
E X T E N D I N G T H E A C T O R M O D E L W I T H PA R A L L E L PAT T E R N S :
A N E W M O D E L F O R M U LT I - / M A N Y- C O R E P L AT F O R M S

luca rinaldi

Ph.D. Thesis
Computer Science
University of Pisa

April 2021

Luca Rinaldi, Extending the Actor Model with Parallel Patterns:
a new model for multi-/many-core platforms, Ph.D. Thesis, © April 2021

supervisors:
Massimo Torquati
Marco Danelutto

location:
Pisa

time frame:
April 2021

A B S T R A C T

Multi-/many-core systems have produced a game-changing event for
the computing industry. Nowadays, parallel processing is mandatory
to improve application performances at all levels of the software stack.
However, dealing with concurrency and parallelism is challenging
and error-prone. Parallel programmers often face deadlock, starva-
tion, and data-races, and when everything works as expected, sub-
optimal performance.

Over the years, research groups and industries have contributed to
numerous parallel programming models, languages, and frameworks
to ease parallel programming and cope with parallelization issues.

The Actor-based programming model is a well-established model
with clear and rigorous parallel semantics. It offers high flexibility
for building communication topologies composed of concurrent Ac-
tors that can also be spawned and connected dynamically. Actor pro-
grammers often pay such great flexibility with additional effort in
identifying and solve performance issues and sub-optimal communi-
cation patterns in their applications. Furthermore, the tight message-
passing semantics of Actors limits optimizations on shared-memory
platforms.

On the opposite side, the structured parallel programming ap-
proach based on Parallel Patterns offers ready-to-use solutions to
recurrent programming problems (e.g., master-worker, pipeline,
D&C, map-reduce). The implementation skeletons of those Patterns
are usually optimized for the given target platform (e. g., shared-
cache multi-cores), thus providing a convenient and straightforward
solution to well-known parallel problems. However, the price to pay
is reduced flexibility and additional constraints during the software
development process. The programmer needs to design the parallel
application(s) as a composition of Parallel Patterns. Still, in some
cases, it may happen that provided patterns do not support (neither
in composition nor alone) the required parallel forms distinguishing
the application(s) at hand.

Actors and Parallel Patterns are thus two contrasting approaches
to parallel programming. Actors give programmers complete free-
dom and great flexibility in designing applications but provide
sub-optimal performance on multi/many-cores, particularly in data-
parallel computations. Instead, Parallel Patterns are less malleable
structures targeting specific problems with optimized implementa-
tions for a given platform, requiring additional effort and constraints
to the programmers during software design and development.

v

In this thesis, we aimed at building a synergy between the two par-
allel programming approaches bringing the best of the two worlds
into a new heterogeneous yet coherent model, which combines Actors
and Parallel Patterns. On the one hand, the introduction of Parallel
Patterns in the Actor Model enables the possibility to introduce per-
formance optimizations and structured composition of Actors. On the
other hand, the Actor Model provides flexibility and dynamicity fea-
tures, both necessary in complex parallel applications development.

We analyzed the limitations of the Actor Model on multi/many-
cores and investigated multiple approaches to achieve fruitful coop-
eration of the two models and maintaining, at the same time, the core
features and advantages of the two approaches. Through well-known
data-parallel and streaming benchmarks, we experimentally demon-
strated that the new proposed approach significantly improves the
performance of Actor-based applications on multi/many-core plat-
forms. Also, the merge of the two approaches provides the program-
mer with enhanced flexibility and programmability than the single
models. All of this resulted in a new parallel programming library
called CAF-PP targeting multi-/many-core systems.

vi

P U B L I C AT I O N S

The full list of my research work published during the Ph.D. period
is as follows:

• Luca Rinaldi, Massimo Torquati, Gabriele Mencagli, and Marco
Danelutto. “High-Throughput Stream Processing with Actors.”
In: Proceedings of the 10th ACM SIGPLAN International Workshop
on Programming Based on Actors, Agents, and Decentralized Control.
AGERE 2020. event-place: Virtual, USA. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 1–10. isbn: 978-
1-4503-8185-7. doi: 10.1145/3427760.3428338

• Luca Rinaldi, Massimo Torquati, Daniele De Sensi, Gabriele
Mencagli, and Marco Danelutto. “Improving the Performance
of Actors on Multi-cores with Parallel Patterns.” In: International
Journal of Parallel Programming (June 4, 2020). issn: 1573-7640.
doi: 10.1007/s10766-020-00663-1

• Luca Rinaldi, Massimo Torquati, and Marco Danelutto. “En-
forcing Reference Capability in FastFlow with Rust.” In: Par-
allel Computing: Technology Trends, Proceedings of the International
Conference on Parallel Computing, PARCO 2019, Prague, Czech Re-
public, September 10-13, 2019. Ed. by Ian T. Foster, Gerhard R.
Joubert, Ludek Kucera, Wolfgang E. Nagel, and Frans J. Pe-
ters. Vol. 36. Advances in Parallel Computing. IOS Press, 2019,
pp. 396–405. doi: 10.3233/APC200064

• Luca Rinaldi, Massimo Torquati, Daniele De Sensi, Gabriele
Mencagli, and Marco Danelutto. “Are Actors Suited for HPC
on Multi-Cores?” In: 12th International Symposium on High-
Level Parallel Programming and Applications. Peer reviewed
with internal proceedings. Linköping, Sweden, June 2019, p. 21

• Luca Rinaldi, Massimo Torquati, Gabriele Mencagli, Marco
Danelutto, and Tullio Menga. “Accelerating Actor-Based Ap-
plications with Parallel Patterns.” In: 2019 27th Euromicro In-
ternational Conference on Parallel, Distributed and Network-Based
Processing (PDP). 2019 27th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP).
Pavia, Italy: IEEE, Feb. 2019, pp. 140–147. isbn: 978-1-72811-644-
0. doi: 10.1109/EMPDP.2019.8671602

• Antonio Brogi, Stefano Forti, Ahmad Ibrahim, and Luca Rinaldi.
“Bonsai in the Fog: An active learning lab with Fog computing.”

vii

https://doi.org/10.1145/3427760.3428338
https://doi.org/10.1007/s10766-020-00663-1
https://doi.org/10.3233/APC200064
https://doi.org/10.1109/EMPDP.2019.8671602

In: Third International Conference on Fog and Mobile Edge Comput-
ing, FMEC 2018, Barcelona, Spain, April 23-26, 2018. IEEE, 2018,
pp. 79–86. doi: 10.1109/FMEC.2018.8364048

• Antonio Brogi, Davide Neri, Luca Rinaldi, and Jacopo Soldani.
“Orchestrating incomplete TOSCA applications with Docker.”
In: Sci. Comput. Program. 166 (2018), pp. 194–213. doi: 10.1016/
j.scico.2018.07.005

• Antonio Brogi, Luca Rinaldi, and Jacopo Soldani. “TosKer: A
synergy between TOSCA and Docker for orchestrating mul-
ticomponent applications.” In: Softw. Pract. Exp. 48.11 (2018),
pp. 2061–2079. doi: 10.1002/spe.2625

• Antonio Brogi, Andrea Canciani, Davide Neri, Luca Rinaldi,
and Jacopo Soldani. “Towards a Reference Dataset of Microservice-
Based Applications.” In: Software Engineering and Formal Meth-
ods - SEFM 2017 Collocated Workshops: DataMod, FAACS, MSE,
CoSim-CPS, and FOCLASA, Trento, Italy, September 4-5, 2017, Re-
vised Selected Papers. Ed. by Antonio Cerone and Marco Roveri.
Vol. 10729. Lecture Notes in Computer Science. Springer, 2017,
pp. 219–229. doi: 10.1007/978-3-319-74781-1_16

viii

https://doi.org/10.1109/FMEC.2018.8364048
https://doi.org/10.1016/j.scico.2018.07.005
https://doi.org/10.1016/j.scico.2018.07.005
https://doi.org/10.1002/spe.2625
https://doi.org/10.1007/978-3-319-74781-1_16

C O N T E N T S

1 introduction 1

1.1 Contributions . 5

1.2 Overview . 8

i background and state of the art 11

2 background 13

2.1 Parallel Architectures . 13

2.2 Types of Parallelism . 16

2.3 Parallel Programming Models 17

2.4 Used Library and Programming Languages 23

3 state of the art : actor model 31

3.1 Attempts to Improve the Actor Model 31

3.2 Actor Model as concurrency model 39

3.3 Active Objects related works 41

3.4 Actor Model Languages and Libraries 42

3.5 Discussion . 50

4 state of the art : parallel patterns 53

4.1 Pattern-base Parallel Programming 53

4.2 Pioneer Skeleton-based Frameworks 55

4.3 Parallel Patterns Libraries 56

4.4 Discussion . 64

ii towards a synergic combination of actors and

parallel patterns 67

5 analyzing the isolation property on multi-
/many-core platforms 69

5.1 Multi-/Many-core platforms 70

5.2 The needs for isolation 71

5.3 Statically checked isolation in dataflow programs . . . 74

5.4 Isolation in data-parallel computations 78

5.5 Summary and discussion 81

6 parallel pattern-based software accelerator

for the actor model 83

6.1 Design a data-parallel software accelerator 84

6.2 Implementation of the Actors’ Accelerator in CAF . . . 86

6.3 Evaluation . 89

6.4 Summary and discussion 93

7 efficient parallel patterns for the actor model 95

7.1 Designing Parallel Patterns as Actors 95

7.2 Data-Parallel Patterns 97

7.3 Control-parallel Patterns 101

7.4 Evaluation . 105

ix

x contents

7.5 Summary and discussion 114

8 high-throughput stream processing with actors 117

8.1 Motivations and problem statement 118

8.2 Stream-parallel Patterns 120

8.3 Evaluation . 124

8.4 Summary and discussion 129

iii summary 131

9 conclusions and future research directions 133

9.1 Summary . 133

9.2 Concluding Remarks . 135

9.3 Future Perspectives . 136

bibliography 139

L I S T O F F I G U R E S

Figure 1 Simplified software architecture of a typical fi-
nancial application. 4

Figure 2 Logical schema of the thesis’ content. The rect-
angles represent the main contributions of the
thesis, distinguishing between low-level fea-
tures in light red and high-level components in
light blue. Besides, the gray diamonds connect
macro arguments to chapter numbers. 6

Figure 3 Forty-eight years of microprocessor evolution.
Figure by Karl Rupp [130]. 14

Figure 4 Implementation schema of a Pipeline of n stages. 21

Figure 5 Implementation schema of a Farm of n worker. 22

Figure 6 Dequeue operation in CAF queue [52]. 25

Figure 7 Actors communication through asynchronous
method calls. act2 calls a method of act1 and
receives a Future of type int. 46

Figure 8 Actors communication through explicit send

and Actor behavior.The Actor act1 defines a dif-
ferent behaviors for each type of input message.
Not type-matching messages are left on the
mailbox. 47

Figure 9 Actors communication through explicit send

and receive primitives. The Actor act1 exe-
cutes a body function which has inside multi-
ple receive statements. Not type-matching mes-
sages are left on the mailbox. 48

Figure 10 Two communicating event-loops composed of
3 Actors each. The message sent by act2 to
act1 is enqueued in the event-loop queue and
managed concurrently with other events and
messages. 49

Figure 11 The FastFlow-3 software layers. 59

Figure 12 FastFlow library producer-consumer seman-
tics: sending references to shared data over a
SPSC lock-free FIFO channel. 59

Figure 13 FastFlow parallel building blocks and some
possible specializations of them. 60

Figure 14 The SkePU compiler infrastructure. 63

Figure 15 Logical schema of the FastFlow two-stage
Pipeline described in Listing 2. 73

xi

xii List of Figures

Figure 16 Integration of the FastFlow’s unbounded
SPSC lock-free queue in Rust. 75

Figure 17 Implementation schema of the Task-Farm pattern. 76

Figure 18 Pipeline with feedback channel. 76

Figure 19 Scalability of the Task-Farm micro-benchmark
implementation with two different computa-
tion granularities. 77

Figure 20 Sustained throughput of the Pipeline micro-
benchmark with feedback channel varying the
number of stages. 77

Figure 21 Two strategies for splitting and merging mes-
sage data in data-parallel computations. 79

Figure 22 The layered software design showing the re-
lations between the Actor Model and Actors’
accelerator that leverages Parallel Patterns. . . 84

Figure 23 The logical schema of the the Map accelerator. 85

Figure 24 Example of thread-to-core affinity on a 64

CPU cores Intel KNL platform. Configu-
ration used: affinity.scheduled-actors=<0-47>

affinity.detached-actors=<48-63>. 87

Figure 25 The execution time (top) and the scalability
(bottom) of the data-parallel benchmark on
the KNL platform. 90

Figure 26 The CAF Latency benchmark with bottleneck
Actors. 91

Figure 27 The Map accelerator in the CAF Latency bench-
mark. 91

Figure 28 CAF Latency Benchmark with 100 chains and
input vectors of 5000 elements. 92

Figure 29 On the left-hand side the Map pattern imple-
mentation scheme, and on the right-hand side
the code to build and spawn the Map pattern.
The lines commented, show different options
for the scheduling policy and the kind or RTS
used, respectively. 98

Figure 30 On the left-hand side the DivConq pattern im-
plementation scheme, and on the right-hand
side the code to build and spawn the DivConq
pattern. 100

Figure 31 The SeqActor pattern implementation scheme
(left-hand side). The example code for build-
ing a SeqActor by using the MyAct CAF Actor
(right-hand side). 102

List of Figures xiii

Figure 32 In the left-hand side the Pipeline pattern imple-
mentation schema. An example code for build-
ing and spawning an instance of a three-stage
pipeline on the right-hand side. 103

Figure 33 The Farm pattern implementation schema
(left). An example code for building a Farm
pattern with N sequential Workers and the
round-robin policy (right). 104

Figure 34 Composition of two Farms using a Pipeline
pattern. The composition schema (top) and
the code to build the pattern composition
(bottom). The first Farm has a Map pattern
as Worker replicated two times, whereas the
second Farm uses Pipeline of SeqActor as Workers.105

Figure 35 Improvement of the Parallel Patterns version
compared to the “pure” Actor Model version
of the quicksort benchmark on the Xeon and
Power8 platforms. 107

Figure 36 Improvement of the Parallel Patterns version
compared to the “pure” Actor Model version
of the blackscholes benchmark on the Xeon

and Power8 platforms. 108

Figure 37 Speedup of the ferret benchmark of the
PThreads, FastFlow (FF) and CAF plus Par-
allel Patterns (CAF+PP) implementations on
the Xeon and Power8 platforms considering as
baseline the PThreads version with 1 thread. 111

Figure 38 Speedup of the blackscholes benchmark of
the PThreads, FastFlow (FF) and CAF plus
PPs (CAF+PP) implementations on the Xeon

and Power8 platforms considering as baseline
the PThreads version with 1 thread. 112

Figure 39 Speedup of the raytrace benchmark of the
PThreads, FastFlow (FF) and CAF plus Par-
allel Patterns (CAF+PP) implementations on
the Xeon platform considering as baseline the
PThreads version with 1 thread. 113

Figure 40 Speedup of the canneal benchmark of the
PThreads, FastFlow (FF) and CAF plus Par-
allel Patterns (CAF+PP) implementations on
the Xeon platform considering as baseline the
PThreads version with 1 thread. 114

xiv List of Figures

Figure 41 (a) Pipeline microbenchmark. CAF-based vs
“manual” thread-based implementation. (b)
Producer-Consumer microbenchmark. Simpli-
fied (CAF Queue) vs default CAF messaging
system. 119

Figure 42 Optimized Pipeline composition of three Farms
patterns running replicas of SeqNode operators. 123

Figure 43 (a) Maximum throughput of the Pipeline mi-
crobenchmark and (b) the average send time
of Producer-Consumer microbenchmark. . . . 124

Figure 44 Applications used in the evaluation. 125

Figure 45 Throughput expressed in words per second,
varying the input rate for the Word Count ap-
plication. 126

Figure 46 Throughput expressed in tuples per second
varying the input rate for the Fraud Detection
application . 126

Figure 47 Throughput expressed in tuples per second
varying the input rate for the Spike Detection
application . 127

Figure 48 Throughput expressed in tuples per second
varying the input rate for the Linear Road
application . 127

Figure 49 Performance improvement of CAF PP vs CAF
for WC, FD, SP, LR applications. The tests were
executed allowing the Source operator to gen-
erate at the maximum rate. 128

L I S T O F TA B L E S

Table 1 Actor Model Programming Languages. 44

Table 2 Actor Model Libraries. 45

Table 3 Technical specifications of the four reference
platforms used for the tests. 70

Table 4 Execution time of the data-parallel bench-
mark implemented with the create-move,
share-create and in-place protocols on dif-
ferent multi-/many-core platforms. The times
reported correspond to the average value ob-
tained by five distinct runs. 81

Table 5 Results obtained considering several different
parallel library/framework implementations
for the blackscholes application [85]. 110

Table 6 Applications latency with rate 10K tuples/s.
The improvement is the ratio between CAF PP
and CAF. 128

Table 7 Applications throughput (tuples/s) obtained
replicating all operators. The improvement is
the ratio between CAF PP and CAF. 129

xv

L I S T I N G S

Listing 1 A simple CAF example that uses dynamic mes-
sage handler. 27

Listing 2 Rust ownership example. 28

Listing 3 Muesli program computing the Frobenius
Norm of a matrix. 56

Listing 4 GrPPI pipeline computing F(G(x)) for a
stream of N elements. 58

Listing 5 A simple FastFlow example that uses the
ff_farm building block. 61

Listing 6 SkePU implementation of the Swaptions Par-
sec benchmark using the OpenMP backend. . 64

Listing 7 The base interface of the SeqNode streaming
pattern. 121

Listing 8 Simple example showing how to define a Se-
qNode and how to use it within Pipeline pattern. 121

xvi

A C R O N Y M S

am Actor Model

ao Active Object

api Application Programming Interface

bsp Bulk-Synchronous Parallel

caf C++ Actor Framework

csp Communicating Sequential Processes

cuda Compute United Device Architecture

dag Directed Acyclic Graph

dsl Domain-Specific Language

ff FastFlow

fifo First In, First Out

gpu Graphics Processing Unit

hpc High-Performance Computing

hw Hardware

lifo Last In, First Out

mimd Multiple Instruction stream and Multiple Data stream

misd Multiple Instruction stream and Single Data stream

mpmc Multi Producer Multi Consumer

mpsc Multi Producer Single Consumer

pcie Peripheral Component Interconnect Express

pp Parallel Patterns

simd Single Instruction stream Multiple Data stream

sisd Single Instruction stream and Single Data stream

sw Software

spe Stream Processing Engines

spsc Single Producer Single Consumer

xvii

1
I N T R O D U C T I O N

In a scenario with pervasive multi/many-core architectures, applica-
tion performance is not anymore delegated to the single-core com-
putational power. Rather, parallelism is mandatory to conveniently
and efficiently exploit the available computing resources and conse-
quently improve application performances at all levels of the soft-
ware stack [195]. However, dealing with concurrency and parallelism
is challenging and error-prone. An application must be analyzed to
find tasks that could be executed in parallel, then those tasks need to
be distributed on different computational units, and the results need
to be collected and merged to produce the final results. All these
phases can introduce subtle errors difficult to find, even for paral-
lel programming experts. Furthermore, parallel programmers often
face deadlock, starvation, and data-race issues, and when everything
works as expected, sub-optimal performance [218].

Over the years, research groups and industries have contributed
to numerous parallel programming tools, languages, and frame-
works to ease parallel programming and cope with paralleliza-
tion issues. Some of them rely on sequential program annotations
(e. g., OpenMP [68]), others are based on language extensions
(e. g., Cilk [37]) or completely new programming languages (e. g.,
X10 [91]), some others provide libraries of parallel components
(e. g., FastFlow [16]) as well as concurrent data structures (e. g., In-
telTBB [172]). In the context HPC clusters, the current mainstream
programming paradigm is the so-called “MPI + X” approach [202],
where the “X” part is a programming model focusing on the single
cluster node of the MPI network, for example by using OpenMP or
CUDA [183].

In this complex and heterogeneous scenario, a rough but yet sig-
nificant distinction of programming models is related to how they
provide parallelism abstractions to the programmer. In this respect,
two opposite classes of models are the unstructured, and structured
approaches to parallel programming. Unstructured parallel program-
ming models provide the programmers with primitive concurrent ab-
stractions (such as Threads, Actors, Tasks), which can be used, basi-
cally with no restrictions and even dynamically, to build parallel ap-
plications. Instead, the structured parallel programming approaches
leverages more complex atomic structures that can be used to build
a communicating topology of concurrent entities (which does not
change during the computation). According to this distinction, the
Actor Model [7, 122] is a paradigmatic example of the first category.

1

2 introduction

In contrast, the programming approach based on well-known com-
putational structures called Parallel Design Patterns (or only Parallel
Patterns) [148, 149] belongs to the second category.

Both approaches have pros and cons. As we will see, Actors and
Parallel Patterns are two examples of models that simplify pro-
grammability using completely different approaches.

The Actor-based programming model is a well-established model
with clear and rigorous parallel semantics. It was proposed in 1973 by
Hewitt, Bishop, and Steiger [122]. The Actor Model offers high flexi-
bility for building communication topologies composed of concurrent
Actors. Actor-based applications are characterized by unstructured
and not rigid communication graphs where Actors can be created dy-
namically even for a very short life-span. Each Actor can spawn other
Actors and can communicate with them just by using their references.
Actor programmers often pay such great flexibility with additional
effort in identifying and solve performance issues and sub-optimal
communication patterns in their applications. Furthermore, the tight
message-passing semantics of Actors limits useful performance op-
timizations for data-parallel computations on shared-memory plat-
forms. However, leaving performance limitations on multi-core plat-
forms aside for a moment [57], the Actor Model is gaining growing
success in non-performance critical scenarios thanks to its simplicity
and its memory safety guarantees. Indeed, Actors concurrent seman-
tics with its strong memory safety properties also enables its adoption
by non-expert parallel programmers. In this respect, the Actor Model
has definite advantages [216].

The structured parallel programming approach based on Parallel
Patterns [60, 148, 149, 162] offers instead ready-to-use solutions to
recurrent programming problems (e. g., master-worker, Pipeline, Di-
vide&Conquer, Map-Reduce) [85]. The implementation skeletons of
those Patterns are usually optimized for the given target platform
(e. g., shared-cache multi-cores as in FastFlow [16]), thus providing
a convenient and straightforward solution to well-known parallel
problems. However, the price to pay is reduced flexibility and ad-
ditional constraints during the software development process. The
programmer needs to design the parallel application as a composi-
tion of Parallel Patterns. In some cases, it may happen that available
patterns do not support the required parallel forms needed to solve
the problem. Several Pattern-based parallel libraries provide some es-
cape strategies to solve flexibility issues. For example, the FastFlow

library has recently provided building-blocks abstractions [210] as
simple concurrent components that can be assembled to implement
custom Parallel Patterns to better fit particular use-cases.

However, finding a good balance between flexibility, programma-
bility and performance in the context of parallel programming is still
a challenge.

introduction 3

In this study, we carried out a thorough analysis of how to get the
best of the Actor-based and Pattern-based programming approaches.
Our aim is to provide the programmer with a synergic integration of
the two models suitable to support the development of efficient ap-
plications targeting multi-/many-core platforms. We aim at building
a new heterogeneous yet coherent parallel programming approach,
which combines Actors and Parallel Patterns.

On the one hand, the introduction of Parallel Patterns in the Actor
model enables the possibility to introduce performance optimizations
at the implementation skeleton of the patterns. In addition, patterns
enable introducing well-known structured compositions of Actors
(e. g., parallel pipelines). On the other hand, the Actor Model provides
the programmer with memory-safety, flexibility, and dynamicity fea-
tures, all necessary in complex parallel applications development. In
our vision, by mixing programming approaches, the programmers
can use both models’ features and design their applications using
Actors and Parallel Patterns together through a unified messaging in-
terface. The result may be summarized as improved flexibility while
preserving programmability, increased memory-safety thanks to Ac-
tors, and increased performance thanks to specialized implementa-
tion skeletons of Parallel Patterns.

Using high-level programming models limits the user to some ex-
tent who is led to follow specific idiomatic approaches that could,
in turn, lead to performance and programmability issues. Therefore,
the programmers may be tempted to skip the model’s guidelines and
use some kind of custom hand-made implementation to solve their
specific problems. An example can be found within the Savina bench-
mark suite [126], a well-known collection of Actor-based applications.
The recursive matrix multiplication benchmark allows Actors to ac-
cess the matrices concurrently by sharing their references. The imple-
mentation is correct, but it breaks the Actor Model isolation principle.
The authors implemented the benchmark in that way to improve the
performance of the algorithm on shared-memory platforms leverag-
ing low-level features of the Actor Model implementation they used
(i. e., the Akka framework [18] written in Java). However, the solu-
tion adopted reduces the portability of the benchmark to other lan-
guages and frameworks that require more strict guarantees. More-
over, the uncontrolled mix of the Actor Model semantics with the
shared-variable approach can be risky for the programmer and error-
prone [36].

Similar problems can be found in pattern-based applications. Some
stock market analysis financial applications are designed as complex
DAGs of computing operators [84]. These applications (a sample ap-
plication diagram is sketched in Figure 1), can in principle be imple-
mented just using some composition of Parallel Patterns, specifically

4 introduction

Figure 1: Simplified software architecture of a typical financial application.

parallel pipelines1 [211]. The input data are processed and aggregated
through a network of computing nodes, each implementing a state-
less or stateful operator (e. g., filter, reducer, flat-map). However, the
real applications scenario also needs non-performance-critical com-
ponents that implement specific features that necessitate interaction
with other complex systems (e. g., logging, billing, disk data record-
ing). These components are not part of the core application structure
but have to be accessible to the application’s operators. Current Paral-
lel Patterns frameworks could hardly provide the required flexibility
to implement an application with these features, and would need
manual intervention to bypass the restrictions imposed by the pat-
terns themselves.

Our idea is to coherently merge the two approaches, that is well-
defined Parallel Patterns structures and Actors to improve expressive-
ness for the programmer without the need for handmade customized
implementations.

In the Actors literature, several works aim at improving the Actor
Model with the intent of overcoming some of the limitations of the
model either for programmability or performance purposes. Most of
them introduce some RTS optimizations or add some new features
to the model. Instead, others tried to focus on combining the Ac-
tor Model with other programming models, e. g., Tasks [197] or the
Bulk-Synchronous Parallel model [139]. Our work followed a different
path, though pursuing similar issues. We aimed at further raising
the parallel abstraction level of Actors by leveraging on Parallel Pat-
terns and their optimized implementation skeletons targeting multi-
/many-cores.

1 ATS latency benchmark https://github.com/ATS-Advanced-Technology-Solutions/

caf_latency_benchmarks

https://github.com/ATS-Advanced-Technology-Solutions/caf_latency_benchmarks
https://github.com/ATS-Advanced-Technology-Solutions/caf_latency_benchmarks

1.1 contributions 5

We focus on the viability and the advantages of building a new
parallel programming library, which extends the Actor Model seman-
tics with the structured parallel programming methodology based
on Parallel Patterns. Although this proposal does not depend on ei-
ther Actor Model implementations or on the programming languages
used, we needed to focus on specific technologies to build a coherent
prototype. Our reference Actor Model implementation is the C++ Ac-
tor Framework (CAF) [51]. CAF is a high-performance modern C++
implementation of the Actor Model. It follows the Classic Actor cat-
egory, which is closer to Actors’ first formalization [83]. Moreover,
it provides higher performance than other widely used Actor-based
implementations (e. g., Erlang) [50].

The C++ language is nowadays pervasive in high-performance
parallel programming. Most of the standard libraries and bench-
marks are built using C/C++. Thus, the C++ implementation of
CAF eases the comparisons with other specialized libraries targeting
multi-/many-cores (e. g., PThreads and FastFlow). Besides, the
prototyping work is simplified by using a library, like CAF, build
atop a general-purpose programming language such as C++, rather
than using Actor Model implementations built atop more specialized
programming languages (e. g., Erlang [96] or Pony [165]).

1.1 contributions

This thesis’s work is centered around defining a new coherent syn-
ergy between two parallel programming approaches, namely, Actors
and Parallel Patterns, capable of bringing an enhanced trade-off be-
tween programmability, expressivity, and performance on modern
multi-/many-core platforms.

The thesis summarizes our research work conducted throughout
the Ph.D. We organized the thesis according to the research steps we
made to achieve the objective.

Figure 2 shows a schema that outlines the main contributions and
their interconnections starting from the initial analysis of the Actor
Model and the Parallel Patterns programming approach.

All the scientific results obtained have been published in the fol-
lowing list of papers:

• In Rinaldi et al. [175] and in the corresponding extended jour-
nal version Rinaldi et al. [176] we propose a set of Parallel
Patterns behaving like “macro Actors” and that perfectly in-
tegrate with the Actor Model. In the first version, through a
set of well-known parallel applications coming from the Par-
sec benchmark suite, we demonstrated that the Actor Model
alone cannot fully exploit the computation capabilities of mod-
ern multi-/many-core platforms in data-parallel computations.
Instead, by leveraging our Parallel Pattern implementations

6 introduction

CAF-PP
Parallel Library

shared memory
exploitation

message passing
optimization

Experimental Validation

Combination

thread-to-core affinity

Software
Accelerator

ch.6

Data parallel

ch.7

Streaming parallel

ch.8

Actor Model

ch.3

Parallel
Patterns

ch.4

Analysis of the
isolation property

ch.5

Figure 2: Logical schema of the thesis’ content. The rectangles represent
the main contributions of the thesis, distinguishing between low-
level features in light red and high-level components in light blue.
Besides, the gray diamonds connect macro arguments to chapter
numbers.

on top of the C++ Actor Framework (CAF) framework, we
achieved comparable performance of raw PThreads-based,
and FastFlow-based implementations without breaking the
Actor Model design principles. Moreover, in the journal ver-
sion, we also proposed our initial implementation of some
Control-parallel Patterns to enrich composability and thus pro-
grammability in Actor-based applications.

• In Rinaldi et al. [177] we focused instead on high-performance
streaming computations. We demonstrated that state-of-the-
art C++-based Actor Model implementations like CAF cannot
achieve high-throughput and low-latency in higly-demanding
streaming computations. To tackle this problem, we extended
and enhanced our Control-parallel Patterns proposed in Rinaldi
et al. [176] to provide optimized implementation skeletons and

1.1 contributions 7

their compositions capable of exploiting the resources of mod-
ern scale-up servers. We implemented a set of the well-known
streaming applications using our Parallel Patterns demonstrat-
ing a performance improvement of more than 2×.

• In Rinaldi et al. [178] we introduced our initial attempt to build
a software accelerator artifact shared by all Actors of an Actor-
based application. The accelerator can speed up the execution
of data-parallel computations (e. g., Map and Map+Reduce). Ac-
tors offload their data-parallel computations to the accelerator
and wait for the results. We demonstrated that this approach is
able to remove the performance problems introduced by bottle-
neck Actors in data-parallel computations while preserving the
flexibility of the Actor Model.

• In Rinaldi, Torquati, and Danelutto [174] we investigated the
advantages of introducing statically checked constraints in
message-passing semantics. Although this work does not di-
rectly target the Actor Model, the analyses we conducted can
be read as the base of this thesis work.

The contributions of the thesis can be summarized as follows:

• We prepared a survey of the different Actor Model libraries and
languages representing the current state-of-the-art. We classi-
fied the languages and libraries according to different imple-
mentation approaches and features adopted.

• We investigated the advantage and limitations of the isolation
property in the Actor Model. Specifically, we discussed the per-
formance issues introduced by the memory isolation property
in data-parallel computations.

• We designed and implemented a shared software accelerator
for C++ Actor Framework (CAF) Actors running data-parallel
computations.

• We added the thread-to-core affinity feature within the CAF
run-time system, enabling the possibility to separate the execu-
tion of run-time threads running application Actors in different
partitions of the available machine cores.

• We designed a set of Parallel Patterns that integrate with the
Actors of CAF. We implemented the open-source CAF-PP C++-
based library2 in which Parallel Patterns are provided to the
programmers as “macro Actors”.

• We designed and implemented a set of Data-parallel Patterns
within CAF framework that internally exploits the physical
shared-memory in a clean and safe way.

2 https://github.com/ParaGroup/caf-pp

https://github.com/ParaGroup/caf-pp

8 introduction

• We designed and implemented a set of Control-parallel Patterns
within CAF whose composition and nesting can be profitably
used to design high-throughput streaming applications with
significant performance improvements than the use of sole Ac-
tors.

• We ported a sub-set of Parsec [34] applications in CAF leverag-
ing our CAF-PP library.

• We designed and implemented a straightforward backpressure
mechanism for the CAF framework, which simplifies the em-
ployment of CAF in high-throughput streaming computations.

1.2 overview

To have a quick overview of the thesis’s contents, we suggest the
reader to consider Figure 2. The figure visualizes how chapters are
connected. Indeed, each macro argument in the picture shows a gray
diamond with the chapter number in which it is discussed.

The thesis is divided into three main parts. The first part con-
tains the background material and the state-of-the-art. Specifically,
the Chapter 2 contains the needed background material to better un-
derstand the contributions of the thesis. We define the main character-
istics of the Actor Model and of the Parallel Patterns, including infor-
mation about the library and programming languages that we use in
the thesis (e. g., C++ Actor Framework). Chapter 3 and Chapter 4

propose the state-of-the-art survey related of the Actor Model and
the Parallel Patterns programming approach, respectively. We princi-
pally analyzed the works that focus on extending the Actor Model
or addressing performance limitations of the Actor Model on multi-
/many-core platforms.

The second part contains the thesis’s main contribution and our
proposal to build a new parallel programming approach based on
the synergy of Actors and Parallel Patterns. We started analyzing the
performance implications of the isolation property on multi-/many-
cores through different message-passing semantics implementations
(i. e., Chapter 5). The isolation property is a crucial principle providing
the data-race free guarantees of the Actor Model. However, we will
also discuss its performance issues on shared-memory systems.

Chapter 6 describes our initial attempt to build the “Actors’ accel-
erator” structure for accelerating data-parallel computations, specif-
ically, Map and Map-Reduce computations. The proposed accelerator
enables speedup in data-parallel computations reducing the service
time of bottleneck Actors. In this chapter we also propose the thread-
to-core affinity feature for the C++ Actor Framework run-time.

Chapter 7 and Chapter 8 contain our proposal related to integra-
tion of Parallel Patterns programming approach into the Actor Model

1.2 overview 9

for multi-/many-core platforms. We propose both Data-parallel Pat-
terns and Control-parallel Patterns aiming at providing a synergic in-
tegration of the two models. Parallel Patterns are “macro Actors”
that can be composed and nested together with other application
Actors. They cooperate via the standard Actor messaging system.
The set of patterns proposed and their optimized compositions can
be used to remove performance bottleneck in Actor-based applica-
tion and implement high-performance streaming networks providing
high-throughput and low-latency.

Finally, the third part summarizes the results and outlines possible
future research directions (i. e., Chapter 9).

Part I

B A C K G R O U N D A N D S TAT E O F T H E A RT

2
B A C K G R O U N D

In this chapter, we provide the necessary background that will help
understand the motivations and the contributions of the thesis. Sec-
tion 2.1 presents background information related to parallel program-
ming, starting from parallel architectures focusing on multi-cores,
which are the target platforms in this thesis. Then, Section 2.2 dis-
cusses the different types of parallelism and Section 2.3 presents some
relevant parallel programming models. Finally, in Section 2.4, we
present the framework and programming language that we will use
in this thesis to do experiments and implement our pattern-based
library.

2.1 parallel architectures

A well-known categorization of the Parallel Architectures is based
on the number of instruction streams and the number of data
streams [102]. In this categorization, the single process system
(uniprocessor) has a Single Instruction stream and Single Data stream
(SISD), and a multiprocessor system has a Multiple Instruction stream
and Multiple Data stream (MIMD). Indeed, a uniprocessor system has
a single stream of instruction and data; instead, in a multiprocessor,
each processor fetches its instruction and access its data. Other kinds
of architectures are the Multiple Instruction stream and Single Data
stream (MISD), which are commonly used for fault-tolerance pur-
poses, and the Single Instruction stream Multiple Data stream (SIMD),
which are the standard architecture of the Graphics Processing Unit
(GPU).

Multiprocessors can be further classified in Symmetric MultiProces-
sors (SMP) and Non-Uniform Memory Access (NUMA). In an SMP mul-
tiprocessor, each process has symmetric access to the memory with
the same latency and bandwidth. This is not the case of NUMA multi-
processors. The NUMA architectures also include systems composed
of multiple distinct SPM processors connected thought an intercon-
nection network (either a Network-on-Chip or a standard external
inter-node network). Multi-cores are typically classified as SPM ar-
chitectures, even though some multi-core systems are composed of
multiple smaller SPM systems packed together and presenting com-
plex memory hierarchies with different access latencies. An example
of such system is the AMD EPYC processor [1].

Multi-core architectures start to become popular around 2004 when
the Dennard’s scaling law [88] stopped working due to severe cur-

13

14 background

rent leakage issues at small sizes and challenging cooling problems
raised. Therefore, chip manufacturers moved away from trying to in-
crease the single-core performance over different generations. Den-
nard’s scaling law states that as transistors get smaller, their power
density stays constant. This means that chip manufacturers can scale
transistors and increase clock speed in each new generation with-
out significantly increasing energy consumption. Dennard’s scaling
is usually paired with Moore’s law [152], which states that the num-
ber of integrated circuit resources that can be packed into a single
chip doubles approximately every two years. Although the transis-
tor size continues to shrink, at some point, the current leakage poses
more significant challenges causing the chip to further heat up. This
technology period is commonly known as the “free lunch era” [195],
where every few years, the same Software (both applications and sys-
tem software) can benefit from the performance increase of Hardware
upgrade providing faster single processor chip. The jump into the
so-called “multi-core era” puts increased pressure on the Software
community too. Software performance now mainly depends on the
capability of the Software itself to efficiently manage multiple con-
current threads of control running in parallel on different cores to
accomplish the same task.

Figure 3: Forty-eight years of microprocessor evolution.
Figure by Karl Rupp [130].

Figure 3 shows the Microprocessor trend of the past 50 years. It
is possible to observe that from 2005-2006, the single-thread perfor-
mance slow down along with frequency and power, while the number
of logical cores starts to increase gradually. The number of transistors
continues to grow, indicating that Moore’s law is still valid. Although,
recent works forecast that Moore’s law will end around 2025 [203]. To

2.1 parallel architectures 15

face this problem, new technologies that will not rely on physical scal-
ing are under investigation (e. g., Spin-based logic [145]).

For the sake of completeness, we also describe other common par-
allel architectures even though they are not directly considered in this
thesis.

graphics processing unit (gpu)
A GPU is a specialized computer unit initially designed to rapidly
manipulate and alter memory to accelerate the image creation in a
frame buffer and display it on a display device. GPUs are typically
used as coprocessors attached to PCIe buses. Since 2006 they start
to be also used as general-purpose computational units (GPGPUs)
thanks to the diffusion of more user-friendly programming models
such as CUDA and OpenCL. In GPU computing, performance comes
from simultaneously using a large number of GPU threads, which
are relatively light-weight entities with zero context-switching over-
head, to compute the same task on multiple data elements. GPUs
are mainly used for data-parallel computations, and the main pro-
gramming challenge is to reduce (or hide) the time spent transfer-
ring data between CPU memory to/from GPU memory. The princi-
pal frameworks to run parallel programs on graphic cards are the
Compute United Device Architecture (CUDA) [183] for NVIDIA GPUs
and OpenCL [185], which targets general-purpose hardware acceler-
ators in general (e. g., GPUs, FPGAs). Recently, SYCL [199] proposes
a royalty-free and cross-platform abstraction layer for heterogeneous
processors in standard ISO C++. It supports a broad variable of target
framework, e. g., OpenCL and OpenMP.

distributed system

Distributed memory systems (also called multicomputers) are a col-
lection of independent computers, each owning its private memory,
and connected through an interconnection network forming a given
topology. In the HPC context, the interconnection networks are usu-
ally based on high-performance message-passing networks offering
both low-latency and high-bandwidth communications such as In-
finiBand [164], Myrinet [38] and QSNet [163].

Clusters of Workstations (or simply clusters) are homogeneous dis-
tributed systems, in which each cluster node is identical to the others.
Internally the nodes are standard multiprocessor servers with their
Operating System. On top of that, runs specific cluster software, for
example, for accessing the file system (e. g., DFS, NFS), for the execu-
tion of jobs (e. g., SLURM [191]), and for providing the programmers
with a virtual shared-memory abstraction (e. g., [156]).

16 background

2.2 types of parallelism

It is widely acknowledged that there are two main types of paral-
lelism, Data Parallelism and Task Parallelism. The first model refers
to the exploitation of parallelism by applying the same function on
different data elements (e. g., partitions). The second refers to those
parallel executions that can be organized on the basis of separate or
inter-dependent tasks. Task Parallelism can be further distinguished
from Stream Parallelism if we consider the concepts of a sequence of
data elements flowing through a task-dependency graph. A stream
is a possibly infinite sequence of values, all of them having the same
data type, e. g., a stream of images (not necessarily all having the
same format), a stream of files, a stream of network packets, a stream
of bits, and so on. In the following, we present the main aspects of
the three models:

• Data Parallelism is a method for parallelizing a single collection
of data by processing independent sub-collections of elements
in parallel. The input collection of data is split into multiple
sub-collections (or partitions), each one computed in parallel by
applying the same function to each partition. The results pro-
duced are collected in one single output collection, usually hav-
ing the same type and size of the input. The computation on
the sub-collections may be completely independent, meaning
that the computation uses data only coming from the current
sub-collection, or it may be dependent on previously computed
data. The primary objective of this model is to reduce the com-
pletion time (i. e., the total latency) of the entire computation
on the initial collection. Particular attention should be put in
the workload balance due to the potential variable calculation
times associated with each distinct partition.

• Stream Parallelism is a method for parallelizing the execution of a
stream of elements (or collections of elements) through a series
of sequential or parallel modules (sometimes also called opera-
tors or filters). Parallelism is achieved by running each module
simultaneously on subsequent or independent data elements. In
general, this method is applicable if the computation requires a
total or partial ordering of different tasks. This method is usu-
ally represented as a direct graph in which the edges are the
communication channels and the nodes the modules itself.

• Task Parallelism is a method for parallelizing the execution of
a set of distinct functions by running each of them according
to an dependency graph (also referred to as task-dependency
graph). In this class, we can also include recursive fork-join com-
putations. Functions (or tasks) are processed concurrently by
threads or processes which communicate to satisfy input data

2.3 parallel programming models 17

dependency as described by the dependency graph. As for the
Data Parallelism method, Task Parallelism is applied to a single
data collection.

2.3 parallel programming models

Parallel programming is still frequently approached by using low-
level mechanisms and libraries that allow retaining complete control
over the underlying platform, e. g., MPI [192], POSIX Threads [45].
Although this permits to apply platform-specific optimizations (pro-
vided that the programmer has enough knowledge of the target
platform), it dramatically limits the portability and, in particular, the
performance portability. Indeed, the programmer cannot work on
his/her algorithms without struggling with threads, synchroniza-
tions, and communications concepts, whose features may change
over time with novel HW/SW platforms.

To tackle the issues above, high-level programming models provide
abstractions that hide away the complexities derived from the direct
use of low-level parallelization primitives, thus reducing the time re-
quired to implement the application and improve its portability and
maintainability. The model’s primary aim is to raise the abstraction
level, providing the user with useful paradigms and constructs with
precise functional and parallel semantics. It follows the separation of
concerns software design principle, in which system-level program-
mers build efficient and portable libraries/frameworks, whereas do-
main expert programmers use these mechanisms to build the applica-
tion software. Some notable examples of widely used high-level paral-
lel frameworks targeting multi-cores are: Intel Threading Building

Blocks [172], OpenMP [68], and Cilk [37].
The programmer can use a composition of those abstractions to

build his/her algorithm, confident that the implementation will be
compatible with a potentially large variety of architectures. Indeed,
the high-level abstractions hide the actual implementations, which
use threads and low-level synchronization mechanisms to provide
multiple versions with different optimization strategies depending
on the underlying architecture. One of the main advantages of using
high-level approaches is to reduce programming effort and increase
productivity in software development [190]. This approach can also
reduce the required skill to exploit parallel programming and thus
increasing the proliferation of efficient and highly optimized soft-
ware [112].

Notable examples of high programming models are the dataflow
and the Bulk-Synchronous Parallel (BSP). The dataflow model has been
formalized by Kahn [129] in 1974. It models a parallel program as
a directed graph where operations are represented by nodes while
edges model data dependencies. Nodes represent the functional unit

18 background

of computations that are fired when all input data items are present.
Operations without direct dependencies as well as operations that
become fireable at the same time can be executed in parallel.

The BSP model is a general execution model proposed by Leslie
Valian in the 90s [214] as an attempt to provide parallel computing
with an equivalent to the Von Neumann model for sequential com-
puting. BSP algorithms are defined as a sequence of 3 phases: compu-
tation, communication and a global synchronization barrier between
all processes composing the application. A group of these phases is
called a superstep. In each superstep processes compute using lo-
cal variable only, then after a global barrier the communication takes
place. The messages sent or received during a superstep can be used
only after the barrier has been crossed and so at the beginning of the
next superstep.

In the following, we discuss two other approaches to high-level
parallel programming. The first one is the Actor Model, which is a
programming model that does not enforce any restrictions to paral-
lel programmers on how to express parallelism. The second one, is
the Structured Parallel Programming Model, which, instead, limits the
freedom to the parallel programmer proposing only a restricted set
of parallel paradigms (also called Parallel Patterns), with the primary
aims of reducing the complexity of the parallelization and providing
more opportunities to introduce optimization heuristics.

2.3.1 Actor Model

The Actor Model was proposed in 1973 by Hewitt, Bishop, and Steiger
[122]. It was initially developed to be used for artificial intelligence
research to model systems with thousands of independent proces-
sors, each one with local memory and connected through some high-
performance network. More recently, the Actor Model gained inter-
est and started to be adopted in the contexts of multi-core processors.
The primary principle of the Actor Model is centered on the Actor
concept. An Actor is an entity that:

• interacts with other Actors through messages,

• can create a finite number of new Actors,

• can dynamically change its internal behavior

Indeed, every Actor has a mailbox, and it performs a particular
computation considering its internal state, and the message just ex-
tracted from its mailbox. The Actor may generate zero, one or more
new messages that may be delivered into the mailbox of any Actors
whose destination address is known.

The interaction principles among Actors are based on asyn-
chronous, unordered, fully distributed, address-based messaging.

2.3 parallel programming models 19

To achieve full asynchronicity, and thus no deadlock, each Actor
must have a mailbox of infinite capacity to prevent the generic sender
Actor from blocking on a send operation. However, no guarantee is
given about the ordering in which an Actor processes the messages
present in its mailbox.

Inherently, there is no upper-bound on the time needed by the sys-
tem to reach some kind of stable state, i. e., a state where all the mes-
sages have been processed and no other messages have been sent. The
Actor Model only guarantees that all the messages will be eventually
processed.

More in detail, the Actor Model is defined by a set of axioms that
Hewitt and Barker laid down in their seminal work [121].

One fundamental aspect of the Actor Model is that there is no
global state, and no central entity manages the whole system. Actors
are memory-isolated entities, and shared mutable states are eschewed
in favor of by-value data exchange semantics. The computation is a
partial ordering of a sequence of transitions from one local state to
another. Unordered events may be executed in parallel. Therefore the
new local state of multiple Actors can be computed concurrently. The
flow of events in an Actor system forms an activation suborder tree
expressing for every event a causality order with a finite path back
to the initial event. Different branches of the activation suborder tree
represent chains of parallel events.

The Actor Model enforces strict locality by allowing the Actors
to build their knowledge about the rest of the system only through
messages, including other Actor addresses. Indeed, every Actor
maintains a dynamic list of acquaintance Actors, representing its
partial view of the system. An Actor enlarges the acquaintance list
if it spawns a new Actor, if it receives a message from an unknown
Actor, or if it receives other Actor references over incoming messages.

Another essential concept in the Actor Model is the activity. An ac-
tivity is a set of events between the reception of a request and the
sending of a replay. Two activities are considered concurrent if their
request events occur in parallel, even though the activities may have
some overlap. An activity is determinate if exactly one replay is gener-
ated and non-determinate if more than one replay is generated.

Finally, as mentioned by Hewitt and Baker [121] the reliability
of the message delivery system is not considered part of the Ac-
tor Model. This is considered an orthogonal point, and it implies
that in an unreliable network environment, the Actors themselves
should take care of the necessary re-transmission and the proper
fault handling protocols.

20 background

2.3.2 Pattern-based Parallel Programming

Parallel programming based on parallel patterns [148] and algorith-
mic skeletons [60] is a well-recognized approach for raising the level
of abstraction in parallel programming. The two approaches define a
series of schemes of parallel computations that recur in many applica-
tions and algorithms. The programmers can pick, customize, and ex-
ploit their well-defined functional and non-functional semantics [14].
Each skeleton could have different implementations depending on
the execution architecture, and they also may have different models
of execution and coordination.

Pattern-based frameworks provide a set of Parallel Patterns that
solve recurrent problems in parallel programming. In the following,
we provide an overview of the most used patterns. These parallel pat-
terns encapsulate the algorithmic characteristics of the parallel prob-
lem, providing a simple interface focused on reusability and portabil-
ity. One important strength of Parallel Patterns is the ability to com-
pose one Pattern inside another. Thus, a small set of specific patterns
could be composed to solve complex problems in this way.

Each Parallel Pattern implementation library defines different com-
position rules for their patterns, but one of the most common ap-
proaches is the “two-tier model”, first introduced in the P3L lan-
guage [28, 135], providing two macro-categories of patterns, i. e., Data-
parallel Patterns, and Stream-parallel Patterns. A P3L valid composition
of Parallel Patterns is the one having Stream-parallel Patterns at the
top of the composition tree and Data-parallel Patterns at the bottom
of the tree (i. e., they are the leaves of the tree). Thus, the “two-tier
model” excludes from valid compositions a Farm or a Pipeline inside
a Map, whereas the other way round is valid. This principle is based
on the observation that some pattern compositions do not offer any
(or minimal) performance improvements while increasing the imple-
mentation complexity.

2.3.2.1 Sequential (seq)

This pattern encapsulates a portion of the business logic code of the
application and it is usually used as a parameter of other patterns.
The implementation requires to wrap the code in a function f : α→ β

with input and output parameter types α and β, respectively. For
each input x : α the pattern (seq f) : α → β applies the function f
on the input by producing the corresponding output y : β such that
y = f(x). The pattern can also be applied when the input is a stream
of elements with the same type. Let stream(α) be a sequence x1, x2, ...
where xi : α for every i. The pattern (seq f) : stream(α) → stream(β)

applies the function f to all the items of the input stream, which are
computed in their strict sequential order, i. e., xi before xj iff i < j.

2.3 parallel programming models 21

2.3.2.2 Pipeline (pipe)

The pattern works on an input stream of type stream(α). It mod-
els a composition of functions f = fn ◦ fn−1 ◦ ... ◦ f1 where fi :

αi−1 → αi for i = 1, 2, ...,n. The Pipeline pattern is defined as
(pipe ∆1, ...,∆n) : stream(α0) → stream(αn). Each ∆i is the i-th
stage, that is a pattern instance having input type stream(αi−1) and
output type stream(αi). For each input item x : α0 the result out of
the last Pipeline stage is y : αn such that y = fn(fn−1(...f1(x)...)). The
parallel semantics is such that stages process in parallel distinct items
of the input stream, while the same item is processed in sequence by
all the stages.

f1 f2 fn-1 fn...

First stage Last stage

Figure 4: Implementation schema of a Pipeline of n stages.

From an implementation viewpoint, a Pipeline of sequential stages
is implemented by concurrent activities (e. g., threads), which commu-
nicate through FIFO queues carrying messages or reference to mes-
sages. Figure 4 shows an implementation schema.

2.3.2.3 Task-Fram (farm)

It computes the function f : α → β on an input stream(α) where
the computations on distinct items are independent. The pattern is
defined as (farm ∆) : stream(α) → stream(β) where ∆ is any pattern
having input type stream(α) and output type stream(β). The semantics
is such that all the items xi : α are processed and their output items
yi : β where yi = f(xi) computed.

From the parallel semantics viewpoint, within the Farm the pattern
∆ is replicated n > 1 times (n is a non-functional parameter of the pat-
tern called parallelism degree) and, in general, the input items may
be computed in parallel by the different instances of ∆. In the case of
a Farm of sequential pattern instances, the run-time system can be im-
plemented by a pool of identical concurrent entities (worker threads)
that execute the function f on their input items. In some cases, an
active entity (usually called Emitter), can be designed to assign each
input item to a worker, while in other systems the workers directly
pop items from a shared data structure.

Output items can be collected and their order eventually restored
by a dedicated entity (usually called Collector) that produces the
stream of results (see Figure 5).

22 background

Emitter

Worker1

Collector
Worker2

Workern

...

Figure 5: Implementation schema of a Farm of n worker.

2.3.2.4 Master-worker (master-worker)

This pattern works on a collection (collection(α)) of type α, i. e., a set
of data items x1, x2, ..., xn of the same type xi : α for any i. There is
an intrinsic difference between a stream and a collection. While in a
collection all the data items are available to be processed at the same
time, in a stream the items are not all immediately available, but they
become ready to be processed spaced by a certain and possibly un-
known time interval. The pattern is defined as (master-worker ∆,p) :
collection(α) → collection(α) where ∆ is any pattern working on an
input type α and producing a result of the same type, while p is
a boolean predicate. The semantics is that the master-worker termi-
nates when the predicate is false. Different items can be computed in
parallel within the master-worker.

A master-worker of sequential pattern instances consists of a pool
of concurrent workers that perform the computation on the input
items delivered by a master entity. The master also receives the items
back from the workers and, if the predicate p is true, reschedules
some items.

2.3.2.5 Map (map)

The pattern is defined as (map f) : collection(α) → collection(β) and
computes a function f : α→ β over all the items of an input collection
whose elements have type α. The output produced is a collection of
items of type β where each yi : β is yi = f(xi). The precondition
is that all the items of the input collection are independent and can
be computed in parallel. The run-time of the map pattern is similar
to the one described for the Farm pattern. The difference lies in the
fact that since we work with a collection, the assignment of items to
the worker entities can be performed either statically or dynamically.
Depending on the framework, an active entity can be designed to
assign input items to the workers according to a given policy.

2.4 used library and programming languages 23

2.3.2.6 Map+reduction (map+reduce)

It is defined as (map+reduce f,⊕) : collection(α)→ β, where f : α→ β

and ⊕ : β × β → β. The semantics is such that the function f is
applied on all the items xi of the input collection (map phase). Then,
the final result of the pattern y : β is obtained by composing all the
items yi of the output collection result of the map phase by using the
operator ⊕, i. e., y = y1 ⊕ y2 ⊕ ...⊕ yn.

A typical implementation is the same as the map where the reduc-
tion phase can be executed serially, once all the output items have
been produced, or in parallel according to a tree topology by exploit-
ing additional properties of the operator ⊕ (i. e., if it is associative and
commutative).

2.3.2.7 Divide&Conquer (D&C)

The Divide&Conquer algorithms are composed of two distinct phase,
the Divide (or Split) and The Conquer (or Merge) phase. In the former
the problem is recursively decomposed into smaller sub-problems
building a tree of calls. In the latter the partial results produced by the
solution of the sub-problems at a given level of the tree are adequately
combined to build the final result. A Divide&Conquer algorithm can be
parallelized by executing, on different CPU cores, the Split and Merge
phases for those sub-problems that do not have a direct dependency
in the recursion tree. Indeed, at each level of the tree, a new set of
concurrent tasks is available to be executed up to the point where the
sub-problems are small enough that it is more convenient to compute
them using the sequential algorithm.

Formally the pattern can be defined as (D&C d,b, c) : α → β. The
function d : α→ (α1...αn) divide the problems in sub-problems with
the same type of the original problem. The function b : α → β com-
pute the trivial base case, namely the result of a single small enough
sub-problem, and finally, the function c : (β1...βn) → β, recombine
the results.

A common optimization of the D&C parallel patter consist on early
stop the recursive division of the problem in sub-problems, using a
configurable cut-off value [70, 148]. This permits to execute a sequen-
tial version of the algorithm when the sub-problem can fit in cache
and it is quite trivial to be computed by a single concurrent entity.

In the Algorithm 1 there is the schema of the sequential solve func-
tion that the pattern can use to compute the Solution type recursively
starting from the Problem type.

2.4 used library and programming languages

In this section, we propose the technologies that we adopted to build
the software prototypes presented in this thesis, namely Rust, and

24 background

Algorithm 1: Sequential pseudocode of the Divide&Conquer al-
gorithm
Input: Problem
Output: Solution

1 Function solve(p : Problem)→ Solution

2 if isBaseCase(p) then
3 return base(p);
4 else
5 subProblems← split(p);
6 subSolutions← ∅;
7 foreach p ∈ subProblems do
8 subSolutions∪ solve(p);
9 end
10 return merge(subSolutions);
11 end
12 End Function

C++ Actor Framework. We use C++ Actor Framework (CAF) as
a reference Actor Model implementation. CAF is a high-performance
C++ implementation of the Actor Model. The C++ language permits
us to both integrate into the framework some low-level optimization
and also to fairly compare its performance with reference parallel
library not based on the Actor Model, e. g., FastFlow. We uses CAF
as base of our prototype in Chapter 5, Chapter 6, Chapter 7, and
Chapter 8.

Instead, Rust is a modern system language that implements a
strong type system. We adopt Rust to build a safe and efficient mes-
sage passing mechanism in Chapter 5.

2.4.1 C++ Actor Framework (CAF)

The C++ Actor Framework (CAF) [51, 52, 123] enables the devel-
opment of concurrent programs based on the Actor Model leverag-
ing modern C++ language. In contrast to other well-known imple-
mentations of the Actor Model, such as Erlang [24] and Akka [18],
which use virtual machine abstractions, CAF is entirely implemented
in C++, and thus CAF applications are compiled directly into native
machine code. This allows using the high-level programming model
offered by Actors without sacrificing performance introduced by vir-
tualization layers.

CAF applications are built decomposing the computation in small
independent work items that are spawned as Actors and executed co-
operatively by the CAF run-time. Actors are modeled as lightweight
state machines that are mapped onto a pre-dimensioned set of run-
time threads called workers. Instead of assigning dedicated threads

2.4 used library and programming languages 25

to Actors, the CAF run-time includes a scheduler that dynamically
allocates ready Actors to workers. Whenever a waiting Actor receives
a message, it changes its internal state to ready and the scheduler
assigns the Actor to one of the worker thread for its execution. As a
result, the creation and destruction of Actors is a lightweight opera-
tion.

Actors that use blocking system calls (e. g., I/O functions) can sus-
pend run-time threads creating either imbalance in the threads work-
load or starvation. The CAF programmer can explicitly detach Actors
by using the detached spawn option, so that the Actor lives in a ded-
icated thread of execution. A particular kind of detached Actor is the
blocking Actor. Detached Actors are not as lightweight as event-based
Actors.

In CAF, Actors are created using the spawn function. It creates
Actors either from functions/lambdas or from classes and returns
a network-transparent Actor handle. Communication happens via
explicit message passing using the send command. Messages are
buffered in the mailbox of the receiver Actor in arrival order before
they are processed. The response to an input message can be im-
plemented by defining behaviors (through C++ lambdas). Different
behaviors are identified by handler function signature, for example
using atoms, i. e., non-numerical constants with unambiguous type.

Figure 6: Dequeue operation in
CAF queue [52].

By using the send primitive Ac-
tors can send any sequence of data
types into the mailbox of other Ac-
tors. Such types sequence will be
moved to a type-erased tuple that
erases the actual type preserving an-
notations of the erased types. These
annotations will be used in the pat-
tern matching phase to discover the
behavior to execute and to cast back
the types to the original ones. Be-
sides, the CAF messaging system
supports two priority levels and the
possibility to skip unwanted mes-
sages (e. g., messages for behaviors
not yet set up). CAF Actors uses
a combination of a LIFO lock-free
queue with multiple FIFO buffers to
implement the mailbox. The LIFO
queue is a thread-safe unbounded
linked-list with an atomic pointer to
its head. There is one FIFO linked-list for each priority level. CAF
supports two priority levels. Each FIFO queue also has an additional
cached buffer to maintain messages that are skipped. The sender Ac-

26 background

tor inserts new elements atomically in the head of the LIFO queue.
The receiver Actor, atomically extracts all the messages from the LIFO
queue using a compare-and-swap operation. Then, the messages are di-
vided into the two FIFO queues on the basis of their priority. Finally,
the consumer Actor can dequeue messages with a different propor-
tion from the two queues to maintain the priority.

Figure 6 shows the different phase of the message dequeuing oper-
ation considering a situation with a single priority FIFO queue. The
initial situation has three elements in the LIFO queue and no elements
in the FIFO queue. In the second state the LIFO queue is emptied by a
single operation. In the thread state all the elements are inserted back-
ward in the FIFO queue, and finally in the last state the first element
was popped.

Listing 1 presents a simple example showing some of the features
of the CAF framework, e. g., the dynamic behavior changing. Two Ac-
tors exchange an integer value that is decremented until it becomes
zero. Line 38 declare the main function that will be call by the CAF
framework after the actor_system creation and initialization. From
the same MyActor definition, Line 11, the actor_a and actor_b are
spawned at line Line 40 and Line 41, respectively. The second Actor
is spawned as detached Actor while actor_a is an event-based Actor.
MyActor define at first a single behavior for the init_a atom, using
C++11 lambda at Line 15. Instead, Line 13 configures the Actors to
skip and to keep in the queue all messages that do not match the
defined behaviors. Thus, in this case all messages except for init_a

messages. After the Actors receive the init message they change their
behaviors, by using the become method at Line 22. The new supplied
behaviors are send_a and stop_a defined at Line 23 and 23 respec-
tively. Then, by using the send behavior (Line 27), the two Actors
exchange the integer value n each time decrementing it until it be-
comes 0. Eventually, the stop behavior is fired, which terminates the
current Actor only after having sent the other peer the stop message.

2.4.2 Rust Programming Language

Rust [133, 146] is a modern system-level programming language that
focuses on memory safety and performance. Its design gives access to
some low-level features with high-level safety. The Rust project was
initially started by Graydon Hoare and in 2009 has been sponsored by
Mozilla. Since then, Mozilla started developing Servo, an experimen-
tal browser engine entirely written in Rust and then integrating some
of the stable features in the Gecko browser engine, implemented in
C++. In 2017 the Servo CSS style engine was integrated in Gecko and
release in Firefox 54. Things change during the COVID-19 pandemic,
when Mozilla Foundation lay off around 250 people, including most
of the developer of Rust products [49]. That situation create uncer-

2.4 used library and programming languages 27

1 #include <caf/all.hpp>

2

3 using namespace caf;

4

5 // define custom atom types for message pattern matching

6 using init_a = atom_constant<atom("init")>;
7 using send_a = atom_constant<atom("send")>;
8 using stop_a = atom_constant<atom("stop")>;
9

10 // actor implementation

11 behavior MyActor(event_based_actor *self) {

12 // skip messages until we receive a init atom

13 self->set_default_handler(skip);

14 // return the (initial) actor behavior

15 return {[=](init_a, actor next, int n) {

16 // restore default action to printing unhandled messages

17 self->set_default_handler(print_and_drop);

18 // start sending

19 if (n > 0) {

20 self->send(self, send_a::value, n);

21 }

22 self->become(

23 [=](send_a, int n) {

24 if (n == 0) {

25 self->send(self, stop_a::value);

26 } else {

27 self->send(next, send_a::value, n - 1);

28 }

29 },

30 [=](stop_a) {

31 self->send(next, stop_a::value);

32 self->quit();

33 });

34 }};

35 }

36

37 // declare the main function of the program

38 void caf_main(actor_system &sys) {

39 // spawning actors

40 auto actor_a = sys.spawn(MyActor);

41 auto actor_b = sys.spawn<detached>(MyActor);

42

43 // initialize actors

44 anon_send(actor_a, init_a::value, actor_b, 100);

45 anon_send(actor_b, init_a::value, actor_a, 0);

46 }

47 CAF_MAIN()

Listing 1: A simple CAF example that uses dynamic message handler.

28 background

1 let s1 = String::from("The answer to the ultimate question of life is");
2 // the ownership is transferred from s1 to s2

3 let s2 = s1;

4 // compiler error, s1 is no more accessible

5 println!("{} 42!", s1);

Listing 2: Rust ownership example.

tainty and confusion on the future of Rust programming language.
Thus, the Rust Core Team and Mozilla itself announce the creation
of an independent Rust Foundation, which give complete autonomy
from Mozilla starting from the end of 2020 [138].

The principal novelty of Rust is in the management of memory.
Languages like C/C++ provide the user with total control on mem-
ory allocation and deallocation. Programmers can create, destroy and
manipulate the memory space without any limitation. This is a very
attractive feature for expert programmers, but it can also lead to very
subtle bugs and vulnerabilities (e. g., buffer overflow). Other popular
languages such as Java, rely on a Garbage Collector (GC) to safely
manage memory without the explicit intervention of the user. The
increased security comes along with some performance degradation
due to the GC service running in the background trying to reclaim
unused memory. Instead, the Rust language deals with memory man-
agement through the ownership concept [132]. The compiler statically
checks a set of rules to control the memory allocation/deallocation
and memory accesses. Therefore, the compiler guarantees a certain
level of memory safety at the price of a more complex and longer
compilation process but without any additional overheads at running
time.

Concerning the owenship feature, once a variable is bound with a
value, it gains exclusive ownership of it. Therefore, only the owner
can access that memory location until it transfers the exclusive own-
ership to another variable. The ownership rule states three simple con-
cepts [132]:

1. each value has a variable that is called owner;

2. there can be only one owner at a time;

3. when the owner goes out of scope, the value will be dropped.

In Listing 2 there is a Rust snippet of code that does not compile
because in Line 5 the ownership rule is violated. In fact, in Line 3 the
ownership of variable s1 is transferred to variable s2, and, therefore,
the original owner (s1) cannot access it again on Line 5.

Values stored in the heap maintain the same rules and when the
owner variable goes out of scope the memory is automatically re-
leased. In this way the user does not have to directly deal with allo-

2.4 used library and programming languages 29

cation and deallocation instructions avoiding the risk of double frees
or memory leaks.

To improve the flexibility of the language, Rust also implements
the borrowing concept through memory references. It is possible to
create an immutable reference by using & and a mutable reference by
using &mut. Both of them borrow the value from the original owner.
The compiler imposes the following rules:

1. at any given point in time, only one mutable reference or any
number of immutable references may exist;

2. the borrowed value cannot be accessed by the original owner;

3. when the reference goes out of scope the ownership goes back
to the original owner.

1 fn main() {

2 // define a mutable variable vec1

3 let mut vec1 = vec![1, 2, 3, 4];

4 // borrow a mutable reference

5 inc_vector(&mut vec1);

6 // the ownership come back to vec1

7 // borrow an immutable reference

8 let sum = sum_vector(&vec1);

9 // the ownership come back to vec1

10 }

11 fn inc_vec(v: &mut[i32]) {

12 v.iter_mut()

13 .for_each(x *x += 1);

14 }

15

16 fn sum_vec(v: &[i32]) -> i32

{

17 v.iter().sum()

18 }

Listing 1: Example of the Rust borrowing feature.

In Listing 1 there is a demonstration of how mutable and im-
mutable references work. In Line 5 a mutable reference is provided
to the function inc_vector and on Line 8 an immutable reference
is provided to the function sum_vector. In both cases, the function
borrows the value from the vector variable, and when it finishes
the execution, the ownership of the vector came back to the original
variable vec1.

Rust has also the lifetimes concept to avoid dangling references. A
lifetime is the scope in which a reference is valid and the compiler
enforces that it must be smaller of the scope of the value referenced.
Lifetimes are usually inferred by the compiler and could be omitted.
However, there are cases in witch the user has to annotate references
with life time parameters. Life time parameters are defined by an
apostrophe and a letter, e. g., ’a.

Finally, Rust provides native threads support, synchronization
mechanisms such as mutex and atomic variables as well as Multi-
Producer Single-Consumer (MPSC) communication channels for con-
necting threads. Indeed, the compiler guarantees that either multiple
threads have only read access to a memory location or only one
thread has read and write access to it. To manage the mutability

30 background

of variables and to guarantee memory safety in multi-thread ap-
plications, Rust defines the Send and Sync traits. The Send marker
trait indicates that ownership of the type implementing Send can be
transferred between threads. The Sync trait indicates that it is safe for
the type implementing Sync to be referenced from multiple threads.
Almost every primitive types in Rust implements Send and Sync and
types composed entirely of types that are Send-able or Sync-able are
themselves Send-able or Sync-able. Major exceptions includes, raw
pointers and Rc that are neither Send nor Sync. The Rc is a reference
counter pointer, similar to a C++ shared_ptr but without the atomic
reference counting operations, therefore not safe in multi-thread
sharing.

3
S TAT E O F T H E A RT: A C T O R M O D E L

In this chapter we describe some state of the art solutions for the
Actor Model, which will help to understand the contributions of this
thesis.

The Actor Model has a long history of research activity starting
from Hewitt, Bishop, and Steiger’s first paper in 1973 [122] and then
formalized in Hewitt and Baker [121]. During this period of almost
fifty years, the Actor Model has been investigated and adopted both
in academia as well as in industry with several implementations. Rel-
evant researches were conducted from both a theoretical and a practi-
cal standpoint, studying the model as a powerful concurrent abstrac-
tion.

For instance the work of Clebsch et al. [57] used the Actor Model in
the context of type systems and capabilities, the work of de’Liguoro and
Padovani [86] used the Actor Model in the field of behavioral types. Tal-
cott [200] and Gaspari and Zavattaro [107] investigate process algebra
and rewriting logic in the Actor Model respectively. Conversely, more
technical works are those of Imam and Sarkar [126] and Blessing et al.
[36] that propose some benchmarks to compare the performance of
different Actor Model implementations.

In this vast research area, we will discuss particularly related works
that focus on extending and improving the Actor Model to enhance
its non-functional aspects (i. e., performance and programmability)
(Section 3.1). We will also present a fraction of the research activity
related to concurrency models, which studied the pros and cons of
the Actor Model (Section 3.2). Then, we discuss some related work
on the so-called Active Objects model, a new model inspired by the
Actor Model (Section 3.3). Finally, we present a landscape of the most
relevant and recent programming languages and libraries that sup-
port the Actor abstraction, dividing them into five distinct categories
(Section 3.4).

3.1 attempts to improve the actor model

The Actor Model is considered a powerful concurrent model capa-
ble of providing important guarantees to deadlock-freedom and data-
race-freedom. However, the implementation of those guarantees may
sometimes introduce some performance overheads. In this section, we
present some research works that propose extensions/improvements
to the Actor Model to mitigate such implementation overheads. Some
of them try to provide more efficient Run-time System mechanisms

31

32 state of the art : actor model

to speed up the execution of Actor-based applications, others, instead
provide high-level abstractions to support the distinctive features of
the Actor Model.

We classified the research papers that tried to improve the Actor
Model in five distinct categories on the basis of either their work
objective or on the performance issues they tried to address:

• works that target mechanisms used to execute Actors efficiently
(e. g., the Actor’s scheduling strategies),

• works that try mixing the Actor Model with other concurrency
models (e. g., Actors and Task-Parallelism),

• works that enable concurrency inside a single Actor entity,

• works that extend the model with missing features, primarily
in the direction of safely using shared states among Actors,

• works that target Actor Model benchmarking with the aim of
providing a common ground for evaluating Actor Model imple-
mentations

The remainder of this section describes the most relevant recent
works for each one of the aforementioned categories.

3.1.1 Improving efficiency in the Actor Model

The first group of papers aims to optimize the Run-time System
of Actor Model languages/libraries without introducing disrupting
changes in the Actor Model itself to be entirely transparent to the
users.

Francesquini, Goldman, and Méhaut [104], Trinder et al. [213] and
Barghi and Karsten [29] proposed an improvement of the run-time
scheduler of the Actor Model. Francesquini, Goldman, and Méhaut
[104] designed a NUMA-aware run-time environment based on the
Erlang virtual machine. They introduced the concept of hub Actors,
i. e., Actors with a longer lifespan that create and communicate with
many short-lived Actors composing the application. In the proposed
system, short-lived Actors are carefully placed on the same NUMA
node of hub Actors, thus obtaining an average increase in the applica-
tion performance. Trinder et al. [213] performed a systematic study
of the scalability limits of the Erlang language and its virtual ma-
chine, presenting a coherent set of technologies, developed within
the EU FP7 RELEASE project, to improve its scalability and reliability.
Barghi and Karsten [29], proposed an improved version of the Work-
Stealing scheduler for the C++ Actor Framework, which takes into
account locality and NUMA awareness for Actors. The new scheduler
offers comparable or better performance than the default C++ Actor

Framework scheduler.

3.1 attempts to improve the actor model 33

The works of Torquati et al. [211] and Bauer and Mäkiö [32] focus
on improving the message-passing performance of the Actor Model.
Torquati et al. [211] optimize the C++ Actor Framework Run-time
System to improve the reactivity of Actors and to reduce the latency
of messages in streaming applications composed by one or more
pipelines. The generic Worker thread of the C++ Actor Framework

Run-time System leverages a condition variable in combination with
short waiting time in the wait_for methods, in order to maintain a
balance between reactivity and resource usage. Bauer and Mäkiö [32]
design Actor4j a new Actor Model implemented in Java that focuses
on optimizing message exchange among Actors. Actor4j differently
from Akka moves the Actor queue to the underline native executor,
thus an Actor is bound to a specific executor together with other con-
current Actors1. Using this approach, the implementation can opti-
mize message-passing at the level of the underline executor avoiding
synchronizations costs on Actors associated on the same thread.

Another Run-time System targeting enhanced performance for the
Actor Model is the one proposed by Desell and Varela [89]. The
authors developed a new run-time for the Actor Model language
SALSA, called SALSA Lite. The run-time is designed to implements
the basic features of the Actor Model, i. e., message-passing commu-
nications and dynamic Actor creation in an efficient way. SALSA Lite

is highly optimized for multi-core platforms and proposes a non-
transparent execution of Actors in which the user should manually
assign Actors to executors. Both SALSA Lite [89] and Actor4j [32]
introduce specific optimizations in the message-passing implementa-
tion by removing transparent Actors scheduling. These works demon-
strate that the decoupling of lower-level executors and high-level Ac-
tor entities may introduce significant efficiency issues on multi-cores.

Similarly, AL-Twajre [10] assess the mailbox performance and the
features of different Scala Actor Model languages. The authors
found that Scalaz [184], an extension to the core Scala library for
functional programming, offers the best message-passing perfor-
mance. Nevertheless, Akka offers the most future rich framework for
both single machines and distributed systems.

Finally, Clebsch and Drossopoulou [56] proposes a novel approach
for the implementation of the garbage collection of dead Actors in a
fully concurrent way. The main innovation was the possibility to iden-
tify reference cycles of dead Actors in a non-blocking manner through
messages. Aumayr et al. [25] introduced the ability to create an asyn-
chronous and distributed snapshots in an Actor application. The ap-
proach does not use heavy-wait synchronizations, and therefore it
does not introduce a significant latency increase in the execution. The
snapshots feature is provided for SOMms, an implementation of the

1 This is similar to the Communicating Event-Loop approach in managing Actor concur-
rency, see Section 3.4

34 state of the art : actor model

Newspeak Actor Model language based on the Communicating Event-
Loops paradigm.

3.1.2 Mixing Actors with other concurrency models

The second group of works mixes the Actor Model with other pro-
gramming models to either provide new abstractions to the Actor
Model or to adapt it to a different hardware/software platform.

Imam and Sarkar [125], proposed a controlled way to use Task-
Parallelism together with the Actor Model. The authors focus on the
limitation of the Actor Model, raising the problem of synchronizing
multiple concurrent Actor activities explicitly. This is the case, for ex-
ample, when an Actor needs to distribute some works to other Actors
and then waits for their completion (i. e., data-parallel computations).
The authors addressed this problem by enabling Task-Parallelism to
be executed along with Actors on the same Run-time System. There-
fore, developers could mix Actors with the proposed async-finish

primitive that can create and wait for Tasks. They also proposed to
spawn multiple parallel Tasks during Actor message handling with
the constrain that the Actor is suspended until all spawned Tasks
finish. As we shall see in the next section, relaxing the Actor Model
constrain of sequentially executing a single message could complicate
the Actor state managing and potentially produce race conditions.

Swalens, De Koster, and De Meuter [197] extends the works of the
previous paper [125] integrating Transactional Memory, Actors and Fu-
tures2. The authors propose the Chocola framework based on a forkFutures are

placeholder variables
that represent the

result of concurrent
computations, e. g.,

a Task. In the
beginning, the

Futures is
unresolved. Then,

when the Task yields
a value, the Futures

is elected to that
value.

Transactional
Memory is a

concurrency control
mechanism

analogous to
database

transactions, which
allow a group of load

and store
instructions to

execute in an atomic
way.

of the Clojure programming language, which combines Futures, Ac-
tors, and Transactional Memory. Chocola tries to maintain the seman-
tics and guarantees of the three models and guide the users to correct
compositions avoiding the risk of introducing errors.

The CAL Actor Language [93] is an attempt to integrate the
Dataflow programming model [128] with the Actor Model. CAL has
been adopted in the standardization effort of the MPEG Reconfig-
urable Video Coding Framework [33]. The new proposed model is
based on Dataflow Actors, which are lightweight static entities with
a set of input and output communication ports. Those Actors can be
statically composed in an acyclic graph and then executed on some
native executors. CAL drops some key features of Actor Model, e. g.,
dynamic spawn of Actors, and dynamic message communication.
Conversely, it relies on static connections among Actors that will be
feed with streams of data.

Similar works are the stream-oriented extensions for Akka and C++
Actor Framework. Akka Stream [77] is an extension of Akka tar-
geting streaming applications. The library is based on the Reactive

2 In this case, we consider Futures and Task-Parallelisms closely related, but they
could also be used independently.

3.1 attempts to improve the actor model 35

Stream project and implements a static graph of streaming operators
working on typed messages.CAF Stream [194] experimental exten-
sion of the C++ Actor Framework has a similar design to Akka

Stream, but (for now), it does not provide any high-level structure
for building networks of streaming operators. Differently from Akka

Stream, it maintains a close connection with standard C++ Actor

Framework Actors.
A different approach is that of Hiesgen, Charousset, and Schmidt

[123], which extends the C++ Actor Framework library to support
external hardware accelerators (e. g., GPUs) through OpenCL [157].
This approach permits executing data-parallel code on hardware ac-
celerators within the scope of an Actor to speed up its execution. The
extension implements an OpenCL manager and a new OpenCL Actor.
The manager supports the interaction with OpenCL capable devices
and it can spawn OpenCL Actors. Although this approach can only
enable data-parallel computations leveraging additional hardware, it
is beneficial given the increasing number of OpenCL capable devices
(e. g., GPUs, FPGAs). However, device management is left to the users
without additional abstraction.

An high-level abstraction on top of the Actor Model is the one
proposed by the Skel [39] parallel library for Erlang. The library
provides the user with a set of high-level Algorithmic Skeletons [59]
(i. e., pipeline, and task-farm) that can be composed in a functional
way. The main aim of the authors of Skel is to provide a skeleton-
based library in Erlang to improve programmability and increase
Erlang program performance for some specific parallel patterns.

While in the previously mentioned works, the authors brought a
different programming model beside or atop of the Actor Model, in
the work of Shali [187], Roloff et al. [180], and Pöppl, Baden, and
Bader [166] the authors followed an opposite approach. They imple-
mented the Actor abstraction concept in the Partitioned Global Address
Space (PGAS) programming model. Shali [187] designed an Actor ab-
straction for the Chapel language. Roloff et al. [180] designed and im-
plemented the actorX10 library for the X10 language. Finally, Pöppl,
Baden, and Bader [166] create an Actor library on top of the PGAS
library UPC++ implement in modern C++. All papers concluded that
integrating the Actor Model in the PGAS model can bring multiple
advantages in terms of programmability and performance [167].

In addition, Crafa and Tronchin [64] compares the PGAS model
with the Actor Model. The authors wanted to assess the most con-
venient model in the context of Big Data Analytics between the two
models. For doing that, the authors implemented from scratch, by
using X10 and Akka, two of the most used paradigms in Big Data
Analytics, i. e., MapReduce and Bulk Synchronous Parallel (BSP). Then
they evaluate both performance and programmability. Their principal
findings were that the centralized and imperative flavor of X10 stands

36 state of the art : actor model

out in the MapReduce implementation, while Akka’s Actors foster
the distributed execution of asynchronous Tasks better, enabling the
scaling to higher concurrency degree as required by BSP.

3.1.3 Concurrency inside a single Actor

The third group of research articles contains those works that tried to
relax the constraints of having the Actor as an indivisible concurrent
entity that fetches messages one by one from its input mailbox and
processes it sequentially.

The Actor Model avoids data race and maintain actor isolation by
processing one message at a time. Scholliers, Tanter, and De Meuter
[186] proposed a customizable message scheduler that is capable of
scheduling the processing of multiple not-depending messages at the
same time. The typical example is an Actor cell that may receive read
and write requests. The Actor cell can process multiple read opera-
tions concurrently, while write operations require exclusive execution
by the Actor. The authors also proposed an AmbientTalk [65] imple-
mentation, which uses a Thread Pool inside the Actor to implement
the concurrency.

Hayduk, Sobe, and Felber [117] provided a different approach to
enable concurrency inside each Actor based on Transactional Mem-
ory [116]. Incoming messages are executed concurrently by a Thread
Pool, and the state modifications are managed as transactions, thus
if two write operations conflict, the state is reverted and the opera-
tions are executed again in a different order. To improve performance
in the situation when there is a lot of concurrent state modifications,
the authors also proposed to split the input mailbox into two queues,
one for read-only messages (i. e., messages that do not modify the Ac-
tor internal state), and the other for all other kinds of messages. The
two queues are then scheduled on two configurable Thread Pools to
decrease conflict in the Transactional Memory and increase the overall
performance.

Finally, Azadbakht, Boer, and Serbanescu [26] designed a new pro-
gramming concept called Multi-threaded Actor (MAC), which fea-
tures Actors as a group of Active Objects sharing a message queue.
When an Active Objects fetches a message from the shared message
queue, the object executes the corresponding thread in parallel with
all other threads. Furthermore, MAC supports a mechanism of syn-
chronized data to constraint the parallel execution of messages. Each
message provides a set of locked data requests that enable or deny
specific messages’ concurrent execution. The authors provided a for-
mal operational semantics of MAC and a simple Java implementation
of the central programming abstraction.

To summarize, the different research proposals presented in this
section [26, 117, 186], try to parallelize heavy Actor computations

3.1 attempts to improve the actor model 37

without splitting them into multiple small Actors. This permits avoid-
ing to split the Actor internal state and to induce complex message-
based protocol implementations for the internal state updates. How-
ever, in some situations, this approach could increase application per-
formance but require to rely on suitable abstractions for state man-
agement to not impair programmability. Nevertheless, implementing
this parallelization using native Threads could definitively reduce the
flexibility and dynamicity of the Actor Model.

3.1.4 Improve Actor Model with new features

The fourth group of papers focuses on extending the Actor Model to
make it more powerful and usable.

There are a set of attempts that try to provide Actors with the abil-
ity to share data safely and reliably. De Koster, Marr, and D’Hondt
[80] introduce synchronization views as a way of synchronizing ac-
cess to a remote resource owned by another Actor. Views are objects
shared between multiple Actors that maintain consistency through
synchronized data access. The authors propose two kinds of views:
a shared view and an exclusive view, which mimic the well-known
multiple reader/single writer synchronization protocol. The views
implementation focuses on maintaining the same most important
guarantees of the Actor Model: race-condition freedom, and dead-
lock freedom. Later, the same authors extends the View idea with
the Domains [81, 82]. This mechanism is a more complete and elabo-
rated solution that supports different kinds of shared states, namely
immutable domain, isolated domain, observable domain, and shared domain.
A domain is a heap object that can be accessed by multiple Actors
thought an asynchronous request, which returns a synchronization
view of the objects. After a request, the data object can be accessed
synchronously by the defined policy. Finally, the same authors also
proposed another approach that avoids the first asynchronous call to
access the reference to the shared state [79], i. e., Tanks. A Tank is an Ac-
tor that can share to other Tanks part of its internal state in read-only
mode. The proposed solution uses Software Transactional Memory [120]
to enable readers’ operations to execute in parallel with writers’ op-
erations, thus avoiding to block the readers while all asynchronous
communications were removed.

Prokopec and Odersky [168] and Imam and Sarkar [127] define two
new models that extends the Actor Model. In particular, Prokopec
and Odersky [168] propose the Reactive isolated model, where the
concept of Actors is extended with the concept of Reactors. Reactors
are entities that listen to multiple kinds of events (e. g., a combina-
tion of multiple message reads) and react to them taking actions. The
model supplies code reuse and composition, which are well-known

38 state of the art : actor model

issues of the Actor Model, allowing the composing of the Reactor
with multiple distinguished and composable protocols.

Imam and Sarkar [127] present the Selectors another extension of
the Actor Model. The Selectors manages multiple incoming mailbox
that can be activated or deactivated by the Selector. A deactivated
mailbox may continue to receive messages, but the Selectors will
temporarily ignore it. The authors claimed that the use of the Selec-
tors concept makes synchronization and coordination patterns more
natural to implement (e. g., synchronous request-reply, producer-
consumer with bounded buffer).

Finally, Gruber and Boyer [114] proposed a run-time ownership-
based system to endure Actor isolation without forced a deep-copy
of all messages. Actor isolation is implemented by keeping track of
the message owner and invalidate references to the message of other
Actors to inhibit its access. The author proposes a prototypes devel-
oped on top of Kilim [131] Actor Model library and it uses a special
Java Virtual Machine, called JikesRVM, to manage references invali-
dation.

Our idea of integrating Parallel Pattern with the Actor Model fol-
lows the front of the aforementioned works, which adds abstraction
to the Actor Model to improve some peculiar aspects. Differently
from them, we mainly focus on improving performance and pro-
grammability both in data-parallel and streaming applications.

3.1.5 Actor Model Benchmarks

In the fifth and last group of papers, we discuss some performance
comparison of Actor Model implementations.

The gold standard of Actors benchmark is the Savina benchmark
proposed by Imam and Sarkar [126]. Savina [188] is a collection
of benchmarks taken by different sources and divided into three
categories: micro-benchmarks, concurrency benchmarks, and parallelism
benchmarks. Both micro-benchmarks and concurrency benchmarks provide
short and light benchmarks aimed to test specific functionalities of
Actor Model implementations, e. g., Actor spawn speed, and message
communication latency. Instead, the parallelism benchmarks provide
computationally intensive use-cases such for example the recursive
matrix multiplication algorithm. The author initially implemented
the Savina benchmarks for different Actor Model implementations
in the Java ecosystem, e. g., Akka. Some of the Savina benchmarks
were then ported to C++ Actor Framework [219] and to Pony [36,
193] Actor Model implementations.

Blessing et al. [36] criticize the Savina benchmarks because they are
composed of very different applications that use different paradigms,
e. g., Task-Parallelism, thus failing to assess the real performance of
practical Actor Model applications. The same authors propose an al-

3.2 actor model as concurrency model 39

ternative benchmark based on the implementation of a chat applica-
tion called ChatApp, which, in their opinion, stresses more the asyn-
chronous behavior of Actors. Indeed, the Savina benchmarks include
very different kinds of applications, and some do not even respect the
Actor Model’s constraints making explicit use of shared states [176].
However, Actors are used in many different contexts, and it is es-
sential to have a wide variety of benchmarks that can be useful to
compare performance across parallel programming models. In this
respect, in Chapter 7 and Chapter 8, we compare C++ Actor Frame-
work with other C++ parallel library considering both data-parallel
and streaming benchmarks.

3.2 actor model as concurrency model

In this section we present a set of relevant research works, whose
primarily focus is comparing the Actor Model with other well-known
concurrency models through the analysis of its pros and cons from
the Software Engineering standpoint.

Bauer and Makio [31] and Chen et al. [54] use the Actor Model
to design applications for the Internet of Things (IoT) and Indus-
try 4.0 domains. The former article designs an interconnected ad-
ministration shells for the Reference Architecture Model Industry 4.0
(RAMI4.0) [171] in a hybrid cloud environment using Java, and Ac-
tor Model and Actor4j. The latter research work uses an Actor-Role-
Coordinator (ARC) to model Quality of Service (QoS) requirements
in an Open Distributed and Embedded (ODE) system. Both articles
agreed that the Actor Model is advantageous to design and imple-
ments distributed and heterogeneous applications. The model pro-
vides high flexibility while being high-level enough to hide synchro-
nizations and data race issues.

The Actor Model is largely used by programmers to design and
implement concurrent applications. However, mainly for the lack of
implementations offering the pure Actor Model semantics, its usage
does not prevent the insertion of concurrent bugs in the applica-
tion development process. Tasharofi, Dinges, and Johnson [201] and
Swalens et al. [198] criticize in their work the combination of the Actor
Model with other concurrency models. The former investigates the
motivations that bring Scala programmers to mix the Actor Model
with either Task-Parallelism or native Threads. The latter presents an
extensive analysis of different combinations of concurrency models,
e. g., Software Transactional Memory, Futures / Task-Parallelism, and Ac-
tor Model. The two research works agree on an important point: com-
bining different models without a suitable high-level abstraction (like the
ones we present in Section 3.1), can easily bring deadlock and livelock
situations that can be challenging to remove.

40 state of the art : actor model

Some other works investigate the problems of deadlock and livelock
in the Actor Model [11, 110, 118, 212]. Although Actors do not share
state, and the Actor messages are entirely asynchronous, deadlock
can still occur if the model is not used correctly, e. g., two Actors
waiting for messages from each other [118]. Deadlock occurs when
Actors are unable to make progress, whereas livelock occurs when
Actors make only local progress (e. g., by exchanging messages) but
the program does not make any global progress.

The works of Hedden and Zhao [118] and Torres Lopez et al. [212]
propose a study of most repetitive bugs in the actor-based applica-
tions and libraries. Hedden and Zhao [118] study the bugs present
in the implementations of some famous open-source libraries based
on the Akka. The study was performed by analyzing the repository
and the issues tracker of the libraries. The bugs were divided in three
main categories, i. e., communication, coordination, and logical. The re-
sults of their analysis show that the most present bugs in the Actor
Model are the coordination ones. Besides, Actor Model, compared to
other similar classification of bugs in the context of cloud-based tech-
nologies, have fewer bugs in fault recovery.

Torres Lopez et al. [212] propose a taxonomy of concurrency bugs
in Actor Model programs based on literature review. The authors di-
vide the bugs into two main categories, namely Lack of Progress and
Message Protocol Violation. They also discuss two types of deadlock, i. e.,
communication deadlock and behavioral deadlock depending of the spe-
cific type of Actor Model implementation. The communication dead-
lock is specifically common in the Processes Actor Model type (e. g.,
Erlang) where it is present the explicit receive primitive (see Sec-
tion 3.4). In this case, two Actors could be blocked forever waiting for
a specific message from each other. Instead, the Behavioral deadlock is
present in the Classic Actors Actor Model and all other Actor Model
categories. In this case, two Actors are not blocked, i. e., they could
process other incoming messages, but they could not make progress
because each of them requires a specific message from the other.

The works of Gkolfi et al. [110] and Albert et al. [11] try to analyze
the dynamicity of the Actors communicate in order to track deadlock
and livelock situation. Gkolfi et al. [110] proposes an analysis based
on transposing Actor graph of communication in a colored Petri nets.
Instead, Albert et al. [11] presents a novel May-Happen-in-Parallel Anal-
ysis applied to the Actor Model concurrency. This can allow the auto-
matic extraction of the maximal level of parallelism of an application
for further performance improvement.

Instead, the paper of Fowler, Lindley, and Wadler [103] compare
the Actor abstraction with the Chanel abstraction finding out that
theoretically they can be derived one from the other. The works of
Cardoso et al. [47] compare the Actor Model model with the agent-

3.3 active objects related works 41

based programming language building a possible set of benchmark
to compare their functionality.

Finally, there are a relevant set of works that use model-checking
technique in order to formal verify Actor Model properties, e. g., Sir-
jani and Jaghoori [189], D’Osualdo, Kochems, and Ong [67] and Eck-
hardt et al. [92].

3.3 active objects related works

The Active Objects model is a pattern of concurrency largely inspired
to the Actor Model. The goal of the model, is to decouple the object
method invocation from its execution to simplify object accesses [137].

The main improvements introduced by the Active Objects are in
the communication mechanisms. The Actor Model relies only on mes-
sages for all actions (i. e., data movements, managing events and er-
rors, starting a given computation within an Actor, and sending mes-
sage replies). This may introduce an increasing overhead given by the
messages management and potential confusion for the programmer,
which has to deal with different semantics associated with different
kinds of messages. The Active Objects model exposes a set of distinct
methods to the programmer that have a more clear semantics and
are type-checked. Those methods always return a Future that will be
asynchronously resolved to either a message reply or an error.

The Actor Model gives freedom to the semantics of the messages,
providing guarantees that messages will be received at most once.
Instead, Active Objects provides an explicit distinction between di-
rect messages, results, and error messages with the guarantee to
receive acknowledgment communication. Indeed, for each remote
method execution corresponds a Future. As discussed by Rouvinez
and Sobe [181] the Actor Model at-most-one message guarantee is
similar to the UDP network protocol semantics, and the Active Objects
acknowledgments-based communication is similar to the TCP network
protocol semantics. Therefore, as it happens for network protocols,
the absence of mandatory acknowledgments-based communications
may improve flexibility and even performance in some specific sce-
narios.

Besides, it is worth to point out that some of the peculiar features of
the Active Objects model are available in several Actor Model imple-
mentations, such as the static check of messages and the request-reply
protocol pattern, typically implemented with Futures 3.

In the following, we report some notable research works that im-
plements extensions of the Active Objects model or that enrich the
model with other concurrency models. Henrio, Huet, and István [119],

3 In C++ Actor Framework, Futures are temporary message handler added at run-
time, thus they are executed asynchronously and interleaved with other messages
received by the Actor.

42 state of the art : actor model

proposed the Multi-Active Object model, which extends the Active
Objects model, allowing each activity to be multi-threaded. Hains et
al. [115, 140], proposed a new model that uses Active Objects to coor-
dinate Bulk-Synchronous Parallel (BSP) computations. The BSP model
can be used to efficiently program data-parallel computations. How-
ever, it imposes limitations in the way computing entities must in-
teract. The authors intended to overcome these limitations by inte-
grating the BSP model with Active Objects to improve its flexibility
and use Active Objects to coordinate multiple BSP algorithms. The
foundational idea of our research is similar to the ideas proposed by
Hains et al. [115]. We use structured parallel programming based on
common Parallel Patterns to efficiently implement computations on
shared-memory platforms while exploiting the flexibility and mem-
ory safety guarantees of the Actor Model.

Another example of combining Task-Parallelism with Active Ob-
jects is the framework Ray [153]. Ray is a distributed concurrency
framework designed to implement Reinforcement Learning algo-
rithms [196], thus capable to cooperate with the most modern Ma-
chine Learning libraries. Ray implements a Task-Parallelism model
with Remote Procedure Calls and Futures in combination with some
concept of the Active Objects. The combination of Active Objects
with the Task-Parallelism, implemented by the Ray framework, is an
interesting proposal that aims to homogenize the two models. Tasks
are stateless pure functions whereas Active Objects are stateful object
with methods.

Finally, Fernandez-Reyes, Clarke, and McCain [101] proposed an
extension of the Active Objects model with the ParT abstraction,
capable of running efficient data-parallel computations in a non-
blocking fashion. The ParT abstraction follow the same principles
of the Haskell’s monad [17]. Specifically, a collection of values can be
lifted into a ParT type, then a set of data-parallel operations can be
applied to the ParT (e. g., map, reduce, filter) and the final result can
be extracted from the ParT. Besides, the ParT abstraction can execute
multiple dependent ParT in parallel and to use different techniques
to stop the execution of functions on those values that are irrelevant
for the final result.

3.4 actor model languages and libraries

In this section, we present a view of the most used and recent Actor
Model implementation. Over the years, the Actor Model has had an
evolution that led to the creation of a wide variety of implementa-
tions. We base our discussion on the paper of De Koster, Van Cutsem,
and De Meuter [83] who consider four types of Actor Model, namely
Classic Actors, Processes, Active Objects and Communicating Event-Loops.
We extend this categorization by adding a recently developed Virtual

3.4 actor model languages and libraries 43

Actors proposed by Microsoft Research [159]. We will discuss some
more Actor Model implementations, dividing them into standalone
languages and libraries for other languages.

The five categories that we consider are:

1. Classic Actors, defines the model by using three fundamental
primitives: create, send and become.

2. Processes, as suggested by the name, it models a set of processes
having the capability to send and receive messages.

3. Active Objects category, it defines Actors as Objects, which run
within an executor and that can send messages through asyn-
chronous method calls.

4. Communicating Event-Loops category, which implements Actors
as concurrent entities living in a set of event-loops running in a
native executor.

5. Virtual Actors category, in which Actors are concurrent entities
that are automatically spawned when the first message arrives
and then remain alive as long as they continue receiving mes-
sages.

Table 1 shows the most widespread Actor-based programming
languages divided in the first four categories described previously.
To the best or our knowledge, there are not standalone languages that
implement the Virtual Actors paradigm. The table shows the program-
ming paradigm followed by the languages, which can be Functional
or Imperative. We consider as Functional the ones that strictly use
functional abstraction like first-class functions, higher-order func-
tions, pattern matching, e. g., Erlang, Pony. Instead, the Imperative
languages those that focus more on imperative control structures and
functions with side effects, e. g., D, Dart.

Table 2 shows libraries that implements the different aforemen-
tioned versions of Actor Model. The Language column reports the
programming languages or the software platform that the developers
should use to interact with such libraries. Moreover, both tables show
the Last release date and if they provide out-of-the-box supports in
managing Actors on multiple hosts (Distributed column).

The languages and the libraries that are grouped in one of the afore-
mentioned categories usually implements all or a subset of the main
features of the Actor Model similarly. In the remaining of this section,
we will discuss how those categories implements state management,
message communication and Actor execution.

3.4.1 State management

One of the Actor Model most important features is its ability to up-
date the Actor’s internal state during message processing. In the Clas-

44 state of the art : actor model

Name Last Release Distributed Paradigm

Classic Actors

ACT [142] 1981 _ Functional

Rosette [209] 1997 yes Functional

Processes

D [66] 2020 no Imperative

Elixir [94] 2020 yes Functional

Erlang [96] 2020 yes Functional

Active Objects

ABCL/1 [2] 1990 _ Imperative

SALSA [182] 2011 _ Imperative

Encore [204] 2016 no Functional

Pony [165] 2020 no Functional

Communicating Event-Loops

AmbientTalk [19] 2011 yes Imperative

E [90] 2016 yes Imperative

Dart [74] 2020 no Imperative

Table 1: Actor Model Programming Languages.

sic Actors languages, which follow the theoretical formulation of the
Actor Model, the state changes are executed by supplying new behav-
iors that include the updated state (typically by using the become lan-
guage primitive). In contrast, Actor Languages following the Object-
Oriented paradigm and the vast majority of Actor-based libraries rep-
resent the state as an object that the Actor can manipulate.

Another crucial property of the Actor Model is the so-called Ac-
tors isolation, which forces Actors not to share anything. Actor-based
programming languages have the advantage of supporting Actors iso-
lation natively by restricting at language level the possibility of access-
ing shared global state or sending references to objects to other Ac-
tors. Instead, Actor-based libraries, depending on the programming
language in which they were implemented, struggle to restrict the
possibility of sharing data structures among Actors. In this respect,
since on shared-memory platforms the possibility of using the phys-
ical shared memory have advantages, there are some new proposals
that uses a capability-based system to support Actors isolation and to
enable safe data sharing between Actors without breaking that im-
portant rule [124], e. g., Pony [165] and Encore [204].

Although the Actors isolation property is challenging to enforce
in Actor-based libraries, some interesting strategies and approaches
worth mentioning have been proposed to provide the user with
such an important feature. Kilim [131] is a Java-based library that
post-processes Java byte-code forcing the deep-copy of each data sent

3.4 actor model languages and libraries 45

Name Last Release Distributed Language

Classic Actors

Akka.NET [9] 2018 yes .NET (C#, F#)

ProtoActor [169] 2018 yes .NET, Go, Java, Python, Node.js

C++ Actor Framework [46] 2020 yes C++

Akka [9] 2019 yes Java

Actor4j [5] 2020 yes Java

Nact [154] 2018 no Node.js (JavaScript, Reason)

Pykka [170] 2019 no Python

Thespian [207] 2020 yes Python

Riker [173] 2019 no Rust

Processes

F# MailboxProcessor [100] 2019 no .NET (F#)

Kilim [131] 2018 no Java

Bastion [30] 2020 yes Rust

Scala Actor Library [206] 2020 no Scala

Active Objects

Actr [6] 2019 no Java

Comedy [61] 2019 yes Node.js (JavaScript)

Communicating Event-Loops

Rotor [63] 2019 no C++

Actix [4] 2019 no Rust

Virtual Actors

Orleans [160] 2019 yes .NET (C#)

Orbit [158] 2020 yes JVM (Kotlin, Java)

Acteur [3] 2020 no Rust

Table 2: Actor Model Libraries.

between Actors. Another approach is the one followed by the C++
Actor Framework (CAF) that employs the copy-on-write method
for those messages sent to multiple Actors [46]. The message is not
copied as long as none of the destination Actors modify the message.
Finally, the Rust language [132] has a linear type system that can be
used to track variable ownership. It can avoid mutable accesses on
the same variable by distinct threads of control. This Rust features is
used in some Actor-based libraries implementations [3, 4, 30].

In principle, the approaches mentioned above may be used to en-
sure Actor isolation in Actor-based libraries. However, since Actors
are implemented using general-purpose languages (i. e., Java, C++,
Rust), the users can always find loopholes to break Actor isolation
(e. g., by defining shared global variable in Java and C++, and by
using the unsafe block in Rust), thus potentially introducing race
conditions among Actors, which instead are prevented by design if
the Actor isolation property is respected.

46 state of the art : actor model

3.4.2 communication mechanisms

Different Actor Model implementations use different mechanisms to
send messages to Actors.

We may distinguish different approaches on the basis of how mes-
sages are sent, how messages are received and how they are pro-
cessed.

int A() { ��� }

int B() { ��� }

bool C() { ��� }

C A A B B
method request

act1

B

future<int>
future<int> =
act1.B()

act2

Figure 7: Actors communication through asynchronous method calls. act2

calls a method of act1 and receives a Future of type int.

Concerning the sender Actor, messages can be sent in two ways: by
using an explicit send primitives like in Classic Actors and Processes, or
by employing asynchronous method calls like in the Active Objects. Com-
municating Event-Loops and Virtual Actors use either send primitives
or asynchronous method calls depending on the implementation (e. g.,
the Communicating Event-Loops language E [90] and the Virtual Actors
library Orleans [160] use method calls, whereas the Communicating
Event-Loops library Actix [4] and Virtual Actors library Acteur [3] use
a send function). The former approach is straightforward. The send-
ing operation is a function that takes as parameter the address of
the receiving Actor and the message to send, and then the message
will be stored in the mailbox of the destination Actor. Instead, the
latter approach leverages the idea of executing a method on the ob-
jects (called Active) associated with the receiving Actors. The method
call enqueues the request of the method execution and immediately
returns a Future. The Future, which is an object used to monitor the
state of an asynchronous request, will store either the status of the
method invocation (e. g., error or success) or the value result, if any
(see also the logical schema of this approach in Figure 7). The two
approaches have both advantages and disadvantages that we address
in Section 3.3. However, for the sake of technical comparison of Ac-
tor Model implementations, it is essential to point out that sending
messages through asynchronous method calls, from one side reduces
the dynamicity of message exchanges, and from the other side, en-
ables compile-time checking of the message types. Notwithstanding,
both ways of sending messages should be non-blocking operations.

3.4 actor model languages and libraries 47

The most popular Actors implementations (e. g., Classic Actors, and
Processes) usually implement unbounded capacity mailboxes, while a
few others (e. g., some Active Objects implementations, and Communi-
cating Event-Loops library Actix [4]) use bounded capacity mailboxes
with non-blocking failure in case of the destination mailbox is full.
Moreover, Actor Model languages sometimes use some specific syn-
tax for implementing the send primitive. One notable example is the
“bang operator” (‘!’) of Erlang [96] (e. g., myact ! "hello world").

The Akka [18] Actor Model library has a peculiar feature for what
concerns Actor’s mailbox. The programmer can choose the type of
queue to use for the mailbox of each Actor [144]. There is a set of
default queues with different features, e. g., bounded or unbounded
queue, priority-based queues, and it is even possible to supply a cus-
tom queue. Moreover, Akka provides mechanisms to replicate Actors
by using Routers [55]. Messages will be distributed to the replicas
according to some pre-defined distribution policies. The Router is a
simple mechanism to enforce a structure to the topology of Actors
in an application. Others Actor Model implementation libraries, e. g.,
C++ Actor Framework, has a similar feature [113] called the Actor
Pool. However, Akka Router provides a set of much more sophisti-
cated distribution policies, one of them being the possibility to send
the message to the Actors with the smallest queue length. This feature
is supported regardless of the kind of mailbox used by the individual
Actor.

behaviour {
 A �� ���
 B �� ���
 C �� ��
 _ �� skip
}

C A A B Z
message queue

Z

act1

send(act1, Z)

act2

Figure 8: Actors communication through explicit send and Actor behav-
ior.The Actor act1 defines a different behaviors for each type of
input message. Not type-matching messages are left on the mail-
box.

Regarding the receiving side of Actor communications, we may
distinguish three possible approaches: Actor behavior, explicit receive
primitive/function, and object method definition. We have already
discussed how all Active Objects and some Communicating Event-Loops
and Virtual Actors implementations use asynchronous method calls
as a communication mechanism (see Figure 7). On the contrary, the
Classic Actors use the Actor behavior and Processes use an explicit re-

48 state of the art : actor model

body_function() {
 ���
 receive {
 A �� ���
 B �� ���
 }
 ���
 receive {
 C �� ��
 }
}

C A A B Z
message queue

Z
send(act1, Z)

act1

act2

Figure 9: Actors communication through explicit send and receive primi-
tives. The Actor act1 executes a body function which has inside
multiple receive statements. Not type-matching messages are left
on the mailbox.

ceive primitive/function. The Actor behavior (see Figure 8) is a list of
alternative behaviors that are executed based on the type of the re-
ceived message. The Actor behavior can also be changed at run-time
with the become primitive/function, which gets as a parameter the
new behavior to implement. An important characteristic of this kind
of messaging system implementation is that the Actors cannot choose
to be exempted from receiving messages. Indeed, the selected behav-
ior is executed anyway as soon as a message of that given type arrives
at the Actor.

The explicit receive primitive/function approach (see Figure 9) per-
mits to wait for messages in every part of the Actor body function.
The receive operation is usually implemented asynchronously. There-
fore if no message is present in the mailbox, the Actor is suspended.
This receive function returns the next message in the mailbox queue,
or in some implementation (e. g., Erlang [96] and Elixir [94]) it re-
turns the message that matches a given pattern. Differently from the
object method call approach, both Actor behavior and explicit receive
approaches permit changing which messages can be received dynam-
ically. For this reason, those implementations usually need a more
elaborated mailbox queue capable of skipping messages that are not
matching the current active handler, but that could be handled in the
future. Another possible solution implemented to improve the perfor-
mance is to drop those not matching messages (e. g., Akka [9], and
C++ Actor Framework [46] use this strategy by default). Moreover,
the explicit receive primitive/function of the Processes needs the un-
derline programming language to support asynchronous operations
through some forms of resumable green-threads/fibers. This causes
difficulties in implementing Processes on general purpose languages,
thus the Processes (as show on Table 1 and Table 2) are usually imple-

3.4 actor model languages and libraries 49

mented as a new programming language. Instead, the Classic Actors,
which does not require those features, is used mainly in library im-
plementations.

Finally, we discuss how messages are processed inside the Actor
after a specific handler is selected. The Actor abstraction requires a
continuous execution of the handler without interruption that may
produce side-effects (e. g., system-calls, or blocking IO operations) to
avoid potential deadlocks. Language-based Actor implementations,
usually try to avoid interruptions of the Actor execution by using
asynchronous function calls. This feature is sometimes available in
Actor libraries (e. g., Actor Model library for Python and Rust), but
there are no guarantees that the developer will use the non-blocking
version. Libraries based on the Node.js run-time (e. g., Comedy [61]
and Nact [154]) can leverage the Node.js asynchronous implementa-
tion to avoid blocking operations and resource sharing.

3.4.3 Actor execution

The last Actor Model feature that we consider is how Actors are exe-
cuted. Actors implementations usually employ the so-called M-N ex-
ecution model in which M Actors are executed on N native executors
(i. e., threads), and usually M >> N [104].

Many Classic Actors, Processes, and Virtual Actors implementations
use the M-N execution model with transparent scheduling strategies
for Actors, in which each ready Actor is executed on any of the avail-
able executors. Usually, this execution model’s implementations lever-
age the Work-Stealing algorithm for balancing Actors’ execution on
the underlying native executors. There are some notable exceptions,
for instance the AmbientTalk Active Objects programming language
uses a dedicated thread of control for each Actor.

event queue

act1

act5

act3

act2

act6

act4

event queue

Figure 10: Two communicating event-loops composed of 3 Actors each. The
message sent by act2 to act1 is enqueued in the event-loop queue
and managed concurrently with other events and messages.

Instead, in the Communicating Event-Loops category, the program-
mer has to spawn a set of event-loop executors explicitly, and also
has to decide which Actor should run on a given executor. Then, each

50 state of the art : actor model

Actor will always run on the same executor (see Figure 10). A simi-
lar approach is followed when Actor systems provide support for
distributed memory platform such as Cloud-based infrastructures. In
these cases, the most common approach is to permit the developer
to spawn Actors on a specific remote host. Therefore the mapping
between Actors and hosts is known to the programmer. However,
the Virtual Actors implements a different mechanism to make Actors
anonymous with respect to the hosts. Actors are spawned as soon as
they receive a message in one of the available hosts. The programmer
does not know which Actor runs on a specific host, and in case of fail-
ure, the next message will be routed on a new instance of the same
Actor, potentially running on a different machine.

3.5 discussion

The Actor Model is a concurrent programming model that has in-
spired many different research studies. This chapter presents and
discusses a broad landscape of Actor Model research works ranging
from theoretical studies to more technical proposals. We mainly con-
centrated on describing efforts that tried to improve or optimize the
Actor Model under different aspects. For instance, some works tackle
the absence of ways to express structured communication topol-
ogy [39, 77], and others tackle the problem of implementing efficient
synchronization mechanisms [110, 127] or exploiting the shared-
memory [81], and more platform-dependent optimizations [105, 123].
The Actor Model issues were faced either by modifying the model or
creating a newer enhanced model, but sometimes reducing the Actor
Model user-friendliness of Actors [26, 168].

In this thesis, we followed a different path. We proposed a syner-
gic combination of the Actor Model with the Parallel Patterns-based
programming approach. The primary aim is to get the best from the
two models by maintaining the Actor Model’s flexibility and expres-
sivity and bringing platform-specific optimizations through Parallel
Patterns. Our research aims to bring Parallel Patterns side-by-side
Actors implementing patterns as “macro Actors’ to also improve pro-
grammability and expressivity.

A related research work that tried to introduce some well-known
skeleton implementations of patterns in Erlang is Skel [39]. The
work primarily aims to improve programmability in the Erlang

Actor-based language by providing ready-to-use parallel pattern
implementations. Our approach proposes not only a set of Parallel
Patterns as in Skel, but also aims to define a new synergy between
Parallel Patterns and Actors with the objective to enhance both pro-
grammability and performance on shared-memory platforms. Our
view of Parallel Patterns is that of “macro Actors” that cooperate
with standard Actors, according to the Actor Model message-passing

3.5 discussion 51

semantics. Indeed, Parallel Patterns have an Actors-based interface,
i. e., they can be dynamically spawned, and they have an input mail-
box, which are used by standard Actors to communicate with Parallel
Patterns.

Others related proposal are Chocola [197] and the ParT [101]
frameworks, which bring together the Actor Model and the Task-
Parallelism model in a single environment. However, the combina-
tion of Actors and Tasks has the primary issue that they are two
general models with entirely different peculiarities. In practice, their
combination does not improve programmability and expressivity, re-
sulting in a more complex programming model for the users. In our
proposal, we provide instead a set of well-defined components with
their platform-optimized skeletons that efficiently solve recurrent
problems in parallel programming without impairing programma-
bility for Actor programmers. The combination of Parallel Patterns
and Actors also opens to many opportunities to introduce optimiza-
tions within the implementation skeletons transparently, otherwise
precluded by the tight Actor Model semantics.

Indeed, the Parallel Patterns allow exploiting shared-memory
within the skeleton that implements the pattern for the specific
platform (multi-/many-cores in our study). For example, this is the
case of patterns solving data-parallel computations (see Chapter 7)
or patterns thought for high-throughput Data Stream Processing
computations (see Chapter 8). In other research works, the use of
shared-memory [81] was provided to Actor-based programmers
through the concept of external shared references managed with
some restricted policies (e. g., multiple-reader single-writer). On the
one hand, these approaches may reduce the message-exchange over-
head in situations in which Actors have to share data frequently.
On the other hand, it remains challenging and inefficient to imple-
ment high-performance data-parallel applications in which multiple
Actors need to read and write distinct partitions of some shared
data. By using our “macro Actor” approach, this particular usage
can be implemented, possibly by using low-level and efficient mech-
anisms leveraging shared-memory, inside the patterns provided to
the Actor programmers for solving data-parallel computations (e. g.,
Map, MapReduce, Stencil). This is because, inside each Parallel Pat-
tern (i. e., in its implementation skeleton), it is possible, for example,
to customize the implementation of mailboxes associated with the
Actor entities implementing the skeleton, thus improving the per-
formance of Actors by removing the hidden costs associated to the
memory isolation principle of the Actors’ semantics (see Chapter 5 and
Chapter 8).

Finally, there were also attempts to build DataFlow-like computa-
tional graphs using Actors, as proposed in Eker and Janneck [93]. Ac-
tors are statically connected in a fixed structure. This enables the pos-

52 state of the art : actor model

sibility to introduce optimizations and improve inter-Actors commu-
nications performance thanks to the fixed topology. However, to the
best of our knowledge, none of the proposals provide any simple ab-
stractions to the users to build efficient parallel topologies (e. g., par-
allel pipelines or replication of Actors), thus limiting the programma-
bility and flexibility of these approaches.

4
S TAT E O F T H E A RT: PA R A L L E L PAT T E R N S

In this chapter, we describe some state-of-the-art solutions in the con-
text of high-level parallel programming, which will help to outline
the contributions of this thesis.

Parallelism exploitation is characterized by several complex prob-
lems that need to be solved together and at the same time. For exam-
ple, starting from the sequential problem, it has to be decomposed
into several sub-problems, each implemented by a function or by a
module. All modules operate in parallel to solve the initial problem.
The programmer then has to decide how to map these modules onto
some processing elements, select a scheduling policy to balance the
workload, and how to hide/avoid costly memory accesses or expen-
sive inter-module communications. Most importantly, those decisions
cannot be taken independently, since all the problems mentioned
above are reciprocally connected.

One option to deal with these issues and reduce the complexity of
the parallelization is to introduce constraints in the way the parallel
modules are defined and how they can communicate. The aim is to
simplify the decisions that have to be made and to enable the possibil-
ity to apply well-known heuristics to solve well-structured problems.
To this end, one of the most widely acknowledged approaches is to
use Parallel Patterns.

4.1 pattern-base parallel programming

The programming approach based on Parallel Patterns is called struc-
tured parallel programming [60, 72, 73, 149, 215]. This term has been
borrowed from sequential programming where in the 60’s and 70’s
programs were often poorly designed. Several computer scientists rec-
ognized that programs should organize code more structurally by us-
ing higher-level control structures (e. g., if-then-else and while-do)
aiming to establish structured programming practices [69]. Thus, the
programs should be expressed by a composition of a limited amount
of abstract high-level constructs.

Structured parallel programming has been envisioned as a viable
solution to improve the quality and efficiency of parallel software
development while reducing the complexity of program paralleliza-
tion and enhancing performance portability [148]. Parallel Patterns
are schemes of parallel computations that recur in the realization
of many algorithms and applications. Based on that, it is possible
to build parametric implementations with such well-known paral-

53

54 state of the art : parallel patterns

lel structures and rigorous semantics. The user can also decide the
best suitable parallel pattern based on a cost model that evaluates
their profitability. Each abstraction may be directly instantiated or
composed with others to model the complete parallel behavior of the
application. This raises the level of abstraction by ensuring that the
application programmer does not need to deal with parallelism ex-
ploitation issues and low-level architectural details during the appli-
cation development. Instead, these issues will be efficiently managed
using state-of-art techniques by the system programmers who design
the structured framework and its associated run-time. This approach
liberates the programmers from the concerns of the process mapping,
tasks scheduling, and load-balancing, allowing them to concentrate on
computational aspects.

Indeed, the programmer can manage a high-level abstract view
of the parallel program, while all the most critical implementation
choices are in charge of Run-time System that run the Parallel Pat-
terns (e. g., like the IBMones proposed in Chambers et al. [48], Gedik,
Özsema, and Öztürk [109], and Navarro et al. [155]). This last aspect
is usually manually enforced in non–pattern-based parallel program-
ming models such as MPI and PThreads.

More recently, some authors argue that parallel patterns should be
used to replace explicit thread programming to improve the main-
tainability of software [149]. This idea was originated in the late ’80s
when algorithmic skeletons were introduced to simplify parallel pro-
gramming in the HPC domain [59, 161].There are some

controversies on
using the terms

Parallel Patterns
and Skeletons. In
this thesis, we call
Parallel Patterns

the abstract parallel
schema and

Skeletons the actual
implementation on a

given platform.

Algorithmic Skeletons (or just “Skeletons”) [60] were developed inde-
pendently of Parallel Patterns to support programmers with the pro-
visioning of standard programming language constructs that model
and implement common, parametric, and reusable parallel schemes.
Skeletons are pioneered by Cole [59], which defined them as higher
order functions each of which describes the structure of a particular
style of an algorithm. Thus, Skeletons may be considered as a prac-
tice implementation of parallel design patterns.

Combinations of parallel design patterns and algorithmic skele-
tons are used in different parallel programming frameworks such
as SkePU [99], Muesli [97], FastFlow [71], and SkeTo [147], Skand-
ium [141], just to mention a few of them.

Other widely popular parallel frameworks such as Google MapRe-
duce [87] and IntelTBB [172] borrowed some Parallel Pattern con-
cepts. Google MapReduce built around a single pattern that strongly
limits the user expressibility but provides a powerful tool with highly
efficient implementation. Instead, IntelTBB is a parallel library that
supports task-based parallel programming and provides some paral-
lel patterns including parallel pipeline, parallel-for, parallel-reduce, and
task-graph.

4.2 pioneer skeleton-based frameworks 55

4.2 pioneer skeleton-based frameworks

Algorithmic Skeletons (or simply Skeletons) abstract commonly used
schemes of parallel computations. Each one provides the user with
strict management of process creation, communication, synchro-
nization, and inter- and intra-process data exchange [111]. Skeleton
frameworks provide parallel schemas with generic parallel features,
which can be parameterized by the programmer to generate a specific
parallel program. Skeletons could be instantiated through specific lan-
guage syntax or library APIs. However, several Skeleton frameworks
offer custom language syntax to take full advantage of the abstrac-
tions provided as well as to target different platforms with the same
high-level code. Some examples were Structured Coordination Lan-
guage (SCL) [72], Pisa Parallel Programming Language (P3L) [28], and
Skeleton-based Integrated Environment (SkIE) [27].

SCL was one of the first languages introduced for Skeletal pro-
gramming. It provided a base language that is designed to be inte-
grated with a host language (e. g., Fortran). In SCL, Skeletons was
classified into three types: configuration, elementary, and computation.
Elementary Skeletons and Computation Skeletons was respectivelly
Data-parallel Skeletons (e. g., map, scan, and fold) and Task-parallel
Skeletons, (e. g., farm, SPMD, and iterateUntil). Instead, Configuration
Skeletons abstract commonly used data structures such as distributed
arrays (ParArray). SCL skeletons were instantiated in Fortran, but
SCL needed an additional compilation layer to produce the final code.

P3L was a skeleton-based coordination language. It provided skele-
ton constructs that coordinate the parallel or sequential execution of
C code. P3L used implementation templates to compile P3L code into
a target architecture. Thus, a Skeleton could have several templates,
each optimized for a different architecture, and provided a paramet-
ric process graph with a performance model. A P3L module corre-
sponded to an adequately defined Skeleton construct with input and
output streams, and other submodules or sequential C code. Mod-
ules could be partially nested using a two-tier model. The outer level
is composed only of task-parallel skeletons, while data-parallel ones
could be used in the inner levels. P3L also supported type verification,
and in this case, the programmer had to explicitly specify the type of
the input and output streams and the type of each submodule and C
code.

SkIE was similar to P3L. It provided advanced features such as
debugging tools, performance analysis, visualization, and graphical
user interface. Indeed, programmers could interact with a graphical
tool, where parallel modules based on skeletons could be composed
in the P3L style.

56 state of the art : parallel patterns

4.3 parallel patterns libraries

In this section we present the most relevant Parallel Pattern libraries
that are currently maintained and updated, i. e., Muesli, FastFlow,
SkePU, and GrPPI.

4.3.1 Muesli Skeleton Library

Muesli [134], developed at University of Müsnster, is a C++ template
library that supports both shared-memory as well as distributed
memory architectures. It uses MPI for inter-node communications
and OpenMP for intra-node parallelism exploitation. Recently, it
has also been extended to support multi-GPU systems by using
CUDA [97]. It provides data-parallel skeletons such as Map, Fold,
Scan (i. e. prefix sum) zip and mapStencil. Muesli also implements
distributed data structures such as distributed arrays, matrices, and
sparse matrices (in the current version, skeletons operating on sparse
matrices cannot be executed on GPUs). Data parallel skeletons are of-
fered to the user as member functions of distributed data structures.
Listing 3 shows a Muesli implementation of the Frobenius Norm
computation for a matrix of size dim× dim using the Map and Fold

skeletons.

1 int main(int argc, char** argv) {

2 // initialize Muesli

3 msl::initSkeletons(argc, argv);

4 // create and initialize a distributed matrix dim x dim

5 msl::DMatrix<float> A(dim, dim, 1, msl::Muesli::num_total_procs,

6 [](int row, int col){

7 return randomFloat(row, col);

8 }, Distribution::DIST);

9 // create user functions

10 auto square = [](float a) {return a*a;};

11 auto sum = [](float a, float b) {return a+b;};

12 // apply skeletons

13 A.mapInPlace(square);

14 float f_norm = A.fold(sum);

15 // write result

16 std::cout << "||A||_F = " << sqrt(f_norm) << std::endl;

17 // terminate Muesli

18 msl::terminateSkeletons();

19 }

Listing 3: Muesli program computing the Frobenius Norm of a matrix.

Task-Parallelism skeletons are offered as separate classes. They
are used to construct process topologies such as Farm, Pipeline, Di-
vide&Conquer and branch-and-bound. To use a Task-Parallelism skele-
ton, the user has to instantiate an object of the corresponding class.
When nesting distributed data structures into Task-Parallelism skele-

4.3 parallel patterns libraries 57

tons, only a subset of processes participate in the Task-Parallelism
skeleton. In the current version of Muesli the programmer must
explicitly indicate whether GPUs are to be used for data-parallel
skeletons.

4.3.2 Generic and reusable Parallel Pattern Interface (GrPPI)

GrPPI is a programming interface for modern C++ applications de-
veloped at the University Carlos III of Madrid [44, 179]. It is an open-
source library that accommodates a layer between application devel-
opers and existing parallel programming frameworks targeting multi-
core systems. According to GrPPI authors, the lack of common termi-
nology to denote different kinds of patterns and the lack of a recog-
nized and assessed API to use these patterns has prevented the wide
diffusion of the pattern-based parallel programming as well as a gen-
eral acknowledgment of the related advantages. By using advanced
C++ features such as meta-programming concepts, and generic pro-
gramming techniques, GrPPI provides a fully C++ compliant API to
well-known Parallel Patterns on top of different programming mod-
els offering a unified standard interface. GrPPI currently supports as
run-times ISO C++ Threads, OpenMP, IntelTBB, and recently Fast-
Flow [106].

GrPPI provides four main components: i) type traits, ii) pattern
classes, iii) pattern interfaces, and iv) execution policies. Type traits
are used for function overloading and to allow compositions of dif-
ferent patterns. Moreover, by using the enable_if type trait from the
C++ standard library, functions that are not used are removed at com-
pile time so that only functions meeting the conditions become avail-
able to the compiler, thus allowing to provide the same interface for
different implementations.

GrPPI provides a set of independent classes that represent each of
the supported patterns. These objects store references to other func-
tions and non-functional information (e. g., concurrency degree) re-
lated to the pattern configurations. Thus, they can be used inside
another pattern to express complex constructions that can not be rep-
resented by leveraging a single pattern.

For each supported parallel pattern, GrPPI offers two different al-
ternatives, one for pattern execution and one for composition with
other patterns. Both alternatives receive the user functions that will
be executed accordingly to the pattern semantics, and configuration
parameters as function arguments. Listing 4 shows a simple GrPPI
pipeline computing F(G(x)) over a stream of N elements generated
by the first stage.

Finally, a key point of GrPPI is the ability to easily switch between
different programming framework implementations of the same pat-
tern. This is achieved by providing a set class that encapsulates the

58 state of the art : parallel patterns

1 void exec_pipeline(grppi::polymorphic_execution& e, int N) {

2 grppi::pipeline(e,

3 [x=0.0,N]() mutable -> std::optional<double> {

4 if (x < N) return x++; // produce an element

5 else return {}; // end-of-stream

6 },

7 [](double x) { return F(x); }, // apply F

8 [](double x) { return G(X); }, // apply G

9 [](double x) { std::cout << x << std::endl; } // print result

10);

11 }

Listing 4: GrPPI pipeline computing F(G(x)) for a stream of N elements.

actual pattern implementations of a given framework. The result is
that it is straightforward to use different RTS frameworks. The cur-
rent GrPPI version provides support for sequential, C++ threads,
OpenMP, IntelTBB, and FastFlow frameworks.

4.3.3 FastFlow

FastFlow is a C++ parallel programming library targeting multi/many-
cores and offering a multi-level API to the parallel programmer [16,
71, 210]. At the top level of the FastFlow software stack, there are
some ready-to-use high-level parallel patterns such as Pipeline Task-
Farm, ParallelFor, Divide&Conquer, StencilReduce, Macro Data-Flow. At
a lower level of abstraction, the library provides customizable sequen-
tial and parallel building blocks addressing the needs of the run-time
system programmer (see Figure 11). The idea is that new high-level
patterns or new high-level libraries and Domain Specific Languages
(DSLs) can be built by a proper assembly and nesting of the building
blocks [13, 210].

The FastFlow library is open-source under the LGPLv3 licence1

and realized as a modern C++ header-only template library. The li-
brary was conceived to support highly efficient stream parallel com-
putations on heterogeneous multi-/many-cores. The programmers
define their parallel applications as a structured directed data-flow
graph (called concurrency graph) of processing nodes. A FastFlow node
represents a basic unit of computation. Each node can have zero or
more input channels and zero or more output channels. The graph
of concurrent nodes is constructed by the assembly of sequential
and parallel building blocks as well as higher-level parallel patterns. A
generic node of the concurrency graph (being it either standalone or
part of a more complex parallel pattern) performs a loop that: i) gets
a data item (through a memory reference to a data structure) from
one of its input channels; ii) executes a functional code (i. e., business

1 FastFlow home: http://calvados.di.unipi.it/fastflow

http://calvados.di.unipi.it/fastflow

4.3 parallel patterns libraries 59

Figure 11: The FastFlow-3 software layers.

logic) working on the data item and possibly on a state maintained
by the node itself; iii) puts a memory reference to the result item
into one or multiple output channels selected according to a prede-
fined or user-defined policy. Input and output channels are imple-
mented with a Single-Producer Single-Consumer (SPSC) FIFO queue.
Operations on FastFlow queues (that can have either bounded or
unbounded capacity) are based on non-blocking lock-free synchro-
nizations enabling fast data processing in high-throughput streaming
applications [15].

Figure 12: FastFlow library producer-consumer semantics: sending refer-
ences to shared data over a SPSC lock-free FIFO channel.

From the programming model standpoint, the FastFlow library
follows the well-known Data-Flow parallel model where channels do
not carry plain data but references to heap-allocated data. The se-
mantics of sending data references over a communication channel is
that of transferring the ownership of the data pointed by the reference
from the sender node (producer) to the receiver node (consumer) (i. e.,
Figure 12). The data reference is de facto a capability, i. e., a logical to-
ken that grants access to a given data structure or to a portion of a

60 state of the art : parallel patterns

data structure. On the basis of this reference-passing semantics, the re-
ceiver is expected to have exclusive access to the data value received
from one of the input channels, while the producer is expected to not
use the reference anymore. This semantics is not directly enforced by
the library itself with any static or run-time checks.

FastFlow-3 [210] introduces the new concepts of building blocks and
automatic graph transformation, which improve both performance
and flexibility. Building blocks are concurrent components that are the
fundamental elements of any structured parallel applications imple-
mented using the FastFlow library. Building blocks are either sequen-
tial or parallel. Sequential building blocks are FastFlow nodes with
one or more input or output channels. Parallel building blocks are con-
current components made out of a proper assembly of multiple nodes
and multiple SPSC FIFO channels. FastFlow proposed three parallel
building blocks (two of them were included in the previous FastFlow

versions as core patterns), Pipeline, Farm and all-to-all, which can be
specialized in different ways using also the feedback channel modifier
(see Figure 13).

Figure 13: FastFlow parallel building blocks and some possible specializa-
tions of them.

The Pipeline is used both for connecting building blocks and to ex-
press data-flow Pipeline parallelism at run-time. The Farm models
functional replications coordinated by a centralized Emitter entity
and a centralized Collector entity (that might not be present), which
can be specialized by the user to define custom data distribution and
data gathering policies. The all-to-all building block models both func-
tional replication without a centralized coordination entity as well as
the shuffle communication pattern between function replicas. It al-

4.3 parallel patterns libraries 61

lows to remove potential bottlenecks in the topology introduced by
the Farm building block having one or two centralized entities (i. e.,
the Emitter and the Collector). The all-to-all also enables the fusion
operation of two (or more) farms in a pipeline. From the program-
mer perspective, the reduced set of sequential and parallel building
blocks with their customizability and composability features, enables
the so-called LEGO-style approach to parallel programming where
the “bricks” can be either complex pre-assembled and already tested
structures or elementary sequential and parallel building blocks.

1 struct Source: ff_node_t<float> {

2 Source(std::vector<float>&D) : D(D) {}

3 float* svc(float *) {

4 for(size_t i=0; i<D.size(); ++i)

5 ff_send_out(&D[i]); // streaming elements

6 return EOS; // End-Of-Stream

7 }

8 std::vector<float>& D;

9 };

10 struct Worker : ff_node_t<float> {

11 float* svc(float* in) { return F(*in); }

12 };

13 struct Sink : ff_node_t<float> {

14 float* svc(float *in) { sum += *in; return GO_ON; }

15 float sum = 0.0;

16 };

17 int main(int argc, char *argv[]) {

18 // ...

19 Source S(D); // Source object

20 std::vector<ff_node*> W; // pool of Workers

21 for(size_t i=0; i<4; ++i)

22 W.push_back(new Worker());

23 Sink R; // Sink object

24 ff_farm farm(W, S, R); // farm building block

25 farm.run_and_wait_end(); // run and wait for termination

26 // ...

27 }

Listing 5: A simple FastFlow example that uses the ff_farm building block.

Listing 5 shows a basic FastFlow example that computes
∑N

i F(D[i])

where D is a vector of size N. It uses the Farm building block. All
data elements of the array D are streamed toward the pool of farm
Workers by the farm Emitter (in the example only 4 Workers are
used). The reduction phase (i. e., the summation of all results) is com-
puted sequentially by the farm Collector and in pipeline fashion
with the Emitter and the pool of Workers. Basically, the farm building
blocks semantically equivalent to a three-stage pipeline whose middle
stage is replicated a given number of times. The first node, which
produces the stream of data, is defined at line Line 1 and it is instan-
tiated at Line 19. It generates a stream of N elements (N=D.size())
by using the method ff_send_out (Line 5) and then it generates the

62 state of the art : parallel patterns

EOS special value (End-Of-Stream), which allows the RTS to start the
termination phase. From Line 20 to Line 20 an STL vector containing
4 replicas of the Worker node is created. The Worker is defined
at Line 10. Finally, the Sink node is defined at Line 13 and instan-
tiated at Line 23. It collects all results produced by farm Workers

and accumulates partial results in the sum local variable. The farm
object uses as Emitter the Source node and as Collector the Sink

node. It is created at Line 24 by passing as arguments of the ff_farm

constructor the vector containing the Worker replicas and the objects
implementing the Source and Sink nodes.

4.3.4 SkePU Programming Framework

SkePU [95, 98, 99] is an open-source high-level C++ programming
framework for heterogeneous parallel systems, with a primary fo-
cus on multi-core CPUs and multi-GPU systems. Its main objectives
are to enhance both performance portability and to provide a more
programmer-friendly interface than low-level APIs such as OpenCL
and CUDA. It is implemented as a C++ template library that pro-
vides a unified interface for data-parallel computations through algo-
rithmic skeletons both on GPUs using OpenCL and CUDA backends,
multi-core CPUs by using a parallel OpenMP backend and cluster of
workstations by using MPI.

The first version of SkePU (called SkePU-1), developed until 2015

(the latest release was SkePU 3.0), used a macro-based language
where C preprocessor macros were used to abstract the target plat-
form. The SkePU-1 user functions, generated from a macro interface,
were C++ objects containing member functions for CUDA and CPU
targets, and strings of code for the OpenCL target to be dynamically
compiled. Deciding which backend to use for a given application de-
pends on several different factors such as the problem size, the kind
of target platforms, and the skeleton used. Dastgeer, Li, and Kessler
[76], the SkePU authors, proposed an automatic selection algorithm
based on an offline machine learning algorithm that generates a
decision tree with low training overhead end provides the user with
an auto-tuning mechanism for backend selection.

SkePU-1 [95] includes different flavors of the Map and Map-Reduce
skeletons (Map, MapArray, MapOverlap, Reduce, MapReduce), the Scan

skeleton that is a generalized prefix sum operation with a binary as-
sociative operator, and the Generate skeleton that allows us to ini-
tialize elements of an aggregate data structure based on the element
index and a shared initial value. SkePU-1 includes also aggregate data
structures called smart containers [75]. Smart containers are concur-
rent data structures of generic elements (currently available as vectors,
matrices, and tensors) stored in the host’s main memory, but that can
temporarily store subsets of their elements in GPU device memories

4.3 parallel patterns libraries 63

Figure 14: The SkePU compiler infrastructure.

to optimize memory-to-memory transfers and device memory alloca-
tion. Besides, smart containers perform transparent software caching
of kernel operands they wrap.

SkePU-2 [99] is a redesign of SkePU-1 made available in 2016. It
builds on the run-time system of SkePU-1 updated to use C++ vari-
adic template features. It also adds a new user interface based on
the modern C++ syntax that leverages lambda expression and a new
compilation model with a source-to-source translation. While SkePU-
1 uses preprocessor macros to transform user functions for parallel
backends, SkePU-2 utilizes a source-to-source precompilation phase
based on libraries from the Clang project [205]. The user source code
is provided through this tool before the standard compilation phases
(see Figure 14). The main aim of the redesign of SkePU-1 is to en-
hance flexibility and type-safety by removing macros and leveraging
C++ features for cleaning up the user interface. SkePU-2 removes also
the MapArray and the Generate skeletons in favor of a generalized Map

skeleton and adds the new Call skeleton.
SkePU-3 [98] is the new iteration of the framework, which focuses

on improving flexibility and programmability of the framework along
with a new MPI-based backend. The author provides two new vari-
ants of the Map and MapReduce skeletons, respectively the MapPairs

and MapPairsReduce, which compute 2D domain matrix from two
sets of 1D vectors. The MapPairs applies a cartesian product-style pat-
tern from two Vector<T> sets. Each Cartesian combination of vector
set indices generates one user function invocation, the result of which
is an element in a Matrix. The MapPairsReduce is the combination of a
MapPairs followed by a row-wise or column-wise reduction over the
generated matrix elements, which results in a column or row vector.

Two new container are provided, the Tensors container and MatRow

container proxy. The former provides 3 and 4 dimension structures

64 state of the art : parallel patterns

to complement the vector and matrix container. The latter is a proxy
container to apply some computation to a specific row of a matrix.
Finally, SkePU-3 adds dynamic scheduling in the OpenMP and a new
memory model.

1 // map function working on the single item of the input collection

2 MapOutput mapFunction(skepu::Index1D index, parm elem)

3 { /* business-logic code */ }

4 // preparing the input and output data structures

5 skepu::Vector<parm> swaptions_sk(swaptions, nSwaptions, false);

6 skepu::Vector<MapOutput> output_sk(nSwaptions);

7 // creating the map object by providing the function to compute

8 auto map = skepu::Map<1>(mapFunction);

9 // setting up the OpenMP backend and the number of threads to use

10 auto spec = skepu::BackendSpec{skepu::Backend::Type::OpenMP};

11 spec.setCPUThreads(nThreads);

12 map.setBackend(spec);

13 // map execution invocation

14 map(output_sk, swaptions_sk);

Listing 6: SkePU implementation of the Swaptions Parsec benchmark using
the OpenMP backend.

An example of SkePU code is shown in Listing 6 where a single
Map pattern is used to parallelize the main kernel of the Swaptions
Parsec application. The function containing the business logic code
operating on each input data element is defined in Line 2. Input and
output data collections are instantiated by using SkePU smart con-
tainers (Line 5 and 6 respectively). Then, the map object is created
by providing the map function (Line 8), and the OpenMP backend
run-time (with its parallelism degree, Line 11) is selected for the map
pattern at Line 10. Finally, the data-parallel computation is executed
at Line 12.

4.4 discussion

Parallel programming based on the Parallel Patterns is a well-
acknowledged approach for parallelizing applications. Parallel Pat-
terns are high-level parallel abstractions, each specifically designed
to solve a recurrent problem efficiently. They enable the possibility to
introduce platform-specific optimizations within the implementation
skeletons of the patterns. Patterns have clear parallel semantics and
straightforward APIs for the user. All implementation details and
platform-specific optimizations for a given pattern are transparent to
the user.

Parallel Patterns were already proved to achieve performance com-
parable to manual implementations of some Parsec applications with
a significant reduction of the programming effort while maintaining

4.4 discussion 65

performance portability across multiple heterogeneous multi-/many-
core platforms [85].

However, since the first introduction of skeleton-based libraries,
one of the downsides of the pattern-based approach is its flexibility.
That is, the possibility to use Parallel Patterns within already writ-
ten and not well-organized applications and the difficulty of having
ready-to-use patterns for the many possible different problems en-
countered in real-life applications.

Moderns Parallel Pattern frameworks, like GrPPI [44] and SkePU
[98], partially solve these issues by provides a library atop general-
purpose languages such as C++. FastFlow recently introduced a
building block software layer within the library [210], which gives the
programmers the possibility to quickly build the patterns they need,
whether the ones already provided by the library are not suitable
for the problem at hand. Building blocks also overcome the flexibil-
ity limitations of the pattern-based approach, even though they have
a lower abstraction level than Parallel Patterns, and they are more
suited to be used by expert programmers to build new RTS for new
frameworks or Domain-Specific Language (DSL).

The combination of the Actor Model with Parallel Patterns, which
we proposed in this thesis, on the one hand, tries to tackle the flex-
ibility issues of current pattern-based frameworks targeting multi-
/many-cores and, on the other hand, brings the possibility to intro-
duce performance optimizations, typically used in the implementa-
tion skeletons of Parallel Patterns, within the Actor Model. The re-
sulting model combines both the efficiency and expressivity power
of patterns as well as the flexibility, the memory isolation guaran-
tees, and the expressivity power of Actors. The programmers can
use Actors to model and build their applications dealing with dy-
namic spawning of Actors and complex interconnections of Actors
if needed. Instead, the performance-critical parts of the application
can be designed by using Parallel Patterns and their compositions.
Indeed, since we modeled Parallel Patterns as “macro Actors”, they
can also be dynamically spawned by standard Actors and can com-
municate with other Actors and other Parallel Patterns only through
explicit messages, thus preserving the semantics of the Actor Model.

Part II

T O WA R D S A S Y N E R G I C C O M B I N AT I O N O F
A C T O R S A N D PA R A L L E L PAT T E R N S

In the following Chapters, we analyze the Actor-based
programming model considering performance and pro-
grammability issues on multi-/many-cores. Then, we
present our attempts to build a synergy between the
Actor Model and the structured parallel programming
approach based on Parallel Patterns.

In Chapter 5, we show the performance limitations of en-
forcing the memory isolation property on shared-memory
platforms.

Chapter 6 we proposed our first attempt to combine Actor
Model with Parallel Patterns thought a software artifact
capable of accelerating data-parallel computations.

Chapter 7 we design a set of Parallel Patterns that can be
combined to implement critical parts of the Actor-based
application.

Finally, Chapter 8 shows specialized implementation
skeletons of our Parallel Pattern library targeting high-
throughput data streaming processing applications.

5
A N A LY Z I N G T H E I S O L AT I O N P R O P E RT Y O N
M U LT I - / M A N Y- C O R E P L AT F O R M S

Parts of this chapter
have been published
in the Parallel
Computing:
Technology
Trends,
Proceedings of the
International
Conference on
Parallel
Computing
(ParCo) [174].

In multi-/many-core systems, the physically shared memory is the
primary means of cooperation among threads and processes running
on different cores. Communications occur implicitly through loads
and stores coordinated by synchronization protocols typically imple-
mented using locks. Locks seriously limit concurrency. They are costly
operations requiring the intervention from the OS to suspend the
thread and restore it later. Moreover, locks might introduce deadlock
situations into the application and increase the debugging and main-
tainability software phases.

A different approach uses the pure message-passing programming
model to coordinate the computation of the concurrent entities. In this
model, shared states are either partitioned and, in some cases, repli-
cated among available entities so that each one encapsulates and man-
ages a local state. Explicit messages between entities are used to coor-
dinate concurrent accesses to the local state and enable computation
progress without extra synchronizations. The message-passing model
is the reference model in distributed systems. However, it can also be
used as a coordination model in shared-memory platforms [215], pro-
vided that each message is self-contained without any reference to
global or heap-allocated memory resources. This property is called
memory isolation or simply isolation. Isolation is an important prop-
erty for guaranteeing memory-safety. It is one of the most important
properties of the Actor Model (cf. Section 2.3.1).

Indeed, sharing mutable data references in a producer-consumer
fashion is generally more efficient than the explicit sending of data,
particularly for large data structures. However, data sharing coordi-
nated by messages is dangerous. A wrong message protocol, and
wrong changes to a data reference, might propagate producing un-
expected data-races. A data-race occurs when two concurrent opera-
tions (where at least one is a write operation) to the same memory
location are not correctly synchronized. On the contrary, maintaining
memory isolation might require to copy data during the message-
passing operations, thus introducing extra overheads that might have
a significant impact on the overall application performance. Never-
theless, maintaining the equilibrium between performances and the
memory isolation guarantees is crucial in modern parallel program-
ming targeting shared-memory systems.

69

70 analyzing the isolation property on multi-/many-core platforms

This chapter analyzes the performance implications of the isolation
property on multi-/many-core platforms through different message-
passing semantics implementations.

We start this chapter by describing the reference platforms we
used for the experiments in this and the other chapters of the thesis
(Section 5.1). Then, Section 5.2 discusses the importance of having
compile-time checks for the isolation property. We also considered
the differences in the programming model of the three technologies
that we selected (i. e., FastFlow, C++ Actor Framework, and Rust).
The chapter continues with the practical implications of using stati-
cally enforced isolation property in different kinds of computations.
Indeed, we investigate the dataflow computation in Section 5.3 and
data-parallel computations in Section 5.4. As we will demonstrate,
enforcing isolation in data-parallel computations introduces extra
overheads. Such overheads could be avoided by raising the abstrac-
tion level and introducing high-level structures (i. e., Parallel Patterns)
with well-defined parallel semantics and efficient implementations
for the target platforms.

5.1 multi-/many-core platforms

For the evaluation reported in this and the next chapters, we used
four different server platforms representative of current multi-/many-
cores technology, i. e., Xeon, KNL, Power8, Epic.

Name Socket
Core

Frequency
Cache

RAM
Physical Logical L1 L2 L3

Xeon 2 24 48 2.40GHz 32 kB 256 kB 30MB 64GB

KNL 32 64 256 1.3GHz 32 kB 1MB - 96GB

Power8 2 20 80 3.69GHz 64 kB 512 kB 8MB 64GB

Epic 2 32 64 2.4GHz 96 kB 512 kB 64MB 128GB

Table 3: Technical specifications of the four reference platforms used for the
tests.

While Table 3 summarizes the technical specification of the server
platforms, in the following we provide a detailed description of each
of them:

Xeon It is equipped with two Intel E5-2695 Ivy Bridge CPUs running
at 2.40GHz and featuring 24 cores (12 per socket). Each hyper-
threaded core has 32 kB private L1, 256 kB private L2 and 30MB
of L3 shared cache. The machine has 64GB of DDR3 RAM, run-
ning Linux 4.15.0 x86_64 with the CPUfreq performance gover-
nor enabled and turbo boost disabled at boot time. Available
compiler is the GNU gcc version 9.0.1.

KNL It is equipped with a Intel Xeon Phi 7210 codename Knights
Landing (KNL). The KNL has 32 tiles (each with two cores)

5.2 the needs for isolation 71

working at 1.3GHz, interconnected by an on-chip mesh net-
work. Each core (4-way Hyper-Threading) has 32 kB L1D pri-
vate cache and a L2 cache of 1MB shared with the sibling core
on the same tile. The machine is configured with 96GB of DDR4

RAM with 16GB of high-speed on-package MCDRAM config-
ured in cache mode. The machine runs CentOS 7.2 with Linux
3.10.0 and the GNU gcc compiler version 7.3.0.

Power8 It is a dual-socket IBM server 8247-42L with two Power8 pro-
cessors each with 10 cores organized in two CMPs of 5 cores
working at 3.69GHz. Each core (8-way Hyper-Threading) has
private L1D and L2 caches of 64 kB and 512 kB, and a shared
on-chip L3 cache of 8MB per core. The total number of cores
is 20 physical and 160 logical. The machine has 64GB of RAM,
using Linux 4.4.0-47 ppc64. Available compiler GNU gcc version
8.2.0.

Epic It is equipped with two CPUs AMD EPYC 7551 and 128GB

of DRR4 RAM. Each CPU has 32 cores (two logical threads)
organized in groups of four cores sharing a L3 cache of 8MB
(the total number of logical cores of the machine is 128). Each
core has a clock rate of 2.4GHz, a L1 cache of 96 kB and a L2

caches of 512 kB. The machine runs Linux 4.15.0 x86_64 and the
GNU gcc compiler version 9.0.1.

5.2 the needs for isolation

The message passing semantics built on top of the isolation principle
is crucial because it guarantees computation correctness avoiding pos-
sible data races, and provides advantages both in terms of clarity and
programmability. The programmers can better compose their appli-
cations with a clear understanding of the data’s ownership and how
those data moves from one entity to another. This is a concept shared
by multiple parallel programming models based on message pass-
ing, but not in all of them the implementation enforces the isolation
constraints to the programmer. In the following, we show three tech-
nologies, which, although they are based on the different program-
ming models, adopt distinct approaches to isolation enforcement in
message passing. In particular, we show FastFlow a dataflow paral-
lel library, C++ Actor Framework an Actor Model implementation,
and Rust a system programming language.

FastFlow (cf. Section 4.3.3) is a parallel library offering both high-
level parallel patterns as well as composable parallel building blocks.
It follows the Dataflow Model leveraging high performance message
passing semantics. The Dataflow Model (cf. Section 2.3) is based on
the concepts of having data “flowing” through a graph of concurrent
entities that are called Nodes. The graph’s Nodes can be executed con-

72 analyzing the isolation property on multi-/many-core platforms

currently based on the fact that they are isolated entities, and entities
take complete ownership of the data flowing. However, this seman-
tics is not enforced by the FastFlow library, leaving the burden of
respecting the semantics directly to the programmer.

1 struct Stage1:ff_node_t<float>{

2 Stage1() : base(2*N) {}

3

4 int svc_init() {

5 initialize(base);

6 p1 = base.data();

7 p2 = p1 + N;

8 std::swap(p1, p2);

9 return 0;

10 }

11

12 float* svc(float* in) {

13 if(haveToStop(p1, p2))

14 return EOS;

15 std::swap(p1, p2);

16 ff_send_out(p1);

17 workS1(p2, N, 10.0);

18 return GO_ON;

19 }

20

21 std::vector<float> base;

22 float *p1, *p2;

23 } S1;

24

25 void

26 workS1(float*, size_t, float) {

27 // body function of Stage1

28 }

29 struct Stage2:ff_node_t<float>{

30 float* svc(float* in) {

31 workS2(in, N, 20.0);

32 return in;

33 }

34 } S2;

35

36 void

37 workS2(float*, size_t, float) {

38 // body function of Stage2

39 }

40

41 int main() {

42 // creates the pipeline

43 ff_Pipe pipe(Stage1, Stage2);

44

45 // creates the feedback channel

46 pipe.wrap_around();

47

48 // synchronous execution

49 if (pipe.run_and_wait_end()<0) {

50 error("running pipe\n");
51 return -1;

52 }

53 return 0;

54 }

Listing 2: A simple producer consumer program in FastFlow.

As an example, a valid FastFlow program is the one sketched in
Listing 2. It implements a two-stage Pipeline where the two stages
work disjointly on two distinct portions of the same vector in a
producer-consumer fashion. The producer (S1) allocates a standard
vector of size 2N (Line 2) and then uses two raw pointers to point to
two distinct parts of the vector that are swapped at every producer-
consumer iteration (Line 15). Each stage works on a portion of length
N of the initial vector (Line 17 and Line 17 respectively). The logical
schema of this simple producer-consumer use-case is sketched in
Figure 15.

In this simple example, there is no guarantee that within the workS1

or workS2 functions (Line 27 and Line 38 respectively) some wrong
accesses to a portion of the vector may produce data-races due to
buffer overruns.

This implementation breaks the isolation property. The Actor
Model strongly relies on Actor isolation and some Actor Model

5.2 the needs for isolation 73

Figure 15: Logical schema of the FastFlow two-stage Pipeline described in
Listing 2.

implementations such as the C++ Actor Framework (CAF) (cf.
Section 2.4.1) uses mechanisms to enforce it. CAF uses modern C++
move semantics and a metaprogramming functionalities for sending
messages between Actors. The c++11 standard introduces a new
non-const reference type called rvalue reference, identified by &&. This
refers to temporaries that can be modified after they are initialized
to enable “move semantics”. Moving an object means copying only
the stack-allocated part of the object and move all the data inside via
heap-allocated references. The rvalue reference permits access to the
internal of the object and sets all the pointer to null after the move
operation occurred. The standard introduces also the std::move func-
tion to change a lvaue reference to a rvalue reference and to facilitate the
move semantics usage.

Moreover, there is a recent trend of programming languages that
provide strong type systems. For instance, the Rust programming lan-
guage (cf. Section 2.4.2) uses a capability system to enforce at compile-
time the ownership rule. Thus, message-passing libraries built atop
Rust could use ownership rules to guarantee memory isolation be-
tween the sender and the receiver.

The programmer who wants to implement a similar program using
these new languages is forced to declare two separate vectors and al-
ternatively move the vectors’ ownership through the communication
channels connecting the two nodes. CAF limits the possibility to share
pointers between Actors at the level of the library. The library cannot
permit sending a pointer to other Actors. It is allowed only to move or
copy an entire message. Rust, instead, statically enforces the owner-
ship rule, which, in this case, is violated by the concurrent ownership
of the vector by the two pipeline stages. Moreover, memory accesses
outside the boundaries of the two vectors are checked at run-time.

The two approaches achieve the same objective in two different
ways, CAF uses C++ metaprogramming facilities to force the user to
maintain isolation between Actors. However, this approach is not per-
fect because it can easily be bypassed, e. g., by sending a plain object
that contains a pointer to shared resources. Instead, Rust leverages

74 analyzing the isolation property on multi-/many-core platforms

the language compiler for checking that each value at any time has
only one variable (called owner)1.

Concerning the FastFlow parallel library, the point is that the po-
tentially wrong usage of the reference-passing capability approach,
which is at the base of the FastFlow programming model, is not
checked by the library, and the potential faulty behavior is not sig-
naled to the user. The programmer must properly use the provided
mechanisms according to the FastFlow programming model.

Those three messaging approaches represent a spectrum of differ-
ent policies. FastFlow focuses on full programmer control and high-
performance thus, it does not guarantee any isolation property be-
tween concurrent entities. Instead, both CAF and Rust, even though
at different levels, impose constraints to the user to provide statically
checked guarantees. In the next sections, we will address the potential
issues of the memory isolation property.

5.3 statically checked isolation in dataflow programs

Enforcing isolation is particularly useful to the user to avoid com-
mon mistakes that could also lead to subtle data-races. The isolation
enforcement through a statically checked capability system is also
crucial to avoid potential run-time overheads. In the following, we
show that it is possible to implement some FastFlow library’s ba-
sic structures (i. e., pipeline and task-farm) using the features of the
Rust programming language. We discussed the features of the Rust

language in Section 2.4.2.
Indeed, Rust is a modern system-level programming language

without a garbage collector whose code is compiled through the
LLVM compiling infrastructure to native machine code. Rust focuses
on enforcing memory safety, and it limits the usage of low-level tricks
often used on C/C++ to achieve raw performance [217]. Neverthe-
less, we will demonstrate that, by using the Rust type system, it is
possible to statically enforce the FastFlow library’s message-passing
semantics without dropping performance at run-time.

To have a fair performance comparison between implementations,
we need to implement the FastFlow communication channel in Rust.
Initially, we considered using the Multi-Producer Single-Consumer
(MPSC) unbounded queue provided by the Rust standard library,
but we discovered that it does not deliver the expected performance,
in particular in the case of fine-grained computation. Therefore, we
decided to port in Rust the C++-based FastFlow lock-free Single-
Producer Single-Consumer (SPSC) unbounded queue [15].

Instead of writing it from scratch, mimicking the same FastFlow

implementation, we decided to create a memory-safe Rust interface

1 Rust permits to lift the ownership rule inside the unsafe block, but this practice is
used only in particular situations.

5.3 statically checked isolation in dataflow programs 75

on top of the original C++-based FastFlow queue. The name of the
Rust interface for the queue is ff_buffer2.

Figure 16: Integration of the FastFlow’s unbounded SPSC lock-free queue
in Rust.

Figure 16 shows the logical schema of the ff_buffer library that we
used to integrate the FastFlow queue in Rust. The implementation
is composed of two distinct parts: the Rust API providing a memory-
safe interface of the queue, and the static C library that exposes the
“unsafe” C interface of the C++ implementation. The ff_buffer li-
brary can be directly compiled as a standard Rust library. Moreover,
it is possible to use the Cross Language Linking Time Optimization3 fea-
ture of the LLVM compiler infrastructure to reduce the overhead of
jumping back and forth between Rust and C++.

Another FastFlow feature we decided to use in the experiments is
the ability to automatically pin all the spawned threads to distinct ma-
chine cores to improve the application performance when the number
of threads is less than or equal to the available machine cores. For this
purpose we used the Rust third-party library core_affinity4 to set
the thread-to-core affinity for all Rust threads according to a simple
round-robin assignment strategy.

We considered two simple micro-benchmarks based on two Fast-
Flow parallel patterns, namely the Task-Farm and the Pipeline (cf. Sec-
tion 2.3.2). We selected these two patterns because they are used
within the FastFlow library as basic building blocks to implement
other more complex parallel patterns (e. g., D&C, Macro-Data Flow,
ParallelFor).

In Figure 17 and Figure 18 we sketched the implementation
schemes of the two FastFlow parallel patterns that we used as
benchmarks for comparing the performance of the C++ and Rust

versions. Figure 17 is the implementation of the Task-Farm pattern
where the pool of Workers is composed of sequential nodes. Each
node is implemented as a thread. Each Worker performs a con-
figurable number of floating-point operations on each input data

2 Git repository link https://github.com/lucarin91/ff_buffer

3 http://blog.llvm.org/2019/09/closing-gap-cross-language-lto-between.html

4 https://crates.io/crates/core_affinity

https://github.com/lucarin91/ff_buffer
http://blog.llvm.org/2019/09/closing-gap-cross-language-lto-between.html
https://crates.io/crates/core_affinity

76 analyzing the isolation property on multi-/many-core platforms

Figure 17: Implementation schema of the Task-Farm pattern.

Figure 18: Pipeline with feedback channel.

element. The Emitter node is in charge of assigning data elements to
the Workers according to a pre-defined or user-defined scheduling
policy. We considered a simple round-robin assignment. The data
elements produced by the Workers are all collected by the Collector
node. This test aims at studying the scalability of the Task-Farm
pattern by varying the number of Worker threads. Figure 18 shows
the Pipeline with feedback pattern as implemented in FastFlow. In
the tests we executed, we considered a Master stage (the first one)
and a configurable set of other stages. The Master stage is in charge
of generating a fixed-length stream of data elements in batches. The
other stages of the Pipeline chain only forward the input element
received to the next stage. The last stage of the Pipeline is connected
to the Master stage, forming a circular Pipeline. This test aims to
study the maximum throughput sustained by the Pipeline pattern by
varying the number of stages.

The tests reported in this section were conducted on an Intel Xeon
Server (full specification in Section 5.1) and repeated ten times. The
values reported in the plots are the average value of all runs. The
standard deviation is small (less than 1%) and thus omitted for read-
ability reasons. We used the GNU gcc compiler version 7.2.0 with
the -O3 optimization flag enabled and the rustc compiler version
1.38.0 with opt-level=3.

5.3 statically checked isolation in dataflow programs 77

S
c
a

la
b

ili
ty

Num. of Workers

C++ vs Rust implementation of the FastFlow Task-Farm.

C++ small
C++ large

Ideal
Rust small

Rust medium

 1

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 1 22 4 8 12 16 20 24 28 32 36 40 44 48

Figure 19: Scalability of the Task-Farm micro-benchmark implementation
with two different computation granularities.

T
h

ro
u

g
h

p
u

t
(m

sg
/s

e
c.

)

Num. of Stages

C++ vs Rust implementation of the Pipeline with feedback channel.

C++
Rust

7.6x105

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

1.4x107

 2 4 8 12 16 20 24 28 32 36 40 44 48

Figure 20: Sustained throughput of the Pipeline micro-benchmark with feed-
back channel varying the number of stages.

For the Task-Farm pattern we considered a stream of 50.000 ele-
ments and two different per-element computation granularities: small
(about ∼5µs), and large (about ∼5ms). Figure 19 shows the scalability
of the Task-Farm pattern written in C++ (i. e., FastFlow v3.0) and in
Rust, respectively. The results show that the two versions have sim-
ilar performance figures both for the small and large test cases. Both
versions exhibit good scalability figures when the number of total
threads used (that is equal to the number of Workers plus two) is less
than or equal to the number of physical cores of the machine (this
is the gray area of the plot). The Rust implementation of the bench-
mark uses a more simple (and aggressive) dequeueing strategy than
the one offered by the FastFlow library. Moreover, the Rust version
leverages the jemalloc memory allocator. These two optimizations
allow to slightly improve the performance of the Rust version in the

78 analyzing the isolation property on multi-/many-core platforms

small test case when the number of Workers is high. Conversely, for
the large test case, the more aggressive polling approach used in the
Rust implementation produce more overhead when the number of
threads is greater than the available logical cores (i. e., the case of 48
Workers).

For the Pipeline test case, we consider a total number of 1M ele-
ments divided in an initial batch of 1K elements and 4K small batches
each one containing 256 elements. Figure 20 shows the number of
messages exchanged per second by varying the number of stages of
the Pipeline chain. The performance of the two versions is almost the
same, and the throughput increases almost linearly with the num-
ber of stages with a small drop corresponding to 24 Pipeline stages
because from that point more threads than physical core are used.

The results obtained demonstrate no significant performance differ-
ence between the C++ and Rust versions when implementing data-
flow patterns such as Pipeline and Task-Farm with undoubtful benefits
in terms of programmability for the parallel programmer. However,
this analysis is not enough because we also have to consider data-
parallel computations in which more complex data isolation seman-
tics is required.

5.4 isolation in data-parallel computations

As discussed in the previous section, maintaining the concurrent enti-
ties in complete isolation avoiding data sharing provides strong guar-
antees, and it could be enforced without introducing performance
degradation at run-time, at least for concurrent data-flow networks
built by composing Pipeline and Task-Farm patterns. Concurrent en-
tities in data-flow networks can manage their internal state and ex-
change data with other entities moving the ownership from one en-
tity to another. However, things are more intricate in other kinds of
computations based on data partitioning, e. g., data-parallel computa-
tions.

In a nutshell, in data-parallel computations, an input collection is
split into partitions assigned to multiple concurrent entities that work
in parallel to produce an output collection. In those computations,
usually modeled with the Map and Map-Reduce Parallel Patterns (cf.
Section 2.3.2.5), the data races can be prevented by assigning dis-
jointed partitions to concurrent entities and forcing each of them to
modify only their local data (owner computes rule). However, in many
cases, the partitions are not disjoined, and read-write sharing of the
input collection is needed. In these cases, data races could be avoided
by introducing extra data copies, but they impact the amount of mem-
ory used and the execution time due to the copy overhead. Our aim
is to evaluate the performance impact of maintaining data isolation
in data-parallel computation.

5.4 isolation in data-parallel computations 79

On shared-memory systems, basically, we have two possible com-
munication protocols capable of enforcing data isolation. We call
them create-move and share-create.

In the create-move protocol, the sender node (which is the master
node of a Map pattern) creates the partitions by copying the content
from the input collection into multiple separate sub-collections. Then,
it sends them to the set of consumer entities (called Workers) to per-
form the computation. The Workers work in-place on their input sub-
collection since it is not shared with any other entities. All results
computed by the Workers are then sent back to the master node (or
to a different collecting entity), which prepares the output collection
by copying the partial results received.

In the share-create protocol, the master node sends an immutable
reference of the input collection to all Workers. Each Worker deter-
mines its input partition and creates a new local partition for storing
the results. All results are then collected as in the create-move case.

Figure 21: Two strategies for splitting and merging message data in data-
parallel computations.

Figure 21 shows the two schemes for implementing the communi-
cation protocols needed in data-parallel computations to preserve the
memory isolation property.

Although the two strategies are a general communication schema
that can be implemented on many different programming languages
and libraries, the share-create protocol requires the concept of constant
reference to be safely implemented, i. e., const & in C++ or & in Rust.
However, some widely used programming languages, e. g., Java and
Python, do not limit the access of an object reference [58]. Therefore,
in these cases, the only option is to implement the create-move strat-
egy. However, both strategies can be implements in CAF, and in both
cases, two copies of the entire input collections are needed. Moreover,
the two strategies require to execute the same number of operations,
but as we will show in the following, the share-create has some perfor-
mance advantages.

The most optimized way to implement the protocol between the
master node and the Workers is to share the original collection among

80 analyzing the isolation property on multi-/many-core platforms

all entities allowing each Worker to modify in-place its logically as-
signed partition. However, this protocol does not provide any guaran-
tee of data isolation. We will use it as a baseline reference to evaluate
the overheads of the create-move and share-create protocols.

To evaluate the overhead of the two protocols, we built a simple
data-parallel micro-benchmark in the C++ Actor Framework. CAF,
as most Actors-based libraries/languages, forces the programmer to
avoid data sharing among Actors preventing to send mutable ref-
erences. As we already discussed in the previous section, CAF, as
many others Actor Model libraries based on general-purpose lan-
guages, does not provide strong means to avoid data-sharing. Indeed,
the CAF metaprogramming functionalities, which prevents the user
from sending raw shared pointers between Actors, can be easily cir-
cumvent thought ad-hoc struct that encapsulates the raw pointer. In
this framework, the idiomatic way to implement a Map computation
working on an input collection is to use one of the strategies proposed
above, thus introducing data copies.

We built two versions of the micro-benchmark, one implementing
the create-move protocol and one implementing the share-create

protocol. Then, we compare them with the baseline implementation
(called in-place) implemented in C++ and using CAF low-level RTS
features (i. e., we do not use directly Actors). The create-move ver-
sion creates N partitions of an input vector and sends them to the
N Worker Actors. The share-create version shares the input vector
with the Worker Actors in read-only mode (i. e., by using a constant
reference), and then the Workers internally allocate their local parti-
tion for storing the computed results. The Workers, do not execute
any computation on the input partition. They just read and modify
every single element of the assigned partition.

Table 4 shows the execution time of the three versions of the data-
parallel micro-benchmark using two different size of the input vector:
12MB, and 12GB. The share-create version performs, on average,
a bit better than the create-move version due to better utilization
of the memory bandwidth. In fact, the share-create performs the
allocation of the vector partitions and the data updates in parallel
in all Workers, potentially exploiting all distinct memory channels
available in the machines.

However, it is clear that both the create-move and share-create

versions introduce significant overhead in both cases tested. These
results, demonstrate that the impact on the performance of preserv-
ing the isolation property in data-parallel computations on shared-
memory platform is a concrete issue. This result has important im-
plications for the programming model on shared-memory platforms.
On the one hand, the models that enforce isolation, such as the Actor
Model, are particularly interesting from the programmability stand-
point, helping the programmers avoid subtle data-races. On the other

5.5 summary and discussion 81

Vector of 12MB

create-move share-create in-place

Xeon 13ms 12ms 3ms

Epic 18ms 12ms 7ms

Power 8 19ms 18ms 2ms

KNL 51ms 76ms 12ms

Vector of 12GB

create-move share-create in-place

Xeon 46.37 s 25.28 s 2.74 s

Epic 23.30 s 14.66 s 2.50 s

Power 8 13.61 s 11.52 s 2.18 s

KNL 29.16 s 17.33 s 4.10 s

Table 4: Execution time of the data-parallel benchmark implemented with
the create-move, share-create and in-place protocols on different
multi-/many-core platforms. The times reported correspond to the
average value obtained by five distinct runs.

hand, they introduce excessive overheads in data-parallel computa-
tions, which represent a large fraction of applications, by preventing
the direct exploitation of the platforms’ physical shared-memory and
thus limiting important optimizations.

5.5 summary and discussion

In this chapter we have discussed the importance of the mem-
ory isolation property in parallel programming models targeting
multi-/many-core platforms. The memory isolation property is an
important property for guaranteeing memory-safety, but as we
demonstrated with our experiments, it has an important impact on
the performance of data-parallel applications on shared-memory
platforms. Therefore, finding a balance between absolute perfor-
mance figures and memory-safety is crucial for modern parallel
programming models.

In Section 5.2 we introduced the isolation properties motivating
the importance of having some forms of statically checked isolation
in modern programming languages. To this end, we compared and
contrasted different programming models providing different mem-
ory isolation guarantees, namely FastFlow, C++ Actor Framework

(CAF), and Rust. In FastFlow, the user has complete control of the
memory model. The library does not check any memory isolation
property, leaving the responsibility of correctly using the model to the

82 analyzing the isolation property on multi-/many-core platforms

programmers. CAF proposes a statically checked approach through
C++ metaprogramming, which can be bypassed in particular circum-
stances by the programmer. Finally, the Rust language has a com-
piler that statically checks the so-called “ownership rule”, i. e., data
variables can have only one owner.

By using Rust, we showed that statically checked isolation does
not introduce overheads in dataflow computations Section 5.3. How-
ever, its semantics strongly limits the possibility to reduce the mem-
ory copies in data-parallel computations, thus introducing overheads
even when they could be avoided (Section 5.4).

We conclude by saying that to efficiently implement data-parallel
computations on multi-/many-cores, memory isolation needs to be
bypassed, but this has to be done without requiring direct interven-
tion from the programmers and without discarding its benefits. As
we will discuss in the next chapters, we propose a solution that raises
the abstraction level by introducing well-defined software compo-
nents whose implementation may break the memory isolation prop-
erty. Still, they provide clean and memory-safe interfaces to the pro-
grammers.

6
PA R A L L E L PAT T E R N - B A S E D S O F T WA R E
A C C E L E R AT O R F O R T H E A C T O R M O D E L

Parts of this chapter
was been published
in the Euromicro
International
Conference on
Parallel,
Distributed and
Network-Based
Processing
(PDP) [178].

The Actor Model promotes an unstructured approach to parallel pro-
gramming. A high number of concurrent activities embedded into
Actors cooperate by exchanging messages to solve a given problem.
However, the high degree of freedom and flexibility offered by the
Actor Model may easily lead to building complex Actor-based topolo-
gies that are hard to modify, debug, and most of all, optimize. Indeed,
in such complex topologies, one or more Actors might become a bot-
tleneck for specific types of messages or under some peculiar message
rates. These situations are typically problematic to discover, given the
intricated flow of messages. Once the programmers have identified
the bottlenecks, they usually have to split the critical Actors into mul-
tiple distinct Actors and define a suitable communication protocol
(e. g., master-worker, pipeline) among them to solve the bottlenecks.
Accordingly, the application might need to be reconfigured to exploit
the new Actors introduced.

To deal with these issues in Actor-based applications, we envision
a synergy between the Actor Model and the structured parallel pro-
gramming methodology based on parallel patterns. Critical parts of
the application at hand can be modeled by using suitable parallel ex-
ploitation patterns (e. g., map, task-farm). Our first attempt to merge
these two distinct parallel programming approaches is to use the con-
cept of “Actors’ accelerator”. It is a software artifact that enables of-
floading parts of the computation to be accelerated without changing
(or with minimal changes) the original Actor-based application struc-
ture. The accelerator is a separated entity of the application graph. It
has its API to receive input messages from Actors and to send them
the results.

This chapter describes our attempt to build the “Actors’ accelera-
tor” structure for data-parallel computations, specifically, Map and
Map-Reduce parallel patterns. As shown in Chapter 5, data-parallel
computations are challenging to implement efficiently on shared-
memory systems using only messages in a model that enforces data
isolation, like the Actor Model. Our implemented software acceler-
ator for Actors runs on a partition of the platform’s CPU resources
and has been carefully designed to utterly integrate with the C++
Actor Framework (CAF) library.

Section 6.1 presents the design of the data-parallel accelerator de-
scribing its structure and how it interacts with the existing Actors.
Then, Section 6.2 focuses on the CAF implementation of the accelera-

83

84 parallel pattern-based software accelerator for the actor model

tor, which includes the extension of the CAF run-time itself including
the thread-to-core affinity feature. We will show how the affinity feature
enables the separation of the CAF run-time from the the data-parallel
accelerator. Finally, Section 6.3 discusses the evaluation of the acceler-
ator implementation considering two different benchmarks.

6.1 design a data-parallel software accelerator

As described in Section 5.4 data-parallel computations are difficult to
implement in an efficient way using the Actor Model, because of the
strict requirement of maintaining data isolation among Actors. One
of the objectives we have is to reduce message latency in data-parallel
computations. In a nutshell, the scenario is that of an Actor receiving
in input a relatively large data structure that has to be processed and
sent to another Actor.

In the Actor Model, there is no idiomatic approach to split the input
data, compute each part concurrently, and merge the single results in
a new message ready to be sent out. This is a typical Map-based par-
allel computation structure, which could be provided to the Actor
Model’s programmer as a ready-to-use tool to solve these kinds of
parallel computations. Indeed, several data-parallel patterns that offer
clear functional and parallel semantics can be used to simplify paral-
lel programming. They relieve the application programmers from de-
signing and implementing well-known parallel structures, allowing
them to concentrate on the application’s business logic.

Actor Model

Multi-/Many-Core

PP Accelerator

Parallel applications

Figure 22: The layered software design showing the relations between the
Actor Model and Actors’ accelerator that leverages Parallel Pat-
terns.

Figure 22 sketches our idea leveraging a software accelerator to
provide a set of data-parallel patterns to Actors programmers. The
accelerator coexists with the application Actors used to implement
the application. Thus, the programmer may take advantage of Actors’
flexibility without needing to reconfigure their application to speed-
ing up data-parallel computations.

The Map pattern (cf. Section 2.3.2.5) is a data-parallel paradigm that
applies the same function to every element of an input collection. The
precondition is that all items of the input collection are independent
and can be computed in parallel. If we consider the case of an Actor
that has to execute a Map computation on a large input collection,

6.1 design a data-parallel software accelerator 85

its service time is given by the time needed to compute the single
element of the collection multiplied by the number of elements. If
this Actor offloads the computation it has to execute to a parallel
implementation of the Map pattern, its service time could be reduced
ideally to the time needed to compute a single element.

spawn

Actor Actorfile

send
data

receive
data

Scatter/
Gather

Worker1 Worker3 Worker5Worker2 Worker4

Map Accelerator

filefile

Figure 23: The logical schema of the the Map accelerator.

We designed the Map accelerator as a set of Actor with a prede-
fined communications topology. It can be instantiated by any Actor
and its address can be shared with other Actors via messages. Once
spawned, the accelerator waits for incoming requests. Multiple Ac-
tors may send a request containing both the input data collection and
the function to compute in parallel. The accelerator will send back
the result as soon as it is ready. The Map accelerator can also be used
in streaming computations where the generic Actor needs to speed
up its local data-parallel computation on the incoming input data.
Figure 23 shows the design of the Map accelerator.

The internal is designed to follow the share-create communication
schema, which we already described in the previous chapter (cf.
Chapter 5). The accelerator maintains the isolation property of the
Actor Worker used in the design of the Map pattern at the cost of
introducing 2 extra copies of the computed structure. We will focus
on eliminating this extra overhead in the next chapter. Here we focus
on designing the software accelerator in a way that is easy to use
for the Actor programmer and allows to increase the performance of
data-parallel computations that otherwise would be executed sequen-
tially by the single Actor. In Chapter 7 we propose a new solution
where the Map pattern is implemented as a “macro Actor”, whose
implementation skeleton leverages shared-memory to reduce costly
memory copies and in general to reduce communication overhead.

86 parallel pattern-based software accelerator for the actor model

The design of the pattern’s API and its clear parallel semantics aids
the programmer avoid introducing data-races.

We implemented the Actor’s accelerator in C++ by using a state-of-
the-art Actor Model implementation: C++ Actor Framework (CAF)
(cf. Section 2.4.1). Therefore, both the application Actors, as well as
the accelerator, have been implemented in CAF. The accelerator can
be implemented in other frameworks, but we decided to use C++
Actor Framework to reduce the possible overheads given by the
interaction of different run-time systems. Indeed, C++ Actor Frame-
work permits to spawn detached Actors, which are Actors that have
their dedicated thread of control. We use detached Actors to imple-
ment the internals of the accelerator and use higher communication
between threads. Moreover, to minimize the interferences introduced
by the software accelerator structure, we enhanced the run-time of
C++ Actor Framework to control the placement of system threads
on different machine cores. In the following, we call this new C++
Actor Framework feature thread-to-core affinity. Using the thread-to-
core affinity, we are able to confine the threads used to implement the
accelerator to a restricted set of machine cores.

6.2 implementation of the actors’ accelerator in caf

The implementation of the accelerator has been done at two differ-
ent levels. At the bottom level, we modified the CAF run-time to
introduce the possibility to manage the thread-to-core affinity for the
run-time system threads. This allows us to control the mapping of
different CAF threads used to execute Actors, for example to confine
the threads used for implementing the accelerator on a subset of the
machine cores. At the top level, we designed and implemented the
software accelerator and its API by using C++ Actor Framework

Actors. Specifically, we implemented the Map pattern.

6.2.1 Affinity control implementation

With the terms thread-to-core affinity (or simply thread affinity) we refer
to the possibility to control on which logical core(s) a given thread can
be executed by the OS. This prevents the OS from moving the thread
on a different set of cores thus reducing potential noise introduced
by the OS scheduler.

The CAF framework defines different types of threads: the ones
used for implementing the thread-pool in charge of executing the event-
based Actors, the ones used to execute detached Actors and those used
for executing the blocking Actors. We defined a new set of system con-
figuration parameters (i. e., affinity-runtime, affinity-detached,
affinity-blocking), which allows to statically specify on which
cores the different kinds of CAF threads have to be executed by

6.2 implementation of the actors’ accelerator in caf 87

the OS. The set of cores can be selected by using an affinity string
(affinitystr), i. e., a string whose format respects the following
grammar (COREID is a valid core identifier):

affinitystr ::= grouplist

grouplist ::= group | group grouplist

group ::= < rangelist >

rangelist ::= range | range, rangelist

range ::= COREID | COREID− COREID

The affinitystr is composed by a set of groups enclosed in angle
brackets (< >). A group hosts a collection of cores separated by com-
mas (,) or a range of them delimited with a single dash (-). Threads
assigned to a core group are forced by the OS to run only on the cores
of that group. For instance, the group "<0,2>" specifies that all the
threads assigned to that group are allowed to run on either core 0
or core 2. The OS is anyway free to suspend or move at each point
in time each threads within the core group. The CAF run-time has
been modified in such a way to read and parse the affinity string for
each different kind of CAF threads, and execute the proper system
calls for setting the thread affinity. Each new threads created by the
CAF library is placed on the next core group of the list. When the
list ends it restarts from the first one. For example, the affinitystr

"<0> <2-4> <1,5>" allows placing the first thread spawned by CAF
on the core with id 0, the second thread on cores 2, 3 and 4, and the
third thread on cores 1 and 5. The next thread spawned will be placed
again on the first group, i. e., core 0.

This new feature permits to separates CPU resources among differ-
ent kinds of CAF threads, and particularly allows avoiding overlap
between the CAF run-time thread used for event-based Actors from
other threads.

0

8

CAF runtime threads

Map accelerator threads

1

9

2

10

3

11

4

12

5

13

6

14

7

15

16

24

17

25

18

26

19

27

20

28

21

29

22

30

23

31

32

40

33

41

34

42

35

43

36

44

37

45

38

46

39

47

48

56

49

57

50

58

51

59

52

60

53

61

54

62

55

63

Figure 24: Example of thread-to-core affinity on a 64 CPU cores Intel KNL
platform. Configuration used: affinity.scheduled-actors=<0-47>

affinity.detached-actors=<48-63>.

Figure 24 shows a simple example where the 64 CPU physical cores
of an Intel KNL platform (cf.. Section 5.1) has been partitioned be-

88 parallel pattern-based software accelerator for the actor model

tween the CAF run-time threads and the threads used for running
the Actors implementing the Map accelerator. This partitioning could
be achieved by supplying the "<0-47>" affinitystr for the CAF run-
time threads and "<48-63>" for the CAF detached Actor threads used
for the accelerator.

6.2.2 Map pattern implementation

We implemented the Map accelerator by using two different Actors:
the scatter/gather and the Worker, the latter replicated a number of
times. They are connected according to a predefined communication
schema (see Figure 23). The scatter/gather Actor manages both incom-
ing requests coming from “external" Actors and the partial results
coming from the pool of “internal" Worker Actors. The N Workers of
the pool, apply the Map function provided in the request message
on disjoint portions of the input data collection producing N partial
results that are then assembled by the manager scatter/gather Actor.

The generic Worker Actor, waits for an incoming chunk of data
elements and the function to apply to each item of the collection.
All Workers read from the same data collection, which is shared as
read-only reference (i. e., const &) and then each of them creates an
internal copy of the collection storing only the computed results. The
manager Actor receives the computed chunks and creates a new data
collection with the results that will be eventually sent back to the
sender.

1 /* Spawn a map accelerator instance */

2 auto map_instance = caf::spawn(map, 5);

3 /* Declare the Map function */

4 auto F = [](int el){ return el + 1;};

5 for (auto&& vec : read_from_disk()){

6 /* Offload the computation to the accelerator */

7 caf::request(map_instance, F, std::move(vec)).then(

8 /* Async receive */

9 [=] (std::vector<int>& result) {

10 send(next_actor, std::move(result)); // send the result

11 });

12 }

Listing 3: Simple example showing how to use the Actors’ accelerator to
compute a Map Parallel Pattern.

Listing 3 shows a code snippet in which the Map accelerator is
instanced and used by a single Actor. The logical Actor schema pro-
duced by the code snipped is sketched in Figure 23. The Actor creates
a new Map accelerator instance and starts to offload data read from a
file. Then the Actor asynchronously sends the results obtained from
the accelerator to another Actor (next actor in the figure).

6.3 evaluation 89

In particular, in Line 2 a new instance of the Map accelerator is cre-
ated by using the CAF spawn function passing the number of Workers
to be used. Line 7 sends the request to the accelerator by using the
request CAF function. A vector of integers and the lambda function
defined at Line 4 is provided as input arguments. The sender Actor
creates an asynchronous handler for the promise of the result. When
the Map accelerator completes the execution, it sends back to the Ac-
tor the result that is then used in the callback function defined at
Line 9.

It is worth noting that the Map accelerator seamlessly integrates
with the Actor Model implementation provided by the CAF frame-
work. CAF’s Actors can spawn and interact with the accelerator in
the same way they communicate with each other.

In order to use the thread-to-core affinity feature with the aim of
separating the resources used for the accelerator from the ones used
for the CAF run-time, the Map accelerator spawns its internal Workers
as detached Actors. The scatter/gather Actor is instead executed as
event-based Actor since its associated computational cost is low.

6.3 evaluation

In this Section, we test the CAF implementation of the Map accelera-
tor discussing both a simple synthetic benchmark and also a modified
version of the CAF Latency Benchmark described in [211].

All tests were executed on a Intel Xeon Phi, code-name Knights Land-
ing, KNL. The KNL is equipped with 64 physical cores and 256 log-
ical one. The complete specification of the machine can be found in
Section 5.1. The code was compiled with GNU gcc compiler version
7.3.0 and the -O3 optimization flag. All plots report the average value
obtained by five distinct runs.

The first benchmark considers a data-parallel computation on a
matrix A of sizeN×M. The program spawns an Actor that computes,
for each row of the input matrix, a function f on each element of
the row and then it sums up all elements of the row. The symbolic
computation of the i-th row is the following:

∑M
j=0 f(A[i, j])) ∀i ∈

[0,N).
We parallelized the computing Actor by spawning the accelerator

executing the Map accelerator and offloading to the accelerator the
computation of the function f over the matrix rows. The computing
Actor then executes the reduce part locally.

The benchmark has been executed with an input matrix of size
100× 5000, and the function f executes a synthetic computation of
about 200µs on each element of the input row. The test has been run
with and without the thread-to-core affinity configuration to evalu-
ate the performance improvement of isolating the accelerator threads
from the CAF run-time threads.

90 parallel pattern-based software accelerator for the actor model

 1.25

 1.84

 60.5

 1

 10

 100

 1 63 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

 1 63 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

T
o
ta

l
e
xe

cu
tio

n
 t
im

e
 (

lo
g
s
ca

le
,

s
e

c.
)

Number of map workers

Number of CAF runtime threads

without thread affinity
with thread affinity

 0

 10

 20

 30

 40

 50

 60

 70

 1 63 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

 1 63 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

S
c
a

la
b

ili
ty

Number of map workers

Number of CAF runtime threads

ideal
without thread affinity

with thread affinity

Figure 25: The execution time (top) and the scalability (bottom) of the data-
parallel benchmark on the KNL platform.

Figure 25 shows the execution time (in seconds) and the scalability
of the test, respectively. The total number of threads used is fixed to
64 and they are mapped, by using the taskset Linux command, to
the 64 physical cores of the machine. For the test, the system threads
have been split into two subsets:

1. a set of threads assigned to the Map accelerator, and

2. a second set assigned to the CAF run-time threads.

In the plot, the number of Map’s Workers used is reported in the
bottom x-axis, while the number of threads assigned to the CAF run-
time system is reported in the top x-axis. As can be observed, the use
of the Map accelerator allows obtaining a scalability of about 50 with
63 Map Workers. Moreover, the version that isolates the accelerator

6.3 evaluation 91

threads from the other run-time threads captures a non-negligible
performance advantage for the execution time.

Rate
generator

Actor1 actor 2 Actor3 Actor 8

Result
collector

...

Actor1 Actor2 Actor3 Actor8...

Actor1 Actor2 Actor3 Actor8...

...

pipeline 1

pipeline 2

pipeline N

message latency

message
with a timer

bottleneck actor

actor 2Actor 2

Rate
generator

Actor1

Actor1 Actor2

Actor2

Actor1 Actor 2 Actor 8Actor3

Actor3

Figure 26: The CAF Latency benchmark with bottleneck Actors.

As a second test, we considered the CAF Latency Benchmark [211].
It aims at measuring the message latency of CAF’s Actors considering
either a single pipeline of Actors or multiple replicas of the pipeline
chains each one having a fixed number of Actors (see Figure 26). A
Rate generator Actor generates messages at a given constant rate. The
Result collector Actor, collects all messages and computes the average
message latency.

Rate
generator

Actor1 actor 2 Actor3 Actor 8

Result
collector

...

Actor1 Actor2 Actor3 Actor8...

...

pipeline 1

pipeline N

message latency

message
with a timer

bottleneck actor

actor 2Actor 2

Rate
generator

Actor1 Actor2

Actor1 Actor 2 Actor 8Actor3

Map
Accelerator

...

Figure 27: The Map accelerator in the CAF Latency benchmark.

To evaluate the Map accelerator implementation, we modified the
CAF Latency Benchmark by adding a new type of Actor in the
pipeline that instead of just forwarding the message to the next
Actor, it executes a data-parallel computation on the input message
(the schema of the modified benchmark is shown in Figure 27).
There is only one computing Actor for each pipeline chain. These
“heavy-weight” Actors are the bottlenecks of the pipelines potentially
producing a significant increase in the average message latency. The

92 parallel pattern-based software accelerator for the actor model

objective of this benchmark is to show how the message latency can
be reduced by parallelizing the compute intensive Actors by using
the Map accelerator. To this end, a single instance of the Map accel-
erator is created at the program start-up, and all computing Actors
share its reference. In this way, they can offload their computation to
the parallel accelerator to decrease their service time.

We tested the case of 100 pipeline chains each one with 8 Actors.
The message rate is fixed to 1000 messages per second. The comput-
ing Actors work on an input collection of 5000 elements. The average
execution time per item is about 1µs. The benchmark lasts 15 sec-
onds.

 0.8

 7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

L
a
te

n
cy

 p
e

r
m

e
s
sa

g
e

 (
m

s)

Number of map workers

Number of CAF runtime threads

sequential
without thread affinity

with thread affinity

Figure 28: CAF Latency Benchmark with 100 chains and input vectors of
5000 elements.

Figure 28 shows the average message latency of a message for
traversing one pipeline chain varying the number of Map’s Workers.
We consider two configurations: the first one without the thread-to-
core affinity and the second one with the affinity configured. As in the
previous benchmark, for all configurations tested, the total number
of system threads is fixed to 64.

The results obtained demonstrate that the two versions perform
better than the configuration in which the computing Actor is exe-
cuted sequentially when the number of Map’s Workers is in the range
8–48. Outside this range, there are too few Actors either in the Map
accelerator to amortize the overhead introduced by the accelerator, or
in the CAF run-time system to execute the total number of Actors im-
plementing the benchmark (i. e., 800), respectively. Therefore, in such
conditions, the message latency drastically increases because the two
resource sets are not well-balanced.

The version with the sequential Actor has an average message la-
tency of about 7ms, whereas the version with the Map accelerator and

6.4 summary and discussion 93

the thread-to-core affinity enabled has an average latency of 0.8ms. The
configuration without thread-to-core affinity has an irregular message
latency varying the number of Workers. This is due to the interfer-
ences of the two set of system threads that the OS scheduler is not
always able to evenly distribute to the available core resources.

To conclude, the two benchmarks tested demonstrate that the Ac-
tors’ accelerator implemented can reduce the service time of Actors
performing map-like computations (i. e., pure map and map+reduce),
requiring only a minimal programming effort to the application de-
veloper for defining and spawning the accelerator.

6.4 summary and discussion

This chapter focuses on providing ready-to-use Actors’ accelerator
running predefined Parallel Patterns. We concentrated on data-
parallel patterns such as Map and Map-Reduce. The accelerator has
been built with the aim of interacting with application Actors seam-
lessly and with minimal modification to the application structure. It
enables the speedup of data-parallel computations, otherwise imple-
mented sequentially within a single Actor. The software accelerator
is spawned “beside” the Actors implementing the application, with
separated run-time threads. Multiple distinct Actors can interact
with it by offloading data-parallel computations and waiting for the
results.

In Section 6.1 and Section 6.2 we addressed the design and the im-
plementation on top of the C++ Actor Framework (CAF). To avoid
potential conflicts between the distinct run-time threads used to ex-
ecute the Actors and those used for the software accelerator, we de-
signed and implemented an extension of the CAF framework to con-
trol, at fine granularity, the threads’ placements into core resources
(thread-to-core affinity). Finally, in Section 6.3 we showed that the
Map accelerator is capable of speeding up Actor-based computations
removing potential bottlenecks.

The accelerator concept can also be further extended to support
other data-parallel computations, e. g., stencil-based computations.
Nevertheless, we decided to follow a different path to synergically
combine the Parallel Pattern-based approach with the Actor Model
in a single monolithic programming model. In the next chapter, we
propose this new approach based on the tight integration of Paral-
lel Patterns and Actors, where Parallel Patterns behave as “macro
Actors”. Indeed, macro Actors and Parallel Patterns are used to
structure the application and communicate with standard messages
sharing the same RTS.

7
E F F I C I E N T PA R A L L E L PAT T E R N S F O R T H E A C T O R
M O D E L

Parts of this chapter
was been published
on the
International
Journal of Parallel
Programming
(IJPP) [176]

The chapter describes our proposal integrating the Parallel Patterns
parallel programming approach into the Actor Model for multi-
/many-core target platforms. We focus on using Parallel Patterns to
bring into the Actor Model both enhanced programmability leverag-
ing well-known parallel components and performance optimizations
in the execution of data-parallel computations. Parallel Patterns are
integrated into the Actor Model as “macro Actors”. In other words,
in the Actors’ world, they are seen as standard Actors and can com-
municate with other Actors through regular messages. Instead, the
implementation skeleton of a given Parallel Pattern exploits multiple
concurrent entities and shared-memory communication mechanisms
that are totally transparent to the outside Actors’ world.

We have already discussed in Section 5.4 how the isolation proper-
ties of the Actor Model can introduce unnecessary overheads in data-
parallel computations. Using our set of data-parallel patterns, i. e.,
Map and Divide&Conquer, which introduce low-level shared-memory-
based optimizations otherwise precluded by the “pure” Actor Model,
the user may benefit from extra performances without renouncing to
the Actor Model’s guarantees, such as memory isolation.

We start this chapter by describing the adopted design principles
that we followed to build our set of Parallel Patterns (i. e., Section 7.1).
Specially, we focused on the need to have a memory-safe integration
of Parallel Patterns into the Actor Model while exploiting low-level
optimization features of the hardware platforms. Then, Section 7.2
and Section 7.3 present the implementations of the Parallel Patterns
by using the CAF library. In particular, Section 7.2 presents the Data-
parallel Patterns implementation, whereas Section 7.3 presents pat-
terns suitable to be used to allow combination and nesting of Par-
allel Patterns to build a structured composition of Actors, i. e. Control-
parallel Patterns. Finally, in Section 7.4, we evaluate our approach by
implementing a set of applications selected from the Parsec bench-
mark and the Savina benchmark suites, comparing the performance
of our approach with those obtained by other specialized parallel li-
braries targeting multi-/many-core platforms.

7.1 designing parallel patterns as actors

By employing Parallel Pattern abstractions, we aim at bringing to
the Actor Model two crucial aspects when considering modern multi-

95

96 efficient parallel patterns for the actor model

/many-core platforms: a) to introduce a software layer in which we
can apply low-level optimizations without breaking the isolation prin-
ciple of Actors; b) to provide ready-to-use and well-known communi-
cation structures in Actor-based parallel applications.

Introducing low-level optimization leveraging on physical shared-
memory, is generally not allowed by the “pure” Actor Model without
breaking the principles of the model itself. During the design of Par-
allel Patterns, we used the following guidelines:

• Parallel Patterns must smoothly integrate with existing Actors;

• Parallel Patterns interface must comply with the Actor Model;

• to maximize the performance, the implementation skeletons of
Parallel Patterns could not necessarily respect the Actor Model,
and they can rely on all low-level features and mechanisms of-
fered by the shared-memory platform.

We designed the Parallel Patterns in such a way that they look
like standard Actors, i. e., they receive input data only through mes-
sages and produce results by sending messages to other Actors. In-
stead, their implementation skeletons use the shared-memory concur-
rency model. Each Parallel Pattern can be seen as a “macro Actor”. It
means that, from the Actors programmer standpoint, a single Paral-
lel Pattern or a combination of Parallel Patterns behaves like an Actor.
Conversely, their implementation skeleton is composed of multiple
concurrent entities cooperating to implement the pattern’s parallel
semantics.

We decided to implement these Parallel Patterns by leveraging
the Actors provided by the CAF library without introducing another
model/library (i. e., OpenMP or FastFlow) to avoid issues of mix-
ing different RTSs (e. g., defining the number of threads of each RTS,
handling different affinity policies, handling different scheduling of
tasks). Therefore, a pattern in the Parallel Patterns library is imple-
mented by spawning a set of CAF Actors cooperating in a prede-
fined communication scheme through explicit messages and shared
memory variables. Moreover, CAF offers the option of spawning Ac-
tors also as private threads (i. e., detached Actors), thus enabling the
possibility to control Actors directly without using the Work-Stealing
scheduler (which is used instead for scheduled Actors, cf. Section 2.4.1).
This permits to avoid the indirection between the logical Actor entity
and the underline RTS threads used to execute Actors, which, some-
times, may introduce extra overhead.

We divided the Parallel Patterns in two sets1:

• Data-parallel Patterns namely Map, Divide&Conquer; and

• Control-parallel Patterns namely SeqActor, Pipeline, and Farm.

1 The implementations are available at https://github.com/ParaGroup/caf-pp.

https://github.com/ParaGroup/caf-pp

7.2 data-parallel patterns 97

The first set of patterns internally exploits shared-memory to opti-
mize the performance. The second set, enables nesting and composi-
tion of Parallel Patterns focusing more on structuring the concurrent
graph of Actors and Parallel Patterns.

7.2 data-parallel patterns

As described in Section 2.2, data-parallel computation focuses on par-
titioning the input data and applying some transformation in parallel
on each partition. Those kinds of computations profit from shared-
memory optimizations, which are not allowed in the “pure” Actor
Model (cf. Section 5.4). In the following, we discuss our implementa-
tion as “macro Actors” of the Map and Divide&Conquer Parallel Pat-
terns.

7.2.1 Map

The Map pattern is a data-parallel paradigm that applies the same
function to every element of an input collection (see Section 2.3.2.5).
The input collection of data, possibly but not necessarily coming from
a stream of collections, is split into multiple sub-collections where
each one can be computed in parallel by applying the same function.
The results produced are collected in one single output collection,
usually having the same type and size of the input.

The efficiency of the Map pattern on multi-cores depends on the
ability to share the input collection on which the user function has
to be applied. Data-races are avoided by design because the parallel
semantics of the Map pattern is such that distinct concurrent enti-
ties work on disjoint sub-collections. Data sharing has the advantage
of avoiding costly data copies required by the message-passing pro-
gramming model.

The pattern API enforces correctness. Indeed, the user will only
supply a C++ lambda that applies the computation only on the pro-
vided partition of the input container, and in no ways, it will not be
able to access the other partitions.

Figure 29 (left-hand side) shows the implementation skeleton of
the Map pattern. It uses a “master” entity, called Sched, which is in
charge of partitioning the input collection and scheduling data parti-
tions toward a pool of Worker entities. The Sched also waits for the
end of the computation of the Workers to implement a barrier before
sending out the final result.

Figure 29 (right-hand side) shows how to configure and spawn a
Map pattern with the Parallel Pattern library. The user provides a C++
lambda function that works in-place on a specific range of elements
of the input collection implemented with a container.

98 efficient parallel patterns for the actor model

Possible configuration are the number of internal Workers (i. e.,
replicas), the type of scheduling policy (i. e., scheduler), and the
used run-time (i. e., runtime). The replicas configuration parame-
ter, if not set, is equal to the number of active cores (Line 6). The
scheduler parameter can be set to either static assignment of parti-
tions (the default value) or dynamic assignment of partitions (Line 7).
Finally, the runtime parameter can be set to actors, which uses sched-
uled Actors coordinated by the work-stealing run-time of CAF, or
threads, which uses detached Actors that have their own thread of
control (Line 9).

1 using Cnt = std::vector<int64_t>;

2 auto map = Map<Cnt>([](auto range) {

3 for (int64_t &el : range) {

4 // do somethings with el

5 }

6 }).replicas(3)

7 .scheduler(PartitionSched::static_{})

8 //.scheduler(PartitionSched::dynamic_{1})

9 .runtime(Runtime::actors);

10 //.runtime(Runtime::threads);

11 auto p = spawn_pattern(sys, map).value();

Figure 29: On the left-hand side the Map pattern implementation scheme,
and on the right-hand side the code to build and spawn the
Map pattern. The lines commented, show different options for
the scheduling policy and the kind or RTS used, respectively.

The static scheduling policy splits the input collection into several
partitions equal to the number of Workers. The Sched Actor sends the
references of each partition to the corresponding Worker. This policy
works well when the computational workload is equally (or almost
equally) distributed among all elements of the input collection. The
dynamic scheduling policy, instead, is supposed to be used when a
static partitioning of the input collection may lead to serious work-
load balancing issues among Workers.

The dynamic policy gets as argument a user-defined chunk size
used to split the input collections. Then, chunks of data elements are
dynamically fetched by the Workers leveraging the C++ std::atomic
data type implementing an atomic counter shared by all Workers and
initialized by the Sched Actor. It is worth remarking that the shared
atomic counter is used only to implement the scheduling policy, and
it is visible only to the Worker Actors implementing the Map pattern,
which are not directly defined by the application programmer.

The Sched Actor initializes the atomic counter to zero and sends
a first message to all Workers containing the size of the collection
and the number of elements to fetch each time the shared variable is

7.2 data-parallel patterns 99

accessed (i. e., the computation granularity). Each Worker executes a
fetch_add atomic operation on the shared variable to retrieve the next
range of contiguous collection elements to compute. The computation
finishes when all Actors retrieve a range of collection elements whose
iterator indexes are greater than or equal to the number of elements
in the collection. Then, the Workers notify the Sched Actor of their
work completion by sending an appropriate message.

In the evaluation of Section 7.4, we will show that using the
threads run-time it is possible to improve performance avoiding the
indirection and overheads of adopting the work-stealing scheduler
for the ready Actors. Nevertheless, using a number of threads higher
than the number of the available CPU cores could lead to CPU
resource overprovisioning, with extra overheads due to the CPU
cores’ contention. This is particularly evident when the computation
of Actors is mainly CPU-bound. For these reasons, we decided to
maintain both options and to permit the user to select between the
two run-times depending on the specific situations.

CAF enforces the Actor isolation property by calling the C++ copy
constructor on those message objects sent to more than one destina-
tion Actors, which do not use the input message in read-only mode
(i. e., non-constant input data types). To work in-place (i. e., in a read-
write mode) on message types that are input collections, the Map
Parallel Pattern inhibits those implicit copies to enable the sharing of
the same collection to multiple Workers. To this end, we defined a
C++ type, called NsType, which internally manages a heap-allocated
data and implements the copy constructor without effectively doing a
memory copy. The Sched Actor moves the user input collection inside
a NsType object, and then sent it to the Workers. After the computa-
tion, the Sched Actor executes the same steps in reverse order and
produces the output result. This implementation guarantees that the
shared-memory layer inside the Parallel Pattern is transparent to the
application programmer.

7.2.2 Divide and Conquer

The Divide&Conquer (D&C) programming approach is used in sev-
eral well-known algorithms, such as MergeSort, and the Strassen algo-
rithm for matrix multiplication. In D&C algorithms, during the Divide
(or Split) phase, the problem is recursively decomposed into smaller
sub-problems building a tree of function calls. In the Conquer (or
Merge) phase, the partial results produced by the solution of the
sub-problems at a given level of the tree are adequately combined
to build partial results that eventually are combined to produce the
final result.

A D&C algorithm can be parallelized by executing, on different
CPU cores, the Split and Merge phases for those sub-problems that

100 efficient parallel patterns for the actor model

do not have a direct dependency in the recursion tree. At each level
of the tree, a new set of concurrent tasks is available to be executed
up to the point where the sub-problems are small enough that it is
more convenient to compute them using the sequential algorithm.

Our implementation of the D&C Parallel Pattern follows the design
of Mattson, Sanders, and Massingill [148] described in Section 2.3.2.7.
Concretely, the design is based on the definition of three custom func-
tions (i. e., divide, merge and sequential) and a boolean condition that
decide to stop the recursion.

1 auto div = [](Rng&)-> vector<Rng> {

2 // divide the input

3 };

4 auto merg = [](vector<Rng>&)-> Rng {

5 // merge the partial results

6 };

7 auto seq = [](Rng&) {

8 // base case

9 };

10 auto cond = [cutoff](const Rng&)-> bool

{

11 // splitting condition

12 };

13 DivConq<Cnt> dc(div, merg, seq, cond);

14 auto p = spawn_pattern(sys, dc).value();

Figure 30: On the left-hand side the DivConq pattern implementation
scheme, and on the right-hand side the code to build and spawn
the DivConq pattern.

As shown in Figure 30 (left-hand side), we implemented this pat-
tern by dynamically spawning CAF Actors, which recursively spawn
new Actors for each sub-problem produced by the divide function.
The Actor spawned evaluates the condition function. If this function
returns false, the divide function is called. If it evaluates to true (e. g.,
when the size of the sub-problem is smaller than a given cut-off value),
the sequential algorithm is called, and the partial result produced is re-
turned back to the spawning Actor. The generic spawning Actor waits
for all partial results, and then it executes the merge function whose
result will be sent to its spawning Actor, and then it terminates. The
DivConq implementation skeleton uses the physical shared-memory
to avoid unnecessary data copies during the dynamic spawning of
Actors, which work in-place on different input ranges by using the
same techniques described for the Map.

Figure 30 (right-hand side) shows the interface of the DivConq Par-
allel Pattern. The pattern is created by passing a user defined Con-
tainer and four functions that work on continuous portions of the
input container called Ranges (Rng in Figure 30). Ranges are essential
software components in our data-parallel patterns implementation.
They permit to split a data container into disjointed partitions, avoid-

7.3 control-parallel patterns 101

ing costly copying operations and maintaining the isolation property
at the same time. Indeed, ranges are only continuous references to a
subset of data elements of a container. We uses the range-v32 library
to provide the ranges support to our data-parallel patterns. range-v3
is an abstraction layer on top of standard iterators. It supports all
standard C++ containers and can be used in combination with all con-
tainers exposing standard C++ iterators. Important features of ranges
are the Views and the Actions. Views are composable adaptations of
ranges where the adaptation happens lazily as the view is iterated.
Instead, Actions is an eager application of an algorithm to a container
that mutates the container in-place and returns it for further process-
ing. The combination of those transformations permits the complete
manipulation of ranges inside the user-code of the data-parallel pat-
terns.

7.3 control-parallel patterns

The Control-parallel Patterns are used particularly to combine and nest
multiple Parallel Patterns to build complex computational graphs. In
our discussion, we consider the Sequential, Farm, and Pipeline control-
parallel patterns.

The primary objective of the Control-parallel Parallel Patterns is to
provide well-known parallel structure and to enhance programmabil-
ity. However, they also enable important optimizations, specifically
for streaming computations, as we will examine in depth in Chap-
ter 8. Indeed, in Chapter 8 we will describe a new optimized version
of the following patterns for the high-throughput streaming applica-
tion domain.

7.3.1 Sequential

The Sequential pattern represents a single concurrent entity part of
the Pipeline and Farm patterns. We developed two types of Sequential
components: SeqActor and SeqNode. Both SeqActor and SeqNode were
designed to integrate the user code inside the Parallel Patterns. They
are not meant to be spawned alone, but to be used inside Control-
parallel Patterns.

The SeqActor can be used to encapsulate a user-defined Actor
within Parallel Patterns. The SeqNode, is instead a custom sequential
component capable of optimizing the exchange of messages between
two distinct SeqNode(s). It provides specific optimization for high-
throughput streaming applications modeled as a composition of
Farm and Pipeline patterns.

Although the SeqActor does not introduce specific optimizations for
the message exchange between Actors, it enables using an already

2 https://github.com/ericniebler/range-v3

https://github.com/ericniebler/range-v3

102 efficient parallel patterns for the actor model

defined Actor within Parallel Patterns directly. Therefore, it has been
designed mainly to facilitate the integration of Parallel Patterns in
the Actor Model. Indeed, using SeqActor(s) in combination with the
Pipeline and Farm patterns allow us to introduce well-defined commu-
nication structures to an already defined Actor-based application.

In the following we examine the SeqActor, instead, the SeqNode de-
tails will be provided in Chapter 8.

The SeqActor pattern can be seen as a factory of a specific CAF Ac-
tor. It allows to spawn different copies of the same Actor and use
them in different points of a Parallel Pattern composition. SeqActor,
other than the standard Actor functionalities, also provides mecha-
nisms to enable Actors’ composition. It maintains the references to
the next Actors in the Pipeline chain. Such references are automat-
ically set when the SeqActor is used within Control-parallel Patterns.
The programmer can use the send_next method to forward messages
to the next Actor in the Pipeline chain. This function enables a straight-
forward composition of Actors, allowing the programmer to reuse the
same Actor definition within different Parallel Patterns.

1 struct MyAct : public pp_actor {

2 MyAct(caf::actor_config &c, optional<Next> n)

3 : pp_actor(c, n) { }

4 caf::behavior make_behavior() override {

5 return /* my behavior definition */;

6 }

7 };

8 /* ... */

9 // with no initialization

10 SeqActor<MyAct> seq1;

11 // with initialization

12 SeqActor<MyAct> seq2{[&](caf::actor a) {

13 caf::anon_send(a, par1, par2);

14 }};

Figure 31: The SeqActor pattern implementation scheme (left-hand side).
The example code for building a SeqActor by using the MyAct CAF
Actor (right-hand side).

The left-hand side of Figure 31 shows the implementation scheme
of the SeqActor pattern. Instead, the right-hand side of Figure 31

shows the definition of a new Actor, called MyAct and two differ-
ent ways of creating a SeqActor pattern from MyAct. In the first case
(Line 10) the Actor will be initialized without any parameter. In the
second case (Line 12), the programmer provides a callback that will
be called as soon as the Actor will be spawned to initialize it.

7.3 control-parallel patterns 103

7.3.2 Pipeline

A pipeline pattern is a sequence of stages connected in a linear chain.
Distinct stages of the same chain work in parallel on subsequent input
elements (usually called stream of items). Each stage computes a partial
result and sends it to the next stage of the sequence.

1 SeqActor<MyAct1> s1;

2 Map<Cnt> s2{[](auto range){/*...*/}};

3 SeqActor<MyAct2> s3;

4 Pipeline pipe{s1, s2, s3};

5 auto p = spawn_pattern(sys, pipe)

6 .value();

Figure 32: In the left-hand side the Pipeline pattern implementation schema.
An example code for building and spawning an instance of a
three-stage pipeline on the right-hand side.

The Pipeline pattern stages can be any nested sequence of Parallel
Patterns presented in this section. Figure 32 shows the schema of
the Pipeline pattern and a simple example of how it can be built and
spawned as any other Actor. The Pipeline pattern takes care to connect
each stage in the correct order, according to the precedence order sets
by the user in its constructor (Line 4 of Figure 32).

7.3.3 Farm

A Farm pattern is composed of a pool of concurrent entities called
Workers executing in parallel on different data elements of the input
stream. Input elements are forwarded to the Workers according to
some predefined scheduling policy. Precisely, a the Farm pattern repli-
cates a given number of times the Parallel Pattern provided as Worker.
As for the Pipeline, the generic Worker can be any valid composition of
the patterns presented in this section. The number of Worker replicas
can be left unspecified, meaning that a default value will be used (e. g.,
the number of active CPU cores). Finally, the Farm implementation
supports three scheduling policies, namely round-robin, broadcast,
and bykey. The round-robin policy forwards the incoming messages
to different Workers in a round-robin fashion, i. e., restarting from the
first one once all Workers received a message. Instead, the broadcast

policy forwards the same incoming message to all Workers. This pol-
icy exploits the CAF copy-on-write feature, thus the message is au-
tomatically copied only if the receiving Workers update the input
message. Lastly, the bykey policy uses a configurable field of the in-
coming message as a key-value, and it forwards all the messages with
the same key-value to the same Worker. The bykey policy is extremely
common in streaming applications where the Farm Workers manage
a partition of a distributed state (cf. Section 8.3).

104 efficient parallel patterns for the actor model

1 SeqActor<Worker> worker;

2 auto farm = Farm{worker}

3 .replicas(N)

4 .policy(round_robin());

5 auto p = spawn_pattern(sys, farm)

6 .value();

Figure 33: The Farm pattern implementation schema (left). An example code
for building a Farm pattern with N sequential Workers and the
round-robin policy (right).

Figure 33 shows both the internal implementation scheme of the
Farm pattern and a simple example code for instantiating it.

7.3.4 Composition of Parallel Patterns

The patterns in the Parallel Patterns library, can be composed to
build more complex computation structures according to the “two
tier model” (see Section 2.3.2), which is formalized in the following
grammar.

PP := Node | Farm(PP) | Pipe(PP+) (1)

Node := SeqActor | SeqNode | Map | D&C (2)

The Farm and Pipeline patterns can have as internal elements any
patterns, while SeqActor, SeqNode3, Map, and Divide&Conquer must
be the leaf-nodes of the skeleton tree composition representing the
application (or part of it). Specifically, the Map and Divide&Conquer
cannot contain other Parallel Patterns.

Figure 34 (top side) exemplifies how a pattern composition can be
used inside of an Actor-based application. The Pipeline pattern is fed
by two standard Actors, and the results produced by the Workers of
the second Farm pattern (i. e., by the last stage of each Pipeline Work-
ers) are sent to another standard Actor of the application through
messages. Moreover, the code in the bottom side of Figure 34 shows
how to define and instantiate the Parallel Patterns composition
sketched in the above schema. In particular, Line 1 to Line 6 define
the first Farm composed of two Map patterns. Line 8 to Line 13 define
two SeqActors connected in pipeline and create a second Farm with
the composed Pipeline. Finally, Line 15 and Line 16 build the external
Pipeline composing the two already defined farms and spawn it. The
standard Actors of the application may feed the Parallel Pattern by

3 The complete specification will be provide in Chapter 8.

7.4 evaluation 105

1 auto map = Map<std::vector<int64_t>>{/*...*/}

2 .scheduler(PartitionSched::static_{})

3 .replicas(3);

4 auto farm1 = Farm{map}

5 .policy(user_defined)

6 .replicas(2);

7

8 SeqActor<act1> seq1{/*...*/};

9 SeqActor<act2> seq2{/*...*/};

10 Pipeline pipe{seq1, seq2};

11 auto farm2 = Farm{pipe}

12 .policy(round_robin{})

13 .replicas(2);

14

15 Pipeline pattern{farm1, farm2};

16 auto app = spawn_pattern(sys, pattern).value();

Figure 34: Composition of two Farms using a Pipeline pattern. The composi-
tion schema (top) and the code to build the pattern composition
(bottom). The first Farm has a Map pattern as Worker replicated
two times, whereas the second Farm uses Pipeline of SeqActor as
Workers.

using the app handle provided by the spawn operation in Line 16 in
the same way they use the handles of other standard Actors.

7.4 evaluation

In this section, we first highlight the performance problems of using
the “pure” Actor Model on multi-core platforms and how the Paral-
lel Patterns proposed can be used to significantly improve the perfor-
mance without breaking the model. Then, by using the Parsec bench-
marks, we compare the performance of the Parallel Patterns library
with that obtained by using the native PThreads implementation
shipped with Parsec, and the FastFlow implementation that uses
the same Parallel Patterns approach to parallelize the benchmarks.
The FastFlow performance of Parsec benchmarks has been already
compared with other specialized frameworks on multi-/many-cores

106 efficient parallel patterns for the actor model

demonstrating comparable (and in some cases better) overall perfor-
mance [85].

The experiments were conducted on two different multi-cores, i. e.,
Xeon and Power8 (cf. Section 5.1). All experiments have been executed
several times and the average value obtained has been used to com-
pute the speedup shown in the following plots. The standard devia-
tion is generally low and not reported in the plots.

We consider a subset of Savina [126], and Parsec [34] benchmarks:

• Savina is a set of benchmarks specifically conceived for evalu-
ating Actor Model implementations. They can be classified in
three categories: i) micro-benchmarks, ii) concurrency bench-
marks, and iii) parallelism benchmarks. The first set contains
simple benchmarks dedicated to test specific features of the Ac-
tor RTS (e. g., time to spawn an Actor). The second set contains
classical concurrency problems (e. g., Dining-Philosophers). The
third set includes applications that require more computation
(e. g., Matrix Multiplication). We selected two applications of the
parallelism benchmarks set, namely quicksort and recMM, because
they are both implemented using recursive algorithms (which
are not present in the Parsec benchmarks), and because they
are well-known problems with a straightforward implementa-
tion in the “pure” Actor Model.

• Parsec is a collection of several complex parallel applica-
tions for shared-memory architectures with high system re-
quirements. Indeed, they are real applications covering many
different domains such as streaming applications, scientific
computing, computer vision, data compression and so forth.
Recently, the Parsec benchmarks have been used to compare
and assess programming models targeting multi-cores [34, 53].
For testing the Parallel Patterns library, we selected ferret,
blackscholes, raytrace and canneal benchmarks. The first
one is a data streaming application, whereas blackscholes and
raytrace are two data-parallel applications with different com-
putational granularity and different workload balancing issues.
The last one is a fine-grained master-worker computation.

7.4.1 “Pure” Actor Model vs Actors+Parallel Patterns

Here we compare the performance of the “pure” Actor Model
with the Actor Model enriched with the Parallel Patterns library.
We consider quicksort and recMM from Savina benchmarks, and
blackscholes from the Parsec benchmark suite. The quicksort ap-
plication implemented in the Savina benchmark follows the “pure”
Actor Model semantics. In its implementation, there are not shared
variables among Actors. During the Split and the Merge phases of

7.4 evaluation 107

 2.8

 3

 3.2

 3.4

 3.6

10M 50M 100M

Im
p
ro

v
e
m

e
n
t

Input array size

Quicksort - Parallel Pattern Improvement - Xeon

x2.8 x2.8

x3.4

 2.8

 3

 3.2

 3.4

 3.6

10M 50M 100M

Im
p
ro

v
e
m

e
n
t

Input array size

Quicksort - Parallel Pattern Improvement - Power8

x3 x3

x3.5

Figure 35: Improvement of the Parallel Patterns version compared to the
“pure” Actor Model version of the quicksort benchmark on the
Xeon and Power8 platforms.

the recursive algorithm, the sub-vectors are copied both before send-
ing them to the spawned Actors and when the results come back.
Instead, in the DivConq pattern implementation, the internal pattern
shared-memory is used to work in-place on the original input vector
avoiding unnecessary copies.

Figure 35 shows the performance improvement of the Parallel Pat-
terns approach with respect to the “pure” Actor Model implementa-
tion of the quicksort, considering different sizes of the input vector,
i. e., 10M, 50M, and 100M elements, and a fixed cut-off value of 2000
elements. As expected the performance improvement increases with
the vector size, because of the overhead of copying message data
in the Savina implementation. The two versions have roughly the
same maximum scalability (namely ∼3.5) on the Xeon and ∼4.2 on
the Power8), but very different maximum speedup (3.7 vs 1.0 on the
Xeon, and 4.2 vs 1.0 on the Power8, for the Parallel Patterns version

108 efficient parallel patterns for the actor model

vs the “pure” Actor Model implementation, respectively). The low
scalability results are because the quicksort algorithm needs an ini-
tial phase of consecutive splits operations before became efficient on
multiple cores.

 4

 6

 8

 10

 12

 14

24 48

Im
p

ro
v
e

m
e

n
t

Number of cores

Blackscholes - Parallel Pattern Improvement - Xeon

x9.7

x12.9

 4

 6

 8

 10

 12

 14

20 160

Im
p

ro
v
e

m
e

n
t

Number of cores

Blackscholes - Parallel Pattern Improvement - Power8

x4.4

x11.8

Figure 36: Improvement of the Parallel Patterns version compared to the
“pure” Actor Model version of the blackscholes benchmark on
the Xeon and Power8 platforms.

Differently from the quicksort application, the recMM implementa-
tion in the Savina benchmarks does not use a “pure” Actor Model
implementation. In fact, all Actors share both the two input matrices
as well as the resulting matrix. In this case, messages are used as
a synchronization mechanism for accessing the shared data. We im-
plemented the application using the DivConq Parallel Pattern which
allows us to confine in a cleaner way the Actors that share the data.
As expected, the patterned version and the Savina version perform
almost the same (both obtain a maximum speedup of more than 22
on both platforms, by using matrices of 4096×4096 elements and a
cut-off value of 128×128). Then, we implemented the Savina ver-
sion without any data sharing in a “pure” Actor Model fashion. The
results obtained (not reported here for space reasons) show an im-

7.4 evaluation 109

provement of the Parallel Patterns version of about five times on
the Xeon and of about six times on the Power8. The scalability of
the two versions are roughly the same (∼18 on the Xeon and ∼21 on
the Power8), whereas the maximum speedup of the Parallel Patterns
version is much higher on both platforms. These results confirm the
importance of exploiting the physical shared memory to optimize the
performance metric of Actor-based applications on multi-cores.

Also, we consider the blackscholes Parsec benchmark, a real ap-
plication that prices a portfolio of European options using the Black-
Scholes partial differential equations [35]. This application can be par-
allelized iterating a fixed number of times a Map pattern [85]. We
first implemented a “pure” Actor version of the Map parallel pat-
tern which followed the share-create communication protocol (cf. Sec-
tion 5.4). Then, we used the Map pattern presented in Section 7.2
for producing a second version. In the first version, the master Ac-
tor sends the input container to a pool of Worker Actors. Then, each
Actor internally creates a new output vector for storing the partial re-
sult. The partial results are then collected by the master Actor, which
merges them producing the final result. This implementation creates
two copies of the input vector at each iteration, where one is created
in parallel by the Worker Actors. Although this implementation al-
ready uses an optimization of the “pure” Actor Model, it performs
considerably worse than the one based on the Map Parallel Pattern,
which internally makes more extensive use of the shared memory
(Figure 36).

In the next subsection, together with other benchmarks, we com-
pare the speedup of the Pattern-based blackscholes application
against other parallel frameworks.

7.4.2 Testing Actors+Parallel Pattern with some Parsec benchmarks

In this section, we study the Parallel Patterns-based parallelization of
the Parsec benchmarks selected. The performance results obtained
are compared with those of the native PThreads and FastFlow im-
plementations. We selected the FastFlow implementation because
it uses the same pattern-based approach of the Parallel Patterns li-
brary, as described in De Sensi et al. [85]. Moreover, the FastFlow

implementations have demonstrated comparable or better results on
the Parsec benchmarks with respect to other parallel library/frame-
work implementations, e. g., IntelTBB, OpenMP. Table 5 summarizes
the results obtained by using several different parallel libraries imple-
menting the blackscholes applications of the Parsec benchmark. We
tested the benchmark on both the Xeon and the Power8 platforms with
parallelism degree equal to the number of physical cores and the total
number of logical cores of the platform.

110 efficient parallel patterns for the actor model

Blacksholes - Xeon

Parallel degree FastFlow 2.1 OpenMP 2.0 Pthreads SkePU 2 TBB OmpSs 16.06.3 CAP+PP

24 6.61 s 8.49 s 8.44 s 8.19 s 7.31 s 6.72 s 6.11 s

48 4.69 s 4.64 s 4.59 s 4.83 s 5.07 s 4.86 s 4.58 s

Blacksholes - Power8

Parallel degree FastFlow 2.1 OpenMP 2.0 Pthreads SkePU 2 TBB OmpSs 16.06.3 CAP+PP

20 8.94 s 11.76 s 10.25 s 11.65 s 9.83 s 8.68 s 10.33 s

160 4.97 s 5.62 s 5.97 s 4.62 s 4.67 s 5.93 s 4.91 s

Table 5: Results obtained considering several different parallel li-
brary/framework implementations for the blackscholes ap-
plication [85].

ferret

This application is based on the ferret toolkit [143] used for content-
based similarity search on different kinds of data, including images,
audio and video. In the Parsec benchmark, the toolkit is configured
to perform similarity search on images. In the PThreads implementa-
tion, the application is composed by six different stages. The first and
last stages are sequential while each of the other stages is executed
by a separate thread pool. Different pools communicate by using
fixed-size queues. The implementation uses a single Pipeline pattern
containing four Farm patterns as stages, each one with the same
number of Worker Actors (implemented with SeqActor patterns). The
first and last stages of the pipeline are instead SeqActor patterns
reading and writing from/to the local disk. The same logical nesting
of Parallel Patterns is used in the FastFlow version. Figure 37 shows
the speedup of the ferret benchmark on the two platforms con-
sidered. The results obtained by using the Parallel Patterns library
are comparable to those obtained by both the native PThreads and
FastFlow implementations.

blackscholes and raytrace

The CAF implementations of blackscholes and raytrace use the
Map pattern described in Section 7.1. blackscholes applies the same
function to all elements of an array. The computation is repeated a
fixed number of times (100 in our test). raytrace implements a com-
putation over an input matrix representing, at different time intervals,
a frame of an animated scene. The main difference between these two
data-parallel computations is that raytrace has a very unbalanced
workload both within the single frame as well as between different
frames. Instead, for blackscholes, the workload is almost evenly dis-
tributed among all elements of the array. Therefore, for blackscholes
it is reasonable to use a static scheduling policy of the array’s parti-

7.4 evaluation 111

 0

 5

 10

 15

 20

 25

 30

 1 4 8 12 16 20 24 28 32 36 40 44 48

S
p
e
e
d
u
p

Parsec parallelism degree

Ferret - Xeon

Pthreads
FF

CAF+PP

 0

 5

 10

 15

 20

 25

 30

 1 20 40 60 80 100 120 140 160

S
p
e
e
d
u
p

Parsec parallelism degree

Ferret - Power8

Pthreads
FF

CAF+PP

Figure 37: Speedup of the ferret benchmark of the PThreads, FastFlow

(FF) and CAF plus Parallel Patterns (CAF+PP) implementations
on the Xeon and Power8 platforms considering as baseline the
PThreads version with 1 thread.

tions while for raytrace a dynamic scheduling policy of the frame’s
partitions has to be used to obtain acceptable speedup.

Figure 38 shows the speedup of the blackscholes benchmark. The
speedup of the Parallel Patterns version is close to the other two ver-
sions on the Xeon platform. On the Power8 platform the speedup is
aligned with that of the native PThreads implementation. After every
iteration, the Sched Actor waits for the completion of all Workers be-
fore sending back the final result to the spawning Actor, which then
starts a new iteration on the same array (barrier synchronization).
The barrier is implemented by using standard inter-Actor messages.
During the tests, we found that the barrier synchronization between
Actors takes less time if the entire pattern is spawned as detached (cf.
Section 7.2).

112 efficient parallel patterns for the actor model

 0

 5

 10

 15

 20

 25

 30

 1 4 8 12 16 20 24 28 32 36 40 44 48

S
p
e
e
d
u
p

Parsec parallelism degree

Blackscholes - Xeon

Pthreads
FF

CAF+PP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 20 40 60 80 100 120 140 160

S
p
e
e
d
u
p

Parsec parallelism degree

Blackscholes - Power8

Pthreads
FF

CAF+PP

Figure 38: Speedup of the blackscholes benchmark of the PThreads, Fast-
Flow (FF) and CAF plus PPs (CAF+PP) implementations on the
Xeon and Power8 platforms considering as baseline the PThreads

version with 1 thread.

The raytrace benchmark parallelization has been implemented
with the Map pattern. Differently from blackscholes, it uses the
dynamic scheduling policy with a chunk size of 1 element. Figure 39

shows the speedup of the raytrace benchmark on the Xeon platform
(this benchmark does not compile on the Power8 platform due to
some assembly instructions used in the Parsec implementation).
In this case, the CAF version performs almost identically to the
PThreads and the FastFlow versions, confirming the low-overhead
introduced by the implementation skeleton of the Map pattern.

canneal

This application minimizes the routing cost of a chip design. The al-
gorithm applies random swaps between nodes and evaluates the cost
of the new configuration. If the new configuration increases the rout-

7.4 evaluation 113

 0

 5

 10

 15

 20

 25

 1 4 8 12 16 20 24 28 32 36 40 44 48

S
p
e
e
d
u
p

Parsec parallelism degree

Raytrace - Xeon

Pthreads
FF

CAF+PP

Figure 39: Speedup of the raytrace benchmark of the PThreads, FastFlow

(FF) and CAF plus Parallel Patterns (CAF+PP) implementations
on the Xeon platform considering as baseline the PThreads ver-
sion with 1 thread.

ing cost, the algorithm performs a rollback step by swapping the el-
ements back. The PThreads version follows an unstructured interac-
tion model among threads that execute atomic instructions on shared
data structures. At the end of each iteration, a barrier is executed and
each thread checks the termination condition. The FastFlow imple-
mentation instead, uses a master-worker pattern in which the master
evaluates the termination condition and restarts the Workers if the
termination condition is not met. We implemented the same logical
schema used in the FastFlow version by using a standard CAF Ac-
tor connected to the Map PP. The CAF Actor is the master Actor that
checks the termination condition, whereas the Map pattern is used
for the computation as a “software accelerator” (i. e., the result of the
computation is sent back to the master Actor). The Map pattern uses a
static scheduling policy, and the input container has as many entries
as the number of Worker Actors so that each Worker works on a sin-
gle element of the container. If the termination condition is met on the
result produced by the Map, the master Actor stops the computation.
Otherwise, the process is repeated.

Figure 40 shows the speedup of the canneal benchmark on the Xeon

platform (this benchmark does not compile on the Power8 platform
because the assembler instructions it uses are not available). As for
blackscholes, the Map pattern is spawned as detached. The results
obtained are very close to the ones obtained by the PThreads and
FastFlow versions.

114 efficient parallel patterns for the actor model

 0

 2

 4

 6

 8

 10

 12

 1 4 8 12 16 20 24 28 32 36 40 44 48

S
p
e
e
d
u
p

Parsec parallelism degree

Canneal - Xeon

Pthreads
FF

CAF+PP

Figure 40: Speedup of the canneal benchmark of the PThreads, FastFlow

(FF) and CAF plus Parallel Patterns (CAF+PP) implementations
on the Xeon platform considering as baseline the PThreads ver-
sion with 1 thread.

7.5 summary and discussion

Employing the shared-memory programming paradigm on multi-
/many-core architectures is of foremost importance to boost applica-
tion performance. The Actor Model, with its strict memory isolation
semantics, introduces extra overheads on this platform, particularly
in data-parallel computations. We proposed to use Parallel Pattern
abstractions on top of the Actor Model to introduce a software layer
in which to inject platform-specific optimizations and well-known
parallel structures.

In Section 7.1 we described the design guideline that we followed
to achieve the integration between the Actor Model and the Paral-
lel Patterns. We proposed an initial set of both data-parallel and
control-parallel patterns. Although the data-parallel ones are those
which most benefit from low-level shared-memory optimizations, the
control-parallel provide the ability to compose patterns together to
build more structure into the Actor-based applications. Section 7.3
and Section 7.2 describe the Parallel Pattern implementations on top
of the C++ Actor Framework. Section 7.4 contains the evaluation
of our approach using a set of well-known benchmarks coming from
the Savina and Parsec benchmark suites.

To summarize the results, we observed that the Parallel Patterns
proposed and implemented in the CAF framework seamlessly inte-
grate with standard Actors and can be profitably used to speed up the
performance-critical portions of the Actor-based application where
the patterns can be introduced. The shared-memory abstraction con-
fined within the skeleton implementation of the patterns, gives a
significant performance boost to Actor-based applications compared

7.5 summary and discussion 115

with “pure” Actor Model implementations. Our tests confirm that
Actors+Parallel Patterns is a flexible and expressive parallel program-
ming model capable of obtaining performance comparable to state-of-
the-art specialized implementations on multi-/many-core platforms,
without discarding essential features of the Actor Model such as
memory isolation and the dynamic spawning of Actors.

8
H I G H - T H R O U G H P U T S T R E A M P R O C E S S I N G W I T H
A C T O R S

Parts of this chapter
was been published
in the Workshop
on Programming
based on Actors,
Agents, and
Decentralized
Control
(AGERE!) [177].

In Chapter 7 we proposed the design and implementation of a set of
Parallel Patterns, which synergically integrate with the Actor Model.
Parallel Patterns can be composed and nested to build complex struc-
tures, in which Pipeline and Farm represent the infrastructure and
Sequential, Map and Divide&Conquer are the core components encap-
sulating the business-logic code. The pattern compositions can be
spawned and used by other Actors of the Actor-based application.
We also demonstrated that it is possible to implement efficient data-
parallel computations in Actor-based application on multi-/many-
cores by leveraging our Parallel Patterns.

In this chapter, we focus on streaming computations and specifi-
cally on high-throughput streaming applications executed on multi-
/many-cores. Actor-based languages and frameworks are more and
more employed to design and develop complex streaming appli-
cations that need high flexibility, adaptivity, and high-scalability.
However, in the Actor Model, the scalability concept is often associ-
ated with scale-out settings, i. e., large distributed systems or clusters.
Nonetheless, solutions capable of consolidating several distributed
servers in a single scale-up multi-/many-core server have recently
gained special attention since they can reduce hardware costs, soft-
ware licenses cost, data-center space, and power consumption [23].
To this end, the “pure” Actor Model does not offer enough room for
enhancing its efficiency on a single scale-up multi-/many-core server.
This is primarily due to the impossibility of introducing low-level op-
timizations in the messaging systems without breaking the model’s
semantics. Message-passing performance is crucial in streaming
applications, where concurrent streaming entities (called operators)
usually send a high number of small messages (called tuples in the
Data Stream Processing domain). As we will demonstrate, the Actors’
message-passing semantics may introduce significant performance
degradations in high-throughput application contexts characterized
by the exchange of many small messages.

In the following, we propose a set of optimizations of our Par-
allel Patterns to reduce these performance overheads. Therefore, in
this chapter, we concentrate on Control-parallel Patterns, i. e., Sequen-
tial, Pipeline, and Farm.

The chapter starts describing the problems to adopt “pure” Actor
Model implementation for the streaming computation (Section 8.1).
We propose two microbenchmarks to assess the performance degra-

117

118 high-throughput stream processing with actors

dation of C++ Actor Framework (CAF) and to be able to sharpen
our optimization interventions. Then, Section 8.2 presents the sets of
optimization implemented on top of our Parallel Patterns. Indeed,
we propose a new skeleton implementation of the Sequential, which
we called SeqNode. The SeqNode is capable of optimizing message-
passing operations in pipeline structures made of compositions of
Parallel Patterns. Moreover, we proposed a specific optimization for
the Farm and Pipeline patterns, which reduces the number of message
hops, and a simple backpressure mechanism to control memory con-
sumption. Finally, we evaluate our approach by implementing a set
of well-known streaming benchmarks (Section 8.3), comparing the re-
sults of the optimized Parallel Patterns with those implemented in
Chapter 7.

8.1 motivations and problem statement

The Actor Model is particularly suited to implement streaming ap-
plications because of the many concurrent entities usually involved,
the explicit management of routing of messages, and the absence of
shared states among operators. In the context of high-throughput de-
manding streaming applications targeting multi-/many-core servers,
the use of system-level languages for implementing the Actor Model
is unquestionably a performance plus compared to, for example, Java-
based implementations. Indeed, several well-known implementations
of the Actor Model, such as Erlang [24] and Akka [18], use vir-
tual machine abstractions. Instead, C++ Actor Framework (CAF)
applications are compiled directly into native machine code. However,
CAF does not provide specific support for data-intensive streaming
applications1.

To evaluate the performance of CAF Actors in high-throughput
streaming computations, we implemented a simple microbenchmark,
i. e., a pipeline composed of three sequential stages. We built the
benchmark using the Parallel Pattern abstractions we discussed in
Chapter 7, and we compare the results obtained with those obtained
by using a direct thread-based C++ implementation of the pipeline.

Specifically, we used the Parallel Pattern Pipeline, and connected
three SeqActors in a linear chain. The first Actor (called Source) gen-
erates a stream of tuples at the maximum speed possible (each tuple
is 24B). The second Actor (called Forwarder) forwards each input tu-
ple to the next stage, and finally, the last Actor (called Sink) collects
all tuples. Then, the same pipeline has been implemented by using
three C++ threads and two FIFO lock-free queue [15] to implement
the channels between the stages.

1 CAF offers experimental support for dataflow streams between Actors [194]. We did
not use such a building-block in our implementation because, from the performance
standpoint, it does not solve the issues outlined in this chapter

8.1 motivations and problem statement 119

The two implementations were executed for 60 s and their through-
put was measured in the Sink node. CAF (version 0.17.5)2 has been
configured to run with three run-time Worker threads and with the
aggressive polling strategy that maximizes system reactivity [211].

1.5M

2M

2.5M

3M

3.5M

CAF Threads

T
h
ro

u
g
h
p
u
t
(t

u
p
le

/s
)

Pipeline Test

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

CAF Queue CAF Msgs

A
v
g
.
s
e
n
d
 t
im

e
 (

u
s
)

Send/Receive Test

(b)

Figure 41: (a) Pipeline microbenchmark. CAF-based vs “manual” thread-
based implementation. (b) Producer-Consumer microbenchmark.
Simplified (CAF Queue) vs default CAF messaging system.

Figure 41a shows the results obtained. The measured throughput
by employing CAF Actors is more than 2× lower than the thread-
based implementation (1.4M vs 3.3M tuples/s).

To better understand the problem, we used a second microbench-
mark implementing a simple Producer-Consumer pattern using two
CAF Actors exchanging 100M small messages (4B each). The objec-
tive is to evaluate the overhead for exchanging a single message be-
tween Producer and Consumer.

The first version uses the lock-free queue used in the CAF run-time
for implementing Actors’ mailboxes as a communication channel
between Producer and Consumer (cf. Section 2.4.1). Therefore, the
Producer pushes the messages directly into the queue while the
Consumer pops them out.

In the second version, instead, we used the default CAF messaging
system, which leverages the same lock-free queue with the dynamic
message dispatching. Indeed, CAF adopts type-erasure to send dy-
namic messages to Actors. The original type of the message is an-
notated and then used in the pattern matching phase in the receiver
Actor. After the Actor behavior is selected the message is cast back to
the original type and the behavior lambda function is executed.

Figure 41b shows the results of this second microbenchmark. The
overhead introduced by the Actors messaging system is more than
2× the base case (0.33µs vs 0.75µs). Such overhead is due to the com-

2 We also tested the pre-release 0.18.0 obtaining similar performance figures.

120 high-throughput stream processing with actors

plexity of managing different types of messages, even if, as in our
microbenchmarks, the Actors will always receive the same input type
for the entire execution. This extra cost, perhaps, can be lowered by
fine-tuning the implementation code, but certainly, it cannot be com-
pletely removed without losing the flexibility of defining multiple
behaviors for an Actor. In streaming applications, operators work on
statically defined input and output data types (the type of input and
output tuples), and the extra complexity of managing multiple data
types is the primary source of overhead.

For these reasons in the next section we propose a new skeleton
implementation of the SeqActor which we called SeqNode. Using the
SeqNode in combination with the Pipeline and Farm Parallel Pattern
permits us to build a graph of concurrent entities. This graph stati-
cally defines their message types, thus removing the overhead and
the complexity for dynamic dispatching.

8.2 stream-parallel patterns

In this Section, we discuss two optimizations of our Parallel Pattern
implementations for the high-throughput streaming domain: a new
implementation skeleton of the Sequential Parallel Pattern, and a spe-
cific optimization raising from the composition and nesting of Farm
of Pipeline components. Also, we discuss a simple implementation
of a backpressure mechanism to limit the number of messages pro-
duced by a sequential node in a Pipeline chain to avoid overload-
ing a slower consumer node, i. e., a bottleneck node. Indeed, Actors
use unbounded input mailboxes; therefore, in the context of high-
throughput streaming of messages among Actors, it is probable that
some slower Actors will have an explosion of messages in their input
queue. Without a mechanism to limit the output data-rates of Actors,
the Actor Model could not be used in these high-throughput contexts.

8.2.1 Streaming Operators

To tackle the message-passing overhead problem presented in Sec-
tion 8.1, we propose a new implementation skeleton for the Sequential
pattern capable of handling a single message type and optimized
for defining high-throughput data streaming operators in CAF. Such
new skeleton is implemented by the SeqNode class whose interface is
inspired to the one provided by the node building-block in the Fast-
Flow parallel library [16].

Listing 7 shows its current interface. Each new operator must de-
fine at least the consume method, which is called as soon as a tu-
ple is available to be consumed by the node. During the SeqNode ex-
ecution, input tuples are processed sequentially and in order. The
other two methods on_start and on_stop, are automatically invoked

8.2 stream-parallel patterns 121

once when the node starts and right before it terminates, respectively.
These virtual methods may be overwritten in the user-defined opera-
tor to implement initialization and finalization code for the operator
node. The SeqNode has a typed input queue and zero, one or more
typed output queue references (implemented by the multiQueues ob-
ject in Line 13 of Listing 7) in order to connect the operator imple-
mented by the node to one or more different SeqNodes.

1 template <typename Tin, typename Tout = Tin>

2 class SeqNode {

3 public:

4 void run() {

5 // execute the node

6 }

7 protected:

8 virtual void consume(Tin &x) = 0;

9 virtual void on_start() { /* nop */ }

10 virtual void on_stop() { /* nop */ }

11 void send_next(Tout &&x) { /* ... */ }

12 Queue<Tin> in_;

13 std::optional<multiQueues<Tout>> out_;

14 };

Listing 7: The base interface of the SeqNode streaming pattern.

1 struct Operator : SeqNode<T> {

2 Operator(MyState s) : SeqNode{}, s_{s} {}

3 void consume(T &x) override {

4 T y = do_something(x, s_);

5 send_next(std::move(y));

6 }

7

8 private:

9 MyState s_; // operator local state

10 };

11

12 int main() {

13 // ...

14 MyState s1, s2;

15 Operator op1{s1};

16 Operator op2{s2};

17 Pipeline pipe{op1, op2};

18

19 auto p = spawn_pattern(sys, pipe).value();

20 // ...

21 }

Listing 8: Simple example showing how to define a SeqNode and how to use
it within Pipeline pattern.

The Sequential pattern has two implementation skeletons: SeqActor
and SeqNode. The main differences between them are that the first
behaves like a standard CAF Actor, and so it can exchange messages

122 high-throughput stream processing with actors

with any other Actors being them a standard CAF Actor or a Paral-
lel Pattern. On the contrary, the SeqNode can be used only inside a
Pipeline pattern, or it can be a Worker of a Farm pattern. The Pipeline
and Farm patterns provide the necessary interface to enable the SeqN-
ode to communicate with other standard Actors. Listing 8 shows how
to define SeqNode operators and how to connect them in a Pipeline
pattern.

SeqNodes are currently implemented as CAF blocking Actors. The
message exchange between two consecutive SeqNodes does not rely
on the CAF messaging system. Instead, typed messages are pushed
directly into the input queue of the receiving node. As shown in the
microbenchmark tests, this approach permits to considerably lower
the message-exchange overhead present in standard Actors, given by
the complexity of managing pattern-matching for the dynamic mes-
sage dispatching.

8.2.2 Pipeline compositions of Farms

The functional-style composition is one of the primary features of the
proposed Parallel Patterns. Streaming applications can be easily mod-
eled by one or more Pipeline compositions of SeqNodes where some
operators are replicated using the Farm pattern and suitable distri-
bution policies. The Farm implementation skeleton uses an Emitter,
which is in charge to distribute the incoming messages to the Worker
executing the selected distribution policy (cf. Section 7.3). The Emit-
ter introduces an extra message hop for each operator replica in a
streaming network formed by multiple Farm compositions. Clearly,
these extra hops may impact the end-to-end latency for traversing the
entire network of operators and may introduce a bottleneck in case
of high data rates and fine-grained operators. For these reasons, we
decided to introduce a new implementation skeleton for the compo-
sition of Farm PPs within a Pipeline to reduce the number of Emitters
hence the number of message hops.

When a Pipeline pattern connects two consecutive Farms (regardless
of the kind of PP compositions used in the Workers), the Emitter of
the second farm is automatically removed, and its distribution policy
is implemented within the send_next method of the right-most leaf
PPs (i. e., Sequential, Map, and Divide&Conquer) present in all Worker
replicas of the first Farm. Figure 42 shows a simple use-case in which
three Farm patterns are used within a Pipeline to replicate three Se-
quential operators (in the figure, we used SeqNodes). Only the first
Farm preserves the Emitter because it can receive messages from out-
side the pattern, e. g., from a standard CAF Actor. On the contrary,
the second and third Farms do not have the Emitter.

8.2 stream-parallel patterns 123

Figure 42: Optimized Pipeline composition of three Farms patterns running
replicas of SeqNode operators.

8.2.3 The send_next_if primitive.

In almost all Stream Processing Engines (SPE), e. g., Apache Storm [22]
and Apache Flink [20], a form of backpressure is implemented to
guarantee that sender Actors cannot overload receiver Actors due
to different relative speed [136]. Instead of implementing complex
and costly demand signaling protocols between each sender and
receiver, we decided to implement a more straightforward form of
flow-control by providing a send_next_if command within Parallel
Patterns. The if condition is applied to the actual number of messages
present in the destination queue. If the length of the queue (observed
by the sender) is greater than the specified parameter value, the
send command immediately returns to allow the user to take the
suitable actions (e. g., waiting a while before retrying or discarding
the message or buffering it locally).

The send_next_if command, like send_next, uses the policy con-
figured by the next pipeline stage to select the queue in which to
insert the message. However, if the next stage policy is either round-
robin or random, the command will try to enqueue the message in
all next queues before returning with failure. This simple mechanism
allows the sender to implement flow-control strategies and to auto-
regulate the speed at which messages are sent. In high data rate sce-
narios, such control-flow strategies are typically needed only in the
Source operator.

We modified the CAF LIFO queue (cf. Section 2.4.1) by adding
a new method that returns the estimated length of the queue (i. e.,
synchronized_size). This method will be internally used by the
send_next_if command to check the queue length of SeqActors and
SeqNodes. synchronized_size counts the elements present both in
the multiple FIFO queues and in the LIFO thread-safe queue. In the
first case, the calculation is performed without synchronization and

124 high-throughput stream processing with actors

might return an approximated value. Instead, the LIFO queue count
is performed within a spin-lock to avoid data-races. However, in the
implementation we made, the extra cost of the synchronization is
paid only in the send_next_if command where the estimation of the
queue length is needed and never paid in the send_next command.

8.3 evaluation

In this Section, we consider again the Pipeline microbenchmark al-
ready presented in the Section 8.1, and we also consider a set of
streaming applications typically used to evaluate Stream Processing
Engines.

All experiments were conducted on the Xeon server (the complete
specification is in Section 5.1). The CAF version used is the 0.17.5,
and for all tests, the number of run-time Worker threads was set to
the total number of Actors used. The Work-Stealing CAF run-time
has been configured to use the most aggressive polling strategy to
maximize reactivity of threads.

1.5M

2M

2.5M

3M

CAF CAF PP

T
h
ro

u
g
h
p
u
t
(t

u
p
le

/s
)

Pipeline Test

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

CAF CAF PP

A
v
g
.
s
e
n
d
 t
im

e
 (

u
s
)

Send/Receive Test

(b)

Figure 43: (a) Maximum throughput of the Pipeline microbenchmark and (b)
the average send time of Producer-Consumer microbenchmark.

Our first test was to evaluate the improvement of using SeqN-
odes instead of SeqActors in the three-stage pipeline microbench-
mark. Figure 43a compares the maximum throughput (tuples/s)
obtained by the the two versions, CAF implementing Pipeline (Se-
qActor,SeqActor,SeqActor); CAF PP implementing Pipeline (SeqN-
ode,SeqNode,SeqNode), of the same operators. A large part of the
overhead discussed in Section 8.2 has been removed. The difference
with the baseline (called Thread in Figure 41a), is now about 15%
(2.8M vs 3.3M tuples/s), which means that there is still a small
margin for fine-tuning our SeqNode implementation. Concerning the
cost for exchanging a message between a Producer and a Consumer

8.3 evaluation 125

Actor, Figure 43b shows that the SeqNode-based implementation (i. e.,
CAF PP) reduces the average time from 0.81µs to 0.38µs.

Figure 44: Applications used in the evaluation.

We now consider four well-known streaming applications3 whose
operators graphs are sketched in Figure 44, namely:

• Word Count (WC) counts the number of instances of each word
in a text file. An operator splits the lines into words; a second
operator counts the word instances.

• Fraud Detection (FD) applies a Markov model to compute the
probability of a credit card transaction to be a fraud.

• Spike Detection (SD) finds the spikes in a stream of sensor read-
ings using a moving-average operator and a filter.

• Linear Road (LR) emulates a tolling system for the vehicle ex-
pressways. The system uses a variable tolling technique account-
ing for traffic congestion and accident proximity to calculate toll
charges.

The figure also shows the kind of communication among opera-
tors: forward, byKey and broadcast. These communication attributes are
meaningful if the next operator is replicated using a Farm pattern.

3 The C++ source code is publicly available in GitHub: https://github.com/

ParaGroup/StreamBenchmarks.

https://github.com/ParaGroup/StreamBenchmarks
https://github.com/ParaGroup/StreamBenchmarks

126 high-throughput stream processing with actors

The forward communication is the default one. It states that an input
tuple can be assigned to any replicas. We implemented this communi-
cation mode with the round-robin policy strategy of the Farm pattern.

The byKey distribution allows sending all input tuples with the
same key attribute (i. e., a specific field of the tuple) to the same oper-
ator replica.

Finally, the broadcast distribution duplicates the tuple and sends it
to all next operators.

1M

1.2M

1.4M

1.6M

1.8M

2.0M

2.2M

2.4M

100K 150K 200K 250K

T
h
ro

u
g
h
p
u
t
(w

o
rl
d
/s

)

Input rate (line/s)

CAF
CAF PP

Word Count Application (WC)

Figure 45: Throughput expressed in words per second, varying the input
rate for the Word Count application.

5K

10K

15K

20K

25K

30K

35K

150K 200K 250K 300K

T
h
ro

u
g
h
tp

u
to

 (
tu

p
le

/s
)

Input rate (tuple/s)

CAF
CAF PP

Fraud Detection Application (FD)

Figure 46: Throughput expressed in tuples per second varying the input rate
for the Fraud Detection application

In Figure 45, 46, 47, 48 we showed the throughput obtained by
implementing the applications’ operators (one replica per operator)
by using the two implementation skeletons for the Sequential pattern
(SeqActor vs SeqNode, labeled with CAF and CAF PP, respectively). All
tests have been executed 20 times for 60 seconds. The average value

8.3 evaluation 127

100K

200K

400K

600K

800K

1M

100K 500K 1M 2M

T
h
ro

u
g
h
p
u
t
(t

u
p
le

/s
)

Input rate (tuple/s)

CAF
CAF PP

Spike Detection Application (SD)

Figure 47: Throughput expressed in tuples per second varying the input rate
for the Spike Detection application

200K

400K

600K

800K

1M

1.2M

1.4M

1.6M

1.8M

2.0M

100K 300K 500K 700K

T
h
ro

u
g
h
p
u
t
(t

u
p
le

/s
)

Input rate (tuple/s)

CAF
CAF PP

Linear Road Application (LR)

Figure 48: Throughput expressed in tuples per second varying the input rate
for the Linear Road application

obtained and the error-bar are shown in the figures. The throughput
has been measured in the Sink operator varying the input data rate
in the Source. As long as the data rate is relatively low, there are
no significant differences between the two implementation skeletons,
even though the end-to-end latency is higher for the SeqActor-based
implementation (cf. Table 6).

Conversely, with high data rates, the difference between the two
versions is significant.

Word Count presents the biggest difference. This is due to the very
high data rate produced by the Splitter operator that gets in input
a line from the Source, and produces in output all words it contains,
thus multiplying the nominal input data rate.

Figure 49 also shows the performance improvement obtained for
all applications by the SeqNode-based implementations (CAF PP vs

128 high-throughput stream processing with actors

WC FD SD LR

CAF 536µs 454µs 461µs 531µs

CAF PP 24µs 5µs 2µs 24µs

Improvement 22 84 283 22

Table 6: Applications latency with rate 10K tuples/s. The improvement is
the ratio between CAF PP and CAF.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

WC FD SD LR

Im
p
ro

v
e
m

e
n
t
(t

im
e
s
)

Applications

CAF PP vs CAF

Figure 49: Performance improvement of CAF PP vs CAF for WC, FD, SP, LR
applications. The tests were executed allowing the Source operator
to generate at the maximum rate.

CAF). In this case, for both implementations, we ran the Source opera-
tor at maximum speed. In addition, they use the send_next_if prim-
itive. The “queue length value” is set to 1K elements, and if reached,
the Source waits for some nanoseconds before retrying the send, thus
implementing a very aggressive generation of data without increas-
ing the size of receivers’ input queues indefinitely. In this way, the
internal pipeline operators are not overloaded, and the entire system
stabilizes after a few seconds of execution. In this case, we executed
all applications for 10 minutes.

As expected, the improvement of the CAF PP version using SeqN-
odes is significant, more than 2× in all application but Fraud Detection
where the improvement is about 30%.

Finally, Table 7 shown the results obtained in all the applications
by replicating all the streaming operators by using the Farm pattern.
Instead of finding the best replication degree for each operator (op-
erators have different execution times, and some of them may need
more replicas while others do not need to be replicated at all), we
decided to equally replicate all of them until we fill up all the logical
cores of the server considered (48 in our case).

The replication degree is specified in the table. In this way, we can
evaluate the behavior of the two implementation skeletons under very

8.4 summary and discussion 129

WC FD SD LR

Operators 4 3 4 9

Replicas ×12 ×16 ×12 ×5

CAF 2.6M 327K 1.6M 1.0M

CAF PP 8.1M 560K 9.7M 2.1M

Improvement 3.1 1.7 6 2

Table 7: Applications throughput (tuples/s) obtained replicating all opera-
tors. The improvement is the ratio between CAF PP and CAF.

high data rates, since all Source replicas execute at maximum speed.
In this test we used for both versions the implementation skeleton
for the Farm pattern that removes the Emitter between two consecu-
tive Farm PPs as described in Section 8.2.2. For all applications, we
obtained a performance improvement in terms of throughput, and
as expected, the relative distance between the two implementation
skeletons (i. e., SeqActor vs SeqNode) further increased in all applica-
tions but Linear Road, where the relative distance remains about the
same due to its peculiarities.

All in all, at high data rates, the new implementation skeletons of
our PPs provide a definite performance boost without compromising
the AM’s message-passing semantics.

8.4 summary and discussion

Actor-based languages and frameworks are more and more employed
to design and develop complex streaming applications that need high
flexibility, adaptivity, and high-scalability. However, when targeting
a single scale-up multi-/many-core system capable of consolidating
multiple distributed servers, the “pure” Actor Model approach intro-
duces extra overhead, impairing its usage.

To assess the Actor Model performance figures in the context of
high-throughput streaming applications, we conducted a careful per-
formance analysis employing both simple microbenchmarks as well
as a set of well-known streaming applications typically used to assess
the performance of Stream Processing Engines (SPE). We identified
two main issues. First, the complexity of the messaging system for
managing different message types in an Actor is a limiting perfor-
mance factor in Actor-based streaming applications where streaming
operators usually deal with a single data type. Second, at high input
data rates, the Actors mailboxes having unlimited capacity pushes
too much pressure in the memory system, making it challenging to
stabilize the application behavior and limit memory consumption.

To tackle these issues, we proposed a set of optimizations for our
Parallel Patterns targeting streaming computations on multi-/many-

130 high-throughput stream processing with actors

cores. In particular, we introduced the SeqNode implementation skele-
ton to be used within Farm and Pipeline Parallel Patterns. Differently
from the SeqActor, discussed in Section 7.3.1, the SeqNode is a special-
ized Actor capable of handling only statically-defined single input
and single output message types. Using the SeqNode in combination
with the Pipeline and Farm patterns enables to build streaming graphs
of statically defines types, thus removing the overhead and the com-
plexity associated with the dynamic dispatching of messages used
in plain Actors. Other optimizations introduced are related to a new
implementation skeleton of the Farm pattern that optimizes Pipeline
compositions of consecutive Farm patterns to reduce the number of
message hops. Moreover, we discussed the issues of the Actors’ un-
bounded mailboxes in streaming computations, and we introduce
a simple backpressure mechanism for SeqNode operators leveraging
a new communication primitive that takes into account the queue
length of the receiving Actors.

The evaluation conducted demonstrates that the optimizations
introduced significantly enhance message-passing communications,
improving Actor-based streaming applications’ overall performance.
Moreover, it also demonstrates that the whole set of patterns pro-
posed is expressive enough to implement a significant set of well-
known streaming benchmarks.

Part III

S U M M A RY

9
C O N C L U S I O N S A N D F U T U R E R E S E A R C H
D I R E C T I O N S

9.1 summary

With the large diffusion of multi-/may-core systems, several different
programming models have been proposed targeting such platforms.
All of them, in different ways, aim at overcoming the limitations
of the traditional shared-memory programming approach based on
threads and locks. Unfortunately, most of the currently available par-
allel programming frameworks are either not high-level enough to be
profitably used by the standard programmers or not flexible enough
to be used in different applications domains with strong parallelism
requirements (e. g., data-streaming, data-intensive parallelism, task-
parallelism).

The Actor Model is an elegant concurrency model with important
memory safety guarantees, which prevents common bugs and secu-
rity vulnerabilities when dealing with concurrency. It offers high flex-
ibility for building communication topologies composed of concur-
rent Actors. This programming model is gaining increasing success
in non-performance critical scenarios thanks to its simplicity and flex-
ibility. Actor-based applications are characterized by unstructured and
not rigid communication graphs where Actors can be created dynam-
ically. Each Actor can spawn other Actors and can communicate with
them just by using their references. Unluckily, the Actor Model does
not provide the non-expert parallel programmer with high-level com-
ponents for implementing recurrent parallel problems. Moreover, its
strict message-passing semantics does not permit the introduction of
essential optimizations for shared-memory platforms, making the cre-
ation of parallel libraries a non-trivial task, especially for data-parallel
computations.

The thesis describes our research work to combine the Actor Model
with the structured parallel programming approach based on Parallel
Patterns, i. e., well-defined ready-to-use parallel components suitable
to be used in recurrent parallel problems (e. g., Pipeline, Map-Reduce,
Divide&Conquer). The implementation skeletons of those components
can be optimized for a given platform, and thus they can also be used
to inject platform-specific optimizations otherwise prevented by the
Actor Model semantics.

Parallel Patterns alone might limit the freedom of the programmers
for expressing the parallelism in their applications. It may also hap-
pen that available Parallel Patterns do not support the required paral-

133

134 conclusions and future research directions

lel forms needed to solve the programmer’s problem. In this respect,
we believe that a synergic integration of Actors and Parallel Patterns
represents the right balance between flexibility, programmability, ex-
pressiveness, and performance on multi-/many-core systems.

In this thesis, we discussed some limitations of the “pure” Actor
Model, both related to programmability and performance aspects on
multi-/many-cores, and we described our efforts to demonstrate the
viability of combining Actors and Parallel Patterns and the leverage
effect produced by their integration.

In Chapter 5 we focused on studying the memory isolation prop-
erty. The Actor Model enforces the memory isolation property of the
Actors’ internal state to avoid potential subtle data-races. This prop-
erty is somehow in contrast with some shared-memory-based opti-
mizations that are crucial to efficiently implement data-parallel com-
putations on physical shared-memory systems.

In Chapter 6 we described our first attempt to combine the Actor
Model with Parallel Patterns through a software accelerator for data-
parallel computations. The accelerator could be installed on a sepa-
rated portion of the CPU core resources by using our implementation
in the C++ Actor Framework (CAF) of the thread-to-core-affinity fea-
ture. All Actors can then use the accelerator to speed up data-parallel
computations on large incoming messages.

We then developed the full integration of CAF Actors with a set
of Parallel Patterns in a new parallel library called CAF-PP1. Each
Parallel Pattern of the library is a “macro Actor”. It can be spawned
like standard Actors and can interact with them by using the same
messaging system.

Chapter 7 and Chapter 8 contain the details of the implementa-
tion of the Parallel Patterns in the CAF-PP library. Specifically, in
Chapter 7 we concentrated mainly on Data-parallel Pattern, whereas
in Chapter 8 we focused on optimizing Control-parallel Pattern and
their composition to efficiently implement high-throughput stream-
ing computations.

We evaluated the performance of our Actors+Patterns library by
using an extensive set of benchmarks on different multi-/many-cores
platforms. Specifically, through a set of well-known parallel applica-
tions coming from the Parsec benchmark suite, we demonstrated
that the Actor Model alone cannot fully exploit the computation
capabilities of modern multi-/many-core platforms, especially for
data-parallel computations. Instead, by leveraging our CAF-PP
library atop the C++ Actor Framework (CAF) framework, we
demonstrated that it is possible to achieve the comparable per-
formance of raw PThreads-based, and thread-based specialized
libraries (e. g., FastFlow) implementations without breaking the
Actor Model design principles and semantics. We also considered a

1 https://github.com/ParaGroup/caf-pp

https://github.com/ParaGroup/caf-pp

9.2 concluding remarks 135

different class of applications for which the Actor Model is increas-
ingly used: data streaming computations. In particular, we focused
on high-throughput computations with high-performance require-
ments. Again, we demonstrated that Actors alone could not achieve
high-throughput and low-latency in highly-demanding streaming
computations. Instead, leveraging the optimized Control-parallel Pat-
terns of our CAF-PP library, we demonstrated a performance im-
provement of more than 2× in terms of throughput and a significant
reduction of the end-to-end message latency of a significant set of
well-known streaming benchmarks.

9.2 concluding remarks

The limited expressivity and flexibility of current high-level paral-
lel programming models targeting multi-/many-cores led us to pro-
pose and implement a new parallel library on top of the C++ Actor

Framework called CAF-PP. It results from a careful arrangement of
two distinct parallel programming approaches, namely, Actor-based
and Pattern-based parallel programming.

Several existing models suffer from being specialized for a given
class of parallel problems, forcing the programmers to rethink
or adapt their applications to use the selected model. In this re-
spect, a paradigmatic example is the well-known Google MapReduce
programming approach [87], and its open-source implementation
Hadoop [21]. The framework was pushed by several programmers
and researchers to be used to implement many different kinds
of applications. Specifically, several graph-based algorithms were
ported to this model. However, those implementations have been
recently outperformed by Vertex-Centric programming models (e. g.,
GraphLab) both concerning programmability and absolute perfor-
mance figures [150].

Defining a parallel programming approach that is simple, mal-
leable, efficient, and fully expressive is of paramount importance
for building durable applications for current and forthcoming multi-
/many-core systems. Parallel Patterns are practical software com-
ponents useful to solve a given problem efficiently. They can be
combined to solve a larger class of applications, even though it is
not always possible to have all Parallel Patterns needed for all kinds
of applications. In this scenario, the Actor Model represents a safe
escape strategy. It offers a well-defined and robust model, providing
the programmer with enhanced flexibility and memory-safety on
multi-/many-cores.

The combination of these two programming approaches allows
more choices for the programmers. In principle, by adopting our
CAF-PP library, the programmers may even refrain from using Paral-
lel Patterns for designing a given part of their application. If this is

136 conclusions and future research directions

the case, they can count on standard Actors, which are well-defined
concurrent entities with clear semantics and strong memory-safety
guarantees. Conversely, suppose the programmers discover that one
or more Actors are potential bottlenecks for their applications. In that
case, they can count on well-defined parallel components that can be
used as “macro Actors” to parallelize the bottleneck Actors accord-
ing to the parallel semantics they want to use (e. g., Map-Reduce or
Pipeline). Even in this case, with the model exposed by the CAF-PP li-
brary, this operation can be done straightforwardly without changing
or forcing the whole model’s semantics.

Such a parallel programming view can be considered a general
approach that combines highly specialized components to solve a
given class of problems and a general-purpose and safe programming
model to accommodate more specific users’ needs. We believe that
the resulting combination of Actors and Parallel Patterns may offer a
new coherent approach to parallel programming, even for non-expert
parallel programmers, maintaining a good trade-off between vertical
specializations and general-purpose flexibility.

9.3 future perspectives

This thesis describes our vision of a flexible, efficient, and memory-
safe programming model for multi-/many-core systems. Most of the
research work points to practical implementations and optimizations
we defined for the smooth integration between Actors and Parallel
Patterns.

We foresee incremental improvements to the library stability and
the full integration with the C++ Actor Framework framework. We
also planned to include new Parallel Patterns to the current set, specif-
ically those targeting data-parallel computations such as iterative sten-
cil-based computations [12] used in many image and numerical data
processing algorithms.

We conducted the experimental evaluation focusing on the perfor-
mance enhancement that the Parallel Patterns we designed provides
to the Actor Model. Therefore, we concentrated on the critical parts
of the Actor-based applications for which we can provide substantial
performance improvement through our patterns. We plan to study
larger and more complex Actor-based applications to evaluate more
in-depth the programmability advantages that our model can bring.

The work perspective is to back the more practical approach of
this research with the formal definition of the proposed program-
ming model. Actor Model has a long history of theoretical works that
studied different aspects of Actor behavior building complete formal-
izations [8, 121]. We envision a formalization that includes the coop-
eration of the Actor Model with the structured parallel programming
model based on Parallel Patterns. For instance, we could follow the

9.3 future perspectives 137

approach of Hains et al. [115, 139] in which the authors combines the
BSP and Active Objects proposing a formal operational semantics.

Parallel Patterns offer the ability to reason about the parallel ap-
plication structure at a high-level of abstraction and analyze the
expected performance. Recently, RPLsh [108] propose a DSL-based
toolchain supporting the design of parallel applications where par-
allelism is expressed via proper composition and nesting of Parallel
Patterns. RPLsh guides the programmer to select the most suitable
parallel abstraction based on the estimated performance by using
per-pattern parametric cost models. It also offers automatic Parallel
Patterns transformations and optimizations. At the end of the design
process, the RPLsh generates the concurrent C++ code leveraging the
FastFlow library. An interesting future extension of the work pre-
sented in this thesis is to include our set of Parallel Patterns within
the RPLsh providing the users with the possibility to directly mea-
sure the advantages of using Parallel Patterns composition instead of
plain Actors in Actor-based applications.

This research also opens some questions about other parallel pro-
gramming models beyond the Actor Model. The Task-based parallel
programming approach [208] is taking more and more attention, es-
pecially in the industry. The most evident advantage of using Tasks
is the straightforward approach provided to the application program-
mer. The programmer has to be aware of how Tasks are defined with
their input dependencies and how to create a Task. Then, the under-
lining task-engine is in charge to automatically distribute ready tasks
to multiple concurrent worker threads. This high flexibility could
be used to build either data-parallel or streaming applications2. Al-
though Actor Model usually uses an engine to execute ready Actors,
Tasks have a shorter lifespan than Actors, which could improve load
balancing in some cases. However, Actors could be considered re-
peating tasks, i. e., every time an Actor receives a new message, a
new task is ready to be computed. In a more comprehensive picture,
we can add to our evaluation also the Thread-based model, in which
threads have an even longer lifespan than Actors. Indeed, it could be
interesting to compare Tasks, Actors, and Threads as three ways to
decompose an application in a set of concurrent activities with differ-
ent granularities and lifecycles, and studying the pros and cons of the
three approaches considering both performance and programmabil-
ity issues. We envision that Actors might provide the right trade-off
to the programmer, being them capable of behaving either as Tasks
or as Threads.

Finally, the Active Objects [78] has a similar approach to concur-
rency than Actors, and it provides clearer Object-Oriented functional-
ities than Actors [62, 181]. We used Actors instead of Active-Objects

2 However it was recently observed that Task-based Stream Process Engines (SPE) could
be susceptible of higher tuple latency than thread-based SPE [151]

138 conclusions and future research directions

because of their communication mechanism based on the send prim-
itive, which we believe provides more opportunities for easy integra-
tion with Parallel Patterns. Notwithstanding, it is also worth investi-
gating how the Active Objects and Parallel Patterns programming ap-
proach can be combined in a unified model and understand whether
the resulting model provides further expressivity and programmabil-
ity cues than Actors+Parallel Patterns.

B I B L I O G R A P H Y

[1] 2nd Gen AMD EPYC™ Processors | EPYC™ 7002 Series | AMD.
url: https : / / www . amd . com / en / processors / epyc - 7002 -

series (visited on 10/04/2020).

[2] ABCL: Actor-Based Concurrent Language. url: https : / / en .

wikipedia . org / wiki / Actor - Based _ Concurrent _ Language

(visited on 06/03/2020).

[3] Acteur-rs library. url: https://github.com/DavidBM/acteur-
rs (visited on 06/03/2020).

[4] Actix: Actor framework for Rust. url: https://github.com/
actix/actix (visited on 06/03/2020).

[5] Actor4j actor-oriented Java framework. url: https : / / github .

com/relvaner/actor4j-core (visited on 06/03/2020).

[6] Actr: Simple, fast and typesafe Java actor model. url: https://
github.com/zakgof/actr (visited on 06/03/2020).

[7] Gul Agha. “Actors: A Model of Concurrent Computation in
Distributed Systems.” PhD thesis. 1984.

[8] Gul Agha, Ian A. Mason, Scott Smith, and Carolyn Talcott.
“Towards a theory of actor computation: Extended abstract.”
In: CONCUR ’92. Vol. 630. Series Title: Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1992, pp. 565–579. isbn: 978-3-540-55822-4. doi:
10.1007/BFb0084816.

[9] Akka: build concurrent, distributed, and resilient message-driven ap-
plications for Java and Scala | Akka. url: https://akka.io/
(visited on 06/03/2020).

[10] Baseem A. AL-Twajre. “Performance Analysis of Messages
Queue in the Different Actor System Implementation.” In:
2019 XIth International Scientific and Practical Conference on
Electronics and Information Technologies (ELIT). 2019 XIth In-
ternational Scientific and Practical Conference on Electron-
ics and Information Technologies (ELIT). Lviv, Ukraine:
IEEE, Sept. 2019, pp. 127–131. isbn: 978-1-72813-561-8. doi:
10.1109/ELIT.2019.8892329.

[11] Elvira Albert, Antonio Flores-Montoya, Samir Genaim, and
Enrique Martin-Martin. “May-Happen-in-Parallel Analysis for
Actor-Based Concurrency.” In: ACM Transactions on Computa-
tional Logic 17.2 (Mar. 28, 2016), pp. 1–39. issn: 1529-3785, 1557-
945X. doi: 10.1145/2824255.

139

https://www.amd.com/en/processors/epyc-7002-series
https://www.amd.com/en/processors/epyc-7002-series
https://en.wikipedia.org/wiki/Actor-Based_Concurrent_Language
https://en.wikipedia.org/wiki/Actor-Based_Concurrent_Language
https://github.com/DavidBM/acteur-rs
https://github.com/DavidBM/acteur-rs
https://github.com/actix/actix
https://github.com/actix/actix
https://github.com/relvaner/actor4j-core
https://github.com/relvaner/actor4j-core
https://github.com/zakgof/actr
https://github.com/zakgof/actr
https://doi.org/10.1007/BFb0084816
https://akka.io/
https://doi.org/10.1109/ELIT.2019.8892329
https://doi.org/10.1145/2824255

140 bibliography

[12] M. Aldinucci, M. Danelutto, M. Drocco, P. Kilpatrick, C.
Misale, G. Peretti Pezzi, and M. Torquati. “A parallel pattern
for iterative stencil + reduce.” In: The Journal of Supercomput-
ing 74.11 (Nov. 1, 2018), pp. 5690–5705. issn: 1573-0484. doi:
10.1007/s11227-016-1871-z.

[13] Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kil-
patrick, and Massimo Torquati. “Design patterns percolating
to parallel programming framework implementation.” In: In-
ternational Journal of Parallel Programming 42.6 (Dec. 1, 2014),
pp. 1012–1031. issn: 1573-7640. doi: 10.1007/s10766- 013-
0273-6.

[14] Marco Aldinucci and Marco Danelutto. “Skeleton-based paral-
lel programming: Functional and parallel semantics in a single
shot.” In: Computer Languages, Systems & Structures 33.3 (2007),
pp. 179–192. issn: 1477-8424. doi: https://doi.org/10.1016/
j.cl.2006.07.004.

[15] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Mas-
similiano Meneghin, and Massimo Torquati. “An Efficient
Unbounded Lock-Free Queue for Multi-core Systems.” In:
Euro-Par 2012 Parallel Processing. Ed. by Christos Kaklamanis,
Theodore Papatheodorou, and Paul G. Spirakis. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012, pp. 662–673. isbn:
978-3-642-32820-6.

[16] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Mas-
simo Torquati. “Fastflow: High-Level and Efficient Streaming
on Multicore.” In: Programming multi-core and many-core com-
puting systems. John Wiley & Sons, Ltd, 2017, pp. 261–280. isbn:
978-1-119-33201-5.

[17] Christopher Allen and Julie Moronuki. Haskell Programming
from first principles. Gumroad, 2017.

[18] Jamie Allen. Effective Akka: Patterns and Best Practices. " O’Reilly
Media, Inc.", 2013. isbn: 1-4493-6007-6.

[19] AmbientTalk. url: http://soft.vub.ac.be/amop/ (visited on
06/03/2020).

[20] Apache Flink. 2020. url: https://flink.apache.org/ (visited
on 08/19/2020).

[21] Apache Hadoop. url: http://hadoop.apache.org/ (visited on
12/29/2020).

[22] Apache Storm. 2020. url: http://storm.apache.org/ (visited
on 08/19/2020).

https://doi.org/10.1007/s11227-016-1871-z
https://doi.org/10.1007/s10766-013-0273-6
https://doi.org/10.1007/s10766-013-0273-6
https://doi.org/https://doi.org/10.1016/j.cl.2006.07.004
https://doi.org/https://doi.org/10.1016/j.cl.2006.07.004
http://soft.vub.ac.be/amop/
https://flink.apache.org/
http://hadoop.apache.org/
http://storm.apache.org/

bibliography 141

[23] Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan,
Orion Hodson, and Antony Rowstron. “Scale-up vs Scale-out
for Hadoop: Time to Rethink?” In: Proceedings of the 4th An-
nual Symposium on Cloud Computing. SOCC ’13. event-place:
Santa Clara, California. New York, NY, USA: Association
for Computing Machinery, 2013. isbn: 978-1-4503-2428-1. doi:
10.1145/2523616.2523629.

[24] Joe Armstrong and "Ericsson Telecom Ab". “The development
of Erlang.” In: Association for Computing Machinery 32.8 (1997),
pp. 196–203. doi: 10.1145/258948.258967.

[25] Dominik Aumayr, Stefan Marr, Elisa Gonzalez Boix, and
Hanspeter Mössenböck. “Asynchronous snapshots of actor
systems for latency-sensitive applications.” In: Proceedings of
the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes - MPLR 2019. the 16th
ACM SIGPLAN International Conference. Athens, Greece:
ACM Press, 2019, pp. 157–171. isbn: 978-1-4503-6977-0. doi:
10.1145/3357390.3361019.

[26] Keyvan Azadbakht, Frank S. de Boer, and Vlad Serbanescu.
“Multi-Threaded Actors.” In: Electronic Proceedings in Theoreti-
cal Computer Science 223 (Aug. 10, 2016), pp. 51–66. issn: 2075-
2180. doi: 10.4204/EPTCS.223.4.

[27] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. “SkIE:
A heterogeneous environment for HPC applications.” In: Par-
allel Computing 25.13 (1999), pp. 1827–1852. issn: 0167-8191.
doi: https://doi.org/10.1016/S0167-8191(99)00072-1.

[28] Bruno Bacci, Marco Danelutto, Salvatore Orlando, Susanna
Pelagatti, and Marco Vanneschi. “P3L: A structured high-level
parallel language, and its structured support.” In: Concurrency:
Practice and Experience 7.3 (1995), pp. 225–255. doi: 10.1002/
cpe.4330070305.

[29] Saman Barghi and Martin Karsten. “Work-Stealing, Locality-
Aware Actor Scheduling.” In: 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 2018 IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS). Vancouver, BC: IEEE, May 2018, pp. 484–494. isbn:
978-1-5386-4368-6. doi: 10.1109/IPDPS.2018.00058.

[30] Bastion library. url: https : / / bastion . rs/ (visited on
06/03/2020).

[31] David Alessandro Bauer and Juho Makio. “Hybrid Cloud – Ar-
chitecture for Administration Shells with RAMI4.0 Using Ac-
tor4j.” In: 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN). 2019 IEEE 17th International Conference
on Industrial Informatics (INDIN). Helsinki, Finland: IEEE,

https://doi.org/10.1145/2523616.2523629
https://doi.org/10.1145/258948.258967
https://doi.org/10.1145/3357390.3361019
https://doi.org/10.4204/EPTCS.223.4
https://doi.org/https://doi.org/10.1016/S0167-8191(99)00072-1
https://doi.org/10.1002/cpe.4330070305
https://doi.org/10.1002/cpe.4330070305
https://doi.org/10.1109/IPDPS.2018.00058
https://bastion.rs/

142 bibliography

July 2019, pp. 79–86. isbn: 978-1-72812-927-3. doi: 10.1109/
INDIN41052.2019.8972075.

[32] David Alessandro Bauer and Juho Mäkiö. “Actor4j: A Soft-
ware Framework for the Actor Model Focusing on the Opti-
mization of Message Passing.” In: (2018), p. 10.

[33] Shuvra S. Bhattacharyya, Johan Eker, Jörn W. Janneck, Christophe
Lucarz, Marco Mattavelli, and Mickaël Raulet. “Overview of
the MPEG Reconfigurable Video Coding Framework.” In: Jour-
nal of Signal Processing Systems 63.2 (May 2011), pp. 251–263.
issn: 1939-8018, 1939-8115. doi: 10.1007/s11265-009-0399-3.

[34] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. “The PARSEC Benchmark Suite: Characterization and
Architectural Implications.” In: Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques. PACT ’08. event-place: Toronto, Ontario, Canada. New
York, NY, USA: Association for Computing Machinery, 2008,
pp. 72–81. isbn: 978-1-60558-282-5. doi: 10 . 1145 / 1454115 .

1454128.

[35] Fischer Black and Myron Scholes. “The Pricing of Options
and Corporate Liabilities.” In: Journal of Political Economy 81.3
(1973). _eprint: https://doi.org/10.1086/260062, pp. 637–654.
doi: 10.1086/260062.

[36] Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun
Yang, Sophia Drossopoulou, and Tobias Wrigstad. “Run, ac-
tor, run: towards cross-actor language benchmarking.” In: Pro-
ceedings of the 9th ACM SIGPLAN International Workshop on Pro-
gramming Based on Actors, Agents, and Decentralized Control -
AGERE 2019. the 9th ACM SIGPLAN International Workshop.
Athens, Greece: ACM Press, 2019, pp. 41–50. isbn: 978-1-4503-
6982-4. doi: 10.1145/3358499.3361224.

[37] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. “Cilk:
An Efficient Multithreaded Runtime System.” In: Journal of
Parallel and Distributed Computing 37.1 (1996), pp. 55–69. issn:
0743-7315. doi: https://doi.org/10.1006/jpdc.1996.0107.

[38] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.
Seitz, J. N. Seizovic, and Wen-King Su. “Myrinet: a gigabit-per-
second local area network.” In: IEEE Micro 15.1 (1995), pp. 29–
36.

[39] István Bozó, Kevin Hammond, Viktoria Fordós, Zoltán Hor-
vath, Melinda Tóth, Dániel Horpácsi, Tamás Kozsik, Judit
Köszegi, Adam Barwell, and Christopher Brown. “Discov-
ering parallel pattern candidates in Erlang.” In: Proceedings
of the Thirteenth ACM SIGPLAN workshop on Erlang - Erlang

https://doi.org/10.1109/INDIN41052.2019.8972075
https://doi.org/10.1109/INDIN41052.2019.8972075
https://doi.org/10.1007/s11265-009-0399-3
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1086/260062
https://doi.org/10.1145/3358499.3361224
https://doi.org/https://doi.org/10.1006/jpdc.1996.0107

bibliography 143

’14. the Thirteenth ACM SIGPLAN workshop. Gothenburg,
Sweden: ACM Press, 2014, pp. 13–23. isbn: 978-1-4503-3038-1.
doi: 10.1145/2633448.2633453.

[40] Antonio Brogi, Andrea Canciani, Davide Neri, Luca Ri-
naldi, and Jacopo Soldani. “Towards a Reference Dataset
of Microservice-Based Applications.” In: Software Engineering
and Formal Methods - SEFM 2017 Collocated Workshops: Data-
Mod, FAACS, MSE, CoSim-CPS, and FOCLASA, Trento, Italy,
September 4-5, 2017, Revised Selected Papers. Ed. by Antonio
Cerone and Marco Roveri. Vol. 10729. Lecture Notes in Com-
puter Science. Springer, 2017, pp. 219–229. doi: 10.1007/978-
3-319-74781-1_16.

[41] Antonio Brogi, Stefano Forti, Ahmad Ibrahim, and Luca Ri-
naldi. “Bonsai in the Fog: An active learning lab with Fog
computing.” In: Third International Conference on Fog and Mo-
bile Edge Computing, FMEC 2018, Barcelona, Spain, April 23-26,
2018. IEEE, 2018, pp. 79–86. doi: 10.1109/FMEC.2018.8364048.

[42] Antonio Brogi, Davide Neri, Luca Rinaldi, and Jacopo Soldani.
“Orchestrating incomplete TOSCA applications with Docker.”
In: Sci. Comput. Program. 166 (2018), pp. 194–213. doi: 10.1016/
j.scico.2018.07.005.

[43] Antonio Brogi, Luca Rinaldi, and Jacopo Soldani. “TosKer: A
synergy between TOSCA and Docker for orchestrating mul-
ticomponent applications.” In: Softw. Pract. Exp. 48.11 (2018),
pp. 2061–2079. doi: 10.1002/spe.2625.

[44] Christopher Brown, Vladimir Janjic, Adam D. Barwell, J. Daniel
Garcia, and Kenneth MacKenzie. “Refactoring GrPPI: Generic
Refactoring for Generic Parallelism in C++.” In: International
Journal of Parallel Programming 48.4 (Aug. 2020), pp. 603–625.
issn: 0885-7458, 1573-7640. doi: 10.1007/s10766-020-00667-
x.

[45] David R. Butenhof. Programming with POSIX Threads. 1997.
isbn: 0-201-63392-2.

[46] CAF - C++ Actor Framework. url: http://actor-framework.
org/ (visited on 06/03/2020).

[47] Rafael C. Cardoso, Maicon R. Zatelli, Jomi F. Hübner, and
Rafael H. Bordini. “Towards benchmarking actor- and agent-
based programming languages.” In: Proceedings of the 2013
workshop on Programming based on actors, agents, and decentral-
ized control - AGERE! ’13. the 2013 workshop. Indianapolis,
Indiana, USA: ACM Press, 2013, pp. 115–126. isbn: 978-1-4503-
2602-5. doi: 10.1145/2541329.2541339.

https://doi.org/10.1145/2633448.2633453
https://doi.org/10.1007/978-3-319-74781-1_16
https://doi.org/10.1007/978-3-319-74781-1_16
https://doi.org/10.1109/FMEC.2018.8364048
https://doi.org/10.1016/j.scico.2018.07.005
https://doi.org/10.1016/j.scico.2018.07.005
https://doi.org/10.1002/spe.2625
https://doi.org/10.1007/s10766-020-00667-x
https://doi.org/10.1007/s10766-020-00667-x
http://actor-framework.org/
http://actor-framework.org/
https://doi.org/10.1145/2541329.2541339

144 bibliography

[48] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen
Adams, Robert R. Henry, Robert Bradshaw, and Nathan
Weizenbaum. “FlumeJava: Easy, Efficient Data-Parallel Pipelines.”
In: Proceedings of the 31st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’10. event-
place: Toronto, Ontario, Canada. New York, NY, USA: As-
sociation for Computing Machinery, 2010, pp. 363–375. isbn:
978-1-4503-0019-3. doi: 10.1145/1806596.1806638.

[49] Changing World, Changing Mozilla - The Mozilla Blog. url:
https://blog.mozilla.org/blog/2020/08/11/changing-

world-changing-mozilla/ (visited on 09/30/2020).

[50] Dominik Charousset, Raphael Hiesgen, and Thomas C.
Schmidt. “CAF - the C++ Actor Framework for Scalable
and Resource-Efficient Applications.” In: Proceedings of the 4th
International Workshop on Programming based on Actors Agents &
Decentralized Control - AGERE! ’14. the 4th International Work-
shop. Portland, Oregon, USA: ACM Press, 2014, pp. 15–28.
isbn: 978-1-4503-2189-1. doi: 10.1145/2687357.2687363.

[51] Dominik Charousset, Raphael Hiesgen, and Thomas C.
Schmidt. “Revisiting actor programming in C++.” In: Com-
puter Languages, Systems & Structures 45 (Apr. 2016), pp. 105–
131. issn: 14778424. doi: 10.1016/j.cl.2016.01.002.

[52] Dominik Charousset, Thomas C. Schmidt, Raphael Hiesgen,
and Matthias Wählisch. “Native actors: a scalable software
platform for distributed, heterogeneous environments.” In:
Proceedings of the 2013 workshop on Programming based on actors,
agents, and decentralized control - AGERE! ’13. the 2013 work-
shop. Indianapolis, Indiana, USA: ACM Press, 2013, pp. 87–96.
isbn: 978-1-4503-2602-5. doi: 10.1145/2541329.2541336.

[53] Dimitrios Chasapis, Marc Casas, Miquel Moretó, Raul Vidal,
Eduard Ayguadé, Jesús Labarta, and Mateo Valero. “PAR-
SECSs: Evaluating the Impact of Task Parallelism in the
PARSEC Benchmark Suite.” In: ACM Trans. Archit. Code Optim.
12.4 (Dec. 2015). Publisher: ACM, 41:1–41:22. issn: 1544-3566.
doi: 10.1145/2829952.

[54] Nianen Chen, Yue Yu, Shangping Ren, and Mattox Beckman.
“A Role-Based Coordination Model and its Realization.” In:
Informatica 32.3 (2008), pp. 229–244.

[55] Classic Routing • Akka Documentation. url: https://doc.akka.
io/docs/akka/2.6.8/routing.html (visited on 06/16/2020).

[56] Sylvan Clebsch and Sophia Drossopoulou. “Fully concurrent
garbage collection of actors on many-core machines.” In: Pro-
ceedings of the 2013 ACM SIGPLAN international conference on
Object oriented programming systems languages & applications -

https://doi.org/10.1145/1806596.1806638
https://blog.mozilla.org/blog/2020/08/11/changing-world-changing-mozilla/
https://blog.mozilla.org/blog/2020/08/11/changing-world-changing-mozilla/
https://doi.org/10.1145/2687357.2687363
https://doi.org/10.1016/j.cl.2016.01.002
https://doi.org/10.1145/2541329.2541336
https://doi.org/10.1145/2829952
https://doc.akka.io/docs/akka/2.6.8/routing.html
https://doc.akka.io/docs/akka/2.6.8/routing.html

bibliography 145

OOPSLA ’13. the 2013 ACM SIGPLAN international confer-
ence. Indianapolis, Indiana, USA: ACM Press, 2013, pp. 553–
570. isbn: 978-1-4503-2374-1. doi: 10.1145/2509136.2509557.

[57] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and
Andy McNeil. “Deny capabilities for safe, fast actors.” In: Pro-
ceedings of the 5th International Workshop on Programming Based
on Actors, Agents, and Decentralized Control - AGERE! 2015. the
5th International Workshop. Pittsburgh, PA, USA: ACM Press,
2015, pp. 1–12. isbn: 978-1-4503-3901-8. doi: 10.1145/2824815.
2824816.

[58] M. Coblenz, W. Nelson, J. Aldrich, B. Myers, and J. Sunshine.
“Glacier: Transitive Class Immutability for Java.” In: 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). 2017, pp. 496–506. doi: 10.1109/ICSE.2017.52.

[59] Murray Cole. Algorithmic Skeletons: Structured Management of
Parallel Computation. MIT Press. Research Monographs in Par-
allel and Distributed Computing. Pitman, 1989. isbn: 978-0-
262-53086-6.

[60] Murray Cole. “Bringing skeletons out of the closet: a prag-
matic manifesto for skeletal parallel programming.” In: Par-
allel Computing 30.3 (2004), pp. 389–406. issn: 0167-8191. doi:
https://doi.org/10.1016/j.parco.2003.12.002.

[61] Comedy: Node.js actor framework. url: https://github.com/
untu/comedy (visited on 06/03/2020).

[62] Contrasting Active Objects vs Tasks vs Actors – Carl Gibbs – Blog.
url: http://www.carlgibbs.co.uk/blog/?p=237 (visited on
05/13/2020).

[63] Cpp-rotor: Event loop friendly C++ actor micro-framework. url:
https : / / github . com / basiliscos / cpp - rotor (visited on
06/03/2020).

[64] Silvia Crafa and Luca Tronchin. “Actors vs Shared Memory:
two models at work on Big Data application frameworks.” In:
(2015). _eprint: 1505.03060, p. 19.

[65] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie
Dedecker, and Wolfgang De Meuter. “AmbientTalk: Object-
oriented Event-driven Programming in Mobile Ad hoc Net-
works.” In: (2007), p. 10.

[66] D Programming Language. url: https://dlang.org/ (visited
on 06/03/2020).

[67] Emanuele D’Osualdo, Jonathan Kochems, and C. -H. Luke
Ong. “Automatic Verification of Erlang-Style Concurrency.” In:
Static Analysis. Vol. 7935. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 454–476. isbn: 978-3-642-38855-2. doi:
https://doi.org/10.1007/978-3-642-38856-9_24.

https://doi.org/10.1145/2509136.2509557
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/https://doi.org/10.1016/j.parco.2003.12.002
https://github.com/untu/comedy
https://github.com/untu/comedy
http://www.carlgibbs.co.uk/blog/?p=237
https://github.com/basiliscos/cpp-rotor
https://dlang.org/
https://doi.org/https://doi.org/10.1007/978-3-642-38856-9_24

146 bibliography

[68] Leonardo Dagum and Ramesh Menon. “OpenMP: an indus-
try standard API for shared-memory programming.” In: IEEE
Computational Science and Engineering 5.1 (1998), pp. 46–55.

[69] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured pro-
gramming. APIC studies in data processing. United States: Aca-
demic Press Inc., 1972. isbn: 0-12-200550-3.

[70] Marco Danelutto, Tiziano De Matteis, Gabriele Mencagli, and
Massimo Torquati. “A divide-and-conquer parallel pattern
implementation for multicores.” In: Proceedings of the 3rd In-
ternational Workshop on Software Engineering for Parallel Systems
- SEPS 2016. the 3rd International Workshop. Amsterdam,
Netherlands: ACM Press, 2016, pp. 10–19. isbn: 978-1-4503-
4641-2. doi: 10.1145/3002125.3002128.

[71] Marco Danelutto and Massimo Torquati. “Structured Paral-
lel Programming with “core” FastFlow.” In: Central European
Functional Programming School: 5th Summer School, CEFP 2013,
Cluj-Napoca, Romania, July 8-20, 2013, Revised Selected Papers.
Ed. by Viktória Zsók, Zoltán Horváth, and Lehel Csató. Cham:
Springer International Publishing, 2015, pp. 29–75. isbn: 978-
3-319-15940-9. doi: 10.1007/978-3-319-15940-9_2.

[72] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N.
Sharp, Q. Wu, and R. L. While. “Parallel programming us-
ing skeleton functions.” In: PARLE ’93 Parallel Architectures
and Languages Europe. Ed. by Arndt Bode, Mike Reeve, and
Gottfried Wolf. Berlin, Heidelberg: Springer Berlin Heidelberg,
1993, pp. 146–160. isbn: 978-3-540-47779-2.

[73] John Darlington, Yi-ke Guo, Hing Wing To, Jin Yang, Hing
Wing, and To Jin Yang. “Parallel Skeletons for Structured Com-
position.” In: ACM Press, 1995, pages.

[74] Dart programming language. url: https://dart.dev/ (visited
on 06/03/2020).

[75] Usman Dastgeer and Christoph Kessler. “Smart Containers
and Skeleton Programming for GPU-Based Systems.” In: In-
ternational Journal of Parallel Programming 44.3 (June 1, 2016),
pp. 506–530. issn: 1573-7640. doi: 10.1007/s10766-015-0357-
6.

[76] Usman Dastgeer, Lu Li, and Christoph Kessler. “Adaptive
Implementation Selection in the SkePU Skeleton Program-
ming Library.” In: Advanced Parallel Processing Technologies.
Ed. by Chenggang Wu and Albert Cohen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 170–183. isbn: 978-3-642-
45293-2.

https://doi.org/10.1145/3002125.3002128
https://doi.org/10.1007/978-3-319-15940-9_2
https://dart.dev/
https://doi.org/10.1007/s10766-015-0357-6
https://doi.org/10.1007/s10766-015-0357-6

bibliography 147

[77] Adam L. Davis. “Akka Streams.” In: Reactive Streams in Java:
Concurrency with RxJava, Reactor, and Akka Streams. Berkeley,
CA: Apress, 2019, pp. 57–70. isbn: 978-1-4842-4176-9. doi: 10.
1007/978-1-4842-4176-9_6.

[78] Frank De Boer et al. “A Survey of Active Object Languages.”
In: ACM Computing Surveys 50.5 (Nov. 13, 2017), pp. 1–39. issn:
0360-0300, 1557-7341. doi: 10.1145/3122848.

[79] Joeri De Koster, Stefan Marr, Theo D’Hondt, and Tom Van Cut-
sem. “Tanks: multiple reader, single writer actors.” In: Proceed-
ings of the 2013 workshop on Programming based on actors, agents,
and decentralized control - AGERE! ’13. the 2013 workshop. In-
dianapolis, Indiana, USA: ACM Press, 2013, pp. 61–68. isbn:
978-1-4503-2602-5. doi: 10.1145/2541329.2541331.

[80] Joeri De Koster, Stefan Marr, and Theo D’Hondt. “Synchro-
nization Views for Event-loop Actors.” In: Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. PPoPP ’12. event-place: New Orleans,
Louisiana, USA. New York, NY, USA: Association for Com-
puting Machinery, 2012, pp. 317–318. isbn: 978-1-4503-1160-1.
doi: 10.1145/2145816.2145873.

[81] Joeri De Koster, Stefan Marr, Tom Van Cutsem, and Theo
D’Hondt. “Domains: Sharing state in the communicating
event-loop actor model.” In: Computer Languages, Systems &
Structures 45 (Apr. 2016), pp. 132–160. issn: 14778424. doi:
10.1016/j.cl.2016.01.003.

[82] Joeri De Koster, Tom Van Cutsem, and Theo D’Hondt. “Do-
mains: safe sharing among actors.” In: Proceedings of the 2nd
edition on Programming systems, languages and applications based
on actors, agents, and decentralized control abstractions - AGERE!
’12. the 2nd edition. Tucson, Arizona, USA: ACM Press, 2012,
p. 11. isbn: 978-1-4503-1630-9. doi: 10.1145/2414639.2414644.

[83] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter.
“43 years of actors: a taxonomy of actor models and their key
properties.” In: Proceedings of the 6th International Workshop on
Programming Based on Actors, Agents, and Decentralized Control
- AGERE 2016. the 6th International Workshop. Amsterdam,
Netherlands: ACM Press, 2016, pp. 31–40. isbn: 978-1-4503-
4639-9. doi: 10.1145/3001886.3001890.

[84] Tiziano De Matteis. “Parallel Patterns for Adaptive Data
Stream Processing.” PhD thesis. Pisa, Italy: University of Pisa,
2016. 184 pp.

[85] Daniele De Sensi, Tiziano De Matteis, Massimo Torquati,
Gabriele Mencagli, and Marco Danelutto. “Bringing Parallel
Patterns Out of the Corner: The P3$ARSEC Benchmark Suite.”

https://doi.org/10.1007/978-1-4842-4176-9_6
https://doi.org/10.1007/978-1-4842-4176-9_6
https://doi.org/10.1145/3122848
https://doi.org/10.1145/2541329.2541331
https://doi.org/10.1145/2145816.2145873
https://doi.org/10.1016/j.cl.2016.01.003
https://doi.org/10.1145/2414639.2414644
https://doi.org/10.1145/3001886.3001890

148 bibliography

In: ACM Trans. Archit. Code Optim. 14.4 (Oct. 2017). Publisher:
ACM, 33:1–33:26. issn: 1544-3566. doi: 10.1145/3132710.

[86] Ugo de’Liguoro and Luca Padovani. “Mailbox Types for
Unordered Interactions.” In: 32nd European Conference on
Object-Oriented Programming (ECOOP 2018). Ed. by Todd
Millstein. Vol. 109. Leibniz International Proceedings in Infor-
matics (LIPIcs). ISSN: 1868-8969. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 15:1–15:28.
isbn: 978-3-95977-079-8. doi: 10.4230/LIPIcs.ECOOP.2018.15.

[87] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified
data processing on large clusters.” In: Communications of the
ACM 51.1 (Jan. 2008), pp. 107–113. issn: 0001-0782, 1557-7317.
doi: 10.1145/1327452.1327492.

[88] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo
Rideout, Ernest Bassous, and Andre R Leblanc. “Design of Ion-
Implanted MOSFET’s with Very Small Physical Dimensions.”
In: PROCEEDINGS OF THE IEEE 87.4 (1999), p. 11.

[89] Travis Desell and Carlos A. Varela. “SALSA Lite: A Hash-
Based Actor Runtime for Efficient Local Concurrency.” In:
Concurrent Objects and Beyond: Papers dedicated to Akinori
Yonezawa on the Occasion of His 65th Birthday. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2014, pp. 144–166. isbn:
978-3-662-44471-9.

[90] E Programming Language. url: http://erights.org/ (visited
on 06/03/2020).

[91] Kemal Ebciog, Vijay Saraswat, and Vivek Sarkar. “X10: Pro-
gramming for Hierarchical Parallelism and Non-Uniform
Data Access.” In: (2004), p. 11.

[92] Jonas Eckhardt, Tobias Mühlbauer, José Meseguer, and Mar-
tin Wirsing. “Statistical Model Checking for Composite Actor
Systems.” In: Recent Trends in Algebraic Development Techniques.
Vol. 7841. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 143–160. isbn: 978-3-642-37635-1. doi: https://doi.org/
10.1007/978-3-642-37635-1_9.

[93] Johan Eker and J Janneck. CAL language report: Specification of
the CAL actor language. December, 2003.

[94] Elixir. url: https://elixir-lang.org/ (visited on 06/03/2020).

[95] Johan Enmyren and Christoph W. Kessler. “SkePU: A Multi-
Backend Skeleton Programming Library for Multi-GPU Sys-
tems.” In: Proceedings of the Fourth International Workshop on
High-Level Parallel Programming and Applications. HLPP ’10.
event-place: Baltimore, Maryland, USA. New York, NY, USA:
Association for Computing Machinery, 2010, pp. 5–14. isbn:
978-1-4503-0254-8. doi: 10.1145/1863482.1863487.

https://doi.org/10.1145/3132710
https://doi.org/10.4230/LIPIcs.ECOOP.2018.15
https://doi.org/10.1145/1327452.1327492
http://erights.org/
https://doi.org/https://doi.org/10.1007/978-3-642-37635-1_9
https://doi.org/https://doi.org/10.1007/978-3-642-37635-1_9
https://elixir-lang.org/
https://doi.org/10.1145/1863482.1863487

bibliography 149

[96] Erlang. url: https://www.erlang.org/ (visited on 06/03/2020).

[97] Steffen Ernsting and Herbert Kuchen. “Algorithmic skeletons
for multi-core, multi-GPU systems and clusters.” In: Interna-
tional Journal of High Performance Computing and Networking 7.2
(2012). Publisher: Inderscience Publishers Ltd, pp. 129–138.

[98] August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and
Christoph Kessler. “SkePU 3: Portable High-Level Program-
ming ofHeterogeneous Systems and HPC Clusters.” In: 13th
International Symposium onHigh-Level Parallel Program-
ming and Applications (HLPP). Porto, Portugal, Sept. 7, 2020,
pp. 18–37.

[99] August Ernstsson, Lu Li, and Christoph Kessler. “SkePU 2:
Flexible and Type-Safe Skeleton Programming for Heteroge-
neous Parallel Systems.” In: International Journal of Parallel Pro-
gramming 46.1 (Feb. 2018), pp. 62–80. issn: 0885-7458, 1573-
7640. doi: 10.1007/s10766-017-0490-5.

[100] F Sharp MailboxProcessor. url: https://en.wikibooks.org/
wiki/F_Sharp_Programming/MailboxProcessor (visited on
06/03/2020).

[101] Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain.
“ParT: An Asynchronous Parallel Abstraction for Speculative
Pipeline Computations.” In: Coordination Models and Lan-
guages. Ed. by Alberto Lluch Lafuente and José Proença.
Cham: Springer International Publishing, 2016, pp. 101–120.
isbn: 978-3-319-39519-7.

[102] M. J. Flynn. “Some Computer Organizations and Their Ef-
fectiveness.” In: IEEE Transactions on Computers C-21.9 (Sept.
1972), pp. 948–960. issn: 1557-9956. doi: 10.1109/TC.1972.
5009071.

[103] Simon Fowler, Sam Lindley, and Philip Wadler. “Mixing
Metaphors: Actors as Channels and Channels as Actors.”
In: (2017). In collab. with Marc Herbstritt. Artwork Size: 28

pages Medium: application/pdf Publisher: Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saar-
bruecken, Germany, 28 pages. doi: 10.4230/LIPICS.ECOOP.
2017.11.

[104] Emilio Francesquini, Alfredo Goldman, and Jean-François
Méhaut. “Improving the Performance of Actor Model Run-
time Environments on Multicore and Manycore Platforms.”
In: Proceedings of the 2013 Workshop on Programming Based
on Actors, Agents, and Decentralized Control. AGERE! 2013.
event-place: Indianapolis, Indiana, USA. New York, NY, USA:
Association for Computing Machinery, 2013, pp. 109–114.
isbn: 978-1-4503-2602-5. doi: 10.1145/2541329.2541342.

https://www.erlang.org/
https://doi.org/10.1007/s10766-017-0490-5
https://en.wikibooks.org/wiki/F_Sharp_Programming/MailboxProcessor
https://en.wikibooks.org/wiki/F_Sharp_Programming/MailboxProcessor
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.4230/LIPICS.ECOOP.2017.11
https://doi.org/10.4230/LIPICS.ECOOP.2017.11
https://doi.org/10.1145/2541329.2541342

150 bibliography

[105] Emilio De Camargo Francesquini. “Dealing with actor run-
time environments on hierarchical shared memory multi-core
platforms.” In: (2017), p. 216.

[106] J. Daniel Garcia, David del Rio, Marco Aldinucci, Fabio
Tordini, Marco Danelutto, Gabriele Mencagli, and Massimo
Torquati. “Challenging the abstraction penalty in parallel pat-
terns libraries.” In: The Journal of Supercomputing 76.7 (July 1,
2020), pp. 5139–5159. issn: 1573-0484. doi: 10.1007/s11227-
019-02826-5.

[107] Mauro Gaspari and Gianluigi Zavattaro. “An Algebra of Ac-
tors.” In: Formal Methods for Open Object-Based Distributed Sys-
tems. Ed. by Paolo Ciancarini, Alessandro Fantechi, and Robert
Gorrieri. Boston, MA: Springer US, 1999, pp. 3–18. isbn: 978-0-
387-35562-7.

[108] Leonardo Gazzarri and Marco Danelutto. “Supporting struc-
tured parallel program design, development and tuning in
FastFlow.” In: The Journal of Supercomputing 75.8 (Aug. 1, 2019),
pp. 4026–4041. issn: 1573-0484. doi: 10.1007/s11227- 018-
2448-9.

[109] B. Gedik, H. G. Özsema, and Ö Öztürk. “Pipelined fission
for stream programs with dynamic selectivity and partitioned
state.” In: Journal of Parallel and Distributed Computing 96 (2016),
pp. 106–120. issn: 0743-7315. doi: https://doi.org/10.1016/
j.jpdc.2016.05.003.

[110] Anastasia Gkolfi, Crystal Chang Din, Einar Broch Johnsen,
Lars Michael Kristensen, Martin Steffen, and Ingrid Chieh Yu.
“Translating active objects into colored Petri nets for communi-
cation analysis.” In: Science of Computer Programming 181 (July
2019), pp. 1–26. issn: 01676423. doi: 10.1016/j.scico.2019.
04.002.

[111] Horacio González-Vélez and Mario Leyton. “A survey of al-
gorithmic skeleton frameworks: high-level structured parallel
programming enablers.” In: Software: Practice and Experience
40.12 (Nov. 2010), pp. 1135–1160. issn: 00380644. doi: 10.1002/
spe.1026.

[112] M. L. Griss. “Software reuse: From library to factory.” In: IBM
Systems Journal 32.4 (1993), pp. 548–566.

[113] Groups of Workers (experimental) — CAF 0.17.6 Documentation.
url: https://actor-framework.readthedocs.io/en/0.17.6/
ManagingGroupsOfWorkers.html (visited on 09/07/2020).

[114] Olivier Gruber and Fabienne Boyer. “Ownership-Based Iso-
lation for Concurrent Actors on Multi-core Machines.” In:
ECOOP 2013 – Object-Oriented Programming. Vol. 7920. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 281–301.

https://doi.org/10.1007/s11227-019-02826-5
https://doi.org/10.1007/s11227-019-02826-5
https://doi.org/10.1007/s11227-018-2448-9
https://doi.org/10.1007/s11227-018-2448-9
https://doi.org/https://doi.org/10.1016/j.jpdc.2016.05.003
https://doi.org/https://doi.org/10.1016/j.jpdc.2016.05.003
https://doi.org/10.1016/j.scico.2019.04.002
https://doi.org/10.1016/j.scico.2019.04.002
https://doi.org/10.1002/spe.1026
https://doi.org/10.1002/spe.1026
https://actor-framework.readthedocs.io/en/0.17.6/ManagingGroupsOfWorkers.html
https://actor-framework.readthedocs.io/en/0.17.6/ManagingGroupsOfWorkers.html

bibliography 151

isbn: 978-3-642-39037-1. doi: https://doi.org/10.1007/978-
3-642-39038-8_12.

[115] Gaétan Hains, Ludovic Henrio, Pierre Leca, and Wijnand
Suijlen. “Active Objects for Coordinating BSP Computations
(Short Paper).” In: Coordination Models and Languages. Ed. by
Giovanna Di Marzo Serugendo and Michele Loreti. Vol. 10852.
Cham: Springer International Publishing, 2018, pp. 220–230.
isbn: 978-3-319-92407-6. doi: 10.1007/978-3-319-92408-3_10.

[116] Tim Harris, James Larus, and Ravi Rajwar. “Transactional
Memory, 2nd edition.” In: Synthesis Lectures on Computer
Architecture 5.1 (Dec. 22, 2010), pp. 1–263. issn: 1935-3235,
1935-3243. doi: 10.2200/S00272ED1V01Y201006CAC011.

[117] Yaroslav Hayduk, Anita Sobe, and Pascal Felber. “Dynamic
Message Processing and Transactional Memory in the Actor
Model.” In: Distributed Applications and Interoperable Systems.
Vol. 9038. Cham: Springer International Publishing, 2015,
pp. 94–107. isbn: 978-3-319-19128-7. doi: 10.1007/978-3-319-
19129-4_8.

[118] Brandon Hedden and Xinghui Zhao. “A Comprehensive
Study on Bugs in Actor Systems.” In: Proceedings of the 47th
International Conference on Parallel Processing. ICPP 2018: 47th
International Conference on Parallel Processing. Eugene OR
USA: ACM, Aug. 13, 2018, pp. 1–9. isbn: 978-1-4503-6510-9.
doi: 10.1145/3225058.3225139.

[119] Ludovic Henrio, Fabrice Huet, and Zsolt István. “Multi-
threaded Active Objects.” In: Coordination Models and Lan-
guages. Ed. by Rocco De Nicola and Christine Julien. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 90–104.
isbn: 978-3-642-38493-6.

[120] Maurice Herlihy and J. Eliot B. Moss. “Transactional Memory:
Architectural Support for Lock-Free Data Structures.” In: Pro-
ceedings of the 20th Annual International Symposium on Computer
Architecture. ISCA ’93. event-place: San Diego, California, USA.
New York, NY, USA: Association for Computing Machinery,
1993, pp. 289–300. isbn: 0-8186-3810-9. doi: 10.1145/165123.
165164.

[121] Carl Hewitt and Henry Baker. “Laws for communicating par-
allel processes.” In: MIT Artificial Intelligence Laboratory Work-
ing Papers, WP-134A (1977). Publisher: MIT Artificial Intelli-
gence Laboratory.

[122] Carl Hewitt, Peter Bishop, and Richard Steiger. “A Univer-
sal Modular ACTOR Formalism for Artificial Intelligence.” In:
Proceedings of the 3rd International Joint Conference on Artificial In-
telligence. IJCAI’73. event-place: Stanford, USA. San Francisco,

https://doi.org/https://doi.org/10.1007/978-3-642-39038-8_12
https://doi.org/https://doi.org/10.1007/978-3-642-39038-8_12
https://doi.org/10.1007/978-3-319-92408-3_10
https://doi.org/10.2200/S00272ED1V01Y201006CAC011
https://doi.org/10.1007/978-3-319-19129-4_8
https://doi.org/10.1007/978-3-319-19129-4_8
https://doi.org/10.1145/3225058.3225139
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/165123.165164

152 bibliography

CA, USA: Morgan Kaufmann Publishers Inc., 1973, pp. 235–
245.

[123] Raphael Hiesgen, Dominik Charousset, and Thomas C.
Schmidt. “OpenCL Actors – Adding Data Parallelism to
Actor-Based Programming with CAF.” In: Programming with
Actors. Ed. by Alessandro Ricci and Philipp Haller. Vol. 10789.
Cham: Springer International Publishing, 2018, pp. 59–93.
isbn: 978-3-030-00301-2. doi: 10.1007/978-3-030-00302-9_3.

[124] Jessica Hillert. “A Comparison of the Capability Systems of
Encore, Pony and Rust.” PhD thesis. 2019.

[125] Shams M. Imam and Vivek Sarkar. “Integrating Task Paral-
lelism with Actors.” In: Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages
and Applications. OOPSLA ’12. event-place: Tucson, Arizona,
USA. New York, NY, USA: Association for Computing Ma-
chinery, 2012, pp. 753–772. isbn: 978-1-4503-1561-6. doi: 10 .

1145/2384616.2384671.

[126] Shams M. Imam and Vivek Sarkar. “Savina - An Actor Bench-
mark Suite: Enabling Empirical Evaluation of Actor Libraries.”
In: Proceedings of the 4th International Workshop on Programming
based on Actors Agents & Decentralized Control - AGERE! ’14.
the 4th International Workshop. Portland, Oregon, USA: ACM
Press, 2014, pp. 67–80. isbn: 978-1-4503-2189-1. doi: 10.1145/
2687357.2687368.

[127] Shams M. Imam and Vivek Sarkar. “Selectors: Actors with
Multiple Guarded Mailboxes.” In: Proceedings of the 4th Interna-
tional Workshop on Programming based on Actors Agents & Decen-
tralized Control - AGERE! ’14. the 4th International Workshop.
Portland, Oregon, USA: ACM Press, 2014, pp. 1–14. isbn: 978-
1-4503-2189-1. doi: 10.1145/2687357.2687360.

[128] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar.
“Advances in Dataflow Programming Languages.” In: ACM
Comput. Surv. 36.1 (Mar. 2004). Place: New York, NY, USA Pub-
lisher: Association for Computing Machinery, pp. 1–34. issn:
0360-0300. doi: 10.1145/1013208.1013209.

[129] Gilles Kahn. “The Semantics of a Simple Language for Parallel
Programming.” In: IFIP Congress. 1974.

[130] karlrupp/microprocessor-trend-data: Data repository for my blog
series on microprocessor trend data. url: https : / / github .

com / karlrupp / microprocessor - trend - data (visited on
09/12/2020).

[131] Kilim library. url: http://www.malhar.net/sriram/kilim/
(visited on 06/03/2020).

https://doi.org/10.1007/978-3-030-00302-9_3
https://doi.org/10.1145/2384616.2384671
https://doi.org/10.1145/2384616.2384671
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/1013208.1013209
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
http://www.malhar.net/sriram/kilim/

bibliography 153

[132] Steve Klabnik and Carol Nichols. “Chapter 4: Understanding
Ownership.” In: The Rust Programming Language. no starch
Press, 2018.

[133] Steve Klabnik and Carol Nichols. The Rust Programming Lan-
guage. no starch Press, 2018.

[134] Herbert Kuchen. “A Skeleton Library.” In: Euro-Par 2002 Paral-
lel Processing. Ed. by Burkhard Monien and Rainer Feldmann.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 620–
629. isbn: 978-3-540-45706-0.

[135] Herbert Kuchen and Murray Cole. “The integration of task
and data parallel skeletons.” In: Parallel Processing Letters 12.2
(2002). Publisher: World Scientific, pp. 141–155. doi: 10.1142/
S0129626402000896.

[136] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedi-
gehalli, Christopher Kellogg, Sailesh Mittal, Jignesh M. Pa-
tel, Karthik Ramasamy, and Siddarth Taneja. “Twitter Heron:
Stream Processing at Scale.” In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. SIG-
MOD ’15. event-place: Melbourne, Victoria, Australia. New
York, NY, USA: Association for Computing Machinery, 2015,
pp. 239–250. isbn: 978-1-4503-2758-9. doi: 10.1145/2723372.
2742788.

[137] R. Greg Lavender and Douglas C. Schmidt. “Active Object:
An Object Behavioral Pattern for Concurrent Programming.”
In: Pattern Languages of Program Design 2. Ed. by John M. Vlis-
sides, James O. Coplien, and Norman L. Kerth. Section: Active
Object: An Object Behavioral Pattern for Concurrent Program-
ming. Addison-Wesley Longman Publishing Co., Inc., 1996,
pp. 483–499. isbn: 0-201-89527-7.

[138] Laying the foundation for Rust’s future | Rust Blog. url: https:
//blog.rust-lang.org/2020/08/18/laying-the-foundation-

for-rusts-future.html (visited on 09/30/2020).

[139] Pierre Leca. “Combining active object and BSP programs.”
PhD thesis. Université Côte d’Azur, Feb. 10, 2020. 131 pp.

[140] Pierre Leca, Wijnand Suijlen, Ludovic Henrio, and Françoise
Baude. “Distributed futures for efficient data transfer between
parallel processes.” In: SAC 2020 - 35th ACM/SIGAPP Sympo-
sium On Applied Computing. Brno, Czech Republic, Mar. 2020.
doi: 10.1145/3341105.3373932.

[141] Mario Leyton and Jose M Piquer. Skandium: Multi-core Program-
ming with Algorithmic Skeletons. 2010. isbn: 978-1-4244-5672-7.

[142] Henry Lieberman. A Preview of Act 1. url: https://dspace.
mit.edu/handle/1721.1/6350 (visited on 06/03/2020).

https://doi.org/10.1142/S0129626402000896
https://doi.org/10.1142/S0129626402000896
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/2723372.2742788
https://blog.rust-lang.org/2020/08/18/laying-the-foundation-for-rusts-future.html
https://blog.rust-lang.org/2020/08/18/laying-the-foundation-for-rusts-future.html
https://blog.rust-lang.org/2020/08/18/laying-the-foundation-for-rusts-future.html
https://doi.org/10.1145/3341105.3373932
https://dspace.mit.edu/handle/1721.1/6350
https://dspace.mit.edu/handle/1721.1/6350

154 bibliography

[143] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and
Kai Li. “Ferret: A Toolkit for Content-Based Similarity Search
of Feature-Rich Data.” In: SIGOPS Oper. Syst. Rev. 40.4 (Apr.
2006). Place: New York, NY, USA Publisher: Association for
Computing Machinery, pp. 317–330. issn: 0163-5980. doi: 10.
1145/1218063.1217966.

[144] Mailboxes • Akka Documentation. url: https : / / doc . akka .

io/docs/akka/2.6.8/typed/mailboxes.html (visited on
06/16/2020).

[145] Sasikanth Manipatruni, Dmitri E. Nikonov, and Ian A. Young.
“Material Targets for Scaling All-Spin Logic.” In: Phys. Rev.
Applied 5.1 (Jan. 2016). Publisher: American Physical Society,
p. 014002. doi: 10.1103/PhysRevApplied.5.014002.

[146] Nicholas D. Matsakis and Felix S. Klock II. “The Rust Lan-
guage.” In: Ada Lett. 34.3 (Oct. 2014). Place: New York, NY,
USA Publisher: ACM, pp. 103–104. issn: 1094-3641. doi: 10.
1145/2692956.2663188.

[147] Kiminori Matsuzaki and Kento Emoto. “Lessons from Imple-
menting the BiCGStab Method with SkeTo Library.” In: Pro-
ceedings of the Fourth International Workshop on High-Level Par-
allel Programming and Applications. HLPP ’10. event-place: Bal-
timore, Maryland, USA. New York, NY, USA: Association for
Computing Machinery, 2010, pp. 15–24. isbn: 978-1-4503-0254-
8. doi: 10.1145/1863482.1863488.

[148] Timothy G Mattson, Beverly Sanders, and Berna Massingill.
Patterns for parallel programming. Pearson Education, 2004. isbn:
0-321-94078-4.

[149] Michael McCool, James Reinders, and Arch Robison. Struc-
tured Parallel Programming: Patterns for Efficient Computation.
1st. Vol. 37. Place: New York, NY, USA Publisher: Association
for Computing Machinery. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., Nov. 2012. isbn: 0-12-415993-1.

[150] Robert Ryan McCune, Tim Weninger, and Greg Madey.
“Thinking Like a Vertex: A Survey of Vertex-Centric Frame-
works for Large-Scale Distributed Graph Processing.” In:
ACM Computing Surveys 48.2 (Nov. 21, 2015), pp. 1–39. issn:
0360-0300, 1557-7341. doi: 10.1145/2818185.

[151] Gabriele Mencagli, Massimo Torquati, Dalvan Griebler, Marco
Danelutto, and Luiz Gustavo L. Fernandes. “Raising the Par-
allel Abstraction Level for Streaming Analytics Applications.”
In: IEEE Access 7 (2019), pp. 131944–131961. issn: 2169-3536.
doi: 10.1109/ACCESS.2019.2941183.

https://doi.org/10.1145/1218063.1217966
https://doi.org/10.1145/1218063.1217966
https://doc.akka.io/docs/akka/2.6.8/typed/mailboxes.html
https://doc.akka.io/docs/akka/2.6.8/typed/mailboxes.html
https://doi.org/10.1103/PhysRevApplied.5.014002
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/1863482.1863488
https://doi.org/10.1145/2818185
https://doi.org/10.1109/ACCESS.2019.2941183

bibliography 155

[152] G.E. Moore. “Cramming More Components Onto Integrated
Circuits.” In: Proceedings of the IEEE 86.1 (Jan. 1998), pp. 82–85.
issn: 0018-9219, 1558-2256. doi: 10.1109/JPROC.1998.658762.

[153] Philipp Moritz et al. “Ray: A Distributed Framework for
Emerging AI Applications.” In: arXiv:1712.05889 [cs, stat]
(Dec. 15, 2017).

[154] nact library. url: https://nact.io/ (visited on 06/03/2020).

[155] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval. “Analytical
Modeling of Pipeline Parallelism.” In: 2009 18th International
Conference on Parallel Architectures and Compilation Techniques.
2009, pp. 281–290.

[156] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs,
Luis Ceze, Simon Kahan, and Mark Oskin. “Latency-Tolerant
Software Distributed Shared Memory.” In: Proceedings of the
2015 USENIX Conference on Usenix Annual Technical Conference.
USENIX ATC ’15. event-place: Santa Clara, CA. USA: USENIX
Association, 2015, pp. 291–305. isbn: 978-1-931971-22-5.

[157] OpenCL Overview - The Khronos Group Inc. url: https://www.
khronos.org/opencl/ (visited on 08/26/2020).

[158] Orbit - Virtual actor framework. url: https : / / github . com /

orbit/orbit/ (visited on 06/03/2020).

[159] Orleans – Virtual Actors. Sept. 14, 2014. url: https : / / www .

microsoft.com/en-us/research/project/orleans-virtual-

actors/ (visited on 05/23/2020).

[160] Orleans framework. url: https://dotnet.github.io/orleans/
(visited on 06/03/2020).

[161] Susanna Pelagatti. Methodologies and tools for structured highly
parallel computing. PhD Thesis. University of Pisa, 1991.

[162] Susanna Pelagatti. Structured development of parallel programs.
Vol. 102. Taylor & Francis Abington, 1998. isbn: 0-7484-0759-6.

[163] F. Petrini, Wu-chun Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg. “The Quadrics network: high-performance clustering
technology.” In: IEEE Micro 22.1 (2002), pp. 46–57.

[164] Greg Pfister. “An Introduction to the InfiniBand Architecture.”
In: High Performance Mass Storage and Parallel I/O: Technologies
and Applications. chapter 42. IEEE, 2002.

[165] Pony. url: https://www.ponylang.io/ (visited on 06/03/2020).

[166] Alexander Pöppl, Scott Baden, and Michael Bader. “A UPC++
Actor Library and Its Evaluation On a Shallow Water Proxy
Application.” In: 2019 IEEE/ACM Parallel Applications Work-
shop, Alternatives To MPI (PAW-ATM). 2019, pp. 11–24. doi:
10.1109/PAW-ATM49560.2019.00007.

https://doi.org/10.1109/JPROC.1998.658762
https://nact.io/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://github.com/orbit/orbit/
https://github.com/orbit/orbit/
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/
https://dotnet.github.io/orleans/
https://www.ponylang.io/
https://doi.org/10.1109/PAW-ATM49560.2019.00007

156 bibliography

[167] Alexander Pöppl, Michael Bader, Tobias Schwarzer, and
Michael Glaß. “SWE-X10: Simulating Shallow Water Waves
with Lazy Activation of Patches Using Actorx10.” In: 2016
Second International Workshop on Extreme Scale Programming
Models and Middlewar (ESPM2). 2016 Second International
Workshop on Extreme-Scale Programming Models and Mid-
dleware (ESPM2). Salt Lake City, UT: IEEE, Nov. 2016, pp. 32–
39. isbn: 978-1-5090-3858-9. doi: 10.1109/ESPM2.2016.010.

[168] Aleksandar Prokopec and Martin Odersky. “Isolates, channels,
and event streams for composable distributed programming.”
In: 2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (On-
ward!) - Onward! 2015. 2015 ACM International Symposium.
Pittsburgh, PA, USA: ACM Press, 2015, pp. 171–182. isbn:
978-1-4503-3688-8. doi: 10.1145/2814228.2814245.

[169] Proto.Actor Framework. url: http://proto.actor/ (visited on
06/03/2020).

[170] Pykka library. url: https://www.pykka.org/en/latest/index.
html (visited on 06/03/2020).

[171] Reference Architectural Model for Industrie 4.0 (RAMI 4.0). url:
https://www.isa.org/intech- home/2019/march- april/

features/rami-4-0-reference-architectural-model-for-

industr (visited on 08/26/2020).

[172] James Reinders. Intel threading building blocks: outfitting C++ for
multi-core processor parallelism. " O’Reilly Media, Inc.", 2007.

[173] Riker Library. url: https://riker.rs/ (visited on 06/03/2020).

[174] Luca Rinaldi, Massimo Torquati, and Marco Danelutto. “En-
forcing Reference Capability in FastFlow with Rust.” In: Paral-
lel Computing: Technology Trends, Proceedings of the International
Conference on Parallel Computing, PARCO 2019, Prague, Czech Re-
public, September 10-13, 2019. Ed. by Ian T. Foster, Gerhard R.
Joubert, Ludek Kucera, Wolfgang E. Nagel, and Frans J. Pe-
ters. Vol. 36. Advances in Parallel Computing. IOS Press, 2019,
pp. 396–405. doi: 10.3233/APC200064.

[175] Luca Rinaldi, Massimo Torquati, Daniele De Sensi, Gabriele
Mencagli, and Marco Danelutto. “Are Actors Suited for HPC
on Multi-Cores?” In: 12th International Symposium on High-
Level Parallel Programming and Applications. Peer reviewed
with internal proceedings. Linköping, Sweden, June 2019,
p. 21.

[176] Luca Rinaldi, Massimo Torquati, Daniele De Sensi, Gabriele
Mencagli, and Marco Danelutto. “Improving the Performance
of Actors on Multi-cores with Parallel Patterns.” In: Interna-

https://doi.org/10.1109/ESPM2.2016.010
https://doi.org/10.1145/2814228.2814245
http://proto.actor/
https://www.pykka.org/en/latest/index.html
https://www.pykka.org/en/latest/index.html
https://www.isa.org/intech-home/2019/march-april/features/rami-4-0-reference-architectural-model-for-industr
https://www.isa.org/intech-home/2019/march-april/features/rami-4-0-reference-architectural-model-for-industr
https://www.isa.org/intech-home/2019/march-april/features/rami-4-0-reference-architectural-model-for-industr
https://riker.rs/
https://doi.org/10.3233/APC200064

bibliography 157

tional Journal of Parallel Programming (June 4, 2020). issn: 1573-
7640. doi: 10.1007/s10766-020-00663-1.

[177] Luca Rinaldi, Massimo Torquati, Gabriele Mencagli, and
Marco Danelutto. “High-Throughput Stream Processing with
Actors.” In: Proceedings of the 10th ACM SIGPLAN Interna-
tional Workshop on Programming Based on Actors, Agents, and
Decentralized Control. AGERE 2020. event-place: Virtual, USA.
New York, NY, USA: Association for Computing Machinery,
2020, pp. 1–10. isbn: 978-1-4503-8185-7. doi: 10.1145/3427760.
3428338.

[178] Luca Rinaldi, Massimo Torquati, Gabriele Mencagli, Marco
Danelutto, and Tullio Menga. “Accelerating Actor-Based Ap-
plications with Parallel Patterns.” In: 2019 27th Euromicro In-
ternational Conference on Parallel, Distributed and Network-Based
Processing (PDP). 2019 27th Euromicro International Confer-
ence on Parallel, Distributed and Network-Based Processing
(PDP). Pavia, Italy: IEEE, Feb. 2019, pp. 140–147. isbn: 978-1-
72811-644-0. doi: 10.1109/EMPDP.2019.8671602.

[179] David del Rio Astorga, Manuel F. Dolz, Javier Fernández,
and J. Daniel García. “A generic parallel pattern inter-
face for stream and data processing.” In: Concurrency and
Computation: Practice and Experience 29.24 (2017). _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4175,
e4175. doi: 10.1002/cpe.4175.

[180] Sascha Roloff, Alexander Pöppl, Tobias Schwarzer, Stefan Wil-
dermann, Michael Bader, Michael Glaß, Frank Hannig, and
Jürgen Teich. “ActorX10: an actor library for X10.” In: Proceed-
ings of the 6th ACM SIGPLAN Workshop on X10 - X10 2016. the
6th ACM SIGPLAN Workshop. Santa Barbara, CA, USA: ACM
Press, 2016, pp. 24–29. isbn: 978-1-4503-4386-2. doi: 10.1145/
2931028.2931033.

[181] Thomas Rouvinez and Anita Sobe. “Comparison of Active Ob-
jects and the Actor Model.” In: (2014), p. 9.

[182] SALSA Programming Language. url: http://wcl.cs.rpi.edu/
salsa/ (visited on 06/03/2020).

[183] Jason Sanders and Edward Kandrot. CUDA by example: an
introduction to general-purpose GPU programming. Addison-
Wesley Professional, 2010. isbn: 978-0-13-138768-3.

[184] Scalaz Functional Library. url: https://scalaz.github.io/7/
(visited on 08/30/2020).

[185] Matthew Scarpino. “OpenCL in action: how to accelerate
graphics and computations.” In: (2011). Publisher: hgpu. org.
issn: 978-1617290176.

https://doi.org/10.1007/s10766-020-00663-1
https://doi.org/10.1145/3427760.3428338
https://doi.org/10.1145/3427760.3428338
https://doi.org/10.1109/EMPDP.2019.8671602
https://doi.org/10.1002/cpe.4175
https://doi.org/10.1145/2931028.2931033
https://doi.org/10.1145/2931028.2931033
http://wcl.cs.rpi.edu/salsa/
http://wcl.cs.rpi.edu/salsa/
https://scalaz.github.io/7/

158 bibliography

[186] Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter.
“Parallel actor monitors: Disentangling task-level parallelism
from data partitioning in the actor model.” In: Science of Com-
puter Programming 80 (Feb. 2014), pp. 52–64. issn: 01676423.
doi: 10.1016/j.scico.2013.03.011.

[187] Amin Shali. “Actor Oriented Programming in Chapel.” In:
(2010), p. 16.

[188] shamsimam. GitHub - shamsimam/savina: Savina is an Actor
Benchmark Suite. url: https://github.com/shamsimam/savina
(visited on 06/11/2020).

[189] Marjan Sirjani and Mohammad Mahdi Jaghoori. “Ten Years
of Analyzing Actors: Rebeca Experience.” In: Formal Modeling:
Actors, Open Systems, Biological Systems. Vol. 7000. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2011, pp. 20–56. isbn: 978-
3-642-24932-7.

[190] David B. Skillicorn and Domenico Talia. “Models and Lan-
guages for Parallel Computation.” In: ACM COMPUTING
SURVEYS 30 (1998), pp. 123–169.

[191] Slurm Workload Manager - Documentation. url: https://slurm.
schedmd.com/ (visited on 09/21/2020).

[192] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker,
and Jack Dongarra. MPI The Complete Reference, Volume 1: The
MPI Core. 2nd. (Revised). Cambridge, MA, USA: MIT Press,
1998. isbn: 0-262-69215-5.

[193] sophialC. GitHub - sophiaIC/pony-savina: Pony: Savina Bench-
mark Suite. url: https://github.com/sophiaIC/pony-savina
(visited on 06/11/2020).

[194] Streaming (experimental) — CAF 0.17.6 Documentation. url:
https://actor- framework.readthedocs.io/en/0.17.6/

Streaming.html (visited on 08/03/2020).

[195] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn To-
ward Concurrency in Software. 2005. url: http://www.gotw.ca/
publications/concurrency-ddj.htm (visited on 12/27/2020).

[196] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[197] Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter.
“Chocola: integrating futures, actors, and transactions.” In: Pro-
ceedings of the 8th ACM SIGPLAN International Workshop on Pro-
gramming Based on Actors, Agents, and Decentralized Control -
AGERE 2018. the 8th ACM SIGPLAN International Workshop.
Boston, MA, USA: ACM Press, 2018, pp. 33–43. isbn: 978-1-
4503-6066-1. doi: 10.1145/3281366.3281373.

https://doi.org/10.1016/j.scico.2013.03.011
https://github.com/shamsimam/savina
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://github.com/sophiaIC/pony-savina
https://actor-framework.readthedocs.io/en/0.17.6/Streaming.html
https://actor-framework.readthedocs.io/en/0.17.6/Streaming.html
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
https://doi.org/10.1145/3281366.3281373

bibliography 159

[198] Janwillem Swalens, Stefan Marr, Joeri De Koster, and Tom
Van Cutsem. “Towards Composable Concurrency Abstrac-
tions.” In: Electronic Proceedings in Theoretical Computer Sci-
ence 155 (June 12, 2014), pp. 54–60. issn: 2075-2180. doi:
10.4204/EPTCS.155.8.

[199] SYCL Overview - The Khronos Group Inc. url: https://www.
khronos.org/sycl/ (visited on 10/28/2020).

[200] Carolyn L. Talcott. “An Actor Rewriting Theory.” In: Electronic
Notes in Theoretical Computer Science 4 (1996), pp. 361–384. issn:
1571-0661. doi: https://doi.org/10.1016/S1571-0661(04)
00047-7.

[201] Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. “Why
Do Scala Developers Mix the Actor Model with other Con-
currency Models?” In: ECOOP 2013 – Object-Oriented Program-
ming. Ed. by Giuseppe Castagna. Red. by David Hutchison et
al. Vol. 7920. Series Title: Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 302–
326. isbn: 978-3-642-39037-1. doi: 10.1007/978-3-642-39038-
8_13.

[202] Rajeev Thakur, Pavan Balaji, Darius Buntinas, David Goodell,
William Gropp, Torsten Hoefler, Sameer Kumar, Ewing Lusk,
and Jesper Larsson Tr\{{\textbackslash}"a\}ff. “MPI at Exas-
cale.” In: Procceedings of SciDAC. Scientific Discovery through
Advanced Computing (SciDAC). Vol. 2. 2010, pp. 14–35.

[203] The chips are down for Moore’s law : Nature News. url: https:
//www.nature.com/news/the-chips-are-down-for-moore-s-

law-1.19338 (visited on 09/12/2020).

[204] The Encore Programming Language. url: https://stw.gitbooks.
io/the-encore-programming-language/content/ (visited on
06/03/2020).

[205] The LLVM Project. Clang: a C Language Family Frontend for
LLVM. url: http://clang.llvm.org/ (visited on 09/04/2020).

[206] The Scala Actors Library. url: https://docs.scala-lang.org/
overviews/core/actors.html (visited on 06/03/2020).

[207] Thespian Python Actors. url: https://thespianpy.com/doc/
(visited on 06/03/2020).

[208] Peter Thoman et al. “A taxonomy of task-based parallel pro-
gramming technologies for high-performance computing.” In:
The Journal of Supercomputing 74.4 (Apr. 2018), pp. 1422–1434.
issn: 0920-8542, 1573-0484. doi: 10.1007/s11227-018-2238-4.

https://doi.org/10.4204/EPTCS.155.8
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
https://doi.org/https://doi.org/10.1016/S1571-0661(04)00047-7
https://doi.org/https://doi.org/10.1016/S1571-0661(04)00047-7
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1007/978-3-642-39038-8_13
https://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
https://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
https://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
https://stw.gitbooks.io/the-encore-programming-language/content/
https://stw.gitbooks.io/the-encore-programming-language/content/
http://clang.llvm.org/
https://docs.scala-lang.org/overviews/core/actors.html
https://docs.scala-lang.org/overviews/core/actors.html
https://thespianpy.com/doc/
https://doi.org/10.1007/s11227-018-2238-4

160 bibliography

[209] Chris Tomlinson, Won Kim, Mark Scheevel, Vineet Singh,
Becky Will, and Gul Agha. “Rosette: An object-oriented con-
current systems architecture.” In: Proceedings of the 1988 ACM
SIGPLAN workshop on Object-based concurrent programming.
1988, pp. 91–93.

[210] Massimo Torquati. “Harnessing Parallelism in Multi/Many-
Cores with Streams and Parallel Patterns.” PhD thesis. Pisa,
Italy: University of Pisa, Aug. 5, 2019.

[211] Massimo Torquati, Tullio Menga, Tiziano De Matteis, Daniele
De Sensi, and Gabriele Mencagli. “Reducing Message Latency
and CPU Utilization in the CAF Actor Framework.” In: 2018
26th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP). 2018 26th Euromicro In-
ternational Conference on Parallel, Distributed and Network-
based Processing (PDP). Cambridge: IEEE, Mar. 2018, pp. 145–
153. isbn: 978-1-5386-4975-6. doi: 10 . 1109 / PDP2018 . 2018 .

00028.

[212] Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and
Hanspeter Mössenböck. “A Study of Concurrency Bugs and
Advanced Development Support for Actor-based Programs.”
In: Programming with Actors. Vol. 10789. Cham: Springer Inter-
national Publishing, 2018, pp. 155–185. isbn: 978-3-030-00301-
2.

[213] Phil Trinder et al. “Scaling Reliably: Improving the Scalabil-
ity of the Erlang Distributed Actor Platform.” In: ACM Trans-
actions on Programming Languages and Systems 39.4 (Aug. 17,
2017), pp. 1–46. issn: 01640925. doi: 10.1145/3107937.

[214] Leslie G. Valiant. “A Bridging Model for Parallel Computa-
tion.” In: Commun. ACM 33.8 (Aug. 1990). Place: New York,
NY, USA Publisher: Association for Computing Machinery,
pp. 103–111. issn: 0001-0782. doi: 10.1145/79173.79181.

[215] Marco Vanneschi. High performance computing: parallel process-
ing models and architectures. Pisa University Press, 2014. isbn:
88-6741-372-4.

[216] Vaughn Vernon. Reactive messaging patterns with the Actor
model: applications and integration in Scala and Akka. New York:
Addison-Wesley, 2016. 448 pp. isbn: 978-0-13-384683-6.

[217] Patrick Walton. C++ design goals in the context of Rust. url:
http://pcwalton.blogspot.com/2010/12/c-design-goals-

in-context-of-rust.html (visited on 11/26/2020).

[218] Anthony Williams. C++ Concurrency in Action. Second Edition.
Manning Publications, 2019. isbn: 978-1-61729-469-3.

https://doi.org/10.1109/PDP2018.2018.00028
https://doi.org/10.1109/PDP2018.2018.00028
https://doi.org/10.1145/3107937
https://doi.org/10.1145/79173.79181
http://pcwalton.blogspot.com/2010/12/c-design-goals-in-context-of-rust.html
http://pcwalton.blogspot.com/2010/12/c-design-goals-in-context-of-rust.html

bibliography 161

[219] woelke. GitHub - woelke/savina CAF: Savina Benchmark Suite.
url: https : / / github . com / woelke / savina / tree / caf _

integration (visited on 06/11/2020).

https://github.com/woelke/savina/tree/caf_integration
https://github.com/woelke/savina/tree/caf_integration

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of April 21, 2021 (classicthesis version 1.0).

https://bitbucket.org/amiede/classicthesis/

	Dedication
	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Contributions
	1.2 Overview

	Background and State of the Art
	2 Background
	2.1 Parallel Architectures
	2.2 Types of Parallelism
	2.3 Parallel Programming Models
	2.4 Used Library and Programming Languages

	3 State of the Art: Actor Model
	3.1 Attempts to Improve the Actor Model
	3.2 Actor Model as concurrency model
	3.3 Active Objects related works
	3.4 Actor Model Languages and Libraries
	3.5 Discussion

	4 State of the Art: Parallel Patterns
	4.1 Pattern-base Parallel Programming
	4.2 Pioneer Skeleton-based Frameworks
	4.3 Parallel Patterns Libraries
	4.4 Discussion

	Towards a synergic combination of Actors and Parallel Patterns
	5 Analyzing the isolation property on multi-/many-core platforms
	5.1 Multi-/Many-core platforms
	5.2 The needs for isolation
	5.3 Statically checked isolation in dataflow programs
	5.4 Isolation in data-parallel computations
	5.5 Summary and discussion

	6 Parallel Pattern-based software accelerator for the Actor Model
	6.1 Design a data-parallel software accelerator
	6.2 Implementation of the Actors' Accelerator in CAF
	6.3 Evaluation
	6.4 Summary and discussion

	7 Efficient Parallel Patterns for the Actor Model
	7.1 Designing Parallel Patterns as Actors
	7.2 Data-Parallel Patterns
	7.3 Control-parallel Patterns
	7.4 Evaluation
	7.5 Summary and discussion

	8 High-Throughput Stream Processing with Actors
	8.1 Motivations and problem statement
	8.2 Stream-parallel Patterns
	8.3 Evaluation
	8.4 Summary and discussion

	Summary
	9 Conclusions and Future Research Directions
	9.1 Summary
	9.2 Concluding Remarks
	9.3 Future Perspectives

	Bibliography
	Colophon

