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Abstract

The analysis of similar trajectories in a network provides useful information
for route recommendation or fraud detection. In this thesis, we are

interested in algorithms to efficiently retrieve similar trajectories. Many
studies have focused on retrieving similar trajectories by extracting the

geometrical information of trajectories. We provide a similarity function by
making use of both the temporal aspect of trajectories and the structure of
the underlying network. We propose exact and approximation techniques

that offer the top-k most similar trajectories with respect to a query
trajectory within a given time interval in an efficient way. We also

investigate how our ideas can be applied to similar behavior of the tourists,
so as to offer a high-quality prediction of their next movements.
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Chapter 1

Introduction

Due to the development of location-based devices such as GPS and some
social networks that provide the service of route sharing and digital traces
of many human activities such as web browsing, a large amount of data
recording the positions of moving objects, called trajectory, are generated
and collected. The efficient analysis of trajectory data fleet management
applications analyze trajectories of vehicles towards route optimization [42],
aiming at more efficient and effective resource usage. Knowledge extracted
from trajectory data can be used in a smart city environment to detect
and visualize novel or anomalous events [58]. Finally, trajectories that have
visited specific points of interest may be used as a guideline for others that
wish to visit the same or similar places [51].

This made researchers analyzing the motion patterns of moving objects.
The trajectory similarity search (i.e. retrieving the similar trajectories with
respect to a given query argument such as point(s) and trajectory) has been
an attractive and challenging topic due to the wide range of the applications
taking benefit of similarity between moving objects, such as the following
real and practical applications:

(I) Tourism applications: given the recent movement of a tourist and the
current time, some application may be interested in predicting next
location of the tourist taking advantage of the similarity between the
behavior of tourists, because of the marketing reason, or providing a
high-quality trip planning for the tourist.

(II) Fraud detection: given the trajectories of all taxi drivers, the author-
ities can detect the taxi driving frauds by providing a trajectory evi-
dence [34].
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(III) Infection detection: as recently the health authorities in the world have
been monitoring the spreading coronavirus among the individuals. May
one approach to reducing the spreading speed of this new virus be find-
ing the individuals that may have the risk of infection. The individuals
that have been close to the cases that they have newly detected, spa-
tially and temporally, probably have a high risk to be affected in the
future. Based on this basic idea, we can analyze the mobility of the
affected individuals obtained from, for example, the mobile call records
and the check-in airport dataset, to make the trajectory set. There-
after, the most similar trajectories to the trajectory of the affected
case make a set of high-risk individuals, which need to be separated in
quarantine.

(IV) Traffic analysis: By identifying the similar trajectories, effective data
mining techniques (e.g., clustering) can be applied to discover traffic
jams or predict traffic in some area of a city.

Therefore, this thesis is motivated to focus on studying the behavior of
trajectories that are defined on a graph, annotating with temporal data.

1.1 Trajectory Representation
The majority of existing methods for trajectory similarity represent trajecto-
ries as a sequence of two-dimensional GPS points across time and embedded
on three-dimensional space (x, y, z). However, in many real-life scenarios,
trajectories are constrained by the underlying network. This means that ob-
jects cannot move freely but they must obey the rules applied by the network.
Therefore, each trajectory may be represented by a sequence of nodes.

Evidently, moving from node u to node v requires the existence of a
link (edge) between u and v. For example, in a road network, nodes may
correspond to junctions, points of interest (PoI) or user-defined locations in a
map, and edges may correspond to road segments. As an example, consider
the mobile telephone network, which is usually supported by a large set of
base stations. The motion from one area to another is reflected by the change
of the base station that the mobile phone is connected to. In this scenario,
nodes represent base stations and edges denote neighboring base stations. In
these cases, the GPS trajectories are transferred to a spatial network, which
is a network that is modeled as a graph with the set of nodes embedding
on two-dimensional space (e.g. road network). Therefore, a trajectory is a
sequence of nodes on a spatial network across time. This kind of trajectories
are called spatiotemporal trajectories.
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Having a large-scale collection of spatiotemporal trajectories raises the
challenge of data management and retrieving relevant data efficiently. More-
over, there are other cases that annotating the nodes of the network by the
location information is either not feasible or not meaningful. For example,
consider the Web graph, which represents the network of URLs. Each node
represents a Web page, and each directed edge represents the link (out-link)
from node u to node v. The time spent by each user to a page is also recorded,
and it is used in expressing trajectory similarity. Although the annotation of
a web page with location-based information is feasible [7], it cannot be used
in a meaningful way of studying the similarity between the movement of the
different users between URLs. We can mention the Internet network as an-
other instance of this kind of network, in which the routers make the nodes
of the graph and the connection between routers in the network, make the
edge set of the graph. In this kind of network, may someone be interested in
studying the movement of the packets that are transferring between routers.

In this thesis, we aim at representing the movements by using the topology
of the networks, in which the network is modeled as a graph with no spatial
information, to reduce the dimensionality of the data. Briefly, the idea is to
reduce movements to occur in networks without spatial information. As a
consequence, the movement data becomes a sequence of nodes on a graph.
The advantages of considering such lower-dimensional trajectories are the
reduced the overall size of the data and the lower-dimensional indexing chal-
lenges. Moreover, the ways of analyzing this kind of trajectories are more
scalable, since they can apply on both GPS trajectories and other kind of
trajectories. This is due to that, it is possible to build a graph based on the
trajectories and mine the relationships among trajectories with respect to
the algorithms on graphs.

In some applications the temporal information of trajectories plays the
most important role to specify the similarity between trajectories. For ex-
ample, the moving paths of athletes on tracks are always the same while
the difference in these trajectories is their time information. Therefore, each
trajectory may be represented by a sequence of nodes annotated by the cor-
responding timestamps (or time intervals).

1.2 Similarity Measure

Most of the existing methods for trajectory similarity assume that trajec-
tories are allowed to move freely on the space, without motion restriction
and therefore use the Euclidean distance between two trajectories to mea-
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sure the similarity of trajectories [92, 4, 85, 23, 80]. Taking into account the
network can lead to specific models that reflect the similarity of trajectories
on the network, that is two trajectories that are similar regarding Euclidean
distance may be dissimilar considering network distance. Moreover, the tem-
poral aspect of a trajectory represents the movement varying with time and
only considering the spatial aspect of trajectories and ignoring the temporal
information is an obvious limitation in discovering the similarity of trajec-
tories. Therefore, a similarity function must take into account the temporal
information of trajectories.

On the top of the spatiotemporal similarity functions that are mostly
a linear combination of the independently computed spatial and temporal
distances [81, 79, 76, 82], this project takes into account both the temporal
information of trajectories constrained on a network and their location on
the network, in a single function, namely called structural-temporal similar-
ity function. As stated in [41] it is difficult to define the similarity between
trajectories by spatiotemporal distance directly. Here, we will compute the
similarity between two trajectories, temporally and topologically, using a
similarity function. We aim at exploiting the topology of the network, as-
sessing that two trajectories are similar if they pass through closeby nodes
at roughly the same time.

Indeed, the time complexity of a spatiotemporal similarity measure is an
important criterion. A typical similarity trajectory model compares a huge
number of trajectories, in which each trajectory may have a large number of
nodes. Determining the most similar trajectories to a given query trajectory
from a dataset may require a large number of comparisons. In particular,
considering two trajectories, a similarity function at each comparison between
these two trajectories, computes a distance between either two nodes, if the
trajectories are constrained on a network, or two sample points if trajectories
are on space. Computing the network distance between two nodes is a big
challenge when it is supposed to be used in a similarity function between a
huge number of trajectories. Most existing measures require quadratic time
1 for similarity computations, as shown in Table 2.3. There are some studies
proposing the similarity functions that require linear time to be computed
but they have limitations (see the Chapter 2 for more details). As far as we
know, there is no linear-time similarity that considers trajectories with any
arbitrary lengths and with a flexible notion of proximity in time and location

1We measure the time complexity of each similarity function in terms of the number
of distances needed to compute by each function.
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on the network. In this thesis, we show it is possible to consider both the
time and structure of the trajectories (i.e. the location of the trajectories
on a graph) to overcome the limitation of the current literature, and a good
compromise can be found. We refer the reader to Chapter 2 for a comparison
between the similarity functions in the literature.

1.3 Trajectory Management

Trajectory retrieval is arguably the most important application for trajec-
tory similarity queries, that is, given a query trajectory retrieving the most
similar trajectories to the query with respect to a similarity measure. The
most representative scenario is the k-Nearest Neighbor queries (k-NN), which
aims to determine top-k most similar trajectories to a given query trajectory.
When extracting relevant information querying large trajectory datasets, the
performance crucially depends upon an efficient index of trajectories that can
cluster nearby trajectories together and helps to prune irrelevant trajecto-
ries. The majority of the existing methods for trajectory similarity on the
networks are based on the R-Tree [1]. These have been designed for tra-
jectories that are mapped to a spatial network (e.g. road network). These
structures are not suitable for efficiently retrieving the trajectories on a graph
with no spatial information. However, the works in [54, 69] provide indexing
for spatiotemporal trajectories on the graph, which index the time instances
of trajectories arriving in a node. These structures are not suitable, con-
cerning the time intervals that the trajectories spend in the nodes (more
discussions provided in Chapter 2).

When faced with a new type of data as the network constrained trajec-
tories, how to efficiently organize this data to process queries against this
data is an important challenge. As indexing methods typically designed for
trajectories are already mapped to a spatial network, and none of them con-
sider the time intervals the objects spend in the nodes of the networks, using
existing access methods considering trajectories are defined in this project,
is not either possible or efficient. In this thesis, we attempt to propose an
indexing structure based on the interval tree structure [25] to store trajecto-
ries on the graph. We model our structure in the main memory to support
short response time, although it is possible to extend the methods consider-
ing external memory interval tree [6, 27].
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1.4 Similarity Query Processing

Studying the similarity between trajectories on networks, the query could be
a single node, multiple nodes, and a trajectory. These queries aim at identi-
fying the trajectories that are most similar to the given query (i.e. node(s),
trajectory) with respect to a similarity function. In this thesis, we study
the general case, that is, given a trajectory on the graph, we aim at de-
termining those trajectories are most similar to the given query trajectory.
Since computing the network distance between trajectories is expensive, a
query processing algorithm typically aims at minimizing the number of dis-
tance computations. In one approach a query processing algorithm employs
a prune-and-refine approach with the aim to reduce the number of total simi-
larity score computations, which consequently, reduce the number of distance
computations [23, 80, 79]. The prune step finds a set of candidate trajecto-
ries that are likely to be the results. The refine step is to further identify
the exact query result from the set of candidates. The overall efficiency of a
query processing algorithm mainly depends on the effectiveness of the prun-
ing step. Another approach is providing an approximate searching with the
aim to reduce the number of distance computation [3].

Regarding the first approach, Chen et al. [23] propose the method based
on the searching by location, in which for a given set of query locations, they
search for nearby trajectories for each query location, separately. Then the
intersection of the results contains the top-k trajectories that are close to
all query locations. By following the same strategy Tang et al. [80] retrieve
top-k trajectories with minimum aggregated distance to a set of query loca-
tions. While, these top-k most similar searching process defined on spatial
trajectories on Euclidean space and a spatial index (e.g., R-tree [37]) is used
to enhance the query efficiency. Consequently, their similarity functions only
take spatial proximity into account. Instead, we involve the temporal aspect
of trajectories to measure the similarity between trajectories. By taking into
account the spatiotemporal similarity, the PTM query [79] searches by each
node of query for close trajectories in the spatial and temporal domain, inde-
pendently. The PTM uses the network expansion [26] for finding trajectories
that are spatially close to each node of the query. Then, by considering all
timestamps of trajectory nodes on a time axis, they find those trajectories
have a timestamp within a predefined range of each query timestamp.

Regarding the second approach, [3] propose an approximate method to
retrieve k-NN trajectories to the set of query points on the plane, by consider-
ing the centroid of the convex hull of all query points, as a single query point.
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1.5 Problem Statement

In this thesis, we propose a time-based most similar trajectory query, where a
query is a sequence of nodes of a topological network with the corresponding
time intervals and a given query time interval, aiming at discovering top-k
trajectories that are most similar to the query within the query time with
respect to the structural-temporal similarity function, called k-MsTraj .
For example, a query with two nodes u, v on a topological network appears
as:

< (u, [1307114479, 1307115648]), (v, [1307115649, 1307115649]) >

where [1307114479, 1307115648] is the time interval in ms the query tra-
jectory spent on the node u. Consequently, we need to measure the distance
between trajectories in the dataset and the query within the time intervals.
We need to manage the trajectories without any spatial information of the
underlying network.

k-MsTraj

In this thesis, we aim at addressing k-MsTraj query in an efficient way. A
straightforward approach to process k-MsTraj is to compute the similarity
score for each trajectory in the dataset and report the k trajectory ids with
maximum scores within the query time interval. This approach is inefficient
with respect to the number of distance computations. To accelerate the
computations, we provide two kind of methods:

• Prune-and-refine: In particular, we provide a technique to efficiently
produce an exact solution to the query, by computing the minimum
number of similarity score computations. Moreover, we also aim at
using this technique to design a fast and accurate approximate method.

• Shrink-based: We provide a brief and comprehensive representation of
each trajectory in the dataset by using network Voronoi partitioning
with the aim to reduce the number of shortest path distance computa-
tions.
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Next-PoI Prediction

As mentioned earlier, analyzing the similarity between trajectories provides
useful knowledge in a wide range of applications such as tourist applications.
In this direction, one of the fundamental problems in tourist trajectory min-
ing is the next location prediction, that is, predicting the most likely “Point
of Interest” (PoI) to be visited by a tourist during its tour of a given city.

In this thesis, we aim at identifying the PoI that a tourist will visit in the
future with the highest probability. The objective of this study is to reflect
the similar behavior of the past tourists by considering temporal information
of trajectories, which is really useful in many applications, to predict the
next movement of a tourist.

1.6 Contribution and Thesis Organization
Our research is motivated by two requirements. First, our method should be
based on the characteristics of moving objects on networks and not nec-
essarily a spatial network. Second, we should simultaneously consider a
structural-temporal similarity. Based on these ideas, we propose a search
method for finding trajectories on networks from the trajectory database
similar to a given query trajectory within a given time interval. In this the-
sis, our main contributions can be summarized as follows: (1) we propose a
low complexity similarity function considering temporal aspect and the loca-
tion of trajectories on the graph, directly in a single function; (2) we propose
a storage scheme to speed up searching for similar trajectories; (3) we use the
Network Voronoi Diagram to process the query by computing the minimum
number of shortest path distances; (4) we provide the fast exact and approx-
imate prune-and-refine techniques to process query by the minimum number
of similarity score computations; (5) we propose a technique to predict the
next movement of a user in tourist application, by taking into account the
structural-temporal similarities between tourists and without involving ma-
chine learning techniques, which is the basic approach for addressing this
problem.

These contributions are organized in some manuscripts as follows.

1. "Time-Based Similar Trajectories on Graphs"; Published in Proceed-
ings of the 19th Italian Conference on Theoretical Computer Science,
2018, pp. 82-86 (2018).

2. "Finding Structurally and Temporally Similar Trajectories in Graphs";
Accepted in the SEA conference (2020).

8



3. "Efficient Top-k Similarity Query Processing in Network-Constrained
Trajectories"; To be submitted in the Information system journal.

4. "Next Movement Prediction of Tourists"; To be submitted in the ASONAM
conference (2020).

The rest of this thesis is organized as follows. Chapter 2 reviews related
works. In Chapter 3 we present some basic concepts and definitions that are
necessary to develop the techniques in this thesis. We explain the main prob-
lem that this thesis focuses on it. Thereafter, we propose an access method
and due to the lack of competitors we design a baseline method for solving
the proposed problem to compare with. We evaluate the provided strate-
gies in comparison with this baseline method. In Chapter 4 we propose an
approximation technique based on the network Voronoi diagram that offers
the top-k most similar trajectories with respect to a query trajectory in an
efficient way with acceptable precision. We investigate our method over real-
world networks. The performance evaluation results show the effectiveness of
the proposed method. In Chapter 5 we propose some fast prune-and-refine
techniques to accelerate the query processing, by providing the exact and
approximate top-k most similar trajectories to the query. We conduct com-
prehensive experiments to evaluate the effectiveness of the proposed methods
in this chapter. In Chapter 6, we focus on the problem of predicting the next
movement of a tourist and experimentally compare the performance of the
proposed prediction model with state-of-the-art methods. Finally, we con-
clude the project and discuss the future direction of our studies in Chapter 7.
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Chapter 2

State of the Art

2.1 Modeling Moving Objects(Moving Objects
Representation)

With the rapid growth of wireless communications and location-based de-
vices, the concept of Moving Object Databases (MOD) has become impor-
tant in the spatial and spatiotemporal database research. Moving objects
dataset contains a set of objects whose positions change with respect to
time. The position of moving objects while they are moving along the time
could have useful knowledge for different applications like route optimization
or recommendation. In this section, we classify the movement of objects
into two major types constrained and un-constrained, with respect to the
environment they move on and mentioning some applications of each type.

2.1.1 Trajectory

In order to record the movement of an object, we would have to know
the position of the object at all times, i.e., on a continuous basis. The
data obtained from moving objects is similar to a string, arbitrary ori-
ented in 3D space, where two dimensions correspond to space and one di-
mension corresponds to time. We can have the movement of an object
by sampling the movement. There are some positioning technologies like
Global Positioning System (GPS) that can be used to sample the loca-
tion of moving objects at discrete instances of time, such as every few sec-
onds. By sampling the movement of an object, we obtain a sequence of
triples 〈(x1, y1, t1), (x2, y2, t2), ..., (xN , yN , tN)〉, representing the trajectory of
the moving object: xi, yi represent the geographic coordinates of the moving
object at time ti, which is called raw trajectory and provides a point-based tra-
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jectory representation. Representing the movement of objects as a sequence
of time-stamped points is a popular and simple way of modeling the object’s
movements.

In this kind of trajectories, we cannot get some information at times in-
between sampled points. Therefore, in some applications which are needed
to obtain the entire movement, they need to use an interpolation operation:
a trajectory is represented as a sequence of connected segments in which each
of them connects two consecutive sampled points. The linear interpolation is
widely used to estimate the location of the moving object between sampled
points. It provides a segment-based trajectory representation of the move-
ment of objects, which a trajectory is a sequence of the connected segments
[62, 71, 68, 67]. In these trajectories, each segment is represented by two
consecutive sampled points. The traces of the movements of people or ani-
mals [16, 36] which can move freely on the plane or space, can provide this
kind of trajectories.

Representing the object’s movements as a sequence of time-stamped ge-
ographical coordinates costs a lot of overhead for communication, compu-
tation, and data storage. Indeed, in several applications, the movement is
restricted physically and spatially. For example, a large number of GPS
equipped vehicles such as taxis, cars, buses, airplanes move on a pre-defined
spatial network like roads, railways, air routes [67]. Considering this kind of
moving objects, some applications may be interested only in the position of
objects with respect to the network, rather than in their exact coordinates.
In these applications, the trajectory of moving objects can be represented
as the component of the network, as a sequence of edges or nodes of the
underlying network. In particular, the sample points of the raw trajectories
would be mapped to the nodes (edges) on a spatial network by using the
map-matching algorithms [13, 49]. The spatial network is a graph defined as
follows.

Spatial Network Generally, networks are modeled as a graph G(V,E),
where V denotes the set of nodes and E denotes the set of edges of the
network. Each edge between two nodes u, v ∈ V shows a connection between
u, v. Regarding the purpose of the graph creation, the edge could be weighted
or directed. In particular, a spatial network is a network with the additional
spatial information assigned to the components of the graph.

A road network is an example of a spatial network, which could be rep-
resented as a weighted graph G(V,E), such that each node represents a road
junction, and each edge represents a road segment. Each node of the graph
is assigned to the spatial position in terms of geographical coordinates (i.e.,
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latitude and longitude). The weight of an edge between two nodes u, v ∈ V
of the road network usually is the Euclidean distance between two spatial
coordinates assigned to u, v. There are two representations for the road net-
work: a geometric view and a topological view. The geometric view (or 2D
view) captures the geographic locations of the road network components.
This is the base view of the road network. The topological view uses a graph
in order to represent the road sections and the intersections with no spatial
information.

For instance, by mapping the sample points of a raw trajectory onto the
nodes of a network, we obtain a sequence of pairs 〈(v1, t1), (v2, t2), ..., (vn, tN)〉
in which each vi ∈ V is assigned to the pair (xi, yi) of its position in Euclidean
space and ti is the timestamps of the sample point (xi, yi).

Moreover, there are some other types of object’s movements that cannot
be considered to be physically constrained or spatially bounded, like Email
communication or Web browsing [7, 84, 10]. Due do that there is no spa-
tial dimension for this kind of trajectories, the strategies proposed in the
literature for studying the behavior of trajectories do not work on them.
For example, in [10] for studying the web browsing mobility, by defining a
sequence of visited web pages by users, first, they create a graph of trajecto-
ries. Then, they use the Fruchterman-Reingold graph layout algorithm [33]
to transfer the created graph onto a 2D space, for applying the spatial-based
algorithm.

Table 2.1 shows two types of trajectories: constrained and un-constrained
trajectories and mentions a few applications in each type.

2.2 Trajectory Query Types
Trajectory search queries aim at finding the most relevant trajectories to the
query arguments, which could be single or multiple point(s), a region, and a
trajectory [23, 78, 79, 98, 97]. The relevancy between a trajectory and a query
argument may contain spatial [23], spatial-temporal [81, 79], spatial-textual
[78, 98, 98], and density elements [75].

Therefore, we generally classify the trajectory queries into three types:

1. Region-based query (Range query): looking for trajectories passing
through a given spatiotemporal region.

2. Point(s)-based query: looking for the trajectories which satisfy the
query requirements to a specified query point(s).

3. Trajectory-based query: looking for trajectories are similar (in terms
of the query requirements) to the given trajectory.
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Movement Moving object Network Application

Un-constrained
movement

Animal ×
X Mining migration pattern
X Studying the distribution and

habitat of animals [46, 48]

Human:
users of mobile phones or

users of location based social networks
like Flickr, Instagram

×

X Studying the behavior of
the users based
on the sequence
of cell phone

towers that the user
made a call [65],

X Trip recommendation
based of the

sequence of the
time-ordered of

geo-taged photos [60]

Network
constrained movement

Real objects:
taxis, cars,

buses, airplanes, pedestrians
on road networks and

transportation networks

Spatial
Network

X Traffic control,
X Scheduling transportation
X Internet marketing [67, 68, 39]

Individual objects:
packets on routing

networks or computer networks,
click streaming on web networks

Non-Spatial
Network

X Predicting a user’s access on website,
X Studying the pattern behavior of users

[35, 10]

Table 2.1: Diversion of the object’s movements w.r.t the environment the
objects are moving on.

Considering the constrained trajectories, a point may be a node of the
network and a region could be a set of nodes.

Region-based queries The range queries retrieve the trajectories that
have an intersection with a given spatial and temporal range. In [75], trajec-
tory search by region (TSR) retrieves trajectories with the highest spatial-
density correlation to a set or sequence of query regions. On the other hand,
a query may be a query point and a spatial radius, which aims at finding the
trajectories traverse the region within the given radius from the query point
as studied in [50].

Point(s)-based queries The single point based query [68, 31] looks for
the closet trajectories to only one location (e.g. the supermarket in a city,
the food source to animals). In addition, a query point can be annotated
to textual attribute like the spatial-textual query in [97], which looks for
trajectories are spatially close to the query point and also satisfy the semantic
requirements defined by the query.

The set of point query [23], finds the trajectories are close to a set of
specified query points (e.g., sightseeing places). This query is useful for trip
recommendation to travelers that they desire to visit some specified points
of interest.

Having query points annotated by some textual preferences, the work in
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[78] finds the trajectories are spatially close to all query points and its textual
attributes are similar to the given one.

Trajectory-based queries An interesting type of query that is useful
in many applications is the so-called trajectory similarity problem, which
aims at finding similar trajectories of moving objects with respect to a sim-
ilarity function. We classify the trajectory-based queries into two kinds of
queries: Boolean similar trajectories search and top-k similar trajectories
search query.

1. Boolean similar trajectories: finds all trajectories that are similar to a
given query trajectory [40, 41].

2. Top-k similar trajectories: retrieves trajectories that are most similar
to the given query trajectory w.r.t a spatiotemporal similarity [20, 21,
79, 81] or a spatial-textual similarity [98] functions.

We classify the similarity functions into two categories: spatial functions,
which they only consider the spatial information of trajectories, and spa-
tiotemporal functions, which consider both temporal and spatial aspects of
trajectories. This section will introduce the spatial and spatiotemporal simi-
larity measures that measure the similarity between two trajectories by con-
sidering both the spatial and temporal aspects of trajectories.

2.3 Basic Similarity Measures
Many studies on similarity-based retrieval of trajectories have been conducted
in the last two decades. The first and most difficult challenge in these studies
is to give a good definition of similarity/distance between a trajectory and
a query argument (i.e., point(s) and trajectory). In the similarity functions,
d is some function distances between two points, which can be either the
Lp-norm on Euclidean space or network distance on the spatial network.

2.3.1 Point(s)-Trajectory

The distance between a point q and a trajectory T is generally measured as
the aggregated distance as follows:

dis(q, T ) = fpi∈T (d(q, pi))

where, f(.) is a function that could be: the sum of distances, maximum
distance, and minimum distance. While, most studies in the literature [82,
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23] assume this function as the minimum distance, i.e. the distance from q
to the nearest point of T . This pair of points is namely called the match pair
points.

The work [23] extends this distance function for a single query point
to a small set of query points, and proposes the following distance function
between a set Q of n query points and a trajectory T by using the exponential
function:

Sim(Q, T ) =
∑
q∈Q

e−dis(q,T )

The intuition of using the exponential function is to assign a larger con-
tribution to a closest matched pair of points while giving much lower value to
those faraway. The trajectories can move freely on the plane and the query
is specified in spatial terms only. Thus, the similarity functions are based on
the spatial distance (i.e Euclidean distance) between trajectories and query
points on the plane. However, this measure is sensitive to the distance unit
and the query results could be different if the distance unit changes from
kilometer to mile.

Therefore, the work [82, 80] computes the similarity between the set of
query points Q and the trajectory T as an augmentation of the distance
between each query point and the trajectory as follows:

Sim(Q, T ) =
1

n

∑
q∈Q

dis(q, T )

2.3.2 Trajectory-Trajectory

Many distance functions have been proposed considering trajectories as se-
quences, i.e. like strings. Lp-Norms [4, 29] are distance measures that are
suitable for trajectories having the same length. Another measure is Dynamic
Time Warping, (DTW) [92, 45] which has been proposed for trajectories hav-
ing (possibly) different lengths. However, in these approaches, some outlier
points from a trajectory, which could be considered as noise points, may
cause a big distance between trajectories. For this reason, the concept of
the Longest Common Sub-Sequence (LCSS) [85] has been employed. LCSS-
based distance allows for ignoring the noise points. However, it needs a
matching threshold to determine whether to ignore a point of the trajectory.
Edit Distance on Real Sequence (EDR) [21] is similar to LCSS in using a
threshold parameter to determine if two points are matched while consid-
ering penalties to gaps. Edit distance with Real Penalty (ERP) [20] also
introduces combining the merits of DTW and EDR. It is worth noting that
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these similarity functions are based on the edit distance, which are originally
proposed for matching strings. But by representing trajectories as strings,
these functions can be applied to trajectories.

Pairwise Distance

Considering two trajectoriesQ, T as a sequence of points with the same length
n, [4] simply computes the distance between two trajectories as follows:

D(Q, T ) = (
n∑
i=1

|qi − pi|p)
1/p

where qi ∈ Q and pi ∈ T . This function computes the Manhattan and
Euclidean distance between points when p = 1 and p = 2, respectively.

We can also extend this definition to measure the distance between two
trajectories that are constrained on the spatial network. Considering each
trajectory as a sequence of nodes on graph in spatial domain, the works [81,
18] have studied this kind of trajectories and define the spatial distance as
follows:

Dnet(Q, T ) =
1

n

n∑
i=1

d(vi, ui)

where ui ∈ Q and vi ∈ T and n is the length of trajectories in terms of
the number of nodes.

The main drawback of these functions is that they are based on point-
to-point distance calculations and require two trajectories with the same
lengths, which is rarely could be happened in the real applications. There-
fore, Dynamic Time Warping, is proposed for trajectories with the arbitrary
length.

Dynamic Time Wrapping (DTW) [92]

Considering two trajectories with possibly different lengths, DTW uses a
recursive manner to search all possible point combinations between two tra-
jectories for the one with minimum distance, which can be computed with the
dynamic programming. However, in these approaches, some outlier points
from a trajectory, which could be considered as noise points, may cause a big
distance between trajectories. For this reason, the concept of the Longest
Common Sub-Sequence (LCSS) [85] has been employed.
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Longest Common Sub-Sequence (LCSS) [85]

LCSS-based distance allows skipping the noise points when calculating the
distance of trajectories, using a threshold to establish a match for two points
from two different trajectories. While DTW must match all points, the LCSS
allows us to skip noisy points and so match some points of trajectories rather
than all of them. This idea makes LCSS more flexible to the trajectories with
faraway points. Let Q and T be two trajectories of moving objects with size n
andm respectively, where Q = 〈v1, v2, · · · , vn〉 and T = 〈u1, u2, · · · , um〉. For
a trajectory T , let Head(T ) be the sequence Head(T ) = 〈u1, u2, · · · , um−1〉.
Given an integer σ and a real number 0 < ε < 1, the LCSS(Q, T ) is defined
as follows:

LCSS(Q, T ) =


0

if m = 0

or n = 0

1 + LCSS(Head(A), Head(B)) if d(vn, um) < ε

and |n−m| ≤ σ
max(LCSS(Head(Q), T ), LCSS(Q,Head(T )) otherwise

There are some studies that define a function based on the LCSS to
measure the similarity between trajectories. The work in [79] combine the
idea of the distance function proposed in [23] and LCSS function to measure
the similarity between two spatial trajectories on the spatial network. Given
a matching spatial threshold ε, it defines the spatial influence factor between
two spatial points in a spatial network as follows:

Is(v, u) =

{
0 if d(v, u) > ε

e−d(v,u) otherwise

Then, the similarity between two trajectories Q, T is defined by the fol-
lowing function:

Sim(Q, T ) = max

{
Is(vn, um) + Sim(Head(Q), T )

Sim(Q,Head(T ))

Although, LCSS is robust to noises, the accuracy of the results depends
on the matching thresholds. This is due to that, it does not consider some un-
matched points and ignoring these points depends on the predefined thresh-
old, which may lead to some inaccuracy.
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Edit Distance Based [21, 20]

The Edit Distance on Real Sequence (EDR) [21] aims at providing a less
coarse description than LCSS for the distance between trajectories. EDR re-
moves the noise effects by quantizing the distance between a pair of elements
to two values, 0 and 1. Furthermore, assigning penalties to the unmatched
parts improves its accuracy.

Edit distance with Real Penalty (ERP) [20] combines the merits of DTW
and EDR, by using a constant reference point for computing distance between
gaps of two trajectories. Essentially, if the distance between two points is
too large, ERP simply uses the distance value between one of those points
and the reference point.

All the similarity functions discussed before are originally proposed to mea-
sure the similarity between raw trajectories, without considering the moving
objects in constrained networks. However, they can be applied on the spatial
trajectories on the spatial networks, by considering network distance between
trajectory points rather than Euclidean distance. Indeed, several similarity
measure methods have been presented aiming to study the similarity between
network constrained trajectories.

Jaccard Similarity

The Jaccard similarity [73] is originally defined over the strings to compute
the number of shared terms over the number of all unique terms in both
strings. Jaccard similarity is not suitable for measuring the similarity be-
tween two raw trajectories. This is due to that, it may rarely happen that
two coordinate points of two different trajectories be the same. While it is
more suitable for trajectories that have already mapped to a network [88, 22].

Let Q, T are two trajectories on a spatial network as a sequence of nodes
(or edges). The Jaccard similarity for Q and T defined as follows:

Sim(Q, T ) =
Lc(Q, T )

L(Q) + L(T )− Lc(Q, T )

Where, Lc(Q, T ) is the total length of the common part between trajec-
tories Q and T , and L(Q) denotes the length of the trajectory Q.

Dealing with raw trajectories, the work in [57] represents each trajectory
as a sequence of cells of the grid, by using a geographical grid based on a 2D
coordinate system. Then by using the Jaccard distance, they compute the
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similarity between two raw trajectories.

Moreover, Won et al. [87] presented a function based on Jaccard distance
in the opposite way to define dis-similarity between trajectories on the spatial
network. They consider each trajectory (i.e. a sequence of segments of the
road network ) as a string. Given two trajectory Q, T , they propose a dis-
similarity function as follows:

DisSim(Q, T ) =
Ld(Q, T )

L(Q) + L(T )

Where, Ld(Q, T ) is the number of disjoint segments of Q and T , and L(Q)
denotes the length of the trajectory Q in terms of the number of its segments.

By Jaccard similarity, we can observe that two trajectories are consid-
ered similar if they necessarily share any common part, otherwise they are
dis-similar. Therefore, the main drawback of Jaccard similarity is that this
measure does not take into account the proximity between trajectories, while
two trajectories may be similar even if they do not share a common node.

All the aforementioned functions are basic functions to compute the spa-
tial similarity between trajectories are constrained or un-constrained. How-
ever, the temporal aspect of a trajectory represents the movement varying
with time and only considering the spatial aspect of trajectories and ignoring
the temporal information is an obvious limitation in discovering the similar-
ity of trajectories. In the next section, we focus on studies aimed at finding
similar trajectories considering both spatial and temporal similarities. Most
of these studies proposed the similarity functions inspired by the basic func-
tions, cleverly.

2.3.3 Spatiotemporal Similarity

There is a general approach which is widely used in the literature to define
the spatiotemporal similarity. This approach defines the different similarity
functions in spatial and temporal domains and then combines both functions
in a single spatiotemporal function. However, due to the different spatial
and temporal distances, this approach needs to specify spatiotemporal weight
parameters to achieve a combined function. Let Q, T be two trajectories and
Ds(Q, T ) and Dt(Q, T ) denoted the spatial and temporal distances between
two trajectories Q, T , respectively. The combined spatiotemporal distance
Dst(Q, T ) can be thereafter express as the function forms summarized in
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Table 2.2. As we can see, the majority of the similarity functions are based
on the spatiotemporal parameter, which must be known in advance.

Spatiotemporal function References
σ ∗ Ds(Q, T ) + (1− σ) ∗ Dt(Q, T ) [81, 79, 76, 82]

(Ds(Q, T ) + σ ∗ Dt(Q, T ))/2 [19]
(Ds(Q, T )/σ + 1) ∗ (Dt(Q, T ) + 1) [19]

Ds(Q, T ) ∗ Dt(Q, T ) [88, 74]
σ ∗ Ds(Q, T ) +Dt(Q, T ) [41]

Table 2.2: Spatio-temporal similarity functions: the parameter σ controls
the relative importance of the spatial and temporal similarities.

Hwang et all. [41] define spatial and temporal similarity based on road
networks. They predefined PoIs (Pints of Intrest) on the road network and
ToIs (Time of Intrest) of moving objects. Thereafter, they define the simi-
larity function based on the predefined PoI and ToIs. In which they assert
that two trajectories are similar if they traverse the same PoI and ToI. They
combine the temporal and spatial distances as shown in Table 2.2 by consid-
ering the spatial parameter as the subtraction of the speed of two trajectories.

Xia et all. [88] propose a Jaccard based similarity function by consid-
ering the spatial and temporal aspects of the trajectories in which they are
constrained by the network. The definition of their similarity function is
based on the length of the common parts of trajectories. Tow trajectories
are considered similar if they necessarily share any common part, otherwise,
they are dis-similar. The spatiotemporal similarity function in their work is
defined as the spatial distance multiple the temporal distance (see Table 2.2).

In both proposed methods in [88, 41], they do not take into account the
proximity of the trajectories in the similarity definition and the trajectories
need to traverse the same points to consider as the similar trajectories.

Tiakas et al. [81] propose a pairwise based distance to measure the prox-
imity of two trajectories in space as a spatial similarity. Besides, they propose
a temporal similarity between two trajectories with respect to the time re-
quired to travel from one node to the next (inter-arrival times) as shown in
the following example:

Example 1 Let two trajectories T1, T2 with the length 3, move between the
nodes of a graph as shown in Figure 2.1. The values between two nodes
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denote the time needed to traverse a node to another one for each trajectory.
The temporal distance between two trajectories in the example, based on the
temporal similarity function defined in [81] is as follows:

Dt = 1/3(|4− 3|/max{3, 4}+ |6− 4|/max{6, 4}) + |5− 5|/max{5, 5}
= 1/3(1/4 + 2/6 + 0)

Figure 2.1: An example of the temporal distance in [81]
.

Intuitively, two trajectories are temporally similar in [81] if they move
between nodes with similar speed, even if they traverse nodes at different
times. Therefore, this similarity function cannot reflect the requirements for
those applications that the exact time of the events is important for them.
Indeed, they control the effect of these two distances with spatiotemporal
parameter in a linear combination as presented in Table 2.2.

Sha et al. [74] define a spatiotemporal similarity function for trajecto-
ries on the road network. They propose the problem of finding trajectories
in which they are close to a set of query locations with time stamps. For
defining the similarity function, they find match pairs in trajectories for each
query location and then define the pairwise based similarity function with
respect to the spatial distance and time distance between only these pairs.
They combine the spatial and temporal distances in a similar way to the
spatiotemporal distance in [88].

Shang et al. [79] compute the similarity score between two trajectories.
Each trajectory is a sequence of time-stamped nodes on the road network.
They provide a distance function in the spatial and temporal domains, inde-
pendently. The spatial function is an extension of LCSS as described before.
They defined the temporal distance based on the LCSS. Therefore, a linear
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Temporal Proximity Properties Input Complexity time1

[87] × × Jaccard similarity
based

Two strings as
trajectories O(`2)

[88] X × Jaccard similarity
based

Two strings as
trajectories O(`2)

[41] X X
Pair to pair distance
computation only at

specific predefined points

Two trajectories with
the same length, implicitly O(`)

[81] X X
Spatial and temporal distance
computation in separate way

(Liner combination)

Two trajectories with
the same length O(`)

[79] X X
LCSS based

Liner combination of spatial
and temporal distance

Two trajectories O(`2)

[82] X X
Linear combination of

spatial and temporal distance
A set of query points

and a trajectory O(`2)

Table 2.3: Network-based similarity measures for trajectories of ` nodes.

combination (see Table 2.2) of the network distance and time distance be-
tween two trajectories measures the spatial-temporal similarity between two
trajectories. The similarity function is able to find the similarity between
two trajectories with arbitrary length when the query trajectory treats as a
sequence of weighted points.

Tiakas et al. [82] provide a spatiotemporal similarity function by com-
bining spatial and temporal distance between a set of time-stamped query
points and a trajectory on a spatial network. The spatial distance is defined
as the sum of the distances of the shortest path matching pair from the tra-
jectory to each point of the query as described in Section 2.3.1. Similar to
the temporal distance in [74], the temporal distance is based on the distance
between timestamps of the match nodes of the trajectory to each query node.
Thereafter, they propose the spatiotemporal similarity function as a linear
weighted aggregation of the spatial and temporal distance functions as shown
in Table 2.2.

Indeed, the time complexity of a spatiotemporal similarity measure is an
important criterion, since a similarity function could be costly when it is
supposed to measure the similarity between a large set of long trajectories.

Most existing measures require quadratic time 2 for similarity computa-
tions, which shown in Table 2.3. Although, there are some studies proposing
the similarity functions that require linear time to be computed with some
limitations, such as Hwang et all. [41] mentioned earlier, they compute the
network distance between trajectories as distances between the set of prede-

2We measure the time complexity of each similarity function in terms of the number
of distances needed to compute by each function.
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fined PoIs and ToIs; Tikas et al. [81], which compute the similarity between
two trajectories with the same length. Table 2.3 summarizes the network-
based spatial and spatiotemporal similarity functions and illustrated the dif-
ferences between each of them.

Additionally, Frentzos et al. [32] propose spatial-temporal function DIS-
SIM aiming at computing the similarity of time series with different sampling
rates. The proposed distance is applicable on trajectories on the plane as the
area of the region between two trajectories. In particular, the similarity be-
tween two trajectories is defined as the integral of the Euclidean distance
between two trajectories within a time interval.

It is worth to mention that there is another kind of queries in trajectory
data analytics, relying on the similarity between trajectories, called similarity
join query. Given two sets of trajectories and a threshold θ, the similarity
join query returns all pairs of trajectories from the two sets with similarity
more than θ. For example, Shang et al. [77] by using a linear combination
of spatial and temporal distances, treat the similarity join query considering
the trajectories of vehicles moving in road networks. Yuan et al. [94] define
trajectories as a sequence of segments on the road network and propose a
spatial similarity function based on the Longest Common Road Segment
(LCRS) between two trajectories to study the similarity join query.

2.4 Trajectory Data Management

For studying the trajectories and answering different kinds of queries about
trajectories, it is necessary to manage trajectories in a structure to retrieve
the trajectories, efficiently. There are some access methods proposed in the
literature to support retrieving trajectories in an efficient way. In this section,
we present an overview of indexing historical spatiotemporal data, which is
the most related groups of indexing to the aim of this thesis.

R-tree Variation The most popular and classical data structure for spa-
tial data is R-tree [37, 56]. As Figure 2.2 illustrated an example 3 , an R-tree
is a height-balanced data structure. Each node of the R-tree corresponds to
the Minimum Bounding Box (MBR) that bounds its children. The leaves
of the tree contain pointers to the database objects instead of pointers to
children nodes. R-tree is a data structure for storing spatial data, which
highly supports spatial range and k-nearest neighbor (k-NN) queries. There
are two strategies to traverse R-tree, depth-first and best-first [38]. The best-

3[56]
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first strategy traverses the R-tree index from the root node and always visits
the MBB with the minimum distance to the query point until it reaches the
leaf node and returns it as the result. The depth-first traverses R-tree from
a leaf node.

Minimum Bounding Boxes

Tree representation

Figure 2.2: R-tree example

Although R-tree is the most popular structure that retrieves trajectories
efficiently, it is not suitable for supporting spatiotemporal queries. Therefore,
many studies augment the temporal aspect into R-tree to retrieve spatiotem-
poral trajectories efficiently. For instance, 3DR-tree [44] and STR [68] regard
the time as the third dimension besides the 2D geographical space, building
a 3DRtree based on trajectories. There are many other works in the liter-
ature to index the spatiotemporal trajectories which their spatial indexing
structure is based on the R-tree as like SETI [17], which divides the spatial di-
mension into some grids, and then for each grid, they build a temporal index.

From the spatial perspective, most access methods consider that the ob-
jects are moving freely in the space. However, in several applications, the
object movements are constrained (e.g., trains moving along a railroad net-
work or vehicles moving along a road network). A few works proposed access
methods for trajectories in networks, which is the most related to this thesis.
We overview them as follows.

Most indexing techniques for trajectories in networks decompose the net-
work into roads and then index the spatiotemporal location of the trajectories
on each road with a specific index, which is a variant of R-tree [37]. Typical
examples include FNR-tree [30] and MON-tree [24].
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FNR-tree [30] uses a 2D R-tree to index road edges. For every edge in
the network (i.e., every leaf entry in the 2D R-tree), there is a 1D R-tree
to index the objects whose trajectories cross the edge at a certain period of
time.

MON-tree [24] consists of two levels of 2D R-tree. One indexes the net-
work edges and another one indexes the object movements along the edges.
Given a spatiotemporal query, the top level R-tree is used to find the precise
intersection between the spatial part of the query and the network. Based
on this intersection, a set of sub-queries is generated for each intersected
part of each edge involved. Then, the corresponding bottom level R-trees
are accessed in order to respond to the sub-queries.

PARINET[69] PARtitioned Index for in-NEtwork Trajectories (PARINET)
is an access method for retrieving the historical trajectories of moving ob-
jects over the road networks. PARINET partitions the road network and
trajectory data based on the data distribution and the network topology.
The time intervals for the trajectory data within each partition are indexed
using a B+-tree. They use the 2D representation of the road network. Then,
based on this 2D representation they construct the topological representation
of the road network. The topological representation used for partitioning the
network. For 2-D range query processing, the PARINET, first finds the inter-
secting partitions. Then, for each accessed partition, it performs a range scan
by using the B+-tree index in order to find those trajectories that temporally
overlap the given time interval.

FMI [54] FootMark Index is used for the efficient processing of the Time-
Period Most Frequent Path query (TPMFP, for short). The TPMFP query
identifies the most frequent path from a specified source node to a specified
destination node on a network within a given time interval. This query is
processed by creating a footmark graph by using the trajectories reaching
the destination node within the given time interval. The footmark graph
is a sub-graph of the entire network graph. The purpose of FMI is to find
the trajectories according to passing the destination node within the time
interval to construct the footmark graph. FMI builds a B+-tree for each
node of the graph. The B+-tree for each node indexes the time instances the
trajectories reaching to the vertex.

However, FMI provides an indexing for trajectories on graph. This struc-
ture is based on a B+-tree for each node of the graph, which indexes the
time instances of trajectories arriving in the node and they do not consider
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the time intervals that a trajectory stops in a node. Similarly, the temporal
indexing in PARINET[69] cannot find those trajectories that they reaching
to a given specific road segment on road network out of the given time range,
while having an overlap with the time interval.

TTI [101] The Time-dependent Transfer Index (TTI) is proposed to ef-
ficiently detect outliers within a given time interval. To create TTI, they
divided the network into the disjoint grids. Then, they build a B-tree struc-
ture for each grid, maintaining at leaves of the tree, the trajectories passed
through the grid in specified period times of the day. This structure shows
each trajectory passes which grid at which time, while does not show how
much a trajectory spent in a grid. Moreover, may one trajectory that stayed
in a grid for a long time interval reduplicates for each entry of the tree and
makes an inefficiency in the storage cost.

2.5 Trajectory-based Query Processing

Given a query object (i.e. point(s), trajectory), this kind of query aims
at finding those trajectories that have the minimum distance to the query
argument based on some distance functions.

Since computing the distance (similarity) between objects and trajectories
is expensive, a query processing algorithm typically employs a prune-and-
refine approach. The prune step finds a set of candidate trajectories that
are likely to be the results. The refine step is to identify the actual query
result from the set of candidates. The overall efficiency of a query processing
algorithm depends on the effectiveness of the pruning step. This approach is
applicable to constrained or un-constrained trajectory sets. We distinguish
between the proposed methods addressing spatial and spatiotemporal queries
in the Sections 2.5.1 and 2.5.2.

Another approach for efficiently addressing this kind of query is approx-
imate searching for trajectories with minimum distance to the query object
which rarely studied in the literature mentioned in Section 2.5.3.

2.5.1 Spatial Queries on Trajectories

Considering spatial trajectories, one approach to employ the prune-and-refine
method on this kind of query is to treat each spatial trajectory as a set of
sample points and index points of trajectories by using any spatial indexing
structure (e.g. R-tree). Then, search for the sampled points in the setting of
the prune-and-refine approach.
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Given a point or a set of points, this approach thereafter aims at finding
those sample points of trajectories either are within a distance from the
query point (i.e. range query) or retrieve incrementally the nearest sample
points to the query point (i.e. k-NN query). Therefore, the main task will
be addressing the basic queries range and k-NN queries over a set of spatial
points.

Regarding k-NN trajectories to a given point(s) query, R-tree helps to
prune trajectories that are far from the query point(s) as early as possible.
For instance, the works [23, 80] use R-tree to find the neighboring points of
trajectories around the query location(s), by traversing R-tree by best-first
and depth-first based strategies.

Chen et al. [23] propose the problem of searching trajectories by loca-
tions. The goal is to find the k-Best Connected Trajectories (k-BCT) from
a database such that trajectories connect the small number of query loca-
tions in the best way. The quality of connection provided by a trajectory is
measured with respect to a spatial similarity function. For query processing,
they propose a pruning strategy to avoid investigating those trajectories that
are far from the query locations. In their method, they index the points of
all trajectories with a single R-tree [37]. They first find the closest trajecto-
ries for each query location, and then merge them for the exact k-BCT. By
using the best-first and depth-first strategies of traversing R-tree, they find
the k-Nearest Neighbor (k-NN) trajectories, therefore, they discover the clos-
est trajectory to the query location. By knowing these closest points, they
estimate a lower bound and upper bound of the closeness of the trajectory
to the query locations w.r.t their proposed similarity function for pruning.
Their proposed algorithm can efficiently find the closet trajectories to the set
of the small number of query location, although it would be costly if the size
of the query set is large.

Tang et al.[80] define each trajectory as a sequence of points, in which
each point is mapped to a node of the road network. They aim at finding
the k nearest trajectories to a given set of query points. In their proposed
method, they search for each node of the query to retrieve the k-NN tra-
jectory nodes around each query node. They use the best-first strategy and
R-tree indexing for searching k-NN points of trajectories. They process each
discovered trajectory in their searching process whether it is in k-nearest tra-
jectory w.r.t the query. They evaluate the effectiveness of their method by
conducting several experiments to measure the query time and I/O overhead
by varying the values of k and the query size.

Moreover, [72] uses a variant of the best-first method to compute the
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nearest neighbors to a query point on a spatial network. They transformed
a graph representation of the network to a high dimensional space to use the
spatial metrics to measure the distance between two spatial points. [70, 38]
proposed depth-first and best-first based strategy, respectively, for finding
k-NN point objects to a given query point. While [63] by considering a set
of points as a query, proposed aggregated k-NN query.

Indeed, Papadias et al. [64] study query processing for spatial points,
by using a spatial access method on the road network. It is shown that
the use of Euclidean distance retrieves many candidates, and instead they
propose a network expansion method to process range and nearest neighbor.
Similarly, [82, 79] use the network expansion method for studying the spatial
closeness of trajectories on the spatial network, which they described in the
next section.

2.5.2 Spatiotemporal Queries on Trajectories

There are mainly two approaches to process spatiotemporal queries by em-
ploying the prune-and-refine strategy. The first is to prune trajectories in
the spatial and temporal domain, separately, and then merge the discovered
trajectories in a single set to process [79, 81, 41]. The second approach is to
prune trajectories in the spatial domain and refine the results in the tempo-
ral domain or vise versa [41, 81, 82, 74]. However, may many trajectories be
discovered from the trajectory dataset by either spatial or temporal pruning.
For example, if we consider the whole lifetime of trajectories in the dataset as
the time interval query, temporal pruning is not sufficient anymore. More-
over, this method is only applicable to the similarity functions that mea-
sure the spatial and temporal distances between two trajectories, indepen-
dently. While, this definition of the similarity between trajectories may lead
to some unnecessary distance computations, and consequently, more cost of
query processing. Having one single spatiotemporal similarity function, this
method could not be useful anymore. We will overview some studies based
on this approach for processing spatiotemporal queries over trajectories on a
spatial network (e.g. road network).

Hwang et al. [41] propose a trajectory similarity evaluation approach
based on the road network distance to detect duplicates in trajectories of
moving objects. The proposed pruning method is based on spatial similar-
ity and the refining method is based on temporal distance, considering some
predefined points and times of interest (i.e. PoI and ToI).
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Tiakas et al. [81], for a given query trajectory on a road network, fol-
low the two mentioned approaches to prune trajectories by each node of the
query trajectory. They use M-tree to store trajectories. Based on this access
method, they can efficiently retrieve trajectories are around the query tra-
jectory in both spatial and temporal domain, since their similarity function
in both domains is metric, which it is the only requirement for using the
M-tree access method. In order to query processing, they first decompose
the query trajectory to sub-trajectories with the same length, then for each
sub-trajectory, by searching over the M-tree within the given distance radius,
they find a set of candidate trajectories. Then in the first approach, they
refine the candidate set by finding the close trajectories regarding the tem-
poral distance through the searching M-tree within the given time radius.
Then the compute the similarity score for each trajectory at the intersection
of two achieved sets. In the second approach, they refine the candidate set
by computing the spatiotemporal similarity score for each trajectory in the
candidate set.

Shang et al. [79] have studied the problem of Personalized Trajectory
Matching (PTM) in spatial networks. In their proposed problem, they find
the most similar trajectory in the dataset to the given query trajectory. They
study the problem in both spatial and temporal domains. In their algorithm,
they find similar trajectories in each domain, independently, and then by inte-
grating the two result sets, they find the trajectory with the highest similarity
to the query. They present a strategy to prune the search space during query
processing. They perform network expansion [26]for finding trajectories are
spatially close to each node of the query. Then, by considering all timestamps
of trajectory nodes on a time axis, they find those trajectories have times-
tamps within a range of each query timestamp. By knowing these points,
they estimate lower bound and upper bound on spatial-temporal similarity to
the query to reduce the search space in two domains. To avoid search space
overlap between the expansion areas for each query point, they provide a
strategy to choose the set of query points as the center of expansions. Thus,
they perform spatiotemporal searching only for these chosen points instead
of all query points. Although their method implies low computation cost by
reducing the number of query points to process, the proposed method is only
applicable for trajectories on the spatial networks. Indeed, if the distance
between consecutive points of the query is far enough, in which their expan-
sion areas have not any intersection, the proposed algorithm does not achieve
any improvements. To accelerate the searching process, they precomputed
the all pair shortest path distances.
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Tiakas et al.[82] propose a prune-and-refine method, to retrieve top-k tra-
jectories that are close to a set of query locations, spatially and temporally
on a road network. They, first prune trajectories in the spatial domain, by
searching on each query node. Then, they compute the similarity between
the discovered trajectories and a set of query points to find the top-k most
similar ones, regarding a spatiotemporal similarity function, which described
earlier. In order to prune trajectories by each query node, they use a spatial
index described as follows: for each node v of the road network, they store
an extended adjacency list containing a set of trajectory ids traversing the
outgoing edges from v. Then, by using an expansion method (Dijkstra ex-
pansion [26]), they find the neighbors of the query node, and thereafter by
using the extended adjacency list assigned to the query node, find the trajec-
tory ids are close to the query node as a candidate set. Their strategy takes
only the spatial aspect of trajectories into account, to make the candidate
set in the setting of the prune-and-refine method.

Sha et al. [74] study the problem of finding close trajectories to the set of
query locations on the road network. In their problem, each query location is
designated by timestamps. Thus, to measure the closeness of trajectories and
query locations, they provide a spatiotemporal similarity function on road
network as described earlier. For query processing, they prune trajectories in
spatial domain, and them, they compute the spatiotemporal similarity score
for only the discovered trajectories. For pruning step, they expand from each
query location in the user-specified area and specify the trajectory points are
in the area by using the traditional index structure (i.e. R-tree). They, there-
fore, investigate only those trajectories passed through these points. They
take advantage of the Voronoi partitioning of the road network to precom-
pute the distance between nodes of the road network to accelerate the query
processing.

2.5.3 Approximate Query Processing

Abbasifard et al. [3] propose an approximate method to retrieve k-NN tra-
jectories to the set of query points, by defining trajectories as a sequence
of spatial sample points. Given multiple query points, they first compute
the centroid of the convex hull of all query points. Then, by using the spa-
tial index SETI, they search for k-NN sample points of trajectories to the
discovered centroid regarding the distance function defined similarly to the
distance function in [23] (see Section 2.3.1). In particular, they reduce the
number of query points to one query point and then address the one point
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query trajectory as described earlier.

2.6 PoI Prediction/Recommendation
Trajectory similarity search is an attractive and challenging topic due to its
wide range of applications, such as tourism application. One of the most
popular problems in this area is predicting the next movement of a tourist.
The problem of predicting the most likely “Point of Interest” (PoI) to be
visited by a tourist during its tour of a given city has been studied previously.

PoI prediction The general approach to predict the next location of users
is analyzing their generated geo-tagged contents in Geo-Social Networks
(GSN) like Flickr4 and Foursquares5 and mining trajectory patterns to devise
temporally-annotated common patterns (trajectories) of movements from
geo-tagged data. Trajectories are a concise representation of the behavior of
moving objects as sequences of regions frequently visited with typical travel
time. Trajectory-based models are exploited in [59, 8, 8], to predict the most
likely locations that are of interest for a user.

In a more generic context, that of movements in a city, a similar problem
is predicting the next check-in. Noulas et al. [61] study the problem of pre-
dicting the next venue a mobile user will visit (in foursquare-like terminology,
the next check-in), by exploring the predictive power offered by different as-
pects of the user behavior. The authors propose a set of 12 features that
aims to capture the factors that may drive users’ movements.

Moreover, MyWay [83] predicts the future position of users using the
mobility profiles, an abstract representation of the movement of users, which
are based on the GPS trajectories of users and are mostly generated by
vehicles. MyWay predicts the future position of a user by making use of
either its mobility profile or the mobility profile of other users.

In the context of touristic trajectories, in [60] authors propose a broader
set of features, originated from a Flickr dataset, capturing more dimensions
of the touristic behavior. They cast the prediction problem into a “ learning to
rank ” task, which allows us to use two effective Machine Learning techniques
(Ranking SVM [43] and GBRT [100]) to solve it.

PoI recommendation Similar efforts have been spent on solving the PoI
recommendation task. Here, the problem deals with generating a list of pos-
sible PoIs that are of interest to a tourist. It differs from the prediction task

4https://www.flickr.com/
5https://foursquare.com/
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as it aims at maximizing the satisfaction of the user during its tour of the city,
while the first one aims at identifying only one PoI as the first candidate to
be visited. In [47], a location-aware recommender system (LARS) that uses
location-based ratings to produce recommendations is proposed. Ye et al. [91]
realize location recommendation services for large-scale location-based social
networks, by exploiting the social and geographical characteristics of users
and locations/places in friend-based collaborative filtering (FCF) approach.
Ying et al. [93] propose a time-aware metric embedding a method to recom-
mend the next point of interest to the user based on user history check-in
data. In [90] a social and sequence-aware next POI recommendation model
is proposed that uses the social information and the geographical location
information of users. Zheng et al. [99] perform travel recommendations by
mining multiple users’ GPS traces. They model multiple users’ location his-
tories with a tree-based hierarchical graph on which they use a HITS-based
inference model. Lucchese et al. [52] propose an algorithm that interac-
tively generates personalized recommendations of touristic places based on
the knowledge mined from photo albums and Wikipedia. The authors in-
troduce the model as a graph-based representation of the knowledge, and
exploits random walks with a restart to select the most relevant PoIs for a
specific user.

Several other works tackle sub-problems of the next PoI prediction prob-
lem such as: predicting the next location in unfamiliar places by focusing on
contextual factors such as weather, transportation means, place of residence,
and time [55], predicting the next location from irregular patterns exploiting
association rule mining [12], exploiting visual contents for PoI recommenda-
tion [86], or even predicting the next PoI category rather than the actual PoI
by using NLP models [95].

Newer methods exploit deep learning algorithms in order to predict the
next PoI, [89, 96, 5], usually based on recurrent and/or sequential models.
However, for these methods to be successful a lot of data samples are required.
In the context of next PoI prediction for tourism, the number of examples
varies from city to city and even so often the examples are in the order
of thousands or tens of thousands, not enough for building robust neural
models.
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Chapter 3

Preliminaries and
Definitions

In this chapter, we present the basic concepts and definitions that are neces-
sary to develop the techniques in this thesis. We explain the main problem
that this thesis focuses on it. Finally, we propose an algorithm as a baseline
method for solving the proposed problem. This algorithm will be used in the
remaining of this thesis as a baseline for benchmarking our solutions.

3.1 Preliminaries
In this section, we present some basic concepts and definitions that are nec-
essary to develop the algorithmic techniques. The most frequently used sym-
bols are summarized in Table 3.1.

3.1.1 Trajectory Definition

A trajectory is a sequence of network nodes. These nodes usually represent
points of interest (POIs), specific locations that have a special meaning or
any other network locations that should be registered as visited by a user. Let
T be a set of trajectories in a network, which is represented by a connected
and undirected graph G(V,E), where V is the set of vertices and E is the
set of edges. Formally, each trajectory T ∈ T is defined as follows:

Definition 1 (Trajectory) Given a graph G(V,E), a trajectory T is de-
fined as a sequence of pairs of the form (vi, ti), where vi is a node and ti a
time interval, i.e., T = 〈(v1, t1), (v2, t2), · · · , (vl, tl)〉 such that, 1 ≤ i ≤ l− 1,
we have (vi, vi+1) ∈ E and ti and ti+1 are two consecutive time intervals. We
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Symbol Interpretation
G a graph
V set of graph nodes
n number of graph nodes (n = |V |)
E set of graph edges
m number of graph edges (m = |E|)
DG the diameter of G
T set of trajectories
Ti the i-th trajectory (Ti ∈ T )

ti = [si, ei] the i-th time interval (si ≤ ei)
Q the query trajectory
k number of results
t a time interval

dist(v, Ti, t) distance between node v and trajectory T within t
Sim(Ti, Tj, t) similarity between two trajectories Ti, Tj within t

d(u, v) shortest path distance between nodes u and v
|T | length of trajectory T
T [t] trajectory T within time interval t
T (i) trajectory T at time instance i

Table 3.1: Frequently used symbols.

call |T | = l the description length of T , which corresponds to the number of
(non-distinct) nodes traversed by T . Letting t1 = [s1, e1] and tl = [sl, el], we
refer to s1 and el as the starting time and ending time of T .

We say that two intervals ti = [si, ei] and ti+1 = [si+1, ei+1], with positive
integer endpoints, are consecutive if si ≤ ei < si+1 ≤ ei+1 and ei + 1 = si+1.
Given a trajectory T ∈ T , we denote by ti = [si, ei] the i-th time interval of
T . Also, let s = s1 and e = el be the starting and ending time of T . Given
a time instance i ∈ [s, e], the notation T (i) indicates the unique node u ∈ V
such that there exists a pair (u, t) ∈ T with i ∈ t.

Example 2 Figure 3.1 shows an example of the set of trajectories T con-
taining three trajectories T1, T2, T3 moving through a graph with a set of nodes
V = {v1, v2, v3, v4, v5}.

Given a query trajectory Q, a set of trajectories T and an integer k, we
are interested in detecting the k trajectories from T that have the highest
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T = {T1, T2, T3}
T1 = 〈(v1, [2, 4]), (v2, [5, 9]), (v4, [10, 12]), (v2, [13, 15])〉
T2 = 〈(v3, [1, 6]), (v2, [7, 11]), (v5, [12, 16])〉
T3 = 〈(v2, [1, 3]), (v4, [4, 7]), (v5, [8, 13]), (v2, [14, 16])〉

Figure 3.1: An example of a trajectory set containing three trajectories
T1, T2, T3 over the graph G(V,E) with V = {v1, v2, v3, v4, v5}

.

degree of similarity with respect to Q. First, we define the distance between
a node v and a trajectory T ∈ T . We further establish a function to rank
the trajectories that are close to the given one by defining an appropriate
similarity measure.

3.1.2 Trajectory Similarity Measure

This section is devoted to introducing our similarity function. It is arguably
natural to assess that two trajectories are similar if they pass close to each
other in close moments, without enforcing the too restrictive requirement of
sharing common nodes or having the same length. The motion of trajectories
in this thesis is restricted by the network. Thus, the similarity function
must use the graph to measure the proximity between trajectories. As the
Euclidean distance is not appropriate to measure the distance of nodes on the
graph, it is important to use the graph distance metric instead. Moreover, by
taking into account only the visited nodes of trajectories over a graph, two
trajectories are determined as similar while they are not similar considering
time aspect. Therefore, the similarity measure must consider both aspects
of the trajectories: temporal aspect and the location of trajectories over the
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graph, i.e the structural aspect.
In summary, a similarity measure for trajectories on a graph has the

following requirements:

1. The similarity function must be able to compare two trajectories with
different lengths (i.e. different sampling rates).

2. Both temporal and structural aspects must be taken into account by
the similarity function.

3. The similarity function must measure the proximity between two tra-
jectories (within the time intervals).

In order to define the building block of our similarity measure, we need
first to restrict trajectories within a time interval, as shown in the following
definition.

Definition 2 (Time Restricted Trajectory) Given a trajectory T and a
time interval t = [s, e], the time restricted trajectory T [t] is the sequence
of pairs (ui, ti) ∈ T such that ti = [si, ei] has overlap with t = [s, e] (i.e.
ti ∩ t 6= 0).

Without loss of generality, we assume that
∑

(ui,ti)∈T [t] |ti| = |t|, where,
|t| = e− s and |ti| = ei − si.

We define the distance between a node v and a trajectory T within a time
interval t as follows:

dist(v, T, t) =
min(ui,ti)∈T [t] d(v, ui)

DG

(3.1)

where DG is the diameter of the graph G (i.e. the maximum shortest path
distance from any possible pair of nodes in the graph).

Proposition 1 The value dist(v, T, t) is always in the interval [0, 1].

We observe that the extreme values are achieved in the following cases.

Property 1 dist(v, T, t) = 0 if and only if there exists at least one time in-
stance i ∈ t such that T (i) = v.

Property 2 dist(v, T, t) = 1 if and only if for each time instance i ∈ t, node
T (i) is at distance DG from v. This corresponds to the case
where T spends the whole time interval t on nodes of G that are
at maximum distance from v.
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We are now ready to introduce our similarity measure, using the distance
function defined in Equation 3.1.

Taking inspiration from [23], we aim at assigning a larger contribution
to those parts of the trajectories that are close for sufficiently long time
intervals (while assigning lower contribution to farther parts). These desired
properties are satisfied as follows.

Definition 3 (Similarity Function) Given a query trajectory Q and a tar-
get trajectory T ∈ T and a time interval t, the similarity of T with respect
to Q within t is

Sim(Q, T, t) =

∑
(vi,ti)∈Q[t] |ti| × e−dist(vi,T,ti)

|t|
(3.2)

Lemma 1 The similarity function Sim(Q, T, t) is always in the interval
(0, 1].

Proof 1 By Proposition 1 for each (vi, ti) ∈ Q[t] we have:

0 ≤ dist(vi, T, ti) ≤ 1→ 1 ≥ e−dist(vi,T,ti) ≥ e−1 > 0

×|ti|−−−→ 0 < |ti| × e−dist(vi,T,ti) ≤ |ti|
By summation over each pair (vi, ti) ∈ Q[t] we get:

0 <
∑

(vi,ti)∈Q[t]

|ti| × e−distt(vi,T,ti) ≤
∑

(vi,ti)∈Q[t]

|ti| (3.3)

Assume that
∑

(vi,ti)∈Q[t] |ti| = |t|: dividing the equation 3.3 by |t| we get:

0 <

∑
(vi,ti)∈Q[t] |ti| × e−dist(vi,T,ti)

|t|
≤ 1

�

For two trajectories Q, T and time interval t, we have:

Property 1 If Q[t] = T [t] then Sim(Q, T, t) = 1.

Property 2 Q[t] = T [t] iff for each i ∈ t, Q(i) = T (i)

Lemma 2 Given two trajectories Q and T , and a time interval t, where
|Q[t]| = `1 and |T [t]| = `2, computing Sim(Q, T, t) requires O(`1 + `2) time
and pairwise node distances.

Proof 2 Looking at equations (3.1) and (3.2), it seems that O(`1× `2) com-
putation is needed. The cost is instead O(`1 + `2) if we realize that the
computation is conceptually a nested loop in which the nodes in Q and T are
scanned forward when a pairwise distance d(vi, v) is needed: in each iteration
at least one node is scanned, thus the total cost is O(`1 + `2).
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3.1.3 Top-k Most Similar Trajectories

Given a set of trajectories T , we define the problem of retrieving the top-k
similar trajectories to a given one in a specific time interval. More formally,
this desired set of trajectories, referred to as k-MsTraj, corresponds to the
following one.

Definition 4 (k-Most Similar Trajectory(k-MSTraj)) Given a set of
trajectories T , a query trajectory Q and a query time interval t, the set
T ′ ⊂ T with |T ′| = k is the k-MSTraj if for each trajectory S ∈ T ′ the
following assumption holds:

∀T ∈ T − T ′ : Sim(Q,S, t) ≥ Sim(Q, T, t)

To present a good intuition of our proposed similarity function, we provide
a representative example of four trajectories chosen randomly in a dataset
of trajectories moving in Milan (See Chapter 4 for more details about this
dataset). By using the similarity function in Definition 3, for the red tra-
jectory in Figure 3.2 as the query trajectory, the green trajectory has the
maximum similarity among other trajectories in Figure 3.2, i.e. hence it is a
solution for the k-MsTraj problem with k = 1. Note that the trajectories
in red, green, yellow and violet in Figure 3.2, start to move at time instances
(in msec) 37237, 45964, 57354 and 26430, and stop the movement at 582313,
331565, 57872 and 564740, respectively.

Figure 3.2: An example including 4 random trajectories in a dataset of
trajectories moving in Milan. The trajectory with the red color is a query.

The green one is the most similar one by Definition 3.

A straightforward approach to find k-MsTraj is to compute the simi-
larity score for each trajectory T ∈ T and Q, reporting the k trajectories
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with maximum scores. Clearly, we only consider those trajectories that are
defined for all instants i ∈ t. This approach is inefficient, as it requires the
computation of O(|T | × max{|T |max, |Q|}) shortest path distances, where
|T | and |T |max are respectively the number of trajectories and the maximum
length of trajectories in T .

In this thesis, we aim at accelerating this process by managing a data
structure to retrieve the trajectories, structurally and temporally, in an effi-
cient way. To this end, we provide an indexing structure described in Sec-
tion 3.2, which is a basic indexing structure used by the proposed strategies
in this thesis.

3.2 NTrajI Indexing
The Neighborhood Trajectory Indexing (NTrajI) described here efficiently
finds the closest trajectories with respect to each node of the query and its
corresponding time interval.

Interval Tree

For building NTrajI we use an interval tree, which is a binary tree to store
a set of intervals based on the median of the endpoints of the intervals. In
this structure, all the intervals intersect the median point are stored at the
root of the tree. The intervals lying completely to the left and right of the
median point, are respectively stored in the left subtree and the right subtree
of the root. The subtrees are constructed recursively in the same way. By
using this structure we are able to find efficiently all intervals that overlap
with any given interval or point using the following well-known result.

Theorem 1 ([11]) Given a set of n intervals, an interval tree uses O(n)
space. It can be built in O(n · log n) time and can report all intervals that
overlap a query interval or point in O(log n+k) time, where k is the number
of reported intervals.

In NTrajI, we build an Interval Tree ITv for each node v ∈ V to store
the time intervals that each trajectory in dataset spent in v and its neighbors,
and maintain the corresponding trajectory ids. Specifically, we define this
set of time intervals as a projection set of each node as follows.

Definition 5 (Node Projection Set) The projection set Sv of a node v is
the set of pairs (t, T ) of all trajectories T ∈ T that pass through the nodes
{v} ∪ N(v), during the time interval t. Namely, Sv = {(t, T ) | (u, t) ∈
T and u ∈ {v} ∪N(v) and T ∈ T }.
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The Interval Tree ITv maintains all pairs (t, T ) ∈ Sv for each node v ∈ V .
Each entry of ITv is of the form 〈t, id〉, where id is the trajectory identifier,
and t is the time interval the trajectory id spent in {v} ∪ N(v). Note that,
there can be more than one pair associated with node v with the same tra-
jectory id since each trajectory can traverse a vertex multiple times.

Example 3 Considering the trajectory set in Example 2, we show the NTraj
in Figure 3.3, storing the trajectories passing through the node v1 in Exam-
ple 2. For the node v1 ∈ V , the ITv1 maintains all pairs in the projection set
Sv1 = {(T3, [1, 3]), (T1, [2, 4]), (T1, [5, 9]), (T2, [7, 11]), (T1, [13, 15]), (T3, [14, 16])}.

Figure 3.3: An example of NTrajI
.

By Theorem 1, we can derive that NTrajI uses O(|T | × |T |max × ∆)
space, where ∆ denote the maximum degree of G. For a given node v and a
time interval t, let Γ(v,t) denote the trajectories that traverse either v or N(v)
within t. By searching over the NTrajI, we are able to find Γ(v,t) efficiently
by taking O(log |Γv| + |Γ(v,t)|) time, where |Γv| is the size of ITv and |Γ(v,t)|
is the number of reported trajectories.

3.3 Baseline: Exact Computation of k-MsTraj

In this section, we introduce a baseline method to solve exactly the k-
MsTraj problem. This is based on an indexing phase, described in Sec-
tion 3.2, which aims at accelerating the query processing. We will use this
method as a baseline in the experimental evaluation of our proposed ap-
proaches in this thesis.
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BaseLine Method

We introduce a pruning technique as the BaseLine method to k-MsTraj
problem (see Algorithm 1). The BaseLine method, explores the set Γ of
trajectories that are most promising to be k-MsTraj. They are discovered
by searching the NTrajI index. Then, by computing the similarity score of
each trajectory in Γ, this method finds the trajectories having the highest
similarity with Q within the time interval t.

Therefore, the main task is to construct the candidate set Γ using NTrajI.
In particular, for a given query trajectory Q, for each (vi, ti) ∈ Q, we aim
at finding the trajectories that are close to vi within ti. To this aim, for
each (vi, ti) ∈ Q, we search for Γ(vi,ti) in ITvi . The union of all discovered
trajectories makes the candidate set Γ for k-MsTraj w.r.t Q.

As illustrated in Algorithm 1, we restrict query Q within time query t.
Then we search over ITvi , for each (vi, ti) ∈ Q[t], by NTrajI-search(vi, ti)
to build Γ(vi,ti). So we have Γ =

⋃
(vi,ti)∈Q[t] Γ(vi,ti).

Proposition 2 By construction, k-MsTraj ⊆ Γ ⊆ T .

We compute the similarity score, with respect to the function in Defini-
tion 3, for each trajectory in Γ. In order to maintain the k trajectory ids with
the highest similarity score during the search process, we use the heap H of
size k, which contains the k-MsTraj at the end of the searching process.

Lemma 3 Given a set of trajectory T , a query trajectory Q and a query time
interval t, the BaseLine method solves the k-MsTraj query in O(CΓ+|Γ|×
max{|T |max, |Q[t]|}) time, where |T |max is the maximum length of trajectories
in Γ, and CΓ is the time cost of computing Γ, that is, O(

∑
(vi,ti)∈Q[t] log |Γvi |+

log |Γ(vi,ti)|).
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Algorithm 1: BASE

Input: Graph G, set of trajectories T , query trajectory Q, time
interval t = [a, b], integer k

Result: k-MsTraj

1 H /* H is a heap in size of k */
2 Q[t] /* restricted Q within t */
3 Γ(vi,ti) ← NTrajI-search(vi, ti) for each (vi, ti) ∈ Q[t]
4 Γ =

⋃
(vi,ti)∈Q[t] Γ(vi,ti)

5 while heap− size(H) < k do
6 H.add(T), for T ∈ Γ

7 for T ∈ Γ−H do
8 if Sim(Q,min(H), t) < Sim(Q, T, t) then
9 H.remove(min(H)) /*min(H) returns a trajectory id in H with

minimum score */
10 H.add(T)

11 k-MsTraj ← trajectories in H
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Chapter 4

Trajectory Similarity
Search: Shrinking Approach

In this chapter, we propose an approximate method for answering k-MsTraj
query, that is, identifying the trajectories are most similar to a given query
trajectory within a given time interval. Naively, to answer such queries, it is
needed to compute the similarity score for all trajectories in the dataset. This
would be costly for a large volume of data since a typical trajectory similar-
ity query needs to compute a large number of similarity scores, where each
one might compute hundreds or thousands of shortest path distances. Since
computing the network distance (i.e. shortest path distance) between trajec-
tories is expensive, a query processing algorithm typically aims at minimizing
the number of distance computations. In this study, we aim at proposing an
approximate method to compute the similarity between trajectories by rep-
resenting trajectories with a fewer number of nodes and then consequently,
reducing the number of shortest path distance computations with the mini-
mum number of precomputation distances.

In the proposed method, firstly, we divide the network into a set of
Voronoi groups [28]. Then, we shrink each trajectory considering centers
of the Voronoi groups. In the real-world application, it is applicable to rep-
resent trajectories by centers as, Points of interest (PoI) in a city, the most
crowded nodes on a road network, and the nodes with the most traffic on the
Internet networks. For query processing, we retrieve the nearby trajectories
around the Voronoi centers by using an extension of the indexing structure
proposed in Section 3.2. After that, we estimate the similarity between re-
trieved trajectories by using the Voronoi centers. Moreover, to accelerate the
query processing, we take benefit of the Voronoi partitioning to recompute
the shortest distance between centers.

43



In compared to the state-of-the-art [78, 79] that precomputes the all-to-
all pairwise node shortest path distances (see Chapter 2), we only compute
a linear number of shortest path distances in the precomputation phase. We
show in Section 4.2 that this cost of precomputing is negligible.

The chapter is organized as follows. In Section 4.1 we explain the approx-
imate method with more details. Thereafter, in Section 4.2, we evaluate the
effectiveness of the proposed algorithm in terms of the query time and accu-
racy of the proposed methods. Due to the lack of competitors, as there are
no linear-time similarities on trajectories on a graph that uses flexible prox-
imity taking into account the temporal aspect of trajectories, we evaluate
the performance of the methods in comparison with the BaseLine method
proposed in Section 3.3.

4.1 Approximate Computation of k-MsTraj

We propose the approximated methods with two-phase preprocessing in Sec-
tion 4.1.1.

• First, we partition the underlying graph G into disjoint groups of nodes,
precomputing distances from the centers of each group. As the simi-
larity function in Definition 3 uses the shortest path distance between
nodes of the graph, we aim at approximating distances between trajec-
tories using the distances between the centers of the groups.

• Second, we adapt the NTrajI indexing, described in Section 3.2, so
that we maintain trajectories among the groups in a structure called
VoTrajI.

For the query processing, given a query trajectory and a given time in-
terval, we show how to estimate the similarity scores for the trajectories in
T using the partitioning and the new VoTrajI index in Section 4.1.2

4.1.1 Two-phase Preprocessing

The partitioning takes into account the popularity of the nodes, by choosing
the centers of the groups as the nodes having a higher number of trajectories
passing through them. To do this, it uses Voronoi Diagrams for graphs
(V DG), as explained next.

The V DG is a generalization of the classic Voronoi diagram. For graph
G = (V,E) and a set of trajectory T , let C = {c1, c2, . . . ch} be a set of h
(most frequent) nodes in V , called Voronoi sites i.e. center nodes. The V DG
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over the nodes in C is defined as a partition of V into h groups g1, g2, · · · , gh,
one for each center in C. Node u ∈ V is in group gi with center ci (i.e.
gi.C = ci) iff d(u, ci) ≤ d(u, cj) for each cj ∈ C with i 6= j (ties are broken
arbitrarily). We can divide G into h Voronoi groups in O(n log n) time when
h = O(nε) for a positive constant ε < 1 [28].

Once the Voronoi groups have been computed, we precompute and store
the pairwise distances among the center nodes of these groups. We aim at
using these distances as an approximation for the distances required by the
similarity function in Definition 3. By running one BFS for each center node,
we compute the distance between each pair ci, cj ∈ C in O(m · n1/2) time,
where we set h = n1/2. As a result, we obtain the following lemma.

Lemma 4 Graph partitioning and centers’ distance precomputation require
O(m · n1/2) time. The space required by the centers’ distance table is O(n)
space.

We now discuss how to provide theVoronoi Trajectory Indexing (VoTrajI)
by adapting the NTrajI data structure. We build an interval tree ITc for
each c ∈ C. Interval tree ITc stores the time intervals of trajectories in T
spent within the nodes in g, when g.C = c. The VoTrajI maintains the cor-
responding trajectory ids of the time intervals. By expanding the definition 5,
we have:

Definition 6 (Group Projection Set) The projection set Sc of a center
node c ∈ C stores the pairs (t, T ) of all trajectories T ∈ T that pass through
the nodes in g, when g.C = c, namely, Sc = {(t, T ) | (v, t) ∈ T and v ∈
g and g.C = c and T ∈ T }.

The Interval Tree ITc for each node c ∈ C maintains all pairs (t, T ) ∈ Sc.
Each entry of ITc is the form of 〈t, id〉, where id is the trajectory id, and t is
the time interval that the trajectory id spent at v ∈ g, where g.C = c.

To reduce the storage space used by ITc, for each c ∈ C, we consider a
sequence of consecutive time intervals with the same trajectory id in Sc as a
single time interval with the corresponding trajectory id.

Lemma 5 The two-phase preprocessing takes O(m · n1/2) time and O(n)
space.

4.1.2 Query Processing

Considering how a trajectory T ∈ T is represented with respect to the center
nodes of the Voronoi diagram, let (vi, ti) ∈ T and vi ∈ g, where g is a Voronoi
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group of G. We represent (vi, ti) ∈ T as (c, ti) where g.C = c. We obtain a
new trajectory T ′ as a sequence of center nodes and the corresponding time
intervals. Note that T ′ can traverse a sequence of the nodes belong to the
same Voronoi group within consecutive time intervals. To avoid the duplica-
tion of nodes for consecutive time intervals, we define shrunk trajectories.

Given a trajectory T ′ = 〈(c1, t1), . . . , (cl, tl)〉, consider the operator shrink(T ′),
which recursively merges any pair (ci, ti), (ci+1, ti+1) ∈ T ′ as (ci, ti + ti+1)
when ci = ci+1 and ti, ti+1 are two consecutive time intervals (here operation
ti + ti+1 gives [si, ei+1]).

Definition 7 (Shrunk Trajectory) Let T = 〈(v1, t1), . . . , (vl, tl)〉 be a tra-
jectory in T . Consider the corresponding sequence T ′ = 〈(c1, t1), . . . , (cl, tl)〉
with respect to the Voronoi groups. We define the shrunk trajectory of T as
T̂ = shrink(T ′).

Note that it takes O(l) time to obtain T̂ , and that |T̂ | ≤ |T |.

We consider two variants for estimating k-MSTraj.

1. Shrunk query (SHQ): Shrinking trajectory Q during query time.

2. Shrunk query and target (SHQT): Shrinking each trajectory in T dur-
ing the preprocessing and shrinking trajectory Q during query time.

Both variants perform a search on the VoTrajI index using the shrunk
query trajectory Q̂. The outcome of that search is a set Γ̃, which is defined
as Γ in Section 3.3, except that we use VoTrajI in place of NTrajI. This
makes a difference, as the property in Proposition 2 does not necessarily
hold anymore. Indeed there could be a trajectory T ∈ k-MsTraj such that
T 6∈ Γ̃ (whereas surely T ∈ Γ). This approximated version has the advantage
of speed, which motivates this study.

Variant SHQ

In this variant, we compute the similarity scores for each trajectory T ∈ Γ̃
w.r.t the shrunk query Q̂. In particular, we make an estimate of Sim(Q, T, t)
as Sim(Q̂, T, t), and report the top-k trajectories with the highest estimated
similarity score. To measure the precision ratio of this estimation, the simi-
larity function makes an estimate of d = d(v, u) as d̂ = d(c, u), when v ∈ Q,
u ∈ T and c is the center node of a group that includes v.

Lemma 6 Let v, u ∈ V . The ratio between d = dist(v, u) and d̄ = dist(c, u),
where c is the center of Voronoi group containing v, is bounded as 1 ≤ d/d̄ ≤
3.
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Proof 3 Let dist(c, v) = r. We have two possibilities. If r ≤ 2d̄, then by
triangle inequality d ≤ r+ d̄ and thus d ≤ 3d̄. Else if 2d̄ < r, then by triangle
inequality r ≤ d+ d̄ and thus d̄ < d. �

Although we reduce the number of nodes in query trajectory which needed
to be processed, the number of distance computations is still large. As men-
tioned earlier, the cost of distance computation depends on the length of the
trajectories within the query time interval t. In order to reduce this cost, we
consider our second variant SHQT.

Variant SHQT

In this variant, we estimate Sim(Q, T, t) as Sim(Q̂, T̂ , t). Specifically, the
similarity function makes an estimate of d = d(v, u) as d̃ = d(ci, cj), when
v ∈ Q, u ∈ T and ci, cj are the center nodes of the groups that include v ∈ Q
and u ∈ T , respectively.

Lemma 7 Given two nodes v, u belonging to Voronoi groups with center
nodes ci, cj, respectively, the ratio between d̃ = dist(ci, cj) and d̄ = dist(ci, u)
is bounded as d̃/d̄ ≤ 2.

Figure 4.1: ci ∈ gi and cj ∈ gj such that ci, cj ∈ C

Proof 4 As illustrated in Figure 4.1, let dist(v, ci) = r and dist(u, cj) = r′.
We consider the groups gi, gj containing the two centers ci, cj, respectively.
By triangle inequality we have d̃ ≤ r′ + d̄. Since u ∈ gj and u /∈ gi then
r′ ≤ d̄. Thus, d̃ ≤ 2d̄. �

Using Lemma 6 and 7, we are able to conclude that d̃ ≤ 2d when r > 2d̄.
If r > 2d̄ by triangle inequality we have d̄ < d. Since d̃ ≤ 2d̄, we can obtain
that d̃ ≤ 2d.

The similarity function in Definition 3 assigns a larger contribution to
those nodes of the trajectories that are closer rather than the farther ones.
Thus, by Lemma 6 and 7, we expect that the estimated similarity score
in both variants would be larger than the exact similarity score. We will
evaluate this idea in our experiments.

47



4.2 Experimental Evaluation

This section is devoted to comparing the performances of SHQ and SHQT
with respect to the Baseline method, hereafter called the BASE. The evalu-
ation aims at the following questions.

Q1: How fast is getting the answer for a query, i.e. how much is the query
time?

Q2: How fast is the preprocessing time?

Q3: How good is the quality of the solution found if compared with the exact
solution?

Each one is discussed in Section 4.2.2, 4.2.3, and 4.2.4, respectively.
We will answer these questions by evaluating the performance of each

method by varying the value of k. In particular, we set k as 2i for i = 0, . . . , 6.
Each experiment requires a graph, a trajectory set, a query trajectory, and
a query time interval. For each experiment, we choose 100 trajectories as
query trajectories, randomly. For each query trajectory, we set the query
time interval as the whole lifetime of the query to study the wide range of
queries.

Our computing platform is a machine with Intel(R) Xeon(R) CPU E5-
2620 v3 at 2.40GHz, 24 virtual cores, 128 Gb RAM, running Ubuntu Linux
version 4.4.0-22-generic. The program has been written in Python3.

4.2.1 Datasets

We conduct our experiments on two real trajectory datasets, and one syn-
thetic dataset over a real-world graph, described as follows. The main prop-
erties of each dataset are shown in Table 4.1.

Synthetic Trajectory Set: Facebook and WEB network We manage
our experiments over synthetic trajectories on a real Facebook and WEB
network. The main properties of the networks are shown in the Table 4.1
and in Figures 4.2(a) and 4.3(a), where we show the degree distribution of the
networks. We generated a trajectory dataset T composed by 1000 and 100k
trajectories, each one traversing the nodes of Facebook and WEB networks
,respectively, using the trajectory generator shown in Algorithm 2, where
the maximum duration (MaxDuration) is set to 30 and the maximum life
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Algorithm 2: Trajectory Generator

Input: G(V,E)
Result: T

12 N /* The number of trajectories */
13 MaxTime /* The maximum life time of trajectories */
14 MaxDuration /* The maximum time a trajectory can stays at each

node */
15 t=0 /* The time that a trajectory starts to move */
16 for each trajectory id in range(1,N) do
17 vrn ← choose randomly a node in V
18 assign (vrn, t) to trajectory id
19 t ← t + random number in range(1, MaxDuration+1)
20 while t < MaxTime+1 do
21 vrn ← choose randomly a node in Neighbor(vrn)
22 assign (vrn, t) to trajectory id
23 t ← t + random number in range(1, MaxDuration+1)

(MaxTime), i.e. the number of timestamps a trajectory is active, is set to
4000.

The average length of the generated trajectories in terms of the number of
nodes in Facebook and WEB networks are about 260 and 194, respectively.
Moreover, Figures 4.2(b) and 4.3(b) show the popularity of each node of the
graph, in terms of the number of trajectories traversing through each node in
both Facebook and WEB networks. Similarly, Figures 4.2(c) and and 4.3(c)
show the distribution of the length of the trajectories generated, which seems
to follow a Gaussian distribution.

Real Trajectory Set: Milan We conduct our experiments on a dataset
based on tracks of private cars in Milan. The dataset contains about 165.000
trips of about 17.000 users in the temporal windows 2-8 April 2007. Globally,
the dataset consists of about 2 million GPS observations, each consisting
of 〈userid, datetime, lat, lon〉, where userid is the car identifier, datetime
is the time of the observation and lan, lon, is the spatial coordinate. The
sequence of time-ordered with the same user id makes the raw trajectory for
the user id. Then, the raw trajectories need to be mapped to a network. To
this end, we use the k-means clustering technique for GPS points clustering.
Then, we use the k-means clusters to represent each raw trajectories w.r.t
the representative of clusters. We call each representative as the center of
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Figure 4.2: Properties of Facebook dataset: (a)The degree distribution,
(b)The popularity of nodes, (c)The distribution of the length of trajectories

Figure 4.3: Properties of WEB-Network dataset: (a)The degree
distribution, (b)The popularity of nodes, (c)The distribution of the length

of trajectories

the cluster. As a result, we have a sequence of time-stamped centers assigned
to user id, which is a trajectory for the user id. Finally, by traversing each
trajectory of each user, we make a graph with the k-means centers as the
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Dataset Name #trajectories #nodes #edges Diameter
Facebook Dataset 1000 4039 88234 8

WEB Network (WEBN) 100K 3,032 6,475 11
Milan Dataset 16166 3000 130071 5
Rome Dataset 7755 473 10524 6

Table 4.1: Summary of Datasets

nodes set. There is an edge ij between two centers i, j of the graph, if
there exists at least one trajectory traversed through i, j, consecutively. The
archived graph contains 3000 nodes and 130071 edges. Figure 4.4(a) shows
the degree distribution of nodes of the graph. After mapping, each trajectory
is represented in the form defined in Section 3.1. To sum up, give a sequence
of time-stamped spatial points with at least two observations, we are able to
build a trajectory by mapping each spatial point to the center of clusters.

The preprocessed dataset consists of 16166 trajectories. The average
length of the trajectories in terms of the number of nodes is about 87. A
summary of the dataset is given in the Table 4.1. Figure 4.4(b) reports the
distribution of popularity of each node, where the popularity of a vertex is
the number of trajectories passing through it, while Figure 4.4(c) shows the
distribution of the length of the trajectories.

Figure 4.4: Properties of Milan dataset: (a)The degree distribution, (b)The
popularity of nodes, (c)The distribution of the length of trajectories
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Real Trajectory Set: Rome To evaluate our method we use a dataset
provided in [60] containing tourist movements covering Rome. In this dataset,
the set of Points of Interest (in short, PoIs) in each city is aggregated from
Wikipedia. For building tourist trajectories, the geo-tagged photos from
Flickr are collected and the photos are mapped to the set of PoIs aggregated
from Wikipedia. Note that, since users may have taken more than one photo
assigned to the same PoI, the timestamps of the first and the last photo are
considered as the starting and ending time of their visits at the PoI in the
dataset. In our experiments, by considering the timestamps of the first photo
as the time to reach the PoI, we build the trajectory for each user as defined
in Section 3.1. Then, by traversing each trajectory, we build the underlying
graph, whose vertices are PoIs and whose edges correspond to transactions
between two PoIs. The main properties of the network are shown in Table 4.1.
Moreover, the Figure 4.5 shows the distribution of the node degrees on the
network, the popularity of each node, and the distribution of the length of
the trajectories.

Figure 4.5: Properties of Rome dataset: (a)The degree distribution, (b)The
popularity of nodes, (c)The distribution of the length of trajectories

4.2.2 Query Time

In the following, we compare the query time of the three methods. Table 4.2
reports our results, showing the average query time over 100 queries over
trajectories on Milan and Rome. As it can be seen, both SHQ and SHQT
variants outperform BASE. The most evident benefit can be seen for the
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biggest dataset we considered i.e. Milan dataset. In this case, SHQT spends
less than 23% of the time needed by BASE and SHQ.

Datasets BASE SHQ SHQT
Milan 380.03 376.15 85.48
Rome 26.19 19.42 15.83

Table 4.2: The average time for answering a query for each proposed
method on each dataset. For Facebook and WEB, refer to Figure 4.6.

We report in Table 4.3 the number of candidate trajectories for all the
methods (i.e. |Γ| and |Γ̃|). The table shows that SHQ and SHQT select more
candidates than BASE. This is not an issue, as even if we have to process
these extra trajectories, we process queries faster as shown in Table 4.2.
This is due to that, by shrinking either only query or both query and target
trajectories, we reduce the number of shortest path distance computations
and consecutively, the query time will be less than BASE.

Datasets BASE SHQ SHQT
Milan 9786.39 9968.98 9968.98
Rome 7504.37 6569.84 6569.84

Table 4.3: The average number of trajectories in the candidate set in each
method. For the Facebook dataset, refer to Figure 4.7.

For the sake of completeness, we have also analyzed the behavior of our
method when the length of the query trajectories varies for the case of the
Facebook and WEBN datasets.

Figure 4.6 shows the results of experiments on Facebook. As we can see
in Figure 4.6(a), SHQ and SHQT outperform BASE. SHQT significantly out-
performs SHQ and BASE and the improvement becomes even more evident
when the length of the query trajectory increases. As the length of the query
goes up to 80, the time needed by BASE and SHQ variants increases faster
than the SHQT variant. It confirms that shrinking both target and query
trajectories reduces the number of distance computations and thus the time
reduced greatly.

Indeed, Figure 4.6(b) shows the average number of trajectories in the
candidate set for each method. Note that the number of trajectories in the
candidate set for both methods SHQ and SHQT is the same since we use
the same approach for getting Γ̃. As can be seen, by increasing the length of
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the query up to 40, the number of trajectories in the candidate set for each
method increases quickly to more than 240 and then becomes the same for all
of them. This confirms the role of the precomputed distances among Voronoi
centers to accelerate query processing. The time cost of this precomputation
is negligible. Figure 4.7 shows the results of the experiments on WEBN.

(a) (b)

Figure 4.6: (a) The average of running time and (b) the average number of
trajectories in candidate set (i.e. the number of similarity score

computations) by each method vs the different length of query trajectories
on Facebook.

As shown in Figure 4.7(a) the running time of BASE is dramatically larger
than SHQ and SHQT, while the difference between running time of SHQ and
SHQT is not significant. This is due to that, the number of similarity score
computations by each method is greatly less than BASE (see Figure 4.7(b)).
This confirms that the Voronoi partitioning over larger set of trajectories on
WEBN reduce the running time by reducing the number of similarity score
computations rather than the number of shortest path distance computa-
tions. Considering those datasets containing huge set of trajectories, we can
treat k-MsTraj with the exact approaches, efficiently, which we will study
these methods in the next chapter.

In summary, the experiments on running time of the methods on each
dataset show that the proposed methods outperform the baselines and pro-
vide strong evidence of the performance and robustness of our solutions.
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(a) (b)

Figure 4.7: (a) The average of running time and (b) the average number of
trajectories in candidate set (i.e. the number of similarity score

computations) by each method vs the different length of query trajectories
on WEBN.

4.2.3 Preprocessing Time

In order to analyzing the performance in comparison with the baselines, we
tested the robustness of our approach by considering the precomputation
cost for each datasets.

Considering both variants of the proposed method, the only difference
between the preprocessing of SHQT and SHQ is that only the former uses the
precomputed distances. In Table 4.4, we report the time needed to perform
the indexing and shrinking the trajectories. In particular, columns NTrajI
and VoTrajI report the time needed for building respectively the indexing
structures NTrajI and VoTrajI. The column of "Distance Precomputing"
shows that the time needed to precompute the distances is negligible. Finally,
we can observe that the time needed to perform the Voronoi partitioning and
for shrinking trajectories in the last column is also negligible with respect to
the time needed for building NTrajI, which clearly dominates the cost. The
results of experiments on each dataset confirms the robustness of our method,
regarding the precomputation cost.

4.2.4 Quality Evaluation

We evaluate the quality of the solution produced by the SHQ and SHQT
methods w.r.t BASE. The effectiveness of the method is assessed by means
of the metrics that we describe next, where the values close to 1 are more
desirable. Let γ1 and γ2 be two output sets containing top-k trajectories e.g.
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Dataset NTrajI VoTrajI
Distance

precomputing

Shrinking trajectories
and building

Voronoi diagram
Facebook 185.19 0.51 0.48 0.62
WEBN 4599.10 7.18 0.06 65.06
Milan 1716.44 13.50 0.27 10.21
Rome 69.25 0.24 0.005 0.56

Table 4.4: Preprocessing time (in sec.)

the exact and approximated solutions, respectively.

1. We define the similarity score ratio as the ratio of the average similarity
scores of trajectories in γ1 and γ2 as follows:

SSR(γ1, γ2) =

∑
T∈γ1 Sim(Q, T, t)∑
S∈γ2 Sim(Q,S, t)

.

2. We define the intersection ratio as IR(γ1, γ2) =
|γ1 ∩ γ2|

k
.

Our results are shown in Figure 4.8 and 4.9, where the IR and SSR ratios
are reported as a function of k. In particular, Figure 4.8 represents the IR
ratio with increasing k on each datasets. The IR ratio goes up to more than
0.80 quickly, by increasing the value of k on the Facebook network. On the
other hand, this value in Milan and Rome networks becomes close to 0.3.
However, we observe that the lower values of IR correspond to SSR values
that are close to 1. Indeed, Figure 4.9 shows SSR which is almost always
very close to 1 and that gets more close to 1, while k is increasing from 1 to
64.

Moreover, as mentioned before, Voronoi partitioning shrinks trajectories
in Facebook dataset more than trajectories in WEBN. Thus, we expect to
have more accurate results in WEBN than Facebook network in terms of the
IR ratio. Figure 4.8(b) confirms our exception.

Indeed, by Lemmas 6 and 7, we would expect that the similarity score
would be larger when we shrink trajectories. Indeed, by results in Figure 4.10
we can observe that the similarity scores by shrinking trajectories behave as
we expected.
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(a) (b)

(c) (d)

Figure 4.8: The quality of the results returned by the competitors in terms
of IR ratio vs different values of k; (a)1K synthetic trajectories on

Facebook; (b)100K synthetic trajectories on WEBN; (c) Real dataset on
Milan; (d) Real dataset on Rome

4.3 Conclusion

In this chapter, we proposed an approximate method treating the k-MsTraj
problem, with the aim of reducing the number of shortest path distance com-
putations between two trajectories. In particular, we provided a comprehen-
sive representation of trajectories in the dataset, by taking advantage of the
network Voronoi partitioning. Thereafter, we estimated the similarity be-
tween two trajectories, by using the distance between Voronoi centers. We
distinguished between two variants of the algorithm, corresponding to how
the trajectories are shrunk during the query processing: SHQ, if only the
query trajectory is shrunk, and SHQT, when both query and target trajec-
tory are shrunk.

We evaluated the performance of the proposed approximate algorithm,
regarding the time needed to process the query, the time needed to preprocess
the trajectory set and the quality of the produced approximate solution, com-
paring our results with the baseline. We showed that our proposed methods
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(a) (b)

(c) (d)

Figure 4.9: The quality of the results returned by the competitors in terms
of SSR ratio vs different values of k; (a)1K synthetic trajectories on

Facebook; (b) 100K synthetic trajectories on WEBN; (c) Real dataset on
Milan; (d) Real dataset on Rome

Figure 4.10: The comparison between similarity scores of each method on
Facebook network.

are effective, by conducting experiments on two real datasets of movements
in Milan and Rome, and two synthetic trajectory sets on real-network of
Facebook and Web network.
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The next evaluation takes into account the precision of the solutions pro-
vided by the approximated methods, in terms of two proposed metrics. The
results showed that reasonably good solutions made by the methods, having
the best performance for smaller values of k, which is natural in real cases.

The proposed method in this chapter is more efficient for treating datasets
containing long trajectories on more dense networks. The results of this
chapter can be used by those applications that concern fast results, even if
the accuracy of the results is less than 100%. For example, analyzing the
behavior of users on social networks, by aiming at clustering users based on
their activities during the time can benefit from this study.
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Chapter 5

Trajectory Similarity
Search: Pruning Approach

In this chapter, we provide two exact approaches for answering the k-MsTraj
query, that is, identifying the trajectories are most similar to a given query
trajectory within a given time interval.

This kind of query typically needs to compute the shortest path distances
between all trajectories in dataset to identify the most similar ones, which
it could be expensive, facing with large trajectory set. To accelerate this
processing, since computing the network distance (i.e. shortest path dis-
tance) between trajectories is expensive, a query processing algorithm aims
at minimizing the number of distance computations. One approach is prune-
and-refine method, which aims at computing the similarity score for a set of
most promising trajectories in dataset instead of all trajectories. In partic-
ular, the pruning step makes a set of candidate trajectories, and the refine
step identifies the actual results from the candidate set.

We propose two kinds of pruning algorithm. In particular, by making
use of the indexing structure introduced in Section 3.2, we make the can-
didate set of trajectories by searching through each node of the query. In
one proposed approach called Ordered-Based method, we aim at reducing
the number of query nodes visited during the searching process. While, in
another proposed approach, named SkyLine, we aim at making the pruning
step, more effective, by visiting all nodes of the query. In this approach, we
first make a candidate set of relevant trajectories, by searching through each
node of the query. Then, we apply the second step of pruning, to find the
most relevant trajectories. Indeed, by using this approach, we also provide
an approximate method, which enables us to find the top-k most similar
trajectories to the given one, fast and accurate.
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Properties PTM [79] This thesis
Query One trajectory One trajectory
Output Most similar trajectories Most similar trajectories
Network Spatial Topological

Trajectory A sequence of timestamped nodes
A sequence of nodes with

the corresponding time intervals
the trajectory spending on each node

Similarity
function

Linear combination
of spatial distance and temporal distance,

both are LCSS-based

The Network distance
between two nodes of two trajectories
is combined with the time interval

that each trajectory spent
on the nodes

Optimization
technique

Pruning trajectories spatially,
by network expansion

Pruning trajectories temporally,
by 1-D range searching

on a set of timestamp points
Pruning spatially-temporally independently

Pruning trajectories
based on the time intervals the trajectories

spent on each node and
their location on the graph,

in a single searching process

Table 5.1: Method comparison

The most related work to the study of this project is arguably the PTM
query [79], which takes the spatiotemporal similarity into account. We cover
the differences between PTM and the proposed problem in this chapter in
Table 5.1. Duo to these differences, PTM and our problem call for differ-
ent algorithms for query processing. In PTM they search by each node of
query for closeby trajectories in the spatial and temporal domain, indepen-
dently. This is due to that, their similarity function also computes spatial
and temporal distances, independently, with the quadratic number of net-
work distance computations, as discussed in Chapter 2. The PTM uses the
network expansion [26] for finding trajectories that are spatially close to each
node of the query. Then, by considering all timestamps of trajectory nodes
on a time axis, they find those trajectories have a timestamp within a spec-
ified range from each query timestamp. Instead, we index trajectories w.r.t
the time intervals that they spent on each node. Therefore, our method finds
close trajectories to each query node by considering the temporal aspect in
a single searching process. Due to these differences, the PTM method and
other similar works (e.g [82, 74, 75]) do not work for the proposed problem
in this thesis.

This chapter is organized as follows. First, in Section 5.1.1 we propose the
Ordered-Based technique aim at visiting less number of query nodes during
the searching process, and we discuss two variants of this method. Then, in
Section 5.1.2 we present the SkyLine method based on dominance relation-
ships. Finally, we develop an approximation technique that is more efficient
than the exact counterpart but the accuracy of the results may be less than
100% in Section 5.1.3. We evaluate the proposed methods by conducting
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comprehensive experiments over real-world network datasets in Section5.2.
Due to the lack of competitors, as discussed earlier, we evaluate the effec-
tiveness of the proposed methods in comparison with the BaseLine method
designed in Section 3.3. The performance evaluation results demonstrate
that the proposed techniques are efficient and scalable.

5.1 Incremental Pruning Techniques

Given a set of trajectory T on graph G, a query Q and time interval T , we
aim at addressing the k-MsTraj problem. Let X = (G, T , Q, t = [a, b], k)
be an input for the k-MsTraj problem. Given an input X , if we can
find a subset T ′ ⊂ T of k trajectories such that minT∈T ′{Sim(Q, T, t)} ≥
maxS∈T −T ′{Sim(Q,S, t)}, then based on the Definition 4, the subset T ′ is
k-MsTraj.

Theorem 2 For a given input X = (G, T , Q, t = [a, b], k) for the k-MsTraj
problem, if there exists a set T ′ containing k trajectories in T such that
LB(T ′) ≥ UB(T − T ′), then T ′ is k-MsTraj.

Proof 5 Assume for each trajectory S ∈ T − T ′, instead of computing the
exact value Sim(Q,S, t), we are able to estimate it as the best score value that
S can achieve. We call this value as an upper bound UB(S) for trajectory
S w.r.t X . Obviously, for each S ∈ T − T ′ we have:

UB(S) ≥ Sim(Q,S, t) (5.1)
max

S∈T −T ′
{UB(S)} ≥ max

S∈T −T ′
{Sim(Q,S, t)} (5.2)

Thus, if we can find a set like T ′′ such that:

min
T∈T ′′
{Sim(Q, T, t)} ≥ max

S∈T −T ′′
{UB(S)}

(5.2)−−→ minT∈T ′′{Sim(Q, T, t)} ≥ maxS∈T −T ′′{Sim(Q,S, t)}

Then the set T ′′ would be k-MsTraj.
Assume, LB(T ′′) = minT∈T ′′{Sim(Q, T, t)} and UB(T −T ′′) = maxS∈T −T ′′{UB(S)}.
The proof of this theorem derives from the above when T ′′=T ′. �

We take the benefit of this theorem to design an incremental pruning
technique (IP) to restrict the search space by two different methods described
in Sections 5.1.1, 5.1.2.
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Basic Idea The basic idea of the incremental pruning technique is as fol-
lows. The algorithm moves along a sequence of steps (the steps depend on
the method) and finds a set of candidate trajectories at each step. The algo-
rithm uses a general heap of size of k to maintain k trajectory ids with the
highest scores during the searching process. The values in the heap make a
solution for k-MsTraj, which is built incrementally while adapting to the
changes of candidate trajectories at each step. The algorithm determines the
lower and upper bounds of the similarity score of trajectories at each step.
In particular, the lower bound (LB) at each step is the minimum similarity
score of the trajectories in the heap. Besides, the upper bound (UB) would
be the best similarity score of those trajectories that have not discovered dur-
ing the current search steps. The value of UB is defined base on the method.
The termination condition is defined based on the Theorem 2. Therefore,
the algorithm halts when UB ≤ LB.

In the next, we design two Ordered based and the SkyLine methods
to build a solution for the k-MsTraj problem, efficiently. We specify for
each method, the steps, the candidate trajectories at each step, and the upper
bound in the incremental pruning technique.

5.1.1 Ordered Based Method

In this method, the IP algorithm moves across the nodes of the query and
keeps the heap including the top-k trajectories updated at each node of the
query. In particular, the nodes of the given query trajectory are the steps
for the IP algorithm. For a given query Q and time interval t, we first
restrict query within t as Q[t]. Then, for each (vi, ti) ∈ Q, we use the
indexing described in Section 3.2 and by searching over ITvi we find Γ(vi,ti)

as a candidate trajectories at each node. For each trajectory in Γ(vi,ti), we
compute the similarity score with respect to the function in Definition 3. We
build the heap H containing top-k trajectories while updating during the
search process.

For a given input X , the Ordered method aims at achieving the k-
MsTraj by reducing the number of visited nodes of the query during the
search process (i.e. steps for IP) and the number of computing similarity
scores at each step (i.e. the candidate trajectories ate each step for IP). To
this end, the algorithm follows the two-variant ordering of query nodes:

Count-Based Ordered (CBO): Sorting nodes of query w.r.t the number
of trajectories passing through the node.

Time-Based Ordered (TBO): Sorting nodes of query w.r.t the number
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of trajectories passing through the node within its corresponding time
interval.

In the first case, we can simply assign the number of trajectories passing
through each node in V , in the preprocessing operation. Therefore, in the
query processing, for a given trajectory Q with the length of l, we only sort
the nodes of Q w.r.t the values are assigned to them in O(l × log l) time.

For the second case, since the number of trajectories for each node de-
pends on the time intervals are assigned to them, we cannot calculate them
in the preprocessing. Therefore, in the query processing, we first restrict
query Q within time interval t. Then for (vi, ti) ∈ Q[t], we search over the
ITvi by NTrajI-search(vi, ti) to find Γ(vi,ti). We sort the nodes of Q[t] w.r.t
|Γ(vi,ti)|.

Algorithm 3 shows the general framework of the Ordered Based Method.
Regarding CBO and TBO, the only difference is the order of nodes of the
query are visited. Generally, CBO will find more candidate trajectories, ef-
ficiently, while TBO finds most promising trajectories as a candidate, by
consuming more time to put query nodes on the time-based order. We show
in our experiments how involving the temporal aspect of trajectories on query
nodes ordering (i.e. TBO) affects the performance.

Now, the incremental pruning algorithm moves across the nodes of the
ordered query Qo, making heap H. As illustrated in Algorithm 3, the al-
gorithm searches over the ITvi , for each (vi, ti) ∈ Qo[t] to build Γ(vi,ti). By
computing the similarity score for each trajectory in Γ(vi,ti), we update heap
H.

Let |Qo[t]| = l and 1 ≤ i ≤ l and Hi containing k trajectory ids with
highest similarity scores have discovered by visiting i nodes of Qo[t]. We
determine the lower bound as the minimum similarity score of trajectories
in Hi as LBi = minT∈Hi

{Sim(Q, T, t)}. On the other hand, we determine
the upper bound as the best similarity score of those trajectories that have
not discovered within i steps of the searching process. Note that, for a pair
(vi, ti) ∈ Qo[t] if a trajectory T is not discovered by searching over ITvi , we
have dist(vi, T, ti) ≥ 2.

Considering those trajectories like T that they have not discovered by
searching process through i nodes of query, since the upper bound is a best
similarity score for them, so for each visited node (vz, tz) ∈ Qo[t] for 1 ≤ z ≤ i,
we consider dist(vz, T, tz) = 2 and for the remained nodes (vw, tw) ∈ Qo[t]
for i < w ≤ l we have dist(vw, T, tw) = 0. Therefore, at each (vi, ti) ∈ Qo[t],
we define the upper bound as follows.
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Algorithm 3: CBO & TBO

Input: Graph G, set of trajectories T , query trajectory Q, time
interval t = [a, b], integer k

Result: k-MsTraj

24 H /* H is a heap in size of k */
25 upper bound UB and lower bound LB /* UB,LB are dynamic and

update during the searching process */
26 Q[t] /* restricted Q within t */
27 Qo[t] ← sort(Q[t]) /* sort method is either CBO or TBO */
28 while heap− size(H) < k do
29 Γ(vi,ti) ← NTrajI − search(vi, ti) for (vi, ti) ∈ Qo[t]
30 H ← trajectories in Γ(vi,ti)

31 update UB

32 LB ← Sim(Q,min(H), t) /*min(H) returns a trajectory id in H with
minimum score */

33 while LB < UB do
34 Γ(vi,ti) ← NTrajI − search(vi, ti) for not visited (vi, ti) ∈ Qo[t]
35 for T ∈ Γ(vi,ti) do
36 if Sim(Q,min(H), t) < Sim(Q, T, t) then
37 H.remove(min(H))
38 H.add(T)

39 LB ← Sim(Q,min(H), t)
40 Compute UB

41 k-MsTraj ← trajectories in H
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UBi =

∑
(vz ,tz)∈Qo[t]

1≤z≤i
|tz| × e−2/DG +

∑
(uw,tw)∈Qo[t]

i<w≤l
|tw|

|t|
(5.3)

The values of the upper and lower bounds are dynamic and continuously
change at each (vi, ti) ∈ Qo[t] during the searching process. Based on the
Theorem 2, the algorithm stops saerching at step i−th and report trajectory
ids in Hi, if LBi ≥ UBi (see Algorithm 3).

5.1.2 SkyLine Method

In this section, we aim at solving the k-MsTraj problem by a fewer number
of similarity score computations. To this end, we first, use the candidate
set Γ described in the BaseLine method is Section 3.3. Although, the
additional information is assigned to each discovered trajectory in Γ to make
the steps in IP technique as explained in Section 5.1.2. Then, we describe
how the SkyLine method prunes the trajectories in Γ, incrementally, by
determining the LB and UP at each step in this section.

Making Steps in IP technique

We make a candidate set similar to the BaseLine method with annotating
useful information to each trajectory. First, we make the query trajectory
Q restrict within the time interval t. Then, we move along the nodes of
Q[t], searching for trajectories cross the nodes within the corresponding time
interval. For each (vi, ti) ∈ Q[t], we search over ITvi to make Γ(vi,ti). For
each reported trajectory id T ∈ Γ(vi,ti) and the corresponding time interval
tj (i.e. there exist a vertex uj ∈ {vi}∪N(vi) and (uj, tj) ∈ T and ti∩ tj 6= 0),
we can easily drive dist(vi, T, ti) as follows.

dist(vi, T, ti) =

{
0, if ∃i ∈ ti|T (i) = vi

1/D(G), otherwise
(5.4)

Therefore, once we traverse all nodes of the query, a lower bound LB of
similarity for each trajectory T in Γ can thereafter be computed by using the
known distances defined in Equation 5.4.

LB(T ) =

∑
(vi,ti)∈Q[t]|T∈Γ(vi,ti)

|ti| × e−dist(vi,T,ti)

|t|
(5.5)

Moreover, for each reported trajectory T ∈ Γ(vi,ti) with its corresponding
time interval tj, which tj ∩ ti 6= 0, we are able to measure the length of the
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time interval spent by T either in vi or its neighbors, where vi.t(T ) = |tj∩ ti|.
Therefore, we determine the whole time that T spent close to the query Q
within t as the time bound of T as follows:

TB(T ) =
∑

(vi,ti)∈Q[t]|T∈Γ(vi,ti)

vi.t(T ) (5.6)

On the other hand, if there exists a pair (v, t) ∈ Q[t] such that T /∈
Γ(v,t), it means there is no time instance i ∈ t such that T (i) ∈ v ∪ N(v).
Thus, dist(v, T, t) ≥ 2. Therefore, the minimum distance that a trajectory
outside the Γ(v,t) can achieve, is the value of 2. We define, an upper bound
of similarity for a trajectory in Γ as follows:

UB(T ) = LB(T ) +
δ × e(−2)/DG

|t|
(5.7)

where δ = |t| − |TB(T )|.
By using these bounds, we can set up a pruning mechanism for the k-

MsTraj to avoid computing the similarity score for the whole trajectories
in Γ and thus restrict the search space more.

To answer the k-MsTraj problem, the trajectories in Γ with larger lower
bound and time bound are supposed to be similar to the query with a high
similarity score. Based on this basic idea, we propose the SkyLine algo-
rithm, which retrieves the most similar trajectories w.r.t the query. Before
solving the problem, we first transform each trajectory T ∈ Γ with two val-
ues LB(T ) and TB(T ) to a 2-D point pT (xT , yT ) on the plane, such that
xT = TB(T ) and yT = LB(T ). Figure 5.1(a) shows a representative ex-
ample of transformed trajectories in candidate set by considering one query
trajectory randomly chosen in the Oldenburg dataset (See Section 5.2 for
more details about this dataset). Let P be a set of |Γ| points on the plane,
one per trajectory in Γ. We explain how the SkyLine method uses this set
of points to find k-MsTraj as follows.

SkyLine Query Processing

Given a set P of 2-D points, one for each trajectory in Γ, we aim at finding
those points that have a maximum x and y coordinates. Here x, y show the
lower bound(LB) and time duration(TB) of each trajectory in Γ, respectively.
It is equivalent to finding the Pareto frontier of a collection of points. To
answer k-MsTraj when k = 1, we can find the Pareto frontier of the points
in P and then the most similar trajectory is supposed to be on the Pareto
frontier. For larger values of k, we may need to compute a sequence of the
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Pareto frontiers as Pareto layers. As shown in Figure 5.1(b) the outermost
one is the first Pareto layer and the rest are formed in the same way, recur-
sively. The outermost layer may be degenerate, consisting only of one or two
points that we expected to be the most similar one. We will evaluate this
observation in our experiments. By using these Pareto layers, we provide
the incremental pruning strategy including the upper and lower bound of
similarity of trajectories in each Pareto layer (as described in Section 5.1).
In particular, each Pareto layer of the points in P would be one step in the
IP technique. Indeed, the trajectories lying on each Pareto layer would be
the candidate trajectories at each step of the IP technique.

Assume L is a Pareto layer containing a set of points with the corre-
sponding trajectory ids. We define an upper bound for similarity score of
trajectories lying on the layer L as UB(L) = maxT∈L{UB(T )}.

To answer k-MsTraj problem, as illustrated in Algorithm 4, the Sky-
Line method creates incrementally the Pareto layers. At each layer, we
compute the similarity score for those trajectories lying on the layer to keep
updated the heap H in the setting of the IP technique. So, at each layer
Li, we define the lower bound as LBi = minT∈Hi

{Sim(Q, T, t)}. When Hi

adapted to changes at layer Li. The algorithm stops searching on the layer
Li and reporting trajectory ids in Hi if UB(Li+1) ≤ LBi (see Algorithm 4).

We will show the correctness of the algorithm in Theorem 3.

Lemma 8 UB(Li+1) ≤ UB(Li)

Proof 6 Let T and S are two trajectories with maximum upper bound on
two Pareto layers Li and Li+1, respectively. By the definition of Pareto fron-
tiers, the point pT (TB(T ), LB(T )) dominates the point pS(TB(S), LB(S))
. So, TB(S) ≤ TB(T ) and LB(S) ≤ LB(T ). Therefore, by the defi-
nition of upper bound of a trajectory in Equation 5.7, we can drive that
UB(S) ≤ UB(T ). Then UB(Li+1) ≤ UB(Li). �

Theorem 3 Given a set of trajectories T , a query trajectory Q, and a query
time interval t, if we can get a set of k trajectories maintained in heap H
by searching over a sequence of i Pareto layers of transformed candidate
trajectories to 2-D points on the plane, such that UB(Li+1) ≤ LBi, then the
heap H contains the k-MsTraj.

Proof 7 For each trajectory Ti+1,j for j = 1, · · · , |Li+1| on the Li+1 layer, it
holds that:

Sim(Q, Ti+1,j, t) ≤ UB(Ti+1,j) ≤ UB(Li+1) (5.8)
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(a)

(b)

Figure 5.1: (a)The set of transformed points of each trajectory Ti ∈ Γ;
(b)Pareto layers

For each trajectory T ∈ H , we have also:

LBi ≤ Sim(Q, T, t) (5.9)

Therefore, if UB(Li+1) ≤ LBi then two inequalities 5.9 , 5.8 can be
combined using the transition property as follows:

Sim(Q, Ti+1,j, t) ≤ UB(Ti+1,j) ≤ UB(Li+1) ≤ LBi ≤ Sim(Q, T, t) (5.10)

So, we have Sim(Q, Ti+1,j, t) ≤ Sim(Q, T, t), which depict the fact that
all trajectories in the Li+1 layer have smaller than or equal similarity score
to the trajectories on H. �
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Consequence 1 By Lemma 8, we can derive that UB(Lz) ≤ UB(Li+1) for
z > i + 1. So, UB(Lz) ≤ UB(Li+1) ≤ LBi and any subsequent layer z,
by using the mathematical strong induction will definitely not containing any
trajectory of the k-MsTraj set.

Algorithm 4: SKY

Input: Graph G, set of trajectories T , query trajectory Q, time
interval t = [a, b], integer k

Result: k-MsTraj

42 H /* H is a heap in size of k */
43 Γ(vi,ti) ← NTrajI-search(vi, ti) for each (vi, ti) ∈ Q[t]
44 Γ =

⋃
(vi,ti)∈Q[t] Γ(vi,ti)

45 Transform each T ∈ Γ to a point pT (TB(T ), LB(T )) on the plane
46 while heap− size(H) < k do
47 Li, Li+1 ← Compute Pareto layers
48 H.add(T) for each T ∈ Li
49 LBi ← Sim(Q,min(H), t) /*min(H) returns a trajectory id in H with

minimum score */
50 while UB(Li+1) > LBi do
51 Li, Li+1 ← Compute Pareto layers
52 for T ∈ Li do
53 if Sim(Q,min(H), t) < Sim(Q, T, t) then
54 H.remove(min(H))
55 H.add(T)

56 LBi ← min(H)

57 k-MsTraj ← trajectories in H

5.1.3 Approximate SkyLine (ApSky)

To answer the k-MsTraj problem, computing the similarity score between a
query and a set of trajectories is unavoidable. Each of the proposed methods
in this chapter aimed to solve the k-MsTraj problem by computing the
minimum number of similarity scores to accelerate query processing. It is
obvious that the number of similarity score computations by each method
is more than k. In this section, we aim at making use of the SkyLine
method to provide an approximated solution for the k-MsTraj problem, by
computing only O(k) number of similarity scores.
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Given an input X = (G, T , Q, t, k) for the k-MsTraj problem, we ap-
proximate top k trajectories, efficiently, with a good precision.

To this end, we first, make the set P of 2-D points on the plane of a set
of candidate trajectories as described in Section 5.1.2. Then, the approxi-
mate algorithm finds the Pareto layers. In our approximate algorithm, the
trajectories lying on the outermost layer have the highest similarity scores
and those lying on the innermost layer have the minimum similarity scores.
Therefore, the algorithm reports k trajectories lying on the Pareto layers,
started from the outer layers to the inner layers. For example in Figure 5.1,
let k = 3, the algorithm by visiting two Pareto layers makes an approximate
solution for 3-MsTraj. We will evaluate the quality of the approximated
solution by our experiments in Section 5.2.3.

5.2 Performance Evaluation

In this section, we present performance evaluation results showing the effi-
ciency of the proposed algorithms. First, we provide a series of experiments to
evaluate the performance of exact algorithms: BASE (the BaseLine method
described in 3.3), CBO (count-based ordering), TBO (time-based ordering),
and SKY (the SkyLine method), in Section 5.2.2. Then, another series of
results follows demonstrating the performance of the approximate skyline-
based algorithm (ApSky) in comparison with SKY, in Section 5.2.3 . All
algorithms have been implemented in Python 3.

5.2.1 Network and Trajectory Datasets

Three real-world networks have been used for generating synthetic trajecto-
ries: i) the road network of the city of Oldenburg (OLN) in Germany with
5,835 nodes, ii) the road network of the state of California (CFN) in USA
with 21,048 nodes and iii) a Web network (WEBN) 1 with 3,032 nodes. The
main properties of the networks and dataset are represented in Table 5.2.

We have generated different trajectory datasets over each network, as
shown in Table 5.2, by using the generator shown in Algorithm 2. The
maximum duration is set to 30 and the maximum life span, i.e., the number
of timestamps a trajectory is active, is set to 4,000.

Moreover, we have generated a set of 100K synthetic trajectories on the
Oldenburg network using the well-known Brinkhoff’s trajectory generator 2 to

1http://networkrepository.com/web-edu.php
2https://iapg.jade-hs.de/personen/brinkhoff/generator/
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Network #Nodes #Edges Diameter #Trajectories
Oldenburg Network (OLN) 6,105 7,029 104 100K, 1M
California Network (CFN) 21,048 21,693 728 400K, 4M
Web Network (WEBN) 3,032 6,475 11 100K

Table 5.2: Summary of network and trajectory datasets.

evaluate the performance of the algorithms over different types of generated
trajectories, described in Section 5.2.4.

5.2.2 Comparison of Exact Algorithms

The proposed algorithms are compared using different performance measures.
In particular, we study the effectiveness of the proposed methods regarding
the cost of each method per query as:

1. Running time: In particular we measure the time needed for answering
the query by each method.

2. Number of similarity score computations: That is the number of can-
didate trajectories have discovered by each method, which has a direct
effect on the running time in each one.

3. Number of visited nodes: In particular, the effectiveness of the Or-
dered based methods of CBO and TBO depends on the number of
query nodes processed by each method; thus, we measure this value for
each of these two methods.

The different parameters that affect performance are the number of re-
sults k, the length of the query trajectory, over different underlying networks.
Table 5.3 presents the parameters and their corresponding values that have
been used in our experiments. The results presented correspond to the av-
erage of 100 random queries executed in each case. For each query in our
experiments, we consider the query time interval t in the setting of the Def-
inition 4 as the whole lifetime of the query trajectory.

We evaluate the effectiveness of the proposed algorithm considering the
different number of trajectories over each network. We conduct experiments
on 100k and 1M trajectories on OLN, 400K trajectories on CFN, and 100k
trajectories on WEBN. We consider two different sizes of trajectory datasets
on OLN to show how the effectiveness of the methods could change over
larger trajectories.
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Table 5.3: Performance evaluation parameters.

Parameter Values
Number of results (k) 1, 2, 4, 8, 16, 32, 64
Length of query (l_Q) 10, 20, 40, 80
Number of trajectories (|T |) 100K, 400k, 1M, 4M
Network OLN, CFN, WEBN

Different Values of k

The value of k in the k-MsTraj problem is a critical parameter that can
affect the performance of the methods. In this part, we evaluate the quality of
each method by varying the k values. We show the results in Figures 5.2–5.7
with the length of the query fixed to 20.

(a) (b)

Figure 5.2: Evaluation of the proposed method regarding running time in
comparison with BASE vs k on OLN (a) Experiments over 100k

trajectories; (b) Experiments over 1M trajectories

As shown in Figure 5.2 and 5.3, the proposed methods outperform the
BaseLine method considering running time and the number of score com-
putations over two sets containing 100k and 1M trajectories on Oldenburg
network. Note that, the cost of the BaseLine method is constant by varying
the values of k since the BaseLine algorithm provided the solution of the
k-MsTraj problem independently of the value k. In particular, considering
100k trajectories on OLN (see Figures 5.2(a) and 5.3(a) ), we observe that
SKY notably outperforms BASE and other two proposed methods (TBO and
CBO) as the values of k goes up to 32. In which that the running time and
the number of similarity score computations of the TBO and CBO methods
increase to almost 3s and 350, respectively, while SKY increases costs with
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(a) (b)

Figure 5.3: Evaluation of the proposed method regarding the number of
similarity score computations in comparison with BASE vs k on OLN (a)
Experiments over 100k trajectories; (b) Experiments over 1M trajectories

running time and number of score computations to more than 2s and 250,
respectively. We observe that for larger values of k = 64, the TBO method
outperforms SKY, while as Figures 5.2(b) and 5.3(b) show, by increasing
the number of trajectories in dataset T from 100k to 1M over Oldenburg
network, SkyLine outperforms other methods in running time and number
of score computations, significantly, while k goes up to 64.

Regarding CBO and TBO, we observe in Figures 5.2(a) and 5.3(a) that
CBO outperforms TBO for smaller values of k while considering larger num-
ber of trajectories as 1M, we see that CBO processes the query by computing
fewer number of similarity scores and consecutively, consuming less time than
TBO. This is because of that visiting the query nodes in order of the CBO
method, visits more nodes of the query by increasing k values as shown in
Figure 5.4, while computes fewer similarity scores at each query node and
consecutively consuming less time, in comparison with TBO. However, TBO
by processing more trajectories at primitive nodes of the query during the
searching process increases the lower bound of trajectories and makes the
Theorem 2 earlier to be satisfied.

Studying the behavior of 400k trajectories on CFN, Figure 5.5 shows the
best performance of SKY in comparison with other methods. As shown in
Figure 5.5(a), SKY outperforms all other methods by increasing the k values
from 1 to 64. This is due to that, SKY process fewer number of trajectories
during its searching process (see Figure 5.5(b)), while other methods process
more trajectories and consecutively consume more time to answer the query
while outperforming the BaseLine method. Comparing CBO and TBO,
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(a) (b)

Figure 5.4: Evaluation of the performance of CBO and TBO w.r.t BASE in
terms of the number of visited query nodes by varying the values k on OLN

. (a) Experiments over 100k trajectories; (b) Experiments over 1M
trajectories.

we observe that TBO behaves better than CBO for larger values of k, while
CBO outperforms TBO for smaller k values, in terms of both number of score
computations and consecutively running time. It is because of the similar
reason mentioned earlier on the experiments over OLN.

(a) (b)

Figure 5.5: The results of experiments over 400k trajectories on CFN. (a)
Running time in each method vs different values of k; (b) Number of

similarity score computations by each method vs k.

Regarding the Web dataset, as shown in Figure 5.6, we observe that
the total proposed methods outperform the BaseLine method. We can see
that as the values of k go up to 64, the running time and the number of
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score computations of SKY increase smoothly to 10 and 15, 000 respectively,
which is negligible with respect to BASE with almost 200, 000 similarity
computations and consuming more than 140s time. Figure 5.6 shows that
CBO has better performance than TBO by computing almost 25 similarity
scores and consuming more than 25 seconds time.

(a) (b)

Figure 5.6: The results of experiments over 100k trajectories on WEBN. (a)
Running time in each method vs different values of k; (b) Number of

similarity score computations by each method vs k.

Moreover, we evaluate the performance of two variations of the ordered
based method as CBO and TBO, by considering the number of visited query
nodes during the searching process on CFN and WEBN (the results of experi-
ments on OLN have mentioned earlier in Figure 5.4). Note that, the SkyLine
method does not search for k-MsTraj over the nodes of the query, therefore
its effectiveness does not depend on the number of visited query nodes. As
shown in Figure 5.7 TBO outperforms CBO, significantly in terms of the
number of visited query nodes. By increasing the k values to 64, the number
of visited query nodes by CBO rise up quickly to 17 for the queries with
length of 20, while this value for TBO is approximately two times less than
the number of visited query nodes by CBO. This confirms the fact that or-
dering of query nodes by considering time information helps in raising the
lower bound of trajectories at the beginning of searching process and makes
Theorem 2 satisfied earlier. The difference between the performance of TBO
and CBO, regarding the number of visited query nodes over 100k trajectories
on WEBN, is almost negligible and is always about two times less than the
length of the query (see Figure 5.7).
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CFN-(a) WEBN-(b)

Figure 5.7: Evaluation of the performance of CBO and TBO w.r.t BASE in
terms of the number of visited query nodes by varying the values k. (a)
Experiments over 400k trajectories on CFN; (b) Experiments over 100k

trajectories on WEBN.

Different Length of the Query Trajectory

Another concern about the k-MsTraj problem is how the algorithms behave
by varying the length of the query trajectory. In this section, we fix k to 16
and compare the performance of the proposed methods regarding the length
of the query trajectory as 10, 20, 40, 80.

By considering two datasets over OLN containing 100k and 1M trajecto-
ries, as shown in Figures 5.8 and 5.9, we observe that the SkyLine method
have better performance for a larger set of trajectories (i.e. 1M), in terms
of the running time and the number of score computations by varying the
length of the query. TBO outperforms other methods in terms of both run-
ning time and number fo score computations, for longer queries over both
datasets containing 100k and 1M trajectories. Consecutively, we say that the
performance of SkyLine on OLN depends on the number of trajectories in
the dataset, since as shown in Figure 5.8 the values of time and number of
score computations of SKY are getting less than other methods for the larger
set of trajectories.

Figure 5.10 shows the results of experiments over 400k trajectories on
CFN. SKY outperforms both CBO and TBO by computing fewer number of
similarity scores and consecutively consuming less time for query processing.
As we can see TBO in comparison with CBO in Figure 5.10, the values of
time and the number of similarity computations in TBO is close to 12.5 and
5× 1e2, respectively, for larger queries with length of 80, while these values
for CBO are almost 17.5 and 6× 1e2, respectively.
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(a) (b)

Figure 5.8: Evaluation of the proposed method regarding the running time
in comparison with BASE vs the number of query nodes on OLN (a)

Experiments over 100k trajectories; (b) Experiments over 1M trajectories

(a) (b)

Figure 5.9: Evaluation of the proposed method regarding the number of
score computations, in comparison with BASE vs the number of query
nodes on OLN (a) Experiments over 100k trajectories; (b) Experiments

over 1M trajectories

The experiments over 100k trajectories on WEBN shows the best per-
formance of the SkyLine method regarding running time and the number
of score computations. As the length of the query trajectory rises to 80, we
have no significant rise for SKY in terms of running time and the number of
score computations (see Figure 5.11)). Moreover, we can observe that CBO
outperforms TBO significantly in terms of the running time and the number
of score computations.

Regarding the number of visited query nodes, we can see in each dataset
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(a) (b)

Figure 5.10: The results of experiments over 400k trajectories on CFN. (a)
Running time in each method vs different number of query nodes; (b)
Number of similarity score computations by each method vs different

number of query nodes.

(a) (b)

Figure 5.11: The results of experiments over 100k trajectories on WEBN.
(a) Running time in each method vs different number of query nodes; (b)
Number of similarity score computations by each method vs different

number of query nodes.

(Figures 5.12–5.13), the the TBO method is more scalable with the length
of the query in comparison with the CBO method, in terms of the number of
visited query nodes. This is due to that, TBO discovers more trajectories at
the beginning of the searching process. This helps to satisfy the requirements
of the Theorem 2 earlier by visiting the fewer number of query nodes.
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(a) (b)

Figure 5.12: Evaluation of the performance of CBO and TBO w.r.t BASE
in terms of the number of visited query nodes by varying the length of the
query on OLN. (a) Experiments over 100k trajectories; (b) Experiments

over 1M trajectories.

CFN-(a) (WEBN-b)

Figure 5.13: Evaluation of the performance of CBO and TBO w.r.t BASE
in terms of the number of visited query nodes by varying the length of the
query. (a) Experiments over 400k trajectories on CFN; (b) Experiments

over 100k trajectories on WEBN.

In summary, we conclude that all proposed methods in this chapter are
effective in comparison with the BaseLine method, in terms of the running
time, number of score computations and the number of visited query nodes by
varying the k values and the length of the query. Moreover, we can drive that
the SkyLine method is the best choice for computing k-MsTraj over the
large datasets and the TBO method has better performance for processing
longer queries for larger values of k in comparison with CBO.
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5.2.3 Evaluation of the Approximate Algorithm

We evaluate the quality of the solution produced by the ApSky method
w.r.t the exact solution provided by the SkyLine method. First, we discuss
the effectiveness of ApSky in terms of the running time and number of
similarity score computations in comparison with the SkyLine method in
Figures 5.14–5.15. Then, we measure the accuracy of the produced solution
by ApSky by means of the metrics described in Section 4.2.4 in Figures 5.16–
5.21. We show the robustness of the methods evaluating each metric by
varying values of k and the length of the query trajectory for each dataset.

Figure 5.14 shows the performance of ApSky in comparison with Sky-
Line, when the value of k changes from 1 to 64. As we can observe, the
value of running time by ApSky rises up smoothly in each dataset in Fig-
ures 5.14 (a-d). This confirms that the number of trajectories processed by
ApSky is much fewer than SkyLine, and consequently, as shown in Fig-
ures 5.14(e-h), the number of similarity score computations by SkyLine is
almost twice and three times more than ApSky over 100k and 1M trajecto-
ries on OLN, respectively. We observe that this value is less on experiments
over CFN and WEBN. This shows the better performance for SkyLine over
these two networks. As we can see, for smaller values of k, there is a negli-
gible difference between SkyLine and ApSky in terms of the running time
and number of score computations. This is due to that the SkyLine method
satisfies the requirement of the Theorem 2 on the outer layers of Pareto, for
smaller values of k. These differences rise up, while the values of k getting
larger. It means, the SkyLine method needs to search through more Pareto
layers to make the Theorem 2 to be satisfied.

Similarly, Figure 5.15 shows the performance of ApSky in terms of run-
ning time and number of score computations, by varying the length of the
query trajectory (i.e. the number of nodes of the query). As we can observe,
the cost of ApSky is almost close to zero in comparison with SKY, over every
four datasets. Regarding the performance of SKY and ApSky, these results
are close with better performance for SKY. This is due that, ApSky con-
tinues to search through the Pareto layers until visits at least k trajectories.
It means, ApSky always visits the minimum number of Pareto layers w.r.t
the values of k. Therefore, if the performance of SKY is close to ApSky,
shows that the SkyLine method could find the solution by satisfying the
Theorem 2, within the first Pareto layers, which confirms the performance
for the SkyLine method (see Figure 5.15).

In conclusion, we observe that the performance of ApSky is robust while
the values of k and the length of the query rise up to 64 and 80, respectively.

81



OLN-(a) OLN-(b)

CFN-(c) WEBN-(d)

OLN-(e) OLN-(f)

CFN-(g) WEBN-(h)

Figure 5.14: Evaluation of the approximate method (ApSky) in
comparison with the exact method (SKY) by varying the values of k on

100k and 1M trajectories on OLN and 400k trajectories on CFN and 100k
trajectories on WEBN. (a-d) Running time in each method; (e-h) Number

of similarity score computations by each method.
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OLN-(a) OLN-(b)

CFN-(c) WEBN-(d)

OLN-(e) OLN-(f)

CFN-(g) WEBN-(h)

Figure 5.15: Evaluation of the approximate method (ApSky) in
comparison with the exact method (SKY) by varying the length of the

query on 100k and 1M trajectories on OLN and 400k trajectories on CFN
and 100k trajectories on WEBN. (a-d) Running time in each method; (e-h)

Number of similarity score computations by each method.
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Precision Ratios: IR and SSR

Regarding the quality of the provided solution by ApSky, the results in
Figures 5.16–5.21 shows the intersection ratio(IR) and similarity score ra-
tio(SSR) ratios for each dataset. Given two output sets γ1 and γ2 containing
top−k trajectories, e.g. the exact and approximated solutions, respectively,

we have: SSR(γ1, γ2) =

∑
T∈γ1 Sim(Q, T, t)∑
S∈γ2 Sim(Q,S, t)

and IR(γ1, γ2) =
|γ1 ∩ γ2|

k
.

As shown in Figure 5.16 the IR values are robust by varying the values of
k almost around 0.80 for both datasets containing 100k and 1M trajectories
on OLN. Regarding the different values of the length of the query, shown in
Figure 5.17, we can observe that the IR values changing from almost 0.90 to
0.60 while the length of the query rises up to 80 over both datasets on OLN.

100k 1M

Figure 5.16: IR and SSR ratios on OLN vs k

100k 1M

Figure 5.17: IR and SSR ratios on OLN vs l_q
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On the other hand, the values of the IR ratio over 400k trajectories on
CFN go down from 0.98 to 0.89, as the value of k rises up to 64. Similarly,
considering a larger dataset on CFN containing 4M trajectories, the IR values
change within the range of 0.91 to 0.98. This value reaches to 0.98 when k
is equal to 16 (see Figure 5.18). Moreover, we can see in Figure 5.19 that
IR values are close to one for shorter query trajectories in both datasets
400k, 4M and getting close to less than 0.75 and 0.83, over 400k and 4M
trajectories, respectively.

400k 4M

Figure 5.18: IR and SSR ratios on CFN vs k

400k 4M

Figure 5.19: IR and SSR ratios on CFN vs l_q

The ApSky has the best performance in terms of IR ratio on WEBN,
since as Figure 5.20 shows, the IR values started from 0.99 reaching to 0.98
and then for larger values of k returned closing to 0.99. In addition, in
Figure 5.21, we can see the good quality of ApSky for different values of the
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length of the query. The IR started from 0.99 getting close to 0.96 for the
queries with a length of 40 and then rises up to more than 0.88 while the
length of queries reaching to 80. This is due that, WEBN is a dense network,
with the diameter 11, and a trajectory with maximum similarity score moves
close to a more number of query nodes, in comparison with other networks
with a larger diameter, and consequently, it is easier for ApSky to find such
trajectories.

Figure 5.20: IR and SSR ratios
over 100k trajectories on

Web-network vs k

Figure 5.21: IR and SSR ratios
over 100k trajectories on
Web-network vs l_q

Indeed, we observe that the SSR ratio is always very close to 1, for each
dataset, regarding different values of k and the length of the query. This con-
firms the high performance of the approximated solution for the k-MsTraj
problem.
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5.2.4 Brinkhof Dataset

To evaluate the scalability of the results of our experiments, we conduct
some other experiments over 100k trajectories which are generated randomly
by Brinkhof generator on the Oldenburg network. The presented results
correspond to the average of 100 Brinkhof generated queries executed in
each case.

(a) (b)

(c)

Figure 5.22: Evaluation of exact methods over 100k trajectories is
generated by Brinkhof generator on OLN network vs k. (a) Running time
by each method in comparison with BASE; (b) The number of similarity
score computations by each method; (c) The comparison of the number of

visited query nodes by each method during the searching process.

Exact Methods

As shown in Figure 5.22, SKY notably outperforms BASE and other methods
CBO and TBO. As the value of k goes up to 64, the running time and
the number of score computations of CBO rise quickly to more than 10

87



and 6, respectively. In addition, the running time and the number of score
computations by the TBO method are robust for different values of k and
are around 6. While SKY rises the cost smoothly with running time almost
5 and the number of score computation about 4.

Note that the running time and the number of score computations by
BASE are fixed for different values of k with values the of 12 and 7, respec-
tively. This is due that the searching process in the BaseLine algorithm
does not depend on the k values.

Indeed, regarding the number of visited nodes by each method, we have
a comparison between CBO and TBO in Figure 5.22 to show that TBO out-
performs CBO. In comparison with TBO, when the query is ordered without
time consideration (CBO), more query nodes are visited and consequently it
requires processing more trajectories to figure out the lower bound by using
the Algorithm 3. Therefore, more score computations and more time are
needed, particularly, for larger values of k, as confirmed in Figure 5.22.

Approximated Method

As shown in Figure 5.23, the approximation method ApSky outperforms the
exact method SkyLine in terms of the running time and the number of score
computations, significantly. The IR and SSR ratios plotted in Figure 5.23
show the quality of the produced solution by ApSky in comparison with the
exact solution. We observe that as k goes up to 64, the IR value starts from
0.85 going down to more than 0.70 when k = 8 and then rises up to 0.80 for
larger values of k.

5.3 Conclusion

In this chapter, we proposed and investigated the exact (i.e. CBO, TBO,
SkyLine) and approximate (i.e. ApSky) techniques based on the prune-
and-refine method, treating the k-MsTraj problem. We aimed at reducing
the number of similarity scores that need to be computed, consequently, re-
ducing the number of shortest path distance computations and in general, the
time needed to process the query. We proposed the Ordered-Based tech-
nique that aims at visiting less number of query nodes during the searching
process, and we discussed two variants of this method: CBO, which processes
the nodes of the query w.r.t the number of trajectories passing through each
node; and TBO, which processes the nodes of the query, w.r.t the number fo
trajectories passing through each node within the corresponding time inter-
vals. In addition, we presented the SkyLine method based on the dominance
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(a) (b)

(c)

Figure 5.23: Evaluation of approximate method over 100k trajectories is
generated by Brinkhof generator on OLN network vs k. (a) Running time
in ApSky in comparison with SKY ; (b) The number of similarity score
computations; (c) The IR and SSR ratios (i.e. the quality of the produced

solution by ApSky )

relationships between trajectories, aiming at reducing the number of trajec-
tories that must be processed. In all methods, we provided a pair of bounds
(i.e. lower and upper bound) to manage the pruning of the search space
efficiently. In contrast to state-of-the-art works which process the query in
the temporal and spatial domain separately [79, 81, 41], we treated the k-
MsTraj query processing in a single searching process, in both proposed
methods. Moreover, by making use of the SkyLine method, we provided a
fast and accurate approximation technique (i.e. ApSky).

Finally, the performance of the proposed methods was verified through
extensive experiments based on synthetic trajectories generated on three real-
world networks: Oldenburg, California and Web network. We observed that
all proposed methods are effective in comparison with the baseline, in terms
of the query time, number of score computations and the number of visited
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query nodes by varying the k values and the length of the query. We conclude
that the SkyLine method is the best choice for computing the k-MsTraj
over the large datasets and the TBO method has better performance for
processing longer queries for larger values of k in comparison with the CBO.

Concerning the approximation method, we showed the performance of
ApSky, in terms of the time needed to process the query and the number
of score computations, which always outperforms the SkyLine. In addition,
we measured the accuracy of the produced results in terms of two proposed
precision metrics. We demonstrated the precision of the method over each
dataset, which shows that ApSky can make fast and reasonably accurate
results.

In comparison to the approximation algorithms provided in Chapter 4 (i.e.
SHQ and SHQT), the results of experiments over the same dataset WEBN
show that ApSky works well for larger datasets and has the best performance
for small values of k, while more accurate results can be obtained by SHQ
and SHQT when considering long trajectories for large values of k.

It is worth to mention that, in many domains such as urban planning, traf-
fic management, intelligent transportation systems, nowcasting, and emer-
gency management, faced with the huge size of trajectory set, specifying the
purpose of the movements, in order to have a better comprehension of the
system in each domain is a big challenge, which can benefit of the results of
this chapter.
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Chapter 6

Next Movement Prediction
of Tourists

In the last years, increasing availability of user-generated content has driven
the development of new services for tourism. The new services target different
tasks ranging from, for example, prediction of next places to visit [60, 9,
60], intelligent planning [2, 15, 14], booking, etc. These systems are used
within location-based social networks and targeted mobile applications to
help tourists in achieving a better experience in their activities.

In this chapter, we study the next-PoI prediction problem (next-PoI),
which aims at identifying the PoI that a tourist will visit in the future
with highest probability. Usually, this problem is solved by using machine
learning-based techniques. The overall efficiency of a machine learning-based
technique for next-PoI prediction depends on the effectiveness of the proposed
feature set. In particular, given a trajectory dataset, any machine learning
model needs to extract a set of useful features for prediction, which is a
challenging task. In this project, we introduce a new graph-based method
targeting the next-PoI problem. The objective of the next-PoI is to reflect
the similar behavior of the past tourists, which is really useful in many ap-
plications, to predict the next movements of a tourist.

To tackle this problem, we exploit the structural and temporal informa-
tion available in the past trajectories of tourists, i.e., the sequences of PoIs
visited by tourists in a city, to predict the next one, i.e., the PoI that will
more likely be visited. We introduce the trajectory graph, a graph modeling
the behavior of a given set of tourists in a city. Using this graph, we identify
the trajectory which is the most similar to a given one in order to predict
the next-PoI.

We propose a comprehensive evaluation of our proposed method and
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of state-of-the-art competitors (based on machine learning) on three pub-
lic datasets of movements in Pisa, Rome, Florence. The performance of
the methods, evaluated in terms of Success@k% (i.e., the percentage of times
that the correct answer is in the top-k ranked PoIs), showing that our method
achieves the best performance, outperforming the competitors.

This chapter is structured as follows: Section 6.1 provides a formal def-
inition of the problem. In Section 6.2 we present the needed concepts to
explain the prediction model that is discussed in detail in Section 6.3. Fi-
nally, in Section 6.4 we report the experiments. We illustrate the effectiveness
of our method compared to state-of-the-art techniques. As a result, we show
that our method can predict next-PoI for tourists with high accuracy.

6.1 Problem Statement

Let P = {p1, p2, · · · , pn} be a set of Points of Interests(PoI) of a city. Let U =
{u1, u2, · · · , um} be a set of users. We consider the movements of the user u
while visiting the subset of PoIs, as a sequence of pairs (pi, ti = [si, ei]) where
si and ei are the time instances u enters to and exits from pi, respectively.
We define a temporal order of these pairs as the trajectory of the user u,
following Definition 1, as T = 〈(p1, [s1, e1]), (p2, [s2, e2]) · · · , (pN , [sN , eN ])〉.

The set of all trajectories T contains the trajectories T of all the users
u ∈ U .

Problem Statement Given a set of trajectories T and a user u, let Q be
the trajectory of u in T , withQ = 〈(p1, [s1, e1]), (p2, [s2, e2]) · · · , (pN , [sN , eN ])〉.
We aim at predicting the PoI in P that the user u will visit after the PoI pN .

6.1.1 Sketch of the Solution

Our basic idea is to use the relation between the trajectory of the tourists
to predict their next movement. Given a set of trajectories T and a query
trajectory Q, we solve the problem by performing two major steps, which are
illustrated in Algorithm 5. We first construct a graph of tourist trajectories
on the city, called trajectory graph (alternatively we can use graph), for a
given dataset of trajectories. In a trajectory graph, there is an undirected
edge (pi, pj) if there exists a trajectory passing through (pi, pj). In the second
step, we find Most Similar Trajectory (MsTraj), that is, k-MsTraj (when
k = 1) described in Section 3, to a given query trajectory based on the
similarity function. Computing MsTraj for a given trajectory of a tourist
is a fundamental task to solve our problem. This is because the current PoI
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visited by MsTraj on the graph could be a PoI that the given tourist will
visit in the future. We present the needed concepts to explain the solution
in Section 6.2 and then we discuss the method in detail in Section 6.3.

Algorithm 5: Two major steps for PoI prediction

Input: T , Q
Result: next movement of Q

58 begin
59 step1: Build the trajectory graph G w.r.t T and Q
60 step2: Find MsTraj in T w.r.t Q over G
61 Report the current location of MsTraj as the next movement of Q

6.2 Using Trajectory Similarity on Graphs

In this section, we present some preliminary concepts needed to propose the
solution for the PoI prediction problem.

Since the motion of tourists is restricted by the PoIs in a city, we create a
graph whose nodes are the PoIs they visited and edges are placed depending
on the movements in the trajectories, as described next.

Definition 8 (Trajectory Graph) Given a set of trajectories T visiting a
set of PoIs P , G = (V,E) is an undirected graph whose node set V is P
and whose edge set E is such that for any two nodes pi, pj ∈ V there is an
undirected edge (pi, pj) ∈ E if there exists at least one trajectory in T that
traversed pi and pj, consecutively.

We further use the similarity measure described in Section 3.1.2 to com-
pute the similarity between two trajectories. For a given trajectory, we define
the Most Similar Trajectory (MsTraj) as the trajectory with the maximum
similarity according to Definition 3.

Given a query trajectory Q, by considering Sim(Q, Tj, t) as the similarity
between the query Q and the trajectories Tj ∈ T during the time interval
t = [a, b], we define the next-PoI of Q as follows.

Definition 9 (next-PoI) Given a set of trajectories T over the graph G(V,E),
a trajectory Q = 〈(p1, t1), (p2, t2) · · · , (pN , tN)〉 of a tourist, and a query time
interval t = [a, b], the next-PoI of Q is a node pi ∈ V which maximizes:
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ρNi × τjie × Sim(Q, Tj, t = [a, b]), (6.1)

where:

ρNi =

{
1 if (pN , pi) ∈ E
0 otherwise

τjie =

{
1 if Tj(b) defined and Tj(b) = pi

0 otherwise

The next-PoI problem, based on the above definitions, is then the fol-
lowing one: given a set of trajectories T and a query trajectory Q, find the
next-PoI of Q over the trajectory graph G. Note that G is the trajectory
graph derived from T and Q.

6.3 Proposed Method
Given the set T and a query trajectory Q, we first build the trajectory graph
G with respect to T . Note that this can be computed in an offline manner as
follows. In order to buildG, we simply scan all trajectories in T and updateG
during the process. Initially, G is an empty graph. For all trajectories T ∈ T
and for each consecutive pair (pi, [si, ei]), (pj, [sj, ej]) ∈ T , if the edge (pi, pj)
does not exist in G, we add it to G. The construction of G is completed once
all trajectories are considered.

When processing the given query trajectory Q, we update G by scan-
ning Q. Now, for finding next-PoI, we go through the second step of the
Algorithm 5 over G, finding the trajectory most similar to Q in T as follows.

Finding MsTraj Given a set of trajectories T defined over a graph G, a
query trajectory Q and a time interval t = [a, b], we aim at finding MsTraj.
To this end, we simply compute the similarity score of each trajectory T ∈
T with respect to the query Q within t based on the similarity function
introduced in Definition 3. Obviously, in the present of t = [a, b], we should
only consider those trajectories which are defined for each time instance
i ∈ t. We maintain all trajectories in an ordered heap H, according to their
similarity scores. Thereafter, we report the trajectory on the top of the heap
H (i.e. with maximum similarity score) as MsTraj.

Finding the next-PoI Given a trajectoryQ = 〈(p1, t1), (p2, t2) · · · , (pN , tN)〉
and a time interval t = [a, b]. We assume the neighbor nodes of pN in the
trajectory graph G, denoted by NB(pN), as the candidate next-PoI of Q.

94



All such nodes pi ∈ NB(pN) are indeed such that the value ρNi = 1 in Equa-
tion 6.1. Therefore, for the query Q and time interval t = [a, b], if there exists
a trajectory T ∈ T such that T (b) ∈ NB(pN) and satisfies Equation 6.1 in
Definition 9, then we consider T (b) as the next-PoI of Q, where recall that
T (i) indicates the unique node p ∈ V such that there exists a pair (p, t) ∈ T
with i ∈ t. On the other hand, let T be MsTraj, if T (b) ∈ NB(pN) then
T obviously satisfies the Equation 6.1, since has the maximum similarity
score, so T (b) is the next-PoI of Q. Therefor, for a trajectory T , T (b) is the
next-PoI of Q, if T (b) ∈ NB(pN) and T is MsTraj w.r.t Q.

Based on this idea, we address the next-PoI problem, for given query
Q = 〈(p1, [s1, e1]), (p2, [s2, e2]) · · · , (pN , [sN , eN ])〉. We consider [sN , eN ] of
the current pair (pN , [sN , eN ]) ∈ Q as the query time interval t = [a, b], such
that a = sN and b = eN . Let H be the heap associated to the set of tra-
jectories in T based on their similarity scores w.r.t Q within t. In searching
process, we consider only the trajectory on the top of the heap H and in-
vestigate whether the top trajectory satisfies the Equation 6.1. We continue
to visit top-ranked trajectory in H finding the trajectory T maximizing the
Equation 6.1. Thereafter, T (eN) will be reported as the next-PoI for the
query Q.

We will evaluate the quality of our proposed model by conducting the
comprehensive experiments in Section 4.2.

6.4 Experimental Evaluation

In this section we report the experiments to evaluate our proposed method.
We describe in Section 6.4.1 the three real-world datasets employed for the ex-
periments, and the next-PoI prediction framework in Section 6.4.2. We com-
pare our solution with the state-of-the-art methods described in Section 6.4.3,
adopting the methodology discussed in Section 6.4.4. In particular, we pose
four questions that are experimentally analyzed in Sections 6.4.5–6.4.8 to
show the effectiveness of our methods.

6.4.1 Datasets

To evaluate our method we use three different datasets provided in [60] con-
taining tourist movements covering three Italian cities Pisa, Rome, Florence.
In these datasets, the set of PoIs in each city is aggregated from Wikipedia.
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For making tourist trajectories, the geo-tagged photos from Flickr are col-
lected. The photos are mapped to the set of PoIs aggregated from Wikipedia.
Note that, since users may have taken more than one photo assigned to the
same PoI, the timestamps of the first and the last photo are considered as
the starting and ending time of their visits at the PoI. For each Flickr user,
the sequence of these PoIs makes its movement pattern in each city. Each
sequence of PoIs visited by each user is split into the set of daily journeys,
which builds the trajectory set. Apart the user ID, the format is a quadruple
with the PoI ID, the number of pictures taken there, and the timestamp for
the first picture and that for the latter (timestamps are in ms with reference
to Jan. 1, 1970). For example, this is an example of a line for a raw dataset,
where two quadruples are assigned to the same line:

25615082@N03 <tab> P93;2;1307114479;1307114577 <tab> P67;1;1307115649;1307115649

The above line means that user 25615082@N03 took two pictures in PoI
P93 and then one picture in PoI P67. Note that each line corresponds to a
user ID, but more lines can be associated with the same user ID, with one
or more quadruples in each line separated by a tab.

In our experiments, we consider the time duration between the starting
time assigned to two consecutive visited PoIs pi and pi+1 by a user, as the
time duration the user spent in pi. In the above example, the first PoI P93
has the time interval [1307114479, 1307115648]. The last PoI in each line has
the same timestamp for beginning and end as [1307115649, 1307115649] in
our example. Note that this is not a limitation, as the last PoI is the one to
be predicted in our experiments. In this way each trajectory is represented
in the form of the Definition 1.

Table 6.1 shows the properties of the datasets we use. The column #PoI
shows the number of PoIs visited by trajectories in each dataset. Moreover,
we report the number of trajectories we consider in our experiments which
are the trajectories visit at least two PoIs.

Dataset #PoI #Trajectories ≥ 2
Pisa 110 992

Florence 888 5984
Rome 490 12565

Table 6.1: Properties of three datasets
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The distribution of the length of trajectories for three cities are plotted
in Figure 6.1

Figure 6.1: The distribution of the trajectories length in each dataset

6.4.2 Experimental Environment

We perform the evaluations using a machine with Intel(R) Xeon(R) CPU
E5-2620 v3 at 2.40GHz, 24 virtual cores, 128 Gb RAM, running Ubuntu
Linux version 4.4.0-22-generic. We implement all algorithms in Python3.

6.4.3 Methods

We compare our method with a probability baseline Prob and Learnext [60]
described below. Although there are two important state-of-the-art tech-
niques Wherenext [59] and Random Walk [53], we do not include them
in our experimental study, since Learnext outperforms them. We evaluate
our method using the same datasets and training/test sets employed in [60].

Prob A pure model named "Prob" in [60], uses the trajectories in dataset
to build a weighted-directed graph with PoIs as the node set. There is a di-
rected edge from source PoI pi to the destination PoI pi, if there exists at least
one trajectory in dataset that traverse from pi to pj. Each edge is weighted
with the number of transaction from source to destination, representing the
transition probability of each edge. Given p, the method Prob returns the
out-neighbor of p with highest probability. Intuitively, this model suggests
the most visited PoI from the source p as the next-PoI.
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Learnext Learnext is a next-PoI predictor that learns tourists’ be-
havior from their common patterns of movements. Authors apply machine
learning techniques to tackle the problem of predicting the “next” touristic
attraction a user will visit on the basis of her visit history (i.e., the predic-
tion is done accordingly to what the user has already visited in the touristic
attraction). The problem is modeled as an instance of learning to rank which
exploits a feature space composed of 68 features capturing both the touris-
tic behavior and the peculiar characteristics of candidate PoIs. The models
are trained using GBRT [100] and Ranking SVM [43] as learning methods.
They are tested on three collections of touristic trajectories corresponding to
popular Italian touristic areas, in particular, data from photos taken in Pisa,
Florence, and Rome, which are also used in this study.

6.4.4 Evaluation strategy

The evaluation of our proposed solution is aimed at answering the following
research questions:

Q1: Is our proposed solution effective for predicting the next-PoI?

Q2: What is the effectiveness of the proposed solution regarding the varying
the scale of the temporal aspect of trajectories (i.e. year, month, day,
hour)

Q3: How do the following parameters affect the prediction?

• The popularity of the PoIs (i.e. the number of trajectories passing
through the PoIs)

• The degree and centrality of PoIs on the graph

• The geographic (Euclidean) distance between PoIs

• The length of the time intervals are assigned to the query PoIs

Q4: What is the robustness of the proposed method regarding the adopted
similarity functions?

To answer these questions, we follow the same evaluation strategy adopted
in [60] over the three aforementioned datasets, which is a standard train-
ing/test evaluation strategy. For each city, we consider 80% of trajectories as
a training set S and 20% of trajectories as the test set S ′. The effectiveness of
the methods are assessed by means of Success@k (i.e., the percentage of times
that the correct answer is in the top-k ranked PoIs) [66, 60]. Specifically, we
will use k = 1 in our evaluations, which is the topmost PoI.
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Algorithm 6: Evaluation Block

Input: Training set S
Input: Q = 〈(p1, t1), (p2, t2) · · · , (pN−1, tN−1), (pN , tN)〉 ∈ test set S ′
Result: next-PoI

62 Build G by trajectories in S
63 Make Q.tail and Q.head
64 Update G by Q.head
65 t = tN−1

66 Heap H
67 for each trajectory T in S do
68 H.add(T) w.r.t Sim(Q, T, t)

69 while heap− size(H) < k do
70 MsTraj ← pop(H)
71 p← last position of MsTraj within tN−1

72 if p ∈ NB(pN−1) then
73 report p as the next-PoI
74 break

As illustrated in Algorithm 6, to evaluate the effectiveness of the proposed
method, we first build the trajectory graph G, by using the trajectories in
the training set S (Line 62). Then, for building the query set, we make use
of the following process: We divide each trajectory in the test set S ′ into two
parts: Head and Tail (Line 63). Let Q = 〈(p1, t1), (p2, t2) · · · , (pN , tN)〉 be a
query trajectory in S ′. The tail of Q is the last pair of trajectory, denoted
as Q.tail = 〈(pN , tN)〉, and the first N − 1 pairs of Q makes the head which
is Q.head = 〈(p1, t1), (p2, t2) · · · , (pN−1, tN−1)〉.

For each trajectory like Q in the test set S ′, we aim at using the Q.head
and predicting the PoI pN of Q.tail as the next movement of Q. To this
end, we update the graph G by making use of the Q.head in Line 64. Then,
we use the graph G as the underlying graph for trajectories to predict the
Q.tail = 〈(pN , tN)〉. Based on Definition 9, the next movement of Q.head
would be a neighbor PoI of pN−1 on G. Let NB(pN−1) denotes the neighbor
PoIs of pN−1 on G. We aim at using the Q.head to choose a right PoI
∈ NB(pN−1).

We consider the last pair 〈(pN−1, tN−1)〉 of Q.head as the current location
of Q. Through the lines 65-68, by considering tN−1 of the current location
of Q as the query time interval t in Definition 3, we compute the similarity
score between each trajectory in training set and Q within the time inter-
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val t = tN−1. Obviously, we first restrict Q within t, then we compute the
similarity scores. Moreover, we make an ordered heap of H of trajectory
ids regarding their similarity scores. The trajectory with maximum score
(MsTraj) is on the top of H. We consider the last PoI p of MsTraj within
tN−1 as the next-PoI, if p ∈ NB(pN−1). Otherwise, we continue to search
over the trajectories in H (the while loop). In each round, we pick a tra-
jectory with maximum similarity. We stop searching, if we find a MsTraj
with a last position in NB(pN−1) within tN−1 (lines 70-74).

Thus, the main task of the evaluation method is to measure how many
times our model is able to choose the right PoI in terms of Success@1, by
following the aforementioned strategy.

6.4.5 Question Q1: Effectiveness

In this part, we investigate whether the proposed model is an effective model
for predicting the next-PoI of a given tourist trajectory. In the first experi-
ments, we measure metric Success@1. Results are provided for our proposed
method MsTraj along with the two methods (Prob and LearNext). Ta-
ble 6.2 shows the results of the experiments, where we show that our method
outperforms the competitors (the results of the proposed method is high-
lighted). As we can observe, MsTraj provides almost twice more accurate
results than LearNext in terms of Success@1 in each city. While MsTraj
provides almost six times more accurate results than Prob for Pisa and
Rome, and almost ten times more for Florence, confirming the effectiveness
of our method.

Dataset Predictor Success@1 %

Pisa
Prob
LearNext
MsTraj

15.57
40.70
67.33

Rome
Prob
LearNext
MsTraj

12.59
30.95
77.96

Florence
Prob
LearNext
MsTraj

4.96
37.56
53.57

Table 6.2: Effectiveness in terms of Success@1 of the proposed method
(MsTraj) along with the competitors
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Dataset Query Time Unit in millisecond Success@1 %

Pisa

yyyy-MM-dd HH:mm:ss
MM-dd HH:mm:ss

dd HH:mm:ss
HH:mm:ss

67.33
65.32
68.84
65.32

Rome

yyyy-MM-dd HH:mm:ss
MM-dd HH:mm:ss

dd HH:mm:ss
HH:mm:ss

77.96
79.48
78.72
79.24

Florence

yyyy-MM-dd HH:mm:ss
MM-dd HH:mm:ss

dd HH:mm:ss
HH:mm:ss

53.57
54.24
54.83
55.08

Table 6.3: Effectiveness of the proposed method by varying the unit of time
intervals assigned to PoIs (i.e. yyyy-MM-dd HH:mm:ss)

6.4.6 Question Q2: Varying the scale of the time query

To have a comprehensive evaluation of the proposed method, we conduct four
experiments by varying the time unit of the intervals assigned to the query
PoIs in the dataset. Let Q = 〈(p1, t1), (p2, t2) · · · , (pN−1, tN−1), (pN , tN)〉 is
a trajectory in the test set. As we mentioned earlier, we are interested in
the pair 〈(pN−1, tN−1)〉 of Q.head. Thus, we compute the similarity between
Q.head within the time interval tN−1 = [sN−1, eN−1]. Note that the time
instances sN−1, eN−1 in the three datasets are milliseconds, which can be
converted in the date format of yyyy-MM-dd HH:mm:ss. For example, as-
sume we are interested in studying the trajectory of tourists in a specific
event which is happened in a specific year in a city. In this case, it is im-
portant to know the exact date and time that each user visits each PoI.
In this case, we capture the next-PoIs by considering the time instances in
milliseconds for query time interval tN−1 in 67.33%, 53.57% and 77.96% in
three datasets Pisa, Florence, and Rome, respectively. On the other hand,
someone may be interested in studying the behavior of all tourists who visit
a city only in one specific month like August. Thus, we drop the year in-
formation on trajectories. Thus, as the next experiment, we forced the time
instances to the same year. In this case, by considering the times in millisec-
onds in the format of MM-dd HH:mm:ss, we predict the next PoIs in 65.32%,
54.24% and 79.48% for Pisa, Florence and Rome, respectively. Similarly, we
repeat the experiments by considering time instances in milliseconds of the
formats dd HH:mm:ss and HH:mm:ss. The results are shown in Table 6.3.
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We highlighted in bold the best performance. We do not consider Prob and
Learnext in these experiments, since both of these methods predict the
PoIs without considering time aspect of trajectories.

6.4.7 Question Q3: Different Parameters

The main task of this part is to study the performance of the proposed model
w.r.t the parameters previously defined. For a given query Q, since, we use
the current PoI of Q.head to predict Q.tail, the evaluation strategy must
contain the properties of PoIs of Q.head and Q.tail. We will discuss it in
detail in the following.

Dataset Predictor
Success@1 %

Popularity Geographically
Closeness

F R GC GF

Pisa Prob
MsTraj

27.27
88.18

1.12
44.94

29.29
88.88

2.02
48.48

Rome Prob
MsTraj

21.69
94.68

8.93
71.55

23.44
90.03

1.51
65.89

Florence Prob
MsTraj

11.95
86.45

2.45
44.77

8.55
67.28

0.33
39.69

Table 6.4: Effectiveness of the proposed method on predicting either
Frequently (F) or Rarely (R) visited PoIs and either geographically Close

(GC) or Far (GF) visited PoIs

The popularity of the PoIs In this part, we aim at evaluating the
effectiveness of the proposed method w.r.t the popularity of the PoIs. To this
end, we make a sample of PoIs which are frequently visited by trajectories in
the training set. We consider the top-10 most frequent PoIs in three datasets.
The trajectories in the test set passing through one of these frequent PoIs
in the tail, make a set of queries including frequently visited PoIs. The rest
trajectories in test set make a set containing rarely visited PoIs. To be as
fair as possible we evaluate the Prob baseline in the same way.

As we can see in Table 6.4, there is a significant difference among frequent
(F) and rare (R) PoI prediction results. For Pisa, Prob predicts the frequent
PoIs with a 22.27% in terms of Success@1, while the accuracy of predicting
the rarely visited PoIs is so low, 1.12%. While, in the case of Florence and
Rome, the performance of predicting rare PoIs is better with respect to the
accuracy of frequent PoIs. Although, it is still low with 2.45% and 8.93%
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for rare PoIs against 11.95% and 21.69% for frequent PoIs in Florence and
Rome, respectively.

As we can see, the proposed method MsTraj offers a significant im-
provement for both frequent and rare PoIs. We can drive that MsTraj
can predict the frequent PoIs better than rare PoIs with high quality, while
still can predict the rare PoIs with a good accuracy like 44.94%, 44.77% and
71.55% in Pisa, Florence and Rome, respectively.

The degree and degree centrality of PoIs To evaluate our method
with respect to the degree and degree centrality, we make two samples of the
test set of trajectories in each city. We consider the top-10 high degree PoIs
in three datasets. The trajectories in the test set passing through one of this
high degree PoIs in the tail, make a set of queries including high degree visited
PoIs. The remaining trajectories in the test set make a set containing low
degree PoIs. Similarly, we evaluate our method w.r.t the degree centrality in
the same way for making samples of high and low degree centrality PoIs. As
a result, Table 6.5 shows that MsTraj always outperforms Prob in both
low degree (degree centrality) and high degree (degree centrality). While
we expect that Prob predicts the high degree PoIs with high quality, we
can see that Prob captures the high degree PoIs in Florence with 3.82%
accuracy. On the other hand, the results show that MsTraj predicts the
high degree PoIs with 85.10%, 92.89% and 73.61% accuracy in Pisa, Rome,
Florence, respectively. Indeed, the quality of both the prediction models is
similar regarding degree and degree centrality. This is due to the specific
property of the graph, as each path of the graph could be a trajectory in the
training set. Thus, the degree and the degree centrality of nodes of graph G
are identical.

Dataset Predictor
Success@1 %

Degree Degree Centrality
HD LD HDC LDC

Pisa Prob
MsTraj

20.21
85.10

11.42
54.28

20.21
85.10

11.42
54.28

Rome Prob
MsTraj

9.59
92.89

13.22
74.05

9.59
92.89

13.22
74.05

Florence Prob
MsTraj

3.82
73.61

4.61
48.63

3.82
73.61

4.61
48.63

Table 6.5: Effectiveness of the proposed method on predicting the next PoI
of the currently visited PoI with a high degree (HD) or low degree (LD)
and with a high degree centrality (HDC) or low degree centrality (LDC)
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The closeness of the PoIs To investigate the ability of the method to
predict the PoIs which are far from currently visited PoI, we take two samples
of trajectories in the test data. In this case, we have two sets of equal
number of trajectories. In particular, one group containing trajectories like
Q = 〈(p1, t1), (p2, t2) · · · , (pN−1, tN−1), (pN , tN)〉 is such that the Euclidean
distance between two last visited PoIs PN and PN−1 is small, while the other
group includes trajectories where this distance is large. Table 6.4 contains
the results with respect to the geographically closeness of PoIs. As it can be
seen, the performance of the MsTraj for predicting both far (GF) and close
(GC) PoIs outperforms the performance of Prob, significantly.

Length of Trajectory >2 Success@1 %Dataset #PoIs of query trajectory

Pisa 1-PoI
2-PoIs

73.50
73.50

Rome 1-PoI
2-PoIs

80.0
80.0

Florence 1-PoI
2-PoIs

57.10
57.10

Table 6.6: Effectiveness of the proposed method by considering either one
PoI (1-PoI) (i.e. (N-1)th PoI) or two PoIs (2-PoI)(i.e. (N-2)th and (N-1)th
PoIs) of query trajectory. In this case, we consider only trajectories in the

test set with a length of more than 2.

The number of query PoIs Given a query trajectory Q, the number
of pairs of Q.head considered to compute the similarity score between Q
and other trajectories in training set is an important information for pre-
diction. Thus, we make a sample of trajectories in the test set containing
the trajectories with the length more than or equal to three. Let Q =
〈(p1, t1), (p2, t2) · · · , (pN−1, tN−1), (pN , tN)〉 be a trajectory in the training
set such that N ≥ 3. For each trajectory like Q in the test set, we il-
lustrate two experiments in the following. One experiment by considering
q = 〈(pN−1, tN−1)〉 in line 65 in Algorithm 6 and another experiment by
having q = 〈(pN−2, tN−2), (pN−1, tN−1)〉 under consideration. The results for
both experiments over three cities are shown in Table 6.6. As we can see,
the results are constant. This is due to the specific properties of the datasets
and the length of trajectories in each dataset. Looking at the distribution
of the length of the trajectories in each city plotted in the Figure 6.1, we
see that the length of the majority of trajectories in the three datasets is
small. Thus, we expect that the length of the trajectories in the training
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set within the time interval tN−1 is similar to the length of the trajectories
within time interval tN−1 + tN−2. Therefore, the performance of the predic-
tion does not change for different numbers of query PoIs in these datasets.
The results show that the model behaves as we expected w.r.t the number
of query PoIs. Note that, we only consider the trajectories with the length
more than or equal to three, since the number of trajectories with a larger
length are negligible (Figure 6.1).

6.4.8 Question Q4: Varying the similarity functions

To show the robustness of the proposed method with respect to the different
similarity functions, we consider three kinds of similarity functions as follows:

Sim1(Q, T, t) =
∑

(pi,ti)∈Q[t]:ti∩t6=0

|ti| × exp−dist(pi,T,ti)

|t|
( 3)

Sim2(Q, T, t) =
∑

(pi,ti)∈Q[t]:ti∩t6=0

|ti|/|t|
1 + dist(pi, T, ti)

Sim3(Q, T, t) =
∑

(pi,ti)∈Q[t]:ti∩t6=0

|ti|/|t|
1 + disteuc(pi, T, ti)

For a given pair (p, ti) and the trajectory T , we define dist(p, T, ti) and
disteuc(p, T, ti) as the temporal network distance (Definition 3.1) and the
temporal Euclidean distance, respectively. Let T [ti] = 〈(pi1 , ti1), ..., (pin , tin)〉.
We have: disteuc(p, T, ti) = deuc((p.x, p.y),M((pi1 .x, pi1 .y), (pin .x, pin .y)), where
M(., .) is the midpoint between two points on the plane. Moreover, p.x and
p.y denote the x coordination and y coordination of the PoI p.

We conduct the experiments by considering these three different similarity
functions. In particular, we examine the behavior of the algorithm over Sim1,
which assigns a larger contribution to closer part of the trajectories, Sim2,
which assigns an equal contribution to close and far parts of trajectories, and
Sim3, which computes the Euclidean distance between trajectories.

The result of the experiments shows that the performance of the proposed
method remains constant by varying similarity functions. In particular, the
prediction of next-PoIs, in this case, reaches 67.33%, 53.57% and 77.96%, for
Pisa, Florence, and Rome, respectively, for each similarity function, which
outperforms competitors. This is because of the characteristics of the tra-
jectories in three datasets. As Figure 6.1 shows, the number of trajectories
with a length of more than two is small. Thus, the similarity functions can-
not have a different behavior while the distance is computing between the
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small number of PoIs of trajectories. The robustness of the method regarding
Euclidean distance, confirms the effect of the time interval the user spends
in PoIs.

In conclusion, the experimental results show the effectiveness of the pro-
posed method with respect to the different parameters and confirm the role
of the temporal aspect of trajectories, in terms of the time interval each user
spends at each PoI, to the prediction next-PoI.

6.5 Conclusion

In this chapter, we studied the next-PoI prediction problem (next-PoI), which
aims at identifying the PoI that a tourist will visit in the future with highest
probability. We introduced a new graph-based method that reflects similar
behavior of past tourists, to predict the next movements of a new tourist. We
conducted a comprehensive evaluation of our proposed method with respect
to the state-of-the-art competitors on three public datasets of movements
in Pisa, Rome, Florence. The performance of the methods, evaluated in
terms of well-known Information Retrieval metrics, shows that our proposal
achieves the best performance outperforming well-known competitors based
on machine learning. In addition to analyzing the performance in comparison
with the baselines, we evaluated the robustness of our approach by answering
some different research questions.

First, by studying the efficiency of the proposed method, we observed that
our method always outperforms competitors; thus, we can conclude that the
proposed method is efficient for predicting the next-PoI of a tourist.

Second, we evaluated the performance of the method, by varying the time
unit used to represent the trajectories. We observed that the accuracy of the
method is robust w.r.t to a different time scale (day, month, year).

Third, we studied the quality of the model to predict the rarely visited
PoIs, which is a challenge for the baseline (probability-based one), showing
that our method can predict these PoIs, effectively while outperforming the
baseline. Moreover, regarding the prediction of PoIs in graph with low or
high degree, and PoIs that are far from the currently visited PoI by the given
tourist, we showed in our experiments that the proposed model enables us
to predict the far PoIs and even PoIs with high degree in the graph by
significantly outperforming the baseline. In addition, we assessed how the
length of the given time interval affects the performance of the model. We
observed that the performance is constant for larger time intervals, due to
the specific properties of datasets and length of trajectories in each dataset.

Finally, our method is extended to different similarity functions, while
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outperforming the competitors with the constant performance.
In conclusion, the experimental results showed the effectiveness of the

proposed method with respect to the different parameters and confirmed the
role of the structural-temporal aspects of trajectories to predict next-PoI.
The approach we proposed can be seen as a building block for more complex
applications.The approach we proposed can be seen as a building block for
more complex applications. We aim at applying our method to other datasets
and applications in future such as predicting the next web-page a user will
visit in future in a web-network, or the next item a user will buy in a specific
period of time in an e-commerce website.
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Chapter 7

Conclusion and Future Work

In this thesis, we proposed and investigated the problem of analyzing the sim-
ilarity between trajectories defined over a network, taking into account the
time intervals each object spends at each node of the network. To the best of
our knowledge, this is the first work that investigates the top-k most similar
trajectory problem on the graph, that is the problem of, given a query trajec-
tory Q, finding the top-k trajectories similar to Q, where trajectories are se-
quences of nodes of a graph with the corresponding time intervals. This type
of query may bring significant benefits to many popular applications such as
web usage mining, friend recommendation, tourism applications, fraud de-
tection, and traffic analysis. Indeed, representing the movements of objects
by such lower-dimensional trajectories reduced the overall size of the data
and the lower-dimensional indexing challenges.

When facing with such a new type of data formed by network constrained
trajectories with the corresponding time information, how to efficiently or-
ganize this data to process queries against this data is important. In this
thesis, we proposed an indexing structure based on the interval tree [25] to
store trajectories on the graph.

In particular, we studied the k-MsTraj problem, that is, identifying k
trajectories with the maximum similarity score to a given query trajectory
within a given time interval. On the top of the spatiotemporal similarity func-
tions that are mostly a linear combination of the independently computed
spatial and temporal distances [81, 79, 76, 82], in this thesis, we proposed
a structural-temporal similarity function, directly in a single function, by
computing linear number of distance computations with no limitation on the
trajectories. We exploited the topology of the network, assessing that two
trajectories are similar if they pass through nearby nodes at roughly the same
time.
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To address the k-MsTraj query efficiently, we proposed effective algo-
rithms based on two different approaches, aiming at reducing the number of
shortest path distance computations, consequently, optimizing the query pro-
cessing. We proposed an approximate approach with two variations SHQ and
SHQT, by dividing the network into Voronoi groups and shrinking trajecto-
ries by considering the centers of Voronoi groups. In addition, we presented
two exact alternative methods, namely Ordered-based and SkyLine (fol-
lowed by an approximate variant of the latter i.e. ApSky). By conducting
several experiments over some real networks, we show that the proposed
methods consistently outperform the baselines and provide strong evidence
of the performance and robustness of our solutions. Two different approxi-
mate methods aimed at dramatically reduce the querying answering time, at
the potential expense of the quality of the solution with respect to the exact
one. By the results of the experiments, generally, we conclude that ApSky
works well for larger datasets and has the best performance for small values
of k, while more accurate results can be obtained by SHQ and SHQT when
considering long trajectories for large values of k.

In addition, we studied the next-PoI prediction problem (next-PoI), which
aims at identifying the PoI that a tourist will visit in the future with highest
probability. We introduced a new graph-based method that reflects similar
behavior of past tourists, to predict the next movements of a new tourist.

7.1 Future Work

As mentioned earlier, trajectory retrieval is one of the most important ap-
plication for trajectory similarity studies. Extracting relevant information
by querying large trajectory datasets, helps to prune irrelevant trajectories.
Useful tools include range queries, which aim at determining all trajecto-
ries passing through either a given node or a set of multiple nodes, within a
given time interval. Thus, the performance of a similarity query processing
methods crucially depends upon an efficient range querying. When similarity
query processes a dataset containing a large number of trajectories that can
traverse a node of the graph multiple times, it would be important that a
range query could report only the distinct trajectories traversing the given
node within a given time interval. This could be more significant when the
query aims at looking at nearby trajectories to a set of nodes (e.g. the trajec-
tories traversing a set of nodes belong to a Voronoi group on a graph, within
a time interval).

Therefore, the challenge is to identify the distinct trajectories traversing
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one node or a set of nodes within a given time interval, which is also a strong
motivation for the following applications:

1. Web mining: In a web network, there is interest in determining the
number of distinct users that have accessed a website and identifying
the most frequently visited websites and so on.

2. Database tuning: Regarding the monitoring of high-performance database
servers may someone be interested in analyzing the number of open ses-
sions in a time interval.

The majority of the existing methods for treating range queries on trajec-
tories are based on the R-Tree [1] and do not support networks with no spatial
information. Moreover, they are not able to avoid reporting duplicated tra-
jectories in a given area. In this thesis, considering the time intervals spent
by trajectories in the nodes of the graph, we used the Interval tree to index
trajectories, described in Section 3.2. By searching through the proposed
indexing structure, we are able to identify for a trajectory that how much
it spent in a given node, as used to design the SkyLine method described
in Chapter 5. While, the query processing based on the Voronoi groups
and adjusted indexing structure that are proposed in Chapter 4, would be
more efficient if, during the searching process through each node of the query
with its corresponding time interval, we only report the distinct trajectories.
Therefore, in the future, we would attempt to modify the proposed indexing
in this thesis aiming at reporting distinct trajectories traversing a given node
within a given time interval.

Therefor, the main problem in our future point of view, which is a building
block of the similarity queries, is as follows:

TBN-S query Given a set T containing trajectories defined on a graph
G = (V,E) as described in Chapter 3, for a given set of query nodes Sq and a
given time interval t = [a, b], we aim at finding the set of distinct trajectories
traversing Sq within t, called TBN-S query. The TBN-S outputs a trajectory
T in T if and only if ∃(vi, ti) ∈ T s.t ti ∩ t 6= ∅.

Treating the TBN-S query, is challenging, when Sq contains more than
one query node. One approach would be searching for each query node,
independently, and then merging the output results in a single set. In another
approach, we can merge the structures assigned to each node in the query
time, thereafter, by a single searching process, we are able to report the
discovered trajectories. These both approaches could be costly for a large
number of query nodes. Therefore, we aim at studying in this direction in
the future.
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