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”THE BRAIN is wider than the sky,

For, put them side by side,

The one the other will include

With ease, and you beside.”

(E. Dickinson)

To my grandfather, Ercole
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Abstract

One of the grand challenges of digital imaging in the field of neuroanatomy

is the ability to extensively quantify anatomical structures and thus in-

vestigate the brain’s structure-function relationship in great detail.

In the light of this challenge, my PhD thesis aims to investigate the

brain’s micro-structure to obtain faithful and reproducible information on

neuron morphology within their native three-dimensional arrangement.

A rigorous work-flow was designed, that integrates delipidation methods,

advanced imaging techniques and image processing algorithms to better

understand neural micro-structure and its contribution to neural func-

tion. In particular, the work-flow provides i) the optimization and stan-

dardization, through the quantification of non-invasive and macroscopic

indices, of the CLARITY2 protocol, a tissue clarification method which

eliminates lipids and reduces tissue scattering from thick brain slices, ii)

the development of a Smart Region Growing (SmRG) algorithm for sin-

gle neuron tracing from confocal three-dimensional datasets representing

densely packed neurons within the brain, and iii) the implementation of

N3MO, an open-source tool for quantitative morphometric extraction and

multivariate analysis of neurons.
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Abstract

The work-flow was then applied to two case studies. The first aims to

investigate sexual dimorphism in animal models of autism, because of the

unbalanced incidence of the disorder in males and females. The second

study is focused on the assessment of neural organization in the claus-

trum, giving the basis for distinguishing the different neuronal types with

respect to their shape.
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Chapter 1
Introduction

“As humans, we can identify galaxies light years away, we can study

particles smaller than an atom. But we still haven’t unlocked the

mystery of the three pounds of matter that sits between our ears. [...] As

a result, we are still unable to cure diseases like Alzheimer’s or Autism,

or fully reverse the effects of a stroke”.

(Barack Obama announcing BRAIN project,

April 2, 2013).

According to A. Paul Alivisatos, member of the Berkeley University

and parter of the BRAIN (Brain Research through Advancing Innova-

tive Neurotechnologies) project, understanding how the brain works is

arguably one of the greatest scientific challenges of our time. Although

there have been piecemeal efforts to explain how different brain regions

operate, no general theory of brain function is universally accepted [4].

A fundamental underlying limitation is our ignorance of the brain micro-

circuitry, which is translated in the difficulty of deeply exploring the func-

tion of complex neural circuits: this is an invaluable step towards under-
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Introduction

standing fundamental and pathological brain processes. In fact, since the

role of cell structure in regulating cell behaviour and tissue function is well

known, investigating the relationship between brain micro-structure and

high-level function is a central endeavour for neuroscience research. Yet,

the mechanisms shaping this correspondence largely remain to be eluci-

dated and are highly debated [5, 6]. The neuroscience community feels

the need for a precise understanding of brain structure, that could help in

different fields of research. In particular, new approaches to reconstruct

neurons and circuits from empirical data can aid neuro-anatomical map-

ping, as well as generating models that can be used to make predictions

about a higher-level organization where knowledge is poor [7]. Detailed

morphological analyses of neurons are also vital for studying the normal

development of dendritic and axonal arbours and for documenting neuro-

pathological changes. Neurite arborization patterns established during

development are characteristic for particular neuronal subtypes and re-

late to function. Neurite arbour size and shape influence the integration

of synaptic inputs [8] and these, in turn, are regulated by both intrin-

sic developmental programs and external signals [9, 10]. Alterations in

neurite arbours have been observed in a number of neuro-pathological

conditions including mental retardation syndromes such as Autism Spec-

trum Disorders [11] and Alzheimers disease [12].

The main roadblocks to a more profound understanding of micro-structure

and corresponding function are: i) the lack of standardization and opti-

mization of protocols and procedures, ii) the presence of lipids in brain

tissue, that causes scattering and limits the depth of light penetration

and iii) the lack of algorithms for single-neuron tracing and morphomet-

ric extraction from three-dimensional image datasets.

As regards the first point, there is a huge amount of variability across

laboratories in every step of the scientific process. Data is collected with
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different brands of equipment and protocols, and the lack of automated

algorithms to trace neurons and extract quantitative morphometric leads

neuroscientists to manually quantify neuronal morphology, obtaining re-

sults prone to human bias [13]. Ignorance of basic methodological prin-

ciples leads to poorly designed research and misleading conclusions. It

undermines the whole point of scientific investigation. All these factors

make the notion of any laboratory exactly replicating another’ results

quite difficult. In addition, the neuroscience literature is often conflict-

ing and does not support the received wisdom because of the dearth of

statistical power of many studies, as highlighted by a recent analysis of

scientific studies in neuroscience [14].

Regarding the second point, the light microscope has long been one of

neuroscientists’ cardinal tool for studies of cellular morphology and brain

cyto-architecture [15]. The imaging limits of conventional microscopy

(i.e. scattering and light attenuation) made biological imaging myopic

for centuries: for these reasons, traditional 10-20 µm - thickness of tis-

sue slices used for microscopy ensures that only a small fraction of pho-

tons are scattered, resulting in high image quality and diffraction-limited

resolution, but limiting the understanding of real neuron arrangement

within the brain [2]. Ongoing advances have enabled new experimental

capabilities using light to inspect systems across multiple spatial scales.

Resolution and penetration depth are two important parameters to char-

acterize the performance of the most advanced optical imaging devices.

Unfortunately, as shown in Figure 1.1, there are no methods perform-

ing high-resolution imaging with high depth penetration. In order to

investigate cell morphology, confocal and multi-photon microscopy are

the best candidates to image thicker specimens. These methods have

revolutionized biological discovery by allowing the non-invasive study of

micro-structure because high-resolution images can be formed at depth
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of tens to hundreds of micrometers [2].

Although optical imaging is rapidly increasing its performance, providing

the high spatial resolution necessary to resolve individual neurons and

neuronal processes, acquiring images through significant depths of the

brain is no easy task since tissue is extremely heterogeneous. Moreover,

the presence of lipids results in strong scattering, which limits the depth

of light penetration and constitutes an antibody-impermeable barrier.

The traditional approach to image the brain is based on serial mechan-

ical sections of the tissue, but the process is costly, laborious, involves

deformation of tissue and bits of tissue can get lost (Figure 1.2).

For this reason, different optical clearing methods have been developed:

because scattering occurs when the refractive index of the sample dif-

fers from the medium, one approach is to reduce variations of refractive

index and light scattering by exchanging the water in the sample with

organic solvents or aqueous solutions with the same refractive index as

membrane lipids, so that lipids become essentially transparent. Meth-

ods based on this principle are: 3DISCO method [16], Scale method [17],

ClearT method [18] and SeeDB method [19], summarized in Table 1.1.

However, these clearing techniques are not compatible with molecular

phenotyping: only photons can penetrate deep into tissue, while labelled

biomolecules, essential for molecular phenotyping, cannot pass through

the brain. To overcome this limit, a different approach was developed

in 2013, the CLARITY method [20, 21], in which the brain is modi-

fied so that it becomes permeable both to macromolecules and photons.

In particular, CLARITY enables the transformation of intact biological

tissues into an hybrid form in which lipids are removed through solubi-

lization with a ionic detergent (Table 1.1). A simplified diffusion based

method, CLARITY2 [22], was successively proposed to clarify 1-1.5 mm

thick brain slices: this approach is very useful when there is the need
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Figure 1.1: The penetration depth and resolution of modern imaging techniques for

brain tissues.The methods on the left are primarily limited by light scattering, whereas

methods to the right are limited by light attenuation in tissue, a parameter that

depends on both absorption and scattering. Abbreviations: OPT: Optical Projection

Tomography, 2P/MP: two-photons/multi-photons, fPAM: functional Photo-Acoustic

Microscopy, hFMT: hybrid Fluorescence Molecular Tomography, MSOT:

Multi-Spectral Opto-acoustic Tomography, SPIM: Selective Plane Illumination

Microscopy, MFT: Mesoscopic Fluorescence Tomography. [2]
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Table 1.1: State of Art of the principal tissue clarification methods, with their pros

and cons.

Optical Clearing Advantages Disadvantages
Imaging techniques

available

3DISCO [16]

Demonstrated in

whole adult mouse,

brain and spinal

cord segments

1. Low duration (2-5 day for

clearing a whole,adult mouse

brain)

2. Highly reproducible method

3. No tissue expansion

4. Versatility (it is applicable on

a variety of,biological samples

including central nervous system

organs, immune organs and solid

tumors)

5. Method,compatible with many

labelLing methods (fluorophores,

synthetic dyes and antibody

labeling)

1 .Changes in chemical

nature

of the tissue are registered

2. Method not compatible

with

prolonged imaging

due to the use of organic

solvents, which rapidly quench

most

fluorescent protein signals

3. Because of limited

antibody

penetration, immunolabeling of

large tissue is difficult

4. Method incompatible with

whole-tissue molecular

phenotyping

5. Not reversible

6. Because optical clearing

damages the lipids structures,

electron microscopy cannot

be used

Cleared tissue can be imaged

using light-sheet laser-scanning

ultramicroscope (that costs about

half the price of a confocal

microscope), two-photon microscopy

or confocal microscopy.

However, the maximum imaging area

and depth of the last two techniques are

small if compared with light-sheet

microscopy: 0.5-1 mm,versus

10-20mm and 0.2-2.2 versus

10-20 mm respectively.

SCALE [17]

Demonstrated in

whole young mouse

brain, although

myelin-rich white

matter not

completely clear

1. Reagent formula is public

and easy and inexpensive;

researchers can modify its

composition according

to the

nature of the sample that have

to be cleared

2. Fluorescent signals

are preserved

1. Large expansion in tissue

volume

2. Because of partial

denaturation

and loss of proteins by urea,

samples are soft and fragile

3. Method not compatible with

lipophilic dyes

4. Method not fully

reversible

because of protein denaturation

and tissue deformation

5. Myelin-rich brain regions

remain opaque

6. Long time periods

required

for clearance (3 weeks for clearing

a whole adult mouse brain)

7. Changes in chemical

nature of

the samples are registered

8. Method incompatible

with

whole-tissue molecular

phenotyping

Cleared tissue can be imaged

using one- or

two-photon microscopy,

that allow to achieve a depth of 2 mm.

In deep regions,

two-photon

microscopy shows a better

signal-to-noise ratio.

ClearT [18]

Demonstrated in

whole young mouse

brain and in

sections

from adult mouse brain

1. No or mild tissue

expansion

2. Compatible with

lipophilic dye tracing

3. Short time incubation

(1 day) for clearing an

intact mouse embryo

(no data available for

adult mouse brain)

1. Not compatible with

fluorescent

proteins

2. Formamide is unsuitable

for

long-term tissue storage

3. Method incompatible with

whole-tissue molecular

phenotyping

Cleared tissue can be imaged

using stereomicroscope

or dissecting microscope.
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SeeDB [19]

Demonstrated in whole

young mouse brain

but reported to be

difficult in adult mouse

1. No tissue expansion

2. No fluorescent proteins

and lipophilic neuronal tracers

quenching observed

3. Reversible with PBS

multiple

times

4. Short time incubation

for

clearing (3 days for immature

brain); clearing adult brain

reportedly difficult

5. No changes in chemical

nature

of the samples

6. It can be combined with

immunochemistry without loss

of antigenicity

7. Minimum reagents and

efforts

required

8. Both gray and white

matter

can be cleared

9. Easy and inexpensive

method, no special equipment

required

1. Clearing of large pieces of

tissue such as whole adult mice

brain is difficult without sample

incubation

at high temperature,

that causes some fluorescent

loss

2. Limited penetration of

antibodies that can only

penetrate a depth of

100-250 µm

3. Limited penetration of

chemical

dyes for counterstaining

4. Method incompatible

with

whole-tissue molecular

phenotyping

It is possible to

reach

>1,000 µm depth

with confocal microscopy

and to image fixed

mouse

brain samples at mm-scale

level with two-photon

microscopy

CLARITY [20]

Demonstrated in whole

adult mouse brain,

adult zebrafish brain

and postmortem

human brain tissue

1. No fluorophore quenching

observed

2. Reversible tissue expansion

during the process

3. Lipids are completely removed

without,mechanical disassembly

the tissue

4. Multiple rounds of molecular

phenotyping are allowed

5. Method compatible with

immunostaining

6. Versatility

1. Method not compatible

with lipophilic dyes

2. Not reversible

3. Change in chemical nature

of the samples are registered

4. Technically difficult:

method

involves custom set-up assembly

and many experimental steps

with a lot

of variables to be controlled

5. High start-up and

consumable

material costs

6. Immunostaining is time-consuming

7. Long time periods

required for

clearance (2 weeks)

Confocal

microscopy, by

exposing the tissue to

excitation light, causes

photoblenching

of fluorescent

molecules. With two-photon

microscopy, it is possible to

overcome this limit but both

single and two-photon imaging

techniques are

characterized by

low image acquisition rate.

For imaging large samples at

high

resolution and high image

acquisition rate, selective-plane

illumination

microcopy

is the most effective choice.
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Figure 1.2: From traditional brain imaging to direct volume imaging, thanks to the

advance in optical microscopy and delipidation methods.

to focus the study only on a brain sub-region or on a specific neuronal

population. But, like CLARITY, the CLARITY2 also protocol involves

numerous variables and tissue transparency is evaluated heuristically: ev-

ery laboratory has its own protocol, and there is no unique way to define

the “goodness” of clarification, leaving much to trial and error.

Even after the clarification steps, three-dimensional confocal datasets

representing dense packed neurons within the brains are far from be-

ing easily processed. In fact, the intensity values within a confocal im-

age stack vary discontinuously, because of both attenuation/scattering

of light and non uniform distribution of the fluorescent signal due to

biological heterogeneity. In order to overcome these problems, differ-

ent algorithms have been developed to trace single-neurons from three-

dimensional datasets, using different approaches: segmentation with a

8



Introduction

global threshold [23, 24], region growing with active contour techniques

[25, 26, 27, 28], fuzzy schemes [29] or 3D wavelet transform [30]. In ad-

dition, methods based on prior knowledge (i.e. user aided segmentation

[31], atlas-based segmentation [32] or tool partially mimicking human

strategies to separate individual neurons [33]) were also presented in the

literature, but they are strongly user-dependent. Unfortunately, none of

the mentioned algorithms are able to handle stacks with intensity inhomo-

geneity and noise of spatially varying strength, leaving the challenge still

unsolved. Currently, great efforts are being made to address this prob-

lem, e.g. BigNeuronLaunch project by Allen Institute for Brain Science)

aiming to both standardize the method and mobilize the reconstruction

community to generate interest in solving these complex and interest-

ing algorithm problems. In particular, the neuro-informatics community

agrees that consider region growing schemes based on histogram local

characteristics are a robust approach to segmentation, but in the State of

Art only models with local image intensities described by local Gaussian

distributions are presented. However, confocal datasets cannot always be

described with a set of local Gaussian distributions [34].

An other aspect which needs addressing regards morphometric analy-

sis: most of the tools implemented are dedicated to 2D images [35, 36,

37, 38, 39], so they are developed for in-vitro cultured neurons, that

cannot represent the real neuron shape within the brain. In addition,

although different tools have been developed for morphological analysis

[1, 40, 31, 41, 42], it is still not possible to perform a complete analysis us-

ing a unique software to consistently quantify neuronal micro-architecture

through image processing.

In this context, the aim of this PhD thesis was to develop an in-

novative and rigorous work-flow for quantitative analysis of brain micro-

architecture, that integrates delipidation protocol optimization and imag-
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ing algorithms to trace single neurons and to extract morphological pa-

rameters of interest from confocal datasets. The work-flow is shown in

Figure 1.3.

Subsequently, some or all elements of the workflow were applied to the

study of sexual dimorphism in animal models of autism and to investigate

the micro-structure of the claustrum.

This PhD thesis is subdivided into five main Chapters.

In Chapter 2, a standardization of the CLARITY2 method is described,

to determine the optimum clearing time. In particular, as the main objec-

tive of the delipidation treatment is to clarify tissues while limiting loss of

proteins linked to specific cell populations (e.g. Tubulin III for neurons

in the Central Nervous System of mammalians), the goodness of clari-

fication was evaluated by considering the bulk tissue clarification index

(BTCi) and the fraction of proteins retained in the slice as easily quan-

tifiable macro-scale parameters. For un-perfusable samples (e.g. from

autoptic brains), slice thickness was considered as a further parameter

to optimize, since the hydrogel achieves the whole sample only through

passive diffusion, limiting the protocol efficacy.

In Chapter 3, to tackle the difficulties of automatically tracing neuronal

structures in their native three-dimensional arrangement within the brain,

a Smart Region Growing (SmRG) algorithm was developed to trace sin-

gle neurons from confocal stacks, based on local features of the image

intensity value histogram.

The SmRG algorithm was then integrated in the N3MO tool, purposely

developed for this thesis and detailed in Chapter 4. N3MO was designed

to handle and process confocal stacks representing brain areas with neu-

rons in their own three-dimensional arrangement, in order to automati-

cally run routines to extract the morphometric variables, store the data

obtained and classify them using multivariate analysis.
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Figure 1.3: The work-flow designed for the study of brain micro-architecture. After

brain tissue clarification, standardized and optimized as detailed in Chapter 2, and, if

needed, an immuno-labelling procedure to highlight structures of interest (i.e. Tubulin

III antibody to label all mammalian neurons), three-dimensional datasets were

obtained using a confocal microscope. The stacks were then processed with the SmRG

algorithm, desbribed in Chapter 3, for single neuron tracing. Then, each

three-dimensional structure obtained was analysed with N3MO, whose features are

described in Chapter 4, to extract morphometric variables and store the data obtained;

if needed, data can be also analysed using statistical multivariate analysis (i.e. 3-way

PCA)

.
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Finally, the work-flow was applied to two case studies.

Firstly, as described in Chapter 5, a study of sexual dimorphism in an-

imal models of autism through the analysis of morphological differences

in Purkinje cells (PCs) is presented, because they are known to play an

important role in the development of the disorder [36, 43, 44, 45]. More-

over, because of the unbalanced incidence of Autism Spectrum Disorders

between males and females (i.e. 4:1 ratio) and the lack of studies in

the State of Art proofing any sexual dimorphisms in ASDs at the micro-

structural level, for each genotype both sexed mice are considered. A

proof of concept on 2D images processed with NeMo [36], representing

Purkinje cells in thin cerebellum slices, demonstrates that there are sta-

tistically relevant morphological differences between wild-type mice and

knock-out ones, taking also into account sexual dimorphism. However,

since two-dimensional studies cannot give information about the native

arrangement of the neurons within the brain, the method designed in

this thesis was applied to study morphological alterations in PCs in thick

cerebellum slices from males and females wild-type and knock-out mice.

The second part of this thesis is dedicated to the study of claustrum

micro-architecture. The structure and function of the human claustrum

are still a matter of intense debate and investigation [46, 47], but a char-

acterization of the distribution of neurons in their three-dimensional con-

text within this nucleus is still lacking. In fact, few studies about human

claustral cells were performed. In particular, Braak et al, (1982) [48],

using Golgi-technique on thin slices classified neural claustral cells. How-

ever,the study was just based on visual inspection and no quantitative

classification based on morphometrics is performed. Moreover, since the

Golgi technique randomly stains the neurons inside the nucleus, it just

allows the neuronal identification, but not the measure of the cell density.

A more recent study, conducted by Hinova-Palova (2013) [49], also aimed
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to classify different neuron types demonstrating the presence of an opioid

peptide involved in autonomic and neuroendocrine regulation. To this

end, in Chapter 6, a preliminary study was performed on 2D histological

micrographies of dog claustrum, to classify different neuron types with

respect to their shape. Since the results obtained demonstrate that neu-

ron shape can be used to distinguish between different neuron types, and

given the advantages of 3D versus 2D, some elements of the work-flow

presented in Figure 1.3 were applied to human claustrum. In particular,

after the clarification step on thick slices using the optimal parameters

identified in the work-flow, a three-dimensional neuron reconstruction

was acquired with a confocal microscope. These datasets could represent

a first step towards the pursuit of the knowledge of structure-function

relationship in this enigmatic nucleus.
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Chapter 2
Clarifying CLARITY: quantitative

optimization of the diffusion-based

delipidation protocol

”The brain micro-circuitry is an impenetrable

juncle where many investigators

have lost themselves.”

(Ramon y Cajal)

Abstract

Tissue clarification has been recently proposed to allow deep tissue imag-

ing without light scattering. The clarification parameters are somewhat

arbitrary and dependent on tissue type, source and dimension: every lab-

oratory has its own protocol, but a quantitative approach to determine the

optimum clearing time is still lacking.

Moreover, most of the clarification methods are designed for small and

perfusable animals (i.e. mice or rats) to achieve all tissue regions through
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blood micro-vessels and enhance protocol efficacy. On the other hand, the

study of large animal brains or parts of them (i.e. human claustrum),

essential for investigating unknown structures, is limited by passive dif-

fusion of the delipidation reagents in each clarification step, and so it is

slice thickness-dependent.

In this context, a quantitative approach using CLARITY2 is described,

to determine the optimum clearing time and, for un-perfusable tissues,

also the optimum slice thickness. In particular, as the main objective of

the delipidation treatment is to clarify tissues, while limiting loss of pro-

teins linked to specific cell populations (e.g. Tubulin III for neurons in the

Central Nervous System of mammalians) the goodness of clarification was

evaluated by considering the bulk tissue clarification index (BTCi) and the

fraction of proteins retained in the slice as easily quantifiable macroscale

parameters. For un-perfusable samples, slice thickness was considered as

a further parameter to optimize.

Here we describe the approach, illustrating three examples of how it can

be used to determine the optimum clearing time for i) cerebellar slices

from transgenic L7GFP mice, in which Purkinje neurons express the GFP

(green fluorescent protein) tag, ii) un-labelled cerebellar slices from CD1

mice and iii) un-labelled and un-perfused slices from human samples. To

validate the method, for the transgenic brains we evaluated confocal stacks

of our samples using standard image processing indices (i.e. the mean

pixel intensity of neurons and the contrast-to-noise ratio) as figures of

merit for image quality.

The results show that, while detergent-based delipidation reaches a tissue-

and thickness-dependent plateau in time, the fraction of protein in the tis-

sue continues to diminish. The optimum clearing time can be determined

as the best compromise between the increase in light penetration depth due

to removal of lipids and a decrease in signal as a consequence of protein
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loss: further clearing does not improve tissue transparency, but only leads

to more protein removal or degradation.

The rigorous quantitative approach described can be generalized to any

clarification method to identify the moment when the clearing process

should be terminated to avoid useless protein loss.

2.1 From brain tissue to confocal acquisition:

tissue clearing protocol standardization and

optimization

One of the challenges of modern neuroscience is to map the architecture of

neural circuits in the mammalian brain, in order to delineate the so-called

Connectome [50], tracing the information pathways through axons and

dendrites of neurons in their native three-dimensional (3D) arrangement.

The main obstacle for this kind of study is the presence of lipids, which

cause light scattering, limit the depth of light penetration, and constitute

an antibody-impermeable barrier. Even using two-photon microscopy, it

is impossible to penetrate brain samples more than a few hundred mi-

crons [51], which is insufficient for reconstructing large brain projections

or complete neural populations [20].

To overcome these limits, a number of optical clearing or delipidation

approaches have been developed to render the whole brain transparent

so that it can be analysed without sectioning [16, 17, 19, 18, 52]. Among

these, the CLARITY method, pioneered and disseminated through fo-

rums and Wiki pages by Deisseroths group (i.e. http://forum.clarity\

techniques.org/), has captured the imagination of many researchers

and is currently discussed and debated widely [20, 21, 53]. To date about

20 new papers on CLARITY and its variations have been published and

a number of them are dedicated to the optimisation or simplification of
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the experimental set up [54, 55, 56, 57]. In fact, despite the plethora

of virtual discussion groups, the method remains substantially heuristic

due to the large number of steps involved and the ensemble of variables

which contribute to the tissue delipidation process. For instance, tissue

clearing is evaluated by visible inspection and is thus prone to observer

bias. Furthermore, the mechanisms of tissue fixing and clarification re-

main elusive, making it almost impossible to standardize CLARITY for

rigorous quantitative studies.

After Chung et al.’s seminal report [21], a simplified diffusion based

method, CLARITY2, was proposed by Poguzhelskaya et al. [22] to clar-

ify 1-1.5 mm-thick slices. CLARITY2 does not necessitate the use of the

electrophoretic chamber, probably the most time consuming and difficult

step of the whole procedure. The passive clarity technique (PACT) is

very similar to CLARITY2 [58]. Both approaches can be very useful

when it is not necessary to achieve the full potential of CLARITY to

delipidate an intact brain, focusing the study only on a brain sub-region

or on a specific neuronal population (i.e. Purkinje cells in the cerebellar

layers). Like the CLARITY protocol, CLARITY2 involves protein and

structural fixation through the use of formaldehyde and an acrylamide

based gel, transcardially perfused into anesthetized animals, followed by

solubilisation of lipids using sodium dodecyl sulphate (SDS) in the so-

called clearing solution.

However, despite their excellent contribution to brain imaging, even pas-

sive clearing methods presents some problems:

1. CLARITY2 is designed for small and perfusable animals. No tips

were given to the users in Chung’s article to modify the protocol for

un-perfusable tissue, such as human brain samples. In the State of

Art, Liu et al. (2015) [59] customized the protocol for un-perfusable

tissue, but an optimization of the parameters is still lacking;

18



Clarifying CLARITY

Figure 2.1: Schematic work-flow with the standardization procedures established, from

tissue harvesting to confocal acquisition, for A perfused and genetically labelled tissues

(green path), B perfused and non genetically-labelled tissue (blue path) and C non

perfused and non-genetically labelled tissues (red path).

2. CLARITY2 combines a large number of variables (i.e. slice thick-

ness, reagent concentration, clearing times), leaving much to trial

and error;

To address these issues, an experimental method was developed for the op-

timization and standardization of the clarification protocol. The method

designed involves two main steps, summarized in Figure 2.1:

• Slice thickness optimization and standardization Since ves-

sels cannot be used to achieve the systemic delivery of hydrogel

and the clarification reagents in all the regions of the sample, it is

necessary to find a trade-off between tissue thickness and protocol

efficacy in case of un-perfusable tissues;

• Clearing time optimization and standardization. The re-

moval of tissue lipids reduces tissue opacity, but is inevitably ac-
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companied by a non-specific loss of inter- and extra-cellular compo-

nents.

In this context, clarification for imaging the 3D cellular architecture

can be regarded as a trade-off between the increase in light penetration

depth due to delipidation and a decrease in emission signal as a con-

sequence of protein loss through solubilisation or degradation. Here an

approach is defined to macroscopically assess the delipidation efficacy as a

function of clearing time. In case of genetically labelled tissue, to double-

check the experimental method and validate it, the results were compared

with those obtained with indexes usually used in image processing.

2.2 Optimization method for perfused and ge-

netically labelled tissues

2.2.1 Materials and Methods

Tissue preparation. Both CD1 and L7GFP mice were obtained from

the Department of Translational Research, New Technologies in Medicine

and Surgery of the University of Pisa (Italy). While CD1 mouse brains are

not genetically-labelled, in L7GFP ones GFP (green fluorescent protein)

expression is driven by the Pcp-2 promoter and is specific for Purkinje

cells (PCs) in the cerebellar layers [60]. The experiments were conducted

in conformity with the European Communities Council Directive of 24

November 1986 (86/609/EEC and 2010/63/UE) and in agreement with

the Italian DM26/14. Experiments were approved by the Italian Ministry

of Health and Ethical Committee of the University of Pisa.

Adult mice were anesthetised with a lethal dose of 7% chloral hydrate

and then perfused at a slow flow rate (about 2 minutes for 20 mL of

solution) with 20 mL of ice cold Phosphate Buffered Saline (PBS 1X,
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Sigma-Aldrich, Milan, Italy) and then 20 mL of ice cold hydrogel solu-

tion, containing 4% acrylamide, 0.05% bis-acrylamide (Biorad Lab Inc.,

California, USA), 4% formaldehyde (PFA, Sigma-Aldrich) and 0.25 %

VA-044 thermally triggered initiator (Wako Chemicals, Neuss, Germany)

at 4 ◦ C, as described in Chung et al., 2013 [21].

The brain was immediately extracted and submerged in 20 mL hydro-

gel solution for 3 days at 4◦ C in a 50 mL Falcon tube (for L7GFP

brains, the tube was covered with aluminium foil to protect samples from

direct light exposure) to allow gel diffusion into the tissue. Then the

cap was substituted with a modified one with a small hole to which a

short piece of silicone tube with an on-off valve was hot-glued. A vac-

uum was applied to the tube for 10 minutes, after which the valve was

closed to enable hydrogel formation in the absence of air (the presence

of oxygen impedes gelation of the acrylamide gel). Polymerization of the

biomolecule-conjugated monomers in the hydrogel mesh was thermally

initiated by incubating the infused tissue overnight at 37◦ C.

The mouse brain was then isolated by carefully removing the surround-

ing excess hydrogel, and vertically cut along to the coronal plane with a

scalpel to obtain the portion containing the cerebellum.

At this point, in order to establish the most suitable slicing set up for the

brains, the effect of two sectioning parameters (i.e. step size and section-

ing speed) on resultant slice thickness were investigated, while keeping

the oscillation amplitude, 1.5 mm and the blade angle, 18 ◦, constant, as

they are less crucial to the determination of slice thickness.

Given that slicing accuracy is stiffness-dependent (i.e. the more stiff the

tissue, the more matching exist between experimental slice thickness and

vibratome step size) and that the stiffness of biological tissues is known

to increase after fixation through 4% PFA intra-cardiac perfusion, it is

reasonable to consider hydrogel-embedded tissue mechanically compara-
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ble with those PFA-fixed used to characterize vibratome slicing setup in

Mattei et al., (2015) [61]. Taking into account this assumption, mouse

cerebella were cut into 1 mm-thick coronal slices using a Leica VT1200S

vibratome (Leica Microsystems, Nussloch, Germany) with a stainless steel

razor blade (Gillette, Milan, Italy). The cut settings were: blade angle,

18◦; sectioning speed, 0.2 mm/s; and oscillating amplitude, 1.5 mm.

Clarification steps. Each hydrogel-embedded slice was placed in a 50

mL Falcon tube at 37◦ C with 10 mL of CLARITY clearing solution,

composed of 200 mM Boric Acid (Farmitalia Carlo Erba spa, Italy) and

4 % Sodium Dodecyl Sulphate (SDS, Sigma-Aldrich) [21]. The pH was

adjusted to 8.5 by adding 1 M NaOH dropwise.

Cerebellar slices embedded in the hydrogel and immersed in 20 mL of 1X

PBS solution were used as controls. Clearing solutions and PBS in the

controls were changed at 3, 5 and 7 days.

Quantitative evaluation of clarification. At each time point inves-

tigated (i.e. day 0-3-5-7-10), the goodness of clarification for both the

treated tissue slices and controls was evaluated using two macroscopic

approaches: i) a quantification of tissue clarification through image anal-

ysis, and ii) an evaluation of the fraction of the GFP lost in the clearing

solution.

Bulk Tissue Clarification Index. Tissue slices were placed on a

white plastic support marked with a black line and photographed using

a Nikon D5100 reflex camera (Figure 2.2).

After converting the images into 8-bit grayscale, the clarification was

evaluated defining a Bulk Tissue Clarification index (BTCi) as:

BCTi =
255 − I1
255 − Is

(2.1)
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Figure 2.2: Photographs of cerebellar slices at different clearing times. The images

were used to calculate BTCi through equation 2.1, comparing the intensity of the black

line below the slice and in the region without the slice. (pixel size: 0.125 mm)

where I1 and Is are the mean pixel intensities of the black line traced

on the support respectively with and without the tissue on it. Averaging

the pixel intensities reduces local variations, while the term Is in equation

2.1 serves as an internal normalization which eliminates variations due

to any differences in environmental light conditions between images. The

index so-defined ranges from 0 (i.e. totally opaque white slice) to 1 (i.e.

totally transparent slice).

Quantification of the fluorescent protein loss. In principle,

there are two sources of tissue protein loss: protein denaturation due to

the clearing solution and protein release into in the clearing solution.

In case of genetically-labelled tissues, since the clearing solution (pH 8.5,

containing SDS) is not likely to denature biological fluorophores [62], the

loss of fluorescent protein from the slice can be assumed equal to that

released in the clearing solution. In this study, to quantify GFP loss,

n=3 200 µL samples of the clearing solution were analysed with a plate

reader (FLUOstar Omega, BMG Labtech, Ortenberg, Germany, Ex: 485

nm and Em: 544 nm). Fluorescence was read against a blank of fresh

clearing solution, keeping the spectrofluorimeter settings (e.g. gain, num-

ber of flashes per well) constant over measurements to enable meaningful

quantitative analyses of fluorescent protein release over time. Since the
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clearing solution was completely refreshed at day 3, 5 and 7, for each brain

slice the fluorescence data obtained at different time points were summed

and expressed as cumulative fluorescence until day 10. To exclude fluores-

cent contributions due to tissue degradation or autofluorescence, tissue

slices from CD1 mice were also clarified and clearing solution samples

were taken at the same time points (i.e. day 3-5-7-10) analysed with the

same plate-reader settings.

Evaluation of image quality using standard indices. Image

stacks of L7GFP mouse slices treated with clearing solution and controls

were mounted on a glass slide with FocusClearTM (Celexplorer Labs Co.,

Hsinchu, Taiwan) and then acquired with a confocal microscope (Nikon

A1) at different time points. In particular, a 200 µm z-stack with a step

size of 2 µm was acquired using a 10X objective with a pixel-to-micron

ratio size of 0.46 µm/pixel on a 512x512 matrix. The same confocal

settings were used for all scans (i.e. 4.84 W laser power, emission and

excitation wavelengths of 488 nm and 502 nm respectively). Two widely

used indices for quantifying image quality were calculated:

1. Mean Pixel Intensity

To quantify tissue clarification as function of time, the Mean Pixel

Intensity (MPI) of the objects of interest (PCs) was evaluated using

the method described by Gonzalez, 2009 [63]. An automated algo-

rithm was developed in Matlab (The Mathworks Inc.) to estimate

the MPI for each of the 100 images in the z-stack. First a global

threshold with Otsus method [64] was performed for every plane

image of the stack to identify the objects (i.e. the PCs). Then, the

MPI of thresholded objects in each plane was calculated using the
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equation 2.2:

MPI =

∑M
i=1M

M
(2.2)

where M is the number of object pixels and IM their pixel intensity.

2. Contrast-to-Noise Ratio

Although the MPI is a measure of the signal, it is not directly linked

to the information content of the image, which also depends on con-

trast between labeled neurons and the background. An alternative

parameter for evaluating light scattering through the depth of the

slice taking into account the image background is the Contrast-to-

Noise (CNR) ratio defined as in equation 2.3:

CNR =
MPI − Ib√

σm+σb
2

(2.3)

where MPI is as defined previously, Ib is the mean intensity of the

background, σm is the standard deviation of the objects and σb the

standard deviation of the background [65].

Once again, the CNR was calculated using an automated routine in

Matlab. For each image in the stack, the Otsu-based thresholding

method described was used to identify the objects of interest and

discriminate them from the background. Then, assuming σb = σm,

as proposed by Song and co-workers [65], the CNR was calculated

according to equation 2.3.

Sample evaluation and statistical analysis. Five animals were em-

ployed for the MPI and CNR analyses, using n = 2 slices per day for

both experimental samples and controls. Thus, a total of n = 18 slices

were employed, 2 for the time 0 analyses and 16 for the other time-points,
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i.e. 2 (replicates) ∗ 4 (time points) ∗ 2 (treatments) = 16. Each sample

was imaged in 4 different regions, thus averaging 8 datasets from 2 slices

per data point. Sample from different animals were pooled together as

replicates for the analyses, assuming no inter-animal difference.

Six animals, three L7GFP mice and three CD1, were used for the macroscale

BTCi and protein loss experiments, again pooling samples together. Here

a total of n=10 slices (5 controls in PBS + 5 samples in clearing solution)

were used throughout the 10 days to determine average daily values of

BTCi and GFP leakage. Unlike the MPI and CNR analyses, BTCi and

GFP loss experiments were performed on the same slice until day 10,

obtaining 5 replicates per experiment and time point investigated.

Statistical analyses of BTCi, GFP loss, MPI and CNR data were carried

out using ANOVA followed by Tukeys Multiple Comparison Test, setting

significance at p<0.05.

2.2.2 Results

Bulk Tissue Clarification index (BTCi) evaluation. Assuming no

differences in the gross optical properties between cerebellum slices, data

from different sections acquired at the same time points were grouped

together as sample replicates to evaluate the BTCi.

The initial BTCi for untreated slices (i.e. time 0 in Figure 2.3A) was

0.43 ± 0.04. For samples immersed in clearing solution, this index in-

creases significantly over time (p>0.05, one-way ANOVA) until it reaches

a plateau at day 5 (BTCi = 0.88 ± 0.11). On the other hand, the BTCi

does not change significantly over time (p>0.05, one-way ANOVA) for

cerebellar slices immersed in PBS (i.e. the negative control).

Evaluation of GFP fraction lost. As fluorescence from un-labelled

tissue slices was similar to that of the virgin clearing solution, we can
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Figure 2.3: A BTCi as a function of clearing time for control cerebellar slices in PBS

(n=5, red) and in CLARITY clearing solution (n=5, blue) slices. B Cumulative GFP

measured in the clearing solution over time (n=5 slices). C Fraction of GFP retained

(GFPfr), expressed as in equation 2.4, showing no significant differences between slices

at the same time point. D BTCi and GFPfr time series obtained grouping results from

the 5 different slices together, showing the relationship between the two parameters.
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assume that there are no fluorescent components from tissue degradation

or autofluorescence of brain components, and so all the signal detected by

the spectrofluorimetric analysis refers to GFP loss in the clearing solution.

The cumulative GFP loss from each sample is reported in Figure 2.3 (B).

Data for GFP loss in controls are not shown as the values were either

negative or close to zero, indicating levels of GFP close to or below the

limit of detection. As shown in the figure, the rate of GFP leaked is

initially high but tends to decrease with time towards an equilibrium

value, typical of passive diffusion.

Although the trend for all slices examined is similar, it is not possible

to assume a slice-independency as supposed for the BTCi evaluation.

Indeed, the amount of GFP leaked into the clearing solution, expressed

as arbitrary fluorescence units, varies from slice to slice because of the

heterogeneous distribution of PCs in the cerebellum ( Figure 2.3 (B)).

Hence an appropriate normalization is needed to meaningfully compare

results from different slices. Assuming that GFP loss is a diffusive process,

each sample loses the same fraction of protein at equilibrium. Since the

cumulative GFP release did not change significantly between day 7 and 10

(i.e. the release of GFP appears to have reached a plateau and does not

increase significantly over time), we assume that day 10 corresponds to the

equilibrium state. Therefore, to normalise the loss of fluorescent protein

(GFPloss) from each slice, the cumulative fluorescence values obtained

from the clearing solutions were divided by their respective values at day

10, GFPloss(tend). A first one-way ANOVA analysis was performed on

normalised GFP data obtained at each of the time points investigated to

verify that this parameter is not slice-dependent (Figure 2.3 (C)). Then,

data from different slices collected at the same time point were grouped

together to give the fraction of fluorescent protein retained, expressed as

in equation 2.4:
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GFPfr(t) = 1 − GFPloss(t)

GFPloss(tend)
(2.4)

The fraction of fluorescent protein retained decreases continuously

over time, as expected for passive diffusion (Figure 2.3(D)). The corre-

sponding BTCi is plotted in the same graph to highlight the correlation

between tissue transparency and GFP specific fluorescence of the sample.

MPI and CNR evaluation. The image based MPI and CNR analyses

of the confocal z-stack images are reported in Figure 2.4. For the sake of

clarity, only the mean values are shown. Although the variations are not

statistically significant due to the unavoidable intrinsic variations between

slices and the heterogeneous distribution of cells in each region imaged,

there is a notable difference in trends between the samples immersed

in the CLARITY clearing solution and PBS. The MPI decreases with

increasing depth in controls and this trend is fairly independent of the

number of days the slice is immersed in PBS (Figure 2.4(B)). On the

other hand, in clarified tissues the MPI decreases with depth during the

first few days in clearing solution and then increases inside the slices,

reaching the highest values at day 5 (Figure 2.4A). Similar results are

obtained for the CNR (Figure 2.4C for the slices immersed in clearing

solution and Figure 2.4D for the PBS-immersed ones); for a given depth

in the sample the highest CNR values are found at day 5 of clarification.

To illustrate the power of the clearing method for imaging neural strucrue,

figure 2.5 shows a volume view of a 3D reconstruction from a confocal

stack acquired at day 5. This type of image cannot be obtained from 1

mm-thick slices of un-cleared brain tissue because of light scattering.
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Figure 2.4: (A) Mean pixel intensity (MPI) as a function of stack depth for tissue

slices immersed in clearing solution for different times (n=2 slices per line). (B)

MPI for controls (n=2 slices per line). (C) CNR (contrast to noise ratio) as a

function of stack depth for tissue slices immersed in clearing solution for different

times (n=2 slices per line). (D) MPI for controls (n=2 slices per line). For each

sample acquired, the MPI and CNR were calculated over 200 m thick regions from

100 different images spaced 2 µm apart, i.e. a total of 100 data points).
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Figure 2.5: Volume view of a confocal stack acquired at day 5 (Ex/Em: 488/502,

pixel-to micron ratio size: 0.62 µm , z-resolution: 1.2 µm). Volume dimensions

(w*l*h): 317*317*172 µm (numbers in the edges of the box represent distances in

microns).
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2.3 Optimization method for perfused and un-

labelled tissues

In the previous sections, it has been demonstrated that the delipidation

time for GFP genetically-labelled tissues can be optimised by using two

macroscopic parameters, the bulk tissue clarification index (BCTi) and

the fraction of GFP lost in clearing solution simultaneously.

In case of non-genetically labelled tissues, since there are no specific fluo-

rescent markers to monitor over time, the optimization method described

above has to be modified by evaluating the fraction of protein lost (i.e.

Ploss) in the clearing solution, i.e. using colorimetric assays. In this case,

we evaluate the overall protein loss, and assume that all proteins are

leaked to the same extent. In fact, several colorimetric, reagent-based

protein assay techniques have been developed [66]: the reagent is added

to the proteins, producing a colour change in proportion to the amount

added. Protein concentration is determined by reference to a standard

curve consisting of known concentrations of a purified reference protein.

Due to its compatibility with high concentration of SDS and basic pH,

the BCA (bicinchoninic acid) protein assay was chosen to estimate the

Ploss in the clearing solution.

2.3.1 Materials and Methods

To perform the experiments, CD1 mice were sacrificed. While tissue

preparation and clarification and BCTi evaluation over time were the

same detailed in the Section 2.2.1, clearing solution sampling and pro-

cessing to evaluate the Ploss are described below.
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2.3.2 Quantification of the proteins lost in solution

Clearing solution sampling and BCA assay. At each clearing time

point (i.e. day 3-5-7-10), 1 mL sample of the solution was placed in a 1.5

mL eppendorf tube and stored at -20 ◦C.

The PierceTM BCA Protein Assay Kit was used (Thermoscientific) for

the colorimetric and quantitative detection of total proteins released in

the clearing solution at each time point. Briefly, the procedure involves

the mixing of 25 µL of each sample with 200 µL of the BCA working

reagent (sample to working reagent ratio = 1:8) in a 96-Well Plate. The

solution was vortexed for 30 seconds and incubated at 37◦C for 30 min-

utes. Then, the absorbance is measured at 562 nm on a plate reader

(FLUOstar Omega, BMG Labtech, Ortenberg, Germany).

Before starting the test, a series of standard solutions, in which the con-

centration of a given analyte (in this case, albumin) in the clearing so-

lution is accurately known, are prepared to generate a calibration curve.

For each of the standard solutions, the absorbance was measured using

the same plate reader and the calibration curve was constructed fitting a

4-parameter curve through the experimental points.

The clearing solution samples were defrosted and analysed with the same

settings used for the calibration curve to determine the amount of protein

loss during clarification. Protein content in solution was read keeping the

plate reader settings constant over measurements to enable quantitative

measurements over time.

As previously detailed for the GFP fraction lost in solution, since the

clearing solution was completely refreshed at day 3, 5 and 7, for each

brain slice the data obtained at different time points were summed and

expressed as cumulative signal until day 10.
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Sample evaluation and statistical analysis. Two CD1 mice were

employed for estimating the fraction of protein lost in solution. For each

mouse, four 500 µm-thick slices were obtained using a vibratome, for a

total of eight slices used through the 10 days to determine daily values of

proteins lost in solution.

Statistical analysis of the data was carried out using ANOVA followed by

Tukey’s Multiple Comparison Test, setting significance at p<0.05.

2.3.3 Results

Although the trend of the proteins lost in clearing solution over time for

all the slices is similar, it is not correct to assume a slice-independence.

In fact, the amount of protein leaked into the clearing solution varies

from slice to slice because of the physiological heterogeneity of the brain

samples. Moreover, unlike the cumulative GFP lost, which reaches an

equilibrium value, the total protein content lost in solution obtained with

the BCA assay continues to increase over time. For this reason, the

normalization with respect to the 10 day time point used for the GFP-

labelled samples cannot be applied.

Some form of normalization is needed to meaningfully compare results

from the different slices. Since the total protein in mouse brain was esti-

mated at 10 % (wt) [67, 68], the slices were weighted and the total protein

content in the slices prior to clarification was estimated. Specifically, as

reported by Chung et al. 2013 [21], the protein fraction in mouse brain

is 1
10 of the total wet weight. The value obtained was used to normalize

the cumulative protein data at each time point.

A first one-way ANOVA analysis was performed on normalised data at

each time point investigated to verify that the parameter calculated is

not slice-dependent. Then, data from different slices collected at the

same time point can be pooled together to give the fraction of protein
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retained Pfr (equation 2.5):

Pfr(t) = 1 − Ploss(t)

0.1 ∗ wslice
(2.5)

where wslice is the slice weight before starting the clarification.

Figure 2.6: BTCi and Pfr time series obtained grouping results from the 5 different

slices together, showing the relationship between the two parameters.

In Figure 2.6 BCTi and FPfr are plotted in the same graph to high-

light the correlation between the two parameters: while the fraction of

protein retained decreases continuously over time, the BCTi follows the

same trend as reported in Figure 2.4(D), reaching a plateau at day 5.

Although the curves intersect at day 7, the optimum clearing time was

identified as day 5, since there are no significant differences in BSTi be-

tween day 5 and day 7.

To show the compatibility of CLARITY with immuno-labelling, clarified

murine brain slices were stained with antibodies. Briefly, immunostain-

ing was performed on free-floating slices, incubated in 10 % normal goat

serum in 0.1 M PBS for 1 h and then with rabbit anti-SERT (Millipore,

USA, 1:200 diluition) antibody to 0.1 M PBS overnight at 4◦C. After two
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further washes in 0.1 M PBS, the sections were incubated in anti-rabbit

Alexa Fluor 561 antibody (1:200 diluition) in 0.1 M PBS overnight.

Figure 2.7 shows a detail from a confocal stack acquired at day 5, repre-

senting the substantia nigra SERT-positive neurons.

Figure 2.7: Confocal image acquired at day 5 (Ex/Em: 561/594, pixel-to micron ratio

size: 0.31 µm), representing a detail of substantia nigra SERT-positive neurons.

2.4 Customization of the CLARITY2 protocol

for un-perfused tissues

The original CLARITY2 protocol is designed for perfused tissues: in fact,

the first steps of the protocol involves the intra-cardiac perfusion of the

animal. This procedure is used to wash blood off the vessels as well as

to to systemically deliver the hydrogel into the whole sample. Therefore,
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an alternative to perfusion is required to clarify samples which cannot be

perfused, such as human brains.

Although it is important to remove blood, which causes light scattering,

the main limitation in the contex of un-perfusable tissues is the penetra-

tion of the hydrogel through the sample. Hydrogel embedding cannot be

performed post-slicing because the gel tends to crumple the slices. Hence

the gel monomer has to diffuse through the whole thick tissue, to opti-

mise slice thickness and clearing time for un-perfused tissue, such that gel

monomer penetration, tissue handling and clarification without excessive

protein loss are guaranteed, a customised protocol was established.

2.4.1 Materials and Methods

Customization of the tissue clarification. Human samples, con-

sisting in two 5∗2∗3 cm3-thick blocks of brain cortex, were obtained from

”Santa Chiara” Hospital of the University of Pisa. The samples were

removed for routine diagnostic purposes, following a procedure approved

by the Local Ethics Committee.

Fresh brain tissue clearing was performed partially following the protocol

described in Liu et al., (2015) [59]. Some amendments to the protocol are

detailed below. In order to facilitate blood removal through the sample

by passive diffusion, samples were washed once a day with 20 mL of PBS

enriched with 5000 U/L of nadroparin calcium (i.e. Fraxiparine, Glaxo-

SmithKline), an heparin-based anticoagulant usually used for hemodial-

ysis. Then, samples were put in a falcon with 35 mL of hydrogel for 9

days, with fresh solution every three days to allow hydrogel penetration

inside the tissue. After that, polymerization was performed as detailed

in Section 2.2.1.
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Slice thickness optimization and statistical analysis. After hy-

drogel polymerization, tissue blocks were cut in 36 slices using a vi-

bratome. In particular, twelve 250 µm, twelve 500 µm- and twelve 1

mm- thick slices were obtained. Slices were then immersed in 10 mL of

clearing solution at 4◦C for 11 days. Solution was changed at 3, 5, 7, and

9 days, and 1 mL was sampled at each refreshing.

Since human samples are un-labelled, the procedure for clarification op-

timization, as well as the statistical analysis, is based on the BCTi as a

global clarification index, as verified in any previous analysis.

Two-way ANOVA followed by Tukey’s Multiple Comparison Test was

performed to evaluate the difference in terms of clarification as a function

of both clearing timing and slice thickness, setting significance at p<0.05.

2.4.2 Results

Assuming no differences in the gross optical properties between human

brain slices, as previously assumed for cerebellum slices, data from differ-

ent sections with the same thickness, acquired at the same time points,

were grouped together as sample replicates to evaluate the BTCi. Figure

2.8 shows the BTCi at different time points for 250 µm-, 500 µm- and 1

mm- thick slices respectively.

Although the BTCi for 1 mm-thick slices increases significantly over time

reaching a plateau at day 5, the clarification is less efficient than for the

cerebellar murine slices: in fact, the BCTi is much lower (BTCi = 0.57

± 0.04).

On the other hand, the BCTi for 250 µm- and 500 µm- thick slices is

higher, reaching a plateau respectively at day 7 (BTCi = 0.73 ± 0.04)

and day 9 (BTCi = 0.71 ± 0.01). Since there are no significant differ-

ences between day 7 and day 9 (two way ANOVA, p > 0.05), the 500- µm

thick slices clarified till day 9 are a better choice for imaging cells and for
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Figure 2.8: BCTi as a function of clearing time for 1mm- (n=12, blue), 500 µm-

(n=12, red) and 250 µm- (n=12, green) human brain slices.

handling.

The fraction of protein loss in clearing solution is not shown, since its

trend decreases continuously over time, similarly with that obtained for

the murine slices.

2.5 Discussion

Most investigations on the optimization of CLARITY and its variations

focus on the composition of the hydrogel embedding and clearing solu-

tions and on design of the electrophoretic chamber. Whatever the method

and reagents used, the goodness of any clearing process is essentially the

best trade-off between tissue transparency and the presence of molecules

of interest to imaging. For a given clearing cocktail, the former increases
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with clearing time, while the latter are inevitably lost due to a shift in

equilibrium between tissue bound and unbound moieties or protein degra-

dation.

In this light, a method was designed to characterize the clearing process

as a function of time and so determine the optimum clearing time for

thick brain slices.

The approach described was applied to 1 mm-thick cerebellum slices of

L7GFP mice, whose Purkinje neurons are fluorescent labelled, using the

diffusion-based CLARITY2 method. The goodness of clarification was

quantified by evaluating both the bulk tissue clarification index (BTCi)

and the fraction of GFP lost in the clearing solution. Figure 2.3(D) sum-

marizes the main results of the macroscale analyses: BTCi increases with

clearing time, reaching a plateau after 5 days, while the fraction of GFP

retained decreases rapidly. Protein loss is in fact unavoidable during tissue

clarification, for example Chung et al.s original paper [21] reports an 8%

decrease in protein content, albeit some scientists on the CLARITY forum

claim complete loss of GFP signal (http://forum.claritytechniques.

org/discussion/-32/loss-of-gfp-signal). Although light can prop-

agate further into a highly transparent clarified tissue, the effective mea-

sured signal, linked to a specific protein of interest is reduced.

To attest the validity of the approach, brain slices were also imaged us-

ing confocal microscopy to calculate the mean pixel intensity (MPI) of

neurons and the contrast-to-noise ratio (CNR) as a function of z-stack

depth. The results show that slices cleared for 5 days have the highest

MPI and CNR for the widest range of depths. This trend is not observed

for PBS-immersed slices.

The method can be also used for un-labelled tissues: it has been shown,

in fact, that similar results in term of clarification timing were obtained

establishing a trade-off between BCTi and the fraction of protein lost in
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the clearing solution evaluated using colorimetric, reagent-based assays

(i.e. BCA assay)(Figure 2.6), attesting to the suitability of the BCTi as

a global index of goodness of clarification

Finally, in case of un-perfusable tissues, the method designed provides

also an optimization of slice thicknesses to maximixe the CLARITY ef-

ficacy (as shown in Figure 2.8). In this case, the CLARITY protocol

customization for human brain tissues used during this PhD thesis was

that reported in Liu et al. [59]: the complete the fully penetration of the

hydrogel inside the brain through passive diffusion was not assessed.

Thus the delipidation time for perfused tissue slices can be optimised by

measuring the bulk tissue clarification index and the fraction of protein

lost in clearing solution simultaneously. For all the examples detailed, the

optimum clearing time is when tissue clarification just reaches its max-

imum, as any further clearing leads to excessive and useless signal loss.

Prolonging the clarification treatment does not significantly improve tis-

sue transparency and may also be detrimental for the maintenance of the

samples architectural and biochemical features.
1

1Most of the results presented in this chapter have been published in :

Magliaro et al., ”Clarifying CLARITY: quantitative optimization of the diffusion based

delipidation protocol for genetically labelled tissue”, Frontiers in Neuroscience - Brain

Imaging Methods, in press.
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Chapter 3
SmRG: a Smart Region-Growing

algorithm for single-neuron tracing

”Every branch of science seems to intent

on demonstrating that the world is supported

by the most minute entities,

such as the impulse of neurons”

(I. Calvino)

Abstract

The reconstruction of neuronal populations, a key step in understand-

ing neural circuits, remains a challenge in the presence of densely packed

neurites. In fact, to pursue the study of the relationship between neuron

morphology and function, an accurate three-dimensional reconstruction

of brain cells is needed, in order to facilitate detailed anatomical mea-

surements. Although advances in high-resolution imaging have provided

valuable novel insights into brain micro-structural features (e.g. single

photon confocal microscopy), currently a technical roadblock for these

studies is the inability to automatically trace neuronal structures in their
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own three-dimensional arrangement within the brain cortex. To tackle

these difficulties, a Smart Region Growing (SmRG) algorithm was devel-

oped to trace single neurons from confocal stacks, based on local features

of the image intensity value histogram. Here the SmRG algorithm is

detailed, demonstrating its performance by comparing it with manual

tracing operated by experts, with a gold standard tool (i.e. Tree2Tree

tool [23]), with a traditional 3D region growing algorithm and by a “self-

validation”.

3.1 State of Art of algorithms and tools for neu-

ron 3D tracing from confocal stack acquisi-

tions

Mapping neural circuits, one of the central tasks in brain studies, is crucial

for obtaining the full delineation of the Connectome [21], that requires

the identification of individual neurons, their synaptic connections and

their cell type from imaging datasets of neuronal populations [69, 70].

These analyses depend largely on digitalitazion of the morphologies of

individual neurons or neuronal trees in a population [13, 71]. The combi-

nation of clarification methods, capable of generating transparent tissues

preserving the native brain architecture, as detailed in Chapter 2 and

advances in imaging techniques, enabling the generation of high-quality

population data could be of inspiration for the reconstruction of large

neuronal populations.

Current imaging techniques, and in particular confocal microscopy,

gives high-resolution data at different depths in a sample (<50 µm). Al-

though confocal microscopy allows effective serial optical sectioning of a

specimen [72], the intensity values of the voxels constituting a confocal im-
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age stack are likely to vary discontinuously, affecting the post-processing

and analysis, even acquiring cleared tissues. In particular, two differ-

ent sources of signal variability can be found in single photon confocal

microscopy images:

1. Light attenuation and scattering across the sample, that returns

different image intensity at different depths in the sample [73, 74, 75]

(Figure 3.1);

Figure 3.1: Images from the same confocal stack, representing L7GFP clarified

murine Purkinje neurons, and relative histogram for (A) z = 0 µ and (B) z = 100

µm.

2. Non-uniform distribution of fluorescent cells through the sample,

which adds in-plane differences to the signal (as shown in Figure

3.2)

In order to facilitate neuron tracing from confocal datasets, different

studies on the restoration of intensity of image stacks has been described
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Figure 3.2: Image from a confocal dataset representing L7GFP clarified murine

Purkinje cells: in-plane signal differences due to biological variability are evident.

in the State of Art, also trying to take into account photo-bleaching of

the fluorophore [76]. However, none of the methods presented allow a

precise correction. In fact the nature of light intensity changes between

the adjacent optical sections tends to often be ignored and moreover the

mechanisms of photo-bleaching are not well understood.

Manual tracing of neurons has been used to resolve dendritic morphol-

ogy, as well as to perform geometric reconstructions. This is commonly

done manually with programs such as Neurolucida (MicroBrightField)

[31] or Neurozoom (Neurome). The accuracy is however strongly depen-

dent on individual data interpretation to estimate midlines and diameters

of dendrites. In addition, it is extremely time consuming and impractical

for dense population reconstruction.

For this reason, in the last few decades different tool have been developed,

to trace individual branches of neuronal trees [34, 40, 77, 78, 79, 80].

These approaches for the investigation of neural structures at the micro-
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structural level are not useful for dense population, in which closely spaced

neurites may come into contact, connect or overlap.

Among the various schemes, some of them deserve a brief description. Re-

gion growing algorithms with active contour techniques [25, 26, 27, 28],

which rely on shrink/expansion operations done by the minimization of

an energy function, are sensitive to local minima or noise, and thus in-

adequate for confocal datasets. On the other hand, global approaches to

neuron segmentation, such as the Tree2Tree tool [23, 24] are not valid for

our purpose to isolate single neurons due to the local intensity variability

of confocal datasets.

The above mentioned segmentation techniques for 3D neuronal tracing

are not the only ones available in the literature: different points of view

and approaches have been proposed by the scientific community. Wolf et

al.(2009) [29] propose a fuzzy scheme to segmentation due to the typical

characteristics of neural images. In fact, the structures of interest do not

always represent a crisp set which is well distinguished from the back-

ground or other structures, thus similarity criteria based on fuzzy logic

can be a winning approach for region growing techniques. Another tech-

nique which may be robust to low and fluctuating contrast is based on the

3D wavelet transform [30]. In this method, authors use multi-scale edge

detection in order to locally segment the structures of interest with less

sensitivity to noise. A different kind of approach is to perform an atlas-

based segmentation: while segmentation should be fully automated, big

data availability and registration methods are a must [32]. Unfortunately,

all the techniques described are often useless to trace dense neurons in

their own arrangement in the brain.

Recently, a tool partially mimicking human strategies to separate indi-

vidual neurons was developed, NeuroGFPS-Tree [33]. However, at least

in the first tracing phases, it is strongly user-dependent, and so prone to
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human bias. An other limitation is due to the fact that most of the tools

and algorithms are developed to follow the neurite patterns, tracing the

neuron skeleton, so they cannot be used to extract morphological vari-

ables, such as the Surface-to-Volume ratio of the structure segmented,

which is considered a raw index of neuron arborization complexity.

When it is necessary to handle images with intensity inhomogeneity and

noise of spatially varying strength, such as those of confocal acquisitions,

region growing schemes could represent a robust approach to segmenta-

tion. The region growing -based algorithm, one of the simple region-based

image segmentation methods used to separate objects with similar char-

acteristics within images follows two fundamental principles: the selec-

tion of a seed and the definition of a homogeneity predicate. The basic

idea is to grow a region starting from a ”seed” pixel/voxel and labelling

each neighbour pixel/voxel of a region-of-interest according to similar-

ity criteria. The process is iterated until there are no more labelable

pixels/voxels. The homogeneity criterion can be based on similarity of

discontinuity measures. The robustness of seed-based techniques is gener-

ally affected by the signal intensity and presence of noise; however, these

approaches are computationally efficient, thus encouraging researchers to

develop methods to overcome the above mentioned difficulties.

Due to the intensity variability of the confocal datasets, region growing

schemes based on histogram local characteristics could represent a robust

approach to segmentation. In some models, the local image intensities

are described by local Gaussian distributions with different means and

variances, in order to distinguish objects from background [34]. However,

confocal datasets cannot always be described with a set of local Gaussian

distributions, and a different local scheme to isolate neurons from back-

ground is a must.

To overcome this limitation, a smart region growing (SmRG) algorithm
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operating locally in a 3D scheme was developed in the course of this work

to trace and isolate single neurons in their native arrangement within the

brain. Here the SmRG work-flow for single-neuron 3D tracing is detailed

and validated using different approaches and different confocal datasets.

3.2 SmRG algorithm description

The SmRG algorithm has been developed in MATLAB ®(The MathWorks-

sTM, Inc., Natick, Massachussets, USA). The SmRG work-flow can be

divided in three main steps, as shown in Figure 3.3:

Figure 3.3: Algorithm work-flow: after a pre-processing step, soma are identified and

the SmRG algorithm is run to trace all the neurons in the stack.

Stack pre-processing The image stacks acquired were firstly filtered

with a 3*3*3 pixel-sized median filter in order to reduce noise, as shown

in Figure 3.4. Then, an interpolation to cubic voxels was performed in

order to have a more faithful representation of real neuron morphology.

The process is necessary in case of different resolution of the stacks. In
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Figure 3.4: Volume rendering of (A) an original stack (Ex/Em: 488/502, pixel-to

micron ratio size: 0.62 µm , z-resolution: 1.2 µm) and of (B) a 3*3*3 median-filtered

and interpolated stack.

fact, in order to minimize signal loss during acquisition due to fluores-

cent bleaching, z step is usually chosen as double that of the in-plane

resolution.

Soma recognition After the pre-processing step, neuron somata were

semi-automatically recognized. The only inputs the algorithm needs are

the z-coordinate of the dataset on which there is at least one soma, and

a range of soma diameters of the neurons to be segmented. The range of

soma diameters can be chosen from the literature or with preliminary 2D

slice imaging. Circle-shaped structures are automatically detected with

the Houghs transform [81]. The result is shown in Figure 3.5. The (x, y)

center coordinate of the found circles, added to the z-coordinate chosen

by the user, are automatically used by the algorithm as initial seed.
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Figure 3.5: (A) 2D image from an original stack chosen by the user (Ex/Em:

488/502, pixel-to micron ratio size: 0.62 µm , z-resolution: 1.2 µm) and (B) after the

Hugh transform, which identifies somata and their relative soma center coordinates.

The outputs are subsequently used as initial seed for the SmRG algorithm.

Single Neuron tracing This step is a modification of the 2D/3D re-

gion growing algorithm by Daniel Kellner, shared on the Matlab File Ex-

change website (http://www.mathworks.com/matlabcentral/fileexch\

ange/32532-region-growing--2d-3d-grayscale-/content/regionGr\

owing.m). The changes made to the original algorithm are outlined be-

low.

Since the confocal datasets from fluorescent specimens are character-

ized by a great spatial variability in terms of pixel intensity, as previously

highlighted, one approach for facing this issue is the use of a locally adap-

tive thresholding for the segmentation of neural structures. Here, a local

histogram-based region growing was developed.

The background and neuronal tissue-related signals show a bimodal in-

tensity distribution. Specifically, the background signal is characterized

by a unimodal distribution with lower signal intensity with respect to

neural tissue. The intensity distribution of neural tissue signal shows a
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higher dispersion with respect to the background distribution. Moreover,

the samples showed a quite flat signal distribution characterized by a low

peak. For this reason, the use of model fitting procedures such as Gaus-

sian mixture models is not feasible.

In this light, a local threshold was determined to distinguish background

and neurons looking at the derivative of the intensity histogram. A

histogram-knee is defined as the first minimum of the histogram, after

the first histogram peak and it was estimated locally on a 16∗16∗16 pixel3

sub-volume. The histogram-knee separates the two classes of pixels within

the image (i.e. neuron and background) and therefore represents the ho-

mogeneity predicate for the region growing procedure. If a pixel lies on

the left of the knee it will be considered as a background pixel, while if

it does not it will belong to the neuron pixels.

The region growing process starts by selecting a pixel belonging to a par-

ticular soma. A cubic sub-volume is centered around the selected initial

seed and the histogram-knee calculation is performed. At this point the

26 neighbour pixels of the seed are classified as background or neuronal

tissue. This procedure is repeated for each new pixel belonging to the

neural tissue if a condition of distance is met. Specifically, the knee value

is calculated if the distance from the pixel of the last knee-estimation is

bigger than 5 pixels (3 µm). The region growing process ends when there

are no more pixels which satisfy the previous conditions.

Note that the region growing algorithm runs as many times as the num-

ber of seeds found in a given confocal dataset. An example of SmRG

algorithm output is given in Figure 3.6.

3.3 SmRG algorithm performance evaluation

The SmRG algorithm’s ability to trace single neurons within their native

arrangement in the brain was tested with four different approaches:
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Figure 3.6: An example of SmRG algorithm output. The input confocal dataset

represents stacks from clarified L7GFP murine cerebellum slices. Different colours

refer to different structures segmented with the SmRG algorithm.
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• A comparison with manual tracing operated by neuro-imaging ex-

perts;

• A comparison with a standard 3D region growing algorithm;

• A “Self Validation” approach on segmented somata;

• A comparative analysis with Tree2Tree tool [23], considered a “ground

of truth” of 3D neuron tracing.

Moreover, different image stacks, acquired with different confocal set-

tings and representing different types of neurons, were used:

• Murine clarified cerebellar slices: cerebellar 1 mm -thick slices

of L7GFP mice were prepared and clarified as detailed in Chapter

2. Confocal acquisition settings were shown in Table 3.1;

• Fruit fly Drosophila brain: image stacks representing neurons

from Drosophila brains were downloaded from http://viva-lab.

ece.virginia.edu/suvadip_docs/Neuron/research_neuron.html.

3.3.1 SmRG vs manual tracing

Manual segmentation operated by an expert likely results in substantial

subjective bias. Moreover, for dense packed cell populations (i.e. Purk-

inje cells in the cerebellar layers), manual extraction of features from 3D

dataset is labour intensive, time-consuming and not always an achievable

task, due to the complexity of neuronal structures. Nevertheless, in the

field of neuro-imaging, manual tracing is still the gold standard of seg-

mentation procedures.

In this light, a standard validation of the SmRG algorithm through man-

ual segmentation operated with neuro-imaging experts was performed. In
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Table 3.1: Confocal Acquisition settings for 1-mm thick cerebellar

slices from L7GFP mice

Parameter Value Units

Magnitude 40x

Grid 512*512 pixel

Pixel Size 0.62 µm/pixel

Laser Power 4.84 pW

Emission wavelength 488 nm

Excitation wavelength 502 nm

z-step 1.2 µm

particular, three neuro-experts were employed to manually trace Purkinje

neurons from three different confocal image stacks representing cerebellar

L7GFP mice clarified in Chapter 2. Using ImageJ [1], they were asked to

scroll down confocal stacks and identify the neurites supposed to belong

to a specific neuron using the ”flood fill” tool. In parallel, the ImageJ

3D viewer is automatically refreshed to follow the neuron growth within

the acquisition, as shown in Figure 3.7. To simplify the task, the images

constituting the confocal dataset were previously thresholded using the

Otsu method [64]. This step could merge neurites belonging to differ-

ent neurons: for this reason, touching objects can be separated with the

”paintbrush tool”, available in ImageJ. The confocal image stacks were

then processed with the SmRG algorithm, and the result were compared.

Figure 3.9 shows an example of a Purkinje neuron segmented with

both the SmRG algorithm and the manual tracing operated by an ex-

pert.

In order to quantitatively evaluate the SmRG accuracy respect to the
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Figure 3.7: (A) The scroll down menu to visualize the images constituting the

confocal dataset and to identify the neuron structure manually; (B) ImageJ 3D

viewer automatically refreshed.

manual tracing, n=20 neurons segmented with the two different tech-

niques were morphologically characterized (see Chapter 4 for more de-

tails). In particular, the Surface-to-Volume Ratio was evaluated, as a

raw index of neuron complexity. Then, the residual error was calculated

as the difference between the Surface-to-Volume ratio of the SmRG traced

neurons and the manually traced ones.

In addition, neurons were skeletonized and then the Sholl analysis with

a constant number of spheres (see Chapter 4 for more details) was per-

formed, in order to study neural dendritic arborization pattern around

the soma.

As regards the first morphological parameter, the residuals from the dif-

ference between the Surface-to-Volume ratio of segmented SmRG neurons

and manually traced ones are displayed in Figure 3.8. No statistically sig-

nificant differences were found between the two datasets.

On the other hand, an example of the morphometric Sholl analysis
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Figure 3.8: The residual error estimation for n=20 neurons. The residuals are the

differences between the Surface-to-Volume ratio in the Purkinje cells segmented

manually and with the SmRG algorithm.

performed for a Purkinje cell segmented with the SmRG algorithm and

with manual tracing is shown in Table 3.2. Here again, some differences

were observed, but they were not statistically significant.

3.3.2 SmRG vs standard 3D region growing algorithm

In order to attest that the local thresholding implemented for the SmRG

algorithm is better than the global one for the confocal microscopy dataset,

image stacks were processed with both SmRG and a standard 3D re-

gion growing, available at http://www.mathworks.com/matlabcentral/

fileexchange/32532-re\gion-growing--2d-3d-grayscale-/content/

regionGrowing.m. In particular, the same x-, y- and z- coordinates were

used as initial seed; for the standard 3D region growing algorithm, the

threshold was set as the first value automatically obtained with the SmRG

one.
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Table 3.2: Comparative Sholl analysis (with constant number of spheres) for a

Purkinje cell segmented with the SmRG algorithm and through manual tracing

performed by an expert

Radii (µm Intersections Radii (µm Intersections

13.64 1 13.64 1

32.12 1 32.28 2

50.61 1 50.93 2

69.09 5 69.58 5

87.58 3 88.23 3

106.06 2 106.88 2

124.05 2 125.53 2

143.04 3 144.18 3

161.53 4 162.83 5

180.02 2 181.48 3

Maximum number of intersections

5 5
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Figure 3.9: An example of a neuron segmented with (A) the SmRG algorithm and

(B) manually by an experts. For visually comparing the results, a merge of them is

shown in (C).

3.3.3 A “Self validation” approach on segmented somata

An internal validation was performed in order to estimate the goodness

of the algorithm, using the information of the somata detected with the

Hough transform. After the user-operated identification of the plane, the

work-flow adopted for the “self-validation” (shown in Figure 3.11) consists

of three phases:

1. Measurement of the center and the radius of each circle detected as

initial seed position using the Hough transform;

2. Segmentation and new circle-shaped feature detection on the seg-

mented image using the Hough transform;

3. Residual error calculation as the difference between original circle

radii and segmented ones.

The Self-validation was conducted on n=20 somata, from different 3D
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Figure 3.10: Two examples of neuron structures segmented with the SmRG algorithm

and with a standard 3D region growing algorithm. To highlight the differences between

the two techniques, a merge of them is shown in the last column.
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Figure 3.11: Hough transform-based circle detection applied on an specific z-plane of

(A) the original stack and (B) the stack segmented with the SmRG algorithm

datasets.

Residuals from the difference between the radii of segmented struc-

tures and the original ones are displayed in Figure 3.12. The maximum

error detected was <2.5 px (1px = 0.62 µm). This result confirms a good

level of segmentation at least on neuron somata. This type of analysis

cannot be done on dendritic structures because of the limit of resolution

of the Matlab function imfindcircles, implementing the Hough transform,

which does not allow the detection of circle-shaped structures smaller

than a certain number of pixels.

3.3.4 SmRG algorithm vs Tree2Tree tools

The fidelity of the SmRG tracing process was also attempted using a tool

considered a ground truth in the field of neuro-tracing. In particular,

datasets (available on http://viva-lab.ece.virginia.edu/suvadip_

docs/Neuron/research_neuron.html) representing Drosophila neurons

were analysed with both the SmRG algorithm and Tree2Tree tool, pur-
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Figure 3.12: Residual error for n=20 soma. The residuals are the difference between

soma radii obtained by the SmRG algorithm and by Matlabs imfindcircles function.

Maximum error: 14%

posely developed for these image stacks [23]. Note that the Drosophila fly

has very few neurons (∼ 105) with respect to mice (∼ 107) and humans

(∼ 1011), so they are simpler to discern than in the mouse. In any case,

the reconstructions obtained with the SmRG and Tree2Tree are very sim-

ilar (see Figure 3.13) in shape. Because of the different outputs of the

SmRG algorithm and the Tree2Tree tool, the results (shown in Figure

3.13) can only be compared visually.

On the other hand, Tree2Tree tool did not provide a good quality

of segmentation on the datasets representing Purkinje cells in clarified

mouse cerebella, so they cannot be used for a further comparison.

3.4 Discussion

In this Chapter, the Smart Region Growing (SmRG) algorithm was pre-

sented, an innovative method for tracing neuron structures in their native
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Figure 3.13: Fruit fly Drosophila neuron dataset, processed with (A) the SmRG

algorithm and (B) Tree2Tree tool.

three-dimensional arrangement. Since the SmRG approach is based on

local features of the image intensity value histogram to distinguish the

signal (i.e. neurons) from the background, the algorithm is able to satis-

factorily trace irregularly shapes neurons in confocal microscopy images.

The algorithm works semi-automatically: in fact, the user has only to

choose the soma radii range and the z-coordinate where there is at least

one soma. After the soma identification, the algorithm is recursive, so it

trace all the neurons using the soma center as initial seed. An example

of the SmRG algorithm output is shown in Figure 3.6.

Preliminary results showed that the SmRG algorithm can isolate single

neurons with their characteristic structure. Future developments should

pursue an objective validation of the algorithm in order to test its ac-

curacy. Moreover, an optimization of the confocal acquisition datasets

is needed, in order to study the decrease in pixel intensity over sample

depth and to improve the efficacy of the SmRG algorithm.

The strengths and limitations of the SmRG algorithm are detailed

below:
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Strengths

1. In contrast to most of the algorithms/tools in the literature, the

SmRG algorithm can track neurons with lightly fragmented branches

with irregularly shapes;

2. The SmRG algorithm is faster and computationally more efficient

than others presented in the State of Art, with equal accuracy;

3. The SmRG algorithm does not return just the neuron skeleton, so it

is more suitable to perform morphometric analysis than other tools

(i.e. Neuron-GFP [33] or Tree2Tree [13] tools), since it allows the

extraction of additional parameters (i.e. Neuron Surface-to-Volume

ratio);

4. Since the SmRG algorithm works with a semi-automatic approach

to trace neurons, it is also easy to use for non-expert users.

Limitations

1. Currently, the SmRG algorithm misses some tips/terminations of

the neurites (see SmRG vs manual tracing Section), where the

signal-to-noise ratio is too low;

2. An objective validation of the proposed approach is still lacking.

Specifically, it was not possible to validate the results against other

standard tools (i.e. Tree2Tree [13]), since they did not provide ac-

ceptable results on datasets representing L7GFP clarified cerebellar

slices. Moreover, the manual tracing was not performed on the orig-

inal confocal stacks, but on previously thresholded datasets;

3. The SmRG algorithm performance was tested only with two dif-

ferent confocal datasets, the L7GFP clarified murine slices repre-

senting Purkinje cells and the Drosophila brain datasets. While the
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former represent an almost planar distribution of dendritic tree, as

described in the literature [82], the latter do not represent a partic-

ular challenge due to their low density in the Drosophila.

The integration of the SmRG algorithm with tissue clearing tech-

niques, as detailed in Chapter 2, may be helpful for the study of neu-

rological diseases which are associated with neuronal disfunction at the

micro-morphological level, such as Parkinson’s [83, 84], Alzheimer [85, 86,

87, 88, 89], Huntington’s disease [90, 91, 92] and Autism Spectrum Dis-

orders [93, 43]. Moreover, it can be useful in order to simulate neuronal

behaviour [94].

An other exciting application of the SmRG algorithm is the 3D print-

ing of the segmented neuronal structures, to provide new approaches for

understanding the nature and role of these intricate cells [95]. The use of

3D printing technologies in this field of neuro-imaging can be interesting

for students, allowing them to see the full 3D structure, manipulate it,

place neurons next to each other to compare structures and see how they

overlap. An example of a neuron segmented with the SmRG algorithm

and then 3D printed is shown in Figure 3.14.
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Figure 3.14: A Purkinje cell 3D-printed using a Stratasys Fortus 450mc (Stratasys)
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Chapter 4
N3MO: a NEuron MOrphological

analysis tool for 3D

morphometrics

”Software is like entropy. It is difficult to grasp,

weighs nothing and obeys the Second Law of Thermodynamics:

i.e. it always increases.”

(N. R. Augustine)

Abstract

Morphometric analysis of cells in their own three-dimensional arrange-

ment within the cortex (i.e. neuron and glia cells) is relevant for prob-

ing the link between micro-structural morphology and brain function, as

well as for the investigation of degenerative diseases. As neural imaging

techniques become ever more sophisticated, so does the amount and com-

plexity of data generated. The 3D-NEuron MOrphological analysis tool

N3MO was purposely developed to handle and process confocal stacks
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representing brain areas with neurons in their own three-dimensional ar-

rangement, in order to trace single neurons, automatically run routines

to extract the morphometric variables and store the data obtained. Here

the software’s main features were described, underlining the differences

between N3MO and other commercial and open-source tools.

4.1 Introduction

It’s well known that, even at the microstructural level, neuronal mor-

phology is relevant for high level brain function [6, 96]. Morphometric

analysis of neuron arborization structures could be of interest for:

• lifespan alterations in neural structure and neural organization over

time during brain development, since the size of neuronal trees de-

pends upon their state of maturation;

• neuronal morphological alterations related to diseases [97];

• morphological implications of neurons under experimental condi-

tions. In fact, many conditions can induce chances in neuronal

tree structures, such as learning,“enriched” environments, hormonal

fluctuations and level of bioelectric activity.

• study of the structure-function relationship in dendritic trees.

For all these reasons, well-defined metrics are needed for assessing the

morphological characteristics of neuronal branching patterns.

Classically, neuron morphology is investigated using stained and fixed

dissociated cultures or slices [98, 99, 100]. Most investigators use imaging

techniques such as confocal, 2-photon and super-resolution microscopy,

and several reports describe neural growth dynamics using fluorophores

such as tracker and calcium sensitive dyes [101, 102, 103]. Genetically
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encoded probes are also becoming commonplace, and are an extremely

useful tool for analysing neural cell morphology, although efforts are also

dedicated towards cell signalling particularly at the synaptic level [104].

Several reports use techniques such as 2-photon or confocal microscopy

on organotypic brain slices, which enable shot term recordings of calcium

dynamics through the use of Ca2+ specific dyes or very high magnifica-

tion static analysis of dendritic spine distribution [105, 106].

As the spatial resolution of imaging techniques increases, so does the

researcher’s ability to generate huge quantities of data on neuronal mor-

phometry. However, it is quite often time consuming and difficult to

process image files and most of the digital image processing techniques,

such as segmentation and features extraction, which have changed little

over the past few decades, still require a large degree of pre-processing and

image manipulation. Furthermore, the manual quantification of neuronal

morphology is very labour-intense and is prone to observer bias. Not

only lack of consistency within an individual observer, but also variance

between observers can reduce the level of reproducibility [35]. Computer-

ized analyses of images can overcome the limitations and biases of human

assessment.

Many open source or commercial tools have been implemented for au-

tomatically and consistently quantifying neuronal morphology through

image processing. Most of the software described in the State of Art are

designed for 2D images [35, 36, 37, 38, 39], but they cannot be exhaus-

tive for the evaluation of brain micro-structure, since they do not provide

information about the native three-dimensional arrangement of neurons.

For this reason, in the last few years, different tools have been imple-

mented for 3D metric feature extraction . However, it is not possible to

perform complete morphological and automated analyses of a collection

of stack images using a unique tool. Moreover, as far as data analysis is
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concerned, most studies and software based methods which describe neu-

ron morphometrics use very simple statistical tests (i.e. t-tests), which

are often unsuitable for the study and classification of complex multivari-

ate data.

To overcome these limitations, a novel user-friendly software, N3MO was

developed, that integrates the SmRG algorithm for 3D neuron tracing,

detailed in Chapter 3 with routines to perform morphometric analysis:

image stacks from confocal imaging representing neurons can be processed

and analysed with automatic data storage in the forms of matrices con-

taining morphometric data. Subsequently, the matrices can be analysed,

if is necessary, using 3-way Principal Component analysis (PCA), which

enables the organization of multivariate datasets into group, thus facili-

tating the interpretation of complex and large groups of data.

In this Chapter, N3MO’s features are illustrated. In addition, a com-

parison morphometric analysis was performed using N3MO and an open-

source tool, as benchmark of precision.

4.2 N3MO development and implementation

N3MO is an open-source software developed in Matlab environment ®(The

MathWorks-sTM, Inc., Natick, Massachussets, USA). N3MO performs

micro-structural and quantitative analysis from confocal image stacks rep-

resenting neurons in their own arrangement within the brain. It has a

user-friendly Graphical User Interface (GUI) environment with pull down

menus for stack pre-processing, neuron 3D tracing quantitative morpho-

logical analysis, and, if needed, statistical analysis by 3-way PCA.

The tools and functions available in N3MO are summarized in Table 4.1
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Table 4.1: Tools and functions implemented in N3MO.

Tools Functions

LOADING IMAGE STACKS

Stack processing
SmRG algorithm

Skeletonization

Morphological analysis

Intersections

Critical radius

Maximum number of intersections

Schoenen ramification index

Regression coefficient for LogLog Sholl method

Regression coefficient for SemiLog method

Correlation coefficient for LogLog method

Correlation coefficient for SemiLog method

Determination ratio

Maximum length vectors

Minimum pathway

Radial Extension

Cone angle

Soma Volume

Soma Area-to-Volume Ratio

Neuron Area-to-Volume Ratio

Number of neurite branches

Fractal Dimension

3-way PCA
Datamatrix Creation

Multivariate analysis
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4.3 N3MO: an outline

4.3.1 Loading an image stack in N3MO

In order to perform batch operations on different neurons, such as mor-

phological analysis of all the cells belonging to a specific group (i.e. male

wild-type mice), all the stacks were renamed with appropriate labels.

N3MO, exploiting the concept previously implemented in NeMo [36], uses

the properties indicates in the name to extract information about the

neurons represented in a given stack. In particular, confocal image stacks

have to be structured in the following way:

FileType GroupNumber AnimalNumber SliceNumber

where:

• FileType: ”s” for original confocal image stack, in *.tiff format;

• GrupNumber : progressive number identifying a group of interest;

• AnimalNumber : progressive number identifying an animal belong-

ing to a specific group. This could be extremely important, i.e. to

track the clinical patient history in post-mortem studies;

• SliceNumber : progressive number identifying the slice acquired or

a particular region of the brain.

For example, s 01 02 03 refers to a confocal stack of the second animal

belonging to the first group (i.e. a particular mouse strain) and represents

neurons of the third region of the brain (i.e. a particular region in the

brain). Figure 4.1(A) shows an example of stack renaming. All the

stacks from a single experiment are stored in the same folder for batch

processing.
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4.3.2 3D neuron Tracing with SmRG

Image stacks can be processed using the SmRG algorithm, described in

Chapter 3. In particular, from the interface environment it is possible to

load tiff stack datasets. The stack is visualized on the GUI and the user

can scroll through the depth of the dataset in order to find a plane on

which somata can be detected, as already detailed in Chapter 3 which de-

scribes the SmRG work-flow. The current displayed image corresponds to

a certain depth in the sample (z-coordinate). If the current image displays

at least one soma, circle-shaped structures can be detected automatically

with the ”Find seeds” button. The circles detected are automatically

plotted on the current image. If the detection is satisfactory, the region

growing can be initialized with the ”Region Grow” button. This step

takes a certain time depending on the number of initial seeds. With the

display button it is possible to plot the 3D-segmented structures on new

Matlabs figures, in order to examine the region growing result.

If the user is satisfied with the tracing, he/she can use the ”Save: button

to store all the neurons segmented in the datamatrix structure. Alterna-

tively, he/she can choose an other z-coordinate where the somata appear

and run the ”Find seeds” button again.

While 3D binary structures are well plotted in Matlab, 3D datasets like

tiff-stacks cannot be visualized. For this reason, a ”Merge and out” but-

ton was added to the GUI: with this button it is possible to create a new

stack in which the segmented structure is highlighted within the original

dataset. The visualization of the stack can be performed on ImageJ [1]

or other software with a 3D viewer tool.

4.3.3 Datamatrix creation

Once an image stack has been loaded and all the neurons have been traced

with the SmRG algorithm, an empty datamatrix structure, named as the
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Figure 4.1: (A) Stack renaming and (B) respective datamatrix organization

confocal stack - unless the ”d” - (see Figure 4.1(B)) is automatically cre-

ated and saved in the same folder. It is used to save all the information

of the image processing data generated in N3MO. In fact, the datama-

trix is organized into N*(M+3) cells, where N is the number of neuron

segmented in the specific confocal acquisition and M are the number of

variables extracted for each neuron. Three more columns are automat-

ically provided, to store: i) the neuron structure segmented with the

SmRG algorithm ii) the three-dimensional coordinates of the voxel be-

longing to a specific neuron with the respective local threshold values,

organized in a P*4 matrix (where P is the number of voxels) and iii) the

neuron skeleton (see Figure 4.1(B).).
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4.3.4 Neuron Skeletonization

Prior to performing a morphometric analysis, segmented neurons are

skeletonized. The skeleton reproduces cell structure, reduced to one pixel-

thick. It must have two important characteristics:

1. It must faithfully reproduce the structure of the neuron

2. It must reduce soma to a single pixel, positioned at the centre of

the soma.

The algorithm used has been already implemented in Matlab (http:

//www.mathworks.com/matlabcentral/fileexchange/43400-skeleton3d),

inspired by Kerschnitzki et al. (2013) [107].

Figure 4.2 represents the algorithm output: the skeleton meets the spec-

ifications given, so it is suitable for the extraction of the morphological

variables.

The skeletonized neurons are saved in a proper cell of the datamatrix

structure as already detailed.

4.3.5 3D morphological analysis

Using N3MO, all the metrical features relevant for the the analysis of cell

structure and morphology can be directly extracted. Once the neuron

skeleton is obtained, the user can run the morphological analysis, which

allows the derived metrical features to be investigated quantitatively.

The morphological variables were chosen from those generally adopted

in the literature [108, 109], and divided in two groups, local and global

variables. While the former variables are referred to the dendritic tree,

the latter ones (i.e. radial extension, soma area and volume, cone angle

and fractal dimension) are related to the whole neuron structure. A list

of variables assessed with N3MO is given in Table 4.1.
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Figure 4.2: (A) An example of Purkinje neuron segmented with the SmRG algorithm,

(B) its skeleton and (C) a merge of the two.

Sholl analysis The Sholl analysis is a method for quantitatively study

of the radial distribution of the neural dendritic arborization pattern

around the soma [110]. It allows dendritic geometry, ramification den-

sity and dendritic patterns to be evaluated and it is applied to binary

structure representing the neuron skeleton.

In particular, following the Sholl method, each neuron skeleton is circum-

scribed by a coordinate system consisting of a series of concentric spheres

centered on the soma, as shown in Figure 4.3. In N3MO, soma center

coordinates are calculated using an automatic procedure: in particular,

given a neuron, the algorithm firstly identifies a spheroid structure, which

is likely to be the soma; then, the centroid of the spheroid obtained is

calculated.

Two different coordinate systems were considered: one with a constant

number of spheres (i.e. 10 spheres covering all the neuron volume) and

the other with a constant inter-sphere distance, established as 10 µm.
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Figure 4.3: An example of a Purkinje cell circumscribed by the coordinate spheric

system, centered on the soma.

The Sholl analysis can be applied in three different graphical modalities,

as demonstrated by Milosevic and Ristanovic [111]:

1. Linear Method : The plot of the number of dendritic intersections

calculated per intersecting sphere area, versus the sphere radius;

2. Semi-Log Method : The plot of the logarithm of the number of den-

dritic intersections per intersecting sphere area, versus the sphere

radius;

3. Log-Log Method : The plot of the logarithm of the number of den-

dritic intersections per intersecting sphere area, versus the loga-

rithm of sphere radius;
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As demonstrated by Sholl [110] for 2D images representing neurons, at

least in the Semi-Log or Log-Log method, a linear behaviour is apparent.

The method which better approximates a straight line provides relevant

clues about the dendritic structure.

The linear method is characterized by:

• Rc (critical radius): the radius of the sphere with the maximum

number of intersections;

• Nm: Maximum number of intersections;

• Schoenen ramification index : Quotient of the maximum number of

intersections and the number of primary dendrites of the neurons

(i.e. the branches directly arising from the soma).

On the other hand, the Semi-Log and the Log-Log Method are char-

acterized by:

• kSL (Semi-Log Sholl regression coefficient): Slope of the fitted straight

line in the semi-log plot. It measures the decay rate of intersection

numbers versus the distance from the soma;

• kLL (Log-Log Sholl regression coefficient): Slope of the fitted straight

line in the Log-Log plot. It measures the decay rate of intersection

number versus the distance of the soma;

• RSL (Semi-Log correlation coefficient): Degree of data correlation

in Semi-Log method;

• RLL (Log-Log correlation coefficient): Degree of data correlation in

Log-Log method;

• ∆ (determination ratio): It is defined as in equation 4.1:
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Figure 4.4: Minimum length vectors for a Purkinje cell.

∆ =
(RSL)2

(RLL)2
(4.1)

and it allows appropriate graphical method to be determined. In

fact, if ∆<1, the Log-Log Method is preferred, while if ∆>1 the

Semi-Log method is better.

From the intersections obtained with the Sholl analysis, other vari-

ables can be evaluated:

• Minimum length vectors, extracted by evaluating the minimum Eu-

clidean distance between the cell intersections on two adjacent spheres

(see Figure 4.4);

• Minimum pathway : measured as the sum of the magnitudes of the

minimum length vectors.
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Figure 4.5: Radial extension of a Purkinje cell.

4.3.6 Global 3D morphometric parameters

Besides the Sholl analysis, other morphometric variables relative to the

neuron can be calculated:

Radial Extension (E) In order to evaluate cell dimensions, the radial

extension of the cells can be assessed as the Euclidean Distance from the

soma center to the furthest pixel of the cell skeleton, as shown in Figure

4.5. The axis connecting the soma center to the furthest pixel of the cell

skeleton is called ”principal axis”.

Cone Angle (Ca) In order to characterize the neuron extension in the

3D space, the cone angle in which the cell is contained can be automat-

ically extracted. Firstly, the neuron is automatically rotated in the 3D

space in order to align the principal axis to z. Then, a cone, whose apex

corresponds to the soma center, previously calculated (see Section 4.3.5),

is automatically circumscribed to the neuron.
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If the cell is uniformly extended, the cone angle is automatically fixed as

360◦.

Neuron Surface-to-Volume Ratio Since objects with irregularity

have larger surface area for a given volume than regular ones, the Neuron

Surface-to-Volume ratio can be used as a raw index of neuron complexity.

Soma Volume to quantify soma size, since they seems to change in

different neuro-pathological conditions [112, 113, 114].

Soma Surface-to-Volume Ratio For a given volume, the object with

the smallest surface area (and therefore with the smallest Surface-to-

Volume ratio) is the sphere. For this reason, the Soma Surface-to-Volume

Ratio was implemented as an index of soma shape.

Number of neurite branches considered a further index of neuron

complexity [115].

Fractal Dimension Fractal dimension is a measure of a feature com-

mon to several biological systems, their fractal nature or complexity. An

object is fractal if it expresses the property of self-similarity: it is made

up of copies of itself at different scales. As argued in several studies, neu-

rons can be represented as fractal or space-filling objects and the fractal

dimension represents an important parameter for the characterization of

the dendritic structure [116, 117, 118, 119]. In fact, one of the advan-

tages of using fractal analysis (i.e. fractal dimensnion) is its capacity

of differentiate between cells that differ in complexity of their branching

patterns. In addition, the fractal dimension is of relevance for intra- and

inter-species comparisons of neuronal population [120].

There are several methods to evaluate the fractal dimension; in N3MO,
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the box-counting method was used as described in Jelinek and Fernandez

[118]. In this method, the segmented neuron is inscribed in a cube of size

r. The size r of the cube is initially equal to the image stack size and is

progressively decreased, while the number of non-empty cubes, N(r), is

counted. A plot of log(n) versus n is obtained, which can be fitted with a

straight line, of slope S, where S is an estimation of the fractal dimension

(Fd):

Fd = S (4.2)

While a mathematical fractal requires infinite orders of magnitude of

power-law scaling and therefore is fractal over all scales, physical, biologi-

cal and other structures in nature are fractal over a relatively small range

[121].

4.3.7 Multivariate analysis

N3MO allows user to perform statistical analysis through the three-way

Principal Component Analysis (PCA) multivariate technique [122], oper-

ating on the datamatrix. Three-way PCA technique is a generalization of

PCA, a popular technique that is often used for the exploratory analysis of

a set of variables. While PCA analyses data varying in two dimensions,

three-way PCA allows the analysis of sets of variables associated with

three-way data sets, the so-called modes: the variables (i.e. the morpho-

logical parameters extracted with N3MO), the objects (i.e. the neurons

traced) and the conditions (i.e. neurons belonging to mice sacrificed in

different time-points). This technique is aimed at transforming data so

as to summarize the associated information in a small number of novel

variables or principal components able to express as much information as

possible. Several models and algorithms implement the three-way PCA

methodology [123]. In N3MO the Tucker3 model was implemented, as
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described by Leardi et al. [122] and already implemented in NeMo [36].

Briefly, data are firstly pre-processed in order to remove scaling and stan-

dardization offsets, then the number of components can be chosen. To

obtain principal components the covariance matrix of data is decomposed

in a eigenvectors matrix and a eigenvalues matrix. Eigenvectors are the

columns of the rotational matrix that is transposed and multiplied for the

datamatrix. The multiplication result is the principal components ma-

trix (mathematically it corresponds to performing a series of orthogonal

rotations on a cubic core array, G, expressing the correlations between

the data from the “datamatrix” denoted by objects, variables and condi-

tions planes. The orthogonal rotations are iterated until a body-diagonal

common orientation is reached). The minimum number of components

is selected on the basis of an optimized data fitting and stability and

interpretability criteria such that data variance is maximized. In fact,

only a small number of principal components are chosen and and they

constitutes the axes of the plots in which data are reported.

The final transformation is given by the following equation 4.3:

xijk ∼=
P∑
p=1

Q∑
q=1

R∑
r=1

aipbjqckrgpqr (4.3)

where xijk are the elements of the original datamatrix, while aip, bjq,

ckr and gpqr are the elements of the matrices A, B, C and G. G is the

core efficiency describing the main relations in the data. The compo-

nent matrices A, B, and C describe how the particular subjects, variables

and conditions are related to their associated components. The three

data modes are plotted in three different graphs whose axes represent the

principal components. The meaning of the principal components requires

careful interpretation and analysis. Typically after the PCA analysis,

objects, variables and conditions are represented in a two-axes plot and
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correlations between the two axes and the parameters can be deduced by

an analysis of the plots. Each parameter has a specific coordinate accord-

ing to the weight it bears with respect to the axis. If the coordinate is

near 0, then the weight is small, if it is greater or less than 0, the weight

is high.

4.4 N3MO vs ImageJ [1]

N3MO performance were tested comparing its outputs with those ob-

tained using ImageJ [1]. In particular, the Sholl analysis was performed

using both N3MO dedicated routines and an ImageJ plug-in [3] on two

different kind of neurons, traced with the SmRG algorithm detailed in 3:

1. Purkinje cells from mouse cerebella optimally clarified as detailed

in Chapter 2;

2. Drosophila neuron confocal datasets available at http://viva-lab.

ece.virginia.edu/suvadip_docs/Neuron/research_neuron.html.

The process was faster with N3MO due to the automatic identifica-

tion of the soma center coordinates and the automatic generation of the

spheres. The Sholl parameters measured were similar: in fact, no signif-

icant or systematic differences between the two tools were detected. An

example of the Sholl analysis outputs for a Purkinje cell and a Drosophila

neuron is provided in Table 6.1.

4.5 Discussion

Morphometric analyses are relevant for the study of alterations in the

dendritic/axonal field of neurons or neuronal morphological correlates of

diseases [124], as well as the morphological implications of neurons under
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Table 4.2: Comparative Sholl analysis usign N3MO and the ImageJ plug-in [3]

Purkinje cell

from L7GFP mouse

Neuron from

Drosophila fluitfly

Radii (µm) N3MO ImageJ Radii (µm) N3MO ImageJ

47.43 1 1 0.26 3 3

69.02 1 1 2.34 3 3

90.62 2 2 4.42 3 3

112.72 1 1 6.50 4 3

133.82 3 1 8.58 3 2

155.42 5 1 10.92 1 1

177.02 3 2 13 1 1

198.62 4 4 15.98 2 1

220.21 4 4 17.16 2 2

241.81 2 2 19.50 1 1
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experimental conditions or the structure-function relationships in den-

dritic trees [6, 97, 96]. Moreover, morphological features such as neuron

shape, size and branching can elucidate the functional role of different

neurons.

In order to analyse microscopic alterations over time in brain tissue slices,

it is important to have accurate, reliable and reproducible measurements,

which are not prone to human bias. Given that current imaging methods

are able to provide high-resolution data, in the last 20 years several com-

mercial and open-source tools for morphological analysis and extraction

of quantitative information on neuron in their own native arrangement

within the brain cortex have been developed. Table 4.3 lists the features

of the principal software available for micro-structural and morphological

analysis. From the Table it is clear that not all the software are capable of

a complete and exhaustive analysis: in fat, some tools are not dedicated

to neuron tracing, or able to extract only few morphological parame-

ters. Furthermore, many routine operations require significant manual

intervention and interpretation, such as the 3D tracing of each branch of

the neurons with a pencil tool or mouse. In fact, most software do not

implement automated or semi-automated 3D neuron tracing. Many of

the available tools focus on the analysis of single parameters and many

routine operations require significant manual intervention and interpre-

tation. For example, in Neurolucida (MicroBrightField, Williston, VT)

[31], a commercial software for morphometric analysis of neuros used suc-

cessfully by several investigators [125], the user must trace each neuron

branch with a pencil tool or mouse. Moreover, some of the tools are not

open-source, so that is impossible to customize them for one’s own pur-

pose. Finally, some software require a commercial licence and may be out

of reach for neuroscientists in developing and emerging countries.
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Table 4.3: Characteristics of the principal software for neuron morphological analysis

Neurite

Tracer

Sholl

Analysis

Fractal

Dimension

Soma Area

& Volume

Neurite

Length

Multivariate

Analysis

Neuron

Area

& Volume

PROS CONS

NEUROLUCIDA [31] Yes Yes No No Yes No No Accurate
Not Free;

Only Windows

NEURITE TRACER [126] Yes No No No Yes No No
Automated;

Free
No full analysis

SHOLL ANALYSIS [110] No Yes No No No No No
Automated;

Free
No full analysis

IMAGEJ
FRACTAL DIMENSION

(BoneJ) [127]
No No Yes No No No No

Automated;

Free
No full analysis

Macro in METAMORPH [41] No Yes No Yes No No No Accurate Not free

IMARIS software No No No No Yes No No

4D real time

data visualization

and analysis

Not specific

for neurons

SAMA [42] No No Yes Yes Yes No Yes

4D real time

data visualization

and analysis

Not specific

for neurons

TREE toolbox [128] Yes No No No Yes No No
good neurite

reconstruction
No full analysis

NEURONSTUDIO [40] No Yes No No Yes No No Free No full analysis

N3MO Yes Yes Yes Yes Yes Yes Yes
Free; Accurate;

Multi-variate analysis

Preliminary

folder organization

8
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4.6 Conclusion

During this PhD thesis, N3MO, an open-source software provided with

al the tools that can be useful for the analysis of neuron morphology in

their own tree-dimensional arrangement, was developed. It consists of a

set of computation algorithms written in Matlab and implemented in a

GUI framework, in which it is easy to trace neurons, extract morpholog-

ical features of interest and access the data to have a global view of the

results. With respect to the other software, listed in Table 4.3, its unique

features are the possibility to perform a complete morphological analysis

and the use of the 3-way PCA for data analysis and classification. With

the other tools, image stacks need to be opened one at a time, traced and

then data are collected and saved separately: when dealing with a given

stacks representing different neurons, the procedure takes a considerable

amount of effort. On the other hand, N3MO allows all the morphologi-

cal features of interest to be obtained in a single operation. The 3-way

PCA can be used to unravel correlations between significant morphome-

tric variables in neurons and for the classification of cells according to

their morphology.

N3MO was developed during the course of this thesis because it is an

alternative and novel open-source software for the morphometric charac-

terization and classification of neurons which preserve their native three-

dimensional arrangement within the brain. The software was developed

as there are currently no tools available for handling and processing large

quantities of data on single neurons. N3MO could be of interest and use

to neuroscientists involved in morphometric quantification and advanced

statistical analyses of neurons in their own three-dimensional arrangement

within the brain.
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Chapter 5
Study of sexual dimorphism in

murine models of autism

”Stupid is as stupid does”

(F. Gump)

Abstract

In this Chapter, the characterization of Purkinje cells micro-structure

in murine models of autism is described. Due to unbalanced incidence

between males and females in the the Autism Spectrum Disorders, the

sexual dimorphism was also taken into account. Firstly, a proof of con-

cept on 2D images representing Purkinje cells in thin cerebellum slices

was performed, demonstrating that there are statistically relevant mor-

phological and topological differences between both sexed wild-type mice

and knock-out ones. However, two-dimensional images cannot give in-

formation about the native arrangement of the neurons within the brain.

For this reason, the work-flow detailed in Chapters 2, 3 and 4 in this PhD
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thesis was applied to study morphological alterations in Purkinje cells in

their own arrangement within the cerebellum using thick slices from both

males and females in a murine model of autism, comparing the results

with wild-type mice.

5.1 A survey on the Autism Spectrum Disorders

Autism spectrum disorders (ASDs) comprises a collection of heteroge-

neous neuro-developmental diseases (American Psychiatric Association,

2013), initially described by Kanner in 1943 [129]. By definition, symp-

toms are manifested by 36 months of age and are characterized by delayed

and disordered language, impaired social interaction, abnormal responses

to sensory stimuli, events and objects, poor eye contact, an insistence on

sameness, an unusual capacity for rote memory, repetitive and stereotypic

behaviour and a normal physical appearance [130]. The aetiology of the

pathology is complex: genetics, environmental factors, and specific gene-

environment interactions are thought to contribute to the pathogenesis of

ASD [131]. In fact, autism differs from person to person in severity and

combinations of symptoms and several hundreds of genetic variants have

been identified [132].

5.1.1 The cerebellum and the ASDs

In the last couple of decades, relatively few neuro-pathological studies

have been performed on the brains of autistic subjects. Of those re-

ported, most of the abnormalities have been described in the cerebellum.

The mammalian cerebellum comprises more than half of the neurons in

the central nervous system, but has only about one-ninth of the volume of

the neocortex: it is therefore a very compact structure that poses several

problems in terms of accurate structural and functional imaging [133].
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The cerebellum has historically been implicated in motor coordination;

however, recent findings show that it is also involved in several non-motor

functions [134] and has a role in nearly as many separate functions as the

neocortex. Like the neocortex, the cerebellar cortex is elaborately folded;

there are well-defined lobules and sub-lobules, which are separated by a

number of fissures that can be reliably identified across individuals and

species. In addition, each lobule display a specific pattern of connectivity

with the cortex [135] and is likely associated in its functional role [134].

Finally, like the cerebral cortex, the cerebellar cortex displays a highly

ordered and layered structure.

Maybe the most interesting neurons of the cerebellum, both for their elab-

orate dendritic structure and their role in cerebellum development and

function, are the Purkinje cells (PCs). PCs represent the only output

of the cerebellar cortex. Moreover, they are involved in the first stage

of cerebellar development and it has been suggested that PC electro-

physiological and morphological properties may influence the growth and

connections of cells which develop successively [136]. In this light, it is

clear why the study of PCs is important to understand how they influence

the connectivity of the mammalian cerebellum.

Several studies describe PC micro-structural morphology in great detail

[82, 100, 137, 138]. The most common methods employed for the anal-

ysis of micro-scale neuronal structure are based on optical imaging of

in vitro PC cultures [36, 139]: in fact, optical images can be analysed

with computational methods to quantitatively measure and assess mor-

phological characteristics of neuronal branching patterns [108]. More-

over, several reports describe neural growth dynamics and network orga-

nization using specific fluorophores detected with fluorescence microscopy

[101, 102, 140]. The limitation of these kind of studies is the use of in

vitro cultures, which presuppose the assumption of planarity of the PCs.
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Although this hypothesis is essentially verified, this kind of study does

not allow the evaluation of PCs morphology related to their interactions

with the other cells within the cerebellar cortex, in an arrangement close

to that in-vivo.

As regard the Autism Spectrum Disorders, several studies show ab-

normalities within the cerebellum: Baumann and Kemper reported a re-

duction of granular cells and an increase of dimensions of deep cerebellar

nuclei neurons [130]. In terms of cerebellar sub-regions, reduced size of

one or more regions in the cerebellar vermis, which is predominantly grey

matter, is frequented reported in autism MRI studies: Courchesne ob-

served a localised reduction in the size of cerebellar vermis lobule VI-VII,

sometimes associated with a reduced size of cerebellar hemispheres, ap-

parently proportionally correlated to the seriousness of the disease [141].

Baumann and Kemper also showed other abnormalities in cerebellum of

children and adults in ASDs: a significant decrease in the number of PCs,

primarily effecting the postero-lateral neo-cerebellar cortex and adjacent

archi-cerebellar cortex of the cerebella hemispheres [130]. On the other

hand, Fatemi and colleagues showed that in addition to a reduction of PC

number there is also a reduction of their dimensions while density is the

same [43]: since PC exhibit excitatory stimuli from the deep cerebellar

nucleus, a reduction of their number and dimension cause an abnormal

over-connectivity along the cerebellum-thalamus-cortex circuitry.

5.1.2 The importance of murine models for the study of

neurological disorders and od ASDs

Despite the decades of research, the aetiology of most of the developmen-

tal disorders remains elusive. Thus, it is important to pursue all avenues,

in attempting to understand them. Nowadays, much of our current un-
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derstanding of the cellular and molecular mechanisms governing neural

development and disease derives from animal models [142]. In fact, ani-

mals are often used in this kind of research when there is a need to find out

what happens in the whole, living body, which is far more complex than

the sum of its parts. In addition, humans and animals share hundreds

of illnesses, and consequently animals can act as models for the study of

human illness [143]. From such models researchers can learn how a given

disease affects the body, how the immune system responds, who will be

affected, and more.

The most significant contributor to the neuroscience research has been

the development of transgenic mouse models. The use of transgenic an-

imals has allowed neuroscientists to decipher the function of particular

genes and to create disease models.

As regards neuro-developmental disorders, such as Autism Spectrum Dis-

orders (ASD), there are behavioural characteristics that can be estab-

lished in animal models. Although the exact nature of the possible envi-

ronmental contributions remains quite speculative, there is a large body

of evidence that indicates that there is a strong genetic component to

ASD, since the first epidemiological study on affected twins [144].

Given the multi-factory of aetiology of ASDs, there is no single animal

model that captures all the molecular, cellular or behavioural features of

ASDs. In this thesis, two genes known to have important functions in

cerebellar development were investigated [145]: the reelin (RELN) and

the Engrailed-2 (EN2) ones.

REELER mice and their importance for ASDs Reelin is one of

the molecules that are under examination as a risk factor in autism. It

is a protein of the extracellular matrix, with a key role in migration and

positioning of neurons [146, 147, 148, 149, 150] .

Reelin was named after the Reeler mutation that arose spontaneously in
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mouse, showing autosomic recessive transmission [151]. The homozygous

recessive Reeler mouse completely lacks the protein and displays a typ-

ical cerebellar phenotype from which it derived its name, characterized

by dystonia, ataxia,and tremor. Histologically, these animals have se-

vere alterations in the architecture of the laminar structures of the brain

[152, 153, 154] and less clear alterations in other Central Nervous Sys-

tem areas. The mutated gene (reln) was discovered by D’Arcangelo et al.

[155]; soon after [156], it was discovered that the gene is highly conserved

between mice (reln) and humans (RELN). Then, an autosomal recessive

form of lissencephaly (LCH) was described in humans [157] to be asso-

ciated with two independent mutations in RELN. LCH phenotypically

demonstrated severe abnormalities of the cerebellum, hippocampus and

brain-stem, uncovering an obvious parallelism with the Reeler mutation

(reln -/-). While reln -/- mouse brain has been extensively characterized

in structural and functional terms, the heterozygous Reeler mice (reln

+/-) appear phenotypically normal, but have attracted the interest of

neurologists as an animal model for some psychiatric disorders when it

was discovered at autopsy that RELN is 50 % down-regulated in the

brain of psychotic individuals [158, 159], in particular in autism [11, 160].

Notably, cerebral abnormalities observed in the psychotic human brain

[11, 43, 160] are similar to those in reln +/- mice that include a reduction

in glutamic acid decarboxylase 67 (GAD67), dendritic arbors and spine

density in cortex and hippocampus, and alterations in synaptic function

including long-term potentiation [161, 162]. However, the behavioural

abnormalities in these mice are subtle and controversial [163, 164, 165].

Few structural studies have focused on the cerebellum of reln +/-. Het-

erozygous mice have been reported to show a progressive loss of PCs in

the first weeks of life [166], and lower numbers of these neurons were de-

scribed in a parallel study on psychotic patients and adult reln +/- mice
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[167]. Notably, it has also been previously shown that PCs in autistic

patients have a reduced size in comparison with normal subjects [43].

Engrailed2 mice: a window into autism Many mouse mutant mod-

els show Purkinje cell deficits, although Engrailed 2 (En2) has been of

particular interest for several reasons [168]. In fact, En2 deletion or over-

expression produces Purkinje cell deficits; moreover, the diminished pos-

terior cerebellar vermis and lobules in mice are also seen in some human

autism neuropathologies, and human En2 localizes close to chromosomal

7 region identified by several ASDs genome linkage scans. Studies on

En2 gene over-expression [169, 170] as well as gene deletion have been

performed both in vivo and in vitro [44, 171]. Over-expression of En2

in neural precursors in culture maintains precursor proliferation and re-

duces neuronal differentiation, mechanisms that could conceivably con-

tribute to ASD cerebellar neuropathology. Both En2 knock-outs and

transgenic mice that cause the misexpression of the gene have been gen-

erated. Deficits in social behaviour were reported in En2 +/- mice across

maturation that included decreased play, reduced social sniffing and al-

logrooming as well as less aggressive behaviour. Deficits in two spatial

learning and memory tasks were also obtained [172]. Adult mice for both

mutants are non-ataxic, but their cerebella are hypoplastic, with a re-

duction in the number of Purkinje neurons and other cortical neurons

[44, 45].

This findings correlates with a quantitative study of PCs in culture ob-

tained from En2 +/- mice and wild-type (WT) control mice, performed

using NEMO, a tool for the extraction of quantitative morphometrics

from microscopy images, which demonstrated that PCs are consistently

smaller, less arborized and die earlier than WT ones [36].
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5.1.3 Sexual Dimorphism in the brain and in ASDs

Although it is well known that specific regions of the brain exhibit sex-

ual dimorphism in a large number of species, ranging from invertebrates

to mammals, including humans [173, 174, 175, 176, 177, 178, 179, 180,

181], the functional impact of sex as a basic biologic variable is little

understood. Gender bias has also been repeatedly observed in neuro-

developmental and neuro-degenerative disorders, such as ASDs [182],

Alzheimer’s and Parkinson’s [183], including neuropsychiatric disorders,

anxiety and depression [184, 185].

In this light, it is important to identify the anatomical differences in male

and female brains producing detailed maps and accurate representation

of sexual dimorphic areas of mammals. On the other hand, studies on

sex differences in sociability have been conducted in order to ascertain

whether the sexual dimorphism is a result of biological or socio-cultural

differences between the two sexes. In 2000, Connellan et al. [186] studied

102 human neonates, who by definition have not yet been influenced by

social and cultural factors, to see if there was a difference in looking time

at a face (social object) and a mobile (physical-mechanical object). Their

results showed that male infants were strongly interested in the physical-

mechanical mobile while the female infants showed a stronger interest in

the face.

One of the most well-established facts about autism is that it oc-

curs with much greater frequency in males than in females [187]: various

studies have come up with men/women ratios ranging from 2:1 to 16:1.

Despite the plethora of studies performed, the nature and meaning of sex

differences in the ASDs is still enigmatic. In the last few decades, three

main explanations for this unbalanced incidence have been theorized:

1. Exaggeration of normal gender differences: This theory is
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based on evidence that, in the general population, women and girls

have better verbal skills, while men and boys excel in visuo-spatial

tasks [187]. There may be a neurological basis for this, so that

autism can be interpreted as exaggeration of “normal” sex differ-

ences. On the other hand, environmental and social factors may

also play a part in differences in ability across men and boys, and

women and girls. This means that no direct analogy can be drawn

between the poorer verbal skills of boys and the higher incidence of

autism in men and boys.

This interesting theory informally suggested for the first time in

1944 by Hans Asperger: “The autistic personality is an extreme

variant of male intelligence. Even within the normal variation, we

find typical sex differences in intelligence. In the autistic individ-

ual, the male pattern is exaggerated to extreme.”. In support of this

theory, Rimland also pointed out that men and boys tend to be

more susceptible to organic damage than women and girls, whether

through hereditary disease, acquired infection or other conditions.

Since it is now almost universally accepted that there is an organic

cause for autism, it should therefore not be surprising that men

and boys are more vulnerable to it than girls and women [188].

Later, Baron Cohen has developed an “extreme male brain” the-

ory of autism [189]. This relates to thinking about sex differences

in general within the dimensions of “empathising” and “systemis-

ing” and autism as an extreme of the male ’systemising’ dimension.

This theory has been powerful in shaping public perception of the

condition.

2. Genetic explanation: According to this theory, there is a genetic

exmplanation to the gender split observed in the ASDs. Skuse [190]

has suggested that gene or genes for autism are located on the X
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chromosome. Girls inherit chromosomes from both parents, but

boys inherit one, from their mothers. Skuses hypothesis is that the

X chromosome which girls inherit from their fathers contains an

imprinted gene which protects the carrier from autism, thus mak-

ing girls less likely to develop the condition than boys. Lord and

Schopler [191] have outlined several possible mechanisms for the

transmission of autism on the sex-linked X chromosome, and also

for autosomal transmission. However, these are merely theoretical

models and in fact researchers are still a long way from identifying

a simple genetic cause for autism. It is likely that several genes on

different chromosomes will be found to be associated with autism.

In this light, Skuse’s theory may not represent the full picture. In

2014, Jacquemont et al. [192], investigated molecular characteristics

associated with the increased male-to-female ratio in individuals re-

ferred for neurological disorders. Their findings show that females

systematically carry more neuro-developmentally deleterious vari-

ants than do males any time that individuals are ascertained for

neurological disorders or are parents of a proband referred for those

symptoms.

3. Wrong diagnosis criteria: Leo Kanner’s 1943 study of a small

group of children with autism there were four times as many boys as

girls [129]. Hans Asperger thought no women or girls were affected

by the syndrome he described in Autistic psychopathy in childhood,

although clinical evidence later caused him to revise this thinking

[193]. On the other hand, Brugha found that 1.8% of men and boys

in England had a diagnosis of autism, compared to 0.2% of women

and girls [194]. Attwood (2000) [195], Ehlers and Gillberg (1993)

[196] and Wing (1981) [187] have all speculated that many girls

with Asperger syndrome are never referred for diagnosis, and so are
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simply missing from statistics. Lorna Wing found in her paper on

sex ratios in early childhood autism that among people with ’high-

functioning autism’ or Asperger syndrome there were as many as

15 times as many men and boys as women and girls, while in peo-

ple with learning difficulties as well as autism the ratio of men and

boys to women and girls was closer to 2:1 [187]. Women and girls

with Asperger syndrome may be better at masking their difficul-

ties in order to fit in with their peers and have a more even profile

of social skills in general. Different studies speculated that many

women and girls with Asperger syndrome are never referred for di-

agnosis, and so are simply missing from statistics, even though they

are equally in need of diagnosis and support [187, 195, 196]. This

might be because the diagnostic criteria for Asperger syndrome are

based on the behavioural characteristics of men and boys, who are

often more noticeably “different” than women and girls with the

same underlying deficits. Gould and Ashton-Smith theorized that

because women and girls on the autism spectrum may present dif-

ferently from men and boys, diagnostic questions should be altered

to identify some women and girls with autism who might otherwise

be missed [197].

Different centres for the study of ASDs are focusing on the different

manifestations of behaviour in autism as seen in women and girls

compared with men and boys. In particular, the National Autistic

Society’s Lorna Wing Centre for Autism has registered a steady

increase in the number of women and girls referred for diagnosis,

which suggests an historic bias towards men and boys in the diag-

nostic criteria for autism.

It is clear that the results collected are still inconsistent and con-

fused. In particular, two difficulties quickly become apparent when one
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tries to move beyond the sex difference in the incidence of autism to its

neuro-biological implications. First, the theoretical links between sex dif-

ferences, possible aetiology, and organic mechanisms underlying autism

are far from straightforward. While there have been numerous failures

to confirm specific hypotheses, few positive findings have emerged. Be-

cause of small sample sizes, non-epidemiological samples, and difficulties

in balancing factors such as sex and degree of mental retardation within

autism, negative findings cannot be taken as conclusive [191].

Unravelling the sexual bias in autistic patients could be important in

order to design more efficient diagnostic and therapeutic approaches.

Since mice and rats display sexual dimorphism features of their cere-

bella, similar to humans [198], the study of mouse models of ASD, whose

alterations mostly affect cerebellar area, could be of interest to ascertain

the effect of gender on the autistic phenotype. This Chapter described the

quantitative characterization of alterations in PC morphology in murine

models of autism. As ASDs seem to affect males more than females,

both sexed mice were considered. The study was conducted in two steps:

firstly, a quantitative estimation of soma areas and degree of alignment of

CPC along the cerebellar cortex of PCs in normal and reln haplo-deficient

mice of both sexes was performed, using standard protocols for tissue

harvesting, acquisition and processing. Having taken into account the

aforementioned heterogeneity of the cerebellar function, the analysis was

carried out in five vermal lobules that -in humans- specifically intervene

in the processing of different types of functional inputs [199]: the central

lobule and culmen (sensory-motor), the tuber (cognitive), the uvula (de-

fault mode network) and the nodulus (emotive/vestibular). After that,

since the analysis on 2D images is limited and it cannot fully describe PC

morphology, the work-flow designed in this thesis (and detailed in Chap-

ters 2, 3 and 4) was applied to the Engrailed2 murine model of autism, to
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characterize PC structure in their native arrangement within the cerebel-

lar cortex, focusing again on morphological abnormalities between males

and females.

5.2 Sexual dimorphism in REELER model of autism:

a proof of concept

5.2.1 Materials and Methods

Tissue preparation and imaging Studies were performed on twenty-

four young adult mice (2 months) of both sexes and different reln genetic

backgrounds (reln +/- and WT). Animals were hybrids generated at the

Department of Veterinary Medicine of the University of Turin by cross-

ing reln +/- and WT mice with L7GFP WT mice that express the green

fluorescent protein (GFP) under the control of the L7 promoter [60], as

already detailed in Chapter 2.

The number of animals was kept to a minimum and all efforts were made

to minimize their suffering. All experiments were authorized by the Ital-

ian Ministry of Health and the Bioethics Committee of the University of

Turin. Animal procedures were carried out according to the guidelines

and recommendations of the European Union (Directive 2010/63/UE)

as implemented by current Italian regulations on animal welfare (DL n.

26-04/03/2014). Before being used in this study, all animals were sexed

and genotyped by routine methods to ascertain GFP expression and their

appropriate reln genetic background [155].

After deep pentobarbital anesthesia, mice were perfused with 4% PFA

in 0.1 M phosphate buffer saline (PBS), pH 7.4-7.6. Following several

washes in PBS, the cerebellar vermis was isolated from the remaining

parts of the brain, cryoprotected in 30% sucrose, frozen in liquid nitrogen

and serially cut in 7 m parasagittal sections. Randomly chosen sections
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from series were collected at 100 µM distance along the transverse axis of

the vermis, attached on slides and mounted in fluorescence-free medium.

For each animal, four to five sections of the entire vermis were observed

at a 20x magnification (pixel size: 0.46 µm/pixel) with a transmitted flu-

orescence light microscope (DM6000B, Leica, Germany). For each cere-

bellum region, i=4-5 images (1392x1040 pixel) of the GFP-tagged PNs

from the central lobule (II-III), culmen (IV-V), tuber (VIIb), uvula (IX),

and nodulus (X) were acquired and subjected to analysis, as summarized

in Figure 5.1(A).

Image processing and analysis For all the images acquired, three

morphological variables were extracted, using two different software:

1. Feret’s diameter, which is the longest distance between any two

points along the object perimeter. This is a step necessary for the

evaluation of the misalignment along the YZ axis;

2. Soma Area;

3. Misalignment along the YZ axis (dorso-ventral)

While the first two parameters were calculated using the ImageJ soft-

ware [1], the latter was obtained with NEMO (NEuron MOrphological

analysis tool), a tool which I purposely developed to handle and quan-

titatively analyse images representing individual neurons in 2D colture

or brain slices [36]. Both software are open-source, so they can be freely

downloaded, respectively at http://rsb.info.nih.gov/ij/download.

html and https://github.com/CentroEPiaggio/NEMO.

ImageJ analysis After image loading, the work-flow adopted for

the analysis using ImageJ is performed in three steps:
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Figure 5.1: (A)Low magnification view of a para-sagittal cryosection of the vermis of

a WT male mouse. The piriform layer consisting of the aligned somata of the PCs is

clearly visible. Note that the GFP tag is distributed in the entire cytoplasm of the PCs

so that their extensive dendritic arborizations appear as an overall diffuse fluorescence

of the molecular layer and the axons can easily be seen travelling across the white

matter to reach the fastigial nucleus at the basis of cerebellum. The five lobules

considered in this study are indicated by their descriptive names and corresponding

roman numerals. Abbreviation: CE = lobulus centralis; CU = culmen; NO =

nodulus; TU = tuber vermis; UV = uvula; PNs = Purkinje neurons; ANT =

anterior; POS = posterior.(B) Diagram showing the 3D planes of the mouse

cerebellum. Parasagittal sections are cut along the YZ plane (green). The fluorescent

somata of the PNs (yellow ovals) are aligned along a curved dashed line.

Displacement of the PNs along the YZ plane (green) is exemplified by the somata that

lie above or below the black dashed line of the piriform layer.
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1. The image is filtered to reduce noise;

2. A threshold is applied to convert it into a binary image, eliminating

the PCs dendritic arbour and just preserving somata;

3. After setting the scale to gather measurement using the real value

(i.e. µm) and choosing the parameters to extract (i.e. Feret’s di-

ameters and area), the “Analyse particles” command is applied.

Data extracted were stored in a Microsoft Excel spreadsheet for sub-

sequent statistical analysis.

NEMO analysis NEMO was used to analyse the topological ar-

rangement of the neurons within sections, enabling the extraction of rel-

evant metrical features. In this study, NEMO for the topological analysis

was modified as shown in the work-flow in Figure 5.2.

The algorithm works in 5 steps:

1. The image is loaded and automatically segmented using the Otsu

thresholding technique [64] in order to identify the Purkinje so-

mata, represented by white pixels, and isolating them from the

background, represented by black pixels (Figure 5.2 (A));

2. Three image crops representing an almost -linear segment of the

piriform layer (line of the PCs) of the cerebellar cortex are chosen

by the user;

3. Using the circular Hough transform [81] on the binary image, only

the somata in a specific diameter range are selected. In fact, only

somata with a diameter in the range previously evaluated in the

Feret’s diameter analysis were considered. In this way, only the

on-focus PCs are considered, eliminating those from different focal

planes (Figure 5.2 (B));

104



Sexual Dimorphism in ASDs

Figure 5.2: Main steps in the NEMO work-flow used to calculate the dispersion of

PCs along the YZ cerebellar plane. (A) The effect of image thresholding to separate

the fluorescent white pixels from the black background. Thresholding was necessary to

eliminate the fluorescent dendritic arbours in the molecular layer. In the example,

fluorescent Purkinje axons are still visible in the granular layer. (B) Purkinje somata

detected by the Hough transform (C) Plot of X and Y coordinates of five Purkinje

somata (blue circles) and the linear fitting line (red) calculated by NEMO.
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4. Returning the Hough transform, the (x,y) coordinates of each soma

center in the range selected, these data obtained are fitted to a

straight line (Figure 5.2 (C));

5. The goodness of fit is finally evaluated through the root mean

squared error (RMSE): a more chaotic layer organization reflects

a higher value of the RMSE.

All the information extracted for each crop selected is finally stored in a

datamatrix.

Statistical analysis Using GraphPad Prism v.6 (GraphPad Software,

CA, USA), comparisons between the n=4 groups of animals and the

r=5 cerebellum regions under study were performed with 1-way ordinary

ANOVA or 2-way ANOVA followed by Tukeys Multiple comparison test,

in order to highlight differences between the vermal lobules, the geno-

type and the sex. Difference were considered statistically significant at

p<0.001.

5.2.2 Results

PCs Feret’s diameter In this analysis we have considered only objects

with a Feret’s diameter > 9 and < 30 µm, because smaller diameters likely

correspond to the main dendritic trunks that escape thresholding, while

larger ones may represent more than one PC clustered together. Using

this criteria, the frequency distribution of Feret’s diameters of PCs (n.

of animals: 24; n. of PCs: 9868) gave the following values of descriptive

statistics: mean: 17.92 ± 0.05 µm, median 17.79 µm, asymmetry: 0.29

(see Figure 5.3 (A))

PCs area The mean areas of the PCs were compared between the two

sex and genotypes by 2-way ANOVA (see Figure 5.3 (B))). Multiple
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Figure 5.3: (A) Frequency distribution histogram of the size of PCs after exclusion of

the 2D objects smaller than 9 µm and larger than µm. Soma size follows a normal

distribution. (B) 2-way ANOVA shows that reln+/- males have larger PC areas than

the female genotypes.

comparison tests demonstrated that reln+/- males have larger PCs than

reln +/- females (mean (µm2) ± SD: WT males: 429.74 µm2 ± 97.60;

reln+/- males: 444.53 µm2 ± 112.08; WT females: 402.77 µm2 ± 81.72;

reln+/- females: 392.30 µm2 ± 84.18).

Then, the mean values of PC areas were statistically analysed considering

the genotype and the cerebellar lobule as variables. After 2-way ANOVA

for repeated measurements, and Tukey’s multiple comparison test, the

source of variation between samples was related to the genotype but not

the cerebellar lobules.

Misalignment of the PCs long the dorso-ventral axis (YZ) of

cerebellum Misalignment of the PCs along the dorso-ventral axis of

cerebellum was measured by fitting the (x,y) coordinates of each soma

center to a straight line The goodness of fit was evaluated by calculating

RMSE.

After 2-way ANOVA and Tukeys multiple comparison test, reln+/- males

had higher values of RMSE than reln+/+ males and reln+/- females, but
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Figure 5.4: 2-way ANOVA with multiple comparison test shows statistically

significant differences in the mean RMSE (that measures PC misalignment along the

YZ cerebellar axis) between reln+/- males and reln+/- females in four of the five

cerebellar lobules examined in this study (with the exception of the lobulus centralis)

and between reln+/- and WT males in all lobules considered (*** = P= 0.001; ****=

P<0.001). Error bars in graphs indicate SD. Abbreviation: CE = lobulus centralis;

CU = culmen; NO = nodulus; TU = tuber vermis; UV = uvula; PNs = Purkinje

neurons; F = female; M = male; RMSE = root mean squared error of linear fit.

not reln+/+ females in all lobules (Figure 5.4). As RMSE is related to

the arrangement of the PCs within the dorso-ventral axis of cerebellum

(Figure 5.1 (B)), these results show that neurons in heterozygous mu-

tant males are more chaotically arranged than in homozygous normal

mice and, with the exception of the central lobulus, heterozygous mutant

females. They also indicate a tendency of females to have a more ordered

distribution of PCs than males, irrespective of the genotype.
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5.2.3 Discussion

The role of reelin in controlling neuronal migration and maturation in the

mammalian brain is widely established [200]. However, not only is reelin

fundamental for normal cerebellar development, but several lines of evi-

dence implicate the protein as an important player in the etiopathology

of autism [201]. For this reason, the study of the reln-haplodeficient het-

erozigous mice attracted the attention of the neuroscientists as possible

models of neuropsychiatric conditions in translational study [201]. Unfor-

tunately, data about the structural alteration in reln+/- mouse cerebel-

lum are fragmentary; moreover, there are limited studies on the existence

of sex-related differences in the number and size of PCs in the mutant

reelin mice [202, 203].

In this light, the investigation was aimed at morphological and topological

characterization of Purkinje neuron micro-structure, in relation to gender

and genotype, taking also into account different cerebellar regions.

As regard the size of PCs, the analysis shows that heterozygous mutant

males have larger neurons than females.

This preliminary study also demonstrates that topological alterations can

be detected in the cerebellar vermis of the reln +/- mutants using im-

age processing techniques. Using Cre-Lox recombination, observations in

mice genetically engineered to tag the Disabled-1 (Dab1) expressing neu-

rons (that potentially respond to Reelin) indicated that positioning errors

in the adult mutant-labelled neurons varied from subtle to extensive, and

regarded both the latero-lateral and dorso-ventral axes of the developing

brain with differences among different neuronal populations [204]. In the

present study, reln +/- male mice have a more chaotic arrangement of

their PCs along the dorso-ventral axis of cerebellum, and the dispersion

of the PCs along the YZ axis occurs in all cerebellar lobules. In addition,

heterozygous mutant males also display higher RMSE values than mutant
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females, with the exception of central lobulus. No statistically relevant

differences were found between females reln+/- and reln+/+. It is not

surprising that in reln +/- mice misalignment of PCs occurs along the YZ

axis of cerebellar laminae, as this axis coincides with the trajectory along

which PCs migrate from the cerebellar ventricular zone to constitute the

piriform layer, and reelin plays a fundamental role in the migration and

final alignment of these neurons during cerebellar development [205, 206].

These observations suggest that the reln mutation has less severe pheno-

typic effects on PCs of females.

Although the findings in this preliminary study are a good starting point

to clarify the misleading results in neuroscience literature about autism

and sexual dimorphism in neuro-developmental disorders, they cannot

be exhaustive, since it is not possible to extract information about PCs

dendrites and their arborization. A more sophisticated analysis than the

one carried out here would be required to fully clarify whether or not the

mutant mice are of interest in translational studies. For this reason, the

work-flow designed in this PhD thesis was applied to study the sexual di-

morphism in a more promising model of autism, the Engrailed2 (En2-/-)

knock-out mouse.

5.3 From NeMo to N3MO: application of the

designed work-flow to the Engrailed murine

model of autism

5.3.1 Materials and Methods

Tissue preparation and confocal imaging L7GFP WT (wild-type)

mice and the homozygote L7GFP/En2-/- knock-out as animal model of
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ASD were considered for the study of PCs in the cerebellum. For each

genotype both male and female individuals were studied, for a total of 8

mice sacrificed. Mice were perfused and brains were carefully extracted

and treated as detailed in Chapter 2; in particular, n=36 1 mm-thick

slices were cut and optimally clarified, following the protocol described

in Chapter 2, for 5 days.

For each clarified cerebellum slice, at least 2 confocal stacks were acquired

with a Nikon A1 confocal microscope. The acquisition settings are sum-

marised in Table 3.1. During acquisition, no limits were imposed to the

depth of the dataset, thus the height of different Z-Stacks is variable for

each acquisition and dependent on biological variability (i.e. the different

spatial distribution of PCs in different mouse cerebella).

Neuron tracing with the SmRG algorithm and N3MO analysis

The confocal stacks were processed with the SmRG algorithm described

in Chapter 3, obtaining about 30 single-traced PCs for each genotype and

sex.

The neurons were then analysed using N3MO (see Chapter 4 for more

details), in order to obtain the morphological features of interest.

Statistical analysis On each morphological variable extracted, statis-

tical analyses were carried out using 2-way ANOVA for repeated-measures

analysis followed by Sidaks Multiple Comparison Test, after verifying

that the data are normally distributed (i.e. through Kolmogorov-Smirnov

Gaussianity test) and setting significance at p<0.001.

5.3.2 Results

Sholl Analysis As already detailed in Chapter 4, the Sholl analysis is

a morphometric method to evaluate the neurite architecture of neurons
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by drawing a series of concentric spheres around the neuron soma. In

particular, two different coordinate systems can be used to evaluate the

number of intersections versus the sphere radius: one with a constant

number of spheres and the other with a constant inter-sphere distance

(established as 10 µm). In this context, since the results obtained with

the two systems were similar, only the one regarding the constant number

of spheres coordinate system were showed for its graphical simplicity.

The analysis of the number of intersections vs. sphere radius shows that

the best fitting is Gaussian only for L7GFP/ WT mice, as shown in

Figure 5.5 (A) and (B), with a peak corresponding to intermediate val-

ues of the radius. The goodness of fitting was evaluated through the

square of the multiple correlation coefficient (RS), resulting in 0.8942 for

L7GFP/WT males and 0.8793 for females. On the other hand, in PCs

from L7GFP/En2 -/- mice the peak of intersections is more shifted to-

wards lower values of the radius. Moreover, data show an exponential

trend, reported in Figure 5.5 (C) and (D) (RS for L7GFP/En2 -/- males

= 0.9729; females = 0.8188).

The plot of Log-Log and Semi-Log methods revealed that both in WT

and En2 -/- the Log-Log method is more appropriate as it better approx-

imates the results. In fact, the value of the Determination Ratio is less

than 1 for all the neurons analysed.

As regards the Schoenen coefficient, 2-way ANOVA followed by mul-

tiple comparison test shows that it decreases significantly in both sexed

En2 -/- mice [mean ± SD: WT males: 12.13 ± 3.39; En2 -/- males: 7.13

± 2.52; WT females: 13.86 ± 2.95; En2 -/- females: 5.60 ± 1.94], as

shown in Figure 5.6: PCs from En2 -/- mice are less branched than the

WT ones.

The Sholl regression coefficient analysis (Figure 5.7) shows that the

number of intersections versus the distance from the soma center de-
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Figure 5.5: Interpolation of the number of intersections as a function of radius for an

typical PC from (A) a L7GFP/WT male mice, (B) a L7GFP/WT female mice, (C)

a L7GFP/En2 +/- male mice and (D) a L7GFP/En2 -/- female mice.

Figure 5.6: 2-way ANOVA for repeated measures with multiple comparison test shows

statistically significant differences in the mean values of the Schoenen Coefficient

between WT and En2 -/- mice for both males and females. Error bars in graphs

indicate SD. (p<0.001)
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Figure 5.7: 2-way ANOVA for repeated measures with multiple comparison test shows

statistically significant differences in the mean values of the Sholl regression coefficient

between the four groups analysed. Error bars in graphs indicate SD. (p<0.001).

cays significantly faster in PC from L7GFP/En2 -/- mice than from

L7GFP/WT ones, for both males and females. Moreover, the coeffi-

cient is significantly higher for the females than for the males, for both

the genotypes considered [mean (µm 3) ± SD: WT males: -0.41 ± 0.15;

En2-/- males: -0.78 ± 0.14; WT females: -0.79 ± 0.13; En2-/- females:

1.13 ± 0.17].

Finally, the observation of the minimum pathway (measured, as de-

scribed in Chapter 4, as the sum of the magnitudes of the euclidean

distance between the cell intersections on two adjacent spheres) reveals

no statistically relevant differences in the four mouse groups analysed.

Other morphometric variables extracted using N3MO

Soma Volume The mean values of the Soma Volume were sub-

jected to statistical analysis considering both the genotype and the gen-
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Figure 5.8: 2-way ANOVA for repeated measures with multiple comparison test shows

statistically significant differences in the mean values of the Soma Volume between

males and females for both WT and En2 -/- mice. Error bars in graphs indicate SD.

(p<0.001)

der as variables. 2-way ANOVA for repeated measures followed by the

Sidak’s multiple comparison tests of raw data demonstrated a statisti-

cally significant reduction in soma size in female mice with respect to

male ones, regardless of genotype, as shown in Figure 5.8 [mean (µm 3)

± SD: WT males: 5241.35 ± 2187.54; En2 -/- males: 5071.04 ± 1536.43;

WT females: 2365 ± 969.96; En2 -/- females: 2011.09 ± 433.26].

Neuron Surface-to-Volume ratio The Surface-Area-to-Volume ratio

was evaluated in order to have simple but significant morphological infor-

mation on PCs, since it can be used as a raw index of neuron complexity,

as discussed in Chapter 4.

Multiple comparison tests demonstrated that En2 -/- mice are less com-

plex than WT ones, for both males and females. No significant differences

were found between males and females [mean ± SD: WT males: 0.66 ±
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Figure 5.9: 2-way ANOVA for repeated measures with multiple comparison test shows

statistically significant differences in the mean values of the Surface-Area-to-Volume

ratio between WT and En2 -/- mice for both males and females. Error bars in graphs

indicate SD. (p<0.001)

0.14; En2-/- males: 0.49 ± 0.05; WT females: 0.54 ± 0.03; En2-/- fe-

males: 0.40 ± 0.05], as shown in Figure 5.9.

Branching analysis As already detailed in Chapter 4, using N3MO,

two different parameters can be extracted to evaluate neuron branching,

which could be considered a benchmark of neuron arborization: i) Num-

ber of Branches and ii) Schoenen Coefficient. A 2-way ANOVA followed

by multiple comparison test shows that the number of branches decreases

significantly in En2-/- mice, in both the gender (Figure 5.10) (A)). On

the other hand, no statistically relevant differences were obtained between

males and females in both the genotypes considered [mean ± SD: WT

males: 68.47 ± 16.39; En2-/- males: 19.14 ± 8.72; WT females: 57.40

± 22.32; En2-/- females: 21.53 ± 4.60]. Results agree with those ob-

tained for the Schoenen Coefficient, detailed in the previous paragraph,

confirming the results of Garcia et al. (2014) [207].
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Figure 5.10: 2-way ANOVA for repeated measures with multiple comparison test

shows statistically significant differences in the mean values of the Number of

Branches between WT and En2 -/- mice for both males and females. Error bars in

graphs indicate SD. (p<0.001)

Fractal Dimension For the fractal analysis, the 3D box-counting method

was applied (see Chapter 4 for details). The local slope of the curve ver-

sus the box size confirm the presence of fractal properties in a particular

range of box size, and the fractal dimension was evaluated in this range.

The range of the box size in which the slope of curve is constant is smaller

for L7GFP/En2 -/- mice.

As shown in Figure 5.11, the fractal dimension of PCs is significantly

smaller for L7GFP/En2 -/- mice, for both sexes; no relevant differences

was found between males and females, regardless the genotype [mean ±
SD: WT males: 1.40 ± 0.31; En2-/- males: 0.95 ± 0.23; WT females:

1.42 ± 0.21; En2-/- females: 1.14 ± 0.09].

Radial Extension Figure 5.12 shows the mean values of the Radial

Extension of PCs from all the groups analysed.

2-way ANOVA with repeated measures followed by Sidak’s multiple com-
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Figure 5.11: 2-way ANOVA for repeated measures with multiple comparison test

shows statistically significant differences in the mean values of the Fractal Dimension,

measured using the box-counting method, between WT and En2 -/- mice for both

males and females. Error bars in graphs indicate SD. (p<0.001)

parison test revealed that the radial extension in PCs from female mice is

significantly higher than in males, for both genotypes considered. More-

over, there is a statistical relevant decrease in radial extension in PCs

from En2-/- male mice with respect to the control ones [mean (µm) ±
SD: WT males: 170.14 ± 24.38; En2-/- males: 122.22 ± 32.13; WT

females: 233.03 ± 40.05; En2-/- females: 236.84 ± 56.76].

As regards the cone angle, no significant statistical differences were

observed between all the groups analysed: in fact, the cone angle is always

narrow and about 50◦, indicating a preferential direction of extension (as

expected for PCs, which are highly oriented in the sagittal plane [208]).
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Figure 5.12: 2-way ANOVA for repeated measures with multiple comparison test

shows statistically significant differences in the mean values of the Radial Extension

between WT and En2 -/- mice for both males and females. Error bars in graphs

indicate SD. (p<0.001)

5.3.3 Discussion

The Engrailed2 knock-out murine model is considered one of the most

promising model of autism by the neuroscience community [168], since it

shows most of the the anatomical, functional and behavioural character-

istics of ASDs in humans. To date, there are no studies in the literature

which report a quantitative evaluation of the microstructure abnormali-

ties of the En2 gene.

In this light, the work-flow designed for this PhD thesis was applied to

the study of the morphological alterations of Purkinje cells from two dif-

ferent genotypes in their arrangement in the cerebellum. In particular,

L7GFP/En2 -/- transgenic mice, homozygote for En2 gene, that displays

a phenotype reminescent of the cerebellar anatomical abnormalities re-

ported in autism, were compared with L7GFP/WT mice. In addition,
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since there is an unbalanced of Autism Spectrum Disorders diagnosed

between males and females, both sexed mice were considered. In par-

ticular, 1 mm -thick cerebellum slices for the four groups analysed were

optimally clarified and stacks were acquired with a Nikon confocal mi-

croscope. Datasets were then processed and analysed using N3MO, pur-

posely developed to trace single neurons and extract morphological dif-

ferences between the four groups.

The results show that most of the morphological features extracted with

N3MO, summarized in Table 5.1, can be attributed only to gender or to

the En2 gene. For this reason, the variables were classified in gender-

related and genotype-related (see Table 5.1): while the former variables

are more linked to differences in neuron size (i.e. soma volume and ra-

dial extension), the latter ones refer more to the neuron arborization

complexity (i.e. number of branches, Schoenen coefficient, fractality and

Surface-to-Volume ratio).

As regards gender, PCs from female mice show smaller somata and higher

radial extension than male ones. The results are consistent with the

findings in Tobet’s review, which reported changes in neuron dimensions

between males and females in different brain regions [209]. As regards

the genotype-related variables, all of them show a decrease of neuron ar-

borization complexity (i.e. reduced neurite branching and fractality) in

En2 +/- mice respect to the WT ones, independent of mouse gender.
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Table 5.1: Comparison of features extracted from PCs for the four groups analysed, classified in gender- and genotype

related.

Morphological Variables Gender-Based Genotype-based

Plot of Log-Log

or

Semi-Log

method

Log-Log method is better for all the group analysed

Number of

intersections

vs.

sphere radius

-

Gaussian distribution

for En2+/- mice;

Exponential distribution

for WT mice.

Maximum number

of intersections
-

- Lower for PCs

from En2 +/- mice

then from WT ones

- Maximum at intermediate

r for WT mice

- Maximum at small

r for the En2 +/- ones1
2
1
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Morphological Variables Gender-Based Genotype-based

Schoenen

Coefficient
-

PCs from En2 +/- mice

are less arborized

then WT ones

Mimimum

Pathway
- -

Regression

Coefficient

Number of intersections

decreases faster in females

Number of intersections

decreases faster in En2 +/-.

Fractality -

PCs from En2 +/- mice

are less fractal then

WT ones

Number of

Branches
-

PCs from En2 +/- mice

are less arborized then

WT ones

Radial

Extension

PCs from female mice

are more elongated than

male ones

Only En2 +/- male mice

are less elongated than

WT males

Cone Angle - -

1
2
2
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Morphological Variables Gender-Based Genotype-based

Surface-to-Volume

ratio
-

PCs from En2 +/- mice

are less complex then

WT ones

Soma Volume

PCs somata from female

mice are smaller than

those from males.

-

1
2
3
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5.4 Conclusion

It is well known that at the micro-structural level, neuronal morphol-

ogy within the brain is important for higher level brain function [6, 96].

Therefore, morphological features (i.e. neuron shape, size and dendritic

branching) can elucidate the functional role of different neurons. More-

over, morphometric analyses can be crucial for the study of alterations

in the dendritic/axonal field of neurons or neuronal morphology corre-

lates to diseases [108]. On the other hand, according to Dr Judith Gould,

Consultant Clinical Psychologist and Director of The Lorna Wing Centre

for Autism, “Autism is more diverse than originally thought, with new

ideas being put forward every day. In fact, it’s a case of “the more we

know, the less we know”, particularly in how gender affects individuals

with autism”.

The speech highlights the unbalanced incidence of the disorder between

males and females as a crucial step to better understand the ASDs.

In this context, the aim of this Chapter was to quantitatively evaluate

PC morphology, both in 2D images and 3D stacks, in order to extract

discriminating features of both gender and autism. Since both the two

murine models of autism and the extraction processing and techniques

differ, we cannot directly compare the results obtained in the two studies

presented. However, the methods used are efficient for the classification

and analysis of neurons. It is clear that in order to obtain faithful in-

formation about neuron morphology within the context of their native

arrangement within the brain, the three-dimensional evaluation is more

physiologically relevant than the two-dimensional study. On the other

hand, a comparative study of neurons using standard 2D imaging can

represent a starting point for establishing proofs and concepts.

As regards the En2 murine model of autism, although the number of

samples analysed was limited, PCs from this model of autism are likely
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to be less arborized than the control mice. This result is confirmed by

different morphological parameters extracted with N3MO (i.e. fractal di-

mension, Schoenen index, number of branches). Moreover, in a specific

genotype, males and females present the same arborization complexity.

This independence from gender is confirmed also by a behavioural study

conducted on Engrailed2 mice, where no sex differences in any of the

behavioral abnormalities were detected [210]. These preliminary findings

seem to support the ”wrong diagnosis criteria” theory. Just as for men

and boys, diagnosis is the starting point for providing appropriate sup-

port for women and girls on the autism spectrum. A timely diagnosis

can avoid many of the difficulties they experience throughout their lives.

Further studies on the 3D morphology of PCs in animal models of autism

could help to better understand neuronal architecture, to improve the

knowledge on the genetic and structural basis of autism and its male

bias, to define new diagnostic strategies and could also lead to the devel-

opment of new therapeutic approaches.

As regard the gender-related differences, PCs from female mice seem to be

characterized by smaller somata and higher radial extension than males

ones. These findings have implications for developmental studies that

could directly test hypotheses about mechanisms relating sex steroid hor-

mones to sexual dimorphisms.
1

1Some of the results presented in this chapter have been published in :

Magliaro et al., ”The number of Purkinje neurons and their topology in the cerebellar

vermis of normal and reln haplodeficient mouse” , Annals of Anatomy- Anatomischer

Anzeiger (2016), doi:10.1016/j.aanat.2016.02.009, in press.
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Chapter 6
A starting point for the study of

claustral organization

”We think that a more appropriate analogy for the claustrum

is that of a conductor coordinating a group of players in the orchestra,

the various cortical regions. Without the conductor,

the players can still play but they fall increasingly

out of synchrony with each other.

The result is a cacophony of sounds.”

(F. C. Crick, C. Koch)

Abstract

The structure and function of the claustrum are still a matter of intense

debate and investigation, since a characterization of the distribution of

neurons in their three-dimensional context within this nucleus is still lack-

ing. In fact, few studies about claustral neurons have been performed. To

this end, in this Chapter a preliminary study was performed on 2D his-

tological micrographs of dog claustrum, to classify different neuron types

with respect to their soma shape. Since the results obtained demonstrate

that soma shape can be used to distinguish between different neuron
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types, but the classification cannot be fully exhaustive because neuron

arborization cannot be taken into account, some elements of the work-

flow designed during this PhD thesis were applied to human claustrum

samples. In particular, 500 µm-thick slices were clarified using the proce-

dures and the optimal parameters identified in Chapter 2 for un-perfused

and un-labelled tissues. Then, slices were immuno-labelled and three-

dimensional datasets were acquired using a confocal microscope. These

volumetric datasets may represent a starting point to pursue the knowl-

edge of structure-function relationship in this enigmatic nucleus.

6.1 What is the function of the claustrum?

The claustrum is a sub-cortical structure located in the baso-lateral te-

lencephalon, one on each side of the head, of all the mammalian brains

[211]. It has been a subject of inquiry since its first identification, by A.

Kappers (1936), as a thin strip of grey matter enclosed between stretches

of neighbouring fiber bundles. Though much has been learned since this

time through the application of modern neuroscience techniques, several

problems still persist. In fact, due to its modest size, intricate shape

and deep internal location, it is difficult to study using many modern

techniques that need a certain roominess of tissue to their application

[212]. For these limits, despite the fact that its structure, physiology,

connections and neuro-chemistry have been studied in multiple species,

its function in humans is still matter of debate [211].

The function of the claustrum has proven to be hard to unlock for differ-

ent reasons. In particular, the shape of the nucleus has made complete

and discrete claustrum lesions impossible to achieve using conventional

chemical or mechanical means. Clinical pathological correlation studies

have yielded extraordinary information about the function of many brain

sites, but no convincing selective claustral lesions have been reported in

128



Claustral organization

humans following cerebral haemorrhage or ischemia. Without the ability

to generate reproducible, discrete lesions of the claustrum in animals, the

functional roles of this nucleus remain a mystery. In this light, despite

waves of interest in the claustrum over the century, two main controversial

hypotheses on its functional attributes exist [213]:

1. Multi-sensory integration: based on bidirectional cortical con-

nectivity, the claustrum has been proposed to function as a multi-

sensory integrator, serving to bind information from disparate sen-

sory cortices. Two different theories for multi-sensory integration

have been proposed. The first theory states that multi-sensory inte-

gration occurs in polymodal sites that only process specific sensory

combinations. Because the claustrum appears to have multisensory-

responsive cells, the claustrum may serve to bind some types of sen-

sory modalities [214]. The second theory, proposed by Ettlinger and

Wilson (1990) [215], states that no one structure in brain executes

the processes required for cross-modal performance. Instead, only

a sub-cortical relay nucleus is required through which different sen-

sory cortices can access each other in order to associate modalities.

This sub-cortical relay nucleus was proposed to be the claustrum.

In this way, the claustrum theoretically synchronizes cortical areas

to accomplish the feat of crossing modalities. They did not state,

however, how this may be accomplished or where the binding of

multi-modal information would occur.

Despite in vivo functional imaging studies exploring multi-sensory

integration largely support the second theory, the imaging studies

that do support a role of the claustrum in multi-sensory integra-

tion do not address the question of where polymodal information is

being bound exactly, and suffer from the inability to discriminate

claustral vs. insular activation.
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2. Crick and Koch’s hypothesis: Crick and Koch [46] hypothe-

sized that the claustrum is where sensory information is bound,

functioning as a generator of the unified perception of a multitude

of sensory stimuli in one’s environment (i.e. conscious percepts).

That is, putting individual stimuli together, one is able to recog-

nize an object as a whole rather than experiencing each stimulus as

a separate sensory entity. Crick and Koch argued that since almost

all theories attempting to explain the neural correlate of such an

experience (consciousness) require a need to rapidly integrate and

bind information in neurons that are situated across distinct cortical

and thalamic regions, that the claustrum may be perfectly suited

to subserve such a function due to its unique feature of reciprocal

connectivity with the cortex, its central positioning in the brain and

its connections with the thalamus. Crick and Koch proposed that

the binding of multi-sensory information in the claustrum underlies

the unification of sensory experiences. This hypothesis has sup-

ported by Smythies et al. (2015) studies [216], who proposed that

the claustrum functions as a detector, modulator and integrator

of synchronous oscillations for the purpose of subserving cognitive

processes such as consciousness.

Though the claustrum does appear to have many of the attributes

required of a sensory binding site, some problems exist with this

concept. Firstly, a well-recognized physiological trait of claustral

cells consistently found across functional studies is their quiescent

nature. The spontaneous firing rate is quite low: if the claustrum

is binding sensory stimuli for the purpose of generating conscious

percepts, one would predict that the claustrum would display near

constant activation during awake, behaving conditions. In addition,

the Crick and Koch model places the high computational load re-
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quirement of binding in a structure that is not layered, or at least

not organized.

Other “minor” hypotheses presented in the literature propose a role

for the claustrum in saliency detection [47], active sensing [217] and segre-

gation of attention [218, 213]. Interestingly, all these hypotheses revolve

around a common theme, that of enabling the formation of an accurate

and cohesive representation of the world around us.

6.1.1 Neuron cell types in mammalian claustrum

A striking feature of the claustrum is the few neuronal types it has com-

pared with those of the cerebral cortex. Moreover, while the latter is

clearly laminated, the former is not [46]. There is general agreement that

the most common cell type, called type I, is a large cell whose dendrites

are covered by spines [48, 219]. The axons of these type I cells, after

throwing off local collaterals, often leave the claustrum either medially

or laterally. They are the principal cells of the claustrum in that they

can both receive an input from the cortex and project back. Their shape

varies considerably, the soma of some being pyramidal, some fusiform

and others with more spherical somata. All authors agree that they can-

not find discontinuous sub-groups of type I neurons and have therefore

lumped them together under one heading. The dendrites of these cells do

not have a preferred orientation (unlike, for example, the apical dendrites

of cortical pyramidal cells).

Claustral interneurons Other claustral neurons lack spines and so

have largely smooth dendrites. There appear to be two types of aspiny

neurons, one with large and the other with small cell bodies. The latter

are fairly compact cells, whereas the dendrites and axons of the large type

are more extensive. The axon of these cells does not leave the claustrum,
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so they are both classed as interneurons.

The claustral interneurons, as in the cortex [220], seem to play a crucial

role in the inhibitory circuits providing a substrate for local information

processing [46]. Calcium-binding proteins (i.e. calretinin, calbindin and

parvalbumin) are considered markers of three non-ovarlapping interneu-

ronal populations [220]. Moreover, a recent study indicates that cortical

interneurons can also be classified by their expression of parvalbumin,

somatostatin, and vasointestinal peptide [221].

In particular, parvalbumin is a marker of a specific class of interneurons,

the category of fast-spiking neurons, involved in the generation of gamma

oscillations which have an important role in the transmission of informa-

tion between cortical and hippocampal areas [222, 223, 224, 225, 226,

227, 228, 229, 230, 231]. The presence of parvalbumin-immunoreactive

interneurons, with gap junctions along their dendrites, was described in

the cerebral cortex sopra-granular layer [232]. Moreover, many immuno-

histochemical studies have shown the presence of parvalbumin in the

claustrum of different animals [233, 234, 235, 236, 237], and a recent

detailed study also describes the distribution of parvalbumin in the hu-

man claustrum [238].

In order to characterize claustrum micro-structure, this Chapter aims to

analyse the morphology of parvalbumin -immunoreactive neurons. This

type of neurons lends themselves to the analysis for two main reasons:

firstly, interneurons have an important role in integration of the informa-

tion,that seems to be one of candidate function of the claustrum. On the

other hand, their neurite do not leave the claustrum, so it is possible to

image them entirely.

In this Chapter, I firstly evaluate parvalbumin-immunoreactive neurons in

dog claustrum thin slices, using standard histological and image process-
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ing techniques. Since 2D images does not allow the fully reconstruction

of neuron arborization, some elements of the work-flow designed in this

PhD thesis were then applied to human claustrum thick slices.

6.2 Parvalbumin-immunoreactive neuron classi-

fication in dog claustrum histological sec-

tions: a proof of concept

6.2.1 Materials and Methods

Animal harvesting and tissue processing. Claustrum samples were

obtained from necropsy of four dogs referred to the Department of Vet-

erinary Science of the University of Pisa for post-mortem examination.

Central Nervous System abnormalities were excluded by histopathologi-

cal examination.

The brains were cut in coronal slabs (0.5 mm thick), fixed by immer-

sion in buffered formalin and processed for paraffin embedding. Each

slab, containing both cerebral emispheres wew cut in half following the

sagittal medial plane and embedded in serial paraffin blocks. To rec-

ognize claustra, transverse sections cut with a microtome (5 µm) from

the left hemisphere were stained with Luxol Fast Blue (for myelin) while

sections from the right hemisphere were used for Nissl staining (Figure

6.1(B)). Immunohistochemistry was then performed on serial sections us-

ing a mouse monoclonal anti-parvalbumin antibody (1:5000, cod. no. 235,

lot. no.10-11 F, Swant, Bellinzona, Switzerland). inobenzidine (DAB)

(sk-4105, Vector, Burlingame, CA) solution (Figure 6.1(A)-(C)-(D)).

Image acquisition and processing and statistical analysis. As

neurons have a three-dimensional structure, it is not possible to track all

the neurites constituting a neuron on a single histological slice. For this
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Figure 6.1: Microphotographs of immunohistochemical and histological staining of

coronal brain sections. (A) Low magnification image (left side) of the

anti-parvalbumin antibody distribution in the left hemisphere including the claustrum;

schematic draw (right side) with charting representing the distribution of the PV

labeled somata (red dots) in the claustrum. Scalebar: 1 mm. (B) Low magnification

image of a Luxol Fast Blue (left side) and Nissl (right side) stained sections.

Scalebar: 1 mm (C) Detail of A and (D) detail of C showing anti-parvalbumin

labelled neurons in the ventral claustrum. Scale bars: C = 10 mm and D = 20 mm.
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reason, rather than tracing and quantifying neurites, we quantified shape

parameters of 200 parvalbumin stained somata for each of the 4 dogs, in

order to classify neurons according to soma shape and size.

In this optics, images were acquired with the light microscope using a 25x

objective and processed with the Nikon NIS-Elements BR-4.13.00 soft-

ware, which allows the measurement of different morphological features.

In particular, the parameters extracted are soma area and perimeter as

benchmarks of size, and circularity as shape descriptor.

In order to classify neuron somata, the dataset obtained was analysed us-

ing the k-means clustering algorithm [239]. This technique enables data

clusters minimizing the sum of distances from each object to its cluster

centroid.

To assess the goodness of the clustering, we verified that the sets of data

obtained were significantly different through a t-test analysis, setting sig-

nificance at p < 0.05 and high significance at p > 0.01.

6.2.2 Results

Image analysis enables the identification of the main morphological fea-

tures of neuron somata. A k-means clustering was performed on the mor-

phometric dataset so as to group neurons on the basis of the measured

variables. To identify the right number of clusters and establish how well-

separated the groups are, we measure how close each point in one cluster

is to points in the other clusters through the so-called silhouette value. In

our case, two clusters were identified. In fact, the silhouette plot in Figure

6.2, which represents each neuron as a pixel-thick horizontal line with a

length corresponding to its silhouette value, shows that most points in

both clusters have a large silhouette value, greater than 0.8, indicating

that those points are well-separated from neighbouring clusters.

The t-test analysis confirms that the two groups are characterized by
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a highly significantly different soma radius (p = 1.58 ∗ 10−5) and a

similar circularity (p = 0.987). In fact only few very small neuron so-

mata are badly matched to the others belonging to the same cluster

(silhouettevalue < 0). On the basis of the soma features extracted, the

k-means analysis allows the classification of neurons by soma radius: in

one group the soma are big (11.42± 1.99µm), while in the other they are

small (6.33± 1.08µm). No difference was observed in soma shape, indeed

the circularity value for cluster 1 was 0.70 ± 0.14 while for cluster 2 was

0.75 ± 0.12.

Figure 6.2: Silhouette plot showing how soma size and shape form 2 unique and

tightly grouped clusters with very few outliers. Within each cluster, the high silhouette

values suggest that the objects are well-matched
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6.2.3 Discussion

In this study, a classification of neurons in dog claustrum samples accord-

ing to their soma size and shape was performed. In particular, the vari-

ability of parvalbumin-immunoreactive somata shape is consistent with

that already reported in other species such as: mouse [233], rat [240],

rabbit [234], cat [235, 241], monkey [242], chimpanzee [237] and human

[237, 238]. In particular, the shapes of parvalbumin-immunoreactive so-

mata in the dog are analogous to the findings reported in the cat claus-

trum [235] which, among the above mentioned species, is phylogenetically

closer to the dog.

To classify somata on the basis of their shape and size, statistical meth-

ods were used to cluster the data acquired from image analysis. This

method is more objective than the commonly used method of arbitrarily

defining a series of radius limits to define cell size. The main morphologi-

cal features of the immuno-stained somata regarding both size and shape

are summarized in Figure 6.2. k-Means clustering analysis identified two

well-separated groups. A recent study in the human claustrum classified

parvalbumin-immunoreactive neurons in spiny and aspiny each further

arbitrarily divided according to the soma radius in large, medium and

small [238]. Similar findings on soma radius have been described in the

cat claustrum [235, 238]. In particular, the clusters we found according

to the radius were in line with the categories of small (13 to 15 µm in

diameter) and medium (15 to 20 µm up to 25 µm in diameter) somata

observed by [241]. LeVay and Sherk (1981) using Golgi preparations de-

scribed in the cat visual claustrum large spiny (15 to 29 µm in diameter)

and small aspiny (10 to 15 µm in diameter) neurons.

Although it is difficult to compare an immunohistochemical study to a

Golgi study, it is possible to note some similar aspects. The radius values

of the two clusters we found was in agreement with those reported in the
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cat visual claustrum [219]. Moreover, these authors described the large

spiny as the most frequent type.

Although this study on parvalbumin-immunoreactive neurons may

help in the understanding the physiology of claustrum, further data are

needed to better characterize the populations of interneurons of the claus-

trum as well as the circuitry it contributes to. In particular, information

about the three-dimensional arrangement of neuron arborization within

the claustrum is needed to better classify neurons on the basis of their

shape. In this light, some elements of the work-flow designed in this PhD

thesis was adopted to clarify human claustrum thick slices, as a starting

point to unravel the micro-circuitry of the human claustrum.

6.3 A starting point to unravel the mystery of

the human claustrum

6.3.1 Materials and Methods

Tissue harvesting and treatment Brain samples (i.e. both left and

right claustra) were taken from a male patient, who did not suffered from

any type of neurological or psychiatric illness. The samples consisted

of approximately 5 cm-thick blocks which included both the insular and

temporal subunits of the claustrum, surrounded by portions of the adjoin-

ing structures (extreme and external capsules, insular cortex and puta-

men). The samples were identified by qualified pathologists at the ”Santa

Chiara” Hospital of the University of Pisa. The brain was removed for

routine diagnostic purposes, following a procedure approved by the Local

Ethics Committee.

The blocks were optimally clarified as detailed in Chapter 2. In partic-

ular, the blocks were washed once a day with 20 mL of PBS enriched

138



Claustral organization

with nadroparin calcium. Then, samples were put in a falcon with 35 mL

of hydrogel for 9 days, with fresh solution every three days to allow hy-

drogel penetration inside the tissue. After hydrogel polimerization, n=20

500 µm-thick slices per claustrum were obtained using a vibratome. As

demonstrated in Chapter 2, in order to reach the best trade-off between

protein loss and tissue clarification, slices were immersed in 10mL clearing

solution for 9 days, with solution refreshed every 3 days.

Immunostaining procedures and confocal acquisition After the

clarification step, claustrum slices were immersed in PBS 1X for 3 days,

in order to remove the clearing solution residuals, gently shaking and

refreshing the solution every 12 hours. Subsequently, n=10 claustrum

samples were incubated with 10% of blocking solution, constituted by

normal donkey serum with 0.1% of Triton-x, for 1 day at 37◦C. Then,

n=10 slices were incubated with mouse anti-calretinin monoclonal pri-

mary antibody (ABcam, Cambridge, UK) at 1:1000 dilution with 2% of

normal donkey serum and 0.05% of Triton-x for 5 days at 37◦C. Since

calretinin is also a marker of small vessel endothelium, and the brain is

highly vascularized, this was identified as a good benchmark assessing

the antibody penetration into the sample. Primary antibody was washed

off with PBS (2 x 24h at 37◦C). Alexa Fluor 568 donkey anti-mouse sec-

ondary antibody was applied at a concentration of 1:500 and incubated

at 37◦ for 2 days.

The remaining slices were incubated with 10% of blocking solution, con-

stituted by normal goat serum with 0.1% of Triton-x, for 1 day at 37◦C.

Then, the slices were incubated with mouse anti-parvalbumin monoclonal

primary antibody (ABcam, Cambridge, UK) at 1:1000 dilution with 2%

of normal goat serum and 0.05% of Triton-x for 5 days at 37◦C. Primary

antibody was washed off with PBS (2 x 24h at 37◦C). Alexa Fluor 488

anti-mouse secondary antibody was applied at a concentration of 1:500
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Table 6.1: Confocal acquisition settings for 500µm thick claustrum slices,

immuno-stained with anti-calretinin and anti-parvalbumin antibodies.

Parameters [Units]

Values for slices

immuno-stained with

anti-calretinin

Values for slices

immuno-stained with

anti-parvalbumin

Magnitude 10 x 20 x

Grid [pixel x pixel] 512 x 512 512 x 512

Pixel size [µm/pixel] 2.46 1.24

Laser Power [pW] 15.1 21.9

Emission Wavelength [nm] 561 488

z-step [µm] 5 2.5

and incubated at 37◦ for 2 days. Tissue was finally washed with PBS (2

x 24h at 37◦C) to remove secondary antibody excess.

For each clarified slice, m=3 confocal stacks were acquired with a Nikon

A1 confocal microscope. The acquisition settings for both the immuno-

staining are summarised in Table 6.1.

During acquisition, no limits were imposed to the depth of the datasets,

thus the height of different Z-Stacks is variable for each acquisition and

dependent on biological variability (i.e. the different spatial distribution

of the neurons in the claustrum sections).

Neuron tracing The SmRG algorithm was used to trace single in-

terneurons from the confocal slices immuno-stained with the anti-parvalbumin

antibody. The range of radii (i.e. the first step of the SmRG algorithm,

to find the soma and start the Smart Region Growing procedures using

the soma center as seed) was obtained manually from the 2D images with

ImageJ [1]. In particular, the image processing work-flow explained in
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the Section 5.2.1 for the Feret’s diameter evaluation was performed.

As only one human sample was harvested, statistically relevant analy-

ses about interneuron classification on the basis of their shape cannot be

made. For this reason, the last step of the work-flow designed during

this PhD thesis (i.e. the morphometric analysis using N3MO) was not

performed.

6.3.2 Results

An example of confocal datasets representing calretinin positive compo-

nents is shown in Figure 6.3. Although the whole thickness of the slices

cannot be acquired with a confocal microscope, the heights of the volumes

acquired are about 200 µm, which is higher than the penetration depth

usually obtained with confocal microscopy techniques [21].

Figure 6.3: Volume view of a confocal stack representing calretinin positive

components (Em/Ex: 568/603 pixel-to micron ratio size: 2.46 µm , z-resolution: 5

µm). Volume dimensions (w*l*h): 1259*1259*196 µm.
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As regards the parvalbumin positive interneurons, Figure 6.4 shows

two examples of parvalbumin-immunoreactive interneurons traced with

the SmRG algorithm.
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Figure 6.4: Two examples of parvalbumin-immunoreactive interneuron traced with the

SmRG algorithm.
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6.3.3 Discussion

This study aimed to proof the feasibility of applying the work-flow de-

signed in this thesis on autoptic human brain samples. As discussed in

Chapter 2, the main roadblocks for this study are linked to the impos-

sibility to perfuse an entire human brain, to remove blood and to allow

the hydrogel penetration through the samples, and the need of immuno-

labelling thick clarified brain slices. In fact, as demonstrated in Chapter

2, the clarification efficacy is lower than for slices from perfused animals.

Moreover, since immuno-labelling is performed through passive diffusion,

the process depends strongly on antibody dimension (according to the

Stoke-Einstein equation). A further obstacle is the difficulty in obtaining

autoptic samples for clarification.

Results show that the passive CLARITY technique together with the im-

age processing algorithms implemented during this thesis could be useful

tools for the study of claustral micro-architecture. However, different

parts of the work-flow customized for un-perfusable tissues have to be

improved:

1. Hydrogel diffusion through the tissue: as discussed in Chapter

2, the incubation timing for the hydrogel embedding used during

this PhD thesis is that reported in Liu et al. [59]. There are no

studies assessing the fully penetration of the hydrogel inside the

brain.

2. Immuno-labelling protocol: although CLARITY is compati-

ble with immuno-fluorescence labelling procedures, in the literature

there are no protocols customized for staining clarified thick slices.

Future developments could include the measure of the diffusion co-

efficient of an antibody through a clarified brain sections, to calcu-

late the characteristic time for diffusion, so as to be sure that the
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immuno-staining involved the whole slice. Moreover, an immuno-

labelling protocol optimization could be important to increase both

Signal-to-Noise and Contrast-to-noise ratio.

3. Confocal acquisition settings: as discussed in Chapter 3, a stan-

dardization of the confocal acquisition may help a better neuron re-

construction with the SmRG algorithm developed during this thesis,

since the neuron discrimination is pixel intensity-based.

In addition, future developments could include the increasing of the

number of samples, in order to obtain statistically relevant results on neu-

ron classification on the basis of their native shape inside the claustrum.

6.4 Conclusion

There are many reasons why investigators have decided to expend their

energy on studying a particular nucleus in the brain. Sometimes the

choice of structures has little to do with new insights that may be gleaned

but is more attributable to the tractability of the site to experimental ma-

nipulation. However, some sites remain relatively obscure because their

structure almost seems designed to impede research. The claustrum be-

longs to the latter group. Over the past decade there has been a resur-

gence in interest in the claustrum. This renewed attention is in large

part attributable to a paper by Crick and Koch [243], which advanced

the hypothesis that the claustrum plays a central role in binding and

consciousness. After this review, a wealth of data has amassed on this

nucleus and a huge number of papers has been published over the years

(see Figure 6.5).

However, much of this data is disparate and contentious; conflicting

views regarding the claustrum’s structural definition and possible func-

tion abound, so its role in the brain is still enigmatic. Since it is crucial
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Figure 6.5: Number of publications by year on the claustrum (according to PUBMED

http: // www. ncbi. nlm. nih. gov/ pubmed )

to understand the topological and morphological organization of the nu-

cleus for unravelling claustrum function, this Chapter would be a starting

point to characterize claustrum micro-structure. In particular, the mor-

phology of parvalbumin-immunoreactive neurons was firstly analysed in

dog claustrum thin slices, using standard histological and imaging tech-

niques, to demonstrate the possibility to classify neurons on the basis of

their shape. Since 2D images do not allow the reconstruction of the neu-

rites, some elements of the work-flow designed in this PhD thesis were

applied to autoptic human claustrum thick slices. Despite the gaps to be

filled regarding immuno-staining procedures and datasets acquisitions,

the method presented seem to be more objective than those commonly

used to classify neurons, which are prone to human bias since they just

use visual inspection. For this reason, the method presented in this thesis

may be useful to collect further data to quantitatively characterize the

population of neurons of the claustrum.

146

http://www.ncbi.nlm.nih.gov/pubmed


Claustral organization

1

1Some of the results presented in this chapter have been published in :

Pirone et al., ”Parvalbumin expression in the claustrum of the adult dog. An immuno-

histochemical and topographical study with comparative notes on the structure of the

nucleus” , Journal of Chemical Neuroanatomy (2015), doi:10.1016/j.aanat.2016.02.009
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Conclusions

The aim of my thesis was to develop an innovative and rigorous work-flow

for the quantitative analysis of brain micro-architecture, that integrates

optimization of delipidation protocols and imaging algorithms to trace

single neurons and to extract morphological parameters of interest from

confocal datasets. Since it is well known that neuronal morphology at

the micro-structural level is important for higher level brain function, the

designed work-flow could be relevant for the study of diseases correlated

to neuronal abnormalities, as well as the structure-function relationship

in dendritic trees.

The work-flow operates in three main steps: i) CLARITY protocol op-

timization for thick brain slices, ii) implementation of a Smart Region

Growing algorithm to trace single neurons from clarified slices and iii)

development of a tool, N3MO, for the automatic extraction of morpholog-

ical variables characterizing neuron shape and complexity in their native

arrangement within the brain.

As regards the first step, it was demonstrated in this thesis that the trade-

off between tissue transparency and the presence of molecules of interest

to imaging could be considered a good index of clarification efficacy. For

a given clearing cocktail, the former increases with clearing time, while

the latter are inevitably lost due to a shift in equilibrium between tissue

bound and unbound moieties or protein degradation.
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After identifying the best clarification time, an innovative method for

tracing neuron structures in confocal datasets from clarified slices was

developed. Since the SmRG approach is based on local features of the

image intensity value histogram to distinguish the signal (i.e. neurons)

from the background, the algorithm is able to satisfactorily trace neu-

rons in confocal microscopy images. Preliminary results showed that the

SmRG algorithm can isolate single neurons with their characteristic struc-

ture.

The tracing algorithm was then integrated in N3MO, an open-source tool

implemented during this PhD thesis, which analyses three-dimensional

morphology of neurons within the brain. It consists of a set of computa-

tion algorithms written in Matlab and implemented in a GUI framework,

in which it is easy to trace neurons, extract morphological features of

interest and access the data to have a global view of the results. To test

the performance of the work-flow, two cases studies were analysed.

Firstly, the sexual dimorphism in animal models of autism (i.e. REELER

and Engrailed2 mouse strains) was investigated. In particular, a quanti-

tative characterization of Purkinje cell morphology within the cerebellar

cortex was performed, in order to extract discriminating features of both

gender and autism. As a starting point, standard protocols for tissue

treatment and imaging were used to assess the feasibility of the study.

The results suggested that there is a more chaotic topological organiza-

tion of Purkinje cells within the cerebellum in autistic RELN+/- male

individuals. However, the 2D investigation may be flowed because it can-

not faithfully represent neuron morphology. For this reason, the work-

flow designed in this PhD thesis was applied to a more promising model of

autism, the Engrailed2 mouse. Although the number of samples analysed

was limited, the data demonstrated that PCs from this model of autism



were likely to be less arborized than the control mice. Moreover, within a

specific genotype, males and females present the same arborization com-

plexity. Further studies on the 3D morphology of PCs in animal models

of autism could help to better understand their micro-structure, to im-

prove the knowledge of autism and its presumed male bias, to define new

diagnostic strategies as well as to develop new therapeutic approaches.

As regards the gender difference, PCs from female individuals were char-

acterized by smaller somata and higher radial extension than male ones.

These findings could have implications for developmental studies that

could directly test hypotheses about mechanisms relating sex steroid hor-

mones to sexual dimorphisms.

Some of the elements of the work-flow were also applied to character-

ize human claustrum micro-structure: understanding the topological ar-

rangement of the neurons, as well as classifying the neurons on the ba-

sis of their shape, could be crucial for unravelling the function of this

enigmatic nucleus. I focused the study on the evaluation of parvalbumin-

immunoreactive interneurons, since they seems to play a crucial role in

the inhibitory circuits providing a substrate for local information process-

ing. After a proof of concept, demonstrating that it is possible to classify

interneurons in thin slices of dog claustrum on the basis of soma shape

and size, human thick sections were clarified and immuno-stained to fully

evaluate their morphology. For this thesis only an autoptic sample was

available, so the number of replies for a statistically relevant study can-

not be guaranteed. In further studies, the number of claustra analysed

will be increased, in order to classify parvalbumin-immuno-reactive neu-

rons. Moreover, the characterization of the human claustrum could also

include the study of glia cells or vessels, in order to fully delineate the

micro-structure of the nucleus.



In conclusion, this thesis constitutes a framework for a rigorous and

quantitative approach to study brain micro-architecture. The approach

described can be used to better understand lifespan alterations in neural

structure in neuro-developmental disorders, as well as to study the brain

structure-function relationship.
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