
Towards Hard and Soft Real-time

Operating Systems for Multicore

Heterogeneous Architectures

Alessio Balsini

Real-time Systems Laboratory
Scuola Superiore Sant'Anna

A thesis submitted for the degree of

Doctor of Philosophy

Supervisor
Prof. Tommaso Cucinotta

Tutor
Prof. Luca Abeni

November 30, 2018

Contents

1 Introduction and Contributions 1

2 List of Publications 5

3 Scheduling Latency in Control Systems 7
3.1 Scheduling Latency for AUTOSAR Components: De�nition, Anal-

ysis and Simulation . 8
3.1.1 System Model and Notation 9
3.1.2 Worst-case Latency Analysis 11
3.1.3 Model Simulator . 16
3.1.4 Conclusions and Open Challenges 19

3.2 Data Placement Optimization to Minimize End-to-end Latency . 19
3.2.1 System Model and Notation 21
3.2.2 Timing Analysis with Memory Contention 23
3.2.3 Implementing and Analyzing the Logical Execution Model

in AUTOSAR . 25
3.2.4 The Challenge Model . 26
3.2.5 End-to-end Latency . 27
3.2.6 Optimizing the Placement of Memory Labels 28
3.2.7 Experimental Evaluation 30
3.2.8 Discussion of Results, Conclusions and Open Challenges . 33

3.3 Formal Language Veri�cation . 33
3.3.1 Introduction . 33
3.3.2 From Requirements to Monitors 36
3.3.3 The STL Language . 38
3.3.4 The Monitor Generation Tool 41
3.3.5 Parsing and Generation Tool 43
3.3.6 The Simulink Libraries for Monitoring STL and Control

Constraints . 44
3.3.7 Usage Example . 46
3.3.8 Conclusions and Open Challenges 49

4 Extensions to Reservation-based Scheduling 50
4.1 Container-Based Real-time Scheduling in the Linux Kernel . . . 51

4.1.1 De�nitions and Background 52
4.1.2 Real-time for Linux Containers 55
4.1.3 Experimental Results . 59
4.1.4 Conclusions and Open Challenges 63

i

CONTENTS

4.2 Virtual Network Functions as Real-time Containers in Private
Clouds . 63
4.2.1 Related Work . 64
4.2.2 Proposed Approach . 65
4.2.3 Experimental Results . 68
4.2.4 Conclusions and Open Challenges 69

4.3 Self-suspending Tasks . 69
4.3.1 Background and notation 71
4.3.2 HCBS for Suspension-Oblivious Analysis 71
4.3.3 Linux Implementation . 81
4.3.4 Conclusions and Open Challenges 86

5 Heterogeneous Architectures 87
5.1 Energy-e�cient Low-latency Audio on Android 89

5.1.1 Related Work . 91
5.1.2 Background . 93
5.1.3 Adaptive Reservations on Android 98
5.1.4 Experimental Results . 102
5.1.5 Conclusions and Open Challenges 107

5.2 Power Consumption and Computing Time Simulator for Hetero-
geneous Multicore Architectures 109
5.2.1 Related Work . 111
5.2.2 Proposed Approach . 113
5.2.3 Implementation Details 115
5.2.4 Experimental Results . 116
5.2.5 Conclusions and Open Challenges 118

5.3 Real-time Dynamic Recon�guration of FPGA Accelerators: the
FRED Framework . 119
5.3.1 Related Work . 122
5.3.2 Recon�guration Times and Speedup Evaluation 125
5.3.3 Analysis . 135
5.3.4 Operating System Support to FRED 151
5.3.5 Conclusions and Open Challenges 159

6 Conclusions 161

ii

List of Figures

3.1 E�ect chains in the model. 10
3.2 End-to-end delay in the case of undersampling. 11
3.3 End-to-end delay in the case of oversampling. 11
3.4 End-to-end delays obtained by simulation. 18
3.5 The LET model of execution. 22
3.6 Code implementation of the LET model of execution with explicit

or implicit communication. 25
3.7 Placement of the labels for the case of explicit (dark bars) and

LET-based (light bars) communication. 31
3.8 The framework for monitor generation from requirements. 36
3.9 Step signal generator. 37
3.10 Block diagram representing the elements involved in the project. 42
3.11 Validation bock content. 44
3.12 Library for the generation of STL monitors. 45
3.13 The STL library block for checking the timed Until condition. . . 46
3.14 Library for the generation of Control monitors. 46
3.15 Overshoot monitor block internals as de�ned in the Control Mon-

itor library. 47
3.16 Example of Simulink block diagram of a model with a closed loop

controller. 47

4.1 CDF of the normalised response times obtained using LXC and
kvm. While the worst case response time is the same, LXC pro-
vides better average response times (the LXC CDF is above the
kvm CDF). 60

4.2 Number of xruns reported by JACK throughout all the 10 repeti-
tions of each con�guration. The proposed control group scheduler
(HCBS) requires a smaller percentage of CPU time than standard
SCHED_DEADLINE (DL) to avoid xruns. 62

4.3 Reference service topologies. 65
4.4 Proposed approach: n services are deployed as containers over a

host with multiple physical CPUs. Container i has runtime Qi
and period Pi. 67

4.5 CDF for the normalized lateness of a task set scheduled in an lxc

container with various values of runtime and period. 68
4.6 Example of a Task Isolation Framework. 72
4.7 HCBS serving a SS-task: a counterexample using suspension-

oblivious analysis. 73

iii

LIST OF FIGURES

4.8 HCBS serving a SS-task where self-suspensions have been re-
placed with busy executions. 73

4.9 HCBS with SS-tasks: the bandwidth check of the HCBS is disabled. 75
4.10 State transition diagram for the H-CBS-SO algorithm. 75
4.11 update_curr_dl() execution times. 84
4.12 enqueue_task_dl() execution times. 84
4.13 dequeue_task_dl() execution times. 85
4.14 dl_task_timer() execution times. 85

5.1 Overview of the Android audio architecture. 90
5.2 Logical blocks involved in a low-latency Android AAudio playback. 94
5.3 Exempli�cation of audio processing pipeline, showing the sched-

ule of the real-time application thread processing each burst (on
bottom), the �ll level of the audio ring-bu�er within the kernel
(central) and the audio burst under playback at each time instant
(on top). Time on the x axis is expressed as multiples of b/S. . . 96

5.4 Dynamic bandwidth allocation: logical blocks. 102
5.5 SynthMark logical blocks in relationship with the Android low-

latency audio pipeline. 103
5.6 SynthMark utilization perceived by schedutil using SCHED_FIFO

with WALT (5.6a) and by the Predictor (5.6b), and frequency ad-
justment at the varying the number of workUnits. 105

5.7 SynthMark behavior using SCHED_FIFO with WALT (5.7a) and
with adaptive bandwidth allocation (5.7b), at the varying of a
random number of workUnits. 106

5.8 Frequency residency comparison between the WALT and the adap-
tive bandwidth allocation approaches. 107

5.9 Measurements on the power consumption of the big CPU cluster,
running di�erent workloads at di�erent frequencies. 110

5.10 Normalized execution times of di�erent workloads running on a
big CPU at di�erent frequencies. 111

5.11 Comparison between the power consumption simulated with RT-
SIM and the respective experimental results. 117

5.12 Validation of the execution times model of the simulator by com-
paring the experimental results. 118

5.13 Trend of recon�guration throughput. 120
5.14 Block diagram of the considered system. 126
5.15 Distribution of recon�guration times. 133
5.16 Execution behavior of a SW-task calling a HW-task. 137
5.17 Scheduling infrastructure for HW-tasks requests in FRED. 139
5.18 Example of preemptive FRI scheduling under FRED. 141
5.19 Schedulability ratio as a function of U 149
5.20 Schedulability ratio as a function of UH 150
5.21 Schedulability ratio as a function of the number nA of added tasks.150
5.22 Support design for the Zynq SoC. 152
5.23 FRED software support architecture. 154
5.24 Communication between SW-Tasks, FRED server, and HW. . . . 157
5.25 Distributions of the recon�guration times. 158
5.26 Distribution of the overhead introduced by FRED. 159

iv

List of Tables

3.1 End-to-end latency upper bounds (µs) for the �rst (I) and second
(II) challenge. 16

3.2 Worst-case response times (µsec) for the �rst (I) and second (II)
challenge, and simulated results. 19

3.3 Response times (µsec) for the runnables in the e�ect chains under
explicit communication. 32

3.4 End-to-end latencies for the e�ect chains under explicit commu-
nication. 32

3.5 Values in the DD �le for the Simulink example with the STL
constraints. 48

4.1 JACK experiment parameters . 61

5.1 Typical audio parameters. 95
5.2 Parameters characterizing real-time periodic tasks and SCHED_DEADLINE

reservations. 97
5.3 Summary of the audio latencies and energy consumptions ob-

tained under the SCHED_FIFO with WALT both with dynamic
and static workload, and the adaptive bandwidth allocation ap-
proaches. 108

5.4 Classi�cation of the related work. 124
5.5 Speedup evaluation. 131
5.6 Hardware accelerated task-set. 133
5.7 Observed recon�guration times. 134
5.8 Symbols used throughout the chapter. 138

v

Chapter 1

Introduction and

Contributions

In the last decades, the unprecedented evolution of computing and networking
devices opened the doors to the use of computing services in a number of dif-
ferent applications and the accessibility of personal and mobile devices to the
majority of the people. The technological evolution grew together with the re-
quirements imposed by the users, resulting in the need to provide, among others,
high computational power, low latency, and limited power consumption.

The growing capabilities of the computing architectures, both in terms of
computing and communication speed, the former with the reduction of chip
sizes and the introduction of multicore and manycore computing platforms,
the latter with the global Internet accessibility, enabled the development and
di�usion of a variety of new di�erent applications, resulting in new requirements
and challenges to tackle.

It is not possible to think of the devices we have nowadays as the devices
available ten years ago. The smartphones we have nowadays completely disrupt
high-end personal computers of 10 years ago in all the aspects, from memory
capacity, to computing speed, power consumption, and size. This capability
improvement allowed software developers to realize more and more complex
applications, spanning from multimedia players to video recording, image and
voice recognition based on arti�cial intelligence, web browsing, and so on, thus
requiring a full operating system to manage all the di�erent workload and pro-
vide isolation for security and performance purposes.

This relentless evolution of the computing infrastructure led also to an in-
creasing complexity of the computing architectures, that now involve billions
of interconnected devices. And the more complex is the devices architecture,
the more complex is the software to fully exploit the available computational
capabilities. One example can be the need of spreading the workload among
many distributed devices, like in cloud architectures, or the management of data
streams generated by a number of interconnected embedded devices, that may
be collected by a single server in the cloud, following the Internet of Things
(IoT) paradigms.

The request for �exible computing architectures also gave birth to services
that in the past were provided by custom hardware, like in the case of Network

1

Functions Virtualization (NFV).
In most of the mentioned cases, one of the fundamental requirements is

to provide small response times or end-to-end latency, that often translates
into the ability of providing real-time guarantees or, in other words, temporal
predictability.

The problem is particularly challenging in hard real-time settings, such as in
the automotive industry, that has been revolutionized in the last decades by the
evolution of the computing technologies. It is nowadays usual to �nd in a vehi-
cle tens, sometimes hundreds, interconnected microcontrollers, hosting complex
software components implementing evolved sensing and control features that
were just impossible to realize 20 years ago. Another big step in the comput-
erisation of the vehicles has been due to the introduction of fully autonomous
vehicles, that are forecast to dominate the roads in the upcoming decades. In
this example, all the vehicle decisions are taken in real-time according to the
events happening both inside and outside the car, and may also depend on the
data exchanged through the Internet (e.g., maps, tra�c, etc.), for which the
elaboration of all of this information causes computationally intensive work-
loads. In the automotive �eld, also the requirements speci�cation evolved and
increased in di�culty, due to both the number of involved devices and the com-
plexity of the requested functionalities. Nowadays there are research branches
and companies involved in the management of the requirements, covering the
process the goes from the disambiguation of the requirements to the testing and
validation for compliance of whole systems (e.g., automatic code generation and
formal methods), aiming at simplifying the connections between speci�cations,
design, and validation. For these examples, the most critical control units of
the vehicle introduce even harder temporal constraints, requiring predictable
execution of the software and proper scheduling theory to provide real-time
guarantees.

Another essential element that the mentioned computing architectures have
in common, and that has a strong impact on the system performance, for ex-
ample, soft or hard real-time response time, is the data placement. It is easy to
observe how the placement of data a�ects especially the latency of computing
platforms in di�erent domains, from the proper management of cache memo-
ries and scratchpads within a single SoC, to the distribution of data among
distributed databases in the case of cloud architectures.

In all the previously mentioned examples, one common factor that is gain-
ing momentum is the use of heterogeneous hardware architectures, for which
the computations are demanded to ad-hoc devices like Graphics Processing Unit
(GPU), now evolved to General-Purpose computing on GPU (GPGPU), or other
hardware accelerators implemented with Application Speci�c Integrated Circuit
(ASIC) or Field Programmable Gate Array (FPGA), Tensor Processing Unit
(TPU), or di�erent kind of general purpose processors, some with higher compu-
tational performance, others with higher energy e�ciency. These computational
units are nowadays commonly integrated in the same System-on-a-Chip (SoC).
These new architectures provide a huge potential that can be exploited and,
also if these provide advantages in the execution of the deployed applications,
predictable execution must be preserved if real-time constraints are speci�ed.

In these scenarios the use of open-source operating systems is becoming more
and more popular, and this popularity is also demonstrated by the foundation

2

of consortia like OSADL1 aiming at bringing together experts to spread the
use of open source software also in industrial environments where legal require-
ments, safety and security standards and certi�cations are mandatory. In this
environments, the use of the Linux kernel is a constant.

With the awareness of that, most of the works that will be mentioned later
have been validated with proper modi�cations or improvement to the Linux
kernel.

Both in the cases of battery-powered mobile devices and in cloud data cen-
ters, the impact of the energy consumption cannot be neglected, the former
to improve the life of the device, the latter to reduce the cost. The classical
mechanisms to reduce the energy consumption by modulating the frequency of
the processor or migrating the tasks to di�erent computational units often do
not consider how the policy a�ect the computational and latency performance.
This thesis also addresses the problem of providing a low-latency, energy-e�cient
strategy in the management of multimedia processing on heterogeneous mobile
devices, that may be easily extended to other platforms and applications, with
mechanisms based on the processor utilization and the introduction of interfaces
allowing for the communication between the applications layer and the kernel
layer to exchange temporal requirements, so that the kernel has precise hints
about the timing requirements of the application, and its evolution in time.

Contributions and Thesis Structure This thesis addresses several open
issues that have been identi�ed in the mentioned scenarios.

In the automotive �eld, it is of paramount importance to be able to pro-
vide a predictable execution of all the critical engine sensing and control tasks,
often interacting with each other, not to mention the tough validation process
often involving formal methods for which the requirements are expressed in
formal languages. In these cases, the latency between the time at which an
event occurs and the time at which the whole chain of actions is triggered plays
a critical role in the proper functioning of the whole system. Chapter 3 pro-
vides an introduction on the components of a realistic model of an AUTOSAR
multicore engine control unit, and provides a set of three novel contributions.
First, Section 3.1 gives formal de�nitions of the di�erent kinds of latency that
can be measured among interdependent tasks, besides an analysis on the worst
case response time. This work highlights the strong dependency between the
worst case response times and the data and tasks placements among the dif-
ferent memories and cores, accordingly. Second, Section 3.2 goes further into
details, proposing two di�erent approaches to solve the problem of optimizing
the data distribution among di�erent memories to minimize the response times
of the tasks. Finally, an important issue that has been identi�ed in this area is
the lack of a bridge between the expression of system requirements with formal
languages and the veri�cation phase, requiring the manual translation of the
requirements into test cases for the system veri�cation. To solve this issue, a
support tool has been developed, as explained in Section 3.3.

With the need of providing temporal guarantees and isolation among pro-
cesses running on the same machine, new scheduling mechanisms are currently
available in modern operating systems, for example, the SCHED_DEADLINE

1More information available at: https://www.osadl.org/.

3

https://www.osadl.org/

deadline-based scheduler in the Linux kernel. Chapter 4 presents several en-
hancements to the SCHED_DEADLINE scheduler based on the real-time schedul-
ing theory, thus improving the system predictability in the execution of latency-
sensitive workloads. In particular, Section 4.1 presents a developed hierarchical
scheduling technique and compares the theoretical performance with the ex-
perimental results achieved with a real implementation in the Linux kernel.
Section 4.2 applies the just mentioned hierarchical scheduler to the cloud com-
puting, for which the proposed approach was able to guarantee predictable QoS
and stable performance, compliant with the theory. These works highlighted a
shortcoming in the scheduling algorithm on which SCHED_DEADLINE relies,
in particular, it presents a wrong behavior when managing tasks that suspend
their executions: a common problem that arises, for example, by the use of
locks or blocking system calls. This issue is tackled in Section 4.3, which pro-
vides both a correct schedulability analysis for self-suspending tasks and the
implementation of the newly developed scheduler in the Linux kernel.

The di�usion of heterogeneous architectures, involving di�erent kinds of
computational units within the same computing system, introduced a �exibility
potential that is hard to be fully exploited. Chapter 5 describes di�erent aspects
of heterogeneous architectures. Section 5.1 presents a novel solution for dealing
with dynamic workload changes in professional audio production scenarios, with
reference to the Android platform on heterogeneous Arm big.LITTLE comput-
ing architectures. The introduced solution allows for a 40% in power saving
during audio playback at low latency set-ups, when compared to the current
Android low-latency mechanisms, but it also reduces the playback latency of
one order of magnitude at the cost of a negligible increase in power consump-
tion, enabling new interactive professional audio applications on Android, that
have been deemed impossible on the platform, so far. The development of the
just mentioned work, showed the lack of complete models of both energy con-
sumption and computing times at the varying of computing architecture and
CPU frequency, that could be used for a preliminary evaluation of scheduling
design choices. This problem has been addressed in Section 5.2, which presents
the two realistic models, implemented and validated within a real-time tasks
simulator. Another popular and successful heterogeneous architecture of the
last decades is achieved by coupling CPUs and FPGAs in the same chip. This
architecture combines the �exibility of the software that can be executed by the
CPU, and the computational performance of the FPGA, whose hardware can
be dynamically programmed to implement speci�c functions. Since the FPGA
has a limited number of reprogrammable logic units, it may happen that all the
accelerators required by the same application cannot contemporaneously coex-
ist in the FPGA, so Section 5.3 proposes a framework to support the real-time
dynamic recon�guration of the FPGA and its full implementation on Linux,
tested on a real board.

4

Chapter 2

List of Publications

Related to Chapter 3

• A. Balsini, A. Melani, P. Buonocunto, and M. Di Natale, �Fmtv 2016:
Where is the actual challenge?�, Proceedings of the 7th International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
Time Systems (WATERS'16), in conjuction with the 28th Euromicro Con-
ference on Real-Time Systems (ECRTS 2016), July 2016. [18]

• A. Biondi, P. Pazzaglia, A. Balsini, and M. D. Natale, �Logical execution
time implementation and memory optimization issues in autosar appli-
cations for multicores�, Proceedings of the 8th International Workshop
on Analysis Tools and Methodologies for Embedded and Real-Time Sys-
tems (WATERS'17), in conjuction with the 29th Euromicro Conference
on Real-Time Systems (ECRTS 2017), July 2017. [38]

• A. Balsini, M. D. Natale, M. Celia, and V. Tsachouridis, �Generation of
simulink monitors for control applications from formal requirements�, in
2017 12th IEEE International Symposium on Industrial Embedded Sys-
tems (SIES), 2017, pp. 1�9. [16]

• D. Calvaresi, P. Sernani, M. Marinoni, A. Claudi, A. Balsini, et al.,
�A framework based on real-time os and multi-agents for intelligent au-
tonomous robot competitions�, in 2016 11th IEEE Symposium on Indus-
trial Embedded Systems (SIES), 2016, pp. 1�10. [47]

Related to Chapter 4

• L. Abeni, A. Balsini and T. Cucinotta, �Container-based real-time schedul-
ing in the linux kernel�, ACM SIGBED Review - Special Issue on Embed-
ded Operating Systems Workshop (EWiLi '18) 2018. [5]

• T. Cucinotta, L. Abeni, M. Marinoni, A. Balsini, and C. Vitucci, �Virtual
network functions as real-time containers in private clouds�, in 11th IEEE
International Conference on Cloud Computing (IEEE CLOUD 2018), Jul.
2018. [59]

• A. Biondi, A. Balsini, and M. Marinoni, �Resource reservation for real-time
self-suspending tasks: Theory and practice�, in Proceedings of the 23rd

5

International Conference on Real Time and Networks Systems, ser. RTNS
'15, Lille, France: ACM, 2015, pp. 97�106, isbn: 978-1-4503-3591-1. [34]

Related to Chapter 5

• A. Balsini, L. Pannocchi, and T. Cucinotta, �Modeling and simulation of
power consumption for real-time embedded heterogeneous architectures�,
ACM SIGBED Review - Special Issue on Embedded Operating Systems
Workshop (EWiLi '18), 2018 [19]

• M. Pagani, M. Marinoni, A. Biondi, A. Balsini, and G. Buttazzo, �Towards
real-time operating systems for heterogeneous recon�gurable platforms�,
in Proc. of the 12th Workshop on Operating Systems Platforms for Em-
bedded Real-Time Applications (OSPERT 2016), Toulouse, France, July
5, 2016. [147]

• A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, et al., �A frame-
work for supporting real-time applications on dynamic recon�gurable fp-
gas�, in 2016 IEEE Real-Time Systems Symposium (RTSS), 2016, pp.
1�12. [31],

• M. Pagani, A. Balsini, A. Biondi, M. Marinoni, and G. Buttazzo, �A linux-
based support for developing real-time applications on heterogeneous plat-
forms with dynamic fpga recon�guration�, in 2017 30th IEEE International
System-on-Chip Conference (SOCC), 2017, pp. 96�101. [146]

Under Review

• A. Balsini, T. Cucinotta, L. Abeni, J. Fernandes, P. Burk, et al., �Energy-
e�cient low-latency audio on android�, Submitted to Journal of Systems
and Software, June, 2018.

6

Chapter 3

Scheduling Latency in

Control Systems

This chapter focuses on problems related to providing real-time scheduling guar-
antees or at least scheduling latency bounds in automotive applications and
many control systems.

Researchers have been working on the de�nition of reliable and theoretically
sound algorithms for the veri�cation of the real-time requirements for comput-
ing systems in automotive, especially in terms of scheduling latency of chains of
interdependent tasks. This research topic is challenging both for the complex-
ity of the involved hardware and the software architecture, but is also lacking
the theory basics, like a proper, formal, de�nition of latency. Section 3.1 will
present proper de�nitions of di�erent kinds of latency, as well as the analysis
and simulation for a realistic automotive computing environment.

The results presented in Section 3.1 also showed the close relationship be-
tween the worst-case response time of the tasks, how the data is distributed
among di�erent memories, and how the tasks are pinned among the di�erent
cores on a multicore environment. To tackle this research problem, two di�erent
solutions are proposed in Section 3.2, one obtained with a mixed-integer linear
programming (MILP) formulation, and the other with genetic algorithms.

Finally, a signi�cant trend in automotive is to simplify and better organize
the software development, with the purpose of reducing the error probability
and simplifying the certi�cation process. This is achieved with an extensive use
of automatic code generation tools relying on block diagrams. In this �eld, the
validation of the developed models is often performed by de�ning the system
requirements (e.g., the minimum value of a signal or the maximum delay of an
event) with formal languages. Concerning this need, Section 3.3 presents a tool
that simpli�es the translation of the requirements expressed by the means of
formal languages into Simulink block diagrams.

It is worth to mention that the importance and complexity of the just men-
tioned problems is also demonstrated by the interest from the industry, and the
organization of ad-hoc workshops1.

1The Waters workshop and the Waters Challenge, part of the Euromicro Conference on

Real-Time Systems, are tracks concerning real-time in automotive organized with the support
of Bosch.

7

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

3.1 Scheduling Latency for AUTOSAR Compo-

nents: De�nition, Analysis and Simulation

A particularly relevant work that arose during the studies undertaken in the
research activities of this Ph.D., has been related to the problem of providing
analysis methods for real-time multicore fuel injection applications.

We took the chance to dig deep into these issues by participating into the
FMTV'16 challenge2, proposed in the context of the WATERS 2016 workshop
within the Euromicro Conference on Real-Time Systems, which proposed to
research groups as a case study and benchmark to compare di�erent analysis
methods for real-time multicore fuel injection applications. The nature of the
problem is clear enough and the challenge can be met by a set of conventional
analysis techniques. However, the formulation of the problem and its practical
solution are more than likely to reveal a number of additional issues that go
from the model of the application, to analysis techniques that consider with
much better precision the details of the hardware platform, to the need for
synthesis and optimization methods.

This challenge consists of a timing analysis problem in which the AUTOSAR
model of a set of cooperating tasks in a fuel injection application is deployed onto
a 4-core platform. The objective of the challenge is to apply di�erent analysis
methods (worst-case, simulation-based and possibly stochastic) to models of
the system with an increasing level of accuracy with respect to the memory
placement of communication variables. At the simplest level, memory access
times are simply neglected; next, di�erent access times are assumed under the
hypothesis of global or local memory allocation; and, �nally, the problem of
optimizing the placement of the memory items is presented.

From the architecture standpoint, two solutions to the problem are pre-
sented, developed as a result of this Ph.D. activity: (i) the simulation of the
time behavior using the open source scheduling simulator RTSIM [21], and (ii)
the analysis of the task set for its worst-case behavior, using a set of formulas
derived from the problem description and obtained by adaptation of classical
results.

The results of these two analysis methods are provided (with an additional
discussion on how to tackle the memory access time problem), as well as several
issues that are worth discussing. Among those:

• The de�nition of response times when the system contains chains
of tasks or runnables communicating asynchronously. The chal-
lenge refers to a set of de�nitions (reactive and age) for which an application-
level justi�cation is not clear enough and for which, despite being formally
presented in [82], solutions in analytical closed form or as algorithms have
been presented only recently [24].

• Next, while the challenge has the merit of restoring to the foreground
the consideration of hardware features and issues, its description of the
hardware architecture details is still incomplete and simplistic. For
example, the FIFO arbiter controlling accesses to shared memory is likely
to be integrated within the crossbar or possibly placed after it, but this
information can only be guessed and would a�ect the access times to

2More information available at: https://waters2016.inria.fr/challenge/.

8

https://waters2016.inria.fr/challenge/

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

memory. More details of the hardware architecture and the assumptions
that have been made in this work will be provided later in Section 3.1.2.

• Finally, and most important, this work highlights the runnables place-
ment problem, which is most likely the most relevant design issue for a
time critical multicore system like this.

3.1.1 System Model and Notation

The challenge model is in large part compliant with the AUTOSAR metamodel
and adopts from it de�nitions and most of the semantics for activation and com-
munication of functions (runnables in AUTOSAR). An attempt at the formal
characterization of the challenge model is the following.

A task τi is composed of an ordered sequence of ni runnables ρi,1, . . . , ρi,ni
,

each of which has its execution time de�ned as a statistical distribution Ci, which
is de�ned as a truncated Weibull distribution for most if not all the runnables
in the model. For the purpose of worst-case analysis, the worst-case execution
time (WCET) Ci,j and a best-case execution time ci,j may be computed from
the distribution Ci.

The scheduling of each task is also controlled by its scheduling mode (coop-
erative or preemptive) and its priority πi, with preemptive tasks having higher
priority than cooperative tasks, and cooperative tasks only preempting each
other at runnable boundaries.

The model also de�nes deadlines that apply to tasks and task chains. For
tasks, deadlines bound the worst case completion time with respect to the ac-
tivation and match the common de�nition of a relative deadline Di. Also, all
tasks are assumed to be periodic or sporadic, with a period or a minimum
inter-arrival time Ti. When applicable, relative deadlines are constrained to be
smaller than or equal to periods, i.e., Di ≤ Ti. In the end, each task is assumed
to be de�ned by a tuple (Ci, ci, Di, Ti), where Ci =

∑ni

j=1 Ci,j , ci =
∑ni

j=1 ci,j .
The worst-case response time of the j-th runnable of task τi is denoted as

Ri,j , while ri,j denotes its best-case response time. hpP (i) and hpC(i) denote
the set of preemptive and cooperative tasks, respectively, having priority greater
than τi. The union of the two disjoint sets is denoted as hp(i) = hpP (i)∪hpC(i).

As for end-to-end chains, the assumed model is based on the asynchronous
propagation of information by means of shared data variables. These variables
(labels in the model) are read and written by the runnables.

Figure 3.1 illustrates the three e�ect chains that are analyzed in the context
of the challenge3.

The following semantics have been considered for end-to-end latency calcu-
lation (from [82]):

• Last-to-First (L2F): it considers the delay between the last input that is
not overwritten until the �rst output generated with the same input;

• First-to-First (F2F), or Reactive: it considers the delay between the �rst
input that may be overwritten until the �rst output generated with the
next di�erent input;

3 Note that, in the third chain, Label 2197 is replaced with Label 646 to �x a mistake in
the model (Label 2197 is not read, nor written by the last two runnables in the chain, while
Label 646 is the only one that satis�es the read/write relation imposed by the chain).

9

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

R10ms,149 R10ms,243 R10ms,272 R10ms,107
Label
3423

Label
3968

Label
2276

R100ms,7 R10ms,19 R2ms,8
Label
4258

Label
2197

R700/800us,3 R2ms,3 R50ms,36
Label
4576

Label
646

a)

b)

c)

Figure 3.1: E�ect chains in the model.

• Last-to-Last (L2L), or Maximum Age: it considers the delay between the
last input that is not overwritten until the last output, considering dupli-
cates.

The problem with this de�nition is that it is hardly formal, and even in the
original reference there seems to be no single point in which a formal de�nition
appears. Hence, the following de�nitions are used.

Assume a chain of periodic communicating runnables Γ = {ρ1, ρ2, . . . ρn}.
Also, assume aj,h denoting the h-th activation of runnable ρj , fj,h its �nish-
ing time, and Ij,h and Oj,h are the sets of input and output values that are
respectively read from and written to the labels accessed by the h-th instance
of ρj .

Then, the L2F latency of the chain Γ is the maximum value fn,r − a1,p

(�nishing time of the r-th instance of ρn minus the activation time of the p-th
instance of ρ1), such that for some p, q, r:

∀i = 1, . . . , (n− 2) Oi,p = Ii+1,q and Oi+1,q = Ii+2,r

and Ii+1,q 6= Ii+1,q−1 and Ii+2,r 6= Ii+2,r−1.

Similarly, the F2F latency of the chain Γ is the time interval between the
latest a1,p and the earliest fn,r+1 such that for some p, q, r:

∀i = 1, . . . , (n− 2) Oi,p = Ii+1,q and Oi+1,q = Ii+2,r

and Ii+1,q 6= Ii+1,q+1 and Ii+2,r 6= Ii+2,r+1.

Finally, the L2L latency of the chain Γ is the maximum value fn,r − a1,p

(�nishing time of the r-th instance of ρn minus the activation time of the p-th
instance of ρ1), such that for some p, q, r:

∀i = 1, . . . , (n− 2) Oi,p = Ii+1,q and Oi+1,q = Ii+2,r.

Figures 3.2 and 3.3 exemplify the de�nitions in the case of undersampling
and oversampling e�ects, respectively. In particular, referring to the chain
{ρ1, ρ2, ρ3} in Figure 3.2, the end-to-end delay by the L2F semantics corre-
sponds to the time interval between the activation a1,1 and the �nishing time of
the runnable activated at time a3,1; the end-to-end delay by F2F corresponds

10

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

to the time interval [a1,1, f3,2]. By L2L, it is measured as for the L2F semantics
(i.e., f3,1 − a1,1). In case of oversampling, as shown in Figure 3.3, the end-to-
end delay can be measured by the L2F semantics as f3,2 − a1,1; by F2F it is
f3,5−a1,1, while the L2L semantics accounts for the same data read by multiple
runnable instances (e.g., in the time interval f3,4 − a1,1).

x x x

ρ1

ρ2

ρ3

a1,2

First-to-First (F2F)

Last-to-Last (L2L)

a1,3 a1,4

a2,1 a2,2

a3,1 a3,2

a1,1 a1,5

Last-to-First (L2F)

Figure 3.2: End-to-end delay in the case of undersampling.

ρ1

ρ2

ρ3

a3,4

First-to-First (F2F)

Last-to-Last (L2L)

a3,5 a3,6

a2,2 a2,3

a3,3

a1,2
a1,3

a3,7

a1,1

a3,2a3,1

a2,1

Last-to-First (L2F)

Figure 3.3: End-to-end delay in the case of oversampling.

The de�nition ambiguity leaves open a fundamental issue: what is the ac-
tual meaning and relevance (in application terms) of such de�nitions?

3.1.2 Worst-case Latency Analysis

This section discusses the analytical approach to compute the worst-case re-
sponse times for tasks and chains, with and without considering the timing for
the access to shared or local memory.

Analysis Without Memory Access Times

For any preemptive task, the worst-case response time of runnable ρi,j is given
by the �xed point iteration of the following formula (starting with R0

i,j =∑j
h=1 Ci,h):

11

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

Ri,j =

j∑
h=1

Ci,h +
∑

k∈hp(i)

⌈
Ri,j
Tk

⌉
Ck. (3.1)

The above formula quanti�es the higher-priority interference su�ered by ρi,j
by considering the synchronous periodic arrivals of higher-priority tasks.

For cooperative tasks, the worst-case response time needs to consider also
the blocking time by lower-priority cooperative runnables and the fact that
the last runnable does not su�er any preemption by higher-priority cooperative
tasks once it has started executing. In addition, by analogy with the limited
preemptive scheduling with �xed preemption points [45], it is not enough to
compute the response time of the �rst job after the critical instant. In particular,
the computation must be carried out for all jobs s ∈ [1,Ki] falling within the so
called Level-i Active Period Li, computed as:L

(0)
i = Bi + Ci

L
(s)
i = Bi +

∑
k∈hp(i)

⌈
L

(s−1)
i

Tk

⌉
Ck

, (3.2)

such that Ki =
⌈
Li

Ti

⌉
. Therefore, in case of a cooperative task τi, it is possible

to compute the worst-case �nishing time of the s-th job of ρi,j by the �xed point
iteration of the following formula:

fsi,j =

j∑
h=1

Ci,h +Bi,j + (s− 1)Ci +
∑

k∈hpP (i)

⌈
fsi,j
Tk

⌉
Ck+

∑
k∈hpC(i)

(⌊
fsi,j − Ci,j

Tk

⌋
+ 1

)
Ck,

where
Bi,j = max

q∈lpC(i)
h=1,...,nq

Cq,h

represents the maximum blocking time imposed by lower-priority cooperative
tasks.

Then, the worst-case response time of ρi,j can be computed as:

Ri,j = max
s∈[1,Ki]

fsi,j − (s− 1)Ti. (3.3)

Worst-case Start Time Computation Another quantity of interest for
the end-to-end latency computation is the worst-case start time Si,j of runnable
ρi,j . The calculation is the same for both the case of preemptive and cooperative
tasks, and is given by:

Si,j = ε+

j−1∑
h=1

Ci,h +
∑

k∈hp(i)

⌈
Si,j
Tk

⌉
Ck, (3.4)

where ε is an arbitrarily small constant.

12

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

Best-case Response Time Computation For preemptive tasks, the best-
case response time of runnable ρi,j is [41]:

ri,j =

j∑
h=1

ci,h +
∑

k∈hp(i)

(⌈
ri,j
Tk

⌉
− 1

)
ck. (3.5)

For cooperative tasks, a lower-bound on the best-case response time can be
computed by considering a zero blocking-time from lower-priority tasks and the
minimum amount of interference from higher-priority tasks [41, 42]:

ri,j =

j∑
h=1

ci,h +
∑

k∈hpP (i)

(⌈
ri,j
Tk

⌉
− 1

)
ck +

∑
k∈hpC(i)

⌊
ri,j − ci,j

Tk

⌋
ck. (3.6)

End-to-end Latency Calculation

The end-to-end latencies have been computed according to the semantics re-
ported in Section 3.1.1. For each chain, �rst the end-to-end latency is com-
puted by the Last-to-First (L2F) semantics, and then is extended to obtain the
latencies by the F2F and L2L semantics.

Last-to-First Semantics The end-to-end latency of chain ρ1, . . . , ρN , ac-
cording to the L2F semantics and as shown in Figures 3.2 and 3.3, can be
computed as:

N−1∑
i=1

(Ri + min(Ti+1 − ri+1, Ti)) +RN . (3.7)

First-to-First Semantics With respect to the L2F semantics, the F2F se-
mantics requires to add one cycle delay for the �rst runnable in the chain, in
order to consider the previous input. Therefore, the end-to-end latency of chain
ρ1, . . . , ρN , according to the F2F semantics, can be computed as:

T1 +

N−1∑
i=1

(Ri + min(Ti+1 − ri+1, Ti)) +RN . (3.8)

Additionally, the F2F semantics considers previous inputs that are overwritten.
In order to compute how many times in the worst case an input is overwritten
between consecutive stages of the chain (i.e., between runnables ρi and ρi+1),
it must be found the largest possible integer n ≥ 1 that satis�es:

Ti+1 + Si+1 − ri+1 ≥ nTi + ri −Ri. (3.9)

This relation guarantees that the longest interval between two consecutive reads
is greater than the shortest interval between n consecutive writes. If the above
relation holds (i.e., input overwriting takes place), the end-to-end latency of
chain ρ1, . . . , ρN is computed as:

T1 +

N−1∑
i=1

(Ri + nTi) +RN . (3.10)

13

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

Last-to-Last Semantics With respect to the L2F semantics, the L2L also
considers subsequent outputs that are overwritten. In order to compute how
many times in the worst case an output is overwritten between consecutive
stages of the chain, it must be found the largest possible integer n̂ ≥ 1 that
satis�es:

Ti − ri +Ri ≥ n̂Ti+1 − ri+1 + Si+1. (3.11)

This relation guarantees that the longest interval between two consecutive writes
is greater than the shortest interval to perform n̂ consecutive reads. If the above
relation holds (i.e., output overwriting takes place), the end-to-end latency is
computed as:

N−1∑
i=1

(Ri + n̂Ti+1 − ri+1) +RN . (3.12)

Otherwise, the end-to-end latency by the L2L semantics is as the one obtained
under the L2F semantics.

Analysis with Memory Access and Arbitration Times

In the proposed model, the four cores contend for access to a shared global
memory (GRAM) with FIFO arbitration. Each read/write access to GRAM
costs 9 cycles (there is no caching e�ect). Therefore, in the worst case each
memory access might be blocked by pending accesses from other cores, i.e.,
each access can be delayed for 9(m − 1) = 27 cycles. Adding up the memory
access cost for the current request, a worst-case memory-access penalty of 36
clock cycles is obtained. By exploiting the knowledge of how many labels are
read/written by each runnable, it is possible to compute the worst-case memory
access latency for its read/write phases.

In the best case, memory accesses do not experience any delays from other
cores, leading to a best-case memory-access time of 9 clock cycles. Accordingly,
the best-case memory access latency for the read/write phases can be computed.

Such values need to be added to the execution time of each runnable, to
which the analysis described in Section 3.1.2 can be applied identically.

The worst-case estimate of 9(m − 1) cycles implies that the 9 cycles access
cost is repeatedly applied on each FIFO access, which is most likely a pessimistic
estimate given the lack of detailed information on the hardware (memory) con-
�guration. Careful consideration of the memory access costs require a model
of the hardware more detailed than what is typically available in
scheduling analysis papers.

End-to-end Latency Calculation

The end-to-end latency calculation can be performed as described in Section 3.1.2,
with the following di�erences.

Last-to-First Semantics Equation (3.7) is replaced by:

N−1∑
i=1

(Ri − rreadi+1 + min(Ti+1, Ti)) +RN , (3.13)

where rreadi denotes the best-case response time of the read phase of ρi.

14

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

First-to-First Semantics Equation (3.9) is replaced by:

Ti+1 + Si+1 − rreadi+1 ≥ nTi + ri −Ri. (3.14)

Last-to-Last Semantics Equation (3.11) is replaced by:

Ti − ri +Ri ≥ n̂Ti+1 − rreadi+1 +Rreadi+1 , (3.15)

where Rreadi denotes the worst-case response time of the read phase of ρi, which
can be computed similarly as in Section 3.1.2.

Experimental Evaluation

In order to make the system analyzable, the WCETs of those tasks that were
not deemed schedulable by this analysis were scaled down by considering the
largest scaling factor σ ∈ (0, 1] that guarantees schedulability. In particular,
starting from σ = 1, WCETs are iteratively scaled down in steps of 0.01 until
the system became schedulable according to the proposed analysis.

E�ect Chain 1 In the e�ect chain 1: (i) all runnables belong to the same
task (Task_10ms, allocated to core 3), hence all runnables are bound to the
same rate; (ii) there is backward communication between the third and the
fourth runnable, which implies a one cycle delay until the last datum is read.
Therefore, the worst-case end-to-end latency of this e�ect chain by L2F can be
computed as:

LL2F
1 = T10ms +R10ms,107 = 13376 µs. (3.16)

Given that all runnables belong to the same task, this result is valid also when
considering the L2L semantics. As for the F2F semantics, the analysis needs to
consider a one cycle delay for the �rst runnable, that is:

LF2F
1 = 2T10ms +R10ms,107 = 23376 µs. (3.17)

E�ect Chain 2 Unlike the previous chain, runnables in this chain belong to
di�erent tasks with di�erent rates. In this case, the end-to-end latency calcula-
tion should also consider the over-sampling e�ect between pairs of consecutive
runnables. By the L2F semantics, applying Equation (3.7), returns:

LL2F
2 = R100ms,7 + min(T10ms − r10ms,19, T100ms)

+R10ms,19 + min(T2ms − r2ms,8, T10ms)

+R2ms,8 = 52222 µs

As for the F2F semantics, due to the over-sampling e�ect, there are no input
overwritings (Condition (3.9) is never veri�ed), hence the end-to-end latency is
simply given by:

LF2F
2 = LL2F

2 + T100ms = 152222 µs.

Finally, the end-to-end latency computation for the L2L semantics requires
to verify Condition (3.11) for any pair of consecutive runnables. In this case,
n̂ = 13 is obtained for the �rst stage and n̂ = 5 for the second, which yields:

LL2L
2 = R100ms,7 + 13 · T10ms − r10ms,19 +R10ms,19

+5 · T2ms − r2ms,8 +R2ms,8 = 180222 µs.

15

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

Chain L2F I L2F II F2F I F2F II L2L I L2L II

1 13376 13383 23376 23383 13376 13383
2 52222 52796 152222 152796 180222 180796
3 41953 42448 127553 130040 41953 43248

Table 3.1: End-to-end latency upper bounds (µs) for the �rst (I) and second
(II) challenge.

E�ect Chain 3 Also in this case, runnables belong to di�erent tasks with dif-
ferent rates. Task periods have increasing values, leading to an under-sampling
e�ect.

By the L2F semantics, applying Equation (3.7) returns:

LL2F
3 = R700/800us,3+min(T2ms− r2ms,3, T700/800us)+

R2ms,3+min(T50ms−r50ms,36, T2ms)+R50ms,36 =41953 µs

Due to the sporadic nature of the �rst runnable, T700/800us = 800 µs is assumed
in order to maximize the latency.

The end-to-end latency by the F2F semantics requires adding one cycle delay
with respect to L2F and to verify Condition (3.9) for any pair of consecutive
runnables. In this case, n = 2 is obtained for the �rst stage (again, assuming
T700/800us = 800 µs) and n = 43 for the second, which yields:

LF2F
3 = T700/800us + 2 · T700/800us +R700/800us,3+

43 · T2ms +R2ms,3 +R50ms,36 = 127553 µs.

Finally, the end-to-end latency for the L2L semantics is equal to the L2F
case, because no output is overwritten due to the under-sampling e�ect.

Similar calculations are performed to compute end-to-end latencies account-
ing for memory e�ects, as described in Section 3.1.2.

Table 3.1 summarizes the obtained end-to-end latencies calculated according
to the di�erent semantics adopted, for each of the two challenges.

3.1.3 Model Simulator

The analysis by simulation of the challenge model has been performed by a
purposely developed extension [138, 167] to the C++ RTSIM [21] scheduling
simulator.

Data Acquisition

The engine control application model that is the subject of the challenge is
de�ned by an XML �le that can be parsed to obtain the model data. The
model information is then stored in data structures internal to the simulator
C++ classes.

Some of the model information requires a preliminary elaboration, such as
the execution time that is represented by parameters of a Weibull distributions:
the lower bound (b), the upper bound (B), the mean (η), and the probability
of having values greater than the upperbound (ρ). These parameters must be
converted to compute the standard Weibull parameters: scale (λ) and shape (k).

16

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

The transformation has been performed considering that the cumulative distri-
bution function (CDF), given an uniformly distributed random variable x, is null

for x < 0, and for x ≥ 0 is de�ned as CDF (x) = 1− e−(x/λ)k . By considering
that for x = B − b, it is possible to obtain CDF (B − b) = 1 − ρ, so after per-

forming some substitution it is possible to de�ne λ =
k
√
− ln ρ
B−b . The mean value

of a Weibull distribution is calculated as η = λΓ
(
1 + 1

k

)
, and, by substituting

the �rst result in the second equation, the result is
k
√
− ln ρ
B−b Γ

(
1 + 1

k

)
− η = 0.

The approach followed by the simulator described in this chapter to obtain
an approximation of the k parameter is to minimize the absolute error of the
previously described function

min
k>0

∣∣∣∣ k
√
− ln ρ

B − b
Γ

(
1 +

1

k

)
− η
∣∣∣∣. (3.18)

The function minimum is obtained by using the GNU Scienti�c Library [90].

Cores, Kernels and Schedulers

In RTSIM the main entity for scheduling simulations is the Kernel. Each Kernel
has an associated Core. Once a Kernel is instantiated, the programmer assigns
a Scheduler to it. Among the di�erent available schedulers, the one used for
the challenge is the �xed priority scheduler. In RTSIM, partitioned multicore
scheduling is obtained by instantiating multiple Kernel objects, one for each
core.

Tasks

Each task τi in RTSIM is de�ned by its parameters: the activation time of �rst
job (ai,0), its relative deadline (Di), its period or minimum inter-arrival time
(Ti), and the sequence of instructions it executes, each de�ned by an execution
time speci�cation (deterministic or random). For any periodic task, the activa-
tion time of each job is computed by adding Ti to its last activation time. For
sporadic tasks, a random value in the range [Ti, T

max
i] is added to the last acti-

vation time, where Tmaxi denotes the maximum inter-arrival time of τi. Relative
deadlines are set equal to Ti. As for the job instructions, each task executes
a sequence of runnables. According to the RTSIM syntax, the new instruction
runnable(runnableName) is de�ned, and the code of each task is of the form:

runnable(r1);runnable(r2); ... runnable(rN);

Runnables

Cooperative tasks preempt lower priority cooperative tasks only at runnable bor-
ders, while higher priority preemptive task can preempt any lower priority task
and runnable. In the case of cooperative tasks, preemption within runnables
is prevented by locking and unlocking a core-speci�c mutex dedicated to coop-
erative tasks before and after calling a runnable. The resulting job code for a
cooperative task is:

... lock(muxC);runnable(rX);unlock(muxC); ...

17

3.1. SCHEDULING LATENCY FOR AUTOSAR COMPONENTS:

DEFINITION, ANALYSIS AND SIMULATION

When a job calls a runnable instruction, the operations performed, in or-
der, are the following: updating end-to-end statistics associated to labels read-
ing events, virtually executing the runnable computations, updating end-to-end
statistics associated to labels writing events.

Results

All the simulation runs performed for the challenge system produced the fol-
lowing: (i) complete traces of the task scheduling events; (ii) F2F and L2L
end-to-end delays of each chain; (iii) response times of all runnables involved
in each chain. The system simulation was performed collecting sample runs
for di�erent initial o�sets of the tasks. For periodic tasks, the initial o�sets
are uniformly selected in the interval [0, Ti], while for sporadic tasks they are
chosen in [0, Tmaxi]. The execution of the tasks has been simulated for a total
virtual time of one hour. The simulation required 28 minutes and 50 seconds on
a system with an Intel i7-2630QM core running at 2 GHz and 8 GB of DDR3
RAM running at 1333 MHz.

Figure 3.4 represents the distribution of the F2F and L2L latencies for each
chain. For the �rst chain, the maximum end-to-end delays measured by sim-
ulation are 22377 µs for F2F and 12377 µs for L2L. For the second chain, the
maximum end-to-end delays measured by simulation are 109.26 ms for F2F and
107.26 ms for L2L. In the end, the simulation returns 61324 µs for F2F and
3139.4 µs for L2L as maximum end-to-end delays for the third chain.

Figure 3.4: End-to-end delays obtained by simulation.

Additionally, Table 3.2 establishes a comparison between the worst-case re-
sponse times of the runnables by the worst-case latency analysis of Section 3.1.2
(WCRT), which takes into account the scaling factors previously computed to
guarantee schedulability, and the maximum response times observed during the
simulations (SIM).

18

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

Runnable WCRT I WCRT II SIM I

R10ms,149 5176 5144 3556
R10ms,243 7919 7903 5431
R10ms,272 8896 8879 6139
R10ms,107 3376 3383 2377
R100ms,7 39647 39865 6992
R10ms,19 770 781 577
R2ms,8 142 150 122

R700/800us,3 30 33 27
R2ms,3 49 53 46
R50ms,36 39074 39562 11151

Table 3.2: Worst-case response times (µsec) for the �rst (I) and second (II)
challenge, and simulated results.

3.1.4 Conclusions and Open Challenges

This chapter proposed two solutions for the timing veri�cation problem of the
FMTV challenge. The �rst approach builds a mathematical model of the sys-
tem and calculates worst-case latencies by adaptation of existing response time
analysis techniques. Upper bounds on the end-to-end latencies are derived by
�rst ignoring and then including memory access times. Then, a simulator of
the given AUTOSAR model has been built on RTSIM to compute end-to-end
latencies of the selected e�ect chains.

Using both analytical methods and simulation helps in the identi�cation of
the boundaries for the real worst-case response time: since the analytical meth-
ods are often pessimistic due to the assumptions made to simplify the system
modeling, the returned values are likely upper bounds, while the simulation is
not guaranteed to return the unlikely combination of events that generates the
actual worst case response time.

While researching on this topic, we identi�ed the importance of the memory
access delay and the substantial impact of the data placement in the resulting
end-to-end latencies. These latencies strictly depend on the hardware architec-
ture, which is often not considered in the modeling of the system used for the
analysis or simulation of the whole environment. This simpli�cation is an open
challenge not addressed in this work, which represents a signi�cant gap for the
applicability of the theory to real platforms. Section 3.2 goes more in-depth
into this open challenge, addressing the data placement problem for a simple
multicore hardware platform.

3.2 Data Placement Optimization to Minimize

End-to-end Latency

Another relevant research activity of this thesis concerning computing archi-
tectures in automotive, as the follow-up of the problems solved in Section 3.1,
has been related to the optimization of the data placement among the di�erent
memories of a multicore architecture.

19

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

The FMTV'17 challenge4 represents an opportunity to go into detail with
the open research problems of real automotive applications. In addition to the
system presented in Section 3.1, FMTV'17 provides details of the hardware
platform and imposes the use of the later-described Logical Execution Time
(LET) model, aiming at investigating on the synthesis and optimization methods
to exploit the available hardware resources and preserving the predictability of
the software.

This section highlights some of the problems and issues that relate to the im-
plementation of the LET model and then presents and compares two approaches
for optimizing the placement of the labels in memory, including the time anal-
ysis methods that will be used for the system. The section concludes with a
discussion on the next steps and other fundamental issues that are related to
the general problem of optimizing the placement of computations in multicore
platforms.

This challenge consists of a timing analysis problem in which the AUTOSAR
model of a set of cooperating tasks in a fuel injection application is deployed
onto a 4-core platform. The objective of the challenge is to study the possible
conditions for the implementation of the Logical Execution Time (LET) model
in the runnables communication and to provide methods for the analysis of the
memory allocation of the communication variables (labels) in the model. The
variables need to be allocated in the available memory spaces (local and global)
of the platform.

The LETmodel was introduced as part of the Giotto programming paradigm [94]
as a method to eliminate output jitter and provide time determinism in the code
implementation of controls. In essence, LET delays the program output of a
task (or any function executed inside the task) at the end of the task period,
trading delay for output jitter.

The analysis of the LET implementation is performed under the assump-
tion of the mechanisms and tools that are typical of an AUTOSAR process. In
AUTOSAR, the computation functions are called runnables and the communi-
cation implementation is provided by a layer of code automatically generated by
tools: the Run Time Environment (RTE). The consideration of the AUTOSAR
process greatly in�uences the implementation options. The implementation of
the LET model can follow two di�erent approaches, that will be better described
later: one that is compatible with the current mechanisms and tools of the stan-
dard AUTOSAR process, the other with a simple extension to the AUTOSAR
implicit communication implementation (providing for a much more e�cient
solution).

Concerning the label placement optimization problem, real-time tasks may
interfere with each other when accessing shared memory banks. This chapter
also presents a simple method to bound the worst-case latency of those tasks.
Using the provided bound for memory latency, two algorithms were developed
to solve the problem: a simple Genetic Algorithm solution and a MILP formu-
lation.

The results of these two optimization methods are provided with an addi-
tional discussion on how to tackle the runnable placement optimization problem,
which is most likely the most relevant design issue for this kind of systems.

4More information available at: https://waters2017.inria.fr/challenge/.

20

https://waters2017.inria.fr/challenge/

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

3.2.1 System Model and Notation

The challenge model is similar to the one introduced in Section 3.1.1, and rep-
resents a case study from the Amalthea EU project, in large part compliant
with the AUTOSAR metamodel. As such, the model adopts from AUTOSAR
de�nitions and most of the semantics for the activation and communication of
functions (runnables in AUTOSAR). An attempt at the formal characterization
of the challenge model is the following, which recalls and extends what described
in Section 3.1.1 for the current speci�c purpose.

Task and Runnable Model

A task τi is composed of an ordered sequence of ni runnables ρi,1, . . . , ρi,ni
, each

of which has its execution time Ci,j , de�ned as a truncated Weibull distribution.
For the purpose of worst-case analysis, the worst-case execution time (WCET)
Ci,j and a best-case execution time ci,j may be computed from the distribution
Ci,j . Each runnable ρi,j may read or write labels from a set L = {l1, l2, . . . , lp}.
Each label li is characterized by a type and a size (an integer number of bytes).
Each task is de�ned by a tuple τi = {Ci, Ti,Li, Di}, where Ci is the execution
time distribution of the task, simply computed as the convolution of the dis-
tribution of the task runnables (by extension Ci and ci are the worst and best
case task execution times); Ti is the period or minimum inter-arrival time of
the task activation event(s); Li denotes the set of labels accessed by τi; and
Di is the relative (to the activation time) deadline. When applicable, relative
deadlines are constrained to be smaller than or equal to periods, i.e., Di ≤ Ti.
Ni,v denotes the number of times τi accesses label `v ∈ Li.

In the worst case (the reasoning also applies to other types of analysis but
here only the worst-case analysis is discussed), the execution time Ci of a task
may be expressed as the sum of the runnable execution times in the task. The
execution times provided with the challenge do not include the execution cost
to read and write the memory labels.

As in Section 3.1.1, the scheduling of each task is also controlled by its
scheduling mode (cooperative or preemptive) and its priority πi, with preemp-
tive tasks having higher priority than cooperative tasks, and cooperative tasks
only preempting each other at runnable boundaries. Ri,j denotes the worst-case
response time of the j-th runnable of task τi, while ri,j denotes its best-case re-
sponse time. hpP (i) and hpC(i) denote the set of preemptive and cooperative
tasks, respectively, having priority greater than τi, and hp(i) = hpP (i)∪ hpC(i)
denotes the union of the two disjoint sets.

Platform Model

The reference platform consists of m = 4 identical processors P1, . . . , Pm, four
local memories M1, . . . ,Mm (one for each core), and a global memory Mm+1.
The platform disposes of a crossbar switch that provided point-to-point com-
munication channels between each core and each memory. Concurrent accesses
to memory are arbitrated with a FIFO queue.

21

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

from program to output variables

τ1

τ2

τ3

τ3

LET input LET output

LET

from input to program variables

Figure 3.5: The LET model of execution.

Task and Label Allocation Model

The allocation of the tasks is �xed and given in the provided Amalthea model.
P (τi) denotes the processor to which τi is allocated; Γ(Pk) denotes the set of
tasks allocated to processor Pk; and Γ(τi) denotes the set of tasks allocated to
the same processor to which τi is allocated. An allocation of the labels is also
provided in the Amalthea model. The following notation is used when discussing
the label allocation. Mk denotes the set of labels allocated to memory Mk. λ

R

denotes the delay introduced by task during a con�ict to a remote memory, while
λL denotes the delay introduced by task during a con�ict to its local memory.
The maximum time needed to access a word into memory Mx from processor
Px is denoted by

∆k,x =

{
δL if k = x (local memory),

δR otherwise;

where δR denotes the time needed to access a remote memory (GRAM or
local RAM of another processor), and δL denotes the one needed to access the
local memory Mk, with the assumptions λL = δL and λR = δR. Based on the
challenge information, the memory access and con�ict times are λL = 5 ns (1
cycle); λR = 45 ns (9 cycles).

Finally, with respect to a given allocation of the labels, the time MAi,v
needed to access label `v ∈ Li from task τi is de�ned as MAi,v = ∆k,x where
Pk = P (τi) and Mx is the memory in which `v is allocated. The same terminol-
ogy applies to runnables.

The LET Model of Execution

The Logical Execution Time model was probably �rst presented as part of the
Giotto project [94]. The objective of the LET model is to add time determinism
to periodic computations by eliminating the output jitter.

The LET execution model can be summarized as depicted in Figure 3.5. In
the �gure, the output of task τ2 (denoted by the upward arrow at the end of the
box representing the task execution) has a signi�cant jitter. Because of variable
interference from τ1, it occurs late in the �rst task instance and much earlier
in the second. The LET solution is shown in the bottom timeline for task τ3
(taken as an example). The input of the task data is performed at the task

22

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

activation, and the output is performed at the end of the task execution period.
All task inputs are stored in local variables at the task activation. Similarly,
all outputs need to be stored in local variables and will be actually output only
by the LET code at the end of the cycle. This requires to allocate memory for
local variables mirroring all input and output variables.

Several mechanisms can be used to enforce the LET synchronization of input
and output operations, as a hardware or software implementation. In essence,
LET is a sample and hold mechanism with synchronized execution of the input
and output part. As such it is not too dissimilar to mechanisms used to en-
force �ow preservation in the implementation of synchronous models [191, 202].
When LET is implemented in SW (the hardware implementation would not af-
fect the design analysis or the challenge goals) assuming a typical AUTOSAR
development model (for more information on the related assumptions please
refer to [72, 83]), there are two main options:

• LET is implemented as part of the Run-Time Environment (RTE) with
support from the basic SW;

• LET is implemented at the application level by a set of dedicated runnables.

In both cases, since it requires a dedicated set of tasks (and the corresponding
scheduling con�guration), the LET implementation will most likely be modeled
as a set of RTE or application-level input and output tasks. Since it is required
that the input and output operations of these tasks are executed as close as
possible to the start and end of period instants, these tasks should be charac-
terized by a very short WCET and a very high priority level. This has several
implications that are further discussed in the implementation section.

• There may be more than one task dedicated to the input and output
sampling for LET execution. If this is the case, then these tasks will
internally preempt each other and the design of this additional set of
tasks may be a subproblem in its own.

• The execution of the output task (or action) at the end of the period
may be very di�cult to obtain with conventional scheduling strategies
(�as late as possible execution� is typically not supported). In this case
the output task needs to be actually executed at the beginning of the
next cycle, possibly in conjunction with the corresponding input task (in
a back-to-back fashion).

3.2.2 Timing Analysis with Memory Contention

This section presents a response-time analysis for tasks under partitioned �xed-
priority scheduling that explicitly accounts for the delay introduced by memory
accesses and their corresponding memory contention. The same analysis can be
extended to runnables in a seamless manner.

Under the assumption of constrained deadlines, the worst-case response time
of a task τi is bounded by the least positive �xed-point of the following recurrent
equation:

Ri = Wi +
∑

τj∈hp(τi)
τj∈Γ(τi)

⌈
Ri
Tj

⌉
Wj +MCi(Ri) (3.19)

23

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

where Wi = Ci +
∑
`v∈Li

Ni,v ·MAi,v (i.e., the worst-case execution time of
the task plus the cost for accessing its labels) andMCi(Ri) represents the delay
due to memory contention incurred by τi and all the high-priority tasks, which
transitively a�ects the response time of the task under analysis.

Since memory contention is resolved according to the FIFO policy, a safe
bound on the term MCi(Ri) can be obtained by simply in�ating the terms Wi

to account form−1 contentions for each memory access. However, this approach
may lead to excessive pessimism, thus resulting in very coarse upper-bounds on
the response times.

The in�ation-free analysis [32, 192] is here used to bound the blocking times
for a synchronization protocol for multiprocessor systems. This analysis ex-
plicitly accounts for each memory access that may originate a contention while
task τi (under analysis) is pending. To this end, it is now possible to bound
the maximum number of accesses NRAk,x(t) issued by tasks executing on the
remote processors Pk 6= P (τi) to each memory Mx in an arbitrary time window
of length t, that is:

NRAk,x(t) =
∑

τj∈Γ(Pk)

∑
`v∈Lj∩Mx

⌈
t+Rj
Tj

⌉
Nj,v. (3.20)

Note that the above equation considers the sum over all the tasks allocated
to Pk, as they can produce memory contention independently of their priority
(FIFO arbitration). The term d(t+Rj)/Tje is a safe bound on the maximum
number of jobs of τj ∈ Γ(Pk) in any time window of length t [32, 192].

Similarly, it is also possible to bound the number of accessesNLAi,x(t) issued
by the local processor P (τi) to each memory Mx in a busy-period of length t
where τi is pending, that is

NLAi,x(t) = Ni,v +
∑

τj∈hp(τi)
τj∈Γ(τi)

∑
`v∈Lj∩Mx

⌈
t

Tj

⌉
Nj,v. (3.21)

Due to the FIFO arbitration and the fact that the memory accesses are
non-interruptible, it follows that (i) each memory access issued by a remote
processor can delay at most one access issued by the local processor and (ii)
each access issued by the local processor can be delayed by at most one remote
access per processor ; hence the following bound holds:

MCi(t) =
∑

Pk 6=P (τi)

m+1∑
x=1

min {NRAk,x(t), NLAi,x(t)} · Λk,x, (3.22)

where the term Λk,x is provided to distinguish the delay introduced by the
memory contentions as a function of each pair (Pk,Mx), and is de�ned as

Λk,x =

{
λL if k = x (local con�ict),

λR otherwise.

Equation (3.22) can be used in Equation (3.19) to bound the response times
of the tasks. The term NRAi,k,x(t) depends on the response time of the tasks
allocated to the remote processors: this additional recursive dependency can be

24

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

Figure 3.6: Code implementation of the LET model of execution with explicit
or implicit communication.

addressed with an iterative loop in which Equation (3.19) is solved for all the
tasks until all the response-time bounds Ri converge. Such an iterative loop
starts with Ri = Ci for all tasks τi.

3.2.3 Implementing and Analyzing the Logical Execution

Model in AUTOSAR

The discussion on the implementation of the LET model cannot be undertaken
without the joint consideration of the typical AUTOSAR model for the genera-
tion of task code and the execution of runnables. AUTOSAR has two models of
communication. In the explicit model (top of Figure 3.6) the copy of the data in
the communication variables is performed at the time each runnable invokes the
communication API function. The implementation of the LET model in this
case, would require the de�nition of two LET runnables that act as proxies for
the read and write operations. The reader and writer runnable should execute
according to the pattern de�ned in the following section.

In the implicit model, even if a read or write operation is invoked by the
runnable in the middle of its execution, the actual code implementing the read
from and write into the shared variables is automatically generated as part of
the RTE code at the beginning and at the end of the runnable code. The result
of the read operation is sampled at the beginning of the runnable execution
and then stored in a local variable for the duration of the runnable execution.
Similarly, the write value is locally stored in a variable and then output by RTE
code after the runnable execution (shown in the middle of Figure 3.6, the darker
rectangles before and after the runnable execution represent the RTE code). If
the RTE generation tools are not modi�ed, the LET implementation in this case
would require yet another set of runnables and an additional set of variables,
which is clearly a source of additional memory and time overhead.

However, it is relatively straightforward to see how a simple modi�cation
of the RTE generation process for the implicit communication model would be
the best solution. A simple RTE generation option could result in moving the
input and output to the LET tasks rather than the runnable boundaries. The
RTE generator could generate the LET input and output tasks together with
the other RTE-generated code.

25

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

Reader and Writer Tasks, De�nition and Analysis

The general architecture and scheduling of the input and output tasks in a LET
model is discussed at length in [95]. In their work, input and output tasks are
scheduled together with mode change tasks assuming a time-triggered schedule
with jitter constraints for the input and output operations.

In the case the tasks are implementing AUTOSAR runnables, the input and
output tasks can serve all the tasks executing at the same rate. Of course, if a
task has runnables executing at multiples of the task period, the corresponding
input and output sections can be skipped when unnecessary. The input and
output LET tasks may be scheduled using the AUTOSAR time-triggered mode
when available, in order to ensure the output task is executed right before the
end of the period of the tasks it serves. In a priority-based schedule, like the
one assumed in the challenge, the output and input tasks may be joined and
executed back to back at the beginning of each period.

To arbitrate among the input and output operations for the tasks executing
at di�erent rates there are several options between two extremes: one is to have
a single LET task executing at the greatest common divisor of the task periods
(most likely ine�cient for the challenge model). The other extreme is to have
a LET task for each period. Of course, partial groupings may be possible and
may be more e�cient in some cases.

A LET task for each period is assumed for this model. LET tasks have
higher priorities than the other tasks (to enforce the precedence constraints)
and their relative priorities are assigned according to Rate-Monotonic.

3.2.4 The Challenge Model

The provided challenge model has a set of special characteristics that a�ect
the analysis and optimization methods and strongly characterize the obtained
results.

First and foremost, the tasks are allocated on the cores according to a speci�c
strategy. The �rst core only executes interrupt service routines. The same is
true for the fourth core, that also executes a 10ms periodic task. The second
core only executes (most likely details are not provided) a variable rate task
(triggered at prede�ned angles in the engine rotation), and a very high rate 1ms
periodic task. All the other periodic tasks are executed by the third core.

Using the worst-case execution times provided in the model, the system
is de�nitively in overload with the following per-core utilizations: 0.97, 1.336,
1.068 and 1.179. The large overload in the second core is attributed to the
modeling strategy adopted for the Angle_sync task. That task can be deemed
as an engine-triggered task with variable activation rate and speed-dependent
adaptive behavior. The provided model most likely considers a minimum inter-
arrival time for the maximum engine speed, and a WCET computed for the most
time consuming operating mode. This is pessimistic and explains the overload.
The explicit consideration of the adaptive variable-rate (AVR) task model [35]
would improve the analysis precision.

To optimize the system con�guration based on the worst case behavior, the
feasibility must be restored and a suitable cost function must be de�ned. To
restore feasibility, the mean execution time is considered in place of the worst-
case.

26

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

As a cost function, the maximum normalized (with respect to the deadline)
response time of the tasks is selected as in the function:

C = max
τi∈Γ(Pk),∀Pk

Ri
Di
, (3.23)

3.2.5 End-to-end Latency

The analysis provided in [35] is adopted to compute the end-to-end latency of
the e�ect chains.

However, in order to consider the in�uence of sporadic computational ac-
tivities, the best-case response time computation for a runnable ρi,j must be
corrected as follows:

ri,j =

j∑
h=1

ci,h +
∑

k∈hp(i)

Nact
k ck (3.24)

where Nact
k is de�ned as:

Nact
k =

{
d ri,jTk
e − 1 for periodic tasks;

0 for sporadic tasks.
(3.25)

The ISRs have been considered as sporadic tasks: this choice has been adopted
because the maximum inter-arrival time of the ISRs provided in the Amalthea
model seems too close to the minimum one.

In this chapter, the computation of end-to-end latencies is provided only for
the case of explicit communication. The case for LET-based communication
is straightforward (modulo some minimal interference caused by high-priority
LET tasks).

E�ect Chain 1 In the e�ect chain 1, all runnables belong to the same task
(Task_10ms, allocated to core 3). As there is backward communication between
the third and the fourth runnable, this adds a one cycle delay until the last
datum is read. Therefore, the worst-case end-to-end latency of this e�ect chain
by L2F can be computed as:

LL2F
1 = T10ms +R10ms,107 (3.26)

This result is valid also when considering the L2L semantics. As for the F2F
semantics, the analysis needs to consider a one cycle delay for the �rst runnable,
that is:

LF2F
1 = 2T10ms +R10ms,107. (3.27)

E�ect Chain 2 Runnables in this chain belong to di�erent tasks with di�er-
ent rates. In this case, the end-to-end latency calculation should also consider
the over-sampling e�ect between pairs of consecutive runnables. By the L2F
semantics, is obtained:

LL2F
2 = R100ms,7 + min(T10ms − r10ms,19, T100ms)

+R10ms,19 + min(T2ms − r2ms,8, T10ms) +R2ms,8

27

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

As for the F2F semantics, due to the over-sampling e�ect, there are no input
overwritings, hence the end-to-end latency is simply given by:

LF2F
2 = LL2F

2 + T100ms.

Finally, the end-to-end latency computation for the L2L semantics requires
to verify Condition (8) from [35], for any pair of consecutive runnables.

LL2L
2 = R100ms,7 + n̂1 · T10ms − r10ms,19 +R10ms,19

+n̂2 · T2ms − r2ms,8 +R2ms,8.

E�ect Chain 3 Also in this case, runnables belong to di�erent tasks with dif-
ferent rates. Task periods have increasing values, leading to an under-sampling
e�ect.

By the L2F semantics is obtained:

LL2F
3 = R700/800us,3+min(T2ms− r2ms,3, T700/800us)+

R2ms,3+min(T50ms−r50ms,36, T2ms)+R50ms,36 µs

Due to the sporadic nature of the �rst runnable, is assumed T700/800us = 800 µs
in order to maximize the latency.

The end-to-end latency by the F2F semantics requires to add one cycle
delay with respect to L2F and to verify Condition (8) from [35] for any pair of
consecutive runnables.

LF2F
3 = T700/800us + n1 · T700/800us +R700/800us,3+

n2 · T2ms +R2ms,3 +R50ms,36 = 75559 µs.

Finally, the end-to-end latency for the L2L semantics is equal to the L2F
case, because no output is overwritten due to the under-sampling e�ect.

3.2.6 Optimizing the Placement of Memory Labels

This section discusses possible approaches to compute the optimal placement of
label and label copies (for LET) in memory. Two possible solutions (MILP and
Genetic Algorithm) are presented for the case of explicit communication and
LET-based communication.

Genetic Algorithm

Due to the extremely large set of labels to be positioned, a metaheuristic has
been chosen to �nd a su�ciently good solution. A Genetic Algorithm (GA)
approach has been found to be the most suitable candidate for this problem.
Hereafter the structure of the algorithm is brie�y presented.

Using the common nomenclature for GAs, a possible label placement is de-
�ned as an individual I. Each individual is encoded as an ordered string of
10000 RAM identi�ers (genes), representing the position of each label in the
memories. The set of individuals (called population) is �rstly initialized ran-
domly. At every step each individual is evaluate with a �tness function that is

28

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

the cost function identi�ed for the challenge: F (I) = C(I) i.e., the maximum
normalized response time among all tasks with the labels positioned as in I.

At every iteration, the solutions are reordered by following their �tness val-
ues F (I) (the smaller the better) and divided in three subsets: (i) reproductive
survivors (elite), (ii) non-reproductive survivors, and (iii) extinct individuals.
The next generation is created by selecting random couples of parents between
the elite group, that generate new individuals using a crossover function: this
strategy swaps randomly selected blocks of genes between the parents and save
the resulting solutions as a new individuals. At the same time, extinct individ-
uals are removed from the population.

The exploration of new individuals in the solution space is guaranteed by
using also a certain number of mutation functions, which randomly change a
limited (and casually chosen) number of genes in the population. Each func-
tion has di�erent activation probabilities and consist in random changing label
positions, moving labels from one memory to another one, and spreading labels
from one memory to all the others. On the other hand, in order to maintain a
sort of elitism, a (small) number of clones of the best solutions are copied in the
next generation without mutating.

MILP Formulation

It is worth discussing two approximations that have been applied to the analysis
of Section 3.2.2 in order to express the response-time bounds in a linear form
to formulate the problem as a mixed-integer linear program (MILP).

First, instead of searching for the least positive �xed-point of Equation
(3.19), the approximated response-time analysis proposed by Park and Park
in [153] is adopted. Under rate-monotonic scheduling, the authors showed (with
an experimental evaluation) that their approximation introduces an extremely
limited error (≤ 1%) with respect to the exact response-time analysis. By ex-
tending Theorem 4 in [153] to cope with the analysis presented in Section 3.2.2,
the response time of a task τi (if schedulable with a constrained deadline) is
bounded by:

Ri = min
t∈Si

ri = Wi +
∑

τj∈hp(τi)
τj∈Γ(τi)

⌈
t

Tj

⌉
Wj +MCi(t) : ri ≤ t

 , (3.28)

where

Si =


⋃

τj∈hp(τi)
τj∈Γ(τi)

⌊
Ti
Tj

⌋
Tj , Ti

 .

This approximation results very useful for encoding the response-time bound
into a MILP as (i) it allows getting rid of the typical integer variables that are
needed to model the term with the ceiling of Equation (3.19) (note that the
terms in the set Si are all constants, hence that term is in turn a constant);
and (ii) it allows avoiding the need for quadratic constraints, which is implied
by the fact that the terms Wj must be optimization variables (note that their
values depend on the label placement).

29

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

Second, to avoid requiring additional integer variables, the term NRAk,x(t)
of Equation (3.20) has been over-approximated by replacing Rj with Dj .

Finally, it is worth mentioning that the lower-bounds of the response times
were used to reduce the number of MILP variables (and the corresponding
constraints) that must be provided to encode Equation (3.28). The lower-bounds
have been computed by accounting for one clock cycle for each access to a label,
which corresponds to the best case where labels allocated in local memory and
no contention is possible. Such bounds allow reducing the elements into the set
Si.

A binary variable Av,x has been provided to each couple of label `v and
memory Mx, with the interpretation that Av,x = 1 i� `v is allocated to Mx.

Such variables have been constrained such that
∑m+1
x=1 Av,x = 1 holds for each

label `v ∈ L.
The actual worst-case execution time Wi of a task τi allocated to processor

Pk can then be expressed with the following linear constraint:

Wi ≥ Ci +
m+1∑
x=1

∑
`v∈Li

Ni,v ·∆k,x ·Av,x.

The objective of the MILP formulation is to minimize Equation (3.23).

3.2.7 Experimental Evaluation

LET Model Implementation

For the purposes of this challenge, the LET model has been implemented only
for the runnables involved in e�ect chains; the only jitter-sensitive parts of the
system.

The e�ect chains are composed of 10 runnables and 7 labels. The approach
proposed in this chapter for the LET implementation requires adding high-
priority LET tasks dedicated to copying and writing data implied in the e�ect
chain. Runnables belonging to the same task need only one collective task, thus
only 5 LET tasks must be added to the system. As every label needs two local
copies (one for reading one for writing), the total number of labels is increased
by 14.

Optimal Label Placement: MILP Formulation

The MILP formulation has been solved with IBM CPLEX on a machine equipped
with an 8-core processor Intel(R) Xeon(R) E5-2609v2 running at 2.50GHz. The
solver is able to immediately found (very �rst iterations) a feasible solution for
the label placement.

For the case of explicit communication, the optimal placement is computed
in about 1 hour and 20 minutes, but the solver is able to provide a sub-optimal
solution with a guaranteed gap to the optimum lower than 1% in less than two
minutes. The value of the objective function for the optimal solution is 0.8505.
Recomputing the objective function with the analysis presented in Section 3.2.2
returns 0.849555: this result con�rmed the e�ectiveness of the approximation
adopted in the MILP formulation. Using the label placement provided in the
Amalthea model of the challenge, the objective function is 1.32634: hence, this
solution provides an improvement that is larger than 35%.

30

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

5562

1596

197

2530

115

1368
1531

4604

2442

69

0

1000

2000

3000

4000

5000

6000

LRAM0 LRAM1 LRAM2 LRAM3 GRAM

N
u

m
b

er
 o

f
la

b
el

s
p

er
 m

em
o

ry

Explicit LET

Figure 3.7: Placement of the labels for the case of explicit (dark bars) and
LET-based (light bars) communication.

The label placement for the optimal solution is illustrated in Figure 3.7
(dark bars). As shown in the graph, most of the labels are allocated in the local
memory of the �rst core (LRAM0).

For the case of LET communication, the optimal placement is computed in
about 1 hour and 50 minutes. Similarly to the �rst case, the solver is able to
provide a sub-optimal solution with a guaranteed gap lower than 1% in less
than seven minutes. Using the label placement provided in the Amalthea model
of the challenge, and placing the 14 labels required for implementing the LET
communication as in the presented solution (as they do not exist in the challenge
data), the objective function is the same for the case of explicit communication.

Surprisingly, the label placement is completely di�erent from the one com-
puted for the case of explicit communication (see Figure 3.7, light bars), as most
of the labels are allocated in the local memory of core 2 (LRAM2). This result
is attributed to the fact that the analysis is dominated by the Angle_sync task
and the 1ms periodic task on core 1: as a consequence, the optimization algo-
rithms will mostly optimize the labels used by these tasks, while the placement
of the other labels is almost indi�erent (with possibly few exceptions due to
memory con�icts).

Optimal Label Placement: Genetic Algorithm

The Genetic Algorithm approach has been implemented in C++ and executed
on an Intel(R) i7 4790K running at 4GHz. The population has been set to
200 individuals I, all initialized randomly, and the termination condition of the
algorithm has been de�ned to complete 30000 iterations. A feasible solution
(with objective function < 1) is usually reached after the �rst 2000 iterations.
The algorithm takes approximatively 5 seconds per iteration, with a completion
time of less than 40 hours. For each communication semantic were produced

31

3.2. DATA PLACEMENT OPTIMIZATION TO MINIMIZE END-TO-END

LATENCY

approximately 20 distinct simulations.
For the case of explicit communication, the best results obtained with the

Genetic Algorithm is an objective function of 0.85161, while for the LET com-
munication the value is 0.85173. The solutions obtained are only slightly worse
than the ones found with the MILP formulation, but required a large running
time to be computed.

End-to-end Latency

End-to-end latencies of the e�ect chains have been computed using the optimal
label placement that has been obtained with the MILP formulation. The best
and worst case response times of the runnables under explicit communication
are reported in Table 3.3, while the corresponding latencies of the e�ect chains
are reported in Table 3.4.

Table 3.3: Response times (µsec) for the runnables in the e�ect chains under
explicit communication.

Runnable name Best RT Worst RT Period

Runnable10ms149 2077.68 4118.33 10000
Runnable10ms243 3315.99 6328.08 10000
Runnable10ms272 3644 7175.57 10000
Runnable10ms107 1367.16 2745.87 10000

Runnable100ms7 152.335 13820.5 100000
Runnable10ms19 298.715 650.74 10000
Runnable2ms8 55.465 117.12 2000

RunnableSporadic700us800us3 17.815 27.11 700
Runnable2ms3 20.025 42.385 2000
Runnable50ms36 1070.3 13089.6 50000

Table 3.4: End-to-end latencies for the e�ect chains under explicit communica-
tion.

Chain index Latency type Latency value (µs)

1 L2F 12746
1 F2F 22746
1 L2L 12746

2 L2F 26234
2 F2F 126234
2 L2L 134234 (n̂1 = 11 and n̂2 = 5)

3 L2F 15959
3 F2F 75559 (n1 = 2 and n2 = 30)
3 L2L 15959

Under LET-based communication, once a label placement that guarantees

32

3.3. FORMAL LANGUAGE VERIFICATION

the task schedulability is found (as done by the proposed optimization algo-
rithms), the end-to-end latencies can be computed in a straightforward man-
ner. Further investigation may target the integration of the end-to-end latencies
as constraints in the MILP formulation, with the objective of computing label
placements that guarantee speci�c timing constraints related to the e�ect chains.

3.2.8 Discussion of Results, Conclusions and Open Chal-

lenges

This chapter presented the methods and algorithms to provide an AUTOSAR-
compliant implementation of the logical execution time (LET) model and to
optimize the placement of memory labels in the system.

The methods seem to be are applicable, perform quite satisfactorily, and
can provide early indication on the quality of a given mapping con�guration (or
�nd a very e�ective one). However, there are several limitations in the challenge
con�guration that a�ect the results.

First and foremost, given the cost function and the current task set (and its
core allocation), the analysis is dominated by the Angle_sync task and the 1ms
periodic task on the same core. This means that the optimization algorithms
will in practice mostly optimize the labels used by these tasks and be almost
indi�erent to the others (this explains why the LET solution and the solution
without LET appear quite di�erent with very similar cost values).

Also, this reinforces the concept, already illustrated in the Section 3.1, that
the runnable and task placement dominates all other considerations and is there-
fore an interesting open challenge for future research. A discussion of possible
formulations and the additional issues and problems can be found in [33].

3.3 Formal Language Veri�cation

The increasing complexity of embedded systems requires an improved capabil-
ity of detecting and �xing errors. The availability of a modeling environment
like Simulink allows the veri�cation by simulation or model checking of system
properties and of the correct behavior of the design. This veri�cation is possible
upon condition that the requirements are expressed in a formal way.

Test and veri�cation in Simulink is often a time-consuming process that
requires the systems developers to translate requirements in model blocks for the
veri�cation. The capability of performing such translation is seldom available
and prone to translation and interpretation errors.

This chapter presents a monitor generation tool and a Simulink library that
enable a methodology to translate requirements in structured natural language
into formal Signal Time Language (STL) constraints, leading to the automatic
generation of Simulink monitors that check at run-time the desired properties.
The tool automatically creates and connects the monitor blocks to a target
Simulink model.

3.3.1 Introduction

Model-based development of embedded systems is today an established indus-
trial practice. The use of models allows a precise and formal de�nition of the

33

3.3. FORMAL LANGUAGE VERIFICATION

behavior with respect to time and also allows to raise the level of abstraction of
the controller logic allowing veri�cation by model checking and by simulation.

Simulink by the Mathworks [137] is among the most popular modeling en-
vironments. The Simulink models used for the representation of cyber-physical
systems are based on a synchronous reactive semantics. The model of the con-
trolled (physical) system is de�ned by a system of di�erential equations, inte-
grated in continuous time, while the model of the controller is typically discrete-
time.

Simulink allows for model veri�cation of discrete-time models using formal
proofs through the Simulink Design Veri�er add-on (which is internally based
on the Prover engine [160]) and supports checking assertions at simulation time
using a simple library with basic assertion blocks.

This leaves the system developers with the task of bridging the gap between
the requirements (often expressed in natural language) and the de�nition of
monitors that check the requirements constraints at simulation time and possi-
bly also at run-time. This process can be divided in steps. First, the require-
ments need to be translated from the natural language into a formal language.
To ease this translation, the natural language can be constrained to be seman-
tically as close as possible to a suitably selected formal language. Once the
requirements are expressed formally, the language can be used to verify the cor-
rectness of the system model o�ine by model checking or theorem proving, or
the constraint formulas can be parsed to automatically generate monitors that
check them on-line (while the simulation is running) or o�-line on the execution
traces.

A temporal logic is a language in which formal speci�cations can be written
for computer systems. In the late 70s, Amir Pnueli [158] introduced tempo-
ral logic to reason formally about the temporal behaviors of reactive systems.
In the Linear Temporal Logic LTL [158] and the Computation Tree Logic or
CTL [80], time is implicitly represented as an enumerated sequence of reaction
steps occurring in a discrete time space. These temporal logics were developed
to check properties in (typically hardware) systems with boolean, discrete-time
signals and focused on the veri�cation, speci�cation, and synthesis of concurrent
systems.

Other models and languages were later developed [109, 130] to improve the
expressive power of LTL and CTL and to de�ne and verify properties in real
(continuous) time as applied to hybrid systems.

Today, there are several examples of temporal logic, di�ering in the model
of time, the semantics of reactions and the language that can be used to de�ne
properties and constraints. The Property Speci�cation Language PSL [79] is
an extension of LTL in which constraints are composed of boolean expressions
written in the host language (often VHDL or Verilog) together with temporal
operators and sequences to describe the relationship between states over time.
The Metric Temporal Logic (MTL) [109] allows reasoning over Boolean sig-
nals over dense-time domains and the Signal Temporal Logic (STL) [130] was
proposed in the context of analog and mixed-signal circuits as a speci�cation
language for constraints on real-valued signals de�ned in continuous time.

The veri�cation of timed properties using these languages has been studied in
depth and so the possibility of using techniques for monitoring the properties o�-
line on system traces or on-line using monitors at simulation time. The general
veri�cation problem is discussed in several surveys and books such as [131].

34

3.3. FORMAL LANGUAGE VERIFICATION

Other works discuss the application of formal veri�cation (by model checking)
to systems with STL constraints. A recent work on this subject is [76].

A formal language like STL also o�ers the option of generating monitors
for checking the properties of a simulated system. O�ine techniques for mon-
itoring STL properties on execution traces are discussed in [75]. This is an
example of timed pattern matching, which consists in �nding all segments of a
continuous-time boolean signal that match a pattern de�ned by a timed regular
expression. This problem has been formulated and solved in [185] via an o�ine
algorithm that takes the signal and expression as inputs and produces the set
of all matches.

Another possibility is the automatic generation of monitors that can be
used to check properties at run-time, that is, while the simulation is running.
In the context of timed regular expressions [14] an online matching algorithm
has been presented in [186], but an on-line monitor generation technique is still
not explicitly available for STL.

Finally, while the use of a formal temporal logic allows in principle the use
of automatic veri�cation techniques, bridging the gap between informal require-
ments and formal statements is not an easy task. Libraries and automatic im-
plementation techniques can be used to ease the use of STL formulas in designs.
In [102] Kapinsky et al propose the use of STL to verify typical control con-
straints in automotive applications modeled in Simulink, However, despite the
title of the work, a library implementing the sample STL constraint presented
in the chapter is not described, nor it is available.

As for the problem of translating informal requirements into formal (possibly
STL) constraints, several approaches are possible. It is possible to parse the
natural language to extract formal predicates (as in [84] or [87], with a more
recent discussion of the possible approaches in [143]), or to restrict the natural
language (using editors or forms) in such a way that only a readable form
of formal statements (typically constructed by replacing the formal language
operators with natural language tokens) is allowed. A comparison of the two
approaches is presented in [68].

An example of controlled composition of natural language tokens is described
also in [133], in which the requirements formulation approach is coupled with
the proposal of a contract language for the expression of requirements.

Contributions The purpose of this work is not to provide a formal language
or a formal extension of existing methods, but rather to provide a usable tool
and library to improve the applicability of existing languages, methods and
techniques.

This chapter presents an open source tool that generates Simulink monitor
blocks for the validation at simulation time of a given models against constraints
expressed according to a restriction of the STL language. The blocks are gener-
ated according to rules expressed as STL formulas and the monitor generation
makes use of a set of library blocks that provide an implementation of the STL
operators and an implementation of the typical control constraints described
in [102].

Thanks to the availability of the source code and the modular structure of
the project, the user can customize the tool and the library by directly accessing
the software classes. It is thus possible to modify or improve the tool to extend

35

3.3. FORMAL LANGUAGE VERIFICATION

Figure 3.8: The framework for monitor generation from requirements.

the supported formal languages, or support other environments in addition to
Simulink.

3.3.2 From Requirements to Monitors

The work described in this chapter is part of a general framework that is meant
to improve the quality of the requirements and automate their translation into
runtime Simulink monitors. A graphical description of the methodology is shown
in Figure 3.8 The framework is centered on the availability of STL speci�cations
(actually using a restriction of the STL language) that express the constraints
to be veri�ed on the system. From the STL speci�cations, a tool automatically
generates monitors that are automatically connected to the model signals to
check the correct behavior of the system at simulation time. The monitors are
generated using elements from a purposely developed Simulink library (freely
available from [17]), that provides, among other things, a practical implemen-
tation of the library proposed in [102].

The following sections describe the methodology and the tools to generate
the monitors from STL statements. However, this section provides a short
description of the other stages of the process to provide some context to this
work. These stages and tools (currently under development) are a �rst step to
address the problem of bridging the gap from natural language requirements to
the generation of monitors in Simulink.

To restrict the scope of the work to a manageable size, it initially targets typ-
ical control requirements, of the type presented in [102]. A typical requirement
expressed in natural language (for a control application) is the following.

The Driver Subsystem (DRV) shall accelerate the motor from zero to x1 rpm
in less than t1 sec, with an overshoot of less than x2 rpm.

A customized Eclipse editor that supports the user in writing structured re-
quirement by separating assumptions from assertions has been developed. The
editor provides syntax highlighting, context help and direct access to a library
of symbols (of signals, subsystem and parameter identi�ers) in an attempt to
enforce the de�nition of requirements in a structured language with prede�ned

36

3.3. FORMAL LANGUAGE VERIFICATION

Figure 3.9: Step signal generator.

natural language sentences or tokens, and the use of names from a data dictio-
nary.

The informal requirement shown as an example then becomes.

R1. Acceleration bound and overshoot
Assumption:
The system inertia sys_inertia is less than or equal to i1 and reference

is a step with amplitude A.
Assertion:
Inside the Driver Subsystem (DRV), the speed (spd) signal shall rise from 0

to x1 in less than t1 and the overshoot shall be less than x2.
In the new requirement formulation, the �xed size font indicates names of

signals or parameters, the �xed size font in bold indicates macros; the italics
bold indicates operators (logic and comparison) and the bold sans serif indicates
a scoping operator. Finally, with limited additional reasoning or processing, the
requirement can be rewritten using macros as in the following (DRV/spd indi-
cates the signal with name spd de�ned inside the subsystem DRV).

R1. Acceleration bound and overshoot
Assumption:
UPPERBOUND(sys_inertia, i1); STEP(reference, 0, A).

Assertion:
RISETIME(DRV/spd, 0, t1, 0, x1) and OVERSHOOT(DRV/spd, 0, x2).

At this point the macros expressing the speci�cation can either be translated
into STL or, for simplicity, be directly transformed into signal generator or
assertion checker blocks. For example, the signal generator macro
STEP(signal_name, start_time, step_amplitude)

could be implemented with the library source subsystem of Figure 3.9.
Similarly, the macro:

OVERSHOOT(sig_name, start_time, oversh_bound)

can be easily translated in STL or implemented using the library blocks
described in Section 3.3.6.

37

3.3. FORMAL LANGUAGE VERIFICATION

3.3.3 The STL Language

In STL, a formula φ is evaluated on a sequence of inputs X = (x1, x2, . . . , xn)
at a (continuous) time instant t, resulting in the evaluation of (X , t) pairs.

An STL formula φ can be:

• p: a proposition that evaluates a state variable.

(X , t) |= p⇔ p [t] = TRUE.

• ¬φ (Negation): the logical negation of φ.

(X , t) |= ¬φ⇔ ¬ ((X , t) |= φ) .

• φ1 ∧ φ2 (And): the logical and between φ1 and φ2.

(X , t) |= φ1 ∧ φ2 ⇔ (X , t) |= φ1 ∧ (X , t) |= φ2.

• ©φ (Next): a temporal operator that evaluates φ at the subsequent input
value.

(X , t) |=©φ⇔ (X , t+ 1) |= φ.

• φ1Uφ2 (Until): a temporal operator that is satis�ed if φ1 holds until φ2

becomes true.

(X , t) |= φ1Uφ2 ⇔
∃t′ ≥ t : (X , t′) |= φ2 ∧ ∀t′′ ∈ [t, t′) , (X , t′′) |= φ1.

From the previous primitive operators, it is possible to derive other temporal
operators:

• 3φ = TRUE Uφ (Eventually): the condition is veri�ed at least once.

(X , t) |= 3φ⇔ ∃t′ ≥ t : (X , t′) |= φ.

• 2φ = ¬ (3¬φ) (Globally): the condition is always veri�ed.

(X , t) |= 2φ⇔ ∀t′ ≥ t : (X , t′) |= φ.

In STL, temporal operators may be bounded inside an implicit [0,+∞) or
explicitly speci�ed time interval. The Until operator with an interval bound has
the meaning

(X , t) |= φ1U[a,b]φ2 ⇔
∃t′ ∈ [t+ a, t+ b] : (X , t′) |= φ2 ∧ ∀t′′ ∈ [t, t′] , (X , t′′) |= φ1,

from which is possible to obtain the following relations.

3[a,b]φ = TRUE U[a,b]φ.

2[a,b]φ = ¬
(
3[a,b]¬φ

)
.

38

3.3. FORMAL LANGUAGE VERIFICATION

Language Implementation

Each STL formula or STLFormula, can be one of the following:

• BoolExpr : an expression resulting in a boolean value.

• !STLFormula: the logical negation of an STLFormula.

• { STLFormula } AND { STLFormula }: a logical AND operation between
two STLFormulas.

• STLUntil : the Until temporal operator.

• STLGlobally : the Globally temporal operator.

• STLEventually : the Eventually temporal operator.

Temporal Operators. The STL temporal operators can be written in a text
syntax that can be parsed.

The Until operator is expressed in the following ways:

• { STLFormula } U_TimeExpr { STLFormula }: timed Until.

• { STLFormula } U { STLFormula }: untimed Until.

On the other hand, the Globally and Eventually temporal operators, is ex-
pressed as follows:

• [] { STLFormula }: untimed Globally.

• []_TimeExpr { STLFormula }: timed Globally.

• <> { STLFormula }: untimed Eventually.

• <>_TimeExpr { STLFormula }: timed Eventually.

Expressions. The previously mentioned TimeExpr de�nes the time interval in
which the temporal operator is evaluated. It can be any kind of interval: closed
[Expr,Expr], left open (. . .], right open [. . .), or open (. . .).

The Expr keyword identi�es an expression with integer or �oating point
value:

BoolExpr is an expression with true or false evaluation, and can be one of
the following,

• Expr CmpOp Expr : a comparison expression.

• BoolExpr BoolOp BoolExpr : a logical expression.

• BoolFunction: a function that returns a logical value.

• BoolVal : a constant logical value.

Operators. The operators recognized by the tool can be the basic mathemat-
ical, comparison, or boolean operators.
Values. Val or BoolVal represent values that can be either a variable de�ned
by the user, the name of a signal or parameter belonging to the Simulink model
or a constant value.

39

3.3. FORMAL LANGUAGE VERIFICATION

Functions. The language also allows using prede�ned functions such as abs(
Expr) for the absolute value of Expr, diff(Expr) for the left-derivative of
Expr, and step(Expr , Expr), which returns TRUE when the �rst expression
is recognized to be a step function with a height of at least the value de�ned by
the second expression.
Timed Behaviors. In STL, timed formulas can be nested such as, for example:

<>_[0, T] { q AND []_[a, b] { p } }.

The proposition p is nested one level deeper than proposition q. The mean-
ing is that there has to be one time instant t in [0, T] (the outer Eventually
condition) such that q is satis�ed in t and for all the system evolutions starting
from time t, the condition p is veri�ed at some time between t+ a and t+ b.

In a runtime monitor implementation, the evaluation of the global condition
with p depends not only on the time range of its temporal operator, but also
on the time t in which q is satis�ed. If tq is the time at which q is satis�ed,
the time range in which p is evaluated becomes [a+ tq, b+ tq]. The nested time
interval [a, b] is therefore not an absolute time, but is relative to the time instant
identi�ed by the outer clause.

Language Restriction

To generate online monitors, the following restrictions to the STL language are
proposed:

• The maximum level of nesting for temporal operators is two.

• If there is a nested temporal operator, the condition on which the outer
operator is evaluated must be a conjunction and at least one of the terms
of the conjunction must be a proposition (not a temporal operator).

• If Tb is the maximum value for all the endpoints of the intervals de�ned in
the inner (nested) temporal operators, then the terms of the conjunction
that are not temporal operators can only be true at time instants that are
separated by a time interval always greater than Tb.

For example, in:

<>_[0, T] { q AND []_[a, b] { p } },

the outer temporal operator is de�ned on the conjunction

q AND []_[a, b] { p }.

In order to correctly generate a monitor from this formula, the proposition q
can only be true at time instants that are separated by more than b time units.

The purpose of the restrictions is to simplify (or make altogether possible)
the online monitor de�nition and generation. However, despite these restrictions
the language is still powerful enough to handle the typical control requirements
de�ned for the library in [102].

40

3.3. FORMAL LANGUAGE VERIFICATION

Examples

The following examples show how it is possible to express some simple system
constraints using the (restricted) STL language. The language is used to express
the condition resulting in the violation of the constraint (and the corresponding
activation of the assertion block).

1 /* Doors must never be open while the

2 * elevator is moving */

3 <> {doorOpen == TRUE AND elevatorSpeed != 0} ;

4
5 /* The elevator must never exceed given

6 * speed and acceleration limits */

7 <> {abs(elevatorSpeed) > maxSpeed OR

8 abs(diff(elevatorSpeed)) > maxAccel} ;

9
10 /* If the elevator is called at the fourth

11 * floor , it must reach the destination in

12 * less than 100 time units */

13 <> {floorRequest == 4 AND

14 []_[0 ,100] elevatorFloor != 4 } ;

Other examples of typical control speci�cations in STL can be taken from [102]
and are used for the synthesis of the control monitor blocks described in Sec-
tion 3.3.6.

3.3.4 The Monitor Generation Tool

The tool presented in this chapter consists of a MATLAB/Simulink front-end,
implemented as scripts in the Matlab language, and an STL parser and Monitor
code generator, implemented in C++.

As shown in Figure 3.10, the parser and generator tool takes as input two
�les, one containing the list of requirements and a Data Dictionary description
containing (among others) information about all the subsystems, signals, and
parameters de�ned in the requirements and having a corresponding de�nition
in the Simulink model. The Data Dictionary �le (currently a .csv Excel �le)
can be automatically synchronized with the de�nitions in the Simulink model
by one of the Matlab scripts in the framework.

The tool parses the two �les and outputs a new �le containing the Mat-
lab code that is used to generate the Simulink Monitor blocks for the runtime
validation of the STL rules in the requirements.

This section provides a high-level description of the main tool subsystems
and the input/output �les by following the logical �ow that the user follows to
generate the monitors.

Data Dictionary File and Requirements File

The tool provides a Matlab function called syncDD(), that takes as input pa-
rameters the name of the Simulink model to be synchronized and the name of
the Data Dictionary �le. The function ensures that all the Simulink names of
signals, subsystems and parameters are in the DD �le and, if not, it updates
the DD. The DD also contains the de�nition of all the constants (with values
possibly computed as expressions of other constant values).

41

3.3. FORMAL LANGUAGE VERIFICATION

Matlab

Data Dictionary
STL

Requirements

Scanner and Parser

Generator

Data Dictionary Synchronizer

Tool

C
or

e
To

ol

Simulink

Model

Monitor
Blocks

Monitor
Blocks

Monitor
Blocks

Monitor Creation
Code

Figure 3.10: Block diagram representing the elements involved in the project.

The requirements �le (from the editor or written manually by the user) is
composed of a sequence of STL formulas to be monitored.

A label can be associated with each STL formula to ease the identi�cation
of the constraint that is checked by each monitor, as in:

maxExceeded : <> { x > maxValue };

Moreover, the tool accepts single-line and multi-line code comments ex-
pressed using the C language syntax.

Monitor Block Code Generator

When the STL requirements are parsed by the tool all the identi�ers encountered
in the requirements are checked to be valid constant values or signals as de�ned
in the DD �le.

When the the parsing of the requirements is completed, the tool generates
in an output �le the Matlab code containing the instructions to generate the
Simulink monitor blocks.

Monitor Block Creation

The Matlab code generated by the parser is �nally used to create the Simulink
monitor blocks. The tool provides a Matlab function called addMonitorBlock(),
which takes as parameters the name of the Simulink model in which the block
will be added and the position where the monitor block is located.

The function creates the monitor block in the model and connects its inputs
to the signals in the model using pairs of From/Goto blocks.

Model Validation

After the creation of the monitor blocks, the model can be validated by launching
a Simulink simulation. In the default monitor creation process, each output port
of a monitor is connected to an assertion block. Whenever a requirement is
violated, the simulation is aborted and an error showing the violated condition
is prompted to the user.

42

3.3. FORMAL LANGUAGE VERIFICATION

3.3.5 Parsing and Generation Tool

This section describes the implementation details of the subsystems described
in Section 3.3.4.

STL Requirements Parser

The requirements �le is �rst processed by the Flex (The Fast Lexical Ana-
lyzer) [114] Flex passes every STL language token detected in the source �le to
the syntax parser, implemented with the GNU Bison tool [114].

Constant values are computed and replaced, and the variable names and
their values are stored in a (standard library) map data structure.

Each token recognizable by the parser has a corresponding C++ class, de-
rived from a pure virtual TreeNode class that provides the following members
and data:

• left, right: pointers to TreeNode classes.

• generate(): pure virtual function that creates the associated Matlab
code.

When the Bison parser identi�es a token, it creates an object from the C++
class representing the associated operator or expression and, if needed, sets the
left, right (or both) data �elds in order to create a binary tree of parsed
objects.

Each class derived from TreeNodemust provide an implementation of generate()
(de�ned as pure virtual in the generic parent class). This function generates a
Simulink block container that implements the clause expressed by the associated
language token and then recursively calls generate() on its children nodes, cre-
ating the associated sub-blocks. The set of recursive calls at all the tree nodes,
results in the generation of the Matlab code for the creation of the hierarchy of
nested Simulink blocks inside the monitor.

The monitor block generated by the tool has a sub-block for each formula,
as shown in the example of Figure 3.11. Those sub-blocks output a signal with
boolean value representing the validity of the associated formula (true/1 when
veri�ed, false/0 otherwise). The output of the block is meant to be connected
to the Assertion block provided by the Simulink standard library after being
complemented by a NOT. The Assertion block takes as input a signal and,
as default behavior, stops the simulation and prompt an error message when
it receives a truth value. The block can be con�gured also to continue the
simulation but signal the assertion violation with a prompt.

In order to make the timed temporal operators valid only in the time interval
that is de�ned for them, they are provided with an additional boolean input
port. The timed temporal operator is enabled only when this boolean value is
true. This input port is connected with a time comparison block that outputs
a true value only when the simulation time is in the given range.

The implementation of timed relationships between STL formulas is per-
formed by extending the time range structure. Considering the Timed Behav-
iors description provided in Section 3.3.3, the time instant when the untimed
terms in the inner conjunction (q in the example) are all satis�ed is stored in
a memory block and added to the blocks containing the interval edges. See for
example, the implementation of the timed Until monitor of Figure 3.13.

43

3.3. FORMAL LANGUAGE VERIFICATION

1

x

x
x_ref OUT

Overshoot

NOT

NOT_Overshoot VALID_Overshoot

2

x_ref

x
x_ref OUT

RiseTime

NOT

NOT_RiseTime VALID_RiseTime

x
x_ref OUT

SettlingTime

NOT

NOT_SettlingTime VALID_SettlingTime

x
x_ref OUT

SteadyState

NOT

NOT_SteadyState VALID_SteadyState

Figure 3.11: Validation bock content.

Simulink Functions

In Matlab, the signals and parameters de�ned inside the model can be extracted
with the getSignalsList() and getParameterList() functions.

These function open the Simulink model passed as a parameter and scan it
All the signals and parameters in the model are searched in the .csv DD �le
and, if missing, they are added to it.

Another important Matlab function provided by the tool is the one re-
sponsible for the creation and insertion of the monitor block in the Simulink
model. The AUTOGEN_testBlock.m �le is created by the parser tool, and
used for the generation of the monitor blocks in the Simulink model by calling
the addValidationBlock() function in Matlab.

The function takes as input parameter:

• The name of the Simulink model in which the validation block must be
added.

• The name to be assigned to the validation block.

• The position of the validation block, expressed as the coordinates of the
edges: left, top, right, bottom.

The function creates an empty block, with the requested position and name,
as a monitor block container and runs the AUTOGEN_testBlock.m script to
creates its content and the connections with the input model signals.

3.3.6 The Simulink Libraries for Monitoring STL and Con-

trol Constraints

To simplify the code generator, some of the standard functions that can be
internally used by the validation block are developed as a Simulink library called
STL Library and implemented in the �le STLLib.slx, and a Control Monitor
library in the �le CtrlMonitorLib.slx.

STL Library

This library provides Simulink blocks implementing the STL temporal operators
and the AND operator: Eventually, Always, Until, and ANDSTL (shown in
Figure 3.12).

44

3.3. FORMAL LANGUAGE VERIFICATION

Figure 3.12: Library for the generation of STL monitors.

Consider, for example, the timed until block (labeled as UNTIL in the Fig-
ure, the other blocks follow similar conventions). The block contains an imple-
mentation of the clause φU[SOI,EOI]ψ. The block inputs are: IN_INTERVAL
that needs to be set to true if the current time is inside the interval [SOI,EOI],
false otherwise; the EOI value, the current evaluations for the φ and ψ formulas,
and a RESET input.

Figure 3.13 shows the internals of the timed Until block. All the monitor
blocks keep their output constant after a violation of the rule is detected. How-
ever, to facilitate their use in simulations concatenating several test cases, a
reset input is also provided. This is implemented by the set-reset block at the
end of the chain, on the far right.

The de�nition of the timed until φU[SOI,EOI]ψ is (from Section 3.3.3)

(X , t) |= φU[SOI,EOI]ψ ⇔
∃t′ ∈ [t+ SOI, t+ EOI] : (X , t′) |= ψ∧

∀t′′ ∈ [t, t′] , (X , t′′) |= φ,

with the availability of the signal IN_INTERVAL, the condition becomes

∃t′ such that: IN_INTERVAL ∧ (X , t′) |= ψ∧
∀t′′ ∈ [t, t′] , (X , t′′) |= φ,

In the model implementation of Figure 3.13 the top left part is in charge
of the implementation of the �rst conjunction (highlighted in red); whereas the
bottom part (in blue) implements the �nal clause of the conjunction.

Control Monitor Library

To simplify the creation of monitors for typical control systems, is has also
been de�ned a library of control monitors (shown in Figure 3.14.) The library

45

3.3. FORMAL LANGUAGE VERIFICATION

Figure 3.13: The STL library block for checking the timed Until condition.

Figure 3.14: Library for the generation of Control monitors.

has blocks for checking overshoot (undershoot) and rise time (or fall time) con-
straints on triggers derived from generic inputs signals (steps, but also ramps).
These conditions are veri�ed on a selected input signal (typically a system vari-
able or an input/output of the controller) with respect to another reference or
trigger input. The library is constructed in layers. A set of blocks checks the
conditions upon reception of a generic trigger signal. Other blocks are built on
this set including the logic that detects the trigger from conditions on a generic
signal.

Each block of the control monitor library (such as the overshoot block, shown
in Figure 3.15) is built on top of (using) the STL library blocks.

For the implementation of the Control Monitor library, the STL formulations
provided in [102] were used. For example, the STL encoding of the overshoot
condition (with the corresponding block implementation of Figure 3.15) is:

3_[0, T] (step(xref , r) ∧3(x− xref > c))

3.3.7 Usage Example

This section presents a simple example model showing how the tool can be used
to generate monitor blocks and what is the �nal result. The example system is

46

3.3. FORMAL LANGUAGE VERIFICATION

Figure 3.15: Overshoot monitor block internals as de�ned in the Control Mon-
itor library.

Input Signal

1

s +s+12

Plant TF
Scope

In1 Out1

Controller

x

x_ref

STL_TEST

[x]

x_SRC

[x]

x_DST[x_ref]

x_ref_SRC

[x_ref]

x_ref_DST

x_ref

x_ref

x

x

Figure 3.16: Example of Simulink block diagram of a model with a closed loop
controller.

a Simulink model of a dual pole system controlled in a closed-loop, as shown in
Figure 3.16.

The model is originally as shown in the bottom side, without the highlighted
monitor blocks that are automatically added by the framework tool, as described
in the next sections.

The function

>>> getSignalsList('SimulinkModelExample ');

is executed from the Matlab prompt to verify that the signals in the model
are contained in the DD �le. The DD �le also contains the constants are pa-
rameters used in the STL constraint formulas. The set of relevant variables and
symbols in the DD �le is shown in Table 3.5.

Listing 3.1 shows the example requirements �le with the list of STL formulas
representing the system requirements:

47

3.3. FORMAL LANGUAGE VERIFICATION

name value
T 10
r 5
c 3
zeta 0.5
mu 0.95
steadyStateValue 10
s 3
beta 0.02
a 0.01

Table 3.5: Values in the DD �le for the Simulink example with the STL con-
straints.

• Overshoot : after the detection of a step in the input signal, the output
value of the system exceeds the reference value for more than a given
quantity.

• RiseTime: after the detection of a step in the input signal, the system is
not able to reach a speci�ed value in a given time.

• SettlingTime: after the detection of a step in the input signal, the system
is not able to keep the output bounded in a given range after a given time.

• SteadyState: when the system reaches its steady state condition, the value
it outputs di�ers from the reference signal for more than a given value.

1 Overshoot : <>_[0, T] { step(x_ref , r) AND

2 <> { x - x_ref > c } };

3
4 RiseTime : <>_[0, T] { step(x_ref , r) AND

5 []_[0,zeta] { x < mu * steadyStateValue } };

6
7 SettlingTime : <>_[0, T] { step(x_ref , r) AND

8 <>_[s, T] {abs(x - x_ref) > beta * x_ref} };

9
10 SteadyState : <>_[T, T] { abs(x - x_ref) > a};

Listing 3.1: Example of requirements �le

The tool executes by passing as a �rst argument the requirements �le and
as a second argument the path of the folder containing the DD �le.

After the execution of the tool, the AUTOGEN_testBlock.m �le is created
in the same path of the signals �le.

To insert the validation block in the given Simulink model, the following
function can be executed from the Matlab prompt:

>>> addValidationBlock('SimulinkModelExample ', 'STL_TEST ',

[60 ,240 ,90 ,280]);

48

3.3. FORMAL LANGUAGE VERIFICATION

The result of the the addValidationBlock() function is the creation of the
monitor blocks highlighted in Figure 3.10 and their connection to the speci�ed
input and output signals by means of From/Goto blocks..

3.3.8 Conclusions and Open Challenges

This chapter presented a framework for the generation of monitor Simulink
blocks for model validation at simulation time. The STL formal language is used
as reference for the de�nition of the model requirements. The chapter shows
an overview of the tool and the supporting libraries, including implementation
details and a practical example of its usage on a real model.

A still open challenge is to extend the tool by integrating it in a complete
environment that supports the user to describe the model requirements in a
formal language with a syntax closer to the natural languages.

49

Chapter 4

Extensions to

Reservation-based Scheduling

In recent years, there has been a growing interest in supporting component-
based software development of complex real-time embedded systems. Tech-
niques such as machine virtualization have emerged as interesting mechanisms
to enhance the security of these platforms, while real-time scheduling techniques
have been proposed to guarantee temporal isolation of di�erent virtualized com-
ponents sharing the same physical resources. This combination also highlighted
criticalities due to overheads introduced by hypervisors, particularly for low-end
embedded devices. This led to the need of investigating deeper into solutions
based on lightweight virtualization alternatives, such as containers.

In this context, Section 4.1 proposes the use a real-time deadline-based
scheduling policy built into the Linux kernel to provide temporal scheduling
guarantees to di�erent co-located containers. The proposed solution extends the
SCHED_DEADLINE scheduling policy to schedule Linux control groups1, al-
lowing user threads to be scheduled with �xed priorities (i.e., SCHED_FIFO or
SCHED_RR) inside the cgroup scheduled by the SCHED_DEADLINE schedul-
ing class. Since the proposed mechanism can be con�gured through the cgroups
interface, it is also compatible with widely used tools such as LXC, Docker and
similar, that are already using cgroups. This solution is compatible with existing
hierarchical real-time scheduling analysis, and some experiments demonstrate
consistency between theory and practice.

The advantages of this approach are presented in Section 4.2, showing pre-
liminary results from on-going research for ensuring stable performance of co-
located distributed cloud services in a resource-e�cient way. It uses a hier-
archical real-time CPU scheduling policy to achieve a �ne-grain control of the
temporal interference among real-time services running in co-located containers.
The section also evaluates the performance of the presented solution by applying
the method to a synthetic task set running on Linux within LXC containers.
The Linux kernel used in the experiments has been modi�ed to implement the

1The control groups (cgroups) infrastructure provides mechanisms for aggregating/parti-
tioning sets of tasks into hierarchical groups with specialized behaviour, e.g., cgroups can be
used to limit memory or CPU resources for de�ned sets of tasks. More information available
at: https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt.

50

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

above mentioned hierarchical real-time scheduling policy.
The use of these scheduling paradigms has shown the limitations of classical

task models, like the periodic one proposed by Liu&Layland, and it is pushing
for the adoption of more realistic task models and the development of new
schedulability analyses to guarantee their timing constraints. Self-suspending
tasks are representative of enhanced task models considering explicit suspensions
of the execution, happening when a task has to interact with an external device
(e.g., through I/O operations) or to access shared resources. Real-time analysis
of such a task model cannot neglect to take also into account temporal isolation
techniques like bandwidth reservations and hypervisors, required to manage the
complexity of actual software and the need of a modular development. The
chapter concludes presenting in Section 4.3 the novel H-CBS-SO scheduling
algorithm, which provides temporal isolation for real-time self-suspending tasks.
The implementation of the algorithm is also proposed as an extension for the
Linux kernel. Finally, experimental results are presented, aiming at evaluating
the performance of the implementation in terms of run-time overhead.

4.1 Container-Based Real-time Scheduling in the

Linux Kernel

Component-based software design and development is a well-known approach
used in software engineering to address the complexity of the applications to
be developed and to improve the software re-usability. Using this technique,
complex software systems are decomposed into components described by well-
de�ned interfaces; each component can be developed independently, and various
components can be integrated later on the hardware target platform.

When developing real-time applications, the �traditional� software interface
of each component must be complemented with non-functional attributes, e.g.,
those describing its timing requirements. In real-time literature, component-
based design has been supported by modeling a component-based application
as a scheduling hierarchy, as done for example in the Compositional Scheduling
Framework (CSF) [26, 174, 175], that has been extended to support multiple
CPUs and/or CPU cores in various ways [28, 29, 44, 78, 199].

In the past, these frameworks have been generally implemented by running
each software component in a dedicated Virtual Machine (VM) and using a hy-
pervisor scheduler as the root of the scheduling hierarchy [54, 110, 194]. In some
situations, especially in embedded devices, it can be interesting to reduce the
overhead introduced by a full VM, and to use a more lightweight virtualization
technology such as container-based virtualization.

This section presents a CSF implementation based on containers; speci�-
cally, Linux control groups and namespaces. To support CSF analysis, this
technology, on which many widely used programs such as Docker, LXC, LXD
and similar tools are based, has been extended by implementing a theoretically
sound 2-levels scheduling hierarchy. The SCHED_DEADLINE scheduling pol-
icy, implementing the CBS [6] algorithm, is used as the root of the schedul-
ing hierarchy, and the standard �xed priority scheduler (SCHED_FIFO or
SCHED_RR scheduling policy) is used at the second level of the hierarchy. The
main di�erence with respect to previous implementations [49] is that the stan-

51

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

dard SCHED_DEADLINE code-base in the mainline Linux kernel is extended,
rather than reimplementing an independent reservation-based scheduler.

The proposed approach is compatible with existing real-time analysis (some
experiments show that the obtained results are compatible with MPR analy-
sis [78], but di�erent kinds of analysis and design techniques can be used as
well) and with commonly used software tools, that do not need to be modi�ed,
for example an unmodi�ed LXC installation has been used for the experiments.

4.1.1 De�nitions and Background

As previously mentioned, isolation among software components can be achieved
by running each component in a separate VM. By using appropriate scheduling
techniques, it is possible not to limit isolation to spatial isolation, but to imple-
ment temporal isolation too, meaning that the worst case temporal behavior of
a component is not a�ected by the other components2.

Virtualization and Containers

The software components of a complex real-time application can be executed
in di�erent kinds of dedicated VMs (a VM per component), based on di�erent
virtualization technologies and providing di�erent performance and degrees of
isolation among components. For example, some VMs are based on full hardware
virtualization whereas other VMs are based on container-based virtualization (or
OS-level virtualization).

When full hardware virtualization is used, the VM software implements and
emulates all the hardware details of a real machine (including I/O devices, etc.)
and the guest OS running in the VM can execute as if it was running on real
hardware. In theory, any unmodi�ed OS can run in the VM without being aware
of the virtualization details, but this is generally bad for performance and some
kind of para-virtualization is generally used.

When OS-level virtualization is used instead, only the OS kernel services
are virtualized. This is done by the host kernel, which uses virtualization of its
services to provide isolation among di�erent guests. This means that the kernel
is shared between the host OS and the guest OSs; hence all the guests have to
be based on the same hardware architecture and kernel. As an example, this
technique allows for using the same hardware platform to run multiple Linux
distributions based on the same kernel and it is often used to run multiple Linux
applications/containers on the same server, like Docker. Every distribution will
be isolated from the others, having the impression to be the only one running
on the kernel.

The Linux kernel supports OS-level virtualization through control groups
(also known as cgroups, a mechanism originally inspired by resource contain-
ers [20]), and namespaces, that can be used to isolate various kernel resources.
Userspace tools like Docker or LXC are used to set-up the control groups and
namespaces as appropriate to execute guest OSs or isolated applications inside
them.

2While in clouds or large-scale servers temporal isolation is sometimes implemented by
dedicating entire CPU cores to components, in embedded systems the number of available
CPU cores is too small and this solution is often not appropriate.

52

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

Most of the previous implementations of the Compositional Scheduling Frame-
work focused on full hardware virtualization, directly executing guest machine
language instructions on the host CPUs to improve performance and relying
on special CPU features to make this possible; more technically, to make the
CPU fully virtualizable [159]. The software responsible for controlling the ex-
ecution of guest code, the hypervisor, contains a scheduler that is responsible
for selecting the VM to be executed and implements the root of the schedul-
ing hierarchy. In previous works, this scheduler has been modi�ed to support
real-time resource allocation [49, 194].

When using container-based virtualization, on the other hand, the host ker-
nel is responsible for scheduling all of the tasks contained in the various VMs,
and implements the root of the scheduling hierarchy. Since the host sched-
uler can easily know if a guest is executing a real-time task (using the POSIX
SCHED_FIFO or SCHED_RR policy) or not, it is easy to schedule only real-
time tasks through a CPU reservation implemented by the SCHED_DEADLINE
policy serving the VM. This is another advantage of container-based virtualiza-
tion that will be discussed later.

Real-time Scheduling

A real-time application can be built by integrating a set of components, where
each component C can be modeled as a set of real-time tasks C = {τ1, ...τn}.
A real-time task τi is a stream of activations, or jobs, Ji,j (Ji,j is the j

th job
of task τi) with job Ji,j arriving (becoming ready for execution) at time ri,j
and executing for a time ci,j before �nishing at time fi,j (the �nishing time fi,j
depends on the arrival time ri,j and the scheduling decisions).

The Worst Case Execution Time (WCET) of task τi is de�ned as Ci =
maxj{ci,j}, while the period (or minimum inter-arrival time) is de�ned as Ti =
ri,j+1 − ri,j (or Ti = minj{ri,j+1 − ri,j}).

Each job is also characterized by an absolute deadline di,j , representing a
temporal constraint that is respected if fi,j ≤ di,j . The goal of a real-time
scheduler is to select tasks for execution so that all the deadlines of all the jobs
are respected.

As previously mentioned, a component C is executed in a dedicated VM hav-
ingm virtual CPUs3 πk (with 0 ≤ k < m). When container-based virtualization
is used, the host scheduler is responsible for:

1. selecting the virtual CPUs that execute at each time;

2. for each selected virtual CPU, select the task to be executed.

In this chapter, virtual CPUs are scheduled using a reservation-based algo-
rithm: each virtual CPU πk is assigned a maximum budget (or runtime) Qk
and a reservation period Pk, and is reserved an amount of time Qk every Pk
for execution. In more details, the CBS algorithm [6], as implemented in the
SCHED_DEADLINE scheduling policy [112] is used.

3If full hardware virtualization is used, the number of virtual CPUs m can theoretically be
larger than the number of physical CPUsM ; if container-based virtualization is used, m ≤M .

53

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

Overview of the HCBS Algorithm

In this section, the rules of the Hard Constant Bandwidth Server (HCBS) [36,
136], the algorithm on which the SCHED_DEADLINE scheduler is imple-
mented, are described in detail using its budget-based formulation and its fun-
damental properties are recalled.

The rules of a HCBS server with period P and maximum budget Q (band-
width α = Q/P) are summarized below. At any time t, the server is charac-
terized by an absolute deadline d(t) and a remaining budget q(t). When a job
executes, q(t) is decreased accordingly. The HCBS server can be characterized
by three states: Idle, Ready and Suspended.

Below is reported the algorithmic rules describing the HCBS server:

De�nition 1 (HCBS Algorithm).

• Rule 1 Initially, each server is Idle with q = 0 and d = 0.

• Rule 2 When the HCBS server is Idle and a job arrives at time t, a
replenishment time is computed as tr = d(t)− q(t)/α:

1. if t < tr, the server becomes Suspended and it remains suspended
until time tr. At time tr, the server becomes Ready, the budget is
replenished to Q and d← tr + P .

2. otherwise, if the server becomes Ready, the budget is immediately
replenished to Q and d← t+ P ;

• Rule 3 When q = 0, the server becomes Suspended and is suspended until
time d. At time d, the server becomes Ready, the budget is replenished to
Q and the deadline is postponed to d← d+ P .

• Rule 4 When the server has no more pending workload it turns to the
Idle state, holding the current values for both budget q and deadline d.

To address the schedulability analysis of the HCBS server, the following
result is recalled:

Theorem 1 (Theorem 1 in [136]). Given a set of n HCBS servers (Qi, Pi),
1 ≤ i ≤ n, all the servers are schedulable under EDF if and only if:

n∑
i=1

Qi
Pi
≤ 1. (4.1)

The HCBS server can be used to achieve temporal isolation among a set of
real-time tasks.

Theorem 2 (Theorem 2 in [136]). Given a set of n classical sporadic tasks
having implicit deadline, each task is associated with a HCBS server Si. For
each HCBS server Si, are de�ned Qi = Ci and Pi = Ti = Di. Then, this set
of tasks, each one executing upon a dedicated HCBS, is schedulable with EDF if
and only if the test of Equation (4.1) holds.

54

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

The advantage of associating each task to an HCBS server is enabling the
protection of the system from execution overruns of the tasks. In other words,
scheduling the system without the reservation servers, an execution overrun of a
task can impact on the schedulability of the whole system, potentially allowing
deadline misses on other tasks that are not exceeding their WCET. On the
contrary, when each task executes upon a reservation server, all the overruns
are protected by the budget exhaustion mechanism that stops the execution of
the task. In this way, only the task that is experiencing an overrun is a�ected
in terms of schedulability, while it is possible to guarantee the deadlines of the
other tasks.

Proposition 1 (Isolation property of the HCBS). Given a set of n tasks, each
one running upon a dedicated HCBS server as in Theorem 2, such that con-
dition 4.1 holds, if a task experiences an execution overrun (i.e., it exceeds its
WCET) then the schedulability of the other tasks will not be a�ected.

4.1.2 Real-time for Linux Containers

The solution presented in this chapter is based on implementing a hierarchi-
cal scheduling system (such as the one described in Section 4.1.1) in a way
that is compatible with the most commonly used container-based virtualization
solutions. Unmodi�ed LXC has been used for the experiments as an example.

A Hierarchical Scheduler for Linux

Independently from the used userspace tool, container-based virtualization in
Linux is implemented by combining two di�erent mechanisms: cgroups and
namespaces; the userspace tools like LXC and Docker are only responsible for
setting up the namespaces and cgroups needed to implement a VM.

Namespaces are used to isolate and virtualize system resources: a process ex-
ecuting in a namespace has the illusion to use a dedicated copy of the namespace
resources, and cannot use nor see resources outside of the namespace. Hence,
namespaces a�ect the visibility and accessibility of resources.

Control groups are used to organize the system processes in groups, and
to limit, control or monitor the amount of resources used by these groups of
processes. Hence, cgroups a�ect the resource scheduling and control. In partic-
ular, the real-time control group can be used to limit somehow and control the
amount of time used by SCHED_FIFO and SCHED_RR tasks in the cgroup.
Traditionally, it allows for associating a runtime and a period to the real-time
tasks of the control group (hence, it could potentially be used for implementing
a scheduling hierarchy), but its behavior is not well de�ned. Hence, the result-
ing scheduling hierarchy is not easy to analyze; for example, it implements a
runtime �balancing� mechanism among CPUs4, it uses a scheduling algorithm
similar to the deferrable server [182] algorithm (but not identical, hence prob-
lematic for the analysis) and it has a strange behavior for hierarchies composed
of more than two levels. Moreover, real-time tasks are migrated among CPUs
without looking at the runtimes available on the various cores.

4 For more information, refer to the do_balance_runtime() function in https://github.

com/torvalds/linux/blob/master/kernel/sched/rt.c.

55

https://github.com/torvalds/linux/blob/master/kernel/sched/rt.c
https://github.com/torvalds/linux/blob/master/kernel/sched/rt.c

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

In the presented approach, the software interface of the real-time control
groups is re-used, changing the scheduler implementation to �t in the CSF. A
HCBS-based reservation-based algorithm, SCHED_DEADLINE, was already
available in the mainline kernel, so that has been chosen to schedule the con-
trol groups. Linux implements global scheduling between available CPUs by
using per-core ready task queues, named runqueues, and migrating tasks be-
tween runqueues when needed. For example, �push� and �pull� operations
are used to enforce the global �xed priority invariant between �xed priority
tasks, i.e., the M highest priority tasks are scheduled. For each CPU, there
is a runqueue for non-real-time (SCHED_OTHER) tasks, one for �xed pri-
ority tasks (the real-time runqueue) and one for SCHED_DEADLINE tasks
(the deadline runqueue). Each task descriptor contains some scheduling en-
tities that are inserted in the runqueues: one for SCHED_OTHER, one for
SCHED_FIFO/SCHED_RR and one for SCHED_DEADLINE, the deadline
entity.

In this scheduler, a deadline entity is added to the real-time runqueue asso-
ciated with every CPU in a control group. This way, the real-time runqueues
of a control group can be scheduled by the SCHED_DEADLINE policy. When
SCHED_DEADLINE schedules a deadline entity, if the entity is associated
with a real-time runqueue, then the �xed priority scheduler is used to select its
highest priority task. The usual migration mechanism based on push and pull
operations is used to enforce the global �xed priority invariant, so the m highest
priority tasks are scheduled.

The resulting real-time control group now implements a 2-levels scheduling
hierarchy with a reservation-based root scheduler and a local scheduler based
on �xed priorities: each control group is associated with a deadline entity per
runqueue (that is, per CPU), and �xed priority tasks running inside the cgroup
are scheduled only when the group's deadline entity has been scheduled by
SCHED_DEADLINE. Each deadline entity associated with a real-time run-
queue is strictly bound to a single physical CPU.

Currently, all the deadline entities of the cgroup (one per runqueue/CPU)
have the same runtime and period, so that the original cgroup interface is pre-
served. However, this can be easily improved if needed (for example, using an
�asymmetric distribution� of runtime and period in the cgroup cores can improve
the schedulability of the cgroup real-time tasks [118, 199]). On the other hand,
if deadline entities with di�erent parameters are associated with the runqueues
of a cgroup, then the resulting container is characterized by virtual CPUs having
di�erent speeds, so the push and pull operations need to be updated.

Notice that this container-based implementation of a hierarchical scheduler
has an important advantage compared to full virtualization: when the runtime
of a virtual CPU (vCPU) is �nished and the vCPU is throttled, the scheduler
can migrate a real-time task from that vCPU to others (using the �push� mech-
anism). With machine virtualization, instead, the guest OS kernel cannot know
when a vCPU is throttled and its tasks must be migrated to other vCPUs;
hence, it may throttle some real-time tasks while some other vCPUs still have
an available runtime that is left unused.

As an example, consider a task set Γ = {τ1, τ2}, with C1 = 40ms, T1 =
100ms, C2 = 60ms, P2 = 100ms running in a VM with 2 vCPUs having
runtimes Q1 = Q2 = 50ms and periods P1 = P2 = 100ms. Assume that τ1 is
scheduled on the �rst vCPU and τ2 is scheduled on the second one. At time

56

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

40ms, the job of task τ1 �nishes, leaving 10ms of unused runtime on the �rst
vCPU, and at time 50ms the job of task τ2 has consumed all the runtime of the
second vCPU, hence the vCPU is throttled. If the VM is implemented using
traditional hardware virtualization, the guest scheduler has no way to know that
migrating τ2 on the �rst vCPU the job would still have some runtime to use,
while using the container-based approach the host scheduler can push τ2 from
the second vCPU of the control group to the �rst one, allowing it to use the
remaining 10ms of runtime and hence to �nish in time.

All the control groups are associated with well-speci�ed runtimes Qi and
periods Pi, and the SCHED_DEADLINE scheduling policy enforces that the
real-time tasks of a cgroup cannot use a fraction of CPU time larger than Qi/Pi.
Hence, it has been decided to implement only a simple 2-levels scheduling hier-
archy. Since the real-time control group interface allows to build deeper hierar-
chies, nesting cgroups inside other cgroups, this feature has been implemented
by ��attening� deeper cgroup hierarchies: a cgroup with runtime Qi and pe-
riod Pi can contain children cgroups with runtimes Qik and periods P ik only
if
∑
kQ

i
k/P

i
k ≤ Qi/Pi. Every time a child cgroup is created, its utilization

Qik/P
i
k is subtracted from the parent's utilization Qi/Pi (technically, the par-

ent's runtime is decreased accordingly) and the child cgroup is associated with a
deadline entity that is inserted in the �regular� SCHED_DEADLINE runqueue
(the same runqueue where the parent's deadline entity is inserted). In this way,
the temporal isolation properties and the reservation guarantees of each cgroup
are preserved, while userspace tools can still create nested cgroups (for example,
LXC does not create its cgroups in the root cgroup, but in a dedicated �LXC�
cgroup).

Schedulability Analysis

The presented kernel modi�cations result in:

• 2 levels of scheduling (a root scheduler and a local scheduler);

• m vCPUs for each VM;

• reservation-based scheduling of the vCPUs (reservation-based root sched-
uler): each vCPU πk is assigned a CPU reservation (Qk, Pk);

• local scheduler based on �xed priorities.

This kind of scheduling hierarchies has already been widely studied in real-
time literature; hence, there is no need to develop new analysis techniques, but
previous work can be re-used. In particular, Section 4.1.3 will show that the
presented implementation provides experimental results that are consistent with
the Multiprocessor Periodic Resource (MPR) model analysis [78].

According to the MPR model, each VM is assigned a total runtime Θ every
period Φ, to be allocated over at most m virtual CPUs; hence, the VM is
associated with a multi-processor reservation (Θ,Φ,m) to be implemented as
m CPU reservations. Using the presented implementation, this corresponds
to using a reservation period Pk = Φ and a runtime Qk = dΘ/me for each
virtual CPU πk. Note that the original MPR paper only analyzed EDF-based
local schedulers; however, the paper mentioned that it is possible to extend the
analysis to �xed priorities. Such an extension is already implemented in the
CARTS tool [157], that has been used to validate the experimental results.

57

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

Application-dependent Analysis

As discussed, existing CSF analysis can be applied to container-based hierar-
chical scheduler presented in this chapter, and Section 4.1.3 will show that the
scheduler provides results consistent with the theory. However, this kind of
analysis is often pessimistic, because it has to consider the worst-case arrival
pattern for the tasks executing in the container. If more information about
the structure of the containerized applications is known, then a less pessimistic
application-dependent schedulability analysis can be used.

For example, consider a simple scenario where a pipeline of n audio pro-
cessing tasks τ1, . . . , τn is activated periodically to compute the audio bu�er
to be played back on the next period. The activation period of the pipeline
also constitutes the end-to-end deadline D for the whole pipeline computations.
This use-case is recurrent for example when using common component-based
frameworks for audio processing, such as the JACK5 low-latency audio infras-
tructure for Linux, where multiple audio �lter or synthesis applications can be
launched as separate processes, but their real-time audio processing threads are
combined into a single arbitrarily complex direct acyclic graph of computations.
For the sake of simplicity, in the following has been considered a simple sequen-
tial topology where the tasks τ1, . . . , τn have to be activated one by one in the
processing work�ow, typical of having multiple cascaded �lters, and the focus
is on the simple single-processor case.

The traditional way to handle the timing constraints of the audio tasks in
this scenario is the one to deploy the whole JACK processing work�ow at real-
time priority. However, in order to let the audio processing pipeline co-exist with
other real-time components, one possibility is to use the SCHED_DEADLINE
policy, that allows to associate a runtime Qi and a period Pi with each thread
of the pipeline: each task τi is scheduled with a CPU reservation (Qi, Pi).

Therefore, one would apply a standard end-to-end deadline splitting tech-
nique, for example setting each intermediate deadline (and period) Pi propor-
tional to the worst-case execution time Ci of task τi in the pipeline, while keeping
the intermediate reservation budget Qi equal to (or slightly larger than) Ci:{

Qi = Ci

Pi = Ci∑n
j=1 Cj

D.
(4.2)

This would ensure that each task τi in the pipeline gets Ci time units on the
CPU within Pi, where all of the intermediate deadlines sum up to the end-to-
end value D. The computational bandwidth UDL needed for the whole pipeline
is:

UDL =

n∑
i=1

Qi
Pi

=

n∑
i=1

Ci
Ci∑n

j=1 Cj
D

= n

∑n
j=1 Cj

D
. (4.3)

Using the container-based hierarchical scheduler, instead, it is possible to
con�gure the system with the same ease in terms of schedulability guarantees,
but in a much less conservative way. Indeed, the pipeline tasks can simply be all
attached to the same group reservation (scheduling the threads with real-time
priorities and inserting them in a dedicated cgroup) with runtime equal to the

5More information available at: http://www.jackaudio.org.

58

http://www.jackaudio.org

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

overall pipeline processing time Q =
∑n
j=1 Cj , and a period equal to the end-to-

end deadline constraint P = D, achieving an overall computational bandwidth
UHCBS of simply:

UHCBS =
Q

P
=

∑n
j=1 Cj

D
=
UDL
n

, (4.4)

namely n times smaller than needed when associating a CPU reservation for
each task of the pipeline.

However, in the most straightforward set-up where the tasks in the pipeline
execute strictly one after the other6, it is clear that, even under SCHED_DEADLINE,
the whole pipeline can execute with a much lower real-time bandwidth occupa-
tion. Indeed, once a task is �nished, it blocks after unblocking the next task in
the pipeline. As a consequence, only one of the real-time reservations is needed
at each time, throughout each activation of the whole pipeline. Therefore, it is
su�cient to have a single reservation occupying a bandwidth su�cient for host-
ing the computationally heaviest task (Qi/Pi turns out to be a constant anyway,
following the above deadline splitting technique in Equation (4.2)), and resetting
its runtime and deadline parameters forward, following the (Q1, P1), . . . (Qn, Pn)
sequence, as the processing across tasks moves on. However, albeit convenient,
such a �reservation hand-over� feature is not available in SCHED_DEADLINE,
and, as shown below, its e�ect is actually achieved equivalently by the hierar-
chical scheduler here proposed.

4.1.3 Experimental Results

The hierarchical scheduler for Linux presented in this chapter has been evalu-
ated through a set of experiments. The patchset used for these experiments is
freely available online7. The experiments have been performed on di�erent ma-
chines, with di�erent kinds of CPUs including an Intel(R) Core(TM) i5-5200U
and an Intel(R) Xeon(R) CPU E5-2640, achieving consistent results, with CPU
frequency switching inhibited and Intel Turbo Boost disabled.

Real-time Schedulability Analysis

A �rst experiment has been designed to show one of the advantages of the
proposed approach, with respect to traditional full hardware virtualization. To
achieve this result, a container-based VM has been started using LXC. The VM
has been con�gured with 4 virtual CPUs, with runtime 10ms and period 100ms.
When running a CPU-consuming task implemented as an empty while() loop
in the VM, it is possible to notice that it consumes 10% of the CPU time on each
virtual CPU. This happens because when the task consumes the whole runtime
on a virtual CPU, the corresponding deadline entity is throttled, and the task
is migrated to a di�erent virtual CPU, where it is able to consume other 10ms
of runtime.

6JACK can be con�gured to execute tasks in a real �pipelined� fashion, where multiple
tasks are activated at the same time on di�erent pieces of the overall audio bu�er being
processed.

7 https://github.com/lucabe72/LinuxPatches/tree/Hierarchical_CBS-patches, ap-
plies to the master branch of the Linux tip repository (git://git.kernel.org/pub/scm/
linux/kernel/git/tip/tip.git), as checked out at end of June 2018 (commit f3a7e2346711).

59

https://github.com/lucabe72/LinuxPatches/tree/Hierarchical_CBS-patches
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

c
ti
o

n
 o

f
jo

b
s
 w

it
h

 n
o

rm
a

lis
e

d
 r

e
s
p

o
n

s
e

 t
im

e
 <

=
 r

Normalised response time r

lxc
kvm

Figure 4.1: CDF of the normalised response times obtained using LXC and kvm.
While the worst case response time is the same, LXC provides better average
response times (the LXC CDF is above the kvm CDF).

This experiment shows that using the presented hierarchical scheduler the
guest's real-time tasks can e�ectively consume all the runtime allocated to all the
virtual CPUs of the VM.When using full hardware virtualization, instead, this is
not possible. For veri�cation, the same experiment has been repeated in a kvm-
based VM8 scheduling the 4 virtual CPU threads with SCHED_DEADLINE
(runtime 10ms and period 100ms for each thread), verifying that the CPU-
consuming task is able to consume only 10% of the CPU time of one single
virtual CPU. This happens because when a virtual CPU thread consumes all
the runtime, it is throttled, but the guest scheduler does not migrate the thread
because the guest scheduler has no way to be noti�ed when the virtual CPUs
are throttled.

In the second experiment, the presented hierarchical scheduler has been ver-
i�ed to correctly implement CSF. Di�erent components C with di�erent utiliza-
tions

∑
i
Ci

Ti
have been generated o�ine using the CARTS tool9 to derive some

(Θ,Φ,m) parameters that allow for scheduling the component tasks without
missing deadlines. Then, the component has been executed in an LXC container
(using a minimal Linux-based OS designed to allow reproducible experiments
in virtualized environments), verifying that no deadline has been missed.

For example, the task set Γ = {(2, 32), (2.88, 40), (11.6, 46), (9.125, 48),
(0.7555), (17.362), (14.5, 90), (2.6, 103), (4.5, 261), (67, 270), (34.3, 275), (4.45, 283),
(8.55, 311), (47.4423), (97.4, 490)} (where (Ci, Ti) represents a periodic task with
WCET Ci and period Ti, in ms) is schedulable on 4 virtual CPUs with MPR
parameters (Θ = 30ms,Φ = 10ms,m = 4). When executing such a task set in
an LXC container with 4 CPUs, runtime 7.5ms and period 10ms, no deadline
has been missed indeed.

The experimental Cumulative Distribution Function (CDF) of the normal-
ized response times (where the normalized response time ri,j/Ti of a job is

8Other virtualization solutions use di�erent kinds of hypervisors - for example, Xen uses a
bare-metal hypervisor - but the results do not change.

9More information available at: https://rtg.cis.upenn.edu/carts/.

60

https://rtg.cis.upenn.edu/carts/

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

JACK clients Ci 290µs
(i = 1, 2) Pi 1319.32µs
jackd C3 58.05µs

P3 263.86µs
Interference C4 = Q4 6667µs

P4 16667µs

Table 4.1: JACK experiment parameters

de�ned as the job's response time divided by the task period) is represented
in Figure 4.1. For comparison, the �gure also contains the experimental CDF
obtained when running the same task set Γ in a kvm-based VM (with each one
of the 4 virtual CPU threads scheduled by SCHED_DEADLINE, with runtime
7.5ms and period 10ms). From the �gure, it is possible to appreciate 3 di�erent
things. First of all, both the VMs are able to respect all the deadlines: this can
be seen by verifying that both the curves arrive at probability 1 for values of the
normalized response time ≤ 1 (if the normalized response time is smaller than 1,
the deadline is not missed). Second, the worst-case experienced normalized re-
sponse time is similar for the two VMs: the two curves arrive at probability 1 for
similar values of the worst-case response time. This means that the worst-case
behavior of the two VMs is similar, as expected. The last thing to be noticed
is that the LXC curve is generally above the kvm one. This means that in the
average case the response times of the container-based hierarchical scheduler
are smaller than the one of the kvm-based one, because of the para-virtualized
nature of the container-based scheduler (as previously mentioned): when a vir-
tual CPU is throttled, the scheduler can migrate its tasks to a di�erent virtual
CPU that still has some runtime to be exploited.

Audio Pipeline

The third experiment shows the advantages of using the container-based hier-
archical scheduler for the management of a real-time JACK audio processing
work�ow, with respect to the approach of isolating each activity in a separate
CPU reservation by scheduling all the JACK threads as SCHED_DEADLINE.
In this experiment, 2 JACK clients are sequentially chained. The �rst one takes
as input stream the input data of the audio device, performs some computations
and forwards it to the next client, until the last one. Actual audio I/O through
ALSA is performed by jackd, the JACK audio server, which constitutes an
implicit 3rd element in the sample audio processing pipeline. JACK has been
con�gured with a bu�er size of 128 audio frames with a sample rate of 44100
frames/s, resulting in a total audio latency of 1000/44100 ∗ 128 = 2.9025ms
(corresponding to the period of the audio pipeline). The JACK clients per-
formed a synthetic audio processing activity with nearly constant execution
time. The overall JACK real-time workload added up to a 22% CPU load on
the CPU. Also, an additional interference load has been added, as an additional
4th real-time activity using a 40% CPU reservation. All real-time tasks have
been pinned down on the same CPU, in order to reproduce the assumptions
behind the calculations in Section 4.1.2. All the parameters for all real-time
tasks and associated reservations have been summarised in Table 4.1.

61

4.1. CONTAINER-BASED REAL-TIME SCHEDULING IN THE LINUX

KERNEL

 0

 200

 400

 600

 800

 1000

 1200

 15 20 25 30 35

O
c
c
u
rr

e
n
c
e
s
 o

f
x
ru

n

Overall bandwidth

HCBS
DL

Figure 4.2: Number of xruns reported by JACK throughout all the 10 repetitions
of each con�guration. The proposed control group scheduler (HCBS) requires a
smaller percentage of CPU time than standard SCHED_DEADLINE (DL) to
avoid xruns.

The performance of JACK in terms of experienced xruns have been measured
when the JACK threads are scheduled under the mainline SCHED_DEADLINE
policy (indicated as �DL� in the �gures) and when the hierarchical control group
scheduler (indicated as �HCBS� in the �gures) is used. First, the 3 real-time
threads belonging to the JACK audio processing pipeline from the 2 JACK
clients and jackd itself, have been scheduled with SCHED_DEADLINE using
the parameters obtained from the deadline splitting approach in from Equation
(4.2). As expected, using these parameters no xruns were experienced. Since
Equation (4.2) can end up in an over-allocation of CPU time, the test has
been repeated reducing the SCHED_DEADLINE runtimes. In practice, the
Qi parameters have been rescaled proportionally, so that the fraction of CPU
time reserved to the three threads ranged from 15% to 35%. The DL line
in Figure 4.2 reports the results, highlighting that the system starts behaving
correctly when the percentage of CPU time reserved to the three JACK threads
is about 31%. This is well below the conservative theoretical bound in Equation
(4.3), as expected from the arguments at the end of Section 4.1.2.

After using the standard SCHED_DEADLINE policy to schedule the JACK
threads, the test was repeated running JACK within an LXC container, so the
whole set of JACK real-time threads have been scheduled within a hierarchical
reservation. The period of the reservation was set to 2.9025ms, and runtime
varied around the ideal value Q =

∑3
i=1 Ci = 638.05µs (21.98% of real-time

bandwidth utilization), so as to match a real-time utilization from 15% to 35%.
As visible from the HCBS line in Figure 4.2, there are no xruns for a real-
time utilization of 21%, closely matching theoretical expectations from Equation
(4.4). This value is signi�cantly below the experimental threshold found above
when using the original SCHED_DEADLINE.

Therefore, experimental results con�rm the increased ease of use and e�-
ciency in the use of the real-time HCBS computational bandwidth when using
the proposed control group scheduler, compared to the original SCHED_DEADLINE
scheduler.

62

4.2. VIRTUAL NETWORK FUNCTIONS AS REAL-TIME CONTAINERS

IN PRIVATE CLOUDS

4.1.4 Conclusions and Open Challenges

This chapter presented a new hierarchical scheduler implementation for the
Linux kernel, designed to support container-based virtualization so that it �ts
in the CSF, that can be conveniently used with LXC containers having multiple
virtual CPUs. The presented scheduler is implemented by modifying the real-
time control groups mechanism so that the SCHED_DEADLINE policy is used
underneath to schedule the real-time runqueues of each cgroup.

Experimental results show that a real-time application scheduled within an
LXC container under the new scheduler behaves as predicted by existing theo-
retical CSF analysis. Also, in a realistic use-case involving the use of reservation-
based CPU scheduling for guaranteeing CPU time to an audio processing work-
�ow, the proposed control groups scheduler proved to be easier to con�gure
and achieved better results, with the potential of occupying a lower real-time
computational bandwidth within the system, for preventing the occurrence of
xruns.

A challenge that still remains open is the investigation and analysis of the
proposed scheduler in the context of parallel real-time activities deployed in
multi-CPU containers.

4.2 Virtual Network Functions as Real-time Con-

tainers in Private Clouds

Information and communication technologies have undergone a relentless evo-
lution in recent years, with a tremendous push towards distributed computing.
The uprise of cloud computing, coupled with the widespread di�usion of broad-
band Internet connections, caused a paradigm shift towards more and more ser-
vices provisioned through cloud computing infrastructures, in an on-demand,
elastic, fashion, with needs of consumers evolving fast towards high-reliability,
high-availability, and high-performance.

On the side of infrastructure providers, be it public cloud providers or private
ones, there is an increasing interest in the e�cient management of the hosted
services. This brought to a number of innovations over the last years, ranging
from features made available by hardware and CPU manufacturers in form of
hardware-assisted virtualization mechanisms to reduce overheads due to ma-
chine virtualization, to software solutions based on tweaking internals of hosted
operating systems and software stacks, pushing towards para-virtualization or
very di�erent solutions based on library operating systems or unikernels [101,
129].

Among others, network operators are looking with a growing interest in
adopting (and adapting) the �exibility of (private) cloud computing to the pro-
visioning of network functions as needed throughout their infrastructure. This is
witnessed by the growing interest by, e.g., access network operators, in Network
Function Virtualization (NFV) [142], a paradigm shift from traditional physi-
cal network appliances to network functions deployed as software components
throughout a set of data centers. Thanks to the convergence towards IP-based
networking, these functions can be managed with the �exibility and dynamic-
ity of a private cloud, becoming e�ectively Virtual Network Functions (VNFs).
These have a strong demand for locality, as these functions stay in the critical

63

4.2. VIRTUAL NETWORK FUNCTIONS AS REAL-TIME CONTAINERS

IN PRIVATE CLOUDS

per-packet processing path and possess critical latency requirements, calling for
solutions that have great e�ciency in processing, among others. This is bring-
ing an increasing interest in operating system (OS)-level virtualization tech-
niques [20], i.e. Linux containers, as provided for example by LXC10, LXD11 or
Docker12, which exhibit basically no performance loss when compared to bare-
metal deployments, still retaining the advantages in isolation, software stack
organization and dependencies management typical of deployments using ma-
chine virtualization.

Deploying virtual machines (VMs) or containers in a shared infrastructure
raises well-known problems of temporal interference among co-located compo-
nents, particularly in presence of over-subscription of the CPUs, i.e., multiple
virtual CPUs (vCPUs) mapped to the same physical CPU (pCPU) of a host, but
also in presence of bottlenecks due to other resources, such as disks or networks,
for data-intensive workloads. Focusing on the processing performance, control-
ling the interferences among co-located containers is typically done in nowadays
clouds via a 1-to-1 vCPU-to-pCPU allocation, a.k.a., no CPU over-subscription,
or dedicating entire physical machines to individual services.

However, this implies a minimum granularity in service allocation equal to
the one of a single CPU computing power, with the consequence of a potentially
high under-utilization of the infrastructure, in presence of deployed services
with relatively small workloads. Therefore, an infrastructure provider is left
with the choice between: a) deployments with some degree of over-subscription
with potentially highly unstable performance of the individual service as due to
the time-varying workload of others sharing the same pCPU(s), because there
is little to no control of the interferences among them; b) deployments with no
over-subscription, leading to stable performance of individual services at the cost
of high under-utilization of the underlying physical infrastructure. Both options
have additional drawbacks for a variety of application scenarios, including the
considered NFV one (i.e., for the nodes at the edge of the network): a) over-
subscription impacts on the QoS during tra�c peak hours; b) 1-to-1 allocation
unacceptably increases power consumption, which is already playing a dominant
role in the overall energy budget of access networks.

This work presents the vision for tackling the problem mentioned above,
based on a �ne-grain allocation of pCPU(s): a real-time CPU scheduler in the
OS kernel guarantees allocation of precise shares of a pCPU time to individ-
ual containers with a per-container time granularity, resulting in a stable and
predictable performance of the hosted services.

The approach is validated by using a patched Linux kernel extending the
mainline SCHED_DEADLINE CPU scheduler [112] with hierarchical schedul-
ing capabilities, applied to scheduling containers hosting the later described
synthetic application.

4.2.1 Related Work

Recent years have seen the growing success of the cloud paradigm outside of its
original employment scenarios due to all its well-known advantages. However,
those new application �elds are characterized by additional constraints that

10More information available at: https://linuxcontainers.org/lxc/introduction/.
11More information available at: https://linuxcontainers.org/lxd/introduction/.
12More information available at: https://docs.docker.com/.

64

https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxd/introduction/
https://docs.docker.com/

4.2. VIRTUAL NETWORK FUNCTIONS AS REAL-TIME CONTAINERS

IN PRIVATE CLOUDS

Figure 4.3: Reference service topologies.

cannot be handled without improving the modeling and the management of the
underlying infrastructure, to exploit it more signi�cantly [60].

Several works exist on controlling performance of distributed cloud services
via elasticity and auto-scaling mechanisms [10, 166], intelligent placement strate-
gies [106, 107], possibly including network-awareness [11] and SDN-based ap-
proaches [56]. To mitigate interferences of co-located services, real-time schedul-
ing applied to hypervisors has been proposed, e.g., for the kvm [54] and Xen [110]
hypervisors. In these works the hypervisor is extended to apply hierarchical
real-time scheduling theory [175] and to allocate precise slices of the physical
CPU execution time to each VM running on the platform. Some extensions
to OpenStack [193] have also been proposed to deal with the experimental fea-
tures introduced at the hypervisor level. The same Xen extensions have also
been used for realizing a real-time NFV solution [115]. Note that, besides de-
ployment of NFV with predictable processing latency, the presented technique
can similarly be used for achieving predictable execution of a number of cloud
workloads that need more and more end-to-end latency control in their execu-
tion, including real-time multimedia [55], cloud robotics [183], or cloud-based
functions in automotive [108].

Some works addressed the problem of accelerating cloud infrastructures with
support for heterogeneous hardware platforms, including GP-GPUs [200] and
FPGAs [85]. This is orthogonal to the problem of limiting temporal interferences
among co-located services, dealt with herein. To this end, a wide range of
performance-related features is nowadays available in operating systems and
hypervisors, that need to be exposed to higher cloud orchestration layers, that
are currently active research projects [60].

4.2.2 Proposed Approach

The here used general reference system, illustrated in Figure 4.3, is composed of
a number of clients submitting requests to a service topology including a number
of servers either in charge of picking up a fraction of the incoming service tra�c
as due to the action of a load-balancer (shown in the top half of the �gure),
or being part of a group of replicated services, or to be traversed sequentially
after one another (service chain, shown in the bottom half of the �gure) or a
combination of these elements.

65

4.2. VIRTUAL NETWORK FUNCTIONS AS REAL-TIME CONTAINERS

IN PRIVATE CLOUDS

In these cases, traditional performance control approaches in cloud comput-
ing prescribe the use of elastic scaling (typically horizontal, or, less frequently,
vertical) coupled with load-balancing within cloud orchestration layers for con-
trolling the overall service QoS. This has two major drawbacks: 1) the approach
is viable only with services spanning across multiple instances; 2) if services are
co-located on the same physical servers and physical CPUs, to make an e�cient
use of the infrastructure, then CPU contention causes the performance of each
individual server to be highly unstable as due to changes in the workload of
co-located services. Furthermore, elastic control loops tend to recover possi-
ble performance shortcomings a-posteriori, once the problem becomes evident
through monitoring at the orchestrator sensing level, likely once clients have
already been impacted by the performance degradation.

In the proposed approach, it is thus of paramount importance to have low-
level mechanisms to keep the performance of individually hosted servers as stable
as possible, even in cases of co-located functions on the same CPUs/cores. As it
will become clear later, this is possible by recurring to special real-time schedul-
ing of the CPU at the OS/kernel (or hypervisor) layer, allowing for temporal
isolation among co-located containers. This mechanism can be nicely integrated
with standard QoS control mechanisms for cloud services, making it easier to
perform said control actions, thanks to the better stability of the performance
of individual elements deployed within an elastically provisioned service. Fur-
thermore, in the proposed approach it is possible to dynamically change the
scheduling parameters, introducing an additional knob that can be used by
an orchestration layer to �ne-tune the CPU allocation to individual containers
(vertical scalability), while achieving its control goals.

Therefore, in the following, the focus of this chapter narrows down to the
problem of isolating the performance of individual co-located containers within
a cloud platform, with particular reference to CPU scheduling, thus CPU-
intensive services13, as illustrated in Figure 4.4. The meaning of the per-
container scheduling parameters (Qi, Pi) will be clari�ed just below.

In the general context just highlighted, the presented on-going research is
looking, among others, at the speci�cs of the NFV use-case, where a set of
Virtual Network Functions (VNFs) are deployed as containers hosting packet
processing servers (characterized by heterogeneous timing requirements, as due
to di�erent classes of handled tra�c) across a number of possibly heterogeneous
computing nodes.

Hierarchical Real-time Scheduling of Linux Containers

In what follows, the proposed modi�cations to the Linux real-time scheduler
are described, with reference to how the technique has been applied to isolate
execution of Linux containers. This way, it is possible to choose the con�guration
parameters for the server (Q, P) as a function of the desired QoS. That allows a
resources controller to �gure out the feasibility of a requested throughput based
on the underlying resources and the already allocated services.

Linux containers, as created via the lxc tool, are associated with a control
group (cgroup) allowing for the speci�cation of limits on the amount of resources
each container can use, including memory, physical CPUs, as well as limit to the

13For data-intensive services, the technique can be enriched by integrating additional QoS
control mechanisms at the networking, disk or I/O layers.

66

4.2. VIRTUAL NETWORK FUNCTIONS AS REAL-TIME CONTAINERS

IN PRIVATE CLOUDS

Figure 4.4: Proposed approach: n services are deployed as containers over a
host with multiple physical CPUs. Container i has runtime Qi and period Pi.

amount of time real-time tasks (SCHED_FIFO and SCHED_RR) within a container
can be scheduled for. The Linux scheduler has been modi�ed to allow building
theoretically-sound scheduling hierarchies through cgroups14.

The mainline Linux kernel has been recently added the SCHED_DEADLINE

CPU scheduling class [112], a variant of the well-known EDF-based Constant
Bandwidth Server (CBS) [6], allowing for attaching each task with a CPU reser-
vation, expressed in terms of a runtime Q and a period P , with the meaning
that Q time units are granted to the task on the CPU(s) every P time units.

The presented �Hierarchical CBS� (HCBS) scheduler15 extends this mecha-
nism with hierarchical scheduling concepts [175], realizing a mechanism where
a CPU real-time reservation can be assigned to a control group as a whole,
controlling the amount of time real-time tasks in each group are allowed to run
on each CPU/core. This results in a 2-levels hierarchy of schedulers, where
SCHED_DEADLINE selects the control group to be scheduled on each CPU, and
the �xed priority real-time scheduler in the Linux kernel selects one of the tasks
from the scheduled control group.

The resulting mechanism, conceptually similar to [49], supports partitioned
scheduling in the host (each SCHED_DEADLINE entity used to schedule a control
group is bound to a CPU/core) and generic a�nities in the guest (�xed priority
tasks in the control group can have generic a�nities; hence both partitioned
and global scheduling of real-time tasks are supported).

14The Linux kernel already provides hierarchical scheduling for real-time tasks, but its
design aims only at acting as a limitation, not as a guarantee.

15The patch is available at: https://github.com/lucabe72/LinuxPatches/tree/

Hierarchical_CBS-patches.

67

 https://github.com/lucabe72/LinuxPatches/tree/Hierarchical_CBS-patches
 https://github.com/lucabe72/LinuxPatches/tree/Hierarchical_CBS-patches

4.2. VIRTUAL NETWORK FUNCTIONS AS REAL-TIME CONTAINERS

IN PRIVATE CLOUDS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
l
<

 t

t

(8,18)
(16,36)
(32,72)

Figure 4.5: CDF for the normalized lateness of a task set scheduled in an lxc

container with various values of runtime and period.

4.2.3 Experimental Results

This section presents some experiments with the approach presented in Sec-
tion 4.2.2, using a Linux kernel v4.16.0-rc1, modi�ed with the HCBS patch, and
Linux containers through lxc, where were set per-container HCBS parameters
(Q,P) as needed for each experiment.

Although the presented HCBS scheduler can support the stochastic analysis
based on queueing theory (extending, for example, the analysis already per-
formed for single tasks served by SCHED_DEADLINE [63]), it can also support
hard real-time scheduling with guarantees provided through the Compositional
Scheduling Framework (CSF) [110, 175].

To show this, the task set Γ = {(4879, 30000), (561, 36000), (10427, 104000),
(4408, 109000), (20271, 250000)} (where (C, T) indicates a periodic real-time
task with Worst Case Execution Time C and period T ; times are expressed
in µs) has been scheduled by SCHED_FIFO and priorities assigned according to
Rate Monotonic in an lxc container. The container has been assigned various
combinations (Q,P) of runtime and period (according to CSF analysis, the task
set is schedulable with Q = 8ms and P = 18ms), and the resulting normalized
lateness of the real-time tasks have been measured. The normalized lateness
l = r−T

T is de�ned as the di�erence between the response time r of a task and
the task period T , divided by the task period (positive values indicate a missed
deadline).

Figure 4.5 presents the Cumulative Distribution Function (CDF) of the nor-
malized lateness measured for 3 combinations of scheduling parameters:

• (Q = 8ms,P = 18ms): schedulable task set (no missed deadlines) ac-
cording to CSF analysis. The CDF reaches 1 for values of the normalized
lateness smaller than 0, so the theoretical results are con�rmed

• (Q = 16ms,P = 36ms): CSF analysis does not guarantee the schedulabil-
ity of the task set, however the CDF reaches 1 for values of the normalized
lateness smaller than 0 (no missed deadlines). This result does not contra-
dict CSF analysis, that only provides a su�cient schedulability condition,
and is quite pessimistic

68

4.3. SELF-SUSPENDING TASKS

• (Q = 32ms,P = 72ms): the scheduling system is stable according to
queueing theory (the utilization of the task set U =

∑
C
T = 0.4 is smaller

than 32/72 = 0.44444), but CSF analysis does not guarantee the schedu-
lability of the task set. This is con�rmed by the fact that the CDF reaches
1 for a normalized lateness equal to 0.46, so some deadlines are missed.

4.2.4 Conclusions and Open Challenges

This chapter introduced a feasible vision for deploying distributed cloud ser-
vices with stable performance (with focus on NFV), based on containers and
lightweight OS virtualization functionalities. Thanks to the used hierarchical
real-time scheduler (which leverages existing theory in real-time literature), the
proposed approach provides predictable QoS and can be used, for example, for
QoS control in components in the context of 5G network function split. The
mechanism ensures stable performance of deployed services, enabling the possi-
bility to apply sound performance modeling, analysis and control techniques.

It would be interesting the challenging future activity of applying the pre-
sented architecture to real software components, for example, prototyping the
mechanism within the OpenStack cloud management and orchestration frame-
work, and use the OpenAirInterface16 software as a case-study related to access
network.

4.3 Self-suspending Tasks

Modern computation systems are characterized by a growing level of complexity
due to an increasing number of cores and the availability of heterogeneous dedi-
cated subsystems. To fully exploit this huge computation power, new program-
ming models and paradigms that highly rely on parallel executions requiring
synchronization among the di�erent threads have been developed.

One of the most well known among these approaches is the fork-join one,
that is used in a wide range of domains from library for multicore-enabled appli-
cations like OpenMP, to Map-Reduce applications that nowadays characterize
cloud services. This and other synchronization issues need to be managed with
proper protocols [40] that could introduce self-suspensions in the tasks execu-
tion. Another aspect is correlated with the presence of dedicate computation
units (e.g., FPGA, DSP, GPU), where threads o�oad highly optimized elab-
orations to speedup the execution, like the use of a DSP to perform signal
processing (e.g., �ltering, FFT). Nowadays, applications strongly rely on the
communication among nodes and with devices. These could range from sensors
acquisitions in the embedded domain to highly interconnected systems in the
automotive environment or disk-intensive tasks in the BigData application �eld.
All these behaviors share the necessity for the task to self-suspend waiting for
some event.

Also real-time applications cannot neglect any more the use of this features,
but they need to be provided a way that does not jeopardize timing constraints.
The interest regarding scheduling analysis for self-suspending tasks has grown
in recent years. However, the currently available results are not comparable

16More information available at: http://www.openairinterface.org/.

69

http://www.openairinterface.org/

4.3. SELF-SUSPENDING TASKS

with those provided for more classical task model due to the complexity of the
problem [164].

Approaches to deal with the schedulability analysis of self-suspending tasks
can be dived in two main branches: suspension-oblivious and suspension-aware.
In the suspension-oblivious approach [123, 132] the maximum suspension time
that each job of a task could endure is included in the worst-case execution
time (WCET) of the task. Even if this approach presents the same pessimism
in the analysis as the use of busy execution (i.e., the task actively waits for the
suspension to �nish), it presents advantages at runtime because the task leaves
the processor that could be used to reduce response time of other tasks, serve
aperiodic request and best-e�ort activities or be reclaimed to reduce energy con-
sumption. Instead, suspension-aware analysis explicitly considers suspensions
in the task model and in the related schedulability analysis.

The complexity of modern software solutions has driven the adoption of a
modular approach. This is now an established common practice in terms of
code design and implementation. In recent years, this view has been introduced
also for runtime execution to better exploit the computational power of modern
platforms while reducing the complexity of the analysis. Most of the proposed
approaches are based on the concept of resource reservation, that assigns a
fraction of the computation time provided by the platform to each activity
enforcing that no more than such an amount is e�ectively given. The mechanism
could be applied to a huge range of platforms, from small embedded systems to
server farms.

The Constant Bandwidth Server (CBS) has been originally proposed by
Abeni and Buttazzo [6] for multimedia applications. They proposed it as a
scheduling methodology based on reserving a fraction of the processor band-
width to each task, under the EDF scheduling algorithm. Marzario et al. iden-
ti�ed that the CBS is not able to ensure hard reservation due to the deadline
aging problem [136]. The Hard CBS [36] (HCBS) has been proposed extend-
ing the original CBS to implement hard reservation [162] (i.e., guaranteeing a
minimum budget in any time interval). Bertogna et. al. [27, 37] presented the
BROE algorithm to provide hard real-time guarantee to tasks with an approach
light enough to be implemented even in small microcontrollers. BROE extends
the HCBS to handle resource sharing in hard real-time Hierarchical Scheduling
Frameworks. Recently, an implementation of the Hard CBS algorithm called
SCHED_DEADLINE [111] has been included in the mainline Linux. To deal
with the self-suspensions caused by locking due to shared resources, Faggioli et.
al. [81] proposed the multiprocessor bandwidth inheritance protocol (M-BWI)
that allows to schedule self-suspending tasks under CBS using busy executions.
That resource reservation approach can be used for other resources like disk and
network as proposed by Valente et. al., [187, 188].

Concerning self-suspending tasks, Richard [163] identi�ed that suspension-
aware schedulability analysis of periodic self-suspending tasks is NP-hard in the
strong sense. Ridouard et al. studied the suspension-aware schedulability anal-
ysis of self-suspending tasks in uniprocessor systems presenting several negative,
but very interesting, results [164, 165].

Abdeddaïm and Masson [2] presented a timed automata based model for self-
suspending tasks and proposed a method to test the sustainability of a schedule
with respect to the execution and self-suspension durations. Recently, Nelissen
et al. [141] have invalidated existing results on suspension-aware analysis for

70

4.3. SELF-SUSPENDING TASKS

uniprocessor systems. In this work they presented an exact analysis for self-
suspending task with one self-suspension region and a su�cient test in the case
of multiple self-suspension regions, both in case of �xed-priority scheduling.

Liu and Anderson proposed suspension-aware schedulability tests for self-
suspending tasks in multiprocessor systems [120, 121], addressing both G-EDF
and G-FP scheduling policies. Liu and Anderson have also derived a tardiness
bound [122] for self-suspending tasks in the context of soft real-time multipro-
cessor systems under G-EDF and G-FIFO scheduling.

This work has three main contributions:

• the identi�cation that the Hard CBS algorithm (and its current implemen-
tation in the mainline Linux) is not able to provide resource reservation
for self-suspending tasks under suspension-oblivious analysis;

• a novel reservation algorithm called H-CBS-SO is proposed, extending the
HCBS to support temporal isolation among self-suspending tasks;

• since the novel algorithm has been implemented in the Linux kernel, im-
plementation details are presented and experimental results aiming at
evaluating the performance of the implementation in terms of run-time
overhead are reported.

4.3.1 Background and notation

This chapter considers a task set Γ composed of n real-time self-suspending tasks
(SS-tasks) running upon a uniprocessor system. A SS-task alternates execution
and self-suspending phases; no limitation is given to the number of interleaved
phases. A SS-task τi is characterized by a worst-case execution time (WCET)
Ci, a maximum self-suspension time Si, a period (or minimum interarrival time)
Ti and an implicit relative deadline Di = Ti. Each SS-task must start and end
with an execution phase (i.e., with the realistic assumption to not have self-
suspensions at the beginning or at the end of the �body� of the SS-task).

Each SS-task τi executes upon a dedicated reservation server Si characterized
by a budget Qi and a period Pi. This chapter will consider two di�erent types
of reservation server algorithms: the HCBS algorithm, brie�y recalled in the
previous sections and in Section 4.1.1, and a novel algorithm, the H-CBS-SO,
proposed in Section 4.3.2. The reservation servers are assumed to be scheduled
according to the EDF scheduling policy. An example of the system con�guration
considered in this chapter is illustrated in Figure 4.6; this scheduling scheme is
denoted as Task Isolation Framework (TIF).

4.3.2 HCBS for Suspension-Oblivious Analysis

Concerning self-suspending tasks, no suspension-aware schedulability tests seem
to have been proposed for SS-tasks executing upon the HCBS, and this section
demonstrates that the HCBS algorithm is not suitable to directly support a
suspension-oblivious analysis of SS-tasks running upon HCBS servers. When
considering SS-tasks executing upon HCBS servers, one can try to extend the
suspension-oblivious approach by using the schedulability results from Theo-
rem 1 and 2. That is, given a set of n SS-tasks τi, each one executing upon a
dedicated HCBS server Si, the server parameters are con�gured as Qi = Ci+Si

71

4.3. SELF-SUSPENDING TASKS

Figure 4.6: Example of a Task Isolation Framework.

and Pi = Ti = Di by accounting self-suspensions as execution times. Then,
Theorem 1 and 2 are applied to verify whether the task set is schedulable. Un-
fortunately, the HCBS algorithm is not directly suitable to support such an
approach to deal with the schedulability analysis of self-suspending tasks, as
the following example illustrates.

Example 1 (HCBS and SS-task without busy execution). Consider a task τ
with C = 1, S = 3 and D = T = 8. Suppose the task τ be executed upon a
reservation server S having Q = C+S = 4 and P = T = 8. As Figure 4.7 shows,
the task τ starts executing at t = 4, that is the latest time at which τ can start
executing still guaranteeing Q = 4 budget units until the deadline P = T = 8.
Suppose now that τ immediately self-suspends its execution: according to the
classical HCBS formulation, since S has no more workload to be served, the
server S becomes Idle. At time t = 7 the task can resume its execution. Hence,
Rule 2 of the HCBS is applied. In this case tr = 8 − q(7)/α = 6: then, having
t > tr (bandwidth check), the budget is immediately replenished to Q and the
deadline shifted at d = 15. In this way, since the server (in the worst-case)
cannot start executing before d − Q = 11, the task τ will miss its deadline. In
other words, the reservation server was not able to guarantee C time units of
computation in a period P , notwithstanding that the server budget was set at
Q = C + S.

Since under suspension-oblivious analysis suspensions are treated as execu-
tion time, a second approach could be to replace the task self-suspensions with
busy executions, modifying the actual task implementation. With this approach,
when a task has to suspend (e.g., due to an I/O operation), it starts a busy ex-
ecution wasting processor cycles. The busy execution ends when the task can
be resumed from the self-suspension. This solution, illustrated by the following
example, is clearly simple and has a strong practical e�ectiveness.

Example 2 (HCBS and SS-task with busy execution). Consider a SS-task τ
and a HCBS server as in Example 1. The self-suspension of τ is replaced with
a busy execution. As shown in Figure 4.8, when τ self-suspends at time t = 4,
it continues executing wasting processor cycles until t = 7. Thanks to busy

72

4.3. SELF-SUSPENDING TASKS

S

�
�
�
�

�
�
�
�

�� �
�
�
�

�
�
�
�

���� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

t4 80

t

q

4

0

11

Execution

Self-suspension

Figure 4.7: HCBS serving a SS-task: a counterexample using suspension-
oblivious analysis.

S

�
�
�
�

�
�
�
�

�� �
�
�
�

������ �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
� ������
������
������
������

����

t4 80

t

q

4

0

11

Execution

Busy Execution

Figure 4.8: HCBS serving a SS-task where self-suspensions have been replaced
with busy executions.

execution, the server is now able to guarantee C = 1 execution units over a
period P = 8; this is because the server remains active without performing any
bandwidth check.

As illustrated in Example 2, after replacing self-suspension with busy ex-
ecution Theorem 1 and 2 allow to check for the system schedulability of a
SS-task running upon a HCBS server with Q = C + S. However, while replac-
ing self-suspensions with busy executions does not provide any bene�ts when
a suspension-oblivious analysis is used, it is clearly worse when other perfor-
mance metrics are considered. For example, since the busy execution consists
in wasting processor cycles, it is not possible to reclaim the idle-time generated
from the self-suspensions, which could be used to serve non real-time work-
load or improve the average response-times of the tasks. In the same way, also
when energy constrained systems are addressed, it is preferable to avoid busy
executions still guaranteeing the schedulability of the system.

The key observation is that using busy execution, if a server with pending
workload is the highest priority one (i.e., earliest absolute deadline) then it is

73

4.3. SELF-SUSPENDING TASKS

executing; whilst with self-suspension of servers this is not still true. The highest
priority server can be in idle state due to a self-suspension, while in practice this
server should not be considered as an idling server since it has pending workload
temporarily self-suspended.

Looking at Example 1, it is possible to notice that deadline miss is caused
by the bandwidth check (t > tr) that disallows the server to execute in the
time interval [7,8]. Unfortunately, as the following example shows, this problem
cannot be solved by simply removing the bandwidth check when a server is
resumed from a self-suspension.

Example 3 (HCBS without bandwidth check and SS-tasks). Consider a task set
composed of two self-suspending tasks, τ1 having C1 = 2, S1 = 0, T1 = D1 = 4,
and τ2 having C2 = 2, S2 = 1, T2 = D2 = 7. Using suspension-oblivious analysis
this task set results schedulable under EDF, since

2∑
i=1

Ci + Si
Ti

=
2

4
+

2 + 1

7
≤ 1. (4.5)

Suppose that both τ1 and τ2 are associated to two HCBS servers S1 and S2

respectively, with Q1 = C1 + S1 = 2 and Q2 = C2 + S2 = 3. The period of the
servers is the same of the served task. As Figure 4.9 shows, both the servers are
released at the same time; then, according to the EDF policy, S1 starts executing.
At time t = 2 the server S2 can start to execute and immediately self-suspends
its execution. Suppose now that τ2 violates its maximum self-suspension time,
self-suspending its execution for 2 time units. Then, at time t = 4, τ2 resumes
its execution without performing the bandwidth check and executes for 3 time
units, making 1 time unit of overrun. Since the budget of the server S2 was
set to Q2 = 3, the task τ2 is able to overrun without any budget exhaustion
mechanism is triggered. Finally, at time t = 7, τ1 can start executing missing
its deadline at time t = 8. Unfortunately, since a greater self-suspension time
and an overrun of τ2 compromise the schedulability of τ1, this example shows
that the task isolation property (Proposition 1) of the HCBS could be broken.

To address the problems discussed in this section, this chapter proposes an
extension of the HCBS algorithm which �takes into account� task self-suspensions
exactly as if the task was busy executing. In this way, the reservation server
algorithm can be analyzed with a suspension-oblivious analysis.

The H-CBS-SO Algorithm

In this section is de�ned the H-CBS-SO algorithm, an extension of the HCBS al-
gorithm to support self-suspending tasks analyzable with a suspension-oblivious
analysis, and its basic properties can be derived.

The H-CBS-SO server introduces a new state (with respect to HCBS) de-
noted Self-Suspended. As Figure 4.10 illustrates, this new state can be reached
by transitions from the Ready and the Suspended states; the Self-Suspended
state allows transitions to the Ready and the Suspended states.

The H-CBS-SO extends the HCBS algorithm reported in De�nition 1 by
adding the following rules and the SS-QUEUE data structure:

De�nition 2 (H-CBS-SO Algorithm).

74

4.3. SELF-SUSPENDING TASKS

S2

S

�� �
�
�
�

���
�
�
�

���� �
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������ �
�
�
�

�
�
�
�

0

t4 80

t

q

3

0

Execution

Self-suspension

�
�
�
�

t4 7

Figure 4.9: HCBS with SS-tasks: the bandwidth check of the HCBS is disabled.

Figure 4.10: State transition diagram for the H-CBS-SO algorithm.

75

4.3. SELF-SUSPENDING TASKS

SS-QUEUE. A queue containing all the server in the Self-Suspended
state is introduced; the server in that queue are ordered by increasing ab-
solute deadline. SSS denotes the server on top of SS-QUEUE, dSS and
qSS its absolute deadline and budget respectively. If SS-QUEUE is empty,
dSS = qSS =∞ is set.

• Rule SO-1. When a task τ self-suspends, the server associated to τ
becomes Self-Suspended and is inserted in the SS-QUEUE.

• Rule SO-2. When a task τ resumes form self-suspension, the server
associated to τ becomes Ready and is removed from the SS-QUEUE.

• Rule SO-3. When qSS = 0, the server SSS is removed from the SS-
QUEUE, becomes Suspended and is suspended until time dSS. SSS is
renamed by Sj. At time dj, the budget qj is replenished to Qj and the
deadline dj is postponed to dj + Pj; �nally, Sj becomes Self-Suspended
and is inserted in the SS-QUEUE.

• Rule SO-4. (Budget accounting rule) - If a server Si is executing and
di ≥ dSS holds, then both qSS and qi are decreased. On the other hand,
if di < dSS only qi is decreased. If there is no server in the Ready state
(idle-time), then qSS is decremented.

Notice that Rules SO-1 and SO-2 do not modify the deadline of the server.
Also, notice that, when the server is moved from the Self-Suspended state to
the Ready state, Rule SO-2 does not perform any bandwidth check (Rule 2 of
HCBS).

Example 4 (H-CBS-SO and SS-tasks, following Example 1). Consider the
same SS-task τ of Example 1 executing upon a server S implemented with the
H-CBS-SO algorithm. Suppose also that τ starts executing at t = 4 as in the
previous example and immediately self-suspends its execution. According to the
H-CBS-SO algorithm, the server S becomes self-suspended and is inserted in
SS-QUEUE. Then, Rule SO-3 is applied and the budget q(t) is decremented
until τ resumes its execution (time t = 7). At this time, Rule SO-2 is applied
and S becomes Ready with budget q = 1. Since Rule SO-2 does not provide any
bandwidth check, the server S can execute until time t = 8 avoiding τ to miss
its deadline.

Example 5 (H-CBS-SO and SS-tasks, following Example 3). Consider the same
task set of Example 3 where the servers S1 and S2 are implemented with the H-
CBS-SO algorithm. Both the servers are con�gured with the same parameters
of the previous example. At time t = 2 the server S2 can start to execute
and immediately self-suspends its execution; then, according to Rule SO-1, S2

becomes Self-Suspended and is inserted in SS-QUEUE. Suppose now that τ2
violates its maximum self-suspension time, self-suspending its execution for 2
time units. During the self-suspension, Rule SO-3 is applied and the budget q2

is decremented by 2 time units. Then, at time t = 4, τ2 resumes its execution
with budget of S2 equal to q2 = 3− 2 = 1.

Likewise Example 3, τ is supposed to have an execution of 3 time units, mak-
ing 1 time unit of overrun. In this case, having used the H-CBS-SO algorithm,
τ is able to execute only in the time interval [4, 5] due to a budget exhaustion at
time t = 5.

76

4.3. SELF-SUSPENDING TASKS

Finally, at time t = 5, τ1 can start executing without missing its deadline at
time t = 8. Unlike Example 3, in this case a greater self-suspension time and
an overrun of τ2 do not compromise the schedulability of τ1, guaranteeing the
task isolation property.

The rules of the H-CBS-SO have been designed to imitate the parameters
updating of a server in the HCBS with busy execution algorithm, but removing
the wasting of processor cycles typical of the busy execution. This property is
related to the H-CBS-SO server having earlier deadline, since it is the one that
would have executed when self-suspensions are replaced with busy executions.
This is expressed in the following proposition, which is the main property of the
H-CBS-SO algorithm.

Proposition 2. With H-CBS-SO, self-suspensions of the server having the ear-
lier deadline are accounted as with HCBS with busy executions.

Proof. First, consider the state-transitions from Ready to Self-Suspended and
from Self-Suspended to Ready (Rules SO-1 and SO-2, respectively). Consider
a server SSS in the Ready state and executing (dSS is the earliest deadline)
serving an active task τSS that self-suspends. Then Rule SO-1 is applied and
the server becomes Self-Suspended. Two cases can be distinguished: (i) a server
Si executes while SSS is Self-Suspended (ii) there is no such server Si while SSS
is Self-Suspended (idle-time). In case (i), �rst suppose di < dSS . Then with
HCBS with busy execution SSS is preempted by Si and qSS is not decremented.
Similarly, Rule SO-4 implies that qSS is not decremented while SSS is in the
Self-Suspended state. Let us instead suppose di ≥ dSS . Then with HCBS with
busy exection SSS continues executing (i.e., Si can not preempt SSS) and the
budget qSS is decremented accordingly. Similarly, Rule SO-4 implies that qSS is
decremented. In case (ii), with HCBS with busy execution SSS continues (busy)
executing (there is no idle-time) and the budget qSS is decremented accordingly.
Similarly, Rule SO-4 implies that qSS is decremented. Finally, consider a server
SSS in the Self-Suspended state and resuming its execution. Then Rule SO-2
is applied and the server becomes Ready without performing any budget check.
As with HCBS with busy execution, SSS continues executing with (unchanged)
deadline dSS and budget qSS .

Now consider the remaining state-transitions: from Self-Suspended to Sus-
pended and from Suspended to Self-Suspended (Rule SO-3). Consider a server
SSS in the Self-Suspended state and exhausting its budget qSS (qSS = 0, after
applying Rule SO-4). By Rule SO-3, SSS is removed from the SS-QUEUE, be-
comes Suspended and is suspended until dSS ; the budget qSS is then no more
decremented by applying Rule SO-4. A similar result holds with HCBS with
busy execution by applying Rule 3. Consider a server Sj in the Suspended state
serving a self-suspended SS-task τj at time dj . By Rule SO-3, the budget qj is
replenished to Qj and the deadline is postponed to dj + Pj . A similar result
holds with HCBS with busy execution by applying Rule 3. Finally, Rule SO-3
inserts Sj into the SS-QUEUE, thus leading back to the cases described in the
�rst part of the proof.

When self-suspensions are replaced by busy executions, it is clearly not pos-
sible to have nested self-suspensions, because the processor would be occupied
by the busy execution in place of the self-suspension of the server having the

77

4.3. SELF-SUSPENDING TASKS

earliest deadline. When nested self-suspensions occur, the H-CBS-SO server
does not imitate the parameters updating of the HCBS with busy executions.
However, the following proposition addresses this point showing that nested
self-suspensions do not a�ect the system schedulability.

Proposition 3. If a deadline is missed by a H-CBS-SO server, then it would
be missed also with HCBS with busy executions.

Proof. Since H-CBS-SO extends HCBS by adding the Self-Suspended state and
rules describing transition to and from this state, it is necessary to consider
only the behavior of the H-CBS-SO server triggered by self-suspensions. It is
possible to distinguish two cases: non-nested self-suspensions and nested self-
suspensions. In the �rst case, since there is only a single self-suspension, Propo-
sition 2 guarantees that the H-CBS-SO has the same behavior of HCBS with
busy executions. Consider now the second case: suppose Sj be a H-CBS-SO
server that is self-suspended when at least another server is self-suspended (i.e.,
nested self-suspension). Let SS be the set of self-suspended servers having dead-
lines di ≤ dj , ∀Si ∈ SS. If the set SS is empty, then Sj is the self-suspended
server having earlier deadline, and the considerations of Proposition 2 can be
applied to replicate the behavior of the HCBS with busy execution. From now
on suppose that the set SS is not empty, hence considering the case in which
Sj is in the SS-QUEUE and it is not the �rst server in SS-QUEUE. Let t be
the earlier time instant at which Sj is resumed from its self-suspension or the
set SS becomes empty, which is the time instant at which the server Sj stops
to have a budget update di�erent from the case of HCBS with busy execution
(i.e., also the time at which Sj is removed from the SS-QUEUE or it becomes
the �rst server in SS-QUEUE).

If the deadline dj is missed, then Sj was not able to execute qj(t) before
time dj , i.e., qj(t) + I > (dj − t), where I is the interference caused by servers
having earlier deadline than Sj from time t on.

In case of using the HCBS with busy execution, due to the busy execution of
self-suspended servers in the set SS, the budget q

′

j(t) of Sj at time t is greater or

equal than the one with H-CBS-SO, i.e., q
′

j(t) ≥ qj(t). This is because server Sj
could have executed during self-suspensions of the servers in the set SS, while it
would be prevented from executing in case of self-suspensions replaced by busy
executions.

Hence, if qj(t) + I > (dj − t) then also q
′

j(t) + I > (dj − t) holds, thus
concluding the proof.

Proposition 3 allows to use the schedulability test from Theorem 2 for SS-
tasks after in�ating their WCETs with the worst-case self-suspension times.

Theorem 3 (Suspension-Oblivious Analysis). Given a set of n SS-tasks τi with
implicit deadline, each SS-task is associated with a H-CBS-SO server Si. For
each H-CBS-SO server Si, Qi = Ci + Si and Pi = Ti = Di are de�ned. Then,
this set of tasks, each one executing upon a dedicated H-CBS-SO, is schedulable
with EDF if Equation (4.1) holds.

Notice that the schedulability condition from Theorem 3 is su�cient but, in
general, not necessary for the schedulability of the task set. This is illustrated
in the following example.

78

4.3. SELF-SUSPENDING TASKS

Example 6. Consider a task set composed of two self-suspending tasks, τ1
having C1 = 1, S1 = 2, T1 = D1 = 4, and τ2 having the same parameters.
Assuming that both τ1 and τ2 are associated to two H-CBS-SO servers S1 and
S2 respectively, with Qi = Ci + Si = 3 for i = 1, 2. The period of the servers
is the same of the served task. Using suspension-oblivious analysis this task set
results non-schedulable under EDF, since

2∑
i=1

Ci + Si
Ti

=
3

4
+

3

4
> 1. (4.6)

However it is easy to see, by checking all possible schedules over the hyper-
period of 4, that this task set is EDF schedulable. This is because the self-
suspension times of a given job can be used to execute other pending workload.

Notice that multiple servers can be in the Self-Suspended state (i.e., en-
queued in the SS-QUEUE) at the same time-instant, as illustrated in the fol-
lowing example. This justi�es the presence of the queue.

Example 7. Consider a task set composed of three self-suspending tasks, τ1
having C1 = S1 = 1, T1 = D1 = 4, τ2 having C2 = S2 = 1, T2 = D2 = 8 and
τ3 having C3 = S3 = 1, T3 = D3 = 10 executing within H-CBS-SO servers S1,
S2 and S3, respectively, with Q1 = 2, P1 = 4, Q2 = 2, P2 = 8 and Q3 = 2,
P3 = 10. Suppose that at time t = 0 server S1 starts and immediately self-
suspends (i.e., it is inserted in the SS-QUEUE) and that, subsequently, server
S2 starts and self-suspends. In this situation S1 is the head of the queue (i.e.,
SSS = S1), having earlier deadline than S2. Suppose then that server S3 starts
executing for C3 time-units; according to Rule SO-4, qSS = q1 is decremented
until its exhaustion. This behavior re�ects Proposition 2: with HCBS with busy
execution, server S1 would have continued to (busy) execute disallowing S2 and
S3 to execute; this also could explain the ordering by increasing deadlines of the
SS-QUEUE.

The H-CBS-SO is able to guarantee temporal isolation for SS-tasks, simi-
larly to the isolation property of the HCBS reported in Proposition 1. This is
expressed by the following proposition:

Proposition 4 (Isolation property of the H-CBS-SO). Given a set of n SS-
tasks, each one running upon a dedicated H-CBS-SO server as in Theorem 3,
such that condition 4.1 holds, if a task exceeds its WCET C or/and its maximum
self-suspension time S then the schedulability of the other SS-tasks will not be
a�ected.

Proof. Since H-CBS-SO extends HCBS by adding the Self-Suspended state and
rules describing transition to and from this state, this similarly follows from
Proposition 2 and Proposition 3, after recalling Proposition 1.

Idle-time reclaiming. The H-CBS-SO algorithm, contrary to the HCBS
algorithm with busy execution, is able to guarantee, together with the schedu-
lability of the task set (Theorem 3), a higher lower-bound on the idle-time (i.e.,
time-instant where no server has pending workload).

79

4.3. SELF-SUSPENDING TASKS

Consider a task set composed of n SS-tasks each one executing over a ded-
icated H-CBS-SO server with Qi = Ci + Si and Pi = Ti such that condition
expressed in Equation (4.1) holds. H := lcm{P1, . . . , Pn} denotes the hyper-
period of the servers.

Suppose that all the servers are released simultaneously at time t = 0. At
time t = H the length of the idle-time intervals in [0, H) is lower-bounded by
the following quantity:

ISS ≥ H

(
1−

n∑
i=1

Ci
Pi

)
(4.7)

Since during self-suspension times the SS-task does not require to execute, at
time t = H the workload executed by the processor is at most C =

∑n
i=1 Ci

H
Ti
.

Then the idle-time on the interval [0, H) is at least the di�erence between the
elapsed time H and the time C in which the processor has executed.

Notice that, with HCBS with busy execution, since self-suspensions are re-
placed by busy executions, then the idle-time in [0, H] is lower-bounded by

IBE ≥ H

(
1−

n∑
i=1

Ci + Si
Pi

)
≤ ISS . (4.8)

It is important to remark that, with HCBS without busy execution, even if
we can guarantee the same lower-bound ISS for idle-time, it is not possible to
guarantee the schedulability of SS-tasks as shown in Example 1.

The idle-time guaranteed by the H-CBS-SO can be exploited by integrating
such a reservation algorithm with reclaiming mechanisms like IRIS [136] or H-
GRUB [8]. Both these algorithms have been designed to work with HCBS
and are able to reclaim the idle-time guaranteeing that the spare bandwidth is
fairly distributed among the needing servers. IRIS is based on an update of the
server parameters when an idle-time occurs while H-GRUB provides a budget
accounting rule that takes into account the spare bandwidth. The idle-time
could be also exploited for energy-management purposes through the utilization
of power-aware scheduling algorithms able to use such a wasted intervals of time
to reduce the energy consumption applying techniques of Dynamic Frequency
and Voltage Scaling (DVFS) and Device Power Management (DPM) like those
proposed by Aydin et. al. [15] and Marinoni et. al. [134].

Generalization for Hierarchical Scheduling

The hierarchical or component-based design has been widely accepted as a
methodology to enable modularity and simplify the analysis of large and com-
plex systems (e.g., [175, 176]). This section extends the H-CBS-SO algorithm to
the case where multiple tasks can be run upon the same server, after extending
the system model from Section 4.3.1.

Consider a two-level hierarchical system. The system is composed of n H-
CBS-SO servers {(Qi, Pi)}, with server Si := (Qi, Pi) serving a set Γi of implicit-
deadline SS-tasks. The task model is as in Section 4.3.1; The notation τ :=
(Cτ , Sτ , Tτ) denotes a SS-task. The global scheduler is based on the H-CBS-SO
algorithm. Each subsystem uses a local scheduler to select the running task;
EDF is used as local scheduling policy.

H-CBS-SO rules are used as in De�nition 2 but replacing Rules SO-1 and
SO-2 with, respectively:

80

4.3. SELF-SUSPENDING TASKS

• Rule SO-1-hier. If there is no workload to execute on the server Si and
at least one task in Γi is self-suspended, then Si becomes Self-Suspended
and is inserted in the SS-QUEUE (if not already in the SS-QUEUE).

• Rule SO-2-hier. If there is workload to execute on the server Si or there
is no task in Γi which is self-suspended, then Si becomes Ready and is
removed from the SS-QUEUE (if in the SS-QUEUE).

With this modi�cations, it is possible to follow the proof of Proposition 2 thus
concluding that self-suspensions of the server are accounted with H-CBS-SO as
busy executions are accounted with HCBS with busy executions. As a direct
consequence of this observation, the Isolation Property (or global schedulability
analysis) of Proposition 4 extends to the hierarchical context.

The local (suspension-oblivious) schedulability analysis of a H-CBS-SO server
can be performed using the test proposed in [175]. According to this test, the
task set Γi is schedulable by EDF on the server Si if

∀t > 0 dbf(Γi, t) ≤ sbf(Si, t), (4.9)

where

dbf(Γi, t) :=
∑
τ∈Γi

⌊
t

Tτ

⌋
· (Cτ + Sτ) (4.10)

is the demand bound function of the task set Γi (i.e., the maximum com-
putational demand of Γi in any interval of length t > 0) and sbf(Si, t) is the
supply bound function of the server Si (i.e., the minimum amount of service
time provided by the server in any interval of length t > 0). An expression for
sbf(Si, t) (the same of the HCBS) can be found in [119]. Techniques to solve 4.9
can be found in [22].

4.3.3 Linux Implementation

This section describes how the H-CBS-SO has been implemented in the Linux
kernel and shows the overhead introduced by this extension.

The Linux kernel 3.14 introduces a new scheduling class called SCHED_DEADLINE
that implements the HCBS algorithm. This infrastructure can be extended to
implement the novel H-CBS-SO algorithm and verify its performance. In par-
ticular, the implementation has been made by modifying version 3.19 of the
vanilla Linux kernel.

SCHED_DEADLINE is characterized by a strong relationship between tasks
and servers: each server must have one and only one associated task. This leads
to the lack of a clear distinction in the data structures. For this reason, in
SCHED_DEADLINE, the terms �task� and �server� represent the same entity
and can be used be used both interchangeably.

Modi�cations

This section presents the data structures and the functions that have been added
or modi�ed to implement the H-CBS-SO algorithm.

81

4.3. SELF-SUSPENDING TASKS

Data Structures

The SS-QUEUE (see De�nition 2) is implemented through a red-black tree,
which has a complexity of O (log (n)) for insertion, removal and search opera-
tions, where n represents the number of elements in the tree. The SS-QUEUE is
arranged by absolute deadlines, thus the server SSS (i.e., the one having earlier
deadline) is represented by the leftmost element of the tree. Because the most
frequent operations (e.g., removal and budget update) are performed on SSS , a
pointer to the leftmost element is added to speed up these common operations,
reducing the complexity to O (1).

An additional �ag must be added for each task in order to keep trace of its
self-suspension status, because the system must determine if that task was self-
suspended when a budget replenishment is performed on it. This is due to the
fact that it needs to be decided if the task must be reinserted in the SS-QUEUE
following the SO-3 rule or can be set as ready.

Functions

A performing solution to catch the transitions to and from the self-suspension
state can be obtained intercepting the insertion or removal of the tasks in the
SCHED_DEADLINE runqueue. The reasons leading to the removal of a task
from the runqueue are (i) server budget exhaustion; (ii) task termination; (iii)
scheduling class modi�cation and (iv) self-suspension, hence, the self-suspension
is detected when a task is removed from the runqueue and this removal is not
caused by one of the �rst three cases.

Below is presented how the H-CBS-SO rules are implemented in SCHED_DEADLINE.
SO-1. When a SCHED_DEADLINE task leaves the runqueue, it is checked

if the cause of this transition is a self-suspension, and if this is the case, it is
inserted in the SS-QUEUE.

SO-2. If a self-suspended SCHED_DEADLINE task enters the runqueue,
then it can switch to the ready state, thus be removed from the SS-QUEUE.

SO-3. When the SSS exhausts its budget, then its self-suspension �ag is
set, it becomes suspended and a timer is activated for its replenishment. If the
self-suspension �ag is active when the budget is replenished, then the task is
inserted in the SS-QUEUE, otherwise it is inserted in the runqueue.

SO-4. SCHED_DEADLINE tasks budgets are periodically updated. In
the new implementation, the budget of the SSS is also updated when needed
by the server rule. To minimize the overhead, no budget updates are performed
on the SS-QUEUE when there are no ready SCHED_DEADLINE tasks. This
idle time is measured with a timer and is used to bring back the system to a
consistent state by scaling it from the budgets of the self-suspended tasks.

Performance Evaluation

Some tests are performed to evaluate the overhead of the newly introduced
SCHED_DEADLINE functions by the H-CBS-SO implementation. The tests
are performed running several periodic tasks and measuring the execution times
of the two implementations.

82

4.3. SELF-SUSPENDING TASKS

Setup

The tests are performed on a machine equipped with an Intel Core 2 Duo running
at 3 GHz. Measurements are obtained through the Ftrace tool, that is the
internal Linux kernel tracer and is used as function pro�ler in this experiments.

Task Sets

The task sets used for the performance evaluation have a number of tasks equal
to 2k, where k = {1, . . . , 10}. The total utilization factor of each task set is
chosen equal to U = 0.8. The utilization factor Ui of each task is randomly
generated such that the minimum value is Ulb = U

n+1 and
∑
i Ui = U . The

utilization factor is de�ned according the suspension-oblivious analysis, i.e., it
accounts for self-suspensions times as execution times. The period of each job is
chosen as a random value between 0.1 ms and 10 ms. Each task releases 10000
jobs that (i) busy waits to simulate execution; (ii) self-suspends; (iii) busy waits
again and (iv) waits for next activation.

The last step is implemented with the use of the sched_yield() system call,
which in SCHED_DEADLINE zeros the budget and triggers the suspension
until the next activation.

For each job, the busy wait to simulate the task execution is equal to 1
6 of

the total execution time, while the remaining 2
3 is related to the self-suspension.

Execution Times

The following �gures compare the performance of the SCHED_DEADLINE
scheduling class before and after the H-CBS-SO extension, showing the execu-
tion times of the modi�ed kernel functions. The overhead before the extension
is indicated with the label HCBS, since it is the name of the native server
algorithm in SCHED_DEADLINE.

Each plot displays the execution times values as a function of the number
of tasks in the task set of each modi�ed function. The results are expressed
in microseconds in a logarithmic scale. The circles and the squares represent
the mean values of the two implementation, while the vertical bars delimit the
minimum and the maximum values.

The main observation is that the additional overhead required for imple-
menting the H-CBS-SO has been observed to be considerably small in all the
tested scenarios.

Figure 4.11 shows the overhead introduced in the update_curr_dl() function,
which updates the budgets of the running task and the SSS (see rule SO-4). In
addition to the budget update, if SSS exhausts its budget, it is removed from
the SS-QUEUE (see rule SO-3). This removal operation is the reason of the
execution time growth of this function when the number of tasks increases.

Figure 4.12 shows the overhead introduced in the enqueue_task_dl() func-
tion, which puts a task into the SCHED_DEADLINE runqueue, and so, may
resume a self-suspended task from the SS-QUEUE. Also in this case, the SS-
QUEUE removal operation is the cause of the general larger execution time of
this function. If the function is executed for a task which was in Suspended
state due to the SO-3 rule, then it simply updates a �ag and returns. This �ag
is required in order to decide if, after the budget replenishment, the task must
turn back to the Ready state or follow the SO-3 rule, and so, be pushed in the

83

4.3. SELF-SUSPENDING TASKS

101 102 103

10−1

100

101

Number of tasks

T
im

e
(µ
s)

H-CBS-SO

HCBS

Figure 4.11: update_curr_dl() execution times.

101 102 103

10−1

100

101

Number of tasks

T
im

e
(µ
s)

H-CBS-SO

HCBS

Figure 4.12: enqueue_task_dl() execution times.

SS-QUEUE. The �ag update is a simple and quick operation and the probability
of performing this operation increases with the number of self-suspending tasks.
This is the reason of the convergence of the two execution time of the function
before and after the H-CBS-SO extension.

The Figure 4.13 shows the overhead introduced in the dequeue_task_dl()
function, which removes a task from the SCHED_DEADLINE runqueue, and
so, may be caused by a self-suspension. This operation justi�es the increased
overhead shown in the picture, but the execution time grows logarithmically
with the number of tasks, because of the rb-tree insert operation. The number
of tasks used for this experiment is too small to show this behavior.

The Figure 4.14 shows the overhead introduced in the dl-_task-_timer()
function, which replenishes the budget of a suspended task. If the suspended
task was self-suspended, then it must be pushed back in the SS-QUEUE, oth-
erwise, it is pushed in the runqueue. Performance are apparently improved
because, by splitting SS-QUEUE and runqueue, the nodes of the two trees are
less, resulting in a lower access time to their elements.

Overall, the �gures show that the computational cost of the new functions is
comparable to the original SCHED_DEADLINE implementation. As a result,
the modi�cations introduced to implement the H-CBS-SO algorithm present a
low impact on the system load.

84

4.3. SELF-SUSPENDING TASKS

101 102 103

10−1

100

101

Number of tasks

T
im

e
(µ
s)

H-CBS-SO

HCBS

Figure 4.13: dequeue_task_dl() execution times.

101 102 103

10−1

100

101

Number of tasks

T
im

e
(µ
s)

H-CBS-SO

HCBS

Figure 4.14: dl_task_timer() execution times.

85

4.3. SELF-SUSPENDING TASKS

4.3.4 Conclusions and Open Challenges

Modern platforms are composed of multiple heterogeneous computation units
and are managed with software infrastructures providing temporal isolation
among concurrent applications. To guarantee timing constraints of real-time ap-
plications executing in this kind of environments, new task models and schedul-
ing algorithms must be introduced.

In this chapter is presented the novel H-CBS-SO scheduling algorithm that
provides resource reservation for real-time self-suspending tasks. It has been
shown that it is able to guarantee a suspension-oblivious schedulability analysis
for self-suspending tasks running upon H-CBS-SO servers, while avoiding to
waste processor cycles, as happens when using busy executions in place of self-
suspensions.

The proposed algorithm has been implemented in the Linux kernel, as an
extension of the SCHED_DEADLINE scheduling class, today part of the main-
line of Linux. The implementation has been described and evaluated in terms
of run-time overhead.

An open challenge is to address is the issue of suspension-aware analysis
of self-suspending tasks scheduled using HCBS based reservation servers, as
well as integrating existing idle-time reclaiming mechanisms with the H-CBS-
SO algorithm. In addition, synchronization protocols for resource reservation
scheduling should be extended to cope with self-suspensions related with such
protocols.

86

Chapter 5

Heterogeneous Architectures

Computing platforms are evolving towards heterogeneous architectures includ-
ing processors of di�erent types, and hardware accelerators, like graphics pro-
cessing unit (GPU), neural networks accelerator, cryptographic accelerator, sig-
nal processing accelerator, or other custom functions.

The advantages of using heterogeneous architectures are not limited to the
computational performance boosting, but also on the energy e�ciency that these
ad-hoc devices provide.

An example of widespread heterogeneous architectures is represented by the
Arm big.LITTLE family of microprocessors and the upcoming DynamIQ. The
big.LITTLE architecture embeds two di�erent kinds of CPU architectures shar-
ing the same Instruction Set Architecture (ISA), but one architecture is more
complex and performing, the other is simpler and more energy e�cient. The
DynamIQ architecture is an evolution of the big.LITTLE, which may include
more than two di�erent CPU architectures, sharing the same instruction set,
but with di�erent computational speed and energy consumption characteristics.
These microprocessors �nd a wide use in mobile devices, for which the energy
consumption is a mandatory constraint, but at the same time may require high
computing power for some speci�c workloads, e.g., video games and multimedia.

Counting more than two billion devices, Android is nowadays one of the
most popular open-source general-purpose operating systems, based on Linux.
Because of the diversity of applications that can be installed, it manages a
number of di�erent workloads, some of them requiring performance/QoS guar-
antees. When running audio processing applications, the user would like an
uninterrupted, glitch-free, output stream that reacts to the user input, typi-
cally with a delay not bigger than 4 − 10 ms, while keeping the energy con-
sumption of the mobile device as low as possible. Section 5.1 focuses on im-
provements to the real-time audio processing performance on Android. Such
improvements were achieved by using the previously mentioned deadline based
scheduler SCHED_DEADLINE and an adaptive scheduling strategy that dy-
namically modulates the allocated runtime.

The proposed strategy is evaluated through an extensive set of experiments,
showing that 1) compared to the existing way to ensure low-latency audio pro-
cessing, the proposed mechanism provides an energy saving of almost 40%, and
2) compared to the existing way to achieve a good balance between power con-
sumption and latency in a glitch-free audio processing experience, the proposed

87

solution reduces audio latency from 26.67 ms to 2.67 ms, at the expense of a
limited power consumption increase of 6.25%.

The just mentioned work highlighted the need for the development of proper
power-consumption models for heterogeneous multicore architectures that cap-
ture the variability of energy consumption based on processing workload type,
in addition to the classical variables considered in the literature, like type and
frequency of the CPU. As shown in Section 5.2, this problem is motivated pre-
senting experimental results gathered on a Odroid-XU3 board equipped with an
Arm big.LITTLE SoC, showing that power consumption has a non-negligible
dependency on the workload type. The section also presents a model to de�ne
the execution time of the tasks, which depends on both the workload, and the
CPU frequency and architecture. The validation of these models is performed
through modi�cations to the open-source RTSIM real-time scheduling simula-
tor to extend its CPU power consumption and execution time duration models,
integrating results taken from the real platform. The developed tool constitutes
a useful base for future research in energy-aware real-time scheduling on het-
erogeneous platforms, being a useful solution to provide preliminary results of
di�erent energy-aware scheduling policies.

One of the most �exible solutions to implement hardware accelerators for
speeding up speci�c functions is with the use of �eld programmable gate arrays
(FPGAs), that can be erased and reprogrammed with the requested functional-
ities. More speci�cally, heterogeneous platforms equipped with processors and
�eld programmable gate arrays (FPGA) can be exploited to accelerate speci�c
functions triggered by software activities.

The increasing capacity and performance of modern FPGAs, have made
them attractive in several application domains, including space applications [1,
145]. With satellite lifetimes increased far beyond 10 years, re-programmability
in �ight becomes a stringent requirement. Moreover, in space environments,
where radiation can cause bit �ips in memory elements and ionisation failure in
semiconductors, the use of recon�gurable hardware allows modifying on-board
functions by replacing faulty/outdated designs at di�erent stages of a mission.

Thanks to the Dynamic Partial Recon�guration (DPR) capabilities of mod-
ern FPGAs, such functions can be programmed at run-time, allowing for the
virtualization of the available area to support several hardware modules in time
sharing, hence making them even more attractive.

Section 5.3 reports some preliminary experimental studies conducted to eval-
uate the feasibility of the proposed approach, pro�le the temporal parameters
involved in such systems (e.g., recon�guration and execution times) and iden-
tify possible bottlenecks. The achieved results are encouraging and clearly show
that, in spite of the relatively high recon�guration times of FPGAs, a timeshar-
ing mechanism can signi�cantly improve the performance of real-time applica-
tions with respect to fully static approaches.

This chapter also proposes a framework for supporting the development of
safety-critical real-time systems that exploit hardware accelerators developed
through FPGAs with DPR capabilities. With the aim of investigating this
direction, here is presented a prototype implementation of a timesharing mech-
anism that can be used to dynamically recon�gure prede�ned FPGA areas for
accelerating di�erent functions associated with real-time recurrent tasks. A
model is presented and then used to derive a response-time analysis to verify the
schedulability of a real-time task set under given constraints and assumptions.

88

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

Although the analysis is based on a generic model, the proposed framework has
been conceived to account for several real-world constraints present on today's
platforms and has been practically validated on the Zynq platform, showing
that it can actually be supported by state-of-the-art technologies. Additionally,
a number of experiments are reported to evaluate the worst-case performance
of the proposed approach on synthetic workload.

Finally, to properly exploit the DPR feature, novel operating system sup-
ports are needed. This chapter concludes presenting an implementation of the
FRED framework for the Linux operating system over the Zynq-7000 platform
produced by Xilinx. Design solutions for managing hardware accelerators are
discussed, and a software architecture for Linux is presented, which comprises
(i) support for shared-memory communication with hardware accelerators, (ii)
an improved driver to handle the FPGA recon�guration, and (iii) a scheduler for
the management of requests of hardware acceleration. The proposed solution
allows exploiting the enormous number of software systems available for Linux
(such as drivers, libraries, communication stacks, etc.), and the typical program-
ming �exibility of software, while relying on predictable hardware acceleration
of heavy computations.

5.1 Energy-e�cient Low-latency Audio on An-

droid

A signi�cant limitation of the Android1 operating system (OS) has always been
the di�culty in providing2 low-latency audio features, which are often required
in a signi�cant number of interactive multimedia applications, like professional
grade multimedia. One of the obstacles in achieving this is the heterogeneity of
devices running Android, having di�erent hardware capabilities, as well as the
lack of proper interaction models between applications and kernel, thus requiring
several software abstraction layers and big audio bu�ers, both resulting in the
capability of generating a smooth audio output, at the price of an audio latency
increase.

Multimedia applications, as shown in Figure 5.1, can be realized on Android
with many di�erent APIs. From the Java language, a number of APIs in the
android.media package can be conveniently used for playing or recording audio
locally, managing audio �les, or streaming audio from a remote source. However,
this option forces the uses of large bu�ers, causing non-negligible audio latencies.
For interactive, low-latency scenarios, applications need to possess a C/C++
component that uses the available low-latency C/C++ APIs, e.g., OpenSL ES

or AAudio (more details will be provided later).
When using the low-latency audio APIs, a real-time thread using the SCHED_FIFO

scheduling discipline is used, which, along with SCHED_RR, is part of the
SCHED_RT scheduling class of the Linux kernel. Because of the energy re-
quirements of the target mobile devices, SCHED_RT has been integrated with

1 This work refers to the master branch of the Android Open Source Project (AOSP)
synchronized on the 21st of May 2018 at 4:36pm CET, an under-development version of
Android Q.

2 Audio latency estimations can be measured with the Superpowered Mobile Audio La-
tency Test App, and the results are collected and shown at the following address: https:

//superpowered.com/latency.

89

https://superpowered.com/latency
https://superpowered.com/latency

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

Figure 5.1: Overview of the Android audio architecture.

the schedutil policy of the CPUFreq3 framework that, according to internal
heuristics, estimates the expected overall system workload and sets the CPU
frequency.

Unfortunately, this approach slowly reacts to dynamic workload changes,
such as sudden spikes up of CPU demand due to, e.g., a sudden increase in
the number of voices being synthesized in software. Indeed, by the time the
schedutil heuristics realizes that the CPU workload increased, and a frequency
increase is needed, it might already be too late, and the audio pipeline exhibits
an audible glitch. This problem can be mitigated by increasing the audio bu�er
size, resulting in a larger latency of the audio processing pipeline, so that the sys-
tem has more time to adapt the CPU frequency before an audio glitch happens,
which ultimately makes the current solution not suitable for professional audio
applications. Alternatively, low latency can be achieved by locking the CPU
to the maximum frequency when a SCHED_RT task is present, as done in the
mainline Linux kernel (more details in Section 5.1.2), leading to an unacceptable
increased power consumption for mobile devices.

This work proposes a novel, exploratory solution to tackle this problem,
based on: 1) adapting the AAudio framework so as to switch to a deadline-based
programming paradigm which uses the SCHED_DEADLINE scheduling class
recently added to the Linux kernel [112]; this, di�erently from SCHED_RT,
allows schedutil to adapt the frequency coherently with the real-time work-
load as known to SCHED_DEADLINE, preserving the timing constraints of

3More information available at: https://www.kernel.org/doc/Documentation/cpu-freq/.

90

https://www.kernel.org/doc/Documentation/cpu-freq/

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

the application; and 2) by extending the AAudio API by introducing a new
mechanism to notify the system about workload demand changes, which are
used for a proactive update of the computational bandwidth, thus of the CPU
frequency. Experimental results conducted over an Android board demonstrate
the advantages of the proposed approach in both application responsiveness and
energy e�ciency.

5.1.1 Related Work

Several prior e�orts exist addressing the problem of ensuring predictable exe-
cution and performance stability of multimedia applications and soft real-time
workloads on general-purpose OS. These have been incorporating for decades a
variety of heuristics for handling multimedia applications in the context of desk-
top systems, speci�cally for letting multimedia applications coexist with CPU-
intensive processing workloads while keeping a smooth and glitch-free playback.
These heuristics have been based on the concept of detecting interactive work-
loads, which are usually characterized by alternating sequences of short-lived
processing and sleeping time frames, from batch workloads, typically having a
much longer duration of CPU-intensive activities. Then, the detected interac-
tive processes are transparently boosted in their priorities with respect to batch
ones, without requiring the developers of multimedia applications to make any
speci�c adjustment.

For example, the Linux SCHED_OTHER policy has been using a heuristic
of this kind [184], tracking per-task sleep vs. ready-to-run time windows, and
boosting the dynamic priority of a task after wake-up, while de-boosting it while
running continuously.

Nevertheless, these mechanisms are known to result in quite an unstable
allocation of the CPU to multimedia applications. So, these have been tradi-
tionally designed with large pre-computed bu�ers, or with the ability to adapt
themselves to the resources available as typically done in video applications that
skip frames as needed. However, in the case of low-latency requirements, it is
common to resort to APIs for either increasing the nice level into the general-
purpose scheduler or switching to a predictable real-time scheduling policy, typ-
ically available as the POSIX SCHED_FIFO or SCHED_RR disciplines [179].

The research literature on real-time systems proposes many approaches fo-
cused on CPU scheduling and the application of reservation-based scheduling
techniques [162], that also apply to soft-real time architectures [103], based on
adaptive approaches, by which the OS kernel guarantees timely allocation of the
CPU to competing applications according to their requirements, including their
speci�c time granularity. These constitute a basis for stable task execution on
top of which sound mathematical models can be built.

Several authors also have considered energy-aware adaptive scheduling of soft
real-time and multimedia applications. In [126, 180] and [4], authors propose
to use theoretical arguments from control theory to the problem of adaptively
scheduling real-time tasks, based on a closed-loop model of the system rooted
in linear systems theory, which is made possible by adopting an underlying
reservation-based scheduling discipline. Further research along this line con-
sidered the adaptation of per-task resource reservations recurring to non-linear
controllers [58], probabilistic real-time guarantees [57], and pipelines of tasks
with end-to-end deadline guarantees [149].

91

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

In GraceOS [201] the Linux kernel is enhanced with the ability to monitor
cycle demand distributions of applications, and use them to adaptively con�gure
scheduling parameters and frequency switching of the platform to meet the
application quality of service requirements, as well as the system overall energy
consumption constraints. Similar in objectives was the work in [64], where an
adaptive multi-layer control architecture for energy-aware soft real-time was
proposed. This included adaptiveness: 1) at the application level, where multi-
mode applications had the capability to dynamically switch among a set of
discrete modes of operation with di�erent resource and timing requirements; 2)
at the middleware level, where a per-application feedback-scheduling controller
was attached to each application to control its needed scheduling parameters;
and 3) at the OS/kernel level, where a supervisor was performing overload
controls, and a centralized QoS/power manager was dynamically re-optimizing
the whole system con�guration in a distributed real-time environment.

More recently, the powernowd daemon for automatic CPU frequency control
on Linux has been modi�ed [61] to prevent switching to power modes that would
break schedulability of a system that has already accepted real-time reservations,
on the single-processor scheduler [150] mentioned above.

Concerning audio applications on Linux, experimentation with deadline-
based real-time scheduling has been conducted [62] using the JACK4 low-latency
audio infrastructure. JACK was modi�ed to use AQuoSA [150], an old single-
processor implementation of a Constant Bandwidth Server [6] (CBS) based on
EDF scheduling for Linux; however power management and multicore scheduling
were not considered in that study, and only history-based runtime adaptation
was investigated.

A di�erent view on power management is o�ered by the Q-RAM frame-
work [86, 161], which allows to model resource allocation in real-time systems as
an optimization problem, allocating various kinds of resources (memory, CPU,
network bandwidth) to tasks so that some cost functions are minimized (or
utility functions are maximized). Using Q-RAM, power management can be
modeled by considering the consumed power as a cost.

Focusing on Android, prior research literature also exists, addressing real-
time issues, priority inversion and other performance-oriented aspects of the OS.
A form of priority inversion mitigation [113] has been integrated for a long time
within the Binder IPC framework, extensively used throughout Android appli-
cations and services, to preserve the nice level of the calling thread and, more
recently, of its real-time priority for real-time tasks [100], across synchronous
remote procedure calls (RPCs)5.

Further proposed modi�cations for enhanced real-time support in Android
include [99, 196, 198], adopting a real-time Java Virtual Machine run-time plat-
form to control interferences due to the garbage collector, enhancing the memory
allocator, and improving the accessibility of scheduling services from unprivi-
leged applications, without the need for a Binder call to a privileged process.
Besides these, other works [197] have been proposed to extend the Android inter-
faces for the development of soft real-time applications, by introducing statically
speci�ed memory bounds and priority awareness.

4More information available at: http://jackaudio.org.
5 For details, refer to commit history of binder.c as available at: https://android.

googlesource.com/kernel/common/+/android-4.9/drivers/android/binder.c.

92

http://jackaudio.org
https://android.googlesource.com/kernel/common/+/android-4.9/drivers/android/binder.c
https://android.googlesource.com/kernel/common/+/android-4.9/drivers/android/binder.c

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

Compared to the existing prior literature on adaptive real-time, power-aware
scheduling for multimedia and soft real-time applications, the present work is
the �rst one focusing on the Android operating system, combining the new
SCHED_DEADLINE real-time scheduler recently made available within the
Linux kernel with the CPUFreq power management subsystem and its schedutil
governor, considering an underlying heterogeneous processing architecture with
CPUs having di�erent processing capacities (e.g., Arm big.LITTLE), and in-
troducing a proactive approach that lets applications declare in advance their
expected workload changes, so that scheduling parameters adaptations can be
anticipated, resulting in an e�ective capability to keep a low-latency glitch-free
playback in the presence of heavy �uctuations of the processing demand, while
at the same limiting power consumption to the minimum.

5.1.2 Background

This section provides background information on the Android audio pipeline
architecture used to enable low-latency features for audio applications, how An-
droid tries to achieve energy e�ciency while scheduling latency-sensitive tasks,
and deadline-based scheduling features in the Linux kernel, that are at the foun-
dation of the presented solution.

Android Audio Architecture

Audio applications can be developed in Android by using, as shown in Fig-
ure 5.1, the high-level Java APIs available through the set of android.media.*
classes, such as: media.MediaPlayer, to control playback of audio/video �les
and streams towards the local devices; media.MediaRecorder, to record au-
dio/video from the local devices; media.AudioManager, to control volume and
other playback tunables; media.AudioTrack to handle bu�ering of audio sam-
ples for playback; MediaCodec, to handle a plethora of available codecs for media
playback and streaming. These Java classes interact via the Java Native Inter-
face (JNI) with their C/C++ counterparts, which access the available audio
services by interacting with the AudioFlinger server through Binder. Within
AudioFlinger, up to 32 di�erent audio streams coming from di�erent applica-
tions are mixed by the Mixer thread, normally activating at a period greater
than 20 ms, and having the ability to perform complex adaptations such as
sample rate conversions. To avoid possible audio glitches, this thread runs with
a boosted priority (using a negative nice value) within the SCHED_OTHER
scheduling class. The Mixer thread hands over the audio samples to the un-
derlying userspace Android audio Hardware Abstraction Layer (HAL), which
ultimately sends the data to the device drivers through the ALSA sub-system
within the Linux kernel.

Developers willing to realize low-latency, interactive audio applications, typ-
ically have to make the extra step of implementing a JNI component in their ap-
plication, and use directly the available low-latency C/C++ audio APIs, either
the traditional OpenSL ES (available since Android 4.1), or the recently added
AAudio (available since Android 8.1), or the further Oboe over-arching API that
is capable of using either the former or the latter API. These APIs interact with
a particular component of the AudioFlinger server, called FastMixer, that has
a much shorter activation period, normally 2�5 ms, which in turn hands over

93

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

Figure 5.2: Logical blocks involved in a low-latency Android AAudio playback.

audio data to the audio HAL and ultimately to the kernel. In order to ensure a
glitch-free playback under such conditions, FastMixer keeps its functionality at
the bare minimum (i.e., up to only 8 tracks can be mixed, one of which is the
audio coming from the regular non-low latency path, and no resampling is sup-
ported), and it has a real-time thread scheduled using the SCHED_FIFO policy.
In particularly demanding cases, it is possible to bypass the FastMixer entirely,
so avoid its overheads, by requesting exclusive access to the audio device, when
initializing AAudio.

In what follows, the focus of this chapter is on building low-latency audio
applications making use of the AAudio framework, particularly for the speci�c
case of exclusive access to the audio device6.

Low-latency Audio Pipeline in Android

The low-latency audio pipeline in Android has the structure exempli�ed in Fig-
ure 5.2. A typical Java application that wants to use the low-latency audio
pipeline must use JNI to de�ne the callback which generates the audio stream,
and must export the callback to the audio stream framework through the pro-
vided API. When the audio stream starts, AAudio generates a new thread and
sets its scheduling class to SCHED_FIFO through a Binder call. This thread
loops forever executing an application-supplied callback, which produces the au-
dio frames for playback through the ALSA subsystem. An audio frame contains
a sample for each available channel (e.g., for stereo playback, a frame has two
samples, for the left and right channels). Instead of using a blocking operation
on the device (i.e., select, poll or epoll), the looping thread sleeps for an
amount of time determined by a timing model that wakes up the process when
there is su�cient room in the audio bu�er to be re�lled.

The application callback writes audio frames in chunks called bursts of size
b, that are queued into the playback ring-bu�er of the audio device, which has
a bigger size B set as a multiple of the burst size: B = k · b, k ∈ N+.

To ensure a smooth and glitch-free playback, the playback ring-bu�er is kept
as full as possible, as exempli�ed in the sample scenario depicted in Figure 5.3.
The application has typically a ramp-up phase at the beginning of the playback

6A design suitable for the general case that includes an arbitrary processing graph of
computations producing the audio stream is still an open challenge.

94

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

Symbol Value Value Description
(default) (low-latency)

S 48 48 Sampling rate (kHz)
b 4807 64 Audio burst size (samples)
B 76807 128�192 Audio bu�er size (samples)
rt 160 2.67�4 Audio latency (ms)

Table 5.1: Typical audio parameters.

(the �rst 4 bursts in the �gure), during which the full B-sized bu�er is �lled up,
followed by a nearly periodic activation, with additional b audio frames provided
by the callback at each activation (as visible for bursts 4, 7, 8, 9 in the �gure).
With a con�gured sampling rate of S frames per second for the audio device, this
results in one activation of the application callback every period of length b/S.
However, B is the parameter which directly a�ects the audio latency, because
the residency rt of an audio sample in the device ring-bu�er is: rt = B/S (as
visually highlighted in the �gure for burst 4).

When the real-time audio thread wakes-up, it may be scheduled immediately
(i.e., at time 6b/S in the �gure), or its execution may be postponed by the sched-
uler due to other activities on the system, like non-preemptible kernel sections,
serving interrupts or scheduling higher priority tasks. As a consequence, the
real-time thread may fail to compute its next burst within its next activation
time. In this case, the in-kernel bu�er �ll-level goes lower than usual; however,
this does not immediately result in an audio glitch thanks to the bu�ered ad-
ditional bursts (highlighted in the �gure for burst number 5). An audio glitch
only occurs if the audio processing is delayed further, up to the hard deadline
of B/b periods.

Typical values of these parameters are reported in Table 5.1 for non-interactive
playback scenarios, as well as low-latency audio applications.

Power Management on Linux/Android

Since Android 8, the default CPUFreq frequency-scaling governor is schedutil,
which adjusts the CPU frequency according to the utilization statistics com-
puted by the Window-Assisted Load Tracking8 (WALT) or, in some experimen-
tations, the Per-Entity Load Tracking9 (PELT) algorithm. These utilization
metrics are either not present (WALT), or not used (PELT) from the mainline
schedutil governor when it comes to choose the frequency to run a SCHED_RT
task. For these tasks, schedutil always sets the maximum available frequency.
The mainline behavior is particularly ine�cient for system-on-a-chip (SoC) ar-
chitectures that organize processors in clusters, where cores of the same cluster
share the same frequency: even a single SCHED_RT task on a single core forces
the whole cluster at the maximum frequency.

As di�erent devices have di�erent capabilities in CPU frequency scaling and
power management (e.g., big.LITTLE10, DynamIQ11), the EAS (Energy Aware

7Device-speci�c values.
8https://lwn.net/Articles/704903/.
9https://lwn.net/Articles/531853/.

10More information available at: https://developer.arm.com/technologies/big-little.
11More information available at: https://developer.arm.com/technologies/dynamiq.

95

https://developer.arm.com/technologies/big-little
https://developer.arm.com/technologies/dynamiq

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

Figure 5.3: Exempli�cation of audio processing pipeline, showing the schedule
of the real-time application thread processing each burst (on bottom), the �ll
level of the audio ring-bu�er within the kernel (central) and the audio burst
under playback at each time instant (on top). Time on the x axis is expressed
as multiples of b/S.

Scheduling) framework has been recently added to the Linux kernel to pro-
vide a uni�ed view of these capabilities. EAS manages metadata about the
frequency clusters topology, along with information about power consumption
and processing performance (called capacity) for each Operating Performance
Point (OPP) of each CPU. EAS also includes mechanisms for exploiting this
information at its best regarding task placement and OPP selection, based on
the current workload.

Since the CPU frequency can only be chosen among a set of prede�ned
OPPs imposed by the hardware and, sometimes, further reduced by software
constraints12, the process of translating the utilization to the CPU frequency is
performed by selecting the smallest OPP capable of satisfying the computational
demand.

Deadline-based Scheduling in Linux

The SCHED_DEADLINE scheduling class has been introduced in the Linux
kernel version 3.14, and implements a deadline-based scheduling algorithm, tai-
lored for the management of real-time tasks requiring temporal guarantees on
their execution times. SCHED_DEADLINE also provides temporal isolation
among tasks by implementing the CBS algorithm.

More precisely, SCHED_DEADLINE realizes a reservation-based approach
for CPU scheduling of real-time workloads, where a SCHED_DEADLINE task
τi is associated with three scheduling parameters: a runtime Qi, a deadline

12The vendors often provide access to a subset of the hardware OPPs depending, for exam-
ple, on thermal dissipation capabilities, or energy availability of the �nal product.

96

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

Symbol Description
m Number of CPUs in the system
n Number of real-time tasks in the system
Γ Set of considered real-time tasks
Γj Set of real-time tasks on CPU j
Qi SCHED_DEADLINE runtime for task i
Di SCHED_DEADLINE relative deadline for task i
Pi SCHED_DEADLINE period for task i
Ci Worst-case per-activation execution-time of task i
Ti Minimum inter-arrival period of task i

Table 5.2: Parameters characterizing real-time periodic tasks and
SCHED_DEADLINE reservations.

Di and a period Pi. This results in the Linux kernel granting the task Qi time
units on the processor every time window of duration Pi, where in each period
the Qi time units of execution are granted within the relative deadline Di.

Focusing on the standard case of periodic real-time tasks with relative dead-
line equal to the period, the typical use of SCHED_DEADLINE is the one of a
task with known minimum inter-arrival period Ti and worst-case per-activation
execution time Ci, where one would set its CBS scheduling runtime as Qi = Ci
and the scheduling period and deadline as Pi = Di = Ti.

On multiprocessor systems, SCHED_DEADLINE implements a global EDF-
based scheduling policy, but it can also be con�gured as a partitioned scheduler
by proper use of the cpuset13 CGroup controller. On SMP systems with CPU
frequency locked, the global con�guration of SCHED_DEADLINE guarantees
each task in a task set Γ = {τ1, . . . , τn} to complete with a well-known worst-case
tardiness beyond its relative deadline [69, 189], as long as the system capacity
is not violated: ∑

i∈Γ

Qi
Pi
≡
∑
i∈Γ

Ci
Ti
≤ m, (5.1)

with m being the number of CPUs. On the other hand, with the partitioned
con�guration, SCHED_DEADLINE guarantees each task to respect its relative
deadline, as long as the capacity of each CPU j ∈ {1, . . . ,m} is not violated:

∀j ∈ {1, . . . ,m} ,
∑
i∈Γj

Qi
Pi
≡
∑
i∈Γj

Ci
Ti
≤ 1, (5.2)

with Γj ⊆ Γ denoting the tasks on CPU j.
The just introduced notation, summarized in Table 5.2, will be extensively

used throughout the chapter.
Furthermore, since version 4.16, SCHED_DEADLINE has been integrated

with schedutil [171] by using the power-aware variant of the Greedy Recla-
mation of Unused Bandwidth algorithm [170] (GRUB-PA). As a result, the
scheduler is now able to scale the CPU frequency according to the bandwidth
requirements of the SCHED_DEADLINE tasks, limiting the power consump-
tion while preserving their timing constraints.

13More information available at: https://www.kernel.org/doc/Documentation/

cgroup-v1/cpusets.txt.

97

https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

In more details, the GRUB scheduling algorithm [117] can estimate the active
utilization of the SCHED_DEADLINE tasks running in the system (informally
speaking, this is the fraction of CPU time used by such tasks), and this informa-
tion can be used to scale the CPU frequency so that the SCHED_DEADLINE
tasks use exactly the speci�ed fraction of CPU time. The original GRUB and
GRUB-PA algorithms were uni-processor only, but the reclaiming and band-
width accounting mechanisms have been extended to support multiple CPUs/-
cores [7].

5.1.3 Adaptive Reservations on Android

This details the presented proposal for engineering low-latency audio applica-
tions on the Android platform, which makes use of the SCHED_DEADLINE
real-time scheduler, with GRUB-PA extensions, along with the schedutil gover-
nor. Second, dynamic audio workloads are tackled by proposing an extension to
the AAudio API with a method that allows applications to declare their time-
varying workload demand. The approach is implemented and validated with the
use of SynthMark14, a recently available open-source audio pipeline emulator for
Android.

Deadline-based Scheduling for Low-Latency Audio

This work focuses on low-latency audio applications making use of a single, se-
quential, non-suspending callback, and the real-time thread spawned by AAudio

that executes the callback, then blocks until there is room in the audio bu�er.
The application may have other non real-time threads for its API, but since
they are not part of the playback latency sensitive path, they are ignored in this
work. This application structure represents a typical model for the majority of
low-latency, interactive audio applications that are nowadays developed.

As explained in Section 5.1.2, the callback is activated every time the audio
bu�er has enough space to allocate at least a burst. This, coupled with the
attempt to keep the bu�er as full as possible, results in the activation of the real-
time audio thread at every period of duration T = b/S. Each such activation
needs to complete ideally before the next activation period: when a burst is
put in playback onto the device, another burst is requested to be produced.
Therefore, each activation of the real-time thread has a relative soft deadline of
D = b/S, where the hard deadline is B/S instead.

It is thus possible to apply the implicit deadline task model, as extensively
studied in the real-time literature, and speci�cally, the CBS algorithm setting
the scheduling period and deadline equal to P = D = b/S, and setting the
scheduling runtime equal to the task worst-case execution time Q = C. The ex-
ecution time C, needed for the processing of each callback activation, is a value
much harder to characterize. It depends on: 1) the computational capabilities
of the hardware architecture where the application is running; 2) the maximum
capacity of the CPU the real-time thread is scheduled on, whenever CPUs can
have asymmetric performances like in the case of Arm big.LITTLE architec-
tures widely adopted by mobile Android devices; and 3) the CPU frequency on
architectures supporting DVFS (Dynamic Voltage and Frequency Scaling), as
dynamically adapted by the scheduler and CPUFreq subsystem.

14https://github.com/google/synthmark/.

98

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

The intrinsic dynamics of the application workload has also to be considered.
Even on a CPU running at a constant frequency, an application can have very
di�erent computational demands. This may depend, for instance, on the number
of musical notes played by the user for a virtual instrument, or the number and
complexity of active audio �lters/e�ects for an audio processing application.
Taking as a reference a virtual instrument synthesizer, such as a virtual piano,
because of the use of a sustain pedal or because of the notes decay, the number
of notes that are simultaneously played can dynamically vary in a typical range
between 0 to a few hundreds, resulting in a callback workload that undergoes
quick variations spanning across multiple orders of magnitude.

The computational requirement C is a fundamental parameter, that can be
used to: 1) analyze in advance and guarantee the schedulability of the tasks set
according to the real-time theory, 2) allocate the proper amount of resources
to the process, and 3) determine the most e�cient CPU frequency and, for
heterogeneous architectures, the most e�cient processor the task shall run on.
The next section outlines how all these challenges are tackled.

Adaptive Scheduling

To schedule the audio callback, Android currently uses SCHED_FIFO along
with either PELT or WALT as signals to drive the OPP selection via schedutil.

One of the main limitations to using this approach for low-latency audio
applications is related to the reactive OPP selection policy these signals enforce.
Indeed, when either PELT or WALT are in use, to trigger a frequency change when
the audio workload suddenly increases, it takes some time for the signal to detect
the new CPU bandwidth requirement correctly. In the worst case, it could take
between 50 ms and 100 ms for PELT (depending on its con�guration) to detect a
90% increase of the CPU bandwidth demand. For a low-latency audio scenario
where B = 256 and b = 64 at S = 48 kHz, the PELT detection latency is too
high when compared to the bu�ered audio of only 5.33 ms. Even when WALT is
in use, a 90% CPU utilization demand increase cannot be detected in less than
10 or 20 ms, depending on its con�guration. Thus, independently from the
utilization signal source in use, with just kernel space driven OPP selection, it
is hard to grant a glitch-free playback meeting the requirements of a low-latency
audio application.

The reactive nature of CPU frequency driving from kernel space cannot
be easily �xed without explicit hints from userspace. This is why a possible
solution has been so far to control the frequencies from userspace by explicitly
setting constraints on the minimum frequency which can be selected by the
kernel. Such approaches, despite being e�ective, are however still missing a
speci�c API to de�ne bandwidth requirements in a platform-independent way.
Platform independence is of paramount importance when it comes down to
build portable applications which can still satisfy tight temporal constraints
independently from the speci�c platform on which they will be executed.

To tackle all these problems, this chapter proposes to extend the AAudio API
to allow the application to notify the underlying OS about a workload change.
This is done by dynamically supplying a workUnits parameter, whose variations
correlate with the expected workload changes of the real-time thread callback.
The schedutil governor can then immediately trigger an up-frequency switch,
even before starting the heavier computations, resulting in the needed CPU fre-

99

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

quency increase being completed as fast as possible to e�ciently and adequately
support the increasing workload demand. This mechanism allows audio appli-
cations to inform the OS about expected workload changes so that the system
can adjust the OPP to a value that satis�es the QoS requirements of the appli-
cation, preserving the critical objective of minimizing the energy consumption.
Since the same audio application can be installed in a multitude of di�erent
devices, the workUnits hint must be considered as an indication on the status
of the application, independent from the computing architecture and the system
behavior.

The translation from workUnits to the actual OPP can be designed by pre-
serving the SCHED_FIFO scheduling policy, but forcing the CPUFreq governor
to use a userspace de�ned utilization for the given task, that would directly
be translated to a minimum CPU frequency value. The Linux kernel does not
support this schedutil extension yet, but it is currently under discussion on
LKML15.

In this chapter, an alternative approach is undertaken, based on the use
of the SCHED_DEADLINE scheduling class, as shown in Figure 5.4. The
AudioTask noti�es the currently requested workUnits to the HostCPUManager

which, extending the concepts from [3, 61], internally uses a Predictor to
estimate the upcoming computing time of the callback according to statistics
of the past observed processing times, and by modulating the obtained value
through the supplied workUnits values.

To produce valid heuristics, the Predictor requires reliable and precise
measurements on the callback runtime. Measuring this time by executing the
clock_gettime() syscall before and after running the callback, and �nally sub-
tracting the two results is not a reliable approach. In fact, the �nal value can
be a�ected by both the CPU frequency changes happened during the callback
execution, and the capacity of the CPUs where the task executing the callback
has been executed, e.g., a big or LITTLE CPU. Both these problems have been
solved by extending the sched_getattr() syscall to return the next absolute
deadline d and the remaining CBS server runtime q, where the scheduler already
scales this last value according to the CPU frequency and capacity. These values
can be sampled before and after the callback execution, thus, by also knowing
the actual CBS computing time Q that the task can use every period T , it is
possible to compute the normalized execution time Cm of the callback as:

Cm = qstart − qend +Q

⌊
dend − dstart

T

⌋
. (5.3)

Here, the rightmost term is almost always zero: whenever the callback completes
within its relative deadline D = b/S, according to the CBS rules the absolute
deadline is not updated, so dend = dstart. For those rare cases in which the
callback completes beyond its (soft) deadline (e.g., burst 5 in Figure 5.3), at
the end of the callback, the CBS algorithm will have recharged the budget of
a quantity equal to Q for each deadline postponement of the scheduling period
P = T .

After each task activation callback completes, its normalized runtime Cm
is measured, and the Predictor updates its stored runtime statistics. The
estimated runtime for the next activation k + 1, Ce [k + 1], is computed by

15https://lwn.net/Articles/751361/.

100

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

implementing an exponentially weighted moving average:

Ce [k + 1] = αCm + (1− α)Ce [k] , (5.4)

with asymmetric smoothing constants α: if the Cm value is bigger than Ce [k],
α = 0.95 is used, otherwise α = 0.1 is used. This helps to react to work-
load underestimations quickly and slows down the decreasing of workload es-
timation. The predictor stores an independent moving average for every ob-
served workUnits value within a hashmap, where at each callback completion
the stored runtime value associated to the current workUnits is updated ac-
cording to Equation (5.4). The advantages of using a hashmap are that it does
not require prior knowledge of the minimum or maximum value of workUnits
(as an array would need), and guarantees e�cient access and modify operations.
When the Predictor is asked to estimate the next activation computing time,
the following cases may happen:

• the hashmap is empty: the maximum computing time, corresponding to a
con�gurable constant bandwidth is returned. For example, 0.94 has been
used in these experiments.

• workUnits found in the hashmap: the value stored in the hashmap is
returned.

• workUnits smaller than any other value in the hashmap: to be conser-
vative, the duration for the smallest workUnits value in the hashmap is
used.

• workUnits bigger than any other value in the hashmap: the returned
computing time is computed by intersecting the linear regression among
the available elements in the hashmap. In absence of any other information
on the processing workload, it is made the assumption that the callback
computing time is likely a linear function in the number of workUnits,
for simplicity.

The pessimism of this algorithm helps to prevent audio glitches and the bad
energy performance is limited to the application start time, when the workload
statistics are not available to the Predictor yet.

The BandwidthAllocator receives the latest estimated Ce value, which is
used to update the SCHED_DEADLINE runtime Q. Since the predicted Ce
derives from a slightly modi�ed average value of the previously measured run-
times, some margins are added to the value �nally used to update the scheduler:

Q = mmCe +mo, (5.5)

where mm ≥ 1 is a con�gurable proportional margin and mo ≥ 0 is an o�set.
This operation is performed every time the application updates the workUnits
number, and after a given number of written bursts, e.g., 30 in these experi-
ments. Thanks to the use of the GRUB-PA policy, the new SCHED_DEADLINE
workload is immediately communicated by the scheduler to schedutil, which
takes care of updating the CPU frequency accordingly.

Relying only on the callback computing time Ce and heuristics provided by
a Predictor to estimate the computational time depending on the workUnits,
introduces the need for choosing a proper trade-o� between stability and reac-
tiveness of the adaptation.

101

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

Figure 5.4: Dynamic bandwidth allocation: logical blocks.

SynthMark

SynthMark is a benchmarking tool that contains a real audio synthesizer gen-
erating an audio stream that, instead of being sent to the real Android audio
pipeline, is sent to a virtual audio pipeline and consumed by a virtual audio sink,
both embedded in the tool. The internals of SynthMark have been designed for
realistic emulation of the behavior of an Android audio application using the
real low-latency audio pipeline features. Using an emulator like SynthMark pro-
vides more �exibility for Android OS developers when customizing the system
regarding con�gurations, programming models, and scheduling algorithms, and
allows for obtaining detailed and comprehensive performance statistics so that
it becomes easier to identify the weaknesses of the approaches under develop-
ment. Being SynthMark platform independent, it also allows for measuring the
e�ects of the OS on latency, independently of the Android audio framework.

As shown in Figure 5.5, what in Android would be the audio application,
in SynthMark is implemented by the Synth module that is, in fact, a real poly-
phonic audio synthesizer that produces real audio samples generated with a
chain of oscillators, �lters and ADSR (Attack, Decay, Sustain, Release), and
whose computational e�ort depends on the number of requested notes. The
Synth module exports a callback that is quasi-periodically executed by the
VirtualAudioSink module, which implements a thread whose scheduling pa-
rameters can be modi�ed and, by default, on Linux kernel based systems, uses
SCHED_FIFO. After the application callback is executed, VirtualAudioSink
performs a write operation on the (virtual) audio sink to notify the availability of
new audio samples, resulting on a blocking operation that waits until the bu�er
has enough space to contain the newly produced data. VirtualAudioSink also
counts underruns occurring whenever the audio bu�er gets empty.

After every callback execution, the VirtualAudioSink measures its dura-
tion and forwards this value, together with the current number of notes played,
to the underlying HostTools component, to keep track of workload changes.
HostTools takes care of storing callback statistics and adjusting the bandwidth
through internal heuristics. It will be described and evaluated in the next sec-
tion.

5.1.4 Experimental Results

To evaluate the proposed solution and compare it with the current Android
approach on both energy e�ciency and audio latency, it has been performed a

102

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

Figure 5.5: SynthMark logical blocks in relationship with the Android low-
latency audio pipeline.

set of experiments running the extended SynthMark16 tool on an HiKey 96017

target board running the presented extended Android Linux kernels18 connected
to an ACME CAPE19 energy meter. On the software side, the SynthMark

tool has been used by pinning it to a big CPU. This was done to ensure fair
comparisons by ruling out possible side-e�ects due to tasks migrations and CPU
capacities variations among di�erent cores.

In a preliminary calibration phase, the VoiceMark benchmark of SynthMark
has been used to evaluate the total CPU utilization for a given number of active
audio voices. It results that 210 voices were able to saturate the big CPU when
running at the maximum frequency.

The following experiments used the LatencyMark benchmark of SynthMark,
with a burst size of b = 64 and a number of workUnits that dynamically varied
every 3 seconds.

A �rst experiment was aimed at evaluating the total audio latency required
when using the current Android low-latency approach based on SCHED_FIFO
and WALT, with its default window size of 20 ms. This experiment consisted of
alternating the number of voices from 5 to 185, corresponding to utilizations
of the big CPU ranging from 2.38% to 88%. As shown in Figure 5.6a, the
WALT utilization followed the real demand as due to the increase in the number
of voices, reaching the �nal steady state with a delay of approximately 80 ms
because of the WALT window size, which also postponed the frequency update.
In this example, the system was able to reach the proper OPP after about 60 ms
after the workload increase, about 20 ms before the steady state condition, since
the CPU utilization sampled at that time already corresponded to the �nal OPP.
Because of this frequency adaptation delay, when the application load increases,
the system is not capable of instantly satisfying its computational requirements,
thus generates audio glitches with relatively small bu�er sizes.

With the previously described con�guration, a bu�er size of 20 bursts was
required for smooth audio playback, that on the other hand introduced an audio
latency of approximatively 26.67 ms. When the workload decreases instead, the
system kept an OPP higher than required for a small amount of time, resulting
in a modest waste of energy.

16https://github.com/balsini/synthmark/tree/JSS-2018.
17More information available at: https://www.96boards.org/product/hikey960/.
18https://github.com/balsini/linux/tree/JSS-2018-android-hikey-linaro-4.9, and

https://github.com/balsini/linux/tree/JSS-2018-android-hikey-linaro-4.

9-dl-integration.
19More information available at: https://baylibre.com/acme/.

103

https://github.com/balsini/synthmark/tree/JSS-2018
https://www.96boards.org/product/hikey960/
https://github.com/balsini/linux/tree/JSS-2018-android-hikey-linaro-4.9
https://github.com/balsini/linux/tree/JSS-2018-android-hikey-linaro-4.9-dl-integration
https://github.com/balsini/linux/tree/JSS-2018-android-hikey-linaro-4.9-dl-integration
https://baylibre.com/acme/

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

The next experiment was run with WALT disabled and shows how, by dy-
namically adapting the task bandwidth according to the number of workUnits
and the callback durations, SCHED_DEADLINE can automatically adjust the
OPP. This experiment has the same con�guration previously shown, with a
periodic workUnits variation between 5 and 185. The safe margins of the
BandwidthAllocator have been tuned for the device and are set as mm = 1.005
and mo = 0.041. Figure 5.6b presents the experimental results for this scenario.
In this case, since WALT was not active, schedutil evaluated the required CPU
bandwidth as a sum of the PELT utilization reported by the SCHED_NORMAL
(CFS), SCHED_FIFO and SCHED_RR (RT), and SCHED_DEADLINE (DL)
scheduling classes. In these experiments, SynthMark was the only application
running on the system; thus, the sampled PELT utilizations had almost no in-
terference from other tasks, except interrupt handlers or background activities.
This plot shows that the new deadline-based approach with dynamic bandwidth
reservation was able to raise the system utilization in less than 0.01 ms and the
frequency adjustment is requested in approximatively 0.054 ms after the work-
load change. By summing the time required by the CPU to switch the OPP on
the HiKey 960 platform, this approach requires about 0.45 ms to complete the
frequency adaptation after the workload increased.

Since the OPP update is almost immediately performed before the workload
change, the callback runs at a CPU frequency that satis�es its timing require-
ments. The pro�tability of this behavior for the reactiveness of the audio task
was demonstrated by LatencyMark, which returned that the system is stable
with a bu�er size of 2 bursts, corresponding to 2.67 ms.

In order to evaluate the quality of this approach in more generic and realistic
workload scenarios, the following experiments were run to evaluate SCHED_FIFO
with WALT and the adaptive bandwidth allocation with SCHED_DEADLINE
approaches by running LatencyMark with a random number of workUnits at
every step, still in the range between 5 and 185, for a total duration of 60 sec-
onds. The seed of the random number generator has been �xed to allow the
reproducibility of the experiment and to provide the same workUnits random
sequence when comparing the two approaches.

Figures 5.7a and 5.7b show the tight relationship between the CPU fre-
quency and the number of workUnits in both the SCHED_FIFO with WALT

and the adaptive bandwidth allocation with SCHED_DEADLINE. If the adap-
tive bandwidth allocation approach can keep the audio latency at 2.67 ms, on
the other hand, the estimation of the utilization is more pessimistic than the
one performed by WALT.

For the sake of completeness, it has also been tested the current solution
implemented by many low-latency audio application developers, that maintains
a high CPU frequency on top of SCHED_FIFO with WALT by �xing the num-
ber of workUnits to a static value. Concerning the audio latency, this solution
achieved the same results of the adaptive bandwidth allocation approach, re-
ducing the delay to 2.67 ms, but forces the CPU to run continuously and at a
�xed OPP, also when not required.

The pessimism of the adaptive bandwidth allocation with SCHED_DEADLINE
approach re�ects on the CPU frequency selection that, as shown in Figure 5.8,
tends to prefer higher CPU frequencies compared to SCHED_FIFO using WALT

with dynamic workUnits, while the �xed workload approach always uses the
maximum OPP. These numbers directly a�ect the energy e�ciency, which can

104

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

0

100

200

W
or

kU
ni

ts

0

25

50

75

100

Ut
iliz

at
io

n
(%

)

WALT

0.00 15.72 31.43 47.15 62.86 78.58 94.29 110.01
Time (ms)

1000

1500

2000

Fr
eq

ue
nc

y
(M

Hz
)

(a)

0

100

200

W
or

kU
ni

ts

0

25

50

75

100

Ut
iliz

at
io

n
(%

)

DL + RT + CFS

0.0000 0.0149 0.0297 0.0446 0.0594 0.0743 0.0891
Time (ms)

1000

1500

2000

Fr
eq

ue
nc

y
(M

Hz
)

(b)

Figure 5.6: SynthMark utilization perceived by schedutil using SCHED_FIFO
with WALT (5.6a) and by the Predictor (5.6b), and frequency adjustment at the
varying the number of workUnits.

105

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

(a)

(b)

Figure 5.7: SynthMark behavior using SCHED_FIFO with WALT (5.7a) and
with adaptive bandwidth allocation (5.7b), at the varying of a random number
of workUnits.

106

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

90
3.

0

14
21

.0

18
05

.0

21
12

.0

23
62

.0

Frequency (MHz)

0

10

20

30

40

50

60

Re
sid

en
cy

 (s
)

WALT
DL
WALT (static workload)

Figure 5.8: Frequency residency comparison between the WALT and the adaptive
bandwidth allocation approaches.

be evaluated at the single core level by using the o�cial, normalized energy con-
sumption metrics20, that are also used by the kernel to �nd the most e�cient
task placement among the CPUs. With these normalized metrics, it turned
out that when using SCHED_FIFO with WALT, the energy consumption of the
experiment was approximatively 96.16, while �xing the workUnits, the energy
consumption reached about 171.01. Using the adaptive bandwidth approach
using SCHED_DEADLINE had an energy consumption of 102.17 instead.

Finally, it has also been measured the total energy consumption of the HiKey
960 board with the ACME CAPE energy meter directly connected to the board
power supply, to compare the e�ciency of the di�erent approaches. It turned out
that when using SCHED_FIFO with WALT, the total board energy consumption
of the experiment was 206.35 Ws (Watt · second) while, setting a static number
of workUnits, the total energy consumption reached about 256.93 Ws. With
the adaptive bandwidth approach using SCHED_DEADLINE, the board had
a total energy consumption of 210.22 Ws instead.

As summarized in Table 5.3, the proposed adaptive bandwidth allocation
with SCHED_DEADLINE approach outperformed what was achieved under
SCHED_FIFO using WALT, with an audio latency ten times smaller with a CPU
energy consumption about 6.25% higher in the case of dynamic workload, and
outperformed the static workload solution, with a 40% reduction in the CPU
energy consumption for the same latency.

5.1.5 Conclusions and Open Challenges

This chapter presents an approach to reduce the audio latency for professional
grade multimedia applications. This is achieved by extending the Android API
with 1) a mechanism to provide hints on the audio application workload change,

20The energy consumption metrics for HiHey boards can be found at the following link:
https://android.googlesource.com/kernel/hikey-linaro/+/android-hikey-linaro-4.9/

arch/arm64/boot/dts/hisilicon/hi3660-sched-energy.dtsi. Please, refer to CPU_COST_A72

�eld for the energy consumption of an HiKey 960 active big CPU.

107

https://android.googlesource.com/kernel/hikey-linaro/+/android-hikey-linaro-4.9/arch/arm64/boot/dts/hisilicon/hi3660-sched-energy.dtsi
https://android.googlesource.com/kernel/hikey-linaro/+/android-hikey-linaro-4.9/arch/arm64/boot/dts/hisilicon/hi3660-sched-energy.dtsi

5.1. ENERGY-EFFICIENT LOW-LATENCY AUDIO ON ANDROID

SCHED_FIFO SCHED_FIFO Adaptive
with WALT with WALT bandwidth Improvement
(dynamic) (static) (%)

Audio Latency 26.67 ms 2.67 ms 2.67 ms 90%
CPU energy Cons. 96.16 171.01 102.17 40%
Total energy Cons. 206.35 Ws 256.93 Ws 210.22 Ws 14.5%

Table 5.3: Summary of the audio latencies and energy consumptions obtained
under the SCHED_FIFO with WALT both with dynamic and static workload,
and the adaptive bandwidth allocation approaches.

2) a subsystem that forecasts the application computing requirements through
heuristics, and 3) an extension to SCHED_DEADLINE to return execution
measurements for the audio task.

In the performed experimentation, the presented solution outperforms the
traditional energy e�cient approach by reducing the audio latency of ten times,
at the cost of an acceptable energy consumption increase of approximatively
the 6.25%, and also provides a considerable energy consumption reduction of
almost the 40%, achieving the same audio latency, with respect to the traditional
low-latency approach.

Since some newly developed platforms have good CPU idle energy consump-
tion performance, letting tasks complete as fast as possible at the maximum
frequency is claimed to have competitive energy consumptions. An open chal-
lenge can be identi�ed in the comparison between a frequency scaling solution
and a race-to-idle scheduling policy, trying to exploit the full potential of both
the approaches.

Another critical aspect that will be considered is that, when in Android there
are multiple coexisting low-latency audio applications, their samples are sent to
the FastMixer, which performs the signal mixing and outputs the obtained sig-
nal to the audio device. Having multiple interdependent tasks is something that
also happens within the same audio application when using a parallel program-
ming paradigm to produce the audio stream. Moreover, either if the platform
used for the experiments of this section is a heterogeneous big.LITTLE, all the
experiments have been performed forcing SynthMark to run on a single CPU
of the big cluster. This solution does not exploit the full potential of the hard-
ware architecture, but is the only viable approach due to the missing scheduler
support for evaluating the CPU capacities in the migrations of the tasks, with
the risk of migrating a task on a LITTLE CPU unable to manage the requested
workload. The CPU capacity awareness enabling the task to migrate among the
available CPUs preserving the real-time constraints is an open challenge already
under investigation, which leads to the need of evaluating the migration latency
impact on the performance of low-latency applications.

These mentioned scenarios require scheduling features that are not supported
by SCHED_DEADLINE yet and represent an interesting open challenge.

108

5.2. POWER CONSUMPTION AND COMPUTING TIME SIMULATOR

FOR HETEROGENEOUS MULTICORE ARCHITECTURES

5.2 Power Consumption and Computing Time Sim-

ulator for Heterogeneous Multicore Architec-

tures

Mobile computing is �ourishing as an essential tool to support our daily ac-
tivities, with relatively powerful battery-operated and interconnected devices,
capable of hosting an operating system (OS) and a plethora of interactive ap-
plications. These devices have evolved in hardware capabilities over the last few
years, with a growing number of connectivity options, an unimaginable growth
rate for their volatile and persistent storage sizes and increasing computational
power, in the form of multicore architectures. In this context, energy man-
agement has been receiving a lot of attention from both research [96, 97] and
industrial communities, as energy e�ciency is now one of the top concerns when
designing new devices, functionality, applications and services. These motiva-
tions led to the development of new platforms that are focused on heterogeneous
processors with a shared ISA, such as the Arm big.LITTLE(RM). These, depart-
ing from traditional symmetric multi-processing (SMP) architectures, possess
both low-complexity, low-power cores specializing in device bookeeping activi-
ties, and high-power cores for CPU-intensive activities, in addition to classical
frequency switching capabilities, where tasks can be migrated among all of the
cores as needed.

This is causing the urgent need for engineering new functionality at the
OS level, and speci�cally regarding joint CPU scheduling, task placement and
energy management, where proper and novel trade-o�s among energy consump-
tion and interactivity of devices and applications with the outside world have
to be sought. This is witnessed, for example, by the recent volume of activities
around the Energy-Aware Scheduling (EAS) framework in the Linux kernel21,
engineered around the support for Arm-based CPUs in Android.

To this end, it is essential to rely on accurate models of the underlying
hardware behavior and the impact of the available energy-management tunables
on the application performance. These models can be embedded within proper
simulation tools that allow for estimating the expected impact of novel energy
management and task scheduling features at the OS level on the �nal application
performance and its capability to respect possible timing constraints.

Problem Presentation and Contributions

Aiming at reproducing the energy behavior of computational activities within
embedded heterogeneous architectures, it is necessary to take into account the
power consumption of the CPUs and the time necessary to complete the com-
putations, i.e., the execution times. These metrics allow to calculate the energy
involved in the computation process and investigate on interesting trade-o�s
between computation performance and energy e�ciency.

This work proposes a support to tackle the problem of power-aware CPU
scheduling in real-time systems based on heterogeneous, single-ISA architectures
by adopting a workload-dependent power consumption model, coupled with a

21 More information is available at https://lwn.net/Articles/749738/ and https://

developer.arm.com/open-source/energy-aware-scheduling.

109

https://lwn.net/Articles/749738/
https://developer.arm.com/open-source/energy-aware-scheduling
https://developer.arm.com/open-source/energy-aware-scheduling

5.2. POWER CONSUMPTION AND COMPUTING TIME SIMULATOR

FOR HETEROGENEOUS MULTICORE ARCHITECTURES

 0.5

 1

 1.5

 2

 2.5

 3

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Po
w

e
r

co
n
su

m
p
ti

o
n
 (

W
)

Frequency (GHz)

cachekiller
encrypt

idle

Figure 5.9: Measurements on the power consumption of the big CPU cluster,
running di�erent workloads at di�erent frequencies.

workload-dependent execution-time scaling model, at the varying of CPU fre-
quencies. This proposal is based on experimental results highlighting short-
comings of the commonly adopted simple scaling models at varying CPU fre-
quencies, assuming power consumption as a quadratic function of the CPU
frequency [203]. Indeed, Figure 5.9 reports the measured power consumption
of two real, di�erent workloads on the reference big.LITTLE board (Odroid-
XU3), highlighting that the power consumption model also strongly depends
on the workload type. The presented measurements show, for example, that
at maximum frequency an application performing data encryption (encrypt)
has a power consumption that is 38% higher than a memory-bound application
generating a huge number of cache misses (cachekiller), forcing the CPU into
continuous stalls waiting for completion of memory accesses. Real workloads
pose themselves somewhere in the middle between these two extremes, depend-
ing on the instruction mix and data access pattern. Moreover, the same �gure
shows that the also the power consumption of the CPUs in a clock-gating idle
state depends on the frequency.

For non-continuously running activities, the energy consumption depends
also on the duration of the computations, which is a�ected by the frequency of
the CPU in a way that is workload-dependent as well. Classical models rely
on a simple scaling of the execution time with the operating frequency of the
CPU. However, the experimental results show that the workload type a�ects
this relationship in a non-negligible way. These are compared in Figure 5.10,
where the measured execution time variation for three distinct workload types is
reported, normalized with respect to the execution time at the lowest frequency.
As evident, some workload types have a signi�cant deviation from the simple
scaling model commonly adopted in literature (continuous line), corresponding
to Equation (5.13) in Section 5.2.2. More details will follow in Section 5.2.4.

The contribution of this work is (i) the development of power consumption
and execution time models derived starting from established solutions already
available in literature, (ii) their implementation through the open-source RTSIM
real-time systems simulator, and (iii) the validation of the simulation outcome
with the measurements performed on a real platform. This tool constitutes then
a valuable means for the preliminary evaluation and testing of novel energy-
aware task scheduling algorithms.

110

5.2. POWER CONSUMPTION AND COMPUTING TIME SIMULATOR

FOR HETEROGENEOUS MULTICORE ARCHITECTURES

 0.1

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
o
rm

a
liz

e
d
 e

xe
c.

 t
im

e

Frequency (GHz)

Cmax fmax / f
bzip2

cachekiller
encrypt

Figure 5.10: Normalized execution times of di�erent workloads running on a big
CPU at di�erent frequencies.

5.2.1 Related Work

The research literature related to the present work falls mainly within the classes
of power consumption models for voltage-scalable embedded and heterogeneous
architectures and simulation of real-time systems including power-aware re-
source management logic.

Given the growing interest in energy e�cient devices, the research communi-
ties have already developed several power consumption models for CPUs. The
level of details and complexity is variable and depends on the speci�c applica-
tion.

As long as the power consumption models are concerned, there are works
based on a detailed description of the CPU architecture, such as the one by
Möbius et. al. [140], focusing on a CPU model for on-line power estimation us-
ing performance monitoring counter of the physical CPU. Other detailed models
exist, focusing on the electronics behind the CPU operation, like the one devel-
oped for the Wattch simulator by Brooks et. al. [43]. Indeed, in this case, the
goal was the architecture-level power analysis, evaluating the power consump-
tion at the instruction level.

These approaches are very accurate, at the expense of their usability: they
require a detailed description of the hardware, and are often characterized by
long computation times for the simulation. The here presented approach adopts
a higher-level abstraction, which uses real data carried out over a set of micro-
benchmarks. This allows for a realistic reproduction of the CPU power con-
sumption pattern throughout an application execution, without the need for
considering speci�c architectural details. This way, it is possible to achieve a
trade-o� between simulation e�ciency and representativeness.

In that direction, high-level descriptions of the CPU power are preferred,
like the ones leveraging on more coarse physical models. The interest in these
models is justi�ed by the fact that the power consumption of the CPU is mod-
eled using physical quantities like frequency, currents and voltages, which are
easier to access. This approach is proposed by several works [23, 46, 104, 177],
describing the behavior of real platforms, relying on simpli�ed models with a
limited number of parameters and input variables. As demonstrated by Colin
et. al. [52], the �tting of a non-linear model with only six parameters over the
power behavior of a real board provides su�cient accuracy.

111

5.2. POWER CONSUMPTION AND COMPUTING TIME SIMULATOR

FOR HETEROGENEOUS MULTICORE ARCHITECTURES

This work uses a more complete power consumption model, obtained taking
the cue from the physical behavior of the CPU, close to the one used by Vogeleer
et. al. [67]. The parameters of the model have been identi�ed through real
experiments, which constitute also a validation process for the �nal system.

In real-time systems research literature, signi�cant investigations have been
carried out in energy-consumption models and energy-aware task scheduling
algorithms guaranteeing system schedulability or minimum levels of quality of
service (QoS) while at the same time trying to realize energy-e�cient policies
on hardware supporting dynamic voltage and frequency scaling (DVFS). In
this �eld, a reliable model for the execution time is of paramount importance,
both for providing an accurate estimation of the power consumption, and for
guaranteeing timing requirements for latency-sensitive applications. Often the
computation time models are based on strict theoretical assumption and sim-
pli�cations, which are far from the operating condition of a real system. Other
works, on the contrary, go more into details and model the execution time or
delays considering low level hardware information for the given platform. Works
like the one by Palacharla et. al. [148] analyze the hardware details of the ar-
chitecture to quantify the computational speed, but they are too complex and
not practical. A more practical approach, which avoids considering hardware
details, is shown in the work of Petrucci et. al. [156], where the computation
time of a task depends on the accesses to the memory and number of instruc-
tions to be executed by the CPU. Despite the realism achieved thanks to the
empirical identi�cation of the model parameters, this work only considers CPUs
with �xed frequency. Vogeleer et. al. [67] model instead the computation time
of the task as a simple function of the frequency, thus allowing considering the
e�ects of CPU frequency scaling.

Compared to the latter approach, ours is still a simple yet representative
model, thanks to additional parameters. This achieved acceptable accuracy in
a preliminary experimentation.

Other works related to power consumption modeling and scheduling opti-
mization exist in the domain of high-performance computing and many-core
systems, but their review is omitted.

Concerning the existence of complete frameworks able to reproduce the over-
all behavior of a full platform, several tools exist for modeling, simulation and
schedulability analysis of embedded, real-time distributed systems, including
RTSIM [21, 151], MAST2 [93], TIMES [13], SimTrOS [39], YARTISS [48],
FORTAS [53], McSimA+ [9] and others. However, the main purpose of these is
to tackle the task-set schedulability problem, not considering the energy impact.

The SimDVS [173] by Shin et. al., instead, addresses the problem, evaluating
the impact of the scheduling decisions on the energy consumption, but is limited
to single processor architectures.

Considering the above, a simulation framework supporting real-time schedul-
ing and a more precise energy model for modern heterogeneous multicore archi-
tectures could be considered a useful tool for future research in the area.

112

5.2. POWER CONSUMPTION AND COMPUTING TIME SIMULATOR

FOR HETEROGENEOUS MULTICORE ARCHITECTURES

5.2.2 Proposed Approach

Model of the Power Consumption

As widely known [46, 104], the power consumption of a CPU is determined
by di�erent phenomena, related to its transistor nature: switching activity and
leakage e�ects.

Switching Activity The switching of transistors during the computation
requires power to charge the gates capacitors; moreover, it gives birth to some
power loss due to brief short-circuit conditions during toggling among logic
levels. In the following, the former is called Pcg, the latter Psc. As done by
Vogeleer et. al. [67], the equations describing these quantities are the following:

Pcg = αCV 2f and (5.6)

Psc = ηPcg, (5.7)

where C is the capacitance of the transistor gates, f is the CPU switching
frequency and V is the CPU voltage. Psc has been considered to be proportional
to Pcg by a factor η. This choice simpli�es the model, without compromising the
representativeness. The α factor represents the number of transistors involved in
the switching, that is the activity level of the CPU. In the proposed model, α is
the quantity that is mostly related to the workload type being run by the CPU,
ultimately leading to di�erent possible power consumption levels. Precisely, α
is assumed to vary in a range [α0, αmax], where the lower bound α0 is associated
with the idle state of the CPU, whilst the upper bound αmax is associated with
the CPU under an intensive workload. The overall power consumption due to
the switching activity Psw is given by the sum of the two, that is,

Psw = Pcg + Psc. (5.8)

Leakage E�ects Despite the technological improvements in the semicon-
ductor device fabrication, there are always some leakage currents �owing be-
tween di�erent parts of the transistor. This e�ect determines a power loss that
will be referred to as Plk. The de�nition of a complete model to represent this
phenomena is complex and depends on several variables, including the tempera-
ture [116]. To overcome this complexity, some simulators likeWattch model this
component as a �xed percentage of the dynamic power, others include a simple
thermal modeling to improve the accuracy, like TEM2P 2EST [70]. From the
work of Skadron et al. [177], it turns out that there is a relationship between
the leakage and the switching powers. More precisely,

Plk =
(R0

V0T 2
0

e(B
T0

+ B
T)T 2V

)
Psw, (5.9)

where T0 is the ambient temperature, B is a constant, V0 is the nominal voltage
and R0 the ratio between Plk and Psw when T = T0. It is worth highlighting
that the equation is temperature dependent. However, in the case of stable
temperature, part of the expression can be approximated by a constant factor.
This leads to Plk = γV Psw, where

γ =
R0

V0T 2
0

e(B
T0

+ B
T)T 2. (5.10)

113

5.2. POWER CONSUMPTION AND COMPUTING TIME SIMULATOR

FOR HETEROGENEOUS MULTICORE ARCHITECTURES

Summarizing, the total power consumption of the CPU, when working at
frequency f , voltage V and stable temperature, is:

PCPU = Psw + Plk = (1 + η)(1 + γV)αCfV 2. (5.11)

In this work, the constants of the model depend on the operating conditions,
i.e., during the idle state of the CPU, those parameters are expected to be di�er-
ent from the ones of the model representing the CPU performing computational
activities. Moreover, each kind of workload has a speci�c usage of the CPU,
inducing a di�erent power demand: these considerations are taken into account
when identifying the parameters of the power consumption model.

Power Model Identi�cation As stated above, the model used in this simula-
tion framework is a trade-o� between complexity and representativeness, leading
to a "gray box" model. Therefore, the model parameters have been identi�ed
by �tting the outcome of experiments running a set of micro-benchmarks on a
real platform.

The identi�cation procedure has been accomplished using NeuroLab22, a
tool for data �tting based on genetic algorithms. Speci�cally, the function used
for the �tting is

PCPU = δ + (1 + η)(1 + γV)KfV 2, (5.12)

where the αC of the Equation 5.11 has been substituted with a single parame-
ter K, which, together with δ, η and γ, constitute the parameters of the �tting
model. The additional parameter δ introduces a further degree of freedom in
the function �tting. Given the dependence of the power consumption on the
workload, the �tting has been accomplished for each workload type in a given
set, which will be described in Section 5.2.4. The γ parameter has been con-
sidered constant, assuming the temperature as stable during each benchmark.
Even though this could be a limitation, a proper modeling would require con-
sidering also the thermal model of the CPU, which goes beyond the purpose of
this work.

Workload-dependent Execution Time Model

The execution time C of a task running on a CPU with DVFS capabilities is
typically assumed as a simple function of the frequency:

C (f) = Cmax
fmax
f

, (5.13)

where Cmax denotes the execution time at the maximum frequency fmax on
the same CPU. This is based on the assumption that the time required by a
task to complete only depends on the frequency. In reality, there are other
factors not considered in this model that a�ect the task duration. For example,
the memory access time does not scale with the frequency, thus represents a
bottleneck partially mitigated by the use of caches.

An analytical model that has been found out to be able to reproduce the
behavior of real workloads at the varying of the CPU frequency with a reasonable

22More information at: https://github.com/balsini/NeuroLab.

114

https://github.com/balsini/NeuroLab

5.2. POWER CONSUMPTION AND COMPUTING TIME SIMULATOR

FOR HETEROGENEOUS MULTICORE ARCHITECTURES

number of free parameters a, b, c, d is the following:

C (f) = a+
b

f
+ ce−f/d, (5.14)

which includes, in order: (i) a �xed o�set that models the presence of bot-
tlenecks for which the speed does not depend on the CPU frequency, (ii) an
hyperbolic component that models the ideal execution time scaling with the
frequency, and (iii) an adjustment on the function slope.

To achieve the maximum accuracy, the execution time model should also
consider, amongst all, the interference introduced by the other tasks running in
the system and causing cache and bus contention, and hardware devices access-
ing the bus with DMA operations. This level of detail is beyond the purpose of
this work, for which is provided an execution time model that applies for single
tasks running in the system, which still represents a valid approximation for a
number of applications.

5.2.3 Implementation Details

The power consumption and execution time models presented above have been
implemented within the RTSIM simulator. This is a portable, extensible open-
source package written in C++ for the simulation of real-time operating systems,
supporting many real-time scheduling policies and typical real-time task models.
RTSIM carries out a high-level simulation focusing on the timing and sched-
ule of tasks in the system, without any functional-level simulation. Its typical
use is to simulate worst-case scheduling scenarios for real-time task sets under
a given scheduling policy, for the purpose of verifying whether any deadline
miss happened or not. RTSIM includes a library for discrete event simulation
(METASIM), and a set of libraries for real-time kernels simulation (RTLib). It
also provides functionality to trace, store and visualize the events occurred in
the simulated environment.

The simulation of a multicore computing system in RTSIM involves several
modules, among which the most important are:

• Task: entity that executes for a given amount of time. A task can also be
periodic, as common for real-time environments.

• Scheduler: the scheduling policy for the tasks running in the system,
for example EDF, global EDF, �xed priority FIFO or Round-Robin, and
others.

• CPU: modulates the duration of the task with the ideal linear model shown
in Equation 5.13, and provides the basic power consumption estimation
as P (f) = V 2f .

• Kernel: a glue entity that connects the tasks with the scheduler and the
CPUs, and manages possible virtual resources shared among tasks, like
semaphores.

• Trace: module to store events and accumulate statistics.

Once the system is initialized, the simulation runs and evolves with the
simulated entities generating, exchanging and executing simulation events.

115

5.2. POWER CONSUMPTION AND COMPUTING TIME SIMULATOR

FOR HETEROGENEOUS MULTICORE ARCHITECTURES

The presented extensions to RTSIM 23 include improvements on the CPU,
Task and Trace classes, and the implementation of the presented power con-
sumption and execution time models with the CPUModel class. With these
modi�cations, when a Task is put in execution, it can now declare the type of
workload the task is going to execute, through an extension to the fixed() vir-
tual instruction type of the task. This instruction now also speci�es the workload
type, in addition to the already available execution time of the computation, cal-
ibrated at the maximum frequency supported on the highest performance CPU
in the system. RTSIM automatically adjusts the computation duration and the
consumed power when scheduling that task executing each virtual instruction,
according to the provided CPUModel parameters supplied at CPU instantiation
time, the CPU capabilities, the frequency and the workload type.

The TracePowerConsumption class implements a power measurement probe,
and it is possible to create one instance for each CPU, tracking the power
consumption by querying the power model of the associated CPU.

5.2.4 Experimental Results

The simulator has been tested by comparing its simulated results with the ones
obtained by experiments on the real platform.

All the experiments presented in this section refer to an Odroid-XU3 board,
which embeds a Samsung Exynos 5422 SoC: an Arm big.LITTLE architecture
with four Cortex-A7 and four Cortex-A15 CPUs, running the o�cial Odroid
Linux kernel 3.10. Similar results have been achieved with a Linux kernel 4.15.
All the power measurements have been performed with the INA231 power meters
already available within the board.

Experiments to Gather Model Fitting Data

In order to collect detailed data su�cient to �t the presented workload-dependent
power consumption model, a number of di�erent workload types have been ex-
perimented with: (i) idle: no task is running, so the system switches to the
clock-gating idle state [152]. The used board supports two idle states, and the
deeper can be accessed only when all the CPUs are idle, thus is never consid-
ered in these experiments, (ii) bzip224: compression algorithm, with maximum
compression level, (iii) des3 encrypt/decrypt25: Triple DES encryption algo-
rithm, (iv) sha256sum26: checksum algorithm, and (v) cachekiller: applica-
tion written with the purpose of generating a cache miss at every iteration, by
accessing elements within an array bigger than the cache memory size, every
access performed with a displacement bigger than the cache line.

All the data read or written by the aforementioned data intensive workloads
is randomly generated, and stored in a ramfs mounted partition to avoid possible
latencies or throughput limitations due disk or SD card devices.

To characterize the system behavior for the two di�erent CPUs, each exper-
iment is run by sequentially pinning the workload task on one of the big cores
�rst, and on one of the LITTLE cores later.

23Freely available at: https://github.com/balsini/rtlib2.0/tree/ewili-2018.
24Bzip2 1.0.6, available at: http://www.bzip.org.
25OpenSSL 1.0.2g, available at: https://www.openssl.org.
26GNU coreutils 8.25, available at: http://www.gnu.org/software/coreutils/sha256sum.

116

https://github.com/balsini/rtlib2.0/tree/ewili-2018
http://www.bzip.org
https://www.openssl.org
http://www.gnu.org/software/coreutils/sha256sum

5.2. POWER CONSUMPTION AND COMPUTING TIME SIMULATOR

FOR HETEROGENEOUS MULTICORE ARCHITECTURES

 0.1

 0.2 0.4 0.6 0.8 1 1.2 1.4

LI
T
T
LE

 p
o
w

e
r

co
n
su

m
p
ti

o
n
 (

W
) cachekiller (real)

encrypt (real)
cachekiller (simul)

encrypt (simul)

 0.1

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

b
ig

 p
o
w

e
r

co
n
su

m
p
ti

o
n
 (

W
)

Frequency (GHz)

cachekiller (real)
encrypt (real)

cachekiller (simul)
encrypt (simul)

Figure 5.11: Comparison between the power consumption simulated with RT-
SIM and the respective experimental results.

Each experiment on the real platform is repeated 50 times and each �nal data
point is obtained as an average on the measured values, which have been found
to have a small variability from run to run. The observed standard deviation of
the measured values for each experiment, normalized with respect to the average
among the values, has consistently been in the range between 4% and 12.1%.

Experiments With Modi�ed RTSIM

In a �rst experiment, the power consumption model implemented in the simu-
lator is evaluated. As shown in Figure 5.11, the simulated behavior successfully
maps on the experimental results for the presented workloads. On the other
hand, the LITTLE CPU presents a noticeable error in the mid-range frequen-
cies. This e�ect is likely due to the CPU power supplier, which may be composed
of multiple circuits [51] causing a discontinuous behavior.

For simplicity, the plot only shows a subset of the tested workloads. Among
all the workloads, the highest relative least square error measured in the com-
parison between the experimental and simulated results is associated to the
cachekiller running on a LITTLE CPU, and has a value of 16.1%.

The next experiment evaluates the execution time model for the example
workloads running on di�erent CPUs at di�erent frequencies. In this case,

117

5.2. POWER CONSUMPTION AND COMPUTING TIME SIMULATOR

FOR HETEROGENEOUS MULTICORE ARCHITECTURES

 1

 10

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4

LI
T
T
LE

 c
o
m

p
u
ti

n
g
 t

im
e
 (

s)

bzip2 (real)
cachekiller (real)

encrypt (real)
bzip2 (simul)

cachekiller (simul)
encrypt (simul)

 1

 10

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

b
ig

 c
o
m

p
u
ti

n
g
 t

im
e
 (

s)

Frequency (GHz)

bzip2 (real)
cachekiller (real)

encrypt (real)
bzip2 (simul)

cachekiller (simul)
encrypt (simul)

Figure 5.12: Validation of the execution times model of the simulator by com-
paring the experimental results.

as demonstrated in Figure 5.12, the model behavior is de�nitely close to the
experimental data on the real platform.

As in the previous experiment, the highest relative least square error mea-
sured in the comparison between the experimental and simulated results is as-
sociated to the cachekiller running on a LITTLE CPU, and has a value of
3.57%.

5.2.5 Conclusions and Open Challenges

This chapter presented an e�ective modeling approach to reproduce the energy
and timing behavior of a heterogeneous multicore architecture, running real-
time tasks and under di�erent workload conditions. The work dealt also with
the implementation of the proposed models on the RTSIM simulator, extending
its capabilities to obtain a comprehensive suite for simulation of energy-aware
strategies.

The extended RTSIM real-time scheduling simulator has been tested through
experiments, checking the output of the simulated scenarios with respect to the
real cases. The accuracy of the results in terms of simulated execution times
and energy consumption showed that this work represents a valuable tool for
the evaluation and testing of novel energy-aware task scheduling algorithms.

118

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

An open challenge can be identi�ed in the extension of the simulation en-
vironment to improve the modeling of the power consumption and execution
time for complex workload patterns in terms of heterogeneity of the workload
and degree of execution parallelism. On the other hand, it would be useful to
investigate further modeling approaches for describing generic workloads, i.e.,
memory bound or CPU bound.

5.3 Real-time Dynamic Recon�guration of FPGA

Accelerators: the FRED Framework

Several embedded computing platforms are evolving towards heterogeneous ar-
chitectures that integrate multiple processing elements of di�erent nature, as
classical central processing units (CPUs), general-purpose computing on graph-
ics processing units (GPGPUs), and �eld programmable gate arrays (FPGAs).
Such platforms allow balancing the �exibility of software systems with the ad-
vantages of a highly parallel custom hardware acceleration, thus achieving a
consistent speed-up with a contained energy consumption.

FPGAs with DPR capabilities allow the user to recon�gure a portion of
the FPGA at runtime, while the rest of the device continues to operate [88].
In particular, the reprogrammable and recon�gurable capabilities of FPGAs,
their increasing capacity, and their suitability for signal processing have made
them attractive in several application domains, as alternatives to application
speci�c integrated circuits (ASICs) [91]. This is especially valuable in mission-
critical systems that cannot be disrupted while some subsystems are being re-
de�ned [12].

Such a DPR feature opens a new scheduling dimension for systems run-
ning on such heterogeneous platforms, giving the possibility of virtualizing the
FPGA, using timesharing techniques, so that it can be used to accelerate a num-
ber of hardware functions that is higher than that allowed by static partitioning,
thus further improving the application performance.

Today, however, recon�guration times are about three orders of magnitude
higher than context switch times in multitasking, therefore FPGA virtualization
can only be used for a limited set of applications. As shown in the next section,
recon�guration times signi�cantly reduced in the recent years and are expected
to further decrease in the near future. This enables the development of a new
generation of operating systems that can manage the FPGA module, handling
both software tasks (SW-tasks) and hardware tasks (HW-tasks) in a uniform
fashion.

Trend of Partial Recon�guration Performance

During a partial recon�guration process, di�erent hardware modules are in-
volved, such as the memory, the bus, and the FPGA recon�guration port. As a
recon�guration bitstream traverses such series of modules, the performance of
the recon�guration processes is limited by the slowest element, which represents
the DPR bottleneck.

Since the DPR feature was introduced in FPGAs, all such elements were
improved during the years. Liu et al. [124] designed a smart recon�guration pe-
ripheral interface, based on the Xilinx ICAP port [154], that is able to approach

119

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

2000 2002 2004 2006 2008 2010 2012 2014 2016

100

300

500

700

900

V
ir
te
x
II

V
ir
te
x
II
P
ro

V
ir
te
x
4

V
ir
te
x
5

V
ir
te
x
6

V
ir
te
x
7

V
ir
te
x
U
lt
ra
S
ca
le

V
ir
te
x
U
lt
ra
S
ca
le
+

Year

T
h
eo
re
ti
ca
l
T
h
ro
u
g
h
p
u
t
(M

B
/
s)

Figure 5.13: Trend of recon�guration throughput.

a throughput of 400 MB/s. Also, Duhem et al. [77] designed a fast recon�gu-
ration interface by overclocking the ICAP port up to 200 MHz, corresponding
to a throughput of 800 MB/s. An overview of the trend of recon�guration
times (obtained by comparing the theoretical maximum throughput calculated
from platforms' datasheets [147]) is shown in Figure 5.13. For this reason, it is
plausible to expect that such a trend will continue in the upcoming years, thus
making DPR a relevant direction to be explored.

Although recon�guration times are not negligible, FPGAs allow hardware
acceleration of a wide class of algorithms with a signi�cant speedup factor [50,
172] over the corresponding sequential software implementation. For instance,
in the case study analyzed in this chapter, a speedup factor up to 15x has
been measured for an image processing �lter implemented on the Zynq-7010
platform, which can reach a throughput of 145 MB/s for the DPR, allowing to
recon�gure an FPGA area containing about 25% of the total resources in less
than 3 milliseconds.

Nowadays, one of the top gamma products is represented by the Xilinx Zynq
Ultrascale+, compatible with DDR4 memory and able to reach a maximum
transfer rate of 2400 Mbps. It is connected with the ARM AMBA AXI4 and its
logic elements are con�gured by an evolution of the SelectMAP recon�guration
port, called ICAP, running at a maximum frequency of 200 MHz with a data
size of 32 bits.

In addition to the improvements achieved on the memory and the commu-
nication bus, a performance boost from the memory storage side has also been
obtained through a bitstreams compression [181], moving the actual bottleneck
to the recon�guration interface.

Estimating the throughput of the recon�guration process is not trivial, as
it requires a precise ad-hoc orchestration of each hardware module involved in
the process, and also requires the availability of all the hardware devices that
are intended to be compared. Figure 5.13 shows the evolution of the FPGA
recon�guration performance during the last years, obtained by comparing the
theoretical maximum throughput estimations calculated from the datasheets of
the devices.

Since a higher throughput corresponds to smaller recon�guration times (for

120

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

a given bitstream size), the positive trend shown in Figure 5.13 enables a more
dynamic management of the FPGA, allowing the implementation of virtualiza-
tion mechanisms that can provide great advantages to real-time applications,
with respect to fully static approaches.

Contributions

To investigate this issue, this chapter presents the prototype implementation for
a timesharing mechanism that can be used to dynamically recon�gure prede-
�ned FPGA areas for accelerating di�erent functions associated with real-time
periodic tasks. The results achieved on such a prototype are encouraging and
clearly show that, in spite of the relatively high recon�guration times, a time-
sharing mechanism on the FPGA can signi�cantly improve the performance of
real-time applications with respect to a fully static approach.

When exploiting FPGAs with DPR in real-time embedded systems, a crucial
issue is to provide worst-case response time bounds of computations consisting
of software tasks and hardware accelerated functions. Although several works
have been done to analyze the timing behavior of real-time applications using
FPGAs, most of them did not consider DPR capabilities at a job level. To
overcome this lack, this chapter also presents a new computing framework for
enabling a timing analysis of real-time activities that make use of hardware
accelerators developed through programmable FPGAs with DPR capabilities:

1. It presents FRED, a framework for supporting real-time applications on
FPGAs with DPR feature. It relies on a static o�-line partitioning of
the FPGA fabric to limit worst-case scenarios arising when using DPR.
Design issues related to scheduling and inter-task communication are also
discussed for bounding worst-case delays.

2. It proposes a new task model to abstract a set of real-time activities run-
ning on the considered architecture.

3. It derives a response-time analysis to verify the schedulability of a set of
real-time tasks consisting of both software parts and hardware accelerated
functions.

The proposed framework has been conceived by considering several real-
world constraints that are present on today's platforms. In fact, FRED has
been also practically validated with a proof-of-concept implementation on the
Zynq platform [73]. Such a practical validation highlighted that the proposed
approach can be actually supported by state-of-the-art technologies with a lim-
ited run-time overhead. Moreover, to explore the worst-case performance of
FRED, an empirical study27 (based on synthetic workload) has been conducted
to evaluate the proposed response-time analysis under di�erent operating sce-
narios.

This chapter �nally proposes the implementation of the FRED framework
on the Linux operating system addressing several challenges, such as the ar-
chitectural support for the accelerators, the recon�guration and communication
mechanisms, the implementation of the FRED scheduler, and the synchroniza-
tion mechanisms between software and hardware tasks. In particular, it presents

27Artifact Evaluation (AE) instructions are available at: http://retis.sssup.it/~a.

biondi/ae/FRED/. The artifact has been accepted by the RTSS AE committee.

121

http://retis.sssup.it/~a.biondi/ae/FRED/
http://retis.sssup.it/~a.biondi/ae/FRED/

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

a software architecture for Linux composed of (i) a kernel module for implement-
ing shared-memory communication with hardware accelerators, (ii) a driver to
handle the FPGA recon�guration, and (iii) a user-space server process to sched-
ule the requests for hardware acceleration.

5.3.1 Related Work

The reduction of recon�guration times resulting from the FPGA technology
evolution allowed exploiting the advantages of DPR for handling applications
with a dynamic behavior. For example, a HW-task that could only be statically
allocated in the earlier platforms, can now be recon�gured at runtime to imple-
ment mode changes in the application. More recently, some authors proposed
methods for supporting a recon�guration that can be periodically requested
by SW-task at every job execution. This approach is referred to as job-level
recon�guration.

The solutions proposed in the literature to exploit FPGA acceleration are
quite heterogeneous due to the evolution of such platforms and the wide range
of applications that can take advantage of this technology. The intrinsic paral-
lelism, the reduced interference among the running activities, and the reduced
variability in the execution made such a technology appealing for real-time ap-
plications, ranging from network management [135] to scheduling of hard [71]
and soft [89] tasks. However, these solutions are limited to static or slowly
evolving scenarios. Before analyzing the related work on DPR for real-time
task scheduling, a taxonomy is �rst introduced to classify the existing solutions
and precisely position the proposed approach with respect to the literature.

Taxonomy The features considered to organize the taxonomy concern the
recon�guration approach, the allocation methods, the model of the FPGA re-
con�guration interface (FRI), and the types of managed tasks.

Recon�guration Approaches They can be distinguished between static and
dynamic. In a static approach, the allocation of hardware tasks (HW-tasks) is
performed at the initialization phase, while in a dynamic approach HW-tasks
can be allocated at runtime upon speci�c events. Dynamic approaches can be
used to support mode-changes in the application (allowing tasks to be added
and removed from the task set) or trigger a recon�guration every time a new
job is scheduled (job-level recon�guration). A static approach has no runtime
recon�guration overhead, but the maximum number of HW-tasks is limited by
the physical size of the FPGA. Dynamic approaches trade extra recon�guration
overhead to increase the total number of HW-tasks that can be managed.

Allocation Methods They can be distinguished between slotted and slot-
less. In a slotted approach, the FPGA area is partitioned into slots of given
size connected via buses provided on the static part of the FPGA. A HW-task
can occupy one or more slots. In a slotless solution, HW-tasks can arbitrarily
be positioned on the FPGA area and data are transferred through the recon-
�guration interface inside the FPGA. Slotted approaches have the advantage of
having the communication channels already in place, but the FPGA area may
be partially wasted due to slot granularity. On the other hand, slotless solutions

122

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

increase the utilization e�ciency of the FPGA area, but are penalized by higher
recon�guration times due to the instantiation of communication channels and
the increased tra�c on the FRI due to the additional data transfer.

FRI Model The FRI plays a central role in FPGAs with DPR, thus, build-
ing a proper model of the FRI is crucial for estimating worst-case delays and
enabling a real-time analysis. The easiest approach is to reduce complexity by
considering recon�guration delays negligible. This is a strong unrealistic as-
sumption, considering that, in current FPGAs, recon�guration delays can have
the same order of magnitude of task execution times. A simple approximation
can be obtained using a constant recon�guration time. However, since the re-
con�guration time is proportional to the number of elements to be recon�gured,
and the FRI is a shared resource, providing a safe bound would introduce a huge
pessimism in the analysis. Less pessimistic values can be obtained considering
the recon�guration time composed of two elements: one proportional to the
number of elements to be recon�gured and one due to the time spent in waiting
for the FRI. Most of the works focused on kernel mechanisms considered an FRI
model tailored to real solutions, as the Xilinx ICAP port [154].

Task Model Modern heterogeneous platforms include FPGAs modules to-
gether with processors on the same chip [204]. On such platforms it is thus
possible to execute both HW-tasks, running on the FGPA, and software tasks
(SW-tasks), running on the processors.

Related Work Analysis The works considered in this section are related
to the proposed approach in that they provide a timing analysis under re-
con�gurable FPGA architectures or propose a software support for HW-task
management.

Di Natale and Bini [71] proposed an optimization method to partition the
recon�gurable area of a homogeneous FPGA platform into slots to be allocated
to HW-tasks and softcores running the remaining tasks. Given the high com-
putational complexity of the method, this approach can only be used o�-line
to obtain a static task allocation, hence it does not exploit the advantages of
the dynamic recon�guration. Pellizzoni and Caccamo [155] addressed a similar
problem in a more dynamic scenario, proposing an allocation scheme and an
admission test to provide real-time guarantees of applications supporting mode
changes, where tasks can either be executed in software on a CPU or in hardware
on the FPGA.

Danne and Platzner [65] presented two algorithms (one EDF-based and one
server-based) to schedule only preemptive HW-tasks, but the model adopted for
the FPGA platform is quite simple and does not consider any recon�guration
time and allocation constraints. Saha et. al. [169] presented a new scheduling
algorithm for preemptable HW-tasks, exploiting the higher speed and the im-
proved capabilities of modern recon�guration interfaces to dynamically change
the allocation every time a task terminates. However, this approach assumes
a homogeneous partition and a �xed recon�guration time, which can lead to a
huge waste of the area and a high pessimism in the analysis. In summary, in all
the works cited above, the models used for the FPGA and the recon�guration in-
terface are too simple to describe the limitations of the available platforms, and

123

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Paper Recon�g. Alloc. FRI model Tasks RTA
Lübbers, 09 Static Slotted ICAP HW/SW No
Lübbers, 10 Job-level NP Slotted ICAP HW/SW No
Happe, 15 Job-level P Slotted ICAP HW/SW No
Iturbe, 15 Job-level NP Slotless ICAP HW/SW No

Di Natale, 07 Static Slotless Not required HW/SW Yes
Pellizzoni, 07 Mode-ch NP Slotted Not addressed HW/SW Yes
Danne, 05 Job-level P Slotless Zero overhead HW Yes
Saha, 15 Job-level P Slotless Fixed overhead HW Yes

Dittmann, 07 Job-level NP Slotted General (NP) HW Yes
This work Job-level NP Slotted General (P/NP) HW/SW Yes

Table 5.4: Classi�cation of the related work.

the corresponding approaches do not fully exploit recon�guration capabilities
under real-time constraints.

Dittmann and Frank [74] addressed the analysis of recon�guration requests
as a single core scheduling problem. The paper assumes a single set of homoge-
neous slots managed by a non-preemptable FRI and considers only HW-tasks
(SW-tasks are not taken into account). Unfortunately, due to missing proofs,
it is not clear how response-time bounds follow. In addition, the authors did
not investigate sustainability issues and their analysis may be a�ected by later-
discovered misconceptions concerning non-preemptive �xed-priority scheduling [66].

Classi�cation Table 5.4 classi�es the presented papers according to the pro-
posed taxonomy, also highlighting the availability of a real-time analysis (RTA)
to better emphasize the di�erences with respect to the proposed approach. Sum-
marizing, di�erent approaches have been proposed to exploit the advantages of
DPR-enabled FPGAs, but none of them provided worst-case bounds for en-
abling a worst-case timing analysis of real-time sets of mixed HW-tasks and
SW-tasks. In addition, most of the previous work did not consider heteroge-
neous FPGA slots. To overcome these limitations, the work proposed in this
chapter presents a heterogeneous slotted-based framework designed to make re-
con�guration times more predictable and derive a schedulability analysis for
real-time applications exploiting DPR capabilities. FPGA recon�guration is
managed at the job level and the schedulability analysis takes into account the
delays and the constraints coming from the FRI. Both preemptive and non-
preemptive recon�guration are analyzed.

Operating System Support A few approaches have been proposed to pro-
vide an operating system support for DPR in platforms including an FPGA.
The common adopted solution for exchanging data between SW-task and HW-
tasks is through proper software stubs interacting with the kernel scheduler and
handling the HW-tasks using a dedicated library.

For instance, Lübbers and Platzner [128] proposed the ReconOS operat-
ing system, which extends the classic multi-threading programming model to
hardware activities executed on an FPGA. HW-tasks interact with SW-tasks
threads trough a custom developed POSIX-style API, using the same operating
system mechanisms, like semaphores, condition variables, and message queues.
Originally designed for fully-recon�gurable FPGAs, this solution has then been
extended by the same authors to support partial recon�guration [127], with

124

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

a cooperative multitasking approach dealing with the contentions on a set of
prede�ned recon�guration slots. More recently, Happe et. al. [92] extended the
ReconOS execution environment to provide HW-tasks preemptability. However,
the focus of this work is on hardware enabling technologies, rather than kernel
support mechanisms.

Iturbe et al. [98] presented the R3TOS operating system to support dynamic
task allocation on an FPGA without relying on prede�ned slot partitioning and
static communication channels. In their solution, scheduling and allocation of
HW-tasks are performed by a module, called HWuK, which is also in charge
of controlling the programming interface in an exclusive manner. The authors
proposed a HW-task model, as well as algorithms for scheduling and alloca-
tion. However, a worst-case analysis is not provided and nothing is said on the
schedulability of SW-tasks. Such a dynamic slot partitioning increases �exibility
in the FPGA allocation at the cost of a higher complexity of the recon�guration
algorithms, re�ecting in higher worst-case recon�guration times.

The major problem in such kernel extensions is that they have been designed
to improve the average system performance, without providing tight worst-
case response times bounds. As a consequence, a model of the FPGA runtime
behavior based on these methods leads to huge pessimism if used for a real-time
scheduling analysis.

Also the Linux community has shown interest in the exploitation of the FP-
GAs features. However, the current mainline kernel only provides a simple sup-
port for the recon�guration interface. So and Brodersen proposed BORPH [178],
which extends the Linux kernel to allow co-scheduling of SW-tasks and HW-
tasks. However, the project is discontinued and does not consider modern plat-
forms.

In summary, none of the presented works addressed the problem of mod-
eling the timing behavior of the recon�guration interface and the interaction
between SW-tasks and HW-tasks in such a way that they can be used for a
tight real-time analysis. To address this issue, a prototype implementation of
a job-level FPGA management has been developed to: (i) pro�le the timing
behavior of the recon�guration port with the purpose of deriving such a model,
(ii) investigate the practical feasibility of the job-level approach for real-time
applications, and (iii) identify possible bottlenecks. The �nal section of this
chapter reports the results of some experimental studies conducted on such a
prototype implementation.

The presented chapter shows how to overcome some limitations of the current
state of the art providing: (i) the implementation of a framework designed
to increase predictability of application exploiting FPGA acceleration, (ii) an
implementation that does not limit HW-tasks to speci�c paradigms (e.g., stream
processing, data �ow), (iii) an e�cient use of HW resources (i.e., improved
recon�guration interface driver, zero-copy data transfer mechanisms), (iv) a
scalable implementation with respect to the number of HW-tasks in the system,
and (v) a seamless integration in the Linux kernel.

5.3.2 Recon�guration Times and Speedup Evaluation

This chapter presents a preliminary evaluation of the dynamic partial recon�g-
uration features of a real FPGA, both in terms of the speedups achieved with
a hardware implementation of software functions, and recon�guration speed.

125

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Figure 5.14: Block diagram of the considered system.

This preliminary evaluation on a real platform is fundamental for estimating
if the proposed idea is feasible and provides computational advantages with
respect to the classical CPU implementation, or the static FPGA accelerators
con�guration.

System Description

This work considers a heterogeneous computing system consisting of one proces-
sor and a DPR-enabled FPGA fabric, both sharing a common DRAM memory.
A representative block diagram of the considered system is illustrated in Fig-
ure 5.14.

Possible representative platforms compatible with the considered system in-
clude the Zynq-7000 family by Xilinx, which provides ARM Cortex A9 proces-
sors and a FPGA fabric ranging from 28K up to 444K logic cells. Two types of
computational activities can run on such a system:

• software tasks (SW-tasks): they are computational activities running on
the processor; and

• hardware tasks (HW-tasks): they are functions implemented in programmable
logic and executed on the FPGA fabric.

SW-tasks can speedup parts of their computation by requesting the execu-
tion of HW-tasks, which can be considered as hardware accelerated functions.

The area of the FPGA fabric is divided into a recon�gurable region and a
static region. The recon�gurable region hosts the HW-tasks while the static
region includes support modules for the HW-tasks, such as communication de-
vices. The recon�gurable region is partitioned into slots, each including the same
number of logic blocks. A HW-task can execute only if it has been programmed

126

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

into a slot. Each slot can be recon�gured at run-time by means of a FPGA
recon�guration interface (FRI) and can accommodate at most one HW-task.

As typical for most real-world platforms (e.g., [105, 190]), the FRI

1. can recon�gure a slot without a�ecting the execution of the HW-tasks
currently programmed in other slots;

2. is a peripheral device external to the processor (e.g., like a DMA [204])
and hence does not consume processor cycles to recon�gure slots; and

3. can program at most one slot at a time.

To program a given HW-task into a slot, the FRI has to program all the logic
blocks of the slot. This is because unused logic blocks have to be disabled to
�clean� possible previous con�gurations. The FRI is characterized by a through-
put ρ, meaning that a time r = bS/ρ is needed to recon�gure a slot, where bS

is the number of logic blocks in each slot.
Each SW-task uses a set of HW-tasks by alternating execution phases with

suspension phases where the SW-task is descheduled to wait for the completion
of the requested HW-task. The same HW-task cannot be used by more than
one SW-task. Each SW-task is periodically (or sporadically) released, thus
generating an in�nite sequence of execution instances (denoted as jobs). SW-
tasks are also subject to timing constraints, meaning that each of its jobs must
complete its execution within a deadline relative to its activation. Listing 5.1
reports the pseudo-code de�ning the implementation skeleton of a SW-task that
calls a single HW-task.

1 void sample_software_task ()

2 {

3 // Task initialization (executed only once)

4 << Initialization part >>

5
6 // Define an instance of an HW -task

7 Hw_Task hw_task = hw_task_init(sample_hw_task);

8
9 // Task body

10 while (true) {

11 << Software elaborations chunk >>

12
13 // Configure input and output data for the HW-task

14 hw_task_set_args(hw_task , input_ptr , output_ptr);

15
16 // Reconfigure and execute the HW-task

17 rcfg_manager_execute_hw_task(hw_task);

18
19 << Software elaborations chunk >>

20
21 // Wait for the next job

22 suspend_until(period);

23 }

24 }

Listing 5.1: Pseudocode of a SW-task calling a HW-task.

127

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

The HW-task is initialized at line 7, where the label sample_hw_task is used
to refer its implementation stored in memory. At line 14, the SW-task con�gures
the HW-task by specifying two memory locations: (i) input_ptr, that contains
the input data for the HW-task and (ii) output_ptr, prepared to contain the
output data produced by the HW-task. Finally, at line 17, the SW-task executes
a blocking call that triggers the recon�guration and executes the HW-task. The
SW-task correspondingly suspends its execution until the completion of the HW-
task. The inter-task communication mechanism is discussed in the following
section.

System Prototype

This section presents the implementation of a system prototype to handle HW-
tasks under DPR on a real platform. The prototype has been used to conduct
some preliminary experiments to evaluate the feasibility and the performance
of the proposed approach.

Reference Platform The Zynq-7000 SoC family has been chosen as a ref-
erence platform for developing a working prototype of the system. It includes
a dual-core ARM Cortex-A9 processor and a DPR-enabled FPGA fabric inte-
grated on the same die.

The internal structure of a Zynq SoC comprises two main functional blocks
referred to as processing system (PS) and programmable logic (PL) [204]. The
PS block includes the ARM Cortex-A9 MPCore, the memory interfaces and the
I/O peripherals, while the PL block includes the FPGA fabric. The subsystems
in the PS are interconnected among themselves, and to the PL side, through an
ARM AMBA AXI Interconnect.

The Interconnect can be accessed by custom logic modules (con�gured on the
PL side) through a set of master and slave AXI interfaces exported by the PS to
the PL side. In particular, the slave interfaces allow hardware modules hosted
on the PL to access the global memory space where the physical RAM memory
is mapped. This is achieved by implementing an AXI master interface inside the
module logic. Such a master interface can be connected to the corresponding
slave interfaces o�ered by the PS. In this way it is possible to implement a
shared-memory infrastructure between the processor and the custom modules
deployed on the PL.

The SoCs of the Zynq family supports dynamic partial recon�guration under
the control of the software running on the PS. The FPGA fabric included in the
PL can be fully or partially recon�gured via the device con�guration interface
(DevC) subsystem. The DevC includes a DMA engine that can be programmed
to transfer bitstreams (i.e., images of custom modules to be con�gured onto the
FPGA) from the main memory to the PL. This is achieved by means of the the
processor con�guration access port (PCAP).

Prototype Architecture In the system prototype, the area of the FPGA
fabric included in the PL is divided into a static region and a recon�gurable
region. The static region contains the static portion of the communication in-
frastructure (consisting in interconnection blocks similar to switches) and other
support modules, while the recon�gurable region hosts the hardware modules
that implement the HW-tasks and a common communication interface.

128

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Such a common interface is similar to the one adopted by Sadri et al. [168]
and includes (i) an AXI master interface for accessing the system memory, (ii)
an AXI slave interface through which the HW-task can be controlled by the
PS, and (iii) an interrupt signal to notify the PS when the computation has
been completed. In the current setup, the AXI master interfaces included in
the HW-tasks are attached to high-performance (HP) ports exported by the
PS, while the AXI slave control interfaces are attached to the PS AXI master
general purpose ports.

The recon�gurable region is partitioned into a �xed number of slots, each
containing an equal number of logic resources. Each slot can accommodate a
single HW-task. Since bitstreams relocation is not supported by the Xilinx's
standard tools [105, 190] (i.e., the same bitstream cannot be used for multiple
slots), each HW-task is synthesized as a set of bitstreams, one for each slot
de�ned in the PL.

Software Support The software part of the system prototype has been de-
veloped as a user-level library for the FreeRTOS [125] operating system. The
library facilitates the recon�guration and the execution of HW-tasks by pro-
viding a simple API that enables the client programmer to exploit hardware
acceleration.

From the client programmer perspective, the library models the concept
of hardware acceleration with a set of HW-task objects and a software module
named recon�guration service. The interface of the recon�guration service o�ers
a single function to request the execution of a HW-task (as shown in Listing 5.1,
line 17). Each HW-task object includes the following information: (i) a set of
bistreams, one for each slot; (ii) the input parameters (memory pointers or
data); (iii) two optional callbacks (linked to the start and the completion of the
HW-task) that can be used to ensure memory coherence. The library has been
build on top of the Xilinx software support library [144].

Before executing a HW-task, the presented implementation �ushes the por-
tion of cache containing the input data prepared by the SW-task, thus ensuring
that the HW-task can access coherent data from the RAM memory.

Once the input data have been prepared, the SW-task checks for a vacant
slot performing a wait operation on a FreeRTOS counting semaphore (initialized
with the number of available slots). If all the slots are busy, the calling task
is suspended until one of the slots will be released. When at least one slot is
available, the function searches if any of the vacant slots already contains the
requested HW-task. If none of the vacant slots contains the required HW-task,
one of the vacant slots is recon�gured with the corresponding bitstream. The
calling task is suspended until the recon�guration has been completed.

As soon as the requested HW-task is con�gured, it starts executing. The
calling SW-task suspends its execution until the completion of the HW-task.
When the HW-task completes, the calling SW-task is resumed and performs a
signal operation on the slots counting semaphore. The completion is noti�ed to
the PS with the interrupt signal predisposed in the common interface described
in Section 5.3.2. Once the SW-task is resumed, the presented implementation
invalidates the cache portion corresponding to the output data produced by the
HW-task, thus ensuring that the processor can access coherent data.

129

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Experimental Results

This section presents a preliminary case study implemented on the Zynq-7000
platform to evaluate the feasibility of the proposed approach, pro�le hardware
acceleration speedup factors, and measure recon�guration overheads. The con-
sidered platform includes a dual-core ARM Cortex-A9 processor and a 7-series
FPGA integrated on the same chip. The internal structure of a Zynq SoC can
be divided in two main functional blocks referred to as processing system (PS)
and programmable logic (PL) [204]. The PS block comprises the ARM Cortex-
A9 MPCore, the memory interfaces and the I/O peripherals, while the PL block
includes the FPGA programmable fabric. The subsystems included in the PS
are interconnected among themselves and to the PL through an ARM AMBA
AXI (Advanced eXtensible Interface) interconnect.

The hardware modules con�gured on the PL can access the interconnect
through a set of master and slave AXI interfaces exported by the PS side to
the PL side. Slave interfaces allow modules to access the global memory space
and share the DRAM memory with the processors. Dynamic partial recon�g-
uration is supported under the PS control. PL fabric can be fully or partially
(re)con�gured by the PS through the device con�guration interface (DevC) sub-
system. The DevC includes a DMA engine that can be programmed to transfer
bitstreams from the main memory to the PL con�guration memory through the
processor con�guration access port (PCAP).

To test the system, four standard algorithms have been implemented as
both HW-tasks and equivalent software procedures. The test set includes tree
simple implementations of image convolution �lters (Sobel, Sharp and Blur) and
an integer matrix multiplier (referred to as Mult). The HW-tasks have been
designed with the Vivado high-level synthesis tool, while the software versions
have been implemented in the C language.

The Blur and the Sharp �lters have been con�gured to process images of size
800 × 600 pixels, while the Sobel �lter has been con�gured to process images
of size 640 × 480 pixels. All the three �lters process images with 24-bit color
depth. The matrix multiplier processes matrices of size 64× 64 elements.

System Architecture In the prototype developed for the case study, the PL
area is divided in two main regions: a static region and a recon�gurable region.
The static region contains the communication infrastructure and other support
modules, while the recon�gurable region is organized as a single partition divided
into S slots, each hosting a HW-task.

In general, since bitstream relocation is not supported by the Xilinx standard
tools [105, 190], each HW-task τHi is implemented as a set of nSk bitstreams, one
for each slot Sj of its associated partition P (τHi). Each slot Sj can accommodate
all the speci�c implementations of each HW-task τHi that belongs to partition
P (τHi).

Since the slot interface should match the one of the HW-tasks [190], a com-
mon interface that all HW-tasks are required to implement is then de�ned. Such
a common interface is similar to the one adopted by Sadri et al. [168]. The in-
terface includes an AXI master interface for accessing the system memory, an
AXI slave interface through which the HW-task can be controlled by the PS,
and an interrupt signal to notify the PS. The AXI master interface logic allows
HW-tasks to retrieve data autonomously from the memory space.

130

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Algorithm Mult Sobel Sharp Blur
Observed HW
execution times

Average (ms) 0.785 12.710 24.631 24.628
Longest (ms) 0.785 12.712 24.633 24.629

Observed SW
execution times

Average (ms) 1.980 115.518 304.975 374.785
Longest (ms) 2.017 115.521 304.994 374.811

Speedup
Average 2.523 9.089 12.381 15.217
Minimum 2.515 9.087 12.380 15.216

Table 5.5: Speedup evaluation.

In the current experimental setup, the AXI master interfaces exported by
the HW-tasks are attached to high-performance slave ports exported by the
PS, while the AXI slave control interfaces are attached to the general purpose
master ports. The software part consists of a user-level library for the FreeRTOS
operating system. The library abstracts the recon�guration mechanism and
provides a simple API that enables SW-tasks to request the execution of HW-
tasks on the PL through the rcfg_manager_execute_hw_task() function, as
described in Listing 5.1.

Experimental Setup The system prototype has been deployed on a ZYBO
board that includes the Z-7010 Zynq SoC and 512 MB of DDR3 memory. The
ARM core included in the PS of the Z-7010 runs at 650 MHz, while the clock
frequency for the PL is set to 100 MHz.

In the experimental setup, 50% of the logic resources of the PL are allocated
to the recon�gurable partition, while the remaining 50% are allocated to the
static part. The recon�gurable partition is divided into two slots of equal size.
Each slot contains half of the resources available in the recon�gurable partition.
Since both slots contain an equal number of resource, the corresponding bit-
streams (resulting from the logic synthesis of HW-task in each slot) have the
same size, equal to 338 KB. Considering the size of the RAM memory available
on the platform (512 MB), a large number of partial bitstreams can be stored
without any relevant impact on the available memory.

Speedup Evaluation A �rst experiment has been carried out to measure
the speedup factors achievable by the HW-task implementation of the four al-
gorithms used in the case study. For each of such algorithms, the execution
time of the corresponding HW-task has been compared with the equivalent full
software implementation for 1000 runs. The results of this test are reported
in Table 5.5. The minimum speedup has been computed as the ratio between
the minimum observed execution time of the software implementation and the
maximum observed execution time for the HW-task.

As can be seen from the table, even though the FPGA is running at a lower
clock frequency (100MHz) compared to the processor (650MHz), HW-tasks
provide a consistent speedup ranging from 2.5 to 15.2. The small di�erences
between average and worst-case execution times can be explained by the fact
that the functions are essentially stream processing operations with no branches
depending on the input data.

131

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Response-time Evaluation A second experiment has been performed to
evaluate the system behavior in a scenario where the number of HW-tasks to
be executed exceeds the number of slots available on the FPGA fabric. Please
note that such a scenario is only possible by exploiting DPR. The task set used
for this experiment consists of four periodic SW-tasks with implicit deadline
(i.e., deadlines equal to task periods). Each SW-task requests the execution of
the HW-task corresponding to the algorithm of the case study (Section 5.3.2).
SW-tasks priorities are assigned according to the Rate-Monotonic algorithm. As
mentioned in Section 5.3.2, each SW-task executes a �ush operation (denoted
as cache �ush) before calling the HW-task and invalidates the cache when the
HW-task completes (cache invalidate operation).

Table 5.6 reports the periods of the SW-tasks, the execution times of the
cache �ush and cache invalidate operations, and the response-times of the SW-
tasks observed in 8 hours of execution.

Based on the collected data, it is worth observing that the considered appli-
cation cannot be scheduled without DPR for the following reasons:

• due to the large execution times (see Table 5.5), the application cannot
be scheduled with a full software implementation;

• since the FPGA fabric has only two slots, it is not possible to statically
con�gure all the four HW-tasks of the application;

• if the algorithms that cannot be allocated on the FPGA as HW-tasks are
executed on the processor as pure software implementation, any possible
combination of HW-tasks and software implementations leads to a non
schedulable system.

This example shows that virtualizing the FPGA by the proposed timesharing
mechanism can e�ectively improve the schedulability of applications on current
heterogenous platforms.

The longest observed response time for the Mult SW-task shows that, even
if this task has the highest priority in the system, it may experience high delays
due to slot contention with other HW-tasks issued by lower-priority SW-tasks.

This happens because of the FIFO ordering of the semaphores used in the
implementation. The execution of HW-tasks can hence be delayed by the recon-
�guration and the execution of all the HW-tasks requested by other SW-tasks
(independently of their priority). The analysis of such a delay is beyond the
scope of this thesis.

For some applications, the response-times can be improved by adopting dif-
ferent scheduling policies (i.e., di�erent from FIFO) to manage HW-tasks. How-
ever, since HW-tasks execute in a non-preemptive manner, the largest execution
time of the HW-tasks will always impose a lower-bound for the slot contention
delay.

Recon�guration Times Pro�ling Finally, a third experiment has been con-
ducted to pro�le recon�guration times. The recon�guration of the FPGA fabric
is performed by the DevC subsystem described in Section 5.3.2. Such a module
transfers bitstreams from the main memory to the PL con�guration memory
trough the PCAP port, which exploits the DevC DMA engine. The DMA ac-
cesses the system memory (where bistreams are stored) through an AXI master

132

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

SW-task Mult Sobel Sharp Blur
Period (ms) 30 50 80 100
Cache �ush (ms) 0.030 1.123 1.754 1.754
Cache invalidate (ms) 0.017 1.240 1.939 1.939
Observed
Response time

Average (ms) 3.829 17.603 31.416 35.624
Longest (ms) 24.017 20.418 33.086 43.160

Table 5.6: Hardware accelerated task-set.

2.78 2.8 2.82 2.84 2.86 2.88 2.9 2.92 2.94 2.96 2.98 3
0

1

2

3

4

·105

Reconfiguration time (ms)

O
cc
ur
re
nc
es

4 tasks

2.78 2.8 2.82 2.84 2.86 2.88 2.9 2.92 2.94 2.96 2.98 3
0

0.25
0.5
0.75

1
1.25

·105

Reconfiguration time (ms)

O
cc
ur
re
nc
es

4 tasks + MemDisturb

Figure 5.15: Distribution of recon�guration times.

133

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Experiment
Recon�guration time (ms)
Min Avg Max

4 tasks (Section 5.3.2) 2.791 2.820 2.846
4 tasks + MemDisturb 2.795 2.910 3.012

Table 5.7: Observed recon�guration times.

interface connected to the internal AXI Interconnect. Unlike the processor and
the HW-tasks connected to the AXI slave ports, the DevC subsystem is not
directly connected to the DRAM controller. In fact, it contends the access to
the DRAM controller with other peripherals in the PS side.

In general, the throughput achievable by the DevC DMA depends on the
tra�c conditions on the AXI Interconnect, and the load on the DRAM con-
troller. Modeling the bus contention on the AXI Interconnect and evaluating
its performance goes beyond the scope of this thesis. However, a �rst test was
carried out to evaluate how a memory intensive SW-task interferes with the
DevC, and hence a�ects recon�guration times.

The task set used for this test includes the four tasks described in the ex-
periment of Section 5.3.2, and an additional memory intensive software activity
(referred to asMemDisturb) continuously running in background without invok-
ing HW-tasks. The MemDisturb software activity performs memory transfers
between two memory bu�ers of 32 MB. The sizes of the bu�ers exceed the size
of the processor L2 cache. Therefore, such a memory transfers generate a con-
tinuous stream of request to the DRAM controller that simulates a memory
intensive SW-task.

Table 5.7 compares the recon�guration times with and without the MemDis-
turb activity. Figure 5.15 illustrates the recon�guration times distribution in
both cases. The results of this experiment show that, despite a memory inten-
sive software activity can a�ect recon�guration times, its impact is very small
and in the order of 0.1 ms. We believe that this result, although preliminary
and far from being complete, is encouraging for exploiting partial recon�gura-
tion in real-time systems, where bounded recon�guration delays are essential
to guarantee the system predictability. Given the size of the partial bistreams
(338 KB), the average observed throughput for the DevC amounts to 117 MB/s
without MemDisturb and to 113 MB/s with MemDisturb.

Conclusions

This work presented an experimental study aimed at evaluating the use of dy-
namic partial recon�guration for implementing a timesharing mechanism to
virtualize the FPGA resource in heterogeneous platforms that also include a
processor. Hence, an application consists of both software computational ac-
tivities (running on the processor) and hardware modules implemented in pro-
grammable logic to be dynamically allocated on the FPGA, as requested by
the software tasks. The temporal parameters involved in such a system (e.g.,
recon�guration and execution times) have been pro�led for a case study appli-
cation. The achieved results are encouraging and clearly show that, in spite of
the relatively high recon�guration times of FPGAs, a timesharing mechanism
can signi�cantly improve the performance of real-time applications with respect

134

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

to a fully static approach.
Besides the encouraging results, the experimental studies highlighted two

major bottlenecks of today's platforms. First, all the evaluated FPGA platforms
provide only a single recon�guration interface, which is then contended by all
the HW-tasks. Second, when the main memory is used to store both data
and bistreams, an additional contention there exists on the Interconnect and
the DRAM controller, which introduces further complications in the timing
analysis. As a consequence, the presence of memories dedicated to bitstream
storage would signi�cantly improve both performance and predictability.

The issues that are still open include the design and the analysis of scheduling
algorithms for HW-tasks, provided in Section 5.3.3, and the design of real-
time operating system mechanisms to support such a dynamic approach and an
improved inter-task communication, presented in Section 5.3.4.

5.3.3 Analysis

Framework and Modeling

This work considers a platform consisting of a processor and a DPR-enabled
FPGA module that comprises b logic blocks. The FPGA and the processor
share a common memory M. The blocks of the FPGA module are statically
partitioned into a set P = {P1, ..., PnP

} of nP partitions, where each partition
Pk is composed of bk logic blocks, with

∑nP

k=1 bk ≤ b. Blocks are not shared
among partitions. Furthermore, each partition Pk is split into nSk slots of bSk
logic blocks, such that ∀Pk ∈ P, nSk · bSk ≤ bk. Blocks are not shared among the
slots.

As described in Section 5.3.1, a slotted approach is more suitable for real-
time systems because recon�guration delays are shorter and more predictable
than in a slotless solution, since there is no overhead related to task allocation
management and to instantiation of communication channels. On the other
hand, a slotted approach introduces a granularity that may increase the wasted
area of the FPGA. This phenomenon can be mitigated by a proper design of slots
and partitions as a function of the tasks. However, this issue is not addressed
in this thesis.

Hardware Task Model The activities executed on the FPGA are modeled
as a set ΓH = {τH1 , ..., τHnH

} of nH HW-tasks. Each HW-task τHi requires bi
logic blocks and has a worst-case execution time (WCET) CHi . A HW-task can
execute only if it has been programmed on a slot of the FPGA.

The considered platform is equipped with a FPGA recon�guration interface
(FRI) able to dynamically recon�gure a slot at run-time by programming a spe-
ci�c HW-task τHi . Each slot can accommodate at most one HW-task [25, 154].
As true in real-world platforms (such as [105, 190]), the following assumptions
are made:

1. the FRI can recon�gure a slot without a�ecting the execution of the HW-
tasks currently running in other slots;

2. no processor cycles are used for recon�guring a slot (i.e., the FRI is an
external peripheral, like DMA [204]); and

135

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

3. the FRI can program at most one slot at a time.

To program a given HW-task τHi into a slot, the FRI has to program all its logic
blocks, independently of the number bi of logic blocks required by τHi , because
unused blocks have to be disabled to �clean� the previous slot con�guration.

Each HW-task τHi can be programmed in any of the slots belonging to a
single partition. The partition hosting a HW-task τHi is denoted as P (τHi) and
referred to as a�nity. For all HW-tasks with a�nity P (τHi) = Pk, it must be
bi ≤ bSk .

The FRI is characterized by a throughput ρ, meaning that rSk = bSk /ρ units
of time are needed to program a slot of a given partition Pk. Hence, the time
ra needed to program a HW-task τHa is ra = rSk : P (τHa) = Pk.

Software Task Model The activities executed on the processor are modeled
as a set ΓS = {τ1, ..., τnS

} of nS SW-tasks. Each SW-task can make use of
HW-tasks to accelerate speci�c functions and is subject to timing constraints.
In particular, each SW-task τi

• uses a set H(τi) ⊆ ΓH of mi HW-tasks;

• alternates the execution of mi + 1 sub-tasks (also referred to as chunks)
with the execution of the mi HW-tasks in H(τi); thus, the execution of a
SW-task τi can be represented as a sequence

τi := 〈τi,1, τHa , τi,2, τHb , . . . , τi,mi+1〉,

where {τHa , τHb , . . .} ∈ H(τi) and τi,j is the j-th sub-task of τi. When-
ever the execution of a HW-task τHa is requested, the corresponding SW-
task self-suspends until the completion of τHa . The beginning of the self-
suspension phase coincides with the termination of the sub-task that issued
a request for a HW-task. In a dual manner, the completion of a HW-task
coincides with the release of the next sub-task.

• has a total WCET Ci, composed of the WCETs Ci,j of all its sub-tasks
τi,j ; that is,

Ci =

m+1∑
j=1

Ci,j .

• is periodically (or sporadically) released with a period (or minimum inter-
arrival time) of Ti units of time, thus generating an in�nite sequence of
execution instances (denoted as jobs);

• is subject to timing constraints; that is, each of its jobs must complete its
execution within a deadline Di relative to its activation time.

Each HW-task can be used by at most one SW-task, that is⋂
τi∈ΓS

H(τi) = ∅.

Listing 5.2 reports the pseudo-code de�ning the implementation skeleton of
a SW-task τi that uses mi = 2 HW-tasks in the set H(τi) = {τHa , τHb }. The

136

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

th

ts

t

t

P H

S

t1 t2 t3 t4 t5

accelerate

W

Cb Ce

put get

exe

t0 t6

Figure 5.16: Execution behavior of a SW-task calling a HW-task.

statement <...> has been used to represent a generic set of instructions that
are part of a computation executed by the SW-task on the processor.

1 TASK(τi)
2 {

3 <...>

4 <prepare input data for τHa >

5 EXECUTE_HW_TASK(τHa);

6 <retrieve output data from τHa >

7 <...>

8 <prepare input data for τHb >

9 EXECUTE_HW_TASK(τHb);

10 <retrieve output data from τHb >

11 <...>

12 }

Listing 5.2: Pseudo-code of the implementation skeleton of a SW-task.

The SW-task illustrated in Listing 5.2 is described by the sequence 〈τi,1, τHa , τi,2, τHb , τi,3〉:
the �rst sub-task τi,1 consists of lines 3-5, the second sub-task τi,2 of lines 6-9
and the third sub-task τi,3 of lines 10-11. EXECUTE_HW_TASK(τHj) is a blocking

system call, which is in charge of (i) requesting the execution of τHj and (ii)

suspending the execution of τi until the completion of τHj . Note that at line 4,

τi,1 prepares the input data for τ
H
a . Similarly, τi,2 retrieves the output data pro-

duced by τHa (line 6) and prepares the input data for τHb (line 8). Further details
on the inter-task communication mechanism are discussed in Section 5.3.3.

Figure 5.16 illustrates the execution behavior of another SW-task τi:=〈τi,1, τHa , τi,2〉,
visualizing the delays experienced when requesting the execution of τHa .

As clear from the �gure, task τi is activated at time t0. At time t1, the �rst
sub-task τi,1 requests the execution of the HW-task τHa and self-suspends its
execution at time t2, where (t2−t1) corresponds to the system overhead to issue
the request. This example assumes that all the slots of partition P (τHa) are busy
(i.e., occupied by other HW-tasks that are currently executing), hence a delay
∆a is introduced from time t2 until time t3, at which one slot of P (τHa) becomes
free. Once there is a free slot in P (τHa), the HW-task can be programmed, from
time t3 to t4, by using the FRI: such an operation takes at most ra units of
time, where ra = bSk /ρ (being k the a�nity of τHa).

After the programming phase, τHa starts executing at time t4 on the FPGA

137

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

b total number of logic blocks in the FPGA
nP number of partitions in the FPGA
Pk k-th partition in the FPGA
bk number of logic blocks in partition Pk

bSk number of logic blocks in a slot of Pk

nS
k number of slots in partition Pk

ρ throughput of the recon�guration interface
rSk time to program a slot of partition Pk

nS number of software tasks
nH number of hardware tasks
τi i-th software task
τi,j j-th sub-task of the i-th software task
τHa a-th hardware task
P (τHa) partition hosting the a-th hardware task
ra time to program the HW-task τHa
CH

a worst-case execution time of HW-task τHa
∆a delay experienced by τHa to wait for a free slot
ba number of logic blocks required by τHa
Ci worst-case execution time of SW-task τi
Ci,j worst-case execution time of sub-task τi,j
πi priority assigned to SW-task τi
Ti period (or minimum inter-arrival time) of τi
Di relative deadline of SW-task τi
mi number of HW-tasks used by SW-task τi

Table 5.8: Symbols used throughout the chapter.

and completes at time t5 within C
H
a units of time. Then, the SW-task is resumed

and executes the second sub-task τi,2, which completes at time t6. Note that τi
is suspended for the interval [t2, t5], which is no longer than S = ∆a + ra +CHa .

While the example presented above has a single SW-task, the system consid-
ered in this chapter includes multiple SW-tasks and HW-tasks that contend the
resources available on the platform. This means that a SW-task τi can su�er a
temporal interference from the execution of other SW-tasks that, if not properly
managed, can determine the violation of its deadline Di. Such interference also
depends on the contention for the FPGA slots and the FRI caused by the other
HW-tasks. For such reasons, a scheduling infrastructure is needed to support a
set of concurrent HW-tasks and SW-tasks.

The symbols used in the chapter are summarized in Table 5.8.

Scheduling Infrastructure Each SW-task τi is assigned a �xed priority πi,
also inherited by all its sub-tasks. A SW-task is denoted as ready when (i) it has
a pending job (i.e., a job released but not yet completed) and (ii) it is not self-
suspended waiting for the completion of a HW-task. SW-tasks are assumed to be
scheduled according to a �xed-priority (FP) preemptive scheduling algorithm,
so that, at any point in time, the ready task with the highest priority is executed
on the processor.

Besides the processor, two other resources are contented by SW-tasks: the
slots in the FPGA partition (shared with other HW-tasks having the same
a�nity) and the FRI. Hence, multiple requests for such resources have to be
scheduled. The overall scheduling infrastructure managing the slots and the
FRI is based on a multi-level queue structure, illustrated in Figure 5.17.

The scheduling policies used for each resource are �rst described; then, is
presented the scheduling rules that apply to every request for HW-tasks when

138

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Affinity

Hardware

Task

FRIP2

Pn

P1

PQ1

PQn

Figure 5.17: Scheduling infrastructure for HW-tasks requests in FRED.

traversing the multi-level queue structure of Figure 5.17.

Slot Scheduling For the purpose of scheduling, each slot can be free or
busy. A busy slot can in turn be active, when there is a HW-task programmed
on it that is executing, or reserved. A HW-task τHi with a�nity P (τHi) = Pk,
that is waiting for a free slot in partition Pk, is kept in a queue Qk managed
according to a �rst-in-�rst-out (FIFO) policy. Note that such a scheduling policy
guarantees a starvation-free progress mechanism. Moreover, it does not require
preempting the execution of HW-tasks, which is known to be a challenging
issue [74, 139] leading to non-negligible run-time overheads.

FRI Scheduling Whenever there are x free slots into a given partition Pk,
such x slots are reserved for the �rst x HW-task requests waiting into Qk which
then have to contend the FRI to program their corresponding HW-task. While
slots are shared only among the HW-tasks belonging to the same partition,
the FRI is a single resource contented by all the requests for HW-tasks in the
system. HW-task requests contending the FRI are kept in a queue denoted as
QFRI .

In this chapter, slot programming requests are managed according to a ticket-
based scheduling policy, which is described below and can be con�gured to be
executed either in a preemptive or non-preemptive fashion. Please note that
HW-task execution is assumed to be non preemptive to contain the preemption
overhead associated to FPGA recon�gurations. Hence, here preemptive and
non-preemptive policies are only related to the FRI programming phase. Under
a non-preemptive policy, the programming phase cannot be interrupted, whereas
under a preemptive policy, the programming phase can be interrupted to serve
another programming request.

Ticket-based Scheduling The ticked-based scheduling policy is described
by the following rules that apply to both non-preemptive and preemptive man-
agement of the FRI:

139

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

R1 Each execution request Ra for an HW-task τHa is assigned a �ticket� marked
with the absolute time t(Ra) at which Ra has been issued.

R2 Every partition queue Qk and the FRI queue QFRI enqueues execution
requests for HW-tasks by increasing ticket time.

R3 When a requestRa for HW-task τHa is issued, Ra is inserted in the partition
queue Qk with Pk = P (τHa).

R4 At any point in time t, for every partition queue Qk, the �rst ηk(t) ≥ 0
requests in Qk are removed from Qk and inserted in QFRI , where ηk(t) is
the number of free slots in Pk at time t. Contextually, these ηk(t) slots
become reserved (and hence busy).

R5 Once the HW-task τHa related to a request Ra has been programmed onto
a slot, Ra is removed from QFRI , that slot becomes active, and τHa starts
executing.

R6 When a HW-task τHa completes its execution, the corresponding slot be-
comes free.

The following scheduling rules distinguish between non-preemptive and pre-
emptive management of the FRI. In the case of preemptive FRI scheduling, the
following rule holds:

R-P1 Whenever QFRI is not empty, the FRI programs the HW-task related to
the �rst request in QFRI (i.e., the one having the earliest ticket time).

For non-preemptive FRI scheduling the following rules hold:

R-NP1 When the FRI is programming a HW-task it cannot be interrupted to
serve another request.

R-NP2 When the FRI completes a programming phase, or QFRI becomes not
empty, the FRI starts programming the HW-task related to the �rst
request in QFRI .

Example Figure 5.18 shows an example of preemptive FRI management
schedule under FRED for an FPGA module containing two partitions P1 and
P2, each consisting of a single slot.

The application consists of three SW-tasks: τ1 = 〈τ1,1, τHa , τ1,2, τHb , τ1,3〉,
τ2 = 〈τ2,1, τHc , τ2,2〉, and τ3 = 〈τ3,1, τHd , τ3,2〉. The priority assignment is such
that π1 > π2 > π3. HW-tasks τHa and τHb share partition P1 (i.e., P (τHa) =
P (τHb) = P1), whereas HW-tasks τHc and τHd share partition P2 (i.e., P (τHc) =
P (τHd) = P2).

All the SW-tasks are synchronously released at time 0. Being the highest-
priority one, τ1 starts executing as �rst and at time t = 1 completes its sub-task
τ1,1 by issuing a request Ra for HW-task τHa . Contextually, τ1 self-suspends
its execution. According to Rule R3, Ra is inserted in the partition queue Q1.
Since partition P1 is empty, at time t = 1 there is a free slot (η1(1) = 1); hence,
according to Rule R4, Ra is moved to QFRI and the slot of P1 becomes reserved.
Moreover, according to Rule R-P1, the FRI starts programming τHa . At time
t = 5, τHa has been programmed and according to Rule R5 it starts executing.

140

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Figure 5.18: Example of preemptive FRI scheduling under FRED.

At time t = 1, τ2 starts executing being the highest-priority SW-task ready.
At time t = 2, τ2 concludes its sub-task τ2,1 by issuing a request Rc for τHc .
According to Rule R3, Rc is inserted in the partition queue Q2. Since partition
P2 is empty, at time t = 2 there is free slot (η2(2) = 1); hence, according to
Rule R4, Rc is moved to QFRI and the slot of P2 becomes reserved. However,
since Rc has a later ticket time than Ra, Rc is delayed until τHa has been
programmed (time t = 5). Then, τHc can be programmed and be executed.

At time t = 2, τ3 is the highest-priority SW-task ready, thus it starts exe-
cuting until time t = 3, when it terminates its �rst sub-task τ3,1 by issuing a
request Rd for τHd . According to Rule R3, Rd is inserted in the partition queue
Q2. However, being the slot of P2 busy (speci�cally, reserved in [5,7] and active
in (7,11]), Rd waits in Q2 until time t = 11. At time t = 11, τHc completes
its execution, Rule R6 is applied and the slot of P2 becomes free. According to
Rule R4, Rd is moved to QFRI , the slot of P2 becomes again busy (speci�cally,
reserved) and τHd starts to be programmed.

Now, consider again τ1. At time 9, τHa is completed and hence the sub-task
τ1,2 can be released. At time 10, τ1,2 completes by issuing a request Rb for
HW-task τHb . By Rule R3 and Rule R4, Rb is inserted into QFRI . Being QFRI

empty, τHb starts to be programmed. However, as explained above, at time
t = 11, Rd (issued by τ3) is inserted into QFRI . Being t(Rd) = 3 < t(Rb) = 10,
according to Rule-R-P1 the programming of τHb is preempted to program τHd
until time t = 13. Hence in [11, 13) Rb is delayed. Finally, note that the FRI
queue is not managed in a pure FIFO manner.

141

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Communication Between SW and HW Tasks As stated in Section 5.3.3,
SW-tasks make use of HW-tasks to accelerate speci�c computations; that is, a
SW-task o�oads a computation to the FPGA by requesting the execution of
a HW-task and then retrieves the output of such a computation to continue
the execution on the processor. As shown in Listing 5.2, the communication
between a SW-task τi and a HW-task τHa includes two phases:

1. sub-task τi,j prepares the input data for τHa ;

2. sub-task τi,j+1 retrieves the data produced by τHa .

It is worth observing that the approach used to enable such a communication can
a�ect the real-time performance of the system by introducing di�erent worst-
case scenarios. For instance, suppose that the output data produced by a HW-
task are stored in its internal memory area and that phase (ii) comprises a copy
from the local memory of the HW-task to a memory area accessible by the SW-
task. In such a case, the HW-task must remain programmed onto the FPGA
module until the sub-task in charge of executing the phase (ii) will be executed,
otherwise output data would be lost.

Due to the scheduling delays su�ered by SW-tasks, the actual time a HW-
task occupies a slot is hence dependent on SW-tasks' execution behavior. Longer
slot occupation times increase the delays su�ered by HW-tasks, which in turn
increase the delays su�ered by SW-tasks by in�ating their suspension time when
waiting for the completion of a HW-task. Such a circular dependency can orig-
inate pathological scenarios that signi�cantly increase the worst-case response
time of SW-tasks, thus making this approach not attractive for a real-time sys-
tem.

To overcome this problem, FRED adopts a di�erent approach inspired by
the capabilities of state-of-the-art platforms, where the communication between
SW-tasks and HW-tasks is supported by allowing HW-tasks to directly access
the shared memoryM. Hence, the two communication phases are implemented
as follows:

1. sub-task τi,j prepares the input data for τ
H
a in a memory areaMIN

a inside
M, and τHa retrieves the input data by directly accessingMIN

a ;

2. τHa stores the output data into a memory area MOUT
a inside M, and

τi,j+1 retrieves them directly from MOUT
a , hence τHa can release its slot

as it �nishes.

References (i.e., memory pointers) to bothMIN
a andMOUT

a are assumed to be
provided to the HW-task or known a priori. By adopting this solution, the time
τHa must hold a slot is totally decoupled from the scheduling delays of SW-tasks
and is always upper-bounded by the WCET CHa plus the slot recon�guration
time ra.

As done in most real-time analysis, bus contention times due to the interac-
tion between HW-tasks and SW-tasks can be accounted in the WCETs. Finally,
please note that such a communication approach is not limited to platforms hav-
ing a main memory shared between the processor and the FPGA module, but
it can also be used in platforms where a dedicated memory is reserved for such
a communication. Indeed, the latter solution is more suitable for safety-critical
systems requiring a higher level of predictability.

142

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Real-time Analysis

The goal of this section is to derive a su�cient response-time analysis for the
SW-tasks running under FRED. That is, for each SW-task τi, this section pro-
vides an upper-bound Ri on its maximum response-time such that the system
is guaranteed to be schedulable if

∀τi ∈ ΓS , Ri ≤ Di. (5.15)

The upper-bounds are derived by building on Nelissen et al.'s [141] response-
time analysis for real-time �xed-segment self-suspending tasks (SS-tasks). The
SS-task model is a generic model for real-time computational activities where
multiple execution phases are alternated to self-suspension phases, exactly like
the execution behavior of the SW-tasks under FRED. Similarly to a SW-task,
a SS-task τ` alternates the execution of m` + 1 sub-tasks, each having WCET
C`,j (j goes from 1 to m` + 1) and m` suspension phases, each lasting at most
S`,j time units (j goes from 1 to m`). The C, T and D parameters of a SS-task
are consistently de�ned as the corresponding ones of a SW-task, as stated in
Section 5.3.3.

Each SW-task τi can hence be mapped (i.e., translated) into a SS-task τ`
according to the following rules:

1. C`,j = Ci,j , ∀j = 1, . . . ,mi + 1;

2. S`,j = ra + CHa + ∆a, ∀j = 1, . . . ,mi, where τ
H
a ∈ H(τi) : τi :=

〈. . . , τi,j , τHa , τi,j+1, . . .〉.

3. unless di�erently speci�ed, X` = Xi, where Xi is a parameter of τi.

Intuitively speaking, Rule 1 maps each sub-task of the SW-task τi into a
sub-task of the SS-task τ`, while Rule 2 de�nes a suspension phase of the SS-
task for each HW-task τHa used by τi; such a suspension phase includes the
recon�guration time ra, the WCET CHa and the the worst-case delay ∆a su�ered
by the HW-task under the FRED scheduling infrastructure. Finally, Rule 3
enforces that the other parameters of the SS-task τ` are equal to the ones of the
SW-task τi.

Please note that all the parameters mentioned in the rules above are known,
except for the delay ∆a: computing a safe upper-bound on such a delay is the
main challenge of the proposed real-time analysis.

For the sake of completeness, the next section brie�y summarizes the Nelissen
et al.'s response-time analysis for SS-tasks.

Summary on Nelissen et al.'s Analysis The response-time analysis of
�xed-priority SS-tasks is a problem studied since several years in the real-time
community. However, Nelissen et al. [141] discovered a number of errors in many
papers concerning the analysis of SS-tasks, and proposed a safe and accurate
response-time analysis for SS-tasks based on mixed-integer linear programming
(MILP).

A MILP formulation is instantiated for each SS-task τ` whose objective is
to maximize the response-time upper-bound R`,j of each sub-task τ`,j com-
posing τ`. Each response-time upper-bound is expressed as R`,j = C`,j +∑
τk∈hp(τ`)

∑mk

z=1NI`,k,z×Ck,z where hp(τ`) is the set of tasks that have higher

143

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

priority than τ` and NI`,k,z is an integer optimization variable modeling the
number of jobs of τ`,j interfering with τ`. Several constraints are enforced to
bound the value of NI`,k,z: please refer to [141] for further details. Finally,
once the MILP has been solved, the total response-time upper-bound R` of τ`
is computed as R` =

∑m`

j=1R`,j +
∑m`−1
j=1 S`,j .

Upper-bound for the Delay ∆a As stated above, computing a response-
time upper-bound for SW-tasks is crucial to bound the maximum time a SW-
task can be suspended to wait for the completion of a HW-task. This in turn
requires bounding the delay ∆a su�ered by each HW-task request Ra, which is
the goal of this section.

As a �rst step, the following lemma establishes that the ticket-based schedul-
ing policy introduced in Section 5.3.3 is work-conserving.

Lemma 1. A HW-task request Ra for τHa with a�nity to partition Pk = P (τHa)
is delayed at time t if and only if either

• all the nSk slots of Pk are busy serving other HW-tasks τHb 6= τHa with
P (τHb) = Pk; or

• the FRI is busy programming other HW-tasks τHb 6= τHa .

Proof. A HW-task requestRa can be delayed either (i) when it is in the partition
queue Qk or (ii) when it is in the QFRI queue. In case (i), according to Rule 4,
Ra can wait as long as all the nSk slots of Pk are busy. In case (ii), here is
made the distinction between preemptive and non-preemptive FRI management.
Under preemptive FRI management, being QFRI non-empty (at least Ra is
inside QFRI), by Rule R-P1 the FRI is still programming a HW-task τHa in a
reserved slot in P (τHa). By Rule R4, for every request inserted intoQFRI there is
a reserved slot in the corresponding partition. The same argument holds under
non-preemptive FRI management by considering Rules R-NP1 and R-NP2.

By relying on the fact that SW-tasks issue HW-task requests in a sequential
fashion, it is possible to establish another key property.

Lemma 2. Let R be an arbitrary HW-task request issued by a SW-task τi
at time t(R) and let ts(R) be the time at which R is removed from QFRI

(i.e., R is satis�ed). Let also pend(R) be the set of pending HW-task re-
quests during [t(R), ts(R)) that have earlier (or equal) ticket time, i.e., ∀Ra ∈
pend(R), t(Ra) ≤ t(R). If HW-task requests are serialized as speci�ed in the
model presented in Section 5.3.3, then each SW-task τj 6= τi can possibly issue
at most one HW-task request in pend(R).

Proof. By contradiction. Suppose that pend(R) contains more than one HW-
task request from SW-task τj , say Ra and Rb, respectively issued at times t(Ra)
and t(Rb) and satis�ed at times ts(Ra) and ts(Rb). Without loss of generality
assume t(Ra) ≤ t(Rb). By de�nition of set pend(R), it results t(Ra) ≤ t(Rb) ≤
t(R), ts(Ra) > t(R) and ts(Rb) > t(R). Hence is obtained t(Ra) ≤ t(Rb) ≤
t(R) < ts(Ra), which implies that Rb has been issued before the completion
of Ra. This contradicts the assumption, according to which HW-task requests
issued by the same SW-task are serialized. Hence, the lemma follows.

144

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

It is now possible to derive the upper-bound for the delay ∆a. To this end, it
is necessary to distinguish between preemptive and non-preemptive management
of the FRI.

Preemptive FRI Management

Theorem 4. Consider an arbitrary HW-task request Ra for τHa issued by a SW-
task τi. Let Pk = P (τHa) be the a�nity of τHa . Under preemptive management
of the FRI, the maximum delay ∆a incurred by Ra is upper-bounded by

∆P
a =

∑
τj 6=τi

max
τH
b ∈H(τj)

{
∆slot
b + rb

}
(5.16)

where

∆slot
b =

{
CH

b

nS
k

if P (τHb) = Pk

0 otherwise.

Proof. Let X be the set of HW-task requests that delay Ra. Since here is
considered a preemptive management of the FRI, Rule R-P1 applies. Because
of such a rule and the FIFO ordering of the partition queue Qk, Ra can only
be delayed by other requests that have earlier (or equal) ticket time. Hence,
∀R ∈ X , t(R) ≤ t(Ra).

To help the presentation the set of HW-tasks ΓHX is de�ned by mapping
each HW-task request R ∈ X into the corresponding HW-task τH ∈ ΓHX . By
Lemma 2, each SW-task τj 6= τi can have issued at most one HW-task request
in X . Hence, ∀τi 6= τj , |ΓHX ∩ H(τj)| ≤ 1. Moreover, since one HW-task can-
not be used by multiple SW-tasks (i.e.,

⋂
τj∈ΓS H(τj) = ∅), each request in X

corresponds to one and only one HW-task in ΓHX , hence |ΓHX | = |X |.
The total workload W that can delay Ra cannot be greater than the sum

of (i) the execution time of HW-tasks in ΓHX and (ii) the recon�guration time
of HW-tasks in ΓHX . In addition, by Lemma 1, Ra cannot be delayed by the
execution of HW-tasks τHb with P (τHb) 6= Pk. Hence, it is

W ≤
∑

τH
b ∈ΓH

X
P (τH

b)=Pk

(
CHb + rb

)
+

∑
τH
b ∈ΓH

X
P (τH

b)6=Pk

rb,

and being HW-task requests scheduled in a work-conserving manner (by Lemma 1),
∆a ≤W holds.

Now, note that any interval in which Ra is delayed can be considered as an
alternating sequence of sub-intervals of two types:

1. type X : if QFRI contains at least a request with a ticket time less than
t(Ra), i.e., ∃R ∈ QFRI : t(R) ≤ t(Ra));

2. type Y : otherwise, i.e., @R ∈ QFRI : t(R) ≤ t(Ra).

Being such intervals complementary, this classi�cation is well de�ned.
Let ∆X be the total delay su�ered by Ra during intervals of type X and

let ∆Y be the one su�ered during intervals of type Y. Hence, the total delay is
given by ∆a = ∆X + ∆Y . To derive a bound on ∆a, it is possible to proceed
by deriving a bound on each of these two terms.

145

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Type X) Consider an arbitrary time instant during an interval of type X. Let
R be the request at the head of QFRI . By de�nition of type X interval and
Rule R2, t(R) ≤ t(Ra): hence R contributes to the workload W . According to
Rule R-P1, the FRI is programming the HW-task related to R, and hence Ra
is delayed anyhow by such an operation.

In total, Ra cannot be delayed by more than the overall recon�guration
times in the workload W , hence ∆X ≤

∑
τH
b ∈ΓH

X
rb.

Type Y) In this case, the queue QFRI can be empty or non-empty. If QFRI

is empty, being Ra delayed, it must be waiting into its partition queue Qk. If
QFRI is non-empty, Ra cannot be into QFRI otherwise it would not be delayed
according to Rule R2 and Rule R-P1 (i.e., it would be at the head of QFRI);
hence Ra is waiting in Qk anyway.

According to Rule 4, if Ra waits into Qk, then all the nSk slots of Pk are
busy. Moreover, none of these slots can be reserved: this holds because of the
FIFO ordering of Qk (in fact no request with a�nity Pk can be into QFRI).
Hence, in this case, all the nSk slots of Pk are active serving the execution of
HW-tasks τHb with P (τHb) = Pk. As a consequence, if Ra is delayed by ∆Y time
units across all intervals of type Y, then partition Pk served nSk ·∆Y execution
time units.

By looking at the workload W that can interfere with Ra, it must be that

nSk ·∆Y ≤
∑

τH
b ∈ΓH

X
P (τH

b)=Pk

CHb

and hence

∆Y ≤
∑

τH
b ∈ΓH

X
P (τH

b)=Pk

CHb
nSk

.

Rewriting the expression for ∆a becomes

∆a = ∆X + ∆Y ≤
∑

τH
b ∈ΓH

X
P (τH

b)=Pk

(
CHb
nSk

+ rb

)
+
∑

τH
b ∈ΓH

X
P (τH

b)6=Pk

rb. (5.17)

The upper-bound on ∆a follows by maximizing Equation (5.17) over all
possible sets ΓHX . Since by construction of ΓHX each SW-task τj 6= τi can have
at most one request for a HW-task τHb ∈ ΓHX , Equation (5.16) accounts for the
maximum contribution to Equation (5.17) given by each SW-task τj 6= τi.

Non-preemptive FRI Management Building on the bound ∆P
a stated

by Theorem 4, it is possible to derive a bound on the delay incurred in the case
of non-preemptive FRI.

Theorem 5. Consider an arbitrary HW-task request Ra for τHa issued by a
SW-task τi. Let Pk = P (τHa) be the a�nity of τHa . Under non-preemptive man-
agement of the FRI, the maximum delay ∆a incurred by Ra is upper-bounded
by

146

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

∆NP
a = ∆P

a +NHmax
k × rmaxk (5.18)

where
NHmax

k =
∣∣{τHb ∈ ΓH : P (τHb) = Pk}

∣∣
and

rmaxk = max
τH
b ∈ΓH

{rb : P (τHb) 6= Pk}.

Proof. Any interval in which Ra is delayed can be considered as an alternating
sequence of sub-intervals of two types:

1. type X : if QFRI contains at least a request corresponding to a HW-task
τHb with P (τHb) = Pk (i.e., same partition of τHa) waiting into QFRI ;

2. type Y : otherwise.

Note that these intervals have a di�erent de�nition with respect the ones used
in the proof of Theorem 4, but the same properties apply (i.e., the classi�cation
is well de�ned). Each type is later considered separately.

Type X) Consider a single interval of type X. Because of the FIFO ordering of
partition queues Qk, whenever Ra is delayed (during the considered interval),
it must be waiting for the recon�guration of HW-tasks with a�nity Pk (present
into QFRI by de�nition). According to Rule R-NP1 and Rule R-NP2, their
corresponding request (or Ra itself) can be delayed by (i) other requests with
lower (or equal) ticket time that are into QFRI ; and (ii) at most one request
with higher ticket time which is (non-preemptively) served by the FRI. Because
of the FIFO ordering of partition queue Qk, this latter request must be related
to a HW-task with a�nity 6= Pk. In case (i), the same consideration argued in
the proof of Theorem 4 holds (preemptive FRI). In case (ii), the delay su�ered
by Ra cannot be higher than rmaxk = maxτH

b ∈ΓH{rb : P (τHb) 6= Pk} time units.
By Rule R-NP2, such a delay can occur at most once for each interval of type
X.

The total number of intervals of type X is maximized when, during each of
such intervals, there is only one request into QFRI that corresponds to a HW-
task with a�nity Pk. Hence, such a number is bounded by the total number of
HW-tasks with a�nity Pk, given by NHmax

k = |{τHb ∈ ΓH : P (τHb) = Pk}|.
Hence, the total delay in case (ii) across all intervals of type X is upper-bounded
by NHmax

k × rmaxk .

Type Y) By de�nition, QFRI contains no requests corresponding to HW-tasks
with the same a�nity of τHa . This clearly implies that Ra is either completed
(and hence not yet delayed) or waiting inside Qk. This is the same situation
discussed in the proof of Theorem 4 when considering the term ∆Y .

In summary, the total delay su�ered by Ra in intervals of type Y, plus the
delay in case (i) during intervals of type X, is bounded by the upper-bound ∆P

a

of the delay su�ered under preemptive FRI management. Hence, the theorem
follows.

Experimental Results

This section presents a set of experiments aimed at evaluating the performance
of the FRED scheduling infrastructure in terms of schedulability analysis with

147

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

synthetic workload. The experiments are performed to verify the schedulabil-
ity under di�erent architecture con�gurations and are obtained applying the
su�cient response time analysis presented in Section 5.3.3.

Task Set and Architecture Generation The synthetic workload has been
generated as follows.

Hardware Architecture The FRI throughput is de�ned as ρ = 100 and
the total number of logic blocks is set as b = 1, 000, 000: the ratio between these
two values yields an FRI throughput similar to the one observed in Section 5.3.2.
The logic blocks of the FPGA are equally distributed among the partitions. The
same holds for the logic blocks of each partition, which are equally distributed
among its slots.

SW and HW-tasks For simplicity, the focus in this chapter is on the case
where each SW-task accesses a single HW-task, i.e., mi = 2,∀τi ∈ ΓS . Because
of this restriction, HW-tasks are denoted with the same index of the correspond-
ing SW-task (i.e., τHi is the HW-task used by SW-task τi). For each partition
Pk, a bucket of possible task periods is de�ned according to the following rules:
(i) the interval of periods covered by any two buckets do not overlap; (ii) all the
values in every bucket are in the range

[
105, 106

]
µs. For each SW-task τi, a ran-

dom period Ti is chosen from the bucket corresponding to partition P (τHi) and
then removed from the bucket. The UUniFast algorithm [30] is used to generate
the utilization factor Ui of each SW-task τi, such that

∑
τi∈ΓS Ui = U , where U

is parameter de�ned in the experiments. The minimum task utilization is set to
Umin = 0.005. The WCET of each SW-task τi is then computed as Ci = Ui ·Ti.
Such a value has been then randomly split to obtain the WCETs Ci,1 and Ci,2
of each sub-task. Finally, a parameter UH has been de�ned to �mimic� a notion
of utilization of the FPGA (also referred to as hardware utilization). Note that,
due to the intrinsic interaction between SW- and HW-tasks, this parameter can-
not be related to a pure concept of utilization like the parameter U . Again, the
UUniFast algorithm [30] algorithm was used to generate the hardware utiliza-
tion for each hardware task as follows: ∀τHi ∈ ΓH , CHi = UHi · Ti. Like U , UH
is another parameter varied in the experiments. Task priorities πi are assigned
according to the rate-monotonic policy.

Experiments on Schedulability Analysis This set of experiments has been
carried out to measure the schedulability ratio of the tested task sets under four
di�erent con�gurations:

1. Static: the FPGA is supposed to have an in�nite area, so that all the
HW-tasks are statically assigned to a �xed slot, thus recon�guration is
not needed.

2. FRED-P : the proposed approach is used with preemptive FRI manage-
ment and scheduling delays are computed according to Theorem 4;

3. FRED-NP : same as FRED-P but with non-preemptive FRI management
and delays computed by Theorem 5;

148

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

U

S
ch
ed
.
ra
ti
o

Static FRED-P FRED-NP Software

Figure 5.19: Schedulability ratio as a function of U .

4. Software: all task sets are implemented in software. Worst-case execution
times of the resulting software implementation of HW-tasks are computed
considering a speedup factor Φ, assumed to be the same for all the HW-
tasks.

A �rst experiment varied the utilization U of a �xed number of tasks (both
HW and SW), using nP = 3 partitions, each with nSk = 2 slots, and 3 HW-tasks
with a�nity to each partition. The total number of tasks nS has been chosen
to overload the system: each partition Pk has n

S
k + 1 tasks, hence all the tested

task sets are not feasible without enabling DPR. Figure 5.19 reports the results
of an experiment where U was varied from 0.05 to 0.95 with a step of 0.05, with
Φ = 1 and UH = 0.1. Please keep in mind that the small value of UH cannot
be interpreted as in the classical software semantics.

As evident from the plots, the Software approach quickly degrades at utiliza-
tion values that are much lower than the ones at which FRED-P and FRED-NP
starts being no more able to schedule the task sets. Even with an unrealistic
and limit-case value for the speedup (Φ = 1), this happens because the FPGA
allows for intrinsic parallelism with respect to a single processor. The small
di�erence between FRED-P and FRED-NP is due to the fact that the recon-
�guration time (chosen according the pro�ling of Section 5.3.2) results almost
negligible with respect to the generated execution times of HW-tasks. The Static
approach represents a theoretical upper-bound (i.e, not practically achievable
because assumes FPGAs with in�nite area), whose performance depends on the
absence of recon�guration times and contention for slots and the FRI. In this
experiment FRED obtains a schedulability ratio higher than 50% up to U = 0.6,
outperforming the pure Software approach. Moreover, the results are quite close
to the ideal scenario provided by a fully Static approach.

Figure 5.20 reports the result of another experiment where the the software
utilization has been �xed to U = 0.1 and UH has been varied from 0.05 to
0.95 with a step of 0.05. Also in this case, FRED outperforms pure Software
approach, guaranteeing more than 50% of the tested task sets up to UH = 0.4.

A third experiment has been carried out to investigate the bene�ts of FRED
for applications that fully saturate the FPGA area and hence cannot be extended
to include additional tasks without exploiting DPR. Here are considered systems
with 2 partitions, 2 slots per partition and Φ = 3. Starting from a �xed scenario
(UH = 0.1, U = 0.1) where all the slots are occupied by HW-tasks, Figure 5.21

149

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

UH

S
ch
ed
.
ra
ti
o

Static FRED-P FRED-NP Software

Figure 5.20: Schedulability ratio as a function of UH .

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Number of added tasks (nA)

S
ch
ed
.
ra
ti
o

Static FRED-P FRED-NP Software

Figure 5.21: Schedulability ratio as a function of the number nA of added tasks.

150

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

reports the schedulability ratio obtained by adding nA new tasks (each consisting
of a SW-task and the corresponding HW-task), where nA was varied from 0 to
12. Each added task τi has U

H
i = 0.05 and Ui = 0.05, while the other parameters

were generated as in the previous experiments. The a�nity of each new task
was chosen as speci�ed in Section 5.3.3. This experiment clearly shows that
FRED allows guaranteeing real-time applications extended with more than 5
tasks, which otherwise could not be executed.

Conclusions

This chapter presented a framework for supporting the development of safety-
critical real-time applications on computing platforms that include a processor
and an FPGA module with dynamic partial recon�guration capabilities.

After providing a model of the platform and the computational activities, a
scheduling infrastructure was proposed to bound the delays experienced by the
tasks, and a response-time analysis was derived to verify the schedulability of
safety-critical applications with real-time constraints. The experimental results
performed on synthetic workloads showed the performance of the analysis in
di�erent scenarios.

5.3.4 Operating System Support to FRED

This section proposes a design to support the FRED framework on the Xil-
inx Zynq-7000 System-on-Chip (SoC) which has been chosen as the reference
platform for this work, as detailed in [146]. The Zynq-7000 is a popular het-
erogeneous platform that includes a dual-core ARM Cortex-A9 processor and
a Xilinx 7-Series FPGA fabric. The internal structure of the Zynq-7000 is di-
vided into two main functional blocks: the processing system (PS) and the
programmable logic (PL) [204]. The PS includes the ARM Cortex-A9 proces-
sors, interfaces for external memories, a small amount of on-chip RAM memory,
and the I/O peripherals. The subsystems in the PS are interconnected among
themselves and to the custom logic con�gured on the PL through an AMBA
AXI system bus. The main interconnection between the PS and PL consists of
a set of memory-mapped AXI (AXI for simplicity) interfaces exported by the
PS side to the PL side.

System support design The proposed design is illustrated in Figure 5.22.
In order to support the deployment of dynamically-recon�gured hardware ac-
celerators on the PL, the FPGA area is divided into two main regions: a static
region and a recon�gurable region (denoted by the striped boxes in Figure 5.22).
The static region contains part of the logic that is needed to realize the com-
munication infrastructure, namely a set of AXI Interconnects (discussed in Sec-
tion 5.3.4) and other support modules. Following the speci�cations of the FRED
framework, the recon�gurable region is organized by following a slotted scheme
to host the hardware accelerators.

To implement the shared-memory communication paradigm between SW-
tasks and HW-tasks, each hardware accelerator must be able to read and write
a memory area that is also accessible from the processors. The Zynq-7000
provides three alternatives for implementing such memory areas: (i) using the
internal on-chip memory, (ii) reserving part of the FPGA area to implement a

151

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Figure 5.22: Support design for the Zynq SoC.

custom memory (using BRAM logic blocks), or (iii) using the main (o�-chip)
DRAM memory.

Alternative (i) is not viable since the on-chip memory is too small (256 Kb)
and hence may not be suitable for supporting the shared-memory communica-
tion with multiple HW-tasks. Alternative (ii) determines a waste of the FPGA
area, as the synthesis of e�cient hardware accelerators generally requires BRAM
logic blocks. Conversely, alternative (iii) allows using high-performance AXI in-
terfaces that are directly connected to the DRAM controller. The availability of
such interfaces suggests that the Zynq-7000 is prone to support this approach.
As a consequence, the main DRAM memory has been selected for implementing
the shared-memory paradigm.

Hardware accelerators must be capable of receiving control commands and
arguments from the processor and sending synchronization signals to notify
their completion. Since each slot of a partition P must be able to host any of
the hardware accelerators that implement the HW-tasks with a�nity to P , it
necessary to de�ne a common interface.

Common Interface The proposed interface consists of (i) an AXI master
interface, (ii) an AXI slave interface exporting a set of control registers and eight
32-bit data registers, and (iii) an interrupt signal. The AXI master interface
(denoted as AXI M in Figure 5.22) has been provided to allow the hardware
accelerators to access the DRAM memory through the PS DDR controller. The
control registers allow controlling the execution and the state of each hardware
accelerator. Data registers can be used for manifold purposes depending on the
speci�c function implemented by the hardware accelerator.

The most common usage consists in storing pointers to memory area in
the DRAM (to implement shared-memory communication) or storing control
parameters of the HW-tasks. The AXI slave interface (denoted as AXI S in
Figure 5.22) is then used to map the control and data registers into the system

152

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

memory space, hence making them available from the PS. Finally, the interrupt
signal (denoted as INT in Figure 5.22) is used to notify the completion of the
HW-task to the PS.

Dynamic Partial Recon�guration In the Zynq-7000 SoC, the FPGA
fabric can be fully or partially (re)con�gured under the control of the software
running in the PS using the device con�guration (DevC) subsystem. Inter-
nally, the DevC includes an interface to the processor con�guration access port
(PCAP) and a DMA engine that can be programmed to transfer a bitstream
from the main DRAM memory to the PL con�guration memory.

Each hardware accelerator corresponds to a bitstream. However, Xilinx tools
do not support the relocation of bitstreams [190], i.e., the same bitstream cannot
be used to program the same hardware accelerators in di�erent slots. Since
FRED requires that a hardware accelerator can be programmed onto di�erent
slots (depending on their availability at run-time), it is necessary to synthesize a
bitstream for each slot of the partition to which the corresponding HW-task has
a�nity. Note that this is not relevant for memory consumption, as bitstreams
are typically in the order of a few megabytes.

Slot Decouplers The recon�guration process may generate transient glitches
that can cause troublesome spurious transactions [190]. To solve this issue each
slot is protected by a partial recon�guration decoupler (denoted as PR decoupler
in Figure 5.22), which is used to tie the interface signals to safe logic values.
Each decoupler is controlled by the PS by means of a single control register,
which is mapped into the memory space using an AXI slave interface.

Interconnections In the proposed design, the AXI master interfaces ex-
ported by each slot are connected to a set of AXI interconnects [195] modules.
The proposed connection scheme is based on the rationale of equally distribut-
ing the memory bandwidth across the slots using fair arbitration [195]. More
articulated connection schemes may be enabled by a �ne-grained analysis of the
interference incurred by the memory transactions, which is out of the scope of
this chapter and is left as an open challenge. The AXI slave interfaces of the
hardware accelerators and the decouplers are connected to a single AXI inter-
connect, which is turn connected to one of the Zynq general purpose master
ports (denoted as PS AXI GP in Figure 5.22). Note that this does not consti-
tute a bottleneck, since the PS is the only master. Finally, the interrupt signals
exported by the slots are gathered together in a vector signal and routed to the
IRQ_F2P port of the PS.

Linux Support

This section describes the implementation of the FRED framework for the
GNU/Linux operating system. The FRED software support has been designed
in a modular fashion relying, as much as possible, on userspace implementation
to improve maintainability, safety, and extendability.

The internal architecture of the system is shown in Figure 5.23. The central
component is a userspace daemon, named FRED server, which is in charge
of managing acceleration requests from SW-tasks. The server relies upon two

153

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Figure 5.23: FRED software support architecture.

custom kernel modules, and the UIO framework, in order to perform the low-
level operations required to control the hardware platform.

Kernel space The two aforementioned kernel modules are used to (i) allocate
the memory bu�ers employed to share data between SW and HW-tasks, and (ii)
manage the device recon�guration. The UIO framework is used for managing
hardware accelerators (control and data registers, and interrupt signals) from
userspace.

Memory Allocator Module To enforce memory coherence between SW-
tasks and HW-tasks, the shared-memory infrastructure, has been implemented
using a set of uncached memory bu�ers allocated by a custom kernel module.

The custom kernel module uses the Linux DMA layer to allocate physically
contiguous (uncached) memory bu�ers used to exchange data between HW and
SW-tasks. When loaded by the system, the module creates a new character
device named fred_buffctl, used by the FRED server during the initialization
phase to request the allocation of memory bu�ers.

Each allocation request is performed by an ioctl operation and includes,
as an argument, the size of the required bu�er. On the kernel side, when the
driver receives an allocation request, it creates a new character device named
fred_buffN (where N refers to the bu�er identi�er that is assigned by the mod-
ule) and allocates a new contiguous memory bu�er, associated with the device,
using the dma_alloc_coherent() function of the Linux DMA layer. The char-
acter device is the means by which the bu�er is accessible from userspace.

Once the bu�er device has been created, it can be accessed by a SW-task us-
ing the Linux standard mmap() syscall. When a SW-task calls (from userspace)
the mmap() on a bu�er character device, the corresponding bu�er is mapped
into its virtual address space. Inside the driver (on the kernel side) the mapping
is performed using the dma_common_mmap() function of the Linux DMA layer.

Once the bu�er is mapped into the SW-task's virtual space, it can be ac-
cessed by the task to read and write data without any system overhead. Since
the bu�er is uncached, no �ush and invalidate operations are required on the
cache (note that there are no common cache levels to both the processor and the

154

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

hardware accelerators, which are directly connected to the DRAM controller).
On the other side, a HW-task can access the same bu�er through a physical
memory address. Such an address is written into the control registers of the
HW-task by the FRED server (discussed in details in Section 5.3.4).

In this way, data can be transferred between HW and SW tasks without any
copy operation or operating system overhead. It is worth observing that under
this design the SW-tasks never deal with memory management operations. Each
SW-task sees a bu�er only as a character device that can be mapped, during its
initialization phase, into its virtual memory space. The process of requesting
the mapping of such bu�ers is assisted by a client support library.

When the FRED server is shutdown the bu�er devices created during the
initialization phase are released calling an ioctl operation on the fred_buffctl
device.

Recon�guration Driver The Zynq FPGA fabric can be recon�gured by
the DevC subsystem, as described in Section 5.3.4. Under Linux, the DevC is
controlled by a kernel driver module designed by Xilinx. Such a driver allocates
a character device named xdevcfg that can be used to recon�gure the FPGA
fabric from the userspace, taking a bitstream (introduced in Section 5.3.4) as
input.

The recon�guration process is initiated by a write() operation on the
xdevcfg device allocated by the driver. The argument of the write operation is
the bitstream �le containing the hardware con�guration.

The Xilinx's driver has been likely designed with simplicity as a primary de-
sign principle. Internally, for each request, the driver allocates a contiguous un-
cached memory bu�er using the dma_alloc_coherent() function of the Linux
DMA layer. Once the bu�er has been allocated and mapped, the driver copies
the entire bitstream from the userspace to the bu�er, using the copy_from_user()
function of the Linux kernel. Once the bitstream has been copied into the bu�er,
the driver starts the DevC internal DMA engine for transferring the bitstream
from the system memory to the FPGA con�guration memory. After the DMA
has been started, the driver performs a busy-wait, polling on a DMA status �ag
until the transfer has been completed.

This mode of operation is intended to minimize the user e�orts to use the
driver, but it is clearly unsuitable for the FRED framework because the copy
overheads and the busy waits are not compatible with the intensive usage of
partial recon�guration required by the FRED framework. To overcome these
issues, the original driver has been modi�ed to take advantage of the allocator
module described in the previous section. The rationale is to pre-load all the
HW-tasks' bistreams into a set of contiguous memory bu�ers allocated using
the allocator module. Since those operations are performed only once, during
the FRED server initialization, they do not produce any overhead at run time.

Once the bitstreams are loaded in physically contiguous memory bu�ers,
they can be reached by the DevC internal DMA engine. For this reason, the
driver has been modi�ed to include an ioctl() method that allows to start the
recon�guration by passing to the driver a memory reference to a pre-allocated
bitstream.

To avoid the busy-wait, the driver has been enhanced with the Linux stan-
dard poll() method. Once the recon�guration has been completed, such a

155

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

method sets the �le descriptor of the xdevcfg device ready for a read opera-
tion. In this way, the recon�guration process can be easily monitored through
POSIX standard I/O multiplexing methods such as select() and poll(), or
the Linux-speci�c epoll().

With the approach described above, the recon�guration process is started
by an ioctl() call on the xdevcfg device. The call returns immediately and a
userspace application can wait for the end of the recon�guration without busy-
waiting.

Userspace The FRED server is the main userspace component of the FRED
software support. Form an architectural perspective it is organized as an event-
driven system. Internally, the server includes a core component, named �HW-
Tasks scheduler�, supported by a layer of software libraries used to perform
low-level operations, as shown in Figure 5.23. Conceptually, the FRED server
interacts with the rest of the system by means of two main software interfaces,
one dedicated to interprocess communications with SW-tasks and the other used
to interact with the low-level support.

During the initialization phase the FRED server reads two con�guration
�les containing the description of the hardware design. The �rst �le speci�es
the layout of the FPGA in terms of partitions and slots. The second �le de�nes
the available HW-tasks. According to such �les, the FRED server initializes its
own data structures and requests the allocator module to allocate the memory
bu�ers used for both bitstreams and data sharing.

Communication Mechanism The communications channels between the
FRED server and SW-tasks rely upon Unix domain sockets. After the initial-
ization phase, the server instantiates a listening socket, named fred_sock, used
by SW-tasks to establish a new connection. Once the connection is established,
the SW-task can send requests to the server.

To make the system more usable from a client programmer perspective, com-
munication functions between SW-tasks and the FRED server are encapsulated
into the client support library. The communication pattern between FRED
server and a SW-task is presented in Figure 5.24. Once the server setup is com-
pleted, a SW-task can initiate a new connection by calling the fred_init_hwt()
function (see Figure 5.24). The FRED server replies back with a message con-
taining the bu�ers description in terms of device �les and sizes. Using this data
the SW-task can map the bu�ers into its own address space. Again, such a
mapping operation is assisted by the client support library.

At this point, the SW-task can �ll the input bu�ers of its associated HW-task
by simply writing into the corresponding memory locations without any addi-
tional overhead. Once input data have been prepared, the SW-Task can request
the execution of its HW-task by calling the fred_exec_hwt() function. This
function call causes the SW-task to be suspended until the completion of the
HW-task. When the HW-Task completes, the SW-Task resumes its execution
and can retrieve the data from the output bu�ers.

It is worth noticing that SW-tasks never interact directly with the hardware,
nor they are required to perform privileged operations. Any interaction between
client SW-tasks and the platform hardware are mediated by the FRED server.

156

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

Figure 5.24: Communication between SW-Tasks, FRED server, and HW.

Event Loop The main component of the HW-tasks scheduler is a state
machine driven by an event loop. The event loop monitors the �le descriptors
exported by the low-level and communication interfaces and drives the state
machine to handle incoming client requests and hardware events. Internally, the
event loop is built around the epoll system call. The classes of events handled
by the event loop are: (i) Completion of the device con�guration; (ii) Completion
of a HW-Task; (iii) Connection request from a SW-Task; (iv) Message from a
SW-Task.

Experimental Results

This section describes a set of experiments aimed at evaluating the performance
of the FRED software support. The experiments have been carried out on
the Digilent's Zybo board featuring the Zynq-7010 SoC and running Xilinx's
PetaLinux.

Performance Evaluation of the Recon�guration Driver The �rst ex-
periment evaluated the improvements achieved using the customized device re-
con�guration driver with respect to the Xilinx driver.

Measurements were done by running a single dummy task triggering 106

recon�guration requests to the driver, each of them con�guring a 338 KB bit-
stream into an FPGA slot. During the experiment the system was not loaded,
hence the DevC DMA did not su�er from any interference on the system bus
while reading the bitstream from memory.

Figure 5.25 shows the recon�guration times measured when using the original
Xilinx driver, and those obtained with the custom driver developed in this work.
While the average recon�guration time using the Xilinx driver is 4.340 ms,
the custom one reduces the average recon�guration time to 2.755 ms, with an
approximate speedup of 1.574. Moreover, the worst-case recon�guration time
measured for the original driver is 6.876 ms, improved with a speedup of 2.340
by the custom driver, for which the longest measured recon�guration time was
2.940 ms.

These results shows that our approach improves the recon�guration time
while decreasing the variance from 4.48·10−3 (for the Xilinx driver) to 1.62·10−5

(for the custom driver).

157

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

101

103

105

107

Recon�guration Time (ms)

S
a
m
p
le
s
(l
o
g
)

Xilinx driver (a)

Custom driver (b)

Figure 5.25: Distributions of the recon�guration times.

Overhead of the Linux Support The second experiment was aimed at
measuring the overhead introduced by the FRED software support while serving
the requests generated by the SW-tasks.

To evaluate the net overhead introduced by the infrastructure (namely inter-
process communication and the management of hardware events), the experi-
ment was performed with a basic system con�guration consisting of a single
SW-task running in the system, requesting for hardware accelerations to the
FRED server. More speci�cally, the experiment measured the overheads in-
troduced by the FRED software support when calling fred_exec_hwt(), that
includes:

• The time elapsed from the acceleration request to the instant at which the
FRED server triggers the driver to perform the hardware recon�guration;

• The interval from the time at which the driver noti�es the FRED server
with the end of recon�guration to the time at which the FRED server
starts the HW-task;

• The interval between the time at which the HW-Task noti�es the FRED
server its completion and the time at which the SW-Task is awakened.

Figure 5.26 reports the distribution of the sums of the aforementioned la-
tencies measured for each acceleration request performed by the SW-Task. The
longest measured overhead resulted 227.125 µs, while the average delay was
77.978 µs. Please note that the overhead introduced by the FRED software
support does not depend upon the amount of data shared between SW and
HW.

Conclusions

This chapter presented the design and implementation of the FRED framework
on the Linux operating system to ease the exploitation of FPGA accelerators
in real-time applications running on the Zynq-7000 platform. The software
includes a kernel module for implementing shared-memory communication with

158

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

60 80 100 120 140 160 180 200 220 240

101

103

105

Linux Software Support Overhead (us)

S
a
m
p
le
s
(l
o
g
)

Figure 5.26: Distribution of the overhead introduced by FRED.

hardware accelerators, an improved driver to handle the FPGA recon�gurations,
and a userspace daemon to schedule the requests of hardware acceleration.

Experimental results showed that the proposed approach allows halving the
recon�guration times with respect to the o�cial driver released by Xilinx, with
a speedup of 2.340. It has also been shown that the features o�ered by the
FRED software support introduce an overhead that can be tolerated by several
applications, with a maximum measured overhead less than 228 µs.

5.3.5 Conclusions and Open Challenges

This chapter presented a research activity aimed at improving the predictability
of dynamically recon�gured FPGA accelerators requested on-line by real-time
tasks. This work has been achieved in di�erent steps.

The �rst step has been the experimental study aimed at evaluating the
feasibility in the use of FPGA dynamic partial recon�guration features for im-
plementing a timesharing mechanism to virtualize the FPGA resource in het-
erogeneous platforms that also include a processor. A case study application
has been used to pro�le the temporal parameters involved in the system (i.e.,
recon�guration and execution times), and demonstrated that, in spite of the
relatively high recon�guration times of FPGAs, a timesharing mechanism can
signi�cantly improve the performance of real-time applications with respect to
a fully static approach.

The section also presents the models of the platform and the computational
activities that have been developed during this research activity, and proposes
a scheduling infrastructure to bound the delays experienced by the tasks, as
well as a response-time analysis to verify the schedulability of safety-critical
applications with real-time constraints.

The mentioned approaches has also been implemented and validated on a real
Zybo platform, embedding a Zynq-7000 platform, to demonstrate its practical
applicability. A �rst implementation relied on the FreeRTOS operating system,
while a second complete infrastructure has been obtained by extending the APIs
and kernel of Linux for the real-time management of the dynamic recon�guration
of the FPGA, and the communication between the software and hardware tasks.

159

5.3. REAL-TIME DYNAMIC RECONFIGURATION OF FPGA

ACCELERATORS: THE FRED FRAMEWORK

This work demonstrated the advantages in terms of response time of adopt-
ing an FPGA-based dynamic recon�gurable architecture, despite of the hard-
ware recon�guration times, that still represent a technology bottleneck to fully
exploit this hardware feature.

The results achieved in this research activity highlighted some interesting
open challenges. A �rst example is the evaluation of di�erent partitioning ap-
proaches for the FPGA area to limit contention on the recon�guration interface.
Another open challenge that has been identi�ed in the dynamic partial recon-
�guration of FPGA includes the lack of proper analysis of the delays incurred
by the hardware accelerators when accessing the AXI bus and the memory
controller. As a future work, it would also be possible to incorporate the pro-
posed framework within a hard real-time operating system (e.g., Erika Enter-
prise), by developing speci�c system call that would simplify the development
of safety-critical real-time applications on heterogeneous computing platforms
using FPGA accelerated components.

160

Chapter 6

Conclusions

This thesis provided several novel contribution to a number of open problems
a�ecting the available computing architectures, with particular emphasis on the
computing activities predictability and the energy saving, spreading from the
automotive systems to general computing architectures, and �nally to di�erent
kinds of heterogeneous architectures.

In the automotive �eld, the typical requirement for the computing archi-
tecture is being able to provide real-time guarantees for the tasks involved in
the correct control and management of all the sensing and actuating units.
Another important aspect is to provide proper tools for the validation of the
system requirements, that are widely expressed as formal languages. This thesis
addressed the problem of providing a formal de�nition of di�erent kinds of la-
tency, as well as providing real-time analyses, together with the development of
a simulator for a realistic model of an AUTOSAR multicore engine control unit.
For that given model, another provided research result is the development of
two di�erent methodologies to optimize the data allocation among the system
memories to minimize the response times of the tasks, the �rst using a mixed
integer linear programming formulation, the second using genetic algorithms.
Finally, the system validation problem has been solved with the development
of a system that bridges the requirements de�nition with the system testing,
by translating the requirements expressed through formal languages to modules
that can be integrated in the system model and simulated to detect errors.

The thesis also focused on di�erent aspects of reservation-based scheduling,
from the modeling of a hierarchical real-time scheduler within the Linux kernel,
that has also been widely tested to verify the compatibility of its behavior
with the real-time theory. The advantages of using this technique to provide
predictable quality of service guarantees is presented for di�erent applications,
spanning from the audio synthesis, to virtual machines management in cloud
environments. The used algorithm has been discovered to provide a misleading
behavior when managing tasks that suspend their execution (e.g., sleeping or
waiting for a software or hardware resource), loosing the reservation guarantees.
This problem has also been studied and solved in the thesis with the development
of a novel scheduling algorithm that solves the issue and its implementation on
the Linux kernel to demonstrate its low performance overheads.

Finally, the thesis analyzed di�erent kinds of heterogeneous architectures. In
the speci�c case of architectures with di�erent CPUs sharing the same instruc-

161

tion set, it has been proposed a method to minimize the latency of professional
Android audio applications, with the minimal impact on the energy consump-
tion. Despite the popularity of these architectures, the operating systems are not
yet able to exploit at the same time both their computational and energy saving
potentials, so this thesis presents a power consumption and a computing time
models, integrated in a simulator with the aim of supporting the energy-aware
scheduling research. Another novel contribution of this thesis is the creation of a
novel framework for supporting the real-time execution of task sets that are able
to boost their computations by demanding their work to hardware accelerators
that can be dynamically programmed in the FPGA area.

All the mentioned works have been carried out with a careful research ac-
tivity aimed at �nding novel and correct solutions to the identi�ed problems,
that have been formally and experimentally validated, taking also care of the
practicability of the proposals, for which in all the cases have been provided
tools or modi�cations of widespread systems, making the presented contribu-
tions potentially available to everyone.

162

Bibliography

[1] S. H. A. Fernandez-Leon A. Pouponnot, �Esa fpga task force: Lessons
learned�, inMilitary and Aerospace Programmable Logic Device (MAPLD),
Sep. 2002.

[2] Y. Abdeddaïm and D. Masson, �The scheduling problem of self-suspending
periodic real-time tasks�, in Proceedings of 20th International Conference
on Real-Time and Network Systems, Pont-à-Mousson, France, 2012.

[3] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Palopoli, �Qos
management through adaptive reservations�, Real-Time Systems, vol. 29,
no. 2, pp. 131�155, 2005, issn: 1573-1383.

[4] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, �Analysis of a reservation-
based feedback scheduler�, in 23rd IEEE Real-Time Systems Symposium,
2002. RTSS 2002., 2002, pp. 71�80.

[5] L. Abeni, A. Balsini, and T. Cucinotta, �Container-based real-time schedul-
ing in the linux kernel�, in ACM SIGBED Review - Special Issue on
Embedded Operating Systems Workshop (EWiLi '18), 2018.

[6] L. Abeni and G. Buttazzo, �Integrating multimedia applications in hard
real-time systems�, in Proceedings of the IEEE Real-Time Systems Sym-
posium, Madrid, Spain, 1998.

[7] L. Abeni, G. Lipari, A. Parri, and Y. Sun, �Multicore cpu reclaiming:
Parallel or sequential?�, in Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing, ser. SAC '16, Pisa, Italy: ACM, 2016,
pp. 1877�1884, isbn: 978-1-4503-3739-7.

[8] L. Abeni, L. Palopoli, C. Scordino, and G. Lipari, �Resource reserva-
tions for general purpose applications�, IEEE Transactions on Industrial
Informatics, vol. 5, no. 1, pp. 12�21, 2009.

[9] J. H. Ahn, S. Li, S. O, and N. P. Jouppi, �Mcsima+: A manycore sim-
ulator with application-level+ simulation and detailed microarchitec-
ture modeling�, in 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2013, pp. 74�85.

[10] A. Ali-Eldin, J. Tordsson, and E. Elmroth, �An adaptive hybrid elasticity
controller for cloud infrastructures�, in 2012 IEEE Network Operations
and Management Symposium, 2012, pp. 204�212.

[11] M. Alicherry and T. V. Lakshman, �Network aware resource allocation in
distributed clouds�, in 2012 Proceedings IEEE INFOCOM, 2012, pp. 963�
971.

163

BIBLIOGRAPHY

[12] S. Altmeyer and G. Gebhard, �WCET analysis for preemptive schedul-
ing�, in Proc. of the 8th Int. Workshop on Worst-Case Execution Time
(WCET) Analysis, Prague, Czech Republic, 2008, pp. 105�112.

[13] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, �Times:
A tool for schedulability analysis and code generation of real-time sys-
tems�, in Formal Modeling and Analysis of Timed Systems, K. G. Larsen
and P. Niebert, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 60�72, isbn: 978-3-540-40903-8.

[14] E. Asarin, P. Caspi, and O. Maler, �Timed regular expressions�, J. ACM,
vol. 49, no. 2, pp. 172�206, Mar. 2002, issn: 0004-5411.

[15] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez, �Power-aware schedul-
ing for periodic real-time tasks�, IEEE Transactions on Computers, vol. 53,
no. 4, pp. 584�600, 2004.

[16] A. Balsini, M. Di Natale, M. Celia, and V. Tsachouridis, �Generation of
simulink monitors for control applications from formal requirements�, in
2017 12th IEEE International Symposium on Industrial Embedded Sys-
tems (SIES), 2017, pp. 1�9.

[17] A. Balsini. (). Signal template library autogenerator tool, [Online]. Avail-
able: https://github.com/balsini/SignalTemplateLibraryAutogen/.

[18] A. Balsini, A. Melani, P. Buonocunto, and M. Di Natale, �Fmtv 2016:
Where is the actual challenge?�, in Proceedings of the 7th International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
Time Systems (WATERS'16), in conjuction with the 289th Euromicro
Conference on Real-Time Systems (ECRTS 2016), Jul. 2016.

[19] A. Balsini, L. Pannocchi, and T. Cucinotta, �Modeling and simulation of
power consumption for real-time embedded heterogeneous architectures�,
in ACM SIGBED Review - Special Issue on Embedded Operating Systems
Workshop (EWiLi '18), 2018.

[20] G. Banga, P. Druschel, and J. C. Mogul, �Resource containers: A new
facility for resource management in server systems�, in OSDI, vol. 99,
1999, pp. 45�58.

[21] C. Bartolini and G. Lipari. (2011). The rtsim scheduling simulator, [On-
line]. Available: http://rtsim.sssup.it/.

[22] S. Baruah, �Resource sharing in EDF-scheduled systems: A closer look�,
in Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS'06),
Rio de Janeiro, Brazil, December 5-8, 2006.

[23] R. Basmadjian and H. de Meer, �Evaluating and modeling power con-
sumption of multi-core processors�, in 2012 Third International Confer-
ence on Future Systems: Where Energy, Computing and Communication
Meet (e-Energy), 2012, pp. 1�10.

[24] M. Becker, �Consolidating automotive real-time applications on many-
core platforms�, PhD thesis, Mälardalen University, Embedded Systems,
2017, isbn: 978-91-7485-359-9.

164

https://github.com/balsini/SignalTemplateLibraryAutogen/
http://rtsim.sssup.it/

BIBLIOGRAPHY

[25] C. Beckho�, D. Koch, and J. Torresen, �Go ahead: A partial recon�g-
uration framework�, in Proc. of the 20th Annual IEEE Int. Symposium
on Field-Programmable Custom Computing Machines, Toronto, Canada,
2012.

[26] M. Behnam, �Synchronization protocols for a compositional real-time
scheduling framework�, PhD thesis, M
"alardalen University, 2010. [Online]. Available: http://www.es.mdh.
se/publications/1968-.

[27] M. Bertogna, N. Fisher, and S. Baruah, �Resource-sharing servers for
open environments�, IEEE Transactions on Industrial Informatics, vol. 5,
no. 3, pp. 202�219, 2009.

[28] E. Bini, M. Bertogna, and S. Baruah, �Virtual multiprocessor platforms:
Speci�cation and use�, in 2009 30th IEEE Real-Time Systems Sympo-
sium, 2009, pp. 437�446.

[29] E. Bini, G. Buttazzo, and M. Bertogna, �The multi supply function ab-
straction for multiprocessors�, in 2009 15th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications,
2009, pp. 294�302.

[30] E. Bini and G. C. Buttazzo, �Measuring the performance of schedulability
tests�, Real-Time Systems, vol. 30, no. 1-2, pp. 129�154, 2005, issn: 0922-
6443.

[31] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, et al., �A frame-
work for supporting real-time applications on dynamic recon�gurable fp-
gas�, in 2016 IEEE Real-Time Systems Symposium (RTSS), 2016, pp. 1�
12.

[32] A. Biondi and B. Brandenburg, �Lightweight real-time synchronization
under P-EDF on symmetric and asymmetric multiprocessors�, in ECRTS'16.

[33] A. Biondi, M. Di Natale, Y. Sun, and S. Botta, �Moving from single-
core to multicore: Initial �ndings on a fuel injection case study�, in SAE
Technical Paper, SAE Conference, Detroit, USA, 2016.

[34] A. Biondi, A. Balsini, and M. Marinoni, �Resource reservation for real-
time self-suspending tasks: Theory and practice�, in Proceedings of the
23rd International Conference on Real Time and Networks Systems, ser. RTNS
'15, Lille, France: ACM, 2015, pp. 97�106, isbn: 978-1-4503-3591-1.

[35] A. Biondi, M. Di Natale, and G. Buttazzo, �Response-time analysis
for real-time tasks in engine control applications�, in Proceedings of the
6th International Conference on Cyber-Physical Systems (ICCPS 2015),
Seattle, Washington, USA, 2015.

[36] A. Biondi, A. Melani, and M. Bertogna, �Hard constant bandwidth server:
Comprehensive formulation and critical scenarios�, in Proc. of the 9th
IEEE International Symposium on Industrial Embedded Systems (SIES
2014), Pisa, Italy, 18-20 June, 2014.

[37] A. Biondi, A. Melani, M. Bertogna, and G. Buttazzo, �Optimal design
for reservation servers under shared resources�, in Proc. of the 26th Eu-
romicro Conference on Real-Time Systems (ECRTS 14), Madrid, Spain,
9-11 July, 2014.

165

http://www.es.mdh.se/publications/1968-
http://www.es.mdh.se/publications/1968-

BIBLIOGRAPHY

[38] A. Biondi, P. Pazzaglia, A. Balsini, and M. Di Natale, �Logical execution
time implementation and memory optimization issues in autosar appli-
cations for multicores�, in Proceedings of the 8th International Workshop
on Analysis Tools and Methodologies for Embedded and Real-Time Sys-
tems (WATERS'17), in conjuction with the 29th Euromicro Conference
on Real-Time Systems (ECRTS 2017), 2017.

[39] M. Bohn, J. Schneider, and C. Eltges, �Simtros: A heterogenous abstrac-
tion level simulator for multicore synchronization in real-time systems�,
Journal of Systems Architecture, vol. 59, no. 6, pp. 297 �306, 2013, issn:
1383-7621.

[40] B. B. Brandenburg and J. H. Anderson, �The omlp family of optimal
multiprocessor real-time locking protocols�, Design Automation for Em-
bedded Systems, pp. 1�66, 2012.

[41] R. Bril, �Existing worst-case response time analysis of real-time tasks un-
der �xed-priority scheduling with deferred preemption is too optimistic�,
CS-Report 06, vol. 5, 2006.

[42] R. Bril and W. Verhaegh, �Towards best-case response times of real-
time tasks under �xed-priority scheduling with deferred preemption�, in
ECRTS, WiP session, 2005, pp. 17�20.

[43] D. Brooks, V. Tiwari, and M. Martonosi, �Wattch: A framework for
architectural-level power analysis and optimizations�, in Proceedings of
27th International Symposium on Computer Architecture (IEEE Cat.
No.RS00201), 2000, pp. 83�94.

[44] A. Burmyakov, E. Bini, and E. Tovar, �Compositional multiprocessor
scheduling: The gmpr interface�, Real-Time Systems, vol. 50, no. 3, pp. 342�
376, 2014, issn: 1573-1383.

[45] G. Buttazzo, M. Bertogna, and G. Yao, �Limited preemptive schedul-
ing for real-time systems. A survey.�, IEEE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 3�15, 2013.

[46] J. A. Butts and G. S. Sohi, �A static power model for architects�, in
Proceedings 33rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture. MICRO-33 2000, 2000, pp. 191�201.

[47] D. Calvaresi, P. Sernani, M. Marinoni, A. Claudi, A. Balsini, et al., �A
framework based on real-time os and multi-agents for intelligent au-
tonomous robot competitions�, in 2016 11th IEEE Symposium on In-
dustrial Embedded Systems (SIES), 2016, pp. 1�10.

[48] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, and M. Qamhieh,
�YARTISS: A Tool to Visualize, Test, Compare and Evaluate Real-Time
Scheduling Algorithms�, in WATERS 2012, Italy, Jul. 2012, pp. 21�26.

[49] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari, �Hierarchical Mul-
tiprocessor CPU Reservations for the Linux Kernel�, in Proceedings of the
5th International Workshop on Operating Systems Platforms for Embed-
ded Real-Time Applications (OSPERT 2009), Dublin, Ireland, 2009.

166

BIBLIOGRAPHY

[50] W. Chen, P. Kosmas, M. Leeser, and C. Rappaport, �An FPGA im-
plementation of the two-dimensional �nite-di�erence time-domain (fdtd)
algorithm�, in Proceedings of the ACM/SIGDA 12th international sym-
posium on Field programmable gate arrays, Monterey, California, USA,
2004.

[51] W. H. Cheng and B. M. Baas, �Dynamic voltage and frequency scaling
circuits with two supply voltages�, in 2008 IEEE International Sympo-
sium on Circuits and Systems, 2008, pp. 1236�1239.

[52] A. Colin, A. Kandhalu, and R. Rajkumar, �Energy-e�cient allocation
of real-time applications onto heterogeneous processors�, in 2014 IEEE
20th International Conference on Embedded and Real-Time Computing
Systems and Applications, 2014, pp. 1�10.

[53] P. Courbin and L. George, �Fortas: Framework for real-time analysis
and simulation�, in Proc. of WATERS 2011, Porto, Portugal, Jul. 2011,
pp. 21�26.

[54] T. Cucinotta, G. Anastasi, and L. Abeni, �Respecting temporal con-
straints in virtualised services�, in 2009 33rd Annual IEEE International
Computer Software and Applications Conference, vol. 2, 2009.

[55] T. Cucinotta, F. Checconi, Z. Zlatev, J. Papay, M. Boniface, et al., �Vir-
tualised e-Learning with real-time guarantees on the IRMOS platform�,
in 2010 IEEE International Conference on Service-Oriented Computing
and Applications (SOCA), 2010, pp. 1�8.

[56] T. Cucinotta, D. Lugones, D. Cherubini, and E. Jul, �Data Centre Opti-
misation Enhanced by Software De�ned Networking�, in 2014 IEEE 7th
International Conference on Cloud Computing, 2014, pp. 136�143.

[57] T. Cucinotta, L. Palopoli, and L. Marzario, �Stochastic feedback-based
control of qos in soft real-time systems�, in 2004 43rd IEEE Conference
on Decision and Control (CDC) (IEEE Cat. No.04CH37601), vol. 4,
2004, 3533�3538 Vol.4.

[58] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, and L. Abeni, �Adap-
tive reservations in a linux environment�, in Proceedings. RTAS 2004.
10th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, 2004., 2004, pp. 238�245.

[59] T. Cucinotta, L. Abeni, M. Marinoni, A. Balsini, and C. Vitucci, �Virtual
network functions as real-time containers in private clouds�, in 11th IEEE
International Conference on Cloud Computing (IEEE CLOUD 2018),
Jul. 2018.

[60] T. Cucinotta, L. Abeni, M. Marinoni, and C. Vitucci, �The Importance
of Being OS-aware - In Performance Aspects of Cloud Computing Re-
search�, in Proceedings of the 8th International Conference on Cloud
Computing and Services Science, 2018.

[61] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli, �Adaptive real-
time scheduling for legacy multimedia applications�, ACM Trans. Embed.
Comput. Syst. � Special Section on Embedded Systems for Real-Time
Multimedia, vol. 11, no. 4, 86:1�86:23, Jan. 2013, issn: 1539-9087.

167

BIBLIOGRAPHY

[62] T. Cucinotta, D. Faggioli, and G. Bagnoli, �Low-latency audio on linux
by means of real-time scheduling�, in Proceedings of the Linux Audio
Conference (LAC 2011), Maynooth, Ireland, May 2011.

[63] T. Cucinotta, M. Marinoni, A. Melani, A. Parri, and C. Vitucci, �Tempo-
ral Isolation Among LTE/5G Network Functions by Real-time Schedul-
ing�, in Proceedings of the 7th International Conference on Cloud Com-
puting and Services Science, Funchal, Madeira, Portugal, 2017, pp. 368�
375, isbn: 978-989-758-243-1.

[64] T. Cucinotta, L. Palopoli, L. Abeni, D. Faggioli, and G. Lipari, �On the
integration of application level and resource level qos control for real-
time applications�, IEEE Transactions on Industrial Informatics, vol. 6,
no. 4, Nov. 2010.

[65] K. Danne and M. Platzner, �Periodic real-time scheduling for FPGA
computers�, in Proceedings of the 3rd International Workshop on Intelli-
gent Solutions in Embedded System, Hamburg, Germany, 2005.

[66] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, �Controller area
network (CAN) schedulability analysis: Refuted, revisited and revised�,
Real-Time System, vol. 35, no. 3, pp. 239�272, 2007.

[67] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, �The energy/fre-
quency convexity rule: Modeling and experimental validation on mobile
devices�, in Parallel Processing and Applied Mathematics, R. Wyrzykowski,
J. Dongarra, K. Karczewski, and J. Wa±niewski, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 793�803, isbn: 978-3-642-55224-3.

[68] K. Deemter, V. E. Krahmer, and M. Theune, �Real versus template-
based natural language generation: A false opposition?�, in Computer
Linguist, vol. 31(1), 2005, pp. 15�24.

[69] U. M. C. Devi and J. H. Anderson, �Tardiness bounds under global edf
scheduling on a multiprocessor�, in 26th IEEE International Real-Time
Systems Symposium (RTSS'05), 2005, 12 pp.�341.

[70] A. Dhodapkar, C. How Lim, G. Cai, and W. Robert Daasch, �Tem2p2est:
A thermal enabled multi-model power/performance estimator�, in Power-
Aware Computer Systems, B. Falsa� and T. N. Vijaykumar, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 112�125, isbn: 978-3-
540-44572-2.

[71] M. Di Natale and E. Bini, �Optimizing the FPGA implementation of
hrt systems�, in Proceedings of the 13th IEEE Real Time and Embedded
Technology and Applications Symposium (RTAS), Bellevue, WA, USA,
2007.

[72] M. Di Natale and A. Sangiovanni-Vincentelli, �Moving from federated to
integrated architectures in automotive: The role of standards, methods
and tools�, in Proceedings of the IEEE, vol. 98 (4), 2010, pp. 603�620.

[73] Digilent, Zybo reference manual, 2016. [Online]. Available: https : / /
reference.digilentinc.com/_media/zybo/zybo_rm.pdf.

[74] F. Dittmann and S. Frank, �Hard real-time recon�guration port schedul-
ing�, in Proceedings of the Conference on Design, Automation and Test
in Europe (DATE), Nice, France, 2007.

168

https://reference.digilentinc.com/_media/zybo/zybo_rm.pdf
https://reference.digilentinc.com/_media/zybo/zybo_rm.pdf

BIBLIOGRAPHY

[75] A. Donzé, T. Ferrère, and O. Maler, �E�cient robust monitoring for stl�,
in Proceedings of the 25th International Conference on Computer Aided
Veri�cation, ser. CAV'13, Saint Petersburg, Russia: Springer-Verlag, 2013,
pp. 264�279, isbn: 978-3-642-39798-1.

[76] P. S. Duggirala, C. Fan, S. Mitra, and M. Viswanathan, �Meeting a pow-
ertrain veri�cation challenge�, in Computer Aided Veri�cation, D. Kroen-
ing and C. S. P s reanu, Eds., Cham: Springer International Publishing,
2015, pp. 536�543, isbn: 978-3-319-21690-4.

[77] F. Duhem, F. Muller, and P. Lorenzini, �Farm: Fast recon�guration man-
ager for reducing recon�guration time overhead on FPGA�, in Proceed-
ings of the 7th International Conference on Recon�gurable Computing:
Architectures, Tools and Applications, Belfast, UK, 2011.

[78] A. Easwaran, I. Shin, and I. Lee, �Optimal virtual cluster-based multi-
processor scheduling�, Real-Time Systems, vol. 43, no. 1, pp. 25�59, 2009,
issn: 1573-1383.

[79] C. Eisner and D. Fisman, A Practical Introduction to PSL (Series on In-
tegrated Circuits and Systems). Berlin, Heidelberg: Springer-Verlag, 2006,
isbn: 0387353135.

[80] E. C. E. Emerson, �Design and synthesis of synchronisation skeletons
using branching time temporal logic�, in Logic of Programs, Proceedings
of Workshop, Lecture Notes in Computer Science, vol. 131, Springer,
Berlin, 1981, pp. 52�71.

[81] D. Faggioli, G. Lipari, and T. Cucinotta, �The multiprocessor bandwidth
inheritance protocol�, in 2010 22nd Euromicro Conference on Real-Time
Systems, 2010, pp. 90�99.

[82] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, �A compositional
framework for end-to-end path delay calculation of automotive systems
under di�erent path semantics�, in CRTS, 2008.

[83] A. Ferrari, M. Di Natale, G. Gentile, G. Reggiani, and P. Gai, �Time
and memory tradeo�s in the implementation of autosar components�, in
Design, Automation and Test in Europe Conference. DATE'09, 2009.

[84] J. Flores, �Semantic �ltering of textual requirements descriptions�, in
Natural Language Processing and Information Systems, 2004, pp. 474�
483.

[85] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, et al., �OpenANFV: Acceler-
ating Network Function Virtualization with a Consolidated Framework in
Openstack�, in Proceedings of the 2014 ACM Conference on SIGCOMM,
ser. SIGCOMM '14, Chicago, Illinois, USA: ACM, 2014, pp. 353�354,
isbn: 978-1-4503-2836-4.

[86] S. Ghosh, R. Raj Rajkumar, J. Hansen, and J. Lehoczky, �Integrated
qos-aware resource management and scheduling with multi-resource con-
straints�, Real-Time Systems, vol. 33, no. 1, pp. 7�46, 2006, issn: 1573-
1383.

[87] S. Gnesi, G. Lami, and G. Trentanni, �An automatic tool for the analysis
of natural language requirements�, in CSSE Journal, vol. 20(1), 2005,
pp. 53�62.

169

BIBLIOGRAPHY

[88] M. Goosman, N. Dorairaj, and E. Shi�et, How to take advantage of par-
tial recon�guration in FPGA designs, 2006. [Online]. Available: www .
eetimes.com/document.asp?doc_id=1274489.

[89] I. Gray, Y. Chan, J. Garside, N. Audsley, and A. Wellings, �Transparent
hardware synthesis of java for predictable large-scale distributed sys-
tems�, in Proceedings of the Second International Workshop on FPGAs
for Software Programmers (FSP), London, UK, 2015.

[90] GSL gnu scienti�c library, https://www.gnu.org/software/gsl/,
Accessed: Version 1.16.

[91] S. Habinc, �Technical report: Suitability of reprogrammable FPGAs in
space applications�, Gaisler Research, Tech. Rep., 2002.

[92] M. Happe, A. Traber, and A. Keller, �Preemptive hardware multitasking
in reconos�, in Proceedings of the 11th International Symposium on Ap-
plied Recon�gurable Computing (ARC), Bochum, Germany, 2015, pp. 79�
90.

[93] M. G. Harbour, J. J. Gutiérrez, J. M. Drake, P. L. Martínez, and J. C.
Palencia, �Modeling distributed real-time systems with mast 2�, Journal
of Systems Architecture, vol. 59, no. 6, pp. 331 �340, 2013, issn: 1383-
7621.

[94] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree, �From
control models to real-time code using giotto�, in Control Systems Mag-
azine, IEEE, 2003.

[95] T. Henzinger, B. Horowitz, and C. Kirsch, �Giotto: A time-triggered
language for embedded programming.�, in Proc. International Workshop
on Embedded Software (EMSOFT), volume 2211 of LNCS, Springer, Ed.,
2001, pp. 166�184.

[96] C. Imes, D. H. K. Kim, M. Maggio, and H. Ho�mann, �Poet: A portable
approach to minimizing energy under soft real-time constraints�, in 21st
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, 2015, pp. 75�86.

[97] C. Imes and H. Ho�mann, �Minimizing energy under performance con-
straints on embedded platforms: Resource allocation heuristics for homo-
geneous and single-isa heterogeneous multi-cores�, SIGBED Rev., vol. 11,
no. 4, pp. 49�54, Jan. 2015, issn: 1551-3688.

[98] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, et al., �Micro-
kernel architecture and hardware abstraction layer of a reliable recon-
�gurable real-time operating system (R3TOS)�, ACM Transactions on
Recon�gurable Technology and Systems, vol. 8, no. 1, 5:1�5:35, 2015.

[99] I. Kalkov, D. Franke, J. F. Schommer, and S. Kowalewski, �A real-time
extension to the android platform�, in Proceedings of the 10th Interna-
tional Workshop on Java Technologies for Real-time and Embedded Sys-
tems, ser. JTRES '12, Copenhagen, Denmark: ACM, 2012, pp. 105�114,
isbn: 978-1-4503-1688-0.

170

www.eetimes.com/document.asp?doc_id=1274489
www.eetimes.com/document.asp?doc_id=1274489
https://www.gnu.org/software/gsl/

BIBLIOGRAPHY

[100] I. Kalkov, A. Gurghian, and S. Kowalewski, �Priority inheritance dur-
ing remote procedure calls in real-time android using extended binder
framework�, in Proceedings of the 13th International Workshop on Java
Technologies for Real-time and Embedded Systems, ser. JTRES '15, Paris,
France: ACM, 2015, 5:1�5:10, isbn: 978-1-4503-3644-4.

[101] A. Kantee, �The rise and fall of the operating system�, USENIX login,
vol. 40, no. 5, 2015.

[102] J. Kapinski, X. Jin, J. Deshmukh, A. Donze, T. Yamaguchi, et al., �St-
lib: A library for specifying and classifying model behaviors�, in SAE
Technical Paper, SAE International, Apr. 2016.

[103] N. Khalilzad, F. Kong, X. Liu, M. Behnam, and T. Nolte, �A feedback
scheduling framework for component-based soft real-time systems�, in
21th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, 2015.

[104] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, et al., �Leakage
current: Moore's law meets static power�, Computer, vol. 36, no. 12,
pp. 68�75, 2003, issn: 0018-9162.

[105] D. Koch, Partial Recon�guration on FPGAs: Architectures, Tools and
Applications. Springer Publishing Company, Incorporated, 2012, isbn:
1461412242, 9781461412243.

[106] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou, �Admission
Control for Elastic Cloud Services�, in 2012 IEEE Fifth International
Conference on Cloud Computing, 2012, pp. 41�48.

[107] K. Konstanteli, T. Cucinotta, K. Psychas, and T. A. Varvarigou, �Elastic
admission control for federated cloud services�, IEEE Transactions on
Cloud Computing, vol. 2, no. 3, pp. 348�361, 2014, issn: 2168-7161.

[108] H. Kopetz and S. Poledna, �In-vehicle real-time fog computing�, in 2016
46th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshop (DSN-W), 2016, pp. 162�167.

[109] R. Koymans, �Specifying real-time properties with metric temporal logic�,
in Real-Time Systems, vol. 2(4), 1990, 255�299.

[110] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, et al., �Realizing composi-
tional scheduling through virtualization�, in 2012 IEEE 18th Real Time
and Embedded Technology and Applications Symposium, 2012, pp. 13�22.

[111] J. Lelli, D. Faggioli, T. Cucinotta, and S. Superiore, �An e�cient and
scalable implementation of global edf in linux�, in Proc. of the 7th Work-
shop on Operating Systems Platforms for Embedded Real-Time applica-
tions, Porto, Portugal, 2011.

[112] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, �Deadline scheduling
in the Linux kernel�, Software: Practice and Experience, vol. 46, no. 6,
pp. 821�839, 2016, spe.2335, issn: 1097-024X.

[113] J. Levin,Android Internals - Volume I: A Confectioner's Cookbook. Jonathan
Levin, 2014, isbn: 9780991055524. [Online]. Available: https://books.
google.it/books?id=onhDnwEACAAJ.

[114] J. Levine, Flex & Bison, 1st. O'Reilly Media, Inc., 2009, isbn: 0596155972,
9780596155971.

171

https://books.google.it/books?id=onhDnwEACAAJ
https://books.google.it/books?id=onhDnwEACAAJ

BIBLIOGRAPHY

[115] Y. Li, L. T. X. Phan, and B. T. Loo, �Network functions virtualization
with soft real-time guarantees�, in IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications,
2016, pp. 1�9.

[116] W. Liao, L. He, and K. M. Lepak, �Temperature and supply voltage
aware performance and power modeling at microarchitecture level�, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 24, no. 7, pp. 1042�1053, 2005, issn: 0278-0070.

[117] G. Lipari and S. Baruah, �Greedy reclamation of unused bandwidth in
constant-bandwidth servers�, in Proceedings 12th Euromicro Conference
on Real-Time Systems. Euromicro RTS 2000, 2000, pp. 193�200.

[118] G. Lipari and E. Bini, �A framework for hierarchical scheduling on mul-
tiprocessors: From application requirements to run-time allocation�, in
Proc. of 31st IEEE Real-Time Systems Symposium, Dec. 2010, pp. 249�
258.

[119] ��, �A methodology for designing hierarchical scheduling systems�,
Journal of Embedded Computing, vol. 1, no. 2, pp. 257�269, 2005.

[120] C. Liu and J. H. Anderson, �An O(m) analysis technique for supporting
real-time self-suspending task systems�, in In Proc. of the 33rd Real-Time
Systems Symposium 2012.

[121] ��, �Suspension-aware analysis for hard real-time multiprocessor schedul-
ing�, in In Proc. of the 25th EuroMicro Conference on Real-Time Systems
(ECRTS 2013).

[122] ��, �Task scheduling with self-suspensions in soft real-time multipro-
cessor systems�, in In Proc. of the 30th Real-Time Systems Symposium
(RTSS 2009).

[123] J. Liu, Ed., Real-time systems. Prentice Hall, 2000.

[124] S. Liu, R. N. Pittman, and A. Forin, �Minimizing partial recon�guration
overhead with fully streaming dma engines and intelligent ICAP con-
troller�, in Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey, California,
USA, 2010.

[125] R. T. E. Ltd., Freertos real-time operating system. [Online]. Available:
http://www.freertos.org/.

[126] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, �Feedback control real-time
scheduling: Framework, modeling, and algorithms*�, Real-Time Systems,
vol. 23, no. 1, pp. 85�126, 2002, issn: 1573-1383.

[127] E. Lübbers and M. Platzner, �Cooperative multithreading in dynamically
recon�gurable systems.�, in Proceedings of the International Conference
on Field Programmable Logic and Applications (FPL), Prague, Czech
Republic, 2009.

[128] ��, �Reconos: Multithreaded programming for recon�gurable comput-
ers�, ACM Transactions on Embedded Computing Systems, vol. 9, no. 1,
8:1�8:33, 2009.

172

http://www.freertos.org/

BIBLIOGRAPHY

[129] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, et al.,
�Unikernels: Library operating systems for the cloud�, SIGARCH Com-
put. Archit. News, vol. 41, no. 1, pp. 461�472, Mar. 2013, issn: 0163-5964.

[130] O. Maler and D. Nickovic., �Monitoring temporal properties of con-
tinuous signals�, in Proc. of Formal Modeling and Analysis of Timed
Systems/ Formal Techniques in Real-Time and Fault Tolerant Systems,
2004, pp. 152�166.

[131] O. Maler, D. Nickovic, and A. Pnueli, �Checking temporal properties
of discrete, timed and continuous behaviors�, in Pillars of Computer
Science: Lecture Notes in Computer Science, vol. 4800, Springer, 2003,
pp. 475�505.

[132] R. Mall, Ed., Real-time systems: theory and practice. Pearson Education,
2008.

[133] L. Mangeruca and O. A. F. Ferrante, �Formalization and completeness of
evolving requirements using contracts�, in 8th IEEE International Sym-
posium on Industrial Embedded Systems (SIES 2013), 2013.

[134] M. Marinoni and G. Buttazzo, �Elastic dvs management in processors
with discrete voltage/frequency modes�, IEEE Transactions on Industrial
Informatics, vol. 3, no. 1, pp. 51�62, 2007.

[135] E. Martins, L. Almeida, and J. A. Fonseca, �An FPGA-based coproces-
sor for real-time �eldbus tra�c scheduling: Architecture and implemen-
tation�, Journal of Systems Architecture, vol. 51, no. 1, pp. 29�44, 2005.

[136] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, �IRIS: A new re-
claiming algorithm for server-based real-time systems�, in Proc. of the
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, Toronto, Canada, 2004.

[137] T. Mathworks., �Simulink user manual�, in Product web page, 2017.

[138] MetaSim2.0 event-based simulator, https://github.com/balsini/
metasim2.0, Accessed: May 17, 2016.

[139] J. Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, et al., �In-
frastructure for design and management of relocatable tasks in a hetero-
geneous recon�gurable system-on-chip�, in Proceedings of DATE, Mu-
nich, Germany, 2003.

[140] C. Möbius, W. Dargie, and A. Schill, �Power consumption estimation
models for processors, virtual machines, and servers�, IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 6, pp. 1600�1614, 2014,
issn: 1045-9219.

[141] G. Nelissen, J. Fonseca, G. Raravi, and V. Nelis, �Timing analysis of �xed
priority self-suspending sporadic tasks�, in Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS), Lund, Sweden, 2015.

[142] NFV Industry Specif. Group, Network Functions Virtualisation, Intro-
ductory White Paper, 2012.

[143] S. L. Obispo, �Parsing of natural language requirements�, in Thesis pre-
sented to the Faculty of California Polytechnic State University, 2013.

[144] Os and libraries document collection, UG643, v2015.3, Xilinx, 2015.

173

https://github.com/balsini/metasim2.0
https://github.com/balsini/metasim2.0

BIBLIOGRAPHY

[145] B. Osterloh, H. Michalik, S. A. Habinc, and B. Fiethe, �Dynamic partial
recon�guration in space applications�, in 2009 NASA/ESA Conference
on Adaptive Hardware and Systems, 2009, pp. 336�343.

[146] M. Pagani, A. Balsini, A. Biondi, M. Marinoni, and G. Buttazzo, �A
linux-based support for developing real-time applications on heteroge-
neous platforms with dynamic fpga recon�guration�, in 2017 30th IEEE
International System-on-Chip Conference (SOCC), 2017, pp. 96�101.

[147] M. Pagani, M. Marinoni, A. Biondi, A. Balsini, and G. Buttazzo, �To-
wards real-time operating systems for heterogeneous recon�gurable plat-
forms�, in Proc. of the 12th Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT 2016), Toulouse, France,
July 5, 2016.

[148] S. Palacharla, N. P. Jouppi, and J. E. Smith, �Complexity-e�ective su-
perscalar processors�, in Conference Proceedings. The 24th Annual Inter-
national Symposium on Computer Architecture, 1997, pp. 206�218.

[149] L. Palopoli and T. Cucinotta, �Qos control for pipelines of tasks using
multiple resources�, IEEE Transactions on Computers, vol. 59, pp. 416�
430, Jul. 2009, issn: 0018-9340.

[150] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, �AQuoSA� adap-
tive quality of service architecture�, Software � Practice and Experience,
vol. 39, no. 1, pp. 1�31, 2009, issn: 0038-0644.

[151] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni, G. Bolognini, et al., �An
object-oriented tool for simulating distributed real-time control systems�,
Softw. Pract. Exper., vol. 32, no. 9, pp. 907�932, Jul. 2002, issn: 0038-
0644.

[152] P. R. Panda, B. V. N. Silpa, A. Shrivastava, and K. Gummidipudi,
Power-e�cient System Design, 1st. Springer Publishing Company, In-
corporated, 2010, isbn: 1441963871, 9781441963871.

[153] M. Park and H. Park, �An e�cient test method for rate monotonic
schedulability�, IEEE Transactions on Computers, vol. 63, no. 5, 2014.

[154] Partial recon�guration user guide, UG702, v14.1, Xilinx, 2012.

[155] R. Pellizzoni and M. Caccamo, �Real-time management of hardware and
software tasks for FPGA-based embedded systems�, IEEE Transactions
on Computers, vol. 56, no. 12, pp. 1666�1680, 2007.

[156] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A. Gazala, et al.,
�Energy-e�cient thread assignment optimization for heterogeneous mul-
ticore systems�, ACM Trans. Embed. Comput. Syst., vol. 14, no. 1, 15:1�
15:26, Jan. 2015, issn: 1539-9087.

[157] L. T. X. Phan, J. Lee, A. Easwaran, V. Ramaswamy, S. Chen, et al.,
�CARTS: A tool for compositional analysis of real-time systems�, SIGBED
Review, vol. 8, no. 1, pp. 62�63, 2011, issn: 1551-3688.

[158] A. Pnueli, �The temporal logic of programs�, in Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (FOCS), 1977,
pp. 46�57.

174

BIBLIOGRAPHY

[159] G. J. Popek and R. P. Goldberg, �Formal requirements for virtualizable
third generation architectures�, Communications of the ACM, vol. 17,
no. 7, pp. 412�421, 1974.

[160] Prover., 2017. [Online]. Available: https://www.prover.com.

[161] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, �A resource al-
location model for qos management�, in Proceedings Real-Time Systems
Symposium, 1997, pp. 298�307.

[162] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, �Resource kernels:
A resource-centric approach to real-time and multimedia systems�, in
SPIE/ACM Conference on Multimedia Computing and Networking, San
Jose, CA, USA, 1998.

[163] P. Richard, �On the complexity of scheduling real-time tasks with self-
suspension on one processor�, in Proc. of the 15th IEEE Int. Euromicro
Conferecnce on Real-Time Systems (ECRTS 2003).

[164] F. Ridouard, P. Richard, and F. Cottet, �Negative results for scheduling
independent hard real-time tasks with self-suspensions�, in Proc. of the
25th IEEE Real-Time Systems Symposium (RTSS 2004).

[165] ��, �Some results on scheduling tasks with self-suspensions�, in Journal
of Embedded Computing, 2006.

[166] N. Roy, A. Dubey, and A. Gokhale, �E�cient autoscaling in the cloud
using predictive models for workload forecasting�, in 2011 IEEE 4th In-
ternational Conference on Cloud Computing, 2011, pp. 500�507.

[167] RTSIM real-time system simulator extended for waters challenge 2016,
https://github.com/balsini/waters/, Accessed: Branch 2016.

[168] M. Sadri, C. Weis, N. Wehn, and L. Benini, �Energy and performance ex-
ploration of accelerator coherency port using xilinx zynq�, in Proceedings
of the 10th FPGAworld Conference, Stockholm, Sweden, 2013.

[169] S. Saha, A. Sarkar, and A. Chakrabarti, �Scheduling dynamic hard real-
time task sets on fully and partially recon�gurable platforms�, IEEE
Embedded Systems Letters, vol. 7, no. 1, pp. 23�26, 2015.

[170] C. Scordino and G. Lipari, �A resource reservation algorithm for power-
aware scheduling of periodic and aperiodic real-time tasks�, IEEE Trans-
actions on Computers, vol. 55, no. 12, pp. 1509�1522, 2006, issn: 0018-
9340.

[171] C. Scordino, L. Abeni, and J. Lelli, �Energy-aware real-time scheduling
in the linux kernel�, in Proceedings of the ACM Symposium on Applied
Computing (SAC), Pau, France: ACM, 2018.

[172] S. D. Scott, A. Samal, and S. Seth, �Hga: A hardware-based genetic
algorithm�, in Proceedings of the ACM Third International Symposium
on Field-programmable Gate Arrays, Monterey, California, USA, 1995.

[173] D. Shin, W. Kim, J. Jeon, J. Kim, and S. L. Min, �Simdvs: An integrated
simulation environment for performance evaluation of dynamic voltage
scaling algorithms�, in Power-Aware Computer Systems, B. Falsa� and
T. N. Vijaykumar, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 141�156, isbn: 978-3-540-36612-6.

175

https://www.prover.com
https://github.com/balsini/waters/

BIBLIOGRAPHY

[174] I. Shin, M. Behnam, T. Nolte, and M. Nolin, �Synthesis of optimal
interfaces for hierarchical scheduling with resources�, in Proc. of the
29th IEEE International Real-Time Systems Symposium (RTSS 2008),
Barcelona, Spain, 2008, pp. 209�220.

[175] I. Shin and I. Lee, �Compositional real-time scheduling framework�, in
25th IEEE International Real-Time Systems Symposium, 2004, pp. 57�
67.

[176] ��, �Periodic resource model for compositional real-time guarantees�,
in Proceedings of the 24th IEEE Real-Time Systems Symposium, Cancun,
Mexico, December 3-5, 2003, pp. 2�13.

[177] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
et al., �Temperature-aware microarchitecture: Modeling and implemen-
tation�, ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp. 94�125, Mar.
2004, issn: 1544-3566.

[178] H. K.-H. So and R. Brodersen, �A uni�ed hardware/software runtime
environment for fpga-based recon�gurable computers using borph�, ACM
Transactions on Embedded Computing Systems, vol. 7, no. 2, 14:1�14:28,
2008.

[179] Standard for Information Technology � Portable Operating System In-
terface (POSIX) � System Interfaces. IEEE 1003.1, 2004 Edition. The
Open Group, 2004.

[180] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, �The case for feedback
control real-time scheduling�, in Real-Time Systems, 1999. Proceedings
of the 11th Euromicro Conference on, 1999, pp. 11�20.

[181] R. Stefan and S. D. Cotofana, �Bitstream compression techniques for
virtex 4 FPGAs�, in International Conference on Field Programmable
Logic and Applications (FPL 2008), Heidelberg, Germany, 2008.

[182] J. K. Strosnider, J. P. Lehoczky, and L. Sha, �The deferrable server
algorithm for enhancing aperiodic responsiveness in hard-real-time envi-
ronments�, IEEE Transactions on Computers, vol. 4, no. 1, 1995.

[183] V. Struhar, A. Papadopoulos, and M. Behnam, �Fog computing for adap-
tive human-robot collaboration�, in International Conference on Embed-
ded Software 2018, 2018. [Online]. Available: http://www.es.mdh.se/
publications/5235-.

[184] L. A. Torrey, J. Coleman, and B. P. Miller, �A comparison of interactivity
in the linux 2.6 scheduler and an mlfq scheduler�, Softw. Pract. Exper.,
vol. 37, no. 4, pp. 347�364, Apr. 2007, issn: 0038-0644.

[185] D. Ulus, T. Ferrère, E. Asarin, and O. Maler, �Legay, a., bozga, m.
(eds.) timed pattern matching�, in FORMATS 2014. LNCS, vol. 8711,
vol. 8711, Springer, Heidelberg, 2014, pp. 222�236.

[186] ��, �Online timed pattern matching using derivatives�, in International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems TACAS 2016: Tools and Algorithms for the Construction and
Analysis of Systems, 2016, pp. 736�751.

176

http://www.es.mdh.se/publications/5235-
http://www.es.mdh.se/publications/5235-

BIBLIOGRAPHY

[187] P. Valente, �Providing near-optimal fair-queueing guarantees at round-
robin amortized cost�, in Proceedings of the 22nd International Confer-
ence on Computer Communication and Networks, ICCCN 2013, Nassau,
Bahamas, 2013, pp. 1�7.

[188] P. Valente and M. Andreolini, �Improving application responsiveness
with the bfq disk i/o scheduler�, in Proceedings of the 5th Annual In-
ternational Systems and Storage Conference, Haifa, Israel, 2012, pp. 1�
12.

[189] P. Valente and G. Lipari, �An upper bound to the lateness of soft real-
time tasks scheduled by edf on multiprocessors�, in Real-Time Systems
Symposium, 2005. RTSS 2005. 26th IEEE International, IEEE, 2005,
10�pp.

[190] Vivado design suite user guide: Partial recon�guration, UG909, v2015.4,
Xilinx, 2015.

[191] G. Wang, M. Di Natale, and A. Sangiovanni-Vincentelli, �Improving the
size of communication bu�ers in synchronous models with time con-
straints�, in IEEE Transactions on Industrial Informatics, vol. 5 (3),
2009, pp. 229�240.

[192] A. Wieder and B. B. Brandenburg, �On spin locks in autosar: Blocking
analysis of �fo, unordered, and priority-ordered spin locks�, in 2013 IEEE
34th Real-Time Systems Symposium, 2013, pp. 45�56.

[193] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, et al., �RT-Open Stack: CPU
Resource Management for Real-Time Cloud Computing�, in 2015 IEEE
8th International Conference on Cloud Computing, 2015, pp. 179�186.

[194] S. Xi, J. Wilson, C. Lu, and C. Gill, �RT-Xen: Towards real-time hyper-
visor scheduling in Xen�, in 2011 Proceedings of the Ninth ACM Inter-
national Conference on Embedded Software (EMSOFT), 2011.

[195] Xilinx, Axi interconnect, logicore ip product guide, PG059, 2016.

[196] Y. Yan, S. Cosgrove, V. Anand, A. Kulkarni, S. H. Konduri, et al., �Rt-
droid: A design for real-time android�, IEEE Transactions on Mobile
Computing, vol. 15, no. 10, pp. 2564�2584, 2016, issn: 1536-1233.

[197] Y. Yan, K. Dantu, S. Y. Ko, J. Vitek, and L. Ziarek, �Making android
run on time�, in 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2017, pp. 25�36.

[198] Y. Yan, S. Cosgrove, V. Anand, A. Kulkarni, S. H. Konduri, et al.,
�Real-time android with rtdroid�, in Proceedings of the 12th Annual In-
ternational Conference on Mobile Systems, Applications, and Services,
ser. MobiSys '14, Bretton Woods, New Hampshire, USA: ACM, 2014,
pp. 273�286, isbn: 978-1-4503-2793-0.

[199] K. Yang and J. H. Anderson, �On the dominance of minimum-parallelism
multiprocessor supply�, in 2016 IEEE Real-Time Systems Symposium
(RTSS), 2016, pp. 215�226.

[200] X. Yi, J. Duan, and C. Wu, �GPUNFV: A GPU-Accelerated NFV Sys-
tem�, in Proceedings of the First Asia-Paci�c Workshop on Networking,
ser. APNet'17, Hong Kong, China: ACM, 2017, pp. 85�91, isbn: 978-1-
4503-5244-4.

177

BIBLIOGRAPHY

[201] W. Yuan and K. Nahrstedt, �Energy-e�cient soft real-time cpu schedul-
ing for mobile multimedia systems�, in Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, ser. SOSP '03, Bolton
Landing, NY, USA: ACM, 2003, pp. 149�163, isbn: 1-58113-757-5.

[202] H. Zeng and M. Di Natale, �Mechanisms for guaranteeing data consis-
tency and �ow preservation in autosar software on multi-core platforms�,
in 6th IEEE International Symposium on Industrial Embedded Systems
(SIES), Vasteras, Sweden, 2011.

[203] X. Zhong and C. Xu, �Energy-aware modeling and scheduling for dy-
namic voltage scaling with statistical real-time guarantee�, IEEE Trans-
actions on Computers, vol. 56, no. 3, pp. 358�372, 2007, issn: 0018-9340.

[204] Zynq-7000 ap soc technical reference manual, UG585, v1.10, Xilinx, 2015.

178

	Introduction and Contributions
	List of Publications
	Scheduling Latency in Control Systems
	Scheduling Latency for AUTOSAR Components: Definition, Analysis and Simulation
	System Model and Notation
	Worst-case Latency Analysis
	Model Simulator
	Conclusions and Open Challenges

	Data Placement Optimization to Minimize End-to-end Latency
	System Model and Notation
	Timing Analysis with Memory Contention
	Implementing and Analyzing the Logical Execution Model in AUTOSAR
	The Challenge Model
	End-to-end Latency
	Optimizing the Placement of Memory Labels
	Experimental Evaluation
	Discussion of Results, Conclusions and Open Challenges

	Formal Language Verification
	Introduction
	From Requirements to Monitors
	The STL Language
	The Monitor Generation Tool
	Parsing and Generation Tool
	The Simulink Libraries for Monitoring STL and Control Constraints
	Usage Example
	Conclusions and Open Challenges

	Extensions to Reservation-based Scheduling
	Container-Based Real-time Scheduling in the Linux Kernel
	Definitions and Background
	Real-time for Linux Containers
	Experimental Results
	Conclusions and Open Challenges

	Virtual Network Functions as Real-time Containers in Private Clouds
	Related Work
	Proposed Approach
	Experimental Results
	Conclusions and Open Challenges

	Self-suspending Tasks
	Background and notation
	HCBS for Suspension-Oblivious Analysis
	Linux Implementation
	Conclusions and Open Challenges

	Heterogeneous Architectures
	Energy-efficient Low-latency Audio on Android
	Related Work
	Background
	Adaptive Reservations on Android
	Experimental Results
	Conclusions and Open Challenges

	Power Consumption and Computing Time Simulator for Heterogeneous Multicore Architectures
	Related Work
	Proposed Approach
	Implementation Details
	Experimental Results
	Conclusions and Open Challenges

	Real-time Dynamic Reconfiguration of FPGA Accelerators: the FRED Framework
	Related Work
	Reconfiguration Times and Speedup Evaluation
	Analysis
	Operating System Support to FRED
	Conclusions and Open Challenges

	Conclusions

