
DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER

ENGINEERING AND SCIENCE

DOCTORATE SCHOOL IN INFORMATION AND

COMMUNICATION TECHNOLOGIES

XXXI CYCLE

UNIVERSITY OF MODENA AND REGGIO EMILIA

“ENZO FERRARI” ENGINEERING DEPARTMENT

Ph.D. DISSERTATION

A distributed HPC infrastructure to process

very large scientific data sets

Candidate: Giuseppe Fiameni

Advisor: Prof. Sonia Bergamaschi

Director of the School: Prof. Sonia Bergamaschi

Copyright 2018 Giuseppe Fiameni

DOTTORATO DI RICERCA IN

COMPUTER ENGINEERING AND SCIENCE

SCUOLA DI DOTTORATO IN

INFORMATION AND COMMUNICATION TECHNOLOGIES

XXXI CYCLE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

DIPARTIMENTO DI INGEGNERIA “ENZO FERRARI”

TESI PER IL CONSEGUIMENTO DEL TITOLO DI DOTTORE DI RICERCA

Una infrastruttura di calcolo distribuita per il

processamento di dati scientifici di grandi

dimensioni

Tasi di: Giuseppe Fiameni

Relatore: Prof.ssa Sonia Bergamaschi

Il Direttore della Scuola: Prof.ssa Sonia Bergamaschi

Keywords:

High Performance Computing

Digital Infrastructure

Data Processing

Interactive Computing

Abstract (English)

Access to research infrastructure at national and international level is becoming

ever more important in an increasing number of scientific fields. Many research

activities as well as infrastructures play an important role for both the business and the

public sector. They are important components to meet the majority of scientific

challenges of our time. Advancements into climate changes study, sustainable and safe

societal development, public health, food production, democracy, labour market, etc.

also require advanced services and resources. Thus, the goal of this thesis work is

twofold; present a distributed HPC infrastructure realized though the federation of

different compute and data resources across Europe; provide insights about emerging

technologies being crucial for the processing of large data sets.

As starting point, a set of common technical specifications has been derived to

provide a high-level specification of the overall architecture and give details of key

architectural elements that are essential for realizing such infrastructure, including

scientific cases, new technologies and new processing methodologies. The work has

been mainly fuelled by the need to provide a scalable solution, harness new memory

technologies, such as those based on non-volatile chips, provide easy access to data,

and improve user experience by fostering the convergence between traditional High

Performance and Cloud Computing utilization models. Nowadays the main access

model for large scale HPC systems is based on the scheduling of batch jobs. This

approach is not connected with a requirement from the computational science

community, but it reflects the predominant issue in the management of the HPC

systems: the maximization of resource utilisation. Conversely, the situation differs

when taking into consideration personal workstations or shared memory servers, where

timesharing interactive executions are the norm. Our design, which proposes a new sort

of paradigm called “Interactive Computing” refers to the capability of a system to

support massive computing workloads while permitting on-the-fly interruption by the

user. The real-time interaction of a user with a program runtime is motivated by various

factors, such as the need to estimate the state of a program or its future tendency, to

access intermediate results, and to steer the computation by modifying input parameters

or boundary conditions. Within the neuro-science community, one of the scientific

cases taken in consideration in this work, most used applications (i.e. brain activity

simulation, large image volume rendering and visualization, connectomics experiment)

imply that the runtime can be modified interactively so that the user can gain insight on

parameters, algorithmic behaviour, and optimization potentials. Besides that, in many

application fields, the computational scientists are starting to use interactive

frameworks and scripting languages to integrate the more traditional compute and data

processing application running in batch, e.g. the use of R, Stata, Matlab/Octave or

Jupyter Notebook just to name few. The work has been supported by Human Brain

Project (www.humanbrainproject.eu) and Cineca (www.hpc.cineca.it), the main

supercomputing centre in Italy.

Sommario (Italian)

L'accesso ad infrastrutture di ricerca a livello nazionale e internazionale sta

diventando sempre più importante in un numero crescente di settori scientifici. Molte

attività di ricerca svolgono un ruolo importante sia per le imprese che per il settore

pubblico. Sono componenti importanti per affrontare la maggior parte delle sfide

scientifiche del nostro tempo. I progressi compiuti nello studio sui cambiamenti

climatici, lo sviluppo sociale sostenibile, la sicurezza, la salute pubblica, la produzione

alimentare, la democrazia, il mercato del lavoro, ecc. richiedono la disponibilità di

servizi e risorse avanzate. L'obiettivo di questo lavoro di tesi è duplice; presentare

un'infrastruttura distribuita HPC realizzata attraverso l’aggregazione di diverse risorse

di elaborazione e dati presenti in Europa, fornire informazioni sulle tecnologie

emergenti che sono fondamentali per l'elaborazione di grandi quantità di dai.

Come punto di partenza, è stata derivata una serie di specifiche tecniche comuni

per fornire una specifica di alto livello dell'architettura generale e fornire dettagli sugli

elementi architettonici chiave essenziali per la realizzazione di tali infrastrutture, inclusi

casi scientifici, nuove tecnologie e nuove metodologie di elaborazione. Il lavoro è stato

principalmente alimentato dalla necessità di fornire una soluzione scalabile, sfruttare

nuove tecnologie di memoria, come quelle basate su chip non volatili, fornire un facile

accesso ai dati e migliorare l'esperienza degli utenti promuovendo la convergenza tra le

tradizionali prestazioni elevate e il cloud Modelli di utilizzo del calcolo. Al giorno

d'oggi il modello di accesso principale per i sistemi HPC su larga scala si basa sulla

pianificazione dei lavori batch. Questo approccio non è collegato a un requisito della

comunità scientifica computazionale, ma riflette il problema predominante nella

gestione dei sistemi HPC: la massimizzazione dell'utilizzo delle risorse. Viceversa, la

situazione si differenzia quando si prendono in considerazione workstation personali o

server di memoria condivisi, dove le condivisioni interattive di timesharing sono la

norma. Il nostro design, che propone un nuovo paradigma chiamato "Interactive

Computing" si riferisce alla capacità di un sistema di supportare massicci carichi di

lavoro informatici consentendo al tempo stesso l'interruzione immediata da parte

dell'utente. L'interazione in tempo reale di un utente con un runtime del programma è

motivata da vari fattori, come la necessità di stimare lo stato di un programma o la sua

tendenza futura, di accedere a risultati intermedi e di indirizzare il calcolo modificando

i parametri di input o il limite condizioni. All'interno della comunità neuroscientifica,

uno dei casi scientifici presi in considerazione in questo lavoro, le applicazioni più

utilizzate (es. Simulazione dell'attività cerebrale, rendering e visualizzazione di grandi

volumi di immagini, esperimenti di connettività) implicano che il runtime possa essere

modificato interattivamente in modo che l'utente può acquisire informazioni su

parametri, comportamento algoritmico e potenziali di ottimizzazione. Oltre a ciò, in

molti campi applicativi, gli scienziati computazionali stanno iniziando a utilizzare

framework interattivi e linguaggi di scripting per integrare l'applicazione di

elaborazione dati e di elaborazione più tradizionale in esecuzione in batch, ad es. l'uso

di R, Stata, Matlab / Octave o Jupyter Notebook solo per citarne alcuni. Il lavoro è stato

supportato da Human Brain Project (www.humanbrainproject.eu) e Cineca

(www.hpc.cineca.it), il principale centro di supercalcolo in Italia.

List of Publications

 Fiameni G., Zanella R., Rorro M., “A performance study of machine and deep

learning frameworks on Cineca HPC systems”, Parallel Computing

Conference, 12-15 September 2017, Bologna, Italy

 Fiameni G., Carmona Manuel Juan, Graziano G. “Big-Data in Climate Change

Models - A novel approach with Hadoop MapReduce”, The 4th International

Symposium on Big Data Principles, Architectures & Applications, BDAA2017,

17-21 July, Genoa, Italy

 Fiameni G., Zhu S. Simonini G., Bergamaschi S., “SOPJ: A Scalable Online

Provenance Join for Data Integration”, The 4th International Symposium on

Big Data Principles, Architectures & Applications, BDAA2017, 17-21 July,

Genoa, Italy

 Fiameni G., D'Antonio M., D'Onorio De Meo P., Cacciari C.,

“Characterization of genomic data using graph databases”, Parallel

Computing Conference, 12-15 September 2017, Bologna, Italy

 Fiameni G., Caraceni S., Caroli C., Carpenè M., D’Antonio M. et al “I-Media-

Cities, a searchable platform on moving images with automatic and manual

annotations”, International Society on Virtual Systems and MultiMedia,

Dublin 2017.

Table of Contents

Abstract (English) .. v

Sommario (Italian) ... vii

List of Publications ... ix

Table of Contents ... x

List of Figures .. 12

Chapter I. Outline... 14

Chapter II. Introduction ... 16

Chapter III. The Fenix Infrastructure ... 20

Data Infrastructure and Management ... 39

Interactive Computing Services ... 41

User Management and AAI ... 43

Open data ... 49

Chapter IV. Evolution of High Performance Computing 51

Chapter V. Deep Learning ... 70

Chapter VI. Apache Hadoop and Apache Spark ... 85

Chapter VII. Quantum Computing .. 95

Chapter VII. Conclusion .. 98

Acknowledgments.. 100

Bibliography .. 101

List of Figures

 Figure 1 – Centres participating to the Fenix distributed infrastructure.

 Figure 2 – Fenix services

 Figure 3 - Location of the hippocampus in the brain (Image courtesy of the Brain

Connection project)

 Figure 4 – Pre-processing and model generation pipeline as described in

Hippocampus model generation.

 Figure 5 - Example of virtual tissues (left), Monte-Carlo simulation of the

diffusion process of water in virtual tissues (middle), and simulation of the

diffusion MRI signal for various pulse sequences and tunings (right) obtained

with the in-house developed software.

 Figure 6 – The Fenix multiple tiers data management model.

 Figure 7 – Architecture of the Fenix Authentication and Authorization

Infrastructure

 Figure 8 – Start-up time of python script on container vs regular file system

install.

 Figure 9 - Paraver trace without DLB using Docker (top), Singularity (middle),

Shifter (bottom)

 Figure 10 - Paraver trace with DLB using Docker (top), Singularity (middle),

Shifter (bottom).

 Figure 11 - Performance distribution, when varying the batch size: forward pass

on Overfeat network is considered.

 Figure 12 - Performance distribution, when varying the batch size: forward-

backward pass on Overfeat network is considered.

List of Figures

- 13 -

 Figure 13 - Intranode test results for kmp blocktime = 1 (left) and 20 (right).

The plots report the images processed per second as a function of the number

of mpi tasks (and implicitly the number of omp and intra threads, since these

have been set as the ratio between 48 and the number of mpi tasks). The batch

size per processor is increasing from the top towards the bottom. Different

colors have been used for the number of inter threads: 16 (cyan), 8 (violet), 4

(green), 2 (light blue), and 1 (dark blue).

 Figure 14 - Processed images per second versus number of mpi tasks. A batch

size per processor of 256 images has been considered. The other parameters

were chosen according to the tests performed on one node: 2 mpi processes per

node, 24 omp threads, 1 inter thread, and kmp blocktime = 20.

 Figure 15 - Processed images per second versus number of mpi tasks. A batch

size per processor of 64 images has been considered. The other parameters were

chosen according to the tests performed on one node: 8 mpi processes per node,

6 omp threads, 2 inter threads, and kmp blocktime = 1.

 Figure 16 - Speedup reached for each case (red points) and the ideal speedup (3,

for our 3-node cluster) marked by the dotted line.

 Figure 17 - Data movement in Spark and the interaction with the memory

hierarchy.

 Figure 18 - Upper panel: digital computer gate can act on data one bity at a time.

Lower panel: quantum computer gate can act on all possible states of the 8 Qbits

at the same time.

Chapter I.

Outline

- 14 -

Chapter I.

Outline

This dissertation explores various topics concerning digital infrastructures, high

performance computing technologies and future trends. It is organized in a cumulative

style. The major findings are presented in form of peer-reviewed conference and

publications that I contributed to as well as developments done as part of my job

position at Cineca1. For a complete list of all publications, however, please refer to the

“List of Publications”.

The following chapters will provide a brief summary of the results as follows.

 Chapter II – introduces the work.

 Chapter III – presents the architecture of the Fenix infrastructure, a federation

of resources and services to serve the European neuroscience community as part

of the Human Brain Project2. I reported the requirements that led to the design

of the infrastructure as collection of use cases, list of services, and resources

made available to the community. The design and the realization of the

infrastructure is the result of a joint collaboration activity funded by the

European Commission under the ICEI (Interactive Computing E-Infrastructure

for the Human Brain Project) project. This initial chapter helped me introduce

the successive parts of this thesis which focus on HPC trends, emerging Big

Data technologies, and Deep Learning workloads.

1 www.cineca.it
2 www.humanbrainproject.eu

Chapter I.

Outline

- 15 -

 Chapter IV – reports about the trends that are pushing the evolution of HPC

systems and which challenges are foreseen to make further steps. The chapter

also includes a study concerning the adoption of virtualization technology,

based on container, to support HPC workloads.

 Chapter V – presents a brief summary of the Quantum Computing technology

as it is expected to revolutionize the way we conceive computing.

 Chapter VI — covers Deep Learning frameworks and networks. It also

includes benchmark results obtained using Cineca HPC systems using synthetic

benchmark.

 Chapter VII – copes with the adoption of the Apache Hadoop framework to

solve a use case in the field of climate change. Furthermore, it reports about the

use of Apache Spark into a HPC environment.

 Chapter VIII —concludes the thesis and presents perspectives for future

research opportunities.

Chapter II.

Introduction

- 16 -

Chapter II.

Introduction

Access to research infrastructure at national and international level is becoming

ever more important in an increasing number of scientific fields. This work summarises

overarching tendencies in relation to the needs of European research community. The

starting point is the needs that are driven by basic and researcher initiated research. At

the same time, it should be emphasised that many research activities as well as

infrastructures play an important role for both the business sector and the public one.

Infrastructures are also important components to meet the major scientific challenges

of our time. Research of relevance to societal challenges related to climate changes,

sustainable and safe societal development, public health, food production, democracy,

labour market, etc. also require advanced services and resources.

The observation, the measurement, the experimentation, the supercomputing,

the storage and sharing of data, all suppose to use big instruments with technical

performances beyond the existing ones and integrating interdisciplinary as a source of

innovation. These tools constitute a mandatory condition for future discoveries as well

as the product of the past scientific and technological advances. In parallel to these

major programs, a number of instruments shared amongst many actors on various sites

have been developed in recent years: new modes of microscopy and imaging, new high

throughput screening devices, virtual experiments, social, environmental and health

databases, corpus of digitized texts with their operating tools.

The needs for research infrastructure – large research facilities, laboratory

environments, experimental workshops, complex digital research systems and

Chapter II.

Introduction

- 17 -

comprehensive databases – are increasingly rapidly within most research fields.

Technical developments and ever more complex scientific questions are simultaneously

driving this development forward. This applies not only within environment and

climate research, humanities, social sciences and major parts of medical research.

Fundamental knowledge about our universe, the characteristics of materials, the

function of cells and internal characteristics of matter demands advanced instruments.

Complex questions also require data and observations from several sources to

be combined. Moreover, a common feature of all research fields is that the need to store,

transfer and analyse large amounts of data is increasing very rapidly. In many cases,

the development means that barriers between research disciplines is breaking down,

and that the need for international collaboration is increasing. Advanced research

infrastructure also constitutes a resource for industry, and it is in many cases a

prerequisite for collaboration between industry and academia.

Traditionally, the needs for calculation by high-performance computers,

accessible via peer-review process, as that provided by PRACE (Partnership for

Advanced Computing in Europe)3, have dominated the use of e-infrastructure, with

strong research within fields such as materials sciences and fluid mechanics. Growing

needs are driven by new technologies and infrastructures that generate considerable

data amounts within successful research areas, such as life sciences and image analysis.

Successful research and innovation needs access to first class research

infrastructures, and development of top-class research infrastructures is one of the key

areas to enforce the European Research Area. In the overall context of research

infrastructures, e-Infrastructures play a more and more important role. Today, almost

3 www.prace-ri.eu

Chapter II.

Introduction

- 18 -

all large-scale research activities include or are supported by several e-Infrastructure

components. Major scientific breakthroughs are increasingly achieved by an

international, cross-disciplinary team transferring, storing and analysing vast data

collections and performing advanced simulations using different types of computing

facilities.

Much effort has been spent on bringing research infrastructures and e-

Infrastructures together for their mutual benefit, but it might still be difficult for many

of the stakeholders to grasp the needs of users and the advantages of using existing e-

Infrastructures and related services.

More and more scientific user communities share the demand for new solutions

for the steadily increasing amount of scientific data that arise from scientific

instruments (i.e. higher resolutions), an increased amount of sensors in scientific field

studies (i.e. constantly created real-time datasets), or better computing power (i.e. more

granular and realistic simulations). As a consequence, the term ‘big data’ emerged as a

kind of new research field that aim to address the aforementioned challenges and to

provide reasonable solutions in scientific ecosystems (i.e. research labs, universities,

shared scientific instrument collaborations, etc.).

In this dissertation, I present the design of a new research infrastructure to

support the European neuroscience community being part of the Human Brain Flagship

project. The infrastructure, named Fenix4, and receiving funds from the European

Union's Horizon 2020 research and innovation programme through the ICEI project

through, will provide computing and storage capability to address interactive use cases.

This work also reports about technology trends in the field of HPC, memory

4 https://fenix-ri.eu/

Chapter II.

Introduction

- 19 -

technology, deep learning and quantum computing as driving forces to tackle future

large scientific challenges.

Chapter III.

The Fenix Infrastructure

- 20 -

Chapter III.

The Fenix Infrastructure

Fenix is based on a consortium of five European supercomputing centres, which

have agreed to deploy a set of infrastructure components (IaaS) and integrated platform

(iPaaS) services federating users access, data repository and resources allocation

mechanism. The key infrastructure services provided by each site are scalable

computing services, various data storage services and, as a new element introduced with

this project, Interactive Computing Services.

Figure 1 – Centres participating to the Fenix distributed infrastructure.

Each of the involved centres is currently operating HPC systems with a

throughput of floating-point operations in the multi-PFlop/s range. The compute

capabilities will increase over the next couple of years such that each of the five sites

Chapter III.

The Fenix Infrastructure

- 21 -

will provide at least 10 PFlop/s, resulting in an aggregate compute capability of at least

50 PFlop/s.

Each of the sites will provide the following services:

 Scalable Compute Services;

 Interactive Compute Services;

 Active Data Repositories based on fast memory and active storage tiers;

 Archival Data Repositories; and

 Information/catalogue services.

All services will be tightly integrated through a high-speed network of the

scalable compute systems (as shown Figure 1).

Figure 2 – Fenix services.

The local services need to be interoperable to facilitate, e.g., easy transfer of

data between federated Archival Data Repositories. Whenever interoperability is

Chapter III.

The Fenix Infrastructure

- 22 -

required, our strategy is to deploy the same or similar technologies at all sites. At the

same time the project aims to keep the level of integration low in order to reduce

operational dependencies between the sites (to avoid, e.g., the need for coordinated

maintenance and upgrades) and to allow for the site local infrastructures to evolve

following different technology roadmaps.

Furthermore, to allow for these distributed computing and storage resources to

be perceived as a coordinated, distributed infrastructure, various additional federated

infrastructure services need to be deployed (as shown in Figure 2):

 Authentication and Authorization Infrastructure (AAI) services;

 File catalogue and location services;

 User and resource management services; and

 Data transfer services.

Use cases

This section reports on use cases emerged from the neuroscience community

and that are expected to exploit the infrastructure services. Based on the information

collected from end users, the architectural specification of the Fenix infrastructure has

been designed. These details are also necessary to identify the capacity requirements

and to identify which elements of the infrastructure are best suited for each use case.

They are presented from less articulated to more complex ones.

GUI-based interaction with extreme scale network models

Different software components have been developed as part of the Brain

Simulation Platform5 (BSP) for the simulation of large, biologically realistic networks

5 https://www.humanbrainproject.eu/en/brain-simulation/brain-simulation-platform/

Chapter III.

The Fenix Infrastructure

- 23 -

representing large regions of the Central Nervous System (CNS), like entire model

animal brains (such as robotic rodents) or mouse and human CNS regions such as the

cerebellum or hippocampus. For the development of these simulations, iterative

visualization of network generation and simulation is necessary.

The BSP is an internet-accessible collaborative platform, which comprises a

suite of software tools and workflows for collaborative brain research to allow

researchers to reconstruct and simulate detailed multi-level models of the brain,

displaying emergent structures and behaviours. BSP users can define and launch

simulations from Jupyter6 notebooks through any web browser. Most of these

simulations, including the simplest one, require HPC resources and the management of

non-trivial workloads via interactive notebooks.

Currently, the bottleneck of computational demands for this class of

experiments is the network simulation, using tools like NEST7, Neuron8, Arbor9 or

TVB10. To estimate the scale of the problem, the biggest NEST simulation ever

executed on the K11 supercomputer in 2013 used approximately 1.1 PByte of memory

while reaching up approximately 10 PFlop/s of peak performance. To move from 109

neurons to 1010 neurons using the current class of software architectures would take

order of 10 PByte and 100 PFlop/s [16].

Conversely, for morphologically detailed simulations, initial estimates using the

“Arbor” simulator indicate that peak performance for a GPU-based architecture occurs

with 10k cells/GPU. Since 10,000 NVIDIA TESLA P100 GPUs accumulate 50

6 http://jupyter.org/
7 www.nest-simulator.org
8 www.neuron.yale.edu/neuron
9 arbor.readthedocs.io
10 www.thevirtualbrain.org
11 www.r-ccs.riken.jp/en/k-computer/about

Chapter III.

The Fenix Infrastructure

- 24 -

PFlop/s, to sustain such activity it would need 10,000 sockets * 10,000 cells/socket *

(1~1000) kBytes/cells = 1~1000 * 109 Bytes, for 100 * 106 cells, which is on the order

of the size of the human hippocampus. In practice, from the computational point of

view, such simulations require a variety of hardware resources and capacity that hardly

are available today. Besides CPU power, these applications require post-processing

capabilities, such as visualization tasks that can be handled with desktop systems

equipped with a moderate amount of memory. However, the amount of resources

needed for such visualization tasks, especially expressed in terms of memory capacity,

is highly dependent on the details of the simulation but existing applications are usually

flexible enough to balance between different levels of the memory hierarchy.

Large scale simulations of Hippocampus model

In silico experimentation within brain region models is a core target of the

European neuroscience community. It allows linking results from experimental

neuroscience with model predictions for discovery and validation. The models that will

be made available are based on a close bidirectional interaction with anatomical and

physiological data. The models focus on the cerebellum, the hippocampus, and the basal

ganglia.

This use case describes the execution of an in silico experiment of a

biophysically detailed model and the execution of a pre-defined analysis by a

community user against models released to the community. Scientists can now devise

in silico experiments that they could not do before in the absence of the required storage

and compute resources for downloading and executing potentially large models. At the

same time, the resulting artefacts remain within the infrastructure and become easily

available for reuse in other contexts, i.e. analysing, visualisation, sharing with the

community etc.

Chapter III.

The Fenix Infrastructure

- 25 -

The focus here is on models of synaptic plasticity of hippocampal synapses (see

Figure 3), and how they can be integrated into cellular level microcircuit models using

data-driven subcellular pathways and/or rule-based effective implementation. The

emphasis is on the mechanisms underlying associative memory processes and spatial

navigation, integrated into a user-friendly user interface allowing an easy community

engagement.

Hippocampus data are the most interesting simulation targets for the following

reasons:

 Contain few millions neurons.

 Are strongly involved in higher brain functions, such as learning, memory,

spatial navigation.

 Implicated in Alzheimer's disease, temporal lobe epilepsy, cognitive aging,

post-traumatic stress disorder, transient global amnesia, schizophrenia,

depressive and anxiety disorders.

Figure 3 - Location of the hippocampus in the brain (Image courtesy of the Brain

Connection project).

Chapter III.

The Fenix Infrastructure

- 26 -

Some raw numbers follow:

 450000 neurons, ~1·108 membrane segment, 20 ODE12/seg

 2·109 ODEs + synapses

 1 second of simulation time (approximately 5h on a massive parallel system

using 32000 processors)

 ~2TB of input, up to ~3TB of output.

A basic execution workflow for this use case includes the following steps. The

user:

 selects the Small Circuit or Brain Area Circuit in silico Experiment function of

the Brain Simulation Platform;

 selects a detailed circuit model from an online databank called NIP13;

 selects target regions he/she wants to stimulate;

 for each selected target region, he/she defines the stimulus he wants to apply;

 defines the particular parameters of each stimulus (e.g. start, duration);

 selects what he wants to record from the circuit (e.g. soma voltage of a particular

subset of neurons);

 defines global parameters for the simulation (e.g. time steps);

 defines additional parameters related to the allocation of the compute resources

for the simulation (HPC center and system, HPC project, number of nodes,

memory, …);

 defines the analysis he/she wants to perform from a predefined set and

configures this analysis;

12 Ordinary Differential Equation
13 https://nip.humanbrainproject.eu/

- 27 -

 defines additional parameters related to the allocation of the compute resources

for the analysis (HPC centre system, HPC project, number of nodes, memory,

…);

 the simulation and the analysis are executed on the different compute resources

defined by and accessible to the user. The circuit is available on this compute

center at this stage;

 investigates the simulation results and the circuit interactively through a Jupyter

notebook;

 visualizes the simulation on a visualization web service;

 registers and stores simulation results in the knowledge graph; the Human Brain

Project has developed a central data repository where to store relevant data sets

and associated meta information for sharing purposes.

Figure 4 shows the entire workflow and all its steps.

- 28 -

Figure 4 – Pre-processing and model generation pipeline as described in Hippocampus

model generation.

Decoding of brain cyto-architecture using large scale simulations.

Mapping and understanding the cytoarchitectonics [21] of the human brain is a

challenge that started back at the beginning of the 20th century with famous

neuroanatomists who segregated the cortex of a post-mortem human brain sample into

a few dozens of areas from the observation of the laminar structure of the cortical ribbon

and of its cellular organization using optical microscopy. The most famous atlas was

developed in 1905 by Korbinian Brodmann and remains today widely used by

neuroscientists even if it suffers from several limitations. First, because it was

developed from a single sample, it cannot capture the inter-subject variability of the

cytoarchitecture maps; second, boundaries of the areas have been drawn from visual

observations, and may not reflect the real boundaries of functional areas. The

community is fighting to go beyond Brodmann areas and during the last decade, several

teams attempted new strategies to map the brain cytoarchitectonics. Several teams have

tried to establish maps from the acquisition of large cohorts of in vivo human healthy

volunteers. The success of such challenges rely on the capability of modern

- 29 -

neuroimaging methods to probe the variations of the cellular organization of brain

tissues in vivo. Unfortunately, the cellular organization of brain tissues (gray and white

matter) can be extremely complex, and today, few is known about the diffusion MRI

(Magnetic resonance imaging) signature of the plethora of possible cellular

environments met in the brain. The study of MRI signatures requires the tuning of

several sequence parameters that impact the nature of the diffusion contrasts obtained

at the end. Obviously, one cannot achieve an exhaustive scanning of the sequence

parameter space in vivo.

This specific use case aims at replacing in vivo diffusion of MRI scans by in

silico diffusion enabling to reach a much higher level of completeness of the parameter

space sampling. To do so, it first focuses on white matter (WM) cyto-architecture being

simpler than grey matter (from a cyto-architectural point of view) and requires to:

 Step #1 - create an exhaustive bunch of in-silico realistic white matter virtual

tissue samples by numerical simulations of cellular membrane geometries;

 Step #2 - simulate the diffusion process of water molecules in every realistic in-

silico WM tissue sample using a Monte-Carlo approach;

 Step #3 - simulate the diffusion MRI signature of every WM tissue sample for

an exhaustive set of diffusion MRI sequence parameters achievable on actual

preclinical and clinical MRI systems;

 Step #4 - train a deep neural network to build a decoder/regressor of the WM

microstructure;

 Step #5 - use the decoder to establish an atlas of the WM microstructure.

Dedicated software tools have already been developed by several teams to

address these first three tasks. However, there is a clear need to extend simulations to a

- 30 -

larger facility in order to run the plethora of needed simulations and obtain results for

white matter tissues. If successful, the extension to grey matter (cortex and deep nuclei)

will be straightforward but will need even more computational resources, due to the

higher level of complexity of the cellular environment in grey matter.

Diagram 1 provides a detailed flowchart for step #1 consisting of simulating a

dictionary of virtual white matter tissues. Each virtual tissue is designed from a set of

geometrical parameters including:

 the number of white matter fiber populations (from 1 to 3),

 the properties of each fiber population including its volume fraction, the main

direction of the population, the dispersion and tortuosity of its fibers, the

statistics of the axon diameter, the statistics of the g-ratio characterizing the

myelin sheath, myelin g-ratio, the statistics of the Ranvier nodes, the

permeability of axons,

 the properties of the glial cell population including their mean diameter, the

statistics of the number of branches per cell, and the statistics of the diameter of

these branches.

A graphical user interface will be developed to facilitate the prescription of

tissue parameters, and a 3D viewer will be developed to visualize 3D renderings of

virtual tissues.

- 31 -

Diagram 1 - Flowchart of the construction of a large dictionary of virtual brain white

matter tissues.

Step #1 details

This step consists in generating realistic geometries of white matter: each

generated voxel of size 100 x 100 x 100 µm will contain from 500 to10 000 axons

(depending on the mean diameter of axons and on the packing density). Each axon is

represented as a set of spheres, which is the basic unit of the analysis algorithms. An

upper bound of 500MB for each geometry to store the position and the radius of all

spheres within a voxel is estimated. The geometry generation algorithm can be

decomposed in two steps:

 creation of overlapping axons in the voxel according to the required biophysical

parameters (diameter, packing density, angular dispersion, etc.);

- 32 -

 solving the overlapping between axons using the decomposition of axons into

spheres and applying repulsion forces between overlapping spheres.

An upper bound of 30 minutes to generate a given geometry is estimated on a

NVIDIA Tesla K40 GPU and it corresponds to the worst possible case with very small

mean axons diameter (0.1µm) and high packing density (0.8) for which the number of

spheres is maximal. In most of the cases (diameters > 0.5µm and volume fraction

inferior to 0.7), the geometry generation will take less than a minute using the same

graphic card.

Diagram 2 provides the complete flowchart of this step required to establish a

huge database of Monte-Carlo simulations of the diffusion process of water molecules

within each white matter virtual tissue belonging to a virtual tissue dictionary.

Biophysical parameters characterizing the diffusion process in brain tissues have to be

fed into the Monte-Carlo simulator as well as the individual virtual tissue sample.

Trajectories followed by random walkers are then stored for each tissue sample. The

number of random walkers has to be tuned with respect to the complexity of the

geometry of cell membranes populating every virtual tissue, typically on the order of

105 particles. Temporal constraints are imposed by the specifications of the simulated

diffusion MRI sequence (echo time and temporal resolution of gradient waveforms).

- 33 -

Diagram 2 - Large-scale Monte-Carlo simulations of the Brownian motion of water

molecule corresponding to the Virtual Tissue dictionary established in Diagram 1.

Step #2 details

 This step consists in performing a Monte-Carlo simulation of the Brownian

motion of 2.10⁵ random walkers during 300ms with a time step of 10µs for each

geometry generated in step #1. The trajectories of all the random walkers have to be

stored, leading to a size of 97 GB per simulation.

Although the application gives space to further optimization, a runtime of 1h30

on a NVIDIA Tesla K40 GPU to perform the simulation for one voxel has been

estimated.

Diagram 3 provides the flowchart of step #3 required to establish the huge

dictionary of (virtual tissues/diffusion MRI signature) required to learn the decoder

mentioned in step #4. The diffusion MRI signature will consist of a few thousands of

simulated NMR contrasts corresponding to Pulsed Gradient Spin Echo (PGSE) and

- 34 -

Cosine Trapezoidal Oscillating Gradient Spin Echo (CT-OGSE) sequences achievable

on an actual clinical 3T MRI system. Each of these sequences offers the possibility to

tune parameters affecting the diffusion sensitization such as the diffusion gradient

magnitude, the diffusion direction, the diffusion pulse width and separation for the

PGSE sequence or the diffusion pulse frequency and number of lobes for the CT-OGSE

sequence.

Diagram 3 - Large-scale simulations of the diffusion-weighted MRI signal over a large

set of sequence tunings from the Monte-Carlo simulations obtained in Diagram 2 in

order to establish a dictionary of (virtual tissues / diffusion MRI signatures).

Step #3 details

 This task consists in synthesizing the NMR (Nuclear Magnetic Resonance)

signatures of each generated geometry by applying diffusion sequences with varying

parameters on the previously generated random walkers trajectories (see step #2).

- 35 -

I estimated that 3000 NMR signatures have to be computed for each geometry

to fully explore the parameter space. Each geometry has a size of 10KB, thus leading

to a total of 30MB for each generated geometry.

The computation of NMR signatures can be easily parallelized on GPU, leading

to an estimated runtime of ~1.2s per signature, and thus a total runtime of 1h for each

geometry.

Diagram 4 depicts how the former dictionary of virtual white matter tissue

samples/diffusion MRI signatures enables to train a machine learning tool, like a deep

neural network, in order to create a decoding tool able to recognize/extrapolate the set

of quantitative features characterizing the cyto-architecture at each voxel of the brain,

from a real and individual set of diffusion MRI scans, corresponding to various

sequences and sequence settings. The input database used to train the DNN (Deep

Neuronal Network) is composed of around ~1010 entries resulting from the previous

large-scale simulations.

- 36 -

Step #4 details

 The last step of this use case is to train a neural network with all the generated

NMR signatures. For each signature, the parameters of the employed diffusion

sequence and the biophysical parameters of the generated geometry are known. The

aim of the training is that, when a real NMR signature is fed to the network with known

diffusion sequence parameters, the network will be able to estimate the underlying

biophysical parameters. This task brings the need for “Deep-Learning oriented”

resources, such as GPUs, to train a neural network with all previously simulated data,

i.e. NMR signatures.

The large majority of collected requirements bring important needs especially

in terms of hyper-scaling and data handling. The Fenix architecture reflects these needs

by providing low level services in order to permit community build upon and create

Diagram 4 - use of the simulated “virtual sample/diffusion MRI signature” dictionary

to training a deep neural network and use of the trained network to decode the brain

cyto-architecture of individuals in vivo.

Diagram 5 - use of the simulated “virtual sample/diffusion MRI signature” dictionary

to training a deep neural network and use of the trained network to decode the brain

cyto-architecture of individuals in vivo

- 37 -

sustainable research environments. The infrastructure is optimised for handling and

processing large volumes of data efficiently and to make them easily identifiable. Much

care has been put to keep the infrastructure generic and compatible enough to support

other workloads emerging from different communities. To achieve community

requirements, it will provide the following major components:

 Interactive computing nodes with large memory, equipped with high

performance GPUs, and interconnected by a low-latency, high-performance

network. Its purpose is to improve pre and post treatment like meshing creation,

steering computation, remote visualisation but also for running MPI

applications. Some of the compute nodes will have particularly large memory

(several Terabytes per node) to overtake usual limitations in neural simulation

by allowing to compute larger brain regions.

 Intensive I/O will be handled by an Active Data Repository, a high-performance

file-system based on flash storage technologies. The purpose of this system will

be to handle high data throughputs, and in particularly, adapted to speed-up non-

sequential data extraction, which is often needed to process experimental data.

 A large long-term capacity is needed to store experimental data as well as

simulation outputs, and to make them publicly accessible and sharable. Using

the Fenix terminology, this long-term capacity implements the Archival Data

Repository (ARD), and will be completed by additional servers to enable data

movements across multiple storage tiers. Regardless of its name, this storage

area is not designed to implement a pure repository as the management of

information like metadata, persistent identifiers, etc. is encapsulated into

community services. The Archival Data Repository will only ensure long-term

- 38 -

archiving of data (bit-stream preservation) and provide basic components to

build a full data repository on top.

 A Cloud Computing infrastructure to make it possible to setup community

services to access data: web interfaces, data processing service, data

exploration, workflow orchestrator, visualization etc.

The sections that follow provide further details about infrastructure

characteristics.

- 39 -

Data Infrastructure and Management

In contrast to other communities that already operate a large-scale federated

data infrastructure, neuroscience has to cope with a diverse set of data sources with

their specific formats, modalities, spatial and temporal scales, coverage, sample sizes,

etc.. This includes neuro-imaging data from high-resolution microscopes and MR-

imaging, electro-physiological data from multi-electrode array measurements, data

from brain simulations on HPC systems or neuromorphic architectures. No fixed

relationship exists between the data sources. Rather, the scientific approaches and

workflows are a much faster moving target compared to, e.g., high-energy physics.

Thus, a tiered approach as realised in the world-wide CERN Grid will not work for

neuroscience, and a different organising principle has to be chosen for HBP. The setup

of the Fenix data infrastructure is guided by the following considerations.

 Data is brought in close proximity to the data processing resources at different

compute and data infrastructure service providers in order to take advantage of

high bandwidth active data repositories as well as data archival services.

 Federating multiple data resources enables easy replication of data at multiple

sites. This capability can be exploited to improve data resilience, data

availability as well as data access performance.

As anticipated above, the Fenix sites plan to provide different classes of data

repositories:

 Archival Data Repositories. Data stores that are optimized for capacity,

reliability and availability. Archival data repositories are meant to be used for

storing large data products that cannot be easily regenerated, in particular those

for which long-term accessibility is crucial.

- 40 -

 Active Data Repositories. Data stores that are located close to computational

or visualisation resources such that high performance access to data is enabled

(in terms of high bandwidth and/or high IOPS rates). Active data repositories

should be used for storing temporary slave replica of large data objects, for

improving access performance, with the master copy of the data kept in an

archival data repository.

The various Archival Data Repositories will be federated using standard access

protocols. In this context, federation means that users of the infrastructure are offered

with a unified view on loosely coupled storage resources, which, in particular, has the

following features:

 Integrated AAI with single sign-on;

 Data transfer services; and a

 Data location service.

The Archival Data Repository will provide role-based access control (RBAC)

mechanisms for authorising access to data. This approach is sufficiently flexible for

staying compliant with most of the community’s data management policies.

Conversely, the Active Data Repository will not be federated and will hold temporary,

private copies of data products. This allows using POSIX compliant parallel file-

systems as storage volume. A storage architecture concept that would realise the

presented concept is shown in Figure 5. The Archival Data Repository is assumed to be

realised by an object store using an OpenStack SWIFT front-end to facilitate data

sharing over HTTP protocol. A data mover will allow data copying between the two

repositories, the object store and the parallel file-system. The decision to keep data

separated, also in terms of underneath technology solutions, will provide high-

- 41 -

performance access to data from both the High Performance Computing resources as

well as the Interactive ones.

Figure 5 – The Fenix multiple tiers data management model.

Interactive Computing Services

Nowadays the largely widespread usage model for large-scale HPC systems is

based on the scheduling of batch jobs. This approach is not needed to meet a

requirement from the computational science communities, but it reflects the

predominant issues in the management of the HPC systems, the maximization of

resource utilisation, and the handling of concurrent workloads. However, the situation

differs when taking into consideration personal workstations or shared memory servers,

where time-sharing interactive executions are the norm.

As an extension to batch-oriented systems, Fenix aims at providing resources

that can be used interactively to the cost of obtaining nearly lower performance while

keep ensuring high resource utilization. Thus, Interactive Computing refers to the

capability of a system to support distributed computing workloads while permitting on-

- 42 -

the-fly interruption by the user. The real-time interaction of a user with a program

runtime is motivated by various factors, such as the need to estimate the state of a

program or its future tendency, to access intermediate results, and to steer the

computation by modifying input parameters or boundary conditions. Within neuro-

science applications, i.e. brain activity simulation, large image volume rendering and

visualization, connectomics experiment, this implies that the runtime can be modified

interactively so that the user can gain insight on parameters, algorithmic behaviour, and

optimization opportunities. The commonly agreed central components of interactive

computing are, on the front-end, a sophisticated user interface to interact with the

program runtime and, on the back-end, a separated steerable, often CPU and memory

consuming application running on an HPC system.

A typical usage scenario for interactive computing regards the visualization, the

processing, and the reduction of large amounts of data, especially where the processing

cannot be standardized or implemented in a monolithic workflow. The data can be

generated by simulation or harvested from experiment or observation; in both cases,

during the analysis the scientist performs an interactive process of successive reductions

and production of data views that may include even complex processing like

convolution, filtering, clustering, etc. This kind of processing could be easily

parallelized to take advantage of HPC resources, but it would become clearly

counterproductive to break-down a user session into separate interactive steps

interspersed by batch jobs as their scheduling would delay the entire execution

degrading the user experience. Besides that, in many application fields, the

computational scientists are starting to use interactive frameworks and scripting

languages to integrate the more traditional compute and data processing application

running in batch, e.g. the use of R, Stata, Matlab/Octave or Jupyter Notebook just to

- 43 -

name few. In this way, the time spent in this activity is a non-negligible component in

the “time to science”.

In Fenix, users will be presented with the possibility to load and visualize data

resulting from simulations or collections, series or experimental data, in an interactive

way. To properly support interactive supercomputing, the system must be able to

properly handle all the connections and protocols needed to dynamically attach multiple

visualization and steering front-ends to a running application and to enable transparent

staging of data across multiple storage tiers, from distributed storage participation to

node-central memory, to ensure front-ends receive a continuous stream of data. To

support interactive workloads, the infrastructure will include high-end servers equipped

with a) large capacity of high-end volatile memory, optionally integrated with non-

volatile volumes (e.g. NVMe or DDR-like interfaces); b) GPUs for visualisation and

image manipulation; c) high-performance low-latency interconnect to facilitate fast

access to repositories as well as computing resources.

User Management and AAI

For the Fenix infrastructure, a central identity accreditation system will be set

up. The goal of such a system is to provide users with secure, trustworthy and

convenient access to services and resources made available by the infrastructure.

Ideally, users would only need to use a single set of credentials to access distributed

resources through authenticating towards trusted locations, these being either the home

organization identity provider, a community portal, or the Human Brain central

accreditation system. To implement this vision, the central accreditation system will be

able to a) manage and authenticate local (homeless) users, b) broker identities managed

by external organizations, i.e. EduGain, which manifest their interest in federating with

- 44 -

the infrastructure, and c) support existing Identities Directory. Through supporting

standard authentication protocols, such as OpenID Connect or SAML, the central

system will voucher for the user's identity trusted by the infrastructure to assert certain

basic users profile attributes. This scheme has already successfully explored within

other initiatives, such as the EUDAT Collaborative Data Infrastructure14.

One of the promises of the Fenix AAI is to enable domain scientists to make

effective use of the virtual research environment without having to deal with the

intricacies that are typically associated with the use of HPC systems. As also

highlighted by the AARC (Authentication and Authorisation for Research and

Collaboration) project15 guidelines, an omnipresent aspect of dealing with computing

resources efficiently is connected with the authentication and authorization of users.

When I talk about seamless access, it is intended for any user, registered on a “trusted”

IdP (Identity Provider) and granted to consume a certain amount of resources, to access

federated resources using his/her credentials (i.e. username/password, X.509, etc..)

without going through any further registration process. The list that follows presents

the main principles that have influenced the design of the AAI:

 The federation concerns with the aggregation of multiple hosting sites providing

services and resources to users. Member sites contribute to the federation by

accepting a common collaboration agreement that request them to operate

service according to federation goals and performance. They need to maintain

their independence and keep functioning regardless the status of the federation.

Each member may request the acceptance of a local access policy besides that

requested by the federation. Existing users, those who are already registered on

14 https://www.eudat.eu/services/b2access
15 https://aarc-project.eu/

- 45 -

one of the federated sites, become member of the federation by default. As such,

they are automatically allowed (authentication) to access the federation and

consume resources if granted through an allocation project. If a user has

multiple accounts across different sites, all his/her profiles must be mapped to a

unique Fenix identity for accounting and security reasons.

 The Fenix AAI is conceived as the bounding of two separate services, a Central

IdP which is responsible to proxy authentication requests coming from

federated IdPs, and an Attributes Provider which is responsible to control

authorization requests through budget allocation, groups and roles management.

Each federated site needs to expose its user-base through its own IdP, supporting

standard identification protocols, i.e. SAML v2 or OpenID Connect (OIDC).

Sites are responsible for the operation of their own IdP and free to decide which

authentication mechanisms to support for their users, i.e. username/password,

X.509, 2FA, RSA, etc.

 To be part of the federation, each federated IdP should be able to release a

common set of user profile attributes in response to any authentication requests,

successful or unsuccessful. These attributes should meet the requirements set

by the REFEDS Research and Scholarship Entity Category (R&S)16.

 The Fenix Central IdP needs to be able to proxy authentication requests coming

from external IdPs, such the HBP OIDC server or the eduGain federation17.

 Since the Fenix infrastructure plans to deliver various classes of services, the

AAI needs to cope with this heterogeneity and thus support various access

16 https://refeds.org/
17 https://edugain.org/

- 46 -

interfaces, either based on Internet protocols, such as HTTP (Web Portal,

SWIFT, etc.), or SSH.

 In order to access resources, users will be requested to accept the Fenix access

policy and any extensions appended by individual sites. Global and local

policies should not include conflicting terms or create ambiguity. The fact that

a user has accepted the Fenix general policy will be recorded at the Central IdP.

 Access to resources is granted through the creation of projects/budgets managed

by a central accreditation service called FURMS.

 The federation will also support “service account” to permit machine-to-

machine interaction. However, for traceability reasons, these accounts need to

be attached to a real person who is responsible to manage the service.

Thus, according to the design principles presented above, and the outcomes of

the AARC project, Fenix foresees the deployment of two services covering the

following high-level functions respectively:

 Fenix Central IdP

 Users identification and authentication

 Federation of multiple IdPs by proxying authentication requests

 Validation of user profiles

 Policy registry and management of principles of engagement

 FURMS (Fenix User and Resource Management Service) – central

accreditation service

 Group/budgets membership management

 Authorization attributes provider

 SSH public keys management

- 47 -

 Managing site specific Usage Agreements

 Reporting and metering

Figure 6 – Architecture of the Fenix Authentication and Authorization Infrastructure.

The Fenix Central IdP is responsible to proxy authentication requests among

hosting site’s IdPs. At the same time each site is deputed to maintain its own IdP, plus

as many SPs as the number of offered services. Through this central proxy, a user

already registered on a site or an external IdP, such as eduGAIN ot the HBP one, will

be able to access services and resources provided by other Fenix sites without

registering twice and using its home IdP to authenticate. The central proxy is also

responsible to control the validity of a user profile, including the acceptance of the

Fenix access policy, and to provide a set of APIs to permit hosting sites, or other

services, to retrieve information about users profile basic attributes.

- 48 -

The Fenix Central IdP does not enforce access rights but simply forwards

authenticated user’ attributes to the hosting site which, applying local policies, decides

if that user can access services or not. The Central IdP will be also configured to release

LoA (Level of Assurance) information for each federated IdP, as well as the IdP the

user is authenticating from. If needed, it can also retrieve attributes from external

Attribute Authorities to enrich users’ profile.

In parallel, FURMS will act essentially as a Service Provider (SP) of the Central

IdP with the task of managing and issuing authorization records, such as information

about available budget on sites. Furthermore, in order to serve multiple communities,

the concept of Fenix Community has been introduced. A Fenix Community is a virtual

organisation of scientists, for which the Fenix Resource Providers have committed to

make part of the Fenix Infrastructure available. The approach is very similar to the

virtual organisations used in grid computing and specifically the WLCG (Worldwide

LHC Computing Grid).

While the federation of services supporting web protocols is a widely discussed

topic which many solutions have been developed for, the access to resources via secure

shell logins (SSH) presents different challenges. Our approach to address this

requirement follows the IAM (Identity Access Management) model where user public

SSH keys are stored on a remote IAM service and recall when needed. Each Fenix user

will be responsible to create it public and private keys and upload only the public part

to the IAM service. While trying to access a HPC system via SSH, the user will present

his/her private key and leave the sshd daemon contact the IAM service to validate that

the private key pairs with the public one. This handshake is made possible thanks to the

“AuthorizedKeysCommand” option of the OpenBSD SSH implementation18 which

18 https://man.openbsd.org/sshd_config

- 49 -

serves to specify which service or program to look up for the user’s public key. For

security reasons only “RSA 2048” or “Elliptic Curves” encryption algorithms will be

allowed to create key pairs. In the case any site would not agree to use the

AuthorizedKeysCommand option to look up for the user’s public SSH key on demand,

a simple synchronization mechanism between the central IAM and a local database may

be implemented. However, on a long-term vision, we foresee SSH access dropped off

in favour of web applications, i.e. Jupyter notebooks, to access HPC resources even to

execute very large workloads.

Open data

The discussion about open data has been going on for a long time at various

levels, local, national and within the EU. At EU level, the European Open ScienceCloud

(EOSC) is being discussed, which has resulted in a declaration19 that many countries

have endorsed. Fenix promotes a culture of open data, encouraging users adopt policy,

guidelines to facilitate data sharing, and interoperability and making available needed

technological solutions.

A prerequisite for open data is functioning and coherent e-infrastructure for

storage, reuse, access and analysis of data. At the same time, open data are an important

prerequisite for “data-driven research”. Major inputs are also needed to make existing

data accessible, which includes careful documentation of how data have been generated

and the information the data contain, which is often referred to as metadata.

Standardised metadata are, in turn, a prerequisite for research data living up to the

principle of FAIR data[18], that is to say data that are:

 Findable – easy to find and discover.

19 https://ec.europa.eu/research/openscience/pdf/eosc_declaration.pd

- 50 -

 Accessible – openly accessible without charge or other restrictions.

 Interoperable – comply with widely used standards and data formats.

 Reusable – available to be used and reused.

The fact that data are open and managed according to the FAIR principle should

not be interpreted as an absence of restrictions. The principle for EOSC is that access

to data shall be “as open as possible, as closed as necessary”. Research into

neuroscience, medicine and health in particular, data on individuals play a crucial role.

These are data collected by researchers where private individuals provide the

information, data from registers, patient data, biobanks, genome sequencing and quality

registers. In these cases, technical solutions to protect data and the integrity of

individuals are needed. Respect for the integrity of individuals and research that is

conducted according to applicable legislation and ethical guidelines are both given. The

General Data Protection Regulation (GDPR) entails stronger protection of the integrity

of individuals, at the same time as fulfilling the needs of research. It is important to

emphasise that research is ever more dependent on horizontal data, where individuals

are monitored over long periods. As research is a dynamic process, this means that it

must be possible to assemble databases with broad consent from the individuals

providing information to research. The increased need for long-term studies of

individuals also raises the potential conflict between the requirement to protect the

integrity of sensitive personal data and the requirement to make data available for peer

review on scientific publication. To safeguard the quality of research, this issue needs

further consideration in the future. This is an area that is developing very rapidly, and

continuous discussion is needed about the prerequisites for and ethical attitude of

research.

Chapter IV.

Evolution of High Performance Computing

- 51 -

Chapter IV.

Evolution of High Performance Computing

The purpose of this section is to document the changes that are taking place in

HPC design, and outline some of the likely developments expected in the near future.

The initial part then leads into a discussion of how software is evolving, the challenges

that are being faced, and some of the new directions being explored to address them. It

concludes with a discussion of the implications for researchers developing new codes;

what should they think about in designing their new codes, and how can they avoid

being locked into any one particular architecture.

High-performance computing has evolved remarkably over the past 20 years,

and that progress is likely to continue. HPC is a strategic tool to foster competitive

science while promoting innovation in different disciplines. After having being used

for more than 30 years in climate research, numerical weather prediction, astrophysics

or chemistry, HPC is now contributing to all scientific fields including biology, life

sciences, materials sciences to finally reach social sciences and humanities. Into the

industry field, HPC has been widely used in oil & gas exploration, aeronautics,

automotive and finance, and it is now becoming crucial for ensuring personalized

medicine, develop nanotechnologies or enable the exploitation of renewable energies.

Moreover, HPC is becoming a tool of growing importance for public decision making

by creating simulated scenarios to prevent and react to natural risk events, such as

earthquakes, thunderstorms, floodings, volcano eruptions, biological hazards and

(cyber)-terrorism attacks. However, in recent years, progresses in HPC have been

achieved through greatly increased hardware complexity with the rise of multicore and

Chapter IV.

Evolution of High Performance Computing

- 52 -

many-core processors, sometimes affecting to much the ability of developers to achieve

the full potential of new architectures. Into the Moore’s law regime, also moving from

vector to parallel processing, we have observed relatively smooth transitions from

Gigascale (1985), Terascale (1997) to Petascale (2008), while the next move that should

take the community to Exascale (between 2019 and 2023) is bringing new challenges

still hard to solve, such as energy efficiency and the high cost of moving data.

Another important factor connected with the evolution of HPC systems is the

convergence between numeric simulation and big data workloads due to the high

volume of data coming from next generation scientific instruments, e.g. satellites,

telescopes, microscopes, and sequencers.

Processing vast amount of structured or unstructured data in a profitable manner

is not possible for human beings any longer. This limitation fuelled the rise of a new

paradigm, the High Performance Data Analytics (HPDA), which, combining

processing and data manipulation techniques (assimilation, interpretation, extraction,

prediction), capitalizes on artificial intelligence (AI) and machine learning (ML)

methods to extract new values from data.

As a result, many scientific communities are now combining HPC and HPDA

methods into large-scale analysis pipelines to process massive volume of data generated

by simulations, experiments or observations, and being able to - in-situ or in-transit -

infer further outputs. This convergence will permit the classification and identification

of relevant data features at processing time avoiding the data to be first stored and then

post-processed. In the near future, this could also lead to the development of smart AI-

driven computational steering techniques. In combination to this, the modern AI, the

one combining 25-year-old Deep Neuronal Network (DNN) algorithms with modern

Chapter IV.

Evolution of High Performance Computing

- 53 -

hardware (GPU or FPGA) will benefit from converged HPC/AI architectures for

addressing new scale out challenges including:

 developing more complex and deeper networks (like CapsNet Capsule neural

networks [63]);

 use more complex and multidimensional data and increase training sets;

 develop explainable AI (XAI) methods20.

Impact on multi Petascale and pre Exascale architectures

Because of energy cap and high cost of moving data, the road to Exascale needs

to create a new paradigm, not only technological but also organizational. More

precisely, to pave the way towards Exascale we need to:

 rethink and support data workflows from end to end;

 federate converged HPC/data infrastructures through (dynamic) high bandwidth

network services (like Software Defined Networks);

 ensure the co-existence of stream and batch models, provide smart resources

managers able by secured containerization techniques to support efficiently

multiple software stacks including HPDA and AI;

 enable efficient exchange of data between simulations and analytics going

beyond POSIX limitations;

 develop new multidisciplinary skills in HPC, data management and AI and

foster new insights from scientific and industrial disciplines towards data

discovery.

20 https://www.cmswire.com/digital-experience/what-is-explainable-ai-xai/

Chapter IV.

Evolution of High Performance Computing

- 54 -

With several architectural options still remain open for the Exascale area in

terms of processor, accelerators, memory and I/O subsystems, the multi-petascale and

the pre-Exascale production systems planned to be deployed by the EuroHPC Joint

Undertaking and the Member States around 2020/21 will be based on 2 different kind

of hardware architectures for converged (HPC+AI) nodes:

 (multi, many) core based architectures;

 accelerated architectures using more or less tightly coupled GPU (or FPGA)

with (multi, many) core CPU.

Pre-Exascale systems of approximately 300 PFlops of peak performance are

expected to couple around 45,000 nodes (for multi-many core based partitions) and

3,000 nodes (for accelerated ones).

Based on the requirements coming from scientific and industrial communities,

such systems, based on balanced architectures, in terms of compute capacity per node,

memory capacity/bandwidth per node as well as networking performance, will be used

for both capability21 and capacity22 workloads. They will also serve to accommodate a

mix of HPC and HPDA/AI workflows orchestrated by next-generation resource

managers able to support coexistence of batch and interactive nodes.

Specific HPC options

This section explains the main hardware and software options to build a credible

roadmap towards Exascale. As no significant breakthroughs in hardware technologies

are expected in the next 2-3 years, the focus is on pre-exascale and multi-petascale

21 Execution of large-scale applications spanning potentially to all the system.
22 Execution of coupled multi scale, multi physics applications, ensemble, optimisation and uncertainties

quantification studies.

Chapter IV.

Evolution of High Performance Computing

- 55 -

systems as the fulfilment of their requirements is a necessary condition to make the

successive step.

HPC processing units

There are three main elements which are characterizing recently deployed HPC

systems; a) accelerators such as GPUs attached to generic processors, b) presence of

standalone processors (multi-core) and c) many-core cards. While multi-core

processors provide a generic approach for general HPC workloads, the accelerators and

the many-core ones support a higher number of threads at a lower performance, which

imposes certain limitations to get good performance from them. The most relevant ones

is the high level of scalability that an application must have to profit from the

availability of so many cores without incurring in race conditions.

Although the approaches based on accelerators or many-core provide very

profitable GFlops/watt ratios, HPC standalone processors usually offer lower

performance but without requiring applications to be modified.

Considering the size of the pre-exascale machines, the options to provide a pure

HPC standalone-processor machine is limited, as with the current technologies it will

require an excessive power consumption to provide a 300 PF peak performance

machine. Furthermore, the current options for many-core processors after the

decommissioning of the Intel Xeon Phi product line are currently very limited. Intel is

working on a new many-core architecture for exascale that includes dataflow engines23

but the releases roadmap has not been confirmed yet.

Another improvement path relies into making use of resources more dynamic

to adjust hardware behaviour, such as voltage/frequency scaling and (de)-activation of

23 https://www.nextplatform.com/2018/08/30/intels-exascale-dataflow-engine-drops-x86-and-von-neuman/

Chapter IV.

Evolution of High Performance Computing

- 56 -

functional units, according to application performance needs. Even with these

improvements, the architecture might remain too complex for large HPC applications.

Of course programming environment should be able to provide a standard interface to

hide this complexity. At the hardware level the appropriate features should be available

to support a hybrid approach as MPI + X where X could be either OpenMP v4.0 or

other libraries as well as PGAS + X.

Memory

Although the performance of CPUs and HPC accelerators has improved

drastically over the last years, the delivered peak of compute nodes has not followed

the same positive trend. The gap between theoretical and delivered performance is

directly connected to memory access whose throughout has not registered any

significate improvements; this phenomenon is often referred to as “memory wall”. It is

evident that memory systems play a critical part in HPC systems, directly affecting their

performance, power consumption, and cost of ownership. Recent requirements from

applications and constraints from technologies are shifting HPC systems towards more

complex, deep memory hierarchies. First, requirements for memory capacity continue

to increase dramatically in response to simulation, machine learning, and enterprise

applications [1], [2]. Second, the continued imbalance of computing performance to

memory performance constricts overall application performance. Third, in HPC

specifically, the plateauing performance of both I/O subsystems and interconnection

networks is forcing applications to consider alternative scenarios like in situ

visualization and analytics that utilize large on-node memory to reduce expensive inter-

node data movement. Finally, the conventional memory technology – dynamic random-

access memory (DRAM) – is approaching its limits in terms of density, power, and

Chapter IV.

Evolution of High Performance Computing

- 57 -

cost; hence, researchers are investigating new technology options [3], [4], [5] : non-

volatile memory (NVM), such as 3D-XPoint [14], phase-change memory (PCM [6]),

3D NAND flash [7], and spin-transfer-torque magnetic RAM (STT-MRAM [8]).

Meanwhile, high-performance volatile memory, like Hybrid Memory Cube (HMC [9]),

Wide-I/O 2 (WIO2 [10]), high-bandwidth memory (HBM [11]), and GDDR6 [12],

continues to be actively developed and deployed.

These solutions offer much larger bandwidth (> 1TB/s for HBM2 vs 160 to 200

GB/s for DDR based systems) at same latency level but offering a smaller capacity than

today DRAM memory modules since package size is limited, and thus, if external

memory is still required, an extra level in the memory hierarchy needs to be added.

In general, delivering improvements in bandwidth and latency can have major

impacts on code efficiency. Thus, the challenge is to find the right balance between

future memory characteristics (bandwidth, latency, size, power consumption,

integration and cost) and usage (explicit data placement, automated placement or even

caching). Upcoming Non-Volatile Memory (NVRAM) technologies are opening new

opportunities for HPC systems. New NVRAM will feature much larger byte-

addressable capacities as DRAM; hundreds of GBs vs tens of GBs allowing new

approaches where only compute nodes are populated with HBM. Their performance

will be much better than current FLASH based NVRAM technology approaching

DRAM levels. Furthermore, their endurance should be comparable with DRAM at least

in combination with some hidden wear-levelling technology. They could be used in

HPC systems, both as main memory and ultra-fast I/O. It is clear than these new

technologies will provide new options of memory speed and size within each node but

the way to access to this memory hierarchy may increase the complexity of the codes

and limit its portability. Not surprisingly, this strategy of coupling different memory

Chapter IV.

Evolution of High Performance Computing

- 58 -

layers together provides considerably more flexibility, but it also presents new risks and

challenges. First, this large, multidimensional design space is expensive to evaluate

with existing tools for functional or cycle-accurate simulations. Additionally,

applications, code generation toolchains, and other architectural components must

adapt to each memory technology under consideration. For example applications must

be explicitly ported to use these new memory features, as they are not transparently

managed by the hardware or the operating system. Second, these new memory systems

must be designed for a specific set of applications in terms of computational intensity,

working-set size, memory access patterns, parallelism, etc. If the specific application

requirements and scaling predictions are inaccurate, then the ultimate design could miss

the optimal balance. Third, in this period of expanding options, many of these memory

systems will be unique in that they are immature and the first implementation of this

memory architecture. Designer experience, existing toolchains, and performance

estimates will be less obtainable and require more efforts. As a result, architects and

customers are struggling to design HPC memory systems that effectively balance

multiple factors of cost, performance, capacity, and power. Moreover, many diverse

technologies, such as NAND flash, HBM2, GDDR6, are being rapidly improved [13],

[14], [15] and must be evaluated frequently as new parameters become available. In

this regard, efficient and flexible design tools for memory systems for analyzing and

optimizing these options are gaining in importance.

HPC Systems Interconnect

Application performance relies on parallelism and much depends on the

efficiency of the network interconnecting the compute nodes into a single system. The

HPC system interconnection network must scale together with the compute nodes and

the storage performance. The HPC networks bandwidth is planned to grow from a 100

Chapter IV.

Evolution of High Performance Computing

- 59 -

Gb/s today, to 200, then 400 Gb/s in the coming years thanks to the development of

new generations of SerDes (Serializer/Deserializer) circuits24.

The minimum required bandwidth should be around 2Gb/s per MPI task, but

anything up to this number will be better as it will permit to share in the same network

using QoS channels the MPI communications and the parallel file-system I/O. About

the latencies, the current technologies are providing around 0,5-0.9µs, adding to this

number the latency of each of the hops required to get the final destination of the

package, about message rate, most of the network technologies used at HPC should

provide at least 100-150 million packages per second, and finally such interconnects

should be able to offload MPI traffic, provide adaptive routing mechanisms and ensure

end-to-end reliability of communications.

Possible options for a machine with more than 5000 nodes are either to have a

non-blocking network, or define several islands with blocking (pruning) options among

them. The necessity of a full non-blocking network is relative to the amount of

applications using an important part of the system in a single execution and their

bandwidth requirements. If the expected use of the system is with smaller executions,

the most cost-effective solution is to have islands of enough cores to fulfil at least 90%

of the executions and then a blocking connectivity 1:2 or 1:3 oversubscription factors

between the islands. Thus, the network topology needs to be synchronized with a

resource manager with the capability to manage the different islands throughout the

allocation of jobs. The performance lost due to the blocking factor is application

dependent, and there will be application with no lost due to a 1:3 blocking factor, when

others can be severe affected by the same blocking, so an analysis of the kind of jobs

executed will be an important study to take the final decision.

24 http://emlab.uiuc.edu/jose/Theses/Yang.pdf

Chapter IV.

Evolution of High Performance Computing

- 60 -

Storage

The main interest for HPC users is the maximum capacity and parallel

performance of the file-system, in this case, the number of users using local disks is

reduced. However, having a fast local storage is a good approach for specific I/O than

cannot be afforded by the parallel file-system. In that sense and following the latest

memory technology developments (see section above) a tiered storage solution

incorporating a mix of local storage, burst buffers and HDD and finally a vast cold

storage on HDD/tapes supported by a fast and smart parallel file system need to be

considered.

Any usable parallel file-system needs to support MPI-IO [26], and it will also

be very recommendable to have a checkpointing/restart at the system level, as one of

the main problems we will face off in the future is the reliability of the applications due

to high possibility of failure of one component of the system involved in large

executions. In this case and for performance issues, the techniques of Fault-Tolerance

in MPI [26] and from an application point of view (or ideally the system itself) will be

very important to restart big executions, to manage this restarts a fast and persistent

local file-system should be required, so technologies like NVRAM can be a good

approach. The idea of using NVRAM in high performance computing was already

investigated, especially in the area of data-intensive architectures, where usage of only

DRAM is costly and power-intensive [28]. NVRAM was also already used for

checkpointing of distributed parallel applications. Dong et al. [29] proposed to use

hybrid local and global checkpointing using phase-change memories (PCM).

Narayanan and Hodson [30] proposed to use NVRAM to make whole-system

checkpoints by keeping all data in NVRAM. Gao et al. [31] created their own

checkpointing system that creates partial checkpoints during application execution. It

Chapter IV.

Evolution of High Performance Computing

- 61 -

utilizes runtime idle periods to copy data from DRAM to NVRAM in order not to

interfere with application execution.

Virtualization and Container

Virtualization is an important tool for improving user’s experience while

accessing HPC systems, including exploitability, reliability and security. At the node

level, containers can be set-up to facilitate system administration. VMs and containers

provide a flexible way to tailor the run-time environment for each user and application.

They will also enforce better security as applications will be insulated from system

software and other applications running on the system.

At the network level, virtualization support will allow a better Quality of Service

(QoS). It will arbitrate between concurrent users, applications, data flows, and their

respective priorities. Another important aspect is that it could help to improve system

resiliency with an easier implementation of checkpoint/restart at the system level. It is

interesting to develop virtualization at all levels of the HPC systems and in a coherent

way.

For the pre-exascale and exascale machines, the hardware, the operating system

and the network should be able to support the standard containers and virtualization

systems, e.g. Docker25, Singularity26, Shifter27, etc. and with a level of security enough

for the use of these technologies in a HPC environment. Packaging and running

applications via containers has the potential to enable extreme mobility in

computational modelling and form an integral part of the effort to enable transnational

access to HPC resources and collaboration in research. It offers a method of simplifying

and standardising the building and execution of applications on diverse hardware

25 https://www.docker.com/
26 https://singularity.lbl.gov/
27 https://github.com/NERSC/shifter

Chapter IV.

Evolution of High Performance Computing

- 62 -

platforms without compromising on performance so that researchers can develop

applications on their laptop or local HPC system and easily and quickly get that

application running on different HPC system in other institutions or countries. An

important additional benefit of this is that containerisation can also effectively capture

and preserve the exact tools and environment in which the results of an analysis or

simulation were derived and so help to advance the implementation of Open Science

policies.

In the context of executing applications via containers, a number of factors

unique to HPC need to be addressed. These include the ubiquitous use of the Message

Passing Interface standard as a means of parallelising codes, the use of specialised

hardware such as GPUs and the widespread use of parallel file-systems. Here we will

examine the challenges each of these factors presents as well as how the alternative

technologies address them where relevant.

MPI is a standard API commonly used in parallel HPC applications to pass data

between processes and control the concurrent execution of many independent tasks.

Numerous implementations of the standard exist such as Intel MPI, Cray MPI,

MVAPICH, OpenMPI, each providing a different set of runtime libraries and

configuration options. When containerising an MPI application we first need to

consider how it can be made to work in terms of the correct start-up and execution of

all containers involved and secondly how to make it as portable as possible so that it

can run on multiple systems with minimal (if any) changes.

There are generally two ways to implement MPI from within a container: a) the

entire MPI stack is packed within the container. This is the most commonly used model

and can be made working with different technologies. At first glance it appears to offer

the advantage of fully encapsulating the environment; however critical information

Chapter IV.

Evolution of High Performance Computing

- 63 -

such as how network addressing is set up on the host cluster and specific information

on features and tunings of the HPC network is dependent on the system where the

containers are going to be run. This significantly affects the portability and potential

performance of the container; b) the MPI stack is split partially between the host and

the container. This is the preferable approach as the MPI stack does not need to be built

specifically for a target host or resource but simply requires a compatible version to be

present on the hosting cluster. It also alleviates much of the networking complexities

as the MPI processes in the containers can be started through the batch system or local

MPI start-up method. In this scenario for example, the batch system could call the

regular system installed mpiexec, which will then launch the containers using the set of

nodes allocated to it.

Recent versions of Singularity and OpenMPI have been modified to work well

together (as does Shifter and Cray MPI). Singularity detects when an OpenMPI

application is being built and automatically adds all library dependencies into the

image. Additional factors to consider are how MPI processes communicate between

containers within the same node. Depending on which namespaces are in use, i.e. the

IPC (Inter-Process Communication) namespace, the optimal use of shared memory for

communications may not be available in which case the network must be used which

will increase message passing latency.

GPUs and CUDA

Driven by the insatiable market demand for real-time, high-definition 3D

graphics, the programmable Graphic Processor Unit or GPU has evolved into a highly

parallel, multithreaded, many-core processor with tremendous computational

horsepower and very high memory bandwidth. More specifically, the GPU is well-

suited to address problems that can be expressed as data-parallel computations - the

Chapter IV.

Evolution of High Performance Computing

- 64 -

same program is executed on many data elements in parallel - with high arithmetic

intensity - the ratio of arithmetic operations to memory operations. In November 2006,

NVIDIA introduced CUDA, a general purpose parallel computing platform and

programming model that leverages the parallel compute engine in NVIDIA GPUs to

solve many complex computational problems in a more efficient way than on a CPU.

NVIDIA CUDA is the dominant programming framework, but any language that

allows the code running on the CPU to poll a GPU shader for return values, can create

a GPGPU (General-purpose computing on graphics) framework. Other common

programming standards for GPU parallel computing include OpenCL28 (vendor-

independent) and OpenACC29.

To enable a container to run a CUDA application using the host GPU, there are

two approaches which can be used: a) install the GPU drivers and CUDA libraries

within the container. The disadvantage here is that driver versions must match on the

host and container; b) use a GPU enabled container technology. The nvidia-docker

wrapper is able to create Docker containers with a CUDA runtime which can

interoperate with the host GPU drivers thereby eliminating the need to explicitly match

versions on the host and image. Singularity (version 2.4 or above) enables the use of

the host GPU drivers and CUDA libraries to be automatically bound to a container at

runtime thus eliminating the need to install them in the container image.

Parallel cluster file systems such as Lustre30, BeeGFS31 and IBM Spectrum

Scale (GPFS)32 are a key component of almost all HPC systems and enable a consistent

28 https://www.khronos.org/opencl/
29 https://www.openacc.org/
30 http://lustre.org/
31 https://www.beegfs.io/content/
32

https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.2.3/com.ibm.spectrum.scale.v4r23.doc

/bl1ins_intro.htm

Chapter IV.

Evolution of High Performance Computing

- 65 -

view of a shared persistent file system on all nodes with high performance being a

primary design principle. All of the container technologies presented above allow

containers to mount a directory structure from the host into the runtime container so

that applications can read and write data to this filesystem without requiring specific

software to be installed. Thus, for example, a user’s home directory on GPFS can be

mounted at runtime in a container and the application can read its input data from there

and write output as the job proceeds. Differences in the use of the Network Namespace

between Docker and the other container implementations suggest that there may be a

performance overhead on I/O for Docker.

However the layered UnionFS33 image format of Docker is not compatible with

parallel file systems and so native Docker images must be stored on a separate ext4 file-

system, possibly duplicated on each node. The other technologies all use flat images

that are essentially a single large file in the case of Singularity or a tar file of a directory

structure which is subsequently extracted in the case of Charliecloud34. The single large

image file used by Singularity is particularly well suited to parallel file systems which

are typically optimised for this type of file. Also, for applications such as Python

workflows which involve accessing a very large number of small module files, having

the container image as a single file enables much higher performance in terms of startup

time because the metadata servers are not overwhelmed by many nodes simultaneously

performing metadata lookups on hundreds of small files. Benchmarks35 have shown

that as the number of concurrent Python interpreter increases with the size of a job, the

start-up time increases due to file system contention but that this can be offset by using

Singularity containers to reduce the number of file accesses (Figure 7).

33 http://unionfs.filesystems.org/
34 https://github.com/openhpc/ohpc/issues/712
35 https://paperpile.com/c/C6IbYQ/Tt8t

Chapter IV.

Evolution of High Performance Computing

- 66 -

Figure 7 – Start-up time of python script on container vs regular file system install.

The first test and comparison reported below is a proof of concept test to run a

MPI benchmark across multiple nodes. These tests are intended to examine and

demonstrate the feasibility of running HPC applications using containers, with

performance considerations coming later into the document.

For the purpose of testing we selected a very simple hybrid micro-benchmark

which can be run with multiple configurations (OpenMP, OmpSs, MPI+OpenMP and

MPI+OmpSs) to study how parallel applications may behave with containers and verify

the BSC’s DLB (Dynamic Load Balancing)36 library is able to handle load imbalances

from inside. We decided to launch our tests twice using Docker, Singularity and Shifter,

one without DLB and one enabling it, using two nodes with two MPI processes each

and four threads per MPI process, so in total we were running eight threads of our

benchmark on each node. In the Singularity and Shifter cases, when submitting the jobs

we just invoked from the login node mpirun specifying a hostfile and desired bindings,

36 https://www.bsc.es/research-and-development/software-and-apps/software-list/dlb-library-dynamic-

load-balancing

Chapter IV.

Evolution of High Performance Computing

- 67 -

treating containers as wrappers of our program. With Docker, however, we deployed

two containers as virtual nodes connected through an overlay network and ran our tests

from inside since Docker’s aim is to make containers as isolated and autonomous as

possible.

In Figure 8 we can see the execution flow of the same executable with Docker,

Singularity and Shifter respectively. In red it is represented each OmpSs’ task execution

(the parallel code) and in pink all the sequential code (the code outside parallel regions)

that each MPI process performs, which consists of MPI calls and the sequential code of

our micro-benchmark. We can also observe that the execution presents a considerable

load imbalance between MPI processes 1.1, 1.2 and 1.3, 1.4 because there are threads

doing nothing useful, which is represented in black since they are idle, between pink or

red regions.

Figure 8 - Paraver trace without DLB using Docker (top), Singularity (middle),

Shifter (bottom).

Chapter IV.

Evolution of High Performance Computing

- 68 -

Essentially the executable behaves the same with all three implementations;

nevertheless, it is evident that Docker takes some more time to complete a task than

Singularity or Shifter. Considering the fact that Docker containers operate using an

overlay network it makes sense there exists extra overhead due to MPI communications.

Figure 9 - Paraver trace with DLB using Docker (top), Singularity (middle), Shifter

(bottom).

Figure 9 shows the flow of test application with dynamic load balancing. The

three traces (Docker, Singularity and Shifter) are very similar and we can clearly

appreciate the effect of enabling DLB library. Besides, each MPI process now has eight

threads instead of two. The application possesses the same amount of hardware

resources as in Figure 8, but with DLB each process is able to borrow the assigned

CPUs of the other MPI process in the same node, so at the end one MPI process is able

to potentially run on eight CPUs and therefore it needs eight threads now. If we take a

closer look it seems evident how when the less loaded MPI processes 1.2 and 1.3 finish

their work, instead of blocking themselves and going idle their CPUs DLB assigns that

Chapter IV.

Evolution of High Performance Computing

- 69 -

resources to the other two processes which still have computations to do. Thanks to a

more efficient hardware usage because DLB avoids having CPUs in idle state, we were

able to get a speedup of around 30% with respect to the same execution but without

DLB enabled presented above.

Starting from these results, one may conclude that: a) it is viable to launch MPI

applications with Docker, Singularity and Shifter. The benchmark presents very similar

behaviour with Docker, Singularity and Shifter, thus it is logical to believe that these

three implementations do not interact significantly with the application’s execution.

Docker brings some overhead that may be due to the implementation of the network

layer. Applications seem to be easily scalable with Singularity and Shifter, with Docker

however we would need a more complex deployment involving explicit network and

MPI setup and configuration.

Chapter V.

Deep Learning

- 70 -

Chapter V.

Deep Learning

With the data doubling every year, data intensive applications are increasing as

well as the demand of high-end resource capacity to analyse collected data sets. The

explosion of analysis applications have become a major driver for revising system

architecture and tools leading to the proliferation of software components and

frameworks which may require multi-node and multi-core systems to scale-up and

provide good performance. To this respect, Machine Learning, and in particular Deep

Learning [46], is a field that is rapidly taking over a variety of aspects in our daily lives.

In the realm of deep learning, it lies the Deep Neural Network (DNN), a construct

inspired by the interconnected nature of the human brain. Trained properly, the

expressiveness of DNNs provides accurate solutions for problems previously thought

to be unsolvable, simply by observing large amounts of data. Deep learning has been

successfully implemented for a plethora of subjects, ranging from image classification

through speech recognition [48] and medical diagnosis, to autonomous driving and

defeating human players in complex games. Although neural networks have attracted

the attention of the data mining community since many years, they only rose in success

once the available computational power permitted training on workstations by

exploiting their inherent parallelism. As datasets increase in size and DNNs in

complexity, the computational intensity and memory demands of deep learning

increase proportionally. Training a DNN to competitive accuracy today essentially

requires a cluster of machines with high-performance computing architectures. To

harness the computational power available in such systems, different aspects of training

Chapter V.

Deep Learning

- 71 -

and inference (evaluation) of DNNs have been modified to increase their underlying

concurrency.

Consequently, the first successful modern DNN, such as AlexNet [49],

managed to outperform existing classification methods by a factor of two, and current

prevalent DNNs [47] outperform AlexNet by an additional factor of ∼2.9.

However, the high popularity of these methods has resulted in numerous open-

source software tools becoming accessible to the public and popular across different

scientific disciplines. Conversely, with the growth of applications and tools, it is

becoming difficult for researchers to estimate how much resource is needed to run their

analyses and select appropriate software and hardware components. For instance

training deep learning models is a time-consuming process and many software tools are

being designed to exploit special hardware features such as multi-core CPUs and many-

core GPUs to shorten the training time.

In this section the results of a comparative study of state-of-the-art deep learning

tools benchmarked onto Cineca HPC systems is presented. The comparison takes in

consideration different aspects including the impossibility to benchmark all tools

available on the market, the existence of tools supporting hardware accelerators and the

availability of precedent studies [19] [20]. Our results show that tested tools are able to

leverage underneath system capabilities to achieve significant performance and that no

single software exists that outperforms others opening space to further optimisation.

Although these workloads stress all system components, such as CPU cores, memory,

and storage volumes, inter-node communications might introduce a significant

overhead affecting overall performance. The update of deep network weights requires

many collective communications. In many circumstances if you have a large data set it

is better first to consider writing a custom, optimised, in-memory version of the code

Chapter V.

Deep Learning

- 72 -

rather than investing effort in trying to distribute the load on a multi-node cluster. This

is also because most of the commonly available tools leverage traditional BSD sockets

interface to communicate which prevent the use of RDMA (Remote Direct Data

Access) present in modern low-latency networking technologies. Furthermore, only

few tools make use of library supporting low level processor instructions for linear

algebra, i.e. SSE, AVX, AVX2, AVX512, etc. Many machine-learning workloads are

memory bandwidth bound and tools, especially those based on Java, do computation

directly on compressed data and thus no easy use of inner math kernels is possible.

Finally, despite the diffused belief, many tools show substantial limits while handling

very large data sets resulting into the application to crash or exceed memory capacity,

e.g. stack overflow.

Performance has been measured using the convnet-benchmarks suite37 that

tests all publicly accessible implementations of convolutional networks and includes

models for object localization/detection from images/videos which won the Large Scale

Visual Recognition Challenge on different years38.

Frameworks have been selected according to their ability to support three

distinct approaches for solving a deep learning task and are based on three distinct low-

level libraries, Intel MKL DNN, Intel MKL, NVIDIA cuDNN respectively. This part

of the document reports about running performance of deep learning tools on different

types of neural networks and different hardware architectures, including Intel

Broadwell, Intel Knights Landing, and NVIDIA Tesla K80, Tesla P100. Results show

that tools are able to make good use of platform characteristics and reach significant

performance. Studied networks are listed below:

37 https://github.com/soumith/convnet-benchmarks
38 http://image-net.org

Chapter V.

Deep Learning

- 73 -

 AlexNet [22]. Developed by Alex Krizhevsky, Ilya Sutskever and Geoff

Hinton, it is considered the first work that popularized Convolutional Networks

in Computer Vision. The AlexNet was submitted to the ImageNet ILSVRC

challenge in 2012 and significantly outperformed the second runner-up (top 5

error of 16% compared to runner-up with 26% error). The Network had a very

similar architecture to LeNet, but was deeper, bigger, and featured

Convolutional Layers stacked on top of each other.

 GoogLeNet [23]. The ILSVRC 2014 winner was a Convolutional Network

from Szegedy et al. from Google. Its main contribution was the development of

an Inception Module that dramatically reduced the number of parameters in the

network (4M, compared to AlexNet with 60M).

 Overfeat [24]. This integrated framework, based on CNN, is winner of

ILSVRC 2013 on localization task and obtained remarkable results also in

classification and detection tasks. The novelty of the approach resides on the

application of a CNN on multiple locations of the image and the ability to

predict position and size of the bounding box surrounding objects.

 VGG [25]. Visual Geometry Group (VGG) of Oxford University studied the

effect of the convolutional network depth on image recognition tasks accuracy.

This group ranked number one on localisation and second on classification tasks

ILSVRC 2014. For this benchmark, model A is taken in consideration.

Tested frameworks

Caffe

Caffe application can read prototxt files containing the definition of the network

and data sources, while minimization algorithm parameters are set on a secondary text

Chapter V.

Deep Learning

- 74 -

file. Python API is also available and supports model loading, I/O, visualization and

model training instrumentation. In this work we are considering two different caffe

development branches:

 Caffe (bvlc) is a deep learning framework made with expression, speed, and

modularity in mind. It is developed by the Berkeley Vision and Learning Center

(BVLC) and community contributors39. Release 1.0.0 exploits recent Pascal

series GPUs thanks to CUDA 8.0 and CUDNN 6.0. Multi GPU (data parallel

model) training is supported.

 Caffe (Intel) is a fork of the main distribution dedicated to improving Caffe

performance when running on Intel Xeon processors (HSW, BDW, Xeon Phi).

Computational backend is based on Intel Math Kernel Library for Deep Neural

Networks (mkl-dnn)40: an open-source intel project that provides fast

implementation of common functions for neural networks carefully designed

for Intel multicores and manycores. OpenMP is used for shared memory

parallelism, while hardware vectorization is supported up through latest

AVX512. For this benchmark, we used mkl-dnn 0.9 and mkl/2017 and Caffe

1.0.0.

Theano

Theano is a Python library for the definition and optimization of mathematical

functions involving n-dimensional arrays. Among different building blocks, a relevant

number of layers for the implementation of neural networks are present. After the

definition of the net, the library builds a C++ source that will be used for the actual

training and inference phases.

39 https://github.com/intel/caffe
40 https://github.com/01org/mkl-dnn

Chapter V.

Deep Learning

- 75 -

 Theano (native) is developed at Universit de Montral4. Release 0.9.0 is based

on CUDNN 5.1, while master branch can exploit GPU architectures through

libgpuarray 0.6.8, CUDA 8.0 and cudnn 6.0. Although beyond the purpose of

this paper, it is worth noting that multi-gpu support is achieved through the

adoption of Nvidia NNCL open-source project.

 Theano (MKL) is a branch of the main distribution able to leverage Intel

mathematical library (Intel MKL). Release 1.1 (based on native 0.9.0) is

considered.

TensorFlow

TensorFlow is an open source software library for numerical computation using

data flow graphs5. It is capable to leverage NVIDIA CUDA Deep Neural Network

library (cuDNN), a GPU-accelerated library of primitives for deep neural networks6.

Thanks to a close collaboration between Google and Intel, optimizations aiming at code

optimization for Intel CPUs and manycores are already available on Tensorflow main

branch7. Code refactoring has been carried out in order to allow SIMD vectorization

(both AVX2 and AVX512 can be exploited, depending on the actual hardware);

moreover a number of computational kernels are based on MKL and mkl-dnn.

Neon

Neon is the deep learning framework of the Intel Nervana initiative committed

to achieve the best performance on all types of hardware8. The benchmarks used

version 2.0.0+ that comes with Intel MKL support, which enables multi-threading

operations on Intel CPU. A multi-GPU support seems to be available on Nervana Cloud

only. Neon is highly optimised for Maxwell GPUs. Although it might get speedups over

CPUs, note that on a pre-Maxwell GPU it might not experience the fastest performance.

The benchmarks use the recommended settings on Intel architectures, that are: KMP

Chapter V.

Deep Learning

- 76 -

AFFINITY=compact,1,0,granularity=fine, and the AVX512 compiler flag has been

enabled on the Intel Knights Landing system. Moreover the number of threads are set

to the number of cores through the OMP NUM THREADS variable. Although Neon

provide python code with option for setting the batch size and other parameters, the

default batch size is hardcoded in the codes.

Obtained results

This part of the document summarises the results obtained by previously

introduced frameworks when running on hardware described in Table 1. Both learning

and inference tasks can be characterised by a simple measure that describes the

capability of the underlying network to ingest a number of images on a unit of time.

Generally, when training a model, a stochastic gradient descent (SGD) approach is used

to decrease the value of a given cost function. The original convnet-benchmark

approach is to provide the forward-backward time (averaged over 10 runs) for a fixed

batch size. This running time is related to one single iteration of a SGD, when the same

batch size is selected. Different hardware can require different data sizes to better

exploit their inner parallel structures. We chose to report the highest number of images

per second obtained, alongside with the relative batch size. Forward time is related to

the velocity of performing inference tasks, only the evaluation of a function, not its

gradient, is involved.

Name CPU # Nodes RAM (GB) Accelerators

MARCONI A1 Intel Broadwell

2x Intel Xeon

E5-2697

v4@2.3GHz

18 cores each

1512 128 n/a

MARCONI A2 Intel Knights

Landing

1x Intel Xeon

3600 96 + 16

(MCDRAM)

n/a

Chapter V.

Deep Learning

- 77 -

Phi7250

@1.4GHz

68 cores

MARCONI A3 Intel SkyLake

2x Intel Xeon

8160

@2.1GHz

24 cores each

3216 192 n/a

GALILEO Intel Haswell

2 x Intel Xeon

2630 v3

@2.4GHz

8 cores each

524 128 78 NVIDIA

K80

2 NVIDIA

P100

Table 1 – Cineca systems description

Concerning CPU architectures (Marconi A1 and A2), the most significant

performance boosts are achieved by Intel branches of Caffe and Theano with respect to

their native counterparts. For example, Theano/Intel is able to process a number of

images which is 3.2 times larger in forward, 5 times larger in forward-backward

evaluations, for a batch of 512 images; a similar behaviour has been observed with

Caffe. For this reason, only the performance of Intel branches in A1 and A2 is

considered. Optimal number of OpenMP threads seems strictly related to the effective

number of cores. Thus results are obtained by fixing OMP NUM THREADS to 36 on

A1 and 68 on A2.

Library System Imgs/s (fwd/back) Imgs/s (fwd)

Caffe-intel Marconi (A1)

Marconi (A2)

60 [bs: 2048]

69 [bs: 2048]

358 [bs: 2048]

493 [bs: 2048]

Caffe (native) Galileo (K80)

Galileo (P100)

107 [bs: 512]

458 [bs: 1024]

319 [bs: 512]

1450 [bs: 1024]

TensorFlow Marconi (A1)

Marconi (A2)

Galileo (K80)

Galileo (P100)

131 [bs: 1024]

214 [bs: 1024]

258 [bs: 512]

652 [bs: 512]

424 [bs: 1024]

709 [bs: 1024]

753 [bs: 512]

1769 [bs: 512]

Theano-intel Marconi (A1)

Marconi (A2)

112 [bs: 1024]

174 [bs: 1024]

326 [bs: 1024]

582 [bs: 1024]

Theano (native) Galileo (K80)

Galileo (P100)

80 [bs: 512]

311 [bs: 512]

226 [bs: 512]

1261 [bs: 512]

Chapter V.

Deep Learning

- 78 -

Neon Marconi (A1)

Marconi (A2)

Galileo (K80)

Galileo (P100)

120 [bs: 4096]

189 [bs: 2048]

61 [bs: 1024]

1131 [bs:1024]

370 [bs: 4096]

603 [bs: 1024]

226 [bs: 128]

3371 [bs: 1024]

Table 2 - Performance summary of a number of frameworks, considering Overfeat

neural network. Both forward (fwd) and forward-backward (fwd/back) number of

images per second are considered, between square brackets is the batch size.

Table 2 shows that TensorFlow performance is both remarkable and well

balanced among all considered architectures. Neon seems to be highly optimised for

recent NVIDIA Pascal architecture, i.e. Tesla P100 card, with a factor of at least 2 with

respect to others. On the other side, it performs poorly on older cards. Vectorized

hardware, i.e. Intel Knights Landing, can be fruitfully exploited by TensorFlow (after

enabling Intel optimisation described in Subsection 2.4.3) and benchmarks show

comparable performance with respect to NVIDIA Tesla K80 GPU. From Figure 10 and

Figure 11 it is clear that the performances are not heavily impacted by the selection of

a suitable batch size.

Figure 10 - Performance distribution, when varying the batch size: forward pass on

Overfeat network is considered.

Chapter V.

Deep Learning

- 79 -

Figure 11 - Performance distribution, when varying the batch size: forward-backward

pass on Overfeat network is considered.

A further series of tests has been conducted in order to find the optimal

conditions for Tensorflow 1.10.0 on the partition A3 of Marconi. As a first step, tests

were performed on one node only and in a second time, they were then extended to

multiple nodes. An A3 node comprises two sockets each with 24 Skylake cores Intel

Xeon 8160. Images from the synthetic version of the database ImageNet41 were utilized

both during the training and inferring phases. The convolutional neural network used

has been RESNET50 [64], which was run for 100 iterations. Tests were launched

specifying the following SLURM42 options:

 --nodes=N,

 --ntasks-per-node=n,

 --ntasks-per-socket=n/2,

41 http://www.image-net.org/
42 https://slurm.schedmd.com/

Chapter V.

Deep Learning

- 80 -

 --cpus-per-task=48/n,

 --walltime=01:00:00

where N refers to the requested number of nodes and n indicates the number of cores

requested per node and corresponds, when asking only one node, to the total number of

desired mpi tasks. Furthermore, the ambient variable OMP NUM THREADS is set to

48/n, equivalent to the quantity specified in --cpus-per-task. We verified that not

specifying the number of tasks per socket and the number of cpus per tasks leads to

performance degradation. The parameter kmp affinity was set to

granularity=fine,verbose,compact,1,0, while horovod fusion threshold was chosen as

64 GB.

A detailed parameter scan has been carried out varying the following quantities:

1. batch size per processor: 32, 64, 128, and 256 images;

2. number of mpi tasks (omp threads): 1 (48), 2 (24), 4 (12), and 8 (6);

3. number of inter threads43: 1, 2, 4, 8, and 16;

4. kmp blocktime44: 1 and 20.

In the performed tests the value of intra threads3 was set to the number of omp

threads. We verified that the simulation failed when indicating more mpi tasks due to

memory limitation. Results are reported in Figure 12, which shows the number of

processed images per second versus the number of MPI tasks for different values of

kmp blocktime, batch size and number of inter threads. The best result has been obtained

using 2 MPI tasks, 24 OMP THREADS with 24 intra threads and 1 inter thread, batch

43 Thread pool used by TensorFlow to run concurrently operations that are independent in the graph.
44 Time, in milliseconds, that a thread should wait, after completing the execution of a parallel region,

before sleeping.

Chapter V.

Deep Learning

- 81 -

size/proc = 256 (global batch size = 512), and kmp blocktime = 20. In this case 97.79

images per second were processed, while the same setup, but a smaller kmp blocktime,

leads to 95.22 images per second. In general, it can be observed that a smaller value (1

or 2) for the inter threads parameter is more beneficial in term of performances. For

batch size of the order of 128 and 256, the highest number of processed images per

second is obtained selecting 2 MPI tasks. For smaller batch sizes, results indicate that

good performances can be achieved even with an higher number of mpi tasks (and

lower number of omp threads). It is interesting to underline the performances obtained

considering a batch size of 64 with 8 mpi tasks (6 omp e intra threads) for a global batch

size of 512, 2 inter threads and kmp blocktime = 1. In this case, Tensorflow could

process up to 91.79 images per second. This result is encouraging especially with the

perspective of using more nodes and so smaller batch size per mpi task. We underline

that, since only 100 iterations were considered, data on the accuracy are not reported

because meaningless.

Chapter V.

Deep Learning

- 82 -

Figure 12 - Intranode test results for kmp blocktime = 1 (left) and 20 (right). The plots

report the images processed per second as a function of the number of mpi tasks (and

implicitly the number of omp and intra threads, since these have been set as the ratio

between 48 and the number of mpi tasks). The batch size per processor is increasing

from the top towards the bottom. Different colors have been used for the number of

inter threads: 16 (cyan), 8 (violet), 4 (green), 2 (light blue), and 1 (dark blue).

The previous tests indicate as optimal setup in term of performances the

following:

Chapter V.

Deep Learning

- 83 -

1. batch size per processor: 256 images;

2. number of mpi tasks per node (omp e intra threads per node): 2 (24);

3. number of inter threads: 1;

4. kmp blocktime: 20.

This setup was then utilized to perform tests on more than one node. In

particular a scalability test using 2, 4, 8, 16, 32, and 64 nodes (and as a consequence 4,

8, 16, 32, 64, and 128 MPI processes) has been carried out. Results are illustrated in

Figure 13, where the number of processed images per second is reported versus the

number of MPI tasks. The plot shows that the scaling is linear.

Figure 13 - Processed images per second versus number of mpi tasks. A batch size per

processor of 256 images has been considered. The other parameters were chosen

according to the tests performed on one node: 2 mpi processes per node, 24 omp

threads, 1 inter thread, and kmp blocktime = 20.

The same scalability test has been performed also for a case with a smaller batch

size per processor. In particular, the following setup has been considered:

1. batch size per processor: 64 images;

2. number of mpi tasks per node (omp e intra threads per node): 8 (64);

Chapter V.

Deep Learning

- 84 -

3. number of inter threads: 2;

4. kmp blocktime: 1,

because on one node it led to more than 90 images processed per second. Results are

shown in Figure 14. Also in this case, the scaling over more than one node is quite

linear, with the performances dropping a little when using 64 nodes.

Figure 14 - Processed images per second versus number of mpi tasks. A batch size

per processor of 64 images has been considered. The other parameters were chosen

according to the tests performed on one node: 8 mpi processes per node, 6 omp

threads, 2 inter threads, and kmp blocktime = 1.

Chapter VI.

Apache Hadoop and Apache Spark

To perform even a simple analysis over a large amount of data in a reasonable

amount of time, it is desirable to have some mechanisms that are able to distribute

processing tasks over distributed resources without introducing much complexity or re-

engineering the whole application. Furthermore, as multiple science fields have started to

use analytics for filtering results between coupled simulations (e.g. materials science or

climate) or extracting interesting features from high throughput observations (e.g.

telescopes, particle accelerators), the incentives for the deployment of large scale data

analytics tools on High Performance Computing systems are growing.

The framework that is attracting attention for its capability to distribute processing

of petabyte-class big data is Apache Hadoop. Together with its distributed file system

HDFS45 and its implementation of the Map-Reduce programming model, Apache Hadoop

is able to bring the computation to the places where data is stored. Hadoop [34] and,

successively Spark [34], provide a high level and productive programming interface for

large-scale data processing and are able to operate on datasets which are larger of the

memory capacity of a single compute node. Through specialized runtimes they reach good

performance and resilience on data center systems for a robust ecosystem of application

specific libraries [36][37][38].

45 Hadoop Distributed File System

Chapter VI.

Apache Hadoop and Apache Spark

- 86 -

They implement the Map-Reduce model [39] using an abstraction layer in which

programs are expressed as data flow graphs. The nodes in the graph are of two types: map

operations, which are purely local, and reduce operations, which can involve

communication between multiple nodes. The traditional Map-Reduce framework [39] is

limited to acyclic graphs, preventing efficient representation of iterative methods, and it

uses data redundancy to provide resiliency. In contrast Spark can handle cyclic and acyclic

graphs, and provides resiliency through resilient distributed datasets [40] (RDD), which

carry sufficient information to re-compute their contents. In particular, the ability to

express iterative algorithms accelerated Spark’s adoption that continues to attain new

problem domains.

To leverage on these scalability characteristics and enable fast processing of

scientific data sets, we developed a prototype software package able to process binary data

through spawning Map-Reduce tasks while introducing minimum computational overhead

and without modifying existing application code. The code was developed to analyse

climate data but it can be generalized to cover other use cases, including neuroscientific

ones.

The package is formed by the combination of two tools, Pipistrello, a Java utility

that allows users to execute Map-Reduce tasks over any kind of binary file, and Tina a

lightweight Python library that building on top of Pipistrello is able to process scientific

dataset, including NetCDF46 files. We benchmarked the combination of this two tools using

a test Apache Hadoop Cluster (4 nodes) and a relatively small data set (200 GB), obtaining

encouraging results. When using larger clusters and larger storage space, Tina and

46 https://www.unidata.ucar.edu/software/netcdf/

Chapter VI.

Apache Hadoop and Apache Spark

- 87 -

Pipistrello should be able to scale-up and analyse hundreds of Terabytes of scientific data

in a faster, easier and possible efficient way.

Pipistrello

Pipistrello47 is a Java utility very similar in philosophy to Hadoop-Streaming that

allows users to run Map-Reduce jobs over any kind of binary files. Just as Hadoop-

Streaming, Pipistrello requires mapper and reducer scripts to comply with a set of

conventions which are fundamental to build the common processing chain ”input —

mapper — reducer — output” and to get the four steps be correctly linkable together. Most

of the magic of Pipistrello lies inside its implementation of the Mapper

HdfsToLocalTranslator classes. The class Mapper uses the class HdfsToLocalTranslator to

get the local path of the data corresponding to the input that the MapTask needs to run over.

The class HdfsToLocalTranslator is in charge of interacting with the NameNode, without

starting any new JVM process, to get the name of the local file corresponding to a given

HDFS file. Once the name is leaked inside the Mapper class, it can be given to the mapper

script as an argument13. After the mapper script is executed, the Mapper class will put its

output (a file) onto the HDFS volume. It will also read the stdout of the mapper script (a

filename) and set it as the value of the (key,value) pair that the Map-Reduce framework

will send to the reducer. Map-Reduce will start a ReduceTask in any available node with

enough resources to run it. At this point, (key, value) pairs are going to be fed to the Reduce

class. The Reducer class will open a text file files to reduce.txt and write all the values

(filenames), one for each line. At the same time, the Reducer class will download these

files from the HDFS to make them available locally. Finally, the Reducer Class will launch

47 https://pipistrello.readthedocs.io

Chapter VI.

Apache Hadoop and Apache Spark

- 88 -

the reducer script, giving it as an argument the file files to reduce.txt and its output (a file)

is uploaded to HDFS.

Tina

Tina48 is lightweight Python library that sits on top of:

 Iris49 to handle NetCDF data;

 Snakebite50 to efficiently communicate with HDFS;

 Pipistrello to launch Map-Reduce jobs over a scientific dataset.

Despite its promises for good scalability and performance, Apache Hadoop retains

some drawbacks that prevent NetCDF5 files to be analysed out-of-the-box for the

following reasons:

 Apache Hadoop is designed and highly optimized to read and write text data while

weather and climate scientists work with binary data in the form of NetCDF files;

 HDFS stores the data by splitting every file in blocks and distributing those blocks

among different nodes. NetCDF files cannot be easily split without corrupting

the data;

 Java is the most used programming language for MapReduce applications while

climate scientists codes are written in every programming language except Java.

48 https://tina.readthedocs.io
49 https://scitools.org.uk/iris/docs/latest/iris/iris/fileformats/netcdf.html
50 https://github.com/spotify/snakebite

Chapter VI.

Apache Hadoop and Apache Spark

- 89 -

Preliminary tests were performed by generating 4-D arrays of synthetic data

(doubles representing temperature values) with different sizes using a 4 nodes Apache

Cluster (16GB RAM - 8 cores each). The arrays were then distributed among several

NetCDF data sets in chunks of 1284 (which sums to a global size of ∼ 2 GB). For the sake

of testing, only two different array sizes were tested, (128 × 2) distributed over 16 files and

(128 × 3) distributed over 81 files. The analysis made to test the performance of the Apache

Hadoop cluster, running Tina and Pipistrello Map-Reduce jobs, consisted on computing

the time-height-average temperature of each of the whole arrays. Figure 15 shows speed-

up for the analysis of these arrays. By comparing those numbers, it is evident that, for the

array sizes tested and the chunking of the data, Pipistrello and Tina provide good results.

The Map-Reduce analysis done for the smaller array takes 1=3 of the time the best local

approach (a local Map-Reduce approach, as the big amount of data does not fit in memory),

while, for the larger array, it takes only 1=2:5 of the time. Pipistrello and Tina are

experimental software. Further enhancements are still needed to make it as stable and

usable as Luigi and Mrjob are. The bright side, however, is that this work has traced the

path and paved the road to future development. In the immediate future, the software will

be used for the re-analysis of the Mediterranean Sea biogeochemistry produced in the frame

of the EU Copernicus Marine Environment Monitoring Services [50] and more broadly to

any large coupled Ocean-Atmosphere climatic dataset that will be produced targeting the

Mediterranean region in the framework of CORDEX phase 2 FPS (Flagships Pilot Studies)

over the European region [51].

Chapter VI.

Apache Hadoop and Apache Spark

- 90 -

Figure 15 - Speedup reached for each case (red points) and the ideal speedup (3, for our

3-node cluster) marked by the dotted line.

Using Apache Hadoop and Spark in a HPC context

Hadoop and Spark are designed to implement stateless operation for resilience and

parallelism purposes by opening and closing the files involved in each individual data

access. While doing this operation they assume that the computing nodes are equipped with

local disks which usually do not affect the overall job time for opening or creating a file.

However, what is valid for a standard data centre does not apply for HPC systems where

file metadata operations are a common scalability bottleneck. In a distributed data centre,

environment disk I/O is optimized for latency by using local disks and the network between

nodes is optimized primarily for bandwidth. In contrast, HPC systems use a global parallel

Chapter VI.

Apache Hadoop and Apache Spark

- 91 -

file system, with no local storage: disk I/O is optimized primarily for bandwidth, while the

network is optimized for latency.

Consequently, any effort on scaling these frameworks up and out on an HPC

installation has first to address the data management concern.

For instance, the data movement is one of the performance determining factors in

any large scale system. In Spark, data is logically split into partitions, which have an

associated worker task. A partition is further subdivided into blocks. A block is the

minimum unit of data movement and execution task. Figure 16 shows the Spark compute

engine interaction with the block and shuffle managers, which control data movement. The

BlockManager handles application level input and output data, as well as intermediate data

within the Map stages. The ShufflueManager handles runtime intermediate results during

the shuffle stage.

For the sake of reliability and scalability, Spark manipulates data combining global

as well as local scope. Application level data (RDDs)51 use a global naming space while

intermediate data blocks generated throughout execution have a local scope. However,

since objects may exceed the capacity of the node physical memory but still requested to

be efficiently moved through the vertical storage hierarchy, managing logical naming

schemes with underlying system architecture is a challenge. For instance, when global

object is distributed across multiple storage volumes a long latency naming service may be

needed to locate its physical location. Conversely, any locally named object stored in a

physically shared storage may experience unexpected resource contentions while servicing

requests. A current research direction in the Spark community aims at proving an efficient

51 https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd.html

Chapter VI.

Apache Hadoop and Apache Spark

- 92 -

global naming service able to reduce network traffic. Within HPC installations, the global,

usually parallel, file system implements the global naming service. As anticipated above,

data may move across two dimensions, vertical and horizontal respectively, for computing.

Vertical Data Movement

Vertical data movement refers to the movement through the entire memory

hierarchy, including persistent storage. It is needed to move input data blocks into the

memory for processing and for storing output data to the persistent storage. To minimize

vertical movement for RDDs, Spark allows persisting data in the fast level of memory. As

fast memory is capacity constrained, the Spark runtime assigns the task of moving objects

across the memory hierarchy to a block manager. Whenever the working set size (input

data or intermediate results) exceeds memory capacity, the block manager may trigger

vertical data movement. The block manager may also decide to drop a block, in which case

its later access may trigger additional vertical data movement for recomputation. Research

efforts such as Tachyon [52] aim to reduce expensive (to storage) vertical data movement

by replacing it with horizontal (inter-node) data movement. In network-based storage

systems, a critical [53][54] component to the performance of vertical data movement is the

file setup stage (communication with the metadata servers).

Chapter VI.

Apache Hadoop and Apache Spark

- 93 -

Figure 16 - Data movement in Spark and the interaction with the memory hierarchy.

Horizontal Data Movement - Block Shuffling

The horizontal data movement refers to the shuffle communication phase between

compute nodes. Spark assigns the horizontal data movement to the shuffle manager and the

block manager. A horizontal data movement request of a block could trigger a vertical data

movement because a block may not be resident in memory. Optimizing the performance

of horizontal data movement has been the subject of multiple studies [55][56][57], in which

hardware acceleration such as RDMA is used to reduce the communication cost. The

benefit of these techniques is of less importance on HPC systems with network-based

storage because the performance is dominated by vertical data movement.

Many configuration alternatives have been developed to circumvent the

performance penalty affecting file I/O behaviour. One solution is to utilize bigger and

better hardware to the problem - for instance - to increase the ration between memory

capacity and cores concurrency. However, as demonstrated in precedent works, while

increasing the number of cores per node improves performance, it does not mitigate enough

the effects of the file system as the PCI bus gets congested rapidly. Another solution relies

on using BurstBuffer I/O subsystem52, large NVRAM array situated close to the CPU

designed to improve throughput for small I/O operations and for data pre-staging. Apart

from the high cost of this solution, the question remains if it is well suited for the access

patterns performed by Spark. Besides exploiting hardware upgrades, software techniques

52 https://www.cray.com/products/storage/datawarp

Chapter VI.

Apache Hadoop and Apache Spark

- 94 -

can also alleviate some of the metadata performance bottlenecks. The first and most

obvious solution is to use a memory mapped file system (e.g. /dev/shm) as a secondary

storage target. Subject to physical memory constraints, this eliminates a large fraction of

the traffic to the back-end storage system. Although easy to implement, this solution comes

with several limitations:

 the job crashes when memory is exhausted;

 since data is not written to disk it does not provide any resilience and persistence

guarantees. Furthermore, for medium to large problems and long running iterative

algorithms Spark will fail during execution due to lax garbage collection in the

block and shuffle managers [41][42].

Unlike data centers configuration, where network performance dominates, the

global file system metadata overhead in fopen limits Spark scalability to O(100) cores. If

configured to use “local” file systems for the shuffle stage, Spark can reach O(10,000)

cores.

Chapter VII.

Quantum Computing

- 95 -

Chapter VII.

Quantum Computing

Quantum computing (QC) is essentially harnessing and exploiting the amazing

laws of quantum mechanics to process information [58]. A traditional computer performs

operations on long strings of “bits”, which encode either a zero or a one. A quantum

computer, on the other hand, uses quantum bits, or qubits. A qubit is a quantum system that

encodes the zero and the one into two indistinguishable quantum states. The qubit takes its

final value (0 or 1) only once read. However, since qubits behave quantumly, one can

capitalize on the phenomena of "superposition" and "entanglement" to build a quantum

system. Superposition is essentially the ability of a system to be in multiple states at the

same time, i.e. it can be “here” and “there,” or “up” and “down” at the same time.

Entanglement is an extremely strong correlation that exists between quantum particles. The

correlation is so strong that two or more quantum particles can be inextricably linked in a

perfect unison although physically separated by a huge distance. Thus, thanks to these two

characteristics, a quantum computer can execute a vast number of calculations

simultaneously. To simplify, while a digital computer works with ones and zeros, a

quantum computer will have the advantage of using ones, zeros and their “superpositions”.

Chapter VII.

Quantum Computing

- 96 -

Figure 17 - Upper panel: digital computer gate can act on data one bity at a time. Lower

panel: quantum computer gate can act on all possible states of the 8 Qbits at the same

time.

The superposition of states of a quantum system is the key feature that allows a

quantum computer to solve complex problems at a speed that is far beyond any comparison

with a typical digital computer, e.g. a quantum computer can solve in principle a problem

with factorial complexity into a single instruction. Essentially, a full featured quantum

computer with a complete instruction set in theory would outperform any digital computer,

but the reality is quite far from that assumption.

These properties make QC very attractive for HPC, where quantum computing

could be used in synergy with digital computers to speed-up complex applications

otherwise unaffordable on digital supercomputers. Traditional HPC systems could take

care of all the instructions that cannot be executed on the quantum computer, i.e. I/O,

control code, firmware, etc. while offloading resolutions of complex problems to the

quantum engine by mean of a dedicated library engineered using the quantum logic. On

the other hand, small quantum computers can be simulated today on large supercomputers,

enabling the development of the methods and software in a user friendlier environment.

Chapter VII.

Quantum Computing

- 97 -

In terms of innovation trends, there are many companies with significant venture

capital support investing in quantum technology. Google is venturing on the

superconducting qubit technology [62], pursuing both digital and analog quantum

computation, doing both theoretical and experimental research. They are pushing the field

to the commercialisation of new devices and services for users. Their “manifesto” for

quantum technologies was recently published in Nature [3]. Google’s Quantum Artificial

Intelligence team53, directed by Hartmut Neven, identifies three applicative priorities, such

as quantum simulation, quantum-assisted optimization, quantum sampling, technical

hurdles and business opportunities. The main hurdle is scaling the number of qubits while

maintaining coherence; error correction is a big issue, because it will require many

additional qubits. Specifically, quantum simulation applications can aim at better

computational chemistry, machine learning, logistics, financial portfolio management,

drug design and cyber security. However, these application areas will probably be based

upon a hybrid platform that combines classical and quantum computing in a single

environment to get the best from both domains.

53 https://research.google.com/pubs/QuantumAI.html

Chapter VII.

Conclusion

- 98 -

Chapter VII.

Conclusion

The scientific community’s interest in large-scale infrastructure has been

continuously increasing over the last decades, with innovations in data-driven workloads

and in-situ processing of simulation. It is expected that this trend will not cease in the near

future, but rather persist. A review of the state of art of algorithms development in

computational science shows numerous examples of initial adaptations to the challenges

posed by Big Data. The whole Deep Learning movement is a clear example of how dated

data analysis algorithms have become crucial in many scientific fields thanks to the

availability of large computing resources and high-quality data. The same applies to data

processing technologies - à la Apache Hadoop – that, originally developed to index web

resources, are now permeating the scientific fields for being extremely simply to use. This

dissertation’s subject matter lies into the intersection of these two distinct aspects. On one

hand it presents the details of a large digital infrastructure capable to process very large

amount of data by federating distributed resources, on the other it reports about concrete

examples on how to employ Big Data technologies in a profitable manner to solve scientific

challenges. The findings of our work lead to some generic conclusions. HPC has become

a prominent instrument to conduct scientific experiments, as most of the physical

phenomena can be model and simulated at a very high level of accuracy. Ever growing

demand of computation resources keeps pushing the optimization and development of new

technologies but traditional systems architecture will soon reach expansion limits mainly

due to energy efficiency cap. With this respect, Quantum Computing represents a concrete

Chapter VII.

Conclusion

- 99 -

alternative, but it may require more than a decade to achieve its supremacy. Finally, along

with a further investigation of scientific use cases, this work could be extended to cover

other domains and evaluate new technology areas.

Acknowledgments

- 100 -

Acknowledgments

I am grateful to my supervisor Prof. Sonia Bergamaschi as well as all the members

of the DB Group who took me over this long journey. Profound thanks go to my Cineca

colleagues and members of the ICEI project. Without their help, support and contribution,

it would have been impossible to complete this work.

I am grateful to my family and all my beloved friends who got me to the point in

my life I am at right now, and that I like a lot.

Finally, the biggest thank is for my partner Francesca, for her support, patience,

understanding and love, who helped me enormously no matter my humor was.

In memory of my father for his endless sense of curiosity, patience and gentleness.

Bibliography

- 101 -

Bibliography

[1] Huynh Phung Huynh, Andrei Hagiescu, Weng-Fai Wong, and Rick Siow Mong

Goh. Scalable framework for mapping streaming applications onto multi-GPU

systems. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP’12), pages 1–10, 2012.

[2] Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann. Scaling largedata

computations on multi-GPU accelerators. In Proceedings of the 27th International

ACM Conference on International Conference on Supercomputing (ICS’13), pages

443–454, 2013.

[3] Adrian M Caulfield, Joel Coburn, Todor Mollov, Arup De, Ameen Akel, Jiahua

He, Arun Jagatheesan, Rajesh K Gupta, Allan Snavely, and Steven Swanson.

Understanding the impact of emerging nonvolatile memories on high-performance,

I/O-intensive computing. In Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and Analysis,

pages 1–11. IEEE Computer Society, 2010.

[4] M. H. Kryder and K. Chang Soo. After hard drives: What comes next? IEEE

Transactions on Magnetics, 45(10):3406–3413, 2009.

[5] J. S. Vetter and S. Mittal. Opportunities for nonvolatile memory systems in extreme-

scale high performance computing. IEES Journal of Computing in Science and

Engineering, 17(2):73–82, 2015.

[6] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase

change memory as a scalable DRAM alternative. In ACM SIGARCH Computer

Architecture News, volume 37, pages 2–13. ACM, 2009.

[7] Ki-Tae Park, Sangwan Nam, Daehan Kim, Pansuk Kwak, Doosub Lee, Yoon-He

Choi, Myung-Hoon Choi, Dong-Hun Kwak, Doo-Hyun Kim, Min-Su Kim, et al.

Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL stacked

layers and 50 MB/s high-speed programming. In IEEE Journal of Solid-State

Circuits, 50(1):204–213, 2015.

[8] Cristian Zambelli, Gabriele Navarro, Veronique Sousa, Ioan Lucian Prejbeanu, and

Luca Perniola. Phase change and magnetic memories for solid-state drive

applications. Proceedings of the IEEE, 105(9):1790–1811, 2017.

[9] HMC Consortium. Hybrid Memory Cube Specification 2.1.

http://hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR HMCC

Specification Rev2.1 20151105.pdf, 2015.

[10] JEDEC JESD229-2. Wide I/O 2 (WideIO2), 2014.

Bibliography

- 102 -

[11] JEDEC JESD235A. High bandwidth memory (HBM) DRAM. JEDEC Solid State

Technology Association, Nov 2015.

[12] JEDEC JESD250. Graphics double data rate 6 (GDDR6) SGRAM standard.

JEDEC Solid State Technology Association, Jul 2017.

[13] W. Cheong, C. Yoon, S. Woo, K. Han, D. Kim, C. Lee, Y. Choi, S. Kim, D. Kang,

G. Yu, J. Kim, J. Park, K. W. Song, K. T. Park, S. Cho, H. Oh, D. D. G. Lee, J.

H. Choi, and J. Jeong. A flash memory controller for 15us ultra-low-latency SSD

using high-speed 3D NAND flash with 3us read time. In 2018 IEEE International

Solid - State Circuits Conference- (ISSCC), pages 338–340, 2018.

[14] Jin Hee Cho, Jihwan Kim, Woo Young Lee, Dong Uk Lee, Tae Kyun Kim, Heat

Bit Park, Chunseok Jeong, Myeong-Jae Park, Seung Geun Baek, Seokwoo Choi,

et al. A 1.2 V 64Gb 341GB/S HBM2 stacked DRAM with spiral point-to-point TSV

structure and improved bank group data control. In Solid-State Circuits

Conference-(ISSCC), 2018 IEEE International, pages 208–210. IEEE, 2018.

[15] Young-Ju Kim, Hye-Jung Kwon, Su-Yeon Doo, Yoon-Joo Eom, YoungSik Kim,

Min-Su Ahn, Yong-Hun Kim, Sang-Hoon Jung, Sung-Geun Do, Chang-Yong

Lee, et al. A 16Gb 18Gb/S/pin GDDR6 DRAM with per-bit trainable single-ended

DFE and PLL-less clocking. In Solid-State Circuits Conference-(ISSCC), 2018

IEEE International, pages 204–206. IEEE, 2018.

[16] Ján Antolík and Andrew P. Davison Arkheia, Data Management and

Communication for Open Computational Neuroscience, Front. Neuroinform., 05

March 2018 | https://doi.org/10.3389/fninf.2018.00006.

[17] R. Shane Canon, D. Jacobsen, Shifter: Containers for HPC, CUG16 Proceedings,

2016.

[18] Wilkinson M., Dumontier M., Mons B. et al., The FAIR Guiding Principles for

scientific data management and stewardship, Nature Scientific Data,

https://doi.org/10.1038/sdata.2016.18.

[19] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Benchmarking state-

of-the-art deep learning software tools. CoRR, abs/1608.07249, 2016.

[20] Jurgen Schmidhuber., Deep learning in neural networks: An overview, CoRR,

abs/1404.7828, 2014.

[21] KatrinAmunts, KarlZilles, Architectonic Mapping of the Human Brain beyond

Brodmann, https://doi.org/10.1016/j.neuron.2015.12.001.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, editors, Advances in Neural Information Processing

Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

Bibliography

- 103 -

[23] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Computer Vision and Pattern Recognition (CVPR),

2015.

[24] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and

Yann Lecun. Overfeat: Integrated recognition, localization and detection using

convolutional networks. http://arxiv.org/abs/1312.6229, 2014.

[25] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. CoRR, abs/1409.1556, 2014.

[26] Wittmann, Markus & Hager, Georg & Zeiser, Thomas & Wellein, Gerhard.

(2013). Asynchronous MPI for the Masses.

[27] William Gropp and Ewing Lusk, Fault Tolerance in MPI Programs, Special issue

of the Journal High Performance Computing Applications, 2002, Vol. 18, 363—

372.

[28] B. Van Essen, R. Pearce, S. Ames, and M. Gokhale. On the Role of NVRAM in

Data-intensive Architectures: An Evaluation. In Parallel Distributed Processing

Symposium (IPDPS), 2012 IEEE 26th International, pages 703–714, May 2012.

doi: 10.1109/IPDPS.2012.69.

[29] Xiangyu Dong, Naveen Muralimanohar, Norm Jouppi, Richard Kaufmann, and

Yuan Xie. Leveraging 3D PCRAM Technologies to Reduce Checkpoint Overhead

for Future Exascale Systems. In Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis, SC ’09, pages 57:1–

57:12, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-744-8. doi:

10.1145/1654059.1654117. URL http://doi.acm.org/10.1145/1654059.1654117.

[30] Dushyanth Narayanan and Orion Hodson. Whole-system persistence with non-

volatile memories. In Seventeenth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS 2012).

ACM, March 2012. URL http://research.

microsoft.com/apps/pubs/default.aspx?id=160853.

[31] Shen Gao, Bingsheng He, and Jianliang Xu. Real-time in-memory checkpointing

for future hybrid memory systems. In Proceedings of the 29th ACM on

International Conference on Supercomputing, ICS ’15, pages 263–272, New

York, NY, USA, 2015. ACM. ISBN 978-1-4503-3559-1. doi:

10.1145/2751205.2751212. URL http://doi.acm.org/10.1145/2751205.2751212.

[32] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters, 2004, OSDI'04: Sixth Symposium on Operating System Design

and Implementation, 137—150.

Bibliography

- 104 -

[33] Rowstron, Ant and Narayanan, Dushyanth and Donnelly, Austin and O'Shea,

Greg and Douglas, Andrew. Nobody ever got fired for using Hadoop on a cluster.

1st International Workshop on Hot Topics in Cloud Data Processing (HotCDP

2012), ACM, https://www.microsoft.com/en-us/research/publication/nobody-

ever-got-fired-for-using-hadoop-on-a-cluster/.

[34] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.

[35] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:

cluster computing with working sets. In Proceedings of the 2nd USENIX

conference on Hot topics in cloud computing, volume 10, page 10.

[36] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.

Graphx: Graph processing in a distributed dataflow framework. In Proceedings

of OSDI, pages 599–613

[37] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,

D. B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M.

Zaharia, and A. Talwalkar. MLlib: Machine learning in apache spark.

[38] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T.

Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: Relational data

processing in Spark. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’15, pages 1383–1394. ACM.

[39] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large

clusters. 51(1):107–113.

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation. NSDI’12, pages

2–2. USENIX Association.

[41] Aaron Davidson, Andrew O. Optimizing Shuffle Performance in Spark. UC

Berkeley 2013.

[42] Jingui Li, Xuelian Lin , Xiaolong Cui , Yue Ye. Improving the Shuffle of Hadoop

Map Reduce. IEEE 5th International Conference on Cloud Computing

Technology and Science.

[43] Xiaoyi Lu, Md. Wasi-ur-Rahman, Nusrat Islam, Dipti Shankar and Dhabaleswar

K. (DK) Panda. Accelerating Spark with RDMA for Big Data Processing: Early

Experiences. The Ohio State University, 2014 IEEE.

[44] S. R. Alam, H. N. El-Harake, K. Howard, N. Stringfellow, and F. Verzelloni.

Parallel I/O and the metadata wall. In Proceedings of the sixth workshop on

Parallel Data Storage, pages 13–18. ACM.

Bibliography

- 105 -

[45] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and T. Ludwig. Small-file

access in parallel file systems. In IEEE International Symposium on Parallel

Distributed Processing, 2009. IPDPS 2009, pages 1–11.

[46] LeCun, Yann & Bengio, Y & Hinton, Geoffrey. (2015). Deep Learning. Nature.

521. 436-44. 10.1038/nature14539.

[47] Huang, H. and Winter, J. M. and Osterberg, E. C. and Horton, R. M. and Beckage,

B., Total and extreme precipitation changes over the Northeastern United States.

2017, J. Hydrometeorol., Vol. 18, 1783--1798, 10.1175/JHM-D-16-0195.1.

[48] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman,

Dan Mané. Concrete Problems in AI Safety. 2016, arXiv:1606.06565.

[49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet

classification with deep convolutional neural networks. In Proceedings of the 25th

International Conference on Neural Information Processing Systems - Volume 1

(NIPS'12), F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.),

Vol. 1. Curran Associates Inc., USA, 1097-1105.

[50] S. Salon, G. Cossarini, G. Bolzon, A. Teruzzi, C. Solidoro. Current state and

recent trends of Mediterranean sea biogeochemistry derived by high-resolution

reanalysis. In: Rapp. Comm. int. Mer Medit., 41:214 and the Copernicus

catalogue. 2016.

[51] W. J. Gutowski Jr. et al. WCRP COordinated Regional Downscaling EXperiment

(CORDEX): a diagnostic MIP for CMIP6. In: Geoscientific Model Development

9.11 (2016), pp. 4087–4095. DOI: 10.5194/gmd-9-4087-2016. URL:

http://www.geosci-model-dev.net/9/4087/2016/.

[52] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon. Reliable,

memory speed storage for cluster computing frameworks. In Proceedings of the

ACM Symposium on Cloud Computing, pages 1–15. ACM

[53] S. R. Alam, H. N. El-Harake, K. Howard, N. Stringfellow, and F. Verzelloni.

Parallel I/O and the metadata wall. In Proceedings of the sixth workshop on

Parallel Data Storage, pages 13–18. ACM.

[54] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and T. Ludwig. Small-file

access in parallel file systems. In IEEE International Symposium on Parallel

Distributed Processing, 2009. IPDPS 2009, pages 1–11.

[55] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal. Hadoop acceleration

through network levitated merge. In Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis,

SC ’11, pages 57:1–57:10. ACM.

Bibliography

- 106 -

[56] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H.

Subramoni, C. Murthy, and D. K. Panda. High performance RDMA-based design

of hdfs over infiniband. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’12, pages 35:1–

35:35, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[57] X. Lu, M. Rahman, N. Islam, D. Shankar, and D. Panda. Accelerating spark with

RDMA for big data processing: Early experiences. In 2014 IEEE 22nd Annual

Symposium on High-Performance Interconnects (HOTI), pages 9–16.

[58] Gibney E. Billion-euro quantum project takes shape. Nature 545 (2017).

[59] Carleo G. & Troyer M. Solving the quantum many-body problem with artificial

neural networks. Science 355, 602-606, doi:10.1126/science.aag2302 (2017)

[60] Haner, T. & Steiger, D. 0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit.

arXiv:1704.01127 (2017).

[61] Mohseni, M. et al. Commercialize early quantum technologies. Nature 543, 171-

174 (2017).

[62] Barends, R. et al. Coherent Josephson Qubit Suitable for Scalable Quantum

Integrated Circuits. Phys Rev Lett 111, doi:ARTN 080502

10.1103/PhysRevLett.111.080502 (2013).

[63] Sabour, Frosst and Hinton. Dynamic Routing Between Capsules. 2017,

https://arxiv.org/abs/1710.09829v2.

[64] K. He et al., arXiv e-prints (2015), arXiv:1512.03385.

