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Abstract

Cloud Data Centers (DCs) provide computational resources and services for a huge
number of customers. A great variety of applications, such as online storage, scientific
computing, and web services, requires a set of resources located in DCs, which should
be available when needed in a flexible and dynamic way. Therefore, Cloud providers
need to manage DC resources carefully in order to satisfy as many service requests
as possible to increase their own revenues. Indeed, the major challenge in DCs de-
ployment consists in facing the rapidly increasing demand of Cloud services, which
asks for a flexible and dynamic design of the Cloud. Another important aspect that
should be considered is the interaction between the Cloud and the 5G network. The
5G strict requirements can be matched only integrating the Cloud functionality with
the next-generation mobile networks applying the Mobile Edge Computing (MEG)
and Mobile Edge Cloud (MEC) paradigms. This thesis offers a detailed overview on
power-efficient techniques for DC management, and it mainly provides several contri-
butions: first, it tackles the resource allocation problem introducing novel power-aware
placement strategies for tasks and Virtual Machines (VMs) to be placed within the DC;
next, it considers the DC networking part showing several load balancing and resilience
mechanisms for Software Defined DCs; then, it outlines a topology-aware scheduler for
distributed applications using the Message Passing Interface (MPI) library, that is used
to avoid network congestion and minimize the overall communication length among all
the processes. Finally, the thesis focuses on the Internet of Things (IoT) scenario, where
devices produce data that can be consumed by softwares (i.e., tasks or VMs) typically
running in the DC. More in detail, this thesis deals with the communication among IoT
devices using the Time Synchronous Channel Hopping (TSCH), and it presents a cen-
tralized scheduler able to meet both real-time constraints and communication deadlines.
The results show that the developed techniques improve physical resource utilization in
DCs reducing the power costs and increasing the return on investments (RoI): resource
allocation is performed using multi-objective techniques which optimize both power
consumption and DC performance by computing the allocation pattern of thousands
of VMs and tasks in less than ten seconds. Load balancing and resilience techniques
provide robustness and high resource availability for Software Defined DCs while the
MPI scheduler performs the communication between processes avoiding network con-
gestion and exploiting the communication parallelism. Conclusively, it will be shown
that in the IoT scenario results are promising: the implemented scheduler significantly
reduces the number of violated deadlines with respect to other classical schedulers.
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CHAPTER1
Introduction

1.1 Cloud data centers and 5G

In the last few decades, Data Centers (DCs) have rapidly evolved not only in terms of
hardware resources and services, but also from the architectural point of view. Indeed,
many and various services are made available to users, from online storage to a variety
of applications. All these services require resources that are located “somewhere” in
the Cloud. Users do not care where they are, they only care them to be available when
needed matching the desired quality and security levels. To satisfy the rapidly growing
requirements of the users, a new powerful Cloud Computing architecture has emerged,
where users may ask and receive information and services dynamically through the
network, from an abstract resources layer. With the demands of Cloud services contin-
uously increasing, adopting a flexible and dynamic design of the Cloud, able to meet
the complex requests of the modern era of global information, has become a major
challenge for DCs designers.

On the one hand, the types of services offered by Cloud providers are evolving; on
the other, the internet architecture is significantly changing as well. The 5th generation
of mobile networks (5G) is currently one of the main subjects under investigation in
the Information Technology (IT) field. The 5G standard outlines precise and strict
requirements the network has to match in terms of Quality of Service (QoS) and Quality
of Experience (QoE): the official ITU draft [8] defines the minimum requirements for
three usage scenarios for mobile, low-latency, and machine-type communications. For
instance, the minimum peak data rate in a single mobile station will be 20 Gbps in
downlink and 10 Gbps in uplink. As the data rate increases with respect to the 4G
networks, the user-plane latency has to be significantly reduced to 4 ms for the mobile
broadband scenario and to 1 ms for the ultra-reliable and low-latency communications.
Since this very low end-to-end latency requirement cannot be achieved using traditional
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Chapter 1. Introduction

networks, it will also be necessary to provide Cloud capabilities to the access network
shifting the contents to be accessed towards the edges. Mobile edge computing (MEC)
enables this feature integrating DC functionalities in close proximity to the end users
[81].

One of the most relevant issues in Cloud and MEC concerns the internal organi-
zation of the IT resources (e.g. computing and network devices) within the DC since
the under-utilization of the physical resources inside the DC may affect the perfor-
mance, lead to customer dissatisfaction, and increase costs due to the energy and power
wastage. Indeed, the whole set of devices in a DC requires a relevant amount of energy
to work properly, and the optimization of energy and power consumption can reduce
operational costs increasing DC provider revenues.

The Cloud DC resources are managed using an orchestrator which leverages on
the Software Defined Networking (SDN) paradigm. SDN is an enabling architecture
that decouples the control plane from the data plane in network devices. Switches
forward packets according to a set of rules installed by the centralized controller, and
they can be programmed using specific Application Program Interfaces (API). When
an SDN switch processes packets of a network flow, it tries to match one of the rules
already present in the forwarding table. If no rule matches, the switch sends the packet
to the centralized controller; then, the controller analyzes the packet and installs new
rules on the proper switches. The SDN controller enables the implementation of high-
level applications able to monitor and manage physical resources through the APIs it
exposes, and all the strategies discussed in this thesis are designed to be a software
module of the SDN controller.

The 5G standard defines another important use case: the Machine-to-machine (M2M)
communications which are complementary to MEC. An example of M2M is the com-
munication between devices in the Internet of Things (IoT) scenario in which those
devices produce data that are consumed by applications typically executed in the DC.
The interaction between IoT devices is currently under investigation aiming at the opti-
mization of the energy consumed by each device during communications using energy-
efficient Medium Access Controls (MACs) and schedulers.

1.2 Thesis motivation structure

Most of the related works in the literature either neglect power consumption or do not
allocate resources jointly (i.e., all together) focusing only on single resource or allo-
cating them one at a time. This thesis introduce novel allocation strategies which take
into account both the power consumed by computing and network devices, and the
performance of the physical infrastructure. Furthermore, this thesis considers internal
communications within the DC (i.e., the so called East-West communications) evaluat-
ing the network flow allocations and scheduling in terms of reliability and performance.
In the last part, it introduces an energy-efficient communication scheduler in centralized
IoT that is a complementary field in the MEC scenario. Briefly, its main contributions
concern the design of:

• algorithms and multi-objective strategies for power-efficient and task and Virtual
Machine (VM) allocation in DC;
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1.2. Thesis motivation structure

• load balancing and network recovery strategies for network flows in Software De-
fined DCs;

• a congestion-aware flow scheduler for distributed applications;

• centralized scheduling strategies for IoT devices.

The rest of the thesis is structured as follows:

• Chapter 2 introduces the basic concepts related to multi-objective optimization
and heuristics, and the tools that have been adopted.

• Chapter 3 deals with DC describing the multi-objective power-efficient and performance-
aware allocation strategies for tasks and VMs;

• Chapter 4 outlines load balancing techniques and resilience mechanisms for Soft-
ware Defined DC, and it presents a communication scheduler for distributed ap-
plications ;

• Chapter 5 introduces our centralized scheduler for real-time communications among
IoT devices;

• Chapter 6 concludes the thesis.
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CHAPTER2
Background

This chapter introduces some important concepts that will be used throughout the the-
sis. First, we present the SDN paradigm that allows a flexible network management
of both switches and IoT devices. Next, we describe two multi-objective optimization
techniques: Multi-objective Genetic Algorithm (MOGA) that is effective in terms of
execution time and quality of the solutions retrieved, and a very efficient local search
technique called Simulated Annealing (SA). Then, we introduce Message Passing In-
terface (MPI) and collective communications for distributed applications. Finally, we
describe the software tools used to perform our experiments.

2.1 Software Defined Networking

SDN [61] is an emerging, dynamic, and flexible network architecture which decouples
the forwarding plane from the centralized control plane. One of the SDN advantages
relies on the possibility to maintain the network-wide view updated improving the net-
work management and configuration. The intelligence present in SDN is localized in
software-based controllers while switches can be programmed through open interfaces.
The SDN reference model consists of three layers: Infrastructure layer, Control layer,
and Application layer.

Switching devices at the data plane are included in the infrastructure layer and have
two main functions: the collection of network information (that is stored in local mem-
ory and flushed to the centralized controller), and the packet forwarding according to
the received rules. As described above, switches are completely depleted from their
“intelligence” since they are only able to apply received rules. Into the data plane, an
SDN switch first identifies the forwarding rule that matches with the packet; then, it for-
wards the packet to the next hop according to IP or MAC address (as in legacy routers),
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2.1. Software Defined Networking

as well as to TCP/UDP connections, VLAN tags, and other parameters.

The control layer is a bridging layer between infrastructure and application lay-
ers, and it defines two interfaces: the one interacting with the infrastructure layer is
called south-bound interface, and it specifies interfaces to access functions provided by
switching devices possibly including network status report and packet forwarding rules
import. The interface between the control layer and application layer is called north-
bound interface; it provides service access points in various forms, for example API.
Since multiple controllers could coexist for a large administrative network domain, it’s
possible to have another kind of communication at this layer, defining an east-west
communication. SDN controller implements two main functions: network controlling,
including policies imposed by the application layer and packet forwarding rules for the
infrastructure layer and network monitoring, in the format of local and global network
status.

Last layer contains SDN applications designed to fulfill user requirements that are
able to access and control switching devices performing management tasks such as dy-
namic access control, seamless mobility and migration, server load balancing, network
virtualization. Moreover, SDN applications can manipulate the underlying physical
networks using the high level language provided by the control layer. Among all the
possible applications, we are interested on the optimization of computing and network
resources within the DC.

2.1.1 SDN and orchestration

DC providers aim to maximize the Return on Investment (RoI) which requires an ef-
ficient and adaptive utilization of the available resources [27]. Two of the possible
strategies for RoI maximization involve under-utilization avoidance of the computing
and networking resources, and operational costs minimization. When the number of
satisfied end users grows, DC providers experience an increment of their revenues, so
they aim to satisfy as many customers as possible improving the management of all
available physical resources. On the other hand, optimizing the power and energy con-
sumption choosing the proper resource usage may reduce costs significantly. In this
scenario, the SDN paradigm plays a fundamental role in DC orchestration because:

• the controller has the capability to maintain a global, centralized and consistent
view of the network focusing specially on the automated VMs and Virtual Net-
work Functions (VNFs) placement [24]; and

• SDN exposes northbound interfaces that can be exploited for the interaction with
applications implemented on top of the controller [53] as already reported above.

We discuss our proposals designed to improve the allocation of tasks and VMs in the
DC, to better manage internal DC network traffic, and to increase the effectiveness of
communications in IoT devices in the next chapters.
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Chapter 2. Background

2.2 Multi-objective optimization

2.2.1 Multi-objective Genetic Algorithms

The allocation problem is combinatorial and non-convex, and it is a variant of the multi-
objective bin packing problem which is NP-Hard. In this section, we introduce a heuris-
tic for the optimization of multi-objective, non-linear, and constrained problems called
GA or MOGA. MOGAs [37] are iterative stochastic optimization methods based on the
principles of natural selection and evolution. In GAs, candidate solutions (called indi-
viduals or phenotypes) evolves toward better solutions applying the genetic operators.
Each solution has a set of properties (called chromosomes or genotype) which can be
recombined, randomly mutated, and altered to form a new set of solutions named gen-
eration. A flowchart representing the behavior of GA and MOGA is represented in Fig-
ure 2.1. During each iteration, the set of all the candidate solutions (called population)

Generate Initial Population

Number of 

iterations and 

termination 

criteria

Select the 

chromosomes to be 

mated (selection) 

Crossover the 

chromosomes to 

produce offspring   

Mutate the 

offspring 

Evaluate Population according 

to the search strategy

Yes

No

End

Start

Figure 2.1: Flow Chart for our proposed GA-based algorithm.

is evaluated considering the fitness of every individuals applying problem-dependent
fitness functions usually related to the objective functions. The fittest individuals are
selected and survive for consequent iterations. GAs start generating an initial random
population; then, during the execution of the algorithm, the population evolves across
the iterations towards a better one. Each chromosome represents a solution to the prob-
lem at hand, and it can be encoded as a string of symbols, a binary bit string, a vector of
numbers, or a combination of the previous structures. Each chromosome comprises a
number of individual structures called genes describing part of the solution. The selec-
tion operator chooses some of the elements of the current population to produce new
elements. New chromosomes are formed either by merging two chromosomes from
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2.2. Multi-objective optimization

current generation using a crossover operator or by modifying a chromosome using a
mutation operator. The set of generated chromosomes is called offspring. A new popu-
lation is formed using a proper search strategy which choose the best chromosomes and
rejects the others keeping the population size constant. Fitter chromosomes have higher
probabilities of being selected with respect to the others. After several iterations, the
algorithms converge to the best chromosome which hopefully represents the optimum
or a sub-optimal solution of the problem.

Genetic Operators

Crossover The crossover operator represents one of the most important GA operators.
It works on two different chromosomes at a time generating an offspring combining
both chromosomes’ features. As example, the crossover operator could take two chro-
mosomes both encoded with a binary string, "cut" them in the same position (i.e., cut
the related encoded binary string), and take the first part from one of the two parents
and the last from the other one. According to this procedure, the generated chromo-
some includes parts of both parents. Several parameters influence the behaviour of all
genetic operators. For instance, the crossover probability is the probability to apply the
crossover operator to a couple of chromosomes. Denoting pSize the population size
and Pc the crossover probability, the expected size of the offspring is Pc ∗ pSize. Other
parameters depend on the implementation of the adopted crossover operator. Examples
of crossover implementation are:

• one-cut point crossover (Figure 2.2): two chromosomes choose the same random-cut
point dividing them in two parts (left and right) and generate the offspring taking
the left segment from one parent and the right segment from the other one and/or
vice versa.

Figure 2.2: One-cut point crossover.

• two-cut points crossover(Figure 2.3) and multi-cut points crossover which follow
the same approach from before, applying two or more cut points instead of one;

• uniform crossover (Figure 2.4): a fixed mixing ratio between parents is decided
and the offspring is generated mixing the two parents according to that ratio in
a probabilistic way; uniform crossover enables the parent chromosomes to con-
tribute at gene level rather than at segment level.

All the crossover procedures described above never break a single gene since, every
time a cut is executed, it always falls between two consecutive genes.
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Chapter 2. Background

Figure 2.3: Two-cut point crossover.

Figure 2.4: Uniform crossover with mixing ratio 0.5.

Mutation The mutation operator is a unary operator that produces random changes in
various chromosomes accomplishing two tasks: the provision of genes missing at the
beginning, and the replacement of lost genes from the population. This operator is
strongly influenced by the mutation probability (PM ) which represents the probability
of introducing new genes into the current population. Mutation operator with higher
values of PM produces an offspring that may differ significantly from the original par-
ents and GA looses the possibility to "learn" from the previous history; on the other
hand, some important genes could never get in the solutions for lower values of PM .
The random mutation changes a certain number of genes according to the value of
PM , and it is one of the simplest and widely adopted implementations of the mutation
operator..

Selection The selection operator selects a subset of the chromosomes in the population
that will be recombined or altered using the crossover and mutation operators, and it
drives the algorithm to a certain region of the solution space. Typically, it sorts all the
solutions according to their fitness value and it selects randomly all the solutions that
fit better than a parametrized selection threshold. If the threshold is high (i.e., only
few elements are selected), GA will focus on narrower areas of the solution space. On
the other hand, lower threshold values allow the heuristic to explore wider areas of
the solution space. A possible trade-off strategy is to implement a selection operator
with a variable threshold that should increase during the iterations, so that the heuristic
explores a wider solution region at the beginning focusing on the best local solutions
only at the end.

One of the most important selection operator is called Tournament selection. It runs
a "tournament" between a certain number of chromosomes randomly chosen from the
population and selects the winner according to the fitness values; selection pressure
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can be easily adjusted by changing the tournament size indeed if the tournament size is
larger, weak individuals have a smaller chance to be selected. One of the most adopted
implementation of the selection operator is called Binary Tournament having a tourna-
ment size equal to two.

Pareto Front

Multi-objective solutions are not comparable to each other because they are not com-
mensurable. For this reason, we introduce the concept of Pareto Front (PF). Con-
sidering two solutions x and y, and a set of objectives that should be minimized
f1, f2, ..., fm, x dominates y if exists a value k such that:{

fk(x) < fk(y);

fl(x) ≤ fl(y) 1 ≤ l ≤ m ∧ l 6= k.
(2.1)

If (2.1) does not hold, y is said to be non-dominated by x.The set of all feasible non-
dominated solutions is called PF, and the main goal of a multi-objective optimizer is to
find the best set of Pareto-optimal solutions optimizing the current problem.

Adopting stochastic solvers, we also refer to the definition of Reference Pareto Front
(RPF) that is a PF obtained considering all solutions retrieved across different runs for
the same problem. The RPF is essential for the evaluation of the computed solution
quality that is quantified using three indicators PF that also assess the performance of
the algorithms: the epsilon indicator [84] provides the factor by which an approxi-
mation set is worse than the RPF; the spread metric [18] quantifies how widely the
observed Pareto solution set spreads over the objective space when the design objective
functions are considered altogether; and the hypervolume computed as the volume in
the objective space covered by solutions within the PF (higher values of the hypervol-
ume metric represent a better approximation).

NSGA-II

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [28] is a widely adopted search
strategy for multi-objective solvers. It has a complexity ofO(FS2) denoting with F the
number of objectives and with S the population size. This heuristic sorts the population
of solutions into different non-domination levels with a procedure called ranking: if a
solution p dominates a solution q, then p belongs to a higher level than q. This proce-
dure is repeated for every solution creating different groups or non-domination levels
(solutions from the same group are non-dominating themselves); an integer value called
rank is assigned to each non-domination level (1 is the best level, 2 is the second best
level, and so on). When applying selection and sorting, NSGA-II is able to deal with
constraints and unfeasible solutions. The alternatives in comparing two solutions are:

• both solutions are feasible and the one with the best fitness is chosen;

• only one solution is feasible and that one is chosen;

• both solutions are unfeasible and the one with the smallest overall constraint vio-
lation is chosen.
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Using multi-objective optimization, it is necessary to introduce the definition of con-
straint domination: a solution i is said to constrained-dominate a solution j, if any of
the following conditions is true:

1. solution i is feasible and solution j is not;

2. solutions i and j are both unfeasible, but solution i has a smaller overall constraint
violation;

3. solutions i and j are feasible and solution i dominates solution j.

All feasible solutions are ranked according to their non-domination level which is based
on the objective function values. Among two unfeasible solutions, the one with the
smaller constraint violation has a better rank. When the ranking procedure is carried
out, a number of chromosomes equal to the population size is taken from the best
ranked solutions. If adding a rank of non-dominated solutions implies exceeding the
population size, only a subset of solutions from this rank are chosen. These solutions
are chosen according to the crowding distance method. The crowding distance value
of a solution provides an estimate of the density of solutions surrounding it. Crowding
distance of point i is an estimate of the size of the largest cuboid enclosing i without
including any other point (Fig. 2.5). Boundary solutions which have the lowest and the

Figure 2.5: Crowding distance for i-th solution in a two objectives algorithm.

highest objective function values are given an infinite crowding distance. Solution A is
better ranked than solution B if and only if:

non− dominated level(A) < non− dominated level(B). (2.2)

or {
non− dominated level(A) = non− dominated level(B);

crowding distance(A) > crowding distance(B).
(2.3)

Once the new population is built, it undergoes the application of the selection and ge-
netic operators to generate a number of new solutions, from which the new population
will be built for the next iteration.

2.2.2 Simulated Annealing

SA is a fast and robust technique used in single and multi-objective optimization prob-
lems [69], and it is inspired by the metal cooling down mechanism. It performs a local
search from an initial point in the solution space, and it moves towards a random so-
lution present in its neighbourhood. Both definitions of neighbourhood and neighbour
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solutions are problem-dependent. When SA explores a neighbourhood starting from
an initial solution, if the chosen neighbour is non-dominated, SA moves in it, since it
is preferred with respect to the solutions previously retrieved. Otherwise, the neigh-
bour solution is either rejected or accepted with a lower probability. It is worth noting
that a solution can be accepted even though it does not belong to the PF only to avoid
local minimum traps. The probability of acceptance of sub-optimal solution depends
on a parameter named temperature which is high at the beginning of the computation
and monotonically decreases reaching lower values at the end, and it is computed in
(2.4) being ∆s the difference between the neighbour solution objective function and
the current solution objective function, and T the temperature.

Pa = exp

(
−∆s

T

)
. (2.4)

SA avoids local traps specially at the beginning when temperature is higher but it "cools
down" at the end reducing the probability to move in a less convenient state.

We adapted SA to solve multi-objective problems implementing an external archive
of the best non-dominated solutions computed during the iterations. In literature, there
are several mechanisms that could be used to determine the acceptance probability
for multi-objective SA as described in [69]. In our problem, we compute the multi-
objective acceptance probability in (2.5) denoting with d the 2-norm distance between
current and neighbour solution objectives.

Pa = exp

(
− d
T

)
. (2.5)

Another important aspect for both single and multi-objective SA is the cooling schedul-
ing procedure, i.e, how the temperature decreases among all the iterations. Some possi-
ble cooling procedures decrease linearly the temperature at each iteration while others
halve or reduce geometrically the temperature value at every step [69]; in order to
achieve better performances during the search strategy a fine tuning of each parameter
is needed.

Last considerations concern problem constraints. SA itself does not provide any
specifications about constrained problems. We adopted the following strategy for man-
aging constraint violations: we start from the current solution and search for a feasible
neighbour. If the chosen neighbour is not feasible, we look for a feasible “neighbour
of the neighbour”, and we recursively repeat this procedure terminating it if any of the
two following conditions is verified:

• a solution not violating any constraint is found;

• the number of neighbours explored is equal to a specific threshold.

When the second case occurs, a new solution is randomly generated, and it is compared
with the solution found during the neighbourhood traversal phase which minimizes the
sum of all violated constraints. Finally, the best among the two is chosen (i.e., which
minimizes the sum of violated constraints) and the local search continues from that
solution.
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2.3 MPI

Nowadays, cloud DC infrastructure provides support for High Performance Comput-
ing (HPC) applications running on single or multiple servers. Multiple processes of
the same distributed application need to adopt a communication pattern to exchange
functional data; one of the most important communication patterns for parallel and dis-
tributed applications is defined by the MPI. MPI defines a set of APIs functions to allow
high-performance parallel programs to exchange data between processes and complete
tasks in parallel [23]. An application written using the MPI APIs is portable among
different platforms.

MPI defines a set of routines that support point-to-point communications between
pairs of processes for parallel and distributed applications. MPI defines also collective
communications that may involve multiple senders and/or multiple receivers that are
translated in a set of unicast communications. Usually, collective communications do
not exploit the underneath physical topology since MPI by default does not perform
a topology-discovery during the initialization phase. In the following chapters, we
present a topology-aware scheduling of MPI collective communications for distributed
applications.

2.4 Software tools

In this section we briefly introduce all the software tools that we used to perform our
experiments.

jMetal jMetal is a Java-based framework mainly focused on development, experi-
mentation and study of metaheuristics for solving multi-objective optimization prob-
lems [32]. This framework includes a number of classic and modern state-of-the-art
optimizers and genetic heuristic implementation, and it computes automatically all the
PF quality indicators.

CPLEX ILOG OPL-CPLEX Development System is a rapid development system for
optimization models adopting a high-level interface to embed models for solving Mixed
Integer Linear Programming (MILP) problems [44].

SA framework We use a self-programmed solver for multi-objective SA. It is flexible
and allows the customization of the cooling procedure, constraint management strategy,
and objective number.

DC simulator We adopt a customized simulator to perform the dynamic VM allocation.
The simulator keeps track of the whole DC topology and resource utilization placing
the VM according to an allocation strategy that can be easily programmed.
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One of the main challenges in cloud computer industry is DC energy efficiency and
scalability. Total power consumption due to DC, in a country such as United States,
doubled in 6 years (from 2000 to 2006) reaching nearly 61 billion kW h or 1.5% of
total US electricity consumption [34]. For every watt delivered [19] only 30% is con-
sumed by the IT equipment, 33% are spent in chillers, 18% in uninterruptible power
suppliers, 9% for computer room air conditioning, 5% in power distribution units, 3%
in humidifiers, 1% for lightning and 1% in transformers. Even though the fraction of
power consumed by IT devices is limited to one third of the total amount, the power
optimization of IT devices may significantly increase DC provider revenue.

This chapter deals with power-efficient placement of software containers (i.e., tasks
or VMs) onto the available physical resources. First, we consider separately two place-
ment strategies: the static allocation strategy which optimizes the placement of a group
of software containers, and the dynamic allocation strategy that places a single task or
VM as soon as an external client demands for its allocation. The two strategies are
better characterized in the next sections. We furthermore distinguish between task and
VM allocation as follows:

• static task allocation is presented in Section 3.2;

• static VM placement is discussed in Section 3.3;

• dynamic VM allocation is analyzed in Section 3.4;

3.1 Related Works

A variety of published works focuses on the problem of resource allocation in Cloud
DC. This section classifies the literature in three main parts: works that do not consider
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Chapter 3. Resource Allocation in Data Center

power consumption, power-aware static allocators, and power-aware dynamic alloca-
tors.

3.1.1 Power-unaware allocators

Authors in [78] perform the initial VM placement exploiting two different approaches:
GA and fuzzy logic minimizing the resource wastage without meeting any network
requirement and having a high completion time. In [30], authors present an optimiza-
tion technique designed for VM allocation minimizing the costs and guaranteeing some
performance levels. The allocator presented in [39] combines both GAs and MILP to
optimize the allocation of VMs while it meets four different QoS requirements. In [59]
authors allocatesVM minimizing the maximum execution time, using three different
models showing results only for a limited number of virtual machines and physical
nodes. In [15] authors propose a resource allocator for distributed clouds that is based
on five approximation algorithms able to reduce inter-cloud and inter-rack network traf-
fic, but they do not consider any computational requirement for VMs only constraining
the number of VMs that could be allocated on each server. Authors apply in [72] the
Hungarian method to optimize the resource penalty during each VM allocation.

3.1.2 Power-aware static allocators

In [75], authors developed a particular kind of Service Level Agreement (SLA) called
Green SLA. Green SLA uses best effort scheduling, which minimizes task execution
time and energy-performance trade off. This approach implements a number of ad-
vanced power management strategies such as Dynamic Voltage and Frequency Scaling
(DVFS) and supports parallel execution. Authors in [16] implement a power-aware
VM allocator for groups of VMs using a modified version of the Multiple Knapsack
problem. Another allocation method based on Fuzzy Logic is presented in [78] that
performs the VM placement combining GA and Fuzzy Logic, but it has a high comple-
tion time. VMPlanner [34] is a VM and traffic flows allocator able to reduce DC power
cost by putting in sleep mode network elements. VMPlanner solves the VMs allocation
problem with three different algorithms which use approximation and are not scalable
due to only a limited number of switches and racks that could be considered. In [78], the
authors propose a system which maps VMs to physical resources using genetic algo-
rithm improved with fuzzy multi-objective optimization. This approach tries to reduce
the amount of power consumed by the servers, optimize CPU and memory utilization,
and minimize peak temperatures inside the facility. In [74], authors introduce a power-
aware VM allocation procedure for DCs, but they neglect both the path allocation and
the power consumption of the network. Another approach, presented in [58], is able
to allocate tasks with the objectives of minimizing the longest task completion time
while optimizing the energy efficiency at the same time in heterogeneous Grid systems
composed of multi-core processors. However, that work does not take into account the
network requirements. Authors in [36] present two exact algorithms for energy effi-
cient VM scheduling. In [17], authors suggest a heuristic optimization algorithm based
on particle swarm, but they suppose that the number of VM requests is much lower
than the number of physical servers, and they disregard the power consumption of net-
work devices. In [36], two exact algorithms for energy-efficient scheduling of VMs are
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compared, but all VMs have the same requirements, and the network resources are not
taken into account.

3.1.3 Power-aware dynamic allocators

The approach, presented in [55], manages dynamic resource re-allocation in DCs using
a multi-agent version of the fuzzy controller. Only CPU and RAM are taken into ac-
count, while disk and network requirements are neglected. Authors present a dynamic
allocator in [77] that neglects the power consumption due to the networking devices.
The allocator presented in [79] dynamically allocates VMs putting in sleep mode un-
derutilized servers. In [20] the authors propose another energy efficient dynamic allo-
cator for VMs. It is implemented using a modified version of the Best Fit Decreasing
algorithm to allocate VMs using their utilization factors. This approach allows to dy-
namically reallocate VMs and supports also heterogeneous hardware. Finally, in [42],
authors describe a dynamic VM allocator addressing the problem of energy-efficient
task allocation in the system in the presence of a time-varying grid energy price and the
unpredictability and time variation of provisioned power by renewable energy sources,
but they neglect the path allocation phase.

3.2 Static Task Allocation

In this section, we present our static allocation strategy for tasks. We optimize task
placement using an allocator based on MOGA; then, we furthermore compare the qual-
ity of the solutions computed using our allocation strategy with another one based on a
multi-objective implementation of SA.

3.2.1 System Model

Large scale DCs are usually structured in a three-tier fat-tree architecture [21] (see
Fig. 3.1). This topology is composed by three different layers: access, aggregation,
and core. The access layer provides the connections of servers, which are arranged
into racks, to a single Top of the rack (ToR) switch. The aggregation layer provides
redundant connection of ToR switches; each ToR switch is connected to a pair of more
powerful aggregation switches. A set of ToR switches and servers connected to the
same pair of aggregation switches is named pod. At a higher layer, core switches
guarantee connection among different pods and towards the external gateway. In our
simulation environment, a single rack contains of up to 24 servers and a pod includes
up to 8 racks. The link interconnecting server and ToR switch has capacity of 1 Gbps
while ToR and aggregation switches are connected by a pair of links having capacity of
10 Gbps each.

The proposed algorithm allocates in the DC, which is empty at the beginning, a set
of independent tasks which are characterized by:

• a number of instructions to be executed;

• a constant amount of bandwidth required to perform the execution.
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Chapter 3. Resource Allocation in Data Center

Figure 3.1: Fat-tree topology in data centers.

Table 3.1: Symbols related to tasks and servers.

Symbol Description
N task number
M servers
#insi the total number of instruction of task i-th;
Bi the i-th task bandwidth requirement
IPS instruction per second executed by CPUs
nj tasks allocated on j-th server
Tc the maximum completion time between all the tasks
Ij instructions to be executed on j-th server
Tj the j-th server completion time

As all tasks are independent, they do not require to communicate during their execution
and the bandwidth requirement is only related to communication between computing
servers and DC gateway.

Computing servers are modeled with single-core processors offering a fixed com-
putational power expressed in instructions per second. The tasks allocated for execu-
tion on the same server will share server’s processing power equally. The servers left
idle can be put into a sleep mode minimizing their power consumption. Two power
saving strategies are typically implemented on hardware: DVFS and dynamic power
shutdown. DVFS reduces power consumption by lowering down operating frequency
and/or voltage; on the other hand, dynamic power shutdown saves power during idle
times by powering down as much as possible all the sub-components. We suppose the
aforementioned approaches applied in both computing hardware and network switches,
as a result we model the power consumption of servers and switches as described in
(3.6) and (3.8) respectively. As first approximation, we consider servers to be either
idle or fully utilized, and devices left idle are turned off to save power. We denote
all the symbols adopted in this section for tasks and servers, power consumption, and
network topology in Table 3.1, Table 3.2 and Table 3.3 respectively.

In our optimization problem, we encode solutions as an integer vector of size equal
to the number of tasks. The value assigned to every position of the chromosome rep-
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3.2. Static Task Allocation

Table 3.2: Symbols related to network topology.

Symbol Description
S switches
R racks
Ci the throughput of the i-th link
CMAX the sum of maximum capacity of all uplinks
VLj the bandwidth utilization on j-th server link
VTk the bandwidth utilization on k-th ToR switch
#linkk the number of uplinks in the k-th switch

Table 3.3: Power symbols.

Parameter Value
PSRP peak power consumption for servers
PSWP peak power consumption for switches
PSWI idle power consumption for switches
PSRj the power consumption of the j-th server
PSR the total server power consumption
PSWk the power consumption of the k-th switch
PSW the total switch power consumption
P the global power consumption

resents a server where the corresponding task is allocated to (this value ranges from
1 to the number of servers). As introduced in Section 2.2.1, the allocation problem is
a NP-Hard, non-convex, and multi-objective minimization problem; more specifically,
the two objectives to be minimized are:

1. Maximum total completion time of all tasks (makespan);

2. Power consumption of servers and network switches.

The first objective is directly related to the performance of the whole DC, while the
second objective to the device power consumption. We associate the fitness functions
in (3.1) with the makespan and power consumption respectively, and we compute the
completion time of a single server considering the sum of all instructions to be executed
on the same server and dividing it for IPS as described in (3.2), (3.3) and (3.4). Then,
the total completion time is the maximum completion time among all the server as in
(3.5). {

f1 = Tc;

f2 = P.
(3.1)

xij =

{
1, if the i-th task is allocated on the j-th server;
0, otherwise. (3.2)

Ij =
N∑
i=1

xij #insi. (3.3)

Tj =
Ij
IPS

. (3.4)
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Chapter 3. Resource Allocation in Data Center

Tc = max 1≤j≤M Tj. (3.5)

The power consumption of computing servers is modeled using binary law, assuming
that each processor is either executing tasks at the full speed or stays idle as reported in
(3.6). Network device power model follows a linear trend as shown in (3.8): consump-
tion is proportional to the traffic load (that is computed in (3.7)), and it ranges between
PSRI (when the switch is idle) and PSWP (when all the links are fully utilized). As
written above, idle devices are turned off to save more power.

PSRj =

{
PSRP , if nj ≥ 1;

0 if nj = 0.
(3.6)

lk =

#linkk∑
i=1

Ci

CMAX

. (3.7)

PSWk(lk) =

{
PSWI + (PSWP − PSWI)lk if 0 < lk ≤ 1;

0 if lk = 0.
(3.8)

0
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Figure 3.2: Network switch power consumption.

Our problem is subject to two different constraints: it is not possible to allocate on
a single server tasks demanding higher bandwidth than the available link capacity (1
Gbps), and the 20 Gbps uplink capacity of ToR switches cannot be exceeded by the
sum of the traffic; the two constraints are formalized in (3.14).{

VLj ≤ 1Gb/s 1 ≤ j ≤M ;

VTk ≤ 20Gb/s 1 ≤ k ≤ R.
(3.9)

xijk =

{
1, if the i-th task is allocated on the j-th server of the k-th rack;
0, otherwise.

(3.10)

sgn(x) =

{
0 ∀x ≤ 0;

1 ∀x > 0.
(3.11)
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3.2. Static Task Allocation

Table 3.4: Topology, server and task related
parameters.

Parameter Value
Servers per rack 24
Racks per pod 8
IPS 1, 2 ∗ 109[instr/s]
Task instruction
distribution

Uniform in the range
[5; 10] ∗ 109 [instr]

Task bandwidth
distribution

Uniform in the range
[1; 1000] ∗ 108 [bps]

Table 3.5: Power consumptions.

Parameter Value [W]
Server PSRP 300

ToR PSWP 200
ToR PSWI 160
Aggregation PSWP 2500
Aggregation PSWI 2000

cj1 =

(
N∑
i=1

xij Bi − 1Gbps

)
sgn

(
N∑
i=1

xij Bi − 1Gbps

)
. (3.12)

ck2 =

(
M∑
j=1

N∑
i=1

xijk Bi − 20 Gbps

)
sgn

(
M∑
j=1

N∑
i=1

xijk Bi − 20 Gbps

)
. (3.13)


c1 =

M∑
j=1

cj1;

c2 =
R∑

k=1

ck2.

(3.14)

The aforementioned definition of two constraints does not assign any penalty if network
links are not congested. Whenever tasks allocated to the same server (or to the same
rack) require more than available bandwidth, the exceeding amount of bandwidth is
added to the constraint violations. It is important to recall that with this heuristic,
solutions that are violating constraints are still considered during the search phase, but
using the proper search heuristic they tend to disappear in the last generations.

3.2.2 MOGA Experimental setup

In this section we describe the executed tests with the developed algorithm and the
obtained results.

Scenario

DC topology, tasks, servers and values for hardware power consumption are described
in Tables 3.4 and 3.5, while the algorithm configuration setup is presented in Table 3.6.
The number of servers per rack and rack per pod are typical values for a DC [20],
and the number of Instructions per second (IPS) is frequent in single core processors
such as Intel Pentium at 1 GHz. Task instructions number and bandwidth requirement
are generated randomly using two different uniform distributions. In Table 3.5, power
consumption values are reported, and we consider the switch idle power consumption
to be the 80% of the peak consumption [20].
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Chapter 3. Resource Allocation in Data Center

Table 3.6: Genetic algorithm parameters.

Parameter Value
Population size 100
Iterations 25000
Crossover operator One point
Crossover probability 0.9
Mutation operator Random mutation

Mutation probability
1

task number

Selection operator Binary tournament
Search heuristic NSGA-II

Results

Three different experiments were performed. In the first experiment, we analyse the
best solutions taking into account the two objectives separately in order to explore
the two edges of the obtained PF. The second experiment shows an example of PF
obtained and a superposition of different PFs obtained through different experiments
using the number of servers as a parameter of interest. Finally, the third experiment
shows the experimental time complexity as a function of the number of tasks to allocate.
In our experiments, we suppose the two objectives to be equivalent: power consumption
and completion time could be considered equally relevant, so the vector with minimal
module can be considered as the best solution. On the contrary, if either makespan or
power consumption would be more relevant with respect to the other objective, the two
metrics could be weighted to find the preferred solution. The platform used to execute
these experiments is an Intel I7 3630QM 2.4 GHz equipped with 8 GB RAM with OS
Ubuntu 11.04 and the jMetal framework.

We execute the first experiment considering as input values the ones presented in Ta-
ble 3.7. We show the solutions computed by the algorithm which minimize makespan
and power consumption found respectively in Figures 3.3 and 3.4. As expected, the
maximum completion time is linear with respect to the number of tasks; on the other
hand, the trend is different for power consumption since keeping constant the number
of physical devices while increasing the number of tasks, the final effect is to reach
the limit of the sum of the peak power consumption for every devices into the DC. We
show in Figure 3.5 the PF retrieved in a single run for the allocation of 3000 tasks in
a 1536 servers DC: in this case, makespan ranges between 39 seconds and 51 seconds
and the power consumption between 425 KW and 443 KW. Figure 3.6 displays the
superposition of PFs computed varying the number of servers and allocating the same
tasks; each execution is repeated forty times and we plot all solution retrieved. Increas-
ing the number of servers, leads to a deprecation of the results obtained in terms of
power consumption and completion time as expected. The last experiment measures
the framework performance to compute the solution with a fixed number of servers
(i.e., 1536) only varying the task number which is the only variable input parameter.
Figure 3.7 displays the results with a trend line: average execution times are close to
the quadratic trend function that fits well the measured values, so the framework has a
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Figure 3.3: Best task completion times.

quadratic dependence on the number of input tasks.

Table 3.7: Experiment 1: Input values.

Parameter Value [W]
Server number 1536
Task number [500:15000] with steps of 500
Runs 40

3.2.3 SA and MOGA Experimental setup

We evaluate the effectiveness of MOGA using SA as term for comparisons. Consid-
ering a single allocation vector (i.e., a solution for our problem), we define its neigh-
bourhood as the set of solutions which allocate all tasks on the same servers except
for a single one i.e., the two vectors differ exactly for a single value. As described in
Section 2.2.2, our strategy to avoid constraints violation traverses the neighbourhood of
unfeasible solutions until either a feasible solution is found or a maximum number of
solutions are evaluated. For our problem, we set the number of maximum evaluations
equal to the number of tasks.

Scenario

DC topology, tasks, servers and hardware power consumption are described in Ta-
bles 3.8 and 3.9, setup values for MOGA and SA are presented in Tables 3.10 and 3.11.
The number of IPS is frequent in processors such as Intel Core i7 875K at 3GHz; and
the task instruction number and the bandwidth requirement for each task are generated
randomly using two different uniform distributions. In Table 3.5, power consumption
values are reported. PSWI is considered to be the 80% of PSWP [21]. In Table 3.6 we
show the original parameters proposed for NSGA-II and two classical Crossover and
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Figure 3.7: Execution time of the algorithm.
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Table 3.8: Topology, server and task related
parameters.

Parameter Value
Server per rack 24
Rack per pod 8
IPS 90 ∗ 109[instr/sec]
Task instruction
distribution

Uniform in the range
[18; 72] ∗ 1010 [instr]

Bandwidth
distribution

Uniform in the range
[1; 20] ∗ 106 [bps]

Table 3.9: Power consumptions.

Parameter Value [W]
Server PSRP 300
ToR PSWP 200
ToR PSWI 160
Aggregation PSWP 2500
Aggregation PSWI 2000

Table 3.10: MOGA parameters.

Parameter Value
Population size 100
Iterations 25000
Crossover operator One point
Crossover probability 0.9
Mutation operator Random mutation

Mutation probability
1

task number
Selection operator Binary tournament
Search heuristic NSGA-II

Table 3.11: SA and input parameters.

Parameter Value

Initial temperature
100;500;
1000;1500

Cooling scheduling Decremental
Server number 1536

Task number
[500:20000]
with steps
of 500

Runs 40

Mutation operators. Table 3.11 describes the parameters for SA. As cooling scheduling,
at each iteration the temperature value is decreased by one unit.

Results

The platform used to execute these experiments is an Intel I7 3630QM 2.4 GHz equipped
with 8 GB RAM with OS Ubuntu 12.10, the jMetal framework for MOGA computa-
tion and a self-programmed framework for SA implementation. All experiments are
performed using input values presented in Table 3.11. Figure 3.8 shows the best so-
lutions for Tc. MOGA performs better on average with respect to SA. More in detail,
MOGA finds values lower on average from 13 to 19% rather than SA1500. Figure 3.9
shows the best values for P , the difference between MOGA and SA is smaller than
6% on average. Figure 3.10 shows the PF computed on 8000 tasks including all the
best solutions retrieved at each run. In it, the best values are achieved by MOGA that
performs slightly better than SA1500.

Last experiment measures the time performance of the two frameworks. In Fig-
ure 3.11, MOGA execution time grows almost quadratically with the number of tasks
while SA grows much slower respect to MOGA following a linear trend and bounding
below 3 seconds the average execution for 20000 tasks.
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3.3 Static VM Allocation

3.3.1 System Model

Another important aspect of resource management in DC is related to VMs allocation.
VMs have different requirements with respect to tasks, for this reason we designed
a new placement strategy. More specifically, each VM has four requirements: CPU,
RAM, disk and North-South Bandwidth (BW) (i.e., traffic exchanged between VMs
is not considered) which is typical in many VM applications such as Virtual Desktop
Infrastructure. Lastly, VMs are supposed to be in a running state for a very long time
and never be deallocated.

Power Consumption

The switch consumption model is the one already presented in (3.8) for task alloca-
tion. Conversely, we adapted the server power model to the new requirements: in this
scenario, CPU load depends on the VMs that are allocated on the same server. Server
power model follows a linear trend that is proportional to the CPU load. As for switch,
server consumption ranges between two idle and peak values as described in (3.15).
Server load is set equal to 100% if the sum of the CPU requirements of all VMs allo-
cated on the same server is greater than the server availability. We define all symbols
that we use in this section in Table 3.13.

PSRi
(c(i)) =

 PSRI + (PSRP − PSRI)
c(i)

100
if 0 < c(i) ≤ 100;

0 if c(i) = 0.
(3.15)
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Table 3.12: Symbols related to power consumption.

Symbol Description
PSRj the power consumption of the j-th server
PSR =

∑
j

PSRj the sum of power consumptions of all servers

PSRI the server idle power consumption
PSRP the server peak power consumption
PSWk the power consumption of the k-th switch
PSW =

∑
k

PSWk the sum of power consumption of all switches

PSWI the switch idle power consumption
PSWP the switch peak power consumption
P = PSR + PSW the power consumption of the whole DC
Γi the throughput of the i-th link
CMAX the sum of capacities of all uplinks
#linkk the number of uplinks in the k-th switch

lk =

#linkk∑
i=1

Γi

CMAX
the load factor of the k-th switch

c(i) the cpu percentage allocated on the i-th server

Table 3.13: Symbols related to VMs and network topology.

Symbol Description
N the number of VMs to be allocated
M the total number of servers
A ∈ RN∗M the binary allocation matrix
e the total over-provisioning factor or excess
c(i) the CPU allocation percentage of the i-th server
m(i) the RAM allocation percentage of the i-th server
d(i) the disk allocation percentage of the i-th server
s the number of servers exceeding at least one resource
P the total power consumption of servers and switches
Cmax the maximum CPU allocated quota among all servers
Mmax the maximum RAM allocated quota among all servers
Dmax the maximum disk allocated quota among all servers
Ctot the total CPU excess among all servers
Mtot the total RAM excess among all servers
Dtot the total disk excess among all servers

28



i
i

“main” — 2018/4/16 — 17:16 — page 29 — #43 i
i

i
i

i
i

3.3. Static VM Allocation

3.3.2 Mathematical model

Instead of considering all the resource separately, we aggregate them in a single param-
eter named over-provisioning factor in order to improve the efficiency of the algorithm.
The over-provisioning factor is defined as the minimum additional quota for a specific
resource (i.e. CPU, RAM, Disk) needed to satisfy all the VM requests allocated on the
same server. We shortly name excess the maximum over-provisioning factor among all
the resources and all servers. If the available resources are sufficient to fit all the VM
requests, an allocation is optimal if and only if the computed excess is zero (i.e., no
resource needs to be over-provisioned).

We formalize the allocation problem as a MILP problem which tries to minimize at
the same time the excess and the total amount of power consumption. The problem to
be solved is defined in (3.16).

minimize e and P
subject to: e ≥ 0

P ≥ 0

A(i, j) ∈ {0, 1}
M∑
j=1

A(i, j) = 1 ∀1 ≤ i ≤ N

N∑
i=1

c(i)A(i, j) ≤ 100 + e; ∀1 ≤ j ≤M

N∑
i=1

m(i)A(i, j) ≤ 100 + e; ∀1 ≤ j ≤M

N∑
i=1

d(i)A(i, j) ≤ 100 + e; ∀1 ≤ j ≤M

(3.16)

We recall the definition of the binary variable xijk previously defined in (3.10):

xijk =


1

if the i-th task is allocated
on the j-th server of the k-th rack;

0 otherwise.

Our problem constrains racks and pods bandwidth allocation as follows:

constraint1 :
N∑
i=1

Bixijk ≤ 1 Gbps
1 ≤ j ≤M

1 ≤ k ≤ R;

constraint2 :
N∑
i=1

M∑
j=1

Bixijk ≤ 20 Gbps 1 ≤ k ≤ R;

(3.17)

Since it corresponds to an initial allocation problem, for the sake of simplicity and
without losing generality, we consider an empty DC (i.e., no VMs are initially already
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Table 3.14: Data Center parameters.

Parameter Value
Server per rack 24
Rack per pod 8
Total number of servers 768
Total number of racks 32
Total number of pods 4

Table 3.15: NSGA-II parameter settings.

Name Number of iterations Crossover probability Population Size
NSGA100 25000 0.9 100
NSGA1000 25000 0.9 1000
NSGA095 25000 0.95 100
NSGA05 25000 0.5 100
NSGAVIT 10000*N 0.9 100

allocated); furthermore, each server has the same characteristics in terms of CPU power,
RAM and Disk size. However, we modified the framework in order to read an initial
state of the server occupancy and use servers with differentiated hardware. In this
problem, our goal is to perform resource allocation lowering the value of e and P .

We use CPLEX as a comparison for our multi-objective solver. Since CPLEX solves
only single objective optimization problems, we choose as objective to be optimized e
neglecting the total power consumption P . In other words, CPLEX emulates a tradi-
tional power-unaware allocator. Another issue of CPLEX is scalability because it finds
the optimal solution only for a limited input size (i.e., up to 100 VMs). For what con-
cerns the proposed MOGA implementations, is it possible to improve the quality of
the solutions retrieved for one of the two objectives adding a set of auxiliary objec-
tives that are strongly correlated with it; we describe the sets of auxiliary objectives in
Section 3.3.3.

3.3.3 Evaluation

DC topology is modeled as a three-tier fat tree and the adopted parameters are sum-
marized in Table 3.14. We considered five different variants of NSGA-II (described in
Table 3.15), tuning three parameters which mainly characterize the search strategy:

• number of iterations;

• crossover probability;

• population size.

As reported in Section 3.3.2 we designed three different problem settings having a
different number of auxiliary objectives. In table 3.16 those problem settings are de-
scribed. It is worth noting that NSGA-II performance is not degraded adding highly
correlated or dependent objectives [46]. CPU, RAM, Disk and Bandwidth require-
ments are generated uniformly at random as described in Table 3.17. Switch and server
power consumption values are described in Table 3.18. Top of the rack and aggregation
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Table 3.16: Search heuristic settings.

Name Number of Objectives Objectives
VMProblem1 (VMP1) 3 e,s,P

VMProblem2 (VMP2) 6
e,s,P

Cmax, Rmax, Dmax

VMProblem3 (VMP3) 9
e,s,P

Cmax, Rmax, Dmax

Ctot, Mtot, Dtot

Table 3.17: VM generation parameters.

Requirement Value

N 50, 75 and [100;2000]
with step size 100

CPU
[10;40]%RAM

Disk
Bandwidth [1;20] Mbps

switches have different values of power consumption. Typical value of idle power con-
sumption for switches is about 80% of the peak consumption [21]. Parameters which
characterize genetic operators are listed in Table 3.19. We performed 40 indepen-
dent repetitions of the same experiment varying 22 times the input size (i.e. number
of VMs to be allocated) and comparing the average execution times and the best solu-
tions found. Due to its limited scalability, CPLEX is able to perform its execution only
for 50, 75 and 100 VMs: for larger problems the number of variables and constraints
becomes very high and the amount of memory needed to run the optimization engine
grows over 5 GB, and the process is automatically terminated by the operating system.
As it is shown in figure 3.17 and better detailed in figure 3.18, the MOGA approach
solves the allocation problem two orders of magnitude faster compared with CPLEX,
reducing execution time from hundreds of seconds to seconds; execution time increases
linearly with the number of VMs. The exact solver finds solutions only for a very lim-
ited amount ofVMs compared to MOGA and is not useful in the current scenario that
requires fast and scalable response. In Figures 3.13 to 3.15, we compare the three
problem settings considering only the first objective e. As it is shown, CPLEX and
MOGA find the same optimal solutions; among the different problem settings, VMP2

Table 3.18: Power consumption values.

Parameter Value [W]
PSRI 100
PSRP 300
ToR PSWI 160
ToR PSWP 200
Aggregation PSWI 2000
Aggregation PSWP 2500

Table 3.19: MOGA parameters.

Parameter Value
Crossover operator Two points
Mutation operator Random mutation

Mutation probability
1

task number

Selection operator Binary tournament
Search heuristic NSGA-II
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Figure 3.13: Best solution for VMP1.
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Figure 3.14: Best solution for VMP2.
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Figure 3.15: Best solution for VMP3.
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and VMP3 find a better minimum exploiting the set of correlated auxiliary objectives,
reducing e from 90 (computed using VMP1) to 60 during the allocation of 2000 VMs.
Of course, when we consider the set of auxiliary objective, we improve e trading off P
as depicted in the RPF (Figure 3.16) which is computed out of the 40 independent runs
for each VMProblem using only NSGA100. RPF it is mainly divided in three areas:
the first area includes all the best solutions in terms of e that are computed by VMP3;
the second one groupes all trade-off solutions between the two objectives retrieved by
VMP1 and VMP2; and the third one collects all solutions optimizing P mainly com-
puted by VMP1.

VMP1, VMP2 and VMP3 are able to explore the whole solution space but can nar-
row some parts of it. These settings could be used according to DC provider policy
(i.e. if one of the two objectives has higher priority or when trade-off solutions are
considered acceptable).

We use boxplots to evaluate the three quality metrics introduced above. Boxplots
depict the main statistical information of a group of numerical data, and they indicate
the maximum and the minimum values, and the quartiles. In the current representation,
the lowest and the highest horizontal dashes represent the minimum and the maximum
values respectively, the bottom and the top edges of the box display in order the first
and the third quartiles, the thicker dash inside the box shows the second quartile, and
the dots depictmembership functions the outlier elements.

We show the boxplots in Figures 3.19 to 3.21 for each indicator considering the
allocation of 1000 VMs as a case study. Analysing separately all problem instances,
in VMP1 all the heuristic performs similarly having the same confidence interval. In
VMP2, NSGAVIT (that runs more iterations than the others) and NSGA100 reach bet-
ter confidence intervals for epsilon. Further increasing the number of objectives, all
settings experience some degradation of the epsilon value, but in this case NSGA100
and NSGAVIT perform better. The spread indicator is evaluated in Figure 3.21. VMP1
and VMP3 find solution on a narrowed part of the solution space while VMP2 search
for solutions in a wider area. The trend of the hypervolume indicator is shown in Fig-
ure 3.20. NSGA1000 solutions have the lower values of hypervolume compared to
the other approaches while NSGA05 reaches higher values for HV. NSGA05 having a
lower crossover probability, recombines and replaces a less number of chromosomes
during each iteration; for this reason, less fit solutions survive among the iterations and
could be altered through the mutation to explore different parts of the solution space.
Spread boxplots in Figure 3.21 show that increasing the number of auxiliary objectives
the main objectives are less spread among each others: VMP2 and VMP3 weight more
e rather than P reducing its value and finding solutions that better optimizes the first
main objective.
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Figure 3.17: Execution times.
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Figure 3.19: Epsilon Boxplots.
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3.4 Dynamic VM Allocation

The last part of this chapter deals with dynamic VM allocation. In this section, we
describe our IT Resource Allocator (ITRA) that is used to place dynamically VMs on
servers and reserve network paths using a power-efficient allocation scheme.

3.4.1 Virtual Machine Allocation

The main goal of the ITRA is to accept as many VM requests as possible, reducing at
the same time the network power consumption. Each VM request is characterized by
four parameters representing the peak utilizations of CPU, RAM, disk and bandwidth.
The server selection consists of the following steps:

1. Compute the candidate server list, i.e., the set of servers with enough IT resources
to satisfy the request:

(a) if the list is empty, the request is rejected;
(b) otherwise, go to the next step.

2. Select the policy between:

(a) Multi Resource Best Fit (BF) that strongly consolidates the system resource
utilization choosing the server that has the least resources availability;

(b) Multi Resource Worst Fit (WF) that selects the server having the highest re-
sources availability, so as to balance the load among all the available servers.

3. Select the best server according to one of the possible strategies:

(a) disjoint or joint Analytic ITRA (described in Section 3.4.1);
(b) disjoint or joint Fuzzy ITRA (described in Section 3.4.1);
(c) disjoint or joint Multi-Objective Dynamic Allocator (MODA) (described in

Section 3.4.1).

The joint allocation strategies consider at the same time both computational and net-
work requirements to perform the allocation of VMs. Instead, disjoint strategies split
the allocation procedure in two different steps:

1. choose the server where to allocate the VM evaluating only the computational
requirements rejecting the request if no server is available;

2. taking into account the bandwidth requirement, find the minimum-cost path con-
necting the chosen server to the gateway rejecting the request if no path is avail-
able.

ITRA associates the minimum-cost network path with each available server when a
new request comes, and it discards servers that do not have enough resource nor at least
an available path. The cost of the path is computed as the amount of power that will
be consumed by the new network flow. More clearly, ITRA allocates the network path
minimizing the increment of power consumption of the network devices. We provide a
more detailed view about the path allocation procedure in Section 3.4.2.

For the sake of clarity, we summarize the symbols used in Table 3.20.
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Figure 3.22: IT Resource Allocator algorithm.

Table 3.20: Model Parameters.

Parameter Description

CPUs % of the s-th server free CPU after the placement of the VM.

RAMs % of the s-th server free space in RAM after the placement of
the VM.

DISKs % of the s-th server free space in the storage after the placement
of the VM.

PCs Cost value of the minimum-cost path from server s to the ex-
ternal gateway.

PCM Sum of the costs of all the links in the network.

IsA Availability index for the s-th server made by A-ITRA.

IsF Availability index for the s-th server made by F-ITRA.

f(x) Defuzzification method applied to the input vector x.

N Number of servers.
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Analytic ITRA

Analytic ITRA (A-ITRA) computes for each candidate server the A-ITRA Availability
Index (IA) that takes into account the availability of IT resources. The joint version of
the A-ITRA Availability Index is computed as follows:

IsA =
1

300
[CPUs + RAMs + DISKs] + α

PCs

PCM
. (3.18)

where

α =

{
−1 if WF is adopted;

1 if BF is adopted. (3.19)

The first component of IA represents the normalized availability of the system resources
(by definition the three values range from 0 to 100) and the second one is the normalized
path cost (i.e., PCs

PCM ). A-ITRA chooses the server minimizing IA in case of BF, or the
server maximizing IA in case of WF. Note that different values of α are used since in
both cases the path cost must be minimized.

When we adopt the disjoint A-ITRA, we calculate the Availability Index taking into
account only the computational resources:

IsA =
1

300
[CPUs + RAMs + DISKs] . (3.20)

As for the joint version, disjoint A-ITRA first chooses the server minimizing or maxi-
mizing IsA when we respectively adopt BF or WF. Next, it computes the minimum-cost
path towards the gateway, and associates it with the selected server.

Fuzzy IT Resource Allocator

Fuzzy Logic [35, 82] is a technique that deals with uncertain, imprecise, or qualitative
information, as well as with precise information in systems which cannot be described
by a formal and analytically tractable mathematical model. In Boolean logic, an ele-
ment x can or cannot belong to a set A with a membership degree respectively equal
to 1 or 0. Instead, in Fuzzy Logic, the membership degree of x to a fuzzy set F has a
value in a continuous interval between 0 and 1. Fuzzy set theory allows an element to
have partial membership degree in one or more fuzzy sets. This membership degree is
obtained through membership functions that map elements into the interval [0, 1].

Fuzzy Logic can be used for the design of control systems, called Fuzzy Logic
Controller (FLC). The core of the FLC [50, 51] is the inference engine, whose role
is to apply the inference rules (IF-THEN rules) contained in the rule base. IF-THEN
rules are made by premises and conclusions, and embody the system control strategies.
Since fuzzy rules use fuzzy sets and their associated membership functions to describe
system variables, two operations are necessary for translations between conventional
and fuzzy values: fuzzification and defuzzification. The former maps input values
into one or more fuzzy sets, the latter produces a single conventional value that best
represents the inferred fuzzy values.

More specifically, our FLC includes the following modules (see [10] for more de-
tails):
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• Inputs fuzzification: we defined four input fuzzy sets (“Not available”, “Small”,
“Medium”, and “Large”) and their membership functions. Figure 3.23 shows
an example: while RAMs and DISKs are fuzzified in a single fuzzy set (i.e.,
“Medium” for RAM and “Large” for DISK), CPU belongs to two different sets
with a certain probability (0.7 in “Small” and 0.3 in “Medium”);

• Inference engine: we considered two different inference processes:

1. Mandami (Fuzzy ITRA (F-ITRA) M), that uses the min operator;

2. Sugeno [70] (F-ITRA S), that applies both linear or constant membership
functions;

and six output sets, “Empty”, “Almost empty”, “Medium”, “Almost full”, “Full”
and “Not available”, whose corresponding membership functions are depicted in
Figure 3.24;

• Defuzzification method, denoted with f , that computes the center of gravity as
defuzzification algorithm for the aggregated fuzzy subset.

Similarly to A-ITRA, we use the FLC to compute the F-ITRA Availability Index (IF )
for each server. We define the joint and disjoint F-ITRA Availability Index in (3.21) and
(3.22) respectively assuming as values for α the ones reported in (3.19). Analogously to
A-ITRA, both disjoint and joint F-ITRA choose the server maximizing or minimizing
IsF each in order when WF or BF is adopted. Moreover, disjoint F-ITRA computes the
minimum-cost path only when the server is selected.

IsF = f(CPUs,RAMs,DISKs) + α
PCs

PCM
. (3.21)

IsF = f(CPUs,RAMs,DISKs). (3.22)

Multi-Objective Dynamic Allocator (MODA)

MODA allocates VMs using a technique based on the multi-objective optimization:
available resources are the objectives that should be optimized all together. Solutions
are not comparable among each others in a multi-objective computation, so we use the
concept of Pareto front [65] to deal with the incommensurability of vector solutions.

If we consider two solutions s and t for a minimization problem, and we associate a
set of m objectives denoted with f1, f2, . . . , fm, we say that s dominates t if an integer
value d exists such that:{

fd(s) < fd(t) 1 ≤ d ≤ m;

fl(s) ≤ fl(t) 1 ≤ l ≤ m ∧ l 6= d.
(3.23)

Solutions s and t are non-dominated if both s does not dominate t and viceversa, and
the set including all the non-dominated solutions is called Pareto front. Within a Pareto
front, the solution that optimizes all the objectives at the same time is called ideal
vector [25].
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Figure 3.24: Inference process outputs fuzzy sets and their membership functions.

MODA computes in multiple steps the allocation procedure; when a new VM should
be allocated, MODA creates a list of servers able to fit the request. The difference
between joint and disjoint MODA concerns only the number of objectives that should
be optimized:

• disjoint MODA considers only CPUs, RAMs and DISKs, and it computes the
minimum-cost path after the phase of server selection;

• joint MODA considers CPUs, RAMs, DISKs and PCs, and it associates the minimum-
cost path with each server during the server selection phase.

Then, MODA computes the Pareto front for the current allocation, and finally it chooses
one of the possible allocations according to the applied policy (i.e., BF or WF) and one
of the two possible strategies:

1. Choosing randomly one solution within the Pareto front (MODA-R);

2. Normalizing all the objectives and taking the solution that has the minimum dis-
tance from the ideal vector (MODA-D).

The joint MODA solves the minimization problem described in formula (3.24) when it
adopts the BF policy:

minimize min
1≤s≤N

; {CPUs, RAMs, DISKs, PCs} ;

subject to: 0 ≤ CPUs ≤ 100 1 ≤ s ≤ N ;

0 ≤ RAMs ≤ 100 1 ≤ s ≤ N ;

0 ≤ Disks ≤ 100 1 ≤ s ≤ N ;

0 ≤ PCs ≤ PCM 1 ≤ s ≤ N.

(3.24)

The allocator maximizes instead the computing resources in case we set the WF policy,
but it still minimizes the path cost:

minimize min
1≤s≤N

; {-CPUs, -RAMs, -DISKs, PCs} ;

subject to: 0 ≤ CPUs ≤ 100 1 ≤ s ≤ N ;

0 ≤ RAMs ≤ 100 1 ≤ s ≤ N ;

0 ≤ Disks ≤ 100 1 ≤ s ≤ N ;

0 ≤ PCs ≤ PCM 1 ≤ s ≤ N ;

(3.25)
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3.4. Dynamic VM Allocation

As described above, disjoint MODA solves the same optimization problems without
considering PC and associating the minimum-cost path only with the selected server.

3.4.2 Power Consumption and Network Path Computation

We adopt the power consumption model for switches presented in [48], whose param-
eters are summarized in Table 3.21.

Table 3.21: Notation of the parameters related to power consumption.

Parameter Description

Pswitch the average power consumption of a single switch.

Pchassis the constant power consumed by chassis.

n the number of line cards in the switch.

Plinecard the fixed amount of power consumed by line cards.

Pload(i, r)
the power consumed by the i-th port while
transmitting at bit-rate r.

Pmax(i) Pload(i, r) while transmitting at the maximum bit-rate.

Pfix Pchassis + n ∗ Plinecard.

B(i) the bandwidth transmitted by the i-th line card.

Bmax(i) the maximum capacity of the i-th line card.

R
the bandwidth request of a new
(i.e., not allocated) VM.

w the link weight.

The power model for switches is:

Pswitch = Pchassis + n ∗ Plinecard +
n∑

i=1

Pload(i, r). (3.26)

We express an equivalent (and simplified) formulation of (3.26) by grouping all the
fixed terms and taking into account that the load-dependent power component. The
power consumption is linearly proportional to the transmission rate, as the authors
showed in [67], and we assumed that the line cards of a link are active even when
no packet is transmitted:

Pswitch = Pfix +
n∑

i=1

B(i)

Bmax(i)
∗ Pmax(i). (3.27)

We might estimate the utilization values retrieving periodically the number of bytes
transmitted by each link from the SDN controller; then, we could be able to compute the
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average bandwidth during the considered period [11]. After pruning the links without
enough available bandwidth, i.e.,

B(i) +R ≤ Bmax(i); (3.28)

we used the Dijkstra’s algorithm for minimizing power consumption; for each line
card, we set as weight the increment of the power cost due to the transmission of the
new flow.

wi =
R

Bmax(i)
∗ Pmax(i). (3.29)

In this analysis we considered only the power consumption of network devices and we
neglected the server consumption because we supposed all the servers to be equal, and
we applied them the same consumption profile.

3.4.3 Experiments and Results

We describe in this section two sets of experiments. In Section 3.4.3, we focus on power
consumption and path allocation algorithm comparing our power-aware path allocation
with the classical equal cost routing. Then, we evaluate the power consumption of
the networking devices. In the second experiment, we analyze the performance of our
allocators in terms of accepted VMs; we describe this experiment in Section 3.4.3. At
the end, we show the difference between the joint and disjoint A-ITRAs.

In our experiments we use as baseline the simplest possible allocation strategy
named First Fit (FF) that allocates VMs one by one on the first available server, and we
execute 30 independent runs for each experiment.

Simulation scenario

The simulation scenario consists of 16 servers interconnected through a three-tier fat
tree network topology [13], which is one of the most widely adopted topologies within
DCs. Three-tier fat tree is structured in three different layers: access, aggregation, and
core. Access switch provides connection to servers, and it is connected to a pair of ag-
gregation switches. Access switches provide connection to servers and are connected
to a pair of aggregation switches. Servers and access switches connected to the same
couple of aggregation switches belong to the same pod. Core switches guarantee con-
nectivity between all the pods and the external gateway. All the servers had the same
hardware and they were empty at the beginning.

In our experiments, we supposed that VMs remained active until the end of the
simulation. As already mentioned, VMs are characterized by CPU, RAM, disk and
bandwidth. The values of such parameters are generated as described in Table 3.22,
while the parameters related to power consumption and network equipment are reported
in Table 3.23.

Power-aware network path allocation

In this experiment, we evaluate the power efficiency of our path allocation strategy. The
only differences with respect to the parameters reported in Table 3.23 are the two power
consumption profiles for aggregation and core switches. Within the same pod, the two
aggregation switches have different power profiles and both of them are connected
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Table 3.22: VM request parameters.

Parameter Value
CPU percentage Uniformly distributed

in [10; 30]
RAM percentage
Disk percentage

Bandwidth
Uniformly distributed

in [100; 300]Mbps

Table 3.23: Power consumption and network parameters.

Parameter Value
Access switch Pfix 160W
Access switch Pmax 200W
Aggregation switch Pfix 2000WCore switch Pfix

Aggregation switch Pmax 2500WCore switch Pmax

Server-Access link bw 1Gbps
Access-Aggregation link bw 10GbpsAggregation-Core link bw

to the same number of less consuming and more consuming core switches. The two
profiles for aggregation and core switches are shown in Table 3.24. We generate 60
requests with the parameters described in Table 3.30, and we allocate them using the
FF policy. More specifically, we adopted FF since we were interested only in evaluating
the behavior of the network path allocator regardless the server placement strategy.

We use violin plots [43] to show the main statistical information for our allocators.
Violin plots represent the first and the third quartiles as the extreme points of the bold
line and the median using a white dot, and they trace the probability density func-
tion symmetrically at both sides of the plot. We compare our power-aware network
allocation strategy (PA-Dijkstra) with the classic power-unaware equal cost path (PU-
Dijkstra) in Figure 3.25. The PA-Dijkstra saves on average around 1 kW with respect to
the PU-Dijkstra. The amount of power saved corresponds to the 3% of the total power
consumption due to all the switches.

Performance evaluation of the allocation strategies

We carried out two different experiments evaluating:

• the “steady state” of the system after 80 VMs, when on average all the allocators
saturate the available resources, and new VM requests may not be allocated;

• the “transient state” of the system after 20, 40, and 60 VM requests.

Table 3.24: Aggregation and core switch power profiles.

Profile Pfix [W] Pmax [W]
First profile 2000 2500

Second profile 2500 5000
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Figure 3.25: Power consumption after 60VM requests.

In both experiments we compared our joint with disjoint allocators evaluating them in
terms of accepted/rejected requests. We used Matlab Simulink to perform our simula-
tions, doing 30 independent runs for each experiment.

As described above, we generated 80 VM requests in the first experiment. Our
purpose is to evaluate the steady state of the system reducing the availability of many
resources as possible. In Figures 3.26 and 3.27 we show the results respectively for
joint and disjoint allocators using as metric the number of rejected requests and the
FF policy as comparison term. Furthermore, we show in Table 3.25 all the numerical
values related to each policy and allocation strategy. Joint allocators reach on aver-
age best results compared to the disjoint approaches, and they also guarantee a lower
standard deviation. We underlined the two best possible mean and standard variation
values among all possible combinations. All joint allocators are able to satisfy on av-
erage 66 requests regardless the adopted policy or strategy. On the contrary, disjoint
allocators decrease their effectiveness when BF policy is adopted because the consoli-
dation procedure quickly saturates the bandwidth availability producing congestion at
the higher layers of the topology. Moreover, disjoint BF allocators have a very high
standard deviation because sometimes the network path computation (performed only
when the server is already chosen) may fail, and the request may be blocked even if
there is enough available computational resources. Lastly, all the BF allocators have
a higher standard variation compared to the corresponding WF ones, so WF allocators
are usually more stable. In the second experiment, we focused on the transient phase
inspecting the evolution of the system after steps of 20 allocation requests. We show the
number of rejection after 20 and 40 VM requests respectively in Figures 3.28 and 3.29
for the disjoint allocators. It is worth noting that joint allocators do not reject any VM
until the 40th request. After the 60th request, BF joint allocators are still able to allo-
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Figure 3.26: VMs allocated by joint allocators.
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Figure 3.27: VMs allocated by disjoint allocators.
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Table 3.25: VMs allocated by disjoint allocators after 80 requests.

Joint Disjoint
Mean Std Dev Mean Std Dev

A-ITRA BF 66.38 1.76 63.10 11.56
A-ITRA WF 66.00 1.46 65.38 1.78

F-ITRA M BF 66.34 1.70 63.03 11.61
F-ITRA M WF 66.07 1.25 65.48 1.30
F-ITRA S BF 66.34 1.70 61.66 12.58
F-ITRA S WF 65.90 1.26 65.76 1.48
MODA-D BF 66.55 1.62 63.10 11.56
MODA-D WF 66.34 1.37 65.38 1.82
MODA-R BF 66.34 1.86 62.28 12.46
MODA-R WF 65.93 1.60 65.38 1.52

FF 66.41 1.64 61.72 12.70

cate all the requests unlike disjoint and WF joint allocators. We show the violin plots
in Figures 3.30 and 3.31 and the numerical value in Table 3.26.
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Figure 3.28: VMs rejected by the network after the 20th request.

Summarizing all the results, joint allocators perform always equally to or better than
the corresponding disjoint approach. In the low load phase (i.e., when the DC is not
overloaded), BF joint allocators satisfy all the requests, while WF ones perform better
during the high load phase. For what concerns only disjoint allocators, WF policies
reach results similar to the joint ones, so we suggest to adopt WF policy in this case
choosing the allocation strategy according to the parameter that preferably should be
optimized (i.e., mean or standard deviation of the allocated requests). In our scenario,
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Figure 3.29: VMs rejected by the network after the 40th request.

all the joint allocation strategies using the same policy (i.e., BF or WF) obtained similar
results with respect to the mean and the standard deviation. The A-ITRA approach is
the least computational expensive, while the others increase their complexity obtaining
little improvements. However, all the joint allocation strategies are valid alternatives
to be adopted in a real system. For what concerns the two policies, BF groups all the
VMs in the least number of servers, so it may reduce the number of active computing
devices; on the other hand, BF quickly saturates the access network links. The WF
policy uses all the servers in the transient phase since it is a load balancing policy and
it less congests the network. We suggest to adopt BF policy with a high oversubscrip-
tion rate between the network layers or when servers could be put in sleep mode for
power saving reason. On the contrary, we strongly suggest to use the WF policy if
the DC provider prefers to leave all computing resources active and running, or the
oversubscription rate is low.

3.4.4 Enhanced Worst Fit

As we discussed above, allocators based on WF allocate on average more VMs with
respect to the ones implementing the BF policy. As side effect, worst fit fragments the
available resources that can not be used to allocate other VMs. In order to mitigate the
resource fragmentation, we present a new policy that combines both the behaviours of
BF and WF.

The main difference with respect to the classic approaches, is that E-WF allocates
VMs taking into account the history of the previous requests. We point out the E-WF
code implementation in Algorithm 1. At the very beginning, E-WF works exactly as
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Figure 3.30: Snapshot of the joint allocators after 60 requests.

WF, but it memorizes the history of all the previous requests. In the database of the
previous requests, each resource is stored separately. More clearly, E-WF separates the
requirements of each VM request in four lists, namely CPU, RAM, disk and bandwidth
as shown in Algorithm 1. Also in this case, we may include more or different resources
without loss of generality. When the E-WF allocator receives a number of VM requests
greater than a certain threshold, its behaviour changes and each new VM allocation
is evaluated according to the procedure that is described in Algorithm 1. We set the
threshold equal to the number of servers, so the allocator places exactly one VM per
server before changing its behaviour if no requests are rejected. E-WF computes and
associates with each server a third objective for each new request. We call this new ob-
jective penalty. E-WF uses the penalty value to forecast (and avoid) the future resource
fragmentation.

We assign a penalty for each resource that is less available than the corresponding
first quartile in the history of all the previous requests, and the amount of the penalty is
equal to the difference between the computed quartile and the available resource. We
use the first quartiles as thresholds: if the availability of some resources is less than the
quartile, there is a low probability that new requests may saturate the resource avoiding
fragmentation and we prefer other servers having a lower penalty. Considering the
symbols denoted in Table 3.27, we compute the penalty value for the i-th resource of
server s as (3.30) and code the penalty computation in Algorithm 2.

p(i)s =

{
q
(i)
s − r(i)s if q(i)s > r

(i)
s ;

0 otherwise.
(3.30)
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Algorithm 1 Multi-objective Enhanced Worst Fit Allocator.

Require: VM allocation request req, Server list
Ensure: VM allocation server and network path, or rejection

1: pf ← Pareto front of the current allocation
2: g ← gateway vertex
3: q ← vector of quartiles of each resource
4: for each server s do
5: if all the resources are enough to satisfy the request and at least one path has enough bandwidth

to connect s to g then
6: rfit← ComputeResourceF itting(req, s)
7: penalty ← ComputePenalty(req, s, q)
8: < path, consumption >←ModifiedDijkstra(s, g)
9: associate path with s

10: append < penalty, rfit, consumption > to pf
11: else
12: try another server
13: end if
14: end for
15: reqnum← reqnum+ 1
16: if pf contains at least one feasible solution then
17: eliminate all non-dominated solutions
18: choose the solution which minimizes the objectives according to their priority.
19: choose the best server and allocate the VM
20: else
21: reject the request
22: end if
23: add the request to the history
24: for i := 1 to res do
25: update the vector q
26: end for
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Figure 3.31: Snapshot of the disjoint allocators after 60 requests.

The total penalty for a specific allocation on server s is defined as:

ps =
∑
i

p(i)s . (3.31)

The penalty value is one of the three objectives of our optimization problem that should
be minimized. Since we added another objective, we define the new priority values
associated with each objective in Table 3.28. We remark that higher priority values
correspond to lower objective priorities and vice versa. When we adopt E-WF, we aim
to minimize the penalty value rather, and we consider the other two objective when
more solutions have the same penalty value using the same mechanism implemented
for BF and WF.

Algorithm 2 ComputePenalty.

Input: request req, server s, quartile vector q.
Output: penalty value

1: reqnum← the number of received allocation requests
2: penalty ← 0
3: if reqnum ≤ threshold then
4: for i := 1 to res do
5: if req[i] < q[i] then
6: penalty ← penalty + (q[i]− req[i])
7: end if
8: end for
9: end ifreturn penalty
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Table 3.26: VMs allocated by disjoint allocators after 60 requests.

Joint Disjoint
Mean Std Dev Mean Std Dev

A-ITRA BF 60 0 52.62 10.38
A-ITRA WF 59.86 0.35 58.93 1.56

F-ITRA M BF 60 0 52.66 10.34
F-ITRA M WF 59.86 0.35 58.79 1.42
F-ITRA S BF 60 0 51.45 11.28
F-ITRA S WF 59.93 0.26 58.83 1.39
MODA-D BF 60 0 52.69 10.34
MODA-D WF 59.97 0.19 58.83 1.47
MODA-R BF 60 0 52.10 11.15
MODA-R WF 59.97 0.19 59.14 1.03

FF 60 0 51.62 11.23

Table 3.27: E-WF Symbols.

Symbol Description
s the current server
res total number of resources

i ∈ {1, . . . , res} the resource index
p
(i)
s the penalty value of the i-th resource of server s
ps the total penalty value associated with server s

r
(i)
s

the i-th resource availability index after the allocation
of the current request on server s

q
(i)
s

the first quartile computed from the i-th resource
requests distribution

Simulation Scenario

DC topology Our simulation scenario consists of two DCs organized according to the
three-tier fat tree and the spine-and-leaf topologies that we describe in this section.
The three-tier fat tree is one of the most widely adopted topology [65]. This topology
is structured in three different layers: access, aggregation, and core.

Access layer provides the connectivity of servers, that are grouped into racks and
connected to a single Top of the rack (ToR) switch.

Each ToR switch is linked to a pair of more powerful Aggregation switches that
provide redundant connectivity to ToR switch. A set of ToR switches connected to the
same pair of aggregation switches (including those aggregation switches) is named pod.
Core switches at a higher layer guarantee connection among different pods and towards
the external gateway.

The spine-and-leaf [1] is also a tree topology, but it is composed only of two layers:
leaf and spine. The leaf layer consists of access switches that connect to devices such

Table 3.28: Objective Priorities for EWF.

Objective Priority
penalty 1

resource fitting 2
path consumption 3
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as servers, while the spine layer is the backbone of the network and is responsible for
interconnecting all leaf switches. Every leaf switch connects to every spine switch in
the fabric. The path is randomly chosen so that the traffic load is evenly distributed
among the top tier switches. If one of the top tier switches were to fail, it would only
slightly degrade performance throughout the DC.

Evaluation metrics In our experiments, we evaluate the effectiveness of our allocation
strategies in terms of VM requests allocated/rejected, and power consumed. We use
two metrics to evaluate the performance of our allocators: number of VM request re-
jected that we aim to minimize, and relative ranking (or shortly ranking) that is used to
establish which strategy allocates more VMs with respect to the others. We denote as
best strategy the strategy allocating more VMs, and as worst strategy the one allocating
less VMs during a single run. The ranking procedure sorts all the strategies according
to the number of rejected VM requests, and assigns a ranking value equal to:

ri = 4−#bsi; (3.32)

where ri is the ranking value of the i-th strategy, and #bsi is the number of strategies
that allocate more VMs than the i-th one. More clearly, the ranking procedure assigns a
ranking value of four to the best strategy down to one to the worst strategy except when
two or more strategies tie. We provide an example of ranking values for tying strategies
in Table 3.29.

Our second aim is to reduce the overall power consumption of all the network ele-
ments, namely server network interface cards (NICs) and switches. For the evaluaton
of the power consumption, we generate a lower number of requests such that all the al-
location strategies do not reject any VM requests in order to avoid unfair comparisons
since the allocation of a different number of VMs alters the amount of power consumed.
Then, we compare our PA network allocation strategy with a classic shortest path first
(SPF) routing algorithm evaluating the amount of power consumed by both approaches.

VM generation and runs We randomly generate different types of VM requests charac-
terized by one of the three profiles that we detail in Table 3.22:

• balanced;

• cpu-intensive;

• bandwidth-intensive.

At the beginning, the VM generator produces a balanced number of VM requests for
each profile, and it shuffle all the requests in a random order. All the allocation strate-
gies receive the same VM requests at the same order in a single run. We execute 30

Table 3.29: Example of ranking assigment.

Strategy
VM

Rejected
Ranking

value
E-WF 1 4
WF 1 4
BF 5 2
FF 10 1
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independent repetitions of the same experiments (i.e., we generate 30 different sets
of VM requests for each experiment), and we use violin plots [43] to show the most
important statistical information of our results.

Table 3.30: VM request parameters.

Profile Parameter Value

Balanced

CPU percentage Uniformly distributed
in [5; 15]

RAM percentage
Disk percentage

Bandwidth
Uniformly distributed

in [5; 10]Mbps

CPU
intensive

CPU percentage
Uniformly distributed

in [15; 20]
RAM percentage Uniformly distributed

in [5; 15]Disk percentage

Bandwidth
Uniformly distributed

in [5; 10]Mbps

Bandwidth
intensive

CPU percentage Uniformly distributed
in [5; 15]

RAM percentage
Disk percentage

Bandwidth
Uniformly distributed

in [20; 30]Mbps

Experiments and Results

Performance evaluation Our simulator generates 100 VM requests, namely 33 balanced,
33 cpu-intensive and 34 bandwidth-intesive requests, that are allocated on two different
DCs. We first simulate the fat tree DC with the topology parameters and the power
profiles respectively in Tables 3.31 and 3.32. The results are shown in Figures 3.32
and 3.33: E-WF allocates more VMs with respect to the other approaches. More in
detail, FF and BF behave similarly, WF improves the former two strategies, and E-WF
reaches the best results allocating on average five VMs more than the other strategies.
In E-WF, the probability density function is more dense around the value of 25, while
it rapidly decreases increasing or decreasing the number of rejected VMS. Instead, the
other strategies follow a different trend and their probability density function has two
local maxima. Moreover, for E-WF, the probability to reject more than 30 VMs is very
low differently from the other strategies. In Figure 3.33 we show the ranking values:

Table 3.31: Fat tree topology parameters.

Parameter Value
Server number 16
Server bandwidth 100 Mbps
Access switch
bandwidth 500 Mbps

Aggregation switch
bandwidth 1000 Mbps

Core switch
bandwidth 10000 Mbps

Table 3.32: Fat tree power profile.

Device
Idle

power [W]
Peak

power [W]
Server 100 150
Access 150 300
Aggregation 250 500
Core 500 1000
Gateway 700 1200
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Table 3.33: Spine-and-leaf topology parameters.

Parameter Value
Server number 16
Server bandwidth 100 Mbps
Leaf switch
bandwidth 100 Mbps

Spine switch
bandwidth 1000 Mbps

Table 3.34: Spine-and-leaf power profile.

Device
Idle

power [W]
Peak

power [W]
Server 100 150
Leaf 125 300
Spine 500 1000
Gateway 700 1200

2
0

2
5

3
0

3
5

FF WF BF E−WF

Figure 3.32: VM requests rejected out of 100 demands
simulating a three-tier fat tree topology.

E-WF allocates almost every time the highest number of VMs and performs better than
the other allocation strategies.

We consider now the spine-leaf topology with the parameters reported in Tables 3.33
and 3.34, and we show the results of our simulations in Figures 3.34 and 3.35: E-WF
improves the other strategies allocating more VMs and reaching high ranking values,
obtaining similar results as in the fat tree DC scenario.

Power consumption evaluation As mentioned in previous sections, we measure the power
consumption when our strategies allocate the same 50 VM requests without any rejec-
tions. The 50 requests are divided in 16 balanced, 16 cpu-intensive, and 17 bandwidth-
intensive. We characterize all the network devices with the power profiles described
in Tables 3.35 and 3.36 for the two topologies; in both cases, we characterize some
devices with two different consumption profiles. More specifically, when we adopt
the fat tree topology, half of the access and aggregation switches in the same pod are
characterized with a "more consuming" profile, and the same characterization is real-
ized in the leaf-spine topology, in which half of the server NICs and leaf switches are
characterized by two different power profiles.
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Figure 3.33: Allocation strategy ranking after 100 VM requests
simulating a three-tier fat tree topology.
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Figure 3.34: VM requests rejected out of 100 demands
simulating a spine-and-leaf topology.
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Figure 3.35: Allocation strategy ranking after 100 VM requests
simulating a spine-and-leaf topology.

Table 3.35: Fat tree power profile.

Device
Idle

power [W]
Peak

power [W]
Server 100 150

Access 150 300
250 500

Aggregation 250 500
700 1200

Core 500 1000
Gateway 700 1200

Table 3.36: Leaf-Spine power profile.

Device
Idle

power [W]
Peak

power [W]

Server 100 150
150 300

Leaf 125 300
500 1000

Spine 500 1000

We compare the PA allocation strategies with the SPF ones, and we show the results
for the two topologies in Figures 3.36 and 3.37. PA allocators save more power with
respect to the SPF approaches. Among the PA allocation strategies, all of them have
more or less the same trend except FF which always increases the power consumption.
The PA network allocator significantly reduces the power consumed by the network
devices in both the simulated environments.
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Figure 3.36: Power consumption after 100 VM requests (Fat tree).
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Figure 3.37: Power consumption after 50 VM requests (Spine-and-leaf).

61



i
i

“main” — 2018/4/16 — 17:16 — page 62 — #76 i
i

i
i

i
i

CHAPTER4
Data Center

DC network power consumption depends on switch idle and peak consumption, link
load, and Network Interface Controllers (NICs) utilizations. In this scenario, retrans-
missions affect link utilizations and impact directly on power consumption. This chap-
ter focuses on Software Defined DC network management analyzing two aspects sep-
arately: load balancing and resilience strategies for network flows; and scheduling of
MPI collective communications in distributed applications. Both the aspects aim to
improve the utilization of network resources and DC performance.

4.1 Load balancing and traffic recovery

In the last years, SDN has emerged as a novel paradigm for programmable networks by
decoupling control and data planes [60,61]. Indeed, SDN provides an abstraction of the
network infrastructure, over which it is relatively easy to build new functionalities and
advanced services. The most deployed SDN protocol, OpenFlow [49, 54, 62], allows
to set into OpenFlow-compliant switches forwarding rules established by a central-
ized intelligence, called controller. More in detail, network administrators can run on
the controller management applications and resource optimization tools, implementing
functions such as QoS, load balancing and class-based traffic recovery [12].

Traditional intra-domain routing protocols (e.g., RIP, OSPF, IS-IS) select a single
path between any source-destination pair, thus leading to not uniform utilization of
network resources and undifferentiated treatment of traffic flows with heterogeneous
network requirements. Load balancing tries to distribute flows over the entire network,
and we achieve it by defining variable costs of the links, depending on their current
utilization estimated through OpenFlow statistics. In more detail, in our framework
load balancing is carried out on a per-flow basis and routing changes are applied only to
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Controller Logic

Topology Discovery
Network Statistics 

Handler

POX 

Topology DB

OpenFlow Rules 

Handler

Flows DB

Network

Figure 4.1: Controller architecture.

the new flows, leaving the old rules for the already active ones. The update of the links
statistics is performed periodically according to a configurable time interval, which can
be chosen as a trade-off between the typical time-scales of the traffic dynamics and the
introduced overhead (both in terms of signaling traffic and computational processing
time).

Resilience is an open issue for SDN networks since, after link or node failures, traf-
fic paths are no more automatically reconfigured as occurs in IP/MPLS networks [71].
Indeed, Flow Table entries are now handled by the controller, but not directly updated
in case of failure. Our SDN controller deals with this issue, implementing different re-
covery strategies (Protection and Restoration, which will be described in Section 4.1.1),
based on class-of-service requirements.

Some previous works dealt with resilience in SDN, but they did not consider network
traffic dynamics. Sharma et al. [68], introduced a fast restoration mechanism leverag-
ing the configuration of static entries to forwarding table of OpenFlow switches. On
the other hand, we dynamically assign variable cost to the links based on the current
utilization. Routing paths are computed accordingly, leading to traffic distribution over
the entire network. These topics have also been addressed by the authors in a recent
previous work [12]. The main novel contribution of our framework is twofold. At first,
we provide an enhancement of the controller architecture introducing new functional-
ity. Then, experiments assess the effectiveness of our approach in a new case-study,
based on fat-tree architecture. Such scenario is particularly relevant since the DC is
one of the main application domains, in which OpenFlow drives innovation.

4.1.1 Controller Architecture

Our controller consists of four main modules (see Figure 4.1) that are described in the
following.
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Topology discovery module

The topology discovery service provides and updates information about the network
infrastructure, i.e., hosts, switches and interconnection links. Such information is
archived in the topology database. As the control application is built on top of a POX
SDN controller [5], the topology discovery service is designed starting from two al-
ready existing software components: the host.tracker and the openflow.discovery [6].

It is worth highlighting that in case of DCs, the exact reconstruction of the hierarchi-
cal topology (typically 2 or 3 tiers)requires the identification of Edge, Aggregation and
Core Switches. Since openflow.discovery does not provide this capability, the topology
discovery service of our SDN controller is enhanced with an ad-hoc module exploiting
ICMP packets sent by hosts to the DC gateway and vice versa and a-priori knowledge
of servers and DC gateway address pool.

Network Statistics Handler

The Network Statistics Handler (NSH) retrieves port statistics from each switch Si of
the network and updates the topology database with the current value of link utilization.
We estimate the utilization for each directed link, with bandwidth B connecting Si to
Sj as explained below. Sj keeps track of the number N (t) of bytes received until time
t. Using OpenFlow, NSH retrieves the value of N (t) every Ts seconds. The quantity
[N (kTs)−N ((k − 1)Ts)] represents the bytes received in the k-th time interval, and it
is used to compute the link utilization û (kTs). This value is used to update the cost of
the corresponding link according to a suitable user-defined function (see Section 4.1.2
for a case study). In case of bidirectional links the cost is independently calculated for
each direction.

Moreover, NSH is able to retrieve statistics at flow level and to keep track of map-
pings between flow-table entries and flows average rate that is estimated using the same
approach applied at the port level. This information is contained in the so-called flows
database and used for rerouting purpose as highlighted in the next subsection.

OpenFlow Rules Handler

This module translates the path information generated by the Controller Logic into
OpenFlows rules and is responsible for adding/removing them in each switch.

Controller Logic

This module computes the flow paths taking into account load balancing issues, and it
provides class-based traffic recovery when failures occur.

Starting from the information contained in the topology database, the Dijkstra’s al-
gorithm calculates a set of updated shortest path trees (see Figure 4.2), each rooted at
a different switch of the network. This operation is triggered by any topology or cost
change in the topology database and the Shortest Path Tree is used by the new flows.
In more detail, the edge switch sends a PacketIn message to the OpenFlow controller
when a new flow is generated. Based on the topology database mappings, this mod-
ule associates to source and destination hosts the switches they are connected to, thus
identifying the corresponding path.
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4.1. Load balancing and traffic recovery

Figure 4.2: Class-based path computation with load balancing.

For traffic recovery purposes three classes, characterized by an increasing level of
protection, are available: Bronze, Silver and Gold. In our architecture Bronze flows
require a reactive traffic recovery strategy (Restoration), i.e., the Recovery Path (RP) is
computed, and eventually activated, only after the Working Path (WP) failure. Silver
flows benefit from a proactive technique (Protection): WP and RP are simultaneously
computed, but OpenFlow rules for RP have a lower priority. Therefore, RP rules are
activated only after removing WP rules. Gold flows also benefit from a proactive traffic
recovery strategy, but WP and RP have the same priority level, so that packets are
forwarded on two link-disjoint paths at the same time.

Failures are detected by means of OpenFlow PortStatus messages sent by switches
to the controller; such messages are processed by the Controller Logic and the traffic
recovery procedure (see Figure 4.3) is activated. From the flows database, the module
retrieves all the flows forwarded on the broken link and the class membership informa-
tion. Gold flows do not require any action as traffic is already replicated on the RP. The
remaining flows are ordered based on class and bandwidth to minimize losses during
the recovery phase. In case of Silver flows the Controller Logic instructs the Open-
Flow Rules handler to remove the flow rules. Instead, Bronze flows require a longer
recovery procedure. At first, the Controller Logic creates a new topology, pruning the
broken link, and then runs the Dijkstra’s algorithm, searching for the RP. If such a
path is found, the OpenFlow Rules Handler installs the needed rules in the switches
flow-table, otherwise, the flow is not recovered.

4.1.2 Experimental Results

Our controller has been developed within the POX [5] environment, a Python-based
platform for the development and prototyping of SDN applications.

We present the results of the experimental tests carried out to evaluate the effective-
ness of our control application, tested within the Mininet emulation environment [4].
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Figure 4.3: Class-based traffic recovery.
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Figure 4.4: Emulated topology.

In more detail, we focus on networks with a fat-tree architecture, typical of DCs (see
Figure 4.4), in which each VM can exchange data with all the other VMs. VM traffic is
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4.1. Load balancing and traffic recovery

generated using Iperf [2] and a polling time Ts = 5 seconds is assumed for the update
of the traffic statistics by the NSH.

In the following, we suppose that a flow is uniquely identified by the 5-tuple

< src_ip, dst_ip, proto_ip, src_port, dst_port > .

However, scalability can be achieved through aggregation, for instance considering all
the traffic flows exchanged between each pair of VMs.

In order to assign a cost cij [k] to the corresponding link (i, j), we consider three
wide-sense increasing functions fi : [0, 1] → [α, β] (in the experiments we set α = 10
and β = 1000):

f1 (u) = α + (β − α)u (4.1)
f2 (u) = α + βu − αu (4.2)

f3 (u) = β − β1−u + α1−u (4.3)

Moreover, to avoid route fluttering in case of small changes in the link utilization, we
introduce a quantization step of 0.1 for the input values.

Note that the three functions weight in a different way the link utilization and the
network administrator is free to choose the function which best suits her purposes. In
more detail, after the quantization f1 leads to a staircase function with equal height
steps, while the height of the steps in f2 and f3 are progressively increasing/decreasing,
respectively.

Load balancing

The following tests compare our load balancing strategies fi (i = 1, 2, 3) based on
dynamic cost assignment with a standard Shortest Path First (SPF) policy (i.e., Fixed
Cost (FC) cost assignment). In our experiments each VM runs two different processes,
namely Iperf client and server. Network traffic is generated according to the well-
known heavy-tailed ON/OFF source model originally proposed in [76] to characterize
the high variability and long memory features of actual traffic flows. In detail, ON
period lengths follow a Pareto distribution with shape α = 1.5 and location k = 20
s, corresponding to a mean activity period TON = 60 s. OFF intervals also follow a
Pareto distribution, with α = 1.5, k = 10 s and, thus, a mean value TOFF = 30 s. In the
following, we take separately into account UDP and TCP flows.

UDP flows In the emulation, the rateR of each ON/OFF source is uniformly distributed
in the range [rinf, rsup]. To compare the performance of the cost assignment policies,
we considered two different scenarios, low and high network utilization. Table 4.1
reports the average loss rates for the different policies. In case of low utilization the
performance are quite similar with limited losses also in case of FC. On the contrary, for
high utilization our variable cost strategies outperform FC, with slightly higher losses
when f3 function is considered.

TCP flows In these experiments the throughput depends only on the congestion status
of the network as sources are supposed to be greedy.

Figures 4.5 to 4.8 show the average utilization for all the links of the emulated
network, considering both directions separately, where the labels are denoted by the
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Table 4.1: Average Loss Percentages: UDP Flows.

Transmission Rate (Mbps) Average Loss (%)

f1 f2 f3 FC

R ∈ U [0.064, 2] 0.078 0.083 0.085 0.080
R ∈ U [0.8, 3.2] 0.438 0.412 0.446 5.462

Table 4.2: Average TCP Throughput.

Average Throughput (Mbps)

f1 f2 f3 FC

5.11 5.12 4.81 3.09

letters introduced in Figure 4.4. Since FC always uses the shortest path between pairs
of edge switches, some links are never used, while load balancing policies lead to the
utilization of all links, with a distribution depending on the specific function fi. This
better use of network resources leads to a higher throughput as highlighted by Table
Table 4.2. Indeed, in case of FC the presence of bottleneck links shared by several
connections determines higher losses and throughput reduction.

Traffic Recovery tests

In this subsection we discuss some functional tests, aiming at validating the recovery
procedure under two different approaches, known in the literature as Best Fit (BF) and
Worst Fit (WF) [3]. The first strategy looks for the paths with the highest utilization,
bringing to a consolidation policy, while the other one selects the least utilized paths,
thus extending the load-balancing function to the recovery process.

As already stated in Section 4.1.1, protection and restoration strategies are used
according to the traffic class. For sake of brevity, we only focus on the latter. In
detail, let us consider Figure 4.4 and assume that two bronze flows are active, with the
following features:

1. flow 1 (B=6 Mbps) from h1 to h5 with WP WP1 = s13 → s5 → s1 → s7 → s15

2. flow 2 (B=2 Mbps) from h2 to h6 with WP WP2 = s13 → s6 → s3 → s8 → s15

Then, suppose that link s3 − s6 fails. When this event is detected by the controller, a
new path is computed for flow 2: as expected, in case of BF the new RP RPBF is the
same as WP1, while WF chooses a completely disjoint path (i.e., whose links were
not used by any traffic) RPWF = s13 → s6 → s4 → s8 → s15. This behaviour
is highlighted by the following figures, depicting the average rate as calculated by the
Network Statistics Handler (with Ts = 5 s) for the involved links. In more detail, flow
2 stops utilizing link s6 → s3 (see Figure 4.9) after the failure and starts using link
s4 → s8 in case of WF (see Figure 4.10) or link s7 → s15, shared with WP1, in case
of BF (see Figure 4.11). This behaviour is confirmed by Figure 4.12, as link s8 → s15
belongs to WP2 and RPWF , but not to RPBF .
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Figure 4.5: TCP flows average link utilizations: Aggregation→ Edge direction.
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Figure 4.6: TCP flows average link utilizations: Edge→ Aggregation direction.
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Figure 4.7: TCP flows average link utilizations: Core→ Aggregation direction.
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Figure 4.8: TCP flows average link utilizations: Aggregation→ Core direction.
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Figure 4.9: Link s3 − s6.

Figure 4.10: Link s4 − s8.
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Figure 4.11: Link s7 − s15.

Figure 4.12: Link s8 − s15.
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4.2 MPI Collective Scheduling

4.2.1 MPI Collective

Collectives (or collective communications) are particular kind of communications among
MPI entities which involve more than two processes. Currently, the existing collective
communications defined by the standard are:

• multicast, when a single sender forwards the same message to multiple destina-
tions; this collective is named broadcast when all the possible destinations are
involved;

• reduce, when multiple senders send the same message to a single destination pro-
cess;

• scatter, a single sender spreads chunks of an array to different destinations;

• gather, multiple senders transmit chunks of an array to a single destination;

• barrier, that is used as a synchronization barrier for processes;

• all-to-all, where every process communicates with all the others.

In the current proposal, we focus on multicast/broadcast but in some cases our approach
could be generalized for other collectives. The support for the remaining collectives
will be subject of investigation of future researches.

4.2.2 LogGP Model

One of the most adopted model to evaluate MPI communication is the LogGP model
[14] that is an extension of the LogP model [26]. LogGP model abstracts the communi-
cation performance of MPI communication considering four parameters: the commu-
nication latency incurred in sending a message from its source processor to its target
processor (L), the overhead (o) or the length of time that a processor is engaged in the
transmission or reception of each message, the minimum gap between two messages or
the minimum time interval between consecutive message transmissions or consecutive
message receptions at a processor (g), the bandwidth for long messages (1/G), and the
number of processors (P). In 4.3 we report the values for two libraries running on the
Meiko CS-2 super-computer. When considering TCP/IP communications, the network
latency overcomes all the other parameters, so we might easily neglect them in this
work without losing generality.

Parameter Split-C Elan lib

L 8.6 µs 10 µs

o 1.7 µs 3.8 µs

g 14.2 µs 13.8
1

G
33.3 MBps 43 MBps

Table 4.3: LogGP parameters.
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Our proposal focuses on communications between processes of distributed applica-
tions. Each process could be a source or a destination in the collective communication.
When a process receives a copy of the message, it may become a sender when the
message is received and analysed. We name software-routing overhead the time spent
to analyze the received message and decide the new possible destinations. Usually, the
software-routing overhead is order of magnitude higher than the single hop communica-
tion between two switches. For this reason a receiver is not able to resend immediately
the message after its reception, but it experiences a software delay.

4.2.3 Heuristic

General description

We represent the DC internal structure with a directed graph Γ(V,E); servers and
switches are the nodes while all the links are the edges of the graph. We exploit the
graph topology to optimize the MPI scheduler increasing the parallelism degree of the
communication. The scheduling procedure is iterated until the end of the collective
communication. During each iteration, the heuristic first evaluates all the available
senders and receivers (i.e., the ones which are not transmitting or receiving anything at
that time), and it divides the graph in Reference Areas (RAs) used to map senders with
receivers, avoid network congestion, and improve the scheduling phase; in the second
phase, it generates the flow allocation demands for each source-destination pair; and
in the last phase, it collects all the information about the link occupancy and network
flows that are already allocated, and it solves a multi-commodity flow problem that
determines which demands will be allocated. We describe the three phases below.

Recursive distance-based graph partition

As briefly described, the heuristic splits all the available destination nodes in RAs. We
partite the graph Γ in a set of RAs such that:

RAi ∩RAj = ∅ if i 6= j (4.4)⋃
i

RAi = Γ (4.5)

The assignment of nodes into RAs simplifies the transmission demands generations and
reduces the number of flows that will be evaluated in the allocation phase.

Within a RA, a single process called leader owns the message to be transmitted or is
receiving a copy of it; each RA contains exactly one leader, and when another process
in the same RA is eligible to become a leader (i.e., is receiving or will receive soon a
copy of the message) our heuristic furthermore splits the original RA in two new RA
so as to each RA contains exactly one leader.

We adopt a distance-based criterion to split RAs, defining the distance between a
pair of nodes α and β the length of the shortest path between α and β in terms of
number of edges traversed. The distance-based criterion assigns each destination node
to the less-distant leader’s RA; we apply it both at the beginning of the computation and
every time there is a process eligible as new leader. The splitting procedure, performed
applying the distance-based criterion, is limited only to a single RA and never affects
the limiting ones: even if some destination nodes in the limiting RAs are closer to
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the new leader, those nodes are not assigned to the new RA. Following this procedure
we are now able to assign an integer rank based on the number of splitting operation
applied to each RA. We assign rank zero to the original graph Γ, rank equal to one to
the very first RAs that are generated, and we increase the rank of each new RA after
the partition procedure. We provide an example to better clarify what stated; if A is a
RA having rank equal to r and it is split in n new RAss B1, B2, ..., Bn we have that:

rank(Bi) = r + 1 ∀i ∈ [1, n]. (4.6)

The previous example shows that we can organize all the RAs as a tree where A is the
parent of each new child B RA.

Demand generation

The second phase is the demand generation. Each non-transmitting leader is in charge
to forward a copy of the message within its RA generating all the necessary traffic
demands. In order to increase the parallelism degree, the heuristic leverages on the
distance-based criterion also in this phase: available leaders search in their own RA for
the destination node having the highest distance. We call itpivot, and it is marked as
an eligible leader. Then, we apply the partition procedure as described above, before
performing the transmission, so two new partitions are created: the first which contains
the original leader and the second that includes the pivot node. At this time, we generate
demands from the leader towards each possible destination node in the pivot’s RA, but
only one of them will be allocated in the next phase. The new leader of the second
partition will be the one which receives the incoming transmission, and it is worth
noting that the pivot node may not become the leader of its RA.

If for some reasons in a RA there is no available or reachable destination node,
the chosen leader will inspect bottom-up all the RAs in the RA tree until at least one
destination node is found or the whole graph is explored. Then, we generate the traffic
demands according to the result of this search.

Multi-commodity flow allocation

In the last phase, we allocate some traffic demands solving a multi-commodity alloca-
tion problem. Our goal is to maximize the number of allocated flows and their bit-rate
avoiding network congestion. All the adopted symbols are listed in table 4.4.

Symbol Description
d total number of demands
l total number of links in the graph
bi the bit-rate assigned to the i-th demand
ci the bit-rate requested by the i-th demand
rj the maximum capacity of the j-th link
ωi the weight assigned to the i-th demand
a the allocation vector ∈ Rd

u the link-rate matrix ∈ Rd∗l

Table 4.4: List of the adopted symbols.
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We define the allocation vector as:

ai =

{
1 if the i-th demand is allocated;
0 otherwise.

(4.7)

and the link-rate matrix as:

uij =

{
bi if the i-th demand is allocated on the j-th link;
0 otherwise.

(4.8)

We assign different weights to communications that are done within the same RA
and in this case the weight is higher, or within parent RAs that always have a lower
priority. If a demand might be allocated on multiple paths, our algorithm chooses the
shortest one. The heuristic solves the following linear problem:

maximize :
d∑

i=1

(ai ∗ bi ∗ ωi −
l∑

j=1

uij); (4.9a)

s.t. : 0 ≤ bi ≤ ci ∀i = 1..d; (4.9b)
ai ∗ bi ≥ bi ∀i = 1..d; (4.9c)

d∑
i=0

bi ∗ uij ≤ rj ∀j = 1..l. (4.9d)

We included some other constraints such as:

• the flow conservation principle;

• cycles-avoidance;

• multiple receptions or transmissions avoidance for each node at the same time;

• path integrity.

At the end of the computation, the results are collected and the iteration ends. The
whole algorithm is repeated until the end of the collective communication.

4.2.4 Experiments and Results

In our simulations, we set the latency per hop equal to 1 ms and the software-routing
overhead to 10 ms; we use CPLEX [44] to solve the demand allocation while the graph
management framework is a self-programmed environment written in Java.

We simulate our approach for different network topologies: line, mesh/torus, and
tree, but more topology can be easily implemented and tested. In our figures, we display
the node types through different colors: the original sender is green, the destination
processes are yellow, and the switches are white.

In a tree topology, our scheduling is optimal in terms of throughput and communi-
cation time: we computed the same scheduling obtained in [31] splitting each subtree
in two parts (i.e., the left and right subtrees) starting from the root up to the highest
internal nodes.
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Figure 4.13: Line topology.

Source Destination Start time [ms] End time [ms]
0 8 0 10
0 4 10 16
0 2 16 20
0 1 20 23
8 10 20 25
0 3 23 28
8 10 25 29
4 6 26 30
8 9 29 32
4 5 30 33
8 12 32 38
4 7 33 38

11 13 38 42
11 14 42 47

Table 4.5: Results for the line topology.

We tested our heuristic with 15 servers connected through the line topology depicted
in fig. 4.13 reaching the maximum parallelism degree of the three processes {0, 4, 8} in
the time interval [26,28] as shown in table 4.5.

We generated a 4x4 2-D Mesh that is represented in fig. 4.14. As reported in ta-
ble 4.6, we reach a maximum parallelism degree of five processes {0, 1, 2, 8, 9} in the
time interval [26,28]. We show the computed transmission scheduling in table 4.6.

The results we highlighted for both line and mesh topologies reach a high parallelism
degree. If we neglect the routing overhead, the maximum parallelism degree p we can
achieve is:

p = log2(n); (4.10)

where n is the number of processes involved in the collective. Considering the software-
routing overhead, p is an upper-bound that sometimes can not be achieved. Our topology-
aware scheduler reaches a maximum p that is very close to the ideal one.
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Figure 4.14: Mesh topology.

Source Destination Start time [ms] End time [ms]
0 9 0 5
0 2 5 9
0 8 9 13
0 1 13 16
9 6 15 19
0 4 16 19
0 5 19 23
2 3 19 22
9 13 19 24
2 12 22 29
0 7 23 29
8 10 23 29
9 11 24 28
1 14 26 32
9 15 28 33

Table 4.6: Results for the mesh topology.
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One of the leading standard in the IoT is the IEEE 802.15.4-2015 [7], which is the
third revision of the IEEE 802.15.4 Standard for Low Rate Wireless Networks. IEEE
802.15-2015 [7] standard presents TSCH that provides high reliability and low power
consumption to various industrial applications. The channel agility of TSCH is the key
to its ultra-high reliability and it has been described as the future in making networks de-
terministic. Before the development of IEEE 802.15.4-2015 standard, energy efficiency
and deterministic QoS application requirements were not adequately addressed by the
previous IEEE 802.15.4 standard. TSCH paves the way for addressing this issue, which
emerges from the proprietary Time Synchronized Mesh Protocol (TSMP) [64] and has
been the heart of industrial low-power wireless standards such as WirelessHART [22],
ISA100.11a [45] etc.

As the industrial environment presents a vast range of applications, adopting an
adequate solution for each case is vital to obtain good performance of the system. In
this context, the routing and scheduling schemes associated with these technologies
have a direct impact on important features, like latency and energy consumption.

In industrial environments where TSCH is now relevant, changing batteries can be
dramatically expensive and difficult, thus maximizing the energy efficiency is an im-
portant problem that needs to be tackled. Even though the problem of energy efficient
scheduling and routing has been widely studied for traditional wireless networks, the
strict reliability requirements in industrial networks bring new challenges. To the best
of our knowledge, this is the first work that focuses on energy efficiency as a design
criteria in IEEE 802.15.4-2015 TSCH scheduling. In this work, we focus on schedul-
ing in TSCH networks from the energy efficiency perspective where the gateway makes
frequency allocations and time slot assignments.

The main contributions of this chapter are as follows:
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• the formulation of the scheduling problem in TSCH networks as an energy effi-
ciency maximization problem, which is a non-linear programming problem;

• the introduction of an energy-consumption model of a TSCH node;

• the proposal of a heuristic energy-efficient scheduler to overcome the complexity
of the problem formulation;

• the design of a scheduling algorithm based on Vogel’s Approximation method is
proposed to address the pitfalls of the greedy allocation;

• the performance comparison of the scheduling algorithms with Round Robin Sched-
uler is evaluated by extensive simulations.

5.1 Related Works

In recent times, several works has been tailored towards scheduling in TSCH networks.
Palattella et. al. developed TASA [63], a centralized scheduler that exploits an in-
novative matching and colouring technique of graph theory to plan the distribution of
time slots and channel offsets. Accettura et.al developed DeTAS [9] to construct opti-
mum multi-hop schedules in a distributed fashion which uses neighbour-to-neighbour
signaling for gathering information about the network and traffic features.

Other works address scheduling in TSCH networks using combinatorial properties
based on Genetic Algorithms. The use of GAs has been proven to be quite successful
for time slot and frequency assignment in both cellular networks [41] and cognitive ra-
dio networks [38]. In Industrial Internet of Things, particularly the industrial wireless
sensor network, the studies about the usage of GAs mainly revolve around the configu-
ration of various sensor parameters such as symbol rate, modulation etc. [47], [83].

5.2 Throughput Maximization Scheduling Algorithm in TSCH Networks

In TSCH networks, all the nodes are synchronized and maintain a slotframe structure.
A slotframe is a sequence of timeslots which repeats over time. A typical time slot
duration in IEEE 802.15.4-2015 is 15 ms [73], which is large enough to transmit a frame
and to receive an acknowledgement. In addition, TSCH networks are deterministic in
nature; the actions that occur in each time slot are well known, and its communication
is orchestrated by a schedule. A schedule is defined by the timeslot and channel on
which a node should transmit/receive data to/from its neighbours. The TSCH schedule
can be represented by a 2-D matrix with the width as the number of slots in a slotframe,
and the height as the channel offsets as shown in Figure 5.1. Each node in the network
only cares about the cells it participates in. The two nodes at either end of the link
communicate periodically once in every slotframe.

The communication links hop over a set of available channels in a pseudo-random
pattern among a slot frame. For each scheduled cell, both the sender and receiver will
use the following translation function shown below to determine which frequency f
should be used for communication.

f = FMAP (ASN + channeloffset)modNch (5.1)
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Figure 5.1: TSCH slot-channel matrix with a simple network topology.

where Absolute Slot Number (ASN) is a variable which counts the number of timeslots
since the network was established. FMAP is the mapping function to find the channel
frequency from a channel lookup table. Nch indicates the number of available physical
channels.

Several MAC based scheduling approaches have been considered in the wireless
networking literature [52], [33] but this approach cannot be applied to TSCH MAC.
Nonetheless, TSCH paradigm brings this topic into the focus of research again due
to the following reasons: IEEE 802.15.4-2015 standard defines the mechanism for a
TSCH node to communicate, but the standard does not specify how to build an opti-
mized schedule and to construct a schedule is policy specific; and TSCH brings new
opportunities band challenges because of its time synchronization multiplexed in fre-
quency to be able to scale up communications and to improve reliability. In this paper,
we introduce the TSCH scheduling problem with deadline constraints which differs
from other related works.

5.2.1 Network Model and Problem Formulation

Network Model

We model a time-slotted IEEE 802.15.4-2015 network as a graph G = (V,E), where
the vertices in V = {n0, n1, n2, ..., nN−1} represent the network devices and the edges
in E denote the devices pairs that can sustain a reliable communication. There is only
one gateway denoted by n0 and nk, with 1 ≤ k ≤ N − 1 represents other nodes in
the network. The scheduler resides at the gateway and determines how many pack-
ets and with which frequency each node will transmit in each time slot. Each node is
equipped with a radio with communication range Ri, i.e., transmission is successful
if di,j ≤ Ri condition is satisfied, where di,j is the actual distance between node i and
node j in the network. For the sake of clarity, we are given a set of nodes k ∈ {1, .., .N},
where each node is characterized by its frequency, timeslot and its deadline δk, where
f ∈ {1, ..., F} and t ∈ {1, ..., T} denote the set of frequencies and timeslots respec-
tively. We also denote Pk as the number of packets that can be transmitted. We also
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assume that one-hop transmission of a packet consumes one time slot at most.
At the beginning of each slot frame, each node sends its state to the gateway. We

denote byQk the number of packets in each node’s buffer. We denote byCk,f,t the chan-
nel capacity of link lk,f at time t by assuming a time-varying wireless channel between
each pair of nodes (sender and receiver) which depends on the channel bandwidth B
and the signal-to-noise ratio (SNRk,f,t) of the link based on Shannon’s formula. Mk,f,t

is defined as the number of packets that can be sent during a slot frame.

Mk,f,t = Ck,f,tT (5.2)

where T is the slot frame duration, Mk,f,t is a function of the signal-to-noise ratio and
shows the theoretical upper bound. Uk,f,t represents the number of packets that nk can
send through f in timeslot t based on its queue size and transmission time. (i.e., Uk,f,t

is restricted by both Mk,f,t and Qk because we consider that node k cannot transmit
more than the number of packets in its buffer). Therefore

Uk,f,t = min(Mk,f,t, Qk) (5.3)

Considering the binary variable Xk,f,t defined as:

Xk,f,t =


1

if node nk transmits using
frequency f in time slot t;

0 otherwise;
(5.4)

~x = [Xk,f,t, k ∈ {1, ...N}; f ∈ {1, ...F}; t ∈ {1, ...T}] (5.5)

is the scheduling decision vector with elements Xk,f,t. Note that Xk,f,t is a function
of the information available to nk. The gateway needs to first collect network statis-
tics (e.g. the topology information of the network and the traffic generated by each
node). With the required information at the gateway, the scheduler which resides at
the gateway now performs its scheduling approach. Moreover, we assume that all data
transmissions are scheduled in dedicated1 timeslots (i.e., only one transmitter is sched-
uled, and the cell is contention free).

We assume that each device is equipped with a half based transceiver radio, which
implies that a device cannot transmit and receive at the same timeslot. We also assumed
that a device cannot receive from multiple nodes at the same time. Consider node ni,
the transmission of node nj will interfere with the transmission of ni if

| np − nj |≤ (1 +4) | ni − nj | (5.6)

for any node np 6= ni., where | ni − nj | is the Euclidean distance, and 4 is a guard
zone specified by the protocol to prevent a neighbouring node from transmitting on the
same channel at the same time. It also allows for imprecision in the achieved range of
transmissions [40].

1In TSCH network, shared slots are allocated when multiple transmitters are scheduled for transmission to the same device
simultaneously, and the standard defines a CSMA-CA algorithm to reduce the probability of repeated collisions. We do not use
shared slots as we assume reliable link-layer communication
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Throughput Maximization Problem

Our objective is to give each link l ∈ G a transmission schedule, which is the list of
time slots and frequencies it could send packets such that the schedule is interference-
free and the overall throughput of the network is maximized. Given the values for
N,F, T,Mk,f,t, the throughput maximization problem is to find the vector X given by
the following binary integer linear programming (ILP) formulation to be executed by
the gateway:

P1: max
N∑
k=1

F∑
f=1

T∑
t=1

Uk,f,tXk,f,t (5.7)

s.t
F∑

f=1

T∑
t=1

Xk,f,t ≥ 1;∀k ∈ {1, ..., N} (5.8)

Xk,f,t +Xk′,f,t ≤ 1;∀k, k′ ∈ N, k 6= k′,∀f, ∀t (5.9)
dk∑
t=1

F∑
f=1

Xk,f,t = Pk;∀k ∈ N (5.10)

Xk,f,t ∈ {0, 1};∀k ∈ N ;∀f ∈ F ; ∀t ∈ T (5.11)

In the problem formulation, the objective function in (5.7) maximizes the total through-
put of all the nodes in TSCH network governed by the gateway. The constraint in (5.8)
ensures that each node is assigned at least one time slot and hence provides temporal
notion of fairness. If there is a need to ensure more bandwidth to a link, this can be
done by putting more slots to that link which allows the need to send more packets
inside the frame. The constraint in (5.9) is used to avoid collision, by guaranteeing that
at most one user can transmit in a certain slot and frequency offset. Constraint (5.10)
is used to ensure that each node has to transmit a certain number of packets within a
deadline frame. Constraint in (5.11) indicates a binary decision variable.

We assume in the simulations part of this work that the buffers of the nodes are
continuously backlogged; i.e., there are always enough packets to transmit with the
data rate determined by the scheduling algorithm. This situation is necessary in order to
effectively evaluate the performance of the scheduling process by avoiding the possible
influence of the traffic arrival process.

Generalization of the Deadline Constraints

In our work, we assume that each packet has a deadline of one timeslot. Most work
focuses on dropping a packet from the system if it is not delivered within the estimated
deadline. Conversely, our aim is not to drop the unacknowledged packet that is not
delivered within the estimated deadline, but to minimize the number and the entity of
the delay. Moreover, in real-time applications, data arrive at the node’s buffer on a
frame-by-frame structure. This means that multiple packets (belonging to the same
frame) arrive simultaneously rather than one at a time. A slot frame consists of a fixed
number of packets, and each packet fits into exactly one time slot of duration t (both
transmission and acknowledgement).
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Each slot frame has its own deadline, and therefore, packets belonging to the same
frame have the same deadline [80]. This deadline represents the maximum number of
time slots by which packets belonging to the same slot frame need to be transmitted, on
average. P1 can be thought of a special case, where the deadline was equal to one time
slot, and each slot frame consists of packets.

5.2.2 Proposed GA Scheduler

Genetic Algorithms

Our motivation for using GAs in designing suboptimal schedulers for the throughput
scheduling problem is manifold. First, GAs are suitable for problems with large search
spaces. They are equipped with many tools to reduce computational complexity and
also to produce a diverse set of solutions. This is possible because they can quickly
focus in a specific area and diversify search to develop wide range of solutions to ad-
dress unknown environments. Considering that the solution space in the throughput
scheduling problem is huge (even for 5 nodes, 5 frequencies, and 5 time slots, the size
of the solution space for the throughput optimal scheduler is 2125). Secondly, the binary
decision variables Xk,f,t can be easily encoded to a binary string, and therefore, GAs
can be suitably applied.

Encoding

The feasibility of using genetic algorithm is problem dependent. Its success strongly
depends on whether the right encoding scheme can be adopted or not. We detail all the
adopted symbols in Table 5.1 below. We associate with each source node three integer
values: a unique identifier (n), the number of packets that should be transmitted (t), and
the deadline (δ) as described in (5.12).

(n, t, δ) n ∈ {1, 2, . . . , N} t, δ ∈ N. (5.12)

In our work, we encoded the solutions as an integer vector having length equal to M .
We represent our solution in (5.13) and (5.14), and we detail the encoding scheme in
(5.15).

Table 5.1: Symbols.

Symbol Description
S a generic solution
si the i-th element of the solution
N the number of source devices
M the total number of slots that should be transmitted

M =
N∑
i=1

ti ∀i = 1, 2, . . . .., N. (5.13)

S ∈ NM = {s1, s2, . . . , sm}, (5.14)

si ∈ {1, 2, . . . , N} ∀i ∈ {1, 2, . . . ,M}. (5.15)
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Solutions must guarantee to each source node the transmission of all the required time
slots in order to be feasible.

Fitness Function Evaluation

The amount to which a chromosome satisfies a problem requirements depends on how
much it maximizes or minimizes the objective function and how many problem con-
straints it violates. In view of this, our goal is to maximize the throughput and also
minimize the amount of violated deadline for all the transmissions. In maximizing the
throughput, we introduce two values FTa as maximizing the throughput and FTb as
the problem constraints it violates. If any constraint is violated, FTa equals zero and
FTb is non-zero. Likewise, if no constraint is violated, FTb equals zero and FTa is
non-zero. We formulate the fitness value for maximizing the throughput as follows:

FTa =


0 if W1 +W2 > 0;

N∑
k=1

F∑
f=1

T∑
t=1

Uk,f,tXk,f,t otherwise;
(5.16)

FTb =


0 if W1 + W2 = 0;

1

W1 +W2

otherwise;
(5.17)

where W1 is the number of violations of constraint (5.8), and W2 is the number of
violations of constraints (5.9). If W1 + W2 > 0, it means that some constraints are
violated. If W1 + W2 = 0, it means that none of the constraints is violated. On the
other hand, we minimize the current fitness function:

f =
N∑
i=1

ti∑
j=1

(δi − rij)Wj(δi, ri) (5.18)

where

Wij(δ, r) =

{
1 if δ > rij

0 otherwise
(5.19)

and ri is the allocation vector of each timeslot of the i-th mote. If we are not able to
obtain the best schedule, we always prefer small time violations of each deadline.

Operator

The mutation operator alters a single solution and generates a new one; this operator is
used to re-introduce genes that are lost during the recombination phase with a certain
mutation probability; the aim of this operator is to avoid establishing a uniform popu-
lation unable to evolve. In our case, we randomly permutate the solution. Moreover,
since our goal is to find the best ordering, we rely on the PMX Crossover that performs
some permutations among the two parents.
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Search Strategy

NSGAII Non dominated Sorting Genetic Algorithm-II [28] is based on the concept
of Pareto dominance and optimality and uses a fast non-dominating sorting approach
in classifying the solutions. Using sorting in NSGA-II, i.e., rapid and non-dominated
solution can reduce computational complexity. NSGA-II selection operator uses non-
dominated rank and a crowding distance [66] value to choose a winner between two
feasible individuals from the parent population.

NSGAIII Non dominated Sorting Genetic Algorithm-III [29], is an improved version
of NSGA-II, able to efficiently evolve solutions where problems include a large num-
ber of objectives. Since we are dealing with a single objective problem, NSGA-III will
pick a random solution for its recombination and mutation operators. The key behind
the success of NSGA-III is the niching based selection operator, which adapts pres-
sure automatically according to the dimensionality of the problem in hand. The major
difference between NSGA-II and NSGA-III is replacing the crowding-distance-based
niching [66] with reference-directions-based niching [29].

MOCell The multi-objective cellular genetic algorithm [57] uses a decentralized pop-
ulation structure called cellular whereby individuals are isolated by distance and only
solutions in neighbouring cells are allowed to interact, which prevents good solutions
from spreading quickly and hence maintains solution diversity.

SPEA2 Approach SPEA2 [85] uses an archive to store non-dominated solutions. SPEA2
maintains an external set of individuals that take into account the number of solutions
for each solution it dominates and the number of solutions by which it is dominated.
Individuals in population and external set are evaluated interdependently.

Round Robin Scheduler and Random Scheduler

In this section, we introduce another scheduler called round robin scheduler. The round
robin scheduler considers all the source nodes and allocates a single slot to each until all
the transmissions are performed. More into the details, the scheduler allocates the first
n−1 timeslots to source nodes s1, s2, ..., sn−1, then it performs another round allocating
slots to source nodes having a second packet to transmit. The total number of rounds
is equal to the maximum number of packets that should be transmitted among all the
source nodes, and the procedure ends when all the packets are scheduled. Differently
from a classical round robin, the scheduler assigns timeslots only to source nodes that
should transmit at least one packet. This feature improves the global throughput of the
system.

On the other hand, the random scheduler which is based on the round robin paradigm
allocates all the timeslots randomly and it does not follow a precise strategy. Also in this
case, the random scheduler assigns timeslots only to source nodes that should transmit
at least one packet; source nodes that have already transmitted all their packets are not
taken into account.

Performance Evaluation In this section, we implemented the GA-based suboptimal sched-
ulers with the jmetal framework, whereas we solved the optimization problems using
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CPLEX. In our simulation, we consider a TSCH network comprising of sensor nodes
randomly deployed in a square area where a star topology is considered i.e., each de-
vice is randomly deployed around the gateway. We assume that a slotframe contains 75
timeslots and each slot is 15 ms long, and we obtained Uk,f,t values for the slotframe
period mentioned above. The simulation parameters are given in table 5.2. The sim-
ulation is performed with 50 runs and the results are given taking average of those 50
runs.

Table 5.2: Basic Simulation Parameters.

Parameters Value
Radio band 2.4 GHz
Bit rate 250 kbps
Channel bandwidth B 2 MHz
Number of nodes N [10,100]
Channel numbers 11-26
Timeslot duration t 15 ms
Slotframe duration T 750 ms
Deadline dk
Transmitted power Ptx mW

In Section 5.2.2, we used the original parameters proposed for GAs, and we imple-
mented the classical crossover and mutation operators for combinatorial problems. The
chromosome size is equal to N × F × T . Various experiments were performed. We
analyse the best solutions taking the two objectives separately. Employing a very large
experiment directly in the first steps is usually considered a waste of time [56]. In line
with this approach, we initially make a series of experiments using N = 10, and then
observe the impact with various method combinations. Afterwards, we evaluate the
scalability by increasing the number of nodes to 100 in steps of 10. The platform used
to execute these experiments was an i7 CPU 860@2.80GHz x 8 equipped with 12GB
RAM running Ubuntu OS 16.04 LTS.

One of the objective is to minimize the violated deadlines, so we propose GA-based
algorithms to solve for the objective function. At first, we compare the execution times

Table 5.3: Genetic Algorithm Parameters.

Parameter Value
Population size 100
Evaluations number 100
Crossover operator one point
Crossover probability 0.9
Mutation operator Random mutation

Mutation probability
1

task number

Selection operator Binary tournament

Search heuristic
NSGA-II, NSGA-III,

SPEA2, MOCell
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Figure 5.2: Execution Times of the Scheduling Algorithm.

Table 5.4: Average Execution times in ms of the various Genetic Algorithm Search Strategies.

Number of Nodes NSGAII NSGAIII MOCell SPEA2
10 74 12 30 1665
20 76 14 30 1683
30 77 15 33 1760
40 79 15 34 1774
50 80 16 35 1792
60 80 16 37 1822
70 82 18 39 1868
80 85 18 40 1955
90 89 23 40 1964

100 93 27 42 1983

of the search heuristic indicated in section IV-H. We use the genetic algorithm param-
eters indicated in Section 5.2.2. As shown in Figure 5.2, GAs solves the allocated
problem faster than CPLEX. NSGA-III performs less compare to others in terms of the
execution time. It performs faster because it focuses on multiple predefined reference
points rather than multiple search directions as seen in other GAs. Each reference point
can be emphasized to find the set of pareto-optimal points. The worst among the GAs is
SPEA2 because it has a complexity of O(L logL), where L is related to the population
size and the pareto front instance. Table 5.4 gives a detailed values for the execution
times of the search heuristics.
In Figure 5.3, with the parameter settings in Table 5.2, we compare the result of GA

with CPLEX, round robin scheduler and random scheduler with respect to the objective
of minimizing the violated deadlines. We implemented the GA using various search
strategies presented in the previous sections, but they have the same result since we are
considering a single-objective optimization problem. We indicate the search heuristics
as GA. As shown in Figure 5.3, we can see that GA outperforms both round robin and
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Figure 5.3: Minimizing the violated deadlines.

random schedulers, and at the same time yielding very close result to the optimal solu-
tion obtained through CPLEX. Moreover, we consider 10 nodes with mutation rate =
0.01, and a crossover to be 0.9. Figure 5.3 presents the average throughput optimal as
well as the throughput maximizing GA-based scheduling scheme with the parameters
in Section 5.2.2 while varying the population size. It can be shown that increasing the
population size increases the throughput, however, the computational cost of a single
iteration increases since more chromosomes have to be processed at each iteration. In
addition, the performance improvement decreases as the population size increases. The
results indicate that setting the population size to 100 is a sensible choice in terms of
both criteria. Furthermore, the GA-based approach outperforms the round robin sched-
uler while at the same time yielding a close performance to the throughput optimal
derived by CPLEX. Figure 5.4 presents the average network throughput performance
for the throughput optimal, Round Robin and the GA-based suboptimal scheduler with
population size of 100, mutation rate of 0.01 and crossover to be 0.9, where the num-
ber of TSCH nodes varies between 10 and 100. For all the schemes mentioned above,
the GA-based suboptimal scheduler outperforms the round robin scheduler in terms of
throughput with several orders of magnitude, while at the same time yielding a very
close performance to the throughput optimal scheduler. The throughput increases as
the number of nodes increases.

Notice here that if we ignore constraints (5.8), (5.10) and (5.11) in the problem for-
mulation, the optimal solution is achieved when each frequency and timeslots are as-
signed to the node nk that has the maximum Uk,f,t value for the frequency and timeslot.
In other words, Xk,f,t = 1 if k = argmaxk(Uk,f,t) and 0 otherwise, ∀f ∈ F, ∀t ∈ T .
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Figure 5.4: Average network throughput for the GA-based scheduling scheme with N = 10, crossover
= 0.9, mutation probability = 0.01 and varying population size.
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Figure 5.5: Average network throughput for the GA-based scheduling scheme with population size =
100, crossover = 0.9, mutation probability = 0.01 and varying number of nodes.
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CHAPTER6
Conclusions

This thesis proposed novel power-efficient resource allocation strategies in DCs. The
highest expenses for Cloud providers concern electricity costs and hardware manage-
ment, and the introduction of DC management strategies improving the resource uti-
lization is useful both to mitigate electricity costs and to increase provider’s RoI. We
analyzed the allocation problem from two different perspectives: the former deals with
the improvement of computing and network resource utilization defining new place-
ment strategies for tasks and VMs; and the latter handles the internal management of
network flows through the application of load balancing techniques, resilience mecha-
nisms, and network demands scheduling.

For what concerns the first aspect, we distinguished the static allocation, where all
the requests are known in advance, from the dynamic one, which considers each request
one by one. More thoroughly, we formulated a multi-objective optimization problem
for static task and VM placement designing a fast and scalable approach based on a
customized implementation of MOGA. We aimed to solve a complex problem both
minimizing server and switch power consumption while improving DC overall perfor-
mance by drastically reducing the computation length; the allocation patterns found by
MOGA were compared with others computed by SA and CPLEX. Results show that
MOGA reaches the same performance of CPLEX reducing the computation time from
hundreds to less than ten seconds. Moreover, MOGA performs better with respect to
other heuristics such as multi-objective SA implemented to perform another compari-
son.

The main goal of dynamic VM allocators is to place as many VMs as possible lim-
iting resource fragmentation and increasing resource availability for future allocations.
We compared several allocators based on two classical allocation strategies: BF and
WF. Among the allocators based on single-objective, multi-objective, and fuzzy logic
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solvers, we reached slightly better results using the WF multi-objective allocator. Since
WF typically fragments the available resources, we investigated on how to further im-
prove it in order to overcome WF limitations. For this reason, we designed the En-
hanced Worst Fit (EWF) strategy combining the strength point of both BF and WF.
One of the key aspects of EWF is the reduction of resource fragmentation using the
history of the previous requests. Indeed, EWF predicts future allocation patterns using
statistical information collected from the previous requests. Results show that EWF
places more VM with respect to BF and WF, hence satisfying a higher number of allo-
cation requests.

We addressed the issues related to the design and implementation of a new controller
for class-based traffic recovery and load balancing in SDN networks. We carried out
functional and performance tests aimed at verifying first the correct operation of our
controller in presence of multiple flows and link failures, and successively the perfor-
mance of load balancing with different cost strategies. The results highlighted that the
inter-working between the controller logic and the traffic monitoring/estimation mod-
ule allow to take advantage of the network redundancy for better resource utilization
and efficient recovery from failures.

The last improvement of DC network flow management concerns the design of
a topology-aware scheduling strategy for MPI collective communications that avoids
network congestions and minimizes the overall communication time. The proposed
scheduler operates on a graph representing the whole network which is functionally
partitioned to increase the communication parallelism while decreasing the commu-
nication latency. We tested our scheduler on several topologies, and the results are
promising since we achieved the optimality in terms of communication latency when
servers are organized according to a tree topology, and we reached a good parallelism
degree for servers interconnected through mesh and line topologies.

In the last part of the thesis, we pointed out our contributions to the development of
power-efficient communication strategies for IoT devices. We designed a new schedul-
ing strategy based on GA for IEEE 802.15.4 devices using a centralized gateway and
TSCH. We considered a real-time scenario in which communications should be trans-
mitted within a deadline while reducing the device power-consumption and the overall
communication latency.

Our contribution aimed, on the one hand, at the improvement of QoS and QoE for
5G customers, on the other at the increment of providers and mobile operators rev-
enues. The joint optimization of the power consumed by DCs and the improvement
of resources utilization allow a reduction of the operational costs while increasing the
number of customers. In addition, the integration of Cloud functionality with the mo-
bile network will be challenging in the next years: it will be mandatory to implement
an orchestrator both in DC and IoT scenarios in order to meet the very strict QoS re-
quirements of the 5G standard.
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