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ABSTRACT 

New food analysis enabling approaches offer significant advantages over 

traditional methods in terms of test speed, control, low cost, ease-of-

operation, and data management, and require minimal equipment and user 

involvement. Among them, near infrared spectroscopy has a great 

potential for providing a user-friendly, scanning on-the-go scenario. It 

indeed allows peculiar rapid multi-component non-invasive and non-

destructive analysis, and is a greener alternative to reagent-based analytical 

technique; no need for reagents and limited waste after the analysis. All 

these advantages, together with a progressive reduction of system cost and 

size, make it a very promising methodology in terms of range of 

applicability, with high scientific and commercial impact. However, being 

a nonspecific method, it must be associated with complex multivariate 

statistical and chemometric tools for spectral dataset analysis to extract 

relevant chemical information. Indeed, calibration and tuning of the 

systems are performed according to the desired application. Moreover, in a 

view to simplify apparatus and decrease cost, critical design criteria are 

represented by the proper selections of the wavelength range for source 

and detector, and of the measurement setup. In this work we describe a 

multi-platform optimized analytical method based on the most informative 

wavelength range in the NIR region for quantitative measurement of sugar 

content in aqueous solutions and beverages by means of absorbance 

spectroscopy. The achieved results were then profitably exploited as a cue 

for design and as a reference for comparison to develop a simplified LED-

based optical platform for sugar content measurement in beverages.  

The proposed analytical and sensor solution was conceived for tracking 

dietary sugar intake in liquid foods, as e-health technological answer for 

the serious and widespread problem of unwitting over-intake of sugar, far 

above the recommended assumption, and also as a possible diet 

companion platform for dietary control of diabetes patients.  
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I. INTRODUCTION 

 In this chapter an introductory overview of analytical devices able to 

enhance the ordinary smartphone with food diagnostic capabilities is 

provided. The latest relevant research works are illustrated, categorized 

according to the diagnostic method, with each working principle 

explained. Furthermore, recent commercial exploitations in this sector are 

described, showing the most interesting solutions. Finally, perspectives on 

the current limitations, challenges, and future directions of this novel, 

emerging field of research are discussed. 

A. Smartphone-based diagnostic platforms for food analysis 

Mobile diagnostics is gaining more and more attention in healthcare, 

environmental monitoring, and agro-food sectors, allowing rapid and on-

site analysis for preliminary and meaningful information extraction. The 

aim is to bypass the use of expensive and bulky instrumentation-based 

routine tests, performed by trained personnel, with the goal of cost saving 

and time efficiency. Not by chance, recently a Horizon Prize regarding the 

challenge of developing a rapid non-invasive food scanning device has 

been launched [1], reflecting the fact that it comes to a hot topic not only 

in research, but also for the market. Moreover, this approach could have a 

substantial positive effect on health, environmental, and food diagnostics 

technologies in both developed and developing countries, leading to a 

democratization in measurement science, thanks to the massive volume of 

mobile phone users spread globally [2]. Indeed, the ubiquitous availability 

of smartphones throughout the world enables a broad accessibility. 

Smartphones can be deployed in a variety of environments, including 

remote or underdeveloped rural regions. For example, the current methods 

for ensuring food safety rely on routine, but highly resource-intensive 

laboratory-based examination of chemicals and/or foodborne pathogens. In 

remote areas, where resources are scarce, sending specimens to an analysis 

laboratory can be difficult. Smartphone-based analytical platform, instead, 

could bypass these logistic issues via on-site testing or remote 

confirmation of detection [3]. 
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Smartphones are equipped with numerous components that can be 

employed for measurement and detection, such as a fast multicore 

processor, digital camera, battery, visual display, and intuitive user 

interface. Smartphones also possess several wireless data transfer 

modalities (e.g., cellular data service, Wi-Fi, Bluetooth), allowing test 

results to be displayed immediately to the user and/or transmitted to cloud 

databases. Nevertheless, smartphones can-not function alone as laboratory 

instruments. Rather, they need to be augmented by other accessories. Such 

augmented devices have great potential as mobile diagnostic platforms for 

food analysis. In recent years, many external sensor modules have been 

designed and integrated with smartphones to extend their capabilities for 

extracting more-sophisticated diagnostic information. These portable, low-

cost devices have the potential to run routine tests, which are currently 

performed by trained personnel using laboratory instrumentation, rapidly 

and on-site, thanks to the global widespread use of cellphones. In the field 

of food, this ability translates to improved awareness of what we eat. 

Examples include empowering the mobile phone of an allergic subject 

with personalized diagnostic capability, or allowing rapid inspection in the 

case of suspected contamination by foodborne pathogens or other 

hazardous contaminants. Moreover, even the agro-food sector could 

benefit from the development of portable lab-on-smartphone platforms, 

allowing on-field extraction of valuable data about a crop‟s maturity and 

health state. With advances in micro-manufacture, sensor technology, and 

miniaturized electronics, diagnostic devices on smartphones will be used 

increasingly to perform biochemical detections in healthcare diagnosis, 

environmental monitoring, and food evaluation in the near future [4]. 

Much effort has been directed toward using the mobile phone as a 

sensing device, as described in Li et al. [5]. The increasing number of 

measurement applications on smartphones is due to their growing 

capabilities of sensing physical quantities by leveraging new embedded 

sensors or through wireless and wired connection possibilities and smart 

visual interfaces, to receive measurements from different external systems 

[6]. While many works have focused on the development of point-of-care 
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systems for biomedical purposes as reported in Xu et al. [7], smartphone 

diagnostic platforms also have emerged in other important applications. 

Recent existing reviews by Roda et al. [8], Liu et al. [9], and Yang et al. 

[10] have described these advancements. 

Smartphone-based food diagnostic approaches can be divided into two 

categories: lab-on-smartphone biosensors and smartphone optical and 

spectroscopy. Studies are presented in chronological order for each 

detection method. An explanation is provided of the technique employed 

and the added value the integration of a smartphone in the loop provides to 

the approach. 

1) Lab-On-Smartphone Biosensors 

Biosensors are analytical devices that integrate a bio-receptors with an 

appropriate transducing method to detect analytes of interest. The specific 

interaction between the target analyte and the receptor produces an output 

measurable signal, which highlights the presence of the sought element. 

Thus, this approach has high selectivity, since direct detection of the target 

analyte is achieved. However it always includes an invasive sample pre-

treatment phase to give rise to transduction. Biosensors allow low-cost, 

and fast analysis, with results in a few minutes, and show perspectives for 

miniaturization and portability. Taking advantage of the combined use of 

smartphone and adapted biochemical assay, biosensor-based analytical 

systems are promising tools for on-site detection of analytes including 

contaminants, drugs, pesticide residues, and foodborne pathogens. A 

detailed overview of the revised Lab-On-Smartphone Biosensors works is 

provided with Table 1. 

Table 1. Summary of recent lab-on-smartphone biosensor platforms. 

Detection Target Methodology Materials 
LoD/Test 

Time/Performance 

Smartphone 

Use 
Ref. 

Escherichia coli in 

water 

Fluorescent 

imaging 

Antibody, quantum dots, 

UV LED 
5–10 CFU mL−1 

Cellphone 

imaging with 

camera 

attachment 

[11] 

rbST antibodies in Microsphere Antibody, quantum dots, 80% true-positive rate Cellphone [12] 
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milk fluorescent 

immunoassay 

UV LED and white LED and 95% true-negative 

rate 

imaging with 

camera 

attachment 

Lactose and 

galactose in 

undiluted food 

samples 

Engineered 

bacteria 

fluorescence 

Blue light and optical filter 1–1000 mM 
Cellphone 

imaging 
[13] 

Peanut allergen in 

food samples 

Colorimetric 

assays 

ELISA allergen test kit, 

cellphone attachment with 

2 test tubes and 2 LEDs 

~1 parts per million 

(ppm), 20-min 

preparation phase 

Cellphone assay 

with camera 

attachment 

[14] 

Aflatoxin B1 in 

maize 

Lateral flow 

immunoassay 

Paper strip, close-up lens 

and a white LED 
5 μg/kg 

Smartphone 

imaging via 

LFIA reader 

adapter 

[15] 

BDE-47 in food 

sample 

Microfluidics 

and 

competitive 

ELISA 

Arduino Nano, PCB, 

microfluidic chip 

Readout time of 15 min 

and input sample 

volume considerably 

reduced 

Smartphone as 

power source, 

imaging reader 

and cloud 

sender 

[16] 

Red wine 

properties 

Paper 

microfluidics, 

colorimetric 

assay, and 

PCA 

Chemical dyes 

Successful distinction of 

red wines by their grape 

varieties and oxidation. 

Smartphone 

imaging 
[17] 

Amines as 

indication of 

foodborne 

pathogens in meat 

Membrane 

technology 

colorimetry 

and 

unsupervised 

chemometric 

tools 

Dyes 
Down to 1 ppm 

concentration of amine 
Camera imaging [18] 

Antibiotic residues 

in milk 

SPE and 

fluorescence 

spectroscopy 

Photography lightbox 

with fluorescent light 

LoC 0.50 mL−1 and LoQ 

1.50 µg mL−1 

Smartphone 

camera used as 

spectrometer 

[19] 

Glutamate in food 

compound, instant 

soup and wines 

Paper-based 

colorimetric 

assay 

Glutamate-specific 

enzyme 
0.028 mmol L−1 

Camera 

acquisition and 

analysis 

[20] 

ALP as indicator 

of incorrect milk 

pasteurization 

Disposable 

lateral flow-

through strip 

Sample pad 

0.1 U L−1, within 10 min 

with a detection range of 

0.1–150 U L−1 

Image 

acquisition and 

Matlab analysis 

[21] 
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Table 1. Cont. 

OA and STX in 

shellfish 

Competitive 

immunoassay 

strip 

3D-printed smartphone 

strip adapter 

2.800 ng mL−1 for OA 

and 9.808 ng mL−1 for 

STX in 30 min 

Camera 

acquisition via 

strip adapter 

and data 

processing 

[22] 

Fluoride in water 
Colorimetric 

imaging 

Compact sample chamber 

adapter for smartphone 
Linear range 0–2 mg L−1 

Smartphone 

colorimeter 
[23] 

Catechols in water 
Colorimetric 

imaging 

96-well sensor array, light-

tight box, white LED 

PCA, HCA and LDA for 

quality discrimination 

and PLS for quantitative 

determination 

Smartphone 

colorimeter 

coupled to 

remote server 

[24] 

V. parahaemolyticus 

in fish samples 

Colorimetric 

immunoassay 

Biosensor cartridge, lens-

free CMOS image sensor, 

Wi-Fi module 

1.4 × 104 CFU mL−1 

Dedicated app 

to operate the 

system and 

upload on 

internet server 

[25] 

Escherichia coli 

O157:H7 and 

Salmonella enterica 

DNA 

transduction 

on 

microfluidic 

device 

Magnetic beads 
Down to 20 genomic 

copies of E. coli 

Custom written 

app for cell 

phone image 

analysis 

[26] 

Clenbuterol 

Electric field-

driven 

immunoreacti

on 

Functionalized electrodes 
0.076 ng mL−1 CLB in 6 

min 

USB 

Smartphone tool 

biochip 

[27] 

Pattern 

recognition of 

Brazilian honey 

samples 

Cyclic 

voltammetry 

assay 

Electrode of gold, 

homemade potentiostat 

with USB connection and 

Bluetooth module 

Successfully generation 

of voltammetric 

fingerprints of 

numerous honey 

samples 

Chemometric 

data processing 

on smartphone 

[28] 

 

Fluorescence Imaging Using Smartphone 

Fluorescence imaging is the visualization of fluorescent dyes as labels 

for biological or chemical molecules of interest. It enables a wide range of 

experimental observations including the location of gene expression, 

protein expression and molecular interactions in cells and tissues. To label 

a biological molecule of interest, a fluorescent marker, which is able to 

bind the target molecule, has to be introduced. The setups found in the 
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revised works, which perform fluorescence imaging, also include a mono-

chromatic light source, typically a UV LED, to generate the dye excitation 

and a smartphone camera used as detector to collect and measure the 

fluorescence intensity. The presented systems, proposed for a specific 

detection application, have the advantage of being applicable to other 

targets of interest through the use of different specific molecular dyes. 

Zhu et al. [11] developed a portable Escherichia coli detection 

platform for screening of water and food samples. The cellphone-based 

fluorescence imaging platform was specifically realized to quantify the 

bacterial concentration in a water sample loaded into glass capillaries, 

opportunely functionalized with antibody directed against E. coli. 

Secondary antibodies, conjugated with quantum dots, were subsequently 

dispensed into the capillaries and served as the fluorescence signal. 

Quantum dots are inorganic nanocrystals with unique optical and chemical 

properties that give them exceptional brightness and photo-stability. In this 

case, UV-LEDs provided the excitation signal. The emission from the 

quantum dots through an additional lens was conveyed to the phone 

camera unit. A light-weight (~28 g) and compact (3.5 cm × 5.5 cm × 2.4 

cm) attachment to the existing camera unit of a cellphone was designed to 

host the diagnostic platform. By quantifying the fluorescent light emission 

from each capillary tube, the concentration of E. coli in the sample was 

determined. The authors reported that the test can be completed within 2 h, 

including sample preparation, sample loading and incubation, with a 

detection limit of 5–10 CFU mL−1 in buffer solution. They also 

demonstrated the efficacy of this approach using fat-free milk as a matrix, 

where a similar detection limit was achieved. The same concept was used 

by Ludwig et al. [12] for the detection of the presence of anti-recombinant 

bovine somatotropin (rbST) antibodies in milk, which are endogenously 

produced upon administration of rbST, a milk production enhancer in 

dairy cattle which is illegal in the EU and represents a public health 

concern in the US. To monitor the presence of this biomarker, multiple 

immunoassay microspheres were used for the detection of multiple 

antibodies simultaneously within a small volume of a single sample. In 
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addition to the same setup previously described, a white LED for dark-

field imaging of all microspheres present in the sample was used. The 

cellphone-based diagnostic platform was successfully applied to milk 

sample extracts from rbST-treated and untreated cows. An 80% true-

positive rate and 95% true-negative rate were achieved. The designed 

system can be adapted to any available cellphone that has a camera module 

simply by modifying the dimensions of the cellphone holder and 3D-

printing another one accordingly (Figure 2).  

 

Figure 2. Schematic overview of the cellphone attachment for fluorescence 

diagnostics developed by Ludwig et al. [14]. Adapted with permission of 

Springer. 

Mora et al. [13] developed a biosensor to accurately quantify lactose 

or galactose in undiluted food samples using genetically modified bacteria 

(E. coli) engineered to fluoresce in response to the analyte to reveal its 

diffusion behavior when using a blue-light source and optical filter. The 

authors reported detection limit concentrations in the range of 1–1000 mM 

requiring a sample volume of 1–10 µL and a storability of at least seven 

days at 4 °C without losing functionality. Bacteria possibily could be 

reprogrammed to serve as biosensors for other molecules. In this case, the 

smartphone is proposed as an alternative to visual inspection to quantify 

the fluorescent read-out. 

 

Smartphone-Based Colorimetric Readers  

Colorimetric assay is widely used in biochemistry to test for the 

presence of several analytes of interest, such as enzymes, antibodies, and 

peptides. It works by measuring the amount of light absorbed by a 
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chromogenic reagent or a reaction product at a characteristic wavelength. 

This wavelength is specific to the reagent being measured. The amount of 

absorbed light is proportional to the concentration of reagent present in the 

assay well. Different solutions must be made, including a control solution 

for reference. In this section, the most used architecture is a smartphone 

camera used to detect the read-out from assay reactions. 

Coskun et al. [14] presented a cellphone-based system for colorimetric 

assays performed in tubes toward sensitive and specific detection of peanut 

allergen in food samples. They developed a cellphone attachment 

composed of two tubes, for the test and control solution, illuminated by 

two LEDs, whose wavelength matches the absorbance wavelength of the 

reagent activated in the test tube. The light intensity was measured by a 

dedicated application developed on the smartphone, to quantify the 

allergen concentration, after a calibration was performed with known 

concentrations of analyte within the test tube. The colorimetric assays 

were conducted based on an ELISA test kit specific to peanuts. A 20-min 

preparation phase was described for sampling and treatment of the target 

food sample to be ready for the digital reader implemented on the 

cellphone. The separate optical readout, optimized illumination and 

imaging configuration resulted to be sensitive, robust, repeatable and 

immune from manual reading errors compared to visual inspection which 

can be subject to variable light conditions. Weighing approximately 40 g, 

this digital tool was able to quantify peanut contamination in food samples 

with a minimum detection level of ~1 parts per million (ppm) (Figure 3).  
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Figure 3. The iTube platform for performing cellphone-based colorimetric 

assays developed by Coskun et al. Adapted from [16] DOI: 10.1039/c2lc41152k 

with permission from The Royal Society of Chemistry. All rights reserved. 

Lee et al. [15] developed a simple, rapid, and accurate smartphone-based 

lateral flow immunoassay (LFIA) reader for diagnosis of aflatoxin-B1 in 

maize. Aflatoxins are toxic secondary metabolites produced by a species 

of corn fungi. The Lateral Flow Immunoassay (LFIA) is a paper strip-

based method for the detection and quantification of analytes. A liquid 

sample containing the analyte of interest moves under capillary action 

through various zones of strip, on which molecules that can interact with 

the analyte are attached. Starting from one end, the sample flows along the 

strip and it is bound by specific antibodies conjugated with colored or 

fluorescent particles, finally arriving at the other end of detection in which 

the recognition takes place, whose read-out is detectable by visual 

inspection or dedicated reader. In this work, a Samsung Galaxy S2 

Smartphone is used as LFIA reader together with a close-up lens and a 

white LED, to improve the detection limit and sensitivity of the LFIA for 

AFB1 in maize, minimizing the read-out errors caused by visual 

inspection. The final result did not rely on the subjective interpretation of 

an operator. Combining microfluidics and competitive ELISA, Chen et al. 

[16] developed a smartphone-based portable system for the mobile 
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detection of BDE-47, a common environmental contaminant in food 

samples. Through the USB port, the smartphone powered an Arduino 

Nano microcontroller integrated with a PCB, which in turn drove current 

to a microfluidic-based ELISA chip, triggering the analyte-mediated 

reaction. The colorimetric read-out was then acquired by the smartphone 

camera, and the image is then wirelessly transferred to a computing server 

for post-processing. This lab-on-chip assay showed a significant faster 

readout time of 15 min compared to conventional ELISAs which typically 

take at least 2 h. The input sample volume was considerably reduced with 

respect to laboratory ELISA. This allows the device to be field-deployable 

in a point-of-care to analyse less-than-ideal samples that the conventional 

method is insensitive and incapable of detecting (Figure 4).  

 

Figure 4. Schematic of the integrated mobile-interfaced diagnostic platform 

developed by Chen et al. Reprinted from [18], with the permission of AIP 

Publishing. 

Park et al. [17] proposed a portable quality-control method for appraising 

red wine properties, by means of paper microfluidic channels and 

colorimetric assay performed with chemical dyes. Six different red wines 

were used as “model sample set” and four red wines were tested as 

“evaluation sample set”. A smartphone was used to acquire and analyse 

the colorimetric result, later processed by means of PCA analysis. 
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Successful distinction of red wines by their grape varieties and oxidation 

was accomplished. PC1 was interpreted as explaining the sweetness (sweet 

or dry), while PC2 the body (light or heavy) of red wine. Minimization of 

sample-to-sample variation by splitting a single, undiluted red wine sample 

into eight different wells and filtering particulate matters by paper 

improved the reproducibility and led to smaller errors, resulting in better 

separation in the PCA plot. Such image processing and PCA can 

eventually be implemented as a stand-alone smartphone application, or 

within a cloud computing environment. Bueno et al. [18] developed a non-

destructive method to discriminate three amines, as a diagnostic approach 

to detect foodborne pathogens in meat, combining membrane technology, 

dyes, chemometric tools and smartphone technology. A colorimetric test 

was evaluated using a smartphone and unsupervised chemometric tools, 

PCA and HCA, achieving a detection limit down to 1 ppm concentration 

of amine. To demonstrate the effectiveness of the proposed system in a 

real sample, sample meat were adulterated with amines and then analysed, 

but to infer the presence of bacteria, authors foresaw the necessity to test 

the biogenic amine production profile. With the aim of detecting antibiotic 

residues in milk, Masawat et al. [19] described the development of a 

smartphone-based digital image colorimeter. Although this work is not 

properly based on the use of biosensors, the analysis proposed here 

involved a sample pre-treatment procedure by using invasive Solid-Phase 

Extraction (SPE) technique to isolate and concentrate analyte of interest, 

tetracycline (TC), from the liquid matrix in which was dissolved. To 

protect the system from outside light, a photography lightbox was made 

with the internal walls sprayed with black paint. The TC solution filled in a 

quartz cuvette was located in a sample cell holder under fluorescent light 

inside the lightbox. An iPhone model was used for capturing digital 

images from outside the box via a drill hole, and the ColorConc 

application was used to analyze the images. A software calibration phase 

was performed with a set of images obtained from reference 

concentrations. Thus, the Euclidean distance algorithm was used to find 

the closest match to the given image, to identify sample concentration. 
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Results were compared with double-beam UV–Vis Spectrophotometer. 

Obtained Limit of Detection (LOD) and Limit of Quantitation (LOQ) for 

TC concentration measurement, 0.50 and 1.50 µg mL−1, respectively, 

were higher than the Maximum Residue Limit (MRL) of TC in milk (0.1 

µg mL−1). Thus, the pre-concentration of the sample in milk with SPE is 

necessary to detect TC at low concentration, with the effect of losing 

portability and ease of use of the proposed system. Monosik et al. [20] 

presented a paper-based colorimetric assay for the analysis of selected 

food compounds, instant soups and wines. Food samples were treated with 

a glutamate-specific enzyme, and colorimetric analyses were conducted 

after taking a picture with a smartphone, using freeware ImageJ. As a 

result, a limit of detection of 0.028 mmol L−1 was obtained, while for the 

naked eye the limit was 0.05 mmol L−1. The versatility of the proposed 

approach was demonstrated by using other enzymes from the same family. 

The described method did not require sophisticated approaches in terms of 

paper pre-treatment and very low volumes of sample and reagents are 

necessary for the analysis. Yu et al. [21] developed a portable sensing 

device for pathogen indirect detection based on a disposable lateral flow-

through strip sensitive to alkaline phosphatase (ALP). ALP is an enzyme 

present in raw milk. It is slightly less labile to heat than most pathogenic 

bacteria; thus, loss of ALP activity is used to confirm proper pasteurization 

of skimmed or whole milk. The sample solution containing a desired 

concentration was added onto the sample pad. The read-out on the strip 

testing zone was imaged by a smartphone-integrated digital camera to 

quantify the optical signal. The images then were further analysed by a 

home-programmed MATLAB code. A trace amount of ALP as low as 0.1 

U L−1 was distinguished within 10 min, with a detection range of 0.1–150 

U L−1. Since the MATLAB code can be programmed to a mobile app, the 

analysis routine can be automated and performed on smartphone. Okadaic 

acid (OA) and saxitoxin (STX) are common marine toxins that can 

accumulate in shellfish and can affect human health through the food 

chain. To avoid poisoning incidents, Fang et al. [22] proposed an on-site 

diagnostic platform using a smartphone with competitive immunoassay 
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strips. A smartphone was employed for image acquisition and data 

processing. A 3D-printed portable accessory of the smartphone was used 

to fix the test strips. A homemade app was implemented for analysis. First, 

calibration curves were established with the target analytes diluted into 

five values of concentration. Then, real sample experiments were 

performed using the homemade strips for OA and STX and a commercial 

kit. By means of the strip adapter, the read-out was acquired using an 

optimized setup for light collection by the smartphone camera and 

analyzed. The proposed method showed a detection limit of 2.800 ng 

mL−1 for OA and 9.808 ng mL−1 for STX, similar to those of the 

commercial plate kit. The entire test time was 30 min, and the system was 

easy to operate, allowing on-site analysis with a low response time (Figure 

5).  

 

Figure 5. The on-site marine toxins diagnostic adapter developed by Fang et al. 

Adapted from [24] DOI: 10.1039/c2lc41152k with permission from The Royal 

Society of Chemistry. All rights reserved. 

Driven by the Indian issue of endemic fluorosis, a chronic disease resulting 

from excess intake of fluoride, Levin et al. [23] presented a field 

deployable colorimeter for screening of groundwater for fluoride in 

endemic areas. The proposed method used a commercially available 

reagent and adapted a smartphone as a colorimeter. An easy-fit, compact, 
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sample chamber adapter for a smartphone was designed to optimize the 

colorimetric reading. The authors used three smartphones; calibration of 

each phone was necessary because of significant variation in colour 

sensing between different camera hardware. The calibration process 

involved analysing five different fluoride standards. A software program 

was developed to use with the phone for recording and analysing the RGB 

colour of the picture. The resulting images were analysed using a linear 

interpolation to calculate the expected colours in between the calibrated 

colours. The linear range for fluoride estimation was 0–2 mg L−1; results 

were comparable with those of expensive laboratory Ion Selective 

Electrode reference method, without the need for technical expertise to 

conduct the test analysis (Figure 6).  

 

Figure 6. Schematic and picture of the smartphone-based fluoride test proposed 

by Levin et al. Adapted from [25], 

http://dx.doi.org/10.1016/j.scitotenv.2016.01.156 under the Creative Commons 

license http://creativecommons.org/licenses/by/4.0/. 
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Wang et al. [24] developed a smartphone-based colorimetric reader 

coupled with a remote server for rapid on-site analysis of catechols, an 

environmental pollutant highly toxic by ingestion and contact, which can 

irritate the human eyes and skin, and even at low concentrations, can give 

foods an undesirable taste. A 96-well sensor array was inserted in a light-

tight box between a white LED light in the bottom and a smartphone fixed 

to the top. With this equipment, the ambient lighting condition and 

imaging distance/angle were kept constant when capturing the images of 

the sensor array. Thirteen different catechols at six serial concentrations 

were evaluated for system calibration using PCA, HCA and LDA for 

quality discrimination and PLS for quantitative determination. Data were 

uploaded to a remote server to form analysis polynomials for LDA and 

PLS of an unknown sample. Real water sample analysis was performed, 

with very good estimation results achieved. The authors claim this work to 

be the first dealing with the on-site detection of analytes using a 

smartphone-based colorimetric reader coupled to a remote server. With the 

aim of separating the detection means from the phone to resolve the 

difficulties in applying different models of mobile devices to the field test, 

Seo et al. [25] realized a pocket-sized immunosensor system for the on-site 

detection of foodborne pathogenic bacteria. The immunoassay procedure 

was based on chemiluminometric signal generation. The biosensor 

cartridge included a lens-free CMOS image sensor (CIS) physically 

contacting the signal generation part of the cartridge and Wi-Fi module 

installed in the circuit board. The system was controlled by a smartphone 

app programmed by the authors. The internet-of-things (IoT) technique 

was intended for use in food contamination monitoring and was 

demonstrated by analyzing V. parahaemolyticus present on fish samples 

and uploading the data to a server via a wireless network. Prior to food 

testing, the target bacterium was pre-cultivated. The cultured medium then 

was analysed by employing the immunosensor system controlled by the 

mobile device, and the result was uploaded as information to an internet 

server. A LoD of 1.4 × 104 CFU mL−1 was achieved. Such a technique 

combining a biosensor with IoT can be used to issue a warning 
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immediately after complete analysis about food contamination before 

purchase or consumption, so that the supply chain can be promptly 

blocked. The authors claim the study to be the first exemplification of 

pathogen monitoring via IoT. Finally, DuVall et al. [26] presented a rapid 

detection of foodborne pathogens using a cell phone and custom-written 

app, in which the physical identification was made by pathogen DNA 

transduction, mediated by magnetic bead aggregation with pathogenic 

DNA fragments. The smartphone was used to acquire picture of the assay 

reaction and analyse the image to perform a qualitative Yes or No 

detection of pathogen presence. The proposed detection modality was fully 

portable for point-of-care detection of food-borne pathogens Escherichia 

coli O157:H7 and Salmonella enterica. 

 

Smartphone-Based Electro-Analytical Platforms 

Electroanalytical methods use electrodes to make electrical contact 

with the analyte solution, in conjunction with electric or electronic devices 

to which they are attached, to measure an electrical parameter of the 

solution. The measured parameter is related to the quantity of an analyte in 

solution. According to the electric parameters that are measured, 

electroanalytical methods include potentiometry, amperometry, 

conductometry, electrogravimetry, voltammetry and coulometry. The 

names of the methods reflect the measured electric property or its units. 

Electroanalytical methods are particularly interesting for the development 

of smartphone-based platforms for on-site food diagnostics, as they 

combine high-performance detection with great simplicity, low-cost, 

portability, autonomy, cable-free operation, and capacity to conduct in 

real-time the entire analytical measurement at remote places. 

Dou et al. [27] described a biosensing system for the detection of 

clenbuterol (CLB), using a mobile electrochemical device with an electric 

field-driven acceleration strategy. CLB has been illegally used in livestock 

raising to improve growth rate, reduce fat deposition and increase protein 

accretion. However it has been banned as a feed additive in food-
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producing animals in most countries because it can easily remain in animal 

tissues and result in clinical symptom in human such as temporary 

dizziness and palpitations. The electric field-driven method was selected to 

accelerate the immunoreaction at the solid-liquid interface of electrodes, 

speeding up the transport of low-abundant drug molecules. A smartphone 

tool biochip was developed to conduct the electrochemical detection and 

send data to the phone via USB port. The smartphone-based 

immunosensor was able to detect a minimum of 0.076 ng mL−1 CLB in 6 

min. The advantage of this method is that, by combining different 

functionalized electrodes, this device can meet the requirements for field 

detection of all food security-related species. In another study, Giordano et 

al. [28] coupled a homemade potentiostat to a mobile phone for point-of-

use assays successfully applied for pattern recognition of Brazilian honey 

samples according to their botanical and geographic origins. The method 

relied on the unsupervised technique of principal component analysis 

(PCA), and the assays were performed by cyclic voltammetry using a 

working electrode of gold. The proposed biosensor platform was provided 

with both USB connection and Bluetooth module integrated in the 

potentiostat hardware. An in-house app was developed to ensure the on-

site processing of multivariate data using PCA. The system was also 

created with the possibility to share data through the cloud (e-mail, Google 

drive, or even social media) for backup or remote processing of the 

electroanalytical results with more advanced chemometric tools. The 

authors claim that this is the first reported work concerning the 

development of a totally integrated point-of-use system with chemometric 

data processing on a smartphone (Figure 7). 
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Figure 7. Portable platform deployed for point-of-use analyses. Electrochemical 

system. (a) Sample; (b) hand-held potentiostat; (c) and smartphone; (d) 

Reprinted from [30] with permission from Elsevier. 

http://www.sciencedirect.com/science/article/pii/S0013468616320400. 

2) Smartphone Spectroscopy 

The works reviewed in this section belong to the optical diagnostics 

macro-category. Unlike the approach based on biosensors, in which it is 

necessary a reagent to trigger the transduction, in this case the analysis is 

performed in a non-invasive manner. In particular, spectroscopy has been a 

powerful tool in research and industrial applications. It is extensively and 

successfully used in applications including diagnostics, assessment of food 

quality, environmental sensing, and drug analysis testing. This technique is 

intrinsically rapid and non-destructive. However, most spectrometer setups 

used in industrial or laboratory-based applications are expensive and 

bulky, limiting them to controlled laboratory settings. Recently, due to 

advancements in electronics and fabrication methods, more portable 

spectrometers have been realized. Technological progress has allowed the 

release of micro-spectrometers which take advantage of new micro-

technologies such as microelectromechanical systems (MEMS), micro-

opto-electromechanical systems (MOEMS), micro-mirror arrays, etc. 

These improvements reduce cost and size while allowing good 

performance and high-volume manufacturability. Compared to lab-based 

instruments, miniaturized systems must become a black-box, providing 

expected results with high reliability and without intervention of 
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technicians specialized in spectroscopy measurements. The ultimate goal, 

in the future, is the integration of a spectrometer into a smartphone, taking 

advantage of the highly efficient processing abilities in the compact 

configuration, to offer spectroscopic information on the fly. Moreover, 

they will use the large community of users to build databanks based on 

machine learning through apps [29]. A detailed overview of the revised 

Smartphone Spectroscopy works is provided with Table 2. 

Table 2. Summary of recent smartphone spectroscopy systems. 

Detection 

Target 
Methodology Materials LoD/Performance Smartphone Use Ref. 

Microbial 

spoilage on 

beef 

Mie scattering 
Positioning stages, 

880 nm NIR LED 

101 CFU mL−1 to 108 

CFU mL−1 

Built-in gyro sensor 

and camera 

spectroscopy 

[33] 

Generic 

application 

Spectroscopic 

colorimetry 

3D printed housing, 

LED array, Phidgets 

board, and VIS-

spectrometer 

Good agreement to 

certified spectra 

with dE/E ranging 

from 0.5% to 1.5% 

IoT device to be 

used with 

smartphone 

[34] 

Glucose and 

ethanol in 

alcoholic 

beverages 

FTIR 

spectroscopy 

and 

independent 

component 

analysis 

Graphite light 

source, ATR prisms, 

2-dimensional light 

receiving device for 

smartphone 

Wavelength 

resolution 0.057 μm 

Proposed as a bean-

size spectroscopic 

module to be 

mounted on 

smartphones 

[35] 

ChlF detection 

in a variety of 

apple samples 

UV 

fluorescence 

spectroscopy 

UV LED, nozzle-

like enclosure VIS-

spectrometer, 

Arduino pro mini 

µ, Bluetooth 

Satisfactory 

agreement observed 

between ripeness and 

fluorescence signals 

Dedicated app 

interface on 

smartphone to 

communicate, 

receive, plot, and 

analyse spectral 

data 

[36] 

E. coli 

contamination 

on meat 

Fluorescence-

based imaging 

4405-nm 10 W 

LEDs, CCD camera, 

optical filter at 670 

nm, and Wi-Fi 

transmitter 

Localization of most 

fecal contamination 

spots successfully 

identified 

Outlined real-time 

broadcasting to 

monitoring device 

such as smartphone 

[37] 
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Generic food 

sensing 

application 

Hyper-spectral 

imaging 

Tunable MEMS FPI, 

Bluetooth 

Operation range 450–

550 nm with spectral 

resolution 8–15 nm 

@FWHM 

Mobile phone-

compatible hyper-

spectral imager 

[38] 

Food quality 

testing 

Diffractive 

interference 

refractometry 

5 mW 

semiconductor red 

laser, circular 

spatial filter, Si 

detectors, and a 

PDMS device 

LoD of 4 × 10−4 RIU 

Outlined 

smartphone 

interface based on 

transmission mode 

configuration 

[39] 

Sugar content 

prediction in 

pears 

NIR 

spectrometry 

and PLS 

4 tungsten lamps, 

LVF 620–1080 nm 

and CMOS linear 

detector array 

Low power, SNR 

ratio up to 5000, R2 

0.96, SEC 0.29° Bx and 

SEP 0.46° Bx 

Instrument 

wirelessly operated 

with smartphone 

[40] 

 

Liang et al. [30] proposed a detection method for microbial spoilage of 

beef by means of a smartphone-based optical diagnostic system. An 880 

nm near infrared (NIR) LED was irradiated perpendicular to the surface of 

ground beef, while the digital camera of a smartphone detected the scatter 

signal angled at 15°, 30°, 40°, and 60° from the incident light. Experiments 

were performed with and without positioning stages, where in the latter 

case, a software application and the built-in gyro sensor of the smartphone 

were used to control the incidence angle between the iPhone camera and 

the NIR LED light source. Concentrations of E. coli (from 101 CFU/mL to 

108 CFU/mL) were determined by the “pattern” of such scatter intensities 

over the angles. The proposed device was presented as a preliminary 

screening tool to monitor microbial contamination of meat products. 

Mignani et al. [31] presented the proof-of-concept of SpiderSpec, a 

compact colorimeter composed of a 3D printed cylindrical housing 

containing a LED array for illumination and a compact spectrometer for 

detection, with food control proposed as a possible application. The 12 

visible LEDs were arranged in a circular array in the optical head, with 45° 

orientation with respect to the central detection axis, which is one of the 

standard configuration for reflectance measurements. The chosen 

spectrometer had an operative range of 350–800 nm. A custom Labview 
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software interface was used for managing the LEDs and spectrometer. 

However, the authors, in a view of configuring the spectroscopic 

colorimeter as an IoT device, depicted future development of 

functionalities which could be selected using a smartphone or a tablet 

(Figure 8). 

 

Figure 8. Rendering of the spectrometer-based colorimeter SpiderSpec. 

Reproducted from [31] with permission from SPIE. 

Since conventional Fourier transform infrared (FTIR) spectrometers 

equipped with Attenuated Total Reflection (ATR) are bulky and expensive 

apparatus, on-site measurements of foods or drinks on the manufacturing 

site are impractical. In this perspective, Hosono et al. [32] developed an 

ultra-compact alkaline battery-size FTIR spectroscopic imager for 

simultaneous measurement of glucose and ethanol in alcoholic beverages 

by means of independent component analysis, employing a bean-size 

spectroscopic module to be mounted on smartphones. Experiments were 

performed in the NIR and MIR regions to find a range suitable for 

independent component analysis for discrimination of glucose and ethanol. 

The first use of a compact standalone spectrometer in combination with a 

smartphone via wireless connection was by Das et al. [33], which 

demonstrated the development of a mobile device for fruit ripeness 

evaluation. The authors used the portable spectrometer prototype to study 

UV fluorescence of chlorophyll (ChlF) in fruits. ChlF is a good indicator 

of photosynthetic activity and has been observed to relate to defects, 

damage, senescence and ripening of post-harvest fruits. Most important, 

this method enables the detection of fruit ripeness in a non-destructive 
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manner. In this work, the smartphone spectrometer assembly was used to 

rapidly evaluate ripeness of different varieties of apples using ChlF 

emission when excited using UV light. UV LED with a wavelength of 

360–380 nm was used as excitation source coupled with a spectrometer of 

range 340–780 nm. A calibration equation was applied to convert pixels to 

wavelength. Subsequently, a Bluetooth interface was setup to 

communicate with the smartphone. A customized app was developed for 

the Android operating system to communicate with the spectrometer 

assembly, and plot and analyse the spectra on the smartphone. ChlF 

detection in a variety of apple samples was performed and compared with 

the reference ripeness estimation using destructive mechanical firmness 

testing. The proposed device overcame the problem of stray light 

interference by launching and collecting light through a nozzle-like 

enclosure, thereby shielding any stray light contribution, a feature essential 

for field-based applications. However, a limiting factor in the proposed 

setup was the relatively low ADC bit resolution, property-dependent on 

the microcontroller choice (Figure 9). 

 

Figure 9. Schematic of the different components of the smartphone 

spectrometer prototype. Adapted from [36]. Published online 8 September 2016. 

doi:10.1038/srep32504, under the Creative Commons license 

http://creativecommons.org/licenses/by/4.0/. 
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Contaminated foods originating from animal products are a significant 

source of human infection and illness. Because animal feces are the most 

likely source of pathogenic E. coli contamination associated with 

foodborne illnesses, it is particularly important to inspect for fecal 

contamination on meat during meat processing. Currently, meat inspection 

in slaughter plants for food safety and quality attributes, including 

potential fecal contamination, is conducted by visual examination from 

human inspectors. Oh et al. developed a handheld fluorescence-based 

imaging device to be an assistive tool for human inspectors with the aim of 

enhancing visual detection of fecal contamination on red meat, fat, and 

bone surfaces of beef under varying luminous intensities [34]. The device 

comprised four 405-nm 10 W LEDs for fluorescence excitation, a charge-

coupled device (CCD) camera, an optical filter at 670 nm, and a Wi-Fi 

transmitter for sending real-time data to smartphone or tablet. The 

localization of most fecal contamination spots on beef surfaces was 

successfully identified because of the presence of chlorophyll metabolites 

discharging fluorescence near 670 nm. The image acquired from the 

device was transmitted by Wi-Fi and processed by MATLAB analysis. As 

expected, the increase in luminous intensities led to a parallel decrease in 

the identification of the fluorescence spots. Results indicated the proposed 

system as an effective way to aid visual inspection for fecal contamination 

detection. Rissanen et al. demonstrated a mobile phone-compatible hyper-

spectral imager based on a tunable MEMS Fabry-Perot interferometer for 

authentication, counterfeit detection, and potential health/wellness and 

food sensing applications [35]. The authors described the development of a 

MEMS Fabry-Perot interferometer (FPI) tunable optical filters integrated 

with an iPhone 5s camera to perform hyper-spectral imaging in the vis-

NIR range 450–550 nm. The communication between the MEMS FPI 

module and iPhone 5 was arranged using Bluetooth. A configuration of 

two cascaded FPIs (λ = 500 nm and λ = 650 nm) combined with an RGB 

colour camera showed potential to expand the wavelength tuning range to 

400–700 nm. Sasikumar et al. [36] developed a handheld optical analyser 

consisting of a collimated 5 mW semiconductor red laser (635 nm) as the 
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source, a circular spatial filter, Si detectors, and a Polydimethylsiloxane 

(PDMS) device. Fabrication of the PDMS device with integrated sample 

well was adapted for refractometric, and hence concentration, 

measurements. Potential integration of this device with smartphones was 

outlined, and featured a simple interface based on transmission mode 

configuration to explore several applications in food quality testing. Yu et 

al. realized a handheld NIR spectrometer specifically designed to assess 

the internal quality of fruit. In particular, a key development aspect was the 

Linear Variable Filter module as a light-dispersion component [37]. The 

proposed spectrometer system was a gun-shaped device, operating in the 

vis-NIR range (620–1080 nm) in interactance mode. The light source 

consisted of four tungsten lamps placed symmetrically around the entrance 

window. A 6-mm-diameter rubber grommet surrounded the entrance 

window and acted as a light seal, thus preventing surface-scattered light 

from reaching the window directly. A soft black foam ring around the 

detector head was provided to support the fruit during analysis and shield 

it from external light. The platform was tested for determining the sugar 

content in Crown Pear. Light from the source entered the fruit and 

penetrated part of the tissue, and that which emerged from the fruit entered 

the window. Results were compared with the reference method of Brix 

measurements, recorded with a handheld refractometer. Models were 

developed using PLS regression with the full band of the absorbance 

spectra and were optimised by applying MSC, SNV, and first derivative. 

The instrument was able to analyse spectral data using an on-board 

prediction model and to operate wirelessly with a smartphone, tablet or 

laptop computer. It proved highly suitable for predicting fruit internal 

quality. However, modified software is needed, and further studies are 

required to test the performance of the spectrometer for predicting other 

attributes or detecting sugar in other fruits (Figure 10). 
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Figure 10. Schematic of the hand-held spectrometer and picture and schematics 

of the measuring head for interactance mode measurement developed by Yu et 

al. [40]. Adapted by permission of SAGE Publications, Ltd.  

To get an idea of the cost-reduction when switching to smartphone-

based sensors, approximate costs are provide with Table 3, for some of the 

technologies above mentioned.  

 

Table 3. Approximate cost related to works which have provided an estimate. 

Platform Approximate Cost Ref. 

Smartphone with 

fluorescence microscope 

attachment 

Attachment of around $140, significantly reduced 

compared to the equipment costs for the reference 

method 

[12] 

Akvo Caddisfly 
Expected to retail at $75, without the phone and 

mapping system, plus $0.3 for each test 
[23] 

PiBA assay coupled to 

LAMP 

Reagent cost for PiBA is a fraction of a cent. 

Overall cost reduction is ~10-fold respect to the 

reference (fluorescence reagents for qPCR) 

[26] 

Smartphone-based 

analytical platform with 

homemade potentiostat 

Based on CheapStat potentiostat which requires 

less than eighty dollars for its manufacturing, 

while the most commercial potentiostats cost a 

few thousands of dollars 

[28] 

Smartphone 

spectrometer 

Entire assembly along with the smartphone can be 

realized under $250, while reference spectrometer 

platforms costs are $4000 and $1200 

[33] 
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3) Emerging Market of Smartphone-Based Food Diagnostic Platforms 

Many start-ups that are proposing the use of mobile devices able to 

test the quality of food and to determine its constituents are emerging, also 

thanks to the increasing use of the crowdfunding platforms Indiegogo and 

Kickstarter. These smart systems represent a mobile and miniaturized labs, 

optimized for the detection of a specific target, which are offered in 

combination with dedicated smartphone applications that provide friendly 

user interfaces for handling and displaying the test results, received 

through BLE (Bluetooth low energy) connection. Moreover, thanks to the 

ubiquitous smartphone connectivity, they become IoT modules able to 

leverage the extensive computational power and storage offered by cloud 

computing. Here, we provide the most relevant products, narrowing the list 

to those covered by a filed patent. 

Cellmic LLC (formerly Holomic LLC), founded by Professor Aydogan 

Ozcan, offers a suite of rapid diagnostic test readers for advanced mobile 

diagnostics [38]. Among these is the allergen testing platform already 

described in this paper [16] and covered by a patent [39]. This device was 

developed by UCLA researchers for the detection of allergens, based on 

ELISA kit and a test tubes-containing module attachment to the 

smartphone camera. MyDx Inc. is a science and technology company that 

has created MyDx, a handheld electronic analyser that leverages electronic 

nose nanotechnology to accurately measure chemicals of interest in food 

and water, to detect traces of pesticides or metals, and send results to 

smartphone handled by the MyDx app [40]. The company owns many 

related patents including [41]. 

Scientists and researchers of Kaunas University of Technology, in 

cooperation with the company ARS Lab, have developed the patented [42] 

smart electronic nose FOODsniffer (formerly PERES). It is based on gas 

sensors and is intended to signal the deterioration of meat and fish by 

detecting gases that reflect such deterioration. It was selling on the 

company website for $129.99 at the time of writing [43]. Nimasensor [44], 

was developed by Nima Labs Inc. and enables the detection of the 

presence of gluten in food. It is based on the immunosensor technique, in 
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which a specific antibody binds gluten, sparking the transduction process. 

Therefore, it is necessary to sample the food inside a disposable cartridge 

that is then inserted into the main body of the device. Results are provided 

through a dedicated app. The Nima device embeds an OLED display 

indicating a smile for gluten under 20 ppm. The Nima Starter Kit cost at 

the time of writing was $279.00 [45] 

Many new companies are offering sensors based on the emergent and 

promising technique of NIR spectroscopy. Spectral Engine Oy presented a 

plethora of high-tech products based on a tunable optical filter as a 

peculiar component, originated from years of research done at VTT 

Technical Research Centre of Finland, which resulted in many filed 

patents, including [46]. The Wireless NIR sensor device platform, which is 

designed for portable applications development, can be operated with a 

computer, a tablet, and a smartphone. The Food Scanner solution concept 

uses the wireless NIR sensor in conjunction with advanced algorithms, 

cloud-connectivity, and a vast material library to reveal the fat, protein, 

sugar, and total energy content of food items with a good level of accuracy 

[47]. TellSpec Inc. proposed a pocket-sized NIR spectrometer, a cloud-

based patented [48] analysis engine, and a mobile app that work together 

to scan foods; identify calories, macronutrients, allergens, and 

contaminants; and provide relevant information such as food fraud, food 

adulteration, and food quality. The spectrometer is based on the Texas 

Instruments DLP® NIRscan™ technology. At the time of writing, two 

solutions are currently delivered on the company website, the Enterprise 

Scanner at $1300.00 and the Software Development Kit at $2000.00 [49]. 

Finally, with several filed patents including the [50], the Israeli company 

Consumer Physics (formerly Verifood Ltd.), has the in-house-developed 

product, SCIO, a pocket-sized NIR spectrometer for molecular analysis, 

including food. It is delivered in the solutions of Consumer Edition at 

$299.00 and SDK at $499.00 at the time of writing. Moreover, in 

partnership with Changhong and Analog Devices, the company has just 

announced the world‟s first Molecular Sensing Smartphone, a smartphone 
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integrating the Scio spectrometer module [51]. The presented commercial 

devices are depicted in order of the description above in Figure 11. 

 

Figure 11. Commercial products for mobile food diagnostics. 

Conclusions 

The proposed sensing strategies, which used a phone as the read-out 

tool (e.g., colorimetric and fluorescence imaging), are optimized for the 

phone models used for carried out the analysis. In order to meet the 

property of repeatability between different platforms, calibration of each 

phone is necessary because there is significant variation in color profile 

between different phones, due to hardware differences. Indeed, cameras 

may have different spectral responsivities, lamps may have different 

spectral emittances, and digitizer elements may be different. Moreover, the 

above mentioned properties may change over time. Another point to be 

addressed when dealing with pictures and colors is the image format. As 

smartphone cameras have become more and more powerful, it is now 
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possible to shot in lossless RAW format, instead of lossy JPEG. In 

scientific imaging, there are several reasons to choose the first one. When 

shooting in JPEG image information is compressed and lost. The camera 

does its own processing to convert into a JPEG. The white balance and 

colour space are applied to the image by default. With RAW, within the 

image all data from sensor are recorded, so it is always possible to perform 

post-processing, like adjusting white balance and selecting the proper 

colour space where to export out the picture.  

Sample preparation is still a bottleneck for the field of food mobile 

diagnostics, which aim is to bypass the use of expensive and bulky 

instrumentation-based tests, operated by trained personnel. Sampling 

performed by non-expert user may lead to unwanted contamination, 

resulting in defiled measurements. For example, in colorimetric assay, if 

unwanted solutes in the sample buffers positively or negatively affect light 

absorbance, it results respectively in false positives or negatives. This 

intrinsic drawback affects mostly detection strategies in which sampling is 

a necessary preliminary step. The commercial systems presented have tried 

to overcome this problem through a user-friendly design, inserting 

guidelines to assist customer during sampling and calibration procedure. 

The methodologies discussed indirectly identify the concentration of a 

target substance, so for all of them it is necessary to make a calibration 

with a reference standard, using the pure substance at different 

concentrations, in order to build the instrument calibration curve for that 

specifically target. All conditions under which standards and unknowns are 

prepared should be kept identical. For fluorescence, dye- and glass-based 

reference materials are used to correct fluorescence emission for relative 

intensity, comparing an unknown measured intensity value with the 

certified values. In colorimetric assay, to correctly identify unknown 

samples, first the software module should be calibrated with a set of 

images obtained from reference concentrations. Each image will be 

associated with a concentration level. In case of electro-analytical 

techniques, the measured electrical quantity is proportional to the 

concentration of some component of the analyte. Calibration is done using 
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standard buffer solutions at different known concentrations, developing the 

transduction characteristics. Reflectance spectroscopy needs calibration 

against a reference method with the ingredient of interest, to associate to a 

spectra a quantitative information. In the case of non-invasive analysis, 

such as reflectance spectroscopy, sampling is less important than 

performing a correct workflow for measurements. In the future, it is hoped 

that these systems will be able to self-calibrate. Non-invasive and machine 

learning-based systems, which rather than following standard calibration 

using reference concentrations, can count on huge amount of data, are 

definitely favourites from this point of view. Indeed, smartphone-based 

diagnostics allows ease capture of data and generation of large datasets, 

which can be appropriately managed by means of advanced computational 

analytics, such as machine/deep learning in combination with human 

expertise, for the extraction of meaningful information [52]. 

All above described studies and commercial products show that this novel 

field of research represents a promising area that has high scientific and 

commercial impact. In particular, advancements in biomedical science, 

chemistry, biotechnology, optics, and engineering have led to new 

diagnostic platforms which are more portable, economical and easier to 

use than conventional lab-based assays. Furthermore, the universal 

presence of mobile phones in our society makes it possible to leverage 

these devices for on-site testing. Nevertheless, these systems raise 

questions about use protocols and reliability of measurements. The 

repeatability of a measure, intrinsically guaranteed by a laboratory 

apparatus, becomes a delicate condition to be met in case of portable 

modules for on-site analysis. Opportune optimizations must be evaluated 

at the design stage for the physicality of the instrument, to exclude or 

minimize any external noise sources. 

Researchers have come up with different solutions and embodiments 

for exploiting the great potential offered by smartphones. According to the 

detection strategy, we have classified the revised works into two main 

classes; biosensor-, and spectroscopy-based smartphone platforms. In both 

of these approaches, mobile phone provided a simplified user interface, 
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visual display, data processing, storage, and wireless transmission. While 

both strategies feature advantages, they also face several limitations. 

Biosensors are economic and intrinsically sensitive to a specific target and 

only need slight computation processes. Nevertheless, they are based on 

disposable cartridges or strips, and require invasive sampling to perform 

the diagnostics. Spectroscopy indeed allows peculiar rapid non-invasive 

and non-destructive analysis. However, it is not a target-specific method 

and it must be associated with complex multivariate statistical and 

chemometric tools for spectral dataset analysis to extract the relevant 

chemical information. While in the biosensors based-approach, the key-

enabling factors are the choices of the reagent and the transduction 

process, in case of spectroscopy, the critical design criteria are represented 

by the selections of the wavelength range for source and detector, and of 

the measurement setup. Thus, both approaches are easily adaptable 

methods, since calibration and tuning of the systems are performed 

according to the desired application. Moreover, they require only a basic 

training, and a few minutes for detecting and processing, with the potential 

for providing a user-friendly, on-the-go, scanning scenario. While lab-on-

smartphone biosensor applications are well established, the exploitation of 

smartphone spectroscopy is in its infancy. Fortuitously, advancements in 

the fabrication of optical sensors, which are leading to increasingly 

miniaturized and economical technology, are keeping pace with the 

development of increasingly sophisticated machine-learning algorithms. 

This, combined with the enormous potential offered by cloud computing, 

and the ability of modern smartphones to act as both connecting portals 

and interfaces for analysis and display of results, dramatic developments 

are foreseen in the field of mobile diagnostics, operated not only for food 

monitoring applications, but also for environmental and biomedical 

sensing. 
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B. Objective of this Thesis 

 

Aim of this work will be the detailed study of the Near-Infrared 

Spectroscopy methodology and its exploitation for the development of 

non-invasive optical analysis solutions for nutrition monitoring, food 

scanning and industrial applications. After an in-depth analysis of the state 

of the art of portable food analysis enabling technologies previously 

described in the Introduction, this methodology has been selected for its 

countless advantages, which will be described below, which make it a very 

promising solution in terms of range of applicability.  

In Chapter II a multi-platform optimized analytical method based on the 

most informative wavelength range in the NIR region for quantitative 

measurement of sugar content in aqueous solutions and beverages by 

means of absorbance spectroscopy will be described. In Chapter III, 

exploiting the preparatory results achieved in the previous Chapter,  the 

design, development and testing of a LED-based optical and portable 

platform for sugar content measurement in beverages will be shown. 

Finally, in a view to highlight the wide range of applicability of portable 

spectroscopy, in Chapter IV will be illustrated how near infrared 

reflectance spectroscopy has been proposed and implemented to empower 

a robotic arm with material classification capabilities, for in-line 

automated sorting of waste. 
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II. MULTI-PLATFORM SUGAR CONTENT MEASUREMENT IN AQUEOUS 

SOLUTIONS AND BEVERAGES 

 In this Chapter a multi-platform optimized analytical method for 

quantitative measurement of sugar content in aqueous solutions and 

beverages via absorbance spectroscopy is described, based on the most 

informative wavelength range in the NIR region. 

A. Introduction 

Spectroscopy is a fast, non-invasive, and non-destructive analytical 

methodology, widely used in diagnostics, in the assessment of food 

quality, environmental sensing, drug analysis and testing [53]. Near-

infrared spectroscopy has the advantages to be a non-destructive and 

greener alternative to reagent-based techniques analytical technique; no 

need for reagents and limited waste after the analysis. Moreover, there is a 

reduced or null sample preparation, and it allows the possibility of 

multicomponent analysis in real time. The payoff in using this technique is 

enormous in terms of allowing rapid, non-invasive, low-cost analysis on-

site, thus eliminating the need of sending samples for time- and budget- 

consuming lab testing. Although the effort to obtain a reliable prediction 

model might seem a huge up-front investment in time. Indeed, unlike 

infrared absorbance spectra, in which the Beer-Lambert law can be used to 

determine an unknown concentration evaluating absorbance at a specific 

wavelength, NIR absorbance spectra cannot be directly analysed, but need 

to be pre-processed using chemometric statistical analysis according to the 

specific application, to extract meaningful chemical information. 

Chemometrics is the interface between analytical chemistry and 

mathematics. It is the application of mathematical and statistical method to 

extract chemical information from measured spectroscopic data [54]. For 

classification purpose, it could be used to perform pattern recognition 

inside big dataset deriving from NIR spectroscopic analysis of multiple 

materials, exploiting NIR spectroscopy peculiar ability to generate 

material „fingerprint‟ [55]. For quantification purpose, as happens by the 

application of Beer-Lambert law, chemometrics prediction model requires 

large dataset of spectra acquired from samples containing different 
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concentrations of an analyte of interest. Many studies have directed effort 

towards the implementation of method able to identify variables which 

carry useful information and in parallel eliminate variables containing 

mostly noise [56]. In [57] a variable selection methodology was proposed 

to determine the most informative wavelengths to build a Multiple Linear 

Regression (MLR) model for water status of plants. In [58] a wavelength 

selection method was described, to identify the three most informative 

wavelengths for grape ripeness estimation. A quantitative model  for three 

sugars in bayberry juice was developed using PLS regression and was 

provided in [59]. Indeed, NIR spectra are sensitive to the presence of 

organic compounds which contain the molecular bonds C–H, O–H, and N–

H. In particular, sugar molecules contain C–H, O–H, C–C, and C–O bonds 

and related absorption mainly came from the third overtone and second 

overtone of C–H and O–H bonds. An absorption peak around 970 nm is 

due to the existence of the O–H stretching vibration and water [60]. 

B. State of the art 

As prior art for this work, articles regarding proposal of wavelength 

selection methods as advanced chemometrics approach to build prediction 

quantitative model for sugar content in liquid food have been considered. 

Moreover, the focus has been further narrowed down to the “silicon range” 

of Visible-NIR detectors (up to 1000 nm), which technologic development 

combined with development of more and more sophisticated machine 

learning algorithms can lead to increasing miniaturized, cheap and reliable 

platforms, with possible integration with smartphones [61]. Following the 

rapid development of chemometrics research, NIR spectroscopy has been 

more and more applied to the analysis of liquid foods [62]. The major 

benefit of working with liquid samples is the handling of optical path 

length. In case of a liquid with low scattering characteristics, the use of a 

cuvette to contain the samples provides high consistency in optical path 

length, with measurements performed in transmittance mode. [63]. On the 

basis of Partial Least Square (PLS) regression coefficient, authors of [64] 

have analysed the fingerprint reflecting characteristics of visNIR orange 

juice spectra for soluble solid content (SSC) -solids concentration of a 



 40 

sucrose containing solution-, highlighting  which wavelengths might be of 

particular importance for calibration. In [65] sensitive wavelengths 

corresponding to the SSC of bayberry juices were proposed on the basis of 

regression coefficients by PLS, implemented on Vis/NIR spectra. In [66] 

PLS have been used to build regression model for soluble solid content 

measurement in tea soft drinks and also to extract the most sensitive 

wavelength, which were then exploited to build a MLR model. In [67] 

researchers have extracted sensitive wavelengths for reducing sugar 

determination in fermenting grape, analysing loading weights of latent 

variables from the PLS model, used then to build a MLR model. 

Researchers in [68] have studied three variable selection criteria for 

determining SSC in beer. In [69] a variable selection based on interval-

PLS (iPLS) algorithm  was implemented to determine Sugar content in 

commercial plant milks. To the authors knowledge, there is a lack in 

literature regarding the realization of a reliable quantitative method based 

on variable selection for sugar concentration measurement in the NIR 

range exploitable on many systems. To fill this gap, in this work we 

propose a multi-platform optimized approach of developing a sugar 

concentration prediction model in liquids. Spectral dataset from aqueous 

solutions of three sugars were acquired using a benchtop instrument and a 

mini-spectrometer in the range 600-1100 nm. With proper pre-processing 

of raw absorbance spectra, the most sensitive wavelengths for sugar 

content were highlighted for each setup. Thereafter, a regression algorithm 

has been calculated and validation has been then performed with 

commercial soft drinks containing different known sugar content. A 

discussion on the predictive ability of the derived calibration model is 

provided. 

C. Materials and Methods 

1) Samples 

Analytical grade anhydrous D-(+)-glucose, D-(−)-fructose, and 

sucrose in powder form were purchased from Sigma–Aldrich (Sigma, St. 

Louis, MO, USA). Standard stock solutions were prepared from each 

appropriate sugar dissolved in distilled water. For each sugar, 5 solutions 
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containing 10, 30, 60, 100, and 150 mg/mL were prepared. Three technical 

repetitions were made for each concentration for every analyte  (n=15) 

used (glucose, fructose and sucrose). Distilled water was used as reference 

for subsequent differential processing. For the validation phase, four 

commercial soft drinks note for their sugar concentration were employed: 

Sprite, CocaCola, and Fanta produced by The Coca-Cola  Company 

(Atlanta, USA), and Pepsi by PepsiCo (Purchase, USA), obtained from a 

local store. According to their label, the sugar content of these soft drink in 

the Italian market is respectively 19 mg/mL, 106 mg/mL, 118 mg/mL, and 

109 mg/mL. Three technical repetitions were made for each beverage 

sample. Every sample, pipetted in optical cuvettes, was measured 5 times. 

All samples were measured at room temperature, which was kept under 

control (26.5 – 27.5°C).  

 

2) Instrumentation 

The spectral data were collected in transmittance mode using the 

benchtop instrument VIS-NIR Lambda 45 Spectrometer from PerkinElmer 

(Waltham, USA) and a custom setup composed of: an infrared light source 

with range 360-2400 nm, fiber optics, and a CUV-ALL-UV Cuvette 

Holder, all obtained from Ocean Optics (Dunedin, USA), and a NIR 

micro-spectrometer MS-series C11708MA obtained from Hamamatsu 

Photonics (Shizuoka, JP). The benchtop instrument has an operative range 

of 190–1100 nm with a resolution spanning from 0.5 to 4 nm. It uses a 

light-dispersion device, a monochromator, to produce a narrow bandwidth 

of monochromatic light which is then conveyed toward a sample. The 

amount of monochromatic light transmitted through the sample is 

registered by a detector and converted to an electrical signal. The mini-

spectrometer is based on MOEMS (micro-opto-electro-mechanical-

system) technology. It comprises an input slit, which is the opening for 

receiving the light to be detected; a grating, which separates the incident 

light into each wavelength, reflected at different diffraction angle; an 

image sensor, which converts the spectrum of light into electrical signal. In 

particular, it integrates a Complementary Metal-Oxide Semiconductor 
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(CMOS) sensor with wavelength sensing range 640-1050 nm and spectral 

resolution of max 20 nm. In order to couple the spectrometer entrance slit 

to the fiber optics, it was designed and realized a customized optical 

interface, composed of several optical components, including a SMA 905 

adapter, an aspheric collimator, and two cylindrical lens from Thorlabs 

(Newton, USA). The overall interface was put in optical axis with the 

spectrometer slit by means of cages and assembly rods. The complete 

experimental setup is shown in Figure 12. 

 

 

Figure 12. Experimental setup schematics. 

3) Experimental design 

A benchtop instrument and a custom setup were used to acquire 

spectra in transmittance mode of aqueous solutions of four sugars at 

different concentrations, for the calibration phase, and of three commercial 

soft drinks used as real samples for validating the performance of the 

implemented model. Each sample, previously prepared, were pipetted 

inside optical cuvettes of 10 mm path length. Regarding the PerkinElmer 

instrument, after selecting the software settings of 1.2 nm resolution, 5 

cycles repetition and 2880 nm/min measurement speed, sample spectra 

were then acquired and all the phases described were managed using the 

UWLab software. Hamamatsu proprietary software was used to acquire 

spectra with the mini-spectrometer, using the following setting parameters: 

1200 msec as integration time, 5 measurements as repetition and low gain. 

An optical diffuser was placed on the light source fiber end side, to avoid 
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saturation of the sensor, and a cuvette cover was used to screen off the 

ambient light. The benchtop instrument directly output the absorption 

spectrum, while for the mini-spectrometer was necessary to perform a 

proper instruments calibration, consisting of the preliminary acquisitions 

of the light source reference spectrum   (total transmission) and the dark 

spectrum      (zero transmission). This phase was necessary to define the 

signal dynamics that could be expressed with that configuration. After 

acquiring the transmission spectrum of a sample       the related 

absorption spectrum     was calculated with the following expression: 

            (
            

           
)  

All the acquisitions were performed at ambient temperature between 26.5 

and 27.5 °C. 

4) Methodology 

The acquired spectra contained both chemical information and noise. 

Firstly, the average for every concentration was calculated. Then spectra 

were pre-processed to filter out the noise and finally a second derivative 

processing was implemented, to highlight the absorption peak inside noisy 

spectra. Indeed, peak resolution substantially improves adopting a second 

derivative of absorbance spectra [70]. In particular, a Norris–Williams 

second-order derivative algorithm was performed (six-point smoothing 

and gap size of six), which comprised the following steps: 

 i) a first smoothing filter to reduce noise and keep useful  variation;  

 ii) a subtraction of distilled water spectrum from the  original spectra, 

 to further enhance the spectral effect  due   to the organic compounds 

 [71]; 

 iii) a second smoothing filter computed on the results from  previous 

subtraction step;  

 iv) a second derivative computed as finite difference, using  the moving 

window:(si+g − si ) − (si − si-g ) = si-g −2si + si+g,  where s = (s1, s2, . . . , 

sk) was the data resulting from the  previous steps and g the width of the 

considered  window[72].  

Eventually, the characteristic wavelengths in the spectra were highlighted 
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selecting the informative range 945-972 nm for the dataset obtained with 

Setup1 and 945-984 nm for the dataset obtained with Setup2. Mild spectral 

signal shift is always introduced when measuring a sample with different 

instruments, mainly in x-axis adjustment (wavelength accuracy) and y-axis 

response (absorbance). This is due to the constructional differences 

between system, which is mainly reflected in different spectral resolutions. 

Moreover, such differences are accumulated building prediction model by 

multivariate methods [73]. At this stage, the cropped spectra were fitted 

with a 6
th 

degree polynomial, the lowest order that best interpolated the 

data, and the curves integral was evaluated in the two ranges to calculate 

the area subtended by the peak. The obtained data were then used to build 

a linear regression model with the area as abscissa and the correspondent 

concentrations as ordinate. Two linear prediction models were obtained for 

each setup. Next step was the repetition of the same pre-processing, using 

the dataset collected from the four real beverages samples. The obtained 

area values were used to feed the calibration lines to predict the 

concentration values. The Mean Square Error of Prediction was then 

evaluated using the predicted values and the real concentrations reported 

on the drinks labels. The whole processing was implemented in Matlab 

version R2015a from MathWorks (Natick, USA). 

D. Results 

The results from the pre-treatment phase conducted on dataset 1 and 

dataset 2 are depicted respectively in Figure 13 and Figure 14. The 

derivative pre-processing highlighted the wavelengths sensitive to the 

sugar concentration variation, i.e. 945 - 972 nm in the case of Setup1 and 

945 - 984 nm in the case of Setup2, which were also in agreement with the 

findings from the loadings analysis performed on principal components 

(Figure 15). The remaining less-informative parts of the spectra were cut 

out before proceeding to the next steps. 
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Figure 13. Result of pre-treatment implemented on dataset acquired with 

Setup1, which highlights the sensitive spectral range 945-972 nm. 
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Figure 14. Result of pre-treatment implemented on dataset acquired with 

Setup2, which highlights the sensitive spectral range 945-984 nm. 

 

 

Figure 15. Loadings analysis performed on the first three principal components 

highlights the wavelenghts most sensitive to variation of sugar content related 

to Setup1 and Setup2. 

1) Calibration phase 

For each concentration-related partial spectrum, the corresponding 

area subtended under the peak was calculated, and these values were used 

to build the calibration line. The results from this step are depicted in 

Figure 16 for dataset 1 and Figure 17 for dataset 2. R
2
 = 0.9850 (the linear 

fit of the concentration data explains 99.85% of its variance) evaluated 

from the calibration obtained with dataset 1, while R
2
 = 0.9816 evaluated 

from the calibration obtained with dataset 2. 
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Figure 16. Calibration curve calculated from data acquired with Setup1. 

(available range of calibration data 10 – 150 mg/ml). 

 

Figure 17. Calibration curve calculated from data acquired with Setup2. 

(available range of calibration data 10 – 150 mg/ml). 

2) Validation phase 

Four commercial beverages were used to validate the obtained 

calibration models. Same processing performed on sugar solutions dataset 

was implemented on soft drinks dataset. The subsequent areas were given 

as input to the previously developed models to predict the sugar 
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concentration inside beverages. These values were compared to the 

tabulated values on the drinks labels and a related Root Mean Square Error 

of Prediction (RMSEP) was calculated as evaluation index of prediction 

performance, using the form: 

      √
∑   [ ]    ̂[ ]   

   

 
  

where  [ ] are the real values and  ̂[ ] the predicted values. Results from 

this phase are shown in Figure 18. 

 

Figure 18. Results of Setup1 and Setup2 prediction models validation with 12 

real samples (available range of validation data 19 – 118 mg/ml).  
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E. Discussions 

Although in calibration the two models showed fairly similar and very 

high coefficients of determination, in validation, they showed quite 

different performances. Only the model based on Setup1 obtained 

predicted values close to real values. The model based on Setup2 proved to 

be significantly less accurate, which can be explained by the mini-

spectrometer instrumental characteristics of lower resolution, compared to 

the benchtop instrument, and by the limit in the choice of acquisition time, 

conditioned by the saturation of the sensor. Therefore, a different 

instrumental strategy must be found to allow an increase in integration 

time without incurring saturation of the sensor. Furthermore, the 

significant difference between the calibration determination coefficient 

and the validation coefficient in both models can be explained by a 

substantial difference between the nature of the calibration set and the 

nature of the test set. Two possible resolutions of this limit can be 

implemented. The first consists in the building of a calibration based on a 

set composed of incremental addition of sugar to, and serial dilutions of, 

the nominal sugar content of various beverage samples, so as to cover a 

wide range. Indeed, similar works found in literature were successful in 

measuring sugar content in different food liquid matrices by using the 

same mixture divided in different samples for the calibration, cross-

validation and test phases. This condition allowed researchers in [59] to 

reach very high prediction results by using a benchtop FT-NIR instrument 

in transmittance mode in the range 800-2400 nm for the quantification of 

glucose, fructose and sucrose in bayberry juice. Good prediction results 

(R
2
 = 0.84) were also achieved by Marrubini et al. [69] in determining 

sugar content in different plant milk samples with a benchtop instrument 

but using wavelengths in the MIR range as selected variables. Very good 

prediction peformances (R
2 

= 0.92) were also obtained in [67] with a MLR 

model for the determination of reducing sugar content during grape 

ripening. The second option consists of a sample pre-treatment step for the 

carbonated drinks in ultrasonic bath, so as to completely remove the 

carbon dioxide component whose presence may obstruct the light beam 
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when crossing the optical path of the sample. This is what is done in [74] 

by Ilaslan et al., in which glucose, fructose, and sucrose were quantified in 

commercial soft drinks by using Raman spectroscopy obtaining as 

coefficient of determination (R
2
) values of 0.913, 0.998 and 0.993 for 

validation, respectively. 

F. Conclusions 

In this chapter, a multi-platform analytical method was proposed to 

predict sugar content in beverages, through the realization of a regression 

model based on the most sensitive range in the near-infrared absorbance 

spectra regarding change in sugar concentration. Aqueous solutions of 

glucose, fructose, and sucrose at different concentrations were prepared and 

absorption spectra in the NIR range were collected at the same temperature 

using a benchtop instrument and a custom setup. Spectral datasets were 

pre-processed and treated with second-order derivative analysis. The most 

sensitive wavelengths for sugar content were highlighted selecting the 

informative range 945-972 nm from analysis of dataset acquired with the 

benchtop instrument and 945-984 nm from analysis of dataset acquired 

with the mini-spectrometer. In these ranges the capacity of separating 

absorbance spectrum belonging to different concentration was maximized. 

Thereafter, a regression algorithm was calculated from the cropped spectra, 

establishing the relationship between the instrument response and analytes 

concentrations. Validation has been then performed with four commercial 

soft drinks containing different known sugar content, which spectral dataset 

were acquired with the same operative conditions used for sugar solutions 

samples. 

The achieved results, validated with real samples, displayed an 

acceptable interoperability, having tested the efficacy on two different 

spectral acquiring platforms. As a next step, we will expand the test set 

using other kind of common used beverages, like fruit juices, to strengthen 

the validation of the models. We will also investigate the realization and 

subsequent validation of a model built on dataset acquired at different 

temperatures.  
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Being an easy adaptable method, since calibration of the system is 

performed according to the desired application, the proposed methodology 

can be exploited for realizing concentration-based calibration models for 

different analytes dissolved in water, which absorbance characteristics have 

overtones in the NIR range. 
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III. PORTABLE OPTICAL PLATFORM FOR SUGAR CONTENT MEASUREMENT 

In this Chapter, exploiting the wavelengths in the NIR range most 

sensitive to sugar concentration in liquids, the design, development and 

testing of a LED-based optical platform for sugar content measurement in 

beverages is presented.   

A. State of the art 

Many epidemiological studies reported that sugary drinks significantly 

increase the risk of developing Type 2 diabetes [75]–[78]. Additionally, 

frequent consumption of sugars has been associated with a greater risk of 

dental caries [79]. Reference Intake (RI) establishes the maximum 

recommended nutrient intake and recently, the term RI has replaced by 

'Guideline Daily Amount' (GDA). Beside the terminology, the principles 

behind how these values are determined remain the same. The major 

difference is that GDAs existed for men, women and children; instead, 

there is only one set of RIs for an average adult, based on the requirements 

for an average female with no special dietary requirements and an assumed 

daily energy intake of 2000 kcal. According to Regulation (EU) 1169/2011 

by European legislation on the provision of food information to consumers 

[80], which is based on scientific advice from the European Food Safety 

Authority (EFSA), the RI for sugars is set to 90 g/day. According to the 

American Heart Association, and considering that one teaspoon of added 

sugars has the same amount of total sugars as 1 teaspoon (4 g) of table 

sugar (sucrose), men should limit added sugars to 9 teaspoons, or 150 

calories, per day and women should eat no more than 6 teaspoons, or 100 

calories, from added sugars each day [81]. Most US adults report 

consuming more added sugar than recommended for a healthy diet and are 

seeking ways to cut back sugar intake [82]. Results from survey conducted 

in [83] showed that just 4% of respondents correctly classified 10 or more 

ingredients from a presented list of 13 items, while 65% of participants 

were unaware of the WHO guidelines for sugar intake [84]. These studies 

highlighted a serious and widespread problem of an unwitting over-intake 

of sugar,  far above the recommended assumption.  This unawareness gap 

could be bridged by a sensor solution.  
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  The new generation of mobile sensing approaches offers significant 

advantages over traditional platforms in terms of test speed, control, low-

cost, ease-of-operation, and data management, and requires minimal 

equipment and user involvement. The marriage of novel sensing 

technologies with cell-phones enables the development of powerful lab-on-

smartphone platforms for many important applications, especially food 

analysis [85]. Among the different sensing strategies, mobile spectrometry 

has a disruptive potential, due the intrinsic property of being a non-

invasive, rapid, reagent-free technique, whose features can be even more 

enhanced by coupling with advanced data analysis and machine learning 

techniques [86].  

In order to support users or patients, simplified, easy to use and low-cost 

mobile diagnostic devices for real-time measurements of dietary sugar are 

needed. current state of the art of mini-spectrometers allows the 

development of portable and lower cost solutions for food analysis. For 

example, Researchers in [87] developed a portable scanner, composed of 

UV LED and spectrometer, to be used in combination with smartphone to 

measure fruit ripeness. While substantial progress has recently been made 

in the miniaturization of near-infrared (NIR) spectrometers, there remains 

continued interest in pushing the technology development toward even 

smaller, simplified, and lower cost analysers. The potential of these 

instruments to revolutionize on-site applications can be realized only if the 

reduction in size does not compromise performances. Variable selection 

methods have been proposed in various studies in order to exploit only few 

wavelengths in the absorbance spectra, and thus LEDs light rather than 

using broadband lamps. Researchers in [88] proposed a LED-based system 

at four specific wavelengths for the rapid evaluation of fruit and vegetable 

quality. An optoelectronic  system with LEDs at three identified 

wavelengths was developed and tested in [89] for measuring ethanol  

concentration  in  fermenting  grape  must. Researchers in [90] have used 

five near infrared light emitting diodes (LEDs) and a photodiode to 

measure  the  intensity  of  the  reflected  light  from pineapples, to  classify  

the  internal  quality  using  neural network. Understanding of light-
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emitting diode lamp behaviour is essential to support the use of these 

devices as illumination sources in portable optical analysers [91]. A 

comparison between the cited simplified LED-based platforms and the 

system that will be described in this Chapter, with respect to the introduced 

innovative points, is presented in Table 4.  

Table 4. Comparison table between the state of the art of LED-based food 

analyzers and the system proposed in this work.  

+ Figure of merit. / Not provided. 

 Das et al [87] Civelli et al 

[88] 

Jiménez-

Márquez et 

al [89] 

Rateni 

Measurement 

mode 

Reflectance Reflectance Transmittanc

e 

Transmittance 

Versatility - ++ - ++ 

Modularity - ++ - ++ 

Precision / + ++ - 

Low-cost + / - ++ 

 

Following the rapid development of chemometrics research, NIR 

spectroscopy has been more and more applied to the analysis of liquid 

foods [92]. The major benefit of working with liquid samples is the high 

repeatability of measurement that can be reached using transmission mode, 

due to low scattering characteristics of samples which are contained in 

cuvette with fixed optical path length [93]. To the best of authors 

knowledge there is a lack in literature regarding simplified LED-based 

optical sensing devices for sugar content measurement in liquids. This 

work aims at the design of a rapid, low-cost, portable optical analyser  for  

sugar content measurement in beverages. The proposed system represents 

a simplified and far lower cost version of a spectrophotometer operating in 

transmittance mode. The concept design of the optical platform will be 

described, followed by a list of hardware opto-electronic components. 

Afterward, the calibration by means of model solutions will be illustrated, 
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followed by the validation by means of real samples consisting of three 

soft drinks with different sugar content. Eventually, a discussion on the 

predictive ability of the derived calibration model is provided. 

 

B. Materials and Methods 

1) Reference Instrument 

The spectral data were collected in transmittance mode a custom setup 

composed of: an infrared light source with range 360-2400 nm, fiber 

optics, and a CUV-ALL-UV Cuvette Holder, all obtained from Ocean 

Optics (Dunedin, USA), and a NIR micro-spectrometer MS-series 

C11708MA obtained from Hamamatsu Photonics (Shizuoka, JP). The 

mini-spectrometer is based on MOEMS (micro-opto-electro-mechanical-

system) technology. It comprises an input slit, which is the opening for 

receiving the light to be detected; a grating, which separates the incident 

light into each wavelength, reflected at different diffraction angle; an 

image sensor, which converts the spectrum of light into electrical signal. In 

particular, it integrates a CMOS sensor with wavelength sensing range 

640-1050 nm and spectral resolution of max 20 nm. In order to couple the 

spectrometer entrance slit to the fiber optics, it was designed and realized a 

customized optical interface, composed of several optical components, 

including a SMA 905 adapter, an aspheric collimator, and two cylindrical 

lens from Thorlabs (Newton, USA). The overall interface was put in 

optical axis with the spectrometer slit by means of cages and assembly 

rods. The complete experimental setup is shown in Figure 19. 

 

Figure 19. Experimental setup schematics of the reference instrument. 
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2) Concept design of the optical platform 

The system consists of a simplified, miniaturized and lower cost 

version of a spectroscopic platform in transmittance mode, which in 

particular uses LED lamps as light source, to tune the system at selected 

wavelengths, based on spectral bands selected in previous studies. The 

choice of using LEDs allowed to obtain a very versatile and modular 

concept, which can be opportunely adapted for different applications and 

different kinds of sample matrices, while keeping its main architecture. 

The LEDs were not directly directed towards the sample, in order to avoid 

in-homogeneities of sample irradiation. An integrating sphere with 

diameter of 50 mm was rather used to collect and spatially integrate the 

radiant flux from LEDs, spreading the incoming light by multiple diffuse 

reflections over the entire sphere inner surface. The LED lamps were 

arranged inside the integrating sphere around the perimeter of a port 

opening, with diameter of 5 mm, which was being used as large area 

source that features uniform radiance. The LEDs and the port opening 

were located in the same hemisphere and in particular, the LEDs were 

placed inside tilted openings carved through the hemisphere around the 

central port. The port opening was positioned in the maximum horizontal 

circumference of the sphere in a central position with respect to the LEDs. 

The sphere internal surface was brushed with Titanium White acrylic paint 

Liquitex® (Cincinnati, USA) to serve as reflectance coating. Light 

outgoing from the sphere through the opening was channelled to the 

cuvette holder, designed to accommodate optical cuvette of 10 mm path 

length. Finally, transmitted light was conveyed to a photo-detector, 

opportunely lodged inside a dedicated slot, with the sensitive area facing 

the sample and positioned at the height of the optical axis. CAD design of 

the described system is provided in Fig. 2, while in Fig. 3 a schematics of 

the optical part of the system is depicted. The overall frame was 3D 

printed and the device dimensions were 62x62x84 mm. 
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Figure 20. CAD design of the 3D printed platform frame. 

 

 

Figure 21. Schematics of the optical part of the system. 

3) System Hardware 

The LEDs were chosen at the wavelengths that most closely matched 

the theoretical choice, according to the availability on the market. Four 

LEDs with peak wavelengths at 950, 960, 970, and 980 nm were 

purchased from Roithner Lasertechnik (Vienna, Austria) and Vishay 

Intertechnology (Malvern, USA). Having chosen a forward current of 10 

mA to increase components lifespan, a current limiting resistance of 370 

Ohm was connected to each LED anode, calculated by using the following 

formula: 
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where Vf and If are respectively the Forward Current and Forward Voltage 

(extracted from datasheet) and Vs is the Supply Voltage, which in the case 

of USB supply is 5 V. In Table 4 the LEDs characteristics are summarized.  

Table 5. LEDs electric characteristics and the relative current limiting resistor. 

 

Regarding the electronics aspects, a sequential activation of each LED 

channel was preferred to a simultaneous one, to avoid inter-channels 

interferences. An Si photodiode, purchased from Luna Optoelectronics 

(Camarillo, USA), with spectral response spanning from 400 to 1100 nm, 

was aligned  with the integrating sphere port opening, and lodged at the 

end of the measurement optical axis, to collect and measure the optical 

radiation transmitted from  the  sample. A double layer  printed  circuit  

board  (PCB)  was designed with the open-source KiCAD software and 

made with a circuit board plotter ProtoMat S63 from LPKF (Garbsen, 

Germany) for  conveniently supplying and controlling the LEDs and for 

conditioning the photodiode signals. In Figure 22 the overall architecture 

of the PCB is depicted. The photocurrents  delivered  by  the photodiode 

was converted into voltage signals by means of a transimpedance 

amplifiers. The gain resistance was  empirically selected in order to in 

order to spread the signal on the whole dynamic provided by the power 

supply. The  supporting  frame  was designed with SolidWorks and made 

of polylactic acid (PLA) using a Ultimaker 2+ 3D Printer (Geldermalsen, 

The Netherlands). This frame was designed to hold in a compact  form the 

optoelectronic components in precise positions for optimized absorbance 

measurements in transmittance mode, with the sample holder lodged 

between the light source and the detector, and aligning the photodiode 

along the optical axis of the sphere port opening. The sample holder, 

Forward Current Forward Voltage R @ 5V supply

TSUSS200 950 10 mA 1.3V 370 Ohm

ELD-960-525 10 mA 1.35V 370 Ohm

LED970-06 10 mA 1.3V 370 Ohm

LED980-03 10 mA 1.25V 370 Ohm
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provided with a lid to screen out ambient light, was designed to perfectly 

fit an optical cuvette of 1 cm path-length.  

 

Figure 22. Schematics of the photocurrent conditioning circuit and overall 

architecture of printed circuit board. 

 

4) Data Acquisition 

The output from the photocurrent amplifier was connected to an 

analog input pin of an Arduino-compatibile Elegoo UNO R3 board 

(Shenzhen, China), based on ATmega328P microcontroller from 

Microchip (Chandler, USA), which was used to acquire the signal. After 

digital conversion of the signal operated by means of a 10-bit ADC 

peripheral, the signal was sent to a PC using serial communications via 

USB with a baud rate of 9600 baud. The microcontroller run a memory 

pre-loaded routine, which individually and sequentially controlled the 

powering of each LED, according to a specific sequence. The acquisition 

routine can be schematically described as follows: 

 i) the signal is acquired ten times and then the average is  calculated; 

 ii) the digital levels are translated in voltage signals; 

 iii) a IIR digital filter stage using a feedback term is  implemented to 

obtain a stable output with respect to the  fluctuation of the LEDs; 

5) Sample Preparation 

Analytical grade anhydrous D-(+)-glucose, D-(−)-fructose, and 

sucrose in powder form were purchased from Sigma–Aldrich (Sigma, St. 

Louis, MO, USA). Standard stock solutions were prepared from each 

appropriate sugar dissolved in distilled water. For each sugar, 5 solutions 
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containing 10, 30, 60, 100, and 150 mg/mL were prepared. Three technical 

repetitions were made for each concentration for every analyte  (n=15) 

used (glucose, fructose and sucrose). Distilled water was used as reference 

for subsequent differential processing. For the validation phase, 

commercial soft drinks note for their sugar concentration were employed: 

Sprite (19 mg/mL), CocaCola (106 mg/mL), RedBull (110 mg/mL), and 

Fanta (118 mg/mL), obtained from a local store. Three technical 

repetitions were made for each beverage sample. Every sample, pipetted in 

optical cuvettes, was measured 5 times. All samples were analysed in a 

fixed range of temperature (26.5 – 27.5 °C). 

6) Experimental design 

The implemented platform and the reference instrument were used to 

acquire spectra in transmittance mode of aqueous solutions of three sugars 

at different concentrations, for the calibration phase, and of three 

commercial soft drinks used as real samples, for validating the 

performance of the implemented models. All the acquisitions were 

performed at ambient temperature between 26.5 and 27.5 °C. Each sample, 

previously prepared, were pipetted inside optical cuvettes of 10 mm path 

length. Hamamatsu proprietary software was used to acquire spectra with 

the mini-spectrometer, using the following setting parameters: 1200 ms as 

integration time, 5 measurements as repetition and low gain. An optical 

diffuser was placed on the light source fiber end side, to avoid saturation 

of the sensor, and a cuvette cover was used to screen off the ambient light. 

An initial proper instrument calibration, consisting of the preliminary 

acquisitions of the light source reference spectrum       (total 

transmission) and the dark signal   (zero transmission), was conducted on 

both the instruments. This phase was necessary to define the signal 

dynamics that could be expressed with that configuration. After acquiring 

the transmission spectrum of a sample       the related absorption 

spectrum     was calculated with the following expression: 

            (
        

        
)  
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The Arduino IDE was used to launch the pre-compiled acquisition routine 

and serial communication via USB port at baud rate of 9600 baud was 

used to receive data on the laptop, for subsequent post-processing. After a 

waiting of one minute, to allow the IIR filter stabilization, the data were 

saved into a text file, in separated channels for each LED and with a size 

of 50 values each, ready to be analysed. 

7) Post-processing 

 Since the number of observations was larger than the number of 

variables, data acquired with the optical platform were processed to build a 

multivariate calibration model by using Multiple Linear Regression 

(MLR), where the dependent variable is modeled as a linear combination 

of the independent variables and the regression coefficients are estimated 

with the least squares criterion [94]. The obtained MLR model using the 

four independent variables had the following form: 

                            

where y represents the estimated property, the sugar concentration), 

xi the wavelength variables, and bi the regression coefficients of the model. 

Dataset acquired with mini-spectrometer were firstly pre-processed to filter 

out the noise and highlight the absorption peak inside noisy spectra using a 

Norris-William second-order derivative algorithm [95], eventually 

selecting the sensitive range 940-980 nm. Since in this case, the number of 

variables was larger than the number of samples, Partial Least Squares 

Regression (PLSR) method was chosen, which is by far the most widely 

used technique in quantitative analytical chemistry [96]. The models 

implemented respectively with MLR and PLSR methods were then 

validated with real samples with different known sugar concentration. 

Coefficient of Determination (R-Squared) related to calibration and 

validation were used as indices for evaluating performances of the two 

implemented regression models. The whole processing was implemented 

in Matlab version R2015a from MathWorks (Natick, USA). 

 



 62 

C. Results and Discussion 

The resulting prototype of the designed portable optical platform is 

shown in Figure 23. 

 

Figure 23. The final prototype connected to the acquisition board. 

 

Calibration phase 

A MLR algorithm was implemented to build the prediction model 

using data acquired with the optical platform, obtaining a Coefficient of 

Determination of Rcal
2
 = 0.90, evaluated from the obtained calibration 

model. A PLSR algorithm was implemented to build the prediction model 

using data acquired with the reference spectrometer, obtaining a 

Coefficient of Determination Rcal
2
 = 0.96, evaluated from the obtained 

calibration model. 

 

Validation phase 

Three commercial soft drinks were used to validate the obtained 

calibration models. Same processing performed on sugar solutions dataset 

was implemented on soft drinks dataset. The validation of the MLR model 

led to a Coefficient of Determination of Rval
2
 =  0.5, while the validation of 
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the PLSR model led to a Coefficient of Determination of Rval
2
 =  0.91. The 

overall results from calibration and validation phases are shown in Figure 

24. 

 

Figure 24. Comparison of the actual and predicted sugar content, with sugar aqueous 

solutions used for calibration(green circles) and soft drinks used for validation(red rombi). 

D. Discussions 

In calibration the two models showed good coefficient of 

determinations, with MLR model that proved to be slightly less accurate 

than the PLSR model, according to what has already been highlighted in 

the work by Giovenzana et al. [97]. Differently, in validation, while PLSR 

performed quite well, MLR showed a significant loss in performance, 

which is highlighted by the difference between the calibration 

determination coefficient and the validation coefficient. This is probably 

due to the high sensitivity of the system to the soft drinks carbonation, 

whose presence may obstruct the light beam when crossing the optical 

path of the sample. As described in [74] by Ilaslan et al., a sample pre-

treatment phase implemented for carbonated drinks sample, consisting in a 

ultrasonic bath, can be used to completely remove the carbon dioxide 

component. Regarding chemometrics improvement, data pre-treatment by 

using baseline correction, detrend or derivative processing may be 

implemented before operating the regression, in order to better underline 

the signal related to sugar content with respect to the remaining non-

informative and noisy data. 
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E. Conclusions 

In this work, the design, implementation and testing of a portable LED-

based optical platform for sugar content measurement in beverages have 

been described, according to prior studies conducted by the author, where 

sensitive wavelengths range in the near-infrared absorbance spectrum were 

found by means of optimized chemometrics processing. These results were 

exploited in this work to conceive an optoelectronic system which used as 

light source  LEDs with peak emission wavelengths selected in this range, 

according to the closest match available on the market. The developed 

platform is a simplified, lower cost and portable version of a spectroscopic 

device in transmittance mode, which uses a Si photodiode as detector 

instead of a much more expensive spectrometer. The concept design and 

the hardware composition of the device have been described. An 

experimental setup have been conceived to calibrate the device using 

aqueous solutions of glucose, fructose, and sucrose at different 

concentrations. After building the prediction model for sugar content, 

using a MLR algorithm, initial data has been collected to evaluate the 

model using commercial soft drinks containing different known sugar 

content, which discrete spectral dataset were acquired with the same 

operative conditions used for sugar solutions samples. The performances of 

the developed model were compared with those of a PLSR model, built 

upon spectra acquired using a reference spectroscopic instrument. As a next 

step, we will investigate hardware and software strategies to enhance 

platform performances, then the realization and subsequent validation of a 

model built on dataset acquired at different temperatures will be 

investigated. Eventually, the adoption of a better MCU architecture for 

signal processing will be valuated to provide the platform with an 

embedded unit to process and visualize real-time data results of sugar 

content in liquid samples. 

Being the designed system a modular and versatile platform for what 

concern the selection of LEDs, according to the specific application, the 

proposed concept can be exploited for realizing prediction models for 

different target analytes dissolved in water.    
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IV.  NOVEL INDUSTRIAL APPLICATION OF NIR SPECTROSCOPY 

In this Chapter the proof of concept of an automated packaging sorting 

system based on near infrared reflectance spectroscopy is described. 

A. Introduction 

Traditional waste sorting methods in the recycling industry mainly 

depend on the processed material since metals, glass, plastics, paper, and 

woods have very different physical properties. Most advanced sorting 

techniques, like indirect sorting, introduce advanced sensors and 

techniques including Laser Spectroscopy, X-rays, Optical Sorting, Hyper-

Spectral Imaging and Reflectance Spectroscopy [98]. In the indirect 

sorting, sensors are used for detecting recyclable materials in the bulk 

input waste followed by segregation using various actuators or robotic 

systems as in [99]. The indirect sorting using Near-Infrared Reflectance 

(NIR) spectroscopy allows faster and safer identification of different 

materials respect to other methods such as X-Ray and Laser spectroscopy, 

while is cheaper than using expensive hyperspectral cameras. It is 

successfully used for chemical analysis, materials classification and 

quality increase of recycled products. Indeed, high purity recycled 

materials ensure optimum technical and environmental performances, 

while impurities or contaminations can cause a reduction in quality. For 

this reason it is today more and more investigated for advanced sorting. 

Recently, the use of NIR spectrometers has been investigated in the 

industrial field to meet specific standards determined by industrial 

applications, such as characterizing exhausted lubricating oils [100,101], 

in the separation of plastic packaging materials [102], to separate recycled 

building and demolition inerts [103], and in the separation of composite 

wood-plastic materials[104]. 

  Taking in account for the state of the art, the identification of mineral 

oil contamination on cardboard and plastic packaging is still a research 

challenge, with significant implication in recycling and industry 4.0. The 

proposed solution could positively contribute to the definition of new 

automated methods for advanced and high quality sorting. 
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B. Materials And Methods 

1) Samples 

Traditional packaging from automotive industry were selected 

including four different type of cardboard boxes. Boxes had three different 

background colours (light brown, dark brown and white) and black and 

blue inks printed inscriptions. The different backgrounds and the coloured 

inks of prints have been introduced as confounding factors both for the 

NIR sensors and for the classification algorithm. Then the cardboard boxes 

were greased using engine lubricant oil and used as contaminated samples.  

 

Figure 25. Experimental setup schematics. 

 

2) Instrumentation 

Two different spectrometer sensors were tested: 

• FlameNIR from Ocean Optics (Dunedin, USA). The sensor, featuring an 

uncooled InGaAs detector with wavelength range 950-1650 nm, has a 

spectral resolution of max 10 nm;  

• MS-series C11708MA  from Hamamatsu Photonics (Shizuoka, JP). The 

mini-spectrometer integrates a CMOS sensor with wavelength sensing 

range 640-1050 nm and spectral resolution of max 20 nm. In order to 

provide SMA 905 connector to the sensor, it was coupled with a 

customized optical interface, realized by means of several optical 

components, including a SMA adapter, an aspheric collimator, and two 

cylindrical lens from Thorlabs (Newton, USA).  
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A modular experimental setup was assembled as in Figure 25, consisting 

of a high-power infrared light source with range 360-2400 nm from Ocean 

Optics (Dunedin, USA), connected to the measuring system through a 

RP23 fiber optic reflection probe from Thorlabs (Newton, USA). 

 

3) Experimental design 

The two spectrometers were used to acquire NIR reflectances spectra 

directly on the sample surfaces. The probe was placed  perpendicularly, 8 

mm above 10 surfaces from different samples: (i) four different clean 

cardboard samples, (ii) black and blue prints on cardboards, and (iii) three 

contaminated cardboard surfaces. For each surface, 100 different 

acquisitions were saved, for a total of 1000 observations (Table 6). The 

same integration time (465 μs) was set on the two spectrometers. 

Table 6. Summary of samples used in the experimental phase 

Type Material type  (repetitions) Observations 

Clean light brown cardboard (200)  

dark brown cardboard (200) 

white cardboard (100) 

black-ink prints (100) 

blue-ink prints (100) 

700 

Contaminated Oil on light brown cardboard (200) 

Oil on dark brown cardboard (100) 

300 

 

4) Methodology 

The observed 1000 spectra contained both chemical  information and 

noise. Samples were initially pre-processed to filter out the noise (stray 

light, light scattering, detector non-linearities, etc), according to the 

following steps: 

1. outlier rejection: using the Hampel method [105] to improve the 

classification ability of multivariate methods;  
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2. Standardization: using the Standard Normal Variate (SNV) 

transformation;  

3. weighting: samples were weighted to compress the dynamics in the 

range [0,1]. 

The Leave-Multiple-Out (LeaveMOut) cross-validation method was 

implemented leaving out the 10%, 30% and 50% of the dataset  to validate 

the proposed classification system. The dataset was randomly divided into 

training and test sets. Then the compositional information were extracted 

performing the Principal Component Analysis (PCA) on the training-set 

[106]. Eventually, the samples were projected on the principal components 

space. A Support Vector Machine (SVM) algorithm was trained on the 

projected training-set, to distinguish between contaminated and non-

contaminated cardboards. After the training, the PCA was applied to the 

test-set, and the trained SVM classified the PCA outputs. The LeaveMOut 

method was repeated 1000 times on the dataset, to achieve statistical 

significance. The PCA, the training of the SVM and the LeaveMOut 

method were implemented in Matlab version R2012a from MathWorks 

(Natick, USA). 

 

C. Results 

The proposed system successfully distinguished and classified 

contaminated cardboard samples from non-contaminated ones, even in the 

presence of confounding factors, including black and blue ink prints. The 

classification accuracy was up to 99.68%, performing the spectral analysis 

in the range 950-1650 nm. Using the  640-1050 nm NIR bandwidth, the 

accuracy was up to 99.64%. Nevertheless, the latter can be considered a 

cost-effective solution for low-cost applications. The worst classification 

performance was achieved leaving 50% of the samplings for the training 

of the SVM and using the remaining 50% of samples for testing. In this 

case the maximum number of classification mistakes were 79 and 59 

respectively for the Hamamatsu and the Ocean Optics spectrometers. 

Using the 90% of the samples for the training and the 10% for the testing, 



 69 

the maximum classification error decreased up to 34 and 33 respectively 

for the Hamamatsu and the Ocean Optics sensors. The classification 

accuracy thus mainly depended on the training-set size, and in a residual 

manner on the  spectrometer sensing range. The results of the LeaveMOut 

validation process are reported in Table 7. 

Table 7. Classification accuracy of the proposed system using the Ocean Optics and the 

Hamamatsu sensors 

Spectrometer sensing range  950-1650 nm 640-1050 nm 

Training set [% of sample size] 10%  30% 50% 10%  30% 50% 

Max  classification errors 33 59 44 34 40 79 

Mean classification errors 3.21 6.40 10.44 3.60 7.48 12.30 

Mean classification accuracy 99.68% 99.36% 98.96% 99.64% 99.25% 98.77% 

  

D. Conclusions 

The proposed work highlights the opportunity to perform an accurate 

classification of oil-contaminated cardboard from non-contaminated one, 

to improve the purity of the sorting output and the quality of the next 

recycling process. The achieved results positively impact on to the 

research of new sorting methods, by analysing the combination of 

synthetic oil and cardboard in the NIR spectrum. Furthermore, the 

achieved classification accuracy fits the previous works on the 

classification/sorting of contaminated materials. Indeed the work proposed 

in [104], claimed an output purity of the 97.1% in the sorting of wood 

samples, respect to wood-plastic samples, and a purity of the 98.9 % in the 

sorting of wood respect to wood contaminated with preservatives. This 

preliminary work demonstrates that both the sensing ranges 950-1650 nm 

and  640-1050 nm  can be profitably used. Future activities will concern 

the analysis of more cardboard samples and the introduction of more 

confounding factors, including water drops, different types of inks and 
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prints, applied plastic tape, foils or sheets. Furthermore, different pre-

processing techniques will be investigated, as well as the opportunity to 

implement different classification techniques, including K-Means and 

neural networks. 
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IV.  THESIS CONCLUSIONS AND FUTURE WORKS 

 

This doctoral thesis has dealt with the study and development of non-

invasive optical analytical methodologies, with food analysis and nutrition 

monitoring as main target applications. After an in-depth review of the 

state of art of new technologies enabling portable food analysis, the near-

infrared spectroscopy methodology has been chosen for its great potential 

for providing a user-friendly, scanning on-the-go scenario. It indeed allows 

peculiar rapid multi-component non-invasive and non-destructive analysis, 

and is a greener alternative to reagent-based analytical technique; no need 

for reagents and limited waste after the analysis. However, being a non-

specific method, it must be associated with multivariate statistical and 

chemometric tools for spectral dataset analysis to extract the desired 

chemical information. Indeed, calibration and tuning of the systems are 

performed according to the desired application.  

As widely discussed, in a view to simplify hardware and decrease 

apparatus cost, critical design criteria are represented by the proper 

selections of the wavelength range for source and detector, and of the 

measurement setup.  

The research novelties introduced with this work were the proposition 

of a multi-platform optimized analytical method based on the most 

informative wavelength range in the NIR region and the design and 

development of a portable low-cost LED-based optical platform, both 

specifically implemented for the quantitative measurement of sugar 

content in aqueous solutions and beverages. In particular, the choice of this 

application was motivated by the widespread reported problem of 

unwitting over-intake of sugar, far above the recommended assumption, 

and also by the discomfort of diabetes patients which have to manually 

calculate the meal glycaemic index. This work proposes a step towards a 

possible consumer mobile diet companion for sugar tracking in beverages.  

A multi-platform analytical method able to predict sugar content in 

beverages was developed, through the realization of regression models 
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based on the most sensitive range in the near-infrared absorbance spectra 

regarding change in sugar concentration. These results were then profitably 

exploited to develop an optical platform for sugar content measurement in 

beverages based on LEDs as light sources and silicon photodiode as 

detector, using the previous analytical findings as a cue for design and as a 

reference for comparison of results. The developed platform was a 

simplified, lower cost and portable version of a spectroscopic device in 

transmittance mode, which uses a photodiode as detector instead of a much 

more expensive spectrometer. In addition, the selection of the near infrared 

optical window and silicon photodiodes allowed to dramatically decrease 

product cost, compared to the infrared optical window and InGaAs 

photodiodes.  

Being the designed system a modular and versatile platform for what 

concern the selection of LEDs, according to the specific application, the 

proposed concept can be exploited for realizing prediction models for 

different target analytes dissolved in water.  

Calibration and validation of the platform have been implemented, 

highlighting the current hardware, software, and calibration limitations of 

the developed system, and proposing related improvement strategies. In 

particular, current study limitations are represented by the low efficiency 

of MLR prediction model implemented for the optical platform, 

highlighted by the difference between the calibration determination 

coefficient and the validation coefficient. This was probably due to the 

high sensitivity of the system to the soft drinks carbonation, whose 

presence may obstruct the light beam when crossing the optical path of the 

sample. As proposed in [74] by Ilaslan et al., a sample pre-treatment phase 

implemented for carbonated drinks sample, consisting in a ultrasonic bath, 

can be used to completely remove the carbon dioxide component. 

Regarding chemometrics improvement, data pre-treatment by using 

baseline correction, detrend or derivative processing may be implemented 

before operating the regression, in order to better underline the signal 

related to sugar content with respect to the remaining non-informative and 

noisy data. 
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Regarding future works, the test set will be expanded using other kind 

of common used beverages, like fruit juices, to strengthen the validation of 

the models. The realization and subsequent validation of a model built on 

dataset acquired at different temperatures will be also investigated, in order 

to approach a real usage scenario. 

In a view to highlight the wide range of applicability of portable 

spectroscopy, a further application has been proposed for the field of 

intelligent industrial automation. Indeed, the Industry 4.0 paradigm 

requires new technologies and methods not only to improve the 

profitability and the quality of the industrial production and products, but 

also new strategies to reduce the social and environmental impact of the 

production process. In particular, near infrared reflectance spectroscopy 

has been proposed and implemented to empower a robotic arm with 

material classification capabilities, for in-line automated sorting of waste. 

  In conclusion, the results accomplished in this Phd work demonstrated 

that the near infrared spectroscopy methodology can be successfully 

exploited to develop portable solutions for food analysis and nutrition 

monitoring. Furthermore, it has been shown that the range of application 

of this tecnology can also be extended to the very different sector of 

industrial automation, demonstrating the multi-disciplinarity of the subject 

matter.  

 

 

 

 

 

 

 

 

Acknowledgments: This work has been supported by TIM S.p.A., 

Innovation Department-Joint Open Lab initiative. 



 74 

REFERENCES 

 

1.   Horizon Prize Food Scanner 1.Available online: 

http://ec.europa.eu/research/horizonprize/index.cfm?prize=food-scanner (accessed 

on 1 February 2017). 

2. Ozcan, A. Mobile phones democratize and cultivate next-generation imaging, 

diagnostics and measurement tools. Lab Chip 2014, 14, 3187–3194. 

3. Wu, M.Y.-C.; Hsu, M.-Y.; Chen, S.-J.; Hwang, D.-K.; Yen, T.-H.; Cheng, C.-M. Point-

of-Care Detection Devices for Food Safety Monitoring: Proactive Disease 

Prevention. Trends Biotechnol. 2017, 35(4), 288-300. 

4. Zhang, D.; Liu, Q. Biosensors and bioelectronics on smartphone for portable 

biochemical detection. Biosens. Bioelectron. 2016, 75, 273-284. 

5. Li, F.; Bao, Y.; Wang, D.; Wang, W.; Niu, L. Smartphones for sensing. Sci. Bull. 2016, 

61(3), 190-201. 

6. Daponte, P.; Vito, L.; de Picariello, F.; Riccio, M. State of the art and future 

developments of measurement applications on smartphones. Measurement 2013, 

46(9), 3291-3307. 

7. Xu, X.; Akay, A.; Wei, H.; Wang, S.; Pingguan-Murphy, B.; Erlandsson, B.E.; Li, X.; 

Lee, W.; Hu, J.; Wang, L.; et al. Advances in Smartphone-Based Point-of-Care 

Diagnostics. Proc. IEEE 2015, 103(2), 236-247. 

8. Roda, A.; Michelini, E.; Zangheri, M.; Di Fusco, M.; Calabria, D.; Simoni, P.  

Smartphone-based biosensors: A critical review and perspectives. TrAC Trends 

2016, 79, 317-325. 

9. Liu, X.; Lin, T.-Y.; Lillehoj, P.B. Smartphones for Cell and Biomolecular Detection. 

Ann. Biomed. Eng. 2014, 42, 2205–2217. 

10. Yang, K.; Peretz-Soroka, H.; Liu, Y.; Lin, F. Novel developments in mobile sensing 

based on the integration of microfluidic devices and smartphones. Lab Chip 2016, 

16, 943–958. 

11. Zhu, H.; Sikora, U.; Ozcan, A. Quantum dot enabled detection of Escherichia coli 

using a cell-phone. Analyst 2012, 137, 2541–2544. 

12. Ludwig, S.K.J.; Zhu, H.; Phillips, S.; Shiledar, A.; Feng, S.; Tseng, D.; van Ginkel, 

L.A.; Nielen, M.W.F.; Ozcan, A. Cellphone-based detection platform for rbST 

biomarker analysis in milk extracts using a microsphere fluorescence 

immunoassay. Anal. Bioanal. Chem. 2014, 406, 6857–6866. 

13. Mora, C.A.; Herzog, A.F.; Raso, R.A.; Stark, W.J. Programmable living material 



 75 

containing reporter micro-organisms permits quantitative detection of 

oligosaccharides. Biomaterials 2015, 61, 1–9. 

14. Coskun, A.F.; Wong, J.; Khodadadi, D.; Nagi, R.; Tey, A.; Ozcan, A. A personalized 

food allergen testing platform on a cellphone. Lab Chip 2013, 13, 636–640. 

15. Lee, S.; Kim, G.; Moon, J. Performance improvement of the one-dot lateral flow 

immunoassay for aflatoxin B1 by using a smartphone-based reading system. 

Sensors 2013, 13, 5109–5116. 

16. Chen, A.; Wang, R.; Bever, C.R.S.; Xing, S.; Hammock, B.D.; Pan, T. Smartphone-

interfaced lab-on-a-chip devices for field-deployable enzyme-linked 

immunosorbent assay. Biomicrofluidics 2014, 8, 064101. 

17. Park, T.S.; Baynes, C.; Cho, S.-I.; Yoon, J.-Y. Paper microfluidics for red wine 

tasting. RSC Adv. 2014, 4, 24356–24362. 

18. Bueno, L.; Meloni, G.N.; Reddy, S.M.; Paixao, T.R.L.C. Use of plastic-based 

analytical device, smartphone and chemometric tools to discriminate amines. RSC 

Adv. 2015, 5, 20148–20154. 

19. Masawat, P.; Harfield, A.; Namwong, A. An iPhone-based digital image colorimeter 

for detecting tetracycline in milk. Food Chem. 2015, 184, 23–29. 

20. Monosik, R.; dos Santos, V.B.; Angnes, L. A simple paper-strip colorimetric method 

utilizing dehydrogenase enzymes for analysis of food components. Anal. Methods 

2015, 7, 8177–8184. 

21. Yu, L.; Shi, Z.; Fang, C.; Zhang, Y.; Liu, Y.; Li, C. Disposable lateral flow-through 

strip for smartphone-camera to quantitatively detect alkaline phosphatase activity 

in milk. Biosens. Bioelectron. 2015, 69, 307–315. 

22. Fang, J.; Qiu, X.; Wan, Z.; Zou, Q.; Su, K.; Hu, N.; Wang, P. A sensing smartphone 

and its portable accessory for on-site rapid biochemical detection of marine toxins. 

Anal. Methods 2016, 8(38), 6895-6902. 

23. Levin, S.; Krishnan, S.; Rajkumar, S.; Halery, N.; Balkunde, P. Monitoring of fluoride 

in water samples using a smartphone. Sci. Total Environ. 2016, 551–552, 101–

107. 

24. Wang, Y.; Li, Y.; Bao, X.; Han, J.; Xia, J.; Tian, X.; Ni, L. A smartphone-based 

colorimetric reader coupled with a remote server for rapid on-site catechols 

analysis. Talanta 2016, 160, 194-204. 

25. Seo, S.M.; Kim, S.W.; Jeon, J.W.; Kim, J.H.; Kim, H.S.; Cho, J.H.; Lee, W.H.; Paek, 

S.H. Food contamination monitoring via internet of things, exemplified by using 

pocket-sized immunosensor as terminal unit. Sens. Actuators B Chem. 2016, 233, 

148-156. 



 76 

26. DuVall, J.A.; Borba, J.C.; Shafagati, N.; Luzader, D.; Shukla, N.; Li, J.; Kehn-Hall, 

K.; Kendall, M.M.; Feldman, S.H.; Landers, J.P. Optical Imaging of Paramagnetic 

Bead-DNA Aggregation Inhibition Allows for Low Copy Number Detection of 

Infectious Pathogens. PLoS ONE 2015, 10, e0129830. 

27. Dou, Y.; Jiang, Z.; Deng, W.; Su, J.; Chen, S.; Song, H.; Aldalbahi, A.; Zuo, X.; 

Song, S.; Shi, J.; Fan, C. Portable detection of clenbuterol using a smartphone-

based electrochemical biosensor with electric field-driven acceleration. J. 

Electroanal. Chem. 2016, 781, 339-344. 

28. Giordano, G.F.; Vicentini, M.B.R.; Murer, R.C.; Augusto, F.; Ferrão, M.F.; Helfer, 

G.A.; da Costa, A.B.; Gobbi, A.L.; Hantao, L.W.; Lima, R.S. Point-of-use 

electroanalytical platform based on homemade potentiostat and smartphone for 

multivariate data processing. Electrochim. Acta 2016, 219, 170–177. 

29. Bouyé, C.; Kolb, H.; D‟Humières, B. Mini and micro spectrometers pave the way to 

on-field advanced analytics. In Proceedings of the SPIE-Photonics Instrumentation 

Engineering III, San Francisco, CA, USA, 13 February 2016; SPIE: Bellingham, 

WA, USA, 2016; Volume 9754. 

30. Liang, P.-S.; Park, T.S.; Yoon, J.-Y. Rapid and reagentless detection of microbial 

contamination within meat utilizing a smartphone-based biosensor. Sci. Rep. 2014, 

4, 5953. 

31. Mignani, A.G.; Mencaglia, A.A.; Baldi, M.; Ciaccheri, L. SpiderSpec: A low-cost 

compact colorimeter with IoT functionality. In Proceedings of SPIE Fifth Asia-

Pacific Optical Sensors Conference, Jeju, Korea, 20 May 2015; Lee, B., Lee, S.B., 

Rao, Y., Eds.; SPIE: Bellingham, WA, USA, 2015; Volume 9655. 

32. Hosono, S.; Qi, W.; Sato, S.; Suzuki, Y.; Fujiwara, M.; Hiramatsu, H.; Suzuki, S.; 

Abeygunawardhana, P.K.W.; Wada, K.; Nishiyama, A.; et al. Proposal of AAA-

battery-size one-shot ATR Fourier spectroscopic imager for on-site analysis-

Simultaneous measurement of multi-components with high accuracy. In 

Proceedings of SPIE 9314, Optics and Biophotonics in Low-Resource Settings, 

San Francisco, CA, USA, 7 February 2015; SPIE: Bellingham, WA, USA, 2015; 

Volume 9314. 

33. Das, A.J.; Wahi, A.; Kothari, I.; Raskar, R. Ultra-portable, wireless smartphone 

spectrometer for rapid, non-destructive testing of fruit ripeness. Sci. Rep. 2016, 6, 

32504. 

34. Oh, M.; Lee, H.; Cho, H.; Moon, S.-H.; Kim, E.-K.; Kim, M.S. Detection of fecal 

contamination on beef meat surfaces using handheld fluorescence imaging device 

(HFID). In Proceedings of SPIE Sensing for Agriculture and Food Quality and 

Safety VIII, Baltimore, MD, USA, 17 April 2016; Kim, M.S., Chao, K. Chin, 



 77 

B.A., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9864. 

35. Rissanen, A.; Saari, H.; Rainio, K.; Stuns, I.; Viherkanto, K.; Holmlund, C.; Nakki, I.; 

Ojanen, H. MEMS FPI-based smartphone hyperspectral imager. In Proceedings of 

SPIE Next-Generation Spectroscopic Technologies IX, Baltimore, MD, USA, 17 

April 2016; Druy, M.A., Crocombe, R.A., Eds.; SPIE: Bellingham, WA, USA, 

2016;Volume 9855. 

36. Sasikumar, H.; Prasad, V.; Pal, P.; Varma, M.M. Diffractive Interference Optical 

Analyzer (DiOPTER). In Proceedings of SPIE Optical Diagnostics and Sensing 

XVI: Toward Point-of-Care Diagnostics, San Francisco, CA, USA, 13 February 

2016; Cote, G.L., Ed.; SPIE: Bellingham, WA, USA, 2016; Volume 9715. 

37. Yu, X.; Lu, Q.; Gao, H.; Ding, H. Development of a handheld spectrometer based on 

a linear variable filter and a complementary metal-oxide-semiconductor detector 

for measuring the internal quality of fruit. J. Near Infrared Spectrosc. 2016, 24, 

69–76. 

38. CELLMIC | We Innovate Mobile Diagnostics |. Available online: 

http://www.cellmic.com/ (accessed on 20 March 2017). 

39. Ozcan, A.; Coskun, A.; Wong, J. Allergen testing platform for use with mobile 

electronic devices. US Pat. App. 14/053,475 2013. 

40. OrganaDx Sensor | Portable Food Tester Analyzer. Available onlien: 

http://www.cdxlife.com/organa-sensor/ (accessed on 20 March 2017). 

41. Rouse, R. Apparatus for detection and delivery of volatilized compounds and related 

methods. US Pat. App. 14/905,780 2014. 

42. Gailius, D. Electronic nose for determination of meat freshness. US Pat. App. 

14/376,939 2014. 

43. FOODsniffer. Available online: http://www.myfoodsniffer.com/ (accessed on 20 

March 2017). 

44. Sundvor, S.; Portela, S.; Ward, J.; Walton, J. System and method for detection of 

target substances. US Pat. App. 15/ 2016. 

45. Nima-A Portable Gluten Tester | Nima. Available online: https://nimasensor.com/ 

(accessed on 20 March 2017). 

46. Antila, j.; Kantojärvi, u.; Mäkynen, j. Optical measurement system. 

WO2016071572A1 2016. 

47. Food Scanner. Available online: https://www.spectralengines.com/products/food-

scanner (accessed on 23 March 2017). 

48. Watson, W.; Correa, I. Analyzing and correlating spectra, identifying samples and 



 78 

their ingredients, and displaying related personalized information. US Pat. 

9,212,996 2015. 

49. Tellspec–Beam Your Health Up–TellSpec. Available online: http://tellspec.com/en/ 

(accessed on 20 March 2017). 

50. Goldring, D.; Sharon, D. Low-cost spectrometry system for end-user food analysis. 

US Pat. 9,377,396 2016. 

51. Consumer Physics. Available online: https://www.consumerphysics.com/myscio/ 

(accessed on 20 March 2017). 

52. Contreras-Naranjo, J.; Wei, Q. Mobile phone-based microscopy, sensing, and 

diagnostics. IEEE J. Sel. 2016, 22(3), 392-405. 

53. Pasquini, C. (2018). Near Infrared Spectroscopy: a mature analytical technique with 

new perspectives–A review. Analytica Chimica Acta. 

54. Kowalski, B. R. (1980). Chemometrics. Analytical Chemistry, 52(5), 112-122. 

55. Bonaccorsi, M., Rateni, G., Cavallo, F., & Dario, P. (2017, October). In-line industrial 

contaminants discrimination for the packaging sorting based on near-infrared 

reflectance spectroscopy: A proof of concept. In SENSORS, 2017 IEEE (pp. 1-3). 

IEEE. 

56. Xiaobo, Z., Jiewen, Z., Povey, M. J., Holmes, M., & Hanpin, M. (2010). Variables 

selection methods in near-infrared spectroscopy. Analytica Chimica Acta, 667(1-

2), 14-32. 

57. Giovenzana, V., Beghi, R., Parisi, S., Brancadoro, L., & Guidetti, R. (2017). Potential 

effectiveness of visible and near infrared spectroscopy coupled with wavelength 

selection for real time grapevine leaf water status measurement. Journal of the 

Science of Food and Agriculture. 

58. Giovenzana, V., Beghi, R., Malegori, C., Civelli, R., & Guidetti, R. (2013). 

Wavelength selection with a view to a simplified handheld optical system to 

estimate grape ripeness. American Journal of Enology and Viticulture, ajev-2013. 

59. Xie, L., Ye, X., Liu, D., & Ying, Y. (2009). Quantification of glucose, fructose and 

sucrose in bayberry juice by NIR and PLS. Food Chemistry, 114(3), 1135-1140. 

60. Pan, L., Zhu, Q., Lu, R., & McGrath, J. M. (2015). Determination of sucrose content 

in sugar beet by portable visible and near-infrared spectroscopy. Food Chemistry, 

167, 264-271. 

61. Rateni, G., Dario, P., & Cavallo, F. (2017). Smartphone-based food diagnostic 

technologies: a review. Sensors, 17(6), 1453. 

62. Wang, L., Sun, D. W., Pu, H., & Cheng, J. H. (2017). Quality analysis, classification, 



 79 

and authentication of liquid foods by near-infrared spectroscopy: A review of 

recent research developments. Critical reviews in food science and nutrition, 

57(7), 1524-1538. 

63. Alander, J. T., Bochko, V., Martinkauppi, B., Saranwong, S., & Mantere, T. (2013). A 

review of optical nondestructive visual and near-infrared methods for food quality 

and safety. International Journal of Spectroscopy, 2013. 

64. Cen, H., He, Y., & Huang, M. (2006). Measurement of soluble solids contents and pH 

in orange juice using chemometrics and Vis− NIRS. Journal of Agricultural and 

Food Chemistry, 54(20), 7437-7443. 

65. Shao, Y., & He, Y. (2007). Nondestructive measurement of the internal quality of 

bayberry juice using Vis/NIR spectroscopy. Journal of Food Engineering, 79(3), 

1015-1019. 

66. Li, X., He, Y., Wu, C., & Sun, D. W. (2007). Nondestructive measurement and 

fingerprint analysis of soluble solid content of tea soft drink based on Vis/NIR 

spectroscopy. Journal of Food Engineering, 82(3), 316-323. 

67. Fernández-Novales, J., López, M. I., Sánchez, M. T., Morales, J., & González-

Caballero, V. (2009). Shortwave-near infrared spectroscopy for determination of 

reducing sugar content during grape ripening, winemaking, and aging of white and 

red wines. Food Research International, 42(2), 285-291. 

68. Liu, F., Jiang, Y., & He, Y. (2009). Variable selection in visible/near infrared spectra 

for linear and nonlinear calibrations: A case study to determine soluble solids 

content of beer. Analytica Chimica Acta, 635(1), 45-52. 

69. Marrubini, G., Papetti, A., Genorini, E., & Ulrici, A. (2017). Determination of the 

sugar content in commercial plant milks by near infrared spectroscopy and luff-

schoorl total glucose titration. Food Analytical Methods, 10(5), 1556-1567. 

70. Golic, M., Walsh, K., & Lawson, P. (2003). Short-wavelength near-infrared spectra of 

sucrose, glucose, and fructose with respect to sugar concentration and temperature. 

Applied Spectroscopy, 57(2), 139-145. 

71. Berentsen, S., Stolz, T., & Molt, K. (1997). Analysis of aqueous solutions by near-

infrared spectrometry (NIRS) IV. One-and two-component systems of organic 

compounds in water. Journal of molecular structure, 410, 581-585. 

72. Rinnan, Å., van den Berg, F., & Engelsen, S. B. (2009). Review of the most common 

pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical 

Chemistry, 28(10), 1201-1222. 

73. Irudayaraj, J., & Reh, C. (Eds.). (2008). Nondestructive testing of food quality (Vol. 

18). John Wiley & Sons. 



 80 

74. Ilaslan, K., Boyaci, I. H., & Topcu, A. (2015). Rapid analysis of glucose, fructose and 

sucrose contents of commercial soft drinks using Raman spectroscopy. Food 

Control, 48, 56-61. 

75. Vartanian, L. R., Schwartz, M. B., & Brownell, K. D. (2007). Effects of soft drink 

consumption on nutrition and health: a systematic review and meta-analysis. 

American journal of public health, 97(4), 667-675. 

76. Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P., Willett, W. C., & Hu, F. B. 

(2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 

diabetes: a meta-analysis. Diabetes care, 33(11), 2477-2483. 

77. Hu, F. B., & Malik, V. S. (2010). Sugar-sweetened beverages and risk of obesity and 

type 2 diabetes: epidemiologic evidence. Physiology & behavior, 100(1), 47-54. 

78. Malik, V. S., & Hu, F. B. (2012). Sweeteners and risk of obesity and type 2 diabetes: 

the role of sugar-sweetened beverages. Current diabetes reports, 12(2), 195-203. 

79. Touger-Decker, R., & Van Loveren, C. (2003). Sugars and dental caries. The 

American journal of clinical nutrition, 78(4), 881S-892S.  

80. Berryman, P. (2015). The EU food information for consumers regulation. In 

Advances in Food and Beverage Labelling (pp. 3-13). 

81. Johnson, R. K., Appel, L. J., Brands, M., Howard, B. V., Lefevre, M., Lustig, R. H., ... 

& Wylie-Rosett, J. (2009). Dietary sugars intake and cardiovascular health: a 

scientific statement from the American Heart Association. Circulation, 120(11), 

1011-1020. 

82. Kyle, T. K., & Thomas, D. M. (2015). Added sugar in the nutrition facts label: 

Consumer needs and scientific uncertainty. Obesity, 23(12), 2326-2326. 

83. Tierney, M., Gallagher, A. M., Giotis, E. S., & Pentieva, K. (2017). An Online Survey 

on Consumer Knowledge and Understanding of Added Sugars. Nutrients, 9(1), 37. 

84. Ruxton, C. H. S., Garceau, F. J. S., & Cottrell, R. C. (1999). Guidelines for sugar 

consumption in Europe: is a quantitative approach justified?. European journal of 

clinical nutrition, 53(7), 503. 

85. Rateni, G., Dario, P., & Cavallo, F. (2017). Smartphone-based food diagnostic 

technologies: a review. Sensors, 17(6), 1453. 

86. Pokrzywnicka, M., & Koncki, R. (2018). Disaccharides Determination: A Review of 

Analytical Methods. Critical reviews in analytical chemistry, 48(3), 186-213. 

87. Das, A. J., Wahi, A., Kothari, I., & Raskar, R. (2016). Ultra-portable, wireless 

smartphone spectrometer for rapid, non-destructive testing of fruit ripeness. 

Scientific reports, 6, 32504. 



 81 

88. Civelli, R., Giovenzana, V., Beghi, R., Naldi, E., Guidetti, R., & Oberti, R. (2015). A 

simplified, light emitting diode (LED) based, modular system to be used for the 

rapid evaluation of fruit and vegetable quality: development and validation on dye 

solutions. Sensors, 15(9), 22705-22723. 

89. Jiménez-Márquez, F., Vázquez, J., Úbeda, J., & Sánchez-Rojas, J. L. (2016). 

Optoelectronic sensor for measuring ethanol content during grape must 

fermentation using NIR spectroscopy. Microsystem Technologies, 22(7), 1799-

1809. 

90. Jam, M. N. H., & Chia, K. S. (2017, March). A five band near-infrared portable 

sensor in nondestructively predicting the internal quality of pineapples. In Signal 

Processing & its Applications (CSPA), 2017 IEEE 13th International Colloquium 

on (pp. 135-138). IEEE. 

91. Hayes, C. J., Walsh, K. B., & Greensill, C. V. (2017). Light-emitting diodes as light 

sources for spectroscopy: Sensitivity to temperature. Journal of Near Infrared 

Spectroscopy, 25(6), 416-422. 

92. Wang, L., Sun, D. W., Pu, H., & Cheng, J. H. (2017). Quality analysis, classification, 

and authentication of liquid foods by near-infrared spectroscopy: A review of 

recent research developments. Critical reviews in food science and nutrition, 57(7), 

1524-1538. 

93. Alander, J. T., Bochko, V., Martinkauppi, B., Saranwong, S., & Mantere, T. (2013). A 

review of optical nondestructive visual and near-infrared methods for food quality 

and safety. International Journal of Spectroscopy, 2013. 

94. Brereton, R. G. (2003). Chemometrics: data analysis for the laboratory and chemical 

plant. John Wiley & Sons. 

95. Rinnan, Å., van den Berg, F., & Engelsen, S. B. (2009). Review of the most common 

pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical 

Chemistry, 28(10), 1201-1222. 

96. Wold, S., Martens, H., & Wold, H. (1983). The multivariate calibration problem in 

chemistry solved by the PLS method. In Matrix pencils (pp. 286-293). Springer, 

Berlin, Heidelberg. 

97. Giovenzana, V., Civelli, R., Beghi, R., Oberti, R., & Guidetti, R. (2015). Testing of a 

simplified LED based vis/NIR system for rapid ripeness evaluation of white grape 

(Vitis vinifera L.) for Franciacorta wine. Talanta, 144, 584-591.98. Gundupalli, S. 

P., Hait, S., & Thakur, A. (2016). A review on automated sorting of source-

separated municipal solid waste for recycling. Waste Management. 

98. Gundupalli, S. P., Hait, S., & Thakur, A. (2016). A review on automated sorting of 



 82 

source-separated municipal solid waste for recycling. Waste Management. 

99. Lukka, T. J., Tossavainen, T., Kujala, J. V., & Raiko, T. (2014). ZenRobotics 

Recycler–Robotic sorting using machine learning. In Proceedings of the 

International Conference on Sensor-Based Sorting (SBS). 

100. Marinović, S., Jukić, A., Doležal, D., Špehar, B., & Krištović, M. (2012). Prediction 

of used lubricating oils properties by infrared spectroscopy using multivariate 

analysis. goriva i maziva, 51(3), 205-215. 

101. Balabin, R. M., Safieva, R. Z., & Lomakina, E. I. (2011). Near-infrared (NIR) 

spectroscopy for motor oil classification: From discriminant analysis to support 

vector machines. Microchemical Journal, 98(1), 121-128. 

102. Kassouf, A., Maalouly, J., Rutledge, D. N., Chebib, H., & Ducruet, V. (2014). Rapid 

discrimination of plastic packaging materials using MIR spectroscopy coupled 

with independent components analysis (ICA). Waste management, 34(11), 2131-

2138. 

103. Vegas, I., Broos, K., Nielsen, P., Lambertz, O., & Lisbona, A. (2015). Upgrading the 

quality of mixed recycled aggregates from construction and demolition waste by 

using near-infrared sorting technology. Construction and Building Materials, 75, 

121-128. 

104. Mauruschat, D., Plinke, B., Aderhold, J., Gunschera, J., Meinlschmidt, P., & 

Salthammer, T. (2016). Application of near-infrared spectroscopy for the fast 

detection and sorting of wood–plastic composites and waste wood treated with 

wood preservatives. Wood Science and Technology, 50(2), 313-331.   

105. Zhao, Y., Lehman, B., Ball, R., Mosesian, J., & de Palma, J. F. (2013, March). 

Outlier detection rules for fault detection in solar photovoltaic arrays. In Applied 

Power Electronics Conference and Exposition (APEC), 2013 Twenty-Eighth 

Annual IEEE (pp. 2913-2920). IEEE. 

106. Berrueta, L. A., Alonso-Salces, R. M., & Héberger, K. (2007). Supervised pattern 

recognition in food analysis. Journal of Chromatography A, 1158(1), 196-214.

 


