
Federico Civerchia
PhD Thesis of:

How will edge computing shape
 the 5G deployment?

The hardware acceleration
use case

D265ModTPhD/EN01

International PhD Program

in Emerging Digital

Technologies

Curriculum:

Embedded Systems

Academic Year
2018/2019

 How will edge computing shape
 the 5G deployment?

The hardware acceleration
 use case

Author
Federico Civerchia

Supervisor
Prof. Piero Castoldi

Correlator
Prof. Maxime Pelcat

Abstract

The recent improvements in the information technology will lead to the new era

of the communication (5G) where everything will be connected, where smart and

connected objects will be a constant presence in our daily life. Thus, stricter

requirements in terms of communication bandwidth and latency have to be sat-

isfied to meet the demands of a huge number of connected devices. Instead of

the centralized approach, moving the data processing to the edge can improve

the performance since it reduces the infrastructure-user round trip time and it

saves Cloud bandwidth. However, this decentralization comes at a price though.

Moving data computation and communication processing to the network edges

improves system scalability and reliability but it requires more local hardware

and only a subset of data is analyzed. This means that an edge system does not

have global visibility of the information.

This thesis aims at presenting a novel approach to accelerate the 5G infrastruc-

ture at the edge. The idea is to exploit hardware acceleration to improve the

processing of the protocol stack functionalities and network functions close to

the final user. In this way, the bandwidth for the communication between 5G

radio infrastructure and the central Cloud can be saved. Moreover, real time

application can benefit from the improved computation capabilities by means of

hardware offloading.

Considering the latest developments in the embedded systems in terms of com-

putational power and lower hardware cost, we envision that edge computing can

be exploited to improve 5G infrastructure. Thus, the edge computing is ready to

be deployed in 5G architecture, improving the user experience.

To my grandfather and my family

A mio nonno e alla mia famiglia

Federico

Contents

Abstract

List of Figures

List of Tables

Chapter 1. Introduction 1

1. From 1G to 5G 1

2. 5G vision and challenges 5

3. Contributions and outline 6

Chapter 2. Overall 5G architecture description 8

1. 5G RAN Infrastructure 10

2. 5G Datacenter access network 16

Chapter 3. Reconfigurable computing for 5G RAN acceleration 22

1. Acceleration with Reconfigurable Hardware through OpenCL 22

1.1. OpenCL generalities 22

1.2. Specific OpenCL constructs and kernels for reconfigurable

hardware 25

2. Insights on OpenCL kernel optimization for FPGA 28

2.1. OpenCL NDRange kernel optimization 29

2.2. OpenCL SWI kernel optimization 30

3. Related works on OpenCL hardware acceleration 33

4. Implementation 34

5. Performance evaluation and results 44

5.1. Resource usage evaluation 45

5.2. Overall execution time performance evaluation 46

5.3. Computational load evaluation 52

6. Design productivity analysis with OpenCL acceleration 55

7. Conclusion 58

Chapter 4. Network functions acceleration at the edge 60

1. Edge node enabling traffic engineering and cyber security 60

1.1. The P4 language 63

1.2. P4 in multi-layer edge nodes 68

1.3. Stateful traffic engineering with P4 70

1.4. Cyber security mitigation with P4 75

1.5. Experimental Evaluation 78

2. Hardware acceleration for Processing Function Virtualization 86

2.1. Processing functions chain as FPGA pipeline 87

2.2. Implementation 88

2.3. Results 90

3. Conclusion 93

Chapter 5. Conclusions 95

List of Acronyms 98

Publication list 101

Bibliography 103

List of Figures

1.1 Evolution of the wireless network: from 1G to 5G 1

2.1 5G transport network architecture 10

2.2 5G architecture 11

2.3 CPRI encapsulation 13

2.4 eCPRI message format 13

2.5 5G functional split 14

2.6 RoE node hierarchy 15

2.7 RoE message format 15

2.8 Downstream user traffic generated with exponential Inter-Departure

Time between packets 16

2.9 Proposed fixed mobile convergence architecture 19

2.10 Silicon selection based on transport and flexibility requirements 21

3.1 OpenCL platform model 23

3.2 OpenCL memory model 25

3.3 Intel Field Programmable Gate Array (FPGA) SDK for OpenCL

workflow 26

3.4 2D example of mapping global IDs, local IDs, and work-group indices

in NDRange 28

3.5 Data parallelization of NDRange kernels 29

3.6 NDRange kernel to add two vectors 30

3.7 SWI kernel pipeline 31

3.8 SWI kernel to add two vectors 33

3.9 DU processing with Option 7-1 functional split 34

3.10 FFT decomposition 37

3.11 FFT butterfly 38

3.12 Architecture descriptions for a) Single Instruction Multiple Data

(SIMD) and b) Hardware Description Language (HDL) implemented

5G DU processing 39

3.13 System setup 41

3.14 Performance ratio trend obtained by dividing performance time

measured by OFDM complexity 49

3.15 OpenCL, SIMD, HDL measured and estimated processing time

performance 50

3.16 CPU core computation load for OFDM execution via SIMD 53

3.17 CPU core computation load for OFDM execution via OpenCL offload 54

3.18 CPU core computation load during the switch from software to the

hardware 54

3.19 Design efficiency and implementation chart 56

4.1 Workflow of P4 language compiler and API over programmable devices 63

4.2 Packet-over-optical P4-based edge node 64

4.3 Block diagram of the P4 switch architecture 67

4.4 Data center gateways equipped with P4-based edge node performing

dynamic TE 70

4.5 Dynamic traffic offloading P4 code based on meters and token-bucket 71

4.6 Dynamic optical bypass P4 code based on registers and flowlet

switching 74

4.7 P4 program workflow targeting mitigation on TCP SYN flood attacks 77

4.8 BMV2 results: TE traffic offload behavior 79

4.9 BMV2 results: TE optical bypass behavior 80

4.10 BMV2 results: Wireshark capture of TCP SYN Flood port scan

received and blocked after three attempts by the cyber security P4

program 81

4.11 BMV2 results: scalability performance of the cyber security P4

program in different attack rate scenarios 82

4.12 NetFPGA results: latency as a function of the traffic throughput 83

4.13 NetFPGA results: zoomed version of Figure 4.12 in the 1-9Gbps range 83

4.14 NetFPGA results: latency as a function of installed flow entries 84

4.15 PF implemented in the FPGA processing pipeline 87

4.16 Custom processing pipeline to accelerate PFs-chain to mitigate DDoS

attacks and detect pedestrian 88

4.17 Pipeline latency as function of the aggregated input throughput 93

List of Tables

1.1 Summary of the wireless network generations 5

1.2 5G frequencies overview 5

2.1 Bandwidth and latency requirements for each functional split 14

3.1 Orthogonal Frequency Division Multiplexing (OFDM) numerology 40

3.2 Terasic DE5-Net board specifications 42

3.3 OpenCL and HDL FPGA resource usage 46

3.4 DU OFDM computation complexity for Option 7-1 split 48

3.5 FPGA timing analyzer frequency report for each OFDM symbol size 52

4.1 P4-NetFPGA latencies in attack and non-attack scenarios 85

4.2 P4-NetFPGA hardware resource utilization 85

4.3 Latency and throughput evaluation for processing pipeline considering

different use cases and input streams 91

CHAPTER 1

Introduction

In the new era, thought itself will be transmitted by radio.

Guglielmo Marconi, New York Times (11 Oct 1931)

1. From 1G to 5G

Figure 1.1. Evolution of the wireless network: from 1G to 5G 1

Human technologies have never been so connected in the physical world. With

the recent progress of the mobile/fixed communication, it will be possible to con-

nect up to 7× 1023 devices for each square metre of the hearth. This leads to the

new era of the communication where everything will be connected, where smart

and connected objects will be a constant presence in our daily life.

Things were significantly different in 1885, when Guglielmo Marconi – the Italian

scientist considered the father of the radio communication – proposed the first

wireless transmission in the history of science using telegraphs. Marconi could

immediately understand the importance of his research, as he wrote in the pa-

per Wireless telegraphic communication [Mar09]: ”with regard to the utility of

1Source: Cisco VNI Global Mobile Traffic Forecast, 2017-2022

1

Chapter 1 - Introduction

wireless telegraphy there is no doubt that its use has became a necessity for the

safety of shipping, all the principal liners and warships being already equipped,

its extension to less important ships being only a matter of time, in view of the

assistance it has provided in cases of danger. Its application is also increasing as

a means of communicating between outlying islands, and also for the ordinary

purposes of telegraphic communication between villages and towns, especially in

the colonies and in newly developed countries”.

Since then, engineers and scientists were working on an efficient way to commu-

nicate by means of Radio Frequency (RF) waves. In particular, during 1970s,

the invention of hand-held devices, capable of connecting with each other wire-

lessly, permitted to standardize the first generation of mobile phone (1G). 1G is

based on analog transmission technology designed to provide basic voice service.

This first concept of communication considered analog signals without data ca-

pabilities and the digital signalling was used to connect radio towers with the

infrastructure via Frequency Modulation (FM) at around 150 MHz. Despite this

important milestone, 1G technology suffered from a number of drawbacks. The

coverage area was poor since the cell size was 2-20 km [Sch03,Sto02] each and

sound quality was low. The few providers of the epoch operated with different

frequencies without compatibility between each other thus, there was no roaming

support. In addition, there was a lack of security since the analog signal cannot

implement advanced encryption methods.

The second generation of mobile phone (2G), launched under the Global System

for Mobile (GSM) communication in 1991, brought digitalization with respect to

the previous generation. Indeed, it provided a digital system alongside the analog

transmission. For the first time, calls were encrypted, the sound was significantly

clearer with less noise in background and the cell coverage area increased up to

35 km. Also Short Messages Service (SMS) and Multimedia Messages Service

(MMS) services were implemented to offer new functionalities for the end-users.

Moreover, the allocation of the spectrum was optimized with modulation tech-

niques that will be also used in the next generations such as Time Division Mul-

tiple Access (TDMA), Frequency Division Multiple Access (FDMA) and Code

Division Multiple Access (CDMA) [EVBH08]. The 2G evolved in 2.5G in 1999,

better known as Enhanced Data GSM Evolution (EDGE), which was closer to

the next generation (i.e., 3G) in terms of Quality of Service (QoS) and through-

put (up to 300 Kbps against 64.4 Kbps of the GSM) [BMC04]. Despite the

2

Section 1 - From 1G to 5G

enhancements with respect to 1G, also 2G had many drawbacks, especially inter-

ference issues due to frequency reuse. Also TDMA shown its limitation in case

of unfavorable terrains, topographic or electromagnetic conditions that can bring

to communication failure [EUO+18].

The third generation of mobile phone (3G) starts with the introduction of the

Universal Mobile Terrestrial/Telecommunication Systems (UMTS). This com-

munication era provided dedicated networks to improve throughput and reduce

latency. Moreover, many services started from this generation such as global

roaming and enhanced voice quality. The data transfer capability increased up

to 4 times faster than 2G, enabling multimedia services like video streaming and

Voice over IP (VoIP). Users could access data from any location in the world

as ”data packets” since the network evolved from circuit commutation to packet

commutation [Fag14]. This network switching technique enables the possibility

of encapsulate data into a packet that can be routed from a source to a desti-

nation. In this scenario, no dedicated circuit is necessary to forward the traffic

as considered in the circuit switching paradigm. The most significant drawback

of this generation relies on the energy consumption since more power is neces-

sary, with respect to 2G, to sustain the communication between user devices and

cells [HT05]. In order to enhance data rate in existing 3G networks, another

two technology improvements are introduced to network: High Speed Down-

link/Uplink Packet access (HSDPA/HSUPA) and High Speed Packet Access plus

(HSPA+). These technologies refers to the advanced 3G network (i.e., 3.5G) that

can support up to 42 Mbps data rate.

The fourth generation of mobile phone (4G) is the present generation of com-

munication. 4G architecture is design to improve the packet-switched traffic

with seamless mobility, QoS and latency/throughput communication. The main

components of the architecture are the evolved Node B (eNB) and the Evolved

Packet Core (EPC). The first one is dedicated to acquire the user data and

process them according to the 4G protocol stack. The EPC is responsible for

the communication management and it is composed by four entities: Home Sub-

scriber Server (HSS), Service Gateway (SGW), Packet Data Network Gateway

(PDNGW) and Mobility Management Entity (MME). The HSS is a database

that contains user-related and subscriber-related information. SWG is the con-

nection point between the radio-side and the EPC while PDNGW enables the

communication between EPC and the external IP network. MME handles the

3

Chapter 1 - Introduction

signalling related to mobility and security for network access, interacting with

the HSS [R+13, Kha09]. To achieve the minimum communication latency, ad-

vanced techniques are introduced like Multiple Input Multiple Output (MIMO)

and OFDM. The main drawback of the system is the interference due to the

crosstalk from two different transmitters using the same channel. This problem

is a constant presence from 2G, where it represented the main issue for a good

communication, to 4G and also 5G. However, many interference coordination

schemes and interference-aware receivers have been developed from 2G to 4G

to significantly reduce the problem. For instance, we can consider the Network

Assisted Interference Cancellation and Suppression (NAICS) that considers ad-

vanced receivers capable of detecting interfering transmission, improving the QoS

of the overall network [HT09,ADF+13].

Other wireless technologies are part of 4G era, such as WiFi, Bluetooth and Zig-

bee. These protocols are thought for both improving end-user communication

and introducing Internet of Things (IoT) applications. This represents an im-

portant improvement in terms of flexibility and compatibility, considering that

2G does not even support the roaming. This aspect is also underlined by the

backward compatibility of the 4G systems with the previous generation of mobile

phone.

So far, each generation of mobile technology brought along with it improvements

that have changed our daily lives. 1G enabled the first communication, 2G en-

hanced 1G by means of digitalization and improving sound quality, security and

network capacity. 3G introduced the mobile broadband for internet services,

while 4G addressed the growing demand of bandwidth dedicated to each user.

The fifth generation of mobile phone (5G) should address the limitations of the

4G providing high bandwidth and low latency for a large number of users. More-

over, it should also address a wide range of services, especially in the field of

machine-to-machine communication [Yil16]. Indeed, the effort that the scien-

tific community is dating towards the deployment of 5G leads to think that the

next generation will be disruptive. It will provide extremely low latency/high

bandwidth connection for many applications, from HD streaming to autonomous

driving. In other words, connections everywhere at anytime with higher capacity,

higher data rate, lower end-to-end latency, massive device connectivity, reduced

cost and consistent QoS provisioning compared with 4G [Ben14].

4

Section 2 - 5G vision and challenges

Generation Speed Technology Time Period Features

1G 14.4 Kbps
AMPS, NMT,

TACS
1970-1980 Voice only, no roaming

2G 64.4 Kbps TDMA,CDMA 1990-2000 Data + Voice, roaming

2.5G 170-300 Kbps EDGE, GPRS 2001-2004
Multimedia services and

streaming starts

3G 1-3 Mbps UMTS, CDMA 2004-2005
Multimedia services and

streaming support

3.5G 14-42 Mbps
HSDPA, HSUPA,

HSPA+
2006-2010

Higher throughput

and speeds

4G 100-300 Mbps OFDM 2010-now
High definition

streaming and multimedia

5G Gigabits Under study 2020
High speed and throughput

for large number of devices

Table 1.1. Summary of the wireless network generations

2. 5G vision and challenges

The increasing number of connected devices brings to a big rise of the traffic

volume. 5G has the role to address such enormous traffic, providing low laten-

cy/high throughput communication, network scalability and flexibility as well as

low system complexity and power consumption [OBB+14]. To cope with such

requirements, 5G envisions to improve carrier frequencies with larger bandwidth,

number of antennas and the network infrastructure. The need to change fre-

quency is due to the scarcity of the free frequencies remained in the bandwidth

considered so far. Table 1.2 summarizes the multi-layer frequency approach pro-

posed for 5G [LTRa+18].

Frequency Range Layer Note

High frequencies

Above 6 GHz
Super Data Layer Extremely high data rates

Medium frequencies

2-6 GHz
Coverage & Capacity Layer

Compromise between

capacity and coverage

Low frequencies

Below 2 GHz
Coverage Layer

Lower data rates

to improve coverage area

Table 1.2. 5G frequencies overview

5

Chapter 1 - Introduction

An increasing number of antennas permits to enhance the network densification

which corresponds to more nodes served per unit area. The novelty in this field

is to include small cells alongside distributed antenna systems. Pico-cells (i.e.,

hundreds of meters) and femto-cells (i.e., some meters like home WiFi range) are

considered as small cells. Antenna distributed systems are similar to pico-cells

from a coverage point of view but the processing is demanded to a central site

that is connected to many antennas. In this scenario, the transmission power

is lower, reducing the power consumption, with the advantage of reaching more

connected devices due to densification [PCK12]. Power consumption saving is

also achieved by the energy harvesting that can maximize the lifetime of the

wireless devices. The idea behind this concept is to transmit data via radio

signals that can also recharge the devices. Indeed, in RF energy harvesting,

radio signals with frequency range from 3 KHz up to 300 GHz can carry energy

in form of electromagnetic radiation [LWN+14]. However, the benefits of the

increased number of cells pose challenges for the mobility. A moving node of the

network has to pass and interact with many cells, thus the passage between cells

is frequent and it can cause a lack of synchronization. Indeed, the handoff can

be particularly challenging since beams (i.e., messages used for synchronization)

have to be aligned to communicate. Actually, such handoff does not exist at layer

3 (i.e., IP layer) in the 5G communication, but many coordination techniques are

under study where the user can communicate with many base stations to achieve

the optimal synchronization [ABC+14].

Regarding the 5G architecture improvements, this thesis focuses at this aspect,

thus an exhaustive description of the infrastructure will be provided in the first

chapters of this work.

3. Contributions and outline

This thesis aims at presenting a novel approach to accelerate the 5G infrastruc-

ture at the edge. The idea is to exploit hardware acceleration to improve the

processing of the protocol stack functionalities and network functions close to

the final user. In this way, the bandwidth for the communication between 5G

radio infrastructure and the central Cloud can be saved. Moreover, real time

application can benefit from the improved computation capabilities by means of

hardware offloading. In Chapter 2, the overall architecture of the 5G is intro-

duced. When referring to 5G communication, its architecture is fundamental to

6

Section 3 - Contributions and outline

clearly describe the possible improvements that can be addressed by means of

hardware offloading. In particular, this chapter describes both 5G Radio Access

Network (RAN) architecture and the access network for the datacenter. Hard-

ware acceleration can enhance both solutions that are considered as case studies

in this work.

Chapter 3 focuses on the reconfigurable computing approach that can be exploited

to accelerate the functionalities of 5G protocol stack. Reconfigurable computing

is paradigm that considers programmable hardware acceleration of software al-

gorithms. The idea is to enhance the processing with very flexible hardware

platform like FPGA with the supervision of the software that has the role to

offload the data and control the hardware processing. The approach proposed

in this Chapter is based on Open Computing Language (OpenCL) for FPGA

hardware platform. This represents the first study to evaluate OpenCL hardware

acceleration in the context of a 5G base station.

Chapter 4 leverages on the improvements of the network functions at the data-

center access network. The potential of the Programming Protocol-independent

Packet Processor (P4) open source language, recently introduced by the inventors

of OpenFlow, is considered to program the behavior of a switch located at the

edge of the network access infrastructure. Special effort is dedicated to motivate

and apply P4 within a multi-layer edge scenario. Both Traffic Engineering (TE)

and cyber security scenarios are considered as network functions to be improved

by means of P4 language. The TE use case is tested with a P4 software switch

while the cyber security scenario considers an hardware switch, based on FPGA

and compatible with P4 programs. Moreover, FPGAs are also used to accelerate

processing functions at the edge, exploiting a purely hardware pipeline. In this

way, the computation is completely demanded to the hardware without offload-

ing the data from software. An host application is responsible for monitoring

the correct operations execution by changing the parameters of the hardware

pipeline.

Finally, Chapter 5 concludes this thesis and provides open future perspectives.

7

CHAPTER 2

Overall 5G architecture description

The fifth generation of mobile communications (5G) brings with it unprecedented

challenges that require thinking in new ways to meet the aggressive performance

goals. Indeed, it will revolutionize our world with enormous data transfer capac-

ities that will power the future of smart cities, robotics and the next billions con-

nected things. In addition, the 5G infrastructure will provide tailored solutions

such as automotive, agriculture, healtcare, etc [Moh16]. Thus, it is necessary to

improve the networking service for all the stakeholders. Strong industry partners

engage in all stages of development, starting with early research, contributing

to standards development, developing technology and ultimately deploying net-

works.

To meet the requirements of the 5G, the network operators have to allocate re-

sources for each kind of service deployed, which reflects to the implementation of

orchestrator functions to manage the entire communication. Thus, each service

will have a dedicated logical network called network slice. This feature represents

one of the main novelty of 5G to address all the tasks and dedicate resource

for each business. The ubiquitous approach considered for the 5G infrastructure

have to operate in an energy efficient way to contain the power consumption of

the network [Kal18]. In such environment, the following design objectives can

be summarized to understand the challenges of this revolution in the wireless

communication.

Spectrum availability: this feature is essential to support the huge amount

of data demand. Thus, 5G network have to operate considering wider

spectrum than the actual 4G technology. Indeed, the frequency range

can be divided in three different parts: below 2 GHz for better coverage

area, 2-6 GHz for higher throughput and super/extremely high frequency

(over 6 GHz, up to 60 GHz) for military and aerospace applications

[WLH+14].

8

Efficient data processing: the improvements of the last years about data pro-

cessing permit to reduce the processing time of the 5G tasks to meet

the latency requirement which represents a really strict constraint in

the next generation of mobile phone. In particular, the use of different

platforms such as General Purpose computing on Graphics Processing

Unit (GPGPU) or FPGA, that exploit the massive parallel computing,

can reduce significantly the computation time [CLS+08].

Addressing air interface variances: the number of wireless protocol is grow-

ing to support a large number of application, especially in the IoT en-

vironment. This means that interference can happen when enabling all

the protocols. In this scenario, the physical layer has to be rethought

with different waveforms and numerologies to meet the variances of the

air interface. Moreover, an efficient inter-networking between 5G and

4G is essential to maintain the compatibility with the previous technol-

ogy [CSSK+15].

Multi-connectivity: multiple access points can simultaneously configure ra-

dio resources to a given user device, introducing link diversity. This

permits to improve the reliability and many schemes are under study

to improve the number of different technologies connected simultane-

ously [RRM+16].

Convergent fixed-mobile networking: in the new era of communication, the

same physical network has to be shared between wired and wireless user

connections. Thus, virtual connection may operate in parallel to ensure

connectivity among all the customers, exploiting the network slice par-

adigm. Moreover, a Software Defined Networking (SDN) orchestrator

allows to have an ordinate management of the same physical infrastruc-

ture [EGS+15].

Traffic differentiation: complex algorithms for traffic differentiation will be im-

plemented to meet the stringent constraint regarding the QoS. Separa-

tion and prioritization of the resources are the keywords to be taken into

account when deploying this feature [G+17].

To address the above objectives, an intelligent transport network has to be de-

ployed and enhanced automation capabilities in the operation and management

represent a key requirement. Thus, Figure 2.1 shows the complete transport net-

work, from the 5G RAN up to the datacenter access with the management and

9

Chapter 2 - Overall 5G architecture description

Figure 2.1. 5G transport network architecture

orchestration layer and the Transport Intelligence Functions (TIFs) [DDGF+18].

This chapter focuses on the state-of-the-art of such architecture and, in particu-

lar, the 5G RAN is described in Section 1 while the datacenter access network is

deepened in Section 2.

1. 5G RAN Infrastructure

The 5G infrastructure must provide high level of efficiency, flexibility, and scal-

ability in the RAN. Indeed, applications such as enhanced mobile broadband

(eMBB), massive machine type communications (mMTC), and ultra reliable low

latency communications (URLLC) [GT] demand requirements that the previous

generation (4G) mobile communications cannot satisfy. Thus, the RAN has to

be re-thought.

In 4G, the eNB represents the hardware and software located at the antenna site,

enabling the wireless access of many mobile devices (e.g., smartphones, tablets,

PCs, etc.) to the mobile network infrastructure. Here, the protocol stack and

signal processing, which handles the data from mobile devices are resolved. This

approach has many limitations, in particular for what concerns flexibility and

scalability, since the eNB is structured to provide connectivity for a certain num-

ber of devices and it is not able to adjust the power consumption (e.g., putting

10

Section 1 - 5G RAN Infrastructure

in standby some functionalities) in case of less users connected. On the contrary,

if an area requires a higher number of users to be served, another eNB has to be

deployed.

An important novelty of 5G is splitting the eNB into two different entities: the

Central Unit (CU) deployed in central locations and the Distributed Unit (DU)

deployed near the antenna. This architecture is called Next Generation RAN

(NG-RAN) or C-RAN, where the ”C” stands for both centralized and cloud. In-

deed, CU and DU can be even virtualized and deployed in the cloud [GKG+19].

Likewise, the eNB in the 4G infrastructure evolves in next generation eNB (gNB).

Centralizing the CU leads to several benefits including economy of scale, reduc-

tion of the maintenance for the cell towers, and performance improvement due to

better coordination between antennas. Economy of scale refers to the possibility

of deploying less hardware devices compared to the actual 4G infrastructure. For

instance, a single large router for network access can serve the CU rather than

many little routers serving a single eNB. In this way, the CU can be designed

to be able to move router ports from under-utilized CUs to over-utilized CUs.

The maintenance can be reduced by upgrading the software of centralized CUs.

Finally, the performance in terms of lower call drop rates and downlink data rates

are 30% improved with the centralized approach [Per17].

Figure 2.2. 5G architecture

11

Chapter 2 - Overall 5G architecture description

The NG-RAN architecture is depicted in Figure 2.2. Here, many gNBs are con-

nected to the 5G Core (5GC) which manages the User Equipment (UE) com-

munication with the Data Network (DN). The link between the gNBs and 5GC

is the NG interface, which corresponds to the backhaul. Each gNB consists of a

CU, gNB-CU in Figure 2.2, connected to a DU, gNB-DU in Figure 2.2, by means

of the F1 interfaces, which is the midhaul interface. This interface is the link

between DU and CU. Often, based on the DU location, an additional element,

including only the Radio Frequency (RF) functions (e.g., filtering, mixing, up-

conversion/downconversion, Digital to Analog Conversion) called RRU (Remote

Radio Unit), is deployed and it is connected to the DU by the, so called, fron-

thaul interface. Many interfaces have been defined to transmit the data in the

fronthaul and midhaul links, such as Common Public Radio Interface (CPRI),

ethernet-based CPRI (eCPRI) and Next Generation Fronthaul Interface (NGFI).

In particular, CPRI, eCPRI are protocols defined for the fronthaul data trans-

port while NGFI is designed for the midhaul communication. CPRI is a radio

interface developed by several leading telecom vendors to transport sampled RF

data between the DU and the CU. In Figure 2.3, the option 1 CPRI encapsula-

tion is presented as an example to understand the CPRI frame structure. Here,

the In-phase/Quadrature (I/Q) samples are encapsulated inside a frame which

lasts 260 ns (1/3.84MHz). Each I/Q sample is encoded with 8-bit word and 16

words are transmitted in a single frame (called chip). Thus, the transmission

throughput (TT) can be calculated as follow:

TT = 1 chip× 16 words× 8 bit× 3, 84 MHz × 10

8
= 614.4 Mbps (1)

Where 10
8

is the factor due to the 8B/10B line coding for the error correction/de-

tection used in CPRI option 1 [Spe].

The utilization of native CPRI in networks, instead of point-to-point connections

only, implies the development of dedicated hardware not compatible with current

MAC and PHY standard protocols, potentially causing cost inefficiency. Thus,

transporting CPRI frame over eCPRI has recently increased interest because

of its flexible, cost-effective deployment, easy integration with the current high

speed ethernet-based optical networks. Figure 2.4 shows how eCPRI message is

mapped into transport network layer payload (e.g. UDP/IP or Ethernet) [C+17].

In [CYRN+16] the impact of different encapsulation techniques between the DU

12

Section 1 - 5G RAN Infrastructure

and CU functional splits have been described for the use of Ethernet based fron-

thaul. Moreover, the bandwidth requirements for CPRI are high and the link

rates are currently limited without the possibility to scale up. Bandwidth is

not the only restrictive aspect, in fact CPRI also requires very strict latency

constraints that do not permit to transport data for long distance [dlOHLA16].

Figure 2.3. CPRI encapsulation

Figure 2.4. eCPRI message format

Regarding the midhaul, as the gNB is splitted into CU and DU, so are the protocol

stack functionalities. This is an important novelty of 5G called functional split

where the functionalities can be splitted according to the scheme in Figure 2.5.

The 3GPP association established the requirements, in terms of both latency

and bandwidth, reported in Table 2.1 [3GP17], for the communication network

13

Chapter 2 - Overall 5G architecture description

Protocol Split Option Required bandwidth Max allowed one-way latency

Option 1 DL: 4Gb/s UL: 3Gb/s 10ms

Option 2 DL: 4016Mb/s UL:3024 Mb/s 1.5∼10ms

Option 3 lower than option 2 for UL/DL 1.5∼10ms

Option 4 DL:4000Mb/s UL:3000Mb/s approximate 100µs

Option 5 DL: 4000Mb/s UL: 3000 Mb/s hundreds of microseconds

Option 6 DL: 4133Mb/s UL:5640 Mb/s 250µs

Option 7-1 DL:10.1∼22.2Gb/s UL:16.6∼21.6Gb/s 250µs

Option 7-2 DL:37.8∼86.1Gb/s UL:53.8∼86.1 Gb/s 250µs

Option 7-3 DL:10.1∼22.2Gb/s UL:53.8∼86.1Gb/s 250µs

Option 8 DL:157.3Gb/s UL: 157.3Gb/s 250µs

Table 2.1. Bandwidth and latency requirements for each func-

tional split

connecting DU and CU as a function of the considered functional split. As

reported in Table 2.1, the requirements are stricter when most of the functions

is implemented in the CU.

RRC
Low-

PHY

High-

RLC

High-

PHY

Low-

MAC
PDCP

Low-

RLC

High-

MAC
RF

Data

RRC
Low-

PHY

High-

RLC

High-

PHY

Low-

MAC
PDCP

Low-

RLC

High-

MAC
RF

Data

Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8

Downlink

Uplink

Figure 2.5. 5G functional split

Several other ongoing efforts are investigating on midhaul solution such as the

Institute of Electrical and Electronics Engineers (IEEE) 1914 Working Group

with the NGFI. In NGFI, the midhaul traffic depends on the functional split

implemented and bandwidth and latency constraints may vary according to the

functional split used [Z+15]. NGFI has identified both lower and higher possible

functional splits. It is claiming to be the protocol that supports key technologies

for 5G such as statistical multiplexing and radio interface technological neutral-

ity. The NGFI is based on Radio over Ethernet (RoE) encapsulation, which is

summarized in Figure 2.6 and Figure 2.7 where both hierarchy and RoE encapsu-

lation format are presented. The RoE node maps the CPRI ports into Ethernet

links exploiting the mapper/e-mapper process blocks. The packet that has to be

14

Section 1 - 5G RAN Infrastructure

sent over Ethernet link is depicted in Figure 2.7. The RoE payload contains a

flow of I/Q samples for a single antenna carrier of a group of antenna subcarri-

ers [19118].

Figure 2.6. RoE node hierarchy

Figure 2.7. RoE message format

An experimental characterization of the midhaul traffic by considering different

gNB functional splits (i.e., Option 8, Option 7-1 and Option 2) is detailed below.

In particular, the impact of the user traffic, injected on midhaul with different

inter-departure time distributions, is evaluated. The utilized mobile network

software is OpenAir Interface (OAI) which uses NGFI technique for the midhaul

communication [NMM+14].

The experiment is coped with sending data between the gNB and the UE. Here,

the sender component of D-ITG tool (ITGSend) were running at EPC to generate

downstream UDP traffic, and the receiver component of D-ITG tool (ITGRecv)

were running at UE to receive UDP traffic [AGE+04]. The Wireshark capture

was initiated at DU to capture the midhaul traffic for Option 7 functional split,

where the Wireshark capture was initiated at CU to capture the midhaul traffic

for Option 2 functional split. Figure 2.8 shows the user traffic generated by

following negative exponential distribution from gNB to UE. In particular, the

15

Chapter 2 - Overall 5G architecture description

N
o

rm
a

li
z

e
d

 f
re

q
u

e
n

c
y

 o
f

o
c

c
u

re
n

c
e

s

0

0.2

0.4

0.6

0.8

1

Inter-Departure Time [μs]
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

(a)

N
o

rm
a

li
z

e
d

 f
re

q
u

e
n

c
y

 o
f

o
c

c
u

re
n

c
e

s

0

0.2

0.4

0.6

0.8

1

Inter-Arrival Time [μs]
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

(b)

N
o

rm
a

li
z

e
d

 f
re

q
u

e
n

c
y

 o
f

o
c

c
u

re
n

c
e

s

0

0.2

0.4

0.6

0.8

1

Inter-Arrival Time [μs]
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

(c)

Figure 2.8. Downstream user traffic generated with exponential

Inter-Departure Time between packets: a) source of the traffic gen-

erated at EPC b) the fronthaul traffic captured at the CU with

Option 2 functional split c) the fronthaul traffic captured at the

DU with Option 7 functional split

behaviour of the inter-departure time of the traffic generated at the gNB side is

depicted in Figure 2.8a. Then, the traffic is captured with help of the Wireshark

at CU with Option 2 functional split and the inter-arrival time of the traffic

follows the negative exponential distribution, as shown in Figure 2.8b. However,

in Figure 2.8c, it is shown the inter-arrival time of the traffic, related to the lower

layer functional split (Option 7-1), is independent on the user traffic. In fact, the

distribution no longer follows the negative exponential trend. The experiments

for uplink communication and with Option 8 were performed, but not presented

because they follow the same behaviour of downlink communication and Option 7-

1 respectively. Thus, the midhaul traffic, based on NGFI protocol, is independent

on the user traffic profile when the lower functional splits (i.e., Option 8 and

Option 7-1) are considered. Whereas, the midhaul traffic is dependent on the

user traffic when the higher functional split (i.e., Option 2) is considered.

2. 5G Datacenter access network

Besides the RAN, the datacenter is the other core of 5G transformation. At the

beginning of this Chapter we listed the main objectives of the architecture based

on the efficiency, scalability, flexibility and intelligence. Thus, a question rises:

what kind of datacenter is able to meet the requirements of the 5G? To answer

the question, we list the main features to build a datacenter in the 5G era [Gu18].

16

Section 2 - 5G Datacenter access network

Open: the layers of the datacenter should be open to be accessible from the

research community for continuous enhancements. Indeed, the present

datacenter infrastructure is based on frameworks like Openstack and

database queries are inspired by standards like Hadoop, Spark, MySQL

and Redis. These technologies are still under development to offer the

best performances in the 5G environment.

Efficient: the latency and bandwidth requirements are 100 times stricter than

the last generation of mobile phone. Moreover, with the support of net-

work slicing, many services can be deployed in parallel and most of them

are critical in terms of latency and reliability like ultra-HD video stream-

ing or intelligent transport system. For these reasons, hybrid solutions

are investigated like System on Chips (SoCs) based on ARM/Intel cores

and FPGA, GPGPU and Neural network Processing Unit (NnPU). Re-

configurable computing could also improve the software performances

and bottlenecks, exploiting the hardware offloading of the tasks con-

trolled by the software. This solution is also suitable to accelerate the

processing of the huge amount of data coming from the IoT environ-

ment. Indeed, GPGPU/FPGA clusters can accelerate the computation

by means of massive parallel computing.

Flexible: the orchestration of the network slices has to adapt to the changes

of the 5G network. Indeed, all the services such as including capacity,

service configuration, network elements and service applications should

be deployed as quick as possible. Virtual machines to handle the com-

munication can be easily added or removed from the network, thus the

flexibility is an important feature to follow the changes.

Distributed: in the 5G environment, most of the services are cloud-based (e.g.,

IoT core services, big data, deep learning, etc.) but many other function-

alities can run in an edge datacenter, reducing the computation at the

central location. Thus, ubiquitous computing (i.e., the capacity of the

computing to appear everywhere when needed [Wei91]) can improve the

processing by moving the functionalities at the edge. Such a computing

should be controlled by a central intelligence and deployed to support

many services like object detection and recognition in surveillance videos,

3D rendering, real-time operations, gaming and much more.

17

Chapter 2 - Overall 5G architecture description

Intelligent: this feature represents one of the main keys for the 5G infrastruc-

ture. Indeed, the 5G network manager has to be flexible and to adapt

to the network changes. To achieve this goal, a powerful Artificial Intel-

ligence (AI) architecture should be considered along with heterogeneous

computing hardware, including GPGPUs, FPGAs and NnPUs, capable

of implementing high computational capacity algorithms.

To meet such requirements, a new idea of datacenter is rising based on the

Network Function Virtualization (NFV) functionalities that permit to reach a

higher levels of flexibility with a rapid deployment. Indeed, many services starts

to be deployed with the NFV approach, such as fixed and mobile core network

or the 5G RAN as well as the traffic analysis, optimization and security func-

tions [HPS+15, OLAL+17, AKL+18]. Figure 2.1 shows the datacenter access

network for the 5G environment. The access aggregation entity corresponds to

the edge computing node of the datacenter that is physically close to the users.

Its location represents a novelty in the architecture and permits to accelerate the

data processing in order to only send metadata to the cloud central node [Yu16].

The metro network domain provides connectivity between the edge node and the

national backbone, as well as to the global internet from the central cloud node.

At the metro network level, the data coming from many edge nodes are collected

exploiting the optic fibers based on the Dense Wavelength-Division Multiplex-

ing (DWDM). Such a technology can aggregate up to 100 wavelength channels

over the same fiber to accommodate the large aggregated traffic from the access

branches. Moreover DWDM permits to reach an incredible high data through-

put (around Tb/s) in a single optical fiber [DGE+15]. This aspect enables the

possibility to easily aggregate all the traffic coming from large variety of services,

from entertainment to IoT, 5G and much more.

Finally, the central cloud node located far from the regional and edge nodes, it

is the collector of many services like deep processing, networking and other com-

puting resources.

Focusing on the cloud edge node, the NFV approach is more suitable to be de-

ployed at this level of the datacenter architecture since the edge node has to

adapt to the services changes based on the users requests. Thus, the flexibility

of the NFVs may help to follow the network modifications. Moreover, the de-

ployment of the NFV functionalities in such instance allows to improve resilience,

latency and jitter, as well as to reduce the computational load in the metro and

18

Section 2 - 5G Datacenter access network

Figure 2.9. Proposed fixed mobile convergence architecture

central nodes. Many researches are still conducted to standardize this new ap-

proach for the datacenter edge node, called Central Office Re-architected as a

Datacenter (CORD) [PASA+16, ASP15], where Next Generation Central Of-

fice (NGCO) will host the edge node for new mobile network [BMW18]. Such

technological upgrade coincides with the recent replacement of the copper links

with optical fiber, especially in the Last Mile (i.e., the connection between the

edge node and the users). As discussed above for the metro nodes, the fiber can

be also aggregated into the NGCO that is capable of serving few thousands of con-

nections. Moreover, the NGCO can collect the data from both wired and wireless

communication, implementing the 5G and fixed mobile convergence [BFS+17].

To achieve the convergence, common policy and user data management between

fixed and mobile network had to be enabled. Moreover, NFV approach can

improve the convergence by means of resource sharing and avoiding the network

duplication due to fixed and mobile networks. The deployment of the convergence

at the edge node enables the possibility to achieve the fully seamless datacenter

architecture since the data are no longer separately treated based on the com-

munication medium, but they are collected and sent to the cloud central node.

Figure 2.9 shows the possible architecture for the convergence [GBNM+18].

Many other features can be deployed in the NGCO like services prioritization

or dynamic service provisioning but a deepening is necessary for data process-

ing and cyber security. Regarding data processing, many NFVs are dedicated

19

Chapter 2 - Overall 5G architecture description

to data processing at the edge, thus they can be defined as Processing Function

Virtualizations (PFVs). The adoption of the programmable hardware offloading

may speed up advanced applications and processing functions. For cyber secu-

rity scenario, one of the main functionalities is the mitigation of the Distributed

Denial of Service (DDoS) attacks that can generate excessive bandwidth and it

can make the network unstable. The mitigation of these attacks at the edge node

has an enormous benefit since the attack is immediately resolved at the edge of

the network, without spreading up to the central node. NFV can be deployed

to address problems of security mitigation to neutralize possible strikers. As

discussed for data processing, such a mitigation could be done with the help of

other platforms like Application Specific Integrated Circuits (ASICs), FPGAs or

Network Processing Units (NPUs). Indeed, co-design approach can improve data

processing and mitigation problems since it combines the benefit of both hard-

ware and software approaches. NFVs are dynamically deployed and they abstract

the hardware resources while hardware platforms improves the processing perfor-

mance in terms of processing time and throughput. Typically, ASIC utilization

is expensive to design and it is not reconfigurable, thus its use is targeted for

lower lever of the ISO/OSI protocol stack, where the protocols and standards

are well defined. However, for application layers that are still under develop-

ment, the software approach is essential to quickly dispatch improvements. For

these reasons, new languages start to have success since they permit the hard-

ware/software communication, enabling the co-design approach. In this scenario,

P4 language is capable of closing the gap since it can be compiled for several

hardware platform like FPGA or NPU, eliminating the portability issue of the

hardware. Moreover, it allows the hardware processing with the support of the

software communication. In this scenario, P4 implementation is tailored on se-

curity application since it allows to process network data at high throughput

with the addition of the software control to enable, disable and update mitiga-

tion algorithms when needed. The venue of this co-design languages permits

to overcome the threshold of hardware/software application so far. In general,

hardware approach like ASIC on NPU is considered for central cloud node (i.e.,

core) deployment to process huge amount of data dispatched towards the central

node. Figure 2.10 shows boundary of the NFV and hardware usage in the data-

center network access [BMW18]. However, NFVs are considered to dynamically

20

Section 2 - 5G Datacenter access network

Figure 2.10. Silicon selection based on transport and flexibility

requirements

adapt the services close to the end user with unpretentious throughput or pro-

cessing time. Co-design approach should enable the possibility of using hardware

architecture at the edge, improving the processing of the NFV and maintaining

software flexibility. In this way, also security issues could be locally addressed,

without loading the central cloud node.

21

CHAPTER 3

Reconfigurable computing for 5G RAN acceleration

In this Chapter, the reconfigurable computing approach is considered to accel-

erate part of the 5G network functionalities. In particular, it focuses on the

acceleration of the 5G OFDM task in the DU by means of OpenCL framework.

The OpenCL performance are then compered with the software SIMD and hard-

ware HDL approaches.

1. Acceleration with Reconfigurable Hardware through OpenCL

1.1. OpenCL generalities. OpenCL is a framework for writing programs

that can be executed across heterogeneous platforms such as Central Processing

Units (CPUs), GPGPUs, Digital Signal Processors (DSPs) and FPGAs. OpenCL

specifies a programming language (based on C99) for programming these devices

and Application Programming Interface (API) to control the platform and ex-

ecute programs from the host side (i.e., computational unit on which the host

program runs to control the OpenCL device). Originally thought as the intersec-

tion between GPGPU and CPU parallel programming, OpenCL is now the best

candidate as heterogeneous computing language, especially after the implementa-

tion of the FPGA support. It supports different types of parallelism to be suitable

for all the hardware platforms. On the other hand, each platform reaches the best

performance exploiting a certain type of parallelism. For this reason, the main

advantage of OpenCL framework is the possibility to write a single program that

can run on heterogeneous platforms seamlessly, even if many optimizations have

to be done for each platform to reach the best performance [SGS10]. Moreover,

it exploits the parallel computing approach which enhances the application per-

formance. Two main parallel programming models are possible with OpenCL:

task parallelism and data parallelism. In the first one, the application can be

decomposed in several tasks with different computation loads. Each task can be

mapped into Processing Elements (PEs), that can run concurrently. This ap-

proach is very useful when there is no data dependency between tasks. However,

22

Section 1 - Acceleration with Reconfigurable Hardware through OpenCL

Host

PEn

PE1 PE2 PEn

PE1 PE2 PEn

PE1 PE2

CU1

CU2

CUn

OpenCL Device

Figure 3.1. OpenCL platform model

it suffers of load balancing drawback since the processing finishes only when the

last PE finishes its task. Thus, an unbalanced loading brings to a loss of perfor-

mance. In data parallelism model, the application can be seen as collection of

data elements that can be processed concurrently. This means that a single task

can be applied to each data element. This model is possible when a processing

on arrays or matrix is needed since each element of the structure can be easily

computed by a single task [MGMG11].

The OpenCL platform model is shown if Figure 3.1. Here, a single host acts as a

master capable to interact with many OpenCL devices which are the components

where a stream of instructions execute. Such a stream of instructions is called

kernel and it represents the program executed by the OpenCL device. Each

device is called Compute Devices (CDs) and it can be a CPU, GPGPU, DSP

or FPGA. Each CD can be divided in OpenCL Compute Units (OpenCL CUs)

which are further divided into PEs. The PEs represent the smallest OpenCL

computation units and all the processing run within the PEs [GO11].

The host program and one or more kernels have to be considered to create an

23

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

OpenCL application. The host program has the role to initialize and interact

with the kernels by using the standard OpenCL API [HM15]. It establishes the

context for the kernels as well as the command queues to be sent to the device.

Moreover, it defines the memory objects which are the buffer to be read/writ-

ten by the kernels. Each kernel needs its command queue. The host places the

commands into the command queue and the commands are then scheduled on

the associated device. The commands supported by the OpenCL are: i) kernel

execution commands that are necessary to execute a task into a PE of the CD,

ii) memory commands that transfer memory objects from/to the device and iii)

synchronization commands that refer to constraints on the order of commands

execution.

The kernels execute in the CD and they are the processing core of the OpenCL

model. Moreover, two types of kernel are defined: pure OpenCL and native

kernels. The first ones are functions written and compiled by the OpenCL frame-

work. The native kernels are functions created outside the OpenCL environment

and it is possible to call them by means of function pointers.

Particular attention must be dedicated to the OpenCL memory model since it

enables the communication between the host and the device. Figure 3.2 shows

the memory regions from the host to the devices. Here, five memory regions are

defined [TS12]:

• Host Memory. This memory region belongs to the host and it cannot

be accessible by any other instance of the OpenCL architecture.

• Global Memory. This region enables the communication from the host

to the device and vice versa. Indeed, it can be accessible by all PEs. In

Figure 3.2, a further cache level is depicted. This level may be present

depending on the capabilities of the device.

• Constant memory. This memory has a read-only access for the PEs.

During initialization, the host writes this region which remains the same

during the kernel execution.

• Local Memory. This region is shared by all the PEs belonging to a

certain CU and it is used to allocate variables that are commons for all

the PEs. Moreover, if the CD has its own memory, it is deployed as

a portion of the CD memory, otherwise it is implemented in the global

memory. In this case, the access could be slower, depending on the global

memory interface bandwidth.

24

Section 1 - Acceleration with Reconfigurable Hardware through OpenCL

Figure 3.2. OpenCL memory model

• Private Memory. This memory region belongs to the single PE. The

variables stored are not visible by any other instance of the OpenCL

architecture.

1.2. Specific OpenCL constructs and kernels for reconfigurable hard-

ware. In this Section, a focus on the kernels and tools considered to exploit the

OpenCL model for FPGA is provided. In particular, it is presented the relation

between the two types of kernels that can be deployed in hardware, as well as the

SDK (Software Development Kit) used for this work, which is capable to create

a hardware application starting from these kernels.

The OpenCL framework for FPGAs allows the designer to simply create an appli-

cation by means of High-Level Design (HLD) approach. For this work, the Intel

FPGA SDK for OpenCL is considered and it supports the OpenCL specification

2.0 [HM15]. The Intel FPGA SDK for OpenCL Offline Compiler compiles the

kernels to an image file used by the host to program and run the kernel on the

FPGA. The model previously described remains the same with an important

difference: the FPGA exploits spatial implementation of a program, thus the

25

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

instructions are executed when the data are ready. However, in sequential pro-

gramming (considered for CPU, GPGPU, DSP), the program counter controls

the instructions to run. Even if the data are available to be computed, the pro-

cessing is executed one instruction at a time, following the order of the program

counter. This method is time-dependent since the instructions are executed on

the hardware across time. Designers have to take into account this crucial differ-

ence to create an application FPGA-oriented. Indeed, the way the code is written

permits to avoid FPGA area overhead or performance degradation.

Kernel.cl

Compilation command

Report

Kernel.aocoKernel.aocx

FPGA

Execution

Kernel execution

Files

Legend

Object file compilationExecution file compilation

Figure 3.3. Intel FPGA SDK for OpenCL workflow

Figure 3.3 shows the Intel FPGA SDK for OpenCL kernel compilation flow. The

Intel FPGA SDK for OpenCL Offline Compiler compiles the kernel and it creates

the hardware configuration in a single step (i.e., kernel.aocx). An intermediate

step, that creates an OpenCL object file (i.e., kernel.aoco), provides the report

on area usage and performance bottlenecks, especially in the memory access.

Two types of kernels are supported by the OpenCL for FPGA framework: ND-

Range and Single Work-Item (SWI) kernels. A NDRange kernel permits to parti-

tion the data among the PEs. In particular, the OpenCL runtime system creates

an integer index space (i.e., NDRange) where each instance of the kernel is ex-

ecuted. Each instance is called work-item and it is identified by its coordinates

in the NDRange. This kernel is suitable when there is no data dependency that

makes the partitioning easy. The commands run from the host to create the

26

Section 1 - Acceleration with Reconfigurable Hardware through OpenCL

collection of the work-items and execute all the work-items in parallel. Work-

items are organized in structures called work-groups and each work-group has

an unique ID, thus the single work-item can be identified through its global ID

or by a combination of work-group ID and local ID (assigned to the work-item

within the work-group). To understand how the IDs are mapped, we consider a

2D NDRange. A lowercase g letter refers to the global ID of a work-item, thus

the coordinates (gx, gy) uniquely identify a work-item in the space. Instead, the

uppercase G letter is related to the size of the space in each directions. The

NDRange space can be written as [0 .. (Gx - 1), 0 .. (Gy - 1)]. Then, we divide

the NDRange in work-groups with the same conventions described: Wx-by-Wy

represents the NDRange space expressed in the work-group space while the coor-

dinates (wx, wy) refer to the work-item inside the work-group. The dimensions Lx

and Ly of each work-group can be calculated with the equations Eq.2 and Eq.3:

Lx =
Gx

Wx

(2)

Ly =
Gy

Wy

(3)

We explained that a work-item is identified by its global ID (gx, gy) or by the

combination of its local ID (lx, ly) and work-group ID (wx, wy). Hence, Eq.4 and

Eq.5 show the relationship between IDs.

gx = wx ∗ Lx + lx (4)

gy = wy ∗ Ly + ly (5)

Figure 3.4 reports an example where global IDs, local IDs, and work-group in-

dices are depicted in a 2D NDRange space [MGMG11]. The memory model for

the NDRange kernel remains the same depicted in Figure 3.2.

Executing NDRange kernels with size (1,1,1) (or with one work-group that con-

tains one work-item) corresponds to run a SWI kernel. SWI kernels permit to

control the pipeline since only one work-item is executed. This approach is bet-

ter when an application has loops or data dependencies. The NDRange tries to

parallelize the computation with several work-items but the performance could

be degraded due to a possible stalls for conflicts with data. Unlike NDRange

kernels, single work-item kernels follow sequential programming approach, more

similar to C programming. Anyway, the data parallelism is applied on SWI ker-

nel type by pipelining the iterations of loops. Indeed, custom pipeline is possible

27

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

Figure 3.4. 2D example of mapping global IDs, local IDs, and

work-group indices in NDRange

and data access patterns can be modified using ad-hoc ”pragmas”. More details

about the improvements of these kernels in terms of area usage and processing

time are described in the next section.

2. Insights on OpenCL kernel optimization for FPGA

The main advantage of OpenCL model is certainly the portability, since the same

code can be compiled for different architecture. Moreover, its easy integration

with the software enables the possibility of the parallel and sequential processing

integration. Unfortunately, each architecture requires its optimization since spe-

cific instructions have to be executed to achieve better performance. For instance,

the SWI kernel can run in the GPGPU but with very low throughput [WS15].

Indeed, the GPGPU is equipped with thousands of cores, each capable to run

a single work-item, thus a NDRange kernel is more suitable for this platform.

Hence, the platform optimization is an important process before compiling an

28

Section 2 - Insights on OpenCL kernel optimization for FPGA

PE 0

PE 1

PE N

017 6 3 245...N

017 6 3 245...N

a

b

Load a[0]

Load b[0]

Load a[1]

Load b[1]

Load a[N]

Load b[N]

+

+

+ Store c[0]

Store c[1]

Store c[N]

017 6 3 245...Nc

Figure 3.5. Data parallelization of NDRange kernels

OpenCL application and bad optimizations may lead to a platform inefficiency

for OpenCL kernels. This section addresses the optimization to be taken into

account for OpenCL FPGA SWI and NDRange kernels. A more exhaustive

deepening is considered for SWI kernels since the application used as use case is

SWI-based.

2.1. OpenCL NDRange kernel optimization. To understand how ND-

Range kernels are mapped into the FPGAs, we consider the code in Figure 3.6.

This kernel permits to do the sum of each element of a with each element of b.

OpenCL runtime spreads the sum operations among all the PEs, thus each PE

has the role to add one element of a with one element of b, as depicted in Figure

3.5. To avoid area overhead, it is necessary to specify the maximum dimension

of the work-group. In this way, the compiler is able to precisely map the kernel

to the hardware resources.

Kernel vectorization permits to improve the throughput since multiple work-

items can be executed in a single PEs, exploiting the SIMD instructions. N-sized

vectorization can increase the throughput up to N times (where N can be 2, 4,

8 or 16). N sum operations can be mapped to a single PE without modifying

the kernel structure. Here, each PE can handle N operations and the NDRange

dimension can be decreased to save area usage.

Higher throughput can be achieved by means of running multiple compute units.

29

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

This method spreads the kernel processing among the compute units and the

compiler handles each compute unit as a unique pipeline. Considering T as pro-

cessing time to complete the kernel execution without multiple compute units and

N as the number of compute units, the processing time with multiple compute

units is T
N

. This method increases the area usage as well as the global memory

bandwidth which could be higher than the physical interface throughput of the

global memory itself (e.g., DDR interface if the global memory is a Random Ac-

cess Memory (RAM)). In this scenario, the performance could be worse due to

a delay of global memory accesses.

Both kernel vectorization and multiple compute units can be instantiated to

achieve higher efficiency, but kernel vectorization is preferable over the multiple

compute units. Indeed, multiple compute units increase the number of accesses

to the global memory while the SIMD vectorization changes the amount of work

that a single PE has to handle. Exploiting the SIMD vectorization, no undesired

memory accesses are possible and the performance are the same offered by the

instantiation of multiple compute units.

__kernel void sum (

__global const float * restrict a,

__global const float * restrict b,

__global float * restrict answer

)

{

size_t gid = get_global_id(0);

answer[gid] = a[gid] + b[gid];

}

Figure 3.6. NDRange kernel to add two vectors

2.2. OpenCL SWI kernel optimization. An OpenCL application based

on SWI kernel would be preferable to NDRange kernels in FPGA due to possible

conflicts in the memory accesses. Indeed, as described above, NDRange kernels

are spreaded among all the PEs that have concurrent accesses to the memory,

thus a data dependency can create stalls that decrease the performance. However,

SWI kernels permit to control the whole pipeline, as well as the memory accesses.

Figure 3.8 shows the same OpenCL code of Figure 3.6 adjusted to be a SWI kernel

30

Section 2 - Insights on OpenCL kernel optimization for FPGA

+

For loop entry

For loop end

Load b[i] Load a[i]

Store c[i]

Figure 3.7. SWI kernel pipeline

and, in Figure 3.7, the pipeline of the SWI kernel is depicted. The different

approach compared to the NDRange kernel is clear: SWI kernel are based on

pipelines that can be controlled and customized while NDRange model is based

on massive data parallelization. Both NDRange and SWI kernel include the

restrict keyword in the kernel pointer arguments. Including this keyword, the

compiler is prevented to create unnecessary memory dependencies and it avoids

conflicts on memory accesses.

SWI kernel are loop-based, thus it is possible to achieve the best performance by

avoiding data dependency on the pipeline and concurrent memory accesses. These

conditions are fundamental to optimize a SWI kernel, otherwise the OpenCL

compiler needs too much FPGA area to efficiently address data dependency (i.e.,

implementation of multiple instances of the same variable). A loop inside a SWI

kernel can be unrolled, which means that the system tries to run each loop iter-

ation in parallel. Hence, by means of #pragma unroll N directive, the compiler

unrolls the loop N times. This reflects on a speed up of N times in the execution

performance of the loop (without specify the N factor, the compiler automati-

cally unrolls the whole loop). Unrolling read and write loops of global memory

access enables to achieve the compile-time memory coalescing. This approach is

typical when a uniform and regular memory access is needed. In particular, an

irregular or not aligned access to the memory tends to decrease the performance

in FPGA. The memory transfer between the host and the global memory has

31

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

to be aligned to exploit the Direct Memory Access (DMA) acceleration. Un-

rolling global memory loops permits to have an efficient access, exploiting the

whole communication bandwidth of the memory. On the other hand, choosing

a big values of N corresponds to have accesses larger than the external memory

bandwidth, thus the best unrolled factor is the one that saturates the memory

bandwidth.

A significant optimization on area usage is to avoid function calls in the SWI

kernel. Indeed, every function call is implemented as a circuit on the FPGA,

resulting in a large usage of FPGA resource. Moreover, functions calls prevent

the compiler to create a correct report about FPGA area usage that makes the

debug harder.

Writing OpenCL code for hardware-oriented programming leads to an improve-

ment in terms of performance and area usage. As matter of example, we can

consider a simple if-then-else directive implemented in both software and hard-

ware. In software sequential programming, the if-then-else statement presents an

issue in the pipeline. Indeed, there are two possible instructions to be fetched and

the CPU has to take a decision based on the condition. Modern CPUs attempt to

predict the correct instruction to be executed. Then, the processor fetches the in-

structions based on such a prediction and, in case of wrong prediction, it discards

the partially executed instructions in the pipeline. In this scenario, the pipeline is

not stalled, ensuring a smooth execution of the directives. However, in hardware

approach (i.e., spatial programming), both ”if” and ”else” instructions branches

are mapped into hardware circuits which lead to a FPGA area overhead since

only one circuit is considered at a time. Using conditional statements (i.e., out

= (condition) ? in 1 : in 2) instead of if-then-else statements can reduce

the FPGA resources in many cases. Indeed, the if-then-else construct follows the

sequential approach and infers a priority routing network, which needs higher

resources. However, conditional statements are mapped as a unique MUX circuit

in hardware and they yields better results in terms of both resource saving and

performance [ÖRHT16].

32

Section 3 - Related works on OpenCL hardware acceleration

__kernel void sum (

__global const float * restrict a,

__global const float * restrict b,

__global float * restrict answer,

int N

)

{

for (int i = 0; i < N; i++)

answer[i] = a[i] + b[i];

}

Figure 3.8. SWI kernel to add two vectors

3. Related works on OpenCL hardware acceleration

To the best of our knowledge, this study is the first that considers OpenCL ac-

celeration in the context of 5G. A number of recent works rely on the OpenCL

language for FPGAs to deploy advanced services such as Convolutional Neural

Networks (CNNs), Finite Impulsive Response (FIR) filters or image processing

accelerations. In [WTS18], the authors provide an exhaustive analysis about

the Time-Domain Finite Impulsive Responses (TDFIRss) and Frequency-Domain

Finite Impulsive Responses (FDFIRss) implemented in the FPGA by means of

OpenCL. In particular, they focus on the performance of several FIR implemen-

tations on the FPGA as well as performance comparison between FPGA and

GPGPU. Moreover, an analysis on the area usage and power consumption is

reported.

An optimized implementation of a CNN is proposed in [AOC+17], where the au-

thors consider Deep Learning Accelerator (DLA) to overcome the memory bound

limit of the CNN deployment into FPGA. They maximize the data reuse and

minimize external memory bandwidth. Moreover, Winograd transform is further

applied to boost the FPGA performance. The results of such a scenario show

that the system is 10x faster of the state-of-the-art implementation and it has

comparable performance with GPGPU CNN deployment.

Another approach to improve CNN computation on the FPGA is described

in [ZL17]. Here, an analytical performance model regarding area usage is pre-

sented and applied to a CNN implementation. Authors show a bottleneck on

33

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

the on-chip memory bandwidth and provide a 2D interconnection between PEs

and local memory to reduce the on-chip memory requirement. Moreover, a 2D

dispatcher is further designed to reduce the external memory bandwidth.

Optimization techniques for image processing are presented in [DSF+17] where

the authors report an optimization review before presenting a spatial-spectral

classifier for Hiperspectral Image (HI). This use case is based on the K Nearest

Neighbours (KNN) filter deployed into the FPGA by means of OpenCL model.

Both SWI and NDRange kernels are tested in terms of area usage and processing

time. Moreover, a comparison between the output of KNN filtering and Support

Vector Machine (SVM) classification is reported to demonstrate the image pro-

cessing improvement.

Lastly, the implementation of an efficient 3D Fast Fourier Transform (FFT) is

presented in [SH18]. The core of the work is to improve the pipelines of the FFT

providing a valid alternative to HDL deployment. Moreover, the authors report

a performance evaluation between OpenCL, HDL, GPU and CPU. The results

show that the OpenCL performance are consistent with the HDL ones with the

advantage of using fewer resources than IP core design. A significant improve-

ment, in terms of execution time, is highlighted when the processing is performed

via OpenCL and HDL with respect to CPU and GPU platforms performance.

4. Implementation

This section describes the implementation of the 5G DU processing into the hard-

ware by means of OpenCL and the considered experimental setup. This work

decompress

data

(A-law)

IFFT
Cyclic prefix

adding
CU

Front End

Radio
UE

DU

compress

data

(A-law)

FFT
Cyclic prefix

removal
CU

DU

Frequency

offset

removal

Downlink

Uplink

Fronthaul

Fronthaul Front End

Radio
UE

Figure 3.9. DU processing with Option 7-1 functional split

34

Section 4 - Implementation

focuses on the Option 7-1 functional split which corresponds to implement the

low PHY level functionalities at the DU while the other ones are implemented at

the CU. Such functional split is implemented by the OAI experimental frame-

work used to establish a 5G communication [NMM+14]. Many other 5G tasks

can be also considered as good candidates to be accelerated into the hardware, up

to entire layers of the 5G protocol stack. However, offloading a lot of processing

into the hardware may result in a huge area required by the FPGA, as well as

a costly solution has to be adopted. Thus, only the tasks that require strong

computation capabilities with latency critical constraints should be deployed in

hardware, exploiting the reconfigurable computing approach where the hardware

represents the acceleration part, handled by the software.

Figure 3.9 shows the functionalities implemented in the DU both in downlink and

uplink, considering option 7-1 split based on the OAI implementation. In down-

link direction, the DU receives compressed the I/Q samples from the midhaul in

the frequency domain. The data in the midhaul are compressed to save capacity

and the DU applies the decompression algorithm based on the A-law [Rec88].

Each I/Q sample consists of 32 bits divided into 16 bits that represent the real

part and 16 bits for the complex part. Then, the DU performs the inverse Fast

Fourier Transform (iFFT) to convert the samples in the time domain and it adds

the cyclic prefix, which is a guard interval to avoid inter-block interference be-

tween successive symbols. As last step, the DU sends the data to the radio front

end, which has the role to do the Digital to Analog Conversion (DAC) and it

handles the communication with the UE, which is a generic end-user device.

In the uplink direction, dual operations than the downlink direction are per-

formed with the addition of the frequency offset removal. Indeed, such an offset

is considered in baseband receiver to address the non-idealities problems such

as sampling clock offset, IQ imbalance, power amplifier, phase noise and car-

rier frequency offset non-linearity. The processing described above is a part of

the OFDM modulation/demodulation that is considered for 5G communications.

In particular, the 5G OFDM processing is considered inside the DU to evaluate

both the FPGA area usage and performance time for OpenCL offloading, thus the

iFFT and the cyclic prefix addition kernels are deployed in hardware. Regarding

the iFFT step, an integer algorithm based on the Cooley-Tukey approach [CT65]

is implemented. To better understand the algorithm and its implementation, we

can focus on the FFT instead of the inverse one since the iFFT can be calculated

35

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

by using the forward FFT and considering complex conjugation of the data be-

fore and after the forward FFT processing [DPE88]. Thus, in the following, we

describe the iFFT considering the forward FFT. For the sake of simplicity, the

forward FFT is deepened from time to frequency but the same process can be

applied from frequency to time to complete the iFFT step. The FFT is based on

three steps: i) decomposition of the signal in time, which consists in the division

of a time domain signal composed by N points into N time domain signals each

composed of a single point; ii) the second step considers the conversion of N time

domain signals into N frequency spectra; iii) last step is the recomposition of N

frequency spectra into a single frequency spectrum. Figure 3.10 shows how the

decomposition works, starting from a 8 point signal. In this scenario, three stages

are necessary to complete the decomposition. The first stage breaks 8 points sig-

nal into two signals of 4 points each. Then, second stage divides each 4 point

signal in 4 signals of 2 points. Finally, the last stage permits to have 8 different

point signals by breaking every 2 points signal in two parts. In general, with N

points signal, this pattern can continue until there are N signals composed of a

single point. Thus, the number of stages can be calculated by log2N .

The next step is to calculate N frequency spectra of a 1 point N time domain

signals. This calculation is very easy since the spectrum of a 1 point time signal

is equal to itself, thus no further computation is required to complete the second

step. Finally, the third step is to combine N frequency spectra in the reverse order

of the decomposition phase for a N points signal in time (first step). To easily

understand this step (which is the most important of the FFT procedure), we

can consider two time domain signals based on 4 points, abcd, efgh. To combine

them and get an unique 8 point signal, we can add zeros to have 2 signals 8 points

each, a0b0c0d0 and 0e0f0g0h and if we do the sum we get abcdefgh. Adding the

zero to a 4 points signal corresponds to a duplication in the frequency domain,

thus the final spectrum is the sum of the duplicated spectra ABCDABCD and

EFGHEFGH. Moreover, the signal abcd is added with zeros located in the odd

places (starting from zero to count) while the signal efgh is interleaved with zeros

in the even places. In this scenario, the points e, f, g, h are also shifted to the

right before adding the zeros. In the frequency domain, such a shift corresponds

to a multiplication by a sinusoid. Figure 3.11 shows the final synthesis flow

diagram to complete the third step, which is so-called butterfly due to its winged

appearance [S+97].

36

Section 4 - Implementation

0 1 2 3 4 5 6 7

0 2 4 6 1 3 5 7

0 4 2 6 1 5 3 7

0 4 2 6 1 5 3 7

1 signal of 8 points

2 signal of 4 points

4 signal of 2 points

8 signal of 1 point

Figure 3.10. FFT decomposition

In the 5G environment, the FFT is used to process the I/Q samples during the

OFDM modulation stage in the 5G architecture. The algorithm developed for the

OpenCL application receives in input a number of samples equals to the OFDM

symbol size. Since the iFFT is considered, all the samples are points of signal in

frequency to be converted to a signal in time domain. To complete the OFDM

processing at the DU side, the cyclic prefix addition kernel is offloaded to the

hardware to prevent interference between OFDM symbols.

Figure 3.12 depicts the block diagram of both HDL and SIMD deployments. Fig-

ure 3.12a shows the block diagram for the SIMD approach. The data coming

from midhaul is uncompressed and processed by the iFFT task based on SIMD

instructions. This work considers the Intel Advanced Vector Extension 2 (AVX2)

SIMD instruction set that performs operations on 256-bit vectorized data. Such

instruction set achieves better performance than previous SIMD extensions, in

particular with floating point calculation and data organization. The iFFT al-

gorithm is computed by using the forward FFT and considering complex conju-

gation of the data before and after the forward FFT processing. Three SIMD

37

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

+ + + + + + + +
-

Odd-4 points

frequency spectrum

Even-4 points

frequency spectrum

8 points frequency spectrum

xT xTxT xT

- - -

Figure 3.11. FFT butterfly

functions are implemented to address the integer FFT Cooley-Tukey algorithm,

as described above: i) decomposition of the signal in frequency, ii) the conversion

of N frequency spectra into N time signals and iii) the re-composition of N time

signals into a single time signal (i.e., iFFT butterfly). The last step is the most

significant one in terms of computation complexity due to totally connected data

dependencies to previous steps. Each input sample of the FFT consists on 32

bit integer type where the first 16 bits represent the real part and the second 16

bits the imaginary part. As discussed above, the Intel AVX2 SIMD instructions

can process 256 bit at once, thus 8 FFT samples are computed with a single in-

struction, ensuring a good degree of data parallelism. Since iFFT is considered,

all the samples are points of signal in frequency to be converted to a signal in

time domain. The output data is computed by the cyclic prefix insertion SIMD

function that inserts redundant bytes before iFFT samples in the stream. The

number of bytes to be added is summarized in Table 3.1 together with the com-

plete OFDM 5G numerology considered for this work [MBQB18,DPS16]. Even

if the present value considered as maximum symbol size is 4096 [DGDLR18],

38

Section 4 - Implementation

the results up to 8192 symbol size are also evaluated to understand which are the

better approaches to address a possible future implementation of this size, since

the 5G PHY layer is still under study.

Figure 3.12b shows the top-level block diagram for the HDL use case. Here, the

data in the frequency domain from the midhaul is uncompressed and sent to the

FPGA by means of the PCIe interface. Then, the data is processed by the Intel

iFFT IP core that returns the samples in the time domain. The streaming iFFT

(a) (b)

Figure 3.12. Architecture descriptions for a) SIMD and b) HDL

implemented 5G DU processing

39

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

OFDM

Symbol Size (N)

Cyclic prefix

length (M)

Resource Blocks

(RBs)

Channel Bandwidth

(MHz)

128 10 6 1.4

256 20 15 3

512 40 25 5

1024 80 50 10

2048 160 100 20

4096 320 275 up to 200

8192 640 550 up to 900

Table 3.1. OFDM numerology

setting allows continuous processing of input data and it provides continuous com-

plex data stream as output, without halting the dataflow. The streaming iFFT is

based on quad output iFFT engine which minimizes the transform time. Quad-

output refers to the throughput of the internal iFFT butterfly computing [Int17].

The engine implementation computes all four radix-4 butterfly complex outputs

in a single clock cycle. The output of the iFFT block is sent to the custom IP

for cyclic prefix addition. The IP core is synchronized at the output of the iFFT

block to add the cyclic prefix bytes without adding clock cycles. The output of

the design is a burst of samples in time domain composed by some redundant

samples representing the cyclic prefix and the complex samples converted from

frequency to time. The number of cyclic prefix bytes depends on the OFDM

symbol size considered, as summarized in Table 3.1.

Regarding OpenCL, the 5G OFDM computation inside the DU is considered to

evaluate both the FPGA area usage and processing time for OpenCL offloading.

Thus, the iFFT and the cyclic prefix addition kernels are deployed in hardware,

according to Figure 3.9. Dealing with the iFFT task, an integer algorithm is im-

plemented, always based on the Cooley-Tukey approach. The same steps consid-

ered in the SIMD deployment are taken into account. In the OpenCL for FPGA

scenario, the implementation of an integer algorithm is preferable to avoid ex-

cessive usage of DSP blocks of the FPGA. Indeed the floating point calculations

require complex circuits based on adders, subtractors and multipliers that use

DSP resources of the FPGA. The algorithm developed for the OpenCL applica-

tion receives as input a number of samples equals to the OFDM symbol size. To

complete the OFDM processing at the DU side, the cyclic prefix addition kernel

40

Section 4 - Implementation

is also offloaded to hardware. It prevents interferences between OFDM symbols.

Figure 3.13 shows the setup with the internal connection between host, FPGA

and FPGA memory. The communication interface between the host and the

FPGA is a PCIe that can interact directly with the global memory by means

of a memory hardware controller. The PCIe bandwidth is around 4 GB/s. The

maximum symbol size considered for this work is 8192 and each samples is 32 bit

based. Thus, the maximum bandwidth for the OFDM used to transfer the data

from the host to the FPGA is 262144 bits/s, significantly below the maximum

PCIe bandwidth. The RAM of the board represents the global memory of the

OpenCL environment and it can be accessible from the kernel pipeline, exploit-

ing the global memory interconnect to interleave data accesses and hide latencies.

The intermediate variables necessary for the kernel computation can be stored in

both the RAM blocks (local memory) and the FPGA registers (private memory).

In case of using RAM blocks, a local memory interconnect is necessary to access

the memory itself.

Table 3.2 summarizes the characteristics of the Terasic DE5-Net board considered

for this work as OpenCL device. Moreover, the host is based on the the processor

Intel Xeon W-2133 equipped with 12 cores with 3.60GHz clock frequency.

The host is capable of both compiling and executing the kernel. Once the FPGA

is programmed, the host can start the kernel and read/write the global memory

Figure 3.13. System setup

41

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

Board Terasic DE5-Net

FPGA Intel Stratix V GX

Resources
∼622000 LEs

256 DSPs

RAM 2x 4GB DDR3 @933 MHz each

Interface to Host PCI Express (PCIe) x8 lanes

Table 3.2. Terasic DE5-Net board specifications

exploiting the OpenCL API.

The kernel considered for this work is SWI based and it is optimized to reach

higher global memory throughput and to reduce memory latency transfer. Clos-

ing the gap between kernel frequency and memory controller frequency permits

to achieve the saturation bandwidth, which is an important parameter to ob-

tain the above optimizations. In particular, memory controller usually runs at 1
8

of the clock of the external memory for DDR3 memory types. Considering the

bus width of 64 bits for DDR3 memory, the memory bandwidth is saturated if

the kernel runs at the same operating frequency of the memory controller (1
8

of

memory frequency). Thus, the saturation bandwidth SB can be calculated with

Eq.6, where BW is the bus width, Nddr is the number of DDR banks, MF is the

memory frequency and KF is the kernel frequency.

SB = BW× Nddr ×
MF

KF
= 64 bit× 2× 8 = 1024 bits/clock cycle (6)

This value is the maximum SB achievable and it can be obtained under the fol-

lowing conditions: i) the kernel has to only have one read and one write memory

access. Then, ii) no stalling shall occur, iii) the memory accesses have to be

word aligned and iv) balanced readings and writings have to be done (the same

number of bytes have to be read and written from/to the memory). Otherwise,

if one or more conditions are not met, a significant overhead of computing cycle

occurs and the execution time performance is degraded. These conditions permit

to increase the OpenCL kernel frequency up to 1
8

of the clock of the external

memory. As described in Table 3.2, the Terasic DE5-Net board is based on two

banks of DDR3 memory, 933 MHz each, with double data-rate. This means that

we can consider 1866 MHz (i.e., 2 × 933 MHz) as external memory clock and

the FPGA memory controller is 1
8

of this value (i.e., ∼233 MHz). Hence, the

42

Section 4 - Implementation

saturation bandwidth is achieved if the kernel frequency is equal to 233 MHz (at

least, as close as possible). In this work, all the OpenCL kernels developed for the

evaluation reach this working frequency, ensuring the maximum global memory

throughput.

The kernels developed considers the variables storage inside the FPGA registers

to reach lower processing time. If we consider on-chip memory (or block RAM)

to store the kernel variables necessaries for the processing, several accesses are re-

quired to the block RAMs, reducing the processing time. For instance, unrolling

loops with large unroll factor can cause memory conflicts on the on-chip memory,

if a precise pattern for the accesses is not well-defined. The OpenCL compiler

tries to optimize the accesses but area usage and latency increases due to the

concurrence.

However, storing the kernel variables as registers permits to achieve higher per-

formance since no memory access is required and no conflicts are possible for

concurrent access. As matter of example, we can consider to store an array of 64

elements 16-bit each. The compiler considers 64 registers of 16-bit width. In this

scenario, no conflicts are possible since every element of the array has its own

register. This methods requires higher FPGA resources, in particular Adaptive

Look Up Tabless (ALUTss) and Flip Flopss (FFss). The compiler could increase

the size of registers in case of data dependency. Too many variables stored as

registers can rapidly increase the overall logic utilization and the OpenCL design

does not fit into the FPGA.

Many other optimizations are carried out to improve the kernel performance in

terms of both improving processing time and reducing FPGA area usage. In par-

ticular, to reduce area usage, the function calls are avoided since every function is

implemented as a circuit on the FPGA, resulting in excessive use of the resources.

However, for the processing time, all the kernel loops are unrolled. This means

that all the loops can be executed in one clock cycle but each loop is deployed in

the FPGA as a single hardware circuit, resulting in a significant area usage.

Regarding the FPGA programming method, the Stratix V FPGA is based on the

PCIe interface for the host communication. In our scenario, where the PCIe is

the interface between host and device, three different methods are considered to

program the FPGA. The first one consists of using the USB-JTAG interface to

download the bitstream to the FPGA. This is an old approach and rarely used

when the PCIe interface is present since it is slow and prone to errors.

43

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

The second method is Configuration via Protocol (CvP) and it is the fastest

method since it exploits the PCIe, but it also needs the third method to be ac-

complished. The OpenCL framework for Intel FPGA is based on the Partial

Reconfiguration (PR) and its architecture is composed by two different designs:

periphery and core. The periphery is a design where all peripheral interfaces are

instantiated and it represents the structure capable of accepting the core design

of OpenCL. Thus, the core design is the OpenCL hardware design that can be re-

configured for different OpenCL application, while the periphery design remains

the same. Moreover, before reprogramming the core design, the OpenCL pro-

grammer checks if the periphery design is currently programmed in the FPGA

and, only if it is the same of the compiled configuration, the core design can

be replaced. In this scenario, CvP is used to replace the FPGA kernel core de-

sign in the FPGA by means of the PCIe interface. Although CvP is faster, it

is not suitable for periphery design programming that needs the third approach

which exploits the flash memory. Indeed, both periphery and core design are

programmed in FPGA flash and this method is used if the periphery design has

changed or not already loaded. In this case, the FPGA is programmed with a

flash loader that permits the direct communication between the host and the

flash. Once the flash is programmed, both designs are loaded and the FPGA is

ready to interact with the host. Programming the FPGA via CvP before pro-

gramming the flash may not have effect on the FPGA since the periphery design

has to be loaded to guarantee the communication via PCIe interface.

A further deepening is necessary on the core design to be programmed via CvP.

Once the periphery design is ready, it is imported in all the core designs update

revision compilations. Then, the compilation of the core design is proceeded and

the system automatically creates a ”kernel system” that contains IPs and a wrap-

per logic capable of interacting with the periphery design for external interfaces

access.

5. Performance evaluation and results

To evaluate the offloading of 5G computation to reconfigurable hardware, three

different performance parameters are considered: FPGA area usage, overall exe-

cution time and computational load. All the parameters refer to the implemen-

tation of the OFDM downlink processing for Option 7-1 functional split in the

44

Section 5 - Performance evaluation and results

DU part of the 5G architecture, as described in Figure 3.9. The first parame-

ter permits to evaluate the FPGA resources needed to offload the computation.

Moreover, the resource utilization for both HDL and OpenCL methods is re-

ported to have a comparison between these two different approaches.

The second parameter is based on both processing time and memory transfer

time performance. In particular, memory transfer time is evaluated for the both

OpenCL and HDL approaches and it is defined as the time necessary to send

the data from the host to the device and vice versa. However, the pure pro-

cessing time analysis is done by comparing the OpenCL platform with HDL and

software SIMD implementations. Moreover, a model is developed to predict the

pure processing time values for those OFDM symbol sizes that not fit into the

FPGA (for OpenCL case). Likewise, SIMD model is necessary to estimate the

processing time for bigger OFDM simbol size since the present implementation

of 5G OFDM considers symbol sizes up to 4096, as discussed above. The SIMD

approach is already implemented in the OAI 5G framework, thus it can be con-

sidered as a benchmark to evaluate the processing time performance. Moreover,

it has the best software performance for the iFFT computation [Rod02], which

represents the most significant part of the OFDM processing. Both area and

overall execution time parameters refer to different OFDM symbol sizes already

implemented in the 5G architecture. As described above, the present value con-

sidered as maximum symbol size is 4096, but also the results at 8192 symbol

size are evaluated to understand which are the better approaches to address a

possible future implementation of this size, since the 5G PHY layer is still under

study.

Finally, the computation load parameter is referred to the CPU processing load

for both SIMD execution and OpenCL hardware offloading. In this case, the goal

is to show if the OpenCL approach permits to save the CPU processing.

5.1. Resource usage evaluation. To evaluate the area usage of the FPGA,

the resource utilization for both HDL and OpenCL approaches is reported. Area

usage is reported in Table 3.3 where the results are presented for different OFDM

symbol sizes. The OpenCL values refer to the resource occupation, given by the

report generated during the OpenCL kernel compilation. Here, it is evident the

resource usage differences, which reflect the different model application of HDL

and HLD. Indeed, the FPGA resources used for the OpenCL implementation

are much higher than the HDL cases. The reason lies in the abstraction layer

45

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

introduced by the OpenCL. However, the OpenCL resources could be lower

since all the loops are fully unrolled to address the OFDM computation. This

OpenCL programming method permits to improve the processing time to meet

the 5G requirements, at the cost of significant increase of the area usage. In this

scenario, the maximum OpenCL hardware acceleration is implemented for a 512

symbol size OFDM while, for higher symbol size, the OFDM does not fit.

OFDM Symbol

Size

Logic Util (ALMs) Registers Total Memory bits DSPs

HDL OpenCL HDL OpenCL HDL OpenCL HDL OpenCL

128 2% 29% 1% 13% <1% 7% 2% 24%

256 3% 51% 1% 25% <1% 7% 2% 48%

512 5% 95% 2% 49% <1% 8% 2% 86%

1024 9% No FIT 3% No FIT <1% No FIT 2% No FIT

2048 16% No FIT 4% No FIT 1% No FIT 5% No FIT

4096 31% No FIT 8% No FIT 2% No FIT 5% No FIT

8192 60% No FIT 15% No FIT 3% No FIT 5% No FIT

Table 3.3. OpenCL and HDL FPGA resource usage

5.2. Overall execution time performance evaluation. To evaluate the

overall execution time considered for the reconfigurable computing model, the

pure processing time and memory transfer time between the host and the OpenCL

device are considered. Regarding the memory transfer latency in the OpenCL

scenario, around 233 µs are measured for all the OFDM symbol sizes, considering

a CPU core dedicated to run the OpenCL kernel. This time represents a bot-

tleneck due to the data transfer and synchronization between the host and the

device memory as well as the readings and writings from/to the global memory

(which is the DDR3 RAM for the considered board) and the FPGA. The transfer

time in case of OFDM hardware offloading exploiting a single CPU core shared

with other concurrent tasks (dedicated to both opeartive system and user appli-

cations) is around 468 µs for all the OFDM symbol sizes. Such a value is around

the double of 233 µs, measured in case of ideal condition of CPU dedicated core,

which demonstrates that this latency is due to software synchronization with the

PCIe interface since the pure kernel processing time remains the same. The mem-

ory transfer time is calculated by subtracting the execution time of the kernel

under exam with the execution time of a no operation loopback kernel (the data

are sent from the host to the kernel and immediately forwarded by the kernel

46

Section 5 - Performance evaluation and results

to the host). Moreover, more readings/writings from/to the global memory can

significantly increase the overall kernel execution time. For these reasons, in a

possible implementation of the OpenCL approach for 5G, the PCIe interface be-

tween the host and the device represents a bottleneck that has to be avoided.

A possible solution is to exploit the auto-run kernels and the OpenCL channels.

The auto-run kernels permit to execute the processing in hardware without the

interaction with the global memory. Indeed, the host starts the auto-run kernel

which can process the data acquired by means of the I/O OpenCL channels. For

instance, in the 5G context, such a kernel can gather the data to be directly

computed exploiting the Ethernet or optic fiber hardware channels. Moreover,

if more kernels are instantiated, the OpenCL channels enable the data transfer

between the kernels without global memory interactions that increase the overall

processing time.

Regarding the pure computation time without considering memory transfers,

Figure 3.14 and Figure 3.15 show performance ratio trend for the SIMD, OpenCL

and the processing time performance for the SIMD, OpenCL and HDL. Both

plots are depicted with OFDM symbol size (from 128 up to 8192) as x axis.

Here, the processing time curves are based on experimental results and estimated,

except for the HDL case. As previously discussed, the PHY layer of 5G is still

under study, thus the SIMD values are calculated according to the present symbol

size. However, according to Table 3.3, OpenCL kernels does not fit into the

hardware for OFDM symbol size bigger than 512. This means that for both

OpenCL and SIMD is necessary a model to estimate the processing time up to

8192 OFDM symbol size to understand the behaviour of these deployments.

The model to evaluate the latency is based on the performance ratio calculated by

taking into account the complexity of the OFDM processing. On downlink side,

the DU have to compute the iFFT and the cyclic prefix addition to complete the

OFDM. Since the iFFT is based on the Cooley-Tukey algorithm, the complexity

can be calculated by N × log N where N is the OFDM symbol size considered,

while the complexity of the cyclic prefix addition is M where M is the number of

samples to be added as cyclic prefix.

Table 3.4 shows the complexity of the both iFFT and cyclic prefix addition.

The number of samples considered for the cyclic prefix are the same presented

in [3GP18], while for 8192 OFDM symbol size a possible value has to be esti-

mated. Since the complexity of the cyclic prefix is much smaller than the iFFT

47

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

OFDM

Symbol Size (N)

Cyclic prefix

length (M)

iFFT complexity

0(N*logN)

Cyclic prefix

addition complexity

O(M)

128 10 269.72 10

256 20 616.51 20

512 40 1387.15 40

1024 80 3082.55 80

2048 160 6781.60 160

4096 320 14796.23 320

8192 640 69049.06 640

Table 3.4. DU OFDM computation complexity for Option 7-1 split

complexity, the overall complexity can be considered equal to the iFFT one. The

performance ratio is calculated dividing the measured processing time by the

complexity. The trends are obtained by the interpolation of the performance ra-

tio values calculated for different OFDM symbol sizes. To get the curves for the

performance ratio, the Matlab curve fitting tool is used, choosing the equation

that maximizes the R factor. Such a factor is defined as the square of the corre-

lation between the response values and the predicted response values. R factor

range is between 0 and 1. A value close to 1 indicates that a greater proportion

of variance is accounted for by the model.

The OpenCL trend follows the exponential law while the SIMD trend can be

considered as a second order hyperbola (Eq. 7).

OpenCL => axb + c and SIMD => a+
b

x
+

c

x2
(7)

Such models permit to estimate the processing time for both SIMD and OpenCL

and they are depicted in Figure 3.14 in logarithmic scale, where it is evident

the differences between the two trends. Indeed, OpenCL has a better processing

attitude when the data size increases due to its pipelined approach. Moreover,

the OpenCL performance are not expected to significantly increase since a fully

parallelized kernel is considered. This approach results in a more resource us-

age, as shown in Table 3.3, but the performance considerably improve. However,

the SIMD computation is lower for smaller data processing that reflects into

an important distance between the two curve for OFDM symbol size less than

48

Section 5 - Performance evaluation and results

���������	�
����

�
�
��
�
��

�
�
	�

�
�
�
�

�
��
	�

�
�
��
�
�
�
�

�����

����

��
����
������
���
��� ����� �����

�	�
����������������
�	�
�������
�����������������������������������
��������������������������������
��������������������������
�����������������������

Figure 3.14. Performance ratio trend obtained by dividing per-

formance time measured by OFDM complexity

2048. The SIMD model follows the sequential computing approach typical of the

software that increases computation for large data batch. Performance ratio es-

timated values are calculated starting from the measured processing time, which

permits to build part of the plot. In particular, the OpenCL ratio trend is also

based on 16 and 64 symbol sizes, to have more points for a better performance

ratio estimation, even if these are not possible OFDM symbol sizes.

Regarding the processing time, depicted in Figure 3.15 in logarithmic scale, the

SIMD implementation has linear performance which reflects into a parabolic be-

haviour in normal scale. Moreover, for SIMD evaluation, two different models

are depicted, which correspond to the computation of the OFDM task exploiting

a CPU core dedicated and a CPU core shared with concurrent tasks. The per-

formance time trend for SIMD considering a core dedicated is the best one after

2048 symbol size but it represents an ideal situation that is difficult to meet in

the 5G. Indeed, one of the main novelty of 5G is the virtualization that require

multiple threads to be executed in parallel, thus, for this analysis, the OFDM

SIMD processing along with other parallel tasks is considered. Furthermore, the

SIMD approach cannot be parallelized by means of multi-threading since SIMD

and multi-threading are ”orthogonal” solutions that consider a different level of

49

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

���������	
����
����������
�
��

��
��
��
	

�
��

�

�
�
��

���

�

��

���

��
����
������
����
��� ����� �����

�	�
����������
�	�
���������
�����������������������������
��������������������������
����������������������������
�������������������������
 ��!"#$�� %&
 ��!"#'��� %&

Figure 3.15. OpenCL, SIMD, HDL measured and estimated pro-

cessing time performance

parallelism. Indeed, SIMD solution is a data parallelism where multiple data can

be processed in parallel with a single instruction. As a matter of example we can

consider a 256-bit SIMD vector that contains 8 OFDM samples 32 bit each, thus

we can process 8 samples with a single instruction. However, the multithreading

approach is task parallelism based that is taken into account when a large-scale

parallelism is considered. This model tends to distribute the computation among

multiple threads and not to multiple data. In this work data parallelism for both

software is considered (i.e., SIMD) and hardware (i.e., SWI OpenCL kernel that

considers fully unrolled loops), thus the comparison is based on the same type

of parallelism. However, another approach based on both method is possible,

the so-called Single Instruction Multiple Thread (SIMT), that shares the tasks

among multiple cores and each task is executed exploiting the data parallelism

(by means of SIMD instructions). This approach is common in GPGPU archi-

tecture or Xeon Phi processor, which is a series of X86 manycore CPU designed

and made by Intel. Anyway, the OpenCL model also permits to distribute the

computation among multiple threads, as discussed in the first section of this

Chapter. Indeed, OpenCL is also suitable for GPGPUs to accelerate the appli-

cation among multiple threads. In this scenario, the best performance can be

50

Section 5 - Performance evaluation and results

reached by considering NDRange kernels that automatically divides the applica-

tion computation between many tasks to be separately executed in the GPGPU

cores. In case of FPGA architectures, both task and data parallelism can be

considered since concurrent tasks or multiple data can be anyway accelerated by

means of dedicated hardware circuits.

About OpenCL curves, they show an almost constant behaviour (negative ex-

ponential in linear scale) and the performance are worse up to 2048 symbol size

with respect to SIMD. However, the OpenCL trend (calculated from the per-

formance ratio values) increases less rapidly than SIMD and they have the same

performance at 4096 symbol size, while OpenCL could be a better approach after

this value. As discussed at the beginning of this Section, running OpenCL kernel

in parallel with other software tasks does not affect the hardware processing time

but only the data transfer latency. Thus, the OpenCL processing time is the

same in case of both CPU core resources shared and dedicated.

The same parameter considered for the OpenCL can be taken into account for

HDL deployment. Indeed, the overall execution time can be divided in the

throughput latency (i.e., memory transfer time) and the calculation latency (i.e.,

processing time). The first one represents the latency due to the data transfer

towards the OFDM processing hardware IP and it corresponds to N clock cycles,

where N is the OFDM symbol size. The calculation latency represents the clock

cycles needed to do the processing. Figure 3.15 also shows HDL curves that only

takes into account the calculation latency, which is the delay introduced by the

OFDM computation task. Calculation latency is depicted in time domain after

multiplying the clock cycles needed for the computation by the inverse of the

FPGA operating frequency. Here, 50 MHz and 200 MHz working frequencies

are imposed for the evaluation of the HDL curves: 50 MHz constraint as work-

ing frequency is respected while the 200 MHz is not met for OFDM symbol size

bigger than 1024. Table 3.5 shows the frequencies reported by the Intel Quar-

tus Timing Analyzer according to the Slow 85°C Timing model which provides

timing delays for the FPGA operating under the conditions of i) slowest silicon

for the specific speed grade, ii) low voltage and iii) 85°C junction temperature.

Such conditions represent a possible worst-case for the device. Indeed, since each

FPGA, which is cut from a silicon wafer, has delay differences, the timing ana-

lyzer takes into account the worst performance of a specified speed grade. Low

51

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

voltage decreases the transistor switching speed by decreasing electron mobil-

ity through the transistors. High temperature also affects transistor speed by

changing the characteristics of the silicon material, leakage current, and electron

mobility [MW10].

OFDM Symbol

Size

FPGA Fmax

(MHz)

50 MHz

Constrain

200 MHz

Constrain

128 131 231

256 126 222

512 100 209

1024 95 198

2048 78 194

4096 75 183

8192 71 150

Table 3.5. FPGA Timing analyzer frequency report for each

OFDM symbol size

In Figure 3.15, it should be noticed that the HDL curves have better performance

of both OpenCL and SIMD for OFDM symbol size less than or equal to 1024.

After this values, the HDL computation increased and the SIMD processing time

is the best of the three approaches up to 2048 OFDM symbol size. Starting from

8192 OFDM symbol size, both OpenCL and SIMD approaches could have less

processing time.

Finally, a consideration about the technology is necessary. The Intel Xeon W-

2133 used for the SIMD processing is produced with a 14 nm production tech-

nology while the Intel Stratix V FPGA is based on the 28 nm technology. This

means that 14 nm FPGA (e.g., Intel Stratix 10 series) can achieve better per-

formance in terms of both area usage (in particular for OpenCL approach) and

working frequency that can significantly reduce the curves reported for the hard-

ware scenario.

5.3. Computational load evaluation. For the last evaluation, the perfor-

mance parameter considered is the CPU load. Such a parameter can be further

characterized by three CPU states during the computation: idle state, system

52

Section 5 - Performance evaluation and results

processing state, and user state. The first one refers to the time that the CPU

is idle and the system does not have outstanding I/O requests. The system pro-

cessing state represents the CPU utilization that occurred to execute task at the

system level (kernel). Moreover, this state refers to the interaction of the system

with the external physical peripherals. The last state is the user state that stands

for the CPU utilization while executing user level applications.

All the tests are performed considering a single core of the Intel Xeon processor.

In particular, one core is unhooked from the operative system computation and

exclusively dedicated to the processing of the OFDM algorithm.

CPU core load during SIMD computation

C
P

U
 c

o
re

 c
o

m
p

u
ta

ti
o

n
a

l
lo

a
d

 [
%

]

0

20

40

60

80

100

Time [s]
0 20 40 60 80 100

user
system
idle

Figure 3.16. CPU core computation load for OFDM execution

via SIMD (purely software)

Figures 3.16 and 3.17 report the results of the CPU load during computation of

the OFDM via SIMD (purely software) and via OpenCL respectively, while Fig-

ure 3.18 shows the performance of the CPU during a switch from software to the

hardware processing, triggered by a manager. Such a manager is developed to

control the CPU state in terms of processing load. Thus, the hardware offloading

is enabled when the CPU computation is heavy for long time. The logic of the

manager considers a simple algorithm based on a threshold on the CPU load.

The hardware acceleration is triggered once this threshold is overcame after one

minute. However, more efficient algorithms that can take into account the aver-

age energy consumed by the CPU during the processing phase can be developed.

53

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

CPU core load during FPGA acceleration
C

P
U

 c
o

re
 c

o
m

p
u

ta
ti

o
n

a
l

lo
a

d
 [

%
]

0

20

40

60

80

100

Time [s]
0 50 100

user
system
idle

user
system
idle

Figure 3.17. CPU core computation load for OFDM execution

via OpenCL offload

CPU-FPGA computation switch

C
P

U
 c

o
re

 c
o

m
p

u
ta

ti
o

n
a

l
lo

a
d

 [
%

]

0

20

40

60

80

100

Time [s]
0 20 40 60 80 100 120 140

user
system
idle

Figure 3.18. CPU core computation load during the switch from

software to the hardware

Figure 3.16 shows the CPU load when the processing is purely software. Here,

the CPU core is only in idle state at the beginning and at the end of the test.

The computation load required by the SIMD is constant at 100% for the entire

54

Section 6 - Design productivity analysis with OpenCL acceleration

duration of the OFDM execution. Moreover, the core is always in user state since

no interactions with the external peripheral are required.

Figure 3.17 depicts the percentage of the CPU core during the OpenCL offload.

In this scenario, the computation state is divided between the user state and

the system state. Indeed, the user state is due to the host OpenCL application

running while the system state reflects the PCIe interactions of the host with the

global memory. The user application requires around 25% of the core load while

the interaction with the PCIe interface is around 60%. The idle state is around

15% which is not found in the pure software use case.

Figure 3.18 show the transaction between hardware to software. Such a trans-

action is triggered by the manager after around 60 seconds of the CPU core

utilization at 100%. Here, the differences between the two approaches are high-

lighted and the OpenCL approach reduces the computation load since the core

remains in idle state for the 15% of the time. This means that the computational

power of the CPU can be reduced by means of hardware offloading and part of

the computation load can be reassigned to other tasks.

Finally, a consideration for the OFDM symbol size is necessary. This parame-

ter evaluation is carried out with 256 and 512 OFDM symbol sizes and, in both

scenarios, the results for SIMD and OpenCL are the same. Considering SIMD ap-

proach, OFDM computation always requires 100% of CPU processing. However,

OpenCL approach requires the same CPU computation since all the processing

is carried out in the hardware. Indeed, on the software side, the OpenCL appli-

cation, that controls the FPGA execution, needs the same percentage of CPU

resources in terms of both user state (i.e., OpenCL API application) and system

state (i.e., interaction with PCIe) for all the OFDM symbol sizes.

6. Design productivity analysis with OpenCL acceleration

In this Section, the evaluation of the design productivity of deploying OpenCL

kernel is addressed. According to [PBMB16], the performance of a High-Level

Synthesis (HLS) approach is a trade-off between a quality system optimization

(e.g., resource usage, memory accesses, etc.) and design efficiency. In particular,

design efficiency can be expressed with several indicators like complexity of the

design, the cost of the new code, the ”developer friendliness” of programming

language, the designer experience and the testability of results. These indicators

55

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

7.9%

11%

19%

13%16%

16%

7.9%

10%

 5G processing analysis
 iFFT float to int study
 SIMD-OpenCL conversion
 OpenCL resource optimization
 Co-design implementation
 iFFT kernel fitting to FPGA
 Bug fixing
 OFDM implementation

Figure 3.19. Design efficiency and implementation chart

can be also used ”as is” for the HLD method considered in this work and they

reflect into system integration time and design time. The first one concerns the

verification and the validation of the the design and it depends on more electronic

aspects like analog-to-digital and digital-to-analog conversions or electrostatic

discharge that can damage the system. However, the design time refers to all the

tasks necessary to create an application up to the deployment phase. This second

parameter depends on the knowledge of the designer about both the system where

the application has to be developed and the programming language and tools

used to create the application. In this work, the time considered refers to a single

developer with experience on the embedded systems but novice in the OpenCL

programming model.

Figure 3.19 reports the percentage of overall time considered (3 months) to finish

a precise task in the application development. The work starts with analysis of

the 5G DU processing under the option 7-1 functional split. In particular, the

most significant contribution, in terms of complexity, is represented by the iFFT

Cooley-Tukey algorithm. Thus, some examples of its implementation in both

float and integer representation are considered before starting the implementa-

tion (this task requires 7.9% of the development time). Since many OpenCL

iFFT float implementations are available off-the-shelf, the second step considers

the adaptation of the float version in the integer version of the iFFT. This step

permits to understand if the off-the-shelf iFFT can be suitable for the OFDM

56

Section 6 - Design productivity analysis with OpenCL acceleration

stage in the 5G DU processing. It requires 11% of the time.

Unfortunately, such a conversion needs a lot of work due to the conversion of each

float operation into an integer one and the computation of all the twiddle factors.

Indeed, twiddle factors are calculated at runtime in the float version by means of

sine and cosine functions. In the integer iFFT considered in the 5G architecture,

twiddle factors have to be constant values to avoid FPGA resource overhead or

they can be computed at runtime after an offline conversion of the functions sine

and cosine into integer lookup tables. Thus, a better way to address the integer

iFFT design is to consider an OpenCL kernel created from the SIMD implemen-

tation of the integer iFFT. The SIMD version of iFFT is already deployed in

the 5G communication framework. The replacement of such a iFFT in the 5G

application can be easier thanks to the excellent integration of the OpenCL with

the software. The SIMD-iFFT conversion to an OpenCL kernel requires 19% of

the time.

The next two steps are related to the optimization of the iFFT kernel created in

terms of area resources. Initially, it does not fit into the hardware since many op-

timizations have to be performed. The first step refers to an optimization of the

loops inside the kernel and it takes 13% of the overall time. However, 16% of the

time is required to move the iFFT from pure OpenCL kernel to a co-design ap-

proach. The co-design is necessary to achieve both the best performance in terms

of processing time and a lower area usage. All the loops inside the OpenCL kernel

are unrolled but this optimization requires many FPGA resources that leads to

not fit the kernel in the hardware. Hence, a co-design method can help to reduce

the area usage. In particular, the first step of the iFFT requires data reordering

task that can be efficiently implemented by means of SIMD approach, without

increasing the FPGA resources.

The next two steps refers to the compilation of the kernel into the FPGA and

some bug fixing. Despite these steps may seem faster than the rest of the tasks,

they take 23.9% of the overall time due to the Intel FPGA Quartus tool compi-

lation time. Kernel compilation requires from some minutes up to several hours

for OpenCL execution file generation, thus, this time is significant it should be

taken into account by the designers before starting an OpenCL application.

The last step considers the development of the cyclic prefix addition kernel to be

combined with the iFFT kernel to complete the OFDM modulation at the 5G

DU side. This task takes 10% of the overall time.

57

Chapter 3 - Reconfigurable computing for 5G RAN acceleration

Finally, several difficulties have been found in the conversion from SIMD to

OpenCL and in addressing FPGA OpenCL improvement in terms of both area

usage and execution time.

7. Conclusion

The goal of this work was to evaluate the viability of OpenCL for implement-

ing some functionalities of a virtualized next generation eNB. To perform such

evaluation, the implementation of the OFDM in the 5G DU with Option 7-1

functional split has been considered in hardware, software and co-design approach

exploiting OpenCL model. The performance evaluation showed that OpenCL im-

plementation is useful when virtualized functions shall be dynamically deployed

in hardware or software for orchestration purposes. However, OpenCL shows

some drawbacks with respect to the other considered implementations. Thus, it

requires better optimizations and further study. In particular, OFDM kernels

with OFDM symbol size up to 512 can be deployed in hardware by means of

OpenCL, but bigger FPGAs or more pipelined loop have to be considered over

this threshold. Furthermore, the pure kernel processing time is compatible with

5G latency performance but memory transfers between host and accelerator are

the bottlenecks of the system when using PCIe. Around 233 µs have been mea-

sured, considering a CPU core dedicated to the processing. Likewise, around 468

µs have been measured in case of CPU core shared with other concurrent tasks.

This behaviour is due to data synchronization from the host to FPGA in both

directions, almost regardless of message size. For these reasons, the OpenCL ker-

nels should be developed as auto-run to avoid the interaction with global memory

and the PCIe data transfer, otherwise the overall execution time is not compati-

ble with the 5G processing.

Only considering the pure processing time, OpenCL is more suitable for large

data batch processing since results have shown that SIMD and HDL approaches

have better performance up to 4096 OFDM symbol size. A model for SIMD and

OpenCL performance curves has been evaluated to predict the processing time

for bigger OFDM symbol size. Such models have shown that over 4096 OFDM

symbol size the OpenCL implementation starts to have less performance time

than both SIMD and HDL approaches. Thus, in case of a future implementation

of a 8192 OFDM symbol size in the 5G PHY layer (the present implementation

reaches 4096), the OpenCL model could be considered to implement the DU

58

Section 7 - Conclusion

processing. Moreover, the results are strictly related to the devices and the tech-

nologies considered, thus the hardware performance for both OpenCL and HDL

can significantly increase with the latest FPGA technology.

Regarding the computational load, results have shown that the SIMD execu-

tion (purely software) require 100% of the computational load throughout the

duration of the OFDM execution. However, with OpenCL offloading, the CPU

core computation is limited at 85% and, for the 15% of the OFDM execution

time, the core is in idle state. The evidences between the two approaches are also

highlighted by the performance measured with the manager developed for the dy-

namic hardware offloading. These scenarios have been used to demonstrate that

the computational power of the CPU shall be reduced and part of the processing

can be reassigned for other tasks to deploy more services.

59

CHAPTER 4

Network functions acceleration at the edge

In this Chapter, two scenarios are considered to accelerate network functions at

the edge of the datacenter architecture. The first one addresses traffic engineering

and cyber security improvements in an edge node (i.e., NGCO of the network

infrastructure). The second one relies on the hardware offloading of the processing

functions by means of a hardware pipelined service chain. This case also targets

the NGCO as deployment point in the infrastructure.

1. Edge node enabling traffic engineering and cyber security

The future convergence of next-generation wireless, wired and IT infrastructure is

paving the way to the deployment of enhanced edge nodes [vLYJ+17,KLL+17].

In particular, edge packet-over-optical aggregation nodes are emerging to inter-

face heterogenous local segments such as 5G RAN fronthauling, IoT gateways and

IT Cloud/Fog clusters to the Metro-core transport network. These innovative

technologies and platforms are expected to provide extreme QoS differentiation

and high throughput at the same time, exploiting the SDN control plane and the

orchestration of services and network resources across different segments, from

the access to the optical backbone [LJU+17,SPC+13]. However, several issues

may affect the utilization of current SDN solutions at the edge where a plethora

of traffic flows with high throughput and dynamic profiles will need advanced

TE-based treatment, due to stringent QoS constraints. Moreover, besides con-

trol and QoS, edge resources require to be secured against online cyber security

attacks.

To address TE, packet-layer substantial innovations such as Segment Routing

(SR) [SPG+16,GSP+17b] also enabling SDN/NFV Service Chaining [Pao18]

and Network Slicing [VGIZ+18] have been proposed to automatically steer per-

service traffic slices onto Elastic Optical Network (EON) lightpaths in the con-

text of a multi-layer network employing efficient cross-stratum reoptimization

and maintenance [YZZ+15,PCCC17]. However, such procedures rely on flows

60

Section 1 - Edge node enabling traffic engineering and cyber security

with bandwidth reserved in the control plane only. In the data plane, bursty

and unpredictable behavior of traffic forwarded by the edge node may be subject

to different time-dependant profiles and statistical variations, that may induce

bottlenecks, congestion, queue delay, thus affecting QoS (e.g., ultra-low latency

requirements). Indeed, current SDN implementations do not support such re-

quired stateful-driven forwarding at wire speed directly at the nodes, whereas

the controller is typically involved to react upon critical events. However, this

may pose serious scalability issues at the controller and may noticeably delay

reaction enforcement at the data plane, thus leading to serious forwarding inef-

ficiencies (e.g., unexpected latency and jitter increase). In addition, at the data

plane level, dedicated fixed-function hardware is not the best solution to address

SDN flexibility and configurability requirements.

To address cyber security, Network Operation Centers (NOCs)/Security Oper-

ation Center (SOC) defend information systems at edge nodes using dedicated

tools and systems like Intrusion Detection Systems, firewalls, Security Informa-

tion and Event Management tools, enhanced with blockchain-based trustworthi-

ness mechanisms as recently proposed for next generation 5G fronthaul [YWZ+18].

Usually, detection of attacks or resource bottlenecks is performed without auto-

mated tools and is based on systems logs, statistics and experience of operators.

In addition, mitigating the attack in decentralized IT (e.g., fog resources) and

edge nodes is not trivial and may require the reconfiguration of many network de-

vices at once. Currently, traditional switching solutions are not able to deal with

DDoS attacks and implement simple access/blacklist solutions, such as Border

Gateway Protocol (BGP) flow spec traffic redirection [MSR+09]. However, they

did not prove to be adequate against cyber attacks at network edges due to

lack of effective context-based security analytics. In the standard SDN context,

such attacks may be handled by the centralized controller. However, the default

SDN behavior to redirect unknown packets to the controller may be extremely

dangerous for the controller itself, being potentially exposed to attack floodings,

out-of-service events and information update inconsistencies, especially in the

case of stateful applications [FGG+15,Sil18].

The P4 technology has been recently introduced to enable advanced and config-

urable packet processing functionalities of network devices, supporting protocol

and target platform independence [BDG+14,P4]. P4 is a high-level, platform-

agnostic language for programming the data plane of SDN network devices. P4

61

Chapter 4 - Network functions acceleration at the edge

allows to define customized and sophisticated switch pipelines, packet forwarding

policies and actions, producing portable implementations over different hardware

targets (e.g., network interface cards, FPGAs, software switches and hardware

ASICs). Specifically, the availability of stateful programming objects, such as

counters, meters and registers enables finite state machines and conditional be-

havior implementation directly in the hardware. The novelty and the potentials

introduced by P4 has gained significant attention by many system vendors and

the P4 consortium already involves more than 50 industrial partners. So far,

the P4 community has been extremely active in developing and improving the

P4 compiler itself and the P4 Behavioral Model software switch (i.e., BMV2).

However, limited effort has been reported in the scientific literature to show po-

tentially disruptive innovations and advantages of the P4 technology, especially

in the context of multi-layer packet over optical networks.

This work proposes the adoption of the P4 technology in a SDN multi-layer packet

over optical network to enable advanced data plane programmability. In particu-

lar, the work proposes an innovative edge node architecture including a P4 switch

with native support of deep packet inspection. The P4-enabled node exploits di-

rect stateful processing at wire speed, not demanded - as in OpenFlow systems

- to the SDN Controller. Then, it proposes dynamic P4-based TE solutions for

multi-layer scenario, such as traffic offloading and dynamic optical bypass. In

addition, augmented firewalling capabilities are envisioned proposing a P4 DDoS

mitigation proof-of-concept to protect internal edge resources without the need

of dedicated firewall hardware. Finally, the evaluation include the P4 code pro-

posals, along with their enforcement in a multi-layer edge node over two different

platforms: the reference P4 software switch, namely BMV2 [bmv17], and the

FPGA technology employing 10 GE optical interfaces at full rate [WSD+17].

Experimental results report the P4 impact in terms of latency, its scalability in

terms of number of sustainable flow entries and its effectiveness showing online

TE enforcement and fast detection against cyber-attacks.

With respect to our preliminary study [PCC18], this work introduces the fol-

lowing novel contribution:

(1) A presentation of the P4 language, along with related works, and its

potentials in the context of multi-layer networks;

(2) A detailed architecture proposal of the P4-enabled packet over optical

edge node;

62

Section 1 - Edge node enabling traffic engineering and cyber security

target node

Programmable

Data plane

Control planeP4 compiler

Driver

Data plane

runtime

P4 architectural

model

provided by the manufacturer

provided by the user
P4 program

header_type ethernet_t {

fields {

dstAddr : 48;

srcAddr : 48;

etherType : 16;

}

}

table m_table {

reads {

ethernet.srcAddr : exact;

}

actions {

m_action; _nop;

}

size : 16384;

}

Figure 4.1. Workflow of P4 language compiler and API over pro-

grammable devices

(3) Extended experimental results including P4 over FPGA framework ex-

ploiting 10 Gigabit Ethernet optical interfaces at full line rate.

1.1. The P4 language. The P4 is a high-level programming language ex-

plicitly devoted to design the SDN data plane of packet processors [P4]. P4 has

been conceived in the SDN paradigm, since some P4 proponents are the inven-

tors of the OpenFlow protocol [NPL+15]. According to the P4 proponents, such

language aims at becoming the abstract programming language of a general pur-

pose networking chip performing dedicated packet forwarding scheme based on

the SDN paradigm. Following the concept of network disaggregation, P4 intro-

duces open source programmability of network data plane, enabling own-made

development of new proprietary protocols or headers, advanced forwarding and

congestion control strategies, ad-hoc monitoring and telemetry functions with-

out the need of costly dedicated proprietary devices or time consuming hardware

firmware upgrades.

Compared to the state-of-the-art of packet processing systems, based on micro-

code, P4 provides the configurable building blocks of an abstract network node,

ranging from Layer0 up to Layer7 functions: parsers (including non-standard

headers), metadata (i.e., data that can be internally associated to a packet for

processing, for example its input port), conditional controls, tables, along with

a primitive set of actions. In addition, following the abstract forwarding model

63

Chapter 4 - Network functions acceleration at the edge

match/action/control

stateful objects

P4 HW config

SDN SW config

Secure traffic

Suspected traffic

SDN

controller

P4S

Attack attempt

Monitoring/telemetry

SOC

To traffic

analysis

Data Center

DC

P4S

Optical

Metro

5G

Fronthaul

a) b)

Fog/IoT

P4S

RRU

P4S

Fog Node

Edge packet over optical node

DWDM

EON

DWDM

EON

DWDM

EON

Figure 4.2. Packet-over-optical P4-based edge node: a) internal

functional architecture and SDN control/monitoring; b) deploy-

ment and applicability scenario of P4 nodes acting as advanced

forwarding devices and online distributed security barrier at the

edge of the optical metro network

imposed by the language, packet-forwarding policies, algorithms and per-packet

custom actions can be implemented producing portable implementations over dif-

ferent hardware targets (e.g., network interface cards, FPGAs, software switches,

bare metal switches and hardware ASICs).

The P4 language operates within a high-level view of the general macro-blocks of

the switch, called abstract forwarding model. The Protocol Independent Switch

Architecture (PISA) is the current model and represents one of the most signifi-

cant results of P4 research team driving the development of the P4 language itself.

A comparison evaluation between the P4 implementation and the state-of-the-art

of fixed-function switch hardware has shown that packet processing speeds are

the same with almost no additional cost or power [BDG+14].

The P4 abstract forwarding model is composed by the following blocks:

(1) a programmable Parser block, responsible of identifying the stack of

allowed protocols and fields defined by the program;

(2) a programmable Ingress pipeline, made of a set of match+actions tables,

responsible of conditional packet processing and field update, egress port

and queue selection;

64

Section 1 - Edge node enabling traffic engineering and cyber security

(3) a programmable Egress pipeline, used for per-instance header modifica-

tions after egress port selection.

Figure 4.1 shows a simple example excerpt of a P4 program defining the Ethernet

header and a table matching the Ethernet source address. Moreover, it shows

the workflow of P4 programs compilation and hardware enforcement. The P4

program, written by the user utilizing the architectural model of the physical

target, is compiled providing:

(1) a front-end representation (typically a JSON file) used to drive a back-

end target-specific compiler for runtime data plane enforcement;

(2) an auto-generated runtime API to control the driver between control and

data plane (i.e., to directly populate tables with flow entries following

the P4 namespaces).

The P4 language defines a set of stateful objects that can be used to implement

finite state machines and complex state-based decisions. Stateful elements store

variables beyond the processing lifetime of a single packet, that may be read or

updated depending on specified control conditions. In particular, two stateful

constructs are available: tables and extern objects. Tables are read-only for the

data plane, but their entries can be modified by the control plane. Extern objects

have state that can be read and written by both the control and the data plane.

In particular, among extern objects, registers (storing values), counters (storing

incremental occurrences) and meters (storing rate values) may be instantiated.

These stateful elements and their size are explicitly declared in the P4 code and

allocated during the instantiation phase. This way, P4 can be used to dedicate

pre-planned and dynamic countable hardware resources to specific functions and

processes. Moreover, P4 enables to instruct stateful switches data plane with ad-

vanced functionalities with respect to standard OpenFlow switches, for instance

implementing user-defined protocols or finite state machines.

Finally, a P4 program may be designed in a modular fashion with a baseline

code structure and a set of extendible code pieces. As an example, P4 codes

implementing basic router and switch functionalities have been proposed allow-

ing incremental functions and support of protocols. In general, parsers, actions

and even tables may be reused in a P4 code (e.g., merging two P4 programs

implementing different TE techniques), thus enabling a number of alternative or

parallel functionalities within the same switch. However, stateful objects require

per-service instantiation, otherwise the monitored state may become inconsistent.

65

Chapter 4 - Network functions acceleration at the edge

1.1.1. P4 for reconfigurable hardware. The P4 language is a flexible language

that can be compiled for several architectures. Recently, some frameworks have

been developed to support the deployment of P4 programs into programmable

hardware targets [IBMZ19,WSD+17]. In this work, P4→NetFPGA workflow

is considered, which uses the Xilinx P4-SDNet tools to directly compile the P4

programs for FPGA target. The idea behind this framework is to provide an

affordable platform that allows data-plane programming in hardware at line rate.

The architecture for P4→NetFPGA framework is based on a three stage pipeline

switch: single parser, match-action pipeline, and deparser. This schema, shown in

Figure 4.3, allows to implement many networking protocols/algorithms in flexible

manner. The metadata bus contains the information about the packet length and

the physical source and destination port where each packet respectively comes

and goes to. The user metadata bus is used to exchange custom metadata inside

the pipeline and the digest metadata bus is exploited to share the data with

the host controller. The workflow generates both a C and Python API, built on

top of P4-SDNet tool, to manipulate tables and read/write stateful memory on

the switch. In addition to the API, the workflow also generates an interactive

Command Line Interface (CLI) that allows the P4 users to interact with the

switch in real time, as well as to query various compile time information about

the switch.

1.1.2. Related Work on P4. A number of recent work rely on the P4 lan-

guage to deploy advanced services such as telemetry, protocol implementation

and stateless firewalling.

In-band telemetry applications of P4 resort to the collection of online network

state parameters to be processed by the management plane [HH17]. The idea

behind in-band telemetry is to collect flow-based direct measurements in the

data plane (e.g., latency, queue transit time) using packet manipulation of non-

standard headers (e.g., storing a timestamp value) that an external knowledge

plan is able to process, also resorting to Artificial Intelligence and Machine Learn-

ing techniques. This allows to derive finer statistics for feedback-based automatic

SDN intervention procedures.

An example of protocol implementation at run-time using P4 has been presented

by the work in [BHM17]. The Bit Index Explicit Replication (BIER) is a novel

SDN-oriented protocol proposed for multicast routing that requires a dedicated

bit-indexed header encoding the multicast tree links selection [GSP+17a]. P4

66

Section 1 - Edge node enabling traffic engineering and cyber security

Figure 4.3. Block diagram of the P4 switch architecture used

within the P4→NetFPGA workflow

allows a switch pipeline description implementing the header building and its

encoding/decoding procedure.

Applications of P4 have been presented in the context of SDN security, however

mainly limited to stateless firewall configurations including port/protocol filter-

ing, blacklist and rate limiter [VK16]. Stateless P4-based header and packet

header manipulation achieving mitigation techniques such as anti-spoofing mech-

anisms have been explored and analyzed [ABBS17]. All such approaches deal

with active stateless processing of the header, without introducing simple finite

state machines and history-based processing.

The most important work on FPGA and P4 is presented in [WSD+17], in which

authors developed an open source compiler and runtime for P4 over FPGA and

evaluated in deep detail the performances of some P4 programs in terms of hard-

ware resource occupancy and latency compared with fixed function ASIC. Pro-

posed P4 programs relies on L2/L3 forwarding and complex protocol implemen-

tations in the context of market data and distributed computation agreement.

Finally, stateful SDN data plane programmability by means of alternative strate-

gies and tools besides P4 have been proposed and discussed concerning efficiency

and security [DCA+17], among which one of the most interesting and significant

67

Chapter 4 - Network functions acceleration at the edge

proposes the extension of the OpenFlow protocol supporting finite state machine

abstraction compatible with table-oriented API [BBCC14,CPSC15].

This work focuses on the application of P4 stateful capabilities exploiting ad-

vanced TE and cyber security in multi-layer edge nodes with hardware accelera-

tion.

1.2. P4 in multi-layer edge nodes. This section introduces the appli-

cation of the P4 language to a multi-layer packet-switched (e.g., IP/MPLS or

Carrier Ethernet) over optical-switched (e.g., DWDM or EON based) edge node

with advanced and programmable SDN forwarding plane. While requested data

is becoming closer to the user (i.e. fog nodes), attached edge nodes connected

to the metro or metro/core network need a more refined treatment of selected

class of traffic requiring QoS and TE (e.g., strict latency requirements), subject

to profile statistical modifications or high burstiness behavior. The architec-

ture of the edge packet-over-optical node encompassing P4 programmable data

plane is depicted in Figure 4.2-a. The optical part comprises a SDN-controlled

ROADM (e.g., disaggregated whitebox) [VSC+18,SIZG+18] with its tributary

cards attached to a P4 switch (P4S), representing the key packet-switching ele-

ment of the edge node. A number of P4S optical interfaces are connected to the

ROADM cards, while the remaining interfaces connect local or internal resources.

The P4S is hardware-programmed by the P4 language and is handled by a SDN

controller/orchestrator, responsible for table entries population and service de-

ployment. Multiple functions may be programmed at the same device, including

TE/QoS features (e.g., latency-aware forwarding, dynamic offloading or bypass)

and security applications (e.g., block, mitigation, telemetry and anomalies reports

to SOC, suspected traffic deviation). Reporting data, statistics, alarms, teleme-

try functions to a Monitoring Handler/SOC are also programmable inside the

P4S, enable possible integrated multi-layer proactive monitoring infrastructure.

For example, P4 in-band telemetry [HH17] combined with optical layer advanced

monitoring realized in the context of disaggregated networks [PSCC18] may be

integrated in a joint multi-layer telemetry system.

Different potential P4-based edge node deployment scenarios are envisioned, as

illustrated in Figure 4.2-b. In particular, such extended node may be placed as

Data Center (DC) gateway, edge node device (e.g., fog node or IoT gateway), 5G

fronthaul node (e.g., extended Remote Radio Unit - RRU supporting Fiber to

the Antenna technology). For example, in the 5G Fronthaul scenario, specific P4

68

Section 1 - Edge node enabling traffic engineering and cyber security

switches may be employed to perform online traffic telemetry and implement pre-

cise latency-assured traffic forwarding (e.g., dynamically manipulating the IP/M-

PLS QoS service flag thus driving stateful scheduling with priority). In addition,

such node may be employed even at intermediate network nodes (e.g, aggregation

metro node). In this case, traffic engineering solutions may be enabled not only

at the edge but also in the metro network. In the case of cyber security solutions,

this choice may avoid that security threats reach the edge and frees resources

to better focus on more sophisticated attacks. The P4 solution allows a unique

SDN edge switch deployment with advanced TE and security functions, detailed

in the next sections, avoiding processing burden at the controller and additional

specialized TE and firewall hardware inside cloud/fog node.

In multi-layer optical networks, TE techniques such as optical bypass are possi-

ble through instantiation of optical paths and steering of traffic based on policies

that can be configured by a SDN controller using specific flow entries. However,

such TE techniques and traffic steering configurations are typically enforced with

static or stateless match conditions. When traffic conditions change such policies

are typically modified by the controller. However, this requires the deployment of

complex monitoring and telemetry techniques at the controller, possibly incurring

in severe scalability issues in the case of high volume traffic, e.g., as in the case of

DC gateway. The availability of a programmable data plane enables the deploy-

ment of advanced traffic engineering solutions (e.g., stateful TE) at SDN devices

without requiring the intervention of a controller. In addition, the presence of a

stateful SDN device capable of providing complex monitoring/telemetry informa-

tion and alerts may drastically help the SDN controller for both scalability (i.e.,

reduced number of monitoring polling messages) and operation performance (i.e.,

accurate and fast detection of anomalies) and new type of networking statistics

such as min/average/max latency spent in queue). Telemetry data may be elab-

orated by an external telemetry collector interacting with the SDN controller,

allowing the latter to immediately react without being overwhelmed by excessive

monitoring messages.

Several use cases may strongly motivate the adoption of a stateful P4 switch in

the architecture of an edge node:

• Advanced Traffic Engineering (e.g., dynamic traffic-based routing, mas-

sive load balancing in segment routing applications);

• Cyber Security mitigation and intrusion detection;

69

Chapter 4 - Network functions acceleration at the edge

• QoS precise forwarding (e.g., ultra-low latency for 5G, lossless Ethernet,

automatic packet reordering);

• Advanced monitoring solutions (e.g., active probe generation for fast

failure detection or forecasting, in-band telemetry);

• Packet header customization and manipulation for online service dif-

ferentiation (e.g., mice and elephant flows header differentiation in DC

scenarios).

In the next sections, advanced traffic engineering and cyber security mitigation

use cases in the context of a multi-layer edge node will be presented targeting

the P4 technology as candidate solution.

P4 switch P4 switch P4 switch P4 switch P4 switch

DC1 DC2

S1 S2 S3 S4 S5

R1 R5

Optical bypass

Edge Node 1 Edge Node 2

Figure 4.4. Advanced traffic engineering use case: data center

gateways equipped with P4-based edge node performing dynamic

TE

1.3. Stateful traffic engineering with P4. Figure 4.4 shows an inter-data

center connectivity use case, where DC1 and DC2 are connected by a packet-

switched path and by an additional packet-over-optical path exploiting optical

bypass. Traffic originated by DC1 and destined to DC2 follows the flow rules in-

stalled in the S1 switch. Stateless flow rules may be enforced to a standard SDN

switch (e.g., OpenFlow switch), based on specific packet attributes. As an exam-

ple, latency-sensitive traffic (e.g., matched on protocol/application type) may be

steered to the optical bypass. However, forwarding dictated by dynamic traffic

conditions and profiles (i.e., stateful TE) is not feasible using a standard Open-

Flow switch, without the active involvement of the controller. Programmable

70

Section 1 - Edge node enabling traffic engineering and cyber security

[PARSERS]

…………………………………

header_type meta_t {

fields {

meter_tag : 32;

}

}

metadata meta_t meta;

meter my_meter {

type: packets;

static: m_table;

instance_count: 16384;

}

action m_action(meter_idx) {

execute_meter(my_meter, meter_idx, meta.meter_tag);

}

action steer_port(steerport) {

modify_field(standard_metadata.egress_spec, steerport);

}

table m_table {

reads {

ethernet.srcAddr : exact;

}

actions {

m_action; _nop;

}

size : 16384;

}

table m_filter {

reads {

meta.meter_tag : exact;

}

actions {

steer_port;_drop; _nop;

}

size: 16;

}

control ingress {

apply(m_table);

apply(m_filter);

}

……………..

[EGRESS]

Metadata

Meter definition

Actions

Flow tables

Pipeline control

Figure 4.5. Dynamic traffic offloading P4 code based on meters

and token-bucket

71

Chapter 4 - Network functions acceleration at the edge

data plane enables stateful TE. Two examples are provided in the following sub-

sections: dynamic traffic offloading and dynamic optical bypass based on stateful

traffic conditions.

1.3.1. TE: Traffic offloading. In the first TE use case, traffic offloading is im-

plemented. An incoming traffic rate threshold TH is considered. The objective is

to dynamically reroute just the portion of traffic beyond the rate threshold along

an alternative path, i.e. implementing traffic shaping and limiter and avoiding

congestion. To enforce such use case, a P4 program is exploited to build the

forwarding plane of the switch. The program first defines the required packet

headers (i.e., Ethernet and IP headers), then relies on a pipeline of two Ingress

flow tables and on a stateful structure provided by P4, the Meter. As defined

in [HG99], Meters are three state markers (i.e., output states are red, yellow

and green) based on the definition of two rates, the Committed Information Rate

(CIR) and the Peak Information Rate (PIR). Marker is set to red if rate exceeds

the PIR, to green if rate is below the CIR, to yellow if rate is between CIR and

PIR.

The traffic offloading P4 code key sections are reported in Figure 4.5. First,

packets are parsed to check the protocol stack. In this case Ethernet frames

are checked and Ethernet fields saved by the parser (not shown in the figure).

Then packets enter the ingress section, designed by the control tag, where the

tables pipeline is defined. Two tables are defined: the m table and the m filter.

In the m table, packets are inspected by their source MAC address (i.e., ether-

net.srcAddr) and, in case of match, the m action is executed. In the P4 program,

an array of meters is declared and instantiated (my meter). The m action trig-

gers the related meter identified by the meter idx index and saves the result in

a packet metadata field. Metadata fields are defined to carry out specific in-

formation related to the packet. Standard metadata are already defined in P4,

such as the packet output interface (i.e., standard metadata.egress spec). The

program defines an additional metadata providing the meter execution result

(i.e., meter tag). Then, the packet is passed to a second flow table (m filter)

which applies a token-bucket behavior according to its current Meter value, se-

lecting between either the default or the alternative output port (i.e., through

the steer port action). In both cases, forwarding rules are dynamically applied

according to actual traffic conditions, with no Controller intervention. Indeed,

P4 dictates the general switch behavior abstracting from the entries of the flow

72

Section 1 - Edge node enabling traffic engineering and cyber security

tables. This means that the behavior of the switch can be applied to different

matching conditions just updating the flow entries of the P4 switch, without the

need of reprogramming it. For example, the steer port action identifies the output

port of the packet using the steerport parameter. Thus, in the case of topology

changes (e.g., an additional ROADM is added with the possibility of implement-

ing two rates meter), the update of the output port for yellow and red traffic may

be simply re-adapted by modifying at runtime the flow entry of table m filter.

In addition, the meter TH threshold is configured as configuration entry of the

meter at runtime, therefore it can be tuned by network administrator or by the

controller during the switch functioning. It is worth to note that the whole P4

program, including parsers, meters, actions, tables and pipeline control sections,

is less than 100 lines of P4 code.

1.3.2. TE: Optical bypass. In the second TE use case, the edge node imple-

ments dynamic optical bypass. An incoming traffic rate threshold TH is con-

sidered. When DC1-DC2 traffic rate remains below threshold TH, traffic is for-

warded along the P4 switches chain in the packet-switched layer. Conversely,

when traffic exceeds the threshold, all the matching packets are automatically

steered to the optical node R1 which injects traffic along the pre-established op-

tical path between R1 and R2. To implement such use case, a P4 program builds

the internal structure and describes the forwarding workflow of the edge node.

The key sections of the P4 program are illustrated in Figure 4.6. The program

defines a metadata flowlet meta t with two fields to store the timestamps of

the input interface of the switch related to the packet itself and the previous

one. In addition, an array of registers flowlet reg are defined and instantiated.

The control relies on a pipeline of two flow tables of type Ingress (m flowlet

and m bypass), however, in this case, the pipeline is not static but subject to

conditions. The first table is always executed to match the considered traffic

flow according to configured parsing conditions (e.g., source/dest MAC/IP etc,

in this case source MAC address). In addition, when matching conditions apply,

the flowlet action action is performed. Four commands are executed in the action:

the timestamp of the previous matched packet is read from the register and saved

in the packet metadata (previous ts field); the current packet timestamp is saved

in the metadata (current ts field); the current timestamp is written and stored

in the register; the default output interface is selected (e.g., port towards S2).

Therefore, the P4 stateful register is used to store in a vector previously collected

73

Chapter 4 - Network functions acceleration at the edge

[PARSERS]

…………………………………………………

header_type flowlet_meta_t {

fields {

current_ts : 48;

previous_ts : 48;

}

}

register flowlet_reg {

width: 48;

instance_count : 100;

}

………………………………………………………………………….

action flowlet_action(offset, steerport) {

register_read(meta.previous_ts, flowlet_reg, offset);

modify_field(meta.current_ts, intrinsic_metadata.ingress_global_timestamp);

register_write (flowlet_reg, offset, intrinsic_metadata.ingress_global_timestamp);

modify_field(standard_metadata.egress_spec, steerport);

}

table m_flowlet {

reads {

ethernet.srcAddr : exact;

} actions {

flowlet_action; _nop;

}

size : 16384;

}

table m_bypass {

reads {

ethernet.srcAddr : exact;

}

actions {

steer_port;_drop; _nop;

}

size: 16;

}

control ingress {

apply(m_flowlet);

if (meta.current_ts - meta.previous_ts < FLOWLET_INTERVAL){

apply(m_bypass);

}

}

[EGRESS]

……………..

Metadata

Register definition

Flow tables

Pipeline

control

Flowlet action

Figure 4.6. Dynamic optical bypass P4 code based on registers

and flowlet switching

74

Section 1 - Edge node enabling traffic engineering and cyber security

timestamps. This way, frame rate and traffic profile (e.g., flowlet) can be assessed

driving to specific forwarding conditions. This is obtained by defining a pipeline

control behavior subject to internal matching conditions. In particular, a P4

Control condition is set to either exploit the second ingress flow table m bypass

in the case of flowlet match (i.e., the interarrival time between matching packets

is below TH, the constant FLOWLET INTERVAL defined in the code), which

applies the steer port action, changing the output port value. This activates

optical bypass forwarding of matched frames towards R1, or maintaining the

default output port towards S2. Also in this case the whole P4 program is less

than 100 lines of code.

Note that the optical bypass outgoing port is selected by the parameter of the

steer port action. Such value is stored as flow entry of the m bypass table and can

be modified at any time (e.g., by the P4 switch command line interface or by the

SDN controller). This means that optical bypass selection itself may be adapted

to traffic conditions or network status. For example, the SDN controller may

decide to steer traffic to another available optical bypass, thus just requiring a

single entry update at the P4 switch. Moreover, thanks to P4 stateful objects and

internal telemetry, based on steered traffic statistics, the P4 switch might trigger,

through the SDN controller, a lightpath adaptation request to the optical control

plane (e.g., elastic operations to an active stateful Path Computation Element in

the case of additional bandwidth requirement [PCF+15] or predictive analytics

on traffic flows [MGP+17], physical parameter adaptation in the case of poor

QoS [MPS+11]).

1.4. Cyber security mitigation with P4. The same network scenario

shown in Figure 4.4 and the node architecture of Figure 4.2-a are also exploited

to show how the P4 technology can be efficiently used to react against cyber-

attacks. As an example of cyber threat, a DDoS attack exploiting address/port

scan is considered. All possible TCP/UDP ports of a target IP destinations are

attacked from multiple infected IP source nodes. Such type of attack can not be

simply blocked by access/blacklists, since this could affect also legitimate remote

connections. That is, such type of attacks can not be blocked by using tradi-

tional OpenFlow switches where just basic stateless permit/deny flow matches

are practically available.

Conversely, the stateful nature of P4 provides innovative solutions to directly

address such critical threats within the network nodes, by detecting attacks by

75

Chapter 4 - Network functions acceleration at the edge

means of deep packet inspection and packet sequence correlation at runtime. The

designed P4 program, besides including TE solutions, also relies on P4 Registers

to store header information (e.g., IP dest and TCP/UDP port along with the

related timestamp) for a number N of previously received packets. Then, P4

Control conditions can be configured to analyze the retrieved data and iden-

tify possible ongoing port scan attacks. This way, packets normally directed to

the default output port can be temporarily blocked, successfully dropping such

attempts for a configurable amount of time, or redirecting suspected traffic to

dedicated stateful firewalls thus implementing attack mitigation. Such functions

are directly implemented at the switch, as before, without involving the SDN

controller with excessive amount of packets, which typically happens in DDoS

attacks impacting controller’s stability and functioning.

1.4.1. P4 application: DDoS. The proposed P4 switch edge node is imple-

mented as proof of concept against the TCP SYN flood attacks [MR04], en-

forced on both software switches and programmable hardware functionalities of

FPGA. Figure 4.7 depicts the related P4 workflow. The parser section of the

program defines the rules to parse incoming packet. All ingress frames received

at a given interface, coming from external hosts are first parsed to detect the pro-

tocol stack. In particular, Ethernet framing, (optional) IP parsing and (optional)

TCP parsing are performed in cascade. After this step, forwarding is applied by

checking a Forwarding Table (defined in the P4 program) and the physical egress

port is assigned, based on the destination address of the current packet. Based

on these fields, the switch detects whether a packet comes from a suspicious host

or it belongs to a suspected traffic profile (IP match table may be populated by a

centralized security controller). Then, the program enters the control section and

checks if the packet is a valid TCP SYN and, if not, forwards it. Otherwise, it

parses the TCP port to detect anomalous behaviour. To check anomaly, stateful

evaluation of the session is performed. In particular, if TCP destination port is

incremented compared to the previous TCP port of the same session (i.e., the

basic TCP SYN flood mechanism) a stateful object is accordingly updated to

store and keep updated the session state.

In this case, two register variables are allocated per IP Match Table entry. The

first variable stores the TCP port received by the last packet belonging to the

session, whereas the second variable stores the number of attempts matching the

TCP SYN Flood basic behavior. The two registers are continuously updated upon

76

Section 1 - Edge node enabling traffic engineering and cyber security

Store the current TCP

port in the port register

The TCP port is

incremented compared

to the previous TCP

port?

Increment occurrences

register

The occurrences are

greater than a defined

threshold?

Forward packet Discard packet

Stop

Start

Parse ingress packet

Is a TCP SYN packet?

Deparse egress packet

YES

NO

YES

NO

YESNO

Apply Forwarding Table

Parser

Match-Action

Pipeline

Deparser

AllFF:FF:FF:FF:FF:FF

408:44:44:44:44:08

08:22:22:22:22:08

08:33:33:33:33:08

Fwd port

2

3

dst MAC

Forwarding Table

........

12.138.254.3312.138.254.42

15.68.230.13

13.45.250.22

IP dst addr

15.68.230.56

13.45.250.44

IP src addr

IP match Table

Apply IP match Table

 IP src address and IP

dst address match?
NO

YES

Parse TCP Port

Figure 4.7. P4 program workflow targeting mitigation on TCP

SYN flood attacks

77

Chapter 4 - Network functions acceleration at the edge

each new packet processing. If the number of detected attempts (i.e., the second

register) becomes greater than a pre-defined threshold (e.g., 10 attempts), the

packet is discarded. Otherwise, registers are updated and the packet is forwarded

following the standard P4 egress section.

1.5. Experimental Evaluation. The proposed P4 programs enforcing TE

and cyber security have been implemented and experimentally evaluated in a

multi-layer network testbed reproducing the network depicted in Figure 4.4. The

P4 switch has been evaluated in two different hardware versions, showing the P4

capability to be target-independent:

(1) the reference software switch used in the P4 framework, namely the

Behavioral Model version2 (BMV2) implemented in a Linux PC;

(2) the NetFPGA-Sume board, a FPGA dedicated to networking applica-

tions.

1.5.1. Behavioral Model Version 2 soft switch. In this experimental evalua-

tion section, the edge multi-layer node includes a P4 switch realized with a BMV2

software switch connected to a Reconfigurable Add-Drop Multiplexer (ROADM).

In particular the optical bypass is implemented through 100G commercial mux-

ponder, handled by a local agent connected to a optical-layer SDN controller run-

ning NETCONF as southbound API [SIZG+18]. Five servers (CPU @3.40GHz,

4 GB RAM, Ubuntu 14.04 kernel 4.4.0-31-generic), equipped with multiple 1

and 10 Gigabit Ethernet interfaces, are operated with the BMV2 software switch

and configured with the three P4 version 14 programs presented in the previ-

ous sections. Traffic is generated and received by two Linux PC servers running

Python-based traffic generators and receivers based on the scapy library.

Figure 4.8 shows the BMV2 P4 S1 switch behavior (see Figure 4.4) when the P4

program of Sec. 1.3.1 is applied for traffic offload. Traffic is received by the P4

switch interface connected to the generator. In this case the m table flow-entry

matching the traffic subject to meter measurement is the source MAC address of

the packet generator, thus the meter is applied to all the generated traffic. Note

that with the same program it would be possible to meter and tune forwarding

for specific traffic flows. When aggregated traffic rate exceeds TH (set to a value

of 300 packets/s), the second m filter flow table applies the configured P4 rule,

correctly identifying for only forwarding towards the alternative port the portion

of traffic exceeding TH. In particular, the flow entries configured steering traffic

78

Section 1 - Edge node enabling traffic engineering and cyber security

Traffic burst ON Traffic burst OFF

Meter threshold TH= 300 p/s

IP iface

OPT iface
Average latency: 165us

P4 S1

m_table m_filter

P

a

r

s

e

r

my_meter E

g

r

e

s

s

m_actiona) 250 p/s

a) 250 p/s

to ROADM

to P4 S2

Traffic

generator

steer_port

b) 500 p/s

b) 300 p/s (shaping)

b) 200 p/s

a) b) a)

meters

OPT

IP

Figure 4.8. BMV2 results: TE traffic offload behavior (packets/s

versus experiment time [s]).

to the IP iface port (i.e., the port connected to switch S2, in the packet-switched

layer) if meter result is set to 0 (i.e., traffic is lower the threshold, see Figure 4.8

case a), or steering traffic to the OPT iface optical port (i.e., the port connected

to the muxponder) if meter is not 0 (see Figure 4.8 case b, during the traffic

burst injection). Results show that upon a traffic burst of 600 packets/s, the

switch applies a shaper on the IP port limiting the output to the threshold,

while exceeding traffic is automatically redirected to the optical domain. Such

solution allows to keep controlled the profile and the burstiness of the packet

switched layer, avoiding possible congestion. With this program, the measured

latency of the P4 BMV2 switch is 165us. The meter rate TH does not influence

latency results, since the number of operations inside the switch and the amount

of instantiated resources is the same for any constant value.

Figure 4.9 shows the same P4 switch S1 behavior when the P4 program of

Sec. 1.3.2 is applied for optical bypass. First, a traffic flow at rate below TH

is considered (see Figure 4.9 case a). The first flow table used for matching

purposes (i.e., table m flowlet) identifies the metadata timestamp to be stored

in the P4 stateful register. The P4 Control condition is not met and traffic is

79

Chapter 4 - Network functions acceleration at the edge

IP iface

OPT iface

Interarrival time TH=10ms

Traffic burst ON Traffic burst OFF

Average latency: 175us

P4 S1

m_flowlet m_bypass

P

a

r

s

e

r

flowlet_reg E

g

r

e

s

s

flowlet_actiona) 20 p/s

a) 20 p/s

to ROADM

to P4 S2
Traffic

generator

steer_port

b) 600 p/s

b) 600 p/s

(optical bypass)

YΔt<

TH?

N

registers

IP

OPT

a) b) a)

Figure 4.9. BMV2 results: TE optical bypass behavior (packet-

s/s versus experiment time [s])

forwarded along the default output port (to S2) towards B. When incoming traf-

fic increases with a traffic burst (see Figure 4.9 case b), exceeding TH, (i.e., the

inter-arrival time decreases below the FLOWLET INTERVAL constant, set to 10ms)

the control condition imposes an additional flow table transit (i.e., m bypass),

successfully enforcing for packet forwarding the optical bypass, i.e. selecting the

optical output port. This means the whole matching traffic is redirected to the

optical pipe. As shown in the figure, when traffic burst terminates and rate de-

creases below TH, matching traffic is rerouted again to S2 at the packet layer.

Note that, hysteresis-based conditions relying on two thresholds can also be eas-

ily implemented to improve network stability. In this case the measured average

switching latency is 175us, again with no dependance on the selected TH values.

Cyber security P4 program of Sec. 1.4.1 has been implemented over the BMV2

(at switch S5) and evaluated. Figure 4.10 shows the capture collected at switch

S5 related to a simple cyber security attack use case. A DDoS block of port

scan with incremental Dest TCP Port is implemented (1 packet/s rate). In

particular (see P4 program workflow in Figure 4.7), for each matching flow, a

port register stores the TCP port of the last matched frame, while an additional

80

Section 1 - Edge node enabling traffic engineering and cyber security

Figure 4.10. BMV2 results: Wireshark capture of TCP SYN

Flood port scan received and blocked after three attempts by the

cyber security P4 program

occurrences register stores the number of consecutive scan condition occurrences.

If scan is detected, a threshold of N=3 packets is allowed to be forwarded by the

switch while the subsequent ones (Port ¿83) are dropped, successfully blocking

the considered cyber-attack.

The cyber security program has been evaluated with more complex attack sce-

narios. Figure 4.11 shows the scalability analysis as a function of the P4 program

size in terms of configured matching and forwarding conditions. Up to 1000

flow entries of table IP Match (matching IP source and destination) have been

configured on switch S5. Then, three types of traffic flows are considered. In

the rand case, the switch is loaded with random traffic with no attacks; the att

case only includes packets referring to the attack; the mix case includes a 50:50

combination of both. Results show that very constant latency performance of

around 200us is achieved at the increase of P4 flow table entries, while latency

variations (up to 40us) are experienced as a function of the actual internal P4

operations according to traffic conditions. In particular, the attack case requires

a longer workflow execution with respect to non-attack scenario, impacting the

BMV2 total processing time of a packet in the two different scenarios.

81

Chapter 4 - Network functions acceleration at the edge

���������	
����������
������������	��
�
�
�
	

�
�

��
�
��

���

���

���

����
������������	��
�
� �� ��� �����

���

�	

���

Figure 4.11. BMV2 results: scalability performance of the cyber

security P4 program in different attack rate scenarios

1.5.2. P4-based NetFPGA. To evaluate the impact of P4 over real programmable

hardware devices, the P4 switch implementing cyber security program has been

also implemented on a NetFPGA-Sume board [WSD+17,ZACM14]. The board

is based on the Xilinx Virtex 7 FPGA capable of supporting 4x10 Optical 10 Gi-

gabit Ethernet interfaces SFP+ ports. The board is equipped with 8 GB of

DDR3-SODIMM RAM and a x8 Gen3 PCIe that allows to control the NetFPGA

from an external host. In this case, the board can be plugged as a standard

Network Interface Card (NIC) to the PC, with the possibility of reconfiguring

the hardware. The NetFPGA hardware is reconfigured by means of the Vivado,

SDK Toolkit and Xilinx SDNet software toolkits. P4-based hardware enforce-

ment resorts to proprietary drivers interpreting the JSON files produced by the

P4 compiler (p4c version 16). Two NetFPGA SFP+ 10G optical interfaces are

connected by means of optical fibers to the Spirent SPT N4U traffic generator

and analyzer. The generator is equipped with the MX-10G-S8 card providing up

to 8 SFP+-based 10G optical Ethernet interfaces, with traffic profiles obtained

by setting different values of the total transmitted throughput. Besides generic

TCP traffic profile, specific attack profiles were created emulating TCP SYN

Flood attack sequences with configurable percentage of the total throughput.

82

Section 1 - Edge node enabling traffic engineering and cyber security

��������	�
�������������������

�
��

�

�
��
�
��

�

��

��

��

��

���

���

�����������������
� � � � � ��

��	
���	��

�������
���	��

���
���	��

Figure 4.12. NetFPGA results: latency as a function of the traf-

fic throughput

��������	�
�������������������

�
��

�

�
��
�
��

�

����

����

����

����

�����������������
� � � � � ��

	
��������

��������������

	���������

Figure 4.13. NetFPGA results: zoomed version of Figure 4.12

in the 1-9Gbps range.

83

Chapter 4 - Network functions acceleration at the edge

��������	�
�������������������������������

�
��

�

�
��
�
��

����

�

����

����

����

����

����������������������
	 	� 	�� 	
��� 	����

����������

���������������

����������

Figure 4.14. NetFPGA results: latency as a function of installed

flow entries

Figure 4.12 and its zoomed version (Figure ??) report the P4-NetFPGA latency

in the worst case scenario (i.e., 10 K entries in the IP Match table and 100% at-

tack scenario, in this specific case the discard action has been disabled to measure

the latency) as a function of the optical 10 Gigabit Ethernet traffic throughput.

Results show an average latency of 5us, practically constant, with constant and

very low variance (i.e., min and max latencies differ of around, 50ns) and indepen-

dent on the traffic throughput in the range 0-9.6Gbps. Latency increases up to

110us in the range 9.6-10Gbps upon quasi full-rate condition when NICs typically

introduce significant packet loss. Similar latency (i.e., 4.8us) has been measured

on the commercial HP3800 SDN switch at 10Gpbs (exploiting dedicated ASIC),

where traffic was simply filtered in a static and stateless configuration, using a

standard OpenFlow 1.3 rule in the hardware table matching the TCP port. Thus,

this comparison proves that the P4 processing is enforced without introducing

significant latency degradation with respect to dedicated ASIC.

Figure 4.14 shows the latency as a function of the monitored IP sessions in the

worst case (9Gbps, 100% attack). Excellent scalability performance is provided,

achieving a quasi-constant profile of average (5.01us at 10k entries), min and

max values. This result, from the point of view of the SDN framework, is par-

ticularly noticeable. The reason behind the quasi-constant latency resides in the

84

Section 1 - Edge node enabling traffic engineering and cyber security

Table 4.1. P4-NetFPGA latencies in attack and non-attack scenarios

TCP SYN

attack rate

(f/s)

TCP non

attack rate

(f/s)

Throughput

(Gbps)

Min latency

(µs)

Avg latency

(µs)

Max latency

(µs)

100 751202 9.134 5.01 5.023 5.05

752188 100 9.146 5 5.024 5.05

Table 4.2. P4-NetFPGA hardware resource utilization

NetFPGA Resource Reserved by P4 program (%)

LookUp Tables (LUTs) used 23.18

FFss used 16.76

MUX used 0.43

DSPs used 0

RAM blocks used 37.04

usage of fully-associative Content Addressable Memory (CAM) within the NetF-

PGA [AL15]. In fact, tables with flow entries are instantiated as CAM tables.

Unlike RAM that receives an input address and returns data word associated to

that address, a CAM memory receives a data word in input and searches the

entire memory in a parallel fashion to detect at which memory offset the input

data word is stored. The NetFPGA implements CAM memory by means of its

on-chip Block RAM, enabling massive paralleling search [WSD+17]. This means

that, given the maximum size of flow entries that may be stored in a table, the

time needed to perform a memory look up is kept constant and therefore, the

performance of a P4 SDN device over the NetFPGA is practically independent on

the number of installed flow entries, thus enabling processing over a large amount

of flow sessions.

The impact of attack events on latency is shown in Table 4.1, in which the first

(second) row reports results at 9Gbps almost all regular (attack) traffic, respec-

tively. The additional impact of attack attempts results in around 1ns average,

blocking all attack profiles. This means that the full P4 workflow processing takes

few additional ns with respect to the only parser and deparser sections.

Finally, Table 4.2 reports the NetFPGA hardware resources utilized by P4, con-

suming around 23% of programmable logic, expressed as LUT rate and 37% of

85

Chapter 4 - Network functions acceleration at the edge

memory (RAM). Such results show that a single NetFPGA can support more

complex P4 programs, e.g. multi-profile or parallel workflows, thus validating

the P4 effectiveness for NetFPGA in the cyber security framework.

2. Hardware acceleration for Processing Function Virtualization

As described in Section 2 of Chapter 2, many tasks can be deployed in the NGCO

like services prioritization, dynamic service provisioning, security and data pro-

cessing. Thus, not only Network Functions (NFs) can be deployed at the edge

nodes by means of NFV-chain but also data computation can be performed at the

edge. For this reason, these services can be called Processing Functions (PFs) and

implemented at the edge by means of PFV-chain. In this scenario, the accelera-

tion of the PFs by means of hardware offloading can reduce the processing time

and improve the performance. However, unlike NFV service chain orchestrations,

the control and the orchestration of such offloaded resources are yet undiscussed,

mainly due to the difficulty to expose programmable hardware equipments as a

set of independent service chain functions. Indeed, the solutions that have been

investigated rely on the hardware acceleration of the single network or process-

ing function. For instance, in [LTL+16], the authors propose to offload software

logic onto programmable hardware (e.g., FPGA) to accelerate individual network

functions. However, many NFVs should be deployed in different edge nodes to

have different services addressed in parallel and not always the hardware accel-

eration can be exploited [FGC+17].

In this section, a novel approach based on pipelining multi-service chain is pre-

sented to accelerate the PFs. Such a chain is based on many hardware accelerators

connected in a FPGA pipeline that works with an aggregated input stream. In

particular, the idea is to deploy configurable PFs-chain of many hardware acceler-

ators, deployed into a single board, that independently process input data and in

parallel, without any interactions between each other. Such deployed PFs-chain

is then controlled by means of a specific framework acting as controller (e.g.,

SDN) which has the role of supervising the hardware process and interact with

it. Host controller flexibility enables specific flows to be subject to a different se-

lected chain, with the objective to minimize the overall experienced latency, thus

assuring effective and scalable service differentiation. Such a co-design scenario

enables the possibility of using hardware architecture at the edge, improving the

86

Section 2 - Hardware acceleration for Processing Function Virtualization

processing of the PFV and maintaining software flexibility. The use case consid-

ered to validate the proposed architecture relies on the data processing based on

a NF to mitigate a striker traffic at the NGCO edge node as well as an image

processing PF to detect a pedestrian from a smart-camera input stream.

Figure 4.15. PF implemented in the FPGA processing pipeline

2.1. Processing functions chain as FPGA pipeline. A programmable

and configurable processing service chain operating as function offload resource

within a single hardware board deployed inside an edge node is hereafter pro-

posed. Figure 4.15 shows the PFs implemented in a FPGA processing pipeline

considered for the acceleration of the NGCO functionalities. The idea is to de-

ploy several services or processing function accelerators (referred as PF1, PF2,

... PFn) dedicated to different services (e.g., security enhancement, image pro-

cessing, IoT data analysis, entertainment, etc.) into the single hardware board,

so that the input data traffic is processed by the single processing pipeline. Such

accelerators can be dynamically enabled or disable (i.e., bypassed) by the con-

troller that also configures the parameters of each acceleration block exploiting

the control commands. For example, the software host application may dynami-

cally enable specific traffic flows to be applied to a different PFs of the pipeline.

Indeed, the FPGA accelerator can be plugged as a NIC using the PCIe periph-

eral that allows to control the hardware dataflow and change the parameters from

the host control. The processing pipeline can be applied to the aggregated data

stream received from an Ethernet optical interface and each stream inside the

aggregated traffic can be processed using different acceleration flavouring based

on the nature of the input stream. For instance, the traffic coming from cameras

are only processed by PF dedicated to the processing without affecting the re-

maining traffic that passes through the pipeline. The key benefit of using FPGA

for acceleration is that they support wide, heterogeneous and unique pipeline

87

Chapter 4 - Network functions acceleration at the edge

implementations. This feature is in counter-trend with other acceleration plat-

form such as symmetric multiprocessors, DSPs and GPGPUs. Indeed, such kind

of devices reaches high level of parallelism by replicating the computation and

spreading it among the platform resources. In this scenario, the application can

be represented as collection of data elements that can be concurrently processed.

However, FPGAs is able to achieve parallelism by duplicating the logic required

by the function algorithms, thus many input streams, received from many Ether-

net interfaces, can be computed in parallel with a dedicated pipeline. As matter

of example, we can consider a FPGA with 4 physical Ethernet interfaces. Each

interface receives the traffic and a pipeline is applied to process the input pack-

ets. A single pipeline is fully customizable and dedicated to the input stream

based on many aggregated dataflows. Furthermore, each pipeline can be further

divided in a set of PFs that have different computation functionalities to ad-

dress the processing of the different dataflows within the input stream. Thus, a

pipeline processes different types of traffic and each PF in the pipeline can be

enabled/disabled and properly configured by the controller. In this scenario, the

latency can be minimized since each data stream has to only pass through the

pipeline blocks dedicated to the computation of that stream, without affecting

the latency of the others.

Figure 4.16. Custom processing pipeline to accelerate PFs-chain

to mitigate DDoS attacks and detect pedestrian

2.2. Implementation. This section describes an experimental implemen-

tation of the configurable hardware-based multi-PFs pipeline. The considered

use case targets both computation function (i.e., computer vision) and network

function (i.e., cyber security). Image processing applications may require low

88

Section 2 - Hardware acceleration for Processing Function Virtualization

processing latency, especially in real-time use cases such as automotive scenar-

ios. Thus, the acceleration of the PFs related to image processing can reduce

the computational delay and improve real-time performance. For cyber security,

advanced network security functions are required to be demanded to SDN control

inspection. However, scalability issues and higher wire speed channels prevent

such option: online hardware processing can aim at sustaining the required band-

width and reducing latency.

The implementation of the considered pipeline is dedicated to mitigate a DDoS

attack as well as process data from an input camera for pedestrian detection.

Both solutions are deployed using a custom Intellectual Property (IP) core. The

board considered for the experimental evaluation is the NetFPGA-Sume, pre-

sented in Section 1.5.2 of this Chapter. To evaluate the impact of the pipeline

in terms of latency, a FPGA pipeline implementing two DDoS mitigation blocks

and a pedestrian detection PFs is considered to demonstrate the flexibility of the

hardware acceleration at the NGCO node. In Figure 4.16, the setup is detailed

with the PFs-chain implemented in the FPGA. Here, the FPGA acts as a learning

switch with two different custom pipelines deployed on two input dataflows. The

other two input ports of the NetFPGA serve as output ports to measure the per-

formance of the pipeline. Each processing pipeline is composed by an input block

that receives the Ethernet traffic and converts it into an AXI Stream flow. The

AXI Stream is the bus considered to connect all entities of the pipeline. Then,

two DDoSs and a pedestrian detection PFs are connected to the 10G interface

and they respectively have the role to mitigate the traffic and process the input

image stream, once enabled by the controller. Moreover, DDoS PFs implement

the token-bucket algorithm to mitigate the striker traffic [TT99]. This algorithm

considers a non-negative counter that increases at a certain rate up to the maxi-

mum capacity of the bucket. The counter represents the number of tokens to be

added to the bucket. For each input packet, the counter of tokens decreases of

one unit. If the packet flow rate is higher than the token counter rate, the bucket

will become empty and the packets will be dropped. If the packet flow rate is

lower than the token counter rate, the packets will be forwarded. Indeed, the

token counter will reach the upper bound of the bucket and the accumulation of

the token will be suspended till the arrival of next packet. In this way, the traffic

is forwarded if its rate is constant and lower than the token counter rate while

bigger data bursts with rate above the threshold are only allowed for short time

89

Chapter 4 - Network functions acceleration at the edge

slot.

The pedestrian detection PF is based on two main functional blocks: feature

extractor and classifier. The extractor produces Histogram of Oriented Gradi-

ents (HOG), computed on a dense grid of uniformly spaced cells and normalized.

The input image is divided into small connected regions, called cells, and within

each cell a histogram of gradient directions is computed. The resulting descriptors

are processed by the classifier, based on a pre-trained SVM. The SVM algorithm

compares the input vector descriptor with a reference model, which is produced

by a supervised learning phase [MBQ+18]. The fifth step of the pipeline is the

MAC learning switch PF that is common for all the input streams. This PF

is responsible for deciding the output port for a packet. After the decision, the

packet goes to the output queue waiting for being sent via 10G output PF. The

PF is based on Xilinx CAM. Unlike RAM that receives an input address and re-

turns data word associated to that address, a CAM memory receives a data word

in input and searches the entire memory in a parallel fashion to detect at which

memory offset the input data word is stored. CAM memory is implemented by

means of its on-chip Block RAM (BRAM).

Each pipeline stage is controlled by the host exploiting the PCIe interface. In-

deed, the system consider a DMA module that exposes an AXI4-LITE bus mas-

ter interface through which all AXI registers can be accessed from the host (over

PCIe). A Linux kernel module permits to access the PCIe, thus the registers of

the memory mapped bus are accessed through DMA core. Hence, the controller

can handle all the parameters of the different PFs inside the pipeline.

2.3. Results. To evaluate the architecture proposed in the previous Sec-

tions, both latency and throughput are considered as performance parameters.

To measure the values of such parameters, two NetFPGA SFP+ 10G optical in-

terfaces are connected by means of optical fibers to the Spirent SPT N4U traffic

generator and analyzer. The generator is equipped with the MX-10G-S8 card

providing up to 8 SFP+-based 10G optical Ethernet interfaces, with traffic pro-

files obtained by setting different values of the total transmitted throughput.

The generator permits to send the packets to the NetFPGA and it can calculate

throughput and latency after receiving the packet forwarded by the NetFPGA.

Six different use cases are considered to demonstrate the approach validity, where

the parameters of the DDoSs and pedestrian detection pipeline PFs can be

changed by means of controller. For each DDoS PF, the parameters taken into

90

Section 2 - Hardware acceleration for Processing Function Virtualization

Latency avg

(µs)

Pipeline

Input

Throughput

(Mbps)

Pipeline

Output

Throughput

(Mbps)

Drop

Pipelined

Processing

Function

Case 1

S1 1.1 574 574.7 NO DDoS 1

S2 1.1 6568 6568 NO –

S3 47.1 670 670 NO Pedestrian Detection

Case 2

S1 – 817 0 YES DDoS 1

S2 1.1 6535 6535 NO –

S3 47.1 670 670 NO Pedestrian Detection

Case 3

S1 1.1 744 744 NO DDoS 1 and DDoS 2

S2 1.1 6550 6550 NO –

S3 47.1 670 670 NO Pedestrian Detection

Case 4

S1 – 817 0 YES DDoS 1 and DDoS 2

S2 1.1 6535 6535 NO –

S3 47.1 670 670 NO Pedestrian Detection

Case 5

S1 1.1 744 744 NO DDoS 1

S2 1.1 744 744 NO DDoS 2

S3 47.1 670 670 NO Pedestrian Detection

Case 6

S1 – 817 0 YES DDoS 1

S2 – 817 0 YES DDoS 2

S3 47.1 670 670 NO Pedestrian Detection

Table 4.3. Latency and throughput evaluation for processing

pipeline considering different use cases and input streams

account are the size of the bucket (i.e., number of tokens), the frequency of the

token generation, source and destination MAC of the stream on which the block

is applied and the enable/disable of the block. For pedestrian detection PF,

enabled/disabled parameter and source and destination MAC of the stream are

considered. All the cases are based on an aggregated input stream composed

by three streams, S1, S2 and S3. For each use case, different throughputs are

imposed for S1 and S2 to evaluate the functionality of the DDoS PFs while S3

remains constant at 670 Mbps which corresponds to about 270 frame per second

of VGA resolution stream in grey-scale. Table 4.3 shows the latency, imposed

and measured throughput for all the use cases to test the pipeline under study.

Moreover, the token bucket size and token counter rate are fixed to drop the

91

Chapter 4 - Network functions acceleration at the edge

traffic with throughput higher than 800 Mbps. The first use case considers the

S1 input stream as striker traffic, thus the DDoS 1 is active on the S1 flow, while

the S2 stream can be forwarded without any processing. The S1 throughput is

under the threshold, thus traffic is forwarded without drop. Case 2 considers the

same scenario of Case 1 with S1 throughput higher than the threshold (i.e., 800

Mbps). In this case, the S1 traffic is dropped, while the S2 flow is not affected.

Case 3 refers to the scenario where both DDoS 1 and DDoS 2 are applied to the

same stream. This case is useful to understand the latency impact of the two

PFs enabled on the same traffic. The results show that the latency is equivalent

to the one measured in Case 1. Case 4 replicates Case 3 with S1 stream imposed

above the 800 Mbps threshold. The system presents the same performance shown

in Case 2. Case 5 and Case 6 refer to the DDoS PFs respectively applied to S1

and S2. In particular, DDoS 1 is applied on S1, while DDoS 2 to S2. In Case

5, the two traffics are below the threshold without any drop. In Case 6, the two

traffics exceed the threshold of 800 Mbps, thus the Spirent analyzer is not able

to receive any traffic. During all the experiments, the pedestrian detection PF is

always active on the traffic S3.

The results show the efficiency of the approach in terms of latency. Considering

S1 and S2 streams, the average latency measured at the Spirent is the same in

all the considered scenarios, also in case of relevant aggregated throughput (i.e.,

> 7 Gbps). In general, activating two PFs on the same pipeline should increase

the latency. The reason of this behaviour lies on the architecture of DDoS PF.

Such developed peripheral permits to control the traffic without stalling the traf-

fic itself. Indeed, the DDoS PF listens to the input traffic and calculates the

number of tokens without intercepting the traffic and in less clock cycles of those

necessaries to forward the traffic. Otherwise, the PF could compute the number

of token remained in more AXI stream transactions. In this way, the system will

lose packets, especially when the input packet rate is close to 10 Gbps. Hence,

the PF does not intercept the traffic and the output is always available for the

next pipeline block. When the token number reaches the lower bound of the

bucket, the PF will discard the traffic by simply changing the signals of the AXI

Stream bus. On the other side, the pedestrian detection PF intercepts the traf-

fic to perform the processing. In this case the output of the pipeline block will

be the data computed consuming more clock cycles. Thus, the pipeline latency

measured for traffic S3 is 46 µs more than the latency of S1 and S2 due to image

92

Section 3 - Conclusion

��������	
����������
�
��
�
��
�
�
��
�
��

�
�
�
��
�

�

�����

�����

�����

�����

�����

�����

�����

����������������
�
�	
�� �	
�� �	
�� �	
�� �	
�� �	
�� �	
�� �	
��

��
���
��

����	����	�����

Figure 4.17. Pipeline latency as function of the aggregated input

throughput

processing computation.

To complete the analysis, Figure 4.17 shows overall pipeline latency, with DDoS

pipelined PFs active and pedestrian detection PF disabled, as a function of the

aggregated input throughput. The trend is in line with the results shown in Ta-

ble 4.3 with the average latency constant during all tests up to 10 Mframe/s and

packet size of 100 Bytes.

3. Conclusion

In this Chapter, the networking and processing functionalities are deployed at

the edge of the datacenter architecture, where the NGCO will host them. Traffic

engineering, cyber security and data processing have been considered as functions

to be deployed at the edge. Some of these functions are then accelerated by means

of reconfigurable hardware to achieve the best performance in terms of latency.

In particular, a P4-based architecture of a edge packet-over optical node was

presented, along with P4 solutions suitable multi-layer networks, designed and

implemented to provide dynamic TE enforcement of optical bypass and traffic

offloading. In addition, P4 was also exploited to effectively react against DDoS

cyber-attacks requiring stateful capabilities, acting as an active cyber security

barrier.

The P4 solutions have been experimentally validated on BMV2 P4 switches and

NetFPGA boards, showing impressive scalability performance with the size of the

93

Chapter 4 - Network functions acceleration at the edge

P4 program and in terms of switch latency to perform P4 operations, especially

in the NetFPGA implementation. For example, only 5 µs overall switch latency

were experienced running the cyber security P4 code, with no performance degra-

dation using even 104 flow entries, thanks to the NetFPGA parallel architecture.

Noticeably, results show no significant performance degradation with respect to

fixed function commercial switches while gaining a remarkable degree of flexibility

and open source programmability. All dynamic TE and cyber security solutions

have been successfully implemented within the P4 switch without involving the

SDN controller for modifying flow rules during networking operations.

The work demonstrated P4 scalability and flexibility in key multi-layer edge node

use cases, thus opening the road to innovative and disruptive open-source traffic

forwarding and manipulation procedures to be programmed in the data plane of

next-generation converged networks.

Moreover, a novel architecture based on the hardware acceleration of PFs-chain,

considering many hardware accelerators connected in a pipeline, has been de-

scribed. The hardware pipeline has been designed to both mitigate the aggre-

gated input traffic and perform the pedestrian detection at the edge node. A

controller (e.g., SDN) can monitor the pipeline and change the parameters of the

blocks or enable/disable them. The performance parameters considered for the

evaluation are the latency offered by the whole pipeline to forward the traffic and

the throughput handled by the FPGA.

Results show the functionalities of the PFs tested with an aggregated stream

that contains normal and striker traffic. For DDoS PFs, the latency remains

constant since they are designed to not stall the input streams. Moreover, the

computation of the DDoS PFs requires less clock cycles than the transaction of

the single packet. The pedestrian detection PF intercepts the traffic and requires

more clock cycles for data processing. In this case, the latency increases but it

only affects the stream dedicated to the image processing, without affecting the

other traffic. However, the PF has been designed to minimize the clock cycles

necessaries for the computation. Finally, the latency of the pipeline has been also

shown without image data traffic as a function of aggregated input throughput

and the average pipeline latency remains constant to 1.1 µs in all the considered

scenarios.

94

CHAPTER 5

Conclusions

This thesis discussed the architecture considered for accelerating 5G infrastruc-

ture at the edge. Both 5G RAN and 5G access network are investigated as

scenarios where the hardware acceleration can be deployed for the next genera-

tion of mobile communications. The motivation behind this work is to enhance

5G processing since the requirements proposed by the international standard in-

stitutes are stringent. Moreover, 5G envisions to provide connectivity to a large

number of users (humans or machines) that require connectivity for different ap-

plications. At first, in Chapter 1, an excursus from 1G to 5G has been presented

to discuss the innovations and weaknesses of each mobile phone generation. Then,

the challenges of the 5G have been introduced to focus on the requirements of

the 5G model, deepened in Chapter 2. This Chapter also describes the structure

of the overall 5G network considering the 5G RAN and the datacenter access

network as scenarios where the acceleration can be placed.

Once the 5G structure has been formally described, in Chapter 3 reconfigurable

computing approach is considered to accelerate the functionalities of the 5G

protocol stack. The implementation and optimization process to accelerate the

OFDM part of the 5G downlink is conducted on a high-end FPGA. The proposed

scenarios considers OpenCL as a reconfigurable computing architecture. Imple-

mentation fulfills the 5G processing timing requirements since the computation

time is consistent with the present 5G deployment. However, to be suitable for

5G, the OpenCL platform must improve the data latency transfer between hard-

ware and software. Moreover, a further enhancement for the proposed OpenCL

implementation with respect to optimized software on vectorized high-end pro-

cessor is to improve the code optimization due to the fact the OpenCL is a general

purpose programming language.

Chapter 4 have shown the enhancements that can be reached by means of accel-

erating network functions at the edge access network (in particular the NGCO).

Experimental evaluations have been conducted exploiting reference P4 software

95

switches and FPGA to accelerate the processing. Extensive results report ef-

fective dynamic TE and cyber security mitigation enforcement at P4 switches.

Moreover, the Chapter proposed an innovative approach to accelerate network

functions at the edge exploiting programmable hardware. A FPGA pipeline for

multi-service chain permits to improve the processing close to the end user, en-

abling dynamic deployment and hardware resources management. Results show

the effectiveness of the approach in terms of processing latency.

Concerning the perspectives, many are the future outcomes. At first, this thesis

has shown that hardware acceleration model is suitable for 5G acceleration, but

it clearly requires further evaluation with real-world deployments. Moreover, this

work has considered the software application to control the hardware processing

and dynamic offloading. However, the hardware-software interface (i.e., PCIe)

does not allow concurrent access to the hardware platform. A scheduling for

the hardware access is not yet provided. This extension would be extremely of

interest when dealing with virtualization since many virtual instances should be

interact with the hardware in parallel. Secondly, this work does not consider the

GPGPU processing that should be investigated as acceleration platform that can

be an alternative to improve the computation.

To conclude this work, the author would try to give an answer to the question

proposed in the title of the thesis. 5G network needs strict latency and bandwidth

requirements to meet the demand of an ever-growing number of connected de-

vices from many different services. Thus, the data and network processing must

be improved to reach the required performance. In this context, edge computing

is a fundamental part that must be considered for 5G communication. Indeed,

it permits to only send metadata to the Cloud and to faster react to the final

users requests since the processing is physically moved to the network edge. For

these reasons, the processing at the edge must be accelerated by hardware or

dedicated platforms that ensure the best performance for all the users. Nowa-

days, the computation for the present mobile phone generation (i.e., 4G) uses

ASICs or DSPs to improve the processing, but such architecture are extremely

dedicated and they cannot be reprogrammed remotely. Conversely, one of the

key performance indicator of 5G is the flexibility. This means that the entities

of the network will be virtualized to meet the user demand and saving energy

at the same time. Thus, many virtualized software applications can be remotely

moved, changed or cancelled and the hardware must follow the software changes.

96

Reconfigurable computing with reconfigurable hardware applied at the edge can

be the key to follow the changes and shape 5G communication.

97

List of Acronyms

5GC: 5G Core

AI: Artificial Intelligence

ALUTs: Adaptive Look Up Tables

API: Application Programming Interface

ASIC: Application Specific Integrated Circuit

API: Application Programming Interface

AVX2: Advanced Vector Extension 2

BGP: Border Gateway Protocol

CAM: Content Addressable Memory

CD: Compute Device

CLI: Command Line Interface

CNN: Convolutional Neural Network

CDMA: Code Division Multiple Access

CORD: Central Office Re-architected as a Datacenter

CPRI: Common Public Radio Interface

CPU: Central Processing Unit

CU: Central Unit

CvP: Configuration via Protocol

DAC: Digital to Analog Conversion

DDoS: Distributed Denial of Service

DLA: Deep Learning Accelerator

DMA: Direct Memory Access

DSP: Digital Signal Processor

DU: Distributed Unit

DWDM: Dense Wavelength-Division Multiplexing

eCPRI: ethernet-based CPRI

eNB: evolved Node B

EON: Elastic Optical Network

98

EPC: Evolved Packet Core

FDFIRs: Frequency-Domain Finite Impulsive Response

FDMA: Frequency Division Multiple Access

FFs: Flip Flops

FFT: Fast Fourier Transform

FIR: Finite Impulsive Response

FPGA: Field Programmable Gate Array

gNB: next generation eNB

GPGPU: General Purpose computing on Graphics Processing Unit

HI: Hiperspectral Image

HLS: High-Level Synthesis

HLD: High-Level Design

HOG: Histogram of Oriented Gradients

HDL: Hardware Description Language

iFFT: inverse Fast Fourier Transform

IEEE: Institute of Electrical and Electronics Engineers

IoT: Internet of Things

I/Q: In-phase/Quadrature

KNN: K Nearest Neighbours

LUT: LookUp Table

MIMO: Multiple Input Multiple Output

NF: Network Function

NFV: Network Function Virtualization

NGCO: Next Generation Central Office

NGFI: Next Generation Fronthaul Interface

NG-RAN: Next Generation RAN

NIC: Network Interface Card

NOC: Network Operation Center

NnPU: Neural network Processing Unit

NPU: Network Processing Unit

OAI: OpenAir Interface

OpenCL: Open Computing Language

OpenCL CU: OpenCL Compute Unit

OFDM: Orthogonal Frequency Division Multiplexing

P4: Programming Protocol-independent Packet Processor

99

PE: Processing Element

PF: Processing Function

PFV: Processing Function Virtualization

PR: Partial Reconfiguration

QoS: Quality of Service

RAM: Random Access Memory

RAN: Radio Access Network

RF: Radio Frequency

RoE: Radio over Ethernet

SDN: Software Defined Networking

SR: Segment Routing

SIMD: Single Instruction Multiple Data

SIMT: Single Instruction Multiple Thread

SoC: System on Chip

SOC: Security Operation Center

SVM: Support Vector Machine

SWI: Single Work-Item

TDFIRs: Time-Domain Finite Impulsive Response

TE: Traffic Engineering

TDMA: Time Division Multiple Access

UE: User Equipment

100

Publication list

International Journals

Federico Civerchia, Maxime Pelcat, Luca Maggiani, Koteswararao Kondepu,

Piero Castoldi and Luca Valcarenghi. Is OpenCL Driven Reconfigurable Hard-

ware Suitable for Virtualising 5G Infrastructure? Major revision submitted to

IEEE Transactions on Network and Service Management

Francesco Giannone, Koteswararao Kondepu, Himank Gupta, F Civerchia, Piero

Castoldi, A Antony Franklin, and Luca Valcarenghi. Impact of virtualization

technologies on virtualized ran midhaul latency budget: A quantitative experi-

mental evaluation. IEEE Communications Letters, 23(4):604–607, 2019

F Paolucci, F Civerchia, A Sgambelluri, A Giorgetti, F Cugini, and P Castoldi.

P4 edge node enabling stateful traffic engineering and cyber security. Journal of

Optical Communications and Networking, 11(1):A84–A95, 2019

Federico Civerchia, Stefano Bocchino, Claudio Salvadori, Enrico Rossi, Luca Mag-

giani, and Matteo Petracca. Industrial internet of things monitoring solution for

advanced predictive maintenance applications. Journal of Industrial Information

Integration, 7:4–12, 2017

International Conferences

Federico Civerchia, Maxime Pelcat, Piero Castoldi, and Luca Valcarenghi. Ex-

ploiting reconfigurable computing in 5g: a case study of latency critical function.

In 2019 IEEE 20th International Conference on High Performance Switching and

101

Routing (HPSR). IEEE, 2019

Federico Civerchia, Maxime Pelcat, Piero Castoldi, and Luca Valcarenghi. Ex-

ploiting programmable and reconfigurable hardware in 5g. In 2019 IEEE Summer

Topicals Meeting Series (SUM). IEEE, 2019

F Civerchia, L Kondepu, F Giannone, N Sambo, P Castoldi, and L Valcarenghi.

Exploiting pdcp filtering for implementing a capacity-efficient virtual ran recov-

ery. In 2019 21th International Conference on Transparent Optical Networks (IC-

TON). IEEE, 2019

Antonia Napolitano, Gabriele Cecchetti, Francesco Giannone, Anna Lina Rus-

celli, Federico Civerchia, Koteswararao Kondepu, Luca Valcarenghi, and Piero

Castoldi. Implementation of a mec-based vulnerable road user warning system.

In 2019 International Conference of Electrical and Electronic Technologies for

Automotive (Automotive 2019). AEIT, 2019

Antonia Napolitano, Francesco Giannone, Federico Civerchia, Koteswararao Kon-

depu, Gabriele Cecchetti, Anna Lina Ruscelli, Luca Valcarenghi, and Piero Cas-

toldi. Italian 5g trials: A vertical view. In 2018 IEEE 4th International Forum on

Research and Technology for Society and Industry (RTSI), pages 1–5. IEEE, 2018

F Civerchia, L Kondepu, F Giannone, S Doddikrinda, P Castoldi, and L Val-

carenghi. Encapsulation techniques and traffic characterisation of an ethernet-

based 5g fronthaul. In 2018 20th International Conference on Transparent Opti-

cal Networks (ICTON), pages 1–5. IEEE, 2018

Federico Civerchia, Enrico Rossi, Luca Maggiani, Stefano Bocchino, Claudio Sal-

vadori, and Matteo Petracca. Lightweight error correction technique in industrial

ieee802. 15.4 networks. In IECON 2016-42nd Annual Conference of the IEEE

Industrial Electronics Society, pages 6044–6048. IEEE, 2016

102

Bibliography

[19118] IEEE 1914.3. Radio over ethernet encapsulations and mappings. Standard, IEEE,

September 2018.

[3GP17] 3GPP. Study on New Radio Access Technology: Radio Access Architecture and

Interfaces (Release 14). TR 38.801, March 2017.

[3GP18] 3GPP. 5G, NR, Physical channels and modulation (Release 15). TS 38.211, July

2018.

[ABBS17] Y. Afek, A. Bremler-Barr, and L. Shafir. Network anti-spoofing with sdn data

plane. In IEEE INFOCOM 2017 - IEEE Conference on Computer Communica-

tions, pages 1–9, May 2017.

[ABC+14] Jeffrey G Andrews, Stefano Buzzi, Wan Choi, Stephen V Hanly, Angel Lozano,

Anthony CK Soong, and Jianzhong Charlie Zhang. What will 5g be? IEEE

Journal on selected areas in communications, 32(6):1065–1082, 2014.

[ADF+13] David Astely, Erik Dahlman, Gabor Fodor, Stefan Parkvall, and Joachim Sachs.

Lte release 12 and beyond [accepted from open call]. IEEE Communications Mag-

azine, 51(7):154–160, 2013.

[AGE+04] Stefano Avallone, S Guadagno, Donato Emma, Antonio Pescapè, and Giorgio

Ventre. D-itg distributed internet traffic generator. In First International Confer-

ence on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings.,

pages 316–317. IEEE, 2004.

[AKL+18] Ijaz Ahmad, Tanesh Kumar, Madhusanka Liyanage, Jude Okwuibe, Mika Yliant-

tila, and Andrei Gurtov. Overview of 5g security challenges and solutions. IEEE

Communications Standards Magazine, 2(1):36–43, 2018.

[AL15] A. M. S. Abdelhadi and G. G. F. Lemieux. Modular SRAM-based binary content-

addressable memories. In 2015 IEEE 23rd Annual International Symposium on

Field-Programmable Custom Computing Machines, pages 207–214, May 2015.

[AOC+17] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C Ling, and Gordon R

Chiu. An opencl™ deep learning accelerator on arria 10. In Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-

rays, pages 55–64. ACM, 2017.

[ASP15] Ali Al-Shabibi and L Peterson. Cord: Central office re-architected as a datacenter.

OpenStack Summit, pages 1–38, 2015.

103

[BBCC14] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone. Open-

State: Programming platform-independent stateful openflow applications inside

the switch. SIGCOMM Comput. Commun. Rev., 44(2):44–51, April 2014.

[BDG+14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-

ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David

Walker. P4: Programming protocol-independent packet processors. SIGCOMM

Comput. Commun. Rev., 44(3):87–95, July 2014.

[Ben14] Howard Benn. Vision and key features for 5th generation (5g) cellular. Samsung

R&D Institute UK, 2014.

[BFS+17] Colm Browning, Arman Farhang, Arsalan Saljoghei, Nicola Marchetti, Vidak

Vujicic, Linda E Doyle, and Liam P Barry. 5g wireless and wired convergence in

a passive optical network using uf-ofdm and gfdm. In 2017 IEEE International

Conference on Communications Workshops (ICC Workshops), pages 386–392.

IEEE, 2017.

[BHM17] W. Braun, J. Hartmann, and M. Menth. Demo: Scalable and reliable software-

defined multicast with bier and p4. In 2017 IFIP/IEEE Symposium on Integrated

Network and Service Management (IM), pages 905–906, May 2017.

[BMC04] Jeffrey Bannister, Paul Mather, and Sebastian Coope. Convergence technologies

for 3G networks: IP, UMTS, EGPRS and ATM. John Wiley & Sons, 2004.

[bmv17] Behavioral Model version 2 (BMV2). https://github.com/p4lang/behavioral-

model, 2017.

[BMW18] Rory Browne, Paul Mannion, and Eoin Walsh. Cord: Central office re-architected

as a datacenter. White Paper, Intel Corporation, pages 1–16, 2018.

[C+17] CPRI Consortium et al. ecpri specification v1. 0, 2017.

[CBS+17] Federico Civerchia, Stefano Bocchino, Claudio Salvadori, Enrico Rossi, Luca Mag-

giani, and Matteo Petracca. Industrial internet of things monitoring solution for

advanced predictive maintenance applications. Journal of Industrial Information

Integration, 7:4–12, 2017.

[CKG+18] F Civerchia, L Kondepu, F Giannone, S Doddikrinda, P Castoldi, and L Val-

carenghi. Encapsulation techniques and traffic characterisation of an ethernet-

based 5g fronthaul. In 2018 20th International Conference on Transparent Optical

Networks (ICTON), pages 1–5. IEEE, 2018.

[CKG+19] F Civerchia, L Kondepu, F Giannone, N Sambo, P Castoldi, and L Valcarenghi.

Exploiting pdcp filtering for implementing a capacity-efficient virtual ran recov-

ery. In 2019 21th International Conference on Transparent Optical Networks (IC-

TON). IEEE, 2019.

[CLS+08] Shuai Che, Jie Li, Jeremy W Sheaffer, Kevin Skadron, and John Lach. Accelerat-

ing compute-intensive applications with gpus and fpgas. In 2008 Symposium on

Application Specific Processors, pages 101–107. IEEE, 2008.

104

[CPCV19a] Federico Civerchia, Maxime Pelcat, Piero Castoldi, and Luca Valcarenghi. Ex-

ploiting programmable and reconfigurable hardware in 5g. In 2019 IEEE Summer

Topicals Meeting Series (SUM). IEEE, 2019.

[CPCV19b] Federico Civerchia, Maxime Pelcat, Piero Castoldi, and Luca Valcarenghi. Ex-

ploiting reconfigurable computing in 5g: a case study of latency critical function.

In 2019 IEEE 20th International Conference on High Performance Switching and

Routing (HPSR). IEEE, 2019.

[CPSC15] C. Cascone, L. Pollini, D. Sanvito, and A. Capone. Traffic management applica-

tions for stateful sdn data plane. In 2015 Fourth European Workshop on Software

Defined Networks, pages 85–90, Sept 2015.

[CRM+16] Federico Civerchia, Enrico Rossi, Luca Maggiani, Stefano Bocchino, Claudio Sal-

vadori, and Matteo Petracca. Lightweight error correction technique in industrial

ieee802. 15.4 networks. In IECON 2016-42nd Annual Conference of the IEEE

Industrial Electronics Society, pages 6044–6048. IEEE, 2016.

[CSSK+15] Raúl Chávez-Santiago, Micha l Szyde lko, Adrian Kliks, Fotis Foukalas, Yoram

Haddad, Keith E Nolan, Mark Y Kelly, Moshe T Masonta, and Ilangko Bal-

asingham. 5g: The convergence of wireless communications. Wireless Personal

Communications, 83(3):1617–1642, 2015.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation

of complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

[CYRN+16] Chang Chia-Yu, S Ruggero, N Navid, S Thrasyvoulos, and B Christian. Impact

of packetization and functional split on c-ran fronthaul performance. In Proc. of

IEEE ICC, 2016.

[DCA+17] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti. A survey on the

security of stateful sdn data planes. IEEE Communications Surveys Tutorials,

19(3):1701–1725, thirdquarter 2017.

[DDGF+18] Stefan Dahlfort, Antonio De Gregorio, Giovanni Fiaschi, Shahryar Khan, Jonas

Rosenberg, and Tomas Thyni. Enabling intelligent transport in 5G networks. Er-

icsson technology review, Ericsson, March 2018.

[DGDLR18] David Demmer, Robin Gerzaguet, Jean-Baptiste Doré, and Didier Le Ruyet. An-

alytical study of 5g nr embb co-existence. In 2018 25th International Conference

on Telecommunications (ICT), pages 186–190. IEEE, 2018.

[DGE+15] Annika Dochhan, Helmut Griesser, Nicklas Eiselt, Michael H Eiselt, and Jörg-

Peter Elbers. Solutions for 80 km dwdm systems. Journal of Lightwave Technology,

34(2):491–499, 2015.

[dlOHLA16] Antonio de la Oliva, José Alberto Hernández, David Larrabeiti, and Arturo Az-

corra. An overview of the cpri specification and its application to c-ran-based lte

scenarios. IEEE Communications Magazine, 54(2):152–159, 2016.

[DPE88] Pierre Duhamel, B Piron, and Jacqueline M Etcheto. On computing the inverse

dft. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(2):285–

286, 1988.

105

[DPS16] Erik Dahlman, Stefan Parkvall, and Johan Skold. 4G, LTE-advanced Pro and the

Road to 5G. Academic Press, 2016.

[DSF+17] R Domingo, Rubén Salvador, Himar Fabelo, Daniel Madroñal, Samuel Ortega,

Raquel Lazcano, Eduardo Juárez, G Callicó, and César Sanz. High-level de-

sign using intel fpga opencl: A hyperspectral imaging spatial-spectral classifier.

In 2017 12th International Symposium on Reconfigurable Communication-centric

Systems-on-Chip (ReCoSoC), pages 1–8. IEEE, 2017.

[EGS+15] Hans-Joachim Einsiedler, Anastasius Gavras, Patrick Sellstedt, Rui Aguiar, Ric-

cardo Trivisonno, and Damien Lavaux. System design for 5g converged networks.

In 2015 European Conference on Networks and Communications (EuCNC), pages

391–396. IEEE, 2015.

[EUO+18] Opeoluwa Tosin Eluwole, Nsima Udoh, Mike Ojo, Chibuzo Okoro, and Akin-

tayo Johnson Akinyoade. From 1g to 5g, what next? IAENG International Jour-

nal of Computer Science, 45(3), 2018.

[EVBH08] Jörg Eberspächer, Hans-Jörg Vögel, Christian Bettstetter, and Christian Hart-

mann. GSM-architecture, protocols and services. John Wiley & Sons, 2008.

[Fag14] O Fagbohun. Comparative studies on 3g, 4g and 5g wireless technology. IOSR

Journal of Electronics and Communication Engineering, 9(3):88–94, 2014.

[FGC+17] Silvia Fichera, Molka Gharbaoui, Piero Castoldi, Barbara Martini, and Antonio

Manzalini. On experimenting 5g: Testbed set-up for sdn orchestration across net-

work cloud and iot domains. In 2017 IEEE Conference on Network Softwarization

(NetSoft), pages 1–6. IEEE, 2017.

[FGG+15] Silvia Fichera, Laura Galluccio, Salvatore C. Grancagnolo, Giacomo Morabito,

and Sergio Palazzo. OPERETTA: An openflow-based remedy to mitigate TCP

synflood attacks against web servers. Comput. Netw., 92(P1):89–100, December

2015.

[G+17] 5G PPP Architecture Working Group et al. View on 5g architecture (version 2.0).

5G PPP Whitepaper, 2017.

[GBNM+18] David Gomez-Barquero, David Navratil, Andrew Murphy, Jon Hart, Mael Boutin,

Roman Odarchenko, Tuan Tran, Peter Sanders, and Menno Bot. Converged core

network. Deliverable 4.2, 5G-PPP 5G-Xcast project, August 2018.

[GKG+19] Francesco Giannone, Koteswararao Kondepu, Himank Gupta, F Civerchia, Piero

Castoldi, A Antony Franklin, and Luca Valcarenghi. Impact of virtualization tech-

nologies on virtualized ran midhaul latency budget: A quantitative experimental

evaluation. IEEE Communications Letters, 23(4):604–607, 2019.

[GO11] Dominik Grewe and Michael FP O’Boyle. A static task partitioning approach

for heterogeneous systems using opencl. In International Conference on Compiler

Construction, pages 286–305. Springer, 2011.

[GSP+17a] A. Giorgetti, A. Sgambelluri, F. Paolucci, P. Castoldi, and F. Cugini. First demon-

stration of SDN-based bit index explicit replication (BIER) multicasting. In 2017

106

European Conference on Networks and Communications (EuCNC), pages 1–6,

June 2017.

[GSP+17b] A. Giorgetti, A. Sgambelluri, F. Paolucci, F. Cugini, and P. Castoldi. Segment

routing for effective recovery and multi-domain traffic engineering. IEEE/OSA

Journal of Optical Communications and Networking, 9(2):A223–A232, Feb 2017.

[GT] ITUT GSTR-TN5G. Technical report “transport network support of imt-

2020/5g”, feb 2018.

[Gu18] Dennis Gu. Cloud data centers in the 5G era. Communicate issue 85, Huawei,

June 2018.

[HG99] J. Heinanen and R. Guerin. A Two Rate Three Color Marker. IETF, RFC 2698,

Sept. 1999.

[HH17] J. Hyun and J. W. K. Hong. Knowledge-defined networking using in-band net-

work telemetry. In 2017 19th Asia-Pacific Network Operations and Management

Symposium (APNOMS), pages 54–57, Sept 2017.

[HM15] Lee Howes and Aaftab Munshi. The OpenCL Specification. Version 2.0, Khronos

OpenCL Working Group, July 2015.

[HPS+15] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. Mo-

bile edge computing—a key technology towards 5g. ETSI white paper, 11(11):1–16,

2015.

[HT05] Harri Holma and Antti Toskala. WCDMA for UMTS.: Radio Access for Third

Generation Mobile Communications. john wiley & sons, 2005.

[HT09] Harri Holma and Antti Toskala. LTE for UMTS: OFDMA and SC-FDMA based

radio access. John Wiley & Sons, 2009.

[IBMZ19] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. The

p4→netfpga workflow for line-rate packet processing. In Proceedings of the 2019

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

pages 1–9. ACM, 2019.

[Int17] Intel Corporation. Intel FFT IP Core User guide. Version 17.1, Intel® Corpora-

tion, June 2017.

[Kal18] Alexandros Kaloxylos. A survey and an analysis of network slicing in 5g networks.

IEEE Communications Standards Magazine, 2(1):60–65, 2018.

[Kha09] Farooq Khan. LTE for 4G mobile broadband: air interface technologies and per-

formance. Cambridge university press, 2009.

[KLL+17] Y. J. Ku, D. Y. Lin, C. F. Lee, P. J. Hsieh, H. Y. Wei, C. T. Chou, and A. C.

Pang. 5g radio access network design with the fog paradigm: Confluence of com-

munications and computing. IEEE Communications Magazine, 55(4):46–52, April

2017.

[LJU+17] V. Lopez, J. M. Gran Josa, V. Uceda, F. Slyne, M. Ruffini, R. Vilalta, A. May-

oral, R. Munoz, R. Casellas, and R. Martinez. End-to-end service orchestration

from access to backbone. IEEE/OSA Journal of Optical Communications and

Networking, 9(6):B137–B147, June 2017.

107

[LTL+16] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,

Yongqiang Xiong, Peng Cheng, and Enhong Chen. Clicknp: Highly flexible and

high performance network processing with reconfigurable hardware. In Proceedings

of the 2016 ACM SIGCOMM Conference, pages 1–14. ACM, 2016.

[LTRa+18] Juho Lee, Erika Tejedor, Karri Ranta-aho, Hu Wang, Kyung-Tak Lee, Eliane Se-

maan, Eiman Mohyeldin, Juyeon Song, Christian Bergljung, and Sangyeob Jung.

Spectrum for 5g: Global status, challenges, and enabling technologies. IEEE Com-

munications Magazine, 56(3):12–18, 2018.

[LWN+14] Xiao Lu, Ping Wang, Dusit Niyato, Dong In Kim, and Zhu Han. Wireless net-

works with rf energy harvesting: A contemporary survey. IEEE Communications

Surveys & Tutorials, 17(2):757–789, 2014.

[Mar09] Guglielmo Marconi. Wireless telegraphic communication. Nobel Lecture, 1909.

[MBQ+18] Luca Maggiani, Cédric Bourrasset, Jean-Charles Quinton, François Berry, and

Jocelyn Sérot. Bio-inspired heterogeneous architecture for real-time pedestrian

detection applications. Journal of Real-Time Image Processing, 14(3):535–548,

2018.

[MBQB18] Patrick Marsch, Ömer Bulakci, Olav Queseth, and Mauro Boldi. 5G system de-

sign: architectural and functional considerations and long term research. John

Wiley & Sons, 2018.

[MGMG11] Aaftab Munshi, Benedict Gaster, Timothy G Mattson, and Dan Ginsburg.

OpenCL programming guide. Pearson Education, 2011.

[MGP+17] F. Morales, L. Gifre, F. Paolucci, M. Ruiz, F. Cugini, P. Castoldi, and L. Ve-

lasco. Dynamic core VNT adaptability based on predictive metro-flow traffic mod-

els. IEEE/OSA Journal of Optical Communications and Networking, 9(12):1202–

1211, Dec 2017.

[Moh16] W Mohr. 5g empowering vertical industries. Tech. Rep., 2016.

[MPS+11] G. Meloni, F. Paolucci, N. Sambo, F. Cugini, M. Secondini, L. Gerardi, L. Poti,

and P. Castoldi. PCE architecture for flexible WSON enabling dynamic rerouting

with modulation format adaptation. In European Conference on Optical Commu-

nication (ECOC), Sept. 2011.

[MR04] Jelena Mirkovic and Peter Reiher. A taxonomy of DDoS attack and DDoS defense

mechanisms. SIGCOMM Comput. Commun. Rev., 34(2):39–53, April 2004.

[MSR+09] P. Marques, N. Sheth, R. Raszuk, B. Greene, J. Mauch, and D. McPherson.

Dissemination of Flow Specification Rules. IETF, RFC 5575, Network Working

Group, Aug. 2009.

[MW10] Minh Mac and Chris Wysocki. Guaranteeing silicon performance with fpga timing

models. White paper, Intel Corporation, August 2010.

[NCG+19] Antonia Napolitano, Gabriele Cecchetti, Francesco Giannone, Anna Lina Rus-

celli, Federico Civerchia, Koteswararao Kondepu, Luca Valcarenghi, and Piero

Castoldi. Implementation of a mec-based vulnerable road user warning system.

108

In 2019 International Conference of Electrical and Electronic Technologies for

Automotive (Automotive 2019). AEIT, 2019.

[NGC+18] Antonia Napolitano, Francesco Giannone, Federico Civerchia, Koteswararao Kon-

depu, Gabriele Cecchetti, Anna Lina Ruscelli, Luca Valcarenghi, and Piero Cas-

toldi. Italian 5g trials: A vertical view. In 2018 IEEE 4th International Forum

on Research and Technology for Society and Industry (RTSI), pages 1–5. IEEE,

2018.

[NMM+14] Navid Nikaein, Mahesh K Marina, Saravana Manickam, Alex Dawson, Raymond

Knopp, and Christian Bonnet. Openairinterface: A flexible platform for 5g re-

search. ACM SIGCOMM Computer Communication Review, 44(5):33–38, 2014.

[NPL+15] Anders Nygren, B Pfaff, B Lantz, B Heller, C Barker, C Beckmann, D Cohn,

D Malek, D Talayco, D Erickson, et al. Openflow switch specification version 1.5.

1. Open Networking Foundation, Tech. Rep., 2015.

[OBB+14] Afif Osseiran, Federico Boccardi, Volker Braun, Katsutoshi Kusume, Patrick

Marsch, Michal Maternia, Olav Queseth, Malte Schellmann, Hans Schotten,

Hidekazu Taoka, et al. Scenarios for 5g mobile and wireless communications: the

vision of the metis project. IEEE communications magazine, 52(5):26–35, 2014.

[OLAL+17] Jose Ordonez-Lucena, Pablo Ameigeiras, Diego Lopez, Juan J Ramos-Munoz,

Javier Lorca, and Jesus Folgueira. Network slicing for 5g with sdn/nfv: Con-

cepts, architectures, and challenges. IEEE Communications Magazine, 55(5):80–

87, 2017.

[ÖRHT16] M Akif Özkan, Oliver Reiche, Frank Hannig, and Jürgen Teich. Fpga-based accel-

erator design from a domain-specific language. In 2016 26th International Con-

ference on Field Programmable Logic and Applications (FPL), pages 1–9. IEEE,

2016.

[P4] P4 Language Consortium. https://p4.org.

[Pao18] Francesco Paolucci. Network service chaining using segment routing in multi-layer

networks. J. Opt. Commun. Netw., 10(6):582–592, Jun 2018.

[PASA+16] Larry Peterson, Ali Al-Shabibi, Tom Anshutz, Scott Baker, Andy Bavier,

Saurav Das, Jonathan Hart, Guru Palukar, and William Snow. Central office

re-architected as a data center. IEEE Communications Magazine, 54(10):96–101,

2016.

[PBMB16] Maxime Pelcat, Cédric Bourrasset, Luca Maggiani, and François Berry. Design

productivity of a high level synthesis compiler versus hdl. In 2016 International

Conference on Embedded Computer Systems: Architectures, Modeling and Simu-

lation (SAMOS), pages 140–147. IEEE, 2016.

[PCC18] F. Paolucci, F. Cugini, and P. Castoldi. P4-based Multi-Layer Traffic Engineer-

ing Encompassing Cyber Security. In Optical Fiber Communication Conference

(OFC), page paper M4A.5. Optical Society of America, 2018.

109

[PCCC17] F. Paolucci, F. Cugini, G. Cecchetti, and P. Castoldi. Open network database for

application-based control in multilayer networks. Journal of Lightwave Technol-

ogy, 35(9):1469–1476, May 2017.

[PCF+15] F. Paolucci, A. Castro, F. Fresi, M. Imran, A. Giorgetti, B. Bhownik, G. Berret-

tini, G. Meloni, F. Cugini, L. Velasco, L. Pot̀ı, and P. Castoldi. Active PCE

demonstration performing elastic operations and hitless defragmentation in flex-

ible grid optical networks. Photonic Network Communications, 29(1):57–66, Feb.

2015.

[PCK12] Saurabh Patel, Malhar Chauhan, and Kinjal Kapadiya. 5g: Future mobile

technology-vision 2020. International Journal of Computer Applications, 54(17),

2012.

[PCS+19] F Paolucci, F Civerchia, A Sgambelluri, A Giorgetti, F Cugini, and P Castoldi.

P4 edge node enabling stateful traffic engineering and cyber security. Journal of

Optical Communications and Networking, 11(1):A84–A95, 2019.

[Per17] Sterling Perrin. Evolving to an open c-ran architecture for 5g. Fujitsu Heavy read-

ing White Paper, 2017.

[PSCC18] F. Paolucci, A. Sgambelluri, F. Cugini, and P. Castoldi. Network telemetry

streaming services in SDN-based disaggregated optical networks. Journal of Light-

wave Technology, 36(15):3142–3149, 2018.

[R+13] Moray Rumney et al. LTE and the evolution to 4G wireless: Design and measure-

ment challenges. John Wiley & Sons, 2013.

[Rec88] Recommendation CCITT. Pulse code modulation (pcm) of voice frequencies. In

Blue Book. ITU-T, 1988.

[Rod02] Paul Rodŕıguez. A radix-2 fft algorithm for modern single instruction multiple

data (simd) architectures. In 2002 IEEE International Conference on Acoustics,

Speech, and Signal Processing, volume 3, pages III–3220. IEEE, 2002.

[RRM+16] Azad Ravanshid, Peter Rost, Diomidis S Michalopoulos, Vinh V Phan, Hajo

Bakker, Danish Aziz, Shreya Tayade, Hans D Schotten, Stan Wong, and Oliver

Holland. Multi-connectivity functional architectures in 5g. In 2016 IEEE Interna-

tional Conference on Communications Workshops (ICC), pages 187–192. IEEE,

2016.

[S+97] Steven W Smith et al. The scientist and engineer’s guide to digital signal process-

ing. 1997.

[Sch03] Jochen H Schiller. Mobile communications. Pearson education, 2003.

[SGS10] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel program-

ming standard for heterogeneous computing systems. Computing in science &

engineering, 12(3):66, 2010.

[SH18] Ahmed Sanaullah and Martin C Herbordt. Fpga hpc using opencl: Case study

in 3d fft. In Proceedings of the 9th International Symposium on Highly-Efficient

Accelerators and Reconfigurable Technologies, page 7. ACM, 2018.

110

[Sil18] W. J. A. Silva. Avoiding inconsistency in OpenFlow stateful applications caused

by multiple flow requests. In 2018 International Conference on Computing, Net-

working and Communications (ICNC), pages 548–553, March 2018.

[SIZG+18] A. Sgambelluri, J.-L. Izquierdo-Zaragoza, A. Giorgetti, Ll. Gifre, L. Velasco,

F. Paolucci, N. Sambo, F. Fresi, P. Castoldi, A. Chiadò Piat, R. Morro, E. Ric-

cardi, A. D’Errico, and F. Cugini. Fully disaggregated ROADM white box with

NETCONF/YANG control, telemetry, and machine learning-based monitoring.

In Optical Fiber Communication Conference, page Tu3D.12. Optical Society of

America, 2018.

[SPC+13] A. Sgambelluri, F. Paolucci, F. Cugini, L. Valcarenghi, and P. Castoldi. Gen-

eralized SDN control for access/metro/core integration in the framework of the

interface to the routing system (I2RS). In 2013 IEEE Globecom Workshops (GC

Wkshps), pages 1216–1220, Dec 2013.

[Spe] CPRI Specification. V7. 0,“common public radio interface (cpri); interface speci-

fication”, 2015. CPRI Specification, 6.

[SPG+16] A. Sgambelluri, F. Paolucci, A. Giorgetti, F. Cugini, and P. Castoldi. Exper-

imental demonstration of segment routing. Lightwave Technology, Journal of,

34(1):205–212, 2016.

[Sto02] Ivan Stojmenovic. Handbook of wireless networks and mobile computing. Wiley

Online Library, 2002.

[TS12] Jonathan Tompson and Kristofer Schlachter. An introduction to the opencl pro-

gramming model. Person Education, 49:31, 2012.

[TT99] Puqi Perry Tang and T-YC Tai. Network traffic characterization using token

bucket model. In IEEE INFOCOM’99. Conference on Computer Communica-

tions. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer

and Communications Societies. The Future is Now (Cat. No. 99CH36320), vol-

ume 1, pages 51–62. IEEE, 1999.

[VGIZ+18] L. Velasco, L. Gifre, J. L. Izquierdo-Zaragoza, F. Paolucci, A. P. Vela, A. Sgam-

belluri, M. Ruiz, and F. Cugini. An architecture to support autonomic slice net-

working. Journal of Lightwave Technology, 36(1):135–141, Jan 2018.

[VK16] P. Voros and A. Kiss. Security middleware programming using P4. HAS 2016,

Human Aspects of Information Security Privacy, Lecture Notes in Computer Sci-

ence, 9750:277–287, 2016.

[vLYJ+17] F. van Lingen, M. Yannuzzi, A. Jain, R. Irons-Mclean, O. Lluch, D. Carrera,

J. L. Perez, A. Gutierrez, D. Montero, J. Marti, R. Maso, and a. J. P. Rodriguez.

The unavoidable convergence of NFV, 5G, and fog: A model-driven approach to

bridge cloud and edge. IEEE Commun. Mag., 55(8):28–35, 2017.

[VSC+18] L. Velasco, A. Sgambelluri, R. Casellas, L. Gifre, J. L. Izquierdo-Zaragoza,

F. Fresi, F. Paolucci, R. Martinez, and E. Riccardi. Building autonomic optical

whitebox-based networks. Journal of Lightwave Technology, pages 1–1, 2018.

111

[Wei91] Mark Weiser. The computer for the 21st century. Scientific american, 265(3):94–

104, 1991.

[WLH+14] Yi Wang, Jian Li, Lei Huang, Yao Jing, Andreas Georgakopoulos, and Panagio-

tis Demestichas. 5g mobile: Spectrum broadening to higher-frequency bands to

support high data rates. IEEE Vehicular technology magazine, 9(3):39–46, 2014.

[WS15] Haomiao Wang and Oliver Sinnen. Fpga based acceleration of fdas module for pul-

sar search. In 2015 International Conference on Field Programmable Technology

(FPT), pages 240–243. IEEE, 2015.

[WSD+17] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate

Foster, and Hakim Weatherspoon. P4fpga: A rapid prototyping framework for p4.

In Proceedings of the Symposium on SDN Research, pages 122–135. ACM, 2017.

[WTS18] Haomiao Wang, Prabu Thiagaraj, and Oliver Sinnen. Fpga-based acceleration of

ft convolution for pulsar search using opencl. arXiv preprint arXiv:1805.12280,

2018.

[Yil16] ON Yilmaz. Ultra-reliable and low-latency 5g communication. In Proceedings of

the European Conference on Networks and Communications (EuCNC’16), 2016.

[Yu16] Yifan Yu. Mobile edge computing towards 5g: Vision, recent progress, and open

challenges. China Communications, 13(Supplement2):89–99, 2016.

[YWZ+18] H. Yang, Y. Wu, J. Zhang, H. Zheng, Y. Ji, and Y. Lee. BlockONet: Blockchain-

based trusted cloud radio over optical fiber network for 5G fronthaul. In 2018 Op-

tical Fiber Communications Conference and Exposition (OFC), pages 1–3, March

2018.

[YZZ+15] H. Yang, J. Zhang, Y. Zhao, Y. Ji, J. Han, Y. Lin, and Y. Lee. CSO: cross

stratum optimization for optical as a service. IEEE Communications Magazine,

53(8):130–139, August 2015.

[Z+15] Y Zhiling et al. White paper of next generation fronthaul interface v1. 0. China

Mobile Research Institute, Tech. Rep, 2015.

[ZACM14] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore. Netfpga sume:

Toward 100 gbps as research commodity. IEEE Micro, 34(5):32–41, Sept 2014.

[ZL17] Jialiang Zhang and Jing Li. Improving the performance of opencl-based fpga accel-

erator for convolutional neural network. In Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, pages 25–34.

ACM, 2017.

112

