vocal process of each arytenoid and
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Figure 1.14: The thyroarytenoid muscle [9].

the front of the thyroid cartilage (Figure 1.14).The deepest layer and the main body of

the vocal folds are formed by this muscle (Figure 1.9). Within the muscle, some separate

functional units are distinguished by some authors. Anyway, the complex structure and

functions of these units are not completely understood [39, 43]. The contraction of this

muscle generates a tension in the body of the vocal folds and a slight bunching of them.

Such an action is demonstrated for each fold separately and for both sides together.

The protuberant occurring with the contraction of the thyroarytenoid muscle also closes

the central portion of the glottis, so that the thyroarytenoid is sometimes grouped with

the laryngeal adductors. The contraction manifests also a secondary effect. In fact,

the stiffness of the cover relative to the body is reduced. During phonation, a critical

phenomenon is the control of the relative stiffness of the different layers of the vocal

folds.

Usually, the joint actions of the cricoarytenoid, interarytenoid and thyroarytenoid mus-

cles is required to achieve a complete closure of the glottis. This can be demonstrated by

performing a stimulation of the branch of the recurrent laryngeal nerve that innervates

these muscles, before the branchings to the individual muscles.

The posterior cricoarytenoid muscle is the only laryngeal abductor (Figure 1.15). It is

located between the muscular process of each arytenoid and the back of the cricoid car-

tilage. The action of the posterior cricoarytenoid muscle pulls the back of the arytenoid

cartilages somewhat medially and down, resulting in a vocal process swung upward and

away from the midline. At the end of such action, the glottis is widely open, as for a

deep or sudden breath. An opposite action of the cricoarytenoid muscle may also be

performed by anchoring the arytenoids during phonation by means of the action of the

posterior cricoarytenoid.
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Figure 1.15: The posterior cricoarytenoid muscle and its actions (top view) [7].

One remaining intrinsic laryngeal muscle must be described, the cricothyroid muscle.

This muscle can not be considered neither an abductor nor an adductor. It connects

the thyroid and cricoid cartilages (Figure 1.16). Its contraction tilts the front of the two

cartilages toward each other resulting in an increase of the distance between the front

of the thyroid cartilage and the arytenoids, and in a stretching of the vocal folds. The

nerve innervating the cricothyroid muscle is the superior laryngeal nerve (Figure 1.16).

This is the nerve that is responsible for controlling F0. The recurrent laryngeal nerve

innervates all the other intrinsic laryngeal muscles. It is important to note that both the

recurrent and superior laryngeal nerves originate from the vagus nerve (cranial nerve

X), which is the controller nerve of all the intrinsic laryngeal muscles [44]

In conclusion, the larynx is a connection of the following cartilages: the thyroid, the

cricoid and the arytenoid cartilages. The larynx is suspended from the hyoid bone and

is placed on the top of the trachea and in front of the esophagus. The relative position

of these cartilages is controlled by the intrinsic laryngeal muscles. In fact, the vocal

folds are closed by the adductors for phonation or to protect the airways, while the

abductors opens them for breathing. The thyroarytenoid muscle is the most important

intrinsic laryngeal muscle. It is used to control loudness and to change vocal quality, in

the narrow sense. On the other hand, the lateral cricoarytenoid and the interarytenoid

are the main adductor muscles. The former brings the body of the vocal folds together.

It acts by pulling the back of the arytenoid sideways and down, and it brings together

the edges of the arytenoids (where the vocal folds are attached). The gap between the

backs of the arytenoid cartilages is closed by the interarytenoid muscle. The vocal folds

are stretched by the cricoarytenoid muscle by tilting the thyroid and cricoid cartilages.

The posterior cricoarytenoid is the only abductor muscle, and it opens the airway by

pulling the back of the arytenoid cartilages down and toward the midline, resulting in a

separation of the front edges.
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Figure 1.16: The cricothyroid muscle.

1.3.2 Mechanism of the vibration of the vocal folds

The contraction of the intrinsic laryngeal muscles acts to bring the vocal folds together

at the middle of the glottis. In addition, they can stiffen the folds, but such actions can

not produce by themselves vibration or sound. On the contrary, the sustained tissue

oscillations, producing the voice, is generated by a combination of tissue elasticity and

aerodynamic forces. In fact, when the vocal folds oscillate, they are able to periodically

interrupt the flow in the airway from the lungs. The result of such interruptions is

the creation of changes in the air pressure, changes generated by opening and closure

rather than by pressing on air particles as vibrating strings do. This operative difference

between vibrating strings and vocals folds is the reason why the term “vocal cords” is

dispreferred, since it refers to an incorrect vibration type. The myoelastic aerodynamic

theory of vocal folds vibration [45] describes these biomechanical and aerodynamic

forces.

The first step to start vocal folds vibrating has to be performed by the action of the

adductor muscles. In fact, first of all, these muscles have to bring the vocal folds together,

so that they are closed or nearly so, but not held together too tightly. Successively, excess

air pressure below the closed vocal folds is generated by the action of the respiratory

system. On average, a subglottal pressure of about 3−5 cm H20 is required to initiate

vibration, but a lower pressure will be needed once vibration has started [42, 46]. In
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fact, when the pressure is able to overcome the stiffness of the folds and the inertia of

the air column above the folds, the vocal folds are blown open from below. Otherwise, if

the vocal folds are too stiff (held together too tightly), or if the pressure below the folds

is too low, they will not open. Another possibility is when the vocal folds are not stiff

enough. In such a case they will blow open, and remain open. Therefore the balance

between stiffness and subglottal air pressure has to be the proper one.

Two factors act to close the glottis after the air flows through the opening glottis. The

tissue elasticity is the first one. The air pressure blows apart laterally the vocal folds

from below, but their elasticity acts to let them naturally regain their original position

at the midline as air pressure decreases with the free flowing of air through the glottis.

Moreover, another factor aiming at the closing of the vocal folds is the contribution

given by the aerodynamic forces. Such a phenomenon can be described according to

Bernoulli, who, in the principle known with his name, stated that when air particle

velocity increases, the pressure must decrease, as long as total energy remains equal.

Hence, according to Bernoulli’s principle, this is the reason of the reduction in pressure

away from the midline which helps the vocal folds closing by sucking them back toward

the midline. A further aeroacoustic contribution, the second one, to glottal closure

occurs when vortices are formed in the airflow at the exit of the glottis. An additional

negative pressure between the vocal folds is created by the vortices along the superior

medial surface of the vocal folds. Such negative pressure contributes to quickly closing

the folds and leads to an increase in the high-frequency energy in the voice source [47–

49]. As soon as the vocal folds are closed, pressure starts again increasing below them

until they are blown open and the whole cycle repeats once again. A self−sustaining
oscillation of the vocal folds is thus the result of these steps.

Vocal folds do not vibrate as a single unit moving rigidly back and forth across the glottis,

but rather in a complicated way. The pressure below opens the folds from the bottom to

the top, while the bottom edges close earlier than the top edges. In Figure 1.17 a single

cycle of vocal fold vibration is shown, as viewed from the front of the neck. In subfigure

1, the vocal folds are closed and the air pressure below them is increasing. When pressure

has a high enough value, it gradually begins opening the vocal folds from below, so that

the edges start separating from the bottom (subfigures 2 and 3). In subfigure 4 the top

edges of the vocal folds are separated and the air begins flowing through the glottis.

At this point, Bernoulli forces, and vortices-related forces immediately begin acting to

draw them back together. In subfigure 7, a lateral movement is still performed by the

upper edges of the vocal folds, but the position of the bottom margins is near the midline

again. The lower edges are again positioned in the midline in subfigure 8, and the glottis

is closed. At this time, the air stops passing through the glottis, and the pressure starts

increasing again below the folds, notwithstanding the upper edges of the vocal folds are
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Figure 1.17: The movements of the vocal folds across the airway for a single cycle of
phonation. [10].

still moving laterally, or may have only begun to return back to midline. Finally, in

subfigure 10, the vocal folds have almost ceased to move laterally at the upper margin

and the lower edges are beginning to separate again, giving a new start to this cycle

[50].

The reason of such a way of vibrating of the vocal folds is due to their complex layered

structure. The layer of the vocal folds that is primarily involved in the vibratory move-

ment is the cover, which rides over the stiffer body. In fact, the difference in stiffness

between the body and the cover controls the vibration. In particular, when there is

no difference in stiffness (this can be originated by the slackness in the thyroarytenoid,

due to paralysis, or stiffening of the mucosa, due to a respiratory infection), the vocal

folds can not perform any vibration in a correct way. The relative stiffness of the cover

and body of the vocal folds can be changed by adjusting the laryngeal muscles, result-

ing therefore in a change of the rate and pattern of vibration. The movement of the

outer layer of the vocal folds, i.e. the cover, over the body layers is usually known as

mucosal wave. Such a movement is easily detectable by means of stroboscopic images or

high-speed films of the vibrating larynx. The description of the mucosal wave is usually

focussed on its propagation along the superior surface of vocal folds. Such propagation

is a visible effect when imaging techniques are used, and its speed depends on its direc-

tion. In fact, the wave is quickly attenuated travelling outward away from the glottis.

Anyway, the most relevant part of the wave is its passage along the medial surface of

the vocal folds, since the glottal opening and closing occur there. As it is possible to



Chapter 1. Fundamental of voice studies 21

notice in Figure 1.17, the wave begins there, and moves for a significant distance along

the medial surface before “breaking” across the top of the vocal folds. The greatest

amplitude of the wave is detectable along the medial surface of the folds, because of the

interaction with the opposite vocal fold is during collision when the glottis is closing. It

is important to highlight that most of the motion is in the mucosa, since the thyroary-

tenoid moves very little during vocal fold vibration. Such movements, occurring along

the medial surface of the vocal folds, are the modulating factors of the airflow, and thus

the phenomena in the production of acoustic waves, perceived as voice [50].

The production of sound is caused by laryngeal vibrations as described in the following.

As soon as the vocal folds are opening, air is able to rush through the glottis and encoun-

ters the column of air that is above the folds in the vocal tract. The upward pressure

of the flowing air against the column of air generates an increase in the supraglottal air

pressure, i.e. a compression, and sets those air molecules in motion. The molecules,

therefore, start moving, spreading out and rising up through the vocal tract. As the

glottis closes, air molecules keep on moving above the glottis, thanks to their momentum,

even if no further air is flowing through the glottis for the moment. This continuous

movement generates a rarefaction, i.e. a decrease of the pressure above the vocal folds,

since the molecules keep on moving rising up the vocal tract, but no further molecules

is able to pass the closed vocal folds to maintain constant the pressure. So, the airflow

from the lungs is modulated by the vibration of the vocal folds. Such a modulation

creates a pattern of alternating compressions and rarefactions in the air flowing through

the glottis which results, at the end, in the generation of a sound. A further sound

source may be furnished by the vortexes in the airflow [47], but the mechanism behind

this kind of sound generation is still not well understood, even if a growing attention is

focussing regarding this topic [51–53].

The acoustic complexity of the voice signals is partially caused by the manner in which

the vocal folds oscillate [7]. Since the period of a sound and the frequency are one the

reciprocal of the other, events that happen with a short period, quickly, are necessary

associated with high frequencies. Hence, the more quickly the vocal folds perform a

complete oscillation opening-closing, the more high-frequency energy is produced by

means of the brusque changes of the pressure. In fact, the closure of the glottis (Figure

1.17) normally happens rather abruptly. Notwithstanding the vocal folds may keep

on moving after the stopping of the flow, these movement do not cause any further

reduction in airflow since the closure is already complete. However, the vocal folds open

more gradually (slower action), from bottom to top (Figure 1.17), resulting in lower

frequency energies. Consequently, these differences indicate that most of the acoustic

energy in a normal voice is generated when the glottis closes, not when it opens [7].
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Figure 1.18: Schematic sequence for two vocal fold vibration cycle. Vocal fold vi-
bration sequence is viewed as if viewed from the front and idealized glottal airflow

waveform. Vocal fold opening, closing, open and closed phases are indicated.

In Figures 1.18 and 1.19 it is shown the airflow profile change through the glottis de-

pending on the opening or closing of the vocal folds over time. In particular, in Figure

1.18, three key phases of the vibration cycle are detected: closed phase, opening phase

and closing phase. The opening and closing phases are often considered as the ’open

phase’ of the glottis, because, during this phase, air flows. In addition, it is also impor-

tant to notice that airflow is not necessarily null during the closed phase. In fact, there

are vocal fold vibration patterns for which they do not come together over their whole

length [54, 55]. In Figure 1.19 the airflow profile patterns for two different normal voices

are reported. In (a) a pattern concerning a male voice is displayed, while in (c) a female

one. For the male voice it is possible to recognize a quicker glottal closure (at the top

of the Figure), while female voice is characterized by a slower closure (at the bottom of

the Figure). It is also important to notice that the first waveform is asymmetrical: as

the vocal folds open, the airflow increases relatively gradually, but it decreases suddenly

as the folds close. Moreover, the folds also remain closed for a time interval, as marked

by the lines near the value 0 between the pulses. On the contrary, the second waveform

is pretty symmetrical, with its airflow increasing and decreasing lasting about the same

time. In fact, the folds do not remain completely closed in this female airflow pattern, or

may not achieve complete closure in every cycle. The subfigures on the right display the

harmonic energy produced by the two voice sources (the source spectra). The harmonic

differences in the two spectra depend on F0. Generally normal F0 is different in adults:

females show a higher F0 value than males. Especially, in the Figure, the male voice is

characterized by an F0 equal to about 115 Hz, while the female voice is characterized of

an F0 equal to about 220 Hz. Since vocal fold vibration can be defined approximately

periodic for both these voices, the frequency of each harmonic in the voice source is a

whole-number multiple of the fundamental frequency. It is important to note that, in a
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normal source spectrum, energy decreases approximately as a straight line, at a rate of

about 6 dB/octave. Energy decrease in female voice is more quick in the lower part of

the Figure. Voice can present strong and quick vocal fold closure and their related high-

frequency harmonics. This kind of voice are usually described as “bright-sounding”. On

the contrary, voice can also present gradual or incomplete closure of the vocal folds.

This kind of voice are usually characterized by having most of their energy at or near

the fundamental frequency, and are described as “dull” or “weak”.

Figure 1.19: Pressure patterns of airflow during the passage through the glottis as
the vocal folds open and close. Two different, but typical voices are considered: (a)
and (b) take into account a male voice, while (c) and (d) a female one. In (a) the
airflow pattern over time for a normal male voice is reported, and in (b) its spectrum
is displayed. In (c) the airflow pattern over time for a normal female voice is reported

and in (d) its spectrum is displayed. Arbitrary units are used in the y axes [7].

1.3.3 An introduction to a mechanical model of vocal tract

A way of representing the physiological mechanism of producing speech can be observed

in the model in Figure 1.20 [11]. The lungs and the associated muscular action can be

represented as the source of the airflow, shown as a piston pushing up within a cylinder.

The air is pushed out of the lungs by the muscular force and through the bronchi and

trachea. The vocal folds tension jointly with the air flow allow the vocal folds vibrating.

Such vibration is the origin of the voiced speech sounds. The air is also able to produce

a sound by passing through a constriction in the vocal tract. This constriction favours
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turbulent airflow, that is able to produce unvoiced sounds. Moreover, the air pressure

may increase behind a point of total closure within the vocal tract, and when the folds

open, the sudden and abrupt release of the pressure is responsible of the generation of

a brief transient sound.

Figure 1.20: A mechanical model of vocal tract [11].

Since the speech usually is a sequence of sounds, the state of the vocal folds, their

position, shape, and the size of the various articulators change over time to produce the

sounds that have been programmed by the speaker. Such phenomena are addressed in

the following section.

1.4 The Supraglottal Vocal Tract and Resonance

The supraglottal vocal tract (Figure 1.21), like the rest constituting the anatomy of

speech and voice, is not designed for communicating. Lips, tongue, teeth and jaw are

designed for feeding (chewing and swallowing food). Similarly, the nasal cavity has

been mainly developed for smelling and for heating, humidifying and filtering air as it

breathed in. Tongue, lips and jaw are able to move, modify and alter finely the shape

of the oral cavity. For instance, the vocal tract can be made longer by the protrusion

of the lips. Air can be conveyed or not through the nasal cavity. By lowering the soft

palate, air, and sound energy, pass from the lungs through the nasal cavity, while by
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Figure 1.21: The Supraglottal Vocal Tract [7].

raising it, the nasal cavity is closed. The oral cavity can be enlarged by lowering the

jaw, while the movement of tongue can change the shape of the whole cavity. All these

modification of the shape of the vocal tract, via the motion of the articulators, change

the sound that is emitted by the speaker.

The sound produced by the vibration of the vocal folds would remind a buzz more than

a normal human voice if it was heard without the influence of the rest of the vocal tract.

The buzzing sound is shaped by the acoustic effect of the vocal tract above the vocal

folds. Hence, the vocal tract together with the vocal folds produces the sound that

is heard, via resonance. In Figure 1.22 all the contribution are displayed. Lungs, by

means of breathing provide the source of phonation. The laryinx modulates the airflow

coming from the lungs. The vocal tract modifies the acoustic pressure, by means of its

resonance.

Resonance is the amplification via constructive interference of waves. As a consequence,

frequency components of the glottal source the frequency of which are near the resonance

frequency are amplified. The spectral effects of vocal tract resonances are known as

formants. Therefore a resonator can also be thought as filter. The frequencies close to

its natural frequency pass, but the remaining are damped out.

The effect of a resonator on the spectrum of a acoustic source is reported in Figure 1.23.

At the top the harmonics of the source are displayed (subfigure a). The resonator transfer

function (b) modifies the source spectrum, while the result is displayed in subfigure c. A
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Figure 1.22: Scheme of the contribution of the different tracts in phonation.

x

Figure 1.23: Vibrating source of acoustic energy and a resonator: interaction. The
harmonics of the voice source are reported in (a), the resonator’s frequency response
in (b), and finally in (c) the result of exciting the resonator with the voicing source is

displayed.

resonator has a broad bandwidth if it responds to a wide range of frequencies, otherwise

it has a narrow bandwidth if it responds to a narrow range of frequencies.

Fant in 1960 [56] described how these principles represent the acoustic characteristics of

speech sound in his linear source−filter theory of speech production. In this model

the source is represented by pulsatile airflow or turbulent airflow. In Figure 1.24 (a)

a typical voice source, comprising many harmonics, is reported. In Figure 1.24 (b)

the resonance characteristics of the supraglottal vocal tract is shown. Its resonances

depend on its length and shape. A vocal tract with a longer length is characterized

by lower resonant frequencies with respect to a shorter one. The spectral effects of the

resonances of the vocal tract are called formants, while their centre frequencies are
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known as formant frequencies. In 1.24 (b) the formant frequencies are at about 500

Hz, 1500 Hz, and 2500 Hz and they correspond approximately to the vowel [@] spoken by

a male. The set of all the formants considered together is called the vocal tract transfer

function. It describes how the source energy is transferred by the vocal tract to the

outside. It describes the relationship between the acoustic input, provided by the vocal

folds, and the output of the supralaryngeal vocal tract [7]. Many perceptually important

details can be summarized just taking into account formants and their bandwidths.

Figure 1.24: Source-filter theory of voice production. In (a) the spectrum of voice
source is reported, in (b) the vocal tract transfer function, and finally in (c) the output
voice spectrum, with the transfer function shown at the bottom of the frame, are

displayed [7].

The pulsating airflow at the glottis sets the air in the vocal tract vibrating, acoustically



Chapter 1. Fundamental of voice studies 28

exciting the vocal tract resonances. Hence, the frequencies in the source waveform close

to the resonance ones are amplified, while the other ones are damped. Every move-

ment of the jaw, tongue, and/or soft palate or every tension of the pharyngeal muscles,

and/or every shaping of the lips results in a modification of its resonant characteristics.

Generally, differences in the first three formants (F1, F2, F3), within the same speaker,

are associated with differences in vowels. On the contrary, consistent differences in for-

mant frequencies and bandwidth found across speakers are associated with differences

in personal voice quality.

A last component of the source-filter theory remains to be described, and this is the

radiation characteristic. When the speech signal is radiated into space, it is emitted

in all direction. The effect is the increase of the level of the higher-frequency part

of the spectrum, equal to about 6 dB/octave. The result of the combination of the

three components of the source-filter model, i.e. source, transfer function, and radiation

characteristics, is reported at the bottom of Figure 1.24.

1.5 The Sound of Voice

The aerodynamic energy of the column of air is converted by the vibrating vocal folds

into pulsatile airflow that is converted into acoustic energy. Finally, the acoustic energy,

generated within the voice box, is shaped by the resonance properties of the supraglottal

vocal tract to produce the sound that is heard.

Normally, three main perceptual characteristics are taken into account to describe the

emitted sounds: pitch, loudness and quality. Every eventual modification of the mass,

length and tension of the vocal folds can alter their vibratory behavior, and therefore

modify the pitch, loudness and the quality of the voice. It is important to highlight

that these three features are psychological characteristics, and hence they describe how

physical signals are perceived.

1.5.1 Frequency and Pitch

Normally, the perceived pitch of a voice is mainly determined by the fundamental fre-

quency (F0) of the source signal [57]. Listeners are very sensitive to changes in F0,

and they are able to accurately detect changes of as little as 2% (2.4 Hz; [58]). From a

mechanical point of view, F0 corresponds to the rate of vibration of the vocal folds. In

Figure 1.25, on a piano keyboard some typical F0 ranges for different classes of voice, in

speaking and singing, are displayed. On average, for males the F0 values is about 115

Hz. In females, the average F0 value is equal to about 220 Hz, while in children the
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average F0 value is about 280 Hz [59]. In a singer, the F0 range can cover four or five

octaves. F0 for a bass singer can be 80 Hz or lower, while for a soprano F0 can reach

1000 Hz. Perceived pitch does not depend only on F0, but it can also be influenced

by the resonances of the vocal tract. In fact, some voice may sound higher in pitch, or

simply “brighter”, in presence of higher frequency resonances.

Figure 1.25: Some typical F0 ranges in different kinds of voice.

The rate of vocal fold vibration, and therefore the pitch of the voice, depends on the

mass and on the stiffness of the vocals folds. Especially, the relationship between the

mechanical parameters and the vibration rate is proportional to the square root of the

ratio of the stiffness to the mass [42]. Moreover, independently of its mass, a vocal fold

increases its vibratory frequency, and hence the pitch of the produced tone, when it is

stretched and becomes stiffer. Equivalently, a lower vibration frequency characterizes

more massive vocal folds instead of shorter and/or thinner folds. This is the reason why

men normally produce lower-pitched voices than women or children [60]. Any speaker

can control the rate of vocal fold vibration by performing a stretching of the vocal folds,

in this case the rate will increase, or relaxing them, and hence decreasing of the rate.

In the literature there is still not a complete agreement on the manner in which F0 is

physiologically controlled. Within a single individual the weight of vocal folds does not

seem to change, except if the speaker is suffering from some disease or excess mucous.

However, the contracting action of the thyroarytenoid and cricothyroid muscles modifies

the effective mass of the vocal folds. For instance, at a constant level of cricothyroid

contraction, the thyroarytenoid contraction induces a shortening and compacting of the

vocal folds resulting in an effective mass increase and in a F0 decrease. Therefore, it
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is not possible to address changes in mass as the only factor influencing F0. Tension

changes seem to contribute similarly to the modification of the vibratory rates as changes

in vocal folds thickness [39, 42, 61]. The stiffness of the vocal folds can be changed by

the cricothyroid muscle, that stretches them and that can act independently of the

thyroarytenoid muscle. When the cricothyroid contracts, but the thyroarytenoid does

not, the vocal folds are lengthened, their effective mass is decreased, the stiffness is

increased and F0 increases.

The scenario is complicated by the ability of laryngeal muscles to contract independently

and by the complex layered structure and the elasticity of the vocal folds. For instance,

the isolated contraction of the thyroarytenoid muscle decreases the length of the vocal

folds, and increases the stiffness of the body of the vocal folds, but decreases the stiffness

of the cover due to a shortening of the body. The result is a small decrease in F0, but a

large increase in loudness [62]. A joint contraction of both cricothyroid and thyroarynoid

muscles does not produce any F0 change, since the two actions oppose each other.

Finally, an increase of subglottal pressure produces an increase in F0. In fact, increasing

subglottal pressure without an attempt to adjust the tension of the vocal folds increases

the amplitude of the vocal fold excursion, stretching them by virtue of their greater

lateral motion, and hence increases frequency. Such an effect is more appreciable at low

frequencies, when the vocal folds are moderately slack, and can partially explain why

vocal pitch tends to increase during yelling. Controlling all these aspects separately is

possible, but difficult. In fact, normally it requires vocal training.

1.5.2 Intensity and loudness

The measurement of intensity, amplitude and loudness are different. Sound power per

unit area is the definition of intensity, that is normally measured by means of an as-

sessment of the sound intensity in the air as units of watts per square millimetre or

centimetre. Amplitude is a measure related to the displacement of air molecules from

rest when the sound waveform is visualized on a display. Finally, loudness is a psychoa-

coustic description of the relationship between a sound’s intensity and the magnitude

of the resulting auditory sensation. Amplitude can be thought as the perceptual cor-

relate of the acoustic signal intensity [7]. Similarly to the relationship between pitch

and F0, the relationship between loudness and intensity is not a linear function, but ap-

proximately logarithmic. Commonly, sound intensity is measured relative to a standard

threshold of hearing intensity on decibel scale. Such scale ranges from 0, threshold of

hearing, to 140, jet aircraft noise at a distance of 120 feet) [63].
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The association between subglottal pressure and acoustic intensity has been investigated.

Changes in intensity are often attributed primarily to modifications in subglottal pres-

sure [64, 65]. As described in aerodynamics, the relation among pressure and resistance

at the glottis and airflow rate is described by (equation 1.1):

Pressure = flowrate× resistance (1.1)

Consequently, loudness can be increased via pressure increasing in laryngeal resistance or

flow rate, or both. The flow rate is changed by a adjusting respiratory effort. More pres-

sure from the lungs should induce more airflow if glottal adjustments are kept constant.

A change in resistance generates necessarily a modification in the laryngeal adjustment.

The interaction of these variables is complex. Especially, though intensity seems to

increase with laryngeal resistance [66–68], some observations demonstrate that there is

no persistent association between increasing intensity and laryngeal muscle activation,

that may increase resistance [69, 70]. Experimental studies have largely been limited to

excised larynxes, which can not be considered a complete model, since cannot take into

account the contributions of the active contraction of the thyroarytenoid muscle. Gen-

erally, experimental data obtained by manipulating the thyroarytenoid muscle activity

directly are lacking. Some results seem to indicate that large differences may be found

between speakers in the precise balance between respiratory and laryngeal factors in

regulating intensity [67]. Experimental studies aiming at the simultaneous modification

in vivo of muscle stimulation, airflow, subglottal pressure and laryngeal resistance, and

hence controlling for F0 changes, are necessary to observe these complex interactions

among variables. Though speakers are able to control vocal loudness without much

thought or effort, much more research is required to fully understand the way in which

they achieve this.

1.5.3 Quality and phonation types

Another perceptual vocal characteristic is voice quality or timbre. It is not easy to define

quality, since it does not have a fixed acoustic correlate. Anyway, if voice production is

considered, quality in its narrow sense can be related to changes in the tension and mass

of the vocal folds, to the symmetry of vibration, to the strength with which they are

held together (medial compression), and to the measure of subglottal pressure [39]. In

fact, it is possible to effectively perceive changes in the sound of a voice due to specific

modification in the vibrational way of the vocal folds. In the following, some of the

so-called phonation types will be described.
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Normally, people are characterized by a kind of phonation that is known as modal

phonation. In this definition, modal is used in the statistical sense of “modal”. In

addition, people can also produce a range of nonmodal phonation types. Among these

phonation types, the way vocal folds vibrate can vary largely. For instance, falsetto

(Figure 1.26 a) is generated by a different vibratory mode of the vocal folds and it oc-

cupies the upper frequency limits of a speaker’s vocal range. In fact, in this phonation

type, vocal folds are put in vibration in a way which only the free borders can come into

contact, while the rest of the folds relatively fixed. The vocal folds during falsetto appear

long, stiff, very narrow, and may be somewhat bow- shaped [7]. In period − doubled
or subharmonic phonation, cycles alternate in a repeating long- short- long- short or

large- small- large- small pattern (Figure 1.26 b) [7]. Instead, in vocal fry, that can be

associated with perceived creaky voice [71], the vocal folds open and close abruptly, but

the closed part of the cycle is longer (Figure 1.26 c) [7]. Both period doubling and vocal

fry can occur very commonly in normal speech. Both have a unique timbre that listen-

ers can easily identify. As opposed to, from period doubling and vocal fry, that they

are generated by qualitative changes in vocal fold vibration, breathy nonmodal phona-

tion (Figure 1.26 d) seems to form a continuum from modal phonation (not breathy at

all) at one extreme, through whispery or breathy or murmured phonation (somewhat

breathy), to whisper at the opposite extreme [7]. Passing from modal phonation to

whisper phonation, across this continuum, vocal folds are closed more and more gradu-

ally. This enables generating less high-frequency acoustic energy. Moreover, at the end

of each cycle the vocal folds may not be completely closed. Therefore, the voice could

also be mixed with a unmodulated airflow through the glottis, resulting in noisy voice.

During whisper, vocal folds are able to vibrate only slightly or not at all, and the turbu-

lence, that emerges as air rushes through the partially-closed glottis, generate alone the

acoustic energy. This is the reason why peoples need a big breath to whisper loudly or

for a prolonged time. Period doubling, vocal fry, and breathy voice are very common in

modal and daily phonation, since they can may have communicative functions [7, 71].

Sometimes, changes in vocal quality, in a broader sense, can also be reflected in changes

in the resonant frequencies of the vocal tract. Changes in vowel quality are associated

with shifts in the frequencies of the lowest three or four formants. On the contrary, the

frequencies of the higher formants are associated by some authors with the “personal

quality”. Formants can be very informative about speakers. In fact, listeners are usually

quite sensitive to their changes, and they can reliably perceive modification of as little

as 4−8 % in formant frequencies [58, 72].
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Figure 1.26: Time domain waveforms of some nonmodal phonation types. In (a)
waveform of falsetto, in (b) the waveform of period-doubled phonation, in (c) the wave-

form of vocal fry, and in (d) the waveform of breathy voice are reported [7].

1.5.4 Individual voice quality

The understanding of the physiology beneath voice production is a good starting point to

understand the way in which speakers can have a personalized, individual voice quality,

and how people can vary their voice. The orchestration of the respiratory, laryngeal and

vocal tract movements characterize the phonatory behavior. More than 100 different

muscles are coordinated with regard to this aim. If people want to vocalize some sound,

they have to control an appropriate amount of breath, create a air stream through the

glottis (which must be properly configured and controlled in real-time), and then contin-

uously they have to move simultaneously the jaw, tongue, velum and lips to adjust the

airstream. A modification of the respiratory driving power can alter loudness. Changes

in some laryngeal parameters can result in a modification of the mean frequency of

speech, of the range of frequencies used, of the shape of the F0 contour, of the shape

and/or timing of glottal pulses, of the phonation type, loudness, and so on [7]. Mod-

ification in the acoustic resonances can be generated by changes in the shape of the

vocal tract, resulting in a production of different speech sounds or different accents. At
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the end, all these factors can be altered dynamically over time, into a variety of vo-

calizations including talking, yelling, singing, sighing, laughing, humming, cursing, and

reciting memorized material, among others [7]. Peoples are able to change the amount

of variability in a voice, producing different sounds in succession.

Notwithstanding speakers are able to modify their voices over wide ranges of loudness,

pitch and quality, their anatomy and physiology limit the effective range of sounds that

can be produced [73, 74]. For instance, the length and the mass of the vocal folds limit

the range of vocal folds vibratory rates. Speakers can span F0 over several octaves,

but there are absolutely some individual limits that they cannot reach. Furthermore,

speakers can modify the formants they use in a great variability of ways, but such

variation are limited and this limit is determined by an individual’s underlying vocal

anatomy.

According to Laver [75], voice quality can be thought as the result of two main sources.

On the one hand the anatomy and physiology of the speaker determine the width of the

potential range of operation. On the other hand, the long-term muscular adjustments,

or settings, of the larynx or the supra-glottal vocal tract restrict such potential range.

In his model, Laver stated that some typical patterns identified from speech records may

be explained as a deviation from a specific vocal tract configuration, or neutral setting.

In this setting, articulatory organs show equilibrated muscular tension throughout the

vocal tract during phonation. The identification of such settings was based on the Long

Term Average Spectrum (LTAS). In fact, in line with this model, a setting is an average

state of the vocal tract. Thus a given voice quality can be imagined as the acoustic

result of a specific average articulatory configuration.

A primary distinction, among the sources of differences in vocal quality, is made between

organically- based differences between speakers, and differences that are due to learned

or habitual behavior [7, 76, 77]. Hence, organically- based differences depend on the

relatively unchangeable, physiologically-based characteristics. Mean F0 and formants

are also included. From a theoretic point of view, since they are related to the physiology,

in adult speakers such parameters could be very stable over time, offering therefore some

good indices of speaker’s identity, sex, and age. On the contrary, learned differences

between speakers depend on the experience and they include accent, speaking rate,

intonation contours, habitual F0, specifics of voice quality, and so on. Though they

are partially under the speaker’s control, such characteristics are also often stable, since

people tend to send signal group membership and important personal attributes.

These two kind of characteristics, organic and learned, are the reason of why family

members sound similar. Heredity causes family members to have similar laryngeal and

vocal tract shapes and sizes. Family is also the environment in which speech is first
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learned. Siblings often grow up in the same linguistic community, and tend to acquire

the same vocal patterns. Physiological, dialectal and idiolectal, i.e. unique speech

pattern belonging to a single person, similarities combine themselves to create a family

voice that allows in a relatively easy way to detect its members from the others, but on

the other hand make it harder to distinguish the different members, especially if they

are close in age [7].

Until now, the sources of differences between speakers, inter−speakers variations, have

been discussed, but the difference within a single speaker in speaking style, intra−speaker
variability is also important. Every speaker sounds different from day to day, and from

time to time within a day. For instance, many speakers are hoarse in the morning,

and most speakers vary their voices across different emotional state or with fatigue.

Many authors asserted that such intra−speaker variability is small with respect to

inter−speaker variability. Such assumption can simplify considerably the work when

discussing speaker recognition, because it reduces the task [7]. Anyway some studies

suggested that differences within the same speaker may sometimes be as large as those

between speakers [78, 79].

1.6 Speech in the time and frequency domains

The speech signal is a slowly time varying signal. Hence, this means that if examined

over a sufficiently short period of time, 5÷100ms, its characteristics can be considered

fairly stationary [14]. Anyway, the speech signal characteristics change as consequence

of the different speech sounds being spoken over periods of time of the order of 1/5

seconds or more.

Speech events can be classified or labelled in many different ways. The simplest takes

into account three different states. The first is silence, during which speech is not

produced. The second state is unvoiced in which the vocal folds are not in vibration,

resulting in a speech waveform is aperiodic or random. Finally, the third state is voiced.

In the voiced state, the vocal folds are tensed and vibrate periodically when air flows

from the lungs. Its speech waveform is pseudo-periodic.

The distinction between well-defined silent, voiced and unvoiced frames is not exact.

Often, it can be difficult to distinguish a weak unvoiced sound, for example [f] or [h]

from silence, or a weak and voiced sound, like a [v] or [m] from an unvoiced sound or even

silence. Normally it is possible to locate and segment speech signals into these three

different categories with a precision of several milliseconds [14]. Errors in boundary

locations are thus negligible for many applications.
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Another way of characterizing speech sounds is by a spectral representation. In a spec-

trogram, the sounds are described, over time, via relative intensity in different frequency

bands. An example is in Figure 1.27 [6]. The first panel of Figure 1.27 reports the time

waveform of the speech signal, the second a wideband spectrogram, and the third the

narrowband spectrogram. The wideband spectrogram was estimated with a window

length equal to 10 ms. Such a window length is of the order of the length of a glottal

cycle in voiced intervals. In voiced intervals, the spectrogram reports vertically oriented

striations. The reason of these is that the sliding window includes alternately mostly

large amplitude samples and then mostly small amplitude samples. Hence, each indi-

vidual cycle can be located in time, but the frequency resolution is low. This is the

reason why this kind of spectrogram is called wideband. Differently, the narrowband

spectrogram was computed with a window length equal to 40 ms. Such a window length

comprises several cycles of the waveform during voiced intervals. Therefore, the spec-

trogram can no longer displays vertically oriented striations. This kind of spectrogram

also is not sensitive to quick time variations, but the frequency resolution is much bet-

ter, resulting in striations that tend to be horizontally oriented. Unvoiced sounds are

primarily notable by means of their high-frequency energy, while silence is essentially

characterized by the lack of any spectral activity.

Figure 1.27: Spectrogram for a speech signal. The spoken phrase is “Should we
chase” [6].

Another way of labelling the time-varying speech signal characteristics is by means of a
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parametrization of the spectral activity based on a model of speech production. Since

the human vocal tract can be mainly modelled as a tube, or a set of tubes, of varying

cross-sectional area where the exciting source is located at one end, i.e. the pulsatile

airflow, or at a point along it, i.e. the noise, the acoustic theory asserts that such a

system can be described in terms of resonance frequencies or formants. Spectrograms

can be reliably used to estimate formant frequencies.

1.7 The phonetic alphabet

To transmit information, and thus to be a reliable medium of communication, language

has to be composed by a finite and mutually exclusive number of distinguishable sounds.

This means that language has to be constructed of basic and fundamental linguistic

units. A modification, within a utterance, of one of these may result in a change of

meaning. The acoustic manifestation of these basic units can have a great variability,

but every modification designates the same linguistic element in a listener who is skilled

in that language. Such a basic linguistic element is called phoneme [80] and its multiple

acoustic realisations are called allophones. Thus, the phonemes may be considered as

a kind of code uniquely related to the articulatory gestures of the considered language.

Again, the allophones may be thought as expression of the acoustic freedom permitted

in the coding of a specific phoneme. It is interesting to notice that such a freedom does

not only depend on the related phoneme, but also on its position in the utterance. For

every language, and also for every dialect of the communicators, the set of code symbols

used in speech, and their statistical properties, are defined.

The first step, performed by a linguist who is studying an unknown language, is always

the phonetic transcription. In this transcription, every perceptually-distinct sound is

reported with a different code symbol. Then, the linguist’s subsequent step is the effort

to relate the code to the behavior, in order to understand if some acoustically distin-

guishable sounds belong to the same phoneme. This means that all the sounds that do

not belong to a different phoneme are grouped in the same class. Therefore all these

sounds are different, but their difference is not relevant to the meaning of the linguistic

units they belong to, it is just a convention of the language. Different languages usually

have their own speech characteristics. Some of these can be phonemically distinct in one

language, but not in another one. For instance, a simple change of pitch of a vowel can

be reflected in a modification of the meaning in many East Asian and Western African

languages. This is not generally true in European and Middle Eastern languages. More-

over, in Bantu languages of southern Africa, such as Zulu, tongue clicks and lip smacks

are genuine phonemes.
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From these considerations, it results that speech is, in some sense, discrete, though

a proper representation of the emitted sound pressure wave, and regarding the spoken

speech, is continuous. Connected speech is produced by a continuous motion of the vocal

apparatus from target to target. During this motion, a continuous adjustment of the

vocal tract configuration is performed as well as of its modes of excitation. In this frame,

a given phoneme is produced by a momentary and particular configuration of the vocal

tract. The precision with which a phoneme needs to be articulated is greatly influenced

by the statistical constraints of the language. Sometimes, a phoneme can be simply

signalled by making a vocal gesture in the direction of the normal configuration. In fact,

the relations between speech sounds and vocal motions are not unique, as demonstrated

by the compensatory articulation of ventriloquists and the mimicry of parrots.

Notwithstanding the great variability of the vocal apparatus in connected speech, and

its continuous nature, humans are able to subjectively segment speech into phonemes.

Transcriptions of connected speech events can be written by phoneticians, who devel-

oped a proper phonetic alphabet for this aim. The international phonetic alphabet

(IPA) provides code symbols for representing the speech sounds of most of the major

languages of the world. Several different levels of precision can be observed in linguists’

transcriptions. Two phonemes are considered different if only they are able to change

the meaning of a word by switching them. A “phonemic” transcription is a transcription

made in terms of phonemes. Usually it is enclosed in slashes / / [81]. On the other hand,

the IPA provides also many unused acoustic distinctions, able to change the meaning

of a word, in any given language. A transcription that specifies every allophonic or

sub-phonemic distinctions is called “phonetic”, and usually is enclosed in brackets [ ].

Normally, manner and place of production of the speech sounds contribute to their clas-

sification. For instance, the description of the position of the tongue hump along the

vocal tract and the degree of the constriction are used to describe the vowel sounds.

1.7.1 The Vowels

Perhaps the most interesting category of sounds in English are the vowels. They are not

so important in written text. In fact, if a text is deprived of every vowel, it is usually

still readable, while if it is deprived of its consonants, the meaning usually is lost.

Vowels sounds are produced by pseudo-periodic pulses of air, caused by the vibration

of the vocal folds, that excite the vocal tract. During this sound production the vocal

tract is essentially set in a particular shape. The resonant frequencies of the tract, i.e.

the formants, are controlled by the manner in which the cross-sectional area varies. The

positions of the tongue and of the jaw, but also the velum, determine the vowel sound.

More in detail, the length of the vocal tract affects the frequency locations of all vowel
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formants accordingly to a simple inverse proportionality rule. In Table 1.1 some rules,

relating typical vocal tract shapes and formants, are reported.

Table 1.1: Rules Relating Formant Frequencies and Vocal-Tract Characteristics for
the Vowel Sounds [12].

Length Rule: The average frequencies of the vowel formants are inversely
proportional to the length of the pharyngeal-oral tract (i.e., the longer the tract
the lower its average formant frequencies).
F1 Rule-Oral Constriction: The frequency of F1 is lowered by any constriction in
the front half of the oral section of the vocal tract. The greater the constriction the
more F1 is lowered.
F1 Rule-Pharyngeal Constriction: The frequency of F1 is raised by a constriction
of the pharynx, and the greater the constriction the more F1 is raised.
F2 Rule-Back Tongue Constriction: The frequency of F2 tends to be lowered by
a back tongue constriction. The greater the constriction the more F2 is lowered
F2 Rule-Front Tongue Constriction: The frequency of F2 is raised by a front
tongue constriction. The greater the constriction the more F2 is raised.
Lip-Rounding Rule: The frequencies of all formants are lowered by lip-rounding.
The more the rounding the more the constriction and subsequently the more the
formants are lowered

The duration of the vowel is usually long, when compared to the lengths of consonants.

Normally, vowels are placed among the phones of largest amplitude. Vowels can vary

widely in duration (typically from 40−400 ms).

In the literature, many methods aiming at the characterization and classification of

vowels have been reported. Some are based on the articulatory configurations that are

required to produce that particular sound. Others, instead, investigate their typical

waveform plots or their typical spectrogram plots. In Figures 1.28 and 1.29 the artic-

ulatory configuration for some typical vowel sounds [12] are displayed with their cor-

responding acoustic waveforms and their corresponding vocal-tract magnitude spectra.

Usually, vowels are conventionally classified by means of the articulatory configurations

in terms of tongue hump position. This, in fact, can be usually placed in the front, mid

or back. Another configuration parameter is the tongue hump height, i.e. high, mid

or low. In such a frame, tongue hump is considered to be the summit of the tongue at

its narrowest constriction within the vocal tract. According to this criteria, the vowels

[i], [I], [æ], [E] and [a] are classified as front vowels, while the vowels [A], /2/, /O/, /U/,

/u/ and /o/ are back vowels. The front vowels are characterized by a high-frequency

resonance. In the mid vowels, instead, a balance of energy over a broad frequency range

can be detected, while in the back vowels a low-frequency F1 is characteristic. Certainly,

these behavior can be also recognized in their spectrogram. In fact, a relatively high

second and third formant frequencies can be detected in the front vowels. Mid vowels

report well-separated and balanced formants, and finally, back vowels, especially [u] do

not show any energy contribution beyond the low-frequency region. In this case first
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Figure 1.28: Vowels in American English. In the first column, (a), some schematic
profiles of vocal-tract are reported, in column (b) some typical acoustic waveforms,
and in column (c) the corresponding vocal-tract magnitude spectrum for each of the

reported vowel are represented [12].

and second formants are very low. Average formant locations for vowels in American

English can be observed in Figure 1.30.

The variability of vowel pronunciation among people, across gender, age, regional accents

and other variable characteristics make the concept of “typical” vowel quite unreason-

able. An example of such variability can be seen in the plot (Figure 1.31), made by

Gordon Peterson and Harold Barney, of the first and seconds formant frequencies [13].

For a given vowel sound, a great difference can be detected in the two studied formants

across speaker. In addition, it is important to highlight that there is a overlap between

the formant frequencies for different vowel sounds for different speakers. The ellipses

drawn in the Figure are representing the gross formant configuration area for each inves-

tigated sound. Noticeably, it is not sufficient to estimate formants or spectral peaks to

reliably characterize and classify vowel sounds. Some speaker-dependent normalization
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Figure 1.29: (continued) [12]

Figure 1.30: Average formant locations for vowels in American English [12, 13].
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Figure 1.31: Frequency of second formant versus frequency of first formant for ten
vowels by 76 speakers [13].

has to be performed to account for the variability in formants and the overlap between

vowels.

A useful way of representing vowels is shown in Figure 1.32, i.e. the so-called vowel

triangle. In this Figure each vowel is represented by a centroid in the formant space,

under the hypothesis that this centroid represents at the best the average behavior, and

does not represent the variability across speakers. The vowel triangle is formed at its

extremes by the formant locations of the vowels [i] (low F1 and high F2), [u] (low F1

and low F2), and [a] (high F1 and low F2).

1.7.2 Diphthongs

Different definitions of diphxthongs may disagree. An acceptable definition is the one

that defines a diphthong as a gliding monosyllabic speech sound that starts at or near

the articulatory position for one vowel and moves to or toward the position for another

[14]. Usually, the first target vowel is longer than the second, even if the transition

between them is still longer [82]. In line with such a definition, it is possible to recognize

six diphthongs in American English, namely [ai] (as in buy), [au] (as in down), [ei] (as

in bait), [Oi] (as in boy), [Ou] (as in boat).
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Figure 1.32: The vowel triangle with centroid positions of the common vowels [14].

To highlight the time-varying spectral characteristics of diphthongs one may study them

in the F1- F2 plane. In Figure 1.33 the arrow indicate the direction of motion of the

formants over time. The vowels average positions are reported by means of dashed

circles. For these reasons, diphthongs can be characterized by a time-varying vocal tract

area function that varies between two vowel configurations.

1.7.3 Semivowels

The semivowels, [w], [l], [r] and [4], (Figure 1.34) are a group of sounds that is not easy

to characterize. The group name derives from their vowel-like nature. Normally, they

are characterized as a gliding transition between adjacent phones. This means that their

acoustic behavior is strongly dependent on the context in which they are placed. Their

transitional nature make them similar to diphthongs, but their role is consonantal.
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Figure 1.33: Movements of F1 and F2 for some diphthongs in American English
[12, 15].

Figure 1.34: Semivowels in American English. In the first column, (a), some
schematic profiles of vocal-tract are reported, in column (b) some typical acoustic wave-
forms, and in column (c) the corresponding vocal-tract magnitude spectrum for each

of the reported semivowel are represented [12].
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1.7.4 Nasal Consonants

When a glottal excitation occurs concurrently with a closure of the vocal tract, the

produced sound is a nasal consonant: [m], [n] and [Ê]. When the velum is lower the

constriction can occur at any point along the oral passage. In this configuration, the

velum is lowered and thus the air can flow through the nasal tract. This results in a

sound that is radiated at the nostrils. Though the oral cavity is constricted toward the

front, it is still acoustically coupled to the pharynx. Therefore the mouth can serve

as a resonant cavity, which causes anti-formants. They appear as zeros in the transfer

function. In addition, nasal consonants and nasalized vowels, that are vowels that

proceed or follow nasal consonants, are characterized by resonances that are spectrally

broader, or more highly damped, than those of vowels. The place along the oral tract

at which the closure occurs can be used to distinguish the three nasal consonants. For

example, concerning [Ê] such a constriction is just forward of the velum itself.

Figure 1.35: Unvoiced fricatives in American English. In the first column, (a), some
schematic profiles of vocal-tract are reported, in column (b) some typical acoustic wave-
forms, and in column (c) the corresponding vocal-tract magnitude spectrum for each

of the reported unvoiced fricatives are represented [12].
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1.7.5 Unvoiced Fricatives

When the vocal tract is excited by a steady airflow, which becomes turbulent in a

constricted region, unvoiced fricatives are produced. This constriction, located in the

vocal tract or glottis, results in an unvoiced excitation. These sounds are, [f], [T], [s] and

[S], are characterized by a different point of articulation. The fricative [f] is generated

by a constriction placed near the lips. The [T] has a constriction near the teeth. The

constriction for [s] is placed near the alveolar ridge, while the one for [S] is slightly more

back than the one of [s]. The generation of this sound category involves a source of noise

at a constriction, which splits the vocal tract into two cavities. The sound is radiated

from the front cavity at the lips. The role of the back cavity, as previously seen for

the nasal, traps energy and introduces anti-formants into the vocal output. From the

waveform plots of the unvoiced fricatives, it is easy to notice the non-periodic nature of

these sounds (Figure 1.35). The major constriction and its effect on low-frequency energy

content is evident. In Figure 1.35 vocal-tract profiles, time waveforms, and vocal-tract

frequency responses for unvoiced fricatives are illustrated.

1.7.6 Voiced Fricatives

If the unvoiced fricatives [f], [T], [s] and [S] are generated by an unvoiced excitation,

then the fricatives, [v], [ð] , [z] and [Z], are their voiced counterparts since the place

of constriction for each of the corresponding phones is mainly the same. But, they

are different from their unvoiced counterparts since two excitation sources are involved

in their production. One excitation is the turbulence produced by the airflow in the

neighbourhood of the constriction. The other is the pulsatile airflow at the glottis. In

Figure 1.36 vocal-tract profiles, time waveforms, and vocal-tract frequency responses for

voiced fricatives are illustrated.

1.7.7 Voiced and Unvoiced Stops

When an increasing pressure behind a complete closure somewhere in the vocal tract is

suddenly released, the sound produced is a transient and non-continuant sound, known

as a stop consonant. Voiced stops are: [b], [d], and [g]. To produce the [b] sound the

closure occurs at the lips. The production of [d] requires a closure at the back of the

teeth, while [g] requires one near the velum. When the tract is completely closed, no

sound is radiated from the lips. But, a small amount of low-frequency energy, is radiated

through the walls of the tract. It is called voice bar. This happens when the vocal folds

are allowed to vibrate even if the vocal tract is closed at some point. The properties of
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Figure 1.36: Voiced fricatives in American English. In the first column, (a), some
schematic profiles of vocal-tract are reported, in column (b) some typical acoustic wave-
forms, and in column (c) the corresponding vocal-tract magnitude spectrum for each

of the reported voiced fricatives are represented [12].

such stops sounds are highly influenced by the vowel that follows the stop consonant.

The reason is that stop sounds are dynamical in nature. In English, most stops are

not released if they occur at the end of a syllable. This phenomenon is produced by

a reduced lung pressure that decreases oral pressure behind the occlusion. Therefore,

the waveforms are not very informative regarding the place of articulation of a stop

consonant. Few distinguishing features are shown by the waveform of [b], except for the

voiced excitation and lack of high-frequency energy.

The unvoiced stop consonants [p], [t], and [k] are similar to their voiced counterparts

[b], [d], and [g], except for when the pressure increases during the interval of closure of

the tract, the vocal folds do not vibrate. Then, after the interval of closure, when the air

pressure is released, a short fricative interval occurs, produced by a sudden turbulence

of the exiting air, followed by an interval of aspiration, i.e. a steady airflow from the

glottis that excites the resonances of the vocal tract, before voiced excitation begins.

In Figure 1.37 waveforms plots and spectrograms of the voiced stop [b] and the unvoiced

stop consonants [p] and [t] are shown. It is important to notice that the “stop gap”, or

time interval during which the pressure is increased, is clearly detectable. In addition,

the duration and frequency content of the fricative noise and aspiration noise vary greatly

with the stop consonant.
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Figure 1.37: Voiced and unvoiced stops in American English. In the first column, (a),
some schematic profiles of vocal-tract are reported, in column (b) some typical acoustic
waveforms, and in column (c) the corresponding vocal-tract magnitude spectrum for

each of the reported voiced and unvoiced stops are represented [12].

1.8 Prosody and Coarticulation

1.8.1 Prosody

The description given until now is focussed on the characterization of speech in terms of

articulatory phonetics, i.e. the manner or place of articulation, and acoustic-phonetics,

such as frequency spectrum and time waveform characteristics. During speech produc-

tion, a complicated and rich sequence of articulatory movements are involved. Moreover,

they are timed so that the shape of vocal tract is set in a particular way in the desired
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phoneme sequence order [12]. Taking into account acoustic-phonetic arguments, the

expressive use of speech depends on patterns of pitch, syllable stresses, and timing to

form rhythmic speech patterns. Conventionally, prosodic features designate those as-

pects of speech related to tone and rhythm. Moreover, prosodic features are said to be

suprasegmental since they often extend over more than one phonetic segment. The pro-

duction of prosodic features involves both source factors and vocal-tract shaping factors.

Subtle changes in the speech breathing muscles and vocal folds normally constitute the

source factors, while movements of the upper articulators compose the vocal-tract shap-

ing factors. The acoustic patterns of prosodic features are heard as systematic changes

in duration, intensity, fundamental frequency, and spectral patterns of the individual

phonemes.

According to many researcher, the time-varying vocal-tract transfer function is able to

provide most of the information related to which phonemes are produced. Glottal source

characteristics convey prosodic cues as intonation and stress, two of the most important

prosodic features. Usually stress aims at distinguishing similar phonemes or highlighting

a syllable or word. From a structuralistic point of view, four degrees of stress can be

detected and normally distinguished: primary, secondary, tertiary, and weak.

The distinctive use of patterns of pitch or melody is known as intonation. Intonation

is usually analysed by taking into account pitch patterns in terms of contours. For this

aim, pitch range, height and direction of change are normally investigated. An impor-

tant function of intonation is to signal grammatical structure. Noticeably, with a view to

the development of natural sounding text-to-speech systems, intonation has to be seri-

ously investigated and reproduced. In this frame, it is possible to assert that intonation

plays a role similar to punctuation in writing. But, intonation has a much wider scope,

including marking sentence, clause, or other boundaries, as well as contrasting grammat-

ical sentence structure such as questions or statements. Another important role played

by intonation is conveying secondary characteristics such attitude or emotion. In fact,

emotions are marked by contrasts in pitch, even when other prosodic and paralinguistic

features are also involved. Two parameters are involved in the modification of the glottal

source in prosody. The first is the subglottal pressure, while the second is the tension of

the vocal folds. These parameters can alter fundamental frequency, the source spectrum

and the source amplitude. An increase in the lung pressure results in an increase in

subglottal air pressure. This can increase the rate at which airflow pulses are produced

at the glottis, resulting at the end in an increase of the fundamental frequency. Hence,

subglottal air pressure augmentation can increase both pitch and loudness. Subglottal

air pressure and pitch are approximately related by a straight line on a logarithmic scale

of fundamental frequency versus subglottal pressure [83].
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Subglottal pressure and intonation convey different stress patterns depending on what

syllable the stress is placed and which word is pronounced in a statement or question. In

Figure 1.38, one sees the patterns of subglottal air pressure and fundamental frequency

for four sentences with the word “digest” [12, 83]. In Figure 1.38 (a) and (b) the word

is spoken as a noun with stress on the first syllable, while the word is spoken as a

verb with stress on the second syllable in Figure 1.38 (c) and (d). Noticeably, the

stressed syllable is always related to higher subglottal pressure. Moreover, statements

may present higher subglottal pressure than questions. With regard to the fundamental

frequency, it shows a downward contour, from the beginning to the end of sentence, in

statements. Stressed vowels are the longest. In statements, the position of the stressed

syllable depends on whether the stressed syllable is a noun (high pitch in the stressed

syllable) or a verb (higher pitch on the second syllable). If the same sentence is spoken

as a question, normally the pitch contour rises from the beginning to the end of the

sentence (Figure 1.38 (b) and (d)). Concerning noun in questions, the stressed syllable

have neither increased duration nor pitch from the following syllable [12]. The reason is

that the rising intonation contour of a question supersedes lexical stress requirements at

the word level. Increased duration and higher pitch mark the stressed syllable in the final

verb form. It is important to notice that, as demonstrated by this example, amplitude

and duration of pitch contours corresponding to stressed and unstressed syllables depend

on whether the intonation pattern is related to a question or a statement.

Figure 1.38: Relations between fundamental frequency contours and subglottal air
pressure. Two statements and two questions with two different word stress patterns

[12] are taken into account.

On the one hand, the discussed glottal source parameters contribute to stress and intona-

tion. On the other hand, duration and its variation can also be used to convey prosodic
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features. In fact, a syllable in the final portion of a breath group is usually longer that

the other ones. Shorter vowels are normally part of unstressed words. Moreover, the

duration of a spoken vowel can depend also on the consonant that follows. The duration

of the vowel is affected by syllable stress.

1.8.2 Coarticulation

Moving the articulators in the vocal tract and the glottal source is required to produce

speech. Phoneme articulations typically are overlapping in time, resulting in transitional

sound patterns. Speech is not normally produced by means of quick rigid articulatory

movement between uniform islands of stationary phone productions, but is produced

by means of a smooth movement and to shape the vocal tract in accordance with the

planned phoneme sequence [12]. Usually, the change in phone articulation and acoustics

caused by the presence of other sounds in the same utterance is called coarticulation.

Some articulators can move fairly independently of one other. The degree and ease of

movement depend on the muscles groups associated with each articulator, on their mass

and on their position. Tongue and lips movements can overlap. In a vowel-consonant-

vowel sequence, the tongue articulation depends on the target positions for each vowel

and consonant. Speakers have considerable freedom of movement when each phoneme

involves different sets of articulators.

An articulator may be displaced toward a position more appropriate for the following

phone, in the absence of a strong conflict. This kind of anticipatory coarticulation is

known as right−left because the target influences the production of the phone. More-

over, the motor program, required to perform a sequence of sounds, syllables and words,

takes into account earlier the number of remaining phonemes within a breath group. The

motor program shortens some, but maintains the consonant constrictions and the rec-

ognizability of the stressed syllables. Without a proper programming of the shortening,

some phones might be spoken too quickly to be correctly understood. The short−term
memory (STM) theory was proposed by Lindblom, Lyberg and Holmgrem in [84]. The

model suggests that a short-term storage of the instructions for speech articulator move-

ments occurs. The storage continuously changes its contents as the instruction leave the

queue to implement the actual movements, and new instructions are inserted in the

queue for later implementation. The storage capacity is limited, and therefore it has

to be economically used. In addition to the right-Ieft coarticulation, sometimes also a

left−right coarticulation is observed. If an active forward looking planning process is

involved in the right-Ieft coarticulation, the left-right coarticulation is the consequence

of articulator momentum or low-level movement constraints, and not by a higher-level
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motor control program. Formant transitions in vowels, following a preceding consonant,

are a good example of this [85].

Coarticulation may cause changes in acoustic speech patterns, produced by articulatory

motion, or a change in duration of the phone targets. Monosyllabic words, usually,

are shortened more in anticipation of an increase in the number of later syllables than

early bisyllabic words. Similarly, trisyllabic words are shortened less than bisyllabic

words. According to the STM model, in the production queue storage is expressed in

terms of number of syllables, and less of that limited capacity is needed for a word with

fewer syllables. The readjustment performed to economize the available storage space

is continuously dependent on the number of phonemes, syllables, words or phrases in a

sentence.



Chapter 2

Emotion and Mood

2.1 Emotion vs. Mood

Voice is a very powerful communication medium: it allows to convey different and

sometimes contradictory meanings at the same time. Non-verbal aspects of speech can

play an important role in vocal communication. Message, speaker, language, mood and

emotion can influence this very complex signal called speech. Emotional speaking can

make one perceive the same textual message in different ways, inducing one to perceive

different meanings.

According to Eckman [86], moods usually are emotional feelings lasting for an extended

period of time. On the contrary emotions are temporary feelings that tend to come

and go quite quickly. If emotions are generally more varied, moods are generally felt in

a more generalized way: good mood or bad mood. Moods activate specific emotions.

Scherer stated moods might emerge without apparent cause, showing a low intensity,

little response synchronization, but a longer duration with respect to emotions. On the

contrary he defined emotion as “an episode of interrelated, synchronized changes in the

states of all or most of the five organismic subsystems in response to the evaluation of

an external or internal stimulus event as relevant to major concerns of the organism”

[87].

2.2 Emotions

Generally, emotions produce pervasive and short-lived changes in the organism, repre-

senting the answer to stimuli of major significance elicited from one individual. Emotions

produce some specific action, mobilizing all the possible resource readiness to face the

53
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respective situation, while providing a latency period that allow adaptation of the be-

havioural reactions to the situational demands [88, 89]. Such latency period might be

used in socially living species to predict the likely reaction of others to an action that

is “ready” for execution as the result of a particular emotional state [90]. In addi-

tion, as demonstrated by Darwin in his classic work on the expression of emotion, the

emotional expression is important to supply the vital function of externalizing an indi-

vidual’s reaction and action propensity and of communication this information to the

social environment [91].

Even though, many studies have been devoted to facial expression, vocal communication

of emotion can be very effective in nature [92, 93].

Several models have been developed to explain the nature of the expressive commu-

nication [94]. According to Ekman et al. [95], some social “display rules” determine

partially the human vocalization. Scherer et al. in [96, 97] discussed the distinction

between push and pull effects to determine factors that operate on vocalization. In this

model, the physiological changes, that accompany emotional arousal and that conse-

quently modify the voice production mechanism, produce the push effects. On the other

hand, pull effects do not depend on the internal physiological processes in the organism,

but they originate in external factors, such as ritualized or conventionalized acoustic

signal patterns that are required to ensure information transfer. Often, both types of

effects determine the acoustic nature of a vocalization. Hence, both emotion-related

physiological changes internal to the organism and external constraints or social target

patterns are involved, but the understanding and the disentangling of these two kind of

effects is not so easy. In fact, many studies do not differentiate between them [90].

To characterize emotions, it is mandatory to have available a suitable emotional speech

database [98–100]. For this purpose, it is fundamental being able to evaluate the quality

of such databases [101]. Different objectives and methods can be considered when a

speech corpus is recorded. Usually three different kinds of speech corpora can be used:

• Actor (Simulated) based emotional speech database

• Elicited (Induced) emotional speech database

• Natural emotional speech database.

Experienced and trained theatre or radio artists are used to collect simulated emotional

speech corpora. They are asked to express different sentences in different emotions.

Usually these sentences are linguistically neutral. Usually, to take into account the vari-

ability due to the degree of expressiveness and physical speech production mechanism,
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the recordings are obtained in different sessions. Such a kind of database is maybe pre-

ferred because of the easy and reliable method of collecting expressive speech. They

can comprise a wide range of emotions. More than 60% of the emotional databases

collected are of this kind [100]. The simulated emotions are fully developed or exagger-

ated. The simulated emotion are typically intense and usually incorporate most of the

relevant aspects of the expression of the emotion [102]. Generally, these acted emotions

are therefore considered more expressive than real ones [101, 103].

Elicited emotional speech database are formed by artificially eliciting emotions in people,

without knowing the real felt emotion. Generally, subjects are asked to involve an

emotional conversation with an anchor, who is in charge of creating different contextual

situations to elicit, by means of a conversation, different emotions in the subject enrolled.

Such a kind of database is definitely more natural, with respect to the simulated one,

but they still might be not properly expressive, since subjects still know that they

are recorded. In addition, sometimes, subjects can be asked to have such emotional

conversation with a computer, whose responses are controlled by a human being without

that the recorded subjects know it [104].

Natural emotions can be difficult to record and clearly recognize. They are also known as

underlying emotions. This kind of emotion can be naturally recorded from call centre

conversations, from cockpit recordings during abnormal conditions, during a clinical

visit in a dialogue between patient and clinician, during emotional conversation in public

places and so on [100]. Anyway it is not so easy to record a wide range of emotions

in this way. Moreover, the labelling phase of these emotions can be highly subjective

and therefore categorization can be debatable. From the legal point of view, some issue

related to privacy and copyright must be taken into account [101, 104].

While emotional elicitation can sometimes have some ethical contraindications regarding

the chosen way to induce the wanted emotion, the other two kinds of datasets have to

be used carefully. Since the emotions they collect were obtained in a different way,

they might be characterized in a different way. Hence the natural emotional speech

database should be preferred to the other, despite the difficulty in obtaining the natural

emotions and labelling them. For this aim, recently, a series of studies were conducted

on the investigation of the differences between simulated or acted emotions and the

natural or spontaneous ones. Vogt and André [105] showed that partially overlapping

features sets can be used to recognize different emotions from acted and spontaneous

speeches. Bänziger and Scherer [106] defended in a detailed way the cautious use of

speech materials in the study of acted emotions. In fact, the difficulties when recording

different and often rare natural emotional states from the same subjects, and assessing

natural emotional states may explain why acted speeches datasets provide an important
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contribution to the field. Schuller et al. [107] sustained that acted corpora have two

disadvantages: the first is that acting emotions is different from producing “spontaneous”

emotions [108], actors mimic the way that people externalize emotions, and secondly,

the prompted types of emotions are not the same as those in realistic scenarios. So while

the acquisition of realistic corpora is envisaged, using acted corpora could be convenient

for benchmarking, even if the relationship between the results obtained from the two

kind of datasets is unclear [109].

2.2.1 Prosodic features in emotion

Duration, intonation and intensity patterns are usually imposed by people when they

produce speech. The naturalness of human speech is provided by such prosodic con-

straints. Since prosody is associated with larger units such as syllables, words, phrases

or sentences, prosodic features are often seen as a supra-segmental. Prosodic features

can convey human emotional expressiveness [100]. Four main levels of prosodic man-

ifestation are recognized [110]. The first is the linguistic intentional level, then the

articulatory level, the acoustic realization and finally the perceptual level.

According to several studies reported in the literature, energy, duration, pitch and their

derivatives are considered as correlates of the expression of emotions [111–114]. Im-

portant prosodic features of emotions are: minimum, maximum, mean, variance, range

and standard deviation of signal energy, and of F0 [115, 116]. An attempt to estimate

the steepness of the F0 contour during rise and falls, articulation rate, and number and

duration of pauses was performed to characterize emotions by Cahn [117] and Mur-

ray and Arnott [116]. In the latter, prosodic features were extracted at both syllables

and consonant and vowel levels. Murray et al. [118] and Scherer [119] discussed the

importance of prosodic contour trends to characterize emotions. The identification of

four emotions, i.e. fear, anger, sadness, and joy, was proposed to be carried out by

means of the study of the peaks and troughs of the fundamental frequency profile, the

intensity, and the durations of pauses and bursts. An average emotion recognition equal

to 55% was reported [120]. Minimum, maximum and median values of F0 and slopes

of F0 contours are considered salient features since they enable an emotion recognition

accuracy of about 80% with a K-nearest neighbour classifier [111]. Iida et al in [121]

investigated the complex relations between F0, duration and signal energy features to

detect emotions from speech. Luengo et al. identified four emotions in Basque language

obtaining a emotion recognition performance of about 92% by using GMMs on acted

records[122]. Such a result is achieved by the authors after having extracted 86 prosodic

features and having selected the best 6 ones. Kao and Lee obtained similar performances

(92% of emotion recognition of four emotions) in Mandarin by using F0 and power-based
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features extracted at the frame, syllable, and word levels [123]. Wang et al. classified

six emotions from Mandarin language obtaining an 88% emotion recognition rate using

SVM and genetic algorithms [124].

According to the literature, most speech emotion recognition studies take into account

static (global) prosodic features extracted at the utterance level [111, 113, 114, 121,

125, 126]. The dynamic behavior of prosodic patterns (local) have been explored in

few studies [120, 127]. Rao et al. [128] performed an elementary prosodic analysis

at speech and syllable levels by using only the first order statistics of the prosodic

parameters. The contribution of studying the static and dynamic, and thus global

and local, prosodic features extracted at sentence, word and syllable levels may be very

important [100]. Recognizing emotions by using shorter speech segments might be useful

for the development of a real time emotion recognition.

2.2.2 Source features in emotion

The suppression of vocal tract characteristics, by means of an inverse filter based on

linear prediction coefficients (LPCs), allows to estimate from a speech signal the linear

prediction residual (LPR) that contains information about the excitation source [129].

Several studies of excitations source features demonstrated that they can convey all

aspects of speech such as message, speaker, language and emotional cues, even if this

kind of features may not compete with other well-known spectral and prosodic features

[100]. LPR derived features have been used successfully to extract information regarding

pitch for speaker recognition in [130], regarding signal energy for vowel and speaker

recognition in [131], and in several other studies.

In the literature, source cues are not exhaustively and systematically explored for speech

emotion recognition [100]. This kind of features might provide information regarding the

specific emotion, but in the form of higher order relations among linear prediction (LP)

residual samples, parameters of instants of significant excitation, parameters of glottal

pulse shape and so on [100]. Iliev and Scordilis [132] reported that glottal symmetry

can be a simple but quite effective speech feature enabling a high classification perfor-

mance for spoken emotions. Chauhan et al. [133] reported that the emotion-specific

excitation source information might be present in the higher order relations among the

samples of the LP residual. In this work, eight emotions were studied and an average

emotion recognition performance of about 56% was achieved by means of two models:

auto-associative neural network (AANN) and Gaussian mixture models (GMM). Epoch

parameters were explored by Koolagudi et al. [134] to recognize the emotion using

speech utterances, showing performances of classification above chance level, and thus
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indicating the presence of useful emotion specific information. The excitation source

was investigated also in [135] by Al-Talabani et al, noticing that the high dimensionality

feature space in emotion recognition is a serious challenge. In [136] Gangamohan et

al. investigated two features, i.e. strength of excitation and spectral band energy ratio,

which are both related to the excitation source component of speech, to discriminate

“angry” and “happy” emotions from the speech corpus named Berlin EMO-DB [137].

In [138] Yadav and Kumari investigated the LP residual at a sub-segmental level, seg-

mental level, and supra-segmental level, reporting 58.4%, 65.6% and 48% respectively

average emotion recognition rates.

2.2.3 Vocal tract features in emotion

Speech segment lasting 20−30 ms are usually used to extract vocal tract features [100] in

the frequency domain. Some features of them are: formants, their bandwidths, spectral

energy and slope. The inverse transform of the log magnitude spectrum of a speech

frame is known as the cepstrum [14]. Some common features derived from the cepstrum

representing vocal tract information are the MFCCs (Mel frequency cepstral coefficients)

and the LPCCs (Linear prediction cepstral coefficients). According to Ververidis and

Kotropoulos [98] MFCCs, LPCCs, perceptual linear prediction coefficients (PLPCs),

and formant features are common features used for emotion recognition. Generally

these kinds of features are considered to be strong correlates of the shape of the vocal

tract and of articulatory movements [139]

Combining MFCCs, LPCCs, RASTA PLP coefficients and log frequency power coeffi-

cients (LFPCs), Pao et al. were able to to classify anger, boredom, happy, neutral and

sad emotions in Mandarin [140, 141]. Williams and Stevens [142] represented emotion

specific information by means of log frequency power coefficients (LFPC). For this, a

four stage ergodic Hidden Markov Model (HMM) was used to classify emotions. LFPC

parameters showed comparable performances as LPCC and MFCC features, while LF-

PCs performed slightly better [142, 143]. F0 variability is supposed to be modelled by

MFCC feature extracted from lower frequency components (20−300 Hz) of the speech

signal. In this case, they are known as MFCC-low features and were used to per-

form emotion recognition in Swedish and English emotional speech databases. Neiberg

et al. reported that MFCC-low features outperform F0 features in emotion recogni-

tion tasks [144]. Speaker-independent emotion recognition was performed by estimating

the mel-frequency cepstral coefficients over three phoneme classes: i.e. stressed vow-

els, unstressed vowels and consonants. They are known as class-level spectral features.

The accuracies of their classification were consistently higher than those obtained from

prosodic or utterance-level spectral features. Moreover, the combination of class-level
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and prosodic features allowed to improve performances. Consonant regions, more than

either stressed or unstressed vowels, seem to contribute more regarding specific emotions.

Another important result, reported into the study [145] performed by Bitouk et al., is

that the average emotion recognition rate and the length of the utterance are propor-

tional. Sigmund [146] carried out both Fourier and Chirp transforms of vowel segments,

and reported that the higher frequency regions of speech are appropriate for character-

izing stressed speech. The amount of emotion specific information can be conveyed by

different portions of the utterance, depending on the emotional expression pattern [134].

Since emotions may be low-grade, their expression in a spectrum may be gradual.

2.2.4 Combination of features in emotion

Recently, some researchers focussed on combining different features to improve speech

emotion recognition. The categories of speech features that are discussed in the pre-

vious sections can be considered to be complementary. A proper combination of these

features might improve overall performances. Gobl and Chasaide [147] highlighted the

role of voice quality in conveying emotions by means of spectral and prosodic features.

The authors reported that voice quality such as harsh voice, tense voice, modal voice,

breathy voice, whisper, creaky voice and lax-creaky voice are more efficient in detect-

ing underlying (mild) emotions than the full blown emotions. No one-to-one mapping

between voice quality and emotions was reported, but sets of emotions were associated

with the same voice quality [147]. Kwon et al. explored F0 information, log energy,

formants, mel based energy, MFCCs with their velocity and acceleration coefficients to

classify emotions [148]. Prosodic, mel-frequency cepstral coefficients (MFCCs) and for-

mant frequency features were used to distinguish six emotions in a language, speaker, and

context independent way in [149]. Anger, disgust, fear, joy, neutral, sadness, surprise,

and teasing emotions collected from 50 male and 50 female native Japanese subjects

were discriminated by means of both prosodic (energy and pitch) and spectral features

(12 LPCCs) by Nicholson et al. in [150]. Around 50% of recognition rate was reported

using neural network classifiers [150]. The identification of emotions in Mandarin lan-

guage was obtained by Zhou et al. by combining articulatory and spectral features [151].

Long-term spectro-temporal speech features proposed in Wu et al. [152] outperformed

the short-term spectral features and prosodic features in recognizing seven emotions of

the Berlin emotional speech corpus (Emo-DB) [137].

The combination of long term spectro-temporal and prosodic features results in an aver-

age emotion recognition of 86.6% involving seven discrete emotions [152]. Schuller [153]

proposed a new method to combine acoustic features with linguistic information to rec-

ognize seven discrete emotional states. Emotional phrases are detected from the spoken
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word by means of belief networks. Soft decision fusion and neural network classifiers

combine acoustic and linguistic information. Acoustic, linguistic and combined infor-

mation reported respectively an emotion recognition rate of 26%, 40% and 58% [153].

Lee and Narayanan [112] proposed to combine language and discourse information to

improve the discrimination between positive and negative emotion for call centre appli-

cations. Zhou at al. combined Teager energy values and MFCC features to distinguish

between neutral from stressed speech [154].

2.3 Mood disorders

2.3.1 Bipolar disease

Bipolar Disorder is a chronic psychiatric condition [155, 156] that is considered one of the

most common and dangerous disorders of affectivity (Diagnostic and Statistical Manual

of Mental Disorders (DSM-IV-TR) [157]).

People suffering from Bipolar disease manifest extremely altered mood regulation. They

usually experience unbalanced mood swings among depression, mania or hypomania,

and mixed states (that is a state in which both symptoms of depression and hypoma-

nia are present at the same time). Such swings can be cyclic and sometimes extreme.

Normally, these mood changes can have a significant impact on the patients’ social, oc-

cupational, and general functioning and wellbeing. The patients’ quality of life can be

severely affected by such swings, even during the time periods in which they are free of

clinical relevant symptomatology [158, 159]. Such reduction in quality of life can also

be related to a significant loss of cognitive performance [160]. Other symptoms such

as somatic pain or functional symptoms (headache, dyspepsia, etc.) can be also fre-

quent. Moreover, this kind of patients often experience anxiety, associated with suicide

attempts, lifetime alcohol abuse, and psychosis [161]. Suicide, in fact, may occur in up

to 20% of the cases [162].

Depression is a very low mood state characterized by sadness and hopelessness. De-

pressed patients might also experience thoughts of ruin, guilt or death. Differently,

mania is a state of hyperarousal that leads to euphoria or irritability, excessive energy,

hyperactivity, hypertrophic self-esteem, and a reduction of the need of sleep. Maniacal

patients usually express an increased activity and accelerated thoughts, but rather than

being a positive condition, these affects cause attention loss and prevent the patient

from expressing a coherent mental stream of thoughts. Hyperactivity is often not fi-

nalized and patients switching from task to task are not able to complete any activity.

Instead, hypomania is the moderate form of mania. Finally, the euthymic state is a
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period in which patients do not show enough pathological signs to be considered in one

of the above-mentioned clinical states. In the mixed state, since patients share symp-

toms of both mania and depression, they can be hyperactive but have insomnia, have

an increased self-esteem but also thoughts of inadequacy, and so on. Such a disease

can therefore be associated with frequent devastating personal, social and vocational

consequences.

Bipolar disorder is one of the leading causes of disability worldwide [163]. According to

some epidemiological studies performed in United States, almost 15% of the US popu-

lation has suffered from at least one episode of mood alteration [164], and more than

two million Americans have been diagnosed with bipolar disorder. In the United States

it was estimated an annual cost of $45 billion [165]. Moreover, it has been estimated

that about 27% (equals 82.7 million; 95% confidence interval: 78.5–87.1) of the adult

European population, from 18 to 65 years of age, is or has been affected by at least

one mental disorder [166, 167]. Despite high managing costs and the high severity of

this disease [164, 166–168], in current clinical practice the diagnosis of bipolar disease

relies only on interviews and scores from psychological questionnaires, on the physician’s

own expertise, and on the patient’s subjective description of the symptoms. Another

important characteristics involved with such pathology is the comorbidity, i.e., the si-

multaneous presence of symptoms which are shared with other psychiatric disorders. All

the mentioned issues associated with bipolar disease may lead to subjective interpreta-

tions, inconsistencies, and misdiagnoses [169].

Two mathematical models of bipolar disorder were described in terms of low-dimensional

limit cycle oscillators by Daugherty et al. in [170]. In their study, rather than focusing

on the difficult medical problem of diagnosis, they took into account the dynamics of

the models under a proposed treatment strategy, to provide some insight into the com-

plicated dynamics of this disease. Although they stressed the importance of recording

longitudinally bipolar patients, they did not use clinical data.

Some authors applied the non-linear measurements to both mood data generally [171]

and to mood in bipolar disorder [172–174].

Early studies on speech cue in patients suffering from bipolar disease reported a elongated

speech pause time during the depressed phase [175, 176], while phonation time was

reported to not vary significantly [176].

Only recently, studies have analysed speech cues in patients suffering from bipolar disease

more deeply (Table 2.1). In this framework, mobile devices, as smartphones, have been

investigated as aids to the assessment of mental disorder [177, 180, 181]. Both statistics

on the use of the smartphone and acoustic features have been investigated [177, 178]. A
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Table 2.1: Some corpora, tasks and investigated features from the literature for bipo-
lar patients.

Reference Corpus Task Feature

Greden and Carroll (1980) [175] 4 unipolar, 3 bipolar counting 1-10 speech pause time

Greden et al. (1981) [176] 24 unipolar, 12 bipolar unstructured speech pause time, phonation
interview time

Muaremi et al. (2014) [177] 6 bipolar patients phone call phone call statistics, social cues,
acoustic features

Grünerbl et al. (2015) [178] 6 bipolar patients phone call phone call statistics, speech
features, voice features

Karam et al. (2014) [179] 6 longitudinally collected phone call low- and segment- level features
from bipolar patients speeches

system aiming at analysing prosodic features in running speech was proposed in [181].

In this study, the authors evaluated the performance of the system, and proposed a case

study on a bipolar patient.

In Muaremi et al. [177] speech cues extracted from phone calls were used to assess bipolar

disease episodes. In this study, daily phone calls were investigated to carry out the

assessment in a real-life environment. Three different kinds of features were extracted:

namely phone call statistics, social signals obtained from the phone call conversation and

acoustic emotional properties of the voice. Acoustic features showed best performance in

terms of state recognition followed by the social cues. All the features together enabled

detecting the states with an average score of 83%. Moreover, the authors reported the

importance to set individually for each person the features, since each patient behaved

differently from the others. Speaking length and phone call length, the harmonics to

noise ratio (HNR) value, the number of short turns/utterances and F0 were labelled as

the most important variables over all subjects.

Unstructured speech acquired continuously and unobtrusively via the recording of day-

to-day cellular phone conversations were performed by Karam et al. [179]. The authors

investigated both low-level features, i.e. F0, RMS energy, zero-crossing rate, maximum

and minimum value of the amplitude of the speech waveform, and segment level features

by using voice activity detection (VAD) measurements, and suggested that manic and

depressive mood states can be recognized from speech data.

A system, based on smartphone-sensing, aiming at the recognition of depressive and

manic states and the detection of state changes in patients suffering from bipolar disorder

was studied in [178] by Grünerbl et al.. Phone call features, i.e. statistics on the phone

calls, speech features, i.e. statistics on the verbal interaction of the patients and the other

talker, and voice features, extracted with the open-source “openSmile” toolbox [182] and

providing different low-level descriptors, were investigated. The average recognition was

equal to 76%. An early detection of changes in a patient’s state of about 97% was

achieved, allowing the authors to state that reliably early warnings can be provided.
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Though some efforts have been made in this area, the greatest number of research in

the relation between mental disease and voice have been focused on depression.

2.3.2 Depression

One of the most common mood disorder is clinical depression, which may be caused

by the difficulties in coping with stressful life events. It may cause persistent feelings of

sadness, negativity and difficulty in coping with daily responsibilities. In 2002, unipolar

depression was listed by the World Health Organisation as the fourth most significant

cause of disability world wide, and predicted that it will be the second one by 2030

[183]. In 2010 the cost of depression per patient in Europe was estimated to be equal

to e 24000, in terms of relative value assessed across 30 European countries, while the

total cost of depression in the European Union was estimated to be e92 billion, with e54

billion of this cost derived from the lost work productivity [184]. In addition, in 2002, the

cost derived from the lost work productivity in United States was estimated to be $44

billion, corresponding to a difference of $31 billion if compared to the work productivity

lost in workers not suffering from depression. The World Health Organisation estimated,

in 2014, that every year over 800000 people die from suicide, and, moreover, that at least

20 times more people exist who attempted suicide [185]. Although suicide is a private

act, it has a profound negative impact on lives of those who knew the person. According

to [186] at least 6 other people are intimately affected by the negative impact of a

suicide. Depression often increases the individual’s risk to engage in suicidal behaviours

[187, 188]. About one person out of two who commit suicide meets the criteria for a

clinical diagnosis of a depressive illness [189, 190]. In such a context, it is clear how an

effective diagnosis and treatment of depression might play a role in suicide prevention

[191]. It might be useful undertaking screening for risk of suicide for all individuals

undergoing assessment or treatment for depression [192].

Since a single clinical characterization of depressed individuals is lacking, the diagnosis of

depression is subjective in nature and time consuming. Usually gold-standard diagnostic

and assessment tools for depression are involved to the opinion of individual clinicians

and thus can be subjective. The Hamilton Rating Scale for Depression [193] is one of the

more common diagnostic tools and it is based on a interview style assessment. The tool

assigns a patient a score that relates to his/her level of depression. Performing a proper

diagnosis by means of these tools is not easy. They rely heavily on the ability, desire

and honesty of a patient to communicate their symptoms, moods or cognitions when, by

definition, their outlook and motivation are impaired [194]. It therefore requires time to

perform a proper diagnosis, and large degree of clinical training, practice and certification

to produce acceptable results [195]. On the other hand, an objective measure, that could
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also be clinically useful for depression is lacking. An objective screening mechanism,

based on biological, physiological and behavioural signals could be very useful to enhance

the current diagnosis. Several biological markers such as low serotonin levels [196, 197],

neurotransmitter dysfunction [198, 199] and genetic abnormalities [200, 201] were related

to depression, but up to now no specific biomarker has been found. Although, biomarkers

are still lacking, recent advances have been achieved regarding affective computing and

social signal processing to develop diagnostic tools for depressive patients [202–206].

Facial and body tracking might detect characteristic behavioural changes relating to

depression.

Recently, the automatic detection of mental illness has been often addressed by means

of the study of speech, and specifically nonverbal paralinguistic cues have became pop-

ular. In fact, since speech can be analysed cheaply, remotely, non-invasively and non-

intrusively, it may be a good candidate to be used in an automated system. In addition,

clinicians often analyse subjectively the verbal behavior of a patient during diagnosis.

Depression is often related to a decreased verbal productivity, a diminished prosody and

monotonous and “lifeless” sounding speech [207, 208]. Furthermore, speech quality has

been observed to change to a hollow and toneless sound in a person who is becoming

suicidal [209]. The speech processing could have a great impact in primary health care

settings. It has been estimated that between 50% and 70% of people experiencing de-

pression consult their primary health care provider [210], while General Practitioners

have only a 50% success rate when diagnosing depressed people [211]. Therefore, using

methods and tools for the early diagnosis could be fundamental regarding suicide pre-

vention, since in up to 66% of suicides, the patients have contacted their primary health

care provider within a month prior to their death [191].

Several studies attempted to correlate prosodic, articulatory, and acoustic features of

speech to clinical ratings of both depression [195, 206, 212–218] and suicidality [209,

219, 220] as well as researched the development of automatic analysis of speech with a

view to the early diagnosis of such illnesses [221–223], but little is known about bipolar

disease.

2.3.2.1 Definition of clinical depression: making a diagnosis

Usually clinicians rely on the Diagnostic and Statistical Manual of Mental Disorders

(DSM), published by the American Psychiatric Association to diagnose mental disorders.

Its first edition was published in 1952 and it is in its 5th edition at the moment [18].

The manual was designed to provide standard criteria for the classification of mental

disorders, performing a proper classification by means of the observation of the symptoms

and clinical course of the disorder.
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In the literature there is no a unique theory explaining the causes of depression, but

it is generally considered to be a dysfunction, a reduced activity and connectivity, of

the cortical-limbic system [224–227]. This dysfunction results from some interactions

between environmental factors including stress and emotional trauma, and genetic pre-

disposition [228]. Most people experience some form of depression in their life, but to

suffer from the depression as disease, according to the DSM definition, a person has ei-

ther a depressed mood or a markedly diminished interest or pleasure in combination with

four or more symptoms for longer than a two-week period. The list of these symptoms

is reported in Table 2.2.

Table 2.2: Symptoms associated with depression [18].

Depressed Mood and/or markedly diminished interest or pleasure

In combination with four of
Psychomotor retardation or agitation
Diminished ability to think/concentrate or Increased indecisiveness
Fatigue or Loss of energy
Insomnia or hypersomnia
Significant weight loss or weight gain
Feelings of worthlessness or Excessive/inappropriate guilt
Recurrent thoughts of death or Recurrent suicidal ideation

The DSM has been criticised because different subsets of symptoms are assigned to the

same disease, leaving diagnosis open to subjective biases when a proper patient assess-

ment is not done to achieve a diagnosis [194, 229–234]. It is important to notice that

at least four of the DSM symptoms listed in Table 2.2 include opposite manifestations

(e.g. insomnia versus hypersomnia). At least 1497 different profiles of depression are

compatible with such a definition [235]. Two people, sharing no overlapping symptoms,

can receive the same diagnosis according to the DSM [236]. The large variation in de-

pression profiles make its diagnosis difficult and very complex, above all in the attempt

of fitting the clinical profile of a depressed person into an objective categorical level, i.e.

mild or severe depression [211]. Usually the assessment tools are based on an interview

such as the Hamilton Rating Scale for Depression (HAMD) [193] or self-assessment

scales such as the Beck Depression Index (BDI) originally published in 1961 and re-

vised in 1996 [237]. Both these tools evaluate the severity of 21 symptoms observed in

depression, to return a score which is related to the level of depression. The greatest

difference between the scales is the time people have to spend to complete the ques-

tionnaires. HAMD is a clinician-rated questionnaire that can be completed in 20−30

minutes, while BDI is a self-reported questionnaire that can take about 5−10 minutes.

The HAMD has long been considered as the gold standard assessment tool for depres-

sion for both diagnosis and research purposes, thought this status is frequently discussed

[238, 239]. The rates of severity of symptoms such as low mood, insomnia, agitation,
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anxiety, and weight loss are evaluated in the HAMD by the clinicians to give a patient

a score. Such evaluation consists in choosing a possible response to each question by

interviewing the patient and observing his/her symptoms. Each of the 21 questions

has about 3 or 5 possible responses which range in severity; scored between 0-2, 0-3

or 0-4 depending on the importance of the symptom they represent. Then, the scores

are summed and the total is arranged into 5 categories: Normal (0−7), Mild (8−13),

Moderate (14−18), Severe (19−22) and Very Severe (≥23) [194].

2.3.2.2 Cognitive effects on speech production

An association between cognitive impairments and depression was shown to affect an

afflicted individual’s working memory [240]. The phonological loop plays an important

role in the working memory. In fact, this loop helps to control the articulatory system

and to store the speech-based information for a few seconds. According to Christopher

and MacDonald [241], the phonological loop is affected by depression causing phonation

and articulation errors.

Speech planning is affected by a reduction in cognitive ability and consequent working

memory impairments [242]. Moreover, such a reduction is able to impair the neuromus-

cular motor coordination processes and to alter the proprioceptive feedback loop affect-

ing the feedback of articulator positions [243]. In the literature some studies confirm that

significant correlations between depression severity and pause related measurements are

related to the difficulty of depressed people in choosing words [244, 245].

Disturbances in muscles tension [89] and respiratory rate [246] were seen to depend on

variations on the somatic nervous system (SNS) and autonomic nervous system (ANS).

Changes in muscle tone have also been observed to be linked with the GABA neuro-

transmitter [247]. Both prosody and quality of speech can be affected by such changes

in muscles tension and control. Vocal fold behavior is influenced by modifications in la-

ryngeal muscle tension, while changes in respiratory muscles affect subglottal pressure.

2.3.2.3 Prosodic and acoustic features in depression

Prosodic features (Table 2.3) characterize speech at the supra-phoneme level. They

describe variations in perceived rhythm, stress, and intonation of speech. Speaking

rate, pitch (auditory perception of fundamental frequency), loudness and signal energy

variations are commonly investigated, but in practice the fundamental frequency and

energy are the most often studied prosodic features.
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Early studies on speech in depressed people showed how this kind of patients had some

speech abnormalities, i.e. a reduced pitch, a lowered pitch range, slower speaking rate

and articulation errors. More in detail, Darby and Hollien [248] reported that a modifica-

tion in perceived pitch, loudness and speaking rate was observable in depressed patients

between before and after treatment. Five potential characteristics: reduced speaking

intensity, reduced pitch range, slower speech, flat intonation and a lack of linguistic

stress were also highlighted in depressed patients by Hollien [249]. F0 contours were

perceptually investigated and they were demonstrated to contain information about a

wide range of prosodic information such as F0 variability, speech rate and pause time

by Nilsonne and Sundberg [250]. Taking into account the monotonous and “lifeless”

descriptors of speech spoken by patients suffering from depression, it is not surprising

that several studies reported a correlation between both reduced F0 range and average

F0 value, and an increasing level of depression severity [195, 216, 251–257]. But, in

some studies, no significant correlation between F0 variables and depression was found

[194, 244, 245, 258–261]. These conflicting results might be explained by the hetero-

geneity of the depression symptoms, the fact that F0 reflects both the physical state of

the vocal folds and the speaker’s affective state, gender, and a lack of standardization

in F0 extraction methods [194].

Psychomotor retardation (PMR) is a phenomenon that is characterized by the slowing

of thought and reduction of physical movements. Its effects, jointly sometimes with

changes in the speaker’s affective state, can result in small disturbances of muscles

tension in the neuromuscular system of the larynx. Hence, the observed reduction in

F0 variability can be explained taking into account these disturbances. In addition, the

increased monotony might be the result of PMR reducing laryngeal control and dynamics

[259, 262]. Some studies reported increases in aspiration with depressed speech that

could be explained by the lack of laryngeal control. Another cause could be the increase

in vocal tract tension tightening the vocal folds. This could induce a less variable and

more monotonous sounding speech [208, 255, 257, 258, 263]. Still, this framework is

lacking because an increase in muscle tension may induce a decrease in F0 variation, but

it is not able to explain the observed decreased average F0. On the contrary, an increase

in vocal folds tension should generate an increase in F0. Therefore, one may guess that

F0 is not only a vocal fold movement marker, but also a paralinguistic marker, reflecting

the expressiveness of speech, and thus affected by many different speaker states and

traits [250]. Healthy and depressed persons may show different personality traits and

thus variability [264]. In the literature several variables, associated with depression,

have been shown to be able to affect F0. For instance: changes to a person’s underlying

mood [263], level of agitation and anxiety [244, 257], and personality traits [261]. Hence,

from comparisons with non-depressed individuals [216, 251, 252, 254], F0 possibly lacks
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specificity for depression. Some studies, aiming at the investigation of F0 changes in

depression severity over time, have shown very small statistical effects, that are due to

large numbers of participants [245].

Signal energy parameters appeared to be problematic also. Reduced variability in loud-

ness due to a lack of speaking effort was reported in patients suffering from depression

before treatment. Such deficiency was significantly reduced after treatment [252]. But,

only mild correlations of improvements in mean loudness and variation of loudness with

patient recovery was detected by Stassen et al. [254]. Moreover depressed patients were

found to speak louder than control subjects in Alpert et al. [244], but not at a significant

level. A mixed behavior in patients affected by depression was detected by Stassen in

[265]. In fact, this study it was either reported a lack of signal energy dynamics and

its relative improvement after treatment, or an overly louder speaking before treatment

and a decrease to a normal speaking level after treatment. Quatieri and Malyska [259]

found a mildly significant negative correlations between variability measurements of sig-

nal energy and depression, while a significant positive correlation was found between

signal energy rate of change and depression. According to them, at lower levels of de-

pression signal energy rates can be thought as an index of the improvement of motor

coordination.

Speech rate is one of the most promising prosodic features for detecting depression [194].

In fact many studied showed that depressed persons speak at a slower rate than con-

trols [175, 176, 248, 249, 260, 266–268]. More recently, Stassen et al. [256] reports

that 60% of the enrolled depressed patients showed a speech pause duration that sig-

nificantly correlated with their HAMD score. Speech pause duration was also reported

to be statistically different in depressed patients with respect to healthy control sub-

jects in [244]. Notwithstanding the limited number of enrolled patients, Cannizaro et

al. [258] also showed that a reduced speaking rate was significantly correlated with

HAMD measurements. Such findings were confirmed by Mundt on larger databases in

two studies. In fact, in [195] it was reported that shorter pausing and faster speaking

were detected in patients who responded to treatment with a relative decrease of 50% of

their HAMD score. In a follow-up study [245], six prosodic timing measurements were

found to significantly correlate with depression severity. These are: total speech time,

total pause time, percentage pause time, speech pause ratio and speaking rate. Aver-

age syllable duration was reported to be significantly longer in depressed persons with

respect to the healthy controls ones by Alghowinem et al. [269]. In addition, a positive

correlation between average syllable duration and increasing levels of speaker depression

was shown in [253]. These two results confirm an overall decrease in speech rate with

depression [194]. According to Trevino et al. [218], the speaking rate at the phone level

could be possibly more informative. In fact, they reported that extracting phone-specific
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features about speech rate, and combining the average phone-duration measurements,

that are highly correlated with depression, a stronger relation between speech rate and

depression severity was obtained compared to the global measures previously reported.

A consistent correlation was also obtained in grouping individual phones by manner of

articulation, i.e. vowels or fricatives. The authors highlighted the possible importance

of phone-based indicators of speech rate as a biomarker of depression.

On the one hand, speech rate is clearly one of the strongest features able to detect de-

pression, but on the other hand it is still not understood if a decrease in speaking rate

is a possible measure of motor retardation or of cognitive impairment [194]. According

to Cannizzaro et al. [258], there are two different mechanism to induce a decrease in

speaking rate: the first one is motor impairment, while the second one is the insertion

of longer or more frequent pauses into an utterance. The latter could be induced by a

cognitive impairment if a person has difficulty in choosing the words. In [258], Canniz-

zaro et al. did not report a significant increase in speech pauses, while speech rate was

decreased. Hence these results suggests that motor retardation may induce a decrease in

motor speed and agility and therefore slowing speech. In addition, in [244], it is shown

how an increase in speech pause measurements did not reflect a decrease in speech in-

telligibility. Therefore, the authors stated that speech slowing in depressed people is a

marker of decreased cognitive functioning related to speaker motivation.

Since there are natural variations in individual speaking, and the clinical profile of

depression is quite wide, it is possible to hypothesize that a single feature is not enough

to be used as a clinical marker of depression. Nilsonne et al. [255] hypothesized that,

since some natural F0 variation is present in healthy subjects, an investigation of F0

variation would be more useful if performed within-patient. In fact, natural variations

in speaking result in normalization problems of prosodic features. Moreover Stassen et

al. [265] stated that a multivariate approach is required to perform a proper diagnosis of

depression from speech features. According to Moore et al. [215] F0 can be considered

to be an abstract descriptor of the vocal folds dynamics and therefore it is not able to

report information about vocal fold tension. They showed that glottal features may be

more useful to detect depression than prosodic features.

2.3.2.4 Source features in depression

The features that are related to the source (Table 2.4) of voice production and to the

airflow streaming from the lungs through the glottis are known as source features. Many

of them are extracted from length measures of the glottal flow signal [272, 273], even

if it is not easy to automatically extract these time instants, thanks to a non-uniform
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Table 2.3: Some prosodic measures from the literature for low (control) or high levels
of speaker depression.

Reference Corpus Task Feature
Low level High level Significance
of depression of (Test)
or Control depression

Nilsonne (1987) [270] 16 depressed persons F0 range (Hz) 21 ± 2 15 ± 2 p ≤ 0.001
(both gender) + 16 controls (t-test)

Breznitz (1992) [251] 11 depressed persons interview F0 range (Hz) 38.3 ± 11.3 15.8 ± 18.2 p ≤ 0.004
(females) + 11 controls (t-test)

Alpert et al. (2001) [244] 22 depressed persons interview (SCID [271]) F0 mean (Hz) 150.6 ± 31.4 142.0 ± 27.2 Not
+ 19 controls Significant

Mundt et al. (2012) [245] 54 nonresponders + free speech/ alphabet/ F0 mean (Hz) 153.3 ± 35.7 155.7 ± 33.5 Not
51 responders to counting/ reading/ Significant
anti-depressive treatment sustained vowels

Yang et al. (2013) [261] 10 nonresponder + Interview F0 variation (Hz) 0.23 ± 0.1 0.20 ± 0.1 Not
16 responders to Significant
anti-depressive treatment

Kuny and Stassen (1993) [254] 30 depressed persons Counting+reading Energy per second 11.0 ± 4.8 9.9 ± 3.7 p ≤ 0.01
+ 30 controls +counting (mV 2) (associated (Wilcoxon)

with a syllable)

Alpert et al. (2001) [244] 22 depressed persons interview (SCID [271]) Loudness (dB) 14.2 ± 7.33 18.1 ± 6.37 Not
+ 19 controls (F0 amplitude) Significant

Alpert et al. (2001) [244] 22 depressed persons interview (SCID [271]) Mean pause time (s) 0.68 ± 0.136 0.70 ± 0.162 p ≤ 0.05
+ 19 controls (t-test)

Mundt et al. (2012) [245] 54 nonresponders + free speech/ alphabet/ Total pause time (s) 36.4 ± 19.4 46.3 ± 34.6 p ≤ 0.01
51 responders to counting/ reading/ (t-test)
anti-depressive treatment sustained vowels

Mundt et al. (2012) [245] 54 nonresponders + free speech/ alphabet/ Pause variability (s) 0.51 ± 0.15 0.61 ± 0.20 p ≤ 0.05
51 responders to counting/ reading (t-test)
anti-depressive treatment sustained vowels

vocal fold behavior and formant ripple and noise remaining after inverse filtering, which

is required to remove the effects of a continually changing vocal tract [274].

Source features also inform about voice quality, i.e. the auditory perception of the mod-

ification of vocal fold vibration and vocal tract shape. Information regarding phonation

types or laryngeal qualities can be obtained by means of features that report irregularity

in phonation [147]. Some common voice quality clues are: jitter, that is a cycle-to-cycle

variability of the glottal pulse length during voicing, shimmer, that is a cycle-to-cycle

variability of the speech cycle amplitude during voicing, harmonic−noise ratio (HNR),

that is a ratio between the harmonics and the inharmonics components. It is important

to notice that the lack of standardization in extraction methods, i.e. window duration,

sampling frequency, and F0 extraction technique, influence both jitter and shimmer

estimates, and makes difficult to compare the results obtained from different studies

[275, 276]. The kind of vocal task, i.e. sustained vowels or continuous speech, is also

a further confounding factor when investigating jitter, shimmer and HNR [277]. The

extraction of these cues is easier in sustained vowels, thanks to their intrinsic stationar-

ity, but differences in sound pressure levels both intra- and inter-subjects might produce

errors that possibly could make unreliable the comparison [276]. The detection of voiced

sections in continuous speech make more difficult the analysis of this audio recordings

[277]. In fact, many efforts have been made developing automatic algorithms aiming at

the proper segmentation of the speech signal for glottal source analysis [278, 279]

In the literature, not many studies exist on the effect of depression on source cues

reporting voice quality. An increased aspiration, that is a cue of air leakage at the glottis,

was found in depressed people compared to healthy control subjects [213]. Statistically
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significant differences were found by Ozdas et al. in [222] in jitter but not in the spectral

slope by means of an F-test. But, a pairwise t-test reported spectral slope and not jitter

as significantly different.

Aspiration, which is a perceived excess of airflow estimated by means of a harmonic/noise

decomposition technique, jitter, and shimmer were reported to be correlated with de-

pression severity in [259] by Quatieri and Malyska. These results enabled the authors

hypothesizing the presence of a motor retardation in depression, that reduces the laryn-

geal muscle tension resulting in a more open glottis and turbulent airflow. Hönig et al.

[253] reported a strong negative correlation between depression and shimmer, spectral

harmonics and spectral tilt. Some of these features describe a more breathy phonation in

patients suffering from depression. The Teager Energy Operator (TEO) features was

found to differ statistically significantly between healthy and depressed people [214].

Recently three important studies, authored by Scherer, reported important findings con-

cerning voice quality in depression [205, 217, 280]. In fact, they report in speakers with

moderate to severe depression and speakers without depression a statistically significant

difference of the Normalized Amplitude Quotient (NAQ), i.e. a feature related to the

derivative of the glottal flow rate, and the Quasi−Open−Quotient, i.e. a feature related

to the amplitude measure of the glottal flow rate. Both these features were estimated by

means of the IAIF algorithm [281] in a fully automatic way. Hence, according to these

studies, depressed voices can possibly be described by means of a more strained (tense)

voice quality, confirming the results reported by Darby et al. [252], Flint et al. [213] and

France et al. [221] that showed an increased vocal fold tension in depressed patients.

A boosting of relative energy in the higher frequency range were observed to be related to

an increased laryngeal tension and a subglottal pressure [282, 283]. These results may be

explained by a potential irregularly in the glottal pulses shape due to an excessive tension

and a disturbances in the coordination of the laryngeal musculature [89, 222] under

emotional stress encountered under depressive and suicidal states [222]. Moreover,

Quatieri and Malyska [259] showed a positive correlations of increased high frequencies

in the glottal spectrum after a sub-band decomposition with depression.

2.3.2.5 Formant features in depression

Since an increased muscular tension and changes in salivation and mucus secretion are

related to variation in speaker’s mental state, thanks to the action of the ANS response

[89], such phenomena should also be reflected in formant features variations, providing

information concerning the acoustic resonances of the vocal tract (Table 2.5).
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Table 2.4: Some source measures from the literature for low (control) or high levels
of speaker depression.

Reference Corpus Task Feature
Low level High level Significance
of depression of (Test)
or Control depression

Flint et al. (1993) [213] 30 depressed persons reading 4 sentences Spirantization 0.32 ± 0.43 0.59 ± 0.56 p ≤ 0.02
+ 31 controls (present/absent) (ANOVA)

Ozdas et al. (2004) [222] 10 near-term suicide recorded treatment Jitter 0.0165 ± 0.002 0.0217 ± 0.005 p ≤ 0.05
+ 10 controls sessions (t-test)

Ozdas et al. (2004) [222] 10 near-term suicide recorded treatment Spectral Slope -83.3 ± 5.46 -75.56 ± 8.53 p ≤ 0.05
+ 10 controls sessions (kHz/dB) (t-test)

Scherer et al. (2013) [280] 14 depressed persons virtual human NAQ 0.098 ± 0.026 0.065 ± 0.035 p ≤ 0.002
+ 25 controls interaction (t-test)

Scherer et al. (2013) [280] 14 depressed persons virtual human QOQ 0.360 ± 0.067 0.275 ± 0.096 p ≤ 0.002
+ 25 controls interaction (t-test)

Displaced formant frequencies [195, 213], shown in depressed people, provided evidence

for a decrease in articulatory effort with increasing levels of speaker depression [194]. It

is possible to hypothesize that these effects can be generated by PMR tightening the

vocal tract [213, 221], or a lack of motor coordination that show an opposite behavior

with respect of PMR [194]: an improvement of the first corresponds to a decrease of the

latter [206, 218, 259, 284, 285]. Another possibly explanation is that it is the result of

anti-depressant medication that dry out the vocal tract and mouth, affecting the formant

properties and energy distribution [221].

Significant differences between healthy and depressed persons were shown in formant

frequencies by Flint et al. [213], specially regarding the second formant location for the

diphthong [ai]. The authors, in fact, speculated that the observed reduced F2 location

was generated by a slowing of the tongue in low-back to high-front motion and that this

finding was comparable with those obtained from individuals suffering from Parkinson’s

disease. In this kind of patients, such slowing depends on a depletion of dopamine,

and thus they stated that the result of reduced dopamine, the PMR, can induce these

similar articulatory errors via the slowing of the articulatory muscles and the increasing

of muscle tone. An increased muscular tension could then cause a modification of formant

features in depression. In fact, the narrowing of the formant bandwidth could be the

result of the increased tension [89]. In addition, increased facial tension and reduced

smiling usually shorten the vocal tract, producing the same effects. The tension of the

respiratory and the laryngeal muscles are demonstrated to affect phonation, while the

tone of the supralaryngeal muscles and the different activation patterns of the facial

muscles can affect resonance and radiation characteristics [89].

An increase in formant frequencies (F1-F3) and F1 bandwidth, a decrease in higher

formant bandwidths and a relative spectral flattening were reported in depressed persons

by France et al. [221]. In [195] Mundt et al. reported a not significant correlation

between F1 and depression, and a mild correlation with F2 variability. Later, in [245]

Mundt et al. reported that both F1 and F2 location and variability were not correlated

with depression.
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In [214], Low et al. reported that the first three formants and bandwidths show sta-

tistically significant differences between depressed and control patients. Classification

accuracies equal to or higher than 70% were reported by Helfer et al. [285] developing

a two class low/high depression classifier by means of features related to the formants

dynamics, especially their velocity and acceleration.

Table 2.5: Some formants measures from the literature for low (control) or high levels
of speaker depression.

Reference Corpus Task Feature
Low level High level Significance
of depression of (Test)
or Control depression

Flint et al. (1993) [213] 30 depressed persons reading 4 sentences F2 location (Hz) 1132.7 ± 264.2 944.5 ± 380.8 p ≤ 0.02
+ 31 controls (t-test)

Mundt et al. (2012) [245] 54 nonresponders + free speech/ alphabet/ F1 location (Hz) 546.8 ± 67.1 558.2 ± 51.8 Not
51 responders to counting/ reading/ Significant
anti-depressive treatment sustained vowels

2.3.2.6 Spectral analysis in depression

Power Spectral Density (PSD) and Mel Frequency Cepstral Features (MFCCs) are

common spectral features. Similarly to formants, this kind of features has been seen

to vary with a speaker’s mental status, though there is some disagreement as to the

nature of the effect [194]. In some studies a relative shift in energy from lower to

higher frequency bands [221, 222] were discovered, while in other ones was reported a

reduction in sub-band energy variability [259, 284]. A shift in spectral energy, from

about 500 Hz to 500 - 1000 Hz, with increasing depression severity was found, first of

all by Tolkmitt et al. in [257], and then by France et al. [221] and Ozdas et al. [222].

On the contrary, such a phenomenon was not reported by Yingthawornsuk et al. [286],

where higher energy in 0 - 500 Hz, and lower energy in the 500 - 1000 Hz and 1000 -

1500 Hz bands were reported comparing depressed speech to the remitted speech. The

modification of the resonance properties of the vocal tract filter and the open quotients

and the skewness of the acoustic source could explain such energy shift as the result of

the increase in vocal tract and vocal fold tension [89]. Often the voice produced in these

particular settings are described as throaty, strained or tense [89, 287]. An increased

vocal tract tension was demonstrated to be associated with a throaty voice quality by

means of Magnetic Resonance Imaging (MRI) [287]. Increased muscle tone in the vocal

tract tension produced by PMR, observed in depressed speech, result in alterations of

spectral properties [221, 222].

To estimate MFCCs, that is one of the most common spectral features, the signal is

filtered by means of a bank of non-linearly spaced band pass filters (mel-filters). The

selection of their frequencies response is inspired by the cochlear of the human auditory

system. An estimation of the spectral contour can be obtained by recording the mag-

nitude spectrum via the filters. High quefrencies are related to the harmonics, and the
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first cepstrum coefficient reports the average spectral tilt of the spectrum, for instance.

Often MFCCs are combined with Gaussian Mixture Models to obtain a popular speech

parametrization that has been shown to provide a suitable technique to classify either

low/high levels of depression [288, 289] or the presence/absence of depression [212, 269].

In speaker recognition tasks, MFCCs are usually concatenated with time derivatives

(delta) features, which convey frame-to-frame temporal information. A significant nega-

tive correlation was reported between MFCCs concatenated with time differences, both

the cepstral coefficients and average weighted variance, with the degree of depression

[288]. Such findings, since they report decreasing temporal variations with an increase

in depressive severity, are coherent with the monotonous definition of depressed speech.

A decrease in sub-band energy variability with increasing levels of depression were also

reported. Negative correlations of energy variance with depression, though not signifi-

cant, were reported in [259] by Quatieri and Malyska. In [284], Cummins et al. applied

the Log Mean Subtraction (LMS) to sub-band energy coefficients to report spectral

variability. They reported a negative correlation between such measurements and the

degree of depression. This means that an increasing level of depression is associated with

a decrease in the energy variability. They also report that PMR and depression have

opposite effects on speech production mechanisms: energy variability and depression are

negatively correlated, while energy variability and PMR are positively correlated [284].

The findings of both Quatieri and Malyska [259] and Cummins et al. [284] are consistent

with conclusion drawn in Cannizzaro et al. [258] where the reduction of articulation rate

was related to increased muscle tone [194].

Recently, the effect of PMR on signal energy and formants were investigated. Increases

in phone length were shown with increasing levels of depression in Trevino et al. [218].

Moreover, they found an increased pause length with some depression sub-symptoms,

including PMR, stating that such an increase might be depend on the increased muscu-

lar tension. Significant positive correlations between signal energy rate and PMR were

reported in Quatieri and Malyska [259], and between PMR and sub-band spectral vari-

ability in Cummins et al. [284]. This could mean that persons affected by PMR could

require a major effort to produce and sustain speech, thanks to the lack of motor coordi-

nation [194, 218, 259, 284]. Since depressive symptoms seem to be very heterogeneous,

the development of an overall objective marker by means of a symptom-specific speech

based approach might be recommended [218, 262].
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2.3.2.7 Combination of features in depression

Recently, some efforts have been made to develop systems able to automatically classify

speech, aiming at the detection of the presence or absence of depression, or at assessing

the severity of depression. It is important to notice that if for the presence/absence of

depression the distinct classes are known, regarding severity this is not the case.

Presence of depression

Several sets of features have been investigated to develop automatic speech classifiers

to discriminate depressed persons from healthy subjects. The combination of prosodic,

voice quality, spectral and glottal features was investigated with this aim by Moore et al.

[215], Low et al. [214] and Ooi et al. [290]. Moore et al. [215] reported good classification

accuracies and the suitability of the glottal features for solving the presence/absence

discrimination problem. In addition, Low et al. [214] showed how both glottal and

Teager Energy Operator (TEO) energy features may improve the performances of both

single-feature or combined-feature prosodic or spectral based classifiers.

As opposed to Moore et al. [215] and Low et al. [214], who performed a feature space

fusion technique, Ooi et al. [290] developed a classification method based on a weighted

sum of the intermediate decisions generated by separated GMM classifiers trained on a

particular feature. The weighted fusion outperformed the single feature decision, though

both glottal and prosodic features showed reasonable prediction capability.

Many studies have focussed on the suitability of single prosodic, voice quality, spectral

and glottal features. Some of them, MFCCs and formants and combinations of them

reported the strongest performance in detecting the presence of depression by using a

GMM [192, 212, 269, 285, 291].

Severity of depression

Researchers, who are developing system aiming at the depression severity identification,

also usually investigate features or features set. For instance, Cohn et al. [202] and

Trevino et al. [218] studied prosodic variability. In fact, Cohn et al. [202] investigated F0

and the speech/pause ratio as input to a gender independent SVM classifier reporting an

accuracy of 79% when classifying patients who were responding or not to the depression

treatment. Their work highlighted that timing measures relating to phone length had

stronger correlations with depression severity than global measures of speech rate.

A combination of Normalised Amplitude Quotient (NAQ), Quasi-Open-Quotient (QOQ),

PeakSlope and Open Quotient Neural Network (OQNN ) with a SVM employing a radial

basis kernel [217] was used by Scherer et al. [217] to assess the severity of depression,
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reaching an accuracy of 75%. The 9-item Patient Health Questionnaire (PHQ-9) was

used to label the patients. In [205] Scherer et al. reported an accuracy of 51.28% by

using a combination of NAQ, QOQ and OQNN and a SVM this time employing a 3rd

order polynomial kernel. The authors stated that the unsuitable SVM kernel was the

reason of this lower performances, and, in fact, by using linear discriminant analysis

they reported an accuracy of 76.92%.

Cummins et al. [284] stated that medium-to-long term spectro-temporal information

has strong discriminatory properties when classifying an individual’s level of clinical

depression from their speech.

The first three formant trajectories and associated dynamic information in combination

with Principal Component Analysis (PCA) were used by Helfer et al. [285] to classify

high and low HAMD scored patients. Helfer et al. stated that the maximum area under

the ROC curve was obtained when both formant trajectories and dynamic information

extracted from free response speech or sustained vowels were taken into account during

the system training.

In [288] Cummins et al. explored the MFCCs in combination with the GMM-universal

background model (UBM) and Maximum A Posteriori (MAP) adaptation to model

MFCC data [292]. The authors compared classification accuracies when performing

full MAP adaption versus mean-only, variance-only and weight-only adaptation. Strong

classification performances were reported of variance-only and weight-only adaptation,

but spectral variability was reported to be very important to assess both the presence

and the severity of depression.
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Materials and Methods1

3.1 Speech corpora

In this thesis, different kinds of speech data were studied. Synthetic and real data were

used to evaluate and test the proposed methods. Healthy control subjects were used to

investigate the specificity of the proposed features. At the end, an emotional database

and a mood database, of audio speech recorded from people affected by bipolar disease,

were investigated.

3.1.1 CMU Arctic Database

The CMU Arctic Database [293] provides both audio and electroglottographic (EGG)

recordings. The EGG signal is related to the impedance changes during vocal folds

contact. Therefore EGG signal processing is an important tool to estimate F0 and F0

variability reliably. In Figure 3.1 one observes, in an example, the relation between these

two signals.

In this study the CMU Arctic Database was used to evaluate the reliability and the

performances of the proposed methods. In fact, since the here discussed methods aim at

processing audio speech signals to estimate F0-related features, the EGG signal provides

a useful reference measure. With this aim, the features extracted from audio speech

signals and the features extracted from the EGG signals were compared. To estimate F0

and F0 changes from the EGG signal, a 5-coefficient-Daubechies wavelet-based filtering

was performed to deprive the signal of low frequency drifts. On the pseudo-periodical

detrended signal, a cycle-waveform matching algorithm is used to detect glottal cycle

timing for each voiced segment, using a segment-specific average waveform.

1Part of this Chapter has been already published in [1–5].
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Figure 3.1: Example of an audio signal and its corresponding EGG signal.

The corpus consists of approximately 1100 short sentences, corresponding to more than

8000 vowels. Audio and EGG recordings were sampled at a sampling rate of 32 kHz

and a resolution equal to 32 bit.

3.1.1.1 Cycle-waveform matching algorithm

The cycle-waveform matching algorithm was applied to the first derivative of the EGG

signal (dEGG) (Figure 3.2). First of all, local maxima within every glottal cycle are

detected, then the average cycle-waveform shape is estimated by averaging the frames

delimited by two consecutive maxima. During this preliminary operation, a average

glottal period was estimated as the inverse of the frequency corresponding to the max-

imum of the spectral amplitude. Finally, by sliding the average cycle-waveform shape

along the dEGG signal and computing the estimation of the correlation coefficient (Fig-

ure 3.3), the glottal cycle time instants are detected as the ones that showed a high

correlation coefficient. The glottal cycle time instants are hence used to estimate the

F0-related features.

3.1.2 German Emotional Database

The German Emotional Database [137] is formed by acted speech. Ten different sen-

tences (5 short sentences and 5 long sentences), spoken by ten different actors (5 females

and 5 males) simulating four different emotions (anger, boredom, happiness and neutral)

were retained.
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Figure 3.2: Detrended EGG (at the top) and its corresponding dEGG (at the bottom).
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Figure 3.3: Correlation coefficients between average cycle-waveform shape and dEGG.

Recordings took place in an anechoic chamber. A Sennheiser MKH 40 P 48 microphone

and a Tascam DA-P1 portable DAT recorder were used. Recordings were performed at

a sampling frequency of 48 kHz and later downsampled to 16 kHz. A resolution equal

to 32 bit float was used. The actors were standing in front of the microphone so they

were allowed to use their body language if desired. They were requested to speak in the

direction of the microphone with a distance of about 30 cm.
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3.1.3 Bipolar Database

In this study, patients suffering from bipolar disease were enrolled within the Psyche

European project [294]. PSYCHE (Personalised monitoring SYstems for Care in mental

HEalth) project aimed at developing a personal, cost-effective, multi-parametric moni-

toring system. Such a system was based on textile platforms and portable sensing devices

to allow long- and short- term monitoring of the enrolled patients affected by bipolar

disorders. These patients were assessed and recorded in two different medical centres:

Strasbourg University Clinic, Strasbourg, France and Azienda Ospedaliero Universitaria

di Pisa in Pisa, Italy. All subjects had a clinical diagnosis of bipolar disorder, had the

competence to lead independent and active lives, and had no substance use disorders.

They did not show suicidal tendencies or suffered from delusions or hallucinations.

Seven psychiatric patients (2 females, 40.86± 9.56) were recruited in Strasbourg (Table

3.1), while four patients (1 male, 38.5±9.14) were enrolled in Pisa (Table 3.2). Subjects

were recorded in two or three different days. Before each session, a physician labelled the

patients’ mood status by clinician administered rating scales. Four different states were

identified: depressed, euthymic, hypomanic and mixed. In each day, the experimental

protocol, which received the hospital ethics committee approval, consisted of two sub-

sessions, organized as follows:

• TAT (Thematic Apperception Test) images elicitation: the subject had to com-

ment a series of TAT images [295].

• Neutral text reading: subjects read a text that was supposed not to elicit a strong

emotional reaction

Table 3.1: Patients suffering from bipolar disease enrolled in Strasbourg.

subj. gender age

A M 40

B M 53

C M 40

D M 28

E F 34

F M 54

G F 37

Table 3.2: Patients suffering from bipolar disease enrolled in Pisa.

subj. gender age

H F 32

I M 52

L F 36

M F 34
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The patients enrolled in Strasbourg repeated the “Neutral text reading” twice at each

acquisition day. On average, each task lasted from 3 to 5 minutes. Audio signals

were recorded with two professional directional microphones (AKG Perception P220

Condenser Microphone). One microphone was used to record the clinician’s speech and

to allow automatic detection of patient speech. The audio interface was the M-Audio

Fast-Track. The sample frequency was equal to 48 KHz and the resolution was 32 bits.

The microphone was placed on the table at 25 cm from the speaker’s mouth.

3.1.4 Healthy Control Subjects Database

18 healthy control subjects (9 females and 9 males, 30 ± 5 year) were also recruited.

Healthy control subjects did not report any actual or past psychiatric disorder, and had

no history of neurological or major somatic conditions. At the moment of the study

they were not taking any medication. The subjects were recorded according to the same

experimental protocol that was used to obtain audio data from bipolar patients, but

only ten of them were asked to comment the TAT images. Typically, the second session

was recorded 7 days after the first one.

3.1.5 Synthetic data

Two dataset were synthesized to test the Voice Activity Detection (VAD) algorithm and

the F0-estimation algorithm, discussed in the following sections. The synthetic vowels

were developed by using the parameters reported in Tables 3.4 and 3.5. Vocal tract

model was inspired from the one proposed by Klatt and Klatt [296]. In fact, vocal tract

is modelled as a cascade of formant and antiformant filters. The coupling between the

phonation part and the vocal tract takes into account the modulation of the bandwidth

when the glottis opens as well as the tracheal pole-zero pair. The flow rate was modelled

by means of the Riccati Ordinary Differential Equations. These equations were solved

numerically via a predictor-corrector based on Heun’s method. Glottal physiological and

neurological tremors were modelled according to the modulation noise model proposed

by Steiglitz [297], while muscle jitter was modelled according to the Zolzer’s model

[298, 299].

A different synthetic dataset was developed to test the F0-corrected LTAS algorithm (see

related section). At this aim an autoregressive moving average exogenous (ARMAX)

model [300] was used to synthesize voice samples. Two different F0 mean values with

different applied jitter values were taken into account in this synthesis. The parameters,

estimated from a male [a] vowel, were estimated according to model orders for the AR,

MA and X parts equal to 16, 4 and 2 respectively.
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3.2 Voice activity detection

The detection of voiced segments is required when F0-related features are needed to be

investigated. In this study a method of Voice Activity Detection (VAD) dependent on the

estimation and the evaluation of the signal intensity across time and of the Zero Crossing

Rate (ZCR) [301] was developed. To test the performance of the method, an existing

VAD algorithm was used to compare the segmentation results. This method, already

reported in the literature in the work of Blanco et al. [302], is based on the estimation

and on the evaluation of the autocorrelation function and of the signal energy.

3.2.1 Benchmark method: autocorrelation function and signal energy

The method described in this section [302] and used to test the performances of the

proposed one involves two steps. In the first, the signal energy is estimated frame by

frame by means of a sliding window. A Hamming window of 30 ms and a time hop

of 10 ms were chosen. In this first step, the silent frames were detected and removed.

For that, a threshold for silence versus speech activity detection was set to 20% of

the global average energy of all the frames of one utterance. In the second step, the

autocorrelation coefficient ρss between an analysis frame and the analysis frame delayed

by 62.5 µs was estimated. According to this estimation, the frames were labelled as

voiced if the auto-correlation coefficient was large, and in particular if:

ρvoiced = ρss(62.5µs)/ρss(0s) ≥ 0.9 (3.1)

Only the frames that were characterized by a high relative energy and a high autocor-

relation function were labelled as voiced (Figure 3.4).

Figure 3.4: VAD - Benchmark method: Intervals are labelled as voiced if they report
both energy and autocorrelation coefficients rate higher than their respective thresholds.



Chapter 3. Materials and Methods 83

3.2.2 Proposed method: signal energy and Zero Crossing Rate

Voiced sounds are characterized by high energy values and by lower frequency compo-

nents with respect to unvoiced sounds. Hence, according to this hypothesis, signal energy

across time was estimated using the autocorrelation method as applied to a sliding win-

dow [1]. The energy values were obtained by retaining only the frequencies between 5

Hz and 5 kHz. Unvoiced segments were discarded by means of a threshold, related to

the median value, applied to the logarithmic transform of energy signal. The threshold

level was adjusted according to sensibility and sensitivity criteria. To detect syllables

nuclei, local maxima and local dips of the obtained intensity contour were analysed. Us-

ing an approach similar to [303], a syllable nucleus was considered to be centred around

a local maximum whose intensity was 1 dB higher than the intensity of a preceding local

dip. To discriminate between voiced and possible high intensity unvoiced sound, zero

crossing rate (ZCR) [301] was estimated according to equation 3.2:

ZCR =

N−2∑
n=0

1− sgn[s(n)]sgn[s(n+ 1)]

2
(3.2)

Only the segments that presented a low ZCR value were considered as voiced (Table

3.3). In Figure 3.5 it is possible to observe a concise scheme of the proposed method.

Table 3.3: VAD - Proposed method: Classification of speech signals after energy and
zero crossing rate.

ZCR Energy Label

Low High Voiced

High Low Unvoiced

Figure 3.5: VAD - Proposed method: Flowchart of the voiced segment detection
step. Only the segments having high intensity and low zero crossing rate are considered

voiced.

3.2.2.1 Proposed VAD method: Parameter settings

The effects on VAD performance of the sliding window parameters, i.e. width and time

hop, as well as of the threshold used to detect voiced segments, were investigated. The

CMU Arctic Database [293], which includes audio and electroglottographic recordings,
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was used. Window lengths of 16 ms, 32 ms, 48 ms, 62 ms, and 80 ms and time hops

of 8 ms, 12 ms and 16 ms were analysed. In addition, threshold levels, used to discard

unvoiced segments, ranging from −6 to 6 dB were investigated. The best parameter set

was chosen as the one that showed a specificity higher than 0.9 and a sensitivity higher

than 0.8, considering the segmentation obtained from the EGG as ground truth. The

aim was to minimize the risk of detecting and processing unvoiced segments in place of

voiced ones.

3.2.3 VAD methods comparison: Testing on synthetic data

The outputs of the proposed and benchmark methods differ. In fact, the benchmark

is able to label the usual three categories: voiced, unvoiced and silence. The proposed

VAD is only able to detect voiced frames, separating them from the remaining speech

segments, but it can, in addition, detect syllable nuclei.

Figure 3.6: Scheme of the explored F0 transitions synthesized to test VAD algorithms.
In blue some of the explored F0 trajectories are reported.

To test the performance of the proposed method, a study on synthetic audio signals was

also carried out. A set of 72 audio signals, each one 3 seconds long, was synthesized. The

synthesis produced two voiced segments separated by an unvoiced one. Every voiced

segment was designed to explore different F0 contours, which were varied at the end

of the first voiced segment and at the beginning of the second, to generate different

voiced-unvoiced transients. Each F0 contour, within each voiced segment, started from

an initial F0 value equal to 100 Hz and ended in a final F0 value of 100 Hz. Between

these two fixed F0 values, each voiced segment explored different F0 trajectories. The

parameters were: the F0 targets between the two boundaries, and the target to boundary
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to target transient length. Target F0 values ranged from 80 Hz to 150 Hz, while the

vowel lengths were 0.6, 0.9, and 1.2 s. Vowel lengths were modified by moving the

ending time instants of the first voiced segment, obtaining different target to stop F0

transitions, and by moving the beginning time instants of the second voiced segment,

obtaining different start to target F0 transitions. Target F0 values were always reached

at 0.1 s (first vowel) and 2.9 s (second vowel), while the starting time instants of the

first vowel was set to 0.0 s, and the ending time of the second vowel was set to 3.0 s

(Figure 3.6).Table 3.4 reports the parameter values.

Since the explored parameters were the target F0 values in both vowels, and the ending

time of the first vowel and the starting time of the second one, F0 contours at the end

of the first vowel and at the beginning of the second vowel are expected to vary.

3.3 F0 estimation algorithm

To obtain F0 estimates within each voiced segment an approach based on Camacho’s

Sawtooth Waveform Inspired Pitch Estimator (SWIPE’) algorithm [16] was used. The

SWIPE’ algorithm measures F0 by estimating average peak to valley distance at har-

monic locations. For this aim, a comparison between the spectrum of an audio signal

frame and a spectral cosine-kernel was performed. The comparison is obtained by com-

puting a normalized inner product between the spectrum of the signal and spectral

cosine-kernel. A weighting of the kernel “spectral-lobes” according to a 1/
√

(f) law was

performed. Such a weighting process results in a emphasis of the strongest harmonics

with respect to the weakest ones. This choice matches the decay trend of the harmonics

of vowels sounds.

The analysis window width is chosen to make the width of the main “spectral-lobes”

of the signal spectrum match the width of the positive “spectral-lobes” of the spectral

cosine. In the SWIPE’ algorithm, as opposed to the SWIPE one, only the first and

prime harmonics harmonics of the signal are taken into account, resulting in a signif-

icant reduction of the subharmonic errors commonly found in other pitch estimation

algorithms [16]. The authors reported that using as many harmonics as possible, up

to a certain frequency (usually the Nyquist frequency) outperforms the methods that

use a fixed number of harmonics. To avoid that subharmonics of F0 can be estimated

as real F0, non-prime “spectral-lobes” related to non-prime harmonics of the signal are

removed from the kernel.

The approach, based on Camacho’s SWIPE’ and used in this study, uses a window size

related to the F0 to be estimated. F0 is estimated for each voiced segment by using a
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Table 3.4: VAD test: parameters used to synthesize audio samples. The symbol “-”
indicates that the parameter values vary during synthesis.

Parameter

F0 tuple (Hz) 100 - 100 100 - 100

F1 tuple (Hz) 710 710 230 230 315 315

F2 tuple (Hz) 1150 1150 2000 2000 605 605

F3 tuple (Hz) 2700 2700 3000 3000 2405 2405

F3 tuple (Hz) 2700 2700 3000 3000 2405 2405

Amplitude tuple (Hz) 0.0 1.0 0.0 0.0 1.0 0.0

Amplitude timing (s) 0.0 0.1 - - 2.9 3.0

Lung pressure (kPa) 0,5

Jitter amplitude 0

Jitter bandwidth (Hz) 200

Jitter frequency (flutter) (Hz) 50

Jitter gain (flutter gain) (dB) 0

Tremor amplitude 0

Tremor amplitude (wow) 0

Tremor bandwidth (Hz) 5

Tremor bandwidth (wow) (Hz) 10

Tremor frequency in Hz 5

Tremor frequency (wow) in Hz 2

Speech sampling frequency (Hz) 50000

Trajectory sampling frequency 10000

Area sampling frequency (Hz) 200000

Number of controllable formants 5

Relative tract length 1

Distance between trachea pole / zero 200

Bandwidth multiplier (open glottis) 2

Order of FIR filter 51

FIR filter cut-off 0,08

Area leakage 0

Coupling matrix [[0.0]]

Open quotient 0,6

Amplitude quotient 1

Relative abduction 0,6

Relative tract length 1

Eps for max 0,2

Eps for min 0,5

Male TRUE

sliding window and by using SWIPE’ twice (Figure 3.7). f0 being a first estimate of

F0, the length and the hop of the sliding window, used to obtain the final estimate, are

fixed as follows [300].

T = 4/f0 (3.3)
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∆T = T/4 (3.4)

A F0 value is estimated at every step.

Figure 3.7: Flowchart of the F0 contour estimation step. The spectral matching
approach was performed by using the Camacho’s Swipe’ algorithm [16].

3.3.1 F0 estimation algorithm: Testing on synthetic data

To test the proposed method, 512 audio signals were synthesized. All the audio signals

lasted 3 seconds, and had five different F0 targets. Two of them, the first and the last

were set to 100 Hz and they were located at the beginning (0 s) and at the end (3 s) of

the synthetic vowels. The remaining three F0 targets were located at 1.2, 1.5 and 2.4 s

respectively and they were modified in the range between 80 and 150 Hz with a step of

10 Hz. The three F0 targets enabled simulating the possible F0 contours: rising, falling,

flat, peak and valley. Table 3.5 reports the parameters.

3.4 Vocal features

Hereafter, voiced segments are expected to be interpreted in terms of syllable nuclei

because the VAD only reports voiced segments the intensity of which exceeds a threshold.

The threshold depended on the median of the frame intensity, and it was properly

selected in terms of specificity and sensitivity.

3.4.1 F0, F0 standard deviation, frame-to-frame Jitter

After detecting and segmenting speech signals into voiced segments, and estimating F0

by means of the Camacho’s SWIPE’ [16], a set of vocal parameters were obtained for

each voiced segment [1]. They were the average F0 (meanF0), the standard deviation of

F0 (stdF0), and the frame-to-frame jitter (LpJ), calculated in accordance with equation

3.5:

LpJ =
1

N − 1

N−1∑
i=1

|Fi+1 − Fi|
/ 1

N

N∑
i=1

Fi (3.5)
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Table 3.5: F0 estimation test: parameters used to synthesize audio samples. The
symbol “-” indicates that the parameter values vary during synthesis.

Parameter

Formant timing (s) 0.0 0.75 1.35 1.65 2.25 3.0

F1 tuple (Hz) 710 710 230 230 315 315

F2 tuple (Hz) 1150 1150 2000 2000 605 605

F3 tuple (Hz) 2700 2700 3000 3000 2405 2405

F0 tuple (Hz) 100 - - - 100

F0 timing (s) 0.0 1.2 1.5 2.4 3.0

Amplitude tuple 0.0 1.0 1.0 3.0

Amplitude timing (s) 0.0 0.1 2.9 3.0

Lung pressure (kPa) 0,5

Jitter amplitude 0

Jitter bandwidth (Hz) 200

Jitter frequency (flutter) (Hz) 50

Jitter gain (flutter gain) (dB) 0

Tremor amplitude 0

Tremor amplitude (wow) 0

Tremor bandwidth (Hz) 5

Tremor bandwidth (wow) (Hz) 10

Tremor frequency in Hz 5

Tremor frequency (wow) in Hz 2

Speech sampling frequency (Hz) 50000

Trajectory sampling frequency 10000

Area sampling frequency (Hz) 200000

Number of controllable formants 5

Relative tract length 1

Distance between trachea pole / zero 200

Bandwidth multiplier (open glottis) 2

Order of FIR filter 51

FIR filter cut-off 0,08

Area leakage 0

Coupling matrix [[0.0]]

Open quotient 0,6

Amplitude quotient 1

Relative abduction 0,6

Relative tract length 1

Eps for max 0,2

Eps for min 0,5

Male TRUE

where Fi is the estimated F0 at the i − th frame of each segment. Since the proposed

method of F0 takes into account analysis windows containing approximately four vocal

cycles, the frame-to-frame jitter is an under-estimate of the actual jitter.
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3.4.1.1 Vocal features: Tests on CMU Arctic Database

The performance of the feature extraction, and therefore the whole chain from the

detection of the voiced segments to the final features, was evaluated on the CMU Arctic

Database [293]. Since the database includes audio and EGG recordings, it can be used

to evaluate the reliability of the extracted vocal features.

Since our approach estimates F0 via a sliding window of length T = 4/f0 with a time

hop equal to dt = T/4, but F0 values were estimated from the EGG cycle-by-cycle, the

latter were smoothed in the time domain. In particular, final EGG-derived F0 estimates

at the i -th hop, were obtained as the average of four consecutive F0 values. However,

unsmoothed jitter (cycle-to-cycle Jitter) is also discussed. Feature comparison is carried

out via the correlation coefficient and the slope of the linear model regressing EGG on

audio features.

The reliability of the feature extraction was also studied in different noisy conditions.

The noise that was added to the audio signals were street noise, train noise, Gaussian

noise and echo. The resulting average signal to noise ratio (SNR) is equal to 2.6 dB in

the train noise case, and 2.7 dB for the street noise. The Gaussian noise is added to

realize SNRs equal to 15, 10 and 5 dB. The noise levels were chosen so as to keep good

intelligibility [304]. The time delays, to obtain the echo effect, were equal to 20, 50 and

100 ms.

3.4.1.2 Vocal features: Statistical analyses

The vocal features were used to investigate possible statistically significant differences

in thee kinds of database: emotional, bipolar and healthy control subjects databases.

The German Emotional Database [137] was studied to investigate possible statistically

significant differences across emotional states. First, normality of the segmental feature

distributions was verified by means of a Kolmogorov-Smirnov test. An intra-subject

analysis was carried out by means of a Mann-Whitney U test for non-Gaussian segmental

features, while for the others a t-test was adopted. These two tests were used to compare

the feature distributions, speaker by speaker, between all the couples of emotions. Global

average meanF0, global average stdF0, and global average LpJ were estimated for each

subject in each emotional state. A one-way ANOVA was used to detect differences

among different emotional states in a grouped-subject analysis. The one-way ANOVA

was selected because of the normality observed in the distributions of the global average

features for each state. Detected differences were considered statistically significant if

the corresponding p-values were lower than 0.05.



Chapter 3. Materials and Methods 90

The proposed features were also used to investigate possible differences in the Bipolar

Database and Healthy Control Subjects Database. The average F0 (meanF0), F0 stan-

dard deviation (stdF0) and frame-to-frame jitter (LpJ) were obtained for each voiced

segment of the audio files of each patients. An intra-subject statistical analysis was

performed to investigate changes in the segmental speech features between the sessions.

No comparisons were made between features related to different tasks (reading versus

free speech). A Kolmogorov-Smirnov test was applied to verify the normality of the

segmental feature distributions. A Mann-Whitney U test was adopted for non-Gaussian

segmental features, otherwise a t-test was applied. Null hypotheses of equality of means

or medians was accepted if the obtained p-value was higher than 0.05.

Inter-state changes were investigated using a non-parametric Friedman’s test for paired

global average at the group level to discover coherent features changes from mood to

mood in bipolar patients and between the two different sessions in healthy control sub-

jects. Anyway it is important to say that the limited number of enrolled bipolar patients

did not allow to perform a proper approximation of the Friedman F statistics with the

χ2 distribution. Thus, the estimation of the corresponding significance, i.e. α, was not

considered reliable. For this reason, the critical values for Friedman’s test reported in

[19], obtained through simulations, and corresponding to a statistical significance equal

to 0.05, were used. Differently, inter-session analysis on subjects forming the Healthy

Control Subject Database was investigated using only a non-parametric Friedman’s test

for paired data without the need of using the critical values reported in [19]. Also in

this case, Friedman’s test was applied on global average features.

3.5 Prosodic features

3.5.1 Taylor’s Extended Intonational Model: An application to the

syllable nucleus

Recently, the interest has grown in models that improve the description of the dynamics

of speech features. In particular, the relevance of shape, slope and range of the F0

contour in emotional speech perception, synthesis and automatic recognition has been

described [100, 305–307]. Moreover, local features that describe the temporal dynamics

have been found to complement global, prosodic features [307] (e.g. intonation contour at

the sentence level). Focussing on rising and falling intervals of the stylized fundamental

frequency contour [106] highlighted how the contour slope tends to be steeper in higher

arousal states. The phenomenon of F0 declination across an utterance was also studied
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in emotional speech [308]. Moreover, it was found that the F0 contour slope in the last

syllable of an utterance may convey different moods [309].

In this study, an investigation of the description of F0 contours [2, 3] is carried out

with a view to discriminating among different emotions, and distinguishing different

mood states in bipolar patients. A formal description of F0 contours in syllable nuclei is

discussed. Two categories of features are proposed. The first is borrowed from Taylor’s

Tilt Intonational Model [17] and it describes morphologically F0 contours in voiced

segments. Unlike Taylor, the proposed features are extracted for every syllable nucleus

and not only for intonational events (i.e. pitch accents and boundary tones). The second

category of features is related to the speed of F0 variations and estimates the steepness

of both rising and falling F0 contours in each voiced segment.

The following feature are borrowed from Taylor’s Tilt Model [17]. They report the “rel-

ative sizes of the amplitude and durations of rises and falls” of the contour. Within each

voiced segment, the local contour maximum is detected and the features are estimated

as follows (equations 3.6, 3.7, and 3.8), starting and stopping at the segment boundaries.

Amplitude∗ =
|Arise| − |Afall|
|Arise|+ |Afall|

(3.6)

Duration∗ =
|Drise| − |Dfall|
|Drise|+ |Dfall|

(3.7)

Tilt∗ =
Amplitude∗ +Duration∗

2
(3.8)

Figure 3.8: Parameters of the Tilt Model.
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Arise and Afall are the F0 changes during the rising and falling intervals, Drise and Dfall

are the duration of the rising and falling intervals (see Figure 3.8). Figure 3.9 shows

possible F0 contours and their amplitude* feature values.

Figure 3.9: Examples of 5 contours with their amplitude* values [17].

Amplitude* (ampl*) feature is an index of the difference between the F0 excursion

during rising and falling. Duration* (dur*) reports the time intervals over which rising

and falling occur. Finally tilt* is the mean value of the amplitude* and duration*.

The previous features describe the shape of F0 contours in voiced syllable nuclei, but

they are insensitive to temporal scale. Thus, differently from Taylor, a second category

of features that takes into account the speed of F0 change is considered. The steepness

of the F0 contour during rising (PosSlope) (equation 3.9) and falling (AbsNegSlope)

(equation 3.10) is estimated.

PosSlope = |Arise|/|Drise| (3.9)

AbsNegSlope = |Afall|/|Dfall| (3.10)

Finally, two other features are estimated according to equations 3.11 and 3.12:

SumDer = Sloperise + Slopefall (3.11)
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GlobalSlope =
|Arise| − |Afall|
|Drise|+ |Dfall|

(3.12)

SumDer (equation 3.11) is a sum absolute slope value. GlobalSlope (equation 3.12) is

defined as the F0 slope between the boundaries of each voiced segment.

3.5.1.1 Taylor’s Extended Intonational Model: Statistical analysis

The features were estimated on the emotional speech database first [137], then on the

bipolar and healthy control subjects databases.

As regards the emotional speech database, statistical tests were performed to evaluate

differences among different emotional states. The tests were performed both at single

subject level (i.e. intra-subject) and at the group level (i.e. inter-state).

Parametric and non parametric statistical tests were used according to feature distri-

butions. Gaussianity of feature distribution was tested using a Lilliefors test. The non

parametric statistical tests were the Mann-Whitney U-test for intra-subjects analysis

and the Kruskal-Wallis test for inter-emotion analysis per group. The parametric test

employed was the one-way ANOVA for inter-emotion analysis per group. These two

inter-emotion analysis per group were performed on global average features.

As regards bipolar patient data, intra-subject analyses were performed to test for statisti-

cally significant features changes between mood states. Such an analysis was performed

by means of a Mann-Whitney U-test. The comparison was only performed between

feature sets reporting the same task.

Inter-state changes were investigated using a non-parametric Friedman’s test for paired

data at the group level on global average features to discover coherent features changes

from mood to mood in bipolar patients. Also in this case the limited number of enrolled

bipolar patients did not allow performing a proper approximation of the Friedman F

statistics with the χ2 distribution. For this reason, the critical values for Friedman’s

test reported in [19], obtained through simulations, and corresponding to a statistical

significance equal to 0.05 were used.

To test for specificity of the proposed features with respect to mood changes, features

estimated from different recording sessions, but identically labelled were compared by

means of a Mann-Whitney U-test. This was accomplished by comparing morning and

afternoon recording sessions from bipolar patients.
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Moreover, a comparison between the two-days-related-recordings of subjects forming

the Healthy Control Subject Database was performed. In this latter case both a Mann-

Whitney U-test and a Friedman’s test were used. The first one was used to study intra-

subject feature changes, while the second was applied to investigate possible coherent

feature changes between the two recording sessions. The Friedman’s test was used on

global average features directly without the need of using the critical values reported in

[19].

3.5.2 Spectral analysis of Intonational contours

In the literature, the speech intonation contour has been found to be a reliable indicator

of mood changes from a euthymic to an either depressed or manic state [3]. Despite

the relevance of the results, several limitations have been observed. Particularly, the

direction of the features changes was not coherent across subjects. Better consistency

may be achieved both by improving subject status characterization, e.g. by evaluating

anxiety level [3], and by investigating other features. In this work a spectral analysis

of the F0 contour [4] is proposed to investigate differences in mood states in patients

suffering from bipolar disorder.

In a first step, voice activity detection (VAD) is carried out by means of autocorrelation

coefficients and speech energy, which reports any voiced segment and not prominent

syllable nuclei only. Later, the F0 contour is estimated within any voiced segments by

means of Camacho’s SWIPE’ algorithm [16]. A cubic spline interpolation is used to ob-

tain F0 contours in unvoiced segments, while F0 in silent pauses is set to 0 Hz. Finally

a set of 7 features is extracted from the spectrum of each mean-subtracted F0-contour.

Power spectral density is estimated from each recording using the periodogram. The

features are: median frequency (Fmedian), power amplitude at the median frequency

(Amedian), maximum peak power amplitude (Apeak), and the corresponding frequency

(Fpeak), the ratios between amplitudes and corresponding frequencies, and Slope accord-

ing to (equations 3.13, 3.14, 3.15) (Figure 3.10).

Ratiopeak = Apeak/Fpeak (3.13)

Ratiomedian = Amedian/Fmedian (3.14)

Slope =
Apeak −Amedian

Apeak −Amedian
(3.15)
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Figure 3.10: Definition of spectral F0 features.

3.5.2.1 Spectral analysis of Intonational contours: Statistical analysis

This kind of analysis was performed on bipolar and healthy control subject. In particular,

only bipolar subjects who were labelled euthymic in at least one recording were used

in this study. Moreover, in this study only the reading task was considered. When the

same mood state had been recorded twice for the same speaker, the features extracted

from the two audio recordings, were averaged. Thus, for each subject and for each

mood state one value for each feature is estimated. Friedman’s test was used to check

for statistical differences in paired data corresponding to different mood states (in the

same patients), while Mann-Whitney U-test was used to investigate such differences for

independent samples (i.e. different patients and different mood states). The latter was

performed with and without normalization with respect to the same patient’s features

estimated in the euthymic state. Since the limited number of enrolled bipolar patients

did not allow performing a proper approximation of the Friedman F statistics with the

χ2 distribution, the critical values for Friedman’s test reported in [19], obtained through

simulations, and corresponding to a statistical significance equal to 0.05 were used. Such

an approximation was required because the corresponding significance, i.e. α, was not

considered reliable.

Inter-session analysis on subjects forming the Healthy Control Subject Database was

investigated using a non-parametric Friedman’s test for paired data.
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3.6 Voice quality

In previous studies the importance of voice quality characterizing phonation in people

suffering from depression [213, 221, 310] or when conveying different emotions in verbal

communication [147] was highlighted. As opposed to prosody and loudness related

features, voice quality was seen as playing a role in communicating the valence of an

emotion rather than its activation [311]. Instead, in [147] it was asserted that differences

in voice quality can only report different timbres in an otherwise euthymic utterance.

Here, the Long-Term Average Spectrum (LTAS) is estimated to study voice quality from

audio signals acquired from bipolar patients and healthy control subjects when reading

a neutral text [5]. Moreover, a comparison between the results of the LTAS with and

without a correction accounting for differences in speech fundamental frequency (F0),

previously tested on synthetic vowels, is introduced [5]. In addition, this method is

also applied to the German Emotional Database to test possible statistically significant

differences among the four emotions under study.

3.6.1 Long-Term Average Spectrum of Speech

The first step consists in the localization of voiced intervals by means of the method based

on the autocorrelation function and on signal energy (Figure 3.4), while in the second

step, LTAS of voiced intervals is calculated by means of the Fast Fourier Transform (fft).

Figure 3.11: Scheme of Long-Term Average Spectrum.

All the audio signals are normalized to the range [−1; 1] to compensate for possible in-

tensity changes across recordings. After having localized voiced intervals, the normalized

audio signal is filtered by means of a pre-emphasis filter (α=0.99) to reduce ultra-low
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frequency spectral components. Then, in a second step, to estimate the LTAS, an fft

algorithm is applied within a window sliding within each voiced interval. A Hamming

window function of 5 ms long (bin width=200 Hz) and a time hop of 3 ms are used.

Finally, the LTAS is estimated by averaging over the whole utterance the amplitude

spectra obtained for each voiced frame according to (3.16):

L[k] = 1/N

N∑
i=1

Si[k] (3.16)

where N is the total number of voiced frames, Si is the amplitude spectrum of the

ith frame, and k is the index of the frequency component (see Figure 3.11). Since

high-frequency components are characterized by lower amplitudes than low-frequency

components, a boosting of the former is performed by calculating the logarithm of the

spectral amplitude plus one (3.17).

Lboosted = log(1 + L) (3.17)

3.6.2 F0-corrected LTAS: a proposed method

Since LTAS reflects the contribution of the global source and the vocal tract for the voice

quality, a further LTAS estimating algorithm is used to perform a F0 correction of the

LTAS. In fact, similarly to [312] windows selecting the current F0 periods are used. Here,

the Dypsa algorithm [313] is used to estimate glottal closure instants and thus glottal

cycles lengths in each voiced segment. Hence, the frame length is set to the 90% of

current F0 period, and the frame start is anticipated, with respect to the glottal closure

instant, of the 5% of current F0 period. A longer time-window analysis would provide

a spectrum in which the frequencies corresponding to the formants depend also on the

glottal impulse [314]. Finally, the obtained spectra are binned in a new frequency axis

(bin width=150Hz) before averaging and normalizing to obtain power spectral density

in each bin [312]. Such an operation is necessary to properly combine spectra which

have a slightly different frequency resolution, given the different windows lengths.

3.6.3 Voice quality study: Method Testing and Statistical Analysis

In this study different kinds of data were analysed: both synthetic and real samples were

analysed.
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To study the effect of F0 on LTAS, an analysis on synthetic voice data was performed. An

autoregressive moving average exogenous (ARMAX) model [300] is used to synthesize

voice samples at two different F0 mean values and by varying the applied jitter. The

model parameters were estimated from a male [a] vowel, using model orders for the AR,

MA and X parts equal to 16, 4 and 2 respectively. A comparison between the LTAS

profiles estimated from vowels at different F0 is performed.

As regards real voice samples, the results using LTAS estimation with and without

F0 correction are discussed in view of the meanF0 distribution across audio signals.

MeanF0 is estimated via Camacho’s SWIPE’-based algorithm [16]. For this purpose,

voiced segments are detected by means of the method based on the autocorrelation

function and on signal energy (Figure 3.4), coherently with the one used to estimate

LTAS from every voiced segments.

An average LTAS and meanF0 were estimated for all the daily pairs (when two recordings

were acquired at a same day) of recordings.

Regarding the German Emotional Database, a non-parametric Kruskal-Wallis test was

used to detect possible statistically significant differences in frequency contents related to

emotional states in a grouped-subjects analysis. In this case, the Benjamini & Hochberg

[315] procedure for controlling the false discovery rate was used to adjust the estimated

p-values.

Regarding the Bipolar Database, a non-parametric statistical test was used to inves-

tigate differences among the frequency content and meanF0 in different mood states.

Friedman’s test was used to perform pairwise comparison between euthymia and de-

pression and euthymia and hypomania. Statistical analysis were performed in the band

0-8000 Hz on each frequency bin independently.

Anyway the limited number of enrolled bipolar patients did not allow performing a

reliable approximation of the Friedman F statistics with the χ2 distribution, and of the

corresponding significance, i.e. α. To overcome this limitation, the critical values for

Friedman’s test reported in [19] were used. These critical values were, obtained through

simulations, and corresponded to a statistical significance equal to 0.05.
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4.1 Voice activity detection

4.1.1 Proposed VAD method: Parameters settings

Before comparing VAD methods it was important to find the best parameters settings.

Several parameter values were investigated to search for the best configuration set. EGG

provided by the CMU Arcitic Database [293] were useful, since they enable detecting the

instants of maximal acoustic excitation. In Figures 4.1 and 4.2 the obtained specificity

and sensitivity values are reported for each parameter set. w is the window length and

s is the time hop in ms.
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Figure 4.1: Specificity values obtained for each configuration set.

1Part of this Chapter has been already published in [1–5].
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Figure 4.2: Sensitivity values obtained for each configuration set.

The best parameter set for the CMU Arctic database, according to the specificity and

sensibility criteria, was found to be 16 ms for time hop, 32 ms for the window length

and 0 dB with respect to the median intensity level for the threshold.

4.1.2 VAD methods comparison: Test on synthetic data

The time instants detected by the two VAD algorithms were compared with those set

during the synthesis process where the target F0 values and vowel lengths were varied.

Regarding the benchmark VAD method, the one including autocorrelation functions and

signal energy, the results are reported in Figures 4.3 and 4.4. In Figure 4.3 the median

absolute value of the error in detecting the starting time (∆ts) and ending time (∆ts),

and the difference between real and measured vowel lengths (∆L) are reported when

the target F0 value is varied. The same statistics are reported in Figure 4.4 varying the

vowel length.

The same statistics concerning the proposed VAD algorithm, i.e. the algorithm involving

signal intensity and zero crossing rate, are reported in Figures 4.5 and 4.6.

Both algorithms show similar trends: a lower absolute median error in the quicker

transitions, i.e. at the beginning of the first vowels and at the ending of the second

ones. While a greater absolute median error occur in the slower transitions. Moreover,

such errors seem to increase with the vowel length and thus with the slowness of the

transitions (see Figures 4.4 and 4.6).
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Figure 4.3: VAD - Benchmark method: Trends of ∆ts, ∆te, and ∆L when varying
F0.
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Figure 4.4: VAD - Benchmark method: Trends of ∆ts, ∆te, and ∆L when varying
Vowel length.

Table 4.1: Mean absolute error between time intervals [s].

Vowel 1 Vowel 2
∆ts ∆te ∆ts ∆te

Benchmark Method 0.045 0.310 0.320 0.030

Proposed Method 0.020 0.240 0.215 0.025

The comparison between the two methods enables to conclude that the proposed method

outperforms the benchmark method since lower absolute mean differences between real

and detected transition time intervals are obtained (Table 4.1). In Figures 4.7 and 4.8
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Figure 4.5: VAD - Proposed method: Trends of ∆ts, ∆te, and ∆L when varying F0.
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Figure 4.6: VAD - Proposed method: Trends of ∆ts, ∆te, and ∆L when varying
Vowel length.

the relative histograms are displayed.

4.2 F0 estimation algorithm: Test on synthetic data

To evaluate the reliability of the F0 estimation algorithm, the percentage deviations

from the expected F0 values were taken into account. Table 4.2 reports the median

percentage deviation from F0 target values. The median percentage deviations from the

expected F0 values are low. A median percentage error, for all the five target times,
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Figure 4.7: VAD - Benchmark method: Histogram of median absolute errors.
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Figure 4.8: VAD - Proposed method: Histogram of median absolute errors.

Table 4.2: Percentage deviations from the expected F0 values [%]. The median values
are reported according to F0 trajectory and globally.

F0 trajectories F01 F02 F03 F04 F05
timing [s] 0 1.2 1.5 2.4 3.0

rising 1.14E-01 1.58E-01 4.21E-01 2.90E-01 9.53E-01

peak 1.14E-01 1.57E-01 4.07E-01 1.82E-01 7.38E-01

falling 1.59E-01 2.24E-01 4.67E-01 1.13E-01 7.03E-01

valley 1.59E-01 2.25E-01 4.02E-01 3.10E-01 6.27E-01

flat 1.36E-01 2.34E-01 4.37E-01 2.02E-01 5.82E-01

total 1.14E-01 2.02E-01 4.27E-01 2.63E-01 7.03E-01
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Figure 4.9: Histograms of the percentage deviations from the expected F0 values.
The indices refer to the target times.

equal to 2.85E − 1 % was reported. The corresponding histograms are shown in Figure

4.9.

4.3 Bipolar dataset: scoring

The subjects were in a different mood state for all the daily recording sessions (see

Tables 4.3 and 4.4). In the first recording session, subjects A, B, C and G were scored

as hypomanic while subjects D, E, F, H, I and L were scored as depressed, and subject

G was scored as mixed. All subjects but two were scored as euthymic in the second

recording session. Subject E was scored as hypomanic in the second acquisition day,

and subject M as depressed. Subject B was scored as depressed and subject M as

euthymic in the third session.
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Table 4.3: Patients suffering from bipolar disease enrolled in Strasbourg.

subj. gender age label day 1 label day 2 label day 3

A M 40 Hypomania Euthymia

B M 53 Hypomania Euthymia Depression

C M 40 Hypomania Euthymia

D M 28 Depression Euthymia

E F 34 Depression Hypomania

F M 54 Depression Euthymia

G F 37 Hypomania Euthymia

Table 4.4: Patients suffering from bipolar disease enrolled in Pisa.

subj. gender age label day 1 label day 2 label day 3

H F 32 Depression Euthymia

I M 52 Depression Euthymia

L F 36 Depression Euthymia

M F 34 Mixed Depression Euthymia

4.4 Vocal features

4.4.1 F0, F0 standard deviation, frame-to-frame jitter

4.4.1.1 Vocal features: Tests on CMU Arctic Database

The F0 estimates obtained from the EGG signal were compared with those obtained

from the audio files. The speech corpus considered for the test contains more than 8000

vowels. A linear regression model was adopted for meanF0, while a logarithmic model

was considered when evaluating the F0 standard deviation (stdF0), the cycle-to-cycle

jitter and the frame-to-frame jitter (LpJ). The voiced segment average F0 (meanF0) is

always very well correlated with F0 estimated from the EGG files. The slope in the

log-log regression model relates the percentage changes in the dependent variable to

those in the independent variable. Thus, a slope smaller than one identifies a smaller

increase in the estimated features with respect to the actual data measured from EGG

data. Both stdF0 and LpJ cannot be reliably estimated when echo is applied and they

are more sensitive to noise than average F0. Cycle-to-cycle jitter is less correlated with

the true values than LpJ.

The correlation coefficient and the slope of the regression models are reported in Table

4.5. In particular, the correlation coefficient between the two values of F0 is 0.99 and

the fitted linear regression model has a slope equal to 1.02 and an intercept equal to

−2.9 Hz. Figure 4.10 shows the corresponding graph.
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Table 4.5: Slope (α) and correlation coefficient (ρ): regression model relating the
features from audio and EGG files.

F0 SD cycle-to-cycle Jitter LpJ

Linear model Log-Log. model Log-Log. model Log-Log. model

α ρ α ρ α ρ α ρ

No Noise 1.02 0.99 1.00 0.95 0.62 0.79 0.98 0.94

Street Noise 1.02 0.99 1.00 0.93 0.63 0.78 0.98 0.90

Train Noise 1.03 0.99 1.00 0.92 0.62 0.77 0.97 0.90

Gaussian Noise 15dB 1.02 0.99 1.00 0.94 0.63 0.80 0.99 0.93

Gaussian Noise 10dB 1.02 0.99 1.00 0.94 0.60 0.78 0.98 0.93

Gaussian Noise 5dB 1.03 0.99 0.98 0.90 0.55 0.75 0.88 0.87

Echo 20ms 1.01 0.99 0.66 0.71 0.36 0.40 0.62 0.63

Echo 50ms 1.03 0.97 0.58 0.61 0.37 0.40 0.58 0.57

Echo 100ms 1.05 0.95 0.64 0.66 0.45 0.55 0.62 0.66
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Figure 4.10: F0 estimated from audio signals (x -axis) compared with F0 from EGG
signal.

4.4.1.2 Vocal features: Emotion Database

The results on the intra-subject analysis are reported in Tables 4.6, 4.7 and 4.8. Sta-

tistically significant differences between every couple of emotion are highlighted with

different symbols, namely: ∗ (Anger versus Neutral), + (Anger versus Boredom), ¶
(Anger versus Happiness), ♦ (Neutral versus Boredom), ∂ (Neutral versus Happiness)

and • (Boredom versus Happiness). The greatest number of statistically significant

differences concerns the comparisons between the emotion related to higher and lower

arousal states, i.e. between boredom or neutral and anger or happiness. In some sub-

jects it is possible to detect some statistically significant differences between the features

extracted from audio recorded while the actors were playing higher arousal emotions, i.e

happiness vs. anger, or lower arousal emotions, i.e. boredom vs. neutral.

Such behaviour is observable on the three investigated features: average F0 (meanF0),

standard deviation of F0 (stdF0), and frame-to-frame jitter (LpJ). Anyway, meanF0
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Table 4.6: Mean and SD of F0 estimated from voiced segments (Hz).

meanF0

Subj.. Anger Neutral Boredom Happiness

1 215.26 ± 35.22 ∗+ 125.32 ± 12.63 ∗♦∂ 109.49 ± 12.02 +♦• 221.08 ± 33.45 ∂•
2 303.45 ± 41.68∗+¶ 207.72 ± 23.32 ∗♦∂ 188.58 ± 31.82 +♦ 262.79 ± 48.06 ¶∂•
3 279.07 ± 39.44 ∗+¶ 163.96 ± 14.10 ∗∂ 167.99 ± 21.67 +• 339.33 ± 50.70 ¶∂•
4 193.22 ± 27.63 ∗+ 109.99 ± 10.42 ∗∂ 105.98 ± 9.97 +• 213.92 ± 23.63 ∂•
5 216.40 ± 40.59 ∗+¶ 113.52 ± 8.18 ∗∂ 112.21 ± 11.40 +• 188.59 ± 28.00 ¶∂•
6 212.79 ± 24.50 ∗+¶ 138.50 ± 11.43 ∗♦ 147.56 ± 21.70 +♦ 144.29 ± 12.25 ¶
7 319.37 ± 37.06 ∗+ 198.84 ± 16.98 ∗♦∂ 171.56 ± 20.53 +♦• 304.69 ± 46.96 ∂•
8 294.90 ± 39.34 ∗+¶ 167.09 ± 12.90 ∗♦∂ 176.45 ± 33.73 +♦• 283.41 ± 37.76 ¶∂•
9 224.44 ± 27.06 ∗+ 107.22 ± 11.00 ∗∂ 101.54 ± 12.58 +• 228.58 ± 48.28 ∂•
10 309.26 ± 46.68 ∗+¶ 202.98 ± 25.32 ∗∂ 201.20 ± 36.12 +• 335.27 ± 49.47 ¶∂•

Table 4.7: Mean and SD of F0 standard deviation estimated from voiced segments
(Hz).

stdF0

Subj. Anger Neutral Boredom Happiness

1 11.69 ± 6.60 ∗+ 4.46 ± 2.92 ∗∂ 6.25 ± 4.31 +• 15.11 ± 10.01 ∂•
2 22.95 ± 11.73 ∗+¶ 10.04 ± 4.78 ∗♦∂ 5.43 ± 3.58 +♦• 15.86 ± 10.12 ¶∂•
3 13.28 ± 8.23 ∗+ 6.49 ± 3.82 ∗♦∂ 3.83 ± 2.25 +♦• 14.04 ± 10.54 ∂•
4 13.84 ± 7.71 ∗+ 3.23 ± 2.49 ∗♦∂ 2.22 ± 1.49 +♦• 10.70 ± 7.00 ∂•
5 15.44 ± 9.10 ∗+ 3.16 ± 2.29 ∗∂ 2.91 ± 1.37 +• 13.11 ± 7.92 ∂•
6 10.91 ± 6.88 ∗+ 5.26 ± 3.11 ∗♦ 3.79 ± 2.59 +♦• 8.71 ± 5.81 •
7 14.79 ± 0.69 ∗+ 7.17 ± 4.45 ∗∂ 5.46 ± 3.73 +• 17.81 ± 10.08 ∂•
8 16.17 ± 8.07 ∗+ 5.30 ± 2.61 ∗∂ 6.35 ± 4.06 +• 19.39 ± 10.25 ∂•
9 10.83 ± 6.86 ∗+ 2.51 ± 1.77 ∗∂ 2.61± 1.79 +• 12.35 ± 5.51 ∂•
10 16.22 ± 8.86 ∗+ 5.20 ± 3.05 ∗∂ 6.77 ± 3.54 +• 17.29 ± 8.53 ∂•

Table 4.8: Mean and SD of frame-to-frame jitter estimated from voiced segments (%).

LpJ

Subj. Anger Neutral Boredom Happiness

1 1.19 ± 0.53 1.03 ± 0.57 1.39 ± 0.98 1.40 ± 0.64

2 1.10 ± 0.38 + 1.03 ± 0.32 ♦ 0.57 ± 0.26 +♦• 1.03 ± 0.40 •
3 0.81 ± 0.33 ∗ 0.96 ± 0.51 ∗♦∂ 0.67 ± 0.35 ♦ 0.65 ± 0.40 ∂

4 1.46 ± 0.52 ∗+ 1.24 ±0.66 ∗♦ 0.79 ± 0.38 +♦• 1.33 ± 0.70 •
5 1.32 ± 0.56 ∗+ 1.23 ± 0.70 ∗∂ 0.82 ± 0.39 +• 1.61 ± 0.75 ∂•
6 1.03 ± 0.49 +¶ 1.08 ± 0.59 ♦ 0.68 ± 0.38 +♦• 1.71 ± 1.04 ¶•
7 0.88 ± 0.42 + 0.80 ± 0.35 ♦ 0.63 ± 0.27 +♦• 0.84 ± 0.37 •
8 0.96 ± 0.40 +¶ 0.88 ± 0.32 ♦∂ 0.73 ± 0.33 +♦• 1.12 ± 0.52 ¶∂•
9 0.96 ± 0.35 ¶ 0.99 ± 0.61 0.87 ± 0.40 • 1.23 ± 0.63 ¶•
10 0.72 ± 0.27 + 0.70 ± 0.32 0.59 ± 0.23 +• 0.74 ± 0.27 •

seems to outperform the other two features, since in six out of ten subjects it displays

statistically significant differences between the two high arousal emotions, and in five

out of ten between the two low arousal emotions.

The results regarding the groupwise analysis are reported in Figures 4.11, 4.12, and
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Figure 4.11: Results at group level of emotional speech data. Graphs of one-way
ANOVA test of meanF0.
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Figure 4.12: Results at group level of emotional speech data. Graphs of one-way
ANOVA test of stdF0.

Table 4.9: Group results of emotional speech: average values and p-values of the
one-way ANOVA tests.

Mean

feature p-value anger neutral boredom happiness

meanF0 1,64e-06 256.78 153.48 148.54 252.23

stdF0 3,52e-11 14.50 5.20 4.56 14.35

Jitter 1,38E-02 1.03 0.99 0.77 1.16

4.13 and in Table 4.9. The analyses confirm for meanF0 and stdF0 the statistically

significant differences between levels of arousal. In fact, such features report to be
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Figure 4.13: Results at group level of emotional speech data. Graphs of one-way
ANOVA test of Jitter.

statistically significant different in high arousal emotion recordings (happiness and anger)

with respect to the low arousal emotion recordings (boredom and neutral). LpJ shows

statistically significant differences between boredom and happiness only.

4.4.1.3 Vocal features: Bipolar Database and Healthy Control Subject Database

In this section, preliminary results on patients are described. Only the recordings of the

first two acquisition days are taken into account here. All the subjects were in a different

mood state in the second recording session with respect to the first one. F0 values have

been normally distributed, while frame-to-frame jitter and within voiced segment F0

standard deviations, have not been normally distributed. Results are reported in Tables

4.10 to 4.12. Statistically significant differences between recordings related to the same

task are marked with the same symbol (∗ or †).

MeanF0 was found to be higher in the hypomanic state with respect to euthymic state

in the reading task (Table 4.10). When statistically significantly different, the same

trend was found in TAT task, except for subject G. Subject G did not show a coherent

trend in the two tasks. Moreover, F0 was higher in the euthymic compared to the

depressed state for subjects E, H and I, while the opposite was observed in subjects F

and L. Differences were observed between tasks (Table 4.10). Subject F, passing from

depression to euthymia, did not show a coherent trend between the two tasks, while

subject M, passing from mixed to depressed state, showed a lower meanF0 in the first

state with respect to the latest one, in both tasks (Table 4.10).
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Table 4.10: Mean and standard deviation (SD) of meanF0 estimated from voiced
segments (Hz).

Mood States meanF0

Subj. Day 1 Day 2 Reading 1 TAT 1 Reading 2 TAT 2

A Hypomania Euthymia 130 ± 7 ∗ 130 ± 17 125 ± 8 ∗ 129 ± 21

B Hypomania Euthymia 112 ± 9 ∗ 132 ± 24 ∗ 109 ± 10 ∗ 104 ± 14 ∗
C Hypomania Euthymia 100 ± 8 ∗ 103 ± 15 97 ± 6 ∗ 102 ± 13

D Depression Euthymia 106 ± 4 106 ± 11 105 ± 4 105 ± 11

E Depression Hypomania 189 ± 9 ∗ 179 ± 29 192 ± 10 ∗ 178 ± 36

F Depression Euthymia 107 ± 4 ∗ 117 ± 9 † 101 ± 7 ∗ 100 ± 11 †
G Hypomania Euthymia 202 ± 18 ∗ 188 ± 39 † 195 ± 18 ∗ 206 ± 47 †
H Depression Euthymia 189 ± 19 ∗ 184 ± 15 † 215 ± 30 ∗ 210 ± 33 †
I Depression Euthymia 124 ± 13 ∗ 122 ± 17 † 141 ± 17 ∗ 132 ± 25 †
L Depression Euthymia 182 ± 83 ∗ 157 ± 28 172 ± 19 ∗ 159 ± 27

M Mixed Depression 238 ± 24 ∗ 237 ± 26 † 243 ± 18 ∗ 243 ± 26 †

Table 4.11: Median and median absolute deviation (MAD) of stdF0 estimates (Hz).

Mood States stdF0

Subj. Day 1 Day 2 Reading 1 TAT 1 Reading 2 TAT 2

A Hypomania Euthymia 2.83 ± 1.80 3.27 ± 1.91 3.04 ± 1.88 3.13 ± 2.08

B Hypomania Euthymia 4.60 ± 3.40 4.88 ± 3.55 ∗ 4.81 ± 3.76 2.58 ± 1.67 ∗
C Hypomania Euthymia 2.97 ± 1.57 ∗ 2.85 ± 1.82 † 2.50 ± 1.35 ∗ 2.36 ± 1.34 †
D Depression Euthymia 1.97 ± 1.10 2.25 ± 1.28 1.93 ± 1.04 2.19 ± 1.17

E Depression Hypomania 4.10 ± 1.93 5.81 ± 3.40 4.19 ± 2.22 6.30 ± 3.93

F Depression Euthymia 2.32 ± 1.17 2.87 ± 1.76 † 2.38 ± 1.27 2.68 ± 1.52 †
G Hypomania Euthymia 6.32 ± 3.55 ∗ 4.53 ± 2.64 † 5.06 ± 2.74 ∗ 5.99 ± 3.75 †
H Depression Euthymia 3.89 ± 1.91 3.80 ± 2.03 † 3.70 ± 1.91 7.97 ± 3.43 †
I Depression Euthymia 3.37 ± 2.15 2.35 ± 1.65 2.94 ± 1.60 2.58 ± 1.83

L Depression Euthymia 4.21 ± 2.85 1.85 ± 1.15 4.55 ± 3.05 3.08 ± 2.33

M Mixed Depression 4.56 ± 2.47 ∗ 3.09 ± 1.66 3.92 ± 2.03 ∗ 3.21 ± 1.86

When statistically significant differences were found (Table 4.11), the stdF0 estimated

from the recordings in the hypomanic state were higher than those observed in the

euthymic state, without exception. Subject G showed the opposite trend in the TAT

task. Incoherent trends were find concerning the depression-hypomania transitions. A

higher stdF0 value was observed in mixed state with respect to the depressed one.

Table 4.12: Median and median absolute deviation (MAD) of jitter estimated from
voiced segments (%).

Mood States LpJ

Subj. Day 1 Day 2 Reading 1 TAT 1 Reading 2 TAT 2

A Hypomania Euthymia 0.58 ± 0.30 ∗ 0.73 ± 0.38 0.70 ± 0.36 ∗ 0.69 ± 0.38

B Hypomania Euthymia 1.13 ± 0.70 1.04 ± 0.65 ∗ 1.12 ± 0.72 0.80 ± 0.45 ∗
C Hypomania Euthymia 0.94 ± 0.43 ∗ 0.83 ± 0.47 † 0.86 ± 0.41 ∗ 0.69 ± 0.36 †
D Depression Euthymia 0.62 ± 0.27 0.67 ± 0.35 0.64 ± 0.27 0.70 ± 0.34

E Depression Hypomania 0.50 ± 0.20 0.67 ± 0.34 0.49 ± 0.22 0.71 ± 0.43

F Depression Euthymia 0.66 ± 0.30 ∗ 0.64 ± 0.34 † 0.77 ± 0.35 ∗ 0.82 ± 0.40 †
G Hypomania Euthymia 0.62 ± 0.29 ∗ 0.49 ± 0.23 † 0.56 ± 0.25 ∗ 0.59 ± 0.32 †
H Depression Euthymia 0.55 ± 0.23 ∗ 0.53 ± 0.31 0.40 ± 0.16 ∗ 0.83 ± 0.22

I Depression Euthymia 0.72 ± 0.37 0.51 ± 0.30 0.62 ± 0.26 0.54 ± 0.37

L Depression Euthymia 0.54 ± 0.30 0.32 ± 0.17 0.64 ± 0.37 0.54 ± 0.35

M Mixed Depression 0.44 ± 0.18 0.37 ± 0.19 0.42 ± 0.18 0.33 ± 0.15
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In two out of three patients, showing statistically significant differences, LpJ was found

to be higher in the hypomanic state compared to the euthymic one (Table 4.12). The

direction of change was not always coherent. Subject F showed, coherently in both

tasks, an LpJ lower in the depressed state with respect to the euthymic state (Table

4.12). The opposite trend was observed for subject H in the reading task.

It was possible to perform pairwise comparisons exploiting 4 hypomania-euthymia and

5 depression-euthymia transitions (Table 4.13). Statistically significant differences were

observed in meanF0 between hypomania and euthymia in the neutral reading task. A

decrease of F0 was observed. With regard to LpJ a coherent increase was observed for

the depression-euthymia transition.

Table 4.13: Results regarding paired inter-state analysis on bipolar data. In bold
the statistically significant differences are highlighted. The significant differences are

detected according to the critical values for Friedman’s Fr reported in [19].

P-values HE - Friedman’s test DE - Friedman’s test

Reading TAT Reading TAT

meanF0 <0.05 >0.05 >0.05 >0.05

LpJ >0.05 >0.05 >0.05 >0.05

stdF0 >0.05 >0.05 >0.05 >0.05

The analysis on the Healthy Control Subjects Database, performed by means of a non-

parametric Friedman’s test for paired data, revealed no statistically significant differ-

ences between the two acquisition days (Table 4.14).

Table 4.14: Results regarding paired inter-state analysis on Healthy Control Subjects
Database. In bold the statistically significant p-values are highlighted.

P-values Day1 vs. Day2

Reading TAT

meanF0 6.37E-01 2.06E-01

LpJ 0.59E-01 2.06E-01

stdF0 6.37E-01 2.06E-01

4.5 Prosodic features

4.5.1 Taylor’s Extended Intonational Model

All features estimated for single subjects are not normally distributed according to a Lil-

liefors test. The Mann-Whitney U-test is therefore used for intra-subject analysis. For

the group analysis a Kruskal-Wallis test is used to examine possible differences among

conditions in ampl*, dur* and tilt*. A one-way ANOVA is used with PosSlope, Ab-

sNegSlope, SumDer and GlobalSlope since at group level they are normally distributed.
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4.5.1.1 Taylor’s Extended Intonational Model: Emotion Database

Both intra subject analysis (data not shown) and group analysis show statistically sig-

nificant differences among emotions characterized by high arousal with respect to low

arousal (happiness and anger vs. boredom and neutral). With regard to intra-subject

analysis, in some subjects statistically significant differences are observed between neu-

tral and boredom, while no differences are observed between anger and happiness.

The group analysis shows that ampl* and tilt* enable distinguishing anger and happiness

from boredom and neutral. Dur* enables distinguishing boredom from happiness and

anger.

Ranks
0 5 10 15 20 25 30 35 40

Happiness

Boredom

Neutral

Anger

Amp*

Figure 4.14: Results at group level for emotional speech. Graphs of Kruskal-Wallis
test of Ampl*.
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Anger

Dur*

Ranks

Figure 4.15: Results at group level for emotional speech. Graphs of Kruskal-Wallis
test of Dur*.

Figures 4.14, 4.15 and 4.16 show the results of the Kruskal-Wallis test. For each group,

mean ranks are marked by a circle and an interval equal to the rank MAD. If two intervals
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Figure 4.16: Results at group level for emotional speech. Graphs of Kruskal-Wallis
test of Tilt*.

are disjoint, the groups are significantly different. If the intervals overlap, the groups do

not differ significantly. The graphs reporting the one-way ANOVA applied to PosSlope,

AbsNegSlope, SumDer and GlobalSlope are also interpretable. PosSlope (Figure 4.17),

AbsNegSlope (Figure 4.18), SumDer (Figure 4.19) and GlobalSlope (Figure 4.20) enable

distinguishing anger and happiness from boredom and neutral.

0.5 1 1.5 2 2.5 3

Happiness

Boredom

Neutral

Anger

PosSlope

Mean value

Figure 4.17: Results at group level for emotional speech data. Graphs of one-way
ANOVA test of PosSlope.

In Table 4.15, the p-values of the tests and the median or mean of each group are

reported (see also Figure 4.21). Emotional speech characterized by a low arousal is

described by features with a lower median value than emotional speech characterized by

higher arousal.
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Figure 4.18: Results at group level for emotional speech data. Graphs of one-way
ANOVA test of AbsNegSlope.
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Figure 4.19: Results at group level for emotional speech data. Graphs of one-way
ANOVA test of SumDer.

Table 4.15: Inter-subject analysis results of emotional speeches. Median values and
p-values of the Kruskal-Wallis tests are shown.

median

feature p-value anger neutral boredom happiness

Amplitude* 6.07E-05 0.47 -0.01 -0.16 0.56

Duration* 2.39E-03 -0.01 -0.27 -0.39 0.05

Tilt* 7.55E-05 0.18 -0.15 -0.25 0.25

PosSlope 8.96E-09 2.58 1.2 0.91 2.27

AbsNehSlope 8.72E-08 1.25 0.78 0.67 1.24

SumDer 1.46E-06 1.22 0.47 0.31 1.26

GlobalSlope 2.40E-08 1.17 0.44 0.16 1.2
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Figure 4.20: Results at group level for emotional speech data. Graphs of one-way
ANOVA test of GlobalSlope.

Figure 4.21: Median or mean of each group.

4.5.1.2 Taylor’s Extended Intonational Model: Bipolar Database

For that database, an intra-subject analysis was performed. Only the features related to

the same task were compared. For the reading task, seven patients out of eleven show

statistically significant differences for the ampl* feature (Table 4.16). In three patients

out of four the median value was found to decrease from hypomania to euthymia. The

ampl* value was also observed to be higher in hypomania than in depression. In two out

of five patients, an increase in ampl* median value is observed passing from depression

to euthymia; while in the other three subjects no statistically significant differences

are observed. Analysis of the TAT task showed statistically significant differences in

five patients out of eleven for the ampl* feature. The ampl* median values decrease

in two patients passing from depression to euthymia, thus showing an opposite trend

with respect to reading. Compared to the reading task fewer significant differences were
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observed in hypomania for the task. When differences were found, the ampl* values in

hypomania were higher.

Table 4.16: Median and median absolute deviation [mad] of Amplitude* estimated
for bipolar patients. The symbols (∗ or +) indicate p-values <0.05 in Mann-Whitney

U-test.

READING TAT

Mood state Amplitude* Amplitude*

Subj. day 1 day 2 day 1 day 2 p-value day 1 day 2 p-value

A Hyp. Eut. 0.12 [0.84]* -0.36 [0.63]* 3.70E-03* 0.06 [0.72] -0.05 [0.89] 3.04E-01

B Hyp. Eut. -0.34 [0.66]* -0.57 [0.42]* 3.92E-02* -0.03 [0.88]+ -0.22 [0.77]+ 4.26E-02+

C Hyp. Eut. -0.45 [0.54]* -0.20 [0.80]* 3.67E-02* -0.33 [0.66] -0.38 [0.61] 3.51E-01

D Dep. Eut. -0.50 [0.49] -0.59 [0.40] 9.38E-01 -0.05 [0.94]+ -0.37 [0.62]+ 1.41E-03+

E Dep. Eut. -0.43 [0.57]* -0.04 [0.95]* 2.43E-02* 0.36 [0.55]+ 0.03 [0.96]+ 5.62E-03+

F Dep. Hyp. 0.32 [0.62]* 0.47 [0.50]* 3.99E-02* 0.08 [0.72]+ 0.28 [0.57]+ 4.23E-03+

G Hyp. Eut. 0.44 [0.52]* 0.27 [0.68]* 2.71E-02* -0.10 [0.89] 0.00 [0.87] 1.65E-01

H Dep. Eut. 0.15 [0.76] 0.06 [0.89] 6.69E-01 0.15 [0.68] -0.21 [0.78] 4.58E-01

I Dep. Eut. -0.81 [0.18]* -0.25 [0.74]* 1.55E-04* -0.07 [0.72] -0.04 [0.82] 8.01E-01

L Dep. Eut. -0.07 [0.92] 0.12 [0.84] 4.17E-01 0.16 [0.83] -0.09 [0.90] 4.78E-01

M Mix. Dep. 0.12 [0.71] 0.02 [0.62] 2.00E-01 0.11 [0.64]+ -0.05 [0.76]+ 2.61E-02+

Table 4.17: Median and median absolute deviation [mad] of AbsNegSlope as esti-
mated from bipolar patients. The symbols (∗ or +) indicate p-values <0.05 in Mann-

Whitney U-test related to AbsNegSlope features.

READING TAT

Mood state AbsNegSlope AbsNegSlope

Subj. day 1 day 2 day 1 day 2 p-value day 1 day 2 p-value

A Hyp. Eut. 0.45 [0.31]* 0.57 [0.36]* 1.70E-03* 0.61 [0.36]+ 0.49 [0.32]+ 9.60E-03+

B Hyp. Eut. 1.28 [0.97]* 0.95 [0.72]* 1.07E-02* 0.57 [0.39]+ 0.46 [0.31]+ 3.29E-03+

C Hyp. Eut. 0.64 [0.34]* 0.53 [0.31]* 2.51E-02* 0.44 [0.29]+ 0.40 [0.23]+ 2.22E-02+

D Dep. Eut. 0.32 [0.20]* 0.39 [0.26]* 1.56E-02* 0.38 [0.26] 0.42 [0.29] 5.68E-02

E Dep. Eut. 0.36 [0.18] 0.45 [0.32] 5.06E-02 0.43 [0.24] 0.47 [0.27] 2.00E-01

F Dep. Hyp. 0.45 [0.26]* 0.53 [0.30]* 1.65E-02* 0.69 [0.60] 1.01 [0.70] 2.16E-01

G Hyp. Eut. 0.69 [0.40]* 0.61 [0.36]* 2.10E-02* 0.55 [0.34]+ 0.63 [0.41]+ 1.53E-02+

H Dep. Eut. 0.59 [0.36]* 0.46 [0.31]* 1.80E-02* 0.46 [0.30]+ 1.18 [0.67]+ 6.90E-03+

I Dep. Eut. 0.65 [0.38]* 0.49 [0.32]* 5.39E-04* 0.40 [0.31] 0.48 [0.36] 6.46E-01

L Dep. Eut. 0.54 [0.38] 0.49 [0.36] 2.24E-01 0.33 [0.22]+ 0.48 [0.35]+ 2.52E-02+

M Mix. Dep. 0.64 [0.38] 0.58 [0.35] 9.45E-01 0.46 [0.30] 0.39 [0.27] 1.68E-01

Results pertaining to other features show statistically significant differences between

mood states. However, no coherent direction of change in subjects experiencing the

same mood swing could be observed. Moreover, the direction of change are not the

same across the same tasks. In particular, dur* feature shows statistically significant

differences in six patients out of eleven in reading, while, the TAT task differences were

observed in two subjects only (data not shown). The analysis of the tilt* feature returns

five significant p-values in reading, and three p-values in TAT task (data not shown). In

six patients out of eleven, PosSlope shows statistically significant differences in reading

and four differences in the TAT task (data not shown). The results pertaining to Ab-

sNegSlope (Table 4.17) report eight significant differences in the reading task, and six

statistically significant differences in TAT task. With regard to reading, in three patients

out of four the AbsNegSlope is lower in the euthymic state than in hypomanic state.

The same behaviour was found for the TAT task. However, the same direction of change



Chapter 4. Results 117

was found in both tasks only for patients B and C. The sumDer feature shows statisti-

cally significant differences in six patients out of eleven, regarding the reading, while no

differences were observed regarding TAT task (data not shown). Finally, GlobalSlope

in reading reports differences in seven out of eleven subjects (data not shown). In all

cases, except two, GlobalSlope was closer to zero for euthymic subjects. In two subjects

statistically significant differences were found only in one feature acquired during TAT.

In particular, subject L showed statistically significant differences only in AbsNegSlope,

while subject M only in ampl*. Group analyses are not performed here since the number

of subjects is too small.

A pairwise comparison exploiting the hypomania-euthymia transition in four subjects

and one exploiting the depression-euthymia transition in five subjects were performed

(Table 4.18). Statistically significant differences were observed in AbsNegSlope concern-

ing the transition between depression and euthymia during the performing of the TAT

task.

Table 4.18: Results regarding paired inter-state analysis on bipolar data. In bold
the statistically significant differences are highlighted. The significant differences are

detected according to the critical values for Friedman’s Fr reported in [19].

Hyp. Vs. Eut. Dep. Vs. Eut.

Reading TAT Reading TAT

Amplitude* >0.05 >0.05 >0.05 1,80

Duration* >0.05 >0.05 >0.05 >0.05

Tilt* >0.05 >0.05 >0.05 >0.05

PosSlope >0.05 >0.05 >0.05 >0.05

AbsNegSlope >0.05 >0.05 >0.05 <0.05

SumDer >0.05 >0.05 >0.05 >0.05

GlobalSlope >0.05 >0.05 >0.05 >0.05

4.5.1.3 Taylor’s Extended Intonational Model: Feature Specificity and Healthy

Control Subjects

Intra-subject analyses were carried out of data with the same label to check for the

specificity of the features. To have good specificity, the feature should not show any sta-

tistically significant differences. Specificity was investigated by analysing data acquired

on the same day from bipolar patients and the data acquired from healthy control sub-

jects on different days. In Tables 4.19 and 4.20 the results are shown for bipolar patients

recorded in the morning and in the afternoon at the first recording day (day 1). At that

day, no statistically significant differences were found between Taylor-inspired features

across all subjects (Table 4.19). At that day 2, a difference was found for subject B

in ampl* and for subject E both in dur* and tilt* (data not shown). In Table 4.20

the results related to the second category of features estimated at day 1 from bipolar
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subjects are summarized. SumDer and GlobalSlope did not show any statistically sig-

nificant difference either at day 1 or at day 2 (data not shown). PosSlope revealed two

statistically significant differences at day 1 and no differences at day 2. AbsNegSlope

did not show any difference at day 1 and only one difference at day 2 for subject G (data

not shown).

Table 4.19: Results at day 1 sessions concerning ampl*, dur* and tilt* for bipolar
patients. Median and Mad (in square brackets) values are shown. No statistically

significant differences were found.

Subj. ampl* dur* tilt*

A 0.05 [0.86] 0.12 [0.84] -0.50 [0.45] -0.40 [0.59] -0.42 [0.57] -0.34 [0.65]

B -0.57 [0.43] -0.34 [0.66] -0.69 [0.30] -0.66 [0.33] -0.71 [0.28] -0.62 [0.37]

C -0.45 [0.54] -0.40 [0.25] -0.66 [0.33] -0.63 [0.36] -0.67 [0.32] -0.67 [0.32]

D -0.50 [0.49] -0.59 [0.40] -0.50 [0.46] -0.50 [0.45] -0.31 [0.68] -0.47 [0.52]

E -0.43 [0.57] -0.40 [0.95] -0.75 [0.25] -0.77 [0.22] -0.75 [0.24] -0.78 [0.21]

F 0.40 [0.54] 0.32 [0.62] -0.33 [0.66] -0.30 [0.69] -0.05 [0.94] -0.09 [0.90]

G 0.38 [0.57] 0.44 [0.52] -0.33 [0.66] -0.36 [0.63] -0.16 [0.83] -0.16 [0.83]

Table 4.20: Results at day 1 concerning SumDer, GlobalSlope, PosSlope and Ab-
sNegSlope as estimated for bipolar patients. The symbol ∗ indicates p-values <0.05

(Mann-Whitney U-test).

Subj. SumDer GlobalSlope PosSlope AbsNegSlope

A 0.16 [0.36] 0.17 [0.34] -0.05 [0.66] -0.01 [0.69] 0.54 [0.32] 0.58 [0.35] 0.44 [0.29] 0.45 [0.31]

B 0.10 [0.61] 0.17 [0.71] -0.40 [1.42] -0.44 [1.50] 0.85 [0.57] 0.83 [0.52] 1.00 [0.75] 1.28 [0.97]

C 0.12 [0.44] 0.13 [0.40] -0.27 [0.95] -0.25 [0.97] 0.70 [0.43] 0.75 [0.39] 0.64 [0.34] 0.60 [0.36]

D 0.18 [0.30] 0.16 [0.22] -0.02 [0.64] -0.03 [0.57] 0.52 [0.23]* 0.38 [0.19]* 0.32 [0.20] 0.39 [0.24]

E 0.07 [0.27] 0.15 [0.33] -0.22 [0.62] -0.24 [0.62] 0.45 [0.26]* 0.59 [0.31]* 0.36 [0.18] 0.36 [0.20]

F 0.33 [0.42] 0.40 [0.48] 0.15 [0.71] 0.17 [0.66] 0.78 [0.43] 0.79 [0.40] 0.47 [0.30] 0.45 [0.26]

G 0.47 [0.70] 0.30 [0.63] 0.13 [0.92] 0.20 [0.88] 1.11 [0.63] 0.99 [0.60] 0.73 [0.45] 0.69 [0.40]

Table 4.21: Results regarding paired inter-state analysis on bipolar data. In bold the
statistically significant p-values are highlighted.

Reading TAT

Amplitude* 8.96E-02 5.27E-01

Duration* 8.08E-01 5.27E-01

Tilt* 2.25E-01 5.27E-01

PosSlope 8.08E-01 5.27E-01

AbsNegSlope 8.08E-01 1.00E+00

SumDer 8.08E-01 1.00E+00

GlobalSlope 2.25E-01 5.27E-01

Concerning the Healthy Control Subjects Database (data not shown), while reading

ampl*, dur* tilt* and GlobalSlope did not show any statistically significant differences

between different days. PosSlope, AbsNegSlope and SumDer showed statistically signif-

icant differences in 3, 4 and 2 subjects out of 18 respectively. While TAT commenting,

ampl*, tilt*, AbsNegSlope and GlobalSlope did not show any statistically significant

differences, while dur* and AbsNegSlope reported a significant difference in 1 out of 10

subjects, PosSlope in 3 out of 10, and SumDer in 2 subjects out of 10.
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At the end no statistically significant differences were found between the global average

features extracted from the audio recordings acquired in the two daily experimental

sessions (Table 4.21).

4.5.2 Spectral analysis of intonational contour

4.5.2.1 Spectral analysis of intonational contour: Bipolar Data

The proposed features showed a similar behaviour across all subjects. Specifically, Fpeak

was always lower than Fmedian thus resulting in a negative Slope cue and in a Ratiopeak

that was always higher than Ratiomedian.

Each bipolar patient in an euthymic state in one of the three recording days was selected

for this study. By exploring Tables 3.1 and 3.2 it is possible to select the subjects that

can be used for paired and independent data tests. In general, the reading task in bipolar

patients took about 4 minutes. Analysis of paired data (Table 4.22) showed statistically

significant differences between hypomania and euthymia states (patients A, B, C and

G) for Apeak, Fpeak, Ratiopeak and their Slope.

Table 4.22: Bipolar patients: p-values. In bold the statistically significant differences
are highlighted. The significant differences are detected according to the critical values

for Friedman’s Fr reported in [19].

Fmedian Amedian Fpeak Apeak Slope Ratiopeak Ratiomedian

Hyp vs. Eut >0.05 >0.05 <0.05 <0.05 <0.05 <0.05 >0.05

Dep vs. Eut <0.05 >0.05 >0.05 <0.05 <0.05 >0.05 >0.05

In all subjects but one (patient C), Fpeak (Figure 4.22) was lower in the hypomanic state,

while for all the subjects Apeak (Figure 4.23) and Ratiopeak (Figure 4.24) was higher in

the hypomanic state compared to the euthymic one. Opposite trends were observed for

the Slope feature (Figure 4.25).

Moreover, further analysis of paired data (patients B, D, F , H, I, L and M) showed

that differences between depression and euthymia states were statistically significant for

Fmedian, Apeak and Slope. For all subjects, Fmedian (Figure 4.26) and Slope (Figure

4.28) were lower in the depressed state, while Apeak (Figure 4.27) was higher.

Comparisons carried out via the Mann-Whitney U-test on unpaired normalized data

between depression and hypomania and depression and euthymia, showed statistically

significant differences for Fmedian (Figure 4.29) and Slope. In additionApeak reported sig-

nificant differences just for depression-hypomania. Fmedian and Slope for the depressed

state were lower with respect to the other mood states, while Apeak was higher. Without

normalization, the features did not show any statistically significant differences. With
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Figure 4.22: Fpeak trends in patients passing from hypomania to euthymia.

Figure 4.23: Apeak trends in patients passing from hypomania to euthymia.

Figure 4.24: Ratiopeak trends in patients passing from hypomania to euthymia.

a view to the Mann-Whitney U-test, data groups were formed with features of patients

in different mood states.
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Figure 4.25: Slope trends in patients passing from hypomania to euthymia.

Figure 4.26: Fmedian trends in patients passing from depression to euthymia.

Figure 4.27: Apeak trends in patients passing from depression to euthymia.
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Figure 4.28: Slope trends in patients passing from depression to euthymia.

Figure 4.29: Boxplot of Fmedian in patients passing from depression to hypomania.
Fmedian values are normalized with respect the corresponding values in euthymic state.

4.5.2.2 Spectral analysis of intonational contour: Features Specificity

Analysis of the data recorded for Healthy Control Subjects did not return statistically

significant differences between features obtained from audio samples acquired at two

different days. In Table 4.23 the corresponding p-values are reported, while in Figure

4.31 the Fmedian trends in healthy control subjects are displayed

Table 4.23: Healthy control subjects: p-values.

Fmedian Amedian Fpeak Apeak Slope Ratiopeak Ratiomedian

7.39E-01 1.00E+00 2.06E-01 5.27E-01 5.27E-01 1.00E+00 5.27E-01
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Figure 4.30: Boxplot of Slope in patients passing from depression to hypomania.
Slope values are normalized with respect the corresponding values in euthymic state.

Figure 4.31: Fmedian trends in healthy control subjects.

4.6 Voice quality study

4.6.1 Voice quality: Analysis of F0 correction on synthetic data

A set of 6 synthetic voice samples was synthesized with mean-F0 equal to 100 and 150

Hz, and F0 jitter equal to 0.04, 1.2 and 2.0 %. In Figure 4.32 the LTAS profiles obtained

on vowels at different F0 are compared. The results of the F0 corrected approach and

the conventional approach are shown in different graphs. A percent change between

the 150Hz and the 100Hz vowel spectra equal to −5.7% was obtained using the F0-

corrected algorithm. The conventional approach resulted in a percent change equal to

28.9%.
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Figure 4.32: Differences in LTAS: F0-correction (left), and the conventional method
(right). Vowels were synthesized with F0=150Hz(blue) and F0=100Hz(red).

4.6.2 Voice quality features: Emotion database

As previously discussed, meanF0 is able to detect statistically significant differences

among different levels of arousal.

Figure 4.33: Conventional LTAS: Median and median absolute deviation (MAD) of
LTAS for each emotion and for all the speakers.

Figure 4.34: F0-corrected LTAS: Median and median absolute deviation (MAD) of
LTAS for each emotion and for all the speakers.

Both algorithms were used to investigate possible statistically significant differences in

frequency content related to emotional states in the German emotional database [137].

Grouped analyses revealed statistically significant differences among the four emotional

states in the 0-600Hz and 800-3200Hz sub-bands when using the conventional LTAS
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approach. In the first sub-band, lower arousal shows higher LTAS amplitudes, while,

on the contrary, in the second band lower arousal states shows lower LTAS amplitudes.

Figure 4.33 reports the median and the median absolute deviation of the LTAS for each

emotion, which confirm the statistical analysis.

When using the F0-corrected LTAS algorithm, statistically significant differences were

found among emotional states in the 0-600Hz and 1500-1650Hz sub-bands. In both

sub-bands, lower arousal emotions show higher LTAS amplitudes.

4.6.3 Voice quality features: Healthy Control Subjects and Bipolar

patients

Statistical analyses on LTAS extracted from Healthy Control Subjects’ audio signals by

means of both algorithms did not reveal any statistically significant differences. Fried-

man’s test was used to analyse differences in frequency components, and the estimated

statistics were below the critical 0.05 value.
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Figure 4.35: F0-corrected LTAS: trend of frequency content regarding different bins
in the two pairwise tests.

Regarding bipolar patients, both algorithms showed similar results on pairwise statistical

tests on reading task between hypomania and euthymia states (four patients). The con-

ventional LTAS algorithm showed statistically significant differences in three sub-bands:

2600-2800Hz, 5800-6000Hz and 7200-7800Hz. Similarly, the F0-corrected algorithm

highlighted significant differences in 2400-2700Hz, 5850-6000Hz and 7050-7800Hz sub-

bands. In both approaches, LTAS was lower in the first sub-band in the euthymic state.

The opposite behaviour was observed in the other sub-bands. The comparison between

depression and euthymia was performed on seven patients. In this case, the two inves-

tigated algorithms reported dissimilar results on pairwise statistical tests. In fact, the

conventional algorithm reported a higher amplitude in euthymia in the 2200-2800Hz

sub-band, while the F0-corrected algorithm resulted in a lower amplitude in euthymia
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in 4350-4500Hz sub-band. In Figure 4.35 the trends of F0-corrected LTAS obtained in

both tests are shown. The results regarding one frequency bin are shown for each test.

Pairwise analysis of mean-F0 shows how changes between hypomania and euthymia

states are not statistically significant, while mean-F0 was found to be lower in depressed

state with respect to the euthymic one.

Concerning TAT task, conventional LTAS algorithm showed statistically significant dif-

ferences only in hypomania-euthyia transition in the sub-band 5600-6400Hz. Similarly,

F0-corrected algorithm highlighted significant differences in 5700-5850Hz sub-band only

by comparing hypomania and euthymia states. Both methods showed no statistically sig-

nificant differences in the depression-euthymia comparisons during TAT task. Moreover,

no statistically significant differences were observed by analysing meanF0 in relation to

the TAT task in both mood comparisons.



Chapter 5

Discussion and conclusion1

A study of the speech signal in an emotion and mood recognition/characterization frame-

work was performed at different levels of description. Starting from a micro-prosodic

study, higher level phenomena were investigated later. Initial investigations were fo-

cussed on small changes of the glottal cycle related to emotion and mood. Global

prosodic and vocal quality studies were conducted later. The former reported overall

intonational behaviour. The latter not being exclusively related to the glottal source,

but also to the vocal tract, reported vocal timbre overall in syllable nuclei.

5.1 VAD

Every step in feature extraction was tested and evaluated by means of analysis of real

and synthetic audio sample. Concerning voice activity detection, results on synthetic

data revealed that both algorithms, the proposed one and the one used as benchmark,

showed similar performances. Different voiced-unvoiced transients and F0 contours were

simulated and analysed to test VAD algorithms. Each of the 72 audio samples involved

2 vowels and an unvoiced segment. The weak point of the VAD methods was the

voiced-unvoiced sound transition lengths. The longer the transition, the larger the error

was. The proposed VAD algorithm showed slightly better performance in terms of error

detection. This test was performed after the optimization of the analysis parameters.

Optimization was performed by means of the CMU Arctic Database. This database,

involving both audio and EGG signals, enabled us to detect, by using real data, the

exact time instants of glottal activity. Therefore parameters were fixed to obtain a

higher specificity with respect to sensitivity, without the loss of great amount of relevant

data. Concerning the criteria for the VAD parameters selection, a specificity higher than

1Part of this Chapter has been already published in [1–5].
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sensitivity was chosen to reduce the number of unvoiced segments that are recognized

as voiced, and hence to reduce the probability to analyse incorrectly labelled unvoiced

sounds. A specificity higher than 0.90, and a sensitivity higher than 0.80 were selected.

5.2 F0-estimation

Concerning the F0-estimation algorithm tests were performed on synthetic data. The

study exploits Camacho’s SWIPE’ algorithm for F0 estimation. Camacho in [16] com-

pared his method with others, reporting good performance. Evanini confirmed these

results in [316]. In [300], the SWIPE’ algorithm was used to estimate F0 and jitter on

voiced segments, and its performance was compared with those of the Simplified Inverse

Filter Tracking algorithm (SIFT) [317]. The performances of the two approaches were

similar concerning average F0 on each voiced segment. But, SWIPE’ outperformed the

SIFT with regard to jitter estimation. In this study, 512 audio signals were synthe-

sized and used to test the method developed. The results showed a median error lower

than 0.3%, highlighting a good capability in the proper estimation of voice fundamental

frequency.

Results obtained with the CMU Arctic Database, confirmed that the proposed approach

can be used to estimate local mean F0 values reliably. A high correlation between local

F0 standard deviations estimated with the proposed approach and the EGG signal

was obtained as well. The correlation between estimated frame-to-frame jitter and the

benchmark value obtained by the EGG signal was lower, but statistically significant. The

proposed approach estimates one F0 value within a time window of four glottal cycles.

This enables reliable results in noise, but causes a systematic jitter underestimation

[300]. Moreover, the analysis showed that meanF0 is robust with regard to noise. StdF0

and LpJ estimates remain accurate in several noisy conditions. LpJ estimates were

degraded at 5dB SNR. The results also demonstrate that echo strongly affects features

reporting F0 changes. This suggests a possible issue with indoor recordings.

5.3 Detection of emotional states

Concerning the analysis of emotion data, one may say that the more the subjects are

aroused, the more their speech features exhibit differences with low arousal states. These

results seem to be in agreement with Pakosz, who asserted that intonation can only carry

information about the level of emotional arousal [318]. Moreover, Banse and Scherer

showed how arousal has a powerful effect on vocal expressions often hiding the effects

of valence or potency/control [319].
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The emotion database we took into account is a collection of sentences spoken by actors

who were “playing” different emotions, while the actors’ actual mood is unknown. Vogt

and André [105] showed that feature sets recognizing different emotions in acted and

spontaneous speech overlapped only partially. Bänziger and Scherer [106] defended in a

detailed way the prudent use of acted sentences in the study of emotion. The difficulties

to record different and often rare emotional states from the same subjects, and to assess

each emotional state might assign acted speeches datasets important role in this field.

Schuller et al. [107] asserted that acted corpora have two disadvantages: the first is that

acting emotions is different from producing “spontaneous” emotions [108] and secondly,

the prompted types of emotions are not the same as those in realistic scenarios. So while

the acquisition of realistic corpora is envisaged, using acted corpora could be convenient

for benchmarking, even if the relationship between the results coming from the two kind

of dataset is unclear [109]. Here, the emotion dataset was important to evaluate the

capability of the implemented algorithm to extract prosodic features, confirming the

algorithm’s capability to estimate subjects’ mood state.

Therefore, in the present study, the adequacy of the analysis for bipolar patients speech

is not inferred from the results on the emotion database. The pathophysiological factors

influencing speech in bipolar disorders could lead to completely different phenomena

linking subject mood states to voice production.

5.4 Data

Concerning the analysis on bipolar data, a study involving a larger number of subjects

would reveal the behaviour of the proposed features more clearly. A subject-dependent

behaviour of the features can indeed not be excluded. Subject anxiety, for instance,

could be a psychological dimension that may be taken into account in further research.

In [215], observed differences were hypothesized to be caused by anxiety. As a possible

confirmation of this hypothesis, in [320] the authors suggested that some vocal parame-

ters, for example F0, can be used as objective markers of Social Anxiety. Anxiety level

could also be a factor affecting specificity, even though we cannot exclude the relevance

of other unobserved factors. In particular, as regards the features extracted from bipolar

patients during double recording sessions, uncontrolled factors could include boredom or

fatigue during a full day visit to the clinic. A further confounding phenomenon could be

related to the subjects’ familiarity with the text to be read. Agitated and retarded kinds

of depression or even hypomanic and hypermanic kinds of mania or mixed states [321]

could also explain the incoherent trends that some features displayed. The bipolar pa-

tients enrolled in this study did not show severe symptoms, while in other studies severe
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depression has been included. The lack of severe symptoms as well as the small number

of participants may limit the possibility detecting statistically significant changes in the

investigated features. Another possible limitations could be the patients’ willingness to

please the clinicians and showing themselves healthy. Patients’ behaviour could be a

confounding factor in this study. Pharmaceutical treatment could be also a confounding

factor. Often drugs cause a reduction in the amount of patients’ saliva. Indeed, some

antidepressants or psychotropic drugs induce xerostomia (i.e., dry mouth) as a frequent

side effect [322, 323]. Such a reduction could produce some modification in the acoustic

properties of the vocal tract that are not related to the disease, but to its medication.

Moreover, no statistical analyses of inter-task results were carried out. However, the

directions of feature changes sometimes are not the same across the two tasks. A task

dependent behaviour of F0 has also been observed by Horwitz et al. [262] in depressed

patients where the correlations between F0 and a score of depression was investigated.

The two tasks were the reading of a text and a sample of TAT speech. The differences,

that are reported here, might be explained by taking into account the differences be-

tween the two tasks. The description of the images during TAT, involves complex brain

processes since they require an interpretation of the images.

The database included speakers with different native languages, i.e. French and Italian.

This can have a minor effect when intra-subjects analysis or inter-state analysis for

paired data are performed, but could have a major effect when group-level analyses are

performed.

5.5 Vocal features

Both intra-subject and group analyses of vocal features obtained from the German Emo-

tional Database demonstrated the capability of a subset of features to report statistically

significant differences between audio samples related to different arousal levels, meanF0

and stdF0 in particular. More precisely, statistically significant differences were found

for these features estimated from audio samples conveying anger/happiness versus neu-

tral/boredom. No differences were observed when investigating vocal jitter. Jitter only

reported between boredom and happiness. In some subjects, statistically significant

differences were observed between high arousal emotional states (anger vs. happiness)

or between low arousal emotional states (neutral vs. boredom). It was not possible to

obtain such a result at the group level.
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Results on bipolar patients were the following. Intra-subject analysis revealed possible

differences in speech samples acquired in the same task category, but between the dif-

ferent sessions reporting different mood states. The small number of subjects enrolled

limits the generalizability of the results, but some observations can be made.

The analysis of F0 revealed statistically significant differences between different mood

states in all subjects but one, in one of the two tasks considered. When the direction

of change was observed in both tasks, it was found to be the same in all the subjects

but one. The observed changes are not always consistent across subjects. MeanF0 was

lower in the depressed state in two subjects (H and I) while the opposite behavior was

observed for other two subjects (F and L). The former trend is more frequently reported

in the literature, but the latter has been associated with anxiety [215]. This observation

suggests the need for improving the characterization of the subjects’ psychological sta-

tus and taking into account anxiety to clarify possible interactions between mood and

anxiety. When statistically significant differences were observed in hypomania-euthymia

transitions, higher feature values were detected in the hypomanic state in all cases but

one. In fact, in subject G one observes a lower feature value in hypomania in the TAT

task. This subject is the one who reported incoherent change directions between the

two tasks.

When statistically significant differences were observed, StdF0 was found to be lower in

the euthymic state with respect to the hypomanic one in all cases but one. Subject G

showed the opposite trend in recordings related to the TAT task. This subject reported

different feature trends between the two tasks also for stdF0.

Concerning the reading task, LpJ was found to be higher in the hypomanic state in

two out of three subjects who showed statistically significant differences. The same

trend was observable in two out of three subjects who showed statistically significant

differences regarding the TAT task. Incoherent trends were observed in subjects showing

statistically significant differences between LpJ extracted in the depressed and euthymic

states. Subject G show different feature trends between the two tasks also in LpJ.

The results on healthy subjects, using paired tests, do not highlight any differences due

to the repetition of the tasks at different days. This result only partially addresses the

specificity issue, which would be better characterized by analysing patients experiencing

the same mood in different days.

Interestingly, the analysis of the reading task highlighted that meanF0 decreases when

passing from the hypomanic to the euthymic state. Statistically significant differences

were found in LpJ in subjects switching from depression to euthymia. In this case, the

sign of the change of LpJ was discordant with observations reported in the literature
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[222]. However, in that study, the changes were observed in subjects with severe symp-

toms. The lack of significant differences in stdF0 in the case of depression-euthymic

transitions seem also to contradict literature results. However, our results might be

related to the choice of estimating stdF0 at syllable level.

Although the small number of patients limits the generalizability of our results, they

confirm that the speech task has a relevant role since it influences speech feature changes

[179]. Differences in average F0 (meanF0) were observed only in the text reading task,

while LpJ changes were observed only in the TAT commenting task. In conclusion, the

analysis of vocal features in bipolar patients could provide information regarding mood

state changes. The speech task has been shown to be relevant and deserves further

investigation.

5.6 Taylor’s Extended Intonational Model

In this study two categories of prosodic features are used. The first is inspired by Taylor’s

Tilt Intonational model. The features used here are only morphologically equivalent to

Taylor’s. In the tilt model intonational events are taken into account, while in this

study the features were estimated for all voiced vowel nuclei of syllables. The detection

of intonational events relies on the ability of the human labeller and requires training an

automatic classifier starting from hand labelled sentences. The here proposed approach

is simpler and completely automatic. The second category of features, differently from

the one proposed by Taylor, reports the speed of variation of F0 in the F0 contour. The

here proposed features set supplies therefore an higher information content.

Analysis on the emotion speech database demonstrated that the proposed features enable

highlighting significant differences among different emotional speech recordings. Such

differences were observed both in subject and in group analyses. In particular, some

features have been shown to be capable of grouping emotions by arousal level.

Intra-subject analyses on bipolar patients have shown that prosodic features have a good

specificity. In almost every comparison, between features extracted from different ac-

quisitions and labelled with the same mood state, no statistically significant differences

were found. To test for specificity in bipolar patients, double recording sessions were

performed in the same day. Good results were found by analysing data acquired from

healthy subjects at different days. In particular, Taylor-inspired features and GlobalS-

lope demonstrated very high specificity. The remaining features showed a good speci-

ficity with regard to reading, while worse results were found for TAT recordings. As
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a result, statistically significant differences between features reported a different mood

states.

Overall, this study shows that the direction of the change is not coherent across sub-

jects. Only ampl* seems to have a coherent behaviour across subjects. In particular,

when statistically significant differences were found, the ampl* values extracted from

recordings related to hypomania are higher than the other ones in every subject, but

one, irrespective of the task. Noticeably, when one of the two states was the hypomanic

state, a difference was always found regarding the reading task. The same behaviour

was not observed when analysing TAT recordings.

5.7 Spectral analysis of the intonational contour

In this study, a spectral analysis of the F0-contours is carried out. Conventionally, the

F0-contour is studied in the time domain. An analysis in the frequency domain might

provide a compact description of the F0-related prosodic information. Specifically, the

analysed features report the shape of the F0 spectrum profile. Since F0 was set to 0

Hz in silent segments, the features summarize the contribution of rhythm as well as of

intonation. Specifically, results depend not only on syllabic rhythm (4 Hz typically),

but also on pauses between words and sentences.

The statistical analysis was performed on bipolar patients experiencing different mood

states. Moreover such a method was also applied on an Healthy Control Subjects

Database. Statistically significant differences were found between features across differ-

ent mood states. Interestingly, the proposed features showed a good specificity, whereas

they were similar for control subjects. Notwithstanding the small number of patients

who have been analysed, the results may be relevant because coherent feature trends

have been detected in patients across mood states. Due to the sample size, it was not

possible to perform any statistical test on paired data with regard the comparison be-

tween depression and hypomania. The comparison of euthymia and depression showed

that Apeak increases and Fmedian decreases in the depressed state with respect to the

euthymic stated. Since Fpeak is lower than Fmedian, this behavior suggests a higher con-

tribution at lower frequencies in the depressed state. The paired analysis of hypomanic

and euthymic states revealed a significant decrease of Fpeak and an increase of Apeak

in the former state, while no relevant change of Fmedian was observed. Moreover, a

decrease of the Slope cue was found. These results show a behavior of the analysed fea-

tures that may possibly differentiate hypomania from depression. Preliminary results on

independent samples seem to confirm this hypothesis. In fact, a decrease of Fmedian and

Slope was reported in depressed with respect to hypomanic patients, thus indicating a
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higher contribution at lower frequencies of the F0 profile spectra in the former subjects.

The significant results, obtained from the statistical tests on independent samples, were

reached after normalizing the feature values by the corresponding value in the euthymic

state. This normalization was performed under the hypothesis that euthymia repre-

sents the emotional point of reference since it is characterized by the absence of relevant

symptoms.

The choice of the text may play a crucial role both with regard to content and the

structure. A specific content might elicit an emotional response. Moreover, since the

reading rhythm is one of the parameters under study, it is important to use text with

similar or equal lexical structure. In this study, a neutral text was adopted, i.e. “The

universal declaration of human rights” for the different recording sessions.

5.8 Voice quality

This study aims at investigating voice quality in patients suffering from bipolar disease.

According to Laver’s model [75], phonation or vocal tract configurations departing from

neutral settings causes the emission of a coloured voice. Settings can be divided in

two groups: settings of the larynx and settings of the supralaryngeal vocal tract. In

particular the laryngeal ones define phonation types.

A F0-corrected LTAS algorithm is discussed and tested on synthetic audio samples.

The proposed algorithm takes into account glottal closure instants to set, cycle by cycle,

the frame length and position of the sliding window instead of fixing these globally.

Simulations confirm the effectiveness of the proposed F0-correction. LTAS seem to be

influenced by F0 also at higher frequencies. This is also in accordance with a study

conducted by Cleveland, Sundberg and Stone [324], who asserted that LTAS reflects the

contribution of both the glottal source and the vocal tract to voice quality.

Analysis of healthy control subjects by both investigated algorithms does not show any

statistically significant differences between different recording days.

Comparing the two proposed algorithms on the German Emotional Database, statisti-

cally significant differences were observed in different sub-bands. Conventional LTAS

reported some statistically significant differences also at a higher frequency than the

ones reported by the F0-corrected LTAS method. The differences were observed in ac-

cordance with the level of arousal. Differences between high arousal level emotions, i.e.

anger and happiness, and low arousal level emotional states, i.e. neutral and boredom,

were detected. In particular low frequency components showed higher amplitude in the

lower arousal emotions.
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Bipolar patients were labelled differently with regard to mood at each acquisition day.

LTAS show statistically significant differences in some frequency intervals. These are

found in both pairwise comparisons of hypomanic/euthymic states and depressed/euthymic

states. Some differences may depend on modifications of formants due to the mood state.

In fact, a decrease in the second and third formant, in depressed with respect to healthy

subjects, has been described in [213]. The opposite trend is reported in [221].

Concerning the reading task, F0-correction does not influence the results when hypoma-

nia and euthymia are compared. On the contrary the two investigated algorithms seem

to provide different results when comparing depression and euthymia. Such differences

may depend on the statistically significant variation of F0 found out between depression

and euthymia. In this study, F0 estimation was obtained by using the same VAD algo-

rithm used to estimate LTAS from every voiced segment. More specifically, the method

based on the autocorrelation function and the signal energy was here implemented. Co-

herent results were obtained by analysing audio samples related to the TAT task via the

two LTAS approaches. Anyway, in this case, no statistically significant variations of F0

were observed.

Since multiple tests within different frequency bins were performed, an adjustment for

multiple comparisons might be performed. In this study, an adjust for multiple com-

parisons was not performed. In fact, given the small sample size it was not possible to

have an exact p value for the Friedman F statistics, and no randomization tests could

be reliably performed. Even if the limited number of enrolled patients does not allow

to generalize results, the proposed methods have been shown to have good specificity,

because statistically significant differences are related to different mood states. In fact,

no differences were found between healthy control subjects recorded at different days.

This result confirms the significance of other results obtained in bipolar patients.
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Schuller. Applying multiple classifiers and non-linear dynamics features for detect-

ing sleepiness from speech. Neurocomputing, 84:65–75, 2012.

[244] Murray Alpert, Enrique R Pouget, and Raul R Silva. Reflections of depression

in acoustic measures of the patient’s speech. Journal of affective disorders, 66(1):

59–69, 2001.

[245] James C Mundt, Adam P Vogel, Douglas E Feltner, and William R Lenderking.

Vocal acoustic biomarkers of depression severity and treatment response. Biological

psychiatry, 72(7):580–587, 2012.



Bibliography 157

[246] Sylvia D Kreibig. Autonomic nervous system activity in emotion: A review. Bio-

logical psychology, 84(3):394–421, 2010.

[247] Paul E Croarkin, Andrea J Levinson, and Zafiris J Daskalakis. Evidence for

gabaergic inhibitory deficits in major depressive disorder. Neuroscience &amp;

Biobehavioral Reviews, 35(3):818–825, 2011.

[248] JtK Darby and H Hollien. Vocal and speech patterns of depressive patients. Folia

Phoniatrica et Logopaedica, 29(4):279–291, 1977.

[249] Harry Hollien. Vocal indicators of psychological stress. Annals of the New York

Academy of Sciences, 347(1):47–72, 1980.
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