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Abstract (English) 

Access to research infrastructure at national and international level is becoming 

ever more important in an increasing number of scientific fields. Many research 

activities as well as infrastructures play an important role for both the business and the 

public sector. They are important components to meet the majority of scientific 

challenges of our time. Advancements into climate changes study, sustainable and safe 

societal development, public health, food production, democracy, labour market, etc. 

also require advanced services and resources. Thus, the goal of this thesis work is 

twofold; present a distributed HPC infrastructure realized though the federation of 

different compute and data resources across Europe; provide insights about emerging 

technologies being crucial for the processing of large data sets.  

As starting point, a set of common technical specifications has been derived to 

provide a high-level specification of the overall architecture and give details of key 

architectural elements that are essential for realizing such infrastructure, including 

scientific cases, new technologies and new processing methodologies. The work has 

been mainly fuelled by the need to provide a scalable solution, harness new memory 

technologies, such as those based on non-volatile chips, provide easy access to data, 

and improve user experience by fostering the convergence between traditional High 

Performance and Cloud Computing utilization models. Nowadays the main access 

model for large scale HPC systems is based on the scheduling of batch jobs. This 

approach is not connected with a requirement from the computational science 

community, but it reflects the predominant issue in the management of the HPC 

systems: the maximization of resource utilisation. Conversely, the situation differs 



when taking into consideration personal workstations or shared memory servers, where 

timesharing interactive executions are the norm. Our design, which proposes a new sort 

of paradigm called “Interactive Computing” refers to the capability of a system to 

support massive computing workloads while permitting on-the-fly interruption by the 

user. The real-time interaction of a user with a program runtime is motivated by various 

factors, such as the need to estimate the state of a program or its future tendency, to 

access intermediate results, and to steer the computation by modifying input parameters 

or boundary conditions. Within the neuro-science community, one of the scientific 

cases taken in consideration in this work, most used applications (i.e. brain activity 

simulation, large image volume rendering and visualization, connectomics experiment) 

imply that the runtime can be modified interactively so that the user can gain insight on 

parameters, algorithmic behaviour, and optimization potentials. Besides that, in many 

application fields, the computational scientists are starting to use interactive 

frameworks and scripting languages to integrate the more traditional compute and data 

processing application running in batch, e.g. the use of R, Stata, Matlab/Octave or 

Jupyter Notebook just to name few. The work has been supported by Human Brain 

Project (www.humanbrainproject.eu) and Cineca (www.hpc.cineca.it), the main 

supercomputing centre in Italy. 

 

 

 

 

 

 

 



Sommario (Italian) 

L'accesso ad infrastrutture di ricerca a livello nazionale e internazionale sta 

diventando sempre più importante in un numero crescente di settori scientifici. Molte 

attività di ricerca svolgono un ruolo importante sia per le imprese che per il settore 

pubblico. Sono componenti importanti per affrontare la maggior parte delle sfide 

scientifiche del nostro tempo. I progressi compiuti nello studio sui cambiamenti 

climatici, lo sviluppo sociale sostenibile, la sicurezza, la salute pubblica, la produzione 

alimentare, la democrazia, il mercato del lavoro, ecc. richiedono la disponibilità di 

servizi e risorse avanzate. L'obiettivo di questo lavoro di tesi è duplice; presentare 

un'infrastruttura distribuita HPC realizzata attraverso l’aggregazione di diverse risorse 

di elaborazione e dati presenti in Europa, fornire informazioni sulle tecnologie 

emergenti che sono fondamentali per l'elaborazione di grandi quantità di dai. 

Come punto di partenza, è stata derivata una serie di specifiche tecniche comuni 

per fornire una specifica di alto livello dell'architettura generale e fornire dettagli sugli 

elementi architettonici chiave essenziali per la realizzazione di tali infrastrutture, inclusi 

casi scientifici, nuove tecnologie e nuove metodologie di elaborazione. Il lavoro è stato 

principalmente alimentato dalla necessità di fornire una soluzione scalabile, sfruttare 

nuove tecnologie di memoria, come quelle basate su chip non volatili, fornire un facile 

accesso ai dati e migliorare l'esperienza degli utenti promuovendo la convergenza tra le 

tradizionali prestazioni elevate e il cloud Modelli di utilizzo del calcolo. Al giorno 

d'oggi il modello di accesso principale per i sistemi HPC su larga scala si basa sulla 

pianificazione dei lavori batch. Questo approccio non è collegato a un requisito della 

comunità scientifica computazionale, ma riflette il problema predominante nella 

gestione dei sistemi HPC: la massimizzazione dell'utilizzo delle risorse. Viceversa, la 



situazione si differenzia quando si prendono in considerazione workstation personali o 

server di memoria condivisi, dove le condivisioni interattive di timesharing sono la 

norma. Il nostro design, che propone un nuovo paradigma chiamato "Interactive 

Computing" si riferisce alla capacità di un sistema di supportare massicci carichi di 

lavoro informatici consentendo al tempo stesso l'interruzione immediata da parte 

dell'utente. L'interazione in tempo reale di un utente con un runtime del programma è 

motivata da vari fattori, come la necessità di stimare lo stato di un programma o la sua 

tendenza futura, di accedere a risultati intermedi e di indirizzare il calcolo modificando 

i parametri di input o il limite condizioni. All'interno della comunità neuroscientifica, 

uno dei casi scientifici presi in considerazione in questo lavoro, le applicazioni più 

utilizzate (es. Simulazione dell'attività cerebrale, rendering e visualizzazione di grandi 

volumi di immagini, esperimenti di connettività) implicano che il runtime possa essere 

modificato interattivamente in modo che l'utente può acquisire informazioni su 

parametri, comportamento algoritmico e potenziali di ottimizzazione. Oltre a ciò, in 

molti campi applicativi, gli scienziati computazionali stanno iniziando a utilizzare 

framework interattivi e linguaggi di scripting per integrare l'applicazione di 

elaborazione dati e di elaborazione più tradizionale in esecuzione in batch, ad es. l'uso 

di R, Stata, Matlab / Octave o Jupyter Notebook solo per citarne alcuni. Il lavoro è stato 

supportato da Human Brain Project (www.humanbrainproject.eu) e Cineca 

(www.hpc.cineca.it), il principale centro di supercalcolo in Italia. 
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Chapter I. 

Outline 

This dissertation explores various topics concerning digital infrastructures, high 

performance computing technologies and future trends. It is organized in a cumulative 

style. The major findings are presented in form of peer-reviewed conference and 

publications that I contributed to as well as developments done as part of my job 

position at Cineca1. For a complete list of all publications, however, please refer to the 

“List of Publications”. 

 

The following chapters will provide a brief summary of the results as follows. 

 Chapter II – introduces the work. 

 Chapter III – presents the architecture of the Fenix infrastructure, a federation 

of resources and services to serve the European neuroscience community as part 

of the Human Brain Project2. I reported the requirements that led to the design 

of the infrastructure as collection of use cases, list of services, and resources 

made available to the community. The design and the realization of the 

infrastructure is the result of a joint collaboration activity funded by the 

European Commission under the ICEI (Interactive Computing E-Infrastructure 

for the Human Brain Project) project. This initial chapter helped me introduce 

the successive parts of this thesis which focus on HPC trends, emerging Big 

Data technologies, and Deep Learning workloads.  

                                                 
1 www.cineca.it 
2 www.humanbrainproject.eu 
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 Chapter IV – reports about the trends that are pushing the evolution of HPC 

systems and which challenges are foreseen to make further steps. The chapter 

also includes a study concerning the adoption of virtualization technology, 

based on container, to support HPC workloads. 

 Chapter V – presents a brief summary of the Quantum Computing technology 

as it is expected to revolutionize the way we conceive computing.  

 Chapter VI — covers Deep Learning frameworks and networks. It also 

includes benchmark results obtained using Cineca HPC systems using synthetic 

benchmark. 

 Chapter VII – copes with the adoption of the Apache Hadoop framework to 

solve a use case in the field of climate change. Furthermore, it reports about the 

use of Apache Spark into a HPC environment.  

 Chapter VIII —concludes the thesis and presents perspectives for future 

research opportunities. 
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Chapter II. 

Introduction 

Access to research infrastructure at national and international level is becoming 

ever more important in an increasing number of scientific fields. This work summarises 

overarching tendencies in relation to the needs of European research community. The 

starting point is the needs that are driven by basic and researcher initiated research. At 

the same time, it should be emphasised that many research activities as well as 

infrastructures play an important role for both the business sector and the public one. 

Infrastructures are also important components to meet the major scientific challenges 

of our time. Research of relevance to societal challenges related to climate changes, 

sustainable and safe societal development, public health, food production, democracy, 

labour market, etc. also require advanced services and resources. 

The observation, the measurement, the experimentation, the supercomputing, 

the storage and sharing of data, all suppose to use big instruments with technical 

performances beyond the existing ones and integrating interdisciplinary as a source of 

innovation. These tools constitute a mandatory condition for future discoveries as well 

as the product of the past scientific and technological advances. In parallel to these 

major programs, a number of instruments shared amongst many actors on various sites 

have been developed in recent years: new modes of microscopy and imaging, new high 

throughput screening devices, virtual experiments, social, environmental and health 

databases, corpus of digitized texts with their operating tools.  

The needs for research infrastructure – large research facilities, laboratory 

environments, experimental workshops, complex digital research systems and 
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comprehensive databases – are increasingly rapidly within most research fields. 

Technical developments and ever more complex scientific questions are simultaneously 

driving this development forward. This applies not only within environment and 

climate research, humanities, social sciences and major parts of medical research. 

Fundamental knowledge about our universe, the characteristics of materials, the 

function of cells and internal characteristics of matter demands advanced instruments.  

Complex questions also require data and observations from several sources to 

be combined. Moreover, a common feature of all research fields is that the need to store, 

transfer and analyse large amounts of data is increasing very rapidly. In many cases, 

the development means that barriers between research disciplines is breaking down, 

and that the need for international collaboration is increasing. Advanced research 

infrastructure also constitutes a resource for industry, and it is in many cases a 

prerequisite for collaboration between industry and academia. 

 

Traditionally, the needs for calculation by high-performance computers, 

accessible via peer-review process, as that provided by PRACE (Partnership for 

Advanced Computing in Europe)3, have dominated the use of e-infrastructure, with 

strong research within fields such as materials sciences and fluid mechanics. Growing 

needs are driven by new technologies and infrastructures that generate considerable 

data amounts within successful research areas, such as life sciences and image analysis. 

Successful research and innovation needs access to first class research 

infrastructures, and development of top-class research infrastructures is one of the key 

areas to enforce the European Research Area. In the overall context of research 

infrastructures, e-Infrastructures play a more and more important role. Today, almost 

                                                 
3 www.prace-ri.eu 
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all large-scale research activities include or are supported by several e-Infrastructure 

components. Major scientific breakthroughs are increasingly achieved by an 

international, cross-disciplinary team transferring, storing and analysing vast data 

collections and performing advanced simulations using different types of computing 

facilities.  

Much effort has been spent on bringing research infrastructures and e-

Infrastructures together for their mutual benefit, but it might still be difficult for many 

of the stakeholders to grasp the needs of users and the advantages of using existing e-

Infrastructures and related services. 

More and more scientific user communities share the demand for new solutions 

for the steadily increasing amount of scientific data that arise from scientific 

instruments (i.e. higher resolutions), an increased amount of sensors in scientific field 

studies (i.e. constantly created real-time datasets), or better computing power (i.e. more 

granular and realistic simulations). As a consequence, the term ‘big data’ emerged as a 

kind of new research field that aim to address the aforementioned challenges and to 

provide reasonable solutions in scientific ecosystems (i.e. research labs, universities, 

shared scientific instrument collaborations, etc.). 

In this dissertation, I present the design of a new research infrastructure to 

support the European neuroscience community being part of the Human Brain Flagship 

project. The infrastructure, named Fenix4, and receiving funds from the European 

Union's Horizon 2020 research and innovation programme through the ICEI project 

through, will provide computing and storage capability to address interactive use cases. 

This work also reports about technology trends in the field of HPC, memory 

                                                 
4 https://fenix-ri.eu/ 
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technology, deep learning and quantum computing as driving forces to tackle future 

large scientific challenges. 
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Chapter III. 

The Fenix Infrastructure 

Fenix is based on a consortium of five European supercomputing centres, which 

have agreed to deploy a set of infrastructure components (IaaS) and integrated platform 

(iPaaS) services federating users access, data repository and resources allocation 

mechanism. The key infrastructure services provided by each site are scalable 

computing services, various data storage services and, as a new element introduced with 

this project, Interactive Computing Services. 

 

 

Figure 1 – Centres participating to the Fenix distributed infrastructure. 

Each of the involved centres is currently operating HPC systems with a 

throughput of floating-point operations in the multi-PFlop/s range. The compute 

capabilities will increase over the next couple of years such that each of the five sites 
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will provide at least 10 PFlop/s, resulting in an aggregate compute capability of at least 

50 PFlop/s. 

Each of the sites will provide the following services: 

 Scalable Compute Services; 

 Interactive Compute Services; 

 Active Data Repositories based on fast memory and active storage tiers; 

 Archival Data Repositories; and 

 Information/catalogue services. 

 

All services will be tightly integrated through a high-speed network of the 

scalable compute systems (as shown Figure 1). 

 

Figure 2 – Fenix services. 

The local services need to be interoperable to facilitate, e.g., easy transfer of 

data between federated Archival Data Repositories. Whenever interoperability is 
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required, our strategy is to deploy the same or similar technologies at all sites. At the 

same time the project aims to keep the level of integration low in order to reduce 

operational dependencies between the sites (to avoid, e.g., the need for coordinated 

maintenance and upgrades) and to allow for the site local infrastructures to evolve 

following different technology roadmaps. 

Furthermore, to allow for these distributed computing and storage resources to 

be perceived as a coordinated, distributed infrastructure, various additional federated 

infrastructure services need to be deployed (as shown in Figure 2): 

 Authentication and Authorization Infrastructure (AAI) services; 

 File catalogue and location services; 

 User and resource management services; and 

 Data transfer services. 

Use cases 

This section reports on use cases emerged from the neuroscience community 

and that are expected to exploit the infrastructure services. Based on the information 

collected from end users, the architectural specification of the Fenix infrastructure has 

been designed. These details are also necessary to identify the capacity requirements 

and to identify which elements of the infrastructure are best suited for each use case. 

They are presented from less articulated to more complex ones. 

GUI-based interaction with extreme scale network models 

Different software components have been developed as part of the Brain 

Simulation Platform5 (BSP) for the simulation of large, biologically realistic networks 

                                                 
5 https://www.humanbrainproject.eu/en/brain-simulation/brain-simulation-platform/ 
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representing large regions of the Central Nervous System (CNS), like entire model 

animal brains (such as robotic rodents) or mouse and human CNS regions such as the 

cerebellum or hippocampus. For the development of these simulations, iterative 

visualization of network generation and simulation is necessary.  

The BSP is an internet-accessible collaborative platform, which comprises a 

suite of software tools and workflows for collaborative brain research to allow 

researchers to reconstruct and simulate detailed multi-level models of the brain, 

displaying emergent structures and behaviours. BSP users can define and launch 

simulations from Jupyter6 notebooks through any web browser. Most of these 

simulations, including the simplest one, require HPC resources and the management of 

non-trivial workloads via interactive notebooks. 

Currently, the bottleneck of computational demands for this class of 

experiments is the network simulation, using tools like NEST7, Neuron8, Arbor9 or 

TVB10. To estimate the scale of the problem, the biggest NEST simulation ever 

executed on the K11 supercomputer in 2013 used approximately 1.1 PByte of memory 

while reaching up approximately 10 PFlop/s of peak performance. To move from 109 

neurons to 1010 neurons using the current class of software architectures would take 

order of 10 PByte and 100 PFlop/s [16].  

Conversely, for morphologically detailed simulations, initial estimates using the 

“Arbor” simulator indicate that peak performance for a GPU-based architecture occurs 

with 10k cells/GPU. Since 10,000 NVIDIA TESLA P100 GPUs accumulate 50 

                                                 
6 http://jupyter.org/ 
7 www.nest-simulator.org 
8 www.neuron.yale.edu/neuron 
9 arbor.readthedocs.io 
10 www.thevirtualbrain.org 
11 www.r-ccs.riken.jp/en/k-computer/about 
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PFlop/s, to sustain such activity it would need 10,000 sockets * 10,000 cells/socket * 

(1~1000) kBytes/cells = 1~1000 * 109 Bytes, for 100 * 106 cells, which is on the order 

of the size of the human hippocampus. In practice, from the computational point of 

view, such simulations require a variety of hardware resources and capacity that hardly 

are available today. Besides CPU power, these applications require post-processing 

capabilities, such as visualization tasks that can be handled with desktop systems 

equipped with a moderate amount of memory. However, the amount of resources 

needed for such visualization tasks, especially expressed in terms of memory capacity, 

is highly dependent on the details of the simulation but existing applications are usually 

flexible enough to balance between different levels of the memory hierarchy. 

Large scale simulations of Hippocampus model 

In silico experimentation within brain region models is a core target of the 

European neuroscience community. It allows linking results from experimental 

neuroscience with model predictions for discovery and validation. The models that will 

be made available are based on a close bidirectional interaction with anatomical and 

physiological data. The models focus on the cerebellum, the hippocampus, and the basal 

ganglia. 

This use case describes the execution of an in silico experiment of a 

biophysically detailed model and the execution of a pre-defined analysis by a 

community user against models released to the community. Scientists can now devise 

in silico experiments that they could not do before in the absence of the required storage 

and compute resources for downloading and executing potentially large models. At the 

same time, the resulting artefacts remain within the infrastructure and become easily 

available for reuse in other contexts, i.e. analysing, visualisation, sharing with the 

community etc. 
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The focus here is on models of synaptic plasticity of hippocampal synapses (see 

Figure 3), and how they can be integrated into cellular level microcircuit models using 

data-driven subcellular pathways and/or rule-based effective implementation. The 

emphasis is on the mechanisms underlying associative memory processes and spatial 

navigation, integrated into a user-friendly user interface allowing an easy community 

engagement. 

Hippocampus data are the most interesting simulation targets for the following 

reasons: 

 Contain few millions neurons. 

 Are strongly involved in higher brain functions, such as learning, memory, 

spatial navigation. 

 Implicated in Alzheimer's disease, temporal lobe epilepsy, cognitive aging, 

post-traumatic stress disorder, transient global amnesia, schizophrenia, 

depressive and anxiety disorders. 

 

Figure 3 - Location of the hippocampus in the brain (Image courtesy of the Brain 

Connection project). 
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Some raw numbers follow: 

 450000 neurons, ~1·108 membrane segment, 20 ODE12/seg 

 2·109 ODEs + synapses 

 1 second of simulation time (approximately 5h on a massive parallel system 

using 32000 processors) 

 ~2TB of input, up to ~3TB of output. 

A basic execution workflow for this use case includes the following steps. The 

user: 

 selects the Small Circuit or Brain Area Circuit in silico Experiment function of 

the Brain Simulation Platform; 

 selects a detailed circuit model from an online databank called NIP13; 

 selects target regions he/she wants to stimulate; 

 for each selected target region, he/she defines the stimulus he wants to apply; 

 defines the particular parameters of each stimulus (e.g. start, duration); 

 selects what he wants to record from the circuit (e.g. soma voltage of a particular 

subset of neurons); 

 defines global parameters for the simulation (e.g. time steps); 

 defines additional parameters related to the allocation of the compute resources 

for the simulation (HPC center and system, HPC project, number of nodes, 

memory, …); 

 defines the analysis he/she wants to perform from a predefined set and 

configures this analysis; 

                                                 
12 Ordinary Differential Equation 
13 https://nip.humanbrainproject.eu/ 
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 defines additional parameters related to the allocation of the compute resources 

for the analysis (HPC centre system, HPC project, number of nodes, memory, 

…); 

 the simulation and the analysis are executed on the different compute resources 

defined by and accessible to the user. The circuit is available on this compute 

center at this stage; 

 investigates the simulation results and the circuit interactively through a Jupyter 

notebook; 

 visualizes the simulation on a visualization web service; 

 registers and stores simulation results in the knowledge graph; the Human Brain 

Project has developed a central data repository where to store relevant data sets 

and associated meta information for sharing purposes. 

 

Figure 4 shows the entire workflow and all its steps.  
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Figure 4 – Pre-processing and model generation pipeline as described in Hippocampus 

model generation. 

Decoding of brain cyto-architecture using large scale simulations.  

Mapping and understanding the cytoarchitectonics [21] of the human brain is a 

challenge that started back at the beginning of the 20th century with famous 

neuroanatomists who segregated the cortex of a post-mortem human brain sample into 

a few dozens of areas from the observation of the laminar structure of the cortical ribbon 

and of its cellular organization using optical microscopy. The most famous atlas was 

developed in 1905 by Korbinian Brodmann and remains today widely used by 

neuroscientists even if it suffers from several limitations. First, because it was 

developed from a single sample, it cannot capture the inter-subject variability of the 

cytoarchitecture maps; second, boundaries of the areas have been drawn from visual 

observations, and may not reflect the real boundaries of functional areas. The 

community is fighting to go beyond Brodmann areas and during the last decade, several 

teams attempted new strategies to map the brain cytoarchitectonics. Several teams have 

tried to establish maps from the acquisition of large cohorts of in vivo human healthy 

volunteers. The success of such challenges rely on the capability of modern 
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neuroimaging methods to probe the variations of the cellular organization of brain 

tissues in vivo. Unfortunately, the cellular organization of brain tissues (gray and white 

matter) can be extremely complex, and today, few is known about the diffusion MRI 

(Magnetic resonance imaging) signature of the plethora of possible cellular 

environments met in the brain. The study of MRI signatures requires the tuning of 

several sequence parameters that impact the nature of the diffusion contrasts obtained 

at the end. Obviously, one cannot achieve an exhaustive scanning of the sequence 

parameter space in vivo.  

This specific use case aims at replacing in vivo diffusion of MRI scans by in 

silico diffusion enabling to reach a much higher level of completeness of the parameter 

space sampling. To do so, it first focuses on white matter (WM) cyto-architecture being 

simpler than grey matter (from a cyto-architectural point of view) and requires to: 

 Step #1 - create an exhaustive bunch of in-silico realistic white matter virtual 

tissue samples by numerical simulations of cellular membrane geometries; 

 Step #2 - simulate the diffusion process of water molecules in every realistic in-

silico WM tissue sample using a Monte-Carlo approach; 

 Step #3 - simulate the diffusion MRI signature of every WM tissue sample for 

an exhaustive set of diffusion MRI sequence parameters achievable on actual 

preclinical and clinical MRI systems; 

 Step #4 - train a deep neural network to build a decoder/regressor of the WM 

microstructure; 

 Step #5 - use the decoder to establish an atlas of the WM microstructure. 

 

Dedicated software tools have already been developed by several teams to 

address these first three tasks. However, there is a clear need to extend simulations to a 
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larger facility in order to run the plethora of needed simulations and obtain results for 

white matter tissues. If successful, the extension to grey matter (cortex and deep nuclei) 

will be straightforward but will need even more computational resources, due to the 

higher level of complexity of the cellular environment in grey matter.  

Diagram 1 provides a detailed flowchart for step #1 consisting of simulating a 

dictionary of virtual white matter tissues. Each virtual tissue is designed from a set of 

geometrical parameters including: 

 the number of white matter fiber populations (from 1 to 3), 

 the properties of each fiber population including its volume fraction, the main 

direction of the population, the dispersion and tortuosity of its fibers, the 

statistics of the axon diameter, the statistics of the g-ratio characterizing the 

myelin sheath, myelin g-ratio, the statistics of the Ranvier nodes, the 

permeability of axons, 

 the properties of the glial cell population including their mean diameter, the 

statistics of the number of branches per cell, and the statistics of the diameter of 

these branches. 

A graphical user interface will be developed to facilitate the prescription of 

tissue parameters, and a 3D viewer will be developed to visualize 3D renderings of 

virtual tissues.  
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Diagram 1 - Flowchart of the construction of a large dictionary of virtual brain white 

matter tissues. 

Step #1 details 

This step consists in generating realistic geometries of white matter: each 

generated voxel of size 100 x 100 x 100 µm will contain from 500 to10 000 axons 

(depending on the mean diameter of axons and on the packing density). Each axon is 

represented as a set of spheres, which is the basic unit of the analysis algorithms. An 

upper bound of 500MB for each geometry to store the position and the radius of all 

spheres within a voxel is estimated. The geometry generation algorithm can be 

decomposed in two steps: 

 creation of overlapping axons in the voxel according to the required biophysical 

parameters (diameter, packing density, angular dispersion, etc.); 
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 solving the overlapping between axons using the decomposition of axons into 

spheres and applying repulsion forces between overlapping spheres. 

An upper bound of 30 minutes to generate a given geometry is estimated on a 

NVIDIA Tesla K40 GPU and it corresponds to the worst possible case with very small 

mean axons diameter (0.1µm) and high packing density (0.8) for which the number of 

spheres is maximal. In most of the cases (diameters > 0.5µm and volume fraction 

inferior to 0.7), the geometry generation will take less than a minute using the same 

graphic card. 

Diagram 2 provides the complete flowchart of this step required to establish a 

huge database of Monte-Carlo simulations of the diffusion process of water molecules 

within each white matter virtual tissue belonging to a virtual tissue dictionary. 

Biophysical parameters characterizing the diffusion process in brain tissues have to be 

fed into the Monte-Carlo simulator as well as the individual virtual tissue sample. 

Trajectories followed by random walkers are then stored for each tissue sample. The 

number of random walkers has to be tuned with respect to the complexity of the 

geometry of cell membranes populating every virtual tissue, typically on the order of 

105 particles. Temporal constraints are imposed by the specifications of the simulated 

diffusion MRI sequence (echo time and temporal resolution of gradient waveforms).  
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Diagram 2 - Large-scale Monte-Carlo simulations of the Brownian motion of water 

molecule corresponding to the Virtual Tissue dictionary established in Diagram 1. 

Step #2 details 

 This step consists in performing a Monte-Carlo simulation of the Brownian 

motion of 2.10⁵ random walkers during 300ms with a time step of 10µs for each 

geometry generated in step #1. The trajectories of all the random walkers have to be 

stored, leading to a size of 97 GB per simulation. 

Although the application gives space to further optimization, a runtime of 1h30 

on a NVIDIA Tesla K40 GPU to perform the simulation for one voxel has been 

estimated. 

Diagram 3 provides the flowchart of step #3 required to establish the huge 

dictionary of (virtual tissues/diffusion MRI signature) required to learn the decoder 

mentioned in step #4. The diffusion MRI signature will consist of a few thousands of 

simulated NMR contrasts corresponding to Pulsed Gradient Spin Echo (PGSE) and 
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Cosine Trapezoidal Oscillating Gradient Spin Echo (CT-OGSE) sequences achievable 

on an actual clinical 3T MRI system. Each of these sequences offers the possibility to 

tune parameters affecting the diffusion sensitization such as the diffusion gradient 

magnitude, the diffusion direction, the diffusion pulse width and separation for the 

PGSE sequence or the diffusion pulse frequency and number of lobes for the CT-OGSE 

sequence.  

 

Diagram 3 - Large-scale simulations of the diffusion-weighted MRI signal over a large 

set of sequence tunings from the Monte-Carlo simulations obtained in Diagram 2 in 

order to establish a dictionary of (virtual tissues / diffusion MRI signatures). 

Step #3 details 

 This task consists in synthesizing the NMR (Nuclear Magnetic Resonance) 

signatures of each generated geometry by applying diffusion sequences with varying 

parameters on the previously generated random walkers trajectories (see step #2). 
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I estimated that 3000 NMR signatures have to be computed for each geometry 

to fully explore the parameter space. Each geometry has a size of 10KB, thus leading 

to a total of 30MB for each generated geometry. 

The computation of NMR signatures can be easily parallelized on GPU, leading 

to an estimated runtime of ~1.2s per signature, and thus a total runtime of 1h for each 

geometry. 

Diagram 4 depicts how the former dictionary of virtual white matter tissue 

samples/diffusion MRI signatures enables to train a machine learning tool, like a deep 

neural network, in order to create a decoding tool able to recognize/extrapolate the set 

of quantitative features characterizing the cyto-architecture at each voxel of the brain, 

from a real and individual set of diffusion MRI scans, corresponding to various 

sequences and sequence settings. The input database used to train the DNN (Deep 

Neuronal Network) is composed of around ~1010 entries resulting from the previous 

large-scale simulations. 
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Step #4 details 

 The last step of this use case is to train a neural network with all the generated 

NMR signatures. For each signature, the parameters of the employed diffusion 

sequence and the biophysical parameters of the generated geometry are known. The 

aim of the training is that, when a real NMR signature is fed to the network with known 

diffusion sequence parameters, the network will be able to estimate the underlying 

biophysical parameters. This task brings the need for “Deep-Learning oriented” 

resources, such as GPUs, to train a neural network with all previously simulated data, 

i.e. NMR signatures. 

 

The large majority of collected requirements bring important needs especially 

in terms of hyper-scaling and data handling. The Fenix architecture reflects these needs 

by providing low level services in order to permit community build upon and create 

Diagram 4 - use of the simulated “virtual sample/diffusion MRI signature” dictionary 

to training a deep neural network and use of the trained network to decode the brain 

cyto-architecture of individuals in vivo. 

 

Diagram 5 - use of the simulated “virtual sample/diffusion MRI signature” dictionary 

to training a deep neural network and use of the trained network to decode the brain 

cyto-architecture of individuals in vivo 
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sustainable research environments. The infrastructure is optimised for handling and 

processing large volumes of data efficiently and to make them easily identifiable. Much 

care has been put to keep the infrastructure generic and compatible enough to support 

other workloads emerging from different communities. To achieve community 

requirements, it will provide the following major components:  

 Interactive computing nodes with large memory, equipped with high 

performance GPUs, and interconnected by a low-latency, high-performance 

network. Its purpose is to improve pre and post treatment like meshing creation, 

steering computation, remote visualisation but also for running MPI 

applications. Some of the compute nodes will have particularly large memory 

(several Terabytes per node) to overtake usual limitations in neural simulation 

by allowing to compute larger brain regions. 

 Intensive I/O will be handled by an Active Data Repository, a high-performance 

file-system based on flash storage technologies. The purpose of this system will 

be to handle high data throughputs, and in particularly, adapted to speed-up non-

sequential data extraction, which is often needed to process experimental data.  

 A large long-term capacity is needed to store experimental data as well as 

simulation outputs, and to make them publicly accessible and sharable. Using 

the Fenix terminology, this long-term capacity implements the Archival Data 

Repository (ARD), and will be completed by additional servers to enable data 

movements across multiple storage tiers. Regardless of its name, this storage 

area is not designed to implement a pure repository as the management of 

information like metadata, persistent identifiers, etc. is encapsulated into 

community services. The Archival Data Repository will only ensure long-term 
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archiving of data (bit-stream preservation) and provide basic components to 

build a full data repository on top. 

 A Cloud Computing infrastructure to make it possible to setup community 

services to access data: web interfaces, data processing service, data 

exploration, workflow orchestrator, visualization etc.  

 

The sections that follow provide further details about infrastructure 

characteristics. 
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Data Infrastructure and Management 

In contrast to other communities that already operate a large-scale federated 

data infrastructure, neuroscience has to cope with a diverse set of data sources with 

their specific formats, modalities, spatial and temporal scales, coverage, sample sizes, 

etc.. This includes neuro-imaging data from high-resolution microscopes and MR-

imaging, electro-physiological data from multi-electrode array measurements, data 

from brain simulations on HPC systems or neuromorphic architectures. No fixed 

relationship exists between the data sources. Rather, the scientific approaches and 

workflows are a much faster moving target compared to, e.g., high-energy physics. 

Thus, a tiered approach as realised in the world-wide CERN Grid will not work for 

neuroscience, and a different organising principle has to be chosen for HBP. The setup 

of the Fenix data infrastructure is guided by the following considerations. 

 Data is brought in close proximity to the data processing resources at different 

compute and data infrastructure service providers in order to take advantage of 

high bandwidth active data repositories as well as data archival services. 

 Federating multiple data resources enables easy replication of data at multiple 

sites. This capability can be exploited to improve data resilience, data 

availability as well as data access performance. 

As anticipated above, the Fenix sites plan to provide different classes of data 

repositories: 

 Archival Data Repositories. Data stores that are optimized for capacity, 

reliability and availability. Archival data repositories are meant to be used for 

storing large data products that cannot be easily regenerated, in particular those 

for which long-term accessibility is crucial. 
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 Active Data Repositories. Data stores that are located close to computational 

or visualisation resources such that high performance access to data is enabled 

(in terms of high bandwidth and/or high IOPS rates). Active data repositories 

should be used for storing temporary slave replica of large data objects, for 

improving access performance, with the master copy of the data kept in an 

archival data repository. 

The various Archival Data Repositories will be federated using standard access 

protocols. In this context, federation means that users of the infrastructure are offered 

with a unified view on loosely coupled storage resources, which, in particular, has the 

following features: 

 Integrated AAI with single sign-on; 

 Data transfer services; and a 

 Data location service. 

 

The Archival Data Repository will provide role-based access control (RBAC) 

mechanisms for authorising access to data. This approach is sufficiently flexible for 

staying compliant with most of the community’s data management policies. 

Conversely, the Active Data Repository will not be federated and will hold temporary, 

private copies of data products. This allows using POSIX compliant parallel file-

systems as storage volume. A storage architecture concept that would realise the 

presented concept is shown in Figure 5. The Archival Data Repository is assumed to be 

realised by an object store using an OpenStack SWIFT front-end to facilitate data 

sharing over HTTP protocol. A data mover will allow data copying between the two 

repositories, the object store and the parallel file-system. The decision to keep data 

separated, also in terms of underneath technology solutions, will provide high-



 

- 41 -  

performance access to data from both the High Performance Computing resources as 

well as the Interactive ones. 

 

Figure 5 – The Fenix multiple tiers data management model. 

Interactive Computing Services 

Nowadays the largely widespread usage model for large-scale HPC systems is 

based on the scheduling of batch jobs. This approach is not needed to meet a 

requirement from the computational science communities, but it reflects the 

predominant issues in the management of the HPC systems, the maximization of 

resource utilisation, and the handling of concurrent workloads. However, the situation 

differs when taking into consideration personal workstations or shared memory servers, 

where time-sharing interactive executions are the norm. 

As an extension to batch-oriented systems, Fenix aims at providing resources 

that can be used interactively to the cost of obtaining nearly lower performance while 

keep ensuring high resource utilization. Thus, Interactive Computing refers to the 

capability of a system to support distributed computing workloads while permitting on-
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the-fly interruption by the user. The real-time interaction of a user with a program 

runtime is motivated by various factors, such as the need to estimate the state of a 

program or its future tendency, to access intermediate results, and to steer the 

computation by modifying input parameters or boundary conditions. Within neuro-

science applications, i.e. brain activity simulation, large image volume rendering and 

visualization, connectomics experiment, this implies that the runtime can be modified 

interactively so that the user can gain insight on parameters, algorithmic behaviour, and 

optimization opportunities. The commonly agreed central components of interactive 

computing are, on the front-end, a sophisticated user interface to interact with the 

program runtime and, on the back-end, a separated steerable, often CPU and memory 

consuming application running on an HPC system. 

A typical usage scenario for interactive computing regards the visualization, the 

processing, and the reduction of large amounts of data, especially where the processing 

cannot be standardized or implemented in a monolithic workflow. The data can be 

generated by simulation or harvested from experiment or observation; in both cases, 

during the analysis the scientist performs an interactive process of successive reductions 

and production of data views that may include even complex processing like 

convolution, filtering, clustering, etc. This kind of processing could be easily 

parallelized to take advantage of HPC resources, but it would become clearly 

counterproductive to break-down a user session into separate interactive steps 

interspersed by batch jobs as their scheduling would delay the entire execution 

degrading the user experience. Besides that, in many application fields, the 

computational scientists are starting to use interactive frameworks and scripting 

languages to integrate the more traditional compute and data processing application 

running in batch, e.g. the use of R, Stata, Matlab/Octave or Jupyter Notebook just to 
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name few. In this way, the time spent in this activity is a non-negligible component in 

the “time to science”. 

In Fenix, users will be presented with the possibility to load and visualize data 

resulting from simulations or collections, series or experimental data, in an interactive 

way. To properly support interactive supercomputing, the system must be able to 

properly handle all the connections and protocols needed to dynamically attach multiple 

visualization and steering front-ends to a running application and to enable transparent 

staging of data across multiple storage tiers, from distributed storage participation to 

node-central memory, to ensure front-ends receive a continuous stream of data. To 

support interactive workloads, the infrastructure will include high-end servers equipped 

with a) large capacity of high-end volatile memory, optionally integrated with non-

volatile volumes (e.g. NVMe or DDR-like interfaces); b) GPUs for visualisation and 

image manipulation; c) high-performance low-latency interconnect to facilitate fast 

access to repositories as well as computing resources. 

User Management and AAI 

For the Fenix infrastructure, a central identity accreditation system will be set 

up. The goal of such a system is to provide users with secure, trustworthy and 

convenient access to services and resources made available by the infrastructure. 

Ideally, users would only need to use a single set of credentials to access distributed 

resources through authenticating towards trusted locations, these being either the home 

organization identity provider, a community portal, or the Human Brain central 

accreditation system. To implement this vision, the central accreditation system will be 

able to a) manage and authenticate local (homeless) users, b) broker identities managed 

by external organizations, i.e. EduGain, which manifest their interest in federating with 
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the infrastructure, and c) support existing Identities Directory. Through supporting 

standard authentication protocols, such as OpenID Connect or SAML, the central 

system will voucher for the user's identity trusted by the infrastructure to assert certain 

basic users profile attributes. This scheme has already successfully explored within 

other initiatives, such as the EUDAT Collaborative Data Infrastructure14. 

One of the promises of the Fenix AAI is to enable domain scientists to make 

effective use of the virtual research environment without having to deal with the 

intricacies that are typically associated with the use of HPC systems. As also 

highlighted by the AARC (Authentication and Authorisation for Research and 

Collaboration) project15 guidelines, an omnipresent aspect of dealing with computing 

resources efficiently is connected with the authentication and authorization of users. 

When I talk about seamless access, it is intended for any user, registered on a “trusted” 

IdP (Identity Provider) and granted to consume a certain amount of resources, to access 

federated resources using his/her credentials (i.e. username/password, X.509, etc..) 

without going through any further registration process. The list that follows presents 

the main principles that have influenced the design of the AAI: 

 The federation concerns with the aggregation of multiple hosting sites providing 

services and resources to users. Member sites contribute to the federation by 

accepting a common collaboration agreement that request them to operate 

service according to federation goals and performance. They need to maintain 

their independence and keep functioning regardless the status of the federation. 

Each member may request the acceptance of a local access policy besides that 

requested by the federation. Existing users, those who are already registered on 

                                                 
14 https://www.eudat.eu/services/b2access 
15 https://aarc-project.eu/ 
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one of the federated sites, become member of the federation by default. As such, 

they are automatically allowed (authentication) to access the federation and 

consume resources if granted through an allocation project. If a user has 

multiple accounts across different sites, all his/her profiles must be mapped to a 

unique Fenix identity for accounting and security reasons. 

 The Fenix AAI is conceived as the bounding of two separate services, a Central 

IdP which is responsible to proxy authentication requests coming from 

federated IdPs, and an Attributes Provider which is responsible to control 

authorization requests through budget allocation, groups and roles management. 

Each federated site needs to expose its user-base through its own IdP, supporting 

standard identification protocols, i.e. SAML v2 or OpenID Connect (OIDC). 

Sites are responsible for the operation of their own IdP and free to decide which 

authentication mechanisms to support for their users, i.e. username/password, 

X.509, 2FA, RSA, etc. 

 To be part of the federation, each federated IdP should be able to release a 

common set of user profile attributes in response to any authentication requests, 

successful or unsuccessful. These attributes should meet the requirements set 

by the REFEDS Research and Scholarship Entity Category (R&S)16. 

 The Fenix Central IdP needs to be able to proxy authentication requests coming 

from external IdPs, such the HBP OIDC server or the eduGain federation17. 

 Since the Fenix infrastructure plans to deliver various classes of services, the 

AAI needs to cope with this heterogeneity and thus support various access 

                                                 
16 https://refeds.org/ 
17 https://edugain.org/ 
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interfaces, either based on Internet protocols, such as HTTP (Web Portal, 

SWIFT, etc.), or SSH. 

 In order to access resources, users will be requested to accept the Fenix access 

policy and any extensions appended by individual sites. Global and local 

policies should not include conflicting terms or create ambiguity. The fact that 

a user has accepted the Fenix general policy will be recorded at the Central IdP. 

 Access to resources is granted through the creation of projects/budgets managed 

by a central accreditation service called FURMS.  

 The federation will also support “service account” to permit machine-to-

machine interaction. However, for traceability reasons, these accounts need to 

be attached to a real person who is responsible to manage the service. 

 

Thus, according to the design principles presented above, and the outcomes of 

the AARC project, Fenix foresees the deployment of two services covering the 

following high-level functions respectively:  

 Fenix Central IdP 

 Users identification and authentication 

 Federation of multiple IdPs by proxying authentication requests 

 Validation of user profiles 

 Policy registry and management of principles of engagement 

 FURMS (Fenix User and Resource Management Service) – central 

accreditation service 

 Group/budgets membership management 

 Authorization attributes provider 

 SSH public keys management  
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 Managing site specific Usage Agreements 

 Reporting and metering 

 

Figure 6 – Architecture of the Fenix Authentication and Authorization Infrastructure. 

The Fenix Central IdP is responsible to proxy authentication requests among 

hosting site’s IdPs. At the same time each site is deputed to maintain its own IdP, plus 

as many SPs as the number of offered services. Through this central proxy, a user 

already registered on a site or an external IdP, such as eduGAIN ot the HBP one, will 

be able to access services and resources provided by other Fenix sites without 

registering twice and using its home IdP to authenticate. The central proxy is also 

responsible to control the validity of a user profile, including the acceptance of the 

Fenix access policy, and to provide a set of APIs to permit hosting sites, or other 

services, to retrieve information about users profile basic attributes.  
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The Fenix Central IdP does not enforce access rights but simply forwards 

authenticated user’ attributes to the hosting site which, applying local policies, decides 

if that user can access services or not. The Central IdP will be also configured to release 

LoA (Level of Assurance) information for each federated IdP, as well as the IdP the 

user is authenticating from. If needed, it can also retrieve attributes from external 

Attribute Authorities to enrich users’ profile.  

In parallel, FURMS will act essentially as a Service Provider (SP) of the Central 

IdP with the task of managing and issuing authorization records, such as information 

about available budget on sites. Furthermore, in order to serve multiple communities, 

the concept of Fenix Community has been introduced. A Fenix Community is a virtual 

organisation of scientists, for which the Fenix Resource Providers have committed to 

make part of the Fenix Infrastructure available. The approach is very similar to the 

virtual organisations used in grid computing and specifically the WLCG (Worldwide 

LHC Computing Grid). 

While the federation of services supporting web protocols is a widely discussed 

topic which many solutions have been developed for, the access to resources via secure 

shell logins (SSH) presents different challenges. Our approach to address this 

requirement follows the IAM (Identity Access Management) model where user public 

SSH keys are stored on a remote IAM service and recall when needed. Each Fenix user 

will be responsible to create it public and private keys and upload only the public part 

to the IAM service. While trying to access a HPC system via SSH, the user will present 

his/her private key and leave the sshd daemon contact the IAM service to validate that 

the private key pairs with the public one. This handshake is made possible thanks to the 

“AuthorizedKeysCommand” option of the OpenBSD SSH implementation18 which 

                                                 
18 https://man.openbsd.org/sshd_config 
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serves to specify which service or program to look up for the user’s public key. For 

security reasons only “RSA 2048” or “Elliptic Curves” encryption algorithms will be 

allowed to create key pairs. In the case any site would not agree to use the 

AuthorizedKeysCommand option to look up for the user’s public SSH key on demand, 

a simple synchronization mechanism between the central IAM and a local database may 

be implemented. However, on a long-term vision, we foresee SSH access dropped off 

in favour of web applications, i.e. Jupyter notebooks, to access HPC resources even to 

execute very large workloads. 

Open data 

The discussion about open data has been going on for a long time at various 

levels, local, national and within the EU. At EU level, the European Open ScienceCloud 

(EOSC) is being discussed, which has resulted in a declaration19 that many countries 

have endorsed. Fenix promotes a culture of open data, encouraging users adopt policy, 

guidelines to facilitate data sharing, and interoperability and making available needed 

technological solutions. 

A prerequisite for open data is functioning and coherent e-infrastructure for 

storage, reuse, access and analysis of data. At the same time, open data are an important 

prerequisite for “data-driven research”. Major inputs are also needed to make existing 

data accessible, which includes careful documentation of how data have been generated 

and the information the data contain, which is often referred to as metadata. 

Standardised metadata are, in turn, a prerequisite for research data living up to the 

principle of FAIR data[18], that is to say data that are: 

 Findable – easy to find and discover. 

                                                 
19 https://ec.europa.eu/research/openscience/pdf/eosc_declaration.pd 
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 Accessible – openly accessible without charge or other restrictions. 

 Interoperable – comply with widely used standards and data formats. 

 Reusable – available to be used and reused. 

The fact that data are open and managed according to the FAIR principle should 

not be interpreted as an absence of restrictions. The principle for EOSC is that access 

to data shall be “as open as possible, as closed as necessary”. Research into 

neuroscience, medicine and health in particular, data on individuals play a crucial role. 

These are data collected by researchers where private individuals provide the 

information, data from registers, patient data, biobanks, genome sequencing and quality 

registers. In these cases, technical solutions to protect data and the integrity of 

individuals are needed. Respect for the integrity of individuals and research that is 

conducted according to applicable legislation and ethical guidelines are both given. The 

General Data Protection Regulation (GDPR) entails stronger protection of the integrity 

of individuals, at the same time as fulfilling the needs of research. It is important to 

emphasise that research is ever more dependent on horizontal data, where individuals 

are monitored over long periods. As research is a dynamic process, this means that it 

must be possible to assemble databases with broad consent from the individuals 

providing information to research. The increased need for long-term studies of 

individuals also raises the potential conflict between the requirement to protect the 

integrity of sensitive personal data and the requirement to make data available for peer 

review on scientific publication. To safeguard the quality of research, this issue needs 

further consideration in the future. This is an area that is developing very rapidly, and 

continuous discussion is needed about the prerequisites for and ethical attitude of 

research.  
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Chapter IV. 

Evolution of High Performance Computing 

The purpose of this section is to document the changes that are taking place in 

HPC design, and outline some of the likely developments expected in the near future. 

The initial part then leads into a discussion of how software is evolving, the challenges 

that are being faced, and some of the new directions being explored to address them. It 

concludes with a discussion of the implications for researchers developing new codes; 

what should they think about in designing their new codes, and how can they avoid 

being locked into any one particular architecture. 

High-performance computing has evolved remarkably over the past 20 years, 

and that progress is likely to continue. HPC is a strategic tool to foster competitive 

science while promoting innovation in different disciplines. After having being used 

for more than 30 years in climate research, numerical weather prediction, astrophysics 

or chemistry, HPC is now contributing to all scientific fields including biology, life 

sciences, materials sciences to finally reach social sciences and humanities. Into the 

industry field, HPC has been widely used in oil & gas exploration, aeronautics, 

automotive and finance, and it is now becoming crucial for ensuring personalized 

medicine, develop nanotechnologies or enable the exploitation of renewable energies. 

Moreover, HPC is becoming a tool of growing importance for public decision making 

by creating simulated scenarios to prevent and react to natural risk events, such as 

earthquakes, thunderstorms, floodings, volcano eruptions, biological hazards and 

(cyber)-terrorism attacks. However, in recent years, progresses in HPC have been 

achieved through greatly increased hardware complexity with the rise of multicore and 



Chapter IV. 

Evolution of High Performance Computing 

- 52 -  

many-core processors, sometimes affecting to much the ability of developers to achieve 

the full potential of new architectures. Into the Moore’s law regime, also moving from 

vector to parallel processing, we have observed relatively smooth transitions from 

Gigascale (1985), Terascale (1997) to Petascale (2008), while the next move that should 

take the community to Exascale (between 2019 and 2023) is bringing new challenges 

still hard to solve, such as energy efficiency and the high cost of moving data.  

Another important factor connected with the evolution of HPC systems is the 

convergence between numeric simulation and big data workloads due to the high 

volume of data coming from next generation scientific instruments, e.g. satellites, 

telescopes, microscopes, and sequencers.  

Processing vast amount of structured or unstructured data in a profitable manner 

is not possible for human beings any longer. This limitation fuelled the rise of a new 

paradigm, the High Performance Data Analytics (HPDA), which, combining 

processing and data manipulation techniques (assimilation, interpretation, extraction, 

prediction), capitalizes on artificial intelligence (AI) and machine learning (ML) 

methods to extract new values from data. 

As a result, many scientific communities are now combining HPC and HPDA 

methods into large-scale analysis pipelines to process massive volume of data generated 

by simulations, experiments or observations, and being able to - in-situ or in-transit - 

infer further outputs. This convergence will permit the classification and identification 

of relevant data features at processing time avoiding the data to be first stored and then 

post-processed. In the near future, this could also lead to the development of smart AI-

driven computational steering techniques. In combination to this, the modern AI, the 

one combining 25-year-old Deep Neuronal Network (DNN) algorithms with modern 
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hardware (GPU or FPGA) will benefit from converged HPC/AI architectures for 

addressing new scale out challenges including:  

 developing more complex and deeper networks (like CapsNet Capsule neural 

networks [63]); 

 use more complex and multidimensional data and increase training sets; 

 develop explainable AI (XAI) methods20. 

Impact on multi Petascale and pre Exascale architectures  

Because of energy cap and high cost of moving data, the road to Exascale needs 

to create a new paradigm, not only technological but also organizational. More 

precisely, to pave the way towards Exascale we need to: 

 rethink and support data workflows from end to end; 

 federate converged HPC/data infrastructures through (dynamic) high bandwidth 

network services (like Software Defined Networks);  

 ensure the co-existence of stream and batch models, provide smart resources 

managers able by secured containerization techniques to support efficiently 

multiple software stacks including HPDA and AI;  

 enable efficient exchange of data between simulations and analytics going 

beyond POSIX limitations;  

 develop new multidisciplinary skills in HPC, data management and AI and 

foster new insights from scientific and industrial disciplines towards data 

discovery. 

 

                                                 
20 https://www.cmswire.com/digital-experience/what-is-explainable-ai-xai/ 
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With several architectural options still remain open for the Exascale area in 

terms of processor, accelerators, memory and I/O subsystems, the multi-petascale and 

the pre-Exascale production systems planned to be deployed by the EuroHPC Joint 

Undertaking and the Member States around 2020/21 will be based on 2 different kind 

of hardware architectures for converged (HPC+AI) nodes:  

 (multi, many) core based architectures; 

 accelerated architectures using more or less tightly coupled GPU (or FPGA) 

with (multi, many) core CPU. 

 

Pre-Exascale systems of approximately 300 PFlops of peak performance are 

expected to couple around 45,000 nodes (for multi-many core based partitions) and 

3,000 nodes (for accelerated ones).  

Based on the requirements coming from scientific and industrial communities, 

such systems, based on balanced architectures, in terms of compute capacity per node, 

memory capacity/bandwidth per node as well as networking performance, will be used 

for both capability21 and capacity22 workloads. They will also serve to accommodate a 

mix of HPC and HPDA/AI workflows orchestrated by next-generation resource 

managers able to support coexistence of batch and interactive nodes. 

Specific HPC options  

This section explains the main hardware and software options to build a credible 

roadmap towards Exascale. As no significant breakthroughs in hardware technologies 

are expected in the next 2-3 years, the focus is on pre-exascale and multi-petascale 

                                                 
21 Execution of large-scale applications spanning potentially to all the system. 
22 Execution of coupled multi scale, multi physics applications, ensemble, optimisation and uncertainties 

quantification studies. 
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systems as the fulfilment of their requirements is a necessary condition to make the 

successive step.  

 

HPC processing units 

There are three main elements which are characterizing recently deployed HPC 

systems; a) accelerators such as GPUs attached to generic processors, b) presence of 

standalone processors (multi-core) and c) many-core cards. While multi-core 

processors provide a generic approach for general HPC workloads, the accelerators and 

the many-core ones support a higher number of threads at a lower performance, which 

imposes certain limitations to get good performance from them. The most relevant ones 

is the high level of scalability that an application must have to profit from the 

availability of so many cores without incurring in race conditions. 

Although the approaches based on accelerators or many-core provide very 

profitable GFlops/watt ratios, HPC standalone processors usually offer lower 

performance but without requiring applications to be modified. 

Considering the size of the pre-exascale machines, the options to provide a pure 

HPC standalone-processor machine is limited, as with the current technologies it will 

require an excessive power consumption to provide a 300 PF peak performance 

machine. Furthermore, the current options for many-core processors after the 

decommissioning of the Intel Xeon Phi product line are currently very limited. Intel is 

working on a new many-core architecture for exascale that includes dataflow engines23 

but the releases roadmap has not been confirmed yet. 

Another improvement path relies into making use of resources more dynamic 

to adjust hardware behaviour, such as voltage/frequency scaling and (de)-activation of 

                                                 
23 https://www.nextplatform.com/2018/08/30/intels-exascale-dataflow-engine-drops-x86-and-von-neuman/ 
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functional units, according to application performance needs. Even with these 

improvements, the architecture might remain too complex for large HPC applications. 

Of course programming environment should be able to provide a standard interface to 

hide this complexity. At the hardware level the appropriate features should be available 

to support a hybrid approach as MPI + X where X could be either OpenMP v4.0 or 

other libraries as well as PGAS + X. 

 
Memory 

Although the performance of CPUs and HPC accelerators has improved 

drastically over the last years, the delivered peak of compute nodes has not followed 

the same positive trend. The gap between theoretical and delivered performance is 

directly connected to memory access whose throughout has not registered any 

significate improvements; this phenomenon is often referred to as “memory wall”. It is 

evident that memory systems play a critical part in HPC systems, directly affecting their 

performance, power consumption, and cost of ownership. Recent requirements from 

applications and constraints from technologies are shifting HPC systems towards more 

complex, deep memory hierarchies. First, requirements for memory capacity continue 

to increase dramatically in response to simulation, machine learning, and enterprise 

applications [1], [2]. Second, the continued imbalance of computing performance to 

memory performance constricts overall application performance. Third, in HPC 

specifically, the plateauing performance of both I/O subsystems and interconnection 

networks is forcing applications to consider alternative scenarios like in situ 

visualization and analytics that utilize large on-node memory to reduce expensive inter-

node data movement. Finally, the conventional memory technology – dynamic random-

access memory (DRAM) – is approaching its limits in terms of density, power, and 
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cost; hence, researchers are investigating new technology options [3], [4], [5] : non-

volatile memory (NVM), such as 3D-XPoint [14], phase-change memory (PCM [6]), 

3D NAND flash [7], and spin-transfer-torque magnetic RAM (STT-MRAM [8]). 

Meanwhile, high-performance volatile memory, like Hybrid Memory Cube (HMC [9]), 

Wide-I/O 2 (WIO2 [10]), high-bandwidth memory (HBM [11]), and GDDR6 [12], 

continues to be actively developed and deployed. 

These solutions offer much larger bandwidth (> 1TB/s for HBM2 vs 160 to 200 

GB/s for DDR based systems) at same latency level but offering a smaller capacity than 

today DRAM memory modules since package size is limited, and thus, if external 

memory is still required, an extra level in the memory hierarchy needs to be added.  

In general, delivering improvements in bandwidth and latency can have major 

impacts on code efficiency. Thus, the challenge is to find the right balance between 

future memory characteristics (bandwidth, latency, size, power consumption, 

integration and cost) and usage (explicit data placement, automated placement or even 

caching). Upcoming Non-Volatile Memory (NVRAM) technologies are opening new 

opportunities for HPC systems. New NVRAM will feature much larger byte-

addressable capacities as DRAM; hundreds of GBs vs tens of GBs allowing new 

approaches where only compute nodes are populated with HBM. Their performance 

will be much better than current FLASH based NVRAM technology approaching 

DRAM levels. Furthermore, their endurance should be comparable with DRAM at least 

in combination with some hidden wear-levelling technology. They could be used in 

HPC systems, both as main memory and ultra-fast I/O. It is clear than these new 

technologies will provide new options of memory speed and size within each node but 

the way to access to this memory hierarchy may increase the complexity of the codes 

and limit its portability. Not surprisingly, this strategy of coupling different memory 
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layers together provides considerably more flexibility, but it also presents new risks and 

challenges. First, this large, multidimensional design space is expensive to evaluate 

with existing tools for functional or cycle-accurate simulations. Additionally, 

applications, code generation toolchains, and other architectural components must 

adapt to each memory technology under consideration. For example applications must 

be explicitly ported to use these new memory features, as they are not transparently 

managed by the hardware or the operating system. Second, these new memory systems 

must be designed for a specific set of applications in terms of computational intensity, 

working-set size, memory access patterns, parallelism, etc. If the specific application 

requirements and scaling predictions are inaccurate, then the ultimate design could miss 

the optimal balance. Third, in this period of expanding options, many of these memory 

systems will be unique in that they are immature and the first implementation of this 

memory architecture. Designer experience, existing toolchains, and performance 

estimates will be less obtainable and require more efforts. As a result, architects and 

customers are struggling to design HPC memory systems that effectively balance 

multiple factors of cost, performance, capacity, and power. Moreover, many diverse 

technologies, such as NAND flash, HBM2, GDDR6, are being rapidly improved [13], 

[14], [15] and must be evaluated frequently as new parameters become available. In 

this regard, efficient and flexible design tools for memory systems for analyzing and 

optimizing these options are gaining in importance.  

HPC Systems Interconnect 

Application performance relies on parallelism and much depends on the 

efficiency of the network interconnecting the compute nodes into a single system. The 

HPC system interconnection network must scale together with the compute nodes and 

the storage performance. The HPC networks bandwidth is planned to grow from a 100 
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Gb/s today, to 200, then 400 Gb/s in the coming years thanks to the development of 

new generations of SerDes (Serializer/Deserializer) circuits24. 

The minimum required bandwidth should be around 2Gb/s per MPI task, but 

anything up to this number will be better as it will permit to share in the same network 

using QoS channels the MPI communications and the parallel file-system I/O. About 

the latencies, the current technologies are providing around 0,5-0.9µs, adding to this 

number the latency of each of the hops required to get the final destination of the 

package, about message rate, most of the network technologies used at HPC should 

provide at least 100-150 million packages per second, and finally such interconnects 

should be able to offload MPI traffic, provide adaptive routing mechanisms and ensure 

end-to-end reliability of communications. 

Possible options for a machine with more than 5000 nodes are either to have a 

non-blocking network, or define several islands with blocking (pruning) options among 

them. The necessity of a full non-blocking network is relative to the amount of 

applications using an important part of the system in a single execution and their 

bandwidth requirements. If the expected use of the system is with smaller executions, 

the most cost-effective solution is to have islands of enough cores to fulfil at least 90% 

of the executions and then a blocking connectivity 1:2 or 1:3 oversubscription factors 

between the islands. Thus, the network topology needs to be synchronized with a 

resource manager with the capability to manage the different islands throughout the 

allocation of jobs. The performance lost due to the blocking factor is application 

dependent, and there will be application with no lost due to a 1:3 blocking factor, when 

others can be severe affected by the same blocking, so an analysis of the kind of jobs 

executed will be an important study to take the final decision. 

                                                 
24 http://emlab.uiuc.edu/jose/Theses/Yang.pdf 
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Storage 

The main interest for HPC users is the maximum capacity and parallel 

performance of the file-system, in this case, the number of users using local disks is 

reduced. However, having a fast local storage is a good approach for specific I/O than 

cannot be afforded by the parallel file-system. In that sense and following the latest 

memory technology developments (see section above) a tiered storage solution 

incorporating a mix of local storage, burst buffers and HDD and finally a vast cold 

storage on HDD/tapes supported by a fast and smart parallel file system need to be 

considered.  

Any usable parallel file-system needs to support MPI-IO [26], and it will also 

be very recommendable to have a checkpointing/restart at the system level, as one of 

the main problems we will face off in the future is the reliability of the applications due 

to high possibility of failure of one component of the system involved in large 

executions. In this case and for performance issues, the techniques of Fault-Tolerance 

in MPI [26] and from an application point of view (or ideally the system itself) will be 

very important to restart big executions, to manage this restarts a fast and persistent 

local file-system should be required, so technologies like NVRAM can be a good 

approach. The idea of using NVRAM in high performance computing was already 

investigated, especially in the area of data-intensive architectures, where usage of only 

DRAM is costly and power-intensive [28]. NVRAM was also already used for 

checkpointing of distributed parallel applications. Dong et al. [29] proposed to use 

hybrid local and global checkpointing using phase-change memories (PCM). 

Narayanan and Hodson [30] proposed to use NVRAM to make whole-system 

checkpoints by keeping all data in NVRAM. Gao et al. [31] created their own 

checkpointing system that creates partial checkpoints during application execution. It 
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utilizes runtime idle periods to copy data from DRAM to NVRAM in order not to 

interfere with application execution. 

Virtualization and Container 

Virtualization is an important tool for improving user’s experience while 

accessing HPC systems, including exploitability, reliability and security. At the node 

level, containers can be set-up to facilitate system administration. VMs and containers 

provide a flexible way to tailor the run-time environment for each user and application. 

They will also enforce better security as applications will be insulated from system 

software and other applications running on the system. 

At the network level, virtualization support will allow a better Quality of Service 

(QoS). It will arbitrate between concurrent users, applications, data flows, and their 

respective priorities. Another important aspect is that it could help to improve system 

resiliency with an easier implementation of checkpoint/restart at the system level. It is 

interesting to develop virtualization at all levels of the HPC systems and in a coherent 

way. 

For the pre-exascale and exascale machines, the hardware, the operating system 

and the network should be able to support the standard containers and virtualization 

systems, e.g. Docker25, Singularity26, Shifter27, etc. and with a level of security enough 

for the use of these technologies in a HPC environment. Packaging and running 

applications via containers has the potential to enable extreme mobility in 

computational modelling and form an integral part of the effort to enable transnational 

access to HPC resources and collaboration in research. It offers a method of simplifying 

and standardising the building and execution of applications on diverse hardware 

                                                 
25 https://www.docker.com/ 
26 https://singularity.lbl.gov/ 
27 https://github.com/NERSC/shifter 
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platforms without compromising on performance so that researchers can develop 

applications on their laptop or local HPC system and easily and quickly get that 

application running on different HPC system in other institutions or countries. An 

important additional benefit of this is that containerisation can also effectively capture 

and preserve the exact tools and environment in which the results of an analysis or 

simulation were derived and so help to advance the implementation of Open Science 

policies.   

In the context of executing applications via containers, a number of factors 

unique to HPC need to be addressed. These include the ubiquitous use of the Message 

Passing Interface standard as a means of parallelising codes, the use of specialised 

hardware such as GPUs and the widespread use of parallel file-systems. Here we will 

examine the challenges each of these factors presents as well as how the alternative 

technologies address them where relevant.  

MPI is a standard API commonly used in parallel HPC applications to pass data 

between processes and control the concurrent execution of many independent tasks. 

Numerous implementations of the standard exist such as Intel MPI, Cray MPI, 

MVAPICH, OpenMPI, each providing a different set of runtime libraries and 

configuration options. When containerising an MPI application we first need to 

consider how it can be made to work in terms of the correct start-up and execution of 

all containers involved and secondly how to make it as portable as possible so that it 

can run on multiple systems with minimal (if any) changes. 

There are generally two ways to implement MPI from within a container: a) the 

entire MPI stack is packed within the container. This is the most commonly used model 

and can be made working with different technologies. At first glance it appears to offer 

the advantage of fully encapsulating the environment; however critical information 
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such as how network addressing is set up on the host cluster and specific information 

on features and tunings of the HPC network is dependent on the system where the 

containers are going to be run. This significantly affects the portability and potential 

performance of the container; b) the MPI stack is split partially between the host and 

the container. This is the preferable approach as the MPI stack does not need to be built 

specifically for a target host or resource but simply requires a compatible version to be 

present on the hosting cluster. It also alleviates much of the networking complexities 

as the MPI processes in the containers can be started through the batch system or local 

MPI start-up method. In this scenario for example, the batch system could call the 

regular system installed mpiexec, which will then launch the containers using the set of 

nodes allocated to it. 

Recent versions of Singularity and OpenMPI have been modified to work well 

together (as does Shifter and Cray MPI). Singularity detects when an OpenMPI 

application is being built and automatically adds all library dependencies into the 

image. Additional factors to consider are how MPI processes communicate between 

containers within the same node. Depending on which namespaces are in use, i.e. the 

IPC (Inter-Process Communication) namespace, the optimal use of shared memory for 

communications may not be available in which case the network must be used which 

will increase message passing latency. 

GPUs and CUDA 

Driven by the insatiable market demand for real-time, high-definition 3D 

graphics, the programmable Graphic Processor Unit or GPU has evolved into a highly 

parallel, multithreaded, many-core processor with tremendous computational 

horsepower and very high memory bandwidth. More specifically, the GPU is well-

suited to address problems that can be expressed as data-parallel computations - the 
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same program is executed on many data elements in parallel - with high arithmetic 

intensity - the ratio of arithmetic operations to memory operations. In November 2006, 

NVIDIA introduced CUDA, a general purpose parallel computing platform and 

programming model that leverages the parallel compute engine in NVIDIA GPUs to 

solve many complex computational problems in a more efficient way than on a CPU. 

NVIDIA CUDA is the dominant programming framework, but any language that 

allows the code running on the CPU to poll a GPU shader for return values, can create 

a GPGPU (General-purpose computing on graphics) framework. Other common 

programming standards for GPU parallel computing include OpenCL28 (vendor-

independent) and OpenACC29.   

To enable a container to run a CUDA application using the host GPU, there are 

two approaches which can be used: a) install the GPU drivers and CUDA libraries 

within the container. The disadvantage here is that driver versions must match on the 

host and container; b) use a GPU enabled container technology. The nvidia-docker 

wrapper is able to create Docker containers with a CUDA runtime which can 

interoperate with the host GPU drivers thereby eliminating the need to explicitly match 

versions on the host and image. Singularity (version 2.4 or above) enables the use of 

the host GPU drivers and CUDA libraries to be automatically bound to a container at 

runtime thus eliminating the need to install them in the container image. 

Parallel cluster file systems such as Lustre30, BeeGFS31 and IBM Spectrum 

Scale (GPFS)32 are a key component of almost all HPC systems and enable a consistent 

                                                 
28 https://www.khronos.org/opencl/ 
29 https://www.openacc.org/ 
30 http://lustre.org/ 
31 https://www.beegfs.io/content/ 
32 

https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.2.3/com.ibm.spectrum.scale.v4r23.doc

/bl1ins_intro.htm 
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view of a shared persistent file system on all nodes with high performance being a 

primary design principle. All of the container technologies presented above allow 

containers to mount a directory structure from the host into the runtime container so 

that applications can read and write data to this filesystem without requiring specific 

software to be installed. Thus, for example, a user’s home directory on GPFS can be 

mounted at runtime in a container and the application can read its input data from there 

and write output as the job proceeds. Differences in the use of the Network Namespace 

between Docker and the other container implementations suggest that there may be a 

performance overhead on I/O for Docker.  

However the layered UnionFS33 image format of Docker is not compatible with 

parallel file systems and so native Docker images must be stored on a separate ext4 file-

system, possibly duplicated on each node. The other technologies all use flat images 

that are essentially a single large file in the case of Singularity or a tar file of a directory 

structure which is subsequently extracted in the case of Charliecloud34. The single large 

image file used by Singularity is particularly well suited to parallel file systems which 

are typically optimised for this type of file. Also, for applications such as Python 

workflows which involve accessing a very large number of small module files, having 

the container image as a single file enables much higher performance in terms of startup 

time because the metadata servers are not overwhelmed by many nodes simultaneously 

performing metadata lookups on hundreds of small files. Benchmarks35 have shown 

that as the number of concurrent Python interpreter increases with the size of a job, the 

start-up time increases due to file system contention but that this can be offset by using 

Singularity containers to reduce the number of file accesses (Figure 7). 

                                                 
33 http://unionfs.filesystems.org/ 
34 https://github.com/openhpc/ohpc/issues/712 
35 https://paperpile.com/c/C6IbYQ/Tt8t 
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Figure 7 – Start-up time of python script on container vs regular file system install. 

The first test and comparison reported below is a proof of concept test to run a 

MPI benchmark across multiple nodes. These tests are intended to examine and 

demonstrate the feasibility of running HPC applications using containers, with 

performance considerations coming later into the document.  

For the purpose of testing we selected a very simple hybrid micro-benchmark 

which can be run with multiple configurations (OpenMP, OmpSs, MPI+OpenMP and 

MPI+OmpSs) to study how parallel applications may behave with containers and verify 

the BSC’s DLB (Dynamic Load Balancing)36 library is able to handle load imbalances 

from inside. We decided to launch our tests twice using Docker, Singularity and Shifter, 

one without DLB and one enabling it, using two nodes with two MPI processes each 

and four threads per MPI process, so in total we were running eight threads of our 

benchmark on each node. In the Singularity and Shifter cases, when submitting the jobs 

we just invoked from the login node mpirun specifying a hostfile and desired bindings, 

                                                 
36 https://www.bsc.es/research-and-development/software-and-apps/software-list/dlb-library-dynamic-

load-balancing 
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treating containers as wrappers of our program. With Docker, however, we deployed 

two containers as virtual nodes connected through an overlay network and ran our tests 

from inside since Docker’s aim is to make containers as isolated and autonomous as 

possible. 

In Figure 8 we can see the execution flow of the same executable with Docker, 

Singularity and Shifter respectively. In red it is represented each OmpSs’ task execution 

(the parallel code) and in pink all the sequential code (the code outside parallel regions) 

that each MPI process performs, which consists of MPI calls and the sequential code of 

our micro-benchmark. We can also observe that the execution presents a considerable 

load imbalance between MPI processes 1.1, 1.2 and 1.3, 1.4 because there are threads 

doing nothing useful, which is represented in black since they are idle, between pink or 

red regions. 

 

Figure 8 - Paraver trace without DLB using Docker (top), Singularity (middle), 

Shifter (bottom). 
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Essentially the executable behaves the same with all three implementations; 

nevertheless, it is evident that Docker takes some more time to complete a task than 

Singularity or Shifter. Considering the fact that Docker containers operate using an 

overlay network it makes sense there exists extra overhead due to MPI communications.  

 

Figure 9 - Paraver trace with DLB using Docker (top), Singularity (middle), Shifter 

(bottom). 

Figure 9 shows the flow of test application with dynamic load balancing. The 

three traces (Docker, Singularity and Shifter) are very similar and we can clearly 

appreciate the effect of enabling DLB library. Besides, each MPI process now has eight 

threads instead of two. The application possesses the same amount of hardware 

resources as in Figure 8, but with DLB each process is able to borrow the assigned 

CPUs of the other MPI process in the same node, so at the end one MPI process is able 

to potentially run on eight CPUs and therefore it needs eight threads now. If we take a 

closer look it seems evident how when the less loaded MPI processes 1.2 and 1.3 finish 

their work, instead of blocking themselves and going idle their CPUs DLB assigns that 
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resources to the other two processes which still have computations to do. Thanks to a 

more efficient hardware usage because DLB avoids having CPUs in idle state, we were 

able to get a speedup of around 30% with respect to the same execution but without 

DLB enabled presented above. 

Starting from these results, one may conclude that: a) it is viable to launch MPI 

applications with Docker, Singularity and Shifter. The benchmark presents very similar 

behaviour with Docker, Singularity and Shifter, thus it is logical to believe that these 

three implementations do not interact significantly with the application’s execution. 

Docker brings some overhead that may be due to the implementation of the network 

layer. Applications seem to be easily scalable with Singularity and Shifter, with Docker 

however we would need a more complex deployment involving explicit network and 

MPI setup and configuration. 
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Chapter V. 

Deep Learning 

With the data doubling every year, data intensive applications are increasing as 

well as the demand of high-end resource capacity to analyse collected data sets. The 

explosion of analysis applications have become a major driver for revising system 

architecture and tools leading to the proliferation of software components and 

frameworks which may require multi-node and multi-core systems to scale-up and 

provide good performance. To this respect, Machine Learning, and in particular Deep 

Learning [46], is a field that is rapidly taking over a variety of aspects in our daily lives. 

In the realm of deep learning, it lies the Deep Neural Network (DNN), a construct 

inspired by the interconnected nature of the human brain. Trained properly, the 

expressiveness of DNNs provides accurate solutions for problems previously thought 

to be unsolvable, simply by observing large amounts of data. Deep learning has been 

successfully implemented for a plethora of subjects, ranging from image classification 

through speech recognition [48] and medical diagnosis, to autonomous driving and 

defeating human players in complex games. Although neural networks have attracted 

the attention of the data mining community since many years, they only rose in success 

once the available computational power permitted training on workstations by 

exploiting their inherent parallelism. As datasets increase in size and DNNs in 

complexity, the computational intensity and memory demands of deep learning 

increase proportionally. Training a DNN to competitive accuracy today essentially 

requires a cluster of machines with high-performance computing architectures. To 

harness the computational power available in such systems, different aspects of training 
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and inference (evaluation) of DNNs have been modified to increase their underlying 

concurrency.  

Consequently, the first successful modern DNN, such as AlexNet [49], 

managed to outperform existing classification methods by a factor of two, and current 

prevalent DNNs [47] outperform AlexNet by an additional factor of ∼2.9. 

However, the high popularity of these methods has resulted in numerous open-

source software tools becoming accessible to the public and popular across different 

scientific disciplines. Conversely, with the growth of applications and tools, it is 

becoming difficult for researchers to estimate how much resource is needed to run their 

analyses and select appropriate software and hardware components. For instance 

training deep learning models is a time-consuming process and many software tools are 

being designed to exploit special hardware features such as multi-core CPUs and many-

core GPUs to shorten the training time.   

In this section the results of a comparative study of state-of-the-art deep learning 

tools benchmarked onto Cineca HPC systems is presented. The comparison takes in 

consideration different aspects including the impossibility to benchmark all tools 

available on the market, the existence of tools supporting hardware accelerators and the 

availability of precedent studies [19] [20]. Our results show that tested tools are able to 

leverage underneath system capabilities to achieve significant performance and that no 

single software exists that outperforms others opening space to further optimisation. 

Although these workloads stress all system components, such as CPU cores, memory, 

and storage volumes, inter-node communications might introduce a significant 

overhead affecting overall performance. The update of deep network weights requires 

many collective communications. In many circumstances if you have a large data set it 

is better first to consider writing a custom, optimised, in-memory version of the code 
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rather than investing effort in trying to distribute the load on a multi-node cluster. This 

is also because most of the commonly available tools leverage traditional BSD sockets 

interface to communicate which prevent the use of RDMA (Remote Direct Data 

Access) present in modern low-latency networking technologies. Furthermore, only 

few tools make use of library supporting low level processor instructions for linear 

algebra, i.e. SSE, AVX, AVX2, AVX512, etc. Many machine-learning workloads are 

memory bandwidth bound and tools, especially those based on Java, do computation 

directly on compressed data and thus no easy use of inner math kernels is possible. 

Finally, despite the diffused belief, many tools show substantial limits while handling 

very large data sets resulting into the application to crash or exceed memory capacity, 

e.g. stack overflow. 

Performance has been measured using the convnet-benchmarks suite37 that 

tests all publicly accessible implementations of convolutional networks and includes 

models for object localization/detection from images/videos which won the Large Scale 

Visual Recognition Challenge on different years38. 

Frameworks have been selected according to their ability to support three 

distinct approaches for solving a deep learning task and are based on three distinct low-

level libraries, Intel MKL DNN, Intel MKL, NVIDIA cuDNN respectively. This part 

of the document reports about running performance of deep learning tools on different 

types of neural networks and different hardware architectures, including Intel 

Broadwell, Intel Knights Landing, and NVIDIA Tesla K80, Tesla P100. Results show 

that tools are able to make good use of platform characteristics and reach significant 

performance. Studied networks are listed below: 

                                                 
37 https://github.com/soumith/convnet-benchmarks 
38 http://image-net.org 
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 AlexNet [22]. Developed by Alex Krizhevsky, Ilya Sutskever and Geoff 

Hinton, it is considered the first work that popularized Convolutional Networks 

in Computer Vision. The AlexNet was submitted to the ImageNet ILSVRC 

challenge in 2012 and significantly outperformed the second runner-up (top 5 

error of 16% compared to runner-up with 26% error). The Network had a very 

similar architecture to LeNet, but was deeper, bigger, and featured 

Convolutional Layers stacked on top of each other. 

 GoogLeNet [23]. The ILSVRC 2014 winner was a Convolutional Network 

from Szegedy et al. from Google. Its main contribution was the development of 

an Inception Module that dramatically reduced the number of parameters in the 

network (4M, compared to AlexNet with 60M). 

 Overfeat [24]. This integrated framework, based on CNN, is winner of 

ILSVRC 2013 on localization task and obtained remarkable results also in 

classification and detection tasks. The novelty of the approach resides on the 

application of a CNN on multiple locations of the image and the ability to 

predict position and size of the bounding box surrounding objects. 

 VGG [25].  Visual Geometry Group (VGG) of Oxford University studied the 

effect of the convolutional network depth on image recognition tasks accuracy. 

This group ranked number one on localisation and second on classification tasks 

ILSVRC 2014. For this benchmark, model A is taken in consideration. 

Tested frameworks 

Caffe 

Caffe application can read prototxt files containing the definition of the network 

and data sources, while minimization algorithm parameters are set on a secondary text 
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file. Python API is also available and supports model loading, I/O, visualization and 

model training instrumentation. In this work we are considering two different caffe 

development branches: 

 Caffe (bvlc) is a deep learning framework made with expression, speed, and 

modularity in mind. It is developed by the Berkeley Vision and Learning Center 

(BVLC) and community contributors39. Release 1.0.0 exploits recent Pascal 

series GPUs thanks to CUDA 8.0 and CUDNN 6.0. Multi GPU (data parallel 

model) training is supported. 

 Caffe (Intel) is a fork of the main distribution dedicated to improving Caffe 

performance when running on Intel Xeon processors (HSW, BDW, Xeon Phi). 

Computational backend is based on Intel Math Kernel Library for Deep Neural 

Networks (mkl-dnn)40: an open-source intel project that provides fast 

implementation of common functions for neural networks carefully designed 

for Intel multicores and manycores. OpenMP is used for shared memory 

parallelism, while hardware vectorization is supported up through latest 

AVX512. For this benchmark, we used mkl-dnn 0.9 and mkl/2017 and Caffe 

1.0.0. 

Theano 

Theano is a Python library for the definition and optimization of mathematical 

functions involving n-dimensional arrays. Among different building blocks, a relevant 

number of layers for the implementation of neural networks are present. After the 

definition of the net, the library builds a C++ source that will be used for the actual 

training and inference phases. 

                                                 
39  https://github.com/intel/caffe 
40 https://github.com/01org/mkl-dnn 
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 Theano (native) is developed at Universit de Montral4. Release 0.9.0 is based 

on CUDNN 5.1, while master branch can exploit GPU architectures through 

libgpuarray 0.6.8, CUDA 8.0 and cudnn 6.0. Although beyond the purpose of 

this paper, it is worth noting that multi-gpu support is achieved through the 

adoption of Nvidia NNCL open-source project. 

 Theano (MKL) is a branch of the main distribution able to leverage Intel 

mathematical library (Intel MKL). Release 1.1 (based on native 0.9.0) is 

considered. 

TensorFlow 

TensorFlow is an open source software library for numerical computation using 

data flow graphs5. It is capable to leverage NVIDIA CUDA Deep Neural Network 

library (cuDNN), a GPU-accelerated library of primitives for deep neural networks6. 

Thanks to a close collaboration between Google and Intel, optimizations aiming at code 

optimization for Intel CPUs and manycores are already available on Tensorflow main 

branch7. Code refactoring has been carried out in order to allow SIMD vectorization 

(both AVX2 and AVX512 can be exploited, depending on the actual hardware); 

moreover a number of computational kernels are based on MKL and mkl-dnn. 

Neon 

Neon is the deep learning framework of the Intel Nervana initiative committed 

to achieve the best performance on all types of hardware8. The benchmarks used 

version 2.0.0+ that comes with Intel MKL support, which enables multi-threading 

operations on Intel CPU. A multi-GPU support seems to be available on Nervana Cloud 

only. Neon is highly optimised for Maxwell GPUs. Although it might get speedups over 

CPUs, note that on a pre-Maxwell GPU it might not experience the fastest performance. 

The benchmarks use the recommended settings on Intel architectures, that are: KMP 
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AFFINITY=compact,1,0,granularity=fine, and the AVX512 compiler flag has been 

enabled on the Intel Knights Landing system. Moreover the number of threads are set 

to the number of cores through the OMP NUM THREADS variable. Although Neon 

provide python code with option for setting the batch size and other parameters, the 

default batch size is hardcoded in the codes. 

 

Obtained results 

This part of the document summarises the results obtained by previously 

introduced frameworks when running on hardware described in Table 1. Both learning 

and inference tasks can be characterised by a simple measure that describes the 

capability of the underlying network to ingest a number of images on a unit of time. 

Generally, when training a model, a stochastic gradient descent (SGD) approach is used 

to decrease the value of a given cost function. The original convnet-benchmark 

approach is to provide the forward-backward time (averaged over 10 runs) for a fixed 

batch size. This running time is related to one single iteration of a SGD, when the same 

batch size is selected. Different hardware can require different data sizes to better 

exploit their inner parallel structures. We chose to report the highest number of images 

per second obtained, alongside with the relative batch size. Forward time is related to 

the velocity of performing inference tasks, only the evaluation of a function, not its 

gradient, is involved. 

 

Name CPU # Nodes RAM (GB) Accelerators 

MARCONI A1 Intel Broadwell 

2x Intel Xeon 

E5-2697 

v4@2.3GHz 

18 cores each 

1512  128 n/a 

MARCONI A2 Intel Knights 

Landing 

1x Intel Xeon 

3600  96 + 16 

(MCDRAM) 

n/a 
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Phi7250 

@1.4GHz 

68 cores 

MARCONI A3 Intel SkyLake 

2x Intel Xeon 

8160  

@2.1GHz  

24 cores each 

3216 192 n/a 

GALILEO Intel Haswell 

2 x Intel Xeon 

2630 v3 

@2.4GHz 

8 cores each 

524  128 78 NVIDIA 

K80 

 

2 NVIDIA 

P100 

Table 1 – Cineca systems description 

Concerning CPU architectures (Marconi A1 and A2), the most significant 

performance boosts are achieved by Intel branches of Caffe and Theano with respect to 

their native counterparts. For example, Theano/Intel is able to process a number of 

images which is 3.2 times larger in forward, 5 times larger in forward-backward 

evaluations, for a batch of 512 images; a similar behaviour has been observed with 

Caffe. For this reason, only the performance of Intel branches in A1 and A2 is 

considered. Optimal number of OpenMP threads seems strictly related to the effective 

number of cores. Thus results are obtained by fixing OMP NUM THREADS to 36 on 

A1 and 68 on A2. 

Library  System  Imgs/s (fwd/back)  Imgs/s (fwd) 

Caffe-intel Marconi (A1) 

Marconi (A2) 

60 [bs: 2048] 

69 [bs: 2048] 

358 [bs: 2048] 

493 [bs: 2048] 

Caffe (native) Galileo (K80) 

Galileo (P100) 

107 [bs: 512]  

458 [bs: 1024] 

319 [bs: 512] 

1450 [bs: 1024] 

TensorFlow Marconi (A1) 

Marconi (A2) 

Galileo (K80) 

Galileo (P100) 

131 [bs: 1024]  

214 [bs: 1024]  

258 [bs: 512]  

652 [bs: 512] 

424 [bs: 1024] 

709 [bs: 1024] 

753 [bs: 512] 

1769 [bs: 512] 

Theano-intel Marconi (A1) 

Marconi (A2) 

112 [bs: 1024]  

174 [bs: 1024] 

326 [bs: 1024] 

582 [bs: 1024] 

Theano (native) Galileo (K80) 

Galileo (P100) 

80 [bs: 512] 

311 [bs: 512] 

226 [bs: 512] 

1261 [bs: 512] 
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Neon Marconi (A1) 

Marconi (A2) 

Galileo (K80) 

Galileo (P100) 

120 [bs: 4096]  

189 [bs: 2048]  

61 [bs: 1024]  

1131 [bs:1024] 

370 [bs: 4096] 

603 [bs: 1024] 

226 [bs: 128] 

3371 [bs: 1024] 

Table 2 - Performance summary of a number of frameworks, considering Overfeat 

neural network. Both forward (fwd) and forward-backward (fwd/back) number of 

images per second are considered, between square brackets is the batch size. 

Table 2 shows that TensorFlow performance is both remarkable and well 

balanced among all considered architectures. Neon seems to be highly optimised for 

recent NVIDIA Pascal architecture, i.e. Tesla P100 card, with a factor of at least 2 with 

respect to others. On the other side, it performs poorly on older cards. Vectorized 

hardware, i.e. Intel Knights Landing, can be fruitfully exploited by TensorFlow (after 

enabling Intel optimisation described in Subsection 2.4.3) and benchmarks show 

comparable performance with respect to NVIDIA Tesla K80 GPU. From Figure 10 and 

Figure 11 it is clear that the performances are not heavily impacted by the selection of 

a suitable batch size. 

 

Figure 10 - Performance distribution, when varying the batch size: forward pass on 

Overfeat network is considered. 
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Figure 11 - Performance distribution, when varying the batch size: forward-backward 

pass on Overfeat network is considered. 

A further series of tests has been conducted in order to find the optimal 

conditions for Tensorflow 1.10.0 on the partition A3 of Marconi. As a first step, tests 

were performed on one node only and in a second time, they were then extended to 

multiple nodes. An A3 node comprises two sockets each with 24 Skylake cores Intel 

Xeon 8160. Images from the synthetic version of the database ImageNet41 were utilized 

both during the training and inferring phases. The convolutional neural network used 

has been RESNET50 [64], which was run for 100 iterations. Tests were launched 

specifying the following SLURM42 options: 

 --nodes=N, 

 --ntasks-per-node=n, 

 --ntasks-per-socket=n/2, 

                                                 
41 http://www.image-net.org/ 
42 https://slurm.schedmd.com/ 
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 --cpus-per-task=48/n, 

 --walltime=01:00:00 

where N refers to the requested number of nodes and n indicates the number of cores 

requested per node and corresponds, when asking only one node, to the total number of 

desired mpi tasks. Furthermore, the ambient variable OMP NUM THREADS is set to 

48/n, equivalent to the quantity specified in --cpus-per-task. We verified that not 

specifying the number of tasks per socket and the number of cpus per tasks leads to 

performance degradation. The parameter kmp affinity was set to 

granularity=fine,verbose,compact,1,0, while horovod fusion threshold was chosen as 

64 GB. 

A detailed parameter scan has been carried out varying the following quantities: 

1. batch size per processor: 32, 64, 128, and 256 images; 

2. number of mpi tasks (omp threads): 1 (48), 2 (24), 4 (12), and 8 (6); 

3. number of inter threads43: 1, 2, 4, 8, and 16; 

4. kmp blocktime44: 1 and 20. 

 

In the performed tests the value of intra threads3 was set to the number of omp 

threads. We verified that the simulation failed when indicating more mpi tasks due to 

memory limitation. Results are reported in Figure 12, which shows the number of 

processed images per second versus the number of MPI tasks for different values of 

kmp blocktime, batch size and number of inter threads. The best result has been obtained 

using 2 MPI tasks, 24 OMP THREADS with 24 intra threads and 1 inter thread, batch 

                                                 
43 Thread pool used by TensorFlow to run concurrently operations that are independent in the graph. 
44 Time, in milliseconds, that a thread should wait, after completing the execution of a parallel region, 

before sleeping. 
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size/proc = 256 (global batch size = 512), and kmp blocktime = 20. In this case 97.79 

images per second were processed, while the same setup, but a smaller kmp blocktime, 

leads to 95.22 images per second. In general, it can be observed that a smaller value (1 

or 2) for the inter threads parameter is more beneficial in term of performances. For 

batch size of the order of 128 and 256, the highest number of processed images per 

second is obtained selecting 2 MPI tasks. For smaller batch sizes, results indicate that 

good performances can be achieved even with an higher number of mpi tasks (and 

lower number of omp threads). It is interesting to underline the performances obtained 

considering a batch size of 64 with 8 mpi tasks (6 omp e intra threads) for a global batch 

size of 512, 2 inter threads and kmp blocktime = 1. In this case, Tensorflow could 

process up to 91.79 images per second. This result is encouraging especially with the 

perspective of using more nodes and so smaller batch size per mpi task. We underline 

that, since only 100 iterations were considered, data on the accuracy are not reported 

because meaningless. 
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Figure 12 - Intranode test results for kmp blocktime = 1 (left) and 20 (right). The plots 

report the images processed per second as a function of the number of mpi tasks (and 

implicitly the number of omp and intra threads, since these have been set as the ratio 

between 48 and the number of mpi tasks). The batch size per processor is increasing 

from the top towards the bottom. Different colors have been used for the number of 

inter threads: 16 (cyan), 8 (violet), 4 (green), 2 (light blue), and 1 (dark blue). 

The previous tests indicate as optimal setup in term of performances the 

following: 
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1. batch size per processor: 256 images; 

2. number of mpi tasks per node (omp e intra threads per node): 2 (24); 

3. number of inter threads: 1; 

4. kmp blocktime: 20. 

This setup was then utilized to perform tests on more than one node. In 

particular a scalability test using 2, 4, 8, 16, 32, and 64 nodes (and as a consequence 4, 

8, 16, 32, 64, and 128 MPI processes) has been carried out. Results are illustrated in 

Figure 13, where the number of processed images per second is reported versus the 

number of MPI tasks. The plot shows that the scaling is linear.  

 

Figure 13 - Processed images per second versus number of mpi tasks. A batch size per 

processor of 256 images has been considered. The other parameters were chosen 

according to the tests performed on one node: 2 mpi processes per node, 24 omp 

threads, 1 inter thread, and kmp blocktime = 20. 

The same scalability test has been performed also for a case with a smaller batch 

size per processor. In particular, the following setup has been considered: 

1. batch size per processor: 64 images; 

2. number of mpi tasks per node (omp e intra threads per node): 8 (64); 
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3. number of inter threads: 2; 

4. kmp blocktime: 1, 

because on one node it led to more than 90 images processed per second. Results are 

shown in Figure 14. Also in this case, the scaling over more than one node is quite 

linear, with the performances dropping a little when using 64 nodes. 

 

Figure 14 -   Processed images per second versus number of mpi tasks. A batch size 

per processor of 64 images has been considered. The other parameters were chosen 

according to the tests performed on one node: 8 mpi processes per node, 6 omp 

threads, 2 inter threads, and kmp blocktime = 1. 

 



 

 

Chapter VI. 

Apache Hadoop and Apache Spark 

To perform even a simple analysis over a large amount of data in a reasonable 

amount of time, it is desirable to have some mechanisms that are able to distribute 

processing tasks over distributed resources without introducing much complexity or re-

engineering the whole application. Furthermore, as multiple science fields have started to 

use analytics for filtering results between coupled simulations (e.g. materials science or 

climate) or extracting interesting features from high throughput observations (e.g. 

telescopes, particle accelerators), the incentives for the deployment of large scale data 

analytics tools on High Performance Computing systems are growing. 

The framework that is attracting attention for its capability to distribute processing 

of petabyte-class big data is Apache Hadoop. Together with its distributed file system 

HDFS45 and its implementation of the Map-Reduce programming model, Apache Hadoop 

is able to bring the computation to the places where data is stored. Hadoop [34] and, 

successively Spark [34], provide a high level and productive programming interface for 

large-scale data processing and are able to operate on datasets which are larger of the 

memory capacity of a single compute node. Through specialized runtimes they reach good 

performance and resilience on data center systems for a robust ecosystem of application 

specific libraries [36][37][38].  

                                                 
45 Hadoop Distributed File System 
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They implement the Map-Reduce model [39] using an abstraction layer in which 

programs are expressed as data flow graphs. The nodes in the graph are of two types: map 

operations, which are purely local, and reduce operations, which can involve 

communication between multiple nodes. The traditional Map-Reduce framework [39] is 

limited to acyclic graphs, preventing efficient representation of iterative methods, and it 

uses data redundancy to provide resiliency. In contrast Spark can handle cyclic and acyclic 

graphs, and provides resiliency through resilient distributed datasets [40] (RDD), which 

carry sufficient information to re-compute their contents. In particular, the ability to 

express iterative algorithms accelerated Spark’s adoption that continues to attain new 

problem domains. 

To leverage on these scalability characteristics and enable fast processing of 

scientific data sets, we developed a prototype software package able to process binary data 

through spawning Map-Reduce tasks while introducing minimum computational overhead 

and without modifying existing application code. The code was developed to analyse 

climate data but it can be generalized to cover other use cases, including neuroscientific 

ones. 

The package is formed by the combination of two tools, Pipistrello, a Java utility 

that allows users to execute Map-Reduce tasks over any kind of binary file,  and Tina a 

lightweight Python library that building on top of Pipistrello is able to process scientific 

dataset, including NetCDF46 files. We benchmarked the combination of this two tools using 

a test Apache Hadoop Cluster (4 nodes) and a relatively small data set (200 GB), obtaining 

encouraging results. When using larger clusters and larger storage space, Tina and 

                                                 
46 https://www.unidata.ucar.edu/software/netcdf/ 
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Pipistrello should be able to scale-up and analyse hundreds of Terabytes of scientific data 

in a faster, easier and possible efficient way. 

Pipistrello 

Pipistrello47 is a Java utility very similar in philosophy to Hadoop-Streaming that 

allows users to run Map-Reduce jobs over any kind of binary files. Just as Hadoop-

Streaming, Pipistrello requires mapper and reducer scripts to comply with a set of 

conventions which are fundamental to build the common processing chain ”input — 

mapper — reducer — output” and to get the four steps be correctly linkable together. Most 

of the magic of Pipistrello lies inside its implementation of the Mapper 

HdfsToLocalTranslator classes. The class Mapper uses the class HdfsToLocalTranslator to 

get the local path of the data corresponding to the input that the MapTask needs to run over. 

The class HdfsToLocalTranslator is in charge of interacting with the NameNode, without 

starting any new JVM process, to get the name of the local file corresponding to a given 

HDFS file. Once the name is leaked inside the Mapper class, it can be given to the mapper 

script as an argument13. After the mapper script is executed, the Mapper class will put its 

output (a file) onto the HDFS volume. It will also read the stdout of the mapper script (a 

filename) and set it as the value of the (key,value) pair that the Map-Reduce framework 

will send to the reducer. Map-Reduce will start a ReduceTask in any available node with 

enough resources to run it. At this point, (key, value) pairs are going to be fed to the Reduce 

class. The Reducer class will open a text file files to reduce.txt and write all the values 

(filenames), one for each line. At the same time, the Reducer class will download these 

files from the HDFS to make them available locally. Finally, the Reducer Class will launch 

                                                 
47 https://pipistrello.readthedocs.io 
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the reducer script, giving it as an argument the file files to reduce.txt and its output (a file) 

is uploaded to HDFS. 

Tina 

Tina48 is lightweight Python library that sits on top of: 

 Iris49 to handle NetCDF data; 

 Snakebite50 to efficiently communicate with HDFS; 

 Pipistrello to launch Map-Reduce jobs over a scientific dataset. 

 

Despite its promises for good scalability and performance, Apache Hadoop retains 

some drawbacks that prevent NetCDF5 files to be analysed out-of-the-box for the 

following reasons: 

 Apache Hadoop is designed and highly optimized to read and write text data while 

weather and climate scientists work with binary data in the form of NetCDF files; 

 HDFS stores the data by splitting every file in blocks and distributing those blocks 

among different nodes. NetCDF files cannot be easily split without corrupting 

the data;  

 Java is the most used programming language for MapReduce applications while 

climate scientists codes are written in every programming language except Java. 

 

                                                 
48 https://tina.readthedocs.io 
49 https://scitools.org.uk/iris/docs/latest/iris/iris/fileformats/netcdf.html 
50 https://github.com/spotify/snakebite 
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Preliminary tests were performed by generating 4-D arrays of synthetic data 

(doubles representing temperature values) with different sizes using a 4 nodes Apache 

Cluster (16GB RAM - 8 cores each). The arrays were then distributed among several 

NetCDF data sets in chunks of 1284 (which sums to a global size of ∼ 2 GB). For the sake 

of testing, only two different array sizes were tested, (128 × 2) distributed over 16 files and 

(128 × 3) distributed over 81 files. The analysis made to test the performance of the Apache 

Hadoop cluster, running Tina and Pipistrello Map-Reduce jobs, consisted on computing 

the time-height-average temperature of each of the whole arrays. Figure 15 shows speed-

up for the analysis of these arrays. By comparing those numbers, it is evident that, for the 

array sizes tested and the chunking of the data, Pipistrello and Tina provide good results. 

The Map-Reduce analysis done for the smaller array takes 1=3 of the time the best local 

approach (a local Map-Reduce approach, as the big amount of data does not fit in memory), 

while, for the larger array, it takes only 1=2:5 of the time. Pipistrello and Tina are 

experimental software. Further enhancements are still needed to make it as stable and 

usable as Luigi and Mrjob are. The bright side, however, is that this work has traced the 

path and paved the road to future development. In the immediate future, the software will 

be used for the re-analysis of the Mediterranean Sea biogeochemistry produced in the frame 

of the EU Copernicus Marine Environment Monitoring Services [50] and more broadly to 

any large coupled Ocean-Atmosphere climatic dataset that will be produced targeting the 

Mediterranean region in the framework of CORDEX phase 2 FPS (Flagships Pilot Studies) 

over the European region [51]. 
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Figure 15 - Speedup reached for each case (red points) and the ideal speedup (3, for our 

3-node cluster) marked by the dotted line. 

Using Apache Hadoop and Spark in a HPC context 

Hadoop and Spark are designed to implement stateless operation for resilience and 

parallelism purposes by opening and closing the files involved in each individual data 

access. While doing this operation they assume that the computing nodes are equipped with 

local disks which usually do not affect the overall job time for opening or creating a file. 

However, what is valid for a standard data centre does not apply for HPC systems where 

file metadata operations are a common scalability bottleneck. In a distributed data centre, 

environment disk I/O is optimized for latency by using local disks and the network between 

nodes is optimized primarily for bandwidth. In contrast, HPC systems use a global parallel 
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file system, with no local storage: disk I/O is optimized primarily for bandwidth, while the 

network is optimized for latency. 

Consequently, any effort on scaling these frameworks up and out on an HPC 

installation has first to address the data management concern.   

For instance, the data movement is one of the performance determining factors in 

any large scale system. In Spark, data is logically split into partitions, which have an 

associated worker task. A partition is further subdivided into blocks. A block is the 

minimum unit of data movement and execution task. Figure 16 shows the Spark compute 

engine interaction with the block and shuffle managers, which control data movement. The 

BlockManager handles application level input and output data, as well as intermediate data 

within the Map stages. The ShufflueManager handles runtime intermediate results during 

the shuffle stage.  

For the sake of reliability and scalability, Spark manipulates data combining global 

as well as local scope. Application level data (RDDs)51 use a global naming space while 

intermediate data blocks generated throughout execution have a local scope. However, 

since objects may exceed the capacity of the node physical memory but still requested to 

be efficiently moved through the vertical storage hierarchy, managing logical naming 

schemes with underlying system architecture is a challenge. For instance, when global 

object is distributed across multiple storage volumes a long latency naming service may be 

needed to locate its physical location. Conversely, any locally named object stored in a 

physically shared storage may experience unexpected resource contentions while servicing 

requests. A current research direction in the Spark community aims at proving an efficient 

                                                 
51 https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd.html 
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global naming service able to reduce network traffic. Within HPC installations, the global, 

usually parallel, file system implements the global naming service. As anticipated above, 

data may move across two dimensions, vertical and horizontal respectively, for computing. 

Vertical Data Movement 

Vertical data movement refers to the movement through the entire memory 

hierarchy, including persistent storage. It is needed to move input data blocks into the 

memory for processing and for storing output data to the persistent storage. To minimize 

vertical movement for RDDs, Spark allows persisting data in the fast level of memory. As 

fast memory is capacity constrained, the Spark runtime assigns the task of moving objects 

across the memory hierarchy to a block manager. Whenever the working set size (input 

data or intermediate results) exceeds memory capacity, the block manager may trigger 

vertical data movement. The block manager may also decide to drop a block, in which case 

its later access may trigger additional vertical data movement for recomputation. Research 

efforts such as Tachyon [52] aim to reduce expensive (to storage) vertical data movement 

by replacing it with horizontal (inter-node) data movement. In network-based storage 

systems, a critical [53][54] component to the performance of vertical data movement is the 

file setup stage (communication with the metadata servers). 
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Figure 16 - Data movement in Spark and the interaction with the memory hierarchy. 

Horizontal Data Movement - Block Shuffling 

The horizontal data movement refers to the shuffle communication phase between 

compute nodes. Spark assigns the horizontal data movement to the shuffle manager and the 

block manager. A horizontal data movement request of a block could trigger a vertical data 

movement because a block may not be resident in memory. Optimizing the performance 

of horizontal data movement has been the subject of multiple studies [55][56][57], in which 

hardware acceleration such as RDMA is used to reduce the communication cost. The 

benefit of these techniques is of less importance on HPC systems with network-based 

storage because the performance is dominated by vertical data movement. 

Many configuration alternatives have been developed to circumvent the 

performance penalty affecting file I/O behaviour. One solution is to utilize bigger and 

better hardware to the problem - for instance - to increase the ration between memory 

capacity and cores concurrency. However, as demonstrated in precedent works, while 

increasing the number of cores per node improves performance, it does not mitigate enough 

the effects of the file system as the PCI bus gets congested rapidly. Another solution relies 

on using BurstBuffer I/O subsystem52, large NVRAM array situated close to the CPU 

designed to improve throughput for small I/O operations and for data pre-staging. Apart 

from the high cost of this solution, the question remains if it is well suited for the access 

patterns performed by Spark. Besides exploiting hardware upgrades, software techniques 

                                                 
52 https://www.cray.com/products/storage/datawarp 
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can also alleviate some of the metadata performance bottlenecks. The first and most 

obvious solution is to use a memory mapped file system (e.g. /dev/shm) as a secondary 

storage target. Subject to physical memory constraints, this eliminates a large fraction of 

the traffic to the back-end storage system. Although easy to implement, this solution comes 

with several limitations: 

 the job crashes when memory is exhausted;  

 since data is not written to disk it does not provide any resilience and persistence 

guarantees. Furthermore, for medium to large problems and long running iterative 

algorithms Spark will fail during execution due to lax garbage collection in the 

block and shuffle managers [41][42]. 

Unlike data centers configuration, where network performance dominates, the 

global file system metadata overhead in fopen limits Spark scalability to O(100) cores. If 

configured to use “local” file systems for the shuffle stage, Spark can reach O(10,000) 

cores.  
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Chapter VII. 

Quantum Computing 

Quantum computing (QC) is essentially harnessing and exploiting the amazing 

laws of quantum mechanics to process information [58]. A traditional computer performs 

operations on long strings of “bits”, which encode either a zero or a one. A quantum 

computer, on the other hand, uses quantum bits, or qubits. A qubit is a quantum system that 

encodes the zero and the one into two indistinguishable quantum states. The qubit takes its 

final value (0 or 1) only once read. However, since qubits behave quantumly, one can 

capitalize on the phenomena of "superposition" and "entanglement" to build a quantum 

system. Superposition is essentially the ability of a system to be in multiple states at the 

same time, i.e. it can be “here” and “there,” or “up” and “down” at the same time. 

Entanglement is an extremely strong correlation that exists between quantum particles. The 

correlation is so strong that two or more quantum particles can be inextricably linked in a 

perfect unison although physically separated by a huge distance. Thus, thanks to these two 

characteristics, a quantum computer can execute a vast number of calculations 

simultaneously. To simplify, while a digital computer works with ones and zeros, a 

quantum computer will have the advantage of using ones, zeros and their “superpositions”. 
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Figure 17 - Upper panel: digital computer gate can act on data one bity at a time. Lower 

panel: quantum computer gate can act on all possible states of the 8 Qbits at the same 

time. 

The superposition of states of a quantum system is the key feature that allows a 

quantum computer to solve complex problems at a speed that is far beyond any comparison 

with a typical digital computer, e.g. a quantum computer can solve in principle a problem 

with factorial complexity into a single instruction. Essentially, a full featured quantum 

computer with a complete instruction set in theory would outperform any digital computer, 

but the reality is quite far from that assumption. 

These properties make QC very attractive for HPC, where quantum computing 

could be used in synergy with digital computers to speed-up complex applications 

otherwise unaffordable on digital supercomputers. Traditional HPC systems could take 

care of all the instructions that cannot be executed on the quantum computer, i.e. I/O, 

control code, firmware, etc. while offloading resolutions of complex problems to the 

quantum engine by mean of a dedicated library engineered using the quantum logic. On 

the other hand, small quantum computers can be simulated today on large supercomputers, 

enabling the development of the methods and software in a user friendlier environment. 
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In terms of innovation trends, there are many companies with significant venture 

capital support investing in quantum technology. Google is venturing on the 

superconducting qubit technology [62], pursuing both digital and analog quantum 

computation, doing both theoretical and experimental research. They are pushing the field 

to the commercialisation of new devices and services for users. Their “manifesto” for 

quantum technologies was recently published in Nature [3]. Google’s Quantum Artificial 

Intelligence team53, directed by Hartmut Neven, identifies three applicative priorities, such 

as quantum simulation, quantum-assisted optimization, quantum sampling, technical 

hurdles and business opportunities. The main hurdle is scaling the number of qubits while 

maintaining coherence; error correction is a big issue, because it will require many 

additional qubits. Specifically, quantum simulation applications can aim at better 

computational chemistry, machine learning, logistics, financial portfolio management, 

drug design and cyber security. However, these application areas will probably be based 

upon a hybrid platform that combines classical and quantum computing in a single 

environment to get the best from both domains.  

  

                                                 
53 https://research.google.com/pubs/QuantumAI.html 
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Chapter VII. 

Conclusion 

The scientific community’s interest in large-scale infrastructure has been 

continuously increasing over the last decades, with innovations in data-driven workloads 

and in-situ processing of simulation. It is expected that this trend will not cease in the near 

future, but rather persist. A review of the state of art of algorithms development in 

computational science shows numerous examples of initial adaptations to the challenges 

posed by Big Data. The whole Deep Learning movement is a clear example of how dated 

data analysis algorithms have become crucial in many scientific fields thanks to the 

availability of large computing resources and high-quality data. The same applies to data 

processing technologies - à la Apache Hadoop – that, originally developed to index web 

resources, are now permeating the scientific fields for being extremely simply to use. This 

dissertation’s subject matter lies into the intersection of these two distinct aspects. On one 

hand it presents the details of a large digital infrastructure capable to process very large 

amount of data by federating distributed resources, on the other it reports about concrete 

examples on how to employ Big Data technologies in a profitable manner to solve scientific 

challenges. The findings of our work lead to some generic conclusions. HPC has become 

a prominent instrument to conduct scientific experiments, as most of the physical 

phenomena can be model and simulated at a very high level of accuracy. Ever growing 

demand of computation resources keeps pushing the optimization and development of new 

technologies but traditional systems architecture will soon reach expansion limits mainly 

due to energy efficiency cap. With this respect, Quantum Computing represents a concrete 
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alternative, but it may require more than a decade to achieve its supremacy. Finally, along 

with a further investigation of scientific use cases, this work could be extended to cover 

other domains and evaluate new technology areas.  
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