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UNIVERSITY OF PISA

Abstract

Doctor of Philosophy

Monostatic and Bistatic radar imaging super-resolution

by Davide Cataldo

In recent years, bistatic and multistatic radar imaging systems have become popular

for several applications and have gained interest within the radar scienti�c community.

On the other hand, super-resolution and spectral estimation algorithms are largely em-

ployed for resolution enhancement, sidelobe and artifacts suppression and speckle reduc-

tion. However, super-resolution and spectral estimation algorithms exploit the standard

monostatic ISAR model and do not take into account distortion e�ects such as range

migration. As a consequence, the applicability of super-resolution standard algorithms

in case of bistatic con�guration is generally not guaranteed.

This Thesis discusses the use of super-resolution techniques applied for monostatic and

bistatic radar imaging. ISAR and Bistatic ISAR theory is recalled and further consid-

erations about linear and quadratic distortions, in terms of range/Doppler migration,

due to the bistatic geometry are discussed. Analytical constraints for range and Doppler

migration are de�ned and validated by means of simulated data. Then, super-resolution

is theoretically treated by exploiting the monostatic and bistatic received signal models.

Novel methods for super-resolution performance analysis and a novel super-resolution

based approach for bistatic distortion mitigation are proposed. Super-resolution tech-

niques are tested and compared on real monostatic and bistatic data. Such a real data

consists of a SAR image of a vessel cropped by a SAR product provided by COSMO-

SkyMed (monostatic) and an ISAR image of a small aircraft from the data collected

during the NATO SET-196 trials from September 29th to October 3rd, 2014 (bistatic).
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Chapter 1

Introduction

1.1 Historical Context

Radar is a remote sensing technology that emits electromagnetic (e.m.) waves to detect

objects by sensing the e.m. echo. A radar system consists of a transmitter, a receiver,

an antenna, a signal processing unit and display unit. The radar transmitter radiates an

e.m. radio wave or microwave signal and the echo backscattered by the target is sensed

by the receiver. Transmitter and receiver can generally be co-located (monostatic radar)

or placed in di�erent locations (bistatic radar). Then, the signal processing unit extracts

the information of interest by means of opportune signal and data processing methods.

The term RADAR is an acronym for RAdio Detection And Ranging and was coined by

the United States Navy in 1940.

The history of radar starts in the late 19th century with Guglielmo Marconi and Heinrich

Hertz experiments about e.m. propagation. In 1904 Christian Hülsmeyer introduced an

early shipborne warning detection system based on Hertz's apparatus [1]. However,

Hülsmeyer's �Telemobiloscope� prototype [2] had no success because of its short range.

Figure 1.1: The telemobiloscope, now at the Deutsches Museum Masterpieces of Sci-
ence and Technology, Munich, Germany.

1
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Figure 1.2: Willow Run Airport and vicinity, August 1957. Image courtesy University
of Michigan (by https://en.wikipedia.org/wiki/Synthetic_aperture_radar).

First radar systems with improved range were made at the US Naval in the 1920s to

measure the height of the ionosphere and in the 1930s for aircraft detection purposes by

means of continuous-wave radar. In 1935, Sir Robert Watson-Watt patented the �rst

radar system.

At the start of World War II, in September 1939, the US, UK, Germany, France, the

Soviet Union, Japan, Italy, and the Netherlands had independently and almost simul-

taneously discovered and explored radar. During World War II Watson-Watt's team in

the UK introduced a pulsed technique to measure the range of aircraft and, by the end

of the war, radar systems were able to measure range and angle of targets. In 1938 the

British turned on the �rst operational low frequency radar system for air defense, called

the Chain Home. These radars are given credit for allowing the British to defend against

the large German air attacks in 1940, the Battle of Britain [3].

Synthetic Aperture Radar (SAR) was invented in 1951 by Carl A. Wiley [4], a mathe-

matician at Goodyear Aircraft Company in Litch�eld Park, Arizona. Wiley realized that

a much longer aperture can be synthesized by using the Doppler spectrum of the received

signal if collected when the radar is moving along a straight path. Such a longer aperture

allowed to resolve very close targets in the along-track dimension. The �rst experimen-

tal demonstrations was performed in 1953 by a group at the University of Illinois. An

X-band radar was installed in a C-46 aircraft provided by and operated by the U.S. Air

Force and used to study re�ected signals from ground and sea in Key West, Florida. The

�rst operational system (classi�ed) was built in 1957 by the Willow Run Laboratories

of the University of Michigan for the US Department of Defense. The �rst successful

focused airborne SAR image produced with such a system is shown in Fig.1.2. The

�rst Earth-orbiting spaceborne SAR, the SEASAT system, was launched by NASA on

June 27th, 1978, for oceanographic purposes. The SEASAT system provided important

results for ice and land studies also and demonstrated the importance of radar imaging

for the observation of the Earth. The �rst documents about Inverse Synthetic Aperture

Radar (ISAR) was published by Jack L. Walker [5], C.C. Chen and H.C. Andrews [6, 7]

in 1980. Ausherman's publication in collaboration with Walker in 1984 [8] is worth being

mentioned too.

https://en.wikipedia.org/wiki/Synthetic_aperture_radar
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1.2 Background and motivation

1.2.1 SAR/ISAR Radar imaging

Radar imaging is an application of radar which is used to create two-dimensional e.m.

images. Finer spatial resolution is achieved by exploiting the relative motion between

the radar antenna and the target/scene of interest. In such e.m. images, resolution

along the slant-range direction depends on the transmitted signal frequency bandwidth,

whereas resolution along the Doppler, angular, or cross-range direction depends on the

antenna aperture, regardless of whether such an aperture is physical (a large antenna) or

�synthetic�(a moving antenna). The synthetic aperture does not depend on the actual size

of the antenna. A large synthetic aperture is achieved when a moving antenna receives

the backscattered e.m. echo in di�erent locations, i.e., when a �synthetic� antenna array

is created.

Actually, the synthetic antenna aperture depends on the relative motion/rotation be-

tween radar antenna and target. Synthetic Aperture Radar (SAR) imaging is achieved

when the scene illuminated by the antenna beam is stationary and the antenna is placed

on a moving platform, e.g., an aircraft (airborne SAR), a satellite (spaceborne SAR) or

a platform moving along a rail track (ground based SAR). In this case the geometry is

perfectly known and the focused SAR image is obtained by compensating the relative

motion between the antenna and the illuminated scene. Typical SAR applications are

environmental monitoring, intelligence, topography, foliage penetration and even space

exploration. For example, the Magellan spacecraft, also referred to as the Venus Radar

Mapper, was a robotic space probe launched by NASA on May 4th, 1989 to map the

surface of Venus by using synthetic aperture radar (see Fig.1.3).

Optical imagers are generally low power devices and can achieve much �ner resolution

than SAR. However, SAR works independently from the day/night and atmospheric

conditions and is una�ected by clouds, fog, or other impairments to visibility. SAR signals

can also penetrate foliage and dry ground for useful reconnaissance purposes [9]. On the

other hand, when the radar antenna is stationary and the target is moving, the antenna

aperture is generated by the target motion. In this case, we refer to Inverse Synthetic

Aperture Radar (ISAR). Initially, the name ISAR was derived from SAR by simply

considering the di�erent radar-target dynamic where the radar platform is stationary

and the target moves. However, the real di�erence between ISAR and SAR lies in the

non-cooperation of the ISAR target. When the target is non-cooperative, the radar-

target relative motion is unknown. As a consequence, the antenna aperture size and

the cross-range resolution are unknown. Moreover, the radar-target distance must be

compensated by means of appropriate post-processing algorithms.
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Figure 1.3: Magellan full resolution SAR image of Lakshmi Planum and Maxwell
Montes, Venus (by http://photojournal.jpl.nasa.gov/catalog/PIA00241).

ISAR imaging is a very useful radar application for surveillance, Automatic Target Recog-

nition (ATR) and even deep space imaging of asteroids. A particularly beautiful example

of this is the so-called �dog's bone� 216 Kleopatra M-class asteroid. 216 Kleopatra was

discovered by Austrian astronomer Johann Palisa on April 10th, 1880 and �imaged� by

means of the S-band radar system of the Arecibo Observatory in November 1999 [10] (see

Fig.1.4). Furthermore, ISAR processing allows to obtain well focused images of moving

targets which appear defocused in SAR imagery.

Another important aspect is the distinction between monostatic and bistatic radar sys-

tems. In monostatic radar, transmitter and receiver antennas are co-located. Bistatic

radar is instead when transmitter and receiver are located in separated positions. Such

a con�guration brings some advantages to the radar system that extend to the radar

imaging application. Typical geometrical limitations of monostatic radar imaging can

be overcome by a bistatic con�guration. Furthermore, di�erent scattering mechanism

in bistatic con�guration can enable radar imaging of stealth targets. Bistatic (and mul-

tistatic) radar imaging is a useful tool for several applications, such as passive radar

imaging [11], resolution enhancement by means of data fusion [12], 3D interferometric

ISAR [13] and ATR [14]. However, bistatic/multistatic radar introduces networking and

synchronization issues and distorting e�ects due to the bistatic geometry. E�ects of the

bistatic con�guration on ISAR imaging are treated in [15] and [16]. Considerations about

bistatic ISAR image plane and bistatic e�ective rotation vector and resolution are dis-

cussed in [17], whereas the e�ects of bistatic angle variations and synchronization errors

on B-ISAR imaging have been analyzed in [18].

http://photojournal.jpl.nasa.gov/catalog/PIA00241
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Figure 1.4: Radar images organized by relative rotation phase of the 216 Kleopatra
asteroid, Arecibo Observatory, November 1999.

1.2.2 Super-resolution

SAR/ISAR imaging can be interpreted as a parameter estimation problem in which one

seeks to estimate the e.m. signal intensity backscattered by the target/scene, i.e., an

intensity image. Conventional radar imaging is performed by means of Fourier meth-

ods for estimating the target/scene re�ectivity function. However, conventional Fourier

methods present some limitations, which include the imaging system resolution.

�Resolution� is de�ned as the system capability to make di�erent scattering sources

separately observable. For example, δrng is de�ned as the �range resolution� if two

scattering sources can be distinguished along the range direction only if the range distance

between them is smaller than δrng.

In the SAR/ISAR imaging context, the image resolution in the slant-range dimension

depends on the transmitted signal bandwidth. When conventional imaging is performed

δrng =
c

2B
(1.1)
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where B is the transmitted signal frequency bandwidth and c is the speed of light in a

vacuum. Wide band systems allows to achieve high-resolution images that can be used

for several applications. For example, the PAMIR radar system is an X-band airborne

SAR/MTI (Synthetic Aperture Radar/Moving Target Indication) experimental instru-

ment by FGAN/FHR with a total signal bandwidth of about 1.8GHz and a slant-range

resolution of about 10cm [19]. On the other hand, the Pi-SAR (Polarimetric and interfer-

ometric SAR), developed by the National Institute of Information and Communications

Technology (NICT) and the Japan Aerospace Exploration Agency (JAXA), is a dual-

frequency fully polarimetric airborne SAR system with 100MHz bandwidth in X-band

and 50MHz in L-band, which means range resolution of 1.5m and 3m respectively [20].

Image resolution along the cross-range direction depends on the angular aperture of the

synthetic antenna array, i.e., the total angular rotation of the target with respect to the

radar point of view. In ISAR, the synthetic antenna aperture depends on the Coherent

Processing Interval (CPI) and is generally unknown. In this case cross-range resolution

is unknown and does not depend on the radar characteristics. Cross-range resolution can

be improved by increasing the CPI, but long CPI involves several drawbacks:

1. ISAR imaging is based on the assumption that the target e�ective rotation vector

is approximately constant during the whole CPI. If this constraint is not satis�ed,

a well focused ISAR image cannot be obtained. Obviously, the longer the CPI, the

wider the e�ective rotation vector variations.

2. The longer the CPI, the larger amount of data the radar system have to store in the

physical memory. A larger amount of data means that the signal processing stage

will need more better-performing and expensive hardware resources. Data storage

requirement could be reduced by reducing the sampling frequency at the output of

the ADC in the receiver radar system, but lower sampling frequency means lower

maximum non-ambiguous radial speed.

3. When a large target moves with high speed, di�erent parts of its body could mi-

grate from a range/Doppler resolution cell to another. This is the range/Doppler

migration issue that does not allow for a well focused image to be generated. The

relationship between CPI and range/Doppler migration is discussed in Chapter 2.

4. In real scenario, the target radar cross-section is not isotropic. The backscattered

signal from a certain target scatterer can drastically change within few degrees de-

pending on material, shape and interaction with other scatterers. In this case, there

is no coherent integration in the Doppler compression step of the range-Doppler

ISAR imaging algorithm and a well focused ISAR image cannot be obtained. This

aspect e�ectively limits the cross-range resolution in ISAR imaging.
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In this context, super-resolution and spectral estimation techniques become useful to

overcome the resolution limitations in conventional range-Doppler imaging. A super-

resolution technique can be interpreted either as a post-processing algorithm, which can

be applied to a SAR/ISAR image, or as a substitute of the conventional range-Doppler

imaging algorithm in order to exceed the resolution limitations due to the transmit-

ted signal bandwidth and target aspect angle variation. For example, de-convolution

techniques aim to invert the convolution operation with a known Point Spread Func-

tion (PSF). If the SAR/ISAR image can be modeled as the convolution between the

scene/target high-resolution re�ectivity function and the imaging PSF, de-convolution

techniques can be considered as super-resolution algorithms. Furthermore, all techniques

that aim to estimate/reconstruct the received signal beyond the available time/frequency

support are super-resolution techniques.

Super-resolution and spectral estimation techniques exploit the received signal model

which must be as accurate as possible. For example, the MUSIC spectral estimation

technique considers a target/scene model composed by a �nite number of point-like

scatterers, Capon's Minimum Variance Method models the spatial frequency components

of the received signal as complex sinusoids and the linear prediction based bandwidth

extrapolation technique exploits an autoregressive modeling of the received signal.

In general, such signal models refer to the standard monostatic ISAR model and do

not take into account distortion e�ects such as range migration. In bistatic/multistatic

con�guration, the standard monostatic received signal model is not generally accurate

and the e�ects of the bistatic geometry must be taken into account. As a consequence,

the applicability of super-resolution standard algorithms in case of bistatic geometry is

not guaranteed.

In this Thesis, B-ISAR and super-resolution topics are �rstly treated separately. Novel

aspects about the bistatic geometry e�ects on radar imaging are discussed and con-

straints for bistatic linear and quadratic distortions are derived. After a super-resolution

literature review, the most common techniques, studied and implemented during the re-

search activity, are treated in deep and novel methods for super-resolution performance

analysis and comparison are proposed. Super-resolution is then theoretically treated

and validated by considering the bistatic received signal model. Furthermore, a novel

super-resolution based method for bistatic distortion mitigation is proposed. Di�erent

super-resolution techniques are �nally tested, evaluated and compared on simulated data

for bistatic distortion mitigation purposes and on both monostatic and bistatic real data

for performance comparison.
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1.3 Innovative aspects

The main contributions of this Thesis are:

� Further analysis of the bistatic geometry e�ects in ISAR image formation. The

second order approximation for the bistatic angle and the bistatic distortion term

K(t) is demonstrated to be fundamental to the analytical study of the bistatic

quadratic distortions.

� Novel methods for super-resolution performance analysis are introduced and ap-

plied to test and compare standard super-resolution techniques on both monostatic

and bistatic real data.

� Linear prediction based Bandwidth Extrapolation, Capon's MVM and APES spec-

tral estimation, Super-SVA and Compressed Sensing based super-resolution are

theoretically validated in case of bistatic con�guration by exploiting the bistatic

received signal model and the BEM approximation.

� A novel super-resolution based method for bistatic distortion mitigation is proposed

and validated by means of simulated data. Linear prediction based Bandwidth

Extrapolation, Super-SVA and Compressed Sensing are applied, evaluated and

compared when used for mitigating bistatic distortions.
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1.4 Thesis organization

This Thesis is organized as follows.

In Chapter 2 the B-ISAR theory is recalled. By referring to [15�17], the bistatic signal

model is exploited for further analysis of the bistatic geometry e�ects in ISAR image

formation. Bistatic quadratic distortions are analyzed in deep and constraints for bistatic

range and Doppler migration are analytically derived and validated by means of simulated

data.

In Chapter 3 the concept of super-resolution radar imaging is introduced and the most

common super-resolution techniques are reviewed. Some of those super-resolution tech-

niques implemented during the research activity are treated in deep in case of monostatic

radar con�guration.

In Chapter 4 novel super-resolution performance analysis methods are proposed. Such

methods are exploited to evaluate and compare the super-resolution techniques treated

in Chapter 3. Real monostatic radar data is exploited to test such techniques.

In Chapter 5 the super-resolution techniques treated in Chapter 3 are theoretically val-

idated by considering the bistatic received signal model. A novel bistatic distortion

mitigation method based on super-resolution is proposed and validated by means of sim-

ulated data. Super-resolution is then tested on real bistatic data with comprehensive

performance analysis and comparison.

Chapter 6 concludes the Thesis by summarizing the �ndings and achievements of this

study and discussing directions for future work.
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Chapter 2

Monostatic and Bistatic ISAR

In this Chapter the ISAR signal general model, the geometry and the notation used in this

Thesis are introduced and the range-Doppler (RD) imaging method for the ISAR image

generation is recalled. The reference geometry and the received signal model for the

most general case are introduced in Section 2.1. In Sections 2.2 and 2.3 the calculations

for monostatic and bistatic ISAR image formation are recalled with exhaustive analysis

regarding the range and Doppler migration e�ects. In Section 2.4 the bistatic distortion

theoretical study is validated by means of simulated example data.

2.1 Signal Model Introduction

The acquisition geometry is shown in Fig.2.1 where two main reference systems are

introduced:

� Tz(z1, z2, z3): Cartesian reference system embedded on the target;

� Tξ(ξ1, ξ2, ξ3): Cartesian reference system embedded on the transmitter.

RTxTg, RRxTg andRTxRx represent the transmitter-target, receiver-target and transmitter-

receiver (baseline) distances respectively, β is the bistatic angle and iLoSBi is the Bistatic

Line of Sight (B-LoS) unit vector aligned with the bistatic angle bisector. This geome-

try represents a general model and can be used for both monostatic and bistatic radar

con�gurations.

Assuming that the target is stationary during the transmission and reception of a sweep

or a pulse (stop & go assumption), the slow-time can be considered a discrete variable,

i.e., tn
.
= nTR with n = −N

2 , . . . ,
N
2 where TR denotes the Pulse Repetition Interval

11
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Figure 2.1: Bistatic geometry representation.

(PRI) and N is the number of transmitted sweeps. The product NTR is de�ned as the

Coherent Processing Interval (CPI) or Observation Time (Tob).

Under the far �eld condition the received signal in the fast-time/slow-time domain is

modeled as follows

sR(tv, n) =

∫
V
γ′(z) sT (tv − τ(z, n), n) h (n) dz (2.1)

where sT (tv, n) is the transmitted signal within the nth sweep, tv denotes the fast-time

variable and

τ(z, n) =
RTxTg(z, n) +RRxTg(z, n)

c
(2.2)

is the delay-time for a point scatterer on the target with coordinates z in Tz at the n
th

sweep, c is the speed of light in a vacuum and h (n) is the signal support in the slow-time

domain de�ned in (2.3).

h (n) =

{
1 if n = −N

2 , . . . ,
N
2

0 otherwise
(2.3)

γ′(z) is the target re�ectivity function at coordinates z and V is the volume occupied

by the target. Actually, γ′ should be dependent on n since the re�ectivity function of a

certain point of a real target is not isotropic. The re�ectivity function of a scatterer de-

pends on the target orientation with respect to the radar (both transmitter and receiver)

and may change within few degrees. Moreover, the Radar Cross-Section (RCS) is also
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a function of the incident electromagnetic (e.m.) wave frequency. However, the CPI is

assumed to be small enough to make γ′ essentially constant during the whole acquisition.

The received signal in (2.1) is given as input to the matched �lter and the baseband

output signal, after Fourier transforming along the fast-time domain, can be expressed

in the frequency/slow-time domain as follows

SR(f, n) = W (f, n)

∫
V
γ′(z)e−j2πfτ(z,n)dz (2.4)

where f denotes the frequency, i.e., the Fourier transform variable of the fast-time tv,

and W (f, n) is de�ned as follows

W (f, n) = h (n) rect

[
f − f0

B

]
(2.5)

where f0 is the carrier frequency of the transmitted signal, B is the frequency bandwidth

and

rect [x]
.
=

{
1 if |x| ≤ 1

2

0 otherwise
(2.6)

2.2 Monostatic Con�guration

In this Section the particular case of the monostatic con�guration is considered and

the method for the ISAR image formation, i.e., the RD technique, is summarized. In

the monostatic case transmitter and receiver are co-located. This means that β = 0,

RTxTg = RRxTg = R, RTxRx = 0 and (2.2) can be simpli�ed as follows

τ(z, n) =
2R(z, n)

c
(2.7)

Under the straight iso-range approximation, i.e., radar-target distance much greater than

the target size, the delay-time τ(z, n) can be approximated as follows

τ(z, n) ' 2

c
[R0(n) + z· iLoS(n)] (2.8)

where iLoS(n) is the monostatic radar Line of Sight (LoS) unit vector, R0(n) is the

distance between the monostatic radar and the target focusing center and the · operator
denotes the scalar product. In (2.8), the radar-target distance R0(n) and the LoS unit

vector depend on the discrete slow-time variable n, whereas the scatterer position z is

assumed to be constant during the whole CPI because the target is considered as a rigid

body.
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The target motion with respect to the radar during the CPI is modeled as the sum of

two components: a radial translational motion (with respect to the LoS) and a rotational

component described by means of the total angular rotation vector ΩT (n). The radar-

target distance R0(n) in (2.8) is assumed to be perfectly compensable by means of any

available autofocusing technique [21, 22]. The total angular rotation vector ΩT (n) is

then modeled as the sum of a component parallel to the LoS and an orthogonal one as

follows

ΩT (n) = ΩLoS(n) + Ωeff (n) = ‖ΩLoS(n)‖ iLoS(n) + Ωeff (n) (2.9)

where Ωeff (n) ⊥ iLoS(n) is the e�ective rotation vector that e�ectively contributes to

the ISAR image formation. Both ΩT (n) and Ωeff (n) are expressed in radiants per

second [rad/s]. Assuming the e�ective rotation vector to be constant within the CPI,

i.e., Ωeff (n) ' Ωeff , the resultant compensated signal can be written as follows

S(f, n) = W (f, n)

∫
V
γ′(z)e−j

4πf
c

[z·iLoS(n)]dz (2.10)

= W (f, n)

∫
z1

∫
z2

γ(z1, z2)e−j
4πf
c [z1 sin(Ωeff tn)+z2 cos(Ωeff tn)]dz1dz2

where γ(z1, z2)
.
=
∫
z3
γ′(z)dz3 is the projection of the target re�ectivity function onto

the Image Projection Plane (IPP), i.e., that plane orthogonal to the e�ective rotation

vector direction. This is because the phase term in (2.10) does not depend on z3. The

result in (2.10) is obtained by setting the reference system Tz in order to have

iz2 ≡ iLoS(0) (2.11)

iz3 ≡ iΩ (2.12)

iz1 = iz2 × iz3 (2.13)

where iz1 , iz2 and iz3 are the unit vectors which de�ne the axis of Tz and iΩ is the e�ective

rotation unit vector (see Fig.2.1). As a consequence of a short CPI, the product Ωeff tn is

in general� 1 and the sine and cosine functions in (2.10) can be approximated by means

of the Taylor-Maclaurin polynomial. In the following, a second order approximation for

the sine and cosine functions is used as shown below

sin(x) ' x (2.14)

cos(x) ' 1− x2

2
(2.15)
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For the sake of simplicity, consider a target composed of a single point-like scatterer with

complex re�ectivity function A in position (z1,0, z2,0)

γ(z1, z2) = Aδ(z1 − z1,0)δ(z2 − z2,0) (2.16)

where

A =

∫
z1

∫
z2

γ(z1,0, z2,0)dz1dz2 (2.17)

and δ(x) is the Dirac delta function. Therefore, (2.10) can be approximated as follows

S(f, n) 'W (f, n)A e−j2πϕ(f,n,z1,0,z2,0) (2.18)

where

ϕ(f, n, z1,0, z2,0) =
2f

c
R′(tn, z1,0, z2,0) (2.19)

is the received signal phase term and

R′(tn, z1,0, z2,0) = z· iLoS(n) ' z1,0Ωeff tn + z2,0 − z2,0

Ω2
eff t

2
n

2
(2.20)

is de�ned as the scatterer e�ective range. In the following, the ISAR image is derived

by means of the RD method. To obtain the Point Spread Function (PSF) of the ISAR

system, two Inverse Fourier Transforms (IFTs) are analytically calculated below.

2.2.1 Range Compression

The range compression is obtained by transforming the signal in (2.18) with respect to

the frequency coordinate as follows

S′R(τ, n) = FT −1
f→τ {S(f, n)} (2.21)

=

∫ ∞
−∞

W (f, n)A e−j2πf
2
c
R′(tn,z1,0,z2,0)ej2πfτdf

= A w̃

(
τ − 2

c
R′(tn, z1,0, z2,0), tn

)
= AB h(n) sinc

{
B

[
τ − 2

c
R′(tn, z1,0, z2,0)

]}
ej2πf0[τ− 2

c
R′(tn,z1,0,z2,0)]

= AB h(n) sinc

{
B

[
τ − 2

c
R′(tn, z1,0, z2,0)

]}
ej2πf0τe−j2πϕ

′(tn,z1,0,z2,0)

where

w̃(τ, tn) = FT −1
f→τ {W (f, n)} = h(n)B sinc(Bτ)ej2πf0τ (2.22)
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ϕ′(tn, z1,0, z2,0) =
2f0

c
R′(tn, z1,0, z2,0) =

2f0

c

[
z1,0Ωeff tn + z2,0 − z2,0

Ω2
eff t

2
n

2

]
(2.23)

The argument of the sinc function in (2.21) depends on the slow-time variable tn, then

range migration occurs if the total variation of R′(tn, z1,0, z2,0) exceeds the distance of

the range resolution. For the sake of simplicity, in order to determine the condition

for the range migration, R′(tn, z1,0, z2,0) is approximated by neglecting the second order

term as follows

R′(tn, z1,0, z2,0) ' z1,0Ωeff tn + z2,0 (2.24)

Therefore, by referring to Fig.2.2, in order to avoid range migration it is important to

satisfy the following condition∣∣∣R′(tn, z1,0, z2,0)
∣∣
tn=

Tob
2

− R′(tn, z1,0, z2,0)
∣∣
tn=−Tob

2

∣∣∣ = |z1,0Ωeff |Tob < δrng (2.25)

where

δrng =
c

2B
[m] (2.26)

is the image range resolution.

Figure 2.2: Range migration graphic for the monostatic con�guration.

When the constraint in (2.25) is satis�ed, R′(tn, z1,0, z2,0) can be approximated equal to

z2,0 into the argument of the sinc function and (2.21) can be rewritten as follows

S′R(τ, n) ' AB h(n) sinc

{
B

[
τ − 2

c
z2,0

]}
ej2πf0τe

−j2π 2f0
c

[
z1,0Ωeff tn+z2,0−z2,0

Ω2
eff t

2
n

2

]

= A δ

(
τ − 2

c
z2,0

)
⊗τ w̃(τ, tn) e

−j2π 2f0
c

[
z1,0Ωeff tn−z2,0

Ω2
eff t

2
n

2

]
(2.27)

where ⊗τ is the convolution operator over the variable τ .
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2.2.2 Doppler Image Formation

Doppler image formation is achieved by taking the IFT of the range-compressed signal in

(2.27) along the time variable. The result is a complex image in the time-delay (range)

and Doppler domain. The �nal ISAR image is calculated as follows

I(τ, ν, z1,0, z2,0) = FT −1
tn→ν

{
S′R(τ, n)

}
(2.28)

= AB sinc

{
B

[
τ − 2

c
z2,0

]}
ej2πf0[τ− 2

c
z2,0]

∫ ∞
−∞

rect

(
tn
Tob

)
e−j2π

2f0
c
z1,0Ωeff tn ej2π

2f0
c
z2,0

Ω2
eff t

2
n

2 ej2πtnν dtn

= AB sinc

{
B

[
τ − 2

c
z2,0

]}
ej2πf0[τ− 2

c
z2,0]

Tob sinc

{
Tob

[
ν − 2f0

c
z1,0Ωeff

]}
⊗ν D2(ν, z2,0)

= A δ

(
τ − 2

c
z2,0

)
δ

(
ν − 2f0

c
z1,0Ωeff

)
⊗τ ⊗νw(τ, ν)⊗ν D2(ν, z2,0)

where

D2(ν, z2,0) = FT −1
tn→ν

{
e
−j2π 1

2

(
2f0
c
z2,0Ω2

eff

)
t2n

}
(2.29)

w(τ, ν) = FT −1
tn→ν {w̃(τ, tn)} (2.30)

= B sinc(Bτ) ej2πf0τ FT −1
tn→ν

{
rect

(
tn
Tob

)}
= B Tob sinc(Bτ) sinc(Tobν)ej2πf0τ

and ⊗ν is the convolution operator over ν. D2(ν, z2,0) in (2.29) is a chirp-like distortion

term and w(τ, ν) in (2.30) is the imaging PSF.

For the ISAR analytical calculation in (2.28) and the de�nition of the imaging PSF in

(2.30) it has been chosen to pass from the discrete variable n to the continuous variable

tn. The h (n) function de�ned in (2.3) is transformed to a rect as follows

tn
.
= nTR ⇒ h (n) = h

(
tn
TR

)
(2.31)

=

{
1 if tn/TR = −N

2 , . . . ,
N
2 ⇒ |tn| ≤

Tob
2

0 otherwise

= rect

(
tn
Tob

)
(2.32)

In order to determine a constraint for the Doppler migration, the Doppler frequency

introduced by the scatterer in position (z1,0, z2,0) is calculated by di�erentiating the
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phase term in (2.23) as shown in (2.33).

fd(tn, z1,0, z2,0) =
∂ϕ′(tn, z1,0, z2,0)

∂tn
=

2f0

c

[
z1,0Ωeff − z2,0Ω2

eff tn
]

(2.33)

Figure 2.3: Doppler migration graphic for the monostatic con�guration.

The Doppler frequency in (2.33) is plotted in Fig.2.3. A constraint to verify the absence

of quadratic distortions can be obtained by imposing the Doppler bandwidth (Bd) smaller

than the Doppler resolution as shown in (2.34).

Bd =
∣∣∣fd(tn, z1,0, z2,0)|

tn=
Tob
2

− fd(tn, z1,0, z2,0)|
tn=−Tob

2

∣∣∣
=

2f0

c

∣∣z2,0Ω2
eff

∣∣Tob < δν ⇒ |z2,0Ωeff |Tob < δcrg (2.34)

where

δν =
1

Tob
[Hz] (2.35)

and

δcrg =
c

2f0TobΩeff
[m] (2.36)

are the Doppler and cross-range resolutions of the ISAR system respectively.

If the constraint in (2.34) is satis�ed, the chirp-like distortion term D2(ν, z2,0) in (2.29)

can be neglected. In this case the resultant ISAR image is shown in (2.37).

I(τ, ν, z1,0, z2,0) = A δ

(
τ − 2

c
z2,0

)
δ

(
ν − 2f0

c
z1,0Ωeff

)
⊗τ ⊗νw(τ, ν) (2.37)

= AB Tob sinc

[
B

(
τ − 2

c
z2,0

)]
sinc

[
Tob

(
ν − 2f0

c
z1,0Ωeff

)]
ej2πf0(τ− 2

c
z2,0)
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Therefore, by referring to the cross-range resolution formula in (2.36), the following

implication can be considered

z1,0Ωeff = z1,0
c

2f0δcrgTob
=

c

2f0Tob

z1,0

δcrg
=

c

2f0Tob

ν0

δν
=

c

2f0
ν0 (2.38)

where ν0 is the Doppler coordinate of the scatterer in position (z1,0, z2,0) de�ned as

ν0 =
2f0Ωeff

c
z1,0 (2.39)

Furthermore, by assuming

τ0 =
2

c
z2,0 (2.40)

the image model in (2.37) can be written as follows

I(τ, ν, z1,0, z2,0) = AB Tob sinc[B (τ − τ0)] sinc[Tob (ν − ν0)] ej2πf0(τ−τ0)

= A δ (τ − τ0) δ (ν − ν0)⊗τ ⊗νw(τ, ν) (2.41)

The knowledge of the signal carrier frequency f0 and the estimation of ν0 make possible to

estimate the product z1,0Ωeff even if z1,0 and Ωeff are not individually known. Therefore,

the knowledge of f0, B and the estimation of ν0 allows for the range migration constraint

in (2.25) to be evaluated. Unfortunately, the same thing cannot be said for the constraint

in (2.34) which needs the knowledge/estimation of the e�ective rotation vector to be

veri�ed.

2.3 Bistatic Con�guration

In bistatic con�guration, transmitter and receiver are not co-located, i.e., 0 < β < π,

RTxTg and RRxTg may be di�erent and RTxRx > 0. In this Section the e�ects of the

bistatic geometry on the range compression and ISAR image formation are recalled by

referring to [16] and [17].

As in Section 2.2, the �rst step for the ISAR image formation is the simpli�cation of the

delay-time term in (2.2) by means of the straight iso-range approximation. The same

approximation for the monostatic con�guration in (2.8) is done for the transmitter-target

and receiver-target distances as follows

τ(z, n) ' 2

c

[
RTxTg,0(n) +RRxTg,0(n)

2
+ z· iLoSTX(n) + iLoSRX(n)

2

]
(2.42)
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RTxTg,0(n) and RRxTg,0(n) are the distances between the target focus point and transmit-

ter and receiver, respectively. iLoSTX(n) and iLoSRX(n) are the transmitter and receiver

Line of Sight unit vectors (see Fig.2.1). In order to simplify the calculation, (2.42) is

then rewritten as follows

τ(z, n) ' 2

c
[RBi,0(n) +K(n) z· iLoSBi(n)] (2.43)

where

RBi,0(n) =
RTxTg,0(n) +RRxTg,0(n)

2
(2.44)

iLoSBi(n) =
iLoSTX(n) + iLoSRX(n)

|iLoSTX(n) + iLoSRX(n)|
(2.45)

K(n) =

∣∣∣∣ iLoSTX(n) + iLoSRX(n)

2

∣∣∣∣ (2.46)

= cos

(
arccos (iLoSTX(n)· iLoSRX(n))

2

)
= cos

(
β(n)

2

)
(2.47)

RBi,0(n) and iLoSBi(n) in (2.43) can be interpreted as the �Bistaticaly Equivalent Mono-

static� radar-target distance and Line of Sight respectively. The direct consequence is

the introduction of the Bistatically Equivalent Monostatic (BEM) approximation, which

consists of introducing a virtual monostatic radar located at a distance RBi,0(t) from the

target along the direction of the bistatic angle bisector [17].

Therefore, the di�erence between the received signal model in bistatic con�guration and

the signal model in the monostatic case consists of:

� the bistatic re�ectivity function instead of the monostatic one;

� the distortion term K(n) which depends on the bistatic angle β(n).

It is worth pointing out that, in the absence of synchronization errors, any parametric

or non-parametric motion compensation technique used for monostatic ISAR is able to

compensate RBi,0(n) with the desired accuracy. The issue of the synchronization errors

between transmitter and receiver is not discussed in this Thesis. Details about it can be

found in [15, 18].

In other words, the bistatic re�ectivity function and RBi,0(n) do not involve any sub-

stantial change in terms of ISAR image formation. However, K(n) must be carefully

pointed out because it summarizes the image distortions caused by the bistatic geometry

and a�ects the �nal result of the ISAR imaging.
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2.3.1 Range Compression

Before starting with the analytical calculation of the Bistatic ISAR (B-ISAR) PSF, it is

worth pointing out that the same assumptions introduced for the monostatic case, i.e.,

1. Transmitter-target and receiver-target distances much greater than the target size

(straight iso-range approximation);

2. Target considered as a rigid body;

3. RBi,0(n) perfectly compensated;

4. Constant e�ective rotation vector within the CPI;

are still considered valid.

Under these assumptions, the compensated received signal after radial motion compen-

sation in bistatic con�guration can be written as follows

S(f, n) = W (f, n)

∫
z1

∫
z2

γB(z1, z2)e−j
4πf
c
K(n)[z1 sin(ΩBi,eff tn)+z2 cos(ΩBi,eff tn)]dz1dz2

(2.48)

By comparing (2.48) with (2.10) three di�erences can be highlighted:

1. The bistatic re�ectivity function γB(z1, z2) instead of γ(z1, z2);

2. The distortion term K(n);

3. The bistatic e�ective rotation vector ΩBi,eff calculated as shown in (2.49).

ΩBi,eff ' ‖ΩBi,eff (n)‖|n=0 (2.49)

=

∥∥∥∥(iLoSTX(n)×ΩTX(n)) + (iLoSRX(n)×ΩRX(n))

2K(n)
× iLoSBi(n)

∥∥∥∥∣∣∣∣
n=0

where ΩTX(n) and ΩRX(n) are the total angular rotation vectors with respect to the

transmitter and receiver point of view respectively. Details about the bistatic e�ective

rotation vector and its calculation can be found in [17].

By assuming a small variation of the bistatic angle β(n) within the CPI, it can be

approximated with the a second order Taylor-Maclaurin polynomial as follows

β(n) ' β(0) + β̇(0)tn +
1

2
β̈(0)t2n (2.50)
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where β̇ and β̈ are the �rst and second order derivatives of the bistatic angle β with

respect to the slow-time variable. As a result, K(n) is approximated by its second order

Taylor-Maclaurin polynomial and, by using (2.46), the following equation is obtained

K(n) ' K(0) + K̇(0)tn +
1

2
K̈(0)t2n (2.51)

= cos

(
β(0)

2

)
− β̇(0)

2
sin

(
β(0)

2

)
tn +

−1

2

 β̈(0)

2
sin

(
β(0)

2

)
+

(
β̇(0)

2

)2

cos

(
β(0)

2

) t2n
= K0 +K1tn +

1

2
K2t

2
n

Therefore, by considering a target composed of a single point-like scatterer and approx-

imating the sine and cosine functions to the second order Taylor-Maclaurin polynomial,

the compensated received signal in (2.48) can be approximated as follows

S(f, n) 'W (f, n)A e−j2πϕB(f,n,z1,0,z2,0) (2.52)

where

ϕB(f, n, z1,0, z2,0) =
2f

c
R′B(tn, z1,0, z2,0) (2.53)

is the bistatic signal phase term and

R′B(tn, z1,0, z2,0) = K(n) z· iLoSBi(n) (2.54)

'
[
K0 +K1tn +

1

2
K2t

2
n

] [
z1,0Ωtn + z2,0 − z2,0

Ω2t2n
2

]
= K0z2,0 + (K1z2,0 +K0z1,0Ω) tn +(

1

2
K2z2,0 +K1z1,0Ω− 1

2
K0z2,0Ω2

)
t2n +(

1

2
K2z1,0Ω− 1

2
K1z2,0Ω2

)
t3n +(

−1

4
K2z2,0Ω2

)
t4n

= RB,0 +RB,1tn +RB,2t
2
n +RB,3t

3
n +RB,4t

4
n

is the BEM e�ective range. For the sake of simplicity, in (2.54) ΩBi,eff has been replaced

by Ω and the dependence on z1,0 and z2,0 of the terms RB,i for i = 0, . . . , 4 has been

omitted.
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Therefore, by applying the IFT with respect to the frequency coordinate to (2.52), the

bistatic range pro�le is obtained as shown in the following.

S′R(τ, n) = FT −1
f→τ {S(f, n)} (2.55)

=

∫ ∞
−∞

W (f, n)A e−j
4πf
c
R′B(tn,z1,0,z2,0)ej2πfτdf =

= AB h(n) sinc

{
B

[
τ − 2

c
R′B(tn, z1,0, z2,0)

]}
ej2πf0τe−j2πϕ

′
B(tn,z1,0,z2,0)

where

ϕ′B(tn, z1,0, z2,0) =
2f0

c
R′B(tn, z1,0, z2,0) (2.56)

Range migration is then studied by approximating R′B in the sinc argument as

R′B(tn, z1,0, z2,0) ' RB,0+RB,1tn (compare with (2.24) for the monostatic con�guration).

By referring to Fig.2.4, range migration occurs if the total variation of R′B exceeds the

distance of the range resolution, i.e., if (2.57) is not satis�ed.

∆rng
.
=

∣∣∣R′B(tn, z1,0, z2,0)
∣∣
tn=

Tob
2

− R′B(tn, z1,0, z2,0)
∣∣
tn=−Tob

2

∣∣∣
= |RB,1|Tob = |K1z2,0 +K0z1,0Ω|Tob < δrng (2.57)

It is worth noting that as the radar system approaches the monostatic con�guration

β → 0, K0 → 1, K1 → 0 and the constraint in (2.57) approaches the constraint in (2.25).

Furthermore, the range migration term ∆rng in (2.57) can be expressed as follows

∆rng = |∆rng,1 + ∆rng,2| (2.58)

where

1. ∆rng,1
.
= K0z1,0ΩTob: range migration term due to the target rotation (compare

with (2.25));

2. ∆rng,2
.
= K1z2,0Tob: range migration term due to the bistatic angle variation.

It can be noted that ∆rng,1 is attenuated by the bistatic geometry, i.e., multiplied by

K0 < 1, whereas ∆rng,2 is directly proportional to K1. Thus, if the bistatic angle is

constant during the CPI, K1 = 0 and the range migration e�ect will be mitigated with

respect to the monostatic con�guration.
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Figure 2.4: Range migration graphic for the bistatic con�guration.

Therefore, if the constraint in (2.57) is satis�ed, the range pro�le after motion compen-

sation S′R(τ, n) can be written as follows

S′R(τ, n) ' AB h(n) sinc

{
B

[
τ − 2

c
K0z2,0

]}
ej2πf0τe−j2πϕ

′
B(tn,z1,0,z2,0)

= A δ

(
τ − 2

c
K0z2,0

)
⊗τ w̃(τ, tn)e

−j2π
(
ϕ′B(tn,z1,0,z2,0)− 2f0

c
RB,0

)
(2.59)

where w̃(τ, tn) is de�ned in (2.22).

2.3.2 Doppler Image Formation

As mentioned in Section 2.2.2, the B-ISAR image is calculated by applying the IFT of

the range-compressed signal S′R(τ, n) along to the slow-time coordinate. However, before

applying the IFT, for simplicity (2.59) is rewritten as follows

S′R(τ, n) = AB sinc

{
B

[
τ − 2

c
K0z2,0

]}
ej2πf0[τ− 2

c
RB,0]

rect

(
tn
Tob

)
e
−j2π

(
ϕ′B(tn,z1,0,z2,0)− 2f0

c
RB,0

)
(2.60)

where the discrete variable n has been converted to the continuous variable tn (see (2.31)).

Therefore, the B-ISAR image is calculated as follows

I(τ, ν, z1,0, z2,0) = FT −1
tn→ν

{
S′R(τ, n)

}
(2.61)

= AB sinc

{
B

[
τ − 2

c
K0z2,0

]}
ej2πf0[τ− 2

c
RB,0]∫ ∞

−∞
rect

(
tn
Tob

)
e
−j2π

(
ϕ′B(tn,z1,0,z2,0)− 2f0

c
RB,0

)
dtn
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The Doppler frequency shift due to the scatterer in position (z1,0, z2,0) can be obtained

by calculating the derivative of the phase term in (2.61) with respect to the slow-time

variable. However, before doing that, R′B(tn, z1,0, z2,0) is approximated to the second

order polynomial as shown in (2.62).

R′B(tn, z1,0, z2,0) ' RB,0 +RB,1tn +RB,2t
2
n (2.62)

Therefore

fd,B(tn, z1,0, z2,0) =
∂

∂tn

(
ϕ′B(tn, z1,0, z2,0)− 2f0

c
K0z2,0

)
(2.63)

=
∂

∂tn

(
2f0

c

[
RB,1tn +RB,2t

2
n

])
=

2f0

c
RB,1 +

4f0

c
RB,2tn

In order to determine a constraint for the Doppler migration in bistatic con�guration,

the Doppler shift fd,B is then plotted in Fig.2.5 and it is imposed to have the Doppler

bandwidth Bd,B smaller than the Doppler resolution as shown in (2.64).

Bd,B =
∣∣∣fd,B(tn, z1,0, z2,0)|

tn=
Tob
2

− fd,B(tn, z1,0, z2,0)|
tn=−Tob

2

∣∣∣ (2.64)

=
2f0

c
|2RB,2|Tob =

2f0

c

∣∣K2z2,0 + 2K1z1,0Ω−K0z2,0Ω2
∣∣Tob < δν ⇒

⇒ ∆crg
.
=

∣∣∣∣K2z2,0

Ω
+ 2K1z1,0 −K0z2,0Ω

∣∣∣∣Tob < δcrg

Figure 2.5: Doppler migration graphic for the bistatic con�guration.

Even in this case, as the radar system approaches the monostatic con�guration, β → 0,

K0 → 1, K1 → 0, K2 → 0 and (2.64) becomes equivalent to the constraint in (2.34).
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Furthermore, also ∆crg has a component caused by the target rotation

∆crg,1
.
= K0z2,0ΩTob (2.65)

that is mitigated by the bistatic geometry (K0 < 1) and a component caused by the

bistatic angle variation

∆crg,2
.
=
K2z2,0

Ω
Tob + 2K1z1,0Tob = ∆2 + ∆1 (2.66)

where

∆1
.
= 2K1z1,0Tob (2.67)

∆2
.
=
K2z2,0

Ω
Tob (2.68)

are the Doppler distortion components due to the �rst and second order Taylor-Maclaurin

coe�cients for the approximation of K(n) respectively.

Therefore

∆crg = |∆crg,1 −∆crg,2| (2.69)

If the bistatic angle is constant during the CPI, K1 = 0, K2 = 0 and the distortion e�ect

will be mitigated with respect to the monostatic case. In general, K2 is smaller than K1

because it represents the second order coe�cient of the Taylor-Maclaurin polynomial.

However, in (2.64) K2 happens to be divided by Ω which barely exceeds 1 ∼ 2 deg/s =

0.018 ∼ 0.035 rad/s in a realistic scenario.

Therefore, even if |K2| � |K1|, ∆2 cannot be neglected and sometimes can even become

dominant with respect to ∆1. This is why K(n) is approximated to the second order

Taylor-Maclaurin polynomial in (2.51) as the sine and cosine functions in (2.18).

If the condition in (2.64) is satis�ed, the Doppler migration e�ect can be neglected and

(2.63) can be approximated as follows

fd,B(tn, z1,0, z2,0) ' 2f0

c
RB,1 =

2f0

c
[K1z2,0 +K0z1,0Ω] (2.70)

whereas the phase term in (2.56) is written as

ϕ′B(tn, z1,0, z2,0) =
2f0

c
K0z2,0 +

2f0

c
[K1z2,0 +K0z1,0Ω] tn (2.71)
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As a consequence, (2.61) can be solved as follows

I(τ, ν, z1,0, z2,0) = AB sinc

{
B

[
τ − 2

c
K0z2,0

]}
ej2πf0[τ− 2

c
K0z2,0] (2.72)∫ ∞

−∞
rect

(
tn
Tob

)
e−j2π

2f0
c

[K1z2,0+K0z1,0Ω]tndtn =

= AB Tob sinc

[
B

(
τ − 2

c
K0z2,0

)]
sinc

[
Tob

(
ν − 2f0

c
K0z1,0Ω−∆ν

)]
ej2πf0(τ− 2

c
K0z2,0)

= A δ

(
τ − 2

c
K0z2,0

)
δ

(
ν − 2f0

c
K0z1,0Ω−∆ν

)
⊗τ ⊗νw(τ, ν)

where w(τ, ν) is de�ned in (2.30) and

∆ν =
2f0

c
K1z2,0 (2.73)

is the linear distortion term, i.e., a shift term along the Doppler coordinate introduced

by the bistatic angle change rate parameter K1 and proportional to the scatterer position

along the range coordinate. It is worth noting that if the bistatic geometry is known

for every slow-time sample, i.e., the target trajectory and the transmitter and receiver

position are known, the bistatic angle β(n) and consequently the K1 parameter can be

estimated. In this case such a distortion can be estimated and eventually compensated.

Anyway, in order to have negligible linear distortion, it can be imposed to have the

maximum value of |∆ν | smaller than the Doppler resolution δν as shown in (2.74).

|∆ν | =
∣∣∣∣2f0

c
K1z2,0

∣∣∣∣ < 1

Tob
⇒ |∆crg,0| <

c

2f0ΩTob
= δcrg (2.74)

where

∆crg,0
.
=
K1z2,0

Ω
(2.75)

If the constraint in (2.74) is satis�ed, the linear distortion term ∆ν can be neglected too

and I(τ, ν, z1,0, z2,0) can be written as follows

I(τ, ν, z1,0, z2,0) = AB Tob sinc

[
B

(
τ − 2

c
K0z2,0

)]
(2.76)

sinc

[
Tob

(
ν − 2f0

c
K0z1,0Ω

)]
ej2πf0(τ− 2

c
K0z2,0)

= A δ

(
τ − 2

c
K0z2,0

)
δ

(
ν − 2f0

c
K0z1,0Ω

)
⊗τ ⊗νw(τ, ν)
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By considering (2.38) and the de�nition in (2.40), (2.76) can then be simpli�ed as follows

I(τ, ν, z1,0, z2,0) = AB Tob sinc[B (τ −K0τ0)] sinc[Tob (ν −K0ν0)] ej2πf0(τ−K0τ0)

= A δ (τ −K0τ0) δ (ν −K0ν0)⊗τ ⊗νw(τ, ν) (2.77)

By comparing (2.76) and (2.77) with (2.37) and (2.41) for the monostatic case, it can be

stated that, in absence of distortions caused by the bistatic geometry, the B-ISAR image

is a scaled version of the monostatic ISAR by a factor K0. The mechanism with which

the B-ISAR image is formed is the same as that of the monostatic. The only di�erences

are a scaling e�ect and a di�erent physical scattering mechanism because in (2.48) the

bistatic re�ectivity function γB(z1, z2) replaces the monostatic one γ(z1, z2).

The space-invariant characteristic of the PSF makes sure that the resolution properties

remain constant in any region of the image. This characteristic is desirable as the target

image shape is not altered, which is often a requirement for classi�cation and recognition

purposes.

As a consequence of the scaling factor K0, the bistatic geometry generates a resolution

loss. The resultant formulas for the range and cross-range resolutions for the bistatic

con�guration are reported in (2.78) and (2.79) respectively.

δrng,B =
c

2K0B
≥ δrng (2.78)

δcrg,B =
c

2f0K0ΩTob
≥ δcrg (2.79)

Such a distortion loss does not consist of a blurring in the �nal image or a widening of

the PSF, but in a simple approaching of the image scatterers to the focusing center.

However, in the conditions regarding the range and Doppler migration e�ects ((2.57)

and (2.64) respectively) it has been chosen to write a constraint as a function of the

monostatic range (δrng) and cross-range resolutions (δcrg).

The introduction of a bistatic geometry does not change the fact that the product

z1,0ΩBi,eff can be estimated even if z1,0 and ΩBi,eff are not individually known (see

(2.38)). However, in this case also the estimation of the parameters K0 and K1, i.e., the

bistatic geometry and target trajectory, becomes necessary. On the other hand, even in

this case the Doppler migration constraint evaluation needs the estimation/knowledge of

the e�ective rotation vector besides the estimation of K0, K1 and K2.
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RTxTg 1000 m

RRxTg 1000 m

β π/4

v 50 m/s

ΩT [0, 0, 0.0175] rad/s

Tob 1 s

f0 60 GHz

B 1 GHz

PRF 300 Hz

Table 2.1: Simulation set-up example: parameters of interest.

On the other hand, if both linear and quadratic distortions cannot be neglected, the �nal

distorted image is written as follows

I(τ, ν, z1,0, z2,0) = A δ

(
τ − 2

c
K0z2,0

)
δ

(
ν − 2f0

c
K0z1,0Ωeff −∆ν

)
⊗τ ⊗ν

w(τ, ν)⊗ν D2,B(ν, z1,0, z2,0) (2.80)

where

D2,B(ν, z1,0, z2,0) = FT −1
tn→ν

{
e−j2π

2f0
c
RB,2t

2
n

}
(2.81)

= FT −1
tn→ν

{
e
−j2π 1

2

(
2f0
c
K2z2,0+

2f0
c

2K1z1,0Ω− 2f0
c
K0z2,0Ω2

)
t2n

}
is the bistatic chirp-distortion term (compare with (2.29)).

2.4 Distortion analysis on simulated data

In this Section simulated data is used to validate the analytical results above and the

second order polynomial approximation for K(n). A rotating rigid target is placed in

the simulation scenario depicted in Fig.2.6b in a reference system Tx(x1, x2, x3), which

is a translated version of Tξ. Such a target is shown in Fig.2.6a and is composed of �ve

point-like scatterers. One scatterer is in position z1 = [0, 0, 0], whereas the other four

describe a rectangle of size 8× 16 m. The target is both rotating counterclockwise with

constant rotation speed around the central scatterer and moving along the bistatic angle

bisector, approaching the bistatic baseline with speed v. This is in order to create the

�worst case scenario� where the bistatic angle variation speed in maximized [16]. Other

information of interest is summarized in Table 2.1.

For these target and scenario the ISAR image is simulated by using four di�erent models

for the received signal.
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(a) (b)

Figure 2.6: Simulation set-up example: simulated target (a) and scenario (b).

1. The most general model with the actual τ(z, n) in (2.2):

S(f, n) =

Ns∑
i=1

σi e
−j2πf

RTxTg(zi,n)+RRxTg(zi,n)

c (2.82)

where Ns = 5 is the number of scatterers which compose the simulated target,

σi = ej2πϕi is the complex re�ectivity function of the ith scatterer, ϕi ∈ U [0, 2π]

and zi = [z1,i, z2,i, z3,i] is the position in the Tz reference system.

2. The model obtained by exploiting the straight iso-range approximation, the second

order polynomial approximation for the sine and cosine functions and the actual

K(n) = cos(β(n)/2):

S(f, n) =

Ns∑
i=1

σi e
−j 4πf

c
K(n)

[
z1,0Ωtn+z2,0−z2,0

Ω2t2n
2

]
(2.83)

3. The model in (2.83) with K(n) = K0 +K1tn.

4. The model in (2.83) with K(n) = K0 +K1tn + 1
2K2t

2
n.

The ISAR image obtained by using the �rst model in (2.82) is shown in Fig.2.7 with

the �ve scatterers labeled with the relative numbers, whereas Fig.2.8 shows a zoom on

scatterer #3 for the four models. Simulated ISAR images in Fig.2.7, Fig.2.8 and all

the following in this Section are displayed after a 10× zero-padding and in dB scale for

illustration purposes.

Images in Fig.2.8 show that

R′B(tn, z1,i, z2,i) ' K(n)

[
z1,iΩtn + z2,i −

1

2
z2,iΩ

2t2n

]
(2.84)
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K0 0.9239

K1 −0.0073

K2 −0.0010

δrng 0.15 m

δcrg 0.1432 m

δν 1 Hz

Table 2.2: Simulation example: K parameters and resolution.

is a valid approximation of the BEM e�ective range (compare Fig.2.8a with Fig.2.8b).

The same can be stated for the fourth model when the second order polynomial approx-

imation for K(n) is used, (see Fig.2.8d). The �rst order polynomial for K(n) (the third

model) appears instead to be not a good approximation (see Fig.2.8c).

By the way, by looking at Fig.2.7 and Fig.2.8, a strong distortion on the resultant image

appears evident. In order to analyze such a distortion, the estimated K parameters and

the calculated resolution values are summarized in Table 2.2, whereas the calculated

distortion terms are shown in Table 2.3.

Figure 2.7: Simulation set-up example: ISAR image for the model in (2.82) with the
�ve scatterers labeled.

By analyzing the results in Table 2.3 the following considerations can be discussed. The

�rst scatterer coincides with the focusing center and does not present any distortion. By

comparing the ∆rng parameters with the range resolution in Table 2.2, it appears that

all the scatterers satisfy the constraint in (2.57) and no-one presents range migration.

However, range migration is not an �on-o�� e�ect. In fact, for scatterers #3 and #5,

it cannot be neglected even though ∆rng < δrng and a distortion e�ect along the range

direction can be clearly seen in Fig.2.7 and Fig.2.8. This is because for scatterers #3 and

#5 the distortion term due to the target rotation (∆rng,1) and the distortion term due

to the bistatic angle variation (∆rng,2) have the same sign, whereas for scatterers #2 and

#4 they have opposite signs (see (2.58)). This means that the bistatic geometry causes

a mitigation e�ect on the range migration for scatterers #2 and #4, but a distortion
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(a) (b)

(c) (d)

Figure 2.8: Simulation set-up example: zoom on scatterer #3 for the �rst (a), second
(b), third (c) and fourth (d) signal model.

Scatterer #1 #2 #3 #4 #5

z1,i 0 4 −4 −4 4

z2,i 0 8 8 −8 −8

z3,i 0 0 0 0 0

∆rng 0.0000 0.0059 0.1231 0.0059 0.1231

∆rng,1 0.0000 −0.0586 −0.0586 0.0586 0.0586

∆rng,2 0.0000 0.0645 −0.0645 −0.0645 0.0645

∆crg 0.0000 0.6535 0.5362 0.6535 0.5362

∆crg,0 0.0000 −3.3597 −3.3597 3.3597 3.3597

∆crg,1 0.0000 0.1290 0.1290 −0.1290 −0.1290

∆crg,2 0.0000 −0.5245 −0.4072 0.5245 0.4072

∆1 0.0000 −0.0586 0.0586 0.0586 −0.0586

∆2 0.0000 −0.4658 −0.4658 0.4658 0.4658

Table 2.3: Simulation example: Range and Doppler distortion terms.
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enhancement for scatterers #3 and #5. Such a distortion enhancement is clearly visible

in Fig.2.7 and highlighted in Fig.2.9, where the ISAR image is zoomed on scatterers #2

and #3.

(a) (b)

Figure 2.9: Simulation set-up example: zoom on scatterer #2 (a) and #3 (b) for the
signal model in (2.82).

On the other hand, by looking at Fig.2.7, Fig.2.9 and the results in Table 2.2, all the four

external scatterers present a strong Doppler migration e�ect. For all the four scatterers,

∆crg,1 and ∆crg,2 have opposite signs and, for (2.69), the bistatic geometry causes a

signi�cant distortion enhancement. Moreover, it appears that |∆2| is signi�cantly greater
than |∆1| even if |K2| < |K1|. This means that the most of the Doppler migration e�ect

is due to the second order approximation term of K(n) rather than K1.

In all cases the linear distortion term ∆crg,0 appears to be much greater than δcrg. This

is why the ISAR image in Fig.2.7 appears with a parallelepipedal shape rather than a

rectangle and all the external scatterers are shifted by 3.3597m along the cross-range.

In the �nal ISAR image, a �range migration window� and a �cross-range migration win-

dow� can be de�ned. In Fig.2.10a the ISAR image is shown and the region where range

migration occurs is highlighted. The cross-range migration window is shown in Fig.2.10b.

In Fig.2.11 the ISAR image and the �range migration window� are shown in the range/-

Doppler domain. Such a window in the range/Doppler domain can be calculated by

combining (2.57) and (2.38) with the following result

∆rng =

∣∣∣∣K1z2,0 +K0
c

2f0
ν0

∣∣∣∣Tob < δrng (2.85)

∆rng can be estimated even if the cross-range resolution is unknown, i.e., without e�ective

rotation vector estimation and cross-range scaling. However, the image focusing center

is required to be estimated.
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(a) (b)

Figure 2.10: ISAR image in Fig.2.7 with the range migration window (a) and cross-
range migration window (b) superimposed in the range/cross-range domain.

Figure 2.11: ISAR image in Fig.2.7 with the range migration window superimposed
in the range/Doppler domain.

Assume now to have both the conditions in (2.57) and (2.64) unsatis�ed, i.e., presence of

distortions in the B-ISAR image caused by range and Doppler migration. Then assume

to reduce the observation time by a factor KT de�ned as follows

KT
.
=
Tob,L
Tob

(2.86)

where 0 ≤ KT ≤ 1 and Tob,L is the new value for the CPI in order to mitigate both the

migration e�ects. In fact, both ∆rng and ∆crg are directly proportional to Tob since K0,

K1, K2, the scatterer position and Ω do not depend on it. Therefore, in order to satisfy

the constraint in (2.57), the following condition for KT is obtained

∆rngKT < δrng ⇒ KT <
δrng
∆rng

=
δrng

|K1z2,0 +K0z1,0Ω|Tob
(2.87)

=
c

2B |K1z2,0 +K0z1,0Ω|Tob
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For the Doppler migration it has to be also considered that δcrg ∝ 1
Tob

. As a consequence

∆crgKT <
δcrg
KT
⇒ K2

T <
δcrg
∆crg

=
δcrg∣∣∣K2z2,0

Ω + 2K1z1,0 −K0z2,0Ω
∣∣∣Tob (2.88)

=
c

2f0 |K2z2,0 + 2K1z1,0Ω−K0z2,0Ω2|T 2
ob

(a) (b)

Figure 2.12: Simulation set-up example: zoom on scatterer #2 (a) and #3 (b) after
the CPI reduction by KT = 0.6.

(a) (b)

Figure 2.13: Simulation set-up example: zoom on scatterer #2 (a) and #3 (b) after
the CPI reduction by KT = 0.4.

Consider now the ��ve scatterers� example shown above. In this case, for scatterers #2

and #4

δrng/∆rng = 25.4237 > 1 (2.89)

whereas for the #3 and #5

δrng/∆rng = 1.2185 > 1 (2.90)
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As a consequence, the reduction of the CPI for the range migration distortion attenuation

is not needed. On the other hand

δcrg/∆crg = 0.2192 < 1 (2.91)

for scatterers #2 and #4 and 0.2671 for scatterers #3 and #5. Therefore, in order to

delete the Doppler migration e�ect, it is needed a reduction of the CPI by a factor

KT <
√

0.2192 = 0.4682 (2.92)

In order to validate such a result, the e�ect of the CPI reduction on scatterers #2

(Fig.2.12a and Fig.2.13a) and #3 (Fig.2.12b and Fig.2.13b) for KT = 0.6 and 0.4 are

shown in Fig.2.12 and Fig.2.13 respectively. Fig.2.12a shows that the sinc-like shape has

been recovered along the range direction. This result can be compared to that shown

in Fig.2.9a. In fact, the value of ∆rng is very small compared to the range resolution

for scatterer #2. The same cannot be stated for scatterer #2 along the cross-range.

However, the distortion mitigation is evident in Fig.2.12a with respect to Fig.2.9a even

though the sinc-like shape is not recovered along the cross-range. For scatterer #3 in

Fig.2.12b the situation is even worse. Images in Fig.2.13a and Fig.2.13b show instead

a more sinc-like shape even if a small distortion is still visible along the cross-range

direction in Fig.2.13b. However, the price to pay for recovering the sinc-like shape is a

strong resolution loss.

In conclusion, the reduction of the CPI allows for the range and Doppler migration e�ects

to be mitigated, but it obviously causes a resolution loss along the cross-range (see (2.36)).

However, it is worth supposing that the application of a super-resolution technique could

be useful to restore the original cross-range resolution but not the distortions caused by

the migration e�ects. Such super-resolution techniques are introduced in Chapter 3 and

applied for bistatic distortion mitigation in Chapter 5.



Chapter 3

Super-Resolution techniques review

In this Chapter the concept of super-resolution applied for SAR/ISAR imaging is in-

troduced. A general summary and theoretical description of the most common super-

resolution techniques is given in Section 3.1. Some of the techniques described are the-

oretically analyzed in deep and their properties and advantages for SAR/ISAR imaging

are discussed in Sections 3.2 to 3.6.

3.1 General Overview

�Resolution� is de�ned as the system capability to make di�erent input sources separately

observable at the output of the system itself. It depends generally on the system PSF.

In radar imaging, �resolution� is de�ned as the capability of the imaging system to

distinguish di�erent scattering sources.

A super-resolution technique can be interpreted either as a post-processing algorithm,

which can be applied to a SAR/ISAR image, or as a substitute of the RD imaging

algorithm in order to exceed the resolution limitations due to the transmitted signal

bandwidth and target aspect angle variation within the CPI. The category of the super-

resolution techniques includes several areas, i.e., algorithms designed for purposes of

bandwidth extrapolation, deconvolution, �Direction of Arrival� (DOA) estimation and

estimation of sinusoidal parameters (spectral estimation). Such areas are summarized

below.

1. The SAR/ISAR image PSF depends on the frequency/slow-time support (see

(2.30)). Bandwidth extrapolation consists of estimating the received signal beyond

the available frequency-time support by means of prediction methods or non-linear

�ltering. As a result, it allows for a narrower PSF in the image domain.

37
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2. As shown in (2.37) for the monostatic case and in (2.76) for the bistatic case, in

the absence of distortions, the RD image can be seen as the convolution between

the high-resolution re�ectivity function of the scene of interest (SAR) or target

(ISAR) and the PSF of the imaging system. Therefore, all those methods which

aim to invert such a convolution operation, i.e., deconvolution algorithms, can be

considered as super-resolution algorithms.

3. In remote sensing and communication systems, array of antennas are frequently

used. From an antenna theory point of view, it is known that weights can be

applied to the signal received at each antenna in order to modify the beam pattern

of the whole array system. This is thanks to the Fourier relationship between

the beam pattern and the excitation at the array. One particular application of

antenna theory is the DOA estimation which consists of estimating the direction

of arrival of the incident e.m. wave. When the angles of arrival of the incident e.m.

wave from two di�erent signal sources fall within the main lobe of a uniform linear

array (ULA), such sources can not be resolved using conventional beamforming.

However, a super-resolution DOA estimator, e.g. MUSIC, can able to separate the

two contributors.

4. From the Radar imaging theory it is known that the Fourier transform of an ISAR

image relative to an ideal point target is a complex sinusoid with a real-part fre-

quency that depends on the position of the target. From (2.18), (2.21) and (2.28)

I(τ, ν, z1,0, z2,0) = FT −1
tn→ν

{
FT −1

f→τ {S(f, n)}
}

(3.1)

that implies

FT 2 {I(τ, ν, z1,0, z2,0)} = S(f, n) = W (f, n)A e−j2πfτ(z1,0,z2,0,n) (3.2)

Therefore, any method that aims to estimate the parameters of multiple sinusoids

closely spaced in frequency can be considered to be super-resolution.

In general, super-resolution techniques can be classi�ed in two classes depending on the

signal model used:

1. Parametric techniques where the scene is modeled as a collection of a �nite number

of point scatterers which their position and amplitude have to be estimated.

2. Non-parametric techniques where the scene is assumed as a continuously varying

high-resolution function blurred by the imaging PSF. The imaging PSF have to

be conveniently altered in order to reduce the blurring e�ect and improve the

capability to distinguish di�erent scattering sources.
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Parametric and non-parametric techniques can also be denominated �Point-source� and

�Distributed-source� respectively [23].

Parametric or point-source techniques allow for a better modeling and estimation of am-

plitude and position of major isolated scatters. The drawback is that the �nal result

consists of a linear superposition of perfect point scatters and could be not su�ciently

accurate to describe the target of interest. Moreover, the number of scatterers which

compose the signal model must be estimated before estimating their position and am-

plitude. Such a number is an important parameter because, if too small, the �nal result

will not properly describe the high-resolution scene/target re�ectivity function and, if

too large, it could generate a large number of �false scatterers� (artifacts). Moreover, in

many cases, the number of scatterers is calculated by estimating and analyzing the signal

covariance matrix that could require a large computational power and amount of mem-

ory to be estimated and used for calculations. Most of the super-resolution techniques

originally designed for DOA estimation belong to this category.

Non-parametric or distributed-source techniques allow for a better modeling of extended

targets and the number of scatterers does not need to be estimated. The high-resolution

re�ectivity function is modeled as a set of samples on a regular grid and the �number of

scatterers� is �xed according to the number of samples in such a grid. However, if an

isolated strong scatterer is not positioned on a scene grid point, it may not be estimated

accurately. Most of the deconvolution and spectral estimation algorithms belong to this

category.

In the following, some of the most commonly used parametric and non-parametric super-

resolution techniques are summarized.

3.1.1 Parametric super-resolution techniques

One of the most studied and popular techniques in the point-source class is the Multiple

Signal Classi�cation (MUSIC) algorithm by Schmidt [24]. The MUSIC algorithm has

been introduced for DOA estimation and consists of modeling the measured data as a

combination of a signal subspace and an orthogonal noise subspace. Such subspaces

are estimated by means of the analysis of eigen-values and eigen-vectors of the signal

covariance matrix. The number of scatterers is estimated by analyzing the eigen-values

of the covariance matrix. This technique allows for a good estimation of the position

of each scattering center (or sources direction), but it does not allow for the scatterers

complex amplitude to be estimated, which remain a separate task. Details about the

application of the MUSIC technique for 2D SAR/ISAR imaging can be found in [25].
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Another parametric technique is the ESPRIT by Richard Roy [26]. Also ESPRIT has

been introduced for DOA estimation and exploits the concept of signal and noise sub-

spaces. ESPRIT is similar to MUSIC but introduces signi�cant advantages in terms of

computation and storage requirements. ESPRIT does not require detailed knowledge of

the array geometry and element characteristics and is manifestly more robust, i.e., less

sensitive with respect to array imperfections than MUSIC. Furthermore, ESPRIT allows

for the number of sources, i.e. DOAs, to be simultaneously estimated, unlike MUSIC.

Another technique is the Linear Prediction based Bandwidth Extrapolation (BWE)

where the received complex signal is modeled as an auto-regressive (AR) process and

extrapolated beyond the frequency/slow-time support by means of a linear prediction

based algorithm. The AR model order depends on the number of scatterers and the

AR coe�cients are estimated by means of appropriated techniques, such as those due to

Pisarenko, Prony or Burg. The BWE technique is treated in Section 3.2.

Other techniques such as CLEAN or RELAX can be included in this category since

their �nal result depends on the de�ned number of scatterers. Such techniques aim to

detect the dominant scatterers in the SAR/ISAR image and do not allow for two or more

scatterers in the same main beam to be resolved. For this reason they can no longer be

said to be real super-resolution techniques. The CLEAN was introduced by Jan Högbom

in 1974 [27] to reduce sidelobes and induced artifacts in radio astronomy and appears

for the �rst time in radar imaging in [28] by Tsao and Steinberg.

This technique consists of the following basic steps:

1. Selection of the highest peak of the image assumed as related to the strongest point

source in the scene;

2. Measurement of the complex amplitude and position;

3. Estimation of the PSF related to the selected scatterer;

4. Subtraction of the estimated PSF from the image in order to leave a residual;

5. Repeat the steps above on the residual from the previous iteration until a certain

constraint, for example related to the residual energy, is satis�ed or until a �xed

number of scatterers are detected.

The CLEAN technique is treated in Chapter 4. The main disadvantage is that once a

scatterer has been detected and its position and amplitude estimated, such estimations

are �xed. As a consequence, it may happen that spurious low-power targets can be

created near the main scatterer to compensate for estimation errors.
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For this reason the RELAX algorithm was proposed for spectral estimation purposes by

Jim Li and Stoica in [29] as an improvement of the CLEAN, whereby at each iteration

the estimated parameters of all the previously discovered targets are re-estimated in an

iterative loop. Thus, target parameters are more accurately estimated. Furthermore, a

generalized Akaike information criterion (GAIC) is proposed to automatically determine

the number of scatterers instead using a �xed number.

The Incremental Multi-Parameter (IMP) algorithm iteratively removes detected signals

from the data and then searches the residual for further signals [30]. Unlike CLEAN and

RELAX, the IMP works by calculating the subspace spanned by the calibration vectors

corresponding to the latest estimates at each iteration. Rather than subtracting the e�ect

of the detected scatterer, the data is projected onto the orthogonal subspace. Similarly

to the RELAX, the IMP algorithm re�nes the estimated parameters of the previously

detected signals at each iteration. The subspace formulation of IMP is reminiscent of

MUSIC, but IMP is capable of resolving uncorrelated signals at Signal to Noise Ratio

(SNR) lower than required by MUSIC.

3.1.2 Non-parametric super-resolution techniques

Some of the most basic non-parametric approaches for super-resolution consist of the

application of deconvolution algorithms, e.g., the Least Squares (LS), the Minimum

Mean Square Error (MMSE) and the Singular Value Decomposition (SVD) methods.

Deconvolution algorithms work by assuming the imaging PSF known and the range-

Doppler compression process equivalent to the convolution between the imaging 2D PSF

and the high-resolution re�ectivity function of the target/scene γ(z). In this case, the

imaging process is mathematically described as follows

g = Tf + n (3.3)

where g is the vectorized SAR/ISAR image

g = vec (I) = vec




I(τ1, ν1) I(τ1, ν2) · · · I(τ1, νN )

I(τ2, ν1) I(τ2, ν2) · · · I(τ2, νN )
...

...
. . .

...

I(τM , ν1) I(τM , ν2) · · · I(τM , νN )



 = (3.4)

= [I(τ1, ν1), · · · , I(τM , ν1), I(τ1, ν2), · · · , I(τM , νN−1), I(τ1, νN ), · · · , I(τM , νN )]
T

f is the vectorized target/scene re�ectivity function, n is the additive zero-mean white

Gaussian thermal noise with diagonal covariance matrix Rn and T is the MN ×MN

Toeplitz convolution matrix that applies the e�ect of the PSF
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T =



Tc Tc−1 · · · T2 T1 0 · · · 0 0

Tc+1 Tc · · · T3 T2 T1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

TM−1 TM−2 · · · Tc Tc−1 Tc−2 · · · T1 0

TM TM−1 · · · Tc+1 Tc Tc−1 · · · T2 T1

0 TM · · · Tc+2 Tc+1 Tc · · · T3 T2

...
...

. . .
...

...
...

. . .
...

...

0 0 · · · TM TM−1 TM−2 · · · Tc Tc−1

0 0 · · · 0 TM TM−1 · · · Tc+1 Tc



(3.5)

where Ti is the N × N convolution matrix determined from the ith column of the 2D

PSF matrix H with central coordinates (d, c) de�ned by

H =



h1,1 h1,2 · · · h1,c · · · h1,M−1 h1,M

h2,1 h2,2 · · · h2,c · · · h2,M−1 h2,M
...

...
. . .

...
. . .

...
...

hd,1 hd,2 · · · hd,c · · · hd,M−1 hd,M
...

...
. . .

...
. . .

...
...

hN−1,1 hN−1,2 · · · hN−1,c · · · hN−1,M−1 hN−1,M

hN,1 hN,2 · · · hN,c · · · hN,M−1 hN,M


(3.6)

the superscript T in (3.4) denotes the transpose operator.

Actually, the model above does not take into account e�ects like multiple re�ections

between di�erent parts of the target, shadowing, non-linear components of the radar,

distortions due to range and/or Doppler migration, etc. Therefore, any super-resolution

technique based on this model does not take them into account.

Given the image model in (3.3), deconvolution techniques aim to estimate f by minimizing

a certain cost function J .

The LS approach aims to minimize the square di�erence between the generated image

from the scene estimation and the measured one. The cost function for the LS approach

is de�ned as follows

JLS = ‖g −Tf‖2 (3.7)

In order to estimate f , the cost function in (3.7) is derived with the following result

f̂LS = T†g =
(
THT

)−1
THg (3.8)

where the superscript H denotes the Hermitian transpose operator and T† is the Moore-

Penrose pseudoinverse matrix of T.
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However, the LS approach is unstable with respect to data perturbations, i.e., small

changes in the measured data results in very large changes in the �nal result. The

most popular approach to stabilize the problem is the Tikhonov regularization or diag-

onal loading. The main e�ect of the Tikhonov regularization method is an additional

quadratic term that mitigates peaks and e�ects of noise ampli�cation, i.e., a smoothing

e�ect in the �nal result. Furthermore, this regularization method does not involve any

further computational loading.

The MMSE approach is similar to LS but the solution is achieved by using a Bayesian

formulation and Gaussian statistics. The MMSE approach is very popular and there is a

large variety of implementations, such as the MMSE-T and MMSE-A treated and tested

in [23]. The basic form of MMSE super-resolution is known as Wiener deconvolution and

needs the knowledge/estimation of the scene and noise covariance matrices. The MMSE

aims to apply a linear operator L in order to minimize the expected square norm of the

reconstruction error, i.e., the following cost function

JMMSE = E
{
‖Lg − f‖2

}
(3.9)

where E {·} is the expectation operator. As a result, the re�ectivity function estimation

f̂MMSE is calculated as follows [31]

f̂MMSE = Lg = RfT
H
(
TRfT

H + Rn

)−1
g (3.10)

where Rf is the covariance matrix of the a priori statistical distribution of f . The problem

is that Rf is generally not known and have to be estimated from the available measured

data [32].

In the SVD super-resolution the same cost function of the LS is used and the PSF matrix

T is decomposed as follows

T = UDVH (3.11)

where U and V are orthogonal matrices and D is a diagonal matrix composed of the

�Singular Values� di. Those singular values below a certain threshold λSVD are set to zero

and the inverse of the PSF matrix is calculated as follows

T−1
SVD

= VD−1UH (3.12)

where the elements of D−1 are set as

{
D−1

}
i,j

=


1/di if i = j and di ≥ λSVD

0 if i = j and di < λSVD

0 if i 6= j

(3.13)
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Therefore, the SVD estimates the high-resolution re�ectivity function as follows

f̂SVD = T−1
SVD

g (3.14)

If di ≥ λSVD ∀i = 1, . . . ,MN , the SVD algorithm is equivalent to the LS and T−1
SVD

= T†.

The cancellation of small singular values results in higher SNR in the �nal image. This

is because small singular values cause the condition number of the matrix to increase

and, as a consequence, ampli�cation of noise. However, if too many values are removed,

some useful signal components may be canceled, resulting in a biased estimate. λSVD has

to be carefully chosen since it is not de�ned in the basic algorithm and depends on the

speci�c application. In [33] this approach is used for data fusion and super-resolution.

Other non-parametric super-resolution techniques such as the Capon's Minimum Vari-

ance Method (MVM) [34] and the Amplitude and Phase Estimation of a Sinusoid (APES)

[35] belong to the power spectrum estimation and adaptive beamforming category.

Capon's MVM is one of the most known super-resolution approaches. It has been imple-

mented in several variations for several applications ans is based on a bank of adaptive

band-pass FIR �lters. In radar imaging application, Capon's MVM aims to estimate the

Radar Cross Section (RCS) for each pixel location.

One of the most popular variations of the MVM is the APES technique. Unlike Capon's

MVM, both noise and interference are estimated in the covariance matrix and, as a

consequence, APES is a matched �lter that allows for more accurate spectral estimates

by reducing the amount of noise that leaks through the �lter.

Capon's MVM and APES are analyzed in deep in Section 3.3 and 3.4 respectively.

Another commonly used and studied distributed-source super-resolution technique is

the Super-SVA (SSVA) [36], which iteratively exploits the non-linear properties of the

Spatially Variant Apodization (SVA) technique. SVA was introduced by Stankwitz for

spectral estimation and adaptive beamforming and is based on a bank of adaptive FIR

�lters [37]. It is a powerful technique used to eliminate sidelobes. However, rather than

Capon's MVM and APES, SVA is not a super-resolution technique since it does not

allow to exceed the resolution limitations of the RD imaging algorithm. The super-

resolution e�ect can be achieved by exploiting the fact that SVA is based on a non-

linear adaptive �ltering and, as a consequence, it causes a bandwidth widening at its

output. Such a bandwidth widening is iteratively exploited in order to make a controlled

extrapolation of the complex signal along both the frequency and slow-time directions

and, as a consequence, the image resolution along both the range and Doppler directions

can be enhanced. Details about SSVA can be found in Section 3.5.
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Another non-parametric super-resolution approach is based on the concept of Com-

pressed Sensing (CS). The CS theory is based on the principle that, through optimization,

the sparsity of a signal can be exploited to recover the signal itself from a smaller number

of samples than required by the Shannon-Nyquist sampling theorem and it is used for

several applications.

The CS theory can be exploited for Radar imaging super-resolution by reconstructing

the received signal over a larger bandwidth or a longer CPI and, as a consequence, en-

hance the resolution in the image domain. The main di�erence between the CS-based

super-resolution and the other extrapolation methods, parametric spectral estimation

techniques and adaptive beamforming algorithms is that the CS is a probabilistic ap-

proach, which refers to the capability of CS to reconstruct the signal with a certain

probability. CS application for super-resolution is treated in Section 3.6.

In conclusion, the reader is referred to [38], where Pastina et al. give a review of several

algorithms with several useful references, and to [39] where De Graaf extensively discusses

the use of several spectral estimation algorithms for SAR imaging with comprehensive

comparison and performance analysis.

3.2 Linear Prediction based Bandwidth Extrapolation

The Linear Prediction based Bandwidth Extrapolation (BWE) is a parametric super-

resolution technique where the received signal is modeled as the summation of a �nite

number of contributions from a �nite number of scatterers. An autoregressive (AR) time-

series model is used to extrapolate the spectral bandwidth of the uncompressed signal.

This AR approach was investigated by S. B. Bowling of Lincoln Laboratory in 1977 as

a means of improving resolution for Doppler-Time-Intensity (DTI) analysis [40]. In [41]

K.M. Cuomo discusses it to improve the slant range resolution of the pulse compression

process.

By referring to [42], the exploited signal model is shown in (3.15).

S(f, n) =

Ns∑
i=1

σi(f, n) e−j2πf
2
c
R′i(n) (3.15)

where Ns is the number of scatterers which composes the signal model, σi(f, n) is the

complex re�ectivity function of the ith scatterer and R′i(n) its e�ective range as in (2.20)

and (3.16).

R′i(n) = zi· iLoS(n) = [z1,i, z2,i, z3,i] · iLoS(n) (3.16)
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As written in Section 2.1, the re�ectivity function can be assumed as constant with re-

spect to both frequency and slow-time for all the scatterers. Therefore, it can be assumed

σi(f, n) ' σi. Furthermore, it is assumed a uniformly sampled frequency spectrum

f = f0 +mδf (3.17)

where δf is the frequency sampling spacing and f0 the carrier frequency of the transmitted

signal. As a consequence, the frequency variable in (3.15) can be discretized and the

signal model can be rewritten as follows

S(m,n) =

Ns∑
i=1

σi e
−j

4π(f0+mδf )

c
R′i(n) (3.18)

Given the signal model in (3.18), after motion compensation the BWE algorithm works

in two steps:

1. Frequency bandwidth extrapolation;

2. Aperture extrapolation.

In the �rst step, the frequency response in (3.18) is approximated by a linear-prediction

all-pole model. For a uniformly sampled frequency spectrum, such a model states that

the samples must meet the following condition

sn[m] =


−
pAR∑
k=1

ck sn[m− k] forward

−
pAR∑
k=1

c∗k sn[m+ k] backward
(3.19)

where (· )∗ denotes the complex conjugate operator, ck are the model coe�cients, pAR is

the model order, given by the number of scattering centers, and

sn[m]
.
= S(m,n) (3.20)

The relationship in (3.19) holds assuming the number of scatterers known and the exact

model coe�cients. The �rst step consists of estimating the AR coe�cients ck from

the measured data by means of appropriated techniques. Several methods have been

proposed, such as techniques due to Pisarenko, Prony and Burg mentioned in Section

3.1.1. In this Thesis the Burg's algorithm is treated since it is computationally e�cient

and o�ers advantages over the others in terms of performance and stability, i.e., it avoids

exponentially growing signals at the linear-prediction �lter output.
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Burg's algorithm [43] is an iterative procedure that aims to minimize the sum of the

prediction error over the entire data set. The prediction error is de�ned in (3.21) in the

forward and in (3.22) in the backward direction.

ef = sn[m] +

pAR∑
k=1

ck sn[m− k] (3.21)

eb = sn[m− pAR] +

pAR∑
k=1

c∗k sn[m− pAR + k] (3.22)

By referring to [44], Burg's method in its basic form is shown below.

1. Initialization:

i = 0 (3.23)

e′f,0 = e′b,0 = [sn[0], sn[1], . . . , sn[M − 1]]T (3.24)

where M is the number of frequency samples.

2. The �rst element of e′f,i and the last of e′b,i are removed:

ef,i = e′f,i(1 : M − i− 1) (3.25)

eb,i = e′b,i(0 : M − i− 2) (3.26)

3. The ith model coe�cient is calculated as follows

ci = −
2eHb,ief,i

eHf,ief,i + eHb,ieb,i
(3.27)

4. If i = pAR all the coe�cients have been calculated and the algorithm is �nished.

Otherwise go on with the following steps.

5. The prediction errors are updated as follows

e′f,i+1 = ef,i + cieb,i (3.28)

e′b,i+1 = eb,i + c∗i ef,i (3.29)

6. i = i+ 1 and back to the step (2).

Once the Burg's algorithm is applied to estimate the linear-prediction model coe�cients

from the measured data, (3.19) is used to extend the data outside the measured spectrum.
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The expanded data is then weighted and compressed via the Fourier transform. The

weighting process is used to reduce the in�uence of the extrapolated data and mitigate

prediction errors. Important features that contribute to the success of BWE are

1. The retention of measured data and the phase coherency of the resulting range

pro�le;

2. The use of conventional pulse compression after the data extrapolation;

The Aperture extrapolation step is performed by applying the same as before �xing the

frequency and varying the slow-time index as follows

sm[n] =


−
pAR∑
k=1

ck sm[n− k] forward

−
pAR∑
k=1

c∗k sm[n+ k] backward
(3.30)

where

sm[n]
.
= S(m,n) (3.31)

This is to extrapolate the measured data along the aspect angle dimension and leads to

better resolution in the cross-range direction.

The primary di�erence between aperture extrapolation and bandwidth extrapolation is

that phase may be not linear in n even if the scatterers re�ectivity function σi is assumed

to be independent on the slow-time/aspect angle variable, i.e., the total aperture angle

is supposed small enough to approximate σi(f, n) ' σi. This is because even a simple

rotating target causes the range terms R′i(n) to have a sinusoidal dependence on n (see

(2.10) and (2.48) for the monostatic and bistatic con�guration respectively). Therefore,

the aperture extrapolation can be e�caciously applied if the angle change is small enough

to approximate the sine and cosine functions with a �rst order Taylor-Maclaurin polyno-

mial and no range/cross-range migration e�ects occur. When the phase dependence on

n is linear, then the analysis proceeds exactly as in the bandwidth extrapolation case.

Obviously the coe�cients ck have to be estimated again for the aperture extrapolation.

BWE can also be applied for data interpolation when the SAR/ISAR image is degraded

by frequency gaps or missing pulses. BWE can be used to reconstruct missing signal

components by extrapolating two (or more) di�erent signal portions separately. Then,

the interpolated synthetic data can be produced from a weighted sum of the multiple

extrapolated data. For better understanding the reader is referred to Fig.3.1 where such

a procedure is illustrated. In Fig.3.1 n represents the discrete frequency index, vL[n] and
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vH[n] refer to the available low-frequency and high-frequency data portions respectively

and v̂[n] is the reconstructed data calculated as

v̂[n] =
E− n

E− B
v̂L[n] +

n− B

E− B
v̂H[n] (3.32)

where v̂L[n] and v̂H[n] are the high-frequency and low-frequency extrapolated data within

the frequency notch respectively and B ≤ E. Fig.3.1 is borrowed from [42].

Figure 3.1: Signal interpolation based on linear prediction BWE: illustration for 1D
gapped signal.

Further details and discussion about the BWE algorithm for super-resolution can be

found in [42], whereas in [44] Koen Vos proposes a fast implementation for Burg's algo-

rithm.

3.3 Capon's Minimum Variance Method

Capon's Minimum Variance Method was proposed by J. Capon in 1969 for array beam-

forming and DOA estimation [34]. Nowadays it is a very popular spectral estimation

technique and, for example, is one of the preferred for vertically pointed Mesosphere-

Troposphere-Stratosphere (MST) imaging radars [45] and is also used for non-parametric

beamforming in SAR tomography [46]. Actually, Capon's MVM does not aim to min-

imize the variance of the estimate, but evaluates a di�erent linear combination of the

signal history samples, i.e., an adaptive FIR �ltering, in order to maximize the expected

Signal to Interference Ratio (SIR) satisfying the unit gain constraint.
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Mathematically, given the measured data samples arranged in the vector s, the linear

combination hH(ω) s is performed, where h(ω) is the complex space-variant weighting

vector for the frequency sample ω. Both s and h(ω) are assumed as column vectors.

For frequency ω, the nth element of s is modeled as follows

sn = α(ω)ejnω + en(ω) (3.33)

where α(ω) denotes the complex amplitude of a sinusoid with frequency ω which has to

be estimated and en(ω) is the unmodeled noise and interference at frequency ω for the

nth element of s. MVM maximizes the SIR by selecting h(ω) for each ω to minimize the

expected output energy

E
{∥∥hH(ω)s

∥∥2
}

= hH(ω) Rs h(ω) (3.34)

whereas the unit gain constraint is insured by setting

hH(ω)a(ω) = 1 (3.35)

where the elements of a(ω) are the samples of the complex 2D unit sinusoid that corre-

sponds to the scattering from a point target at frequency ω. In particular, for arbitrary

integer P , the Fourier vector aP (ω) is de�ned as follows

aP (ω) =
[
1 , ejω , ej2ω , · · · , ej(P−1)ω

]T
∈ CP×1 (3.36)

If the length parameter is not speci�ed, such as in (3.35), it is assumed with the same

length of the vector it multiplies. Capon's MVM solves the optimization problem in

(3.34) by applying the method of Lagrange multipliers, which consists of minimizing the

following cost function

JMVM = hH(ω) Rs h(ω)− λ
(
hH(ω)a(ω)− 1

)
(3.37)

Such a problem is solved in two steps

1. Calculate the partial derivative with respect to h(ω) and solve as follows

∂JMVM
∂h(ω)

= hH(ω) Rs − λaH(ω) = 0T ⇒ hH(ω) = λaH(ω)R−1
s (3.38)

2. Choose λ to ensure the solution meets the constraint in (3.35)

hH(ω)a(ω) = 1⇒
(
λaH(ω)R−1

s

)
a(ω) = 1⇒ λ =

1

aH(ω)R−1
s a(ω)

(3.39)
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As a consequence, the optimal �lter results as follows

hMVM(ω) =
R−1
s a(ω)

aH(ω)R−1
s a(ω)

(3.40)

In the equations above, Rs is the signal history covariance matrix. Theoretically

Rs = E
{
ssH

}
(3.41)

but in real applications it is unknown and have to be estimated. Moreover, in (3.40) Rs

needs to be inverted. Consequently, in order to calculate the Capon's optimal �lter, a

full-rank, non-singular covariance matrix estimate is required.

If a set of Nr realizations of a signal vector s is available, the most simple way to estimate

the covariance matrix is

R̂s =
1

Nr

Nr∑
n=1

sns
∗
n (3.42)

where sn is the nth realization of s. However, in radar imaging this approach can be

only used if multi-look measurements are available, e.g., in multi-look polarimetric SAR

imaging [47]. Most commonly, in radar imaging applications, only one look is available

and this approach cannot be used.

In case of single look measurements, there are several ways to estimate the signal covari-

ance matrix, but the most common is the forward-backward method [48]. Such a method

consists of averaging di�erent estimated covariance matrices from di�erent subapertures

of the whole available data along both the �forward� and �backward� directions.

Referring to Fig.3.2, consider the 1D signal s ∈ CN×1 and the subaperture si de�ned as

follows

si =
[
s(i), s(i+ 1), . . . , s(i+ N̂)

]T
∈ CN̂×1 (3.43)

Figure 3.2: Subaperture selection for the 1D signal vector s.

Therefore, L = N − N̂ + 1 overlapping subapertures are available and the forward

covariance matrix RF is calculated as follows

RF =
1

L

L∑
i=i

sis
H
i (3.44)
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whereas the backward covariance matrix RB

RB =
1

L

L∑
i=i

JN̂
(
sis

H
i

)T
JN̂ =

1

L

L∑
i=i

JN̂s∗i s
T
i JN̂ = JN̂RT

FJN̂ (3.45)

where JP denotes the P ×P reversal matrix, i.e., a matrix with ones on its anti-diagonal

and zeros everywhere else

JP =



0 0 · · · 0 1

0 0 · · · 1 0
...

... ···
...

...

0 1 · · · 0 0

1 0 · · · 0 0


(3.46)

The forward-backward estimation covariance matrix of s is calculated by averaging RF

and RB as shown below.

R̂s =
1

2
(RF + RB) =

1

2

(
RF + JN̂RT

FJN̂
)
∈ CN̂×N̂ (3.47)

The idea of forward-backward averaging comes from the fact that a complex sinusoid

evolves in one spatial direction in the same manner as the conjugate sinusoid evolves

in the opposite spatial direction. On the other hand, conjugating and reversing the

clutter/noise contribution yields an independent realization. As a consequence forward-

backward averaging results in doubling the actual averaging operations.

Covariance matrix estimation is a keystone of the whole Capon's MVM and the most of

spectral estimation algorithms. The �nal result is strictly correlated with it and in case

of forward-backward estimation the Capon's �lter size depends on the covariance matrix

size, i.e., the subaperture length N̂ . Typically the longer the �lter length, the more

increased the spectral resolution, but the statistical stability of the spectral estimates

can be compromised. This is because, since L = N − N̂ + 1, a larger �lter is obtained

by reducing the number of subapertures, i.e., amount of averaging operations.

If the estimated covariance matrix is too large and not enough averaging operations are

performed, R̂s could result ill-conditioned, i.e., condition number results increased and

noise at the output of the Capon's �lter ampli�ed. Thus, the aperture size must be

chosen as a compromise between spectral resolution and SNR.
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In case of a bidimensional signal, i.e., SAR/ISAR application, the signal vector s is

modeled as follows

s = vec (S) = vec




S(1, 1) S(1, 2) · · · S(1, N)

S(2, 1) S(2, 2) · · · S(2, N)
...

...
. . .

...

S(M, 1) S(M, 2) · · · S(M,N)



 (3.48)

where

S(m,n) = α(ω1, ω2)ej(mω1+nω2) + em,n(ω1, ω2) (3.49)

Compare (3.49) with (3.33).

In this case, the signal vector length becomes MN and the covariance matrix have to be

estimated from the 2D signal matrix S. Consequently, assuming L1 = M − M̂ + 1 and

L2 = N−N̂+1, the forward-backward algorithm works by extracting L1L2 bidimensional

M̂ × N̂ subapertures

Sl1,l2 =


S(l1, l2) S(l1, l2 + 1) · · · S(l1, l2 + N̂)

S(l1 + 1, l2) S(l1 + 1, l2 + 1) · · · S(l1 + 1, l2 + N̂)
...

...
. . .

...

S(l1 + M̂, l2) S(l1 + M̂, l2 + 1) · · · S(l1 + M̂, l2 + N̂)

 (3.50)

Therefore, the forward covariance matrix can be calculated as follows

RF =
1

L1L2

L1∑
l1=1

L2∑
l2=1

sl1,l2s
H
l1,l2 =

YYH

L1L2
(3.51)

where

sl1,l2 = vec (Sl1,l2) ∈ CM̂N̂×1 (3.52)

and

Y = [s1,1 , s2,1 , · · · , sL1,1 , s1,2 , · · · , sL1,2 , · · · , sL1,L2 ] ∈ CM̂N̂×L1L2 (3.53)

For the bidimensional case, the forward-backward sample covariance matrix is then cal-

culated as shown below.

R̂s =
1

2

(
RF + JM̂N̂RT

FJM̂N̂

)
∈ CM̂N̂×M̂N̂ (3.54)

For 2D SAR/ISAR, subaperture sizes of 40 − 50% generally give good results for the

most of the methods that exploit the covariance matrix, such as MVM or MUSIC [39].
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Once the covariance matrix is estimated, the 2D Fourier vector aP1,P2(ω1, ω2) for arbi-

trary integers P1 and P2 is calculated as follows

aP1,P2(ω1, ω2) = aP1(ω1)⊗ aP2(ω2) ∈ CP1P2×1 (3.55)

where the 1D Fourier vectors aP1(ω1) and aP2(ω2) are calculated by means of (3.36), ⊗
denotes the Kronecker product and

ω1 = 2πp/P for p = 0, 1, · · · , P − 1

ω2 = 2πq/Q for q = 0, 1, · · · , Q− 1
(3.56)

whereas the 2D Fourier transform ḡ(ω1, ω2) is de�ned as follows

ḡ(ω1, ω2) =
1

L1L2

L1∑
l1=1

L2∑
l2=1

sl1,l2e
−j(ω1(l1−1)+ω2(l2−1))

=
1

L1L2
YaL1,L2(−ω1,−ω2) ∈ CM̂N̂×1 (3.57)

Therefore, once aM̂,N̂ (ω1, ω2), R̂s and ḡ(ω1, ω2) are de�ned, it is possible to apply the

Amplitude Spectrum Capon (ASC) estimator as follows

α̂CAPON(ω1, ω2) =
aH
M̂,N̂

(ω1, ω2) R̂−1
s ḡ(ω1, ω2)

aH
M̂,N̂

(ω1, ω2) R̂−1
s aM̂,N̂ (ω1, ω2)

(3.58)

Typically the estimated spectrum is evaluated on a �ne uniform frequency grid of size

P ×Q. High values of P and Q allow for a better modeling of strong isolated scatterers

but increase the computational load and do not imply a signi�cant resolution enhance-

ment. Moreover, direct implementation of the above is computationally very demanding.

In general, all of the methods that require estimation, inversion, or eigen-decomposition

of a full-rank covariance matrix, e.g., MVM, APES, MUSIC, MMSE, etc. are computa-

tionally intensive. In typical SAR application the scene of interest can be very wide and

the SAR image can be very big in terms of number of samples. Considering for example a

1000×1000 pixel SAR/ISAR image (without zero-padding), assuming a subaperture size

of 40%, the resultant covariance matrix will be of 160000× 160000 elements. Therefore,

to apply these algorithms to typical SAR scenes, it is necessary to employ a �decimation

and mosaicing� strategy brie�y illustrated below [39, 49]:

1. The signal history is downsampled (decimated) and a series of small overlapping

subimages, or Regions Of Interest (ROI), within the entire SAR scene are obtained.

The size of these subimages (or image chips) depends primarily on the available

computing resources.
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2. MVM (or other algorithms) is applied on each subimage serially or in parallel.

3. The chip images after the super-resolution algorithm performing are re-combined

into a single image (mosaicing).

Moreover, the forward-backward algorithm can be not enough to guarantee a non-singular

invertible covariance matrix compromising the algorithm stability. For this reason, sev-

eral approaches and variations of the basic MVM have been proposed, e.g., the Reduced

Rank MVM (RRMVM) [39], the Rank-De�cient Robust Capon Filter [50], the �Loaded

Capon� [51], etc. Further discussion about Capon's MVM can be found in [39].

3.4 Amplitude and Phase Estimation of a Sinusoid

The Amplitude and Phase Estimation of a Sinusoid (APES) is an adaptive �ltering

approach introduced by Jian Li and Petre Stoica in [35]. APES is closely related to

Capon's MVM but estimates both noise and interference in the covariance matrix, i.e., is

a matched �lter and allows for more accurate spectral estimates by reducing the amount

of noise that leaks through the �lter. MVM usually gives higher resolution and less

biased peak locations than APES, but also higher spectral amplitude bias and Mean

Square Error (MSE), i.e., APES gives more accurate spectral estimates at the true peak

locations than MVM [49].

In the bidimensional case, assuming the same signal model used for MVM (see (3.49)),

the 2D-APES �lter is de�ned as follows

hAPES(ω1, ω2) =
Q−1
s (ω1, ω2)a(ω1, ω2)

aH(ω1, ω2)Q−1
s (ω1, ω2)a(ω1, ω2)

(3.59)

and, the APES estimator is de�ned by (3.60).

α̂APES(ω1, ω2) =
aH
M̂,N̂

(ω1, ω2) Q̂−1
s (ω1, ω2) ḡ(ω1, ω2)

aH
M̂,N̂

(ω1, ω2) Q̂−1
s (ω1, ω2) aM̂,N̂ (ω1, ω2)

(3.60)

where

Q̂s(ω1, ω2) = R̂s −
1

2

[
ḡ(ω1, ω2) g̃(ω1, ω2)

] [ ḡ∗(ω1, ω2)

g̃∗(ω1, ω2)

]
(3.61)

g̃(ω1, ω2) =
1

L1L2
ỸaL1,L2(−ω1,−ω2) (3.62)

Ỹ = JM̂N̂Y∗JL1L2 (3.63)
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R̂s is the forward-backward estimated covariance matrix of the signal vector s, aM̂,N̂ (ω1, ω2)

and ḡ(ω1, ω2) are calculated as in (3.55) and (3.57) respectively and the Js are the re-

versal matrices as in (3.46). Equations (3.59) and (3.60) are analytically demonstrated

in [35].

By assuming the noise and interference in s̄m,n = sm,n (see (3.52)) and s̃m,n = JMN s∗m,n

as independently and identically distributed zero-mean Gaussian random vectors with

arbitrary covariance matrix, the α̂APES(ω1, ω2) obtained by means of (3.60) is the max-

imum likelihood (ML) estimate of α(ω1, ω2). However, this is not exactly true because

the sm,n vectors are overlapping. The noise vectors, i.e., those vectors containing the

elements em,n(ω1, ω2) (see the 3.49), cannot be considered independent.

Furthermore, Q̂s(ω1, ω2) is an estimate of the noise and interference covariance matrix.

This is why hAPES in (3.59) is a matched �lter.

The reader may refer to [35] and [49] for further details about the APES super-resolution

technique. In both [52] by Larsson and Stoica and [53] by Zheng-She Liu et al. faster

and more e�cient variants of both MVM and APES are proposed.

3.5 Super Spatially Variant Apodization

Super-SVA is a super-resolution technique introduced by Stankwitz and Kosek in [36].

It exploits the non-linear properties of the Spatially Variant Apodization (SVA) [37]

technique in order to enhance the image resolution by extrapolating the signal support.

The term �apodization� is borrowed from Hecht's Optics [54] and refers to the suppression

of di�raction sidelobes.

In conventional SAR/ISAR imaging, when no weighting is applied, a point target ob-

served in the scene is associated with a 2D sinc-like PSF (see (2.37) for the monostatic

case and (2.72) for the bistatic case). For the sinc-like impulse response, the �rst sidelobe

is −13.5dB below the peak and the sidelobe envelope decreases 6dB per octave beyond

that. Since SAR/ISAR imagery can have a dynamic range of 50dB or higher, sidelobes

for a strong scatterer can easily interfere or obscure nearby weaker targets. Traditionally,

sidelobes are reduced by applying an amplitude weighting function to the data, such as

the Hamming, Hanning and Kaiser windows. The e�ect of such weighting functions is

a sidelobe reduction but also a mainlobe expansion, i.e., a resolution loss. The Hanning

mainlobe for example is twice as wide (null-to-null) as the sinc function. In general, all

linear weighting functions are a compromise between a narrow mainlobe (resolution) and

low sidelobes and result in a spatially invariant PSF, i.e., the same for every location in

the image. The reader may refer to [55] for further details about linear weighting.
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The SVA is a special case of Adaptive Sidelobe Reduction (ASR) [56] based on cosine-

on-pedestal weighting that allows to suppress sidelobes while preserving the mainlobe

width. Rather than Hamming, Hanning or other weighting functions, SVA is a non-linear

technique which results in a spatially variant PSF, i.e., a di�erent weighting function for

every pixel in the image.

In particular, SVA is based on the multi apodization concept summarized below:

1. Compute di�erent versions of the image by using di�erent weighting functions,

such as uniform and Hanning (see Fig.3.3a in blue and red respectively);

2. Select the value with minimum module from the di�erent images for each spatial

location (see Fig.3.3b).

In case of complex images the second step is performed by selecting the complex value

whose magnitude is minimum. However, in the most of cases the real (I or in-phase)

and imaginary (Q or quadrature) parts are elaborated separately. In case of two images

this procedure is called Dual Apodization (DA).

(a) (b)

Figure 3.3: Illustration of the uniform (in blue) and Hanning (in red) point spread
functions (a) and Dual Apodization result (b).

Another version of this procedure exploits the fact that, for those points for which the

uniform and Hanning PSFs have di�erent sign, there must be some intermediate weight-

ing function for which the value of the component is zero. Exploiting the sign change is

a way to e�ectively exploit a family of weighting windows while only having to compute

two images.

The algorithm which makes use of this principle is called Complex DA (CDA) and works

in the following steps:
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1. Compute two versions of the image of interest (real part) by using uniform and

Hanning weightings (see Fig.3.4a in blue and red respectively);

2. If the real components of the two images have the same sign then select the one

which has the smaller absolute value, otherwise select the value zero (see Fig.3.4b).

Then do the same for the imaginary part. CDA is especially powerful because the

sidelobes for the uniform and Hanning windows are opposite in sign. The result for a

single bright point is simply the mainlobe of the sinc function (see Fig.3.4b). However,

for 2D images the CDA is less e�ective if the PSF sidelobes are not along the cardinal

axes. In [57] a variation of the SVA for squinted images is proposed.

(a) (b)

Figure 3.4: Illustration of the uniform (in blue) and Hanning (in red) point spread
functions (a) and Complex Dual Apodization result (b).

SVA is based on this concept and e�ectively eliminates �nite-aperture induced sidelobes

from uniformly weighted SAR/ISAR images while retaining the mainlobe resolution.

The family of the cosine-on-pedestal weighting functions is given by

WCoP(n) = 1 + 2wcos (2πn/N) (3.64)

where N is the window length and w identi�es the particular window of the family (w = 0

for the uniform, w = 0.43 for the Hamming, w = 0.5 for the Hanning, etc.).

Therefore, by taking the N -length discrete Fourier transform of a cosine-on-pedestal

weighting function, the Nyquist-sampled impulse response is given by

wCoP(i) = wδi,−1 + δi,0 + wδi,1 (3.65)
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where δi,j denotes the Kronecker delta function

δi,j =

{
1 if i = j

0 if i 6= j
(3.66)

The cosine-on-pedestal weighting functions can then be implemented by using a 3-point

convolver that makes the SVA extremely simple computationally. In [37] the SVA is

proposed in two approaches:

1. I and Q Jointly which is the most natural extension of DA;

2. I and Q Separately which is computationally simpler and yields even greater side-

lobe suppression in presence of clutter.

In the following the �I and Q Separately� approach is brie�y summarized for the monodi-

mensional case.

Let g(i) be the samples of either the real (in-phase) or imaginary (quadrature) component

of a uniformly weighted Nyquist-sampled image. The output from the 3-point convolver

in (3.65) is given by

gSVA(i) = w(i)g(i− 1) + g(i) + w(i)g(i+ 1) (3.67)

where w(i) varies from 0 (uniform weighting) to 1/2 (Hanning weighting). Therefore,

the w(i) which minimizes |gSVA(i)|2 by setting

∂

∂w(i)
|gSVA(i)|2 = 0 (3.68)

have to be found. As a result, the unconstrained w(i) that gives the minimum

wu(i) =
−g(i)

g(i− 1) + g(i+ 1)
⇒ gSVA(i) = 0 (3.69)

However, w(i) must be imposed to be ≥ 0 and ≤ 1/2, that implies

gSVA(i) =


g(i) if wu(i) < 0

0 if 0 ≤ wu(i) ≤ 1/2

g(i) + 1
2 [g(i− 1) + g(i+ 1)] if wu(i) > 1/2

(3.70)

that is performed on the in-phase and quadrature values independently. Integer Nyquist

sample rates are easily handled by applying g(i−k)+g(i+k) instead of g(i−1)+g(i+1)

in (3.67) and (3.70) for a sample rate k times Nyquist. Non-integer Nyquist sample rates
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need instead some variations to the basic algorithm [58]. For the I and Q Jointly the

reader may refer to [37].

In case of bidimensional signals the SVA can be implemented in two ways:

1. Two Dimensions Sequentially: the SVA is implemented for each dimension sequen-

tially, i.e., �rst along the horizontal and then along the vertical direction;

2. Two Dimensions Simultaneously: the SVA is implemented by means of a bidimen-

sional version of the FIR �lter in (3.65).

Both of them can be implemented via the �I and Q Jointly� and �I and Q Separately�

approaches.

In the �Two Dimensions Simultaneously� case, the following 2D FIR �lter is employed

wCoP(p, q) =


wpwq wq wpwq

wp 1 wp

wpwq wq wpwq

 (3.71)

where both wp and wq depend on (p, q). Now let

Qp = I(p− 1, q) + I(p+ 1, q) (3.72)

Qq = I(p, q − 1) + I(p, q + 1) (3.73)

Pp,q = I(p− 1, q − 1) + I(p− 1, q + 1) + I(p+ 1, q − 1) + I(p+ 1, q + 1) (3.74)

Then, the convolution between the image I and the �lter wCoP in (3.71) at pixel (p, q)

ISVA(p, q) = I(p, q) + wpwqPp,q + wpQp + wqQq (3.75)

= I(p, q) + [wqPp,q +Qp]wp + wqQq

By looking at (3.75), it appears that for any given wq, ISVA(p, q) is a linear function of

wp and vice versa. It follows that both the maximum and minimum values of ISVA(p, q)

can be found at the four corners of the box
[
0, 1

2

]
×
[
0, 1

2

]
, i.e., at (wp, wq) = (0, 0),

(0, 1
2), (1

2 , 0), or (1
2 ,

1
2). Furthermore, since ISVA(p, q) is monotonic in wp and wq, it goes

through zero within the box interval if and only if it changes sign within the interval. As

a consequence, for SVA only those four corners need to be checked [37]. Therefore, the

2D SVA is implemented as follows
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1. De�ne

w0, 1
2

=


0 1

2 0

0 1 0

0 1
2 0

 (3.76)

w 1
2
,0 =


0 0 0
1
2 1 1

2

0 0 0

 (3.77)

w 1
2
, 1
2

=


1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

 (3.78)

2. Compute

ISVA,1 = I for (wp, wq) = (0, 0)

ISVA,2 = I⊗w0, 1
2

for (wp, wq) = (0, 1
2)

ISVA,3 = I⊗w 1
2
,0 for (wp, wq) = (1

2 , 0)

ISVA,4 = I⊗w 1
2
, 1
2

for (wp, wq) = (1
2 ,

1
2)

(3.79)

3. For each (p, q), if any of the ISVA,i(p, q) for i = 1, 2, 3, 4 have sign opposite that of

I(p, q), then set ISVA(p, q) = 0.

4. Otherwise, ISVA(p, q) = ISVA,i(p, q) where i selects the one with minimum magni-

tude.

In [37] the algorithm is analytically tested for both a single and multiple sinc functions,

e�ects of noise and phase errors are analyzed and the di�erent approaches are treated in

deep. In [59] Thomas et al. propose a variant of the SVA based on the Kaiser window.

Furthermore, in [60] Pastina et al. analyze the e�ect of apodization on the statistical

properties of SAR images.

Figure 3.5: Super-SVA: algorithm �ow chart.

As written in Section 3.1, the non-linearity of the SVA causes a bandwidth widening that

can be exploited in order to perform a controlled extrapolation of the complex signal and
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enhance the image resolution. The Super-SVA is based on a bandwidth extrapolation

(BWE) step performed by an inverse �ltering on the SVA result. The process is depicted

in Fig.3.5 and can be explained as follows. Let

1. I(p, q) be the matrix of either the real or imaginary part of the uniformly weighted

k-Nyquist-sampled input image;

2. S(m,n) = IDFT{I(p, q)} assumed as band-limited;

3. ISVA(p, q) be the result of the SVA process;

4. SSVA(m,n) = IDFT{ISVA(p, q)};

5. SSVA-BE(m,n) be the result of the bandwidth extrapolation step;

6. ISSVA(p, q) = DFT{SSVA-BE(m,n)}.

(a) (b)

Figure 3.6: Super-SVA �rst loop example: I(p, q) (a) and S(m,n) (b).

(a) (b)

Figure 3.7: Super-SVA �rst loop example: ISVA(p, q) (a) and SSVA(m,n) (b).
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Consider the sinc-like image in Fig.3.6a as an example for I(p, q) and its relative S(m,n)

zoomed in Fig.3.6b. Since SVA is a non-linear operation, SSVA(m,n) shown in Fig.3.7b

is no longer band-limited and has larger extent in the frequency domain than S(m,n).

ISVA(p, q) is instead depicted in Fig.3.7a. Images in Fig.3.6, 3.7 and all the following are

shown in dB scale for illustration purposes.

The bandwidth extrapolation is then performed in two steps:

1. Inverse �ltering to equalize the magnitude taper over an aperture within the �rst

nulls of SSVA(m,n) in Fig.3.7b in order to avoid singularities over the extrapolated

aperture;

2. Replacing of the �ltered signal portion within the original bandwidth with the

original complex signal.

The inverse �lter is created by de�ning a 2D sinc function with its sidelobes forced to

zero as follows

WBE(p, q) =

 sinc (p)T sinc (q) if |q ≤ 1| and |p ≤ 1|

0 otherwise
(3.80)

A 2D-IDFT is then performed in order to generate the inverse �lter wBE(m,n)

wBE(m,n) = IDFT{WBE(p, q)} (3.81)

where

q =

[
−N

2
, −N

2
+ ∆n , · · · , −∆n , 0 , ∆n , 2∆n , · · · , N

2
− 1 − ∆n ,

N

2
− 1

]
p =

[
−M

2
, −M

2
+ ∆m , · · · , −∆m , 0 , ∆m , 2∆m , · · · , M

2
− 1 − ∆m ,

M

2
− 1

]
and where N and M denote the size of the complex signal S(m,n) along the horizontal

and vertical coordinates respectively (before any zero-padding). ∆n and ∆m are calcu-

lated as the ratio between the original and the zero-padded signal size along the same

coordinates. The magnitude tapering e�ect of the SVA in then inverted as follows

SSVA-BE(m,n) =


SSVA(m,n)
|wBE(m,n)| if (m,n) ∈ R

0 otherwise
(3.82)

where R is the domain contained within the �rst nulls of the inverse �lter magnitude

along both the horizontal and vertical coordinates. Such a domain is set to be wider

than the original signal bandwidth by a factor η > 1 named �Bandwidth Extrapolation

Factor� (BEF) and is highlighted in red in Fig.3.7b for η =
√

2. The result of this �rst

step is shown in Fig.3.8a.
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The second step of the bandwidth extrapolation is then performed by replacing the

original complex signal within its original bandwidth:

SSVA-BE(m,n) =

 SSVA(m,n) if (m,n) ∈ B

SSVA-BE(m,n) otherwise
(3.83)

where B is the supporting frequency domain of the original signal. The �nal result of

the bandwidth extrapolation in shown in Fig.3.8b.

(a) (b)

Figure 3.8: Super-SVA �rst loop example: SSVA-BE(m,n) before (a) and after (b) the
substitution step.

In the end a 2D-DFT is applied to SSVA-BE(m,n) to obtain ISSVA(p, q) shown in Fig.3.9a.

The sequence SVA �IDFT �BWE �DFT can be iterated to reach the desired value

of resolution. In particular, Fig.3.9b shows the SSVA result after the fourth loop. It is

worth highlighting that, by de�ning ∆p and ∆q as the �rst-null resolution of the sinc-like

function in Fig.3.6a along the p and q directions respectively, at each SSVA iteration they

decrease through the following law

∆pi = ∆p ηip (3.84)

∆qi = ∆q ηiq (3.85)

where i denotes the ith iteration. ηp and ηq highlight the fact that the BEF does not

need to be the same for both the horizontal and vertical directions. If the resolution is

wanted to be enhanced by a factor Kp and Kq along the p and q directions respectively,

the SSVA is needed to be run in

Nloop = max
{⌈

logηp (Kp)
⌉
,
⌈
logηq (Kq)

⌉}
(3.86)

loops.



Chapter 3. Super-Resolution techniques review 65

(a) (b)

Figure 3.9: Super-SVA example: ISSVA(p, q) at the �rst (a) and fourth (b) SSVA loop.

SSVA is particularly e�ective for isolated point scatterers where the convolutional model

is accurate and can be used for sparse aperture �lling [61]. It is important to specify

that, to apply the SSVA for super-resolution to SAR/ISAR images, it is needed a sinc-

like PSF, i.e., any linear weighting window needs to be inverted before. Moreover, any

zero-padding needs to be known since the SVA needs to know the sampling rate in the

image domain. For (3.84) it is also worth pointing out that, even if the input image I(p, q)

has integer Nyquist sample rate, this is not guaranteed after the �rst SSVA iteration.

Thus, it is recommended to use the generalized SVA for non-integer Nyquist sampling

rates proposed in [58]. In [62] a variant of the SSVA based on a 5-taps SVA is proposed.

3.6 Super-Resolution via Compressed Sensing

The theory of Compressed Sensing (CS) is based on the following concept:

The Nyquist-Shannon sampling theorem states that a certain minimum

number of samples is required in order to perfectly capture an arbitrary ban-

dlimited signal, but when the signal is sparse in a known basis we can vastly

reduce the number of measurement that need to be stored. Consequently,

when sensing sparse signals we might be able to do better than suggested by

classical results.

by [63].

Compressed Sensing theory is based on the concept of �sparsity�, i.e., the possibility to

represent a signal in a domain where it can be written as a linear combination of a small

number of elements.
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By assuming the source signal vector x ∈ RN×1, if a �sparsity basis� {ψi} exists, a K-

sparse representation of x can be stated as a linear combination of K basis vectors as

follows

x =
N∑
i=1

θiψi =
K∑
k=1

θikψik (3.87)

where {ik} are the indexes of those vectors and {θi} the weighting coe�cients. In (3.87) θi

is a scalar number, {ψi} is aN -length column vector and θik are theK non-zero weighting

coe�cients of the sparse representation. Therefore, by stacking the basis vectors in the

N ×N basis matrix Ψ = [ψ1, . . . , ψN ], the following matrix notation can be used

x = Ψθ (3.88)

where θ is the N -length column vector of the weighting coe�cients. Ψ is also named the

�dictionary� matrix.

Now, consider to measure M < N linear projections of the signal on a second set of

vectors {φm}. In this case the M -length measured signal y can be written as

y = Φx (3.89)

where Φ = [φ1, . . . , φM ]T is the M ×N �sensing� matrix.

CS theory allows to recover theK largest elements of θ from this set ofM = O (K log(N/K))

measurements [64], i.e., to recover a sparse signal from the incomplete measurement with

high probability by solving a sparsity-driven optimization problem.

In radar imaging applications, SAR/ISAR images can be considered as composed of a

small number of strong point-like scatterers with respect to the total number of pixels.

Then, SAR/ISAR images can be considered sparse and reconstructed from incomplete

data through CS. However, the sparsity of the SAR/ISAR image is not the only condition

for the successful image reconstruction. Another key point is the Restricted Isometry

Property (RIP) condition, i.e., the incoherence between the dictionary and the sensing

matrices, and an e�ective algorithm for the optimization problem.

Consider the signal model in (2.10) and suppose the target/scene as a set of point-like

scatterers (samples) in a regular grid and its re�ectivity function writable as follows

γ(z1, z2) =

P∑
i=1

Q∑
j=1

σi,j δ (z1 − z1,j) δ (z2 − z2,i) (3.90)

where σi,j is the complex re�ectivity function of the scene in the (i, j)th grid sample.

By approximating the sine and cosine functions with their �rst order Taylor-Maclaurin
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polynomial, the received signal after motion compensation can then be written as

S(f, n) = W (f, n)

∫
z1

∫
z2

γ(z1, z2) e−j
4πf
c [Ωeff tnz1,j+z2,i]dz1dz2 (3.91)

= W (f, n)
P∑
i=1

Q∑
j=1

σi,j

∫
z1

∫
z2

δ (z1 − z1,j) δ (z2 − z2,i) e
−j 4πf

c [Ωeff tnz1,j+z2,i]dz1dz2

= W (f, n)
P∑
i=1

Q∑
j=1

σi,j e
−j 4πf

c [Ωeff tnz1,j+z2,i]

= W (f, n)

P∑
i=1

Q∑
j=1

σi,j e
−j2π(τif+νjtn)

where

τi =
2z2,i

c
(3.92)

νj =
2fΩeffz1,j

c
'

2f0Ωeffz1,j

c
(3.93)

denote the delay-time and the Doppler frequency for the (i, j)th scatterer. The frequency

variable f in (3.93) is approximated by the carrier frequency f0 for the rectangular domain

approximation of the sample grid in the Fourier domain. However, in a real scenario,

both the variables in the signal domain (f, n) and in the image domain (τ, ν) have to be

discretized. Therefore, the signal in (3.91) have to be written as function of the following

discrete variables:

m : f = f0 +mδf (3.94)

n : tn = nTR (3.95)

p : τ = pδτ (3.96)

q : ν = qδν (3.97)

for m = 1, . . . , M , n = 1, . . . , N , p = 1, . . . , P and q = 1, . . . , Q where δf is the

frequency sampling spacing (see Section 3.2), δτ is the delay-time pixel spacing in (3.98)

and δν is the Doppler frequency pixel spacing in (3.99).

δτ =
1

B
=

1

Pδf
(3.98)

δν =
1

Tob
=

1

QTR
(3.99)

Therefore

τif =
pi
Pδf

(f0 +mδf ) =
mpi
P

+
f0

B
pi (3.100)
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νjtn =
qj
QTR

nTR =
nqj
Q

(3.101)

and the signal model in (3.91) can be rewritten as follows

S(m,n) = W (m,n)
P∑
i=1

Q∑
j=1

σi,j e
−j2π f0

B
pi e−j2π

mpi
P e

−j2π
nqj
Q (3.102)

whereW (m,n) represents the signal support in the discrete frequency/slow-time domain.

Therefore, by applying the inverse Fourier transform on (3.102), the ISAR image can be

expressed as follows

I(p, q) =

P∑
i=1

Q∑
j=1

σi,j w(p− pi, q − qj) e−j2π
f0
B
pi (3.103)

where w(p, q) is the discretized version of the imaging PSF in (2.30). Consider now the

matrices SC ∈ CM×N and I ∈ CP×Q to represent the signal in (3.102) and the image in

(3.103) respectively. With this notation (3.102) can be written as

SC = ΨyIΨ
T
x (3.104)

where Ψy ∈ CM×P and Ψx ∈ CN×Q are the �Fourier dictionaries� in which P = M and

Q = N that perform the range and cross-range compression respectively:

[Ψy]m,p = e−j2π
mp
P (3.105)

[Ψx]n,q = e
−j2π nq

Q (3.106)

Consider now SC in (3.104) as the complete source data matrix from which the full-

resolution ISAR image I is obtained. Then assume S as a partial signal acquired because

of data loss due to hardware malfunctioning or compression requirements. In these cases,

the acquired signal S is assumed to be obtained from the signal in (3.104) after a sensing

process

S = ΦyΨyIΨ
T
xΦT

x = ΘyIΘ
T
x (3.107)

where

S ∈ CM
′×N ′

Φy ∈ CM
′×M

Φx ∈ CN
′×N

Θy ∈ CM
′×P

Θx ∈ CN
′×Q
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whereM ′ < M and N ′ < N . Φy and Φx in (3.107) represent the sensing matrices which

perform the random selection of samples in the frequency/slow-time domain respectively,

whereas Θy and Θx are the �undercomplete Fourier matrices� which satisfy the RIP

constraint and provide stronger non-coherence than the Gaussian matrix [63, 65]. In

[66], the authors introduce a method based on eigenvalue statistics to prove that such an

undercomplete Fourier dictionary satisfy the RIP. Θy and Θx are de�ned by considering

the indexes of the pulses and frequency bins selected by the sensing process. In particular,

[Θy]i,p = e−j2π
pmi
P (3.108)

[Θx]j,q = e
−j2π

qnj
Q (3.109)

where {mi}M
′

i=1 and {nj}N
′

j=1 are the frequency and slow-time indexes respectively. The

reconstruction of I from the measurement S is then achieved by means of the following

minimization problem [63]

Î = min
I
‖I‖0 :

∥∥S−ΘyIΘ
T
x

∥∥2

F
≤ ε (3.110)

where ε is an arbitrary small real number. ‖· ‖F and ‖· ‖0 denote the Frobenius norm

and the `0-norm respectively:

‖A‖F
.
=

√√√√ M∑
m=1

N∑
n=1

|am,n|2 =
√
trace (AHA) (3.111)

‖x‖0
.
= |supp(x)| (3.112)

where am,n is the element in position (m,n) of the genericM×N size matrix A in position

(m,n), supp(x) = {i : xi 6= 0} is the support of the generic vector x and |supp(x)|
denotes the cardinality of supp(x), i.e., the number of non-zero components of x. The

minimization problem in (3.110) can then be solved by the Smoothed `0 Norm based

sparse decomposition algorithm (SL0) proposed by Hosein Mohimani et al. in [67] (see

also [68]). The main idea behind the SL0 algorithm is to approximate the `0 norm,

which is a discontinuous function, with a smoothed and continuous function and solve

the minimization problem by means of a steepest descend method. The continuous

function which approximate the `0 norm is made with a parameter σ which determines

the quality of the approximation. Consider the (one-variable) family of functions

fσ(x) = exp

{
−x2

2σ

}
(3.113)
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for which

lim
σ→0

fσ(x) =

 1 if x = 0

0 if x 6= 0
⇒ fσ(x) ≈

 1 if |x| � σ

0 if |x| � σ
(3.114)

Consider now the generic P -dimensional vector x and the function Fσ(x) de�ned as

Fσ(x) =

P∑
i=1

fσ(xi) (3.115)

Therefore, from (3.114) and (3.115), for small values of σ, the `0 norm of x can be

approximated as

‖x‖0 ≈ N − Fσ(x) (3.116)

The `0 norm minimization problem can be solved by maximizing Fσ(x) for a small value

of σ. The value of σ determines the smoothness of Fσ. If σ is large, Fσ will be smoother

but a worse approximation of the `0 norm. On the other hand, if σ is small, Fσ will be

a better approximation of ‖x‖0 but the maximization procedure will be more di�cult.

This is because for small values of σ, Fσ is highly non-smooth and contains a lot of local

maxima. The idea is then to use a decreasing sequence of σ and maximize Fσ for each σi.

The initial value for the maximization algorithm for the generic σi is given by the result

of the maximization for σi−1. If σ is gradually decreased, for each σi the maximization

algorithm starts with an initial solution near to the actual maximizer of Fσ and hence

the algorithm will likely escaping from getting trapped into local maxima. Consider now

the following linear noiseless model

y = Φx (3.117)

where y ∈ C[M ′×1] is the recorded signal vector, x ∈ C[P×1] is the source signal vector

to be estimated and Φ ∈ C[M ′×P ] is the sensing matrix. In [67] is then proven that

�for su�ciently large values of σ, the maximizer of Fσ(x) subject to Φx = y is the

minimum `2 norm solution of Φx = y, i.e., the solution given by the pseudo-inverse of

Φ�. Therefore, the algorithm is initialized with a �rst solution given by

x̂0 = Φ†y (3.118)

i.e., the minimum `2 norm solution which corresponds to σ → +∞. In general, the next

value for σ, i.e., the �rst one of the decreasing sequence, is chosen about two or four

times the maximum absolute value of x̂0. On the other hand, the last (smallest) element

of the sequence depends on the desired estimation accuracy. In applications where the

inactive elements of x are exactly zero, σ can be decreased to arbitrarily small values. If
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inactive elements of x are instead small but not exactly zero (in case of noise), i.e.,

y = Φx + n (3.119)

where n ∈ N (0, σ2
n) is the additive noise term, the smallest should be about one to two

times the standard deviation of such a noise (σn). This is because, while is in this range,

the cost function fσ(x) treats small (noisy) samples as zeros, i.e., fσ(xi) ≈ 1. Below this

range, the algorithm tries to �learn� these undesired noisy values. Intermediate values

can be calculated by means of a certain decreasing factor cσ usually chosen between 0.5

and 1. The sequence of the σ parameters can then be calculated as follows

σj = cσ σj−1 = cj−1
σ σ1 = cj−1

σ 2 max (|x̂0|) (3.120)

for j = 1, 2 . . . , J , where J depends on the chosen last value for the sequence:

cJ−1
σ σ1 ≤ 2σn ⇒ J = 1 +

⌈
logcσ

(
σn

max (|x̂0|)

)⌉
(3.121)

The �rst estimation x̂0 and the sequence [σ1, σ2, . . . , σJ ] are then given as input to the

following iterative algorithm for j = 1, . . . , J

1. Let σ = σj ;

2. Let x = x̂j−i;

3. For l = 1, . . . , NL (loop NL times);

(a) Let ∆
.
=
[
x1 exp

(
−x2

1
2σ

)
, x2 exp

(
−x2

2
2σ

)
, . . . , xP exp

(
−x2

P
2σ

)]T
;

(b) Let x← x− µ∆ where µ is a small positive constant;

(c) Project x into a feasible set S = {x |Φx = y}:

x← x−Φ† (Φx− y)

4. Set x̂j = x

where steps 2 and 3 perform an approximate maximization of Fσ(x) on the feasible set

S using a �xed number of NL iterations of the steepest ascend algorithm followed by

the projection onto S. The maximization is only approximated because, at each step, it

is only needed to enter the region near the (global) maximizer of Fσ for escaping from

its local maximizers. In the end x̂ = x̂J . Further details about this algorithm with

theoretical analysis and experimental results can be found in [67].
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For SAR/ISAR imaging, the model in (3.117) is replaced by (3.107), i.e., x is replaced

by I and y by S. In this case the algorithm is initialized by setting

Î0 = Θ†ySΘ†Tx (3.122)

In this case ∆ becomes a P ×Q matrix

[∆]p,q = I(p, q) e−
I(p,q)2

2σ (3.123)

where I(p, q) is the (p, q) entry of the matrix I and the step 3(c) is performed as follows

I← I−Θ†y
(
ΘyIΘ

T
x − S

)
Θ†Tx (3.124)

In the end Î = ÎJ .

Figure 3.10: Sensing and CS reconstruction block diagram.

However, the image at the output of the SL0 algorithm cannot be directly compared with

the image at the output of the RD algorithm, because the pixel size does not correspond

to the spatial resolution δrng × δcrg (see (2.26) and (2.36) respectively). For this reason,

as shown in Fig.3.10, the raw data is �rst reconstructed from the CS image by means of

the Fourier dictionaries

ŜC = Ψy ÎΨ
T
x (3.125)

and the ISAR image is then obtained by means of the conventional RD algorithm

ICS = 2D-DFT
{

ŜC

}
(3.126)

This is how the CS theory is exploited in order to recover from incomplete data, but

the same principle can be used to reconstruct the received signal beyond the available

bandwidth and CPI for resolution enhancement [65, 69]. The idea is to assume the

available signal samples as part of a reduced domain, i.e., the result of a sensing operation

over a larger frequency/slow-time support. Then the CS reconstruction algorithm is
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applied to this �sensed� signal in order to reconstruct it over a larger bandwidth and

a longer observation time, which leads to a �ner resolution (see Fig.3.11). The same

principle can be applied for other applications, e.g., 3D-ISAR [13, 70], passive radar

imaging [71, 72], Ground Penetrating Radar imaging (GPR) [73�75], Multiple Input

Multiple Output (MIMO) radar imaging [76�78] and Magnetic Resonance Imaging (MRI)

[79]. The theory of CS is treated in deep in [63].

Figure 3.11: CS-based resolution enhancement concept.



Chapter 4

Super-Resolution: Performance

Analysis

In this Chapter the topic of performance analysis for super-resolution techniques is

treated.

It is important to de�ne one or more methods to analyze the proposed super-resolution

techniques and, in general, any super-resolution technique to give measurable parameters

and provide comparable indexes of performance. This is because a simple image assess-

ment by visual inspection is not su�cient to provide a valid performance evaluation.

Even if a super-resolution technique allows for the imaging system resolution to improve,

it is not guaranteed that such a resolution improvement is equivalent to a better image

quality for a particular application, such as Automatic Target Recognition (ATR). If

the super-resolution technique allows for a good resolution enhancement but introduces

strong distortions, the image quality could even deteriorate. The SSVA, for example,

consists of iteratively applying and inverting a non-linear �ltering which may generate

distortions and artifacts.

In the following, two approaches for performance analysis are proposed:

1. Truth Based performance analysis methods;

2. Quality Index Based performance analysis methods.

Truth Based performance analysis methods consist of comparing the super-resolved image

under test with a �truth�, i.e., another image with the same size and resolution of the

super-resolved one which is considered as an �estimation�. Such methods aim to measure

the distortion introduced by a generic super-resolution technique.

74
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Quality Index Based performance analysis methods are in principle simpler than Truth

Based and consist of measuring standard quality metrics, e.g., image contrast or entropy.

Such methods return one (or more) performance metric index which only depends on the

image at the output of the super-resolution algorithm and do not give any evaluation

of the distortion introduced. However, they can be useful to compare di�erent super-

resolution techniques in terms of resolution enhancement and SNR gain.

In Section 4.1 the CLEAN technique for scattering center detection is treated, since it is

needed for the performance analysis algorithms introduced in this Chapter. The proposed

Truth Based and Quality Index Based methods are described in Section 4.2 and 4.3

respectively. In Section 4.4, the super-resolution techniques described in Chapter 3 are

tested on COSMO-SkyMed data and compared by means of the proposed performance

analysis methods.

4.1 CLEAN

As mentioned in Chapter 3, the CLEAN technique does not allow for two or more

scatterers in the same main beam to be resolved. In this Thesis, the CLEAN is not used

for super-resolution, but to detect the dominant scatterers in the SAR/ISAR images

of interest. Some comparison algorithms between �truth� and �estimation� proposed in

Section 4.2 (Truth Based performance analysis) are based on the scatterers position and

amplitude. Such scatterers are detected by means of the CLEAN. This is the reason why

the CLEAN algorithm is treated in this Chapter and not in Chapter 3.

As a parametric technique, the CLEAN assumes the received signal as a linear combi-

nation of a �nite number of contributes and the target/scene is assumed as a set of Ns

point-like scatterers.

Consider the received signal model in (2.4), the time-frequency window function de�ned

in (2.5) and the range/delay-time approximation in (2.7). By considering the slow-time

as a continuous variable

tn = nTR → t (4.1)

the signal model can be written as follows

SR(f, t) = rect

[
f − f0

B

]
rect

[
t

Tob

]
e−j

4πf
c
R0(t)

∫
V
γ′(z)e−j

4πf
c

z·iLoS(t)dz (4.2)

After motion compensation the ISAR image I(τ, ν) in the range/Doppler domain is

obtained by means of 2D Fourier transform, i.e., the RD imaging method which consists

of considering a rectangular support for the received signal in the Fourier domain. Such
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an approximation leads to the separation of the domain in two independent time and

frequency domains. The received signal, relative to a single point-like scatterer, is then

approximated as the product of a time and a frequency component as follows

SR(f, t) ' s1(t) s2(f) (4.3)

where

s1(t) = B̃ rect

[
t

Tob

]
exp

{
j2π

(
ϕ0 + fdt+

µ

2
t2
)}

(4.4)

s2(f) = C̃ rect

[
f − f0

B

]
exp {j2πfτ0} (4.5)

where the product A = B̃C̃ is the scatterer complex re�ectivity function, τ0 is the time-

delay associated with the point-like scatterer, fd is the Doppler frequency and µ is the

chirp rate which accounts for a quadratic radial motion, i.e., Doppler acceleration.1

Consider now the SAR/ISAR image of interest in the delay-time/Doppler domain I(τ, ν)

and I1(τ, ν) = I(τ, ν). The CLEAN technique at the generic kth iteration can be brie�y

summarized as follows:

1. The brightest spot in the image is located

(τ∗k , ν
∗
k) = arg max

(τ,ν)
{|Ik(τ, ν)|} (4.6)

and assumed as related to the strongest point source in the scene;

2. The selected scatterer complex amplitude and the scattering PSF are estimated;

3. The estimated system response is subtracted from Ik(τ, ν) to leave a residual;

4. The process is iteratively repeated until a certain stop condition is not satis�ed.

The estimation of the PSF is performed by minimizing the image energy after scattering

center removal and exploiting the signal approximation in (4.3). By referring to (4.4),

fd and µ are the parameters to be estimated, whereas ϕ0 can be neglected because it is

a constant that does not a�ect the shape of the PSF (see the 2.30). The cost function is

then de�ned as follows

Ed(fd, µ,B) =

∫
|d(ν)|2 dν (4.7)

where

d(ν) = |Ik(τ∗k , ν)| − |S1(ν)| (4.8)

1µ is not the transmitted chirp rate if any is employed.
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S1(ν) is the Fourier transform of s1(t) and B = |B̃|. Ed in (4.7) is the energy remaining

in the range bin after scattering center deletion. Therefore, the following optimization

problem is solved {
f̂d, µ̂, B̂

}
= arg min

(fd,µ,B)
{Ed(fd, µ,B)} (4.9)

A similar procedure follows to estimate the frequency component of the PSF. τ0 and

C = |C̃| are jointly estimated as follows{
τ̂0, Ĉ

}
= arg min

(τ0,C)
{Eg(τ0, C)} (4.10)

where

Eg(τ0, C) =

∫
|g(τ)|2 dτ (4.11)

g(τ) = |Ik(τ, ν∗k)| − |S2(τ)| (4.12)

and S2(τ) is the inverse Fourier transform of s2(f).

The ISAR PSF for the selected brightest scatterer is then obtained by calculating the

two-dimensional Fourier transform of the product of the estimated time and frequency

components. However, only its amplitude is considered. The phase term is extracted

from the SAR/ISAR image as shown below

IPSF (τ, ν) =
∣∣F2 {ŝ1(t) ŝ2(f)}

∣∣ ej∠(Ik(τ,ν)) (4.13)

This is why only the magnitude of B and C are estimated in (4.9) and (4.10). Then, the

kth scatterer re�ectivity function is estimated as

Âk = B̂Ĉ ej∠(Ik(τ∗k ,ν
∗
k)) (4.14)

and the selected scattering center is subtracted from the image in order to extract the

next brightest scatterer as in (4.15).

Ik+1(τ, ν) = Ik(τ, ν)− IPSF (τ, ν) (4.15)

The image PSF is re-estimated for every iteration because, in real images, it actually

could vary in di�erent image regions even if it theoretically should not. The stop con-

dition can be set depending on the measured complex amplitude or the residual image

energy and a de�ned threshold. Otherwise, the number of scatterers Ns can be pre-

estimated or arbitrarily pre-de�ned.

The �nal result is a vector containing the position of the detected scatterers τ∗k and ν∗k

and another one containing their estimated complex amplitude Âk. The output image
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R0(n)|n=0 800m

v 22 m/s

Tob 0.3 s

f0 60 GHz

B 0.5 GHz

PRF 400 Hz

NoS 120

Table 4.1: Simulation set-up example: parameters of interest.

can then be built as a linear combination of the detected scattering sources

ICLEAN(τ, ν) =

Ns∑
i=1

Âk δ (τ − τ∗k ) δ (ν − ν∗k)⊗τ ⊗νw(τ, ν) (4.16)

where w(τ, ν) is de�ned in (2.30). It is worth pointing out that the knowledge of the

signal bandwidth, carrier frequency and CPI is necessary for the success of the CLEAN

technique. Further details about the CLEAN technique applied for Radar imaging can

be found in [80] and [28].

4.2 Truth Based performance analysis methods

Truth Based performance analysis methods consist of comparing two images: the original

SAR/ISAR image and the super-resolution result. By referring to Fig.4.1 the basic

algorithm works in four steps:

1. Possible post-processing compensation (windowing, zero-padding, etc.);

2. Generation of a low-resolution image by means of signal support reduction along

both the frequency and slow-time dimensions;

3. Application of the super-resolution technique under test in order to create the

super-resolved image;

4. Comparison between the original high-resolution image after the post-processing

compensation (�truth�) and the super-resolved one (�estimation�).

For illustration purposes consider the simulation scenario shown in Fig.4.2. Fig.4.2a

shows a point-like target model composed of 32 scatterers which draws the shape of a

small airliner.As shown in Fig.4.2b, this aircraft moves with constant speed v along a

linear trajectory iv = [1, 0, 0] orthogonal to the Radar LoS iLoS(0) = [0,−1, 0] in the

reference system Tx.
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Figure 4.1: Truth Based performance analysis: basic �ow chart.

(a) (b)

Figure 4.2: Truth Based performance analysis: example target model (a) and scenario
(b).

The (monostatic) Radar is drawn as a blue point in Fig.4.2b and its speci�cs are sum-

marized in Table 4.1 with together other information of interest, e.g., target speed v

and the number of frequency samples (NoS) set equal to the number of slow-time pulses

N = Tob PRF .

By exploiting the same signal model for point-like targets in (2.82) used in Section 2.2.2,

the monostatic full-resolution ISAR image is simulated as shown in Fig.4.3a, whereas in

Fig.4.3b it is shown the complex raw signal in the frequency/slow-time domain.
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The simulated aircraft moves along a straight trajectory. The total rotation vector with

respect to the Radar only depends on the translational motion and is calculated as follows

ΩT =
iLoS(0)× v(0)

R0(n)|n=0

= [0 , 0 , 0.0275] rad/s (4.17)

where v is the target velocity vector and× denotes the cross product operator. Therefore,

the e�ective rotation vector

ΩT ⊥ iLoS(0)⇒ Ωeff = ΩT (4.18)

and the image resolution

δrng = 0.300 m (4.19)

δcrg = 0.303 m (4.20)

The ISAR image shown in Fig.4.3a is not further processed, windowed and no zero-

padding is applied, thus the �rst step of the basic algorithm in in Fig.4.1 is not necessary.

The ISAR image in Fig.4.3a is the �Truth� of the Truth Based performance analysis

algorithm.

As in Fig.4.1, the next step consists of reducing the signal support along the frequency

direction, slow-time direction or both. The high-resolution signal support in Fig.4.3b is

reduced by a factor Kf along the vertical and Kt along the horizontal direction, i.e., the

central Mlow×Nlow portion of the complex signal is retained. The size of such a portion

is calculated as follows

Mlow =

⌊
M

Kf

⌋
Nlow =

⌊
N

Kt

⌋
(4.21)

where M ×N is the signal matrix size. The �Resolution Decreasing� output is shown in

Fig.4.4 for Kf = Kt = 2.

The formed low-resolution ISAR image can then be given as input to the super-resolution

algorithm. The output of the third step is shown in Fig.4.5. SSVA is performed on the

ISAR image in Fig.4.4a for η = 4
√

2 (bandwidth extrapolation factor) and in four loops

(see Section 3.5). The resultant ISAR image in Fig.4.5a is the �estimation� that is

compared with the �truth� in Fig.4.3a in order to evaluate the distortion introduced by

the super-resolution technique.
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(a) (b)

Figure 4.3: Simulated high-resolution ISAR image (a) and relative complex raw signal
(b).

(a) (b)

Figure 4.4: Low-resolution ISAR image (a) and relative complex raw signal (b) after
the �Resolution Decreasing� step.

(a) (b)

Figure 4.5: SSVA super-resolution output image (a) and relative complex raw signal
(b).
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Di�erent approaches can be used to compare �truth� and �estimation�, such as calculating

the normalized Global Correlation Index

rG =

P∑
p=1

Q∑
q=1

(
|IH(p, q)| − |IH |

)(
|IS(p, q)| − |IS |

)
√√√√( P∑

p=1

Q∑
q=1

(
|IH(p, q)| − |IH |

)2
)(

P∑
p=1

Q∑
q=1

(
|IS(p, q)| − |IS |

)2
) (4.22)

or the Root Mean Square Error

RMSE =

√√√√ 1

PQ

P∑
p=1

Q∑
q=1

(
|ÎH(p, q)| − |ÎS(p, q)|

)2
(4.23)

where IH(p, q) and IS(p, q) denote the P ×Q high-resolution and super-resolved images

in position (p, q) respectively, |IH | and |IS | are the mean values of the high-resolution

and super-resolved ISAR images magnitude and ÎH and ÎS are the images normalized

as follows

ÎH =
IH√

1
PQ

P∑
p=1

Q∑
q=1
|IH(p, q)|2

(4.24)

ÎS =
IS√

1
PQ

P∑
p=1

Q∑
q=1
|IS(p, q)|2

(4.25)

In MatLab, rG in (4.22) can be calculated by means of the corr2 function. In the

following, two novel comparison methods are proposed for further performance analysis:

the Scatterer Position based comparison algorithm and the Mobile Cross-Correlation

based comparison algorithm.

1. The �rst one is based on detecting the strong peaks/scatterers in both the high-

resolution and super-resolved images, comparing the results of such a detection

and return a result in terms of number of correctly reconstructed scatterers (cor-

rect detections), scatterers which are lost during the performance analysis chain

(missed detections) and artifacts introduced by the super-resolution technique

(false alarms).

2. The second approach consists of applying a cross-correlation measurement within

a small moving window in order to highlight areas where the high-resolution image

has been well or badly estimated.
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The Truth Based performance analysis methods can be extended to a larger dataset of

homogeneous images, i.e., generated by the same Radar imaging system in the same

con�guration, in order to return statistic performance metrics.

4.2.1 Scatterer Position based comparison algorithm

The Scatterer Position based comparison approach consists of detecting the strong

peaks/scatterers in both the high-resolution and super-resolved images and compare the

results of such a detection. For simplicity, in this Section the word �scatterers� indicates

the peaks in the high-resolution original image and the word �peaks� is used for the

super-resolved image. The distortion introduced by the super-resolution technique is

then analyzed in terms of

1. False alarms: a peak is generated in the super-resolved image at a position where

no scatterers are present in the �truth�;

2. Missed detections: no peak is present in the �estimation� at a position where a

scatterer is detected in the high-resolution image;

3. Amplitude estimation errors: the peak position is well estimated and the error in

the complex amplitude estimation is considered.

A missed detection may occur if two scatters in the high-resolution image are merged

during the support reduction stage (compare Fig.4.3a with Fig.4.4a) and the super-

resolution technique is not able to separate them again; if the super-resolution technique

causes a signal to noise ratio deterioration (e.g., Capon's MVM if the estimated covari-

ance matrix is ill-conditioned) or if some scatterers are attenuated below the noise level.

For example, one disadvantage of the SSVA is the weak signal suppression e�ect, i.e.,

weak peaks in the neighborhood of a stronger one may occur to be attenuated.

False alarms may instead occur if some artifacts or �false scatterers� are introduced, for

example if a too large number of scatterers is estimated in case of parametric super-

resolution (see Section 3.1), or some noise peaks are excessively enhanced.

Scatterers and peaks detection is performed by using the CLEAN (see Section 4.1). The

CLEAN output on the ISAR images in Fig.4.3a (�truth�) and Fig.4.5a (�estimation�),

i.e., the estimated τ∗k and ν∗k for k = 1, . . . , 24 in the range/cross-range domain, are

depicted in Fig.4.6a and Fig.4.6b respectively. In this case both the scatter-plots show

the same number of scatterers and peaks, but in general this is not guaranteed. Consider

then Ns as the number of detected scatterers and Np as the number of detected peaks.
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(a) (b)

Figure 4.6: Detected scatterers position for the high-resolution image (a) and the
super-resolved one (b) in the range/cross-range domain (using CLEAN).

Once scatterers position for both high-resolution and super-resolved images are esti-

mated, the comparison algorithm continues in two steps:

1. Scatterers-Peaks association;

2. Amplitude estimation error evaluation.

The association step aims to evaluate the number or �correct detections�, �missed detec-

tions� and �false alarms� and basically consists of �lling an �Association� vector. The

association vector (1 × Ns) is built to contain in the ith element the indexes of those

peaks which are associated with the ith scatterer. Two cell-arrays are �rstly de�ned:

near_peaks_P : the ith element of such a vector contains the indexes of the scatterers

which are close enough to the ith peak;

near_peaks_S : the ith element of such a vector contains the indexes of the peaks which

are close enough to the ith scatterer.

In order to build near_peaks_P for the ith detected peak, the distances between it and

all the scatterers along both range and cross-range are calculated. Those scatterers whose

distance along the range direction is smaller than the range resolution and whose distance

along the cross-range direction is smaller than the cross-range resolution are selected as

�close enough�. The indexes of such scatterers �ll the ith element of near_peaks_P. To

explain it mathematically, consider the following vectors:
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� PS,crg: scatterers position along the cross-range direction (1×Ns);

� PS,rng: scatterers position along the range direction (1×Ns);

� PP,crg: peaks position along the cross-range direction (1×Np);

� PP,rng: peaks position along the range direction (1×Np);

The distance vectors for the ith peak along the cross-range (∆crg) and range (∆rng)

directions are calculated as follows

∆crg = |PS,crg −PP,crg(i)| ∈ R[1×Ns]
+ (4.26)

∆rng = |PS,rng −PP,rng(i)| ∈ R[1×Ns]
+ (4.27)

and the ith element of near_peaks_P is built to contain those indexes j such that

(∆crg(j) < δcrg) ∧ (∆rng(j) < δrng) (4.28)

where ∧ denotes the and operator.

In MatLab:

near_peaks_P = cell(1,Np);

for i = 1:Np

dist_crg = abs(pos_P(1,i)-pos_S(1,:));

dist_rng = abs(pos_P(2,i)-pos_S(2,:));

near_peaks_P{i} = find((dist_crg<dCrg) & (dist_rng<dRng));

end

where pos_P is the 2×Np matrix which contains the position of all the detected peaks in

cross-range and range, pos_S is a 2×Ns matrix containing the position of the scatterers

in the high-resolution image, dRng is the range resolution and dCrg is the cross-range

resolution. near_peaks_S is built in the same way by swapping peaks and scatterers.

If the ith element of near_peaks_P remains empty, the ith peak will be a false alarm.

If the ith element of near_peaks_S remains empty, the ith scatterer will be associated

to a missed detection.

Nevertheless, there are anomalous cases that need to be considered. If two scatterers

are �close� to one peak, their relative elements of near_peaks_S will not be empty,

even if one of them should be classi�ed as a missed detection. Once near_peaks_P and

near_peaks_S are de�ned, the Association vector is built as shown in Fig.4.7.
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Figure 4.7: Scatterer Position based comparison algorithm �ow chart.

Firstly the Association vector is initialized as

Association = cell(1,Ns);

and the algorithm goes on by �lling it while emptying near_peaks_S in a for-cycle. This

cycle is repeated until near_peaks_S is completely emptied.

The �rst step in the for-cycle consists of de�ning peak_S (PS) as

peak_S = near_peaks_S{i};

Then three events may occur:



Chapter 4. Super-Resolution: Performance Analysis 87

1. PS is empty;

2. PS is a scalar;

3. PS contains more than one element.

In the �rst case the ith scatterer does not have any peak in its neighborhood, or those

peaks have been already assigned to other scatterers. The ith element of Association

remains empty and the ith scatterer is classi�ed as missed detection.

If PS is a scalar, the ith scatterer has one peak in its neighborhood (or one peak left

unassigned). In this case the �best� scatterer is associated to this peak. Thus, the vector

peak_P (PP ) is calculated as

peak_P = near_peaks_P{peak_S};

to contain the indexes of those scatterers in the neighborhood of such a peak. If PP is a

scalar too, there is a one-to-one correspondence and the association will be automatic:

Association{peak_P} = peak_S;

Otherwise, there are more than one scatterer in the neighborhood of the peak and the

algorithm proceeds to �nd out the �best� one in three steps:

1. The acceptable elements of PP are selected.

Only those scatterers (elements of PP ) with only one peak in their neighborhood

are considered. This is to avoid �false missed detections� and �false false alarms�.

2. The closest acceptable scatterer is selected

jmin = arg min
j
{Dj} (4.29)

where

Dj =

√
(Dcrg,j)

2 + (Drng,j)
2 (4.30)

Dcrg,j = PS,crg(PP (j))−PP,crg(PS) (4.31)

Drng,j = PS,rng(PP (j))−PP,rng(PS) (4.32)

and the relative element of Association is �lled

Association{peak_P(jmin)} = peak_S;
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3. near_peaks_S is cleaned.

Once the peak-scatterer association is done, the peak can no longer be associated

with other scatterers. Each peak of the super-resolved image have to be associated

with no more than one scatterer of the high-resolution image. In order to guarantee

this, all the references to the selected peak in near_peaks_S have to be deleted:

for j = 1:Ns

near_peaks_S{j}(near_peaks_S{j}==peak_S) = [];

end

On the other hand, it can be chosen to allow associations between one scatterer

and more than one peak (this is why Association is de�ned as a cell-array and

not as a simple array). This step is also performed if PP is scalar, i.e., in case of

one-to-one correspondence (see Fig.4.7 if length(peak_P)=1).

For a better understanding, consider the example shown in Fig.4.8 where the high-

resolution image scatterers (in red) have to be associated with the peaks of the super-

resolved (in blue). At �rst i = 1 and PS = [1] is a scalar (only blue peak #1 is close

enough to red scatterer #1). Then PP = [1, 2] (in the neighborhood of blue peak #1

there are both red scatterers #1 and #2).

Figure 4.8: Association example.

Assume now to skip the step 1 (the acceptable elements of PP selection). In this case red

scatterer #2 is the closest one to blue peak #1 and they are associated. Thus, scatterer

#1 is classi�ed as missed-detection and peak #2 as false-alarm (see Fig.4.9).

Figure 4.9: Association example result if the acceptable scatterers selection is skipped.

If the step 1 is performed, for each element of PP the peaks in the neighborhood are �rstly

counted: red scatterer #1 has only one blue peak (#1) nearby, whereas red scatterer #2

has two blue peaks (#1 and #2). The second element of PP is then discarded

PP = [1]
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Therefore, a one-to-one correspondence occurs, D1 is a scalar and

jmin = 1

Therefore, red scatterer #1 and blue peak #1 are associated

Association{1} = 1

Then near_peaks_S is cleaned as shown in Fig.4.10.

Figure 4.10: Association example: cleaning of near_peaks_S at loop 1.

In the next for-cycle iteration (i = 2) there is a one-to-one correspondence, the association

is made

Association{2} = 2

and the second element of near_peaks_S is emptied. The �nal result is shown in Fig.4.11.

Figure 4.11: Association example: �nal result.

If PS is a vector with more than one element, there are more than one peak the neigh-

borhood of the ith scatterer. As in Fig.4.7 the algorithm proceeds to �nd out the �best�

peak to be associated with the scatterer by means of a priority-based sub-routine as in

Fig.4.12. In order to avoid �false false alarms� and �false missed detections�, a priority

level is assigned to each peak. For each jth peak, a priority vector PP,j is de�ned as

peak_P = near_peaks_P{peak_S(j)};

peak_P = peak_P(peak_P~=i);

i.e., as before but without the reference to the ith scatterer. Then, the priority level is

assigned to the jth peak as a function of PP,j :
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Figure 4.12: Priority-based sub-algorithm �ow chart.

� If PP,j is empty, priority level 2 is assigned to the jth peak. The maximum priority

level is given to those peaks which have only the ith scatterer in their neighborhood

and would be classi�ed as false alarms if they were not associated with it.

� If PP,j is not empty, all the pointed scatterers are analyzed. If at least one scatterer

is only close to the jth peak, then priority level 0 will be given to such a peak.

This is because if the ith scatterer and the jth peak were associated, the other

scatterer only close to such a peak would be labeled as a �missed detection�.

� If all the scatterers are also close to other peaks, then priority level 1 is given to

the jth peak. In this case there is no risk to have �false missed detections�.

A priority level (0, 1 or 2) is then assigned to all the elements of PS . If all the priority

levels are 0, the ith scatterer will be labeled as a missed detection. Otherwise, those

peaks with maximum priority level are selected.
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jmin is calculated as in (4.33) and the closest peak is associated with the ith scatterer.

jmin = arg min
j
{Dj} (4.33)

where

Dj =

√
(Dcrg,j)

2 + (Drng,j)
2 (4.34)

Dcrg,j = PP,crg (PS(j))−PS,crg (i) (4.35)

Drng,j = PP,rng (PS(j))−PS,rng (i) (4.36)

This is if only one-to-one associations are allowed. Otherwise, if associations between

one scatterer and more than one peak are allowed, all the peaks with maximum priority

can be associated with the ith scatterer. In MatLab environment it can be written as

peak_S = peak_S(Priority==max(Priority));

if only_one_to_one

Dcrg = pos_P(1,peak_S) - repmat(pos_S(1,i),1,length(peak_S));

Drng = pos_P(2,peak_S) - repmat(pos_S(2,i),1,length(peak_S));

D = sqrt(Dcrg.^2 + Dcrg.^2)

[~,jmin] = min(D);

peak_S = peak_S(jmin);

end

Association{i} = peak_S;

where Priority denotes the priority vector and only_one_to_one is a boolean parame-

ter set as �true� if only one-to-one associations are allowed. In the end the near_peaks_S

cleaning step is performed as before, but in this case the whole ith element of near_peaks_S

have to be cleared �rst. This is because if PS has more than one element and one of them

is associated with the ith scatterer, the others will never be associated to any scatterer,

near_peaks_S will never be completely cleaned and the algorithm outer loop will never

end as in Fig.4.7. This is the reason of the block

near_peaks_S{i} = [];

in the lower-right corner in Fig.4.7. Once near_peaks_S is completely emptied, those

peaks which do not appear in any element of the Association vector are classi�ed as

false alarms, whereas those scatterers which refer to an empty entry of Association

are classi�ed as missed detections. For a better understanding of this �priority game�,

consider the example in Fig.4.13.



Chapter 4. Super-Resolution: Performance Analysis 92

Figure 4.13: Association example for non-scalar PS .

Starting with i = 1, in the neighborhood of scatterer #1 there are blue peaks #1, #2

and #5. Then PS = [1, 2, 5] and the priority vector is initialized as P = [0, 0, 0].

� j = 1: PP,1 is empty because only red scatterer #1 is close enough to peak #1.

Therefore, P(1) = 2.

� j = 2: PP,2 = [2, 3] because both scatterers #2 and #3 are close to peak #2. Then

they are checked:

� Scatterer #2: only peak #2 is in the neighborhood;

� Scatterer #3: peaks #2 and #3 are in the neighborhood.

Then the priority level is set to zero: P(2) = 0.

� j = 5: PP,5 = [4, 5]. P(3) = 1 because both scatterers #4 and #5 have at least

another blue peak in their neighborhood (the #4 and #6).

Then the priority vector P = [2, 0, 1] and the peak with the maximum priority level is as-

sociated with red scatterer #1. After running all loops of the for-cycle, the Association

vector is then �lled as follows

Association{1} = 1

Association{2} = 2

Association{3} = 3

Association{4} = 4

Association{5} = 5

and blue peak #6 is classi�ed as false alarm. Assume now to skip the priority assignment:

� i = 1, PS = [1, 2, 5]: blue peak #2 is the closest one to red scatterer #1 and they

are associated;

� i = 2, PS = [ ]: scatterer #2 is classi�ed as missed detection;

� i = 3, PS = [3]: one-to-one correspondence between scatterer #3 and peak #3;
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� i = 4, PS = [4, 5]: blue peak #4 is the closest one to red scatterer #4 and they

are associated;

� i = 5, PS = [5, 6]: blue peak #5 is the closest one to red scatterer #5 and they

are associated.

Then:

Association{1} = 2

Association{2} = [] => Missed detection

Association{3} = 3

Association{4} = 4

Association{5} = 5

Red scatterer #2 is classi�ed as missed detection and blue peaks #1 and #6 are false

alarms.

Considering the example of the simulated airliner, scatterers in Fig.4.6a and peaks in

Fig.4.6b are then associated by means of the algorithm above and the �nal result is

shown in Fig.4.14. This is a simple case where all the scatterers and peaks are associated

and no false alarms or missed detections occur.

Figure 4.14: Association result for scatterers and peaks in Fig.4.6.

The same experiment is then performed for Kf = Kt = 4. The low-resolution and SSVA

super-resolved images are depicted in Fig.4.15a and 4.15b respectively. In this case �ve

missed detections and �ve false alarms occur as shown in Fig.4.16a because the SSVA is

no longer able to separate the scatterers on the aircraft turbines which are merged by

the support reduction stage.

However, the CLEAN is able to detect something. This is because �it may happen that

spurious low-power targets can be created near the main scatterer to compensate for
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(a) (b)

Figure 4.15: Low-resolution (a) and SSVA super-resolved (b) images forKf = Kt = 4.

(a) (b)

Figure 4.16: Association result for scatterers for Kf = Kt = 4 and the CLEAN set
to stop when 24 scatterers are found in both the images (a) or the residual energy is

less than the 12% of the original energy (b).

estimation errors� (see Section 3.1.1), but such spurious low-power targets are detected

not close enough to the actual turbine scatterers in Fig.4.6a. Moreover, another spurious

peak is detected in the center of the ISAR and labeled as false alarm. Therefore, since the

same number of scatterers has been chosen for both high-resolution and super-resolved

images, CLEAN stops before the weakest peak on the aircraft tail can be spotted.

However, it is not necessary to set the same number of detected scatterers for both the

images. For example, if the CLEAN is set to stop when the residual energy is less than

the 12% of the original image energy, 24 scatterers are detected in the high-resolution

image and 28 in the super-resolved one. In this case the peak on the tail is detected, but

more false alarms occur. Moreover, the scatterers on the turbines are still missing. Such

a result is depicted in Fig.4.16b.
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RRMSE

Kf = Kt = 2 0.1964

Kf = Kt = 4, CLEAN setting 1 0.3514

Kf = Kt = 4, CLEAN setting 2 0.3851

Table 4.2: Association results: RRMSE for the three cases in Fig.4.14, Fig.4.16a and
Fig.4.16b.

Once correct detections, missed detections and false alarms are de�ned, the �amplitude

estimation error evaluation� step can be performed. In particular the �Relative Root

Mean Square Error� (RRMSE) is calculated on the amplitude estimations by considering

only those scatterers labeled as �correct detections�. By de�ning ÂH and ÂS as the

vectors containing the estimated complex amplitudes Âk (see Section 4.1) for k ∈ ΛCD,

where ΛCD is the set of indexes from 1 to Ns referring to correct detections, for the

high-resolution and super-resolved images respectively, the RRMSE is calculated as

RRMSE =

√√√√ 1

NCD

NCD∑
i

RSE(i) (4.37)

where NCD denotes the number of correct detections and

RSE =


∣∣∣ÂH

∣∣∣− ∣∣∣ÂS

∣∣∣∣∣∣ÂH

∣∣∣
2

(4.38)

denotes the �Relative Square Errors� (RSE). The RRMSE results are summarized for the

examples above in Table 4.2, where �CLEAN setting 1� refers to the CLEAN performed

to have the same number of detected scatterers and peaks (Np = Ns), whereas �CLEAN

setting 2� refers to the CLEAN set to stop when the residual energy threshold is exceeded

(see Fig.4.16a and 4.16b respectively). Higher values of Kf and Kt result in higher

RRMSE because a smaller portion of the original complex signal is retained. If Kf =

Kt = 4, �CLEAN setting 1� return lower RRMSE than �CLEAN setting 2�.

To validate these results the RSE values for Kf = Kt = 2, Kf = Kt = 4 with �CLEAN

setting 1� and Kf = Kt = 4 with �CLEAN setting 2� are plotted in Fig.4.17. It appears

that �CLEAN setting 2� allows to detect two scatterers more with respect to �CLEAN

setting 1�. However, these scatterers are not well modeled by the SSVA and their Relative

Square Error index is quite high. This is why �CLEAN setting 2� returns higher RRMSE

with respect to �CLEAN setting 1�.

It is worth pointing out that high-resolution and super-resolved images have to be nor-

malized before the CLEAN performing as in (4.24) and (4.25). However, this is not
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necessary if there is no interest in the RRMSE and only the knowledge of correct detec-

tions, missed detections and false alarms is desired.

Figure 4.17: Relative Square Errors for Kf = Kt = 2 (blue), Kf = Kt = 4 with
�CLEAN setting 1� (red) and Kf = Kt = 4 with �CLEAN setting 2� (green).

This comparison approach allows to quantify the distortion introduced by a certain

super-resolution technique on a certain image in terms of lost scatterers (missed detec-

tions) and artifacts (false alarms). If applied on a large dataset of images, it allows to

statistically describe the super-resolution technique in terms of Estimated False Alarm

Probability and Estimated Missed Detection Probability. However, this approach has

some disadvantages:

1. High-resolution and super-resolved images must be well aligned.

2. The result is strictly dependent on the scattering extraction method. The CLEAN

technique is used in the example above because SSVA produces (theoretically)

a known PSF which can be approximated as a sinc function. For other super-

resolution techniques, which do not produce a known PSF, it would be appropriate

to de�ne a di�erent scattering extraction method. Moreover, di�erent settings for

the CLEAN can produce di�erent performance outputs.

3. Even if a peak appears in the same position in both the images, the scatterer

extraction technique could not detect both of them. As a consequence, �false

missed detections� and �false false alarms� may occur.
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4. Scatterers in SAR/ISAR images are often not well de�ned and some image portions

can look like as a ��at cloud� without thin peaks emerging.

5. Sometimes it happens that a missed detection and a false alarm are detected close to

each other. This can be interpreted as �the super-resolution technique reconstructs

the scatterer but in a di�erent position�. This is the peak shift issue. It may

happen if range migration occurs in the high-resolution image.

6. Sometimes distortions introduced by a super-resolution technique generate a large

number of peaks where in the truth there is a large blurred scatterer. A lot of false

alarms are then detected.

Moreover, it seems that this approach needs the knowledge of cross-range resolution to

calculate distances. However, also the Doppler resolution can be used for the calculation

of near_peaks_P and near_peaks_S, but a di�erent approach for distances evaluation

must be used in (4.30) and (4.34).

4.2.2 Mobile Cross-Correlation based comparison algorithm

The Mobile Cross-Correlation approach aims is to give an index of how well the high-

resolution image is reconstructed in di�erent areas. The expected �nal result is a map of

values between 0 and 1. Higher values indicate those image regions that have been well

reconstructed. The Mobile Cross-Correlation comparison algorithm is implemented by

calculating the normalized cross-correlation between small portions of the two images,

i.e., within a mobile window. For a better comprehension see the drawing in Fig.4.18.

Figure 4.18: Mobile cross-correlation: concept sketch.

The cross-correlation index is calculated within such areas, but, for small mobile windows,

high values could also be obtained in those areas where only background noise is present.

A threshold is then applied to the high-resolution and super-resolved images as in the
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following

IH,λ(p, q) =

 IH(p, q) if |IH(p, q)| > λH

0 otherwise
(4.39)

IS,λ(p, q) =

 IS(p, q) if |IS(p, q)| > λS

0 otherwise
(4.40)

where IH and IS denote the high-resolution and super-resolved images as in (4.22) and

the thresholds λH and λS are calculated as

λH = µH + δH σH

λS = µS + δS σS

(4.41)

where µH , σH , µS and σS are the high-resolution image amplitude mean value and

standard deviation and the super-resolved image amplitude mean value and standard

deviation respectively. δH and δS are settable parameters to control the thresholds. The

mobile cross-correlation map is then calculated as follows

RM,C(p, q) =

∑
i,j∈B(p,q)

IH,λ(i, j) I∗S,λ(i, j)√ ∑
i,j∈B(p,q)

|IH,λ(i, j)|2
∑

i,j∈B(p,q)

|IS,λ(i, j)|2
(4.42)

where B(p, q) is a square box centered on (p, q), i.e., the mobile window which size can be

arbitrarily set. The normalized cross-correlation between the two complex images within

the moving square box is calculated, but, if the phase information is not needed to be

reconstructed, only the image intensity can be considered

RM,I(p, q) =

∑
i,j∈B(p,q)

|IH,λ(i, j)| |IS,λ(i, j)|√ ∑
i,j∈B(p,q)

|IH,λ(i, j)|2
∑

i,j∈B(p,q)

|IS,λ(i, j)|2
(4.43)

RM,C is the complex mobile cross-correlation map and RM,I is the intensity mobile

cross-correlation map. In order to have more e�cient implementation, RM,C and RM,I

can also be calculated as follows

RM,C =

(
IH,λ ◦ I∗S,λ

)
⊗OWB√(

|IH,λ|2 ⊗OWB

)(
|IS,λ|2 ⊗OWB

) (4.44)

RM,I =
(|IH,λ| ◦ |IS,λ|)⊗OWB√(

|IH,λ|2 ⊗OWB

)(
|IS,λ|2 ⊗OWB

) (4.45)
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where IH,λ and IS,λ denote the thresholded high-resolution and super-resolved images

in matrix notation, the symbol ◦ denotes the Hadamard point wise product and ⊗ the

convolutional operator. For a generic positive integer P , OP is a P × P matrix of ones.

WB is the side length of the square box B.

RM,C is composed of complex values with modulus within [0, 1] and phase within [0, 2π),

whereas RM,I presents real values between 0 and 1. Once RM,C (or RM,I) is computed,

a �mean mobile cross-correlation� index can be calculated in order to give a scalar per-

formance indicator as in (4.46) for the complex mobile cross-correlation map and (4.47)

for the intensity map.

rM,C =
1

Nλ

P∑
p=1

Q∑
q=1

{RM,C}p,q (4.46)

rM,I =
1

Nλ

P∑
p=1

Q∑
q=1

{RM,I}p,q (4.47)

where Nλ is the number of elements in the complex and intensity mobile cross-correlation

maps which are > 0. Such a number of elements depends on the selected threshold and

is the same for both the complex and intensity maps.

(a) (b)

Figure 4.19: Complex mobile cross-correlation maps magnitude for Kf = Kt = 2 (a)
and Kf = Kt = 4 (b) as in the example above.

rM,C is a scalar complex performance index with magnitude within [0, 1], whereas rM,I

is a real number within [0, 1]. In general RM,I contains higher values with respect to

RM,C and rM,I ≥ |rM,C |. However, this approach does not allow to identify those high

intensity areas (or peaks) which appear in only one of the two compared images, i.e.,

does not allow to detect �false alarms� and �missed detections�, but gives a distributed

similarity index and a description of �what the two images have in common�.
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(a) (b)

Figure 4.20: Intensity mobile cross-correlation maps for Kf = Kt = 2 (a) and Kf =
Kt = 4 (b) as in the example above.

Kf = Kt = 2 Kf = Kt = 4

rG 0.9467 0.5843

rM,C 0.7928− 0.0138j 0.4059 + 0.0308j

rM,I 0.8127 0.6290

RMSE 0.1955 0.6893

Table 4.3: Global Correlation Index (4.22), Mean Mobile Cross-Correlation indexes
(4.46) and (4.47) and RMSE index (4.23) for the two simulation cases.

By considering the high-resolution image in Fig.4.3a and the super-resolved in Fig.4.5a

and Fig.4.15b, the RM,C maps for the two cases Kf = Kt = 2 and Kf = Kt = 4 are

shown in Fig.4.19 ((a) and (b) respectively). By comparing Fig.4.19a with 4.19b, it ap-

pears that in the �rst case with Kf = Kt = 2 the image is much more well reconstructed,

especially in the area or the aircraft turbines and tail. The same can be said by look-

ing at Fig.4.20 where the RM,I maps are depicted. Such maps are obtained by setting

λH = λS = 2 and B as a 3 × 3 box with respect to a 3× zero-padding, i.e., IH and IS

are built 3 times larger than the original images by means of zero-padding and WB = 9.

By comparing Fig.4.19 with Fig.4.20, it also appears that the intensity maps contain

higher values with respect to the complex ones. The complex and intensity mean mobile

cross-correlation indexes for the two cases, the Global Correlation Index as in (4.22) and

the RMSE as in (4.23) are shown in Table 4.3.
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4.3 Quality Index Based performance analysis methods

Quality Index Based methods for performance analysis are in principle simpler than

Truth Based and consist of measuring standard quality metrics on the super-resolved

image. There is no need to compare di�erent images and the super-resolved can be

arbitrarily produced with or without preliminary support reduction.

In the following, four Quality Index Based performance indexes are proposed:

1. Image Contrast (IC);

2. Image Entropy (IE);

3. Signal to Noise/Clutter Ratio (SNR);

4. −3dB Resolution.

Image Contrast is used in several applications such as ISAR autofocusing [22] and cross-

range scaling [81] and is often used as an index for image quality.

Image Contrast can be considered as a measurement of the degree of image focus because

allows one to emphasize the di�erence in the intensity of the scene. In photography,

contrast is the di�erence between the re�ectance or transmittance photographic density

of subject and surrounding. In optics, it is de�ned as the ratio between maximum

and minimum of the luminance in the scene. In Radar imaging a high contrast value

is expected in focused images because of great di�erences in the intensity. In case of

unfocused image the contrast value is instead lower because the amplitude is concentrated

around its mean value [82].

In this Thesis, Image Contrast is considered as the ratio between standard deviation and

mean value of the image intensity and is calculated as follows

IC =
σ̂I
µ̂I

=

√
A
{

[I2(p, q)− A {I2(p, q)}]2
}

A {I2(p, q)}
(4.48)

where I is the image amplitude, σ̂I and µ̂I are the image amplitude estimated standard

deviation and mean value and the operator A {· } denotes the spatial mean over the

image discrete coordinates (p, q).

Image Entropy is a statistical measure of randomness that can be used to characterize

the image texture. In information theory, entropy (more speci�cally, Shannon entropy)

is a measure of unpredictability of information content and can be interpreted as the
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expected value of the information contained in a message/image/signal (�ow of informa-

tion). Low entropy is synonymous of low quantity of information and high redundancy.

Mathematically, for a discrete random variable X with possible values {x1, x2, . . . , xN}
and probability mass function P (X), the Shannon entropy is de�ned as

H(X) = −
N∑
i=1

P (xi) logb (P (xi)) (4.49)

where b is the logarithm base used (usually 2, 10 or Euler's number e).

In Radar imaging, Image Entropy is used for autofocusing [83, 84] and is calculated as

IE = −
P∑
p=1

Q∑
q=1

Ī(p, q) ln
(
Ī(p, q)

)
(4.50)

where

Ī(p, q) =
|I(p, q)|2

A
{
|I(p, q)|2

} (4.51)

denotes the power normalized image. Low entropy images have low contrast and large

runs of pixels with the same or similar amplitude concentrated around the mean value.

High entropy images is instead synonymous of high quantity of information and contrast.

Signal to Noise/Clutter/Interference Ratio is another very common quality metric used

in several applications in several de�nitions. For example, in [85] the Target-to-Clutter

ratio is de�ned as the ratio between the image maximum peak within the target region

and the image mean value within a clutter patch. Such target and background regions

are separated by performing adaptive thresholding. In [86] SNR is measured as ratio

between the variance of the true magnitude image and a Mean Square Error between a

noise-free and a �ltered noisy image. In this Thesis, SNR is estimated by applying an

adaptive threshold de�ned as in Section 4.2 for the Mobile Cross-Correlation:

λT = µ̂I + δT σ̂I (4.52)

where σ̂I and µ̂I are de�ned as in (4.48) and δT is a settable parameter as in (4.41). The

image of interest is then segmented in �target area� and �background area� and the SNR

calculated as

SNR = 20 log10

(
1
NT

∑
(p,q)∈T |I(p, q)|2

1
NB

∑
(p,q)∈B |I(p, q)|2

)
(4.53)

where T denotes the �target area� where |I(p, q)| ≥ λT , B the �background area� where

|I(p, q)| < λT , NT is the number of pixels in the target area and NB is the number of

pixels in the background area.
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For a measurement of the e�ective image resolution, the −3dB mainlobe width is esti-

mated by exploiting the CLEAN. At the kth CLEAN iteration the residual image Ik(p, q)

is thresholded and a black/white mask is calculated as

MBW,k(p, q) = 20 log10

(
|Ik(p, q)|∣∣Ik(p∗k, q∗k)∣∣

)
> −3 (4.54)

where p∗k and q
∗
k are the discrete indexes relative to the brightest spot. The mask portion

around (p∗k, q
∗
k) is then analyzed and the −3dB resolution for the kth detected scatterer

is measured in both range and cross-range as follows

δrng,k = δrng
Nrng

Kzp
(4.55)

δcrg,k = δcrg
Ncrg

Kzp
(4.56)

where δrng and δcrg are the theoretical range and cross-range resolution, Nrng and Ncrg

are the number of �true� pixels in MBW around (p∗k, q
∗
k) along the range and cross-range

direction respectively and Kzp is the zero-padding factor. The greater the zero-padding

factor, the most accurate the resolution estimation.

Consider for example the super-resolved ISAR image in Fig.4.5a and assume Kzp = 5.

At �rst CLEAN step I1(p, q) = I(p, q) and the brightest spot is found at coordinates

(p∗1, q
∗
1) = (329, 457). I1(p, q) and the mask MBW,1(p, q) are zoomed and depicted in

Fig.4.21a and 4.21b respectively. In this case, the connected component relative to the

selected peak can be contained in a 4×5 box, which means that Nrng = 4 and Ncrg = 5.

As a result δrng,1 = 0.2400m and δcrg,1 = 0.3030m.

After the �rst CLEAN iteration, the residual I2(p, q) is obtained as in (4.15). Such

a residual is depicted in Fig.4.22a and the new mask MBW,2(p, q) in Fig.4.22b. The

new brightest spot is in position (p∗2, q
∗
2) = (276, 458) and, also in this case, Nrng = 4,

Ncrg = 5, δrng,1 = 0.2400m and δcrg,1 = 0.3030m.

Finally, all the calculated resolution values in cross-range and range are plotted in blue

in Fig.4.23a and 4.23b respectively. The red dotted lines in Fig.4.23 represent the mean

measured range and cross-range resolution values:

δ̂rng = 0.2650 m

δ̂crg = 0.3050 m
(4.57)

If the cross-range resolution is unknown, the −3dB Doppler resolution can be calculated

by replacing δcrg with δν in (4.55).
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(a) (b)

Figure 4.21: Zoomed SSVA image in dB scale (a) and −3dB black/white mask with
respect to the brightest peak (b).

(a) (b)

Figure 4.22: Zoomed CLEAN residual I2(p, q) in dB scale (a) and relative −3dB
black/white mask (b).

(a) (b)

Figure 4.23: Measured −3dB resolution for the detected scatterers in cross-range (a)
and range (b) in blue and relative mean values plotted in red.
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4.4 Performance analysis results using real data

In this Section the above proposed super-resolution techniques are tested on real ISAR

data and the proposed �Truth Based� and �Quality Index Based� performance analysis

methods are applied to compare the super-resolution results.

4.4.1 Scenario and data description

The real ISAR data under test has been obtained from a SAR subcrop of the COSMO-

SkyMed (CSK) product named

CSKS1_SCS_U_S2_11_HH_RD_SF_20080415162051_20080415162056.h5

The CSK-SAR image, after despeckling, is depicted in Fig.4.24a, whereas the subcrop

under test is in Fig.4.24b. The SAR/ISAR images in Fig.4.24 and all the following are

shown in dB scale for illustration purposes.

(a) (b)

Figure 4.24: WCOR despeckled CSK-SAR with target of interest highlighted in red
(a) and SAR subcrop under test (b).

The SAR image in Fig.4.24a is taken from the city of Istanbul in April 2008 by the

Satellite 1 of the COSMO-SkyMed constellation in spotlight mode and HH polarization.

Some parameters of interest are summarized in Table 4.4.

For illustration purposes, the SAR image in Fig.4.24a is a result of the Wavelet Correlator

(WCOR) despeckling algorithm proposed in [87] which takes advantage of the Wavelet

theory in order to suppress noise and magnify edge structures that could belong to targets

or land area.
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Figure 4.25: WCOR despeckled whole CSK-SAR image.

Figure 4.26: Scenario representation (Google Maps©).
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Image Processing Algorithm OMEGA-KEY

Sample Type Complex

Radar Frequency 9.6 GHz

Frequency Bandwidth 277.5146 MHz

Pulse Repetition Frequency 3.575 kHz

Azimuth Looks 1

Range Looks 1

Azimuth Spacing 0.7022 m

Range Spacing 0.4349 m

Near Incidence Angle 37.4479◦

Far Incidence Angle 38.1344◦

Scene Centre Geodetic Coordinates (latitude) 41.0040◦

Scene Centre Geodetic Coordinates (longitude) 28.9878◦

Table 4.4: Parameters of interest about the CSK SAR under test.

The whole despeckled SAR image provided by COSMO-SkyMed is shown in Fig.4.25.

In Fig.4.26 the scenario is represented by exploiting the �Scene Centre Geodetic Co-

ordinates� information provided in the CSK product �les (image taken from Google

Maps©).

The SAR subcrop in Fig.4.24b is obtained by means of the WCOR based Constant

False Alarm Rate (W-CFAR) automatic ship detection algorithm [88], which exploits

the WCOR despeckle �lter. Such a subcrop is also highlighted in a red box in Fig.4.24a.

Such despeckling and automatic CFAR-based detection algorithms are not argument of

this Thesis and are not further treated. For details the reader is referred to [87, 88].

The selected one is a non-cooperative moving target in SAR scenario and, as a conse-

quence, it appears defocused. Therefore, a refocused image must be obtained by means

of ISAR processing before any super-resolution can be applied.

The main steps of the refocusing method to obtain the refocused ISAR image are sum-

marized below:

1. Target detection [88] and selection of the area around the defocused target image

(sub-image);

2. Sub-image projection onto the data domain by means of 2D Fourier Transform;

3. ISAR processing for image refocalization.

Details about the �ISAR from SAR� for target refocusing can be found in [89].

The refocused ISAR image is shown in Fig.4.27a, whereas the relative complex signal in

the frequency/slow-time domain is depicted in Fig.4.27b. As appears in Fig.4.27b, the
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(a) (b)

Figure 4.27: Refocused ISAR under test (a) and relative frequency/slow-time raw
signal (b).

raw signal is zero-padded. So, to apply the Truth Based performance analysis methods,

such a zero-padding have to be removed �rst (see Fig.4.1). The zero-padding factor along

the range direction can be easily estimated by comparing the Range Spacing (δ̄rng) and

Bandwidth (B) parameters in Table 4.4 as follows

Kzp,rng =
c

2B

1

δ̄rng
= 1.2428 (4.58)

The zero-padding factor along the azimuth direction Kzp,crg is instead roughly estimated

by analyzing the raw signal amplitude and appears to be equal to Kzp,rng. Therefore,

since the raw signal in Fig.4.27b is a Mzp×Nzp = 292× 279 matrix, the zero-padding is

removed by extracting the M ×N portion by the following MatLab code

m = floor((Mzp-M)/2);

sig = sig_zp(m+1:m+M,1:N);

where
M =

⌊
Mzp

Kzp,rng

⌋
= 234

N =
⌊

Nzp
Kzp,crg

⌋
= 224

(4.59)

The slant-range resolution δsrg is calculated by using the Bandwidth parameter and

the ground-range δrng by considering the mean value between the nearest and furthest

Incidence Angle Θ̄el (see Table 4.4).

δrng =
δsrg

sin
(
Θ̄el

) =
c

2B sin
(
Θ̄el

) = 0.8821 [m] (4.60)
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The cross-range resolution must be instead estimated by means of the Cross-Range Scal-

ing (CRS) algorithm in [81]. This is because in ISAR the cross-range resolution depends

on the target e�ective rotation vector Ωeff (assumed constant in time). In this case,

the Azimuth Spacing information in Table 4.4 cannot be used because the target is not

stationary. The cross-range resolution is then estimated by means of the CRS algorithm

δcrg = 0.4594 [m] (4.61)

The non-zero-padded ISAR image is depicted in Fig.4.28a in the range/cross-range do-

main with together its relative frequency/slow-time complex signal in Fig.4.28b. The

ISAR image in Fig.4.28a can then be used for the �Resolution Decreasing� step of the

performance analysis chain (see Fig.4.1).

(a) (b)

Figure 4.28: Refocused ISAR image after zero-padding removing (a) and relative
complex signal (b).

The �Resolution Decreasing� step is applied by settingKf = Kt = 2, i.e., the frequency/slow-

time signal support is halved and the image resolution doubled along both range and

cross-range. The central Mlow × Nlow portion of the complex signal is then retained.

The low-resolution ISAR image and relative complex signal are depicted in Fig.4.29a

and 4.29b respectively. Such a low-resolution image is then given as input to the super-

resolution algorithms under test.

The quality metrics proposed in Section 4.3 are measured on both the non-zero-padded

high-resolution image in Fig.4.28a and low-resolution image in Fig.4.29a and reported in

Table 4.5. It is worth comparing the measured range and cross-range resolution values

with the theoretical δrng and δcrg in (4.60) and (4.61): δ̂rng measured for the high-

resolution image is quite lower than the theoretical resolution, whereas δ̂crg is almost

equal. The same can be said for the low-resolution image with respect to the doubled



Chapter 4. Super-Resolution: Performance Analysis 110

(a) (b)

Figure 4.29: Low-resolution ISAR image (a) and relative frequency/slow-time raw
signal (b).

High-res. ISAR (Fig.4.28a) Low-res. ISAR (Fig.4.29a)

IC 2.1191 1.9698

IE (· 105) −2.3939 −2.1052

SNR [dB] 47.2843 45.1096

δ̂rng [m] 0.7755 1.4181

δ̂crg [m] 0.4526 0.8821

Table 4.5: Measured quality metrics for high and low-resolution ISARs.

resolution values. All the measured −3dB mean resolutions here and in the following

are estimated by considering the �rst 20 scatterers detected by the CLEAN with zero-

padding factor Kzp = 10. The SNR is calculated by setting δT = 1.5 (see (4.52)).

4.4.2 Super-resolution results

First, the Linear Prediction based Bandwidth Extrapolation (BWE) is performed. The

complex signal in Fig.4.29b is �rst extrapolated along the frequency direction (�Frequency

bandwidth extrapolation�) and then along the slow-time (�Aperture extrapolation�) sep-

arately. The model order pAR is set as Mlow/3 for the vertical (frequency) extrapolation

and Nlow/3 for the horizontal (slow-time) and the standard Burg's algorithm is used for

the linear-prediction model coe�cients estimation.

The resultant super-resolved image and extrapolated complex signal are shown in Fig.4.30a

and 4.30b respectively. The super-resolved ISAR image in Fig.4.30a must be compared

with the �truth� in Fig.4.28a, whereas the extrapolated complex signal in Fig.4.30b with

the complete original signal in Fig.4.28b.
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(a) (b)

Figure 4.30: BWE super-resolved ISAR image (a) and relative frequency/slow-time
raw signal (b).

The second applied super-resolution technique is the Capon's MVM. The signal covari-

ance matrix is estimated by means of the forward-backward method without diagonal

loading or other regularization methods. Di�erent subaperture sizes have been used to

test and compare di�erent results as shown in Fig.4.31, where MVM outputs for sub-

aperture sizes from 30% to 55% are depicted. As appears in Fig.4.31, larger subapertures

cause progressive SNR deterioration caused by a progressive statistical instability of the

spectral estimates. As in Section 3.3, the larger the subaperture, the smaller the number

of averages for the covariance matrix estimation. However, larger subapertures allow

for the spectral resolution to be increased as shown in Fig.4.33, where MVM results for

30% (a) and 45% (b) subapertures are shown. By comparing Fig.4.33a with 4.33b, such

a resolution enhancement for larger subapertures is evident. Such considerations are

validated by the numerical results summarized in Table 4.6, where the quality indexes

proposed in Section 4.3 are reported for di�erent subapertures.

As predictable by observing the ISAR images in Fig.4.31, larger subapertures produce

lower image contrast, higher image entropy and lower signal to noise ratio values. By

comparing the results in Table 4.6 with Table 4.5, it appears that Capon's MVM allows

to enhance the resolution along both range and cross-range with respect to the low-

resolution ISAR image, but the high-resolution values are not reached. Moreover, the

image quality in terms of contrast, entropy and SNR is strongly deteriorated.

Then the APES is applied. Even in this case the super-resolution algorithm is tested

for six subaperture sizes for the covariance matrix estimation. In Fig.4.32 the resultant

images are shown for subapertures from 30% to 55%, whereas the measured quality

metrics are summarized in Table 4.7.
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By comparing Fig.4.32 with Fig.4.31 and Table 4.7 with Table 4.6, it appears that APES

has better performance in terms of image contrast, image entropy and SNR and is much

less sensitive to the subaperture size, but does not allow a better resolution enhancement.

δ̂rng and δ̂crg for MVM and APES are comparable. In Fig.4.34 the APES results for 30%

(a) and 45% (b) subapertures are shown after 10× zero-padding and zooming. Even

in this case the resolution enhancement for larger subapertures is evident but not as

enhanced as in Fig.4.33. In Table 4.8 the estimated covariance matrix condition number

and the total elapsed time for performing MVM and APES are summarized. Such results

prove that smaller subapertures imply better conditioned covariance matrix and, as a

consequence, higher image contrast, entropy and SNR.

Subap. IC IE (· 105) SNR [dB] δ̂rng [m] δ̂crg [m]

30% 1.4770 −1.6046 38.5389 1.2586 0.8890

35% 1.3639 −1.4552 36.4335 1.2408 0.8431

40% 1.2535 −1.2975 34.2467 1.3560 0.8661

45% 1.1388 −1.1172 31.6993 1.1478 0.7880

50% 1.0135 −0.9001 28.3726 1.0636 0.7121

55% 0.9148 −0.7156 25.0021 1.1212 0.6111

Table 4.6: Capon's MVM performance numerical results for di�erent subaperture
sizes.

Subap. IC IE (· 105) SNR [dB] δ̂rng [m] δ̂crg [m]

30% 1.6946 −1.8992 42.1230 1.1034 0.8500

35% 1.6399 −1.8445 41.2600 1.0680 0.8454

40% 1.5862 −1.7903 40.3788 1.1300 0.8615

45% 1.5351 −1.7349 39.5367 0.9749 0.7374

50% 1.4980 −1.6966 38.9481 1.0148 0.6639

55% 1.5099 −1.7374 39.0449 1.0458 0.6340

Table 4.7: APES performance numerical results for di�erent subaperture sizes.

Furthermore, larger subapertures cause the computational load to increase and APES

appears to be quite slower than Capon's MVM. Elapsed times reported in Table 4.8 are

measured by applying MVM and APES on a personal computer with Intel Core2 Duo

Subap. Cond. Number (· 105) MVM Elap. Time APES Elap. Time

30% 0.1222 25.4602 44.0077

35% 0.2007 41.7264 65.7991

40% 0.3253 65.8975 96.8666

45% 0.6032 109.1426 176.8413

50% 1.4586 179.5790 6320.7421

55% 5.0059 408.7956 31744.4014

Table 4.8: Covariance matrix condition number and elapsed times for Capon's MVM
and APES in seconds.



Chapter 4. Super-Resolution: Performance Analysis 113

(a) (b)

(c) (d)

(e) (f)

Figure 4.31: Capon's MVM results for subaperture sizes of 30% (a), 35% (b), 40%
(c), 45% (d), 50% (e) and 55% (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.32: APES results for subaperture sizes of 30% (a), 35% (b), 40% (c), 45%
(d), 50% (e) and 55% (f).
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E8400 3.00GHz CPU and 8.00GB RAM. In this case, the e�cient method proposed in

[53] is used for both MVM and APES faster implementation. If the standard MVM and

APES implementations were used, the �nal results would be exactly the same, but the

used method o�ers advantages in terms of computational load and elapsed time.

(a) (b)

Figure 4.33: Zoomed Capon's MVM results for subaperture sizes of 30% (a) and 45%
(b) after 10× zero padding.

(a) (b)

Figure 4.34: Zoomed APES results for subaperture sizes of 30% (a) and 45% (b) after
10× zero padding.

Then Super-SVA is applied. SVA is iteratively exploited in �I and Q Separately - Two

Dimensions Simultaneously� mode to extrapolate the complex signal. The SVA is imple-

mented as in Section 3.5 and applied on both the ISAR image and a bidimensional sinc

function to create the inverse �lter by means of the following MatLab code

w = zeros(M,N);

w(1:floor(M/Ky),1:floor(N/Kx)) = 1; % Rect function in the signal domain

w = circshift(w,-floor(M/(2*Ky)));
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w = circshift(w.',-floor(N/(2*Kx))).'; % Shift around the 0 frequency

W = fft2(w); % Sinc function in the image domain

W = W/abs(W(1,1)); % Normalization

W = SVA_2D(W,Ky,Kx); % Inverse filter in the image domain

w = ifft2(W); % Inverse filter in the signal domain

where M and N denote the ISAR image size, Ky and Kx the zero-padding factors along

the vertical and horizontal directions, which must be updated at each SSVA iteration

depending on the BEF η and decrease down to 1, SVA_2D is the MatLab function that

performs the spatially variant apodization and the �nal w is the inverse �lter wBE(m,n)

as in (3.81). w is shifted in order to center the complex signal around the 0 frequency.

Then the inverse �lter is applied by meas of the following code

F = SVA_2D(G,Ky,Kx);

f = ifft2(F);

g = f./abs(w)

where G is the ISSVA at the previous iteration and F is ISVA at the current one. Then the

R domain is calculated in order to perform the (3.82), g is set to zero outside such a

domain and the original complex signal is replaced in the central portion of g to perform

the (3.83). Then G = fft2(g) and the SSVA goes on to the following iteration. When

the �nal iteration is performed, G represents the �nal SSVA output.

In this case, Super-SVA is performed by setting the bandwidth extrapolation factor

η = 21/8, i.e., in 8 loops. The �nal super-resolved ISAR image is shown in Fig.4.35a,

whereas its relative extrapolated complex signal is in Fig.4.35b.

(a) (b)

Figure 4.35: SSVA super-resolved ISAR image (a) and relative frequency/slow-time
raw signal (b).
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Finally, Compressed Sensing is applied. By referring to the notation introduced in Section

3.6, the �recorded signal matrix� S is the low-resolution complex signal in Fig.4.29b and

the undercomplete Fourier matrices Θy and Θx are de�ned as

{Θy}m,p = e−j2π
mp
P ∈ CM×P

{Θx}n,q = e
−j2π nq

Q ∈ CN×Q
(4.62)

where P = 3M and Q = 3N . The pseudo-inverse matrices are then calculated and Î0 is

initialized. The next step is the σ vector de�nition. In this case σ1 is set as in (4.63),

the last element of the sequence is set equal to the estimated noise standard deviation

as in (4.64) and the decreasing factor cσ is set equal to 0.6.

σ1 = 2 max
{

Î0

}
(4.63)

σJ =

√√√√ 1

NB

∑
(p,q)∈B

(
Î0(p, q)− µB

)2
(4.64)

where B denotes the �background area� as in (4.53) in Section 4.3, NB is the number of

background elements in the matrix and µB their mean value. In this case σ1 = 0.0055,

σJ = 1.1973· 10−5 and J = 12. Then the �approximate maximization of Fσ(x)� is

performed in NL = 50 iterations and setting the constant µ = 2.

In the end, the super-resolved complex signal (depicted in Fig.4.36b) is calculated as

SCS = Θy ÎJΘx (4.65)

and the super-resolved ISAR image via 2D Fourier Transform as in Fig.4.36a.

(a) (b)

Figure 4.36: CS super-resolved ISAR image (a) and relative frequency/slow-time raw
signal (b).
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4.4.3 Performance analysis

In the following, the results of the �ve tested super-resolution methods are summarized

and evaluated by means of the performance analysis methods proposed in this Chapter.

Such results are shown in Fig.4.37 and Fig.4.38.

The original ISAR image before zero-padding removing is depicted in Fig.4.37a and its

relative frequency/slow-time complex signal in Fig.4.38a. Such images are the same

shown in Fig.4.27a and 4.27b respectively. In Fig.4.37b, 4.37c, 4.37d, 4.37e and 4.37f the

results of BWE, Capon's MVM, APES, SSVA and CS are shown respectively. Such super-

resolution outputs are zero-padded by the same original zero-padding factor Kzp,rng =

Kzp,crg = 1.2428 (see (4.58)) as can be seen in their relative complex signals in Fig.4.38.

A 45% subaperture is used for Capon's MVM and APES.

By visual inspection, it appears that SSVA and CS allow for the original high-resolution

image to be better reconstructed and the super-resolved image to have higher SNR and

better resolution enhancement with respect to the other techniques. The worst one

appears to be the Capon's MVM result. Such considerations are con�rmed in Table

4.9 where the measured quality indexes proposed in Section 4.3 are summarized with

the measured elapsed times. The same parameters are reported for the original high-

resolution and low-resolution images for comparison purposes. Image contrast, entropy

and SNR are measured on the zero-padded images shown in Fig.4.37, whereas the mean

range and cross-range resolutions δ̂rng and δ̂crg are measured on the high-resolution,

low-resolution and super-resolved images without zero-padding. This is why IC, IE and

SNR for the high-resolution and low-resolution images in Table 4.9 are di�erent from the

values in Table 4.5, whereas δ̂rng and δ̂crg are the same.

The image quality indexes in Table 4.9 con�rm better performance for Compressed Sens-

ing with respect to the other tested super-resolution techniques in terms of image con-

trast, entropy and SNR. IC, IE and SNR for Capon's MVM and APES are even lower

than the measured values for the low-resolution ISAR image. Such techniques provoke

a quality deterioration with respect to the RD imaging technique. However, IC, IE and

SNR could be enhanced by applying some regularization method or diagonal loading on

the estimated covariance matrix. As observed above, there is a resolution enhancement

with respect to the low-resolution image, i.e., MVM and APES allow a better resolved

spectral estimation than the RD in the same frequency/slow-time support.

BWE has better performance than MVM and APES. IC, IE and SNR appear to be

enhanced with respect to the low-resolution image, but the quality indexes of the original

high-resolution ISAR image are not reached. The measured resolution values are smaller

than δ̂rng and δ̂crg for the low-resolution image, MVM and APES, but still higher than
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IC IE (· 105) SNR [dB] δ̂rng [m] δ̂crg [m] Elap. Time

High-Res. 2.1365 −3.8556 47.5423 0.7755 0.4526 -

Low-Res. 1.9692 −3.2703 45.0984 1.4181 0.8821 -

BWE 2.0626 −3.8156 45.4553 0.7534 0.6157 0.9280

MVM 1.1353 −1.7035 31.6344 1.1478 0.7857 105.2336

APES 1.5290 −2.6539 39.4569 0.9749 0.7351 176.8413

SSVA 2.4283 −4.0470 48.8868 0.7977 0.4824 0.8836

CS 2.5830 −4.1958 49.0874 0.7711 0.4204 103.4969

Table 4.9: Performance numerical results summary (quality index based) and elapsed
times in seconds.

the resolution of the original image. On the other hand, both SSVA and CS images

have higher image contrast, entropy and SNR than the high-resolution image and the

measured resolution is comparable with the original values.

Furthermore, by analyzing the extrapolated signals in Fig.4.38, it appears that MVM

and APES do not allow to extrapolate the complex signal within the whole available

support, i.e., do not allow a controlled extrapolation. For this reason, MVM and APES

are not suited for gap �lling. This is why the measured mean resolutions δ̂rng and δ̂crg for

such techniques are not as enhanced as in the BWE, SSVA and CS images. Moreover, by

looking at the shape of the complex signals in Fig.4.38c and 4.38d, the image PSF will

not likely have a sinc-like shape. As a consequence, the CLEAN technique is likely not

suited for both scatterers detection and resolution estimation. Therefore, the resolution

measurements in Table 4.6, 4.7 and 4.9 for MVM and APES are probably not reliable.

For further analysis, consider the high-resolution ISAR image in Fig.4.39a and its portion

zoomed in Fig.4.39b, where the target part highlighted in the red box is depicted. Such

images are obtained by applying 10× zero-padding to the �truth� in Fig.4.28a. Then,

consider the red segment in Fig.4.39b. The image pro�les along such a segment are

plotted in Fig.4.40 for the high-resolution and the super-resolved images. The �truth�

pro�le is plotted in blue on both Fig.4.40a and 4.40b, the image pro�les for BWE, SSVA

and CS are plotted in Fig.4.40a in cyan, green and red respectively. MVM and APES

pro�les are plotted in Fig.4.40b in red and black respectively. By analyzing such results,

it is clearly visible that Compressed Sensing allows for the best estimation and is the

only one that allows to reconstruct the small peak at cross-range equal to 46m.

In the following, the truth based performance analysis methods are exploited to further

analyze the super-resolution results. The �truth� to be estimated is the high-resolution

ISAR image after zero-padding removing in Fig.4.28a. The �estimations� to be analyzed

and compared are the super-resolved images in Fig.4.30a (BWE), Fig.4.31d (Capon's

MVM), Fig.4.32d (APES), Fig.4.35a (SSVA) and Fig.4.36a (CS). The Scatterer Position

based comparison algorithm (Section 4.2.1) is applied �rst.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.37: Zero-padded original high-resolution ISAR image (a) and super-resolved
by BWE (b), Capon's MVM (c), APES (d), SSVA (e) and Compressed Sensing (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.38: Zero-padded original frequency/slow-time signal (a) and reconstructed
by BWE (b), Capon's MVM (c), APES (d), SSVA (e) and Compressed Sensing (f).
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As written above, CLEAN is not suited for scattering detection in case of Capon's MVM

and APES super-resolution. However, it is used anyway. CLEAN is �rst performed on

the �truth� by setting the stop condition as a function of the residual energy. By stopping

the CLEAN when the residual energy is less than the 15% of the original image energy,

68 scatterers are detected. After that, CLEAN is performed on the super-resolved ISAR

images by setting the stop condition as a function of the detected peaks amplitude: when

the measured peak amplitude is lower than the 95% of the weakest detected scatterer in

the �truth�, the CLEAN is stopped. Therefore, a di�erent number of scatterers/peaks

are detected in di�erent images, but a fair peaks detection strategy is guaranteed. It is

worth pointing out that every image is normalized with respect to its own norm before

the CLEAN is performed.

(a) (b)

Figure 4.39: 10× zero-padded high-resolution ISAR image (a) and highlighted portion
with pro�le segment in red (b).

The Scatterer Position based comparison algorithm is applied for every �estimation� as

depicted in Fig.4.41. Numerical performance analysis results are reported in Table 4.10

where �NoS� denotes the number of detected scatterers. Such results highlight that the

CLEAN detects more scatterers in the super-resolved images than in the original high-

resolution, except in the BWE result. In this case, 67 peaks are detected, but about the

half are classi�ed as false alarms (artifacts) and only 35 scatterers are correctly detected.

In the MVM image the number of correct detections is quite larger, but it is just because

a very large number of peaks is detected. This is probably because of the low SNR and

the large number of artifacts. Moreover, as written above, the CLEAN is not suited for

Capon's MVM and a lot of detections are probably spurious low-power peaks detected

near the main targets. The same can be written for the APES. SSVA produces a lot

of artifacts too and the half of the detected peaks are false alarms. A lot of peaks are

detected in the CS result too, but in this case the RRMSE value (see (4.37)) is lower with

respect to the other super-resolution techniques. Therefore, the Scatterer Position based



Chapter 4. Super-Resolution: Performance Analysis 123

(a)

(b)

Figure 4.40: Amplitude pro�les for High-res. ISAR image (both (a) and (b)), BWE,
SSVA and CS in (a) and MVM and APES in (b).

comparison approach returns better performance for CS with respect to the others in

terms of RRMSE, but the Correct Detection, Missed Detection and False Alarms indexes

appear to be not very signi�cative in this case.

Finally, the Mobile Cross-Correlation based comparison algorithm is performed. The

intensity mobile cross-correlation maps RM,I for all the tested super-resolution tech-

niques are calculated by setting δH = δS = 0.5 (see (4.41)) and WB = 15. The resultant

maps are depicted in Fig.4.42. A preliminary 5× zero-padding is performed before the

RM,I maps calculation. The mean mobile cross-correlations rM,I , the rG and Root Mean

Square Error values, as in (4.22) and (4.23), respectively are reported in Table 4.11. In

this case, BWE, APES and CS return similar values of rG correlation, whereas MVM

and SSVA return lower values. However, CS has the greatest rM,I value. rM,I for APES

is quite high too and the lowest value is given by SSVA. The best result in terms of

RMSE is instead given by APES.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.41: Detected scatterers in the �truth� in Fig.4.28a (a) and Scatterer Position
based comparison results for BWE (b), Capon's MVM (c), APES (d), SSVA (e) and

Compressed Sensing (f).
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(a)

(b) (c)

(d) (e)

Figure 4.42: Mobile Cross-Correlation intensity maps for BWE (a), Capon's MVM
(b), APES (c), SSVA (d) and Compressed Sensing (e).



Chapter 4. Super-Resolution: Performance Analysis 126

NoS Correct Det. Missed Det. False Alarms RRMSE

High-Res. 68 - - - -

BWE 67 35 35 32 0.8131

MVM 167 54 14 113 0.6786

APES 110 50 18 60 0.6160

SSVA 101 50 19 51 0.8658

CS 91 46 22 45 0.5685

Table 4.10: Scatterer Position based comparison numerical results.

rG rM,I RMSE

BWE 0.7695 0.6368 0.3018

MVM 0.6883 0.6382 0.3244

APES 0.7711 0.6541 0.2657

SSVA 0.6956 0.5965 0.3211

CS 0.7503 0.6627 0.3024

Table 4.11: Global Correlation Index, Mean Mobile Correlation Index and RMSE
results.

In conclusion, as reported in Table 4.9, the proposed quality index based analysis methods

return better results for the Compressed Sensing based super-resolution with respect

to the other techniques. The worst case is given by Capon's MVM, whereas SSVA

returns worse but still comparable values with respect to CS. In particular, CS has

better performance than SSVA in terms of image contrast, image entropy and signal to

noise ratio, but almost equal in terms of e�ective −3dB measured resolution.

Truth based methods do not return very clear results. By referring to Table 4.10, the

scatterer position based comparison algorithm detects a large number of artifacts in the

Capon's MVM and APES images, but such a result is not likely reliable because the

used scatterers detection method seems to be not suitable for MVM and APES. On the

other hand, BWE, SSVA and CS return very similar results in terms of number of correct

detections relative to the number of detected peaks. However, both amplitude estima-

tion RRMSE and mean mobile cross-correlation seem to con�rm better performance for

Compressed Sensing, but good results for APES too.

By considering the global cross-correlation rG and RMSE (see Table 4.11), APES and

BWE seem to have better performance with respect to MVM, SSVA and CS, even though

the relative images in Fig.4.37 do not seem to be so similar to the truth.
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Bistatic radar imaging

super-resolution

In this Chapter super-resolution radar imaging is treated in case of bistatic radar con�g-

uration. In Section 5.1 the super-resolution techniques treated in Chapter 3 are theoret-

ically analyzed by considering the bistatic received signal model introduced in Section

2.3 and their validity for bistatic radar imaging is analytically demonstrated. In Section

5.2 super-resolution is exploited for bistatic distortion mitigation when range and/or

Doppler migration occur. Linear prediction BWE, Super-SVA and Compressed Sensing

are applied and the results are analyzed and compared by means of the performance

analysis methods proposed in Chapter 4. Finally, in Section 5.3 the super-resolution

techniques are applied on real bistatic data with further performance evaluation.

5.1 Bistatic super-resolution: theoretical analysis

In this Section the super-resolution techniques treated in Sections 3.2 to 3.6 are analyzed

in case of bistatic con�guration. The BEM signal model in (2.48) is exploited to theo-

retically validate BWE, Capon's MVM, APES, SSVA and CS when the received signal

phase term is a�ected by the bistatic distortion term K(n).

5.1.1 Linear Prediction based Bandwidth Extrapolation

As stated in Section 3.2, BWE super-resolution exploits an autoregressive modeling of

the received radar signal. BWE is a parametric super-resolution technique, which means

that the received signal is modeled as a sum of a �nite number of complex exponential

contributions as in (3.18).

127
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Unfortunately, there is no analytical proof for validating for such a modeling in literature.

In general, it is assumed that the target radar signature can be modeled as a stochastic

process. Radar target �uctuation models were �rst introduced by Swerling in the 1950s

and they proved to be very useful to describe the statistical properties of the radar

cross-section of complex objects [90]. The Swerling models are based on the concept of

scan-to-scan and pulse-to-pulse �uctuation.

In the scan-to-scan �uctuation case, �the returned signal power is assumed to be constant

for the time on target during a single scan, but to �uctuate independently from scan to

scan� [90]. In statistical terms, for the time in which the target of interest is in the

antenna beam, the target radar cross-section is assumed as a stochastic process with

normalized autocorrelation function approximately one.

In the pulse-to-pulse �uctuation case, the normalized autocorrelation function of the

radar cross-section through consecutive pulses is instead assumed zero, i.e., the returned

signal power through consecutive pulses is totally independent.

An intermediate case consists of modeling the target radar cross-section as �uctuating

as a stochastic process with a certain dependence on the signal power in the previous

pulses, i.e., with a certain normalized autocorrelation function with values between zero

and one. Then, if it can be assumed that the stochastic process of the radar cross-section

depends linearly on its own previous values, thus the signal model can be written in the

form of a stochastic di�erence equation, i.e., an autoregressive process.

In the ISAR case, the consecutive pulses refer to the slow-time dimension. If such a

�uctuation modeling can also be used for the spatial domain, i.e., the radar cross-section

of a certain part of the target body can be assumed linearly depending on the cross-

sections of the adjacent parts, the autoregressive model can be used for the slant-range

dimension too. As a consequence, the discrete radar signal S(m,n) can be modeled as an

autoregressive stochastic process along both the vertical and horizontal directions. This

is independently of the monostatic or bistatic radar geometry.

The �Frequency bandwidth extrapolation� step of the BWE algorithm is not a�ected by

the bistatic geometry, because the presence of K(n) in the bistatic signal model in (2.48)

does not a�ect the linear dependence of the signal phase on the frequency variable. On

the other hand, K(n) a�ects the signal phase dependence on the slow-time variable and,

as a consequence, the �Aperture extrapolation� step of the BWE algorithm. In fact, as

stated in Section 3.2, �the aperture extrapolation can be e�caciously applied if the angle

change is small enough to approximate the sine and cosine functions with a �rst order

Taylor-Maclaurin polynomial and no range/cross-range migration e�ects occur�, i.e., if

�the phase dependence on n is linear�.
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To guarantee such a linear dependence on the slow-time variable, it is important to

have the quadratic term RB,2 of the BEM e�ective range in (2.54) negligible with re-

spect to RB,0 and the �rst order term RB,1, i.e., satisfy the constraint in (2.64) for the

Doppler migration. If Doppler migration does not occur, then the BWE algorithm can

be e�caciously applied in bistatic con�guration too.

5.1.2 Capon's MVM and APES

Capon's MVM and APES are signal processing techniques that aim to estimate the

Power Spectral Density (PSD) of a signal. Both MVM and APES consists of modeling

the signal of interest as a complex sinusoid plus an unmodeled noise/interference term

as in (3.33) and (3.49) for the 1-D and 2-D cases respectively.

In the monostatic case, by considering the signal model in (2.18) and approximating

the e�ective range in (2.20) by its �rst order Taylor-Maclaurin polynomial, the received

signal in case of single scatterer target can be written as follows

S(f, n) = W (f, tn)A e−j2π
2f
c (z1,0Ωeff tn+z2,0) (5.1)

' W (f, n)A e
−j2π

(
2z2,0
c

f+
2f0Ωeff z1,0

c
tn
)

= W (f, n)A e−j2π(τ0f+ν0tn)

where ν0 and τ0 are de�ned in (2.39) and (2.40) respectively and 2fΩeffz1,0 is approx-

imated with 2f0Ωeffz1,0 for the rectangular Fourier domain approximation. Then, by

discretizing the frequency variable as f = f0 +mδf

S(m,n) = A e−j2πτ0f0 e−j2π(τ0δfm+ν0TRn) (5.2)

where m = 1, . . . , M , n = 1, . . . , N and the window function W is omitted since it is

always de�ned equal to 1 within such a discrete domain. Therefore, by de�ning

ωM,1 = τ0δf (5.3)

ωM,2 = ν0TR (5.4)

the result in (5.2) is compatible with the signal model in (3.49). On the other hand, by

considering the received signal expression in bistatic con�guration in (2.52) and approx-

imating R′B(tn, z1,0, z2,0) by its �rst order Taylor-Maclaurin polynomial, (5.1) becomes

S(f, n) = W (f, n)A e−j2π
2f
c (RB,0+RB,1tn) (5.5)

' W (f, n)A e
−j2π

(
2RB,0
c

f+
2f0RB,1

c
tn
)
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Then, by discretizing the frequency variable and considering tn = nTR

S(m,n) = A e−j2π
2RB,0f0

c e
−j2π

(
2RB,0δf

c
m+

2f0RB,1TR
c

n
)

(5.6)

= A e−j2π
2RB,0f0

c e−j2π(ωB,1m+ωB,2n)

where

ωB,1 =
2RB,0δf

c
=

2K0z2,0δf
c

= K0 τ0δf = K0 ωM,1 (5.7)

ωB,2 =
2f0RB,1TR

c
=

2f0 (K1z2,0 +K0z1,0Ωeff )TR
c

(5.8)

=
2f0K0z1,0ΩeffTR

c
+

2f0K1z2,0TR
c

= K0 ωM,2 + ∆νTR

where ∆ν is the linear distortion term de�ned in (2.73). The result in (5.6) is also

compatible with the signal model in (3.49). As a consequence, Capon's MVM and APES

techniques can be indi�erently used in both monostatic and bistatic con�gurations.

5.1.3 Super Spatially Variant Apodization

SSVA iteratively applies and inverts SVA in order to make a controlled extrapolation

of the received complex signal beyond the available frequency/slow-time support. The

only constraint is that SVA must be applicable. As mentioned in Section 3.5, SVA needs

the knowledge of the image sampling rate, i.e., any zero-padding in the signal domain

must be known, and the imaging PSF must have a sinc-like shape. As a consequence,

any weighting by means of Hamming, Hanning, Kaiser, or other window functions in the

signal domain must be known and inverted.

By considering the bistatic image model in (2.80), it appears that the image scaling

caused by K0 and the linear distortions due to ∆ν only a�ect the position of the scat-

terers in the time-delay/Doppler (or range/cross-range) domain and does not modify

the imaging PSF represented by w(τ, ν). On the other hand, the imaging PSF could

be altered by the quadratic distortion term D2,B(ν, z1,0, z2,0), which causes a blurring

of the PSF along the Doppler (or cross-range) coordinate. Such a blurring e�ect occurs

if the constraint in (2.64) is not satis�ed, i.e., if there is Doppler migration. However,

even if Doppler migration occurs, (2.64) is not satis�ed and D2,B(ν, z1,0, z2,0) cannot be

neglected, such a distortion a�ects the PSF shape only along the Doppler direction (see

Fig.2.9a). On the other hand, range migration a�ects the PSF shape along both range

and cross-range.
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SSVA can be applied in any case, but if ∆rng > δrng and/or ∆crg > δcrg, i.e., (2.57)

and/or (2.64) are not satis�ed, resolution will be eventually enhanced, but the �nal

result will not have sinc-like shape. Such considerations are validated in Fig.5.1.

(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Original ISAR images in case of range migration (a) and Doppler migra-
tion (b), results of SVA in case of range migration (c) and Doppler migration (d) and

results of SSVA in case of range migration (e) and Doppler migration (f).

Simulated ISAR images in Fig.5.1 are produced as in Section 2.4 but with the target
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speed reduced to 20m/s and di�erent target size. The ISAR image in Fig.5.1a is a zoom

on scatterer #3 in case of z1,3 = 14m and z2,3 = 2m. In this case ∆rng = 0.2316m,

∆crg = 0.0312m and only range migration occurs (δrng = 0.15m and δcrg = 0.1432m).

As in Fig.5.1c, SVA successfully suppresses sidelobes and the SSVA result in Fig.5.1e

appears to have a similar shape with respect to the original low-resolution image and

the resolution is successfully enhanced. However, the super-resolved image in Fig.5.1e

cannot be stated to be a good result. This is because �ve prominent peaks appear where

only one scatterer is simulated to be in such a position. Such artifacts are caused by the

non-sinc-like shape of the image in Fig.5.1a.

The same can be stated if only Doppler migration occurs as in Fig.5.1b, 5.1d and 5.1f.

Fig.5.1b shows the original image zoomed on scatterer #2 in case of z1,2 = 2m and

z2,2 = 14m with ∆rng = 0.0088m and ∆crg = 0.3677m, whereas SVA and SSVA results

are shown in Fig.5.1d and 5.1f respectively. In this case, three prominent peaks appear in

the super-resolved image aligned along the cross-range direction. This is because when

Doppler migration occurs, the image PSF is still sinc-like along the range direction.

In all cases described above, SSVA is applied by setting η = 21/4 and in 4 loops to halve

the image resolution along both range and cross-range. All images in Fig.5.1 are 10×
zero-padded and shown in dB scale.

Therefore, it can be stated that SSVA can be successfully applied if both (2.57) and

(2.64) are satis�ed, i.e., if both range and Doppler migration do not occur. However, it

can still be applied to enhance range resolution if only (2.57) is satis�ed.

However, such considerations can be stated also for the monostatic case. In monostatic

con�guration, if (2.25) is not satis�ed, range migration occurs and SSVA behaves as

described above for the bistatic con�guration, whereas if (2.34) is not satis�ed, Doppler

migration occurs and SSVA can be only applied along the range direction.

5.1.4 Super-Resolution via Compressed Sensing

In this Section, the signal model with the Fourier dictionaries in matrix representation

in (3.104), i.e., the applicability of the Compressed Sensing theory for signal reconstruc-

tion/extrapolation, is validated for the bistatic con�guration.

By considering the signal model in (2.48), the e�ective range expression in (2.54) and the

target/scene re�ectivity function modeled as a set of point-like scatterers as in (3.90),

if R′B(tn, z1,0, z2,0) is approximated by its �rst order Taylor-Maclaurin polynomial, the

bistatic received signal can be written as follows
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S(f, n) = W (f, n)

∫
z1

∫
z2

γ(z1, z2) e−j
4πf
c

[K0z2,i+(K1z2,i+K0z1,jΩ)tn]dz1dz2 (5.9)

= W (f, n)
P∑
i=1

Q∑
j=1

σi,j e
−j 4πf

c
[K0z2,i+(K1z2,i+K0z1,jΩ)tn]

= W (f, n)

P∑
i=1

Q∑
j=1

σi,j e
−j2π(K0τif+K0νjtn+∆ν,itn)

where τi and νj are the delay-time and the Doppler frequency for the (i, j)th scatterer

de�ned in (3.92) and (3.93) respectively, whereas

∆ν,i =
2f

c
K1z2,i '

2f0

c
K1z2,i = K1f0τi (5.10)

is the linear distortion term de�ned as in (2.73). Such a signal representation is equivalent

to (3.91) if K0 → 1 and K1 → 0, i.e., when the bistatic angle tends to zero. In (5.10), the

frequency variable f is approximated with f0 for the rectangular domain approximation

as in (3.93). Therefore, by considering the products in (3.100) and (3.101) for the delay-

time and Doppler variables discretization and

∆ν,i tn = K1f0
pi
Pδf

nTR
Q

Q
(5.11)

=
n

Q

[
K1f0

QTR
Pδf

pi

]
=

n

Q

[
K1f0

Tob
B

pi

]
=
n

Q
∆q(i)

where τi = pi
Pδf

, tn = nTR and

∆q(i) = K1f0
Tob
B

pi (5.12)

the signal model in (5.9) can be written as

S(m,n) = W (m,n)

P∑
i=1

Q∑
j=1

σi,j e
−j2π f0

B
K0pi e−j2π

m(K0pi)
P e

−j2π
n(K0qj+∆q(i))

Q (5.13)

Compare (5.13) with (3.102) for the monostatic case. By using the same matrix notation

as in Section 3.6, the received signal matrix SC can then be written as follows

SC = ΨyIBΨT
x (5.14)
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where Ψy and Ψx are the Fourier dictionaries de�ned in (3.105) and (3.106) respectively

and IB is the matrix representation of

IB(p, q) =

P∑
i=1

Q∑
j=1

σi,j w (p−K0pi , q −K0qj −∆q(i)) e
−j2π f0

B
K0pi (5.15)

Compare (5.15) with (3.103). As a result, CS can be applied also in case of bistatic

con�guration to reconstruct the acquired signal beyond the available frequency/slow-

time support and enhance image resolution. The SL0 algorithm described in Section 3.6

can be used without any modi�cation.

5.2 Bistatic distortion mitigation

In this Section linear prediction BWE (Section 3.2), Super-SVA (Section 3.5) and Com-

pressed Sensing (Section 3.6) are applied for bistatic distortion mitigation. The basic

idea has been introduced in Section 2.4 and consists of reducing the CPI by a factor KT

(see (2.86)) in order to mitigate the bistatic range/Doppler distortion and then apply

super-resolution to restore the cross-range resolution loss caused by the signal support

reduction.

As in Section 2.4, the range and Doppler migration parameters ∆rng and ∆crg, de�ned in

(2.57) and (2.64) respectively, are directly proportional to the CPI. Range and Doppler

migration are stated to occur when ∆rng > δrng and ∆crg > δcrg respectively.

The CPI reduction parameter KT must satisfy the constraints in (2.87) and (2.88) for

range and Doppler respectively. Such constraints can then be merged as follows

KT < min {KT,rng , KT,crg} (5.16)

where

KT,rng
.
= min

i=1,...,Ns

{
c

2B |K1z2,i +K0z1,iΩ|Tob

}
(5.17)

KT,crg
.
= min

i=1,...,Ns

{√
c

2f0 |K2z2,i + 2K1z1,iΩ−K0z2,iΩ2|T 2
ob

}
(5.18)

KT,rng can be estimated by estimating the product z1,iΩ = c
2f0
νi (see 2.38) and the

target path for the bistatic angle and K(t). On the other hand, KT,crg needs the e�ective

rotation vector to be estimated. However, also the image focusing center needs to be

evaluated to estimate the scatterers position in range z2,i and Doppler νi.
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Scatterer #2 Scatterer #3

z1,i[m] 4 −4

z2,i[m] 8 8

δrng[m] 0.15 0.15

δcrg[m] 0.1432 0.1432

∆rng[m] 0.0059 0.1231

∆crg[m] 0.6535 0.5362

KT,rng 25.4237 1.2185

KT,crg 0.4682 0.5168

Table 5.1: Bistatic distortion parameters for the simulated example in Section 2.4.

By referring to the simulation example in Section 2.4, the calculated distortion parame-

ters for scatterers #2 and #3 are summarized in Table 5.1 and the zoomed ISAR images

are shown in Fig.5.3a and 5.3b respectively.

Figure 5.2: High-resolution distorted bistatic ISAR image with the �ve scatterers
labeled.

The whole ISAR image under test is shown in Fig.5.2. As in Section 2.4, all the ISAR

images in the following are 10× zero-padded and shown in dB scale for illustration

purposes.

As in Table 5.1, ∆rng < δrng for both scatterers #2 and #3, but range migration can be

observed in Fig.5.3b. This is because ∆rng for scatterer #3 is lower but still comparable

with δrng, whereas for scatterer #2 ∆rng is much smaller than δrng. Range migration

occurs, but does not exceed the range resolution cell. ∆crg is instead considerably greater

than δcrg for both scatterers #2 and #3 and strong Doppler migration is evident in

Fig.5.3.

Therefore, in order to mitigate Doppler migration and enclose the Doppler bandwidth

within the Doppler resolution cell, the CPI reduction factorKT must be chosen as follows

KT < KT,crg = min {0.4682 , 0.5168} = 0.4682 (5.19)
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(a) (b)

Figure 5.3: High-resolution distorted bistatic ISAR image zoomed on the scatterer
#2 (a) and #3 (b) before CPI reduction.

(a) (b)

Figure 5.4: High-resolution distorted bistatic ISAR image zoomed on the scatterer
#2 (a) and #3 (b) after CPI reduction.

(a) (b)

Figure 5.5: Frequency/slow-time complex signal before (a) and after (b) CPI reduc-
tion.
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By using KT = 0.4, the result of the CPI reduction on the ISAR images in Fig.5.3a

and 5.3b are depicted in Fig.5.4a and 5.4b respectively (see Fig.2.13a and 2.13b too).

The complex signal in the frequency/slow-time domain before and after CPI reduction

is shown in Fig.5.5a and 5.5b respectively.

In Section 2.4, such results are commented and compared with the case KT = 0.6, i.e.,

when the CPI is not reduced enough to mitigate the bistatic distortion. Images in Fig.5.4

show a sinc-like shape which is not visible in Fig.5.3, but the resolution loss along the

cross-range is evident. By considering the super-resolution techniques tested in Chapter

4, only BWE, SSVA and CS are applied to restore the Doppler/cross-range resolution,

because Capon's MVM and APES are not able to arbitrarily extrapolate the retained

complex signal as highlighted in Section 4.4.

BWE: pAR Nlow/3

SSVA: η 21/4

Nloop 4

CS: cσ 0.6
NL 50
µ 2

Table 5.2: Parameter setting for the used super-resolution techniques.

Such techniques are applied with the parameter settings summarized in Table 5.2 where

pAR is the AR model order for the linear prediction BWE (see Section 3.2), Nlow =

KTTob/TR, η is the BEF for the SSVA, Nloop is the number of SSVA loops (see Section

3.5), cσ is the σ-decreasing factor for the σ sequence, NL is the number of iterations of

the steepest ascend algorithm and µ is the constant parameter for the SL0 algorithm

(see Section 3.6). Super-resolution results are shown in Fig.5.6 ordered as follows.

1. Fig.5.6a: result of BWE zoomed on scatterer #2;

2. Fig.5.6b: result of BWE zoomed on scatterer #3;

3. Fig.5.6c: result of SSVA zoomed on scatterer #2;

4. Fig.5.6d: result of SSVA zoomed on scatterer #3;

5. Fig.5.6e: result of CS zoomed on scatterer #2;

6. Fig.5.6f: result of CS zoomed on scatterer #3;

By observing the results in Fig.5.6, it appears that Compressed Sensing allows for a

better sinc-like result when only Doppler migration occurs, whereas SSVA allows for a

sidelobe suppression in addition to the cross-range resolution reinstatement (compare

Fig.5.6c with 5.6e).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Results of BWE, SSVA and CS zoomed on scatterer #2 ((a), (c) and (e)
respectively) and #3 ((b), (d) and (f) respectively).
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BWE appears instead to reconstruct the range migration on scatterer #3. This is proba-

bly because the signal model exploited by the BWE super-resolution in (3.15) is the same

as in (2.82) which is used to generate the simulated ISAR image under test (compare

Fig.5.6b with Fig.2.9b). However, Doppler distortion on scatterer #2 is not reconstructed

and BWE is able to restore the cross-range resolution even if the �nal result is de�nitely

not sinc-like (compare Fig.5.6a with Fig.2.9a). This is because, as stated in Section

5.1.1, BWE can be successfully applied in bistatic con�guration if the signal phase term

is linearly dependent on the slow-time variable, i.e., if Doppler migration does not occur.

For a better performance evaluation, in the following the performance analysis methods

proposed in Chapter 4 are applied. However, in this case the original high-resolution

image is not suitable for being used as �truth� because super-resolution is not applied

in order to reconstruct it, but to mitigate quadratic distortions. In order to apply truth

based performance analysis methods another �truth� must be used.

Since in this Section simulated data is used, all the scatterers position in the range/-

Doppler (or range/cross-range) domain are known. Therefore, another �truth� can be

built by placing ideal 2D sinc functions in the same positions where the scatterers are

theoretically located as shown in Fig.5.7. In Fig.5.7a the whole �truth� image is depicted,

whereas Fig.5.7b shows the image zoomed on scatterer #3. The other four scatterers

have the same 2D sinc shape. The �truth� in Fig.5.7 is used to compare the original

distorted ISAR image in Fig.5.2 and 5.3 with the super-resolution images in Fig.5.6.

(a) (b)

Figure 5.7: �Truth� for performance analysis (a) and zoom on scatterer #3 (b).

Results of the proposed �truth based� and �quality index based� performance analysis

methods are shown in Table 5.3. By considering the quality indexes Image Contrast

(IC), Image Entropy (IE) and SNR in Table 5.3, SSVA appears to give better results

with respect to BWE and CS. This is because SSVA allows to restore the cross-range

resolution but does not generate an output image with sinc-like shape as in the truth,
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Original BWE SSVA CS

IC 10.2975 8.7994 12.9652 12.1943

IE (· 105) −445.4773 −447.4476 −492.7380 −489.538

SNR [dB] 75.4708 72.2198 80.3709 78.8742

δ̂rng [m] 0.1470 0.1410 0.1350 0.1350

δ̂crg [m] 0.3295 0.1576 0.1432 0.1289

NoS 5 5 5 5

Correct Det. 5 5 5 5

Missed Det. 0 0 0 0

False Alarms 0 0 0 0

RRMSE 0.3721 0.2108 0.0915 0.0400

rG 0.8344 0.8599 0.9840 0.9857

rM,I 0.7652 0.6553 0.8014 0.8743

RMSE 0.4180 0.3624 0.1363 0.1013

Table 5.3: Truth based and quality index based performance analysis results for the
original distorted ISAR image and the super-resolved by BWE, SSVA and CS.

but produce a further sidelobe suppression as in Fig.5.6c and 5.6d. However, CS results

are quite similar, whereas BWE returns the worst performance even with respect to the

original distorted image.

It is worth noting that δ̂crg for the original distorted image is quite high because of the

Doppler migration, but the measured value for BWE is similar to the theoretical cross-

range resolution in Table 5.1 even though the BWE result on scatterer #3 is similar to

the original image (compare Fig.5.3b with Fig.5.6b). This is because the BWE result on

scatterers #2 and #4 has a sinc-like mainlobe (see Fig.5.6a), whereas scatterers #3 and

#5 spread below the −3dB threshold.

(a) (b)

Figure 5.8: Resolution maps for �Truth� (a) and BWE result (b) for amplitude levels
−3dB, −4dB, −5dB, −6dB and −9dB.
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TRUTH BWE

δcrg,3|−3dB [m] 0.1289 0.1862

δcrg,3|−4dB [m] 0.1576 0.2722

δcrg,3|−5dB [m] 0.1576 0.3581

δcrg,3|−6dB [m] 0.1862 0.4154

δcrg,3|−9dB [m] 0.2149 0.4870

Table 5.4: Measured cross-range resolution for scatterer #3 in both �truth� and BWE
for di�erent thresholds.

To con�rm this, consider the �resolution map� for the �truth� in Fig.5.8a and BWE in

Fig.5.8b where the image amplitude levels at −3dB, −4dB, −5dB, −6dB and −9dB

with respect to the maximum image peak are shown zoomed on scatterer #3. δ̂rng and

δ̂crg in Table 5.3 are calculated by measuring the −3dB map width and height for each

scatterer and then calculating the mean value. By considering only scatterer #3 and

the resolution maps depicted in Fig.5.8, the measured cross-range resolution values for

both �truth� and BWE are shown in Table 5.4, which highlights that the cross-range

resolution in the BWE image increases much faster than the cross-range resolution in

the �truth� as the threshold decreases.

In the BWE image, the same values of cross-range resolution are measured for scatterer

#5, whereas scatterers #2 and #4 return lower resolution and have more sinc-like shape

(see Fig.5.6a). Furthermore, scatterer #1 is located on the image focusing center and is

about sinc-like for all the images. In particular

δcrg
∣∣
−3dB = [0.1289 , 0.1432 , 0.1862 , 0.1432 , 0.1862] (5.20)

This is why the measured mean cross-range resolution for BWE is comparable with the

theoretical resolution even if the super-resolved image is distorted. The measured mean

range resolution is instead almost the same in all cases. SSVA and CS return slightly

better results.

Scatterer position based comparison algorithm (Section 4.2.1) does not return signi�-

cant results in terms of missed detection and false alarms, but the RRMSE index is

considerably lower when using CS rather than the other techniques. RRMSE results

are validated in Fig.5.9, where the estimated amplitudes in the original image and in

the super-resolution results are plotted and compared with the �truth� amplitude (the

dotted black plot). The Relative Square Error plots for the original high-resolution im-

age, BWE, SSVA and CS are instead plotted in blue, cyan, green and red respectively

in Fig.5.9b. Results in Fig.5.9 highlight that BWE, SSVA and CS progressively correct

the amplitude errors caused by the bistatic distortion and Compressed Sensing allows

for the best distortion mitigation in terms of amplitude correction.
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(a) (b)

Figure 5.9: Estimated scatterer amplitude in the original high-resolution image,
BWE, SSVA and CS compared with the �truth� (a) and relative RSE plots (b).

Global cross-correlation (rG in (4.22)), Root Mean Square Error (RMSE in (4.23)) and

intensity mean mobile cross-correlation (rM,I in (4.47)) in Table 5.3 give better results

for Compressed Sensing too with respect to the other images.

The results shown above are obtained in the case of images only a�ected by bistatic

distortion. In the following, super-resolution performance is further evaluated after cor-

rupting the simulated signal with additive white Gaussian noise and the images under

test are compared by varying the signal to noise ratio from −40 to 40dB. Image con-

trast, image entropy, global and mean mobile cross-correlation, RMSE and amplitude

estimation Relative Root Mean Square Error results are plotted in Fig.5.10.

The IC and IE trends in Fig.5.10a and 5.10b respectively are not so signi�cant. From

−40 up to 20dB SNR, IC and IE in the four images under test are quite similar. When

SNR > 20dB, IC and IE for SSVA and CS increase with respect to the original distorted

image and BWE. Global cross-correlation for the original image, BWE, SSVA and CS

in Fig.5.10c are similar up to −10dB SNR. Then, the values for SSVA and CS depart

from the others. rG for the original high-resolution image saturates at about 0.8 for

values of the SNR above 10dB, whereas it approaches 1 for SSVA and CS. BWE returns

intermediate results up to 0.9 for SNR = 40dB. rM for low SNR (Fig.5.10d) is about the

same for all the images. However, for high SNR, rM for CS increases with respect to the

others, whereas rM for BWE is always the smallest one.

RMSE for SSVA and CS in Fig.5.10e are always lower with respect to BWE and the

original image. If SNR > 10dB, the original image RMSE saturates at about 0.4, whereas

for BWE, SSVA and CS keeps decreasing as the SNR increases. RMSE for SSVA is almost

always the smallest one, but it saturates at about 0.15 for SNR > 20dB, whereas RMSE

for CS continues decreasing. BWE returns similar RMSE values with respect to the
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original distorted image up to SNR = 20dB. The RMSE decreases also for high values

of the SNR but does not reach the values obtained with SSVA and CS. The amplitude

estimation error in Fig.5.10f decrease for SNR from −40 up to −10dB, then saturate at

about 0.4 for the original image, 0.1 for SSVA and 0.04 for CS, whereas keeps decreasing

for BWE.

In general, BWE, SSVA and CS results are almost the same in terms of image contrast,

image entropy, global and mean mobile cross-correlation for low SNR. As SNR increase,

CS and SSVA performance increase with respect to BWE. RMSE performance indica-

tors for SSVA and CS are instead comparable and better than BWE for all the tested

SNR levels. SSVA returns even better performance with respect to CS for SNR ≤ 20dB.

Amplitude estimation RRMSE returns better performance for CS for every SNR value.

SSVA is still comparable, whereas BWE has the worst performance index but still im-

proved with respect to the original distorted image.

In conclusion, without considering additive noise, in this simulated case BWE allows to

mitigate quadratic distortions due to Doppler migration (compare Fig.5.3a with Fig.5.6a),

but range migration is almost restored even though the image PSF after CPI reduction

in Fig.5.4b is almost sinc-like (compare Fig.5.3b with Fig.5.6b). As a con�rmation, it

is worth comparing the results in Fig.5.9a where the estimated amplitudes for BWE (in

cyan) approach the blue line of the original image in correspondence of scatterers #3

and #5 where range migration occurs, and depart for scatterers #2 and #4 where only

Doppler migration occurs.

In general, SSVA has better performance with respect to BWE and is comparable with

CS. Both SSVA and CS allow for the cross-range resolution to be restored and mitigate

both range and Doppler distortions. SSVA allows for a further sidelobe suppression

and, as a consequence, higher image contrast, entropy and SNR. Compressed Sensing

allows for better image reconstruction and distortion mitigation, especially in terms

of amplitude estimation in both noisy and non-noisy cases as in Fig.5.9a and 5.10f.

Furthermore, CS allows to have a sinc-like output PSF and much better amplitude

estimation if only Doppler migration occurs (compare Fig.5.6e with Fig.5.6f). Such a

consideration is validated in Fig.5.11 where the RSE is plotted for only Compressed

Sensing and much lower Relative Square Error values are highlighted for scatterers #2

and #4, where only Doppler migration occurs, with respect to #3 and #5.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Performance analysis results for SNR from −40 to 40dB: image contrast
(a), image entropy (b), global cross-correlation (c), mean mobile cross-correlation (d),

RMSE (e) and amplitude estimation RRMSE (f).
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Figure 5.11: RSE for Compressed Sensing.

5.3 Super-resolution on bistatic real data

In this Section the super-resolution techniques mentioned in this Chapter are applied

on real bistatic data and successively analyzed by means of the performance analysis

approaches proposed in Chapter 4. Such real data were acquired during the NATO

SET-196 trials from September 29th to October 3rd, 2014. The trials were hosted by

the Istituto Vallauri of the Italian Navy located in Livorno, which provided the logistic

supports. During the trials, cooperative vessels and small boats where navigating in

front of the Naval Academy and ultralight aircrafts were �ying above them, while active

and passive radar sensors, operating in di�erent frequency bands, were simultaneously

illuminating the scene from di�erent locations. Real data used in this Thesis have been

acquired by means of two HABRA Radar systems jointly designed by Metasensing BV

and CNIT (the HABRA1 Radar as receiver and HABRA2 as transmitter) during the

second trials day. In order to provide external data for system performance evaluation,

two di�erential Global Positioning System (GPS) receivers were installed on-board two

cooperative targets. The Radar system and the acquisition scenario are described in

Section 5.3.1. In Section 5.3.3 the resultant Range-Doppler map and ISAR image are

shown and the measured data is analyzed in order to estimate the e�ective rotation

vector and evaluate bistatic distortions. Super-resolution results are shown in Section

5.3.4, whereas in Section 5.3.5 such results are analyzed and compared by means of the

performance analysis methods proposed in Chapter 4.



Chapter 5. Bistatic radar imaging super-resolution 146

5.3.1 Scenario description

The acquisition scenario is depicted in Fig.5.12 and 5.13 where transmitter (HABRA 2)

and receiver (HABRA 1) position, radar antenna beams and target trajectory are shown.

Radars are placed in two di�erent sites in the Naval Academy of Livorno at coordinates

43.5248◦ latitude, 10.3091◦ longitude, 12m altitude (HABRA 1) and 43.5265◦ latitude,

10.3093◦ longitude, 22m altitude (HABRA 2). The bistatic baseline is 183m.

Figure 5.12: NATO SET-196 trials scenario (picture 1).

Figure 5.13: NATO SET-196 trials scenario (picture 2).
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Transmitted Signal Waveform Linear-FMCW

Image Processing Algorithm RD

Sample Type (ADC output) Real

Transmitted Power 37 dBm

Radar Frequency 9.6 GHz

Frequency Bandwidth 300 MHz

Pulse Repetition Frequency 1.223 kHz

ADC Sampling Frequency 10 MHz

Samples per Sweep 8176

Antenna Type Microstrip

Polarization V-Linear

Antenna Gain 13 dB

Azimuth −3dB antenna beamwidth 60 deg

Elevation −3dB antenna beamwidth 20 deg

Side Lobe Level −13 dB

Table 5.5: HABRA Radar system settings.

The HABRA system is a X-band multichannel ground-based coherent FMCW radar that

transmits a vertically polarized waveform. The system consists of a cabinet containing

the radar transceiver hardware and four antennas that can be moved along a rectangular

frame. This frame is composed of three receiving and one transmitting �at panels. The

receivers lie on a horizontal and a vertical baseline as shown in Fig.5.14. The antenna

on the top right corner is used as transmitter, whereas the ones forming the L-shape on

the left bottom corner are receivers. Such a transmitter/receivers con�guration is set-up

for 3D-InISAR purposes which is not treated in this Thesis. Details about 3D-InISAR

can be found in [13, 70]. In this Thesis only the receiver 0 (on the left bottom corner in

Fig.5.14a) is exploited and the received signal is used to produce Range-Doppler maps

by means of the RD imaging technique. Radar settings are summarized in Table 5.5.

5.3.2 Position and attitude system

During the trials, some cooperative vessels and aircrafts were equipped with two GPS

and Inertial Measurement Unit (IMU) systems provided by the Defence Science and

Technology Organisation (DSTO), Australia, and the Council for Scienti�c and Indus-

trial Research (CSIR), South Africa. Such system is the Advanced Navigation Spatial

Dual shown in Fig.5.15. The Spatial Dual system combines temperature calibrated ac-

celerometers, gyroscopes, magnetometers and a pressure sensor with a dual antenna Real

Time Kinematic (RTK) GNSS receiver. It allows to measure GPS position, velocity, ac-

celeration, Euler angles and angular velocity and can be exploited to estimate the target

e�ective rotation vector. Latitude, longitude and height are measured with respect to the

WGS84 reference ellipsoid. Velocities and relative positions are provided with respect to
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(a)

(b)

Figure 5.14: HABRA system: (a) frame of the antennas; (b) cabinet and frame
installed on a lifting structure.
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the NED (North East Down) co-ordinate frame. When a GNSS �x is available Spatial

Dual's time is accurate to within 50 nanoseconds.

Figure 5.15: Advanced Navigation Spatial Dual system.

5.3.3 Acquired data and distortion analysis

The radar data was acquired starting at 13:36:23 (UTC time) the September 30th, 2014

and the measured data is organized in frames of 1223 sweeps (CPI = 1s) without time

skip or overlap between frames. In this case, the 43th frame between 42 and 43 seconds

after the acquisition start is considered (from 13:37:05 to 13:37:06). The measured data is

then processed by means of the RD imaging technique and the resultant Range-Doppler

map is shown in Fig.5.16. In particular, the Range-Doppler map in Fig.5.16 is range

gated from 200 to 1600m when the maximum available range distance is

Rmax =
cfs

4B PRF
= 2044 [m] (5.21)

where fs is the ADC sampling frequency (see Table 5.5). This is because, in case of

Linear-FMCW signal, the beat frequency

fb =
B

TSW
τ ' B PRF τ (5.22)

where TSW is the FMCW waveform duration and its maximum is

fb,max = B PRF
2Rmax

c
(5.23)

For the Nyquist sampling theorem, the maximum measurable beat frequency must be

not greater than the half of the sampling frequency, i.e., fb,max = fs/2 and the (5.23)

implies the (5.21). On the other hand, the maximum non-ambiguous radial speed is

vR,max =
c

2f0
fd,max =

c

2f0

PRF

2
= 9.56 [m/s] (5.24)
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where fd,max = PRF/2 = 611.5460Hz is the maximum non-ambiguous Doppler frequency.

A lot of targets can be observed in the Range-Doppler map in Fig.5.16, but they appear

strongly defocused because of the too long CPI. The target highlighted in the red box

in Fig.5.16 is then chosen and cropped from the whole Range-Doppler map. Such a

crop is shown in Fig.5.17a and its relative range pro�le in the range/slow-time domain

in Fig.5.17b where the slow-time axis is expressed in seconds of the UTC time. After

preliminary data analysis, it has been decided to reduce the CPI and retain the portion

of the range pro�le from t = 5.6 to 6s as highlighted in Fig.5.17b. The cropped portion

is then given as input to the Image Contrast Based Autofocusing (ICBA) algorithm in

order to obtain a well focused ISAR image. ICBA is a parametric autofocusing technique

which aims to estimate the target radial velocity and acceleration and approximate the

radial Radar-Target distance R0(n) by its second order Taylor-Maclaurin polynomial in

order to compensate it. ICBA is not argument of this Thesis and not further treated.

For details the reader is referred to [22].

Figure 5.16: 43th frame Range-Doppler map (from 13:37:05 to 13:37:06 UTC).
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(a) (b)

Figure 5.17: Cropped Range-Doppler map (a) and relative range pro�le (b).

(a) (b)

Figure 5.18: Refocused ISAR image (a) and relative frequency/slow-time complex
signal (b).

Figure 5.19: Tecnam P92 picture.
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The result of the ICBA algorithm is shown in Fig.5.18a and is clearly the ISAR image

of a small aircraft. The relative complex signal in the frequency/slow-time domain is

shown in Fig.5.18b. The ISAR image in Fig.5.18a and all the following in this Section

are shown after a 5x zero-padding and in dB scale for illustration purposes.

The target of interest is the Tecnam P92 provided by the Pisa Aero Club and depicted in

Fig.5.19. The measured trajectory from 13:36:00 till 13:38:00 UTC is shown in Fig.5.13.

Such a trajectory was acquired by means of the Spatial Dual system provided by the

CSIR and installed on the aircraft. The aircraft position at 13:37:05.8, which is the UTC

time relative to the central sweep of the time window highlighted in Fig.5.17b, is pointed

by the �P92� yellow pin in Fig.5.13.

Some geometrical parameters calculated by means of the GPS installed on the aircraft

are plotted in Fig.5.21. The GPS allows to measure the target position expressed in

latitude, longitude and altitude every 0.05 seconds. Such results can be converted in

meters in a Cartesian reference system centered on the transmitter (HABRA2) where

the y-axis points the north direction. The target �ightpath is plotted in red in Fig.5.21a

from 13:37:00 to 13:37:10 UTC, whereas its position during the CPI is drawn in blue.

Transmitter, receiver and BEM positions are highlighted too in blue, red and green

respectively. The knowledge of transmitter, receiver and target position allows the cal-

culation of the bistatic angle and the bistatic distortion term K(n). Bistatic angle β(n)

and K(n) are plotted in Fig.5.21c and 5.21d respectively from 13:37:00 to 13:37:10 UTC

with the measured values within the CPI highlighted in blue. Such a results allow for

the distortion parameters to be calculated as in (2.51) with the following results

K0 = 9.8096· 10−1 (5.25)

K1 = −5.6149· 10−4 (5.26)

K2 = 1.0541· 10−3 (5.27)

In order to evaluate range e Doppler migration, the CLEAN technique is applied to

the ISAR image in Fig.5.18a and the scatter-plot of the detected scatterers is shown in

Fig.5.20. By analyzing the CLEAN result in Fig.5.20, it appears that the maximum

range distance from the focusing center z2,max = 3.814m, whereas the maximum Doppler

frequency νmax = 13.75Hz. The range migration parameter can then be calculated as

follows (see (2.85))

∆rng =

∣∣∣∣K1z2,max +K0
c

2f0
νmax

∣∣∣∣Tob = 0.0834 < δrng = 0.5 (5.28)
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Figure 5.20: CLEAN output on the focused ISAR image.

Therefore, it can be stated that there is not range migration in the produced ISAR image.

Furthermore, by considering the Doppler linear distortion term ∆ν de�ned in (2.73)

|∆ν | =
2f0

c
K1z2,max = 0.1371 Hz < δν =

1

Tob
= 2.5 Hz (5.29)

it can also be stated that linear distortion does not occur either.

Measured target speed is plotted in meters per second in Fig.5.21e, whereas Fig.5.21f

shows the calculated e�ective bistatic rotation vector module. The bistatic e�ective

rotation vector is calculated as follows

ΩBi,eff (n) =
(iLoSTX(n)×ΩTX(n)) + (iLoSRX(n)×ΩRX(n))

2K(n)
× iLoSBi(n) (5.30)

where

ΩTX(n) = ΩA(n) + Ωt,TX(n) (5.31)

ΩRX(n) = ΩA(n) + Ωt,RX(n) (5.32)

Ωt,TX(n) =
v(n)× iLoSTX(n)

RTxTg,0(n)
(5.33)

Ωt,RX(n) =
v(n)× iLoSRX(n)

RRxTg,0(n)
(5.34)

ΩA(n) in (5.31) and (5.32) is the rotation vector caused by the target angular velocity

measured by the GPS, Ωt,TX is the rotation vector due to the target translation with

respect to the transmitter and Ωt,TX with respect to the receiver. By calculating the

mean e�ective rotation vector within the CPI, the following result is obtained

ΩBi,eff,1 = 0.0758 [rad/s] (5.35)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.21: P92 experiment: scenario in cartesian reference system (a), equivalent
target range (b), bistatic angle (c), bistatic distortion parameter K(t) (d), target speed

(e), measured bistatic e�ective rotation angular speed (f).
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Ω [rad/s] z1,max [m] ∆crg [m] δcrg [m]

ΩBi,eff,1 = 0.0758 2.8344 0.0935 0.5153

ΩBi,eff,2 = 0.0823 2.6105 0.1048 0.4746

ΩBi,eff,3 = 0.0875 2.4554 0.1137 0.4464

Table 5.6: Maximum cross-range distance, Doppler migration parameter and cross-
range resolution for all the calculated ΩBi,eff .

If the 3D-InISAR is applied, the estimated e�ective rotation vector is

ΩBi,eff,2 = 0.0823 [rad/s] (5.36)

whereas, if we suppose the ISAR image in Fig.5.18a as a top view and exploit the

knowledge of the aircraft wingspan equal to 8.70m1, if ∆z2 = 3.814 + 3.458 = 7.272m

(see Fig.5.20) is the range distance between the wings extremity, then the distance in

cross-range will be

∆z1 =
√
Wingspan2 −∆2

z2 = 4.7758 [m] (5.37)

and

ΩBi,eff,3 =
c

2f0

∆fd

∆z1

= 0.0875 [rad/s] (5.38)

where ∆fd = 13.75 + 13 = 26.75Hz (see Fig.5.20) is the Doppler distance between the

wings extremity. Therefore, by considering the de�nition in (2.64), the Doppler migration

parameter is calculated as follows

∆crg =

∣∣∣∣K2z2,max

Ω
+ 2K1z1,max −K0z2,maxΩ

∣∣∣∣Tob (5.39)

where z1,max is the maximum cross-range distance from the focusing center. The values

of ∆crg and δcrg for the three e�ective rotation vector modules in (5.35), (5.36) and (5.38)

are reported in Table 5.6. As shown in Table 5.6, ∆crg < δcrg for all the three cases and

Doppler migration does not occur.

In general, the distance between the scatterers at the wings extremities in the ISAR

image is less than or equal to the aircraft wingspan, because it cannot be stated whether

the image is or is not a top view. The target orientation is measured by the GPS system,

but the IPP depends on the e�ective rotation vector which is wanted to be estimated.

As a consequence

∆z1 =
c

2f0ΩBi,eff
∆fd ≤

√
Wingspan2 −∆2

z2 ⇒ ΩBi,eff ≥
c

2f0

∆fd√
Wingspan2 −∆2

z2

(5.40)

and ΩBi,eff,3 is actually a lower bound for the e�ective rotation vector.

1By https://en.wikipedia.org/wiki/Tecnam_P92

https://en.wikipedia.org/wiki/Tecnam_P92
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5.3.4 Super-resolution results

As in Section 4.4, the frequency/slow-time support of the full resolution ISAR image in

Fig.5.18 is reduced in order to generate the low-resolution image. By setting Kf = Kt =

2, the central

Mlow =

⌊
M

Kf

⌋
× Nlow =

⌊
N

Kt

⌋
portion of the complex signal in Fig.5.18b is retained as shown in Fig.5.22b and the

obtained low-resolution image is shown in Fig.5.22a.

The low-resolution ISAR image in Fig.5.22a is given as input to the super-resolution

techniques under test. The results of BWE, Capon's MVM, APES, SSVA and CS are

shown in Fig.5.23 (ISAR images) and 5.24 (complex signals).

(a) (b)

Figure 5.22: Low-resolution ISAR image (a) and relative frequency/slow-time com-
plex signal (b).

As in Section 4.4, Linear Prediction based Bandwidth Extrapolation (BWE) is the �rst

technique performed. Frequency bandwidth extrapolation and Aperture extrapolation

are performed separately on the complex signal in Fig.5.22b and the AR model order pAR

is set as Mlow/3 for the vertical (frequency) extrapolation and Nlow/3 for the horizontal

(slow-time). The linear-prediction model coe�cients are estimated by means of the

Burg's algorithm and the obtained ISAR image in shown in Fig.5.23b. In this case,

BWE does not return a good result: the shape of the aircraft in the ISAR image is not

visible and the complex signal is clearly not well extrapolated (compare Fig.5.24b with

Fig.5.24a).

For Capon's MVM and APES, the covariance matrix is estimated by means of the

forward-backward method without diagonal loading or other regularization methods as

in Section 4.4 for the monostatic case. The covariance matrix is estimated by using a 35%

subaperture size and the output images are shown in Fig.5.23c and 5.23d respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.23: P92 experiment: original high-resolution ISAR image (a) and super-
resolved images by means of BWE (b), Capon's MVM (c), APES (d), SSVA (e) and

CS (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.24: P92 experiment: original high-resolution complex signal (b) and super-
resolution signals by means of BWE (b), Capon's MVM (c), APES (d), SSVA (e) and

CS (f).
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Such a subaperture size is chosen as a compromise between resolution enhancement and

SNR. In these cases the shape of the aircraft in the resultant images can be observed,

especially in the APES result in Fig.5.23d. The APES output appears to have higher

SNR with respect to MVM, but both techniques are not able to perform a signi�cant

resolution enhancement with respect to the input image in Fig.5.22a. Furthermore, as

in the monostatic case in Section 4.4, by observing the relative frequency/slow-time

complex signals in Fig.5.24c and 5.24d, it appears that MVM and APES does not allow

to arbitrarily extrapolate the low-resolution signal.

SSVA is performed as described in Section 3.5 and 4.4. The bandwidth extrapolation

factor η is set equal to 21/8 (8 SSVA loops) and SVA is performed in �I and Q Separately

- Two Dimensions Simultaneously� mode. The result in Fig.5.23e appears to have higher

SNR with respect to the BWE, MVM and APES and is comparable with the high-

resolution image in Fig.5.23a. Rather than BWE, MVM and APES, range and Doppler

resolution are successfully enhanced.

Finally, the SL0 algorithm is performed to obtain the Compressed Sensing super-resolution

image in Fig.5.23f. Implementation details can be found in Section 3.6 and 4.4. The σ

vector is de�ned by setting σ1 as in (4.63), σJ equal to the noise standard deviation as

in (4.64) and the decreasing factor cσ = 0.6. In particular, σ1 = 12.0186, σJ = 0.1135

and J = 10. Then the �approximate maximization of Fσ(x)� is performed in NL = 50

iterations by setting the constant µ = 2. By visual assessment, Compressed Sensing ap-

pears to return the �best� result with respect to the other techniques. Image resolution is

successfully restored and Image Contrast and SNR are considerably enhanced even with

respect to the original high-resolution image. Furthermore, by comparing Fig.5.24f with

the other sub-�gures in Fig.5.24, it appears that CS allows to reconstruct the original

complex signal in Fig.5.24a much better than BWE and SSVA.

The above mentioned super-resolution techniques are then tested when directly applied

on the original image too with the same parameters setting described above. The refo-

cused image in Fig.5.18a is given as input to BWE, Capon's MVM, APES, SSVA and CS

in order to double both range and Doppler resolution and the resultant super-resolved

images are shown in Fig.5.25. In this case, the superiority of Compressed Sensing with

respect to the other techniques in terms of resolution enhancement, Image Contrast and

SNR is even more evident with respect to the previous case. However, SSVA appears to

have a good result too. The SSVA super-resolved image in Fig.5.25e has higher Image

Contrast and SNR with respect to BWE, MVM and APES and is comparable with the

CS image in Fig.5.25f. The result of APES in Fig.5.25d is similar to the MVM image in

Fig.5.25c, but with higher IC and SNR.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.25: P92 experiment: original ISAR image (a) and 2x super-resolved images
by means of BWE (b), Capon's MVM (c), APES (d), SSVA (e) and CS (f).
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5.3.5 Performance analysis

In this Section the performance analysis methods proposed in Chapter 4 are exploited to

evaluate and compare the super-resolution results shown above. Truth based algorithms

are applied to analyze the results in Fig.5.23 where the reference �truth� is the ISAR

image in Fig.5.23a. They cannot be applied to the 2x super-resolved images in Fig.5.25

because there is not any available �truth� they can be compared with. 2x super-resolved

images are only analyzed by means of the quality metrics proposed in Section 4.3.

�Truth� and �estimations� in Fig.5.23 are �rst compared by means of the position based

comparison algorithm as in Section 4.2.1 and the resultant scatter-plots with correct

detections, missed detections and false alarms marked in green, red and blue respectively

are shown in Fig.5.27. As in Section 4.4, the scatterers in the ISAR images under test are

detected by means of the CLEAN. The �truth� scatter-plot in Fig.5.27a is obtained by

stopping the CLEAN when the residual energy is less than the 50% of the original image

energy. The threshold for the monostatic dataset in Section 4.4 is set equal to the 15% of

the image energy because of the much higher SNR. Such a high threshold is justi�ed by

considering the ISAR image and the scatter-plot shown in Fig.5.26. The ISAR image in

Fig.5.26a is the whole refocused high-resolution ISAR image. All the other ISAR images

shown in this Section are actually zoomed for illustration purposes. The scatter-plot in

Fig.5.26b is the result of the CLEAN on the image in Fig.5.26a and a lot of scatterers

outside the actual target can be observed. If a lower threshold were used, much more

noise peaks would be detected by the CLEAN but the number of actual target scatterers

would not substantially increase. The detected scatterers outside a 12m × 40Hz box

around the zero-range and zero-Doppler are then discarded for all the images under test.

(a) (b)

Figure 5.26: Non-zoomed original high-resolution ISAR image (a) and detected scat-
terers (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.27: P92 experiment: detected scatterers in the original high-resolution ISAR
image (a) and results of the scatterer position based comparison algorithm for BWE

(b), Capon's MVM (c), APES (d), SSVA (e) and CS (f).
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(a)

(b) (c)

(d) (e)

Figure 5.28: P92 experiment: results of the mobile cross-correlation based comparison
algorithm for BWE (a), Capon's MVM (b), APES (c), SSVA (d) and CS (e).
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NoS Correct Det. Missed Det. False Alarms RRMSE

High-Res. 28 - - - -

BWE 34 18 10 16 0.4356

MVM 33 15 13 18 0.5508

APES 32 19 9 13 0.5994

SSVA 24 14 14 10 0.5271

CS 21 15 13 6 0.4297

Table 5.7: P92 experiment: numerical results of the Scatterer Position based com-
parison method.

As in Section 4.4, the CLEAN is performed after applying a 10× zero-padding on the

images under test and set to stop when the measured peak amplitude is lower than

the 95% of the weakest detected scatterer in the �truth� when applied on the super-

resolved images in Fig.5.23b to 5.23f. The comparison algorithm is performed by setting

ΩBi,eff = ΩBi,eff,1, which implies δcrg = 0.5153m (see Table 5.6). Furthermore, every

image is preliminarily normalized with respect to its own norm.

By observing the results in Fig.5.27, it appears that APES has the best performance in

terms of correctly detected scatterers, whereas the worst case is the SSVA result where

the half of the scatterers are missed. In terms of artifacts introduced, the worst case is

the Capon's MVM where a lot of scatterers are lost too. Compressed Sensing returns

the smallest number of false alarms, but a lot of scatterers are missing. This is also

because a small number of peaks are detected with respect to the other cases. On the

contrary, BWE returns good results in terms of correct detections, but a lot of artifacts

are introduced because of a large number of detected peaks.

The RRMSE for the scatterers amplitude estimation (see (4.37)) are summarized in Table

5.7 with together the number of detected scatterers (NoS), correct detections, missed

detections and false alarms. By comparing the results in Table 5.7 with the results for

the monostatic dataset in Table 4.10, the RRMSE values are quite lower. This means that

the scatterers detected in the �truth� are in general better reconstructed with respect to

the monostatic case in Section 4.4. The best results are given by BWE and CS, whereas

the worst case is the APES. It is also worth noting the high number of detected peaks

in the BWE, MVM and APES cases, whereas the number detected of peaks in the CS

image is very low.

Results in Fig.5.28 seem to be not very signi�cant. The mobile cross-correlation maps

are calculated as in (4.45) after a preliminary 5x zero-padding by setting the parameters

δH = δS = 2.5 and WB = 15. By observing the maps in Fig.5.28, a larger number of

pixels exceed the threshold in the BWE, MVM and APES cases with respect to SSVA

and CS, which return super-resolved images with narrower peaks.
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rG rM,I RMSE

BWE 0.5801 0.6866 0.1987

MVM 0.5004 0.7083 0.1829

APES 0.5550 0.7189 0.1648

SSVA 0.4896 0.6416 0.2270

CS 0.5341 0.6558 0.2256

Table 5.8: P92 experiment: global cross-correlation, mean mobile cross-correlation
and RMSE performance indexes.

Intensity Mean Mobile Cross-correlation indexes (rM,I in (4.47)) are reported in Table

5.8 with together the rG (see (4.22)) and RMSE (see (4.23)) values for all the tested

super-resolution techniques. For all the indexes reported in Table 5.8, APES returns

good results with respect the other techniques, whereas the SSVA returns the worst

performance indexes. In this case correlation and RMSE indexes are not very reliable

because CS and SSVA seem to have very low performance, whereas BWE have the

highest rG. Global correlation rG, rM,I and RMSE basically say that the ISAR image

in Fig.5.23b is a better result than the images in Fig.5.23e and 5.23f.

The quality index parameters calculated as in Section 4.3 are instead summarized in Table

5.9 with together the elapsed times for the super-resolution techniques performing. By

observing such results, the BWE image has Image Contrast and Entropy slightly higher

with respect to the original image and comparable SNR. Both the range and cross-

range measured resolution are considerably higher with respect to the original image.

However, the measured cross-range resolution of the original image is comparable with

the theoretical cross-range resolution δcrg = 0.5153m, but δ̂rng is quite lower than δrng =
c

2B = 0.5m. MVM appears to have the worst performance, but both range and cross-

range resolution are enhanced with respect to the low-resolution image anyway. APES

gives better results with respect to the MVM in terms of IC, IE and SNR, whereas the

measured resolution is basically the same. SSVA and CS allows instead for the image

quality to be enhanced. Both CS and SSVA allow to successfully restore the range and

cross-range resolution, but CS has the best results in terms of image quality. All the

measured −3dB mean resolutions are estimated as in Section 4.3 by considering the �rst

20 scatterers detected by the CLEAN with a zero-padding factor Kzp = 10. The SNR

parameters are instead calculated by setting δT = 2.5.

However, as in Section 4.4, by observing the complex signal shape for the MVM and

APES in Fig.5.24c and 5.24d respectively, the image PSF for such techniques is likely

not a sinc function and the CLEAN is likely not suited for both scatterers detection and

resolution estimation. Therefore, the resolution measurements in Table 5.9 may be not

reliable.
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IC IE (· 105) SNR [dB] δ̂rng [m] δ̂crg [m] Elap. Time

High-Res. 0.8108 −3.7462 34.8445 0.3865 0.5360 -

Low-Res. 0.8556 −1.0041 34.6979 0.9155 0.9998 -

BWE 0.8652 −3.9664 34.1991 0.6001 0.7395 0.2141

MVM 0.6774 −2.3206 28.4372 0.7959 1.0281 1.2344

APES 0.7400 −2.9419 31.2630 0.8010 1.0023 2.4072

SSVA 1.0687 −4.9437 37.4680 0.3433 0.5617 0.2139

CS 1.2326 −5.9009 38.4294 0.3636 0.4896 13.7302

Table 5.9: P92 experiment: quality indexes and elapsed times in seconds.

IC IE (· 105) SNR [dB] δ̂rng [m] δ̂crg [m] Elap. Time

BWE 0.8137 −3.8332 34.8947 0.3191 0.4007 0.8333

MVM 0.6909 −2.5924 30.3663 0.3738 0.4922 27.3276

APES 0.7387 −3.1241 32.6625 0.3789 0.4922 44.8787

SSVA 1.0827 −5.2645 38.3491 0.2136 0.2706 0.4747

CS 1.2154 −5.8396 38.9371 0.2251 0.2551 97.8105

Table 5.10: P92 experiment: quality indexes for 2x super-resolution and elapsed times
in seconds.

In this case, IC and SNR are generally lower with respect to the results in Section 4.4 for

the monostatic case, because the image under test in this Section is signi�cantly noisier

(compare Fig.5.26a with Fig.4.28a). However, the results for the tested super-resolution

techniques with respect to the �truth� image are coherent with the ones in Section 4.4.

The quality index parameters for the 2x super-resolution images in Fig.5.25 are instead

shown in Table 5.10. IC, IE and SNR are not so di�erent with respect to the previous

case. Both range and cross-range resolution is successfully doubled by the SSVA and

CS, whereas in the MVM and APES images the measured values are slightly lower with

respect to the original image. BWE gives intermediate resolution results.

Regarding the elapsed times, BWE and SSVA are much faster than MVM, APES and

CS. APES takes about twice the time needed by the MVM, but they are both faster

than CS. However, as the image size is doubled, the elapsed time increases by a factor

of about 20 for MVM and APES and 7 for CS. In this case, the input image is 43× 62

pixels in the �rst case (see Fig.5.22a) and 86 × 124 in the 2x super-resolution case (the

original image in Fig.5.18a). In the monostatic case in Section 4.4, the input image is

117× 112 pixels (see Fig.4.29a) and the elapsed time for CS is about the same (compare

Table 5.10 with Table 4.9). MVM and APES take instead more time because of a larger

subaperture size used for the covariance matrix estimation. The elapsed times for MVM

and APES in the 2x super-resolution bistatic case in Table 5.10 are comparable with the

elapsed times in the monostatic case when a 30% subaperture is used (see Table 4.8).



Chapter 6

Conclusions

In this Thesis the topic of super-resolution applied for monostatic and bistatic radar

imaging is treated. The B-ISAR and super-resolution radar imaging topics are �rstly

treated separately. Then, super-resolution is theoretically validated in case of bistatic

con�guration by exploiting the bistatic received signal model and the BEM approxima-

tion. Di�erent super-resolution techniques are tested on both monostatic and bistatic

real data with comprehensive performance analysis and comparison.

6.1 Conclusive summary

In Chapter 2 the B-ISAR theory has been recalled. The received signal model has been

de�ned that extended the monostatic case to the more generic bistatic con�guration. The

applicability of the standard range-Doppler ISAR imaging technique in case of bistatic

con�guration has been theoretically demonstrated. The di�erences in the received signal

model between the monostatic and bistatic cases have been analytically analyzed and a

theoretical foundation has been laid that introduces the concept of �Bistatically Equiv-

alent Monostatic� con�guration, which allows approximating a bistatic geometry with a

monostatic one. This greatly simpli�es the geometrical understanding and allows using

monostatic ISAR processors to form B-ISAR images. However, the BEM approximation

has some limitations due to the distortions introduced by the bistatic geometry. Such

distortions have been thoroughly investigated and cataloged in terms of

1. Image scaling due to the bistatic angle width;

2. Linear distortions due to the bistatic angle variation speed;

3. Quadratic distortions expressed in terms of range/Doppler migration.
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Constraints for the bistatic distortions due to range and Doppler migration have been

analytically derived and validated by means of simulated data. It is worth pointing out

that the exploiting of the second order approximation of the bistatic distortion term

K(t) is an innovative aspect of this Thesis. Such a second order approximation has been

demonstrated to be fundamental to the analytical study of the bistatic distortions.

In Chapter 3 the concept of super-resolution for SAR/ISAR imagery has been recalled

and the most common super-resolution techniques have been reviewed by di�erentiating

between parametric and non-parametric methods. Particular attention has been paid on

linear prediction based super-resolution, Capon's MVM and APES spectral estimation,

Super-SVA and super-resolution based on the CS theory. Such techniques have been

discussed and theoretically analyzed by referring to the monostatic received signal model.

In Chapter 4 novel performance analysis methods have been proposed in order to test the

e�ectiveness of a generic super-resolution technique. This is in order to give measurable

parameters and provide comparable indexes of performance. In particular, two di�erent

approaches have been proposed:

1. Truth based analysis methods which consider the super-resolution result as an

�estimation� of a reference �truth�;

2. Quality index based methods which consists of directly calculate standard image

quality metrics on the super-resolution output, e.g., IC, SNR and −3dB resolution.

Truth based analysis methods consist of consider a source SAR/ISAR image as a high-

resolution truth. The signal support of such a truth is reduced in order to create a low-

resolution image, which is given as input to the super-resolution technique under test.

The super-resolution output is considered as an estimation of the original high-resolution

image. Super-resolution performance is evaluated by comparing truth and estimation.

Two comparison methods have been proposed in order to evaluate the estimation validity:

1. Scatterer position based comparison: the dominant scatterers in both the original

image and the super-resolution output are detected. The super-resolution perfor-

mance is expressed in terms of correct detections, missed detections, i.e., number

of scatterers which are lost during the performance analysis chain, and artifacts

introduced by the super-resolution technique or false alarms.

2. Mobile cross-correlation based comparison: truth and estimation are compared by

means of a cross-correlation index calculated within a mobile window. As a result,

a �cross-correlation map� is obtained. Such a map highlights those areas where the

high-resolution image has been well or badly estimated.
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Furthermore, the scatterer position based comparison method allows to estimate the

amplitude estimation RRMSE by considering only those scatterers labeled as �correctly

detected�. The quality metrics proposed in this Thesis are instead the Image Contrast,

Image Entropy, SNR and the −3dB resolution calculated by exploiting the CLEAN

technique. Such performance analysis methods are used to evaluate and compare the

super-resolution techniques described in Chapter 3 applied on real monostatic data.

The real data under test is a spaceborne SAR image in maritime scenario taken from

the city of Istanbul in the April 2008 and provided by COSMO-SkyMed. A subcrop

of the whole SAR image is taken around a randomly chosen detected vessel. Such a

vessel is classi�ed as �moving� and appears defocused in the original SAR image. It

is then refocused by means of ISAR processing and the ICBA technique. In this case,

the scatterer position based comparison method detects the largest number of artifacts

in the MVM result and the largest number of missed detections in the BWE. Better

results are obtained by APES, SSVA and CS, but CS returns much better performance

in terms of scatterers amplitude estimation. The best performance in terms of mobile

cross-correlation are given by CS and APES, whereas the worst case is the SSVA. Quality

index based methods return the best performance indexes for CS and the worst for MVM.

In Chapter 5 super-resolution is treated in case of bistatic radar con�guration. The

super-resolution techniques examined in Chapter 3 have been theoretically validated by

considering the bistatic received signal model. A novel super-resolution based approach

for bistatic distortion mitigation has been proposed and results for three di�erent super-

resolution techniques, i.e., BWE, SSVA and CS, have been produced and evaluated.

Results on both noisy and non-noisy simulated data highlighted better performance for

CS with respect to the others in terms of scatterer amplitude estimation, whereas SSVA

and CS appear almost equivalent in terms of image contrast and correlation. Then,

super-resolution has been tested also on real bistatic data.

Real data used to test the super-resolution techniques in Chapter 5 were acquired during

the NATO SET-196 trials from the September 29th to the October 3rd, 2014. The trials

were hosted by the Istituto Vallauri of the Italian Navy located in Livorno where real

data have been acquired by means of two HABRA Radar systems designed and provided

by Metasensing BV. The target of interest is a cooperative Tecnam P92 ultralight air-

craft. The refocused ISAR image has been obtained by means of the ICBA technique,

whereas target trajectory, e�ective rotation vector and bistatic angle have been mea-

sured by means of a di�erential GPS receiver and IMU provided by the CSIR, South

Africa. By exploiting the GPS data, the range and Doppler migration parameters have

been estimated and the absence of both linear and quadratic bistatic distortions has

been proven. Then, the super-resolution techniques BWE, Capon's MVM, APES, SSVA
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and CS have been tested on the refocused ISAR image and compared by means of the

performance analysis methods proposed in Chapter 4. The best performance in terms of

number of correctly detected scatterers is given by the APES, whereas CS has the lowest

number of artifacts and the best performance in terms of amplitude estimation error. CS

also gives the best performance in terms of image contrast, entropy, SNR and measured

resolution. On the other hand, the mobile cross-correlation comparison method does not

provide signi�cative results.

In general, Compressed Sensing appears to give the best performance results over the

other tested super-resolution techniques in both monostatic and bistatic cases.

6.2 Future work

Future work will aim to further examine the super-resolution topic. Real data collected

during the visiting period at the Ohio State University will be exploited for monostat-

ic/bistatic phenomenology studies and super-resolution radar imaging application for

ATR purposes.

Such real data has been collected at the ElectroScience Laboratory of the Ohio State

University under the supervision of Dr. Christopher Baker. A W-band multistatic radar

system has been used to obtain a set of ISAR images of seven similar targets. Such targets

have been built with aluminum foil and several metallic pieces and placed on a controlled

rotating table. ISAR data has then been collected by means of three transmitters in Time

Division Multiplexing (TDM) con�guration and three independent receivers. Received

signals have been range gated in order to make the �rst receiver to sense the radar echo

only from the �rst transmitter and so on. Transmitters and receivers have been placed

on order to build a monostatic radar system and two bistatic systems with 30◦ and 90◦

bistatic angles. The monostatic system has been placed in the BEM position.

For illustration purposes, the experiment scenario in shown in Fig.6.1 with transmitters

and receivers labeled. The target #3 is depicted in Fig.6.2 and the ISAR results for

azimuth angle 30◦ and receivers #1, #2 and #3 are shown in Fig.6.3. Similar ISAR

images have been collected for seven targets and 360 azimuth angles and will be used for

phenomenology studies and super-resolution applied for ATR purposes.

Experiments described above took place in collaboration with Dr. Seung Ho Doo, Dr.

Adam Mitchell and Dr. Landon Garry from the Ohio State University.
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Figure 6.1: Monostatic/bistatic experiment: scenario.

Figure 6.2: Monostatic/bistatic experiment: target #3 picture.

(a) (b) (c)

Figure 6.3: Monostatic/bistatic experiment: ISAR results for target #3, azimuth
angle 30◦, bistatic angle 0◦ (a), 30◦ (b) and 90◦ (c).
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