


Supporting humans with
autonomous systems:
deep learning for activity, state
and environment recognition

Perceptual Robotics Laboratory, Tecip

Scuola Superiore Sant’Anna

Author:
Giacomo Dabisias gba\*%\"a&

Supervisor:

Emanuele Ruffaldi 2~A %/

Ph.D Course
Perceptual Robotics

Academic Year

2016 / 2017

March 12th, 2018






Abstract

Autonomous Systems can support human activities in several situations,
ranging from daily tasks to specific working activities. All these systems
have in common the need of understanding their environment and the
state of the human interacting with them. Once such information has been
assessed by the system, it can either perform autonomously actions, sug-
gest them or simply present additional information about the activity or
environment to the user.

It is necessary to consider that different activities need different levels of
confidence in the decision making process. Critical systems, such as vehicles
in autonomous driving scenarios, need the highest possible accuracy given
that they take autonomous decisions; on the other hand, critical safe systems,
need a lower level of confidence given that they can just provide a feedback
to the user to ease the decision making process.

It is also important to notice that Autonomous Systems interact usually
with 3D environments while sensors acquire mostly 2D images. This re-
quires the ability to reconstruct precisely the surrounding environment from
multiple views using triangulation techniques.

All this brings up several challenges given the high variability of both
activities, environments and people, making traditional computer vision
approaches less adequate. This is due also to the fact that often it is not
possible to identify clearly the input variables of the system, given the high
correlation between them or the high dimensionality of the input space.
Machine learning has shown promising results in such scenarios and in
particular deep learning is the evolution of machine learning that has shown
most effective results in terms of quality and performance of the learning
tasks. Deep Learning can cope well with variable scenarios by scaling to
highly dimensional decision spaces that typically suffer the problem of
feature identification and selection.

This work will show some developed applications in activity, state and
environment recognition, presenting how human decisions can be supported
by autonomous systems using deep learning techniques. The first part of
the thesis will present the state of the art solutions to the aforementioned

problems along with the latest deep learning techniques. In the second part



II

of this work, we will describe in depth three different developed applica-
tions in activity, state and environment recognition. Finally we will present

possible future works along with remaining open research questions.
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Chapter 1

Introduction

“If you look at the field of robotics today, you can say robots have
been in the deepest oceans, they’ve been to Mars, you know?
They’ve been all these places, but they’re just now starting to
come into your living room. Your living room is the final frontier

for robots.”

Cynthia Breazeal, [110]

We are starting to live exactly at the edge of time in which Robots are
coming to our living rooms.

Autonomous Systems (AS) are becoming an ubiquitous reality in modern
day society. In general, an AS can be defined as a robot or system that
performs behaviors or tasks with a high degree of autonomy. The main
goal of such systems is to improve the overall human quality of life in
all possible aspects; from self driving vehicles to assistive robots. Usually
robotic systems are triggered by human actions, acting on the inputs of a
user. ASs instead shift this paradigm, making robots capable of anticipating
human needs and actions. This implies that ASs have to be able to take
decisions based on the performed activity, the general state of the person
interacting with it and the surrounding environment. To do this, ASs need
to have some kind of intelligence which has been studied deeply in the field
of Machine Learning (ML).

ML, according to Arthur Samuel, gives "computers the ability to learn
without being explicitly programmed." The term was coined by him in 1959
while at IBM. Despite being already studied for several decades, ML had
only lately a major success with the rediscovery of Neural Networks (NN).
Warren McCulloch and Walter Pitts (1943) created a computational model for
NNs based on mathematics and algorithms called threshold logic. Since then,
NNs had some minor success at character recognition in 1990 when they
were used to recognise automatically recipients of post correspondence and
digits on cheques. After that, NNs were not investigated much given that the

high computational load could not be processed in a reasonable amount of
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time on present calculators. This changed recently with the advances in GPU
hardware and software and at the same time with the research advances in
Deep Learning (DL) using Deep Neural Networks (DNN).

DL was introduced to the ML community by Rina Dechter in 1986 and
got a major success in 2006 with a publication by Hinton et al. [69]. Since then
DNN have been used to investigate several branches of computer science,
creating many new fields of research and making autonomous systems a
viable possibility.

Recent GPU'’s have started to target ML computation, DNNs more pre-
cisely, implementing dedicated hardware to be able to overcome the compu-
tational problem which was afflicting them. Given that quickly GPUs were
able to cope with the power demand of simple NNs, more complex networks
have been created, which were able to solve complex challenges, as image
recognition and detection, to a certain degree of precision. Almost human
performance has been reached in the last years thanks to the discovery of
Convolutional Neural Networks (CNN), which gave autonomous systems
new capabilities, making the interaction between humans and machines
almost natural.

Thanks to these advancements, we are starting to have the first proto-
types of fully autonomous vehicles and robots, which brings up a series of

challenges in the interaction between human and machine.

1.1 Research aims and questions

The aim of this thesis is to investigate the ability of ASs to detect an activity
(Research Aim 1 (RA1), evaluate the state of the person interacting with the
AS (Research Aim 2 (RA2) and perceive their environment (Research Aim 3
(RA3) through modern ML techniques.

Source data is usually noisy, given that it comes from unconstrained
real world scenarios. We would like to avoid the filtering of it given that
usually the noise input model is unknown. ML has proven very effective at
extracting strong features from input streams, making the task simpler.

This leads to the following research questions:

Research Question 1 (RQ1): Is it possible for autonomous systems to
extract high level information from a system represented by an ensemble of

noisy sources of data?



1.1. Research aims and questions

DL|CA DL = Deep Learning
DETECTION CA = Classical Approach
2D/3D 2D43D
OBJECTS FACES BODY POSE
CNN|feature based  openface |HOG openpose | template matching
TASK VALUE CLNF |HAAR RF
DL|CA

CLASSIFICATION

TASK VALUE TASK TASK
PELARS SUM RAMCIP SUM

FIGURE 1.1: General overview of the Detection and Classi-

fication split analysed in this work. Each computer vision

activity performed by an AS can be split in Classification

and Detection. In each subfigure we present on the left side

of each bar the available ML solutions and the task involved

in the assessment while on the right side we present the
classical approach.
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Each of the described tasks can be split in Detection and Classification,
see figure 1.1. Detection deals with the extraction of particular information
from a larger stream of information while Classification deals with recog-
nizing, differentiating and understanding ideas and objects. In this work
Detection is used to extract semantic content from an observed scene, which
can be then processed and utilised by a Classification system in order to

make decisions and take actions. This leads us to the question:

Research Question 2 (RQ2): What kind of ML technique is able to solve

the Detection/Classification problem in the different explained scenarios?

Given that this work focuses on the interaction between humans and
machines, we will analyse three different categories of detection: Objects,
Faces and Body poses. For each of them we want to answer the following

questions:

Research Question 3 (RQ3): Is it possible for autonomous systems to

detect with sufficient precision objects?

Research Question 4 (RQ4): Is it possible for autonomous systems to

detect, with sufficient precision faces?

Research Question 5 (RQ5): Is it possible for autonomous systems to

detect, with sufficient precision body poses?

It is important to notice also that all the depicted interactions between
AS and humans are happening in 3D space. This poses a series of problems
and questions regarding the possibility of inferring precisely a 3D position
given 2D information. Nowadays 3D sensors are available, which produce
depth images of space, but are more complex to interact with and have a
series of limitations, which are not present in common 2D cameras. This

brings us to the question:
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Research Question  Constributions Focus
RQ1 C1,C3 Scene Understanding
RQ2 C1,C2,C3 Machine Learning
RQ3 C1,C3 Object Detection
RQ4 C1 Face detection
RQ5 C2 Pose estimation
RQ6 C3,C4 Triangulation techniques

TABLE 1.1: Mapping of RQs onto Contributions

Research Question 6 (RQ6): Is it possible to reconstruct, accurately
enough for an ASs, 3D information given a series of 2D measurements, or is

a 3D sensors necessary for the interaction between AS and Humans?

1.2 Contributions

To answer the aforementioned research questions we developed three dif-
ferent systems. Each of these system will answer partially the proposed

research questions as depicted in Table 1.1.

C1: The first system has been developed to create an autonomous system
capable of recognizing activities. This has been done by recognizing

the actions of students during different hands on learning activities.

C2: The second system consists of an autonomous robot interacting with
elderly patients. In this context, we researched the possibility of ex-
tracting non invasive measures of the state of the patient, using a 3D
sensor. This was done to adapt the behavior of the robot to suit best

the needs of the patient.

C3: The third system has been developed to test the ability of an au-
tonomous system to augment a urban environment. In this scenario we
developed specifically a system capable of detecting and 3D localising

traffic lights for autonomous driving.

C4: Additionally, to test the possibility of using 2D data to interact with
a 3D environment, we evaluated different triangulation techniques

which are present in all three aforementioned systems
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1.3 Involved Projects

Several projects have contributed to the research developed in this work.

This section briefly introduces them.

* Practice-based Experiential Learning Analytics Research
and Support (PELARS) is a European project that studies how people
learn about science, technology and mathematics when using their
hands as well as their heads. A big part of the project is making
more explicit the implicit practices of science teachers: “Lab demos”
and hands-on experiments have been a big part of science teaching
for as long as anyone can remember, but how to model and analyse
these practice, while empowering teachers, is far less understood. So,
the PELARS project aims at finding ways of generating “analytics”
(data about the learning process and analysis of this data), which
helps learners and teachers by providing feedback from hands-on,
project-based and experiential learning situations. This project will be

discussed in detail in Chapter 6.

* Robotic Assistant for MCI Patients at home (RAMCIP) is a European
Project which aims to research and develop real robotic solutions for
assistive robotics for the elderly and those suffering from Mild Cogni-
tive Impairments (MCI) and dementia. This is a key step to developing
a wide range of assistive technologies. We will adopt existing technolo-
gies from the robotics community, fuse those with user-centred design
activities and practical validation, trying to create a step-change in
robotics for assisted living. This project will be discussed in detail in
Chapter 7.

¢ Large Scale Voting-based Automatic Labelling for Urban Environ-
ments (VALUE). We developed a system capable of recognizing 3D
contents in a urban environment in order to add them to a semantic
map that can be used by autonomous agents to navigate it. Contents
are firstly detected in 2D iamges and then views of the same content
are grouped together in order to produce its 3D location in space. This
project was developed jointly with Blue Vision Labs (BVL), London,
UK. This project will be discussed in detail in Chapter 8.
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1.4 Thesis Structure

This thesis is organised as follows:

In Chapter 2 we will present the state of the art in ASs and in classical
detection systems. Chapter 4 and Chapter 5 will analyse in depth the avail-
able ML solutions to the presented problems. In Chapter 6 we present the
PELARS system along with its results, which will demonstrate the ability of
an AS to do Activity Recognition (AR). After this, we will show in Chapter
7 an example of non invasive extraction of human state using a 3D sensor.
In Chapter 8 we discuss the construction and evaluation of a system capable
of augmenting 3D maps. Finally in Chapter 9 we will discuss the achieved

results and present possible future work.






Chapter 2

State of the Art

2.1 History

The idea of AS dates back several centuries, starting with early Greek myths
of Hephaestus and Pygmalion who include concepts of animated statues or
sculptures [31]. The first automatic devices were called "automata", which
is defined as a self-operating machine or control mechanism designed to
automatically follow a predetermined sequence of operations, or respond to
predetermined instructions.

There are other examples in ancient China, for example in the Lie Zi
text, written in the 3rd century BC. It contains a description of a much
earlier encounter between King Mu of Zhou (1023-957 BC) and a mechanical
engineer known as Yan Shi, an "artificer’.

Later on, around the 8th century, we find the first wind powered au-
tomata, which were defined as "statues that turned with the wind over the
domes of the four gates and the palace complex of the Round City of Bagh-
dad". We still can’t speak of autonomous systems given the complete lack of
decision making and human interaction.

First simple ASs can be found in 1206 when Al-Jazari described complex
programmable humanoid automata, which he designed and constructed
in the Book of Knowledge of Ingenious Mechanical Devices. One example of
an early AS was a boat with four automatic musicians that floated on a
lake to entertain guests at royal drinking parties. The mechanism had a
programmable drum machine with pegs (cams) that bump into little levers
that operate the percussion. It was possible to play different rhythms and
drum patterns if the pegs were moved around.

During the Reneissance the studies of automata witnessed a considerable
revival. Numerous clockworks were built in the 16th century, mainly by
the goldsmiths of central Europe. Leonardo da Vinci started sketching
and building hundreds of automatic machines, making the interest in such

devices grow in the next centuries.
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All these examples can not be regarded as ASs given that they were
still mainly mimicking human and were mainly considered objects of art
than of engineering. In more recent history, a new field of science was born,
Cybernetics, which filled the gap between automatas and ASs . Norbert
Wiener defined cybernetics in 1948 as "the scientific study of control and
communication in the animal and the machine" [167]. He was a mathematics
professor at MIT working to develop automated rangefinders for anti-aircraft
guns with “intelligent” behavior [68].

This theory motivated the first generation of ASs research in which sim-
ple sensors and effectors were combined with analog control electronics
to create systems that could demonstrate a variety of interesting reactive
behaviors. In 1964 one of the first AS was built by the APL Adaptive Ma-
chines Group, led by Leonard Scheer at the John Hopkins University. They
built an autonomous rover system capable of navigating the APL’s hallways,
identifying objects as electrical outlets in the walls, which it could use to

plug itself in to recharge its battery, see Figure 2.1.

FIGURE 2.1: An image showing the autonomous rover built
by the APL group in 1964

lhttp://cyberneticzoo.com/tag/autonomous/

With the advent of digital electronic controllers and the new born interest
in artificial intelligence [166, 56], more complex autonomous systems were
built. The new systems were used in several different fields, but mainly for
military purpose initially. We have many examples in several domains as
maritime, air, ground and space vehicles [156].

In modern days, ASs became widespread and a series of common sub-
problems were categorized. Each AS needs to self maintain itself, sense and

navigate the environment, perform tasks, learn from its history.
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2.2 Self Maintenance

A fundamental requirement for complete physical autonomy is the ability of
a robot to be aware of its internal state. This ability is called "proprioception”.
Many of the commercial robots available in the market today can find and
connect autonomously to a charging station, like Sony’s Aibo (Figure 2.2a)
or Ugobe’s Pleo (Figure 2.2b).

(A)

FIGURE 2.2: Example of two robots capable of connecting
autonomously to a charging station. Figure (a) shows Sony’s
Aibo! and Figure (b) shows Ugobe’s Pleo?.

Thttp://www.sony-aibo.com/
2http://www.pleoworld.com/

In the battery charging example, the robot can tell proprioceptively
that its batteries are low, and it then seeks the charger. Other examples
of proprioceptive sensors are thermal, optical and haptic, as well as those
measuring the Hall effect (electric) [63]. These abilities will be required more
and more for robots in order to work autonomously near people and in
harsh environments. Autonomous rovers used to explore extraterrestrial
planets need often to work autonomously for several years, without the
possibility of any physical maintenance [159].

This brought to the development of even more advanced systems capable
of self repairing [52]. In this case the system is able not only to asses an
incorrect self state, but also to remedy it by taking appropriate actions. It is
important to notice that this kind of failures can affect both hardware and

software.

2.3 Sensing and Navigating

Autonomous systems need to sense the environment in order to navigate it
[93, 42]. To do this they are usually equipped with a set of sensors, which
allow them to perceive the space surrounding them. The most common

sensors are 2D cameras and depth sensors [9]. Both are usually used to


http://www.sony-aibo.com/
http://www.pleoworld.com/
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construct a 3D map of the explored space in order to avoid obstacles and to

map unknown areas, Figure 2.3.

FIGURE 2.3: An example of 3D mapped environment from
the IROS 2014 Challenge!.
Thttps://github.com/introlab/rtabmap/wiki/
IROS-2014-Kinect-Challenge

Examples of other sensors used to understand the environment are:
electromagnetic spectrum, sound, touch, smell, temperature and altitude.

Within the depth sensors, a great variety of models is available, from
commercial ones as the Kinect v1 and Kinect v2 [164] to more precise models
like laser scanners. The first ones are less accurate (vl ~ 1.5 mm at 50 cm.
About 5 cm at 5 m), but cheap, while laser scanners are much more precise
(<1mm), but are more expensive. It is also important to notice that the
different systems have different update frequencies. This it not relevant
if static scenes are scanned, but it can cause problems when fast moving
objects are scanned. While commercial sensors have frequencies between
30Hz and 60Hz, laser scanners can reach over 1KHz for single scanned line.

Many ASs are hence equipped with stereo cameras, which are also capa-
ble of inferring the depth. These cameras have the advantage that they are
usually cheaper, don’t need specialised software and have more software
support. We will analyse in a Section 8.2 the advantages and disadvantages

of 2D sensors against depth sensors.
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2.4 Performing tasks

Once the environment has been sensed, the ASs need to take actions in
order to fulfill a certain objective. To do this, the AS need to be able to
take conditional decision, which are usually determined by some machine
learning algorithm [120].

An example of such a system can be found i the Cataglyphis rover. This
robot has demonstrated, during the final NASA Sample Return Robot Cen-
tennial Challenge in 2016, fully autonomous navigation, decision-making,
sample detection, retrieval, and return capabilities. The rover relied on a
fusion of measurements from inertial sensors, wheel encoders, Lidar, and
camera for navigation and mapping.

More common examples of self adapting systems can be found for ex-
ample in robotic lawn mowers [45], which can adapt their programming by
detecting the speed at which grass grows or some vacuum cleaning robots
[137], which are able to sense how much dirt is being picked up and use this
information to plan the amount of time spent in different areas.

Usually these systems try to maximize an objective score given by an
objective function. Classically this could be done using calculus trying
to minimize a cost function or maximizing an objective score. Nowadays
Reinforcement Learning (RL) is used to train directly an AS by examples
without having the need to define an objective function, but by just defining
an objective score. This made it possible to train easily non linear function
which gave promising results lately [101].

Very often ASs need to manipulate objects. To do this they need to firstly
identify an object in space and then compute the objects pose. A pose is
defined by 6 degrees of freedom, 3 for rotation and 3 for translation. A
classically approach to solve this problem consists in the use of descriptors,
which can be seen as strong invariant features of an object. Techniques which
are based on this have the disadvantage of being influenced strongly by
external factors as lighting conditions. Nowadays DL techniques are used
to overcome the problems which come from having different environments.
These techniques are able to find stronger features which are no man crafted,
adapting better to real world scenarios. We will present in the next chapter

the classical approaches and in Chapter 4 the more recent techniques.
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Chapter 3

Classic Detection

3.1

“There is nothing more deceptive than an obvious fact.”

Arthur Conan Doyle, [40]

3D Object Detection

This chapter will introduce the state of the art in detection algorithms not

based on ML, but on classical computer vision techniques. The general

pipeline for a 3D object recognition algorithm, which identifies a model in a

scene, consists of the following steps:

Preprocessing of the depth and RGB images. This step is used to filter
the image from noise and unnecessary information. The two images
are then merged together to create a point cloud. Segmenting and
filtering objects by color can improve significantly performances and

should always be done when possible.

Extraction of keypoints from the model and the scene. Keypoints are
point of interest that carry a big amount of information given their

position and color.

Creation of a descriptor for each keypoint. Given that keypoints could
change from the model to the scene due to light, different scales and
deformations, a descriptor is used to describe each keypoint. In general
a descriptor consists of a set of attributes, which are scale invariant and

flexible to deformation and noise, of the keypoint and its surrounding.

Matching of scene and model descriptors. The general strategy consists
in calculating a distance between each descriptor of the model and the
scene. If the distance is lower than a certain threshold then the two

descriptors are matched.

Clustering of the found correspondences between descriptors. This

step is used to avoid sparse correspondences which are of no interest.
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The results are clustered since a good match between the model and
the scene is found only when a big number of correspondences is

found in a relative compact space.

¢ Examine a plausible solution and estimate a possible object pose. All
the clusters are evaluated using some voting scheme and, if good
enough ,a possible pose is estimated using the previously found corre-

spondences.

The first three steps have to be performed on the model and on the scene,
Figure 3.1. It is important to notice that they are computed only the first time

on the model and have to be recomputed for each new scene point cloud.

Data Data
acquisition acquisition \
1 1 :
Keypoints R Keypoints i
L] estimation L] estimation i
i
Feature descriptors Feature descriptors
estimation estimation

Correspondences
estimation (matching)

________________________________________________________

Correspondence Correspondence Correspondence
rejection method 1 rejection method 2 amm rejection method N

Transformation
estimation

Pairwise registration block 7
(single iteration) T

FIGURE 3.1: 3D object recognition pipeline!. For each input
image, keypoints are extracted. The next step consists in the
computation on features to describe the local region around
keypoint. Matches between descriptors are computed based
on a distance metric and positive ones are clustered. Finally
a transformation from the input object to the clustered points
is estimated.
lhttp://pointclouds.org/documentation
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3.1.1 Models

Creating 3D models remains a quite difficult task, expecially when creating
models of small objects like a cup or a fork. It is possible to create model

using low cost depth cameras, but there are mainly two problems:

¢ Homogeneous objects have few geometric features making it hard
to understand the current object position while moving around the
scanner. To avoid this problem it is often enough to place some other
objects around the model or to use markers. The drawback of this
solution is that there is the need of some post processing to remove the

additional objects.

* Most scene reconstruction algorithms are made for rooms or big scenes
and tend to approximate small objects; this leads to the problem that a
lot of key-geometrical structures get lost. As an example if you try to

scan a rubick cube you will probably just get a uniform cube.

There are some specialized libraries for scene reconstruction like kinectfusion
and the opensource version kinfu, but both suffer of the described problems.
There are also specialized 3D scanners of different dimensions which give

professional results, but they come at a higher price.

3.1.2 Keypoint Extraction

Keypoint extraction is done using either RGB or depth information. There
are three main categories of keypoints that can be subdivided based on
the cloud information which are used. A genera survey can be found in
[154]. Here we will present just a few of the most commonly used keypoint

detectors.
1. RGB:

e SIFT [97] (Scale-Invariant Feature Transform) is one of the most
used algorithms , which works analysing the RGB values of the
point cloud. To find points of interest SIFT tries to locate points
which have a high color gradient with the sorrounding. This
points usually belong to figure edges or relevant images on uni-

form surfaces.

e SURF [10] (Speeded Up Robust Feature) is several times faster and
more robust against different image transformations than SIFT.
It uses an integer approximation of the determinant of Hessian

blob detector. The determinant of the Hessian matrix is used as
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a measure of local change around the point and keypoints are

chosen where this determinant is maximal.

¢ FAST [162] (Features from Accelerated Segment Test) is a corner
detection method. The algorithm is very efficient computationally
and in general is one of the fastest keypoint detectors available.
To detect keypoinys, FAST evaluates a circle of 16 pixels to classify
whether a candidate point is a corner. If a set of contiguous pixels
in the circle are all brighter than the intensity of the candidate
pixel plus a threshold value or they are all darker than the in-
tensity of candidate pixel minus a threshold, then the candidate

point is classified as corner.

¢ ORB [131] (Oriented FAST and Rotated BRIEF) aims to provide
a fast and efficient alternative to SIFT. ORB consists in a fusion
of the FAST and BRIEF descriptor with several modifications to
enhance performance. It uses FAST to detect keypoints and Harris
to detect the best ones among them. An additional enhancement

has been added to make the detector rotation invariant.

¢ SUSAN [143] (Smallest Univalue Segment Assimilating Nucleus)
uses a circular region to detect if a candidate pixel is a keypoint.;
the candidate pixel is called nucleus. Similarly to FAST is uses
a comparison function to evaluate the pixels in the area and
determine if the nucleus is a keypoint or not. The function is
based mainly on the brightness difference threshold of the pixels

in the area.

¢ Harris [39] is capable of identifying similar regions in images
taken from different viewpoints that are related by a simple ge-
ometric transformation: scaling, rotation and shearing. To do
this, the algorithm follows a sequence of steps which consists in:
Identify initial region points using scale-invariant Harris-Laplace
Detector, normalize each region to be affine invariant using affine
shape adaptation, select proper integration scale, differentiation
scale and spatially localize interest points, update the affine re-
gion using these scales and spatial localisations and finally iterate

the previous steps if the stopping criterion is not met.
2. DEPTH:

¢ NAREF [147] (Normal Aligned Radial Feature) works by analysing
the depth values of the point cloud. To find points of interest
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NAREF tries to find points for which the depth value changes
rapidly in their sorrounding. This technique allows to find edge

points which are of particular interest in 3D images.

e 3D SUREF [83] is an extension of SURF which is based on the vox-
elization of an input cloud. Each produced bin is then described

using a modified version of SURF.

3. RGB and/or Depth: Sampling has two working modes: Uniform and
Random. Uniform sampling is very fast and scans the whole scene,
but in principle acquires more points than necessary if the model in
the scene occupies only a small fraction of it. Random sampling in
contrast can be tuned on the number of desired points but could in

principle get keypoints of undesired areas.

3.1.3 Keypoint Descriptors

Descriptors are needed since matching single keypoints is unfeasible given
scale, light and rotation changes from the model to the scene. To avoid all
these problems, not single keypoints are matched, but regions surrounding
the keypoints. This includes cubic regions, spheres (Figure 3.2), couples of
points with their direction relatively to the keypoints and so on. In general a

descriptor defines a keypoint and its surrounding.

FIGURE 3.2: Spherical reference frame for a descriptor!.
http://pointclouds.org/documentation/tutorials/how_
features_work.php

Descriptors can be local, Figure 3.4, or global, Figure 3.3; the first ones
consider the keypoints relatively to a small surrounding region, while the
second ones consider the entire scene . There are three main descriptors
which represent the main descriptor categories: FPFH [134] , SIFT [97] and
Shot [135]; all of them can be found in different flavors with small variations.
In general we have signature based methods and histogram based methods. The

first ones describe the 3D surface neighborhood of a given point by defining
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an invariant local Reference Frame (RF). This frame encodes, according to
the local coordinates, one or more geometric measurements computed indi-
vidually on each point of a subset of the support. Histogram-based methods
describe the support by accumulating local geometrical or topological mea-
surements (e.g. point counts, mesh triangle areas) into histograms according
to a specific quantized domain (e.g. point coordinates, curvatures ...). This
domain requires the definition of either a Reference Axis (RA) or a local RE.
In broad terms, signatures are potentially highly descriptive thanks to the
use of spatially well localized information, whereas histograms trade-off de-
scriptive power for robustness by compressing geometric structure into bins.
FPFH is a histogram based descriptor, SIFT is a signature based descriptor

and Shot is both a signature and histogram based descriptor.

1. FPFH (Fast Point Feature Histogram) is a faster to calculate version of
PFH (Point Feature Histogram). The goal of the PFH formulation is to
encode a point’s k-neighborhood geometrical properties by generaliz-
ing the mean curvature around the point using a multi-dimensional
histogram of values. The figure below presents an influence region
diagram of the PFH computation for a query point, marked with red
and placed in the middle of a circle (sphere in 3D) with radius r, and
all its k neighbors (points with distances smaller than the radius r)
are fully interconnected in a mesh. The final PFH descriptor is com-
puted as a histogram of relationships between all pairs of points in the

neighborhood, and thus has a computational complexity of O(k?).

FIGURE 3.3: Histogram based descriptor!.
1https:
//computervisionblog.wordpress.com/tag/point—cloud-library-2
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2. SIFT (Scale Invariant Feature Transform) descriptor, a signature based
descriptor, uses the gradient information of a region around the key-
point to create a descriptor. Color gradient is used to encode the
changes around the keypoint. To be more precise SIFT relies on a set
of local histograms, that are computed on specific subsets of pixels
defined by a regular grid superimposed on the patch. Later on also
RGB has been introduced as an additional feature in some versions of
the SIFT descriptor

FIGURE 3.4: Signature based descriptor!.
Thttp:
//pointclouds.org/documentation/tutorials/pfh_estimation.php

3. SHOT (Signature of Histograms of OrienTations) descriptor combines
the advantages from both signature based methods and histogram
based methods. It encodes histograms of basic first-order differential
entities (i.e. the normals of the points within the support), which are
more representative of the local structure of the surface compared to
plain 3D coordinates. The use of histograms brings in the filtering effect
required to achieve robustness to noise. Having defined an unique and
robust 3D local RF, it is possible to enhance the discriminative power
of the descriptor by introducing geometric information concerning
the location of the points within the support, thereby mimicking a
signature. This is done by first computing a set of local histograms over
the 3D volumes defined by a 3D grid superimposed on the support
and then grouping together all local histograms to form the actual

descriptor.

4. BRIEF [22] (Binary Robust Independent Elementary Features) was
developed to lower the memory usage of keypoint detectors and de-
scriptors, in order to be used in memory constraint systems. BRIEF
uses smoothened image patches and selects a set of location pairs in
an unique way. Then some pixel intensity comparisons are done on
these location pairs. For each location a quick comparison function is

evaluated to produce a binary string which can be used as a descriptor.
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5. HOG [38] (Histogram of oriented Gradients) will be described more in

detail in connection with its use for face detection in 3.2

3.1.4 Matching Descriptors

Given two sets of descriptor vectors coming from two acquired scans, there
are two methods to find corresponding descriptors. It is possible to match
descriptors or keypoints, depending if the point clouds are organized; a point
cloud is "organized" if there is a viewpoint in space where the point cloud
can be described like an image (X, Y coordinates) and a last parameter: depth.
It is possible to match points or descriptors, even if, as stated previously,
point matching is not a good solution. The following three methods are

available:
1. Brute force.
2. Indexing using KD-trees, K-Means trees etc.
3. Using organized data to search for a correspondence in a small region.

To find the best matches between model and scene descriptors, FLANN (Fast
Library for Approximate Nearest Neighbors) [103] is one the most popular
choices. FLANN is a library for fast approximate nearest neighbor searches
in high dimensional spaces. It is a specific implementation of a KD-tree,
see Figure 3.5, or k-dimensional tree, which is a data structure used for
organizing points in a space with k dimensions. Model descriptors or scene
descriptors are inserted into a KD-tree; for each descriptor of the other set, the
nearest neighbor in the KD-tree is found. Once two desriptors are matched,
a correspondence is created and stored. In general all algorithms used for
minimum distance search can be used to match descriptors, depending on
the search space dimensions.

Naturally, not all estimated correspondences are correct. Since wrong
correspondences can negatively affect the estimation of the final transforma-
tion, they need to be rejected. This could be done using RANSAC (RANdom
SAmple Consensus) or by trimming down the amount of correspondences
using only a certain percent. RANSAC is an iterative method to estimate pa-
rameters of a mathematical model from a set of observed data that contains
outliers. It is a non-deterministic algorithm in the sense that it produces a
reasonable result only with a certain probability, with this probability in-
creasing as more iterations are allowed. RANSAC works very well with well
structured objects which have a "geometrical" shape. This method tries to

extract keypoints that lie on the geometrical structure specified; for example
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FIGURE 3.5: Example of a KD-tree'.
lnttp://groups.csail.mit.edu/graphics/classes/6.838/598/
meetings/ml3/kd.html

if a plane is specified then RANSAC will try to find keypoints which lie on a
plane.

There is also the possibility of using PPF (Point Pair Features)[43], four-
dimensional descriptors of the relative position and normals of pairs of
oriented points on the surface of an object ; this algorithm covers the whole
recognition pipeline, implementing a custom version of each step. Compared
to traditional approaches based on point descriptors, which depend on local
information around points, this algorithm creates a global model description
based on oriented point pair features and matches the model locally using a
fast voting scheme. The global model description consists of all model point
pair features and represents a mapping from the point pair feature space
to the model, where similar features on the model are grouped together.
Such a representation allows to use much sparser object and scene point
clouds, resulting in very fast performance. Recognition is done locally using
an efficient voting scheme, similar to the Generalized Hough Transform,
to optimize the model pose, which is parametric in terms of points on the
model and rotation around the surface normal on a reduced two-dimensional
search space. Descriptors are matched using a hash table that allows an
efficient lookup during the matching phase. This method could be used in

principle to match any kind of descriptor.

3.1.5 Clustering Correspondences

This step is used to avoid sparse correspondences which are of no interest.
The found correspondences are clustered since a good match between the
model and the scene is found, see Figure 3.6, only when a big number of

correspondences is found in a relative compact space. A possible method
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is called General Hough Trasform (GHT) [6]; this method is based on the
Hough Transform (HT), which is a popular computer vision technique
originally introduced to detect lines in 2D images. Successive modifications
allowed the HT to detect analytic shapes such as circles and ellipses. Overall,
the key idea is to perform a voting of the image features (such as edges
and corners) in the parameter space of the shape to be detected. Votes are
accumulated in an accumulator whose dimensionality equals the number
of unknown parameters of the considered shape class. For this reason,
although general in theory, this technique can not be applied in practice
to shapes characterized by too many parameters, since this would cause
a sparse, high-dimensional accumulator leading to poor performance and
high memory requirements. By means of a matching threshold, peaks in
the accumulator highlight the presence of a particular shape in the image.
The GHT extends the HT to detect objects with arbitrary shapes, with each
feature voting for a specific position, orientation and scale factor of the shape
being sought. To reduce the complexity, the gradient direction is usually
computed at each feature position to quickly index the accumulator.

GHT has though well known limitations to deal with 3D shapes and
6-degree-of-freedom poses (in particular, curse of dimensionality and sparse-
ness of the voting space). To avoid this problem a more general RANSAC

approach is often used.

FIGURE 3.6: An example of "Good" correspondences’.
http://pointclouds.org/documentation/tutorials/
correspondence_grouping.php

Another possible algorithm is Geometric Consistency (GC) [24]. This
algorithm is based on a mathematical condition that checks the consistency

of pairs of correspondences in the 3D space. It can be used in combination
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with a local surface descriptor for surface representation. A local surface
descriptor is characterized by its centroid, its local surface type and a 2D
histogram. The 2D histogram shows the frequency of occurrence of shape
index values vs. the angles between the normal of reference feature point
and that of its neighbors. Instead of calculating local surface descriptors for
all the 3D surface points, they are calculated only for feature points that are in
areas with large shape variation. In order to speed up the retrieval of surface
descriptors and to deal with a large set of objects, the local surface patches
of models are indexed into a hash table. Given a set of test local surface
patches, votes are cast for models containing similar surface descriptors.
Local surface patches candidate models are hypothesized based on potential
corresponding.

The first algorithm performs better in most situations, but is slower while
the second one is faster, but generates a lot of false positives that have to
be filtered. GHT has also the advantage that it can be fine tuned, while GC

allows for almost no tuning.

3.1.6 Estimate Object Pose

After clustering the accepted correspondences and voting for each result,
a set of possible solutions is extracted along with a possible pose using
the GHT. The pose can then be refined using a registration algorithm. The
registration procedure consists in the process of aligning two point clouds
to obtain the minimum distance between them. A famous iterative example
of such an algorithm is Iterative Closest Point (ICP) [173]; in this algorithm,
one point cloud, the reference or target, is kept fixed, while the other one
is moved to best match the reference. This algorithm iteratively revises the
transformation (combination of translation and rotation) needed to minimize
the distance from the source to the reference point cloud. The basic steps are

the following:

1. For each point in the source cloud find the nearest point in the reference

cloud.

2. Estimate the combination of rotation and translation using a mean
squared error cost function that will best align each source point to its

match found in the previous step.

3. Transform the source points using the obtained transformation.
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4. Iterate over the previous steps until some convergence criterion is met,
usually a fixed number of iterations or a distance error between source

and reference point cloud.

The main disadvantage of such an algorithm relies in its high resource
demand due to the ICP complexity; in fact to obtain real time results quality
parameters have to be lowered. The main advantage of this algorithm is
that it achieves very good alignment results, refining the initially estimated
pose. If used to make only small alignments, fast results can be achieved
with minimum effort.

A faster version of ICP exists and is called projective-ICP [50], but it
needs a good initialization. There exists also a GPU implementation of such
algorithm which improves drastically the speed and is used in applications

as KinectFusion [109]/

3.1.7 Qualitative Analysis

The following tables 3.1, 3.2, 3.3 show a qualitative analysis of the different
proposed methods in terms of the different pipeline steps required in an

object recognition pipeline.

Quantity | Quality | Used info
NARF Low High Depth
SIFT High Medium Color
Sampling | Variable | Randomic -
PPFE Low High Depth
TABLE 3.1: Qualitative evaluation for the keypoint extrac-
tion.
Time Quality Type
SHOT Fast High | Hist. & Sig.
FPFH Slow Medium | Signature
SIFT Slow High Histogram
PPFE Fast High Signature
PFH | Very Slow | Medium | Signature

TABLE 3.2: Qualitative evaluation for the keypoint descrip-
tors.

Time | Quality | Flexibility
Hough Fast | High High
Geometric | Fast Low Low

TABLE 3.3: Qualitative evaluation for the clustering algo-
rithms.



3.1. 3D Object Detection 27

3.1.8 Measurements

It is important to measure the quality of the recognized object in the scene;
to do this three main quantitative measures have to be considered, which

have to be added to the qualitative measures displayed in Figure 3.1.7:
¢ If the object is recognized.
* What is the error in the pose estimation.
¢ Robustness against cluttering and noise.

The first parameter can be evaluated on standard datasets, calculating false
positives and false negatives. It is quite complex to find false positives and
false negatives without having a human analyzing the scene and comparing
it to the detected object. One possible solution is to align the recognized
object with the scene using a registration algorithm as ICP and then calculate
the fitness of the alignment. The main problem in this case is to find a good
threshold for the fitness value, which can discriminate false positives and
false negatives.

The second parameter is evaluated calculating the distance and rotation
error between the estimated object and the real object [75]. A lot of different
measures (®) have been implemented to compute the difference of two

rotations expressed as quaternions (g1, g2) or rotation matrices (R1, R2), like:

1. Inner Product of Unit Quaternions:
@3ZSBX53—>R+,
®3(q1,q2) = arccos(|q1 - g2])

2. Geodesic on the Unit Sphere:
D : SO(3) x SO(3) — R™,
®6(R1, Re) = || log(R1R2") ||
where || ... | r denotes the frobenious norm, log(R) = 25%(9)(]% — RT)
and 1 + 2cos(f) = Tr(R).

The third error can be estimated adding a constant uniform gaussian
noise, occluding a fixed percentage of the object and then calculating the
previously described errors. It is important to notice also that all this mea-
sures make sense assuming that the algorithm remains real-time or almost
real-time since we are evaluating ASs that interact with humans. This gives
a strong constraint when trying to optimize the quality of the detector. By
this we mean that relaxing this condition allow to get almost arbitrary good

results.
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3.1.9 Multi Object Detection

Detecting NV objects in a scene increases a lot the computational requirements
of the algorithm. Some stages of the pipeline remain almost the same and
do not add any overhead, like the calculation of keypoints and descriptors
for each model which can be done offline in a preliminary phase. The main
performance issue is given in the comparison of the descriptors from the
models and the scene; in the worst case we have O(k?) comparisons, which
slows down a lot the detection process. A first solution could be to create in
parallel N different detectors, but this depends on the number of available
processing cores. Acceptable results can still be achieved having small point
clouds and a good pre-filtering stage that removes all the non interesting

regions [29].

3.1.10 Final Remarks

As described before there is no perfect solution to the problem of detecting
an object in a 3D scene in real time. The pipeline remains very complex and
needs a lot of parameter tuning to obtain good results, depending too much
on the input, which has to be recognized. The algorithms need to be imple-
mented efficiently on GPU to obtain good performance results, since now
the computational complexity is too demanding. ML approaches simplify
drastically the problem given that the parameters are learned automatically

by the system and computation can be easily done on GPUs by default.

3.2 Face Detection

The most used classical face detection algorithm remains the Viola and Jones
[161] one that is based on Haar features. Another well known algorithm
is based on HoG. Both approaches are based on Support Vector Machines
(SVM), which was one to the most used ML techniques before the rediscovery
of NN, as described previously. We will describe in the following both
approaches specifying the critical aspects that made such systems perform

worst than newer systems based on CNNs.

3.2.1 Haar Detector

A Haar detector is a machine learning based approach where a cascade
function is trained from a lot of positive and negative images. It is then used
to detect objects in other images. This kind of detector is based on Haar

features that are usually computed over rectangular pixel areas.
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A Haar-like feature considers adjacent rectangular regions at a specific
location in a detection window. The value of a feature corresponds to
the difference between sums of pixel intensities in different regions. A 2-
rectangle feature, Figure 3.7 (a), consists in the sum of the pixels in the white
rectangle area minus the sum of the pixels in the black rectangle area. A
three-rectangle feature computes the sum within two outside rectangles
subtracted from the sum in a center rectangle, Figure 3.7 (b). Finally a
four-rectangle feature computes the difference between diagonal pairs of

rectangles, Figure 3.7 (c).

: [. (a) Edge Features

[[ E (b) Line Features
;! (c) Four-rectangle features

FIGURE 3.7: Example of Haar features. (a) represents a 2-
rectangle feature, (b) represents a 3-rectangle feature and (c)
represents a 4-rectangle feature!.
Ihttp://docs.opencv.org/trunk/d7/d8b/tutorial_py_ face_
detection.html

This kind of features can be used, for example, to identify faces noticing
that the region around the eyes is darker than the region of the cheeks.
Therefore a common Haar feature for face detection is a set of two adjacent
rectangles that lie above the eye and the cheek region, Figure 3.8. The
position of these rectangles is defined relative to a detection window that

acts like a bounding box to the target object .

FIGURE 3.8: Example of Haar features in face recognition'.
Ihttp://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_
detection.html


http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
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Initially, the algorithm needs a lot of positive and negative examples to
train the classifier. The next step consists in computing descriptors for the
given examples. For this, Haar features shown in Figure 3.7 are used. Each
feature is a single value obtained by subtracting the sum of the pixels under
white rectangle from the sum of the pixels under the black rectangle.

The speed with which features may be evaluated does not adequately
compensate for their number. For example, in a 24x24 pixel sub-window
there are a total of M = 162,336 possible features, and it would be pro-
hibitively expensive to evaluate them all when testing an image. Thus, the
object detection framework employs a variant of the learning algorithm
AdaBoost to both select the best features and to train classifiers that use
them. This algorithm constructs a “strong” classifier as a linear combination
of weighted simple “weak” classifiers.

The algorithm can be improved even more given that most areas of an
image don’t contain faces, so it is possible to use Cascading. in cascading,
each stage consists of a strong classifier. All the features are grouped into
several stages where each stage has certain number of features.

The job of each stage is to determine whether a given sub-window is
definitely not a face or may be a face. A given sub-window is immediately
discarded as not a face if it fails in any of the stages.

The Viola and Jones approach offers real-time performance and scale-
location invariance, but it still has a few disadvantages as intolerance to

object rotations, sensitivity to illumination variations, occlusion etc.

3.2.2 HoG Detector

The essential thought behind the HoG descriptors is that objects and shapes
in an image can be described by the color intensity gradients or edge direc-
tions. An image is divided into small connected regions called cells, and for
the pixels within each cell, a histogram of gradient directions is computed.
The image descriptor is the concatenation of the computed histograms.

The HoG descriptor has a few key advantages over other descriptors.
Since it operates on local cells, it is invariant to geometric and photometric
transformations, except for object orientation. Such changes would only
appear in larger spatial regions. The HoG descriptor is thus particularly
suited for human detection in images.

In the example of face recognition, an SVM is trained with examples of

HoG features computed for faces (positive and negative examples), Figure
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FIGURE 3.9: Example of gradients computed on a face [130].

3.9. HoG suffers mostly of the same disadvantages of Haar except that it is

robust to illumination changes.

3.2.3 Haar Vs HoG

HoG features are capable of capturing object outline/shape better than Haar
features. On the other hand, simple Haar features can detect regions brighter
or darker than their immediate surrounding region better than HoG features.
In general HoG features can describe shape better than Haar features and
Haar features can describe shading better than HoG features. That is also
why Haar features are good at detecting frontal faces and not so good for
detecting profile faces. This is because the frontal face has features such as
the nose bridge that is brighter than the surrounding face region. But the
profile face most prominent feature is it’s outline or shape, hence HoG would
perform better for profile faces. HoG and Haar features are complementary
features, hence combining them might even result in better performance.

Given the work of Abrah et al. [2] and Negri et al.[108] it is possible to see
that Haar performs generally better than HoG. It is important to notice that
both detectors have to be executed on windows of different scales, which
have to be slid over the figure resulting in high computational cost. Also
both approaches suffer of several problems like side views, illumination,
occlusion etc. Newer ML methods as CNNs overcome this problems as
described in Chapter 4.
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3.3 Body Pose Estimation

A body pose consists in general of rigid parts and joints. The human body
has 244 degrees of freedom with 230 joints, making pose estimation a very
hard problem. Algorithms must account for large variability introduced by
differences in appearance due to clothing, body shape, size, and hairstyles.
Additionally self occlusion is something very common, given that often parts
of a body are covered by other parts during movements. Typically body
pose estimation systems are based on a template matching approach, in
which the pose estimation is achieved by maximizing the similarity between

an observation and a template model.

(a) (b) (©

FIGURE 3.10: Example of estimated body poses!.
https://www.slideshare.net/cameraculture/kinect-tutorial

The most commonly used model to reconstruct a human pose is based
on part-models, see Figure 3.10. To represent mathematically a human body;,
parts are connected to each other using springs. Hence this kind of model
is also known as Spring model [15]. The position of each part is expressed
by the compression and expansion level of the springs. It is important to
notice that there are geometric constrain on the orientation of the springs.
For example, limbs of legs cannot move 360 degrees. Hence parts cannot
have that extreme orientation. This reduces the possible poses space making
it more tractable for algorithms.

The spring model forms a graph G(V,E) where nodes (V) corresponds
to the parts and edges (E) represent springs connecting two neighboring
parts. Each location in image can be expressed by the x and y coordinates
of the pixel location. Let p;(z, y) be the point at i'* location. Then, the

cost associated in joining the spring between i’ and the j** point can be


https://www.slideshare.net/cameraculture/kinect-tutorial
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given by S(p;, pj) = S(pi — p;). Hence, the total cost associated in placing
[ components at locations P; is given by

i

l
Pl = Z Z Sz] Pi, p] (31)

The above equation simply represents the spring model used to describe
body pose.

Several approaches have been used successfully to estimate and track
body poses [102]. Most of them are based on template matching, achieving
good results, but suffering often from the occlusion problems [61].

One of the most successful approaches, which was used in conjunction
with Kinect v1 camera, is the work of Shotton et al. [139] that uses a single
depth image to estimate the body pose. It is based on Random Decision
Forests which are trained on a dataset of labeled body poses. In addition,
several synthetic images have been created to enrich the training dataset
given the high variability of the possible input poses. Final results show
over 90% confidence in the detection of almost all body parts at ~ 200H z on
an Xbox GPU.
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Chapter 4

Deep Learning

“We need to go deeper.”

Inception, [76]

Here we will briefly introduce DL to cover the state of the art and the
topics of the following chapters. DL is based on DNN which are larger NNs
with a higher number of layers, bigger training sets and specialized layers

as convolutional, recurrent, LSTM ...

4.1 Deep Neural Network

DNN’s are computing systems inspired by the biological neural networks
that constitute animal brains. Such systems learn tasks by examples, gen-
erally without task-specific programming. They have found most use in
applications where it is difficult to find features, where input data is noisy,
or where the input space is very large given the ability of DNNs to extract
meaningful information discarding the rest.

A DNN is based on a collection of connected units called artificial neu-
rons, analogous to axons in a biological brain. Each connection (synapse)
between neurons can transmit a signal to another neuron, Figure 4.1. The
receiving (postsynaptic) neuron can process the signal(s) and then signal
downstream neurons connected to it. Neurons may have a state, gener-
ally represented by real numbers, typically between 0 and 1. Neurons and
synapses may also have a weight that varies as learning proceeds, which
can increase or decrease the strength of the signal that it sends downstream.
Further, they may have a threshold such that only if the aggregate signal is
below (or above) that level, the downstream signal is sent. These thresholds
are called activation functions and several of them are available based on the
learning problem, Figure 4.2. In general they are necessary since a sequence
of linear operations can be aggregated as a single linear operation and so
having multiple layers would be useless. This way the neural network is

not a sequence of linear operations, but a sequence of linear operations



36 Chapter 4. Deep Learning
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FIGURE 4.1: Example of artificial neuron. Input values z; are
multiplies by weights w; and then summed up along with
a bias vector b. The output is passed through an activation
function f to produce the final output y. The actual Neuron
is only the first part of the image summing pu all values
along with the bias.!

https://tex.stackexchange.com/questions/132444/
diagram-of-an-artificial-neural-network

interleaved with non linear ones, which makes it possible for the network to
learn more complex functions.

Typically, Artificial Neural Networks are organized in layers. Differ-
ent layers may perform different kinds of transformations on their inputs.
Signals travel from the first (input) to the last (output) layer, possibly after
traversing the layers multiple times. When each neuron of one layer is con-
nected to each neuron of the next layer, the system is called a fully connected
network, Figure 4.3.

A DNN is composed of a pipeline of linear matrix multiplications, which
are followed, after each stage, by a nonlinear function called activation
function. These non linear functions are usually a sigmoid function as TanH
or Relu. The general behavior can be synthesized as follows: given an input
vector z, a series of matrices A; composed of weights Wk, j), A bias vector b,

an activation function F' and an output Yj, it is possible to write stage i as:
Y, = F(Aiz +b) (4.1)

The output Y; will then be the input of the next stage of the pipeline, until
reaching the end where a classifier or regressor computes the final output.
DNN s can be used for nonlinear classification or regression. In the first case
the network is trained to obtain a label indicating the category to which

the input belongs, while in the latter, the network learns to fit an unknown


https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
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FIGURE 4.2: Examples of possible activation functions.!
1http:
//www.turingfinance.com/misconceptions—about-neural-networks

function using the input and output data in order to estimate points which
are not present in the input set.

In DNNSs, each layer of nodes trains on a distinct set of features based
on the previous layer’s output. The further you advance into the neural
net, the more complex are the features your nodes can recognize, since
they aggregate and recombine features from the previous layer, see Figure
4.7. This is known as feature hierarchy, and it is a hierarchy of increasing
complexity and abstraction. It makes deep-learning networks capable of
handling very large, high-dimensional data sets with billions of parameters
that pass through nonlinear functions.

The original goal of the DNN approach was to solve problems in the same
way that a human brain would. To train such networks a backpropagation
algorithm is used, which back propagates gradients through the network
to adjust it to the correct output. This kind of networks suffer some times
from producing low level features or overfitting the input data, given that
each neuron receives inputs from all the previous ones. To overcome this
problem, a technique called Dropout has been introduced [145]. Dropout
is expressed as a probability value which deactivates a connection between
two neurons with a probability D. This encourages the network to find

higher level features given that neurons can not rely on having always the


http://www.turingfinance.com/misconceptions-about-neural-networks
http://www.turingfinance.com/misconceptions-about-neural-networks
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FIGURE 4.3: Example of multilayer NN with fully connected
layers.!
http://neuralnetworksanddeeplearning.com/chap6.html

same information from the previous layer. In general, techniques used to
reduce the problem of overfitting are called regularization.

In recent times, DL has been proved to be an improved solution of NN
capable of extracting higher-level complex information through a hierarchi-
cal abstraction and learning process [107]. DL demonstrated to be a valuable
approach in solving complex problems, such as human action recognition
[126, 138], image segmentation [26] and clustering [115].

Several applications have been developed utilizing DL to complement
RGB-D sensors in ML and to obtain a higher accuracy despite imperfect
sensor data. Examples can be found in several domains. In action recognition
[138], where Shahroudy et al. proposed a new deep learning network for
hierarchical RGB-D features factorization for action recognition and a ML
algorithm to improve action classification. In object recognition [46], Eitel et
al. proposed a system based on two separate CNNs, one for the RGB data
stream and one for the depth; the two streams are consecutively combined

with a late fusion network to improve the robustness of the approach.

4.2 Convolutional Neural Networks

CNNs are NNs where a certain number of layers is composed of Convo-
lutional layers; these kind of networks have been mainly used for image
analysis. The use of these networks started after the great results achieved
with Alexnet [88], which improved greatly over the state of the art methods
in image classification.

Convolutional layers apply a convolution operation to the input, passing
the result to the next layer [44]. The idea is to have a sliding window of size
K that is convolved over the whole image in parallel. Each convolutional

neuron processes data only for its receptive field (window). It performs a


http://neuralnetworksanddeeplearning.com/chap6.html
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FIGURE 4.4: Examples of a Convolutional layer. The depth
of the features increases in the next layer!.
https://www.slideshare.net/JunhoChol/
convolutional-neural-network-76817816

weighted sum between his receptive field and a weight matrix called Kernel
of Filter. Each neuron can apply several filters making the output image
"deeper", Figure 4.4. Each produced output image from using one filter is

called activation map, Figure 4.5.

activation map

B 32x32x3 image

/ b5x5x3 filter /
2
——0 a
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|

FIGURE 4.5: Examples of an activation map. The size of
the image is reduces given that the kernel is convolved only
inside the image!.
lhttps://www.slideshare.net/JunhoChol/
convolutional-neural-network—-76817816

Often Convolutiona Layers are followed by a pooling operation that
reduces the size of the input image. The pooling layer operates on a window
aggregating values into a single value, Figure 4.6. This can be done, for
example, using a max() function (Max Pooling) or avg() (Average Pooling).

Given the two operations of Convolution and Pooling, an image is made
smaller and deeper while progressing through a CNN. This corresponds to
fixing attention to some areas and extracting higher level features at each
level of the CNN, Figure 4.7.

It would be possible, in principle, to use Fully Connected NNs to process
images, but the number of parameters would be intractable. The convolution
operation brings a solution to this problem as it reduces the number of free
parameters, allowing the network to be deeper with fewer parameters. In

other words, it resolves the vanishing or exploding gradients problem in


https://www.slideshare.net/JunhoCho1/convolutional-neural-network-76817816
https://www.slideshare.net/JunhoCho1/convolutional-neural-network-76817816
https://www.slideshare.net/JunhoCho1/convolutional-neural-network-76817816
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FIGURE 4.6: Examples of a pooling layer. The image is
down sampled, making it smaller, but the feature depth is
unchanged.
http://cs231n.github.io/convolutional-networks/

training traditional multi-layer neural networks with many layers by using

backpropagation.
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FIGURE 4.7: Examples of CNN features. The initial layers are
similar while later layers specialise for the detected content'.
1https:
//www.slideshare.net/akshaymuroor/deep-learning-24650492

The structure of CNNs also allows fast training and inference on GPUs
making CNNs the most commonly used networks type for detection and
classification on images.

Latest works have improved CNNs using inception [150] and skip layers
[73].

The inception layers consists of a series of variable size convolutional

filters that get combined at the end into a deep output, Figure 4.8a. Skip


http://cs231n.github.io/convolutional-networks/
https://www.slideshare.net/akshaymuroor/deep-learning-24650492
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FIGURE 4.8: Figure (a) shows the inception layers as a com-

position of several filters[150]. Figure (b) shows skip layers

allow input parameters to flow through the network making
it capable of learning the identity function[73].

layers are layers which can be skipped, meaning that there is a connection
between each layers and all the successive ones, Figure 4.8b. This makes
it possible to learn the identity function, which is usually hard to train in
CNNs.

4.3 Recurrent Neural Networks

The idea behind Recurrent Neural Networks (RNN) is to enhance NNs with
the ability of tracking time. This means that each neuron need the ability of
tracking previous examples to make the current output not only dependent
on the current input, but also of the previous one. The decision a recurrent
net reached at time step ¢t — 1 affects the decision it will reach one moment
later at time step t. So, recurrent networks have two sources of input, the
present and the recent past, which combine to determine how they respond
to new data.

That sequential information is preserved in the recurrent network’s
hidden state, which manages to span many time steps as it cascades forward
to affect the processing of each new example.

Recurrent networks rely on an extension of backpropagation called back-
propagation through time. Time, in this case, is simply expressed as the
combination of a series of steps that have to be computed one after the
other. Adding a time element only extends the series of functions for which
we calculate derivatives with the chain rule. This can be summarized as
unfolding a RNN in time. The unfolded network contains % inputs and
outputs, but every copy of the network shares the same parameters. Then
the backpropagation algorithm is used to find the gradient of the cost with

respect to all the network parameters.
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FIGURE 4.9: Schematics representing a sequence of LSTM

neurons!.

lhttps://deeplearning4.org/lstm.html

It is important to remember that RNNs suffer from the vanishing and
exploding gradients problem [117, 70], but there are several solutions present

in literature to overcome it [13].

4.3.1 Long Short Term Memory

Long Short Term Memory (LSTM) [71] has been introduced to overcome
some problems affecting RNNs and to give networks the ability to decide
when to use memory and when to erase it. They have been explicitly de-
signed to avoid the long-term dependency problem. These networks have
been widely used for speech recognition [60] and for object tracking [55]
where context and previous state are fundamental.

Figure 4.9 shows the schematics of an LSTM neuron. The first decision of
an LSTM neuron is to erase or not old information. This decision is made by
a sigmoid layer oy called the "forget gate layer". It looks at h;—; and x, and
outputs a number between 0 and 1 for each number in the cell state C;_.
A 1 represents store this while a 0 represents erase this. It is important to
notice that the value is a continuous value between 0 and 1 and so different
levels of keep/erase can be obtained.

The next step is to decide what part of the new information has to be
kept. First, an input gate layer decides which values to update, o2. Next, a
tanh function creates a vector of new candidate values which is combined
with the current input and the previous state to create the new input.

The last step consists in deciding what to output. This output will be
based on the current state, but will be filtered. First, we run a sigmoid layer
o3 that decides what parts of the cell state to output. Then, the output is
passed through a tanh function (to push the values to be between -1 and 1)
and multiply it by the output of the sigmoid gate, in order to output only

the selected components.


https://deeplearning4j.org/lstm.html
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Chapter 5

Deep Learning Detection

“A baby learns to crawl, walk and then run. We are in the

crawling stage when it comes to applying Artificial Intelligence.”

Dave Waters, [149]

5.1 Object Recognition

Several different techniques have been researched for object recognition
[80]. The field can be split between 2D and 3D detection, with possible pose
estimation in both cases. Research is still focused mainly on using 2D images
for detection given the human ability of solving this problem without depth
information. Adding an additional dimension to the problem might bring to
performance issues if not addressed correctly. Current DNNs have already
hundreds of layers and millions of parameters when working with relatively
small images (640x480 for example). Adding a depth value to the input can
be tractable if the image is used as a 2D image with 4 channels (rgb-d) using
2D convolutions. The use of 3D convolutions in space instead makes the
problem a lot more complicated given that it is necessary to convolve a 3D
region over a 3D space (possibly at different scales). Other possible solutions
are available, but it is important to notice that the additional data might not
bring any benefit; 3D datasets are not widely available and are relatively
small compared to existing 2D datasets. The most widely used 2D datasets

for benchmarking deep learning algorithms are:

¢ MNIST: handwritten digits (http://yann.lecun.com/exdb/mnist/)

¢ NIST: similar to MNIST, but larger (https://www.nist.gov/srd/

nist-special-database-19)

¢ CIFAR10 / CIFAR100: 32x32 natural image dataset with 10/100 cate-

gories (http://www.cs.utoronto.ca/~kriz/cifar.html)

¢ Caltech 101: pictures of objects belonging to 101 categories (http: //

www.vision.caltech. edu/Image_Datasets/CaltechlOl/)


http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/srd/nist-special-database-19
https://www.nist.gov/srd/nist-special-database-19
http://www.cs.utoronto.ca/~kriz/cifar.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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¢ Caltech 256: pictures of objects belonging to 256 categories (http://
www.vision.caltech.edu/Image_Datasets/Caltech256/)

¢ Caltech Silhouettes: 28x28 binary images contains silhouettes of the
Caltech 101 dataset (http://people.cs.umass.edu/~marlin/
data.shtml)

¢ STL-10 dataset is an image recognition dataset for developing unsuper-
vised feature learning, deep learning, self-taught learning algorithms.
It is inspired by the CIFAR-10 dataset but with some modifications.
(http://www.stanford.edu/~acoates//st110/)

¢ The Street View House Numbers (SVHN) (http://ufldl.stanford.

edu/housenumbers/)

* NORB: binocular images of toy figurines under various illumination

and pose (http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/)
¢ Imagenet: image database organized according to the
¢ WordNethierarchy (http://www.image-net.org/)

¢ Pascal VOC: various object recognition challenges (http: //pascallin.

ecs.soton.ac.uk/challenges/VOC/)

¢ Labelme: A large dataset of annotated images (http://labelme.
csail.mit.edu/Release3.0/browserTools/php/dataset.php)

e COIL 20: different objects imaged at every angle in a 360 rotation(http:
//www.cs.columbia.edu/CAVE/software/softlib/coil-20.

php)

¢ COIL100: different objects imaged at every angle in a 360 rotation
(http://wwwl.cs.columbia.edu/CAVE/software/softlib/coil-100.

php)

* COCO: a large-scale object detection, segmentation, and captioning

dataset (http://http://cocodataset.org/)

There are also several 3D image datasets as described in [49], but the
main disadvantage of those is that they are created in artificial environments,
making it really hard for NNs to generalize features for real world scenarios.

These facts brings up the problem that NNs need always training datasets
that are not required in most of the classical approaches to detection, or at

least they need smaller ones. Also the size of the datasets which are necessary


http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://people.cs.umass.edu/~marlin/data.shtml
http://people.cs.umass.edu/~marlin/data.shtml
http://www.stanford.edu/~acoates//stl10/
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
http://www.image-net.org/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://http://cocodataset.org/
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for training can be very big given that the objective of NNs is to generalize

features, while in classical approaches features are created manually.

5.1.1 2D Detection

2D detection is based mainly on CNNs having as output either bounding
boxes or heat maps. The most common networks used in the first approach
are YOLO [128], Recurrent CNN (R-CNN) [58], Fast R-CNN [57] and Faster
R-CNN [129]. All this networks have a GPU implementation, which makes
them very fast, but it is important to notice that for some tasks classical
approaches might be faster. This is due to the very high number of layers
which are present in many DNNs, which make the computation perform at
a speed which is less than real time (assuming 30fps). For example ResNet
[67], which was the 2015 ILSVRC winner, has 157 layers and is very deep

compared to Alexnet having only 8 layers.

YOLO is composed of single neural network that is applied to the full
image. This network divides the image into regions, and predicts bounding
boxes and probabilities for each region. These bounding boxes are weighted
by the predicted probabilities. Since the whole detection pipeline is a single
network, it can be optimized end-to-end directly on detection performance.
The networks structure is close to a fully convolutional neural network,
outputting bounding boxes in the image. The network is extremely fast
and open source, which made it widely used. It has about 9 layers in the
original version and 3 times more in YOLO9000; Table 5.1 and 5.2 shows the
structure of the classical YOLO and YOLO9000 networks .

R-CNN is based on the creation of region proposals, using a process
called Selective Search. Selective Search splits the input image into windows
of different sizes, and for each size it groups together adjacent pixels by
texture, color or intensity to identify objects. Once the proposals are created,
R-CNN creates bounding boxes around the proposed regions and passes
them through a modified version of AlexNet (the winning submission to
ImageNet 2012).

Fast R-CNN improves over R-CNN using a technique known as RoIPool
(Region of Interest Pooling). At its core, RoIPool shares the forward pass
of a CNN for an image across its subregions. The CNN features for each
region are obtained by selecting a corresponding region from the CNN'’s

feature map. Then, the features in each region are pooled (usually using max
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TABLE 5.1: YOLO Layers.

Layer Kernel | Stride | Output Shape

Convolution 3x3 1 (416, 416, 16)

MaxPooling 2x2 (208, 208, 16)

Convolution | 3x3 (208, 208, 32)

MaxPooling 2x2 (104, 104, 32)

Convolution | 3x3 (104, 104, 64)

MaxPooling 2x2 (52,52, 64)
Convolution 3x3 (52,52, 128)
MaxPooling 2x2 (26, 26, 128)
Convolution 3x3 (26, 26, 256)
MaxPooling 2x2 (13, 13, 256)

Convolution | 3x3 (13,13, 512)

MaxPooling 2x2 (13,13, 512)

Convolution | 3x3 (13,13,1024)

Convolution | 3x3 (13, 13,1024)

[IRY Y U [JURN JUEY N O] S G ) (FSEY O} TSN I NG} S O

Convolution 1x1 (13,13, 125)

TABLE 5.2: YOLO9000 Layers.

Layer Kernel | Stride | Output Shape

Convolution | 3x3 1 (224, 224, 32)

MaxPooling 2x2 (112,112, 32)
Convolution 3x3 (112,112, 64)
MaxPooling 2x2 (56, 56, 64)
Convolution 3x3 (56, 56, 128)
Convolution 1x1 (56, 56, 64)

Convolution | 3x3 (56, 56, 128)

MaxPooling 2x2 (28, 28, 128)

Convolution 3x3 (28, 28, 256)
Convolution 1x1 (28, 28, 128)
Convolution 3x3 (28, 28, 256)
MaxPooling 2x2 (14, 14, 256)
Convolution 3x3 (14, 14, 512)
Convolution 1x1 (14, 14, 256)
Convolution 3x3 (14, 14, 512)

Convolution 1x1 (14, 14, 256)

Convolution | 3x3 (14, 14, 512)

MaxPooling 2x2 (7,7,512)
Convolution 3x3 (7,7,1024)
Convolution 1x1 (7,7,512)
Convolution 3x3 (7,7,1024)
Convolution 1x1 (7,7,512)
Convolution 3x3 (7,7,1024)

el e el e e R B N e R R R R D N e R e D S B e B N I Bl B

Convolution 1x1 (7,7,1000)
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pooling). Faster R-CNN also jointly trains the CNN, classifier and bounding

box regressor in a single model.

Faster R-CNN improves the region proposer by reusing the features of
the image computed by the forward pass of the CNN instead of using
Selective Search as in Fast R-CNN. The Region Proposal Network works
by passing a sliding window over the CNN feature map, outputting the

potential bounding boxes and probabilities.

Techniques which output heat maps are usually called segmentation
networks. In this category we have mainly fully convolutional networks as
Dense Convolutional Network (DenseNet) [73] and Mask R-CNN [66]. It is
important to notice though that DenseNet is a generic multilayered CNN

which can be used for many other purposes.

DenseNet has each convolutional layer connected to every other layer in
a feed-forward fashion. Whereas traditional CNNs with L layers have L
connections, one between each layer and its subsequent layer, DenseNet has
L« L1 direct connections. For each layer, the feature-maps of all preceding
layers are used as inputs, and its own feature-maps are used as inputs into
all subsequent layers. DenseNets has several compelling advantages: they
alleviate the vanishing-gradient problem, strengthen feature propagation,

encourage feature reuse and substantially reduce the number of parameters.

Mask R-CNN does prediction on single pixel level. It does this by adding
a branch to Faster R-CNN that outputs a binary mask that says whether
or not a given pixel is part of an object. Some other minor modifications
have been implemented in order to make the network produce correctly
segmentation and classification. Some example output are shown in Figure
5.1.

5.1.2 3D Detection

3D object recognition using DL is becoming popular only recently. Classical
approaches are still the majority and are usually based on template matching
and voting schemes as described in Chapter 3. There are though some
interesting approaches that have been researched with success in the field.

One possible approach consists in mimicking the work of CNNs, but
doing it in 3D space sliding a 3D volume over a point cloud. This is not

properly a ML technique, but it resembles it functionality. It has been
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FIGURE 5.1: Example bounding boxes and predicted classes

using the Mask R-CNN network [66]. Each segmented object

is colored with a different color and a label is associated to
the surrounding bounding box.

implemented efficiently by Wang et al. in [163] with an additional voting
scheme. A proper 3D CNN is also possible and has been implemente by
Maurana et al. in [100] and by Zhou et Tuzel in [174]. The idea behind this
works is to create an architecture that integrates a volumetric Occupancy
Grid representation with a supervised 3D Convolutional Neural Network
(3D CNN). VoxNet, for example, achieves accuracy beyond the state of the
art on the most used RGB-D datasets.

Another possible approach comes from the use of Deep Belief Networks
(DBN). In ML, a DBN is a generative graphical model, or alternatively a class
of deep neural network, composed of multiple layers of latent variables,
with connections between the layers, but not between units within each layer.
A DBN can learn to probabilistically reconstruct its inputs when trained on
a set of examples without supervision. After this step, the network can be
further trained with supervision to learn classification tasks. Such networks
has been trained with success by Nair et al. [106], presenting state of the art
results on the NYU Object Recognition Benchmark (NORB) dataset [90], and
by Wu et al [172].

Recently Qi et al. [123] have developed a NN which uses directly a 3D
pointcloud as input without convolutional operations on it. The network

is composed of a first stage which does classification and a second stage
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which does segmentation of the point cloud to obtain in the end smaller
point clouds of detected objects along with labels. There has been also an
improved version of this work again by Qi et al. [124] which improves the
previous work by using hierarchical NN recursively on a nested partitioning

of the input pointcloud.

5.2 Face Detection

Face detection has reached super human capabilities in the last years. The
best algorithms achieve over 99% detection rate using very deep CNNs
trained on several hundreds of millions of parameters [136, 151]. This
results have bee achieved thanks to the big datasets that have been build
in a distribute way using the photo tagging feature. Millions of users have
tagged images on social networks creating dataset of hundreds of millions
of images.

An opensource implementation of such a system is OpenFace [3], which
is a Python and Torch implementation of face recognition with DNNs. It
is actually a face recognition system that is also capable of clustering and
classifying faces. We used this in Chapter 6 to recognise the faces and the
gaze of students performing activities. Figure 5.3 shows the typical workflow

of OpenFace for face recognition.

Input Image Detect Transform

Green: Detector bounding box
Black: Mean fiducial points
Blue: Detected fiducial points

v

Deep Neural Network

Representation Clustenng

—)‘ é Similarity Detection
128D unit hypersphere C|aSS|f|Cat|on

FIGURE 5.2: Example of face recognition pipeline in
OpenFace!.
Thttps://cmusatyalab.github.io/openface/

The following overview shows the workflow for a single input image.


https://cmusatyalab.github.io/openface/
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¢ Detect faces with a pre-trained models using dlib or OpenCV.

* Prepare the image for the NN. OpenPose uses dlib’s real-time pose
estimation with OpenCV’s affine transformation to make the eyes and

bottom lip appear in the same location in every image.

¢ Use a DNN to create a 128-dimensional unit hypersphere. This is a
generic representation for anybody’s face. Unlike other face represen-
tations, this embedding has the nice property that a larger distance
between two faces embeddings means that the faces are likely not of
the same person. This property makes clustering, similarity detection
and classification tasks easier than other face recognition techniques,

where the Euclidean distance between features is not meaningful.

¢ Apply a clustering or classification technique to the features to com-

plete the recognition task.

5.3 Body Pose Estimation

Body pose estimation can be done using RGB or depth images. Most of
the work in this field is done using rgb images for the reasons explained
previously. The best classical approach is still the Microsoft system explained
in Section 3.3 that is based on Random Forests and uses depth information.

A first simple approach is to train CNNs directly from the rgb images
to the output pose. Tompson et al. [155] did something similar in the sense
that they trained a CNN to detect body parts in RGB images, and then used
these as input for a spatial model to remove false positives. Thoshev et
al. [157] instead trained directly a 7 layer CNN from the rgb image to the
output pose. This gives a rough output but has the advantage of using the
whole image and thus capturing its context. To refine the pose, a cascade
of classifiers is used, which is trained to predict a displacement of the joint
locations from previous stage to the true location. Thus, each subsequent
stage can be thought of as a refinement of the currently predicted pose.

An example of work that instead uses single depth images is Huangs
et al. [74] work in which they train a CNN from the depth images to the
joint positions in 2D camera coordinates. To do this they define a special
loss function that takes account of the human body constrains. This type
of approach has the disadvantage that it needs a lot of data given the high
variability of possible human poses. They overcome the problem with the
classical technique of generating mock depth images of body poses using
the MakeHuman software [153].
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DeepCut [121] is a state-of-the-art approach to multi-person pose estima-
tion based on integer linear programming (ILP) that jointly estimates poses
of all people present in an image by minimizing a joint objective. This objec-
tive aims to jointly partition and label an initial pool of body part candidates
into consistent sets of body-part configurations corresponding to distinct
people. In 2016 an improved version of DeepCut was proposed, which is
called DeeperCut [77] .

OpenPose [23, 141, 165] is an opensource library for multi-person key-
point detection written in C++ using OpenCV and Caffe. It can be used
to detect body poses, faces and hands using 2D rgb images. It improves
over DeeperCut achieving a higher accuracy. The used algorithm is based
on Part Affinity Fields (PAFs) that are a set of 2D vector fields that encode
the location and orientation of limbs over an image domain. The detection
system takes, as input, a color image and produces, as output, the 2D lo-
cations of anatomical keypoints for each person in the image. First, a NN
simultaneously predicts a set of 2D confidence maps S of body part locations
and a set of 2D vector fields L of part affinities, which encode the degree
of association between parts. Finally, the confidence maps and the affinity

fields are parsed by greedy inference to output the 2D keypoints for all

people in the image. The general pipeline is depicted in Figure 5.3.

YRIYR

(b) Part Confidence Maps

R S

(c) Part Affinity Fields

(a) Input Image (d) Bipartite Matching

(e) Parsing Results

FIGURE 5.3: General detection pipeline of OpenPose!
https://arxiv.org/pdf/1611.08050.pdf

The main disadvantage of this library comes from the prediction speed.
We evaluated the library using an Nvidia Geforce 1080 GPU, which is cur-
rently one of the best performing off the shelf GPUs in the consumer sector.
We were not able to achieve real time performances, but got roughly 10fps
with 0.5s latency. Shottons algorithm instead is extremely quick with roughly
200fps on lower end consumer hardware without the use of GPUs. This is
mainly due to the fact that the evaluation is done on only 3 decision trees
of depth 20. The classical approach has also the advantage of being able to
run on embedded hardware without GPUs, which are often not available on
ASs. It has the disadvantage though of needing depth information, while

OpenPose can work with just rgb data.


https://arxiv.org/pdf/1611.08050.pdf
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5.4 Performance

A DNN has an initial computationally intense step that consists in the
training of the network. Once the networks has been trained, it is possible to

do inference on new data.

5.4.1 Training

To train a NN first an input value is passed through the network computing
the output. This output is compared to the expected output and an error
vector is computed. Using this, the error is back propagated through he
network changing the weights of the network to converge to the expected
result. This is an iterative process which should converge to a minimum.
Usually it is better to input the whole dataset, or a part of it (batch), and
compute an aggregated error vector which is used to update the network
weights. This allows also to compute the error gradient in parallel, since
different bathes can be passed in parallel through several copies of the same
network.

This can be done on one or multiple GPUs; batches are distributed across
GPUs memory along with the network weights. It is possible to instantiate
multiple networks on the same card in order to exploit parallelism also on a
single one. Also matrix multiplication can be parallelised slightly achieving
a complexity of ©(n?) instead of ©(n?).

Several problems arise when using distributed machines for parallel
training of DNN. The objective is to maintain a linear speedup with the
number of used GPUs. IBM Research obtained close to ideal scaling [28]
with new distributed deep learning software, which achieved record com-
munication overhead and 95% scaling efficiency on the Caffe deep learning
framework over 256 NVIDIA GPUs in 64 IBM Power systems. Previous
best scaling was demonstrated by Facebook AI Research of 89% for a train-
ing run on Caffe2 [59], at higher communication overhead. IBM Research
also beat Facebook’s time by training the model in 50 minutes, versus the
1 hour Facebook took. Using this software, IBM Research achieved a new
image recognition accuracy of 33.8% for a neural network trained on a very
large data set (7.5M images). The previous record published by Microsoft
demonstrated 29.8% accuracy [27].

“Ironically, this problem of orchestrating and optimizing a deep
learning problem across many servers is made much more dif-

ficult as GPUs get faster. This has created a functional gap in
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deep learning systems that drove us to create a new class of DDL
software to make it possible to run popular open source codes
like Tensorflow, Caffe, Torch and Chainer over massive scale
neural networks and data sets with very high performance and
very high accuracy. Here a variant of the “Blind Men and the
Elephant” parable is helpful in describing the problem that we
are solving and context for the promising early results we have

“"

achieved. Per Wikipedia: “...Each blind man feels a different
part of the elephant body, but only one part, such as the side or
the tusk. They then describe the elephant based on their partial
experience and their descriptions are in complete disagreement
on what an elephant is.” Now, despite initial disagreement, if
these people are given enough time, they can share enough in-
formation to piece together a pretty accurate collective picture
of an elephant. Similarly, if you have a bunch of GPUs slogging
through the task of processing elements of a deep learning train-
ing problem — in parallel over days or weeks, as is typically the

case today — you can synch these learning results fairly easily.

But as GPUs get much faster, they learn much faster, and they
have to share their learning with all of the other GPUs at a rate
that isn’t possible with conventional software. This puts stress on
the system network and is a tough technical problem. Basically,
smarter and faster learners (the GPUs) need a better means of
communicating, or they get out of sync and spend the majority of
time waiting for each other’s results. So, you get no speedup-and
potentially even degraded performance-from using more, faster-

learning GPUs.”
Hillery Hunter

5.4.2 Inference

Inference consists in a single forward pass of an input through the network.
In general this step is very quick, compared to the training phase, but it
might be not quick enough for real time results needed in some ASs. There
are some techniques to speed up he computation; for example it is possible
to write the computed network on an FPGA [89] (Field Programmable Gate
Array) board or even an ASIC [116] (Application Specific Integrated Circuit)
chip which is then able to pass input values through the network in just a

few clock cycles instead of several milliseconds on off the shelf GPUs.



54 Chapter 5. Deep Learning Detection

Other possible solutions consist in using specialized off the shelf hard-
ware as for example the Movidius usb stick [78], which is providing a low
energy consumption deep learning architecture. Embedded GPUs are also
available in products as the Jetson TX1 and Tegra K1 boards, which are al-
ready used in many ASs as for example Drones and self driving cars. Figure

5.4 shows a performance comparison of some widely used architectures.
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FIGURE 5.4: Performance comparison between an integrated
TX1 GPU, an Intel core i7 CPU and between a Desktop Titan
X GPU and an intel Xeon processor’.
Inttps://devblogs.nvidia.com/parallelforall/
inference-next-step—-gpu—-accelerated-deep—-learning/
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Chapter 6

Activity Recognition

“Facial recognition software can pick out a person in a crowd,
but the vending machine at work can’t recognize a dollar with a

bent corner.”

Jeff Dwoskin, [160]

To understand if it is possible to do successfully activity recognition
using ML we developed the PELARS system, see Section 1.3. We used the
data collected with this system to test if it is possible to infer if students,
working on a project in a small group, are actually developing a successful
project or not. This research is focused at answering RQ1, RQ2, RQ3, RQ4
by showing that it is actually possible for an ML system to take as input an
ensemble of noisy data sources and predict with high accuracy the outcome
of an observed activity. We also show that NNs perform best compared to

traditional approaches.

6.1 PELARS Project

PELARS is a project about learning and making. It studies how people learn
about science, technology and mathematics when they use their hands as
well as their heads. A big part of the project is making more explicit the
implicit practices of science teachers: "Lab demos" and hands-on experi-
ments have been a big part of science teaching for as long as anyone can
remember, but how to model and analyse these practice, while empowering
teachers, is far less understood. So, the PELARS project aims at finding ways
of generating "analytics" (data about the learning process and analysis of
this data), which helps learners and teachers by providing feedback from
hands-on, project-based and experiential learning situations.

There are many tried and true practices in the teaching and learning of
science, technology, engineering and mathematics (STEM) that involve expe-

riential, practice and hands-on learning. Science and engineering teachers
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FIGURE 6.1: Mock up of the PELARS system'.

Ihttp://www.learningmaking.eu/about-pelars/

understand the importance and value of the "demonstration" and the "labora-
tory", although many of these practices are historical or traditionally routed,
and unstudied. Coming less from a tradition of constructivist education
and embodied learning, these laboratory and experimental, project-based
learning techniques come "from the lab", and have an immeasurable, if
known, value to the nurturing and training of creative STEM thinkers and
doers. Further, particular trends in Do-It-Yourself learning of STEM sub-
ject matter (through systems and platforms, communities and resources
online and off) prove inspiration for understanding and designing systems
for learning support in more convention contexts of European education
(high-school and undergraduate engineering education, as well as design
and human-computer-interaction contexts).

The PELARS project goes through three phases. First, we look at the prac-
tices of teachers and teaching institutions. How do the best STEM teachers
do what they do? What are the specific values embedded in, and value of,
the "demonstration”, the "practical”, the "laboratory" both in terms of institu-
tional emphasis (how teachers are supported) as well as individual learning
processes? Secondly, the PELARS convenes over a period of iterative design

phases, explicitly derived from the constraints and inspiring practices of


http://www.learningmaking.eu/about-pelars/
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real teachers, where propositional design prototypes and experiments are
tested and assayed with teaching and learning communities. This phase
includes designers and design researchers who create laptop-electronics,
and interactive kits for learning, as well as mobile learning and physical
environment (furniture and interior design) designers, pedagogy experts
and curriculum development partners, see Figure 6.1. Finally, the results of
iterative design through the second phase will bring us to a trial of PELARS

systems in real classrooms, workshop environments and educational milieu.

6.2 Background

The roots of project-based learning extends back almost a century to John
Dewey’s approach that argues for "laboratory schools" in which students
are engaged with the process of enquiry in their learning activities. It is
important to define the concept and explain its main features. Project-based
learning is a form of situated learning, in which students engage in real-
world activities that are similar to the activities that professionals engage in
[87]. Project-based learning activities that support learners” participation in
open-ended tasks are one of the most commonly used teaching approaches
for improving 21% century skills [12], and they emphasise the engagement of
learners in projects that are personally meaningful and they encompass driv-
ing questions, investigations, and collaboration [86]. However, the hands-on
and open-ended nature of project-based learning creates challenges for track-
ing the learning process. One of the key challenges faced in project-based
work is the support of the group work and ensuring that students succeed
in the planned learning outcomes [19, 87].

Current research in multi modal learning analytics (MMLA) focuses on
better understanding the complexity of learning through the advances of
high-frequency multimodal data capture, signal processing, and machine
learning techniques [114, 127]. MMLA offers an opportunity to capture
different insights about learning in project-based learning tasks in which
students have the opportunity to generate unique artifacts like computer
programs, robots and small-groups collaboration to solve open-ended tasks
[18, 16]. MMLA builds upon multimodal human interaction, educational
data mining and many other fields that include learning sciences and cogni-
tive sciences to capture the complexity of learning through data intensive
approaches [168, 140].

In terms of the focus on purposes and context, there is an emerging body

of work with MMLA to capture small group work on project-based learning
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that has grown mainly out of the work of Blikstein and Worsley investi-
gating engineering students’design activities [16, 25, 113]. Recently, within
this research domain, Blikstein et al. [17] explored multimodal techniques
for capturing code snapshots to investigate students learning computer
programming as well as video and gesture tracking for engineering tasks;
Worsley et al. [170] presented different approaches for data classification that
included points about how these techniques have a significant impact on the
relation of research and learning theories. Both of these initial approaches
provided the means for other researchers to begin to explore MMLA with
small groups of students across different subjects. In addition, notable data
sets from the MMLA grand challenges workshop Ochoa et al. [113], pre-
sented the Math Data and Oral Presentation Quality Data Corpora that
has enabled the community to analyse and discuss the different require-
ments and results within this field. Moreover, Ochoa and colleagues” work
[112] used existing multimedia processing technologies to produce a set of
features for accurate predictions of experts in groups of students solving
math problems, which illustrated the benefits of MMLA to support students’
learning in these contexts. Similarly, Chen et al. [25] expanded from the Oral
Presentation Quality Data corpus to further examine the feasibility of using
multimodal technologies for the assessment of public speaking skills; and
Grover and colleagues [62] have explored how to develop computational
models of social learning environments. In their work Grover and colleagues
managed to classify the quality of collaboration from body movement and
gestures of pair programmers working together with acceptable accuracy
rates. Although most of the existing MMLA research approaches focus on
learners’ data, Prieto et al. [122] and Martinez-Maldonado et al. [99] have
focused their research efforts on how MMLA can support teaching actions
and orchestration in the classroom.

On the other hand, in terms of the technical focus, in order to make
sense of complex data streams coming from multiple data sources, MMLA
researchers employ various computational techniques. These approaches
include logistic regressions, different feature reduction algorithms, and sta-
tistical models to investigate MMLA to identify features and predict student
performances. These approaches all have advantages and disadvantages
depending on the main research question and the purposes of data analysis
and have potential to provide insights how to proceed with a multimodal
data-set. Regardless of which computational approach is taken on board, it

is clear to us drawing from the literature that MMLA has a role to play to
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support education in project-based learning approaches and it has the po-
tential to provide new means for gathering insights for complex open-ended
learning activities which otherwise are extremely challenging to monitor
and support with existing traditional standardised evaluation approaches.
Lastly, small group work where students create unique solutions to open-
end and complex problems provide challenges that span the technical, user
experience, and new ways to support education are required for the research

to contribute to practice.

6.3 Architecture

The PELARS Learning Analytic System (LAS) is based on a client-server ar-
chitecture in which a number of remote clients acquire data during student’s
learning sessions and send the acquired information to a remote server. Here
we refer to a single remote server but, due to the nature of the involved pro-
cessing, the remote server can be easily realized as a cloud service. The LAS
contains a subsystem called Learning Environment (LE) that corresponds to
the location where the students are working on a project.

In this location the following elements have been identified: the furniture
in which the LAS will be integrated; the Arduino Kit for the experiments;
a Collector, which collects all the information gathered by the LAS and
the Sensors, analyses the scene and extracts relevant information about
objects and actions. The final results are available for the teachers through
a Web Interface. The LE comprises a series of elements that contribute to
the learning experience while, at the same time, collect information about
the activity of the students. The sources of information for the LAS are
constituted by sensors embedded in the furniture. In the following sections
the details of the different blocks will be described, together with their

interconnections.

Arduino Programming IDE The programming IDE, Figure 6.2, is the tool
used by the students for interfacing with the code and developing the
projects. PELARS designed, developed and produced a novel learning
kit called Talkoo using a novel communication protocol called ESLOV, based
on the Arduino platform, which enables working with modular hardware
components through a visual programming interface. The base for the
modular Talkoo kit is a hub that connects any combination of the other 12
modules with a computer. The amount of modules created for the initial

Talkoo kit is easily expandable. We chose a series of boards that are very
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FIGURE 6.2: Image representing the Arduino Programming
IDE.

commonly used when prototyping: relay, piezo buzzer, RGB LED, rotary
encoder, potentiometer, button, light sensor, color sensor, temperature sen-
sor, dc motor control, servo motor control and 6 axis EMU, see Figure 6.3.
We created the firmware needed for each one of the modules as well as the
hub in a way that allows for users to include as many units of the same
kind (up to the theoretical limit of 127 units, limitation imposed because
of the underlying protocol used: I12C). The processors chosen for the hub
and the modules are different, while still being both from the same brand
and family (ATMEL, ATMega). The capabilities of the processors allowed
for the basic functionality required for the prototype: I2C communication,
sufficient processing power to process the ESLOV protocol, memory to host
the needed libraries and analog/digital pins to interface with sensors and
actuators. All modules are re-programmable microcontroller boards. The
main feature of this prototype is the possibility of addressing each one of
the modules and negotiating all of the addresses when hot-plugging the
modules on the fly.

The connection between modules at a logical level is controlled through
the Talkoo Visual Programming Language (VPL). This software is a tool
where users design programs through the connection of graphical elements:
visual blocks and connection lines instead of text-based code. Each hardware
module (excluding the hub) has a graphical representation on the screen,

which, upon connection to the hub or to another module connected to the
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FIGURE 6.3: Talkoo components example.

hub, will automatically show up on the IDE’s screen and make itself avail-
able for the user. Each block has inlets (inputs) and outlets (outputs) when
needed. Users can literally draw connections between the outputs and in-
puts from different modules. There are also a series of logical blocks that will
allow users to filter and manipulate data within the IDE and send it to other
programs or over the Internet to a server. The VPL design served the purpose
of giving users the smallest learning curve to get creative with this technol-
ogy following the PELARS project requirements, type of students/users and

use scenarios.

Desk and vision sensors Due to the exploratory nature of the project
we opted for a two-camera setup configuration with a frontal Logitech
€920 Webcam and a top-down Kinect v2 RGB-D camera. After calibrating
the pose of these two cameras, it is possible to relate objects and motions
with respect to the student’s table. Single camera configuration could be
considered in the future, but it would require larger field of view. The
other, and more useful focus, is the one of the students that were tracked
both in terms of hand motions and head motions. These two indicators
can be connected to the measure of student’s collaboration as they emerge
from the Collaborative Problem Solving (CPS) framework developed in
PELARS. For facilitating the tracking, PELARS adopted fiducial markers
at student wrist that provide precise positioning at the cost of issues of
occlusion. Further image processing could be possible for extracting specific
interaction gestures and phases of student interactions.

We captured over time also the audio level at the table to understand
how much learners are communicating. To do this we used the microphone
incorporated in the used webcam and computed the power spectral density
of the input signal.

While we researched and prototyped concepts for passive or ambient
tracking of student behavior and patterns, at the same time we also wanted
to give students tools to actively input their own perception of the current

state of work. We wanted to know, not just what the students are doing, but
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also, how they feel about what they are doing. Furthermore, our contextual
research emphasized that it is often difficult for teachers to be constantly
aware of each student’s current status in their work because there are simply
too many students in the classroom to orchestrate. We wanted to give
students a way to communicate to their teachers how their project is going
without the teacher needing to constantly check in with each group or
individual. To this end, we designed a simple set of buttons that would allow
a student to input their current status: the Sentiment Feedback Box. The
Sentiment Feedback Box is a physical, internet-enabled box with two buttons.
The left button is for inputting a positive sentiment and is represented with
a light bulb icon on the front of the physical button. The right button
serves to input a negative sentiment and is represented with a storm-cloud
icon. The concept of positive sentiment is flexible and is intended to be
used to denote a moment of success, a happy feeling or a bright idea. The
concept of negative sentiment is similarly flexible and is associated with
frustration, difficulty, or even failure. The data obtained through interaction
with the Sentiment Feedback Box is constantly collected and aggregated by
the Learning Analytics System, adding a richer, learner-driven perspective

to the session.

Mobile Annotation System We developed a mobile annotation system
which allowed students to take photographs, record video, and report via a

form and free text their plan, progress, and reflective thoughts.

Collector The Collector is a piece of software responsible of acquiring the
information produced by the different sensors and of elaborating the data in
order to extract the Learning Metrics. The collector is a stand-alone appli-
cation which collects and processes information from the various sensors
(Vision and Desk) and the Arduino IDE. All the information extracted by
the Collector will be sent to the Server deferred, or in real-time. It is writ-
ten in C++ and consists in a series of threads and queues producing and

consuming resources.

Server The Server is a dedicated machine hosting a Web Server and a
database. Inside the Web Server three Applications will be executed: the
Acquisition App that receives data from the Collector and stores into the
Database, the LA Core App that performs computations over the acquired
data and a Web App that provides the front-end to the user. The Web App

provides mainly two types of services: the Administration of the LAS and
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FIGURE 6.4: The general architecture of the PELARS Server.

the Visualization of the learning traces in the form of dashboard or custom

visualizations. Figure 6.4 shows a general overview of the PELARS Server.

WebApp The Web Server is exporting a web interface, accessible from any
computer, for Teachers that will be able to manage the collection of data
from learning sessions and visualization of data. The Visualization is based
on two concepts: the Dashboard that allows the users to visualize the key
elements about a group of students, and a Traces Visualization that presents

the information collected for a given user along.

6.4 Low Level Data Acquisition

Low-level data acquisition deals with basic face recognition and hand track-
ing as a way to assess whether the students are interacting with the system,
looking one to another o handling objects present in the PELARS desk.

Figure 6.5 shows an overview of the PELARS data acquisition architecture.

Face detection Faces are captured using the Logitech C920 Webcam. The
webcam operates through gstreamer to be able to use the h.264 protocol
which allows a very low latency on the processing of full HD images.

We exploited OpenFace, explained in 5.2, in order to get more detailed

and meaningful feature to pass as input to the machine learning algorithms
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FIGURE 6.5: General overview of the PELARS data acquisi-
tion architecture.

developed for behavior analysis. The results are, for each detected face, the

3D head pose, the coordinates of facial feature points, e.g. chin tip, nose

tip, lip corners etc. and 3D face model fitted to the face. The most relevant

features we extracted using this software are, for each face: the pose, gaze

direction and eye closure along with the 2D positions of the key points of

the face, Figure 6.6.

The output of the face detection system for each image consists in an

array of JSON objects with the following structure:

¢ 2Dfeatures: Facial feature points (2D coordinates). The 2D feature

point coordinates are normalised to image size so that the lower left
corner of the image has coordinates 0,0 and upper right corner 1,1. The
feature points are identified according to the MPEG-4 standard (with
extension for additional points), so each feature point is identified by
its group and index. For example, the tip of the chin belongs to group

2 and its index is 1, so this point is identified as point 2.1.

Eyeclosure_left: Boolean indicating whether the left eye is closed or

open

Eyeclosure_right: Boolean indicating whether the right eye is closed

or open

gaze_direction: Global gaze direction, taking into account both head
pose and eye rotation. This is the current estimated gaze direction
relative to the camera axis. Direction is expressed with three values

determining the rotations around the three axes X, y and z, i.e. pitch,
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FIGURE 6.6: Detected face position and gaze estimation
using OpenFace.

yaw and roll. Values (0, 0, 0) correspond to the gaze direction parallel
to the camera axis. Positive values for pitch correspond to gaze turning
down. Positive values for yaw correspond to gaze turning right in the
input image. Positive values for roll correspond to face rolling to the

left in the input image. The values are in radians.

¢ Pose: Composed by translation and rotation of the head from the
camera. Translation is expressed with three coordinates X, y, z. The
coordinate system is such that when looking towards the camera, the
direction of x is to the left, y is up, and z points towards the viewer -
see Figure 6.6. The global origin (0,0,0) is placed at the camera. The
reference point on the head is in the center between the eyes. The
returned coordinates are in meters. Rotation is instead expressed as
a quaternion, obtained from the euler angles returned by the original

algorithm.

The camera is set in the LAS in such a way that when faces are detected
they are facing towards the screen. This allows to detect how many persons
are using the Arduino IDE at the same time. The Collector also computes
the distance of each face from the camera in order to avoid capturing faces
of people which are further away than a certain threshold which can be set.
To compute the face distance we assumed a fixed mean size for faces and
then used the intrinsic parameters of the camera to compute the distance.
Strong changes in face sizes could influence the system, but this has not been

investigated.



66 Chapter 6. Activity Recognition

100 T T T . —
pitch —+—
v yaw
80 r r roll —s— -

degrees

-60 . | L . | |
0 200 400 600 800 1000 1200

time(seconds)

FIGURE 6.7: Angle of the head motions as corresponding to
the snapshots taken by the system.

Figure 6.7 shows the gaze orientation of a single subject, expressed in
euler angles, during a test session. Data is extracted from the snapshots
taken during the session. Note that if all the three values are 0 then the
subject is looking straight towards the camera. It is also important to say
that, differently from head rotation [105], gaze directions represent where the
eyes are pointing to, regardless of the head pose. Therefore, it is a powerful

estimation of a student’s level of engagement with the screen.

Hand tracking Hands are captured using a fiducial marker provided by
the Aruco library [104]. Detection is done using partially the GPU to reduce
the computational load on it. The library identifies the marker’s unique id
which allows movement tracking. All markers wore by users are unique
in order to allow the correct evaluation of the captured data. Each hand
position is referred to a base reference system positioned on the table, see
Figure 6.8. The markers are attached to each side of the wristbands. This
way we can track hands in almost all positions, as long as the markers are
seen by the camera. For each marker, the relative 3D position with respect
to the table is computed. This allows to relate faces and hands since they
are positioned in the same reference frame (table). The system has to be
calibrated initially to set the base reference system using the marker with id

0, which has to be used only for this purpose.
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N

FIGURE 6.8: PELARS desk as seen from the rgb camera.

Object Recognition and Annotation The goal of the PELARS object recog-
nition software is to track the location of objects as they are manipulated
by the students. This can give us information about how students make
use of the space, or how they distribute tasks among themselves: builder,
programmer and documenter. 2D Objects can be captured from a video
stream using a custom C++ tool that we developed. The tool is based on the
BOLD descriptor (Binary Online Learned Descriptor) [7] which is used to
recognize and track textureless objects. The tool works as follows: the user
identifies in the first frame of the video the object, which has to be tracked.
It is possible to associate a name to each object. The program segments the
tables using a given mask taken as input parameter and then extracts the ob-
jects computing a unique descriptor for each object. The program identifies
in each frame the different objects, and stores the position in a separate file
as a JSON message. The program generates a new video stream in which
each object is identified as a colored dot. To make the system more stable,
the position of the object is passed through a low pass filter that stabilizes
the center of the identified object. This creates a trade off between position
precision and system reactiveness. The user can set the filter sample length
as input parameter to adjust this value. The final output of the tool consists

of a file containing Json messages that can be parsed to obtain for each frame
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FIGURE 6.9: Example of the interface for the object tracking
task.

the identified object and a video showing the center of the recognized object
with colored dots, see Figure 6.9.

We did not use object recognition in the following experiments given
the high variability of objects present on the table. Students were building
different projects and using different tools for it, so it was not possible to

find common useful objects to track.

6.5 ML Activity Recognition

Supervised machine learning approaches have been employed for associat-
ing the measured student actions with the resulting scores by the experts. In
the following we use Deep Learning techniques and traditional Supervised
Learning techniques to evaluate the outcome of projects and the possibility

of inferring the current working phase.

6.5.1 Datataset Acquisition

The analysed data has been acquired in 3 sequential educational interven-
tions with 18 engineering students at an European University (average age
20 years old, 17 men and 1 woman). The students were divided into 6
groups made up of 3 students. Each student group used the PELARS system
over 3 days completing one open-ended design tasks for each session. First,
the students were introduced to the system with a workshop to familiarise
them with it, and then their first task was to prototype an interactive toy.
The second task was the prototyping of a color sorter machine, and in the

third task the students have been asked to build an autonomous automobile.
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Each of these design sessions ranged from 60 to 80 minutes. As can be seen,
each of the tasks introduced a more complex design concept to be solved
with respect to the previous ones. Students were asked to perform an initial
phase of planning, followed by execution/building and finally a documen-
tation/reflection phase. During the activity the students had to document
their planning, building and reflecting phase through the mobile annotation
tool, see Figure 6.3. The research observers used the mobile tool to divide

the students work flow into the planning, building and reflecting phases.

6.5.2 Initial Project Classification

To grade the students’ design projects, a scoring scheme was developed
that combined different approaches for collaborative problem solving (CPS)
in small groups as well as bringing the design thinking principles. We
started with the seminal work done with engineering students [4] that was
initially adopted by [169] for multimodal learning analytics. From these
initial frameworks, we began to develop a framework for CPS (blinded)
that we could apply to the PELARS context. We used a version of our CPS
framework with the mobile system and an agreed set of codes for on-fly
observations to initially grading the student’s projects. From the initial
score of the students’ work, the team of researchers reviewed the students’
work collected in the LAS, which included snapshots of the students” plan,
video of solutions and learners text input. The 18 sessions were graded with
these criteria, where 50% of the grade was the expert’s opinion based on the
documentation collected by students, 25% was how the students planned
and delivered the artifact and the remaining 25% was the student’s own
self-assessment of the quality of their projects. The resulting scores were
categorised in three classes: poor, ok and good. This classification of the
sessions was used as the reference point for the previous machine learning
based classification work (blinded) in which the nature of this evaluation

allowed only to reliably classify the works in two classes: good and bad.

6.5.3 Improved Project Classification

Based on the issues present in the previous scoring each of the sessions has
been re-evaluated and re-scored by experts looking at videos, documentation
(from the mobile tools) and final project outcome (the artifact). The aim was
to generate a more rich scoring that reflected the learning practices for
engineering courses. The new scoring has been based on 5 different aspects

expressed in a scale from 1 to 5 and are shown in Figure 6.1:
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FIGURE 6.10: Quality of solution scores (QuaOS) of each
team during the three sessions.

Level of Clarity [Loc] (5=very clear, 3=legible, 1=not understandable)

Independent Thinking [InTh] (5=independent, 3=based off instruction,

1=same as instruction)

Corresponds with plan [CorPI] (5=Fully, 3=partially, 1=not at all)

Does it Work? [DoWo] (5=fully, 3=partially, 1=not working)

Quality of solution [QuaOS] (5=great, 3=mediocre, 1=poor)

6.5.4 Data Pre-processing

Data was collected at variable data rates (around 2Hz), yet it was not syn-
chronised. For this reason, we needed a processing stage that aggregates
indicators from the different variables in windows of same duration. The
aggregation was performed based, for most of the variables, on counting
for most of the variables. However, only for the distance/proximity fea-
tures we employed averaging. Considering the fact that, students’ sessions
were different in terms of their lengths due to the open-ended nature of the
project-based learning activities, we employed zero padding for sessions

that were too short. For the investigation presented in this work, we tested
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TABLE 6.1: Table of the 18 session scores organized by team.
The five scores expressed in a 5 level Likert-type are reported

Team | Session | Loc | InTh | CorPI | DoWo | QuaOS
1 2 5 4 3
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window sizes of 10, 20 and 30 minutes, and we also tested the case of one

single window for the whole learning activity.

6.6 Method

A supervised machine learning approach has been employed for associating
the measured students’ actions with the resulting scores by the experts. In
particular we have performed a two stage approach with different tech-
niques. One assessment is based on large data quantities and uses DL for
regressing the 5 scores by the experts. The second, based on traditional
machine learning, deals with the simpler 3-levels assessment of the sessions
and tries to address the problem of explaining the causes of the outcome
depending on measured features and phases. Table 6.2 shows a synthetic
view of the two tasks together with the inputs, outputs and details about the

algorithms as discussed in the rest of this section.

6.6.1 Deep Learning approach

The input data is a set of timeseries that have different rates and partial
synchronization. In this work we decided to use a windowing approach
with dense network for compensating such difference, leaving the use of
recurrent neural network techniques for future work. Given a session of
duration T seconds we split it into non-overlapping windows of length L

seconds (120, 240 and 360) obtaining [7"/ L] windows. For a given input we
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TABLE 6.2: Machine Learning Tasks performed over Data

Method Deep Learning Traditional

Task Regression Classification

Input 18 variables 9 variables per-window
Output 6 scores over 5 levels 1 score with 3 levels
Metrics Regression Score Classifier Accuracy
Windowing 120,240 and 360 seconds | 10,20,30,90 minutes
Phase Exclusion | Reflection Reflection

Method Multiple layers NB, LR, SVML, SVMR

compute an aggregated statistics for each window (averaging or summation).

The following aggregated statistics (18 values in total) have been employed:
¢ Total number of faces looking toward the screen FLS
¢ Total number of connected Arduino components IDEC
* Mean distance between faces DBF
¢ Mean distance between hands DBH
* Mean hand movement speed HMS
* Mean audio level AUD
¢ Software blocks used IDEVSW

¢ Variety of hardware IDEVHW

Number of interconnections between blocks IDEX

The total input consists of a series of 18 dimensional vectors consisting
of the metrics indicated above and depending on the time chosen to window
the data.Three different window sizes have been tested: 120s, 240s and 360s.

Deep learning has been tested to check the feasibility of non-linear re-
gression on the input data gathered from the sensors. For the purpose of
this experiment regression has been used since the output values can be
a set of continuous values. The network has been implemented using a
Python library for deep neural networks called Keras [30]. This high-level
library allows to abstract the use of the GPU optimized processing libraries
Tensorflow [1] and Theano [14].

Given the input data, we tested a fully connected network that was
trained to fit a function that has an 18 dimensional domain and a 6 dimen-
sional co-domain. Several additional DNN parameters have been tuned to
obtain the best possible solution along with the window size for the input

data creation. These parameters include:
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¢ Dropout
* Regularization
¢ Epochs

¢ Layers

Input data is randomly split, as usual, in training and test data, with an
additional minor split of the training data into training and validation. In
these experiments 20% of the sessions are removed as test sessions, leaving
80% for training. Of this 80% another 20% has been used as validation set
during the training phase. It is important to notice that complete sessions
have been left out for testing and not just random inputs (windows) since
they are usually correlated and could alter the final results if used.

The results of the net are evaluated using a mean squared error distance
between the predicted value vector and the true value vector obtained in the
test data set. A mean squared error has also been computed for each of the
six output values along with the variance in order to understand if any of
the output values had a different behavior. Three different NN architectures
have been tested, growing from one to three fully connected layers of size
1024, 512 and 256. The best obtained net was created using the following

parameters:

Dropout 0.5

No regularization

100 Epochs

3 Dense Layers of size 1024, 512, 256

e 240s Window size
The network structure can be see in Figure 6.11.

6.6.2 Traditional Approaches

The supervised approach we used is based on a supervised classification
task that matches the observers’ scores. The purpose of this approach is to
identify the data features that can support different score classifications that
have been evaluated by human observers (experienced teachers) as poor, ok,
and good. Among the different families of classifiers available, we tested

various parametric ones namely Naive Bayesian (NB), Logistic Regression
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input: | (None, 17)

dense_input_1 (InputLayer)

output: | (None, 17)

y
input: (None, 17)

output: | (None, 1024)

dense_1 (Dense)

input: | (None, 1024)
output: | (None, 1024)

dropout_1 (Dropout)
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input: | (None, 1024)

output: | (None, 512)

dense_2 (Dense)

input: | (None, 512)

dropout_2 (Dropout)
output: | (None, 512)

y
input: | (None, 512)

dense_3 (Dense)

output: | (None, 256)

input: | (None, 256)
output: | (None, 256)

dropout_3 (Dropout)

A
input: | (None, 256)

dense_4 (Dense)
output: (None, 6)

FIGURE 6.11: Neural Network structure of the model which
obtained the best results
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(LR) and Support Vector Machines with linear (SVML) and Gaussian kernel
(SVMR). We avoided the non-parametric ones (Nearest neighbours) or deci-
sion trees with the purpose of reducing the overfitting effect. In particular,
NB is a simple classifier that employs a strong assumption about features,
a condition that holds valid for most of the variables we employed in our
investigation except for the ones related to the Arduino IDE. We decided not
to use the ensemble of classifiers [85], as we would like to study the model
behind these classifications as much as performing the classification itself.

We used cross-validation (k=4) for understanding the effect of different
parameters such as window size and the inclusion of different phases. Due
to the small sample size (18 sessions from 18 engineering students working
in 6 groups of 3 students) and the high variance of the data we avoided
the leave-one-out scheme. The data acquired from the PELARS LAS was
exported and then processed in Python using the sklearn [119] toolkit that
provides state-of-the-art machine learning techniques integrated with a
common interface. The test of the classifiers was performed by varying
the window size, the score (binary or original 3-level), the inclusion of the
different phases (planning, building, and reflecting) and, most importantly,
the effect of features identified and described above (FLS, DBL, DBH, HMS,
IDEC, IDEVHW, IDEVSW, IDEX, AUD)

6.7 Results

6.7.1 Deep Learning Results

The overall results for the different network structures are illustrated in
Table 6.6, 6.3, 6.4 and 6.5 show the mean and variance for the error between
expected output and predicted value. We then compared 120s, 240s and
360s window sizes. These sizes where chosen arbitrarily given a first rough
estimation of the input data. The 240s NN achieves a mean squared error of
0.13 as shown in Table 6.4 across the improved classification of the student’s
outcomes. We then investigated the different features by removing them
individually. In general, the results get worse as expected, see Table 6.7. This
result illustrated that this feature of distance between faces is a substantial
input for project-based work in the PELARS context. Additionally, the
results show that the smallest window performs worse than the others, see
Table 6.3. The network achieving the best results is shown in Figure 6.11 and

is using a window size of 240s.
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TABLE 6.3: Results for the 120s window, 0.242 overall

120s Window | Loc InTh | CorPi | DoWo | QuaOS | OG
Mean 0.182 | 0.238 | 0.166 | 0.197 | 0.155 0.228
Var 0.074 | 0.112 | 0.069 | 0.076 | 0.061 0.099

TABLE 6.4: Results for the 240s window, 0.129 overall

240s Window | Loc InTh | CorPi | DoWo | QuaOS | OG
Mean 0.086 | 0.175 | 0.150 | 0.175 | 0.154 0.084
Var 0.074 | 0.056 | 0.084 | 0.092 | 0.062 0.048

TABLE 6.5: Results for the 360s window, 0.193 overall

360s Window | Loc InTh | CorPi | DoWo | QuaOS | OG
Mean 0.213 | 0.077 | 0.237 | 0.147 | 0.196 0.181
Var 0.097 | 0.006 | 0.083 | 0.063 | 0.071 0.057

TABLE 6.6: Best network results for the different network
configurations

1024 0.186 with 360s
1024, 512 0.174 with 360s
1024, 512, 256 | 0.129 with 240s

TABLE 6.7: Best error scores after removing isolated features

Removed Feature Best Result
No features removed 0.129
All faces data 0.21
All Arduino data 0.21
DBF 0.15
DBH 0.21
HMS 0.19
AUD 0.18
Hand pos 0.21
Arduino comp 0.19
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FIGURE 6.12: Resulting grades of the projects output devel-
oped by the tested groups of students.

6.7.2 Supervised Learning Results
6.7.2.1 Phases

Although, we had a small sample size of 18 sessions, the total amount of
data generated from these sessions was rich and big due to the multimodal
nature of our investigation. The project-based learning activities lasted
within the range of 33 minutes to 75 minutes (median 63 min+13), with a
total activity time of 17 hours and 10 minutes. Each project-based learning
activity’s project outcome was graded based on the criteria described earlier,
and different patterns along the three sessions were observed. Figure 6.12
shows the different grades of the group’s outcomes. The presented values
are poor=1, ok=2, good=3 and the colors represent the different created
student projects over the three sessions.

The design phases annotated by the observer (planning, building, and re-
flecting) varied broadly among the sessions as well as among the groups. The
mean scores for the time spent on these phases among the sessions are plan-
ning (11min+10min), building (41min+16min) and reflection (4min+7min).
Figure 6.13 shows the duration of each session and the timing of the phases

for different groups of students.

6.7.2.2 Scoring

The three-level scoring we initially identified using human observation (poor,
ok, good) posed difficulties to the classification activity, and we needed to
move to a binary version in which we aggregated ok graded groups with

good graded groups. For example, NB and SVM classifiers score 0.8 and
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FIGURE 6.13: Distribution of phases among session of the
6 teams. Each session is split in the three phases, first plan,
then build and finally reflect

TABLE 6.8: Effect of phases in the inclusion of the classifier.
P=plan, W=work, R=reflect. Values are accuracy percent-
ages.

PWR PW W WR
NB 0.8 08 06 075
SVML 0.6 075 075 08
SVMR 075 075 0.75 0.75
LR 0.6 075 05 0.6

0.75 respectively with a window of 30min and binary classification, however
this value decreases to 0.5 for both of the classifiers when we use a three-
way classification. This situation is clearly not ideal, however in order to
achieve adequate results, we took this binary approach which still has great
value to be able to identify project-based learning groups who perform
poorly from others. Alternatively, it can be used to identify those group
performances that are considered good in a binary fashion. This example

shows the limitations of traditional ML approaches in respect to DL ones.

6.7.2.3 Effect of Phase

The selection of the phases used to train the classifier have a strong effect of
the capacity to recognise the classifiers. For example, with a 30min window
and binary classification, the exclusion of reflection (PW) phase in student
activities provided stronger results across the different classifiers, while the
exclusion of both planning and reflection reduced the classification power.
See Table 6.8 for the details.

In order to provide the most reliable results and use the strongest classi-
fication power, we focus our results on data collected from the planning and
working stages of the student activities excluding the reflecting stages.

As can be seen in Table 6.8, across the different tests of the classifiers NB
is performing the best, followed by the SVML and SVMR. LR has the worst
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results among the traditional classifiers. SVMR is the most consistent among
different phases, discriminating among all always with an accuracy of 75%.

Having established the window size as 30 mins, grade classifications as
poor vs. ok plus good scored projects, learning activity stages as planning
and building phases, and the statistical methods we will use as NB and
SVML, we now present the results of our analysis on the effects of the
multimodal learning analytics features. We start from the full set of features
with a given selection of the other parameters mentioned above and we
proceed removing features, as a form of model selection.

Regarding the effects of the multimodal learning analytics features on
predicting students’” group performances in open-ended project-based learn-

ing, below results are found:

¢ IDEC (Arduino IDE) removal does not effect the results of the classi-

fiers,

¢ Removal of all faces and hands duration has very little effect on the

classifiers,

¢ Distance measures DHB and DBL alone are capable of predicting the

results with a high accuracy (0.75) across classifiers,

¢ The audio level feature AUD alone is currently a strong feature for
classification (1.0 with Naive Bayes) with time windows 5min, 10min

and 30min and binary scoring.

Interestingly the logistic regression is capable of an optimal result (1.0)
when considering IDEX, IDEVHW, IDEVSW and DBL, which are the main
IDE features, except component counts and the distance between learners
(DBL). One of the main limitations of our approach is the scoring of the
sessions that is limited to a binary classification with respect to a richer

3-level human scoring.

6.8 Discussion

6.8.1 Traditional Approach

In the linear regression approach, we focused on identifying the different
phases of work in relation to accuracy in predicting the group’s artifact
quality. We found that the planning and building stages of students learning
activities are better predictors of their artifact quality than the reflection

stage (in the intervention the reflection phase signalled the end of making
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artefacts and coding to documenting with a mobile device the work). Then,
we investigated the certain features of the MMLA, in order to determine
which features can predict the student’s artefact quality with higher accuracy.
Our results show that the distance between hands and distance between
learners are key features to predict student’s performances in project-based
learning activities. In our case, they highly correlate with the quality of the
student’s artefacts in project-based learning. These results are aligned with
existing MMLA research findings that show the potential of hand motion
and speed, and the location of the learners to predict student success at
various learning outcomes [17, 113, 62].

There are three main aspects of PBL: students are asking driving ques-
tions, doing investigations to answer these questions, and collaborate to-
gether to solve these questions [86]. It is important that MMLA research aims
to support these three main aspects of Project Based Learning (PBL). The
results presented here show that the value of the distance between students’
hands and distance between students are well aligned with the argument
that closer students may fruitfully collaborate, which is an important aspect
of PBL.

The other features of MMLA such as Hand Motion Speed (HMS) and
Faces Looking at the Screen (FLS) did not perform very well to predict
students’” artefact quality across the classifiers. While the Arduino IDE
the Number of Active Blocks (IDEC), the Variety of Hardware (IDEVHW)
and Software Blocks used (IDEVSW) and the number of interconnections
between blocks as a Measure of Complexity (IDEX) were able to predict
students” outcomes, they were only marginal across the classifiers. Further-
more, the audio signal level (AUD) appears to be a promising feature to
predict performance, however more investigation is needed for using this

feature in combination with others.

6.8.2 Deep Learning Approach

The DNN results are more promising and show the feasibility of this method
as an efficient approach for MMLA. In our investigation with this approach,
we obtained a mean squared error of 0.129 with a window of size 240s as
shown in Table 6.4. One important result that emerged from our results
and is worth to notice is how the smallest window performs worse than the
others, see Table 6.3. This is possibly due to the low information amount

in that time window. The 240s interval performs the best, while the 360s



6.9. Conclusion 81

interval gives no performance gain as can be seen in Table 6.5. This suggests
that the information gain from 240s to 360s is negligible for our purposes.

It is possible to see that (see table 6.7) by removing a single feature, in
general results get worse except partially in the case of the distance between
faces. This shows that this is a very strong input feature. It is also important
to notice that the network learned some higher level features, which do not
consist of a single input, given that by removing any single input we can not
achieve the optimal results that we achieved using them all.

All results show a reasonably low variance evidencing the stability of the
results, which is a positive sign in terms of the learned features. The fact that
strong features have been trained is possibly due to the 0.5 dropout value,
which "encourages” the network to find high level, strong features discarding
the low level, weak features. Regularization gave no significant boost of
the results, but this is probably due to the relatively "small" amount of
training data, avoiding partially the problem of over-fitting. This parameter
should become more relevant when more data will be added to the training
set. A future step could consist in removing pairs or triplets of features to
understand the relationship and importance of the input features further
and make the factors on the learning process more visible. We aim to further

investigate these in our immediate future work.

6.9 Conclusion

We showed that traditional ML techniques are able to solve some recognition
tasks as for example inferring the phase of the students” work. Using the
same instruments to predict the overall project quality gave bad results and
we needed to switch to a binary classification, Section 6.7.2.2. This shows the
limitations of traditional ML techniques. DNNs instead are able to predict
correctly the complex outcomes of the projects without limitations as shown
in Section 6.7.1. Distances between student’s hands and faces, while they
are working on projects, is a strong predictor of student’s artefact quality.
All this indicates the possibility of activity recognition in student collabo-
rative projects, answering RQ1, RQ3, RQ4. This shows also that new and
promising approaches such as DNNs, and more traditional regression ap-
proaches in some situations, can be used to classify MMLA data depending
on the research questions and contexts being investigated, answering RQ?2.
Although, it is traditionally notoriously challenging to provide evidence
about the robust and objective evaluations of project-based learning activ-

ities, techniques and types of data we presented here can be the first step
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towards effective implementation and evaluation of project-based learning

at a scale.
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Chapter 7

Human State Evaluation

“We're going to become caretakers for the robots. That’s what

the next generation of work is going to be.”

Gray Scott, [94]

Human internal state can be potentially provided by physiological sig-
nals which are difficult to interpret, partially due to technical limitations
(e.g., availability of sensors, different sources of information), and their inter
subject variability [152]. In the context of robotic systems we cannot rely
on complex biological recordings, such as electromyography, complex labo-
ratory setups, such as marker-based motion capture systems or sensorized
hallways or even wearable sensors, which can obstruct the user during his
everyday life activities. For these reasons the user internal state must be
indirectly inferred from the available sensor sources, which usually consist
in RGB-D cameras, range sensors and sometimes tactile sensors [148]. This
task is non trivial since we often have to deal with sensors which are noisy
and sensitive to light conditions or occlusions. For this reason these parame-
ters are often assumed constant during the human machine interaction. To
overcome these problems we try to evaluated the fatigue of MCI patients
using ML techniques with depth images captured from a Kinect v1 sensor.
This will answer RQ2 and RQ5 as part of the RAMCIP project presented in
Section 1.3.

In the following we show that this it is actually possible to detect the in-
ternal state of a person with non invasive ML techniques, allowing assistive
robots to infer the patients state in order to adapt their behavior dynamically.

Figure 7.1 shows an image of the Ramcip Robot.

7.1 RAMCIP Project

The project RAMCIP is an EU Horizon 2020 funded project, under the grant
agreement no: 643433. The project started on the 1st of January 2015 and

will last for more than 36 months.
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FIGURE 7.1: The Ramcip Robot.!.
http://www.fundacioace.com/en/ramcip-segunda-reunion-anual/


http://www.fundacioace.com/en/ramcip-segunda-reunion-anual/
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RAMCIP aims to research and develop real robotic solutions for assistive
robotics for the elderly and those suffering from MCI and dementia. This
is a key step for developing a wide range of assistive technologies. We
adopt existing technologies from the robotics community, fuse those with
user-centred design activities and practical validation, with the aim to create
a step-change in robotics for assisted living.

According to the RAMCIP vision, future service robots for the assisted
living environments of MCI and Alzheimer’s Disease (AD) persons should
be capable of providing safe, proactive and discreet assistance in a series of
significant aspects of the user’s daily life, ranging from food preparation,
eating and dressing activities to managing the home and keeping it safe,
both for the user and other persons, e.g. grandchildren, while at the same
time, the robot should assist the user to maintain positive affect and also
exercise cognitive and physical skills. It should be underlined that although
for the latter, the focus of assisted living robot companions has so far been in
initiating and managing specific physical or cognitive training interventions.
The RAMCIP project foresees future robots to have this capacity embedded
in their daily behaviour; i.e. providing such exercise subtly, by modifying
the way they assist.

Working toward addressing the question of how a service robot can
realize the above, the RAMCIP project will research and develop a service
robot that will first of all have advanced high-level cognitive functions.
These functions will be driven by thorough modeling and monitoring of
the home environment, the user and other co-located persons, allowing
the robot to take optimal decision regarding when and how to provide
assistance, in a proactive and discreet way. Assistance provision will also
be driven by enabling the robot to understand user commands and affect,
through multimodal, adaptive and emphatic HR communication channels,

see Figure 7.2

7.2 Objective

In order for RAMCIP to successfully realise its vision, several prerequisites
are set in the form of major scientific and technological objectives throughout
the duration of the project. The overall project success will be defined by
the effectiveness and efficiency of the appropriate synthesis, as well as the
individual quality of the specific achievements. The main objectives of the
RAMCIP project are:
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FIGURE 7.2: An overview of the objectives of the RAMCIP
project.l.
Thttp://www.ramcip-project.eu/ramcip/content/ramcip-vision
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HOW TO ASSIST

¢ Objective 1: To develop a service robot that will be capable of robustly
understanding actions, complex activities and behaviour of multiple

people in the user’s home.

* Objective 2: To develop a service robot that will provide proactive,

discreet and optimal assistance to the user.

* Objective 3: Establishment of advanced communication channels

between the user and the robot.

* Objective 4: Establishment of advanced physical interaction between

the robot and the home environment.

* Objective 5: Establishment of assistance activities involving physical

interaction between the robot and the user.

* Objective 6: To validate RAMCIP project results in real-life scenarios.
Evaluation of the RAMCIP robot prototype will take place in two pilot
sites, in Poland and in Spain, through trials that will involve MCI and

AD patients.

The majority of these objectives needs to evaluate the current state of the
patient in order for the assistive robot to decide which actions to perform. To
do this we acquired data from a set of patients affected by MCI and trained
a DNN to discriminate fatigue and not fatigue by observing the patients

walking patter.


http://www.ramcip-project.eu/ramcip/content/ramcip-vision
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7.3 Data Acquisition

The current study was approved by the ethics committee of the Lublin
Medical University (Protocol Number KA-0245/2A/2016) and performed
in accordance with the ethical standards laid down by the Declaration of
Helsinki. All subjects provided written informed consent prior to the partici-

pation.

7.3.1 Subjects

A group of 20 elderly people (10 Male, 10 Female aged 71 + 10.03) partici-
pated in the experiment. Subjects were suffering from memory impairments
with different level of severity. The subjectively reported memory impair-
ments were verified with Mini Mental State Examination Weighted Sum
Score (MMSE WS) [51]. Participants assessed with values in the range 30-27
are considered as cognitively intact, between 26 and 23 as suffering from
MCI, while lower values indicate the presence of dementia. All participants,
either subjectively, reported increasing memory problems (age-assotiated
memory impairments), or has been confirmed with such test. Table 7.1
reports the statistics of the subjects indicating age, sex, MMSE WS and the

self-assessed level of physical fatigue reached during the experiment.

7.3.2 Sensors and Protocol

The experiment consisted in acquiring data while the subjects were walking
on a flat ground in two states: fatigued and non fatigued. Each trial was
composed of three phases.

During the first phase (pre-fatigue) the subjects walked back and forth
straight, for up to 3 minutes, on approximately a 4 meter distance. The
second phase of the experiment was based on the recommendation of the
6 minute walk test [47], which is a well known and standardized test for
fatigue induction. The test consists in walking on a flat ground, at a self-
preferred speed, for 6 minutes. The 6-minutes walking phase can be ex-
tended to multiple 6 minutes long rounds. The test has been previously
successfully used among different groups of healthy and diseased partici-
pants [142, 98, 95]. Due to the specific health conditions of the participants,
the initial 6 minutes intervals have been treated as an indicator, with the
possibility of reducing the fatiguing time interval. For safety reasons, the
aforementioned test has been chosen in order to minimize the potentiality
occurrence of hazardous events. The evaluation of the fatigued state was

self-assessed by the participant and assessed by a physician by measuring



88 Chapter 7. Human State Evaluation

Subject Age Sex MMSE WS Tiredness

1 78 M 23 7
2 75 F 27 5
3 64 M 27 0
4 71 F 19 1
5 88 F 12 6
6 68 F 19 3
7 80 M 30 0
8 60 F 27 6
9 67 F 28 8
10 86 F 26 7
11 69 M 25 1
12 69 M 14 1
13 74 M 26 5
14 57 M 17 8
15 89 M 19 7
16 85 F 24 1
17 60 M 24 6
18 60 M 26 4
19 63 F 27 8
20 64 F 25 3

TABLE 7.1: Age, sex and Mini Mental State Examination
Weighted Sum score, and the self-assessed level of Tiredness
(1-10) for every participant at the end of the trial.

the heart rate and the blood pressure of the subject and by checking the state
of the patient with a sphygmomanometer. In the third phase (post-fatigue)
the subject walked again back and forth for up to 3 minutes as in phase one.
Participants were allowed to interrupt the experiment at any time.

Table 7.2 reports the duration of the three phases for every subject. The
content of the table highlights the high degree of intraclass variability be-
tween the subjects. This is mainly due to the different age-related clinical
conditions (typically cardiovascular and pulmonary diseases). Moreover, the
MCI condition is often reflected in changes in balance and walking patterns
[5] deviating from the regularity that characterizes the healthy behavior. This
increased irregularity can partially mask the purely fatigue-driven changes
making the classification task more challenging.

In particular, it is possible to group the behavior of the subjects in three
categories: (1) full pre-phase followed by fatiguing (12 subjects: 2-5,7,9,11,13-
14,17-20), (2) full pre-phase with fatigue at the end (5 subjects: 1,6,8,15,16),
(3) interrupted pre-phase due to fatigue (2 subjects: 4,10). For the learning

approach discussed later in the paper we have considered all the pre-phases
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Id Sess. pre (s) Fatiguing phase (s) Sess. post (s)

1 180 - 40
2 180 360 180
3 180 720 180
4 85 - 33
5 180 300 90
6 180 - 120
7 180 260 120
8 180 - 180
9 180 90 180
10 165 - 90
11 180 360 180
12 240 360 180
13 180 360 140
14 180 180 180
15 180 - 180
16 195 - 180
17 180 360 180
18 180 360 180
19 180 360 180
20 180 160 180

TABLE 7.2: Durations of the three phases for all the subjects.

as non fatigued situation without using the information of fatigued situation
at the end of the pre-phase.

The RGB-D sensor employed for the data capture is a Kinect v1 camera
running at 30Hz with a 640x480 resolution. We were constrained in the use
of this camera given that it is was part of the specifications of the Robot
developed in the RAMCIP project. The RGB-D camera was positioned at the
beginning of the path pointing in the direction where the subject walked,
with a minimum distance of 1 meter and an angle of approximately 20°.

The OpenNI2 library [33] was employed to process data coming from the
Kinect sensor. To extract the full body kinematics in terms of the 3D positions
of 15 body markers we used the Nite2 skeleton tracker by OpenNI which
was presented in Section 3.3. The acquisition system is capable of tracking
the human skeleton at 30Hz, which is the maximum camera acquisition
speed.

We used the torso, shoulders and lower limb markers (feet, ankle and
knee) to extract features which were used as input for the machine learning
system. The ROS (Robot Operating System) [125] was employed to acquire

and archive the data.
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Marker Name  symbol

Head mgg
Neck myg
Torso mro
Left Shoulder mgy,
Left Elbow mgy,
Left Hand mpy,

Right Shoulder mgg
Right Elbow mgg
Right Hand mpp

Left Hip mgyy,
Left Knee mgry,
Left Foot mpgy,

Right Hip mpgp
Right Knee mgpR
Right Foot mprpg

TABLE 7.3: Markers provided by the skeleton tracker and
the relative terminology used in this work.

7.3.3 Data Pre-processing and Features Extraction

We filtered the data provided by the OpenNI2 software at 3Hz by using a
low-pass Butterworth filter [21] of 3rd order to reduce noise effects. After
the filtering step, we computed a fixed reference frame on the estimated
participants center of mass (CoM) for each skeleton sample. The body
markers were expressed relatively to this new frame in order to make the
trajectories independent from the Kinect camera position w.r.t the participant
[54].

The OpenNI2 skeleton tracker provides always all body markers, even
when they are not visible, and infers the position of the occluded ones. Each
marker position is provided with a confidence level label: 0 for not found,
0.5 for inferred and 1 for tracked. During the data capturing phase, the
confidence level of the relevant markers was almost always 1, except for the
feet for which the tracker reported inferred state when the distance of the
subject was far from the camera (5m) or, in few cases, when the subject was
close to the camera (2m). The distribution of these values is shown in Figure
7.3.

In order to obtain a stable estimation of the CoM we employed a moving
window approach. For each of the selected samples, the CoM was estimated
as the mean of the centroid of the left shoulder, right shoulder, left hip and
right hip markers over the whole window. We selected only the samples for

which all these markers had a high confidence value for a time interval of
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6 - .
5l i
E 4 ]
g
C
5
B '
2k | -
| 1
1 J

05 1.0
Confidence (0.5 = Inferred, 1.0 = Tracked)

FIGURE 7.3: Confidence level of the tracker as a function of
the distance from the camera.

size weonm, centered around the sample. We picked a value of 21 samples for
wconm after evaluating the stability of the CoM position.

Let ¢ (where K subscript and C superscript indicates the Kinect and
the CoM reference frames respectively) be such centroid. The estimation of
the CoM frame, Tg , with respect to the Kinect frame has been geometrically
computed from the torso, hip and shoulder markers. By computing the
median along each component of the windowed velocity of the CoM posi-
tion over consecutive samples, we obtained a vector whose direction is an
estimation of the walking direction (WD) and whose norm is an estimation
of the walking speed. Once the T transformation matrix has been esti-
mated, we computed the markers coordinates in the CoM reference frame

by multiplying each marker for the matrix 75 = (Tg)_l:

mgx = Tg mfx (7.1)

We selected only the trajectories of six markers as significant for our ML
task. The selected markers, called interest markers hereafter, are: right foot,

left foot, right ankle, left ankle, right knee and left knee:

c ..¢c ..C .C .C c
{mFRa Mmp;, Myp, My, Mg, mKL} (7.2)
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as shown in Table 7.3. Note that the superscript C indicates that we express
the coordinates (z, y, z) in the CoM reference frame.

An illustration of the CoM estimation is illustrated in figure 7.4. The
trajectory of a marker, in the CoM frame, is represented (black). The selected
samples, corresponding to a stable computation of the CoM, are highlighted

in red, green and blue for z, y, and z coordinates respectively.
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FIGURE 7.4: Time series of right foot =, y and z coordinates

in the CoM reference frame during pre-fatigue task of subject

one. For the whole z, y and z coordinated trajectories (black)

the valid CoM estimation is highlighted in red, green and
blue.

The resulting valid data percentages for both phases of each participant
are shown in Table 7.4. The data selection process reduced the available
data for the analysis to an average of 50% per subject in both phases, and
minimum to 32% for some subjects, independently from the fact that they
completed or not the session.

The windowing approach for the CoM estimation decomposes the time
series of samples in chunks of contiguous samples. These are used as input

for the ML task discussed in the following section.

7.4 Deep Learning Method

The objective of the ML task is to classify input gait data as fatigued and
non fatigued. We used DNNSs for this task given their wide use and the
promising results detailed in Chapter 5.

To find the optimal deep neural network configuration for this task

we explored several parameters based on the classification accuracy of the
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Id Valid Data % pre Valid Data % post

1 46.6 48.1
2 49 55.8
3 53.2 42.3
4 48.8 45.1
5 51.6 37.4
6 42.7 40
7 55.6 57.5
8 38.2 32.8
9 55 53
10 44 34
11 46.5 38.3
12 58.6 60.4
13 73.8 77.1
14 55 46.4
15 70.5 57.5
16 46.6 34.2
17 51.4 46.7
18 35 48.6
19 44.5 48.4
20 62.1 58.8

TABLE 7.4: Dataset composition

network. We used the Keras' library to train our model. The training has
been performed on a machine with 2 Intel Xeon E52650 processors running
at 2.0GHz with 10 cores each, 64 GB of RAM and a Nvidia k20m GPU with
5GB of dedicated memory.

7.4.1 Data Preparation

The interest markers features discussed in Section 7.3 corresponded overall to
a 18 dimensional space.
The data structure, after the pre-processing, consisted in a list of subjects

containing each 2 different data fields, which are:

* alist of chunks of pre-fatigued data. Each chunk is a matrix of one row

for each sample and the 18 columns of the aforementioned features.

¢ A list of chunks of post-fatigued data with the same structure as pre-

fatigued.

Due to chunks having a variable number of rows, we employed a win-
dowing strategy (with window size and data stride criteria) for decomposing

each chunk into windows of fixed size. The effective input of the DNN is the

'https:/ /keras.io/
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flattened version of a matrix of size window size times 18. A window size
of 60 samples (2 seconds at 30 Hz) and a stride of 15 samples (0.5 seconds
at 30 Hz) were used. Usually bigger windows sizes may result in a higher
recognition accuracy, since a longer observation of the subject usually results
in a better prediction. On the other hand, we need to consider that, given a
fixed window size, the robot has to observe the subject and track its skeleton
reliably until a valid window of at least window size is recorded. Once this
window has been recorded, the robot can predict the status of the user. The
window size increases linearly with the latency that the robotic assistant will
have in the prediction time. This could be an issue if a quick result is needed,
since the system needs to accumulate valid skeleton data until window size
samples are recorded. We found a 60 samples window to be a good trade-off
value.

The following pre-processing has been applied to the input data:

1. data has been normalized in order to have zero mean and unitary

variance.

2. The data have been split randomly into training and testing sets using

80% of the points for training and 20% for testing.

3. Training data points have been split into training and validation using
an 80%-20% split.

4. For each input vector, an output label has been created. The labels
consist of 2-dimensional on hot encoded vectors, representing the
fatigued and non fatigued classes. All the output labels have been
stacked into a final label matrix which was also split into training and

testing accordingly to the input data.

7.4.2 Exploration of Parameters

The DNN has been trained testing several different parameters. The parame-
ters were explored using grid search on a log scale with a one-fold validation
approach. We preferred this approach over cross-validation because in the
majority of the cases a single big enough validation set represents a good

trade-off reducing the computational load compared to cross-validation.

* Window size and data stride. The two parameters are used during the
data pre-processing to decide the temporal dimension of the windows
and the temporal overlapping between consecutive windows (data

stride). We performed a grid search increasing the window size from 1
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second (30 samples) to 5 seconds (150 samples). At the same time we
spanned the data stride from 5 samples up to the size of the window,

increasing by 0.5 seconds (15 samples) at every step.

* Number of hidden layers. We tested several different hidden layer
configurations. In the first architecture, the number of layers ranged
from 1 to 9 with the number of neurons decreasing with the NN depth
by a factor of 2. The second architecture had a hourglass structure, in
which the number of neurons in every layer initially decreases with
the depth and then increases again. This resulted in a DNN thick at
the ends and thin in the middle [92]. In general, we chose to use fully
connected layers, but several other architectures could be of interest,
like RNNS.

* Dropout. We tested four different configurations, no dropout, 10%,
30% and 50%.

¢ Learning Rate. Learning rate determines the size of the steps we
take to reach a minimum (usually local) during the gradient descent
optimization. A too small learning rate leads to a slow convergence,
while a too high learning rate can interfere with the convergence of the
optimization problem causing the loss function to oscillate around a

minimum or diverge.

* Regularization. L2 regularization is another form of regularization.
It consists in adding a term dependent upon the squared magnitude
of the net weights to the loss function, thus penalizing the weights

magnitude itself.

As an additional exploration we also studied the effects of different
training epochs and batch sizes. A low number of epochs could cause the
optimization process to terminate too early without reaching the optimal loss
while a too high number could lead to over-fitting the input data, loosing
generalization. We found a good value to be 300. Thus, it was used for all
the further tests. The batch size was chosen equals to 512 samples. The
parameters exploration phases was performed using Adam as optimizer
with 81 = 0.9, B2 = 0.999, ¢ = 1 x 108 and null decay. All test have been
carried out on the aforementioned machine using an automated script which
tested the different configurations and saved for each one a configuration
file and the trained DNN, along with the input data and the evaluation of

the network on the total input set in order to gain statistics for each subject.
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Hyper-parameters ~ Value
Dropout 0.0
Learning Rate 9 x 1073
Regularization 2 x 107°

TABLE 7.5: Optimal hyper-parameters for the NN.

7.4.3 Results

The proposed approach achieved a best accuracy of 78.3% on the test set us-
ing a NN with 5 fully connected layers. The input layer dimension depends
on the window size and the number of feature, resulting in a total dimension
of 1080. The optimal hyper-parameters are summer up in Table 7.5.

This configuration is optimal for a windows size of 2 seconds (60 samples)

and stride of 15 samples.

Accuracy as a Function of Window Size and Data Stride
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FIGURE 7.5: Accuracy as a function of window size and data
stride. For every window size (30 samples: cyan, 60 samples:
gray, 90 samples: red, 120 samples: green, 150 samples: blue)
we explored different data stride starting from 5 samples to
window size, with increments of 15 samples. The optimal
values resulted with a window size of 150 samples and a
data stride of approximately between one tenth and a third
of the window size. Median, first and third quartiles are
shown, whiskers show the 1.4 interquartile range values.
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Accuracy as a Function of the Dropout
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FIGURE 7.6: Accuracy as a function of the dropout. Median,
first and third quartiles are shown, whiskers show the 1.4
interquartile range values.

Figure 7.5 shows the accuracy achieved by the NNs as a function of
the window size and data stride. No significant difference in accuracy was
found when using the two different NN architectures detailed in Section
7.4.2.

Figure 7.6 shows the accuracy achieved by the NNs as a function of the
dropout. We found that for the task a null or a small dropout achieve a
greater accuracy than a more aggressive approach.

Figure 7.7 shows the accuracy achieved by the NNs as a function of the
learning rate. We found that the accuracy initially increases with the learning
rate but it starts to decrease when the learning rate is too high.

Figure 7.8 shows the accuracy achieved by the NNs as a function of
the regularization. Again, we found that a too aggressive regularization
approach leads to a worse classification performance of the NN.

For each session of each subject, we computed the major prediction value
(fatigued /not-fatigued) and used this to create a confusion matrix. The
confusion matrices of the optimal NN for the training set and for the test set

are shown respectively in Figure 7.9 (a) and (b) together with their F1 Scores.
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LA

45

0.0001 0.0004 00019 0.0088 0.0100 0.0214 0.0462 0.0996
Learning Rate

FIGURE 7.7: Accuracy as a function of the learning rate.
Median, first and third quartiles are shown, whiskers show
the 1.4 interquartile range values.
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FIGURE 7.8: Accuracy as a function of the L2 regularization.
Median, first and third quartiles are shown, whiskers show
the 1.4 interquartile range values.
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FIGURE 7.9: Confusion matrices for the training set with F1
Score 0.95 (A) and for the test set with F1 Score 0.76 (B). The
classification outputs are non fatigued (NF) and fatigued (F).

7.5 Classic ML Method

We further assessed the performances of our approach, comparing the accu-
racy achieved by our model with two standard ML approaches: the decision
tree (DT) [96] and Support Vector Machine (SVM) [171]. For the SVM we
used a radial basis function (RBF) kernel and we performed a grid search
approach to find the optimal C and v parameters. The first parameter in-
fluences the soft margin cost function, while the second parameter is the
inverse of the standard deviation of the RBF kernel, thus defining the in-
fluence of a training example. We found as optimal solutions C' = 7.84
and v = 0.001. The comparison of the classification accuracy on the test
set between our approach, the DT and SVM achieved an accuracy of 63.4%
and 75% respectively. The comparison between the ROC curves of the three
approaches (SVM, DT and DNN) are shown in fig. 7.10.

7.6 Discussion

As detailed in section 7.3.2 some subjects did not perform the fatiguing phase
of the protocol since they felt already fatigued at the end of the pre-fatigue
trial. For these subjects, it is legitimate to assume that the onset of physical
fatigue may have been occurred at some point during the first phase of the
protocol. Figure 7.11 shows the classification results for three subjects (1, 4,
15). The dashed box represents the fatiguing portion of the trial; on the left
we show the pre-fatigue phase (blue) and on the right the post-fatigue one
(red). The blue and red vertical lines represent the end of the two phases
respectively. The three subjects shown did not perform the fatiguing protocol.
While for subject 4 the DNN shows an unsure classification behavior, for

subject 1 and 15 it starts to clearly classify a fatigued behavior at the end of
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Receiver Operating Characteristic for the Test Test
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FIGURE 7.10: ROC curves for the test set for the three ap-

proaches SVM, NN and DT. The proposed approach exhibits

a greater area under the curve, compared to the other classi-
fiers.

Examples of Classification Results
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FIGURE 7.11: Classification results, fatigued (F) and non fa-
tigued (NF), for three subjects: 1 (top), 5 (center), 15 (bottom),
outputted by the trained NN. The dashed box represents the
fatiguing portion of the trial; left represents the pre-fatigue
phase classification (blue), right represents the post-fatigue
classification (red). The blue and red vertical lines represent
respectively the end of the two phases.
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Examples of Classification Results as a Function of Distance
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FIGURE 7.12: Representation of the correctness of the recog-

nition as a function of the distance from the camera. Note

that the sampling of the points along time is affected by the
windowing and confidence level of the tracking.

the pre-fatigue phase. Despite the fact that this behavior was considered
wrong, we could argue that the net is performing its classification task
correctly, while the provided labels were wrong. These considerations not
only further validate our approach, but may also introduce new possible
ideas for future developments and investigations. We could, for example,
train a new NN using as labels the classification results of the presented
network for the uncertain subjects and validate it with the data from a new

experiment.

7.6.1 Effect of Distance from Camera

As discussed in Section 7.3, there is an relationship between the distance
from camera and the stability of the tracking system in particular relating the
pose estimation of the feet. We verified a posteriori if there is also such an
effect of the DNN classification capability, but overall there was not such an
effect. Anyway for better understanding how distance and walking pattern
can affect specific classifications we report in Figure 7.12 the distance of the
subject from the camera with the results of the classification for subjects 1, 4
and 15.
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7.6.2 Effect of Network Depth

The mean prediction time of our DNN on an Nvidia GeForce 960 is 2ms.
Given that this video-card is not a high end card, we can easily assume that
a better one could have even lower prediction times. This time is really low
compared to the latency of the system (2s) and does not effect negatively
the ability of the robotic assistant to detect promptly the fatigue level of the
patients. In principle, it could be possible to train several nets for different
window sizes in order to use increasingly longer windows, when available,
to have an increasing accuracy. Performance can be increased even more by
using ASICS as described in Chapter 4.

7.7 Conclusion

With this work we show that it is possible to infer human state using non
invasive sensors and ML techniques. In particular we analysed the Detection
and Classification process, which is depicted was depicted in Figure 1.1. We
do this by inferring fatigue in MCI patients analysing their gait pattern as
an example case of human state evaluation. Given that the patients have
minor disabilities, the data is very noisy and unbalanced, making the task
even harder.

To analyse the gait of the MCI patients we track their lower limb body
pose using an ML technique based on RFs as explained in Section 5.3, show-
ing that this system (Detection) is reliable enough to give us good results in
the Classification step. This answers RQS5, leaving open the possibility to
use more advanced sensors as the Kinect v2.

We tested DL techniques and classical ML approaches showing that DL
gives the best results in Classification; we did this to answers RQ2. It is
important to notice that ML are giving good results because the input data is
very noisy and this techniques are able to filter it out finding strong features
with high order non linear functions. Another advantage of ML techniques
is that it is very hard to find hand crafted features which are good fatigue

estimators, while in this case there is no need of such.
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Chapter 8

Environment Recognition

To answer RQ1, RQ2 and RQ3 we tried to develop a system capable of
augmenting the environment to allow navigation for autonomous systems.
VALUE (Large Scale Voting-based Automatic Labelling for Urban Environ-
ments) was developed with the general idea of localising in 3D space any
type of content (traffic signs, traffic lights, shops etc...) . In the specific
case we tried to identify automatically in 3D traffic lights in maps of urban
environments. Given that this system relies on the ability of triangulat-
ing precisely a 3D location from multiple 2D images with detections, we

investigated the quality of several triangulation techniques to answer RQ6.

8.1 VALUE System

“Some Google employees have their self-driving vehicles take
them to work. These car robots don’t look like something from
"The Jetsons"; the driverless features on these cars are a bunch of

"7

sensors, wires, and software. This technology "works".

Tyler Cowen, [32]

The next generation of self-driving cars will likely operate more robustly
by using maps of their environment [79]. These maps allow the robots to
have strong priors on their environments to improve perception [8], and
have metric and semantic components for localisation and planning (top-left
and top-right in Figure 8.1) [111]. For self-driving cars in urban environments,
these semantic maps typically contain static objects such as road signs, traffic
lights, road markings, etc. It is common to manually label these [146], but
on the city-scale this becomes prohibitively expensive, and furthermore it
needs to be laboriously relabelled as the urban landscape inevitably changes.
A system that can automatically generate such labels for entire cities without
the need for hand-labeling would be very valuable to overcome this issue.

In this work we present such a system.
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W u

FIGURE 8.1: We use VALUE to automatically find the 3D

locations of all traffic lights in Manhattan, such that they

can be used for autonomous driving. Zero images were
manually labeled to make this semantic map.

While the idea of using machine learning for automatic content detection
has been explored before, the use of large-scale accurate maps together
with machine learning opens new possibilities. Our work is inspired by
the possibility to merge large amounts of noisily labelled but accurately
localised data from a particular location. With this, we compute accurate,
denoised estimations of the semantic information of a superior quality.

Our contribution is a novel and simple system that

1. takes images, their accurate 3D position in a large-scale environment

and returns the 3D positions of static object in the environment

2. improves both object detection rate and 3D object position accuracy
as areas are revisited, making it scale and work better with very large

data sets
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3. deliberately avoids the need for visually matching objects in-between
the images, a problem that prevents most similar systems from work-
ing on objects that (a) inherently look similar to each other (like traffic
lights) and (b) can appear very differently based on time of day, light-

ing, weather conditions, season, etc.

We evaluate our system on two new large datasets taken from San Fran-
cisco and New York City, in total comprising almost 0.4M images over 40
km? from different times and weather conditions over a period of several
weeks to robustly recover position of the traffic lights in the environment.
We demonstrate that significantly superior results can be obtained using
even only mediocre and noisy 2D detection algorithms, if enough data are
provided.

A number of works explore robust detection of the static 3D objects in
the environment.

The basic component in a vision-based systems is an accurate 2D detec-
tion of the object in a single image or video. Recently, this approach has been
dominated by DL techniques [81, 34, 118]. In this work we decided to adopt
a full CNN as described by Huang et al. [72] to detect traffic lights in a large
collection of pictures.

Given two detections of the same object coming from a stereo camera, it
is possible to determine the 3D position of the object by triangulation [65,
91]. These approaches are viable, for example, for the online detection of
relative positions of objects around the vehicle

Similarly, if the position of multiple cameras observing the same object
are known, a multi-view triangulation approach can be used [64]. This
has an advantage over live detection since a significantly higher number
of potential views from different cameras can be collected over extended
periods of time, resulting into potentially significantly higher performance.
We take this approach in our work when we use large collection of 2D
observations to produce accurate, denoised 3D output.

A common problem in applying such approaches relies in the need to
accurately localise a set of sensors in the area. This problem can be addressed
by using a highly-precise GPS system. Unfortunately, accuracy of GPS in
dense urban environments is limited due to low sky visibility. An alternative
approach in these environments consists in using a map-based localisation.
Here state-of-the-art structure-from-motion systems have demonstrated

ability to construct large-scale map of the environments [82]. We follow this
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approach and construct a large-scale map of the city to localise accurately
the positions of all the sensors.

The most closely related work to ours is [48] where they use, similarly to
us, high-accuracy localisation of camera-equipped vehicles to map positions
of traffic lights in the environment. Our work is novel for the use of a
robust triangulation method operating jointly on the set of all the data from
a particular location, resulting in improved performance as the amount of

data increases.

8.2 Triangulation of Contents

There are several options for multiple view triangulations; we opted for the
recent 3DTMA [41] approach due to the smaller re-projection error and speed.
Here we present a test case in which we compared the different approaches.
The variants tested are: Direct Linear Transformation (DLT), (un) constrained
Non-Linear minimization (NLU, NLC), weighted least squares (WLSQ)
minimization ! and 3DTMA. The DLT is the classic formulation used for
solving a linear system involving homogeneous coordinates. The non-linear
formulation uses Matlab fminunc/fminbnd with the re-projection error as
the objective function. The constrained version imposes that the solutions
are placed on the semispace centered in the view origin and containing the
frustum. The weighted least square minimization has a formulation similar
to DLT but uses the distance of each view from the estimated point to weight
the importance of the view in the solution. WLSQ is an iterative algorithm
that provides good results also with 1 iteration.

TABLE 8.1: Result of the evaluation among the algorithms.

The first two columns report the average and maximum tri-

angulated error respectively, the third is the re-projection
error in pixels and the fourth the running time of the algo-

rithm.
Avg Err. (m) | Max Err. (m) | R-Err. (px) | Duration (s)
DLT 4.61 147 2.21e+03 0.000894
NLC 171 31.1 64.1 0.329
NLU 40.4 51.8 5.34e+04 0.0234
WLSQ 2.11e-10 4.91e-09 8.48e-10 0.000679
3DTMA 2.53e-06 1.16e-05 3.58e-06 0.000489

The comparison is performed using a realistic configuration of 28 views
taken from the 25k dataset spanning a space of 18 by 23 and 15 meters. We

choose a set of randomly generated points around a real content location:

lused in OpenMVG


http://imagine.enpc.fr/~moulonp/openMVG/
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100 points have been sampled with variance 50m and then filtered removing
the ones outside the image plate of the views. The views have different
an average distance 68 + 79 meters from the chosen point. The use of a
known point set allows to evaluate triangulation without the uncertainty of
detection. Table 8.1 shows the results across the triangulation algorithms
and Figure 8.2 shows the configuration of the views and the target point.
We decided to use 3BDTMA given the possibility of using also speed as an
additional parameter for future work.

The comparison is performed using a realistic configuration of 28 views
taken from the 25k dataset spanning a space of 18 by 23 and 15 meters. We
picked a set of images containing several traffic lights and choose a set of
randomly generated points around a real content location: 100 points have
been sampled with variance 50m and then filtered removing the ones outside
the image plate of the views. Figure 8.3 whows an example of triangulated
traffic lights. Table 8.1 shows the results across the triangulation algorithms
and Figure 8.2 shows the configuration of the views and the target traffic
light used in Figure 8.3. We decided to use 3DTMA given the possibility of

using also speed as an additional parameter for future work.
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FIGURE 8.2: The 3D representation of a cluster of views with

4 contents shown as red dots. Each content is connected with

the voters using a green line. The green view and the green
content correspond to the one shown in the figure 8.3.

8.3 Method

Our system takes a large set of 2D images I;, with associated camera-
intrinsics parameters ¢; and 6 degrees-of-freedom poses P; € SE(3), and
produces a set of 3D positions of objects L; € R?. Figure 8.4 shows a general
overview of the system. In our work the images are captured from our
mapping fleet traversing various cities, and the poses are calculated using a
large-scale structure-from-motion (SFM) pipeline [84], but in general there
is no restriction on the source of the poses as long as they are accurate and

globally consistent.
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FIGURE 8.3: Image of the highlighted view and content of
figure 8.2 showing the content projected over the detected
position. The re-projection difference is 0.5 pixels. A detected
content is a content which has been detected by the ML
system, while a reconstructed content is a content which
passed the voting scheme and has an associated 3D position.

The process then consists of two steps: (1) applying a noisy 2D detector to
each image I, resulting in a set of object detections Z; C R?, followed by (2)
estimating their final 3D positions L by a simple voting-based triangulation

algorithm.

8.3.1 2D Object Detection

We generate 2D object detections in the images using an off-the-shelf CNN
trained to predict bounding boxes for traffic lights [72]. These detections are
usually noisy and suffer from many false positives and false negatives. In
Section 8.4 we show that our system compensates for these noisy detections
if shown a large amount of data. One alternative to using a detector is to
use hand-annotated labels from, for example, Amazon Mechanical Turk [20],

which however have also been shown to suffer from label noise [53].

8.3.2 Robust Voting-based Triangulation

The output of the previous step is a large set of 2D detections. Importantly,
the 2D detection step cannot tell you which detections can be associated with
which physical 3D traffic light D;, and any feature descriptors that it might

produce to associate them would be useless under the appearance changes
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FIGURE 8.4: The overview of the system. The final output
consists of a list of 3D detections. These can be passed back
into the input of the system to obtain better results.

Annotations

that we see in outdoor environments. This is true for any set of objects
that look similar (traffic lights are a good example). The only difference
between them is their position in 3D space. Without this association, classical
algorithms for multi-view triangulation can therefore not be directly used.
Instead, we use a robust voting-based triangulation algorithm to jointly
determine these 2D associations and the position of the traffic lights in 3D

space.

FIGURE 8.5: An example of a cluster in the map consisting

of several traversals in differing conditions. Top: Close-up of

the dataset clustering. Bottom row: example frames that are

from different traversals belonging to the highlighted cluster
and associated traffic lights.

For each pair of detections (z,, 25) (Where a and b are indices into 2D

detections) from two different images I;, I; we create a 3D hypothesis A4,
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Algorithm 1 Robust Voting-Based Triangulation

Input: I set of images
Q camera intrinsics
P SE(3) camera poses

dmax  maximum reprojection error
a minimum ratio of inliers
Output: L 3D positions of objects
Detect objects in 2D images:
forl; €1
Z; +— detect(I;)
7 — U; Z;
L+« 0
for (2,,2) € Z>
Compute 3D position of the object:

SRS

6. lap < triangulate({zq, 2p})
Compute inliers for computed 3D position:
7. Sap — {zk|Vzk eZ: W(lij,pk, qk) — 2L < dmax}
Find the hypothesis with most votes:
8. a,b< argmax,; |Sq|
9. if [Su| > a - mean(]S|)
10. L < L U triangulate(Sgp)
11. Z— 7 — Sab
12. goto 5
13. return L

under the assumption that these two detections correspond to the same
physical 3D traffic light generating in total O(N?) hypotheses where N is the
total number of detected traffic lights. The 3D position [* of each hypothesis
can be determined by K-view triangulation (in this case K = 2), where we

minimise the sum of the reprojection errors:
= arg min Z (0, Pk, qr) — zk) , (8.1)

where K is {a,b} in this case, 7 is the projection of the 3D point / into the
camera at position p; with intrinsics g. We consider a hypothesis viable if it

satisfies the following;:
1. triangulation constraint: the point is triangulated in front of each camera,
2. rays intersect in 3D space: the reprojection error is smaller than dmay,

3. the projection is stable: the angle between the optical axes is larger than

emin/

4. distance to camera: the distance from the traffic light to either camera is

less than r,qz-
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Optionally, additional constraints reflecting prior information about the
location of a traffic lights can be used to further restrict the hypothesis space.

For each hypothesis h,;, we compute the set of consistent inliers S,;. This
set consists of all the 2D detections that observe a traffic light at the same
location, which is computed by projecting the 3D position [* into each image
and verifying whether the projected position is less than dmax to any 2D
detection. Next, we remove the hypothesis with the maximum number of
votes and also remove the detections that voted for it (inlier detections).
This process is repeated until no hypothesis with at least o - M inliers is
found, where M is the average number of inliers per hypothesis and « is
a tunable parameter over the confidence. This creates a set of confirmed
hypotheses. An important theoretical property of this schema is that in the
case of noisy but unbiased 2D detector and a uniform distribution of the
data, it converges to the correct solution as the amount of data increases.
This is due to noisy detections forming hypotheses with small numbers of
votes, and correct detections gathering consistent votes over time. As the
amount of data increases, these two metrics begin to separate, and « is the
threshold on their ratio.

Finally, for every hypothesis we refine its 3D position by optimising the
reprojection error from (8.1) over all the hypothesis detections. This entire

algorithm is presented in Algorithm 1.

8.3.3 Large-Scale System

The above method works well for small-scale scenario, but does not scale
well to large, city-scale settings we are interested in due to its potential O(N*)
complexity where N is the number of detected traffic lights >. Instead, we
resort to a distribution schema based on splitting the data set to clusters,
running Algorithm1 for each cluster independently, and then merging the
results.

We employ a simple clustering schema where we keep identifying the
closest images to a detected traffic light until a cluster of size Npyax is created,
at which point we remove it from the data set and continue the process until
it terminates. An illustration of these clusters is shown in Figure 8.5.

After each cluster is triangulated using Algorithm 1 it might be the case
that the same traffic light is triangulated in two different clusters. To resolve
this issue we merge all pairs of traffic lights closer than 1m, producing the
final set of labels L.

2A slightly better complexity of O(N?) can be achieved by reusing the computation of
the inliers in each iteration.
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San Francisco  New York City

# images 12048 360207
# detections 17198 547689
# clusters 172 3941
# traffic lights 183 1732
# detectable traffic lights 167 1906
mean # views / cluster 70.05 91.4
mean # detections / frame 1.65 2.84
# images with 0 detection 1587 44483
# images with 1 detections 6231 145608
# images with 2 detections 2389 125924
# images with 3 detections 1346 32487
# images with 4 detections 369 7754
# images with 5 detections 98 2700
# images with 6 detections 17 802
# images with 7 detections 9 283

# images with 8 detections 0 80

# images with 9 detections 1 51

# images with 10+ detections 1 35

TABLE 8.2: Per-dataset statistics of 2D detection and cluster-
ing.

San Francisco  New York City

true positives 156 1560
false positives 4 84
false negatives 11 172
duplicates 14 56
mean reprojection error 2.94 3.24

TABLE 8.3: The results of the method on two datasets.

8.4 Experiments

We evaluate the presented system on two large-scale data sets from San
Francisco and New York City that we collected using a dedicated fleet
of mapping vehicles. We demonstrate that the presented system scales
to the size of cities, and that as the amount of data increases it generates
increasingly accurate results both in terms of successfully recovered traffic
lights and their 3D positions, despite using a very inaccurate off-the-shelf
2D detector.

8.4.1 Data Sets

The San Francisco and New York City data sets have been created by captur-

ing images using a fleet of vehicles. The vehicles traversed most of the roads
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multiple times, in both directions, at varying times of day and weather con-
ditions. During this time they captured images at regular intervals. Example
images are shown in Figs. 8.1 and 8.5. Each of these images has associated
ground-truth 2D labels of traffic lights with label noise estimated at 5%.

We resize each image to 640 x 480 pixels and use a large-scale, distributed,
structure-from-motion pipeline [82, 175] running on multiple computers to
calculate the 3D positions P of the images.

Each data set covers an area with a certain number of physical traffic
lights. Not all of them are recoverable, i.e. their 3D positions cannot be
accurately determined. We consider a traffic light recoverable if it has been
observed from at least two different viewpoints under angle difference at
least 0. In reality, as the amount of data increases, almost all the traffic
lights eventually become recoverable. The sizes of these data sets together
with their RMSE results are shown in Tab. 8.2. We also present the amount
of traffic lights present in our dataset along with the number of detectable
traffic lights.

8.4.2 2D Detection

We use a simple, convolutional neural network architecture to detect traffic
lights in 2D images. Firstly, we use a binary segmentation network [72] to
compute the probability that each pixel is part of a traffic light. We then use
a simple thresholding schema to compute connected components of pixels
representing traffic lights, and fit bounding boxes.

We train this network using the Bosch Data Set [11]. We split the data set
into a training set of size 5,093 and a testing set of size 8,334, covering in total
24,242 traffic lights detections. For training we use two Nvidia P5000 cards
until convergence. The network has been used to classify all the images in
our datasets.

In this work we purposely did not fine-tune the detector for either the
San Francisco or New York City data sets. There are significant differences
between the training and testing data: the Bosch data are from a suburban
area, while our data are urban; the cameras are different; and the training
data contain mostly small traffic lights while our evaluation data contain
traffic lights of all sizes. While the learned classifier achieves 90% recall on
the Bosch test data, it becomes a relatively noisy detector on our datasets

with a recall of 85% and an average Intersection-Over-Union (IOU) of 0.45.
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FIGURE 8.6: Performance of the system as a function of

number of passes through a location. As the amount of

data increases both recall and 3D localisation accuracy (as
measured by negative reprojection error) increase.

8.4.3 Results

We run the described clustering method from Section 8.3 on all the data.
Figure 8.5 shows the results of clustering in the San Francisco data set. Any
clusters can contains images from multiple passes of the mapping vehicles
through the area, as shown in Table 8.4.

Table 8.3 shows the statistics for the triangulation step. The presented
method is able to recover at least 90% of all the recoverable traffic lights
in both data sets, while suffering from only about 10% of false positive
detections. The average reprojection error of the triangulated traffic lights
for two datasets is 2.94 and 3.24 pixels for San Francisco and New York
respectively. Note that reprojection error incorporates both the error in the
triangulated 3D object and the underlying map accuracy. As discussed in
Section 8.3.3, during the triangulation some of the traffic lights might be
detected in two or more different clusters and must be unified in the merge
step. These form only a small fraction of all the traffic lights.

Running the 2D detector over all 372k images took 30 hours. Clustering
was performed in 1.1 minutes for San Francisco and 19 minutes for New
York City, while the final triangulation took 1.1 and 3.1 minutes respectively.

Of primary importance is the performance of the system as the number

of data increases. We characterise this by an increasing number of passes
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# clusters
#passes  San Francisco New York City
1 47 476
2 43 304
3 9 229
4 6 121
5 1 49
6 4 27
7 6 0
8 6 0
9 1 0

TABLE 8.4: Statistics of the number of passes per cluster. As

the mapping fleet traverses the environment each place is

visited several times. As discussed in the text more passes

through the environment result into higher performance of
the system.

(a)

FIGURE 8.7: Failure modes of the presented method. When

not enough data from a particular location are provided both

(a) false negative detections due to the undetected objects

or (b) temporarily consistent wrong detections can manifest.

The largest challenge is (c) consistent and repeated detections

of a objects that look similar to a traffic light over a period of
time.

through an area. For this experiment we took a random subset of 25 clusters
with at least 5 passes and computed the statistics of the number of recovered
traffic lights and their reprojection error. The results are shown in Figure
8.6(a-b). Note that the recall starts off poorly because not all traffic lights
in a cluster are detectable in a single pass, if for instance they are angled
orthogonally to the direction of travel and increases with the number of
passes through an area. With increasing passes we are more likely to detect
the traffic light and have enough views to accurately localise it in 3D. We can
see that the likelihood of detecting a traffic light does increase with number
of passes. Note that the number of false positives for this random subset of

25 clusters is zero.
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the distance threshold when voting for a content.

Figures 8.6(c-d) show that the 3D localisation accuracy also increases
with number of passes. We measure this by taking the 3D object position
estimated using up to NV passes and project it into the images from a leave-
one-out pass, measuring the reprojection error between where that 3D object
is projected into the image and where it truly appears in the image. The
statistics in Figure 8.6 show that the system converges in both recoverability
of the traffic lights and their 3D position with more data. Figure 8.8 shows
an intuitive result, which consists in the fact that there is a trade off between
number of detected contents and reprojection error. This can be tuned using
a value called reprojection factor «. Given a content C; in 3D, its bounding
box with center B; in an image, a corner of the bounding box K; and its 2D

reprojection R; in an image, the system cast a positive vote if
d’L'St(Ri, Bl) < ax* dZ'St(BZ', Kz) (82)

In other words this means that the reprojected points falls inside the circle
which has center B; and radius (B;, K;). Lowering a lowers the size of the
radius requiring a more precise reprojection in order to cast a positive vote.

Finally, we show some failure cases. The method converges under the

assumption that the underlying detector is unbiased, but might produce
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incorrect results when this assumption is broken or when only a small
amount of data are provided. Figure 8.7 shows some of these cases. While
the method is prone to generate a number of false negative detections when
not enough data are provided, the largest problem are the false positive
detections created by consistent, incorrect detections. While some of them
tend to appear only in a single pass (such as series of reflections on a deck of
the car) and thus can be resolved with more data, the incorrect detections of
traffic-light-like objects which are repeatedly and consistently observed over

periods of time posses a serious challenge to be addressed in the future.

8.5 Conclusion

We have demonstrated a simple and robust system for finding the 3D posi-
tions of static objects in complex city environments. We leverage a reliable
image pose source and a large quantity of image data to overcome the com-
mon challenges of noisy 2D labels. The resulting accurate 3D object positions
are borne out of a voting-based triangulation system that solves the data
association problem that poses a particularly difficult challenge when the
desired objects are similar in physical construction and yet appear vastly
different in images as a result of strong variations in lighting and weather.

The system is specifically designed in such a way to be parallelisable,
and therefore efficiently process very large image sets. We have evaluated
our system on city-scale data sets comprising almost 0.4M images, and
have shown that despite the very noisy input detections, the system output
increases in 3D positional accuracy and recall with more data. This has been
used to answers RQ1.

To answer RQ2 we had a look at the state of the art solutions and decided
to use CNNs given that all the most promising results in this research area
have been developed using this technique. We showed in Section 8.4.3 that
we are able to localize almost all traffic lights even if the used detections are
not optimal given that we trained our detection system on a dataset which is
very different from the evaluation one. This proves also that a robust voting
scheme can cope with a bad detections which is a fundamental assumption
for an AS.

To estimate the precision of the system we tested several different tri-
angulation techniques in Section 8.2. We used a fixed test case to evaluate
precision and convergence speed of several algorithms showing that we can
evaluated with enough precision the position of an object in space given

multiple views. Obviously the required precision depends on the task which
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the AS has to perform; for example, in the case of autonomous cars, knowing
the position of a traffic light within a few centimeters might be enough. All
this has been used to answers RQ3 and RQ6.
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Conclusions

In this thesis we analysed how Machine Learning techniques can be used
in combination with Autonomous Systems to interact with humans and
the environment. In particular, we analysed how Autonomous systems can
detect and classify activities, environments and humans states. A general
overview of the different techniques and application domains in depicted
in Figure 1.1. In the following we will resume the obtained results and
contributions which have been obtained in this work as reported in Table
1.1.

The first contribution of this work C1 consists in the development of
an autonomous system capable of recognizing activities. In particular we
developed the PELARS system to identify learning activities performed
during projectual sessions by students on a sensorised table. Such system
is composed of a set of sensors that acquire information about the students,
an annotation system based on mobile phones and tables to record images,
videos and text, and a collection and visualization system that stores and
processes the data in order to provide learning statistics to students, teachers
and researchers. The sensors were used to acquire the position of faces,
hands and objects on the PELARS table in order to measure interaction
between students. All the data is processed locally on a desktop PC, which is
used also as interface for the students to the Arduino programming toolkit.
The acquisition code is written in C++ using concurrent threads for the
acquisition and Cuda code for the processing on GPU of input signals. All
data is processed and sent to a remote server that exposes a set of Websocket
endpoints and some REST APIs for the data storage, manipulation and
visualization. The server has been written in Java and uses a MySql database
to store data.

The system has been evaluated with two different approaches: in the
first experiment we evaluated the possibility of inferring the working phase
from the acquired data using classical ML techniques, while in the second

experiment we evaluated the possibility of inferring projectual outcomes
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using DL techniques. Working phases and projectual outcomes have been
annotated by teachers and researchers during testing sessions. 18 engineer-
ing students at an European university were involved in the experiment as
detailed in Section 6.5.1.

The results showed in both cases the possibility of inferring working
phases and projectual outcomes from the data acquired at the sensorised
table. This allows teachers to possibly focus more on student in difficulty,
propose automatic help from the system for students in need and it provides
an easy annotation and visualization tool for both students and teachers for
post analysis of the work.

The second contribution of this work C2 consists in the development
of an autonomous system capable of evaluating the state of a person. We
developed this system in the context of the RAMCIP project, which aims at
creating an autonomous robot to help elderly people with MCI. The goal
of this work is to estimate fatigue in patients by looking at gait patterns
using non invasive techniques. The developed system is composed of a
Kinect camera, which acquired RGB-D frames at 30Hz and a Desktop pc
for the acquisition and processing of the data. In particular we acquired
the human skeleton using a skeleton tracker based on Random Forests. The
experiment dataset has been acquired by firstly letting patients walk in front
of the camera in a non fatigued state, then applying a fatiguing protocol and
finally having the patients walk again in front of the camera in a fatigued
state; in total 20 people have been recorded.

Given the extreme variability of the input data and the lack of strong
fatigue indicators from gait analysis, we opted for a DL method using
as input the position of the lower limb joints. Data had to be pre-filtered
partially to ease the training of the system given that often it was not possible
to track for enough time with high confidence the skeleton of the patient.

Results show that we were able to infer correctly the fatigue state of
patients with an accuracy of 78.3% observing the patients for 2s. This makes
it possible for autonomous robots to adapt their behavior to the state of
the person interacting with them. Also the latency of the system is crucial
for such applications given that people move around and it might be hard
to track them for a long duration with high confidence. Given the high
variability of subjects it might be strongly possible that additional data could
produce a better detection network increasing the classification accuracy.
Also a better sensor could contribute to increase the overall performance of

the system, like for example the Kinect v2.
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The last two contributions of this thesis C3, C4 consist in the development
an autonomous system capable of detecting and triangulating contents in
large scale 3D maps. A content can be anything that can be detected in 2D
images by a detector. In our case we tested the system by looking for traffic
lights since they are widely used in the autonomous driving sector. The
system is detecting contents, but most importantly triangulating them by
associating correctly the same content in multiple images using a voting
scheme. A 3D map consists in a set of images along with relative poses.

To test the system we developed a 3D map of San Francisco and New
York reaching up to a size of 400k frames. We used a fully convolutional
neural network to detect the traffic lights in the images and then, after
associating them correctly in the different views, triangulated them. We
evaluated the system and were able to correctly detect and triangulate over
90% of the available traffic lights. Most importantly, we showed that the
system tends to get better performances over time when new data arrives
(each street can have multiple passes during different times of the day and
different weather conditions) and this is a fundamental assumption given
that the system can have many false positives in the detection phase.

To triangulate the detected traffic lights we tested several approaches, in
order to find the most precise and fastest algorithm. This was done given that
we could not find a large comparison of state of the art triangulation systems,
leading to the constribution C4. We decided to use 3DTMA given the results
presented in Section 8.2, but several other strong candidate algorithms are
available.

We did not spend time on the optimization of our detection system that
was trained on a dataset which is very different than the one used to build
the maps. This has been done since we wanted to test the robustness of
the system to noise. We proved the robustness of the system and will test
also how much performance is gained from improving the detector in a
future work. It is also important to notice that in principle we could use
directly the final output of the system to do hard negative mining to improve
automatically the quality of the detector.

All these results are fundamental in the field of autonomous driving
given that the environment changes rapidly and that weather conditions
might influence strongly a detection system. Our system shows a way of
developing an automatic system for generic detection which can be boot
strapped with a small initial dataset and then improves over time when

more data is available.



122 Chapter 9. Conclusions

All these contributions represent an attempt to propose possible new
strategies to use ML techniques to enhance the capabilities of autonomous
systems. These new techniques are almost always performing better than
classical approaches and can push the state of the art in robotic applications.
Given that autonomous systems are getting pervasive in daily life, it is
becoming of fundamental importance to enhance the interaction quality
between them and humans, making it as natural as possible. This will

probably become the next big challenge.
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Conference

¢ Giacomo Dabisias, Emanuele Ruffaldi, Hugo Grimmet, and Ondruska
Peter. “VALUE: Large Scale Voting-based Automatic Labelling for
Urban Environments”. In: (2018) Accepted at ICRA2018

¢ Emanuele Ruffaldi, Giacomo Dabisias, Lorenzo Landolfi, and Daniel
Spikol. “Data collection and processing for a multimodal learning
analytic system”. In: SAI Computing Conference (SAI), 2016. IEEE. 2016,
pp- 858-863

* Emanuele Ruffaldi, Filippo Brizzi, Giacomo Dabisias, and Giorgio
Buttazzo. “SOMA: an OpenMP toolchain for multicore partitioning”.
In: Proceedings of the 31st Annual ACM Symposium on Applied Computing.
ACM. 2016, pp. 1231-1237

* Giacomo Dabisias, Daniel Spikol, and Emanuele Ruffaldi. “A Learning

Analytics Framework for Practice-Based Learning”. In: (2015)

¢ Paolo Tripicchio, Massimo Satler, Giacomo Dabisias, Emanuele Ruf-
faldi, and Carlo Alberto Avizzano. “Towards smart farming and sus-
tainable agriculture with drones”. In: Intelligent Environments (IE), 2015
International Conference on. IEEE. 2015, pp. 140-143
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submitted

¢ Daniel Spikol, Emanuele Ruffaldi, Giacomo Dabisias, and Mutlu Cukurova.
“Supervised Machine Learning in Multimodal Learning Analytics for
Estimating Success inProject-based Learning”. In: JCAL, 2017. IEEE.
2018, xxx-yyy Submitted



127

Bibliography

[1]

2]

[3]

4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Martin Abadi et al. “Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems”. In: arXiv preprint arXiv:1603.04467
(2016).

W Abrah&atildeo et al. “A comparison of Haar-like, LBP and HOG
approaches to concrete and asphalt runway detection in high resolu-
tion imagery”. In: ().

Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan.
OpenFace: A general-purpose face recognition library with mobile applica-
tions. Tech. rep. CMU-CS-16-118, CMU School of Computer Science,
2016.

Cynthia J. Atman et al. “Engineering Design Processes: A Compari-
son of Students and Expert Practitioners”. In: |. Eng. Educ. 96.4 (2007),
pp- 359-379. 1sSN: 10694730. DOI: 10.1002/73.2168-9830.2007.
tb00945.x. URL: http://doi.wiley.com/10.1002/73.2168-
9830.2007.tb00945. x (visited on 10/15/2016).

Lindsay Bahureksa et al. “The impact of mild cognitive impairment
on gait and balance: a systematic review and meta-analysis of studies
using instrumented assessment”. In: Gerontology 63.1 (2017), pp. 67—
83.

Dana H Ballard. “Generalizing the Hough transform to detect arbi-
trary shapes”. In: Pattern recognition 13.2 (1981), pp. 111-122.

Vassileios Balntas, Lilian Tang, and Krystian Mikolajczyk. “Bold-
binary online learned descriptor for efficient image matching”. In:
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference
on. IEEE. 2015, pp. 2367-2375.

Dan Barnes, Will Maddern, and Ingmar Posner. “Exploiting 3D se-
mantic scene priors for online traffic light interpretation”. In: Intelli-
gent Vehicles Symposium (IV), 2015 IEEE. IEEE. 2015, pp. 573-578.

Luis C Basaca-Preciado et al. “Optical 3D laser measurement system
for navigation of autonomous mobile robot”. In: Optics and Lasers in
Engineering 54 (2014), pp. 159-169.

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up
robust features”. In: European conference on computer vision. Springer.
2006, pp. 404-417.

Karsten Behrendt and Libor Novak. “A Deep Learning Approach
to Traffic Lights: Detection, Tracking, and Classification”. In: ICRA.
IEEE. 2017, pp. 1370-1377.

Stephanie Bell. “Project-Based Learning for the 21st Century: Skills for
the Future”. In: The Clearing House: A Journal of Educational Strategies,
Issues and Ideas (2010).


https://doi.org/10.1002/j.2168-9830.2007.tb00945.x
https://doi.org/10.1002/j.2168-9830.2007.tb00945.x
http://doi.wiley.com/10.1002/j.2168-9830.2007.tb00945.x
http://doi.wiley.com/10.1002/j.2168-9830.2007.tb00945.x

128 BIBLIOGRAPHY

[13] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pas-
canu. “Advances in optimizing recurrent networks”. In: Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Confer-
ence on. IEEE. 2013, pp. 8624-8628.

[14] James Bergstra et al. “Theano: A CPU and GPU math compiler in
Python”. In: 9th Python in Science Conf. 2010, pp. 1-7.

[15] Reinhard Blickhan. “The spring-mass model for running and hop-
ping”. In: Journal of biomechanics 22.11-12 (1989), pp. 1217-1227.

[16] Paulo Blikstein. “Multimodal learning analytics”. In: Proceedings of
the Third International Conference on Learning Analytics and Knowledge
- LAK "13. Ed. by Dan Suthers and Katrien Verbert. New York, New
York, USA: ACM Press, 2013, p. 102. DOI: 10 . 1145 /2460296 .
2460316. URL: http://dl.acm.org/citation.cfm?doid=
2460296.2460316 (visited on 10/13/2016).

[17] Paulo Blikstein. “Using learning analytics to assess students” be-
havior in open-ended programming tasks”. In: Proceedings of the 1st
International Conference on Learning Analytics and Knowledge - LAK "11.
New York, New York, USA: ACM Press, 2011, p. 110. DOI: 10.1145/
2090116.2090132. URL: http://dl.acm.org/citation.
cfm?doid=2090116.2090132 (visited on 10/14/2016).

[18] Paulo Blikstein and Marcelo Worsley. “Multimodal Learning Analyt-
ics and Education Data Mining: using computational technologies
to measure complex learning tasks”. In: Journal of Learning Analyt-
ics (2016). URL: http://epress.lib.uts.edu.au/journals/
index.php/JLA/article/view/4383/5596 (visited on10/12/2016).

[19] Phyllis C. Blumenfeld et al. “Motivating Project-Based Learning: Sus-
taining the Doing, Supporting the Learning”. In: Educ Psychol 26.3-4
(1991), pp. 369-398. 1SsSN: 0046-1520. DOI: 10 . 1080 /00461520 .
1991.9653139. URL: http://www.tandfonline.com/doi/
abs/10.1080/00461520.1991.9653139 (visited on 10/13/2016).

[20] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. “Ama-
zon’s Mechanical Turk: A new source of inexpensive, yet high-quality,
data?” In: Perspectives on psychological science 6.1 (2011), pp. 3-5.

[21] Stephen Butterworth. “On the theory of filter amplifiers”. In: Wireless
Engineer 7.6 (1930), pp. 536-541.

[22] Michael Calonder et al. “Brief: Binary robust independent elementary
features”. In: European conference on computer vision. Springer. 2010,
pp- 778-792.

[23] Zhe Cao et al. “Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields”. In: CVPR. 2017.

[24] Hui Chen and Bir Bhanu. “3D free-form object recognition in range
images using local surface patches”. In: Pattern Recognition Letters
28.10 (2007), pp- 1252-1262.


https://doi.org/10.1145/2460296.2460316
https://doi.org/10.1145/2460296.2460316
http://dl.acm.org/citation.cfm?doid=2460296.2460316
http://dl.acm.org/citation.cfm?doid=2460296.2460316
https://doi.org/10.1145/2090116.2090132
https://doi.org/10.1145/2090116.2090132
http://dl.acm.org/citation.cfm?doid=2090116.2090132
http://dl.acm.org/citation.cfm?doid=2090116.2090132
http://epress.lib.uts.edu.au/journals/index.php/JLA/article/view/4383/5596
http://epress.lib.uts.edu.au/journals/index.php/JLA/article/view/4383/5596
https://doi.org/10.1080/00461520.1991.9653139
https://doi.org/10.1080/00461520.1991.9653139
http://www.tandfonline.com/doi/abs/10.1080/00461520.1991.9653139
http://www.tandfonline.com/doi/abs/10.1080/00461520.1991.9653139

BIBLIOGRAPHY 129

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Lei Chen et al. “Towards Automated Assessment of Public Speak-
ing Skills Using Multimodal Cues”. In: Proceedings of the 16th Inter-
national Conference on Multimodal Interaction - ICMI "14. New York,
New York, USA: ACM Press, 2014, pp. 200-203. 1SBN: 9781450328852.
DOI: 10.1145/2663204.2663265. URL: http://dl.acm.org/
citation.cfm?doid=2663204.2663265 (visited on 10/15/2016).

Liang-Chieh Chen, George Papandreou, et al. “Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs”. In: arXiv preprint arXiv:1606.00915 (2016).

Trishul M Chilimbi et al. “Project Adam: Building an Efficient and
Scalable Deep Learning Training System.” In: OSDI. Vol. 14. 2014,
pp- 571-582.

Minsik Cho et al. “PowerAI DDL”. In: arXiv preprint arXiv:1708.02188
(2017).

Changhyun Choi and Henrik I Christensen. “3D pose estimation
of daily objects using an RGB-D camera”. In: Intelligent Robots and
Systems (IROS), 2012 IEEE/RS] International Conference on. IEEE. 2012,
pp. 3342-3349.

Frangois Chollet. Keras. 2015.
John Cohen. Human robots in myth and science. AS Barnes, 1967.
T. Cowen. Modern Principles of Economics. Worth Publishers, 2009.

Leandro Cruz, Djalma Lucio, and Luiz Velho. “Kinect and rgbd
images: Challenges and applications”. In: SIBGRAPI-T. IEEE. 2012,
pp- 3649.

Gabriela Csurka and Florent Perronnin. “A Simple High Performance
Approach to Semantic Segmentation.” In: BMVC. 2008, pp. 1-10.

Giacomo Dabisias et al. “Deep learning based automated fatigue
detection in MCI subjects”. In: Transaction on Human-Machine Systems,
2017.1EEE. 2017, XxxX=yyy.

Giacomo Dabisias et al. “VALUE: Large Scale Voting-based Auto-
matic Labelling for Urban Environments”. In: (2018).

Giacomo Dabisias, Daniel Spikol, and Emanuele Ruffaldi. “A Learn-
ing Analytics Framework for Practice-Based Learning”. In: (2015).

Oscar Déniz et al. “Face recognition using histograms of oriented
gradients”. In: Pattern Recognition Letters 32.12 (2011), pp. 1598-1603.

Konstantinos G Derpanis. “The harris corner detector”. In: York Uni-
versity (2004).

A. Doyle. The Adventures of Sherlock Holmes. Adventure 4: “The Boscombe
Valley Mystery”. Lit2Go Edition, 1892.

K. Dogangay. “3D Pseudolinear Target Motion Analysis From An-
gle Measurements”. In: IEEE Transactions on Signal Processing 63.6
(2015), pp. 1570-1580. 1SSN: 1053-587X. DOI: 10.1109/TSP.2015.
2399869. URL: http://ieeexplore. ieee.org/document /
7029692/.

Dimiter Driankov and Alessandro Saffiotti. Fuzzy logic techniques for
autonomous vehicle navigation. Vol. 61. Physica, 2013.


https://doi.org/10.1145/2663204.2663265
http://dl.acm.org/citation.cfm?doid=2663204.2663265
http://dl.acm.org/citation.cfm?doid=2663204.2663265
https://doi.org/10.1109/TSP.2015.2399869
https://doi.org/10.1109/TSP.2015.2399869
http://ieeexplore.ieee.org/document/7029692/
http://ieeexplore.ieee.org/document/7029692/

130 BIBLIOGRAPHY

[43] Bertram Drost et al. “Model globally, match locally: Efficient and
robust 3D object recognition”. In: Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on. IEEE. 2010, pp. 998-1005.

[44] Vincent Dumoulin and Francesco Visin. “A guide to convolution
arithmetic for deep learning”. In: arXiv preprint arXiv:1603.07285
(2016).

[45] PP Dutta, A Baruah, A Konwar, et al. “A Technical Review of Lawn
Mower Technology”. In: ADBU Journal of Engineering Technology 4
(2016).

[46] Andreas Eitel et al. “Multimodal deep learning for robust rgb-d object
recognition”. In: IROS. 1EEE. 2015, pp. 681-687.

[47] Paul L Enright. “The six-minute walk test”. In: Respiratory care 48.8
(2003), pp. 783-785.

[48] Nathaniel Fairfield and Chris Urmson. “Traffic light mapping and
detection”. In: ICRA. IEEE. 2011, pp. 5421-5426.

[49] Michael Firman. “RGBD Datasets: Past, Present and Future”. In:
CVPR Workshop on Large Scale 3D Data: Acquisition, Modelling and
Analysis. 2016.

[50] Robert B Fisher. “Projective ICP and stabilizing architectural aug-
mented reality overlays”. In: Virtual and Augmented Architecture (VAA'01).
Springer, 2001, pp. 69-80.

[51] Marshal F Folstein et al. “"Mini-mental state": a practical method for
grading the cognitive state of patients for the clinician”. In: Journal of
psychiatric research 12.3 (1975), pp. 189-198.

[52] Regina Frei et al. “Self-healing and self-repairing technologies”. In:
The International Journal of Advanced Manufacturing Technology 69.5-8
(2013), pp. 1033-1061.

[63] Benoit Frénay and Michel Verleysen. “Classification in the presence
of label noise: a survey”. In: IEEE transactions on neural networks and
learning systems 25.5 (2014), pp. 845-869.

[54] Moshe Gabel, Ran Gilad-Bachrach, et al. “Full body gait analysis
with Kinect”. In: IEEE EMBC. 2012, pp. 1964-1967.

[55] Quan Gan et al. “First step toward model-free, anonymous object
tracking with recurrent neural networks”. In: arXiv preprint arXiv:1511.06425
(2015).

[56] Erann Gatetal. “On three-layer architectures”. In: Artificial intelligence
and mobile robots 195 (1998), p. 210.

[57] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1440-1448.

[58] Ross Girshick et al. “Rich feature hierarchies for accurate object detec-
tion and semantic segmentation”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2014, pp. 580-587.

[59] Priya Goyal et al. “Accurate, Large Minibatch SGD: Training Ima-
geNet in 1 Hour”. In: arXiv preprint arXiv:1706.02677 (2017).



BIBLIOGRAPHY 131

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech
recognition with deep recurrent neural networks”. In: Acoustics,
speech and signal processing (icassp), 2013 ieee international conference on.
IEEE. 2013, pp. 6645-6649.

Daniel Grest, Jan Woetzel, and Reinhard Koch. “Nonlinear body
pose estimation from depth images”. In: DAGM-Symposium. Vol. 5.
Springer. 2005, pp. 285-292.

Shuchi Grover et al. “Multimodal analytics to study collaborative
problem solving in pair programming”. In: Proceedings of the Sixth
International Conference on Learning Analytics & Knowledge - LAK "16.
New York, New York, USA: ACM Press, 2016, pp. 516-517. ISBN:
9781450341905. DOI: 10 .1145/2883851.2883877. URL: http:
//dl.acm.org/citation.cfm?doid=2883851.2883877
(visited on 10/17/2016).

Edwin H Hall. “On a new action of the magnet on electric currents”.
In: American Journal of Mathematics 2.3 (1879), pp. 287-292.

Richard Hartley and Andrew Zisserman. “"Multiple view geometry in
computer vision”. Cambridge university press, 2003. ISBN: 0521540518.

Richard I Hartley and Peter Sturm. “Triangulation”. In: Computer
vision and image understanding 68.2 (1997), pp. 146-157.

Kaiming He et al. “Mask r-cnn”. In: arXiv preprint arXiv:1703.06870
(2017).

Kaiming He et al. “Deep residual learning for image recognition”.

In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770-778.

Steve ] Heims and Duane W Bailey. “John von Neumann and Norbert
Wiener, from Mathematics to the technologies of life and death”. In:
American Journal of Physics 50.4 (1982), pp. 383-383.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast
learning algorithm for deep belief nets”. In: Neural computation 18.7
(2006), pp. 1527-1554.

Sepp Hochreiter et al. Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies. 2001.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long short-term mem-
ory”. In: Neural computation 9.8 (1997), pp. 1735-1780.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. “Densely Con-
nected Convolutional Networks”. In: CoRR abs/1608.06993 (2016).

Gao Huang et al. “Densely connected convolutional networks”. In:
arXiv preprint arXiv:1608.06993 (2016).

Jingwei Huang and David Altamar. “Pose Estimation on Depth Im-
ages with Convolutional Neural Network”. In: ().

Du Q Huynh. “Metrics for 3D rotations: Comparison and analysis”.
In: Journal of Mathematical Imaging and Vision 35.2 (2009), pp. 155-164.

Inception. 2010.


https://doi.org/10.1145/2883851.2883877
http://dl.acm.org/citation.cfm?doid=2883851.2883877
http://dl.acm.org/citation.cfm?doid=2883851.2883877

132

BIBLIOGRAPHY

[77]

[81]

[82]

[83]

Eldar Insafutdinov et al. “Deepercut: A deeper, stronger, and faster
multi-person pose estimation model”. In: European Conference on Com-
puter Vision. Springer. 2016, pp. 34-50.

Mircea Horea Ionica and David Gregg. “The movidius myriad ar-
chitecture’s potential for scientific computing”. In: IEEE Micro 35.1
(2015), pp. 6-14.

Joel Janai et al. “Computer Vision for Autonomous Vehicles: Prob-
lems, Datasets and State-of-the-Art”. In: arXiv preprint 1704.05519
(2017).

Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. “What is the
best multi-stage architecture for object recognition?” In: Computer
Vision, 2009 IEEE 12th International Conference on. IEEE. 2009, pp. 2146—
2153.

Vijay John et al. “Traffic light recognition in varying illumination
using deep learning and saliency map”. In: Intelligent Transportation
Systems (ITSC). IEEE. 2014, pp. 2286-2291.

Bryan Klingner, David Martin, and James Roseborough. “Street view
motion-from-structure-from-motion”. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. 2013, pp. 953-960.

Jan Knopp et al. “Hough transform and 3D SUREF for robust three di-
mensional classification”. In: European Conference on Computer Vision.
Springer. 2010, pp. 589-602.

Jan ] Koenderink and Andrea ] Van Doorn. “Affine structure from
motion”. In: JOSA A 8.2 (1991), pp. 377-385.

S Kotsiantis, Kiriakos Patriarcheas, and M Xenos. “A combinational
incremental ensemble of classifiers as a technique for predicting
students’” performance in distance education”. In: Knowledge-Based
Systems 23.6 (2010), pp. 529-535.

Joe Krajcik. “Project-Based Science: Engaging Students in Three-
Dimensional Learning”. In: The Science Teacher 82.1 (2010), pp. 1-
25.

Joe Krajcik and patrick Blumenfeld. “Project-based learning”. In: The
Cambridge handbook of the learning sciences. Ed. by Richard Sawyer.
New York, Cambridge, USA: Cambridge University Press, 2006,
pp- 317-334.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems. 2012, pp. 1097-1105.

Griffin Lacey, Graham W Taylor, and Shawki Areibi. “Deep learning
on fpgas: Past, present, and future”. In: arXiv preprint arXiv:1602.04283
(2016).

Yann LeCun, Fu Jie Huang, and Leon Bottou. “Learning methods for
generic object recognition with invariance to pose and lighting”. In:
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on. Vol. 2. IEEE. 2004,
pp- 11I-104.



BIBLIOGRAPHY 133

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Hon-Leung Lee. “Critical Points for Two-view Triangulation”. In:
arXiv preprint 1608.05512 (2016).

Sidney R Lehky and TJ Sejnowski. “Network model of shape-from-
shading: neural function arises from both receptive and projective
fields”. In: Nature 333.6172 (1988), pp. 452—-454.

John ] Leonard and Alexander Bahr. “Autonomous underwater vehi-
cle navigation”. In: Springer Handbook of Ocean Engineering. Springer,
2016, pp. 341-358.

linkedin, howpublished = http : //www. linkedin.com/pulse/
every—company—-use-blockchain-2027-heres—how—mohit-—
mamoria/.

Wai-Yan Liu et al. “Reproducibility and Validity of the 6-Minute Walk
Test Using the Gait Real-Time Analysis Interactive Lab in Patients
with COPD and Healthy Elderly”. In: PloS one 11.9 (2016), e0162444.

Wei-Yin Loh. “Classification and regression trees”. In: Wiley Int. Re-
views: Data Mining and Knowledge Discovery 1.1 (2011), pp. 14-23.

David G Lowe. “Object recognition from local scale-invariant fea-
tures”. In: Computer vision, 1999. The proceedings of the seventh IEEE
international conference on. Vol. 2. Ieee. 1999, pp. 1150-1157.

Esther Martin-Ponce et al. “Prognostic value of physical function
tests: hand grip strength and six-minute walking test in elderly hos-
pitalized patients”. In: Nature Scientific reports 4 (2014).

Roberto Martinez-Maldonado et al. “Interactive surfaces and learn-
ing analytics: Data, orchestration aspects, pedagogical uses and chal-
lenges”. In: Proceedings of the Sixth International Conference on Learn-
ing Analytics & Knowledge - LAK '16. New York, New York, USA:
ACM Press, 2016, pp. 124-133. 1SBN: 9781450341905. DOI: 10.1145/
2883851 .2883873. URL: http://dl.acm.org/citation.
cfm?doid=2883851.2883873 (visited on 10/15/2016).

Daniel Maturana and Sebastian Scherer. “Voxnet: A 3d convolutional
neural network for real-time object recognition”. In: Intelligent Robots
and Systems (IROS), 2015 IEEE/RS] International Conference on. IEEE.
2015, pp. 922-928.

Volodymyr Mnih et al. “Playing atari with deep reinforcement learn-
ing”. In: arXiv preprint arXiv:1312.5602 (2013).

Thomas B Moeslund and Erik Granum. “A survey of computer vision-
based human motion capture”. In: Computer vision and image under-
standing 81.3 (2001), pp. 231-268.

Marius Muja and David G Lowe. “Scalable nearest neighbor algo-
rithms for high dimensional data”. In: IEEE transactions on pattern
analysis and machine intelligence 36.11 (2014), pp. 2227-2240.

R Munoz-Salinas and S Garrido-Jurado. “Aruco library”. In: URL:
http://sourceforge. net/projects/aruco (2013).

Erik Murphy-Chutorian and Mohan Manubhai Trivedi. “Head pose
estimation in computer vision: A survey”. In: IEEE transactions on
pattern analysis and machine intelligence 31.4 (2009), pp. 607-626.


https://doi.org/10.1145/2883851.2883873
https://doi.org/10.1145/2883851.2883873
http://dl.acm.org/citation.cfm?doid=2883851.2883873
http://dl.acm.org/citation.cfm?doid=2883851.2883873

134

BIBLIOGRAPHY

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Vinod Nair and Geoffrey E Hinton. “3D object recognition with deep
belief nets”. In: Advances in neural information processing systems. 2009,
pp. 1339-1347.

Maryam M Najafabadi et al. “Deep learning applications and chal-
lenges in big data analytics”. In: Journal of Big Data 2.1 (2015), p. 1.

Pablo Negri, Xavier Clady, and Lionel Prevost. “Benchmarking haar
and histograms of oriented gradients features applied to vehicle
detection.” In: ICINCO-RA (1). 2007, pp. 359-364.

Richard A Newcombe et al. “KinectFusion: Real-time dense surface
mapping and tracking”. In: Mixed and augmented reality (ISMAR),
2011 10th IEEE international symposium on. IEEE. 2011, pp. 127-136.

Nowva Science Quotes, howpublished = http://www.pbs.org/wgbh/
nova/transcripts/3318 sciencen.html.

Andreas Niichter and Joachim Hertzberg. “Towards semantic maps
for mobile robots”. In: Robotics and Autonomous Systems 56.11 (2008),
pp- 915-926.

X Ochoa et al. “Mla’14: Third multimodal learning analytics work-
shop and grand challenges”. In: Proceedings of the 16th (2014). URL:
http://dl.acm.org/citation.cfm?id=2668318 (visited on
10/15/2016).

Xavier Ochoa et al. “Expertise estimation based on simple multi-
modal features”. In: Proceedings of the 15th ACM on International confer-
ence on multimodal interaction - ICMI '13. New York, New York, USA:
ACM Press, 2013, pp. 583-590. 1SBN: 9781450321297. DOI: 10.1145/
2522848 .2533789. URL: http://dl.acm.org/citation.
cfm?doid=2522848.2533789 (visited on 10/17/2016).

Xavier Ochoa et al. “Multimodal learning analytics data challenges”.
In: Proceedings of the Sixth International Conference on Learning Analytics
& Knowledge. ACM. 2016, pp. 498-499.

Charles Otto, Anil Jain, et al. “Clustering millions of faces by iden-
tity”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2017).

Seongwook Park et al. “4.6 Al. 93TOPS/W scalable deep learn-
ing/inference processor with tetra-parallel MIMD architecture for
big-data applications”. In: Solid-State Circuits Conference-(ISSCC), 2015
IEEE International. IEEE. 2015, pp. 1-3.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the diffi-
culty of training recurrent neural networks”. In: International Confer-
ence on Machine Learning. 2013, pp. 1310-1318.

Deepak Pathak et al. “Fully convolutional multi-class multiple in-
stance learning”. In: arXiv preprint arXiv:1412.7144 (2014).

E. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825-2830.

Markus Peters et al. “A reinforcement learning approach to au-
tonomous decision-making in smart electricity markets”. In: Machine
learning 92.1 (2013), pp. 5-39.


http://www.pbs.org/wgbh/nova/transcripts/3318_sciencen.html
http://www.pbs.org/wgbh/nova/transcripts/3318_sciencen.html
http://dl.acm.org/citation.cfm?id=2668318
https://doi.org/10.1145/2522848.2533789
https://doi.org/10.1145/2522848.2533789
http://dl.acm.org/citation.cfm?doid=2522848.2533789
http://dl.acm.org/citation.cfm?doid=2522848.2533789

BIBLIOGRAPHY 135

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Leonid Pishchulin et al. “Deepcut: Joint subset partition and labeling
for multi person pose estimation”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2016, pp. 4929-
4937.

Luis P. Prieto et al. “Teaching analytics: Towards automatic extraction
of orchestration graphs using wearable sensors”. In: Proceedings of the
Sixth International Conference on Learning Analytics & Knowledge - LAK
"16. New York, New York, USA: ACM Press, 2016, pp. 148-157. ISBN:
9781450341905. DOI: 10 .1145/2883851.2883927. URL: http:
//dl.acm.org/citation.cfm?doid=2883851.2883927
(visited on 10/13/2016).

Charles R Qi et al. “Pointnet: Deep learning on point sets for 3d
classification and segmentation”. In: Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE 1.2 (2017), p. 4.

Charles Ruizhongtai Qi et al. “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space”. In: Advances in Neural
Information Processing Systems. 2017, pp. 5105-5114.

Morgan Quigley, Ken Conley, et al. “ROS: an open-source Robot
Operating System”. In: ICRA workshop. Vol. 3. 3.2. 2009, p. 5.

Hossein Rahmani, Ajmal Mian, and Mubarak Shah. “Learning a
deep model for human action recognition from novel viewpoints”.
In: TPAMII (2017).

Vikram Ramanarayanan et al. “Evaluating speech, face, emotion
and body movement time-series features for automated multimodal
presentation scoring”. In: Proceedings of the 2015 ACM on International
Conference on Multimodal Interaction. ACM. 2015, pp. 23-30.

Joseph Redmon et al. “You only look once: Unified, real-time object
detection”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2016, pp. 779-788.

Shaoqing Ren et al. “Faster R-CNN: Towards real-time object detec-
tion with region proposal networks”. In: Advances in neural information
processing systems. 2015, pp. 91-99.

Mario Rojas et al. “Automatic prediction of facial trait judgments:
Appearance vs. structural models”. In: PloS one 6.8 (2011), e23323.

Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”.
In: Computer Vision (ICCV), 2011 IEEE international conference on. IEEE.
2011, pp. 2564-2571.

Emanuele Ruffaldi et al. “SOMA: an OpenMP toolchain for multicore
partitioning”. In: Proceedings of the 31st Annual ACM Symposium on
Applied Computing. ACM. 2016, pp. 1231-1237.

Emanuele Ruffaldi et al. “Data collection and processing for a multi-
modal learning analytic system”. In: SAI Computing Conference (SAI),
2016. IEEE. 2016, pp. 858-863.

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. “Fast point
feature histograms (FPFH) for 3D registration”. In: Robotics and Au-
tomation, 2009. ICRA’09. IEEE International Conference on. IEEE. 2009,
pp. 3212-3217.


https://doi.org/10.1145/2883851.2883927
http://dl.acm.org/citation.cfm?doid=2883851.2883927
http://dl.acm.org/citation.cfm?doid=2883851.2883927

136

BIBLIOGRAPHY

[135]

[136]

[137]
[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Samuele Salti, Federico Tombari, and Luigi Di Stefano. “SHOT: Unique
signatures of histograms for surface and texture description”. In: Com-
puter Vision and Image Understanding 125 (2014), pp. 251-264.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet:
A unified embedding for face recognition and clustering”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.
2015, pp. 815-823.

Jonghyun Seo. Automatic vacuum cleaner. US Patent 9,376,150. 2016.

Amir Shahroudy et al. “Deep multimodal feature analysis for ac-
tion recognition in RGB+ D videos”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2017).

Jamie Shotton et al. “Real-time human pose recognition in parts from
single depth images”. In: Communications of the ACM 56.1 (2013),
pp. 116-124.

George Siemens and Ryan S. J. d. Baker. “Learning analytics and
educational data mining: Towards communication and collabora-
tion”. In: Proceedings of the 2nd International Conference on Learning
Analytics and Knowledge - LAK "12. New York, New York, USA: ACM
Press, 2012, p. 252. DOI: 10.1145/2330601.2330661. URL: http:
//dl.acm.org/citation.cfm?doid=2330601.2330661
(visited on 10/14/2016).

Tomas Simon et al. “Hand Keypoint Detection in Single Images using
Multiview Bootstrapping”. In: CVPR. 2017.

Eleanor M Simonsick et al. “Assessing Fatigability in Mobility-Intact
Older Adults”. In: Journal of the American Geriatrics Society 62.2 (2014),
pp. 347-351.

Stephen M Smith and ] Michael Brady. “SUSAN—a new approach
to low level image processing”. In: International journal of computer
vision 23.1 (1997), pp. 45-78.

Daniel Spikol et al. “Supervised Machine Learning in Multimodal
Learning Analytics for Estimating Success inProject-based Learning”.
In: JCAL, 2017. IEEE. 2018, xxx-yyy.

Nitish Srivastava et al. “Dropout: a simple way to prevent neural
networks from overfitting.” In: Journal of machine learning research 15.1
(2014), pp. 1929-1958.

Johannes Stallkamp et al. “The German traffic sign recognition bench-
mark: a multi-class classification competition”. In: Neural Networks

(IICNN), The 2011 International Joint Conference on. IEEE. 2011, pp. 1453—
1460.

Bastian Steder et al. “NARF: 3D range image features for object
recognition”. In: Workshop on Defining and Solving Realistic Perception
Problems in Personal Robotics at the IEEE/RS] Int. Conf. on Intelligent
Robots and Systems (IROS). Vol. 44. 2010.

Dimitar H Stefanov, Zeungnam Bien, and Won-Chul Bang. “The
smart house for older persons and persons with physical disabili-
ties: structure, technology arrangements, and perspectives”. In: IEEE
Trans. Neural Netw. Learn. Syst. 12.2 (2004), pp. 228-250.


https://doi.org/10.1145/2330601.2330661
http://dl.acm.org/citation.cfm?doid=2330601.2330661
http://dl.acm.org/citation.cfm?doid=2330601.2330661

BIBLIOGRAPHY 137

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

SupplyChain, howpublished = http : //www . supplychaintoday .
com/artificial-intelligence-deep—-learning—quotes/.

Christian Szegedy et al. “Going deeper with convolutions”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 1-9.

Yaniv Taigman et al. “Deepface: Closing the gap to human-level
performance in face verification”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2014, pp. 1701-1708.

Adriana Tapus and Maja ] Mataric. “Socially Assistive Robots: The
Link between Personality, Empathy, Physiological Signals, and Task
Performance.” In: AAAI Symposium: Emotion, Personality, and Social
Behavior. 2008, pp. 133-140.

M. Team. Makehuman software. http : / /www . makehuman . org.
2001-2016.

Federico Tombari, Samuele Salti, and Luigi Di Stefano. “Performance
evaluation of 3D keypoint detectors”. In: International Journal of Com-
puter Vision 102.1-3 (2013), pp. 198-220.

Jonathan ] Tompson et al. “Joint training of a convolutional network
and a graphical model for human pose estimation”. In: Advances in
neural information processing systems. 2014, pp. 1799-1807.

Michael Toscano. “Department of defense joint robotics program”.
In: Proc. SPIE. Vol. 4715. 1999, p. 97.

Alexander Toshev and Christian Szegedy. “Deeppose: Human pose
estimation via deep neural networks”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2014, pp. 1653—
1660.

Paolo Tripicchio et al. “Towards smart farming and sustainable agri-
culture with drones”. In: Intelligent Environments (IE), 2015 Interna-
tional Conference on. IEEE. 2015, pp. 140-143.

Edward Tunstel et al. “FIDO rover field trials as rehearsal for the
NASA 2003 Mars Exploration Rovers Mission”. In: Automation Congress,
2002 Proceedings of the 5th Biannual World. Vol. 14. IEEE. 2002, pp. 320-
327.

twitter, howpublished = https : //twitter . com/menshumor /
status/468481242153750529.

Paul Viola and Michael Jones. “Rapid object detection using a boosted
cascade of simple features”. In: Computer Vision and Pattern Recogni-
tion, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on. Vol. 1. IEEE. 2001, pp. I-1.

Deepak Geetha Viswanathan. Features from accelerated segment test
(fast). 2009.

Dominic Zeng Wang and Ingmar Posner. “Voting for Voting in Online
Point Cloud Object Detection.” In: Robotics: Science and Systems. 2015.

Oliver Wasenmiiller and Didier Stricker. “Comparison of kinect v1
and v2 depth images in terms of accuracy and precision”. In: Asian
Conference on Computer Vision. Springer. 2016, pp. 34—45.


https://twitter.com/menshumor/status/468481242153750529
https://twitter.com/menshumor/status/468481242153750529

138

BIBLIOGRAPHY

[165]
[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

Shih-En Wei et al. “Convolutional pose machines”. In: CVPR. 2016.

Daniel S Weld. “Recent advances in Al planning”. In: Al magazine
20.2 (1999), p. 93.

Norbert Wiener. Cybernetics or Control and Communication in the Ani-
mal and the Machine. Vol. 25. MIT press, 1961.

Marcelo Worsley. “Multimodal learning analytics”. In: Proceedings
of the 14th ACM international conference on Multimodal interaction -
ICMI "12. New York, New York, USA: ACM Press, 2012, p. 353. ISBN:
9781450314671. DOI: 10 .1145/2388676.2388755. URL: http:
//dl.acm.org/citation.cfm?doid=2388676.2388755
(visited on 10/14/2016).

Marcelo Worsley. “Multimodal Learning Analytics as a Tool for Bridg-
ing Learning Theory and Complex Learning Behaviors”. In: Proceed-
ings of the 2014 ACM workshop on Multimodal Learning Analytics Work-
shop and Grand Challenge - MLA "14. New York, New York, USA: ACM
Press, 2014, pp. 1-4. ISBN: 9781450304887. DOI: 10.1145/2666633.
2666634. URL: http://dl.acm.org/citation.cfm?doid=
2666633.2666634 (visited on 10/15/2016).

Marcelo Worsley and Paulo Blikstein. “Analyzing Engineering De-
sign through the Lens of Computation”. In: Journal of Learning Ana-
Iytics 1.2 (2014), pp. 151-186. (Visited on 10/17/2016).

Ting-Fan Wu, Chih-Jen Lin, and Ruby C Weng. “Probability estimates
for multi-class classification by pairwise coupling”. In: Journal of
Machine Learning Research 5.Aug (2004), pp. 975-1005.

Zhirong Wu et al. “3d shapenets: A deep representation for volumet-
ric shapes”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2015, pp. 1912-1920.

Zhengyou Zhang. “Iterative point matching for registration of free-
form curves and surfaces”. In: International journal of computer vision
13.2 (1994), pp. 119-152.

Yin Zhou and Oncel Tuzel. “VoxelNet: End-to-End Learning for Point
Cloud Based 3D Object Detection”. In: arXiv preprint arXiv:1711.06396
(2017).

Siyu Zhu et al. “Parallel Structure from Motion from Local Increment
to Global Averaging”. In: ArXiv e-prints (2017).


https://doi.org/10.1145/2388676.2388755
http://dl.acm.org/citation.cfm?doid=2388676.2388755
http://dl.acm.org/citation.cfm?doid=2388676.2388755
https://doi.org/10.1145/2666633.2666634
https://doi.org/10.1145/2666633.2666634
http://dl.acm.org/citation.cfm?doid=2666633.2666634
http://dl.acm.org/citation.cfm?doid=2666633.2666634

INSTITUTE

OF COMMUNICATION,
INFORMATION

AND PERCEPTION
TECHNOLOGIES

Sant’Anna

School of Advanced Studies - Pisa




	Acknowledgments
	Introduction
	Research aims and questions
	Contributions
	Involved Projects
	Thesis Structure

	State of the Art
	History
	Self Maintenance
	Sensing and Navigating
	Performing tasks

	Classic Detection
	3D Object Detection
	Models
	Keypoint Extraction
	Keypoint Descriptors
	Matching Descriptors
	Clustering Correspondences
	Estimate Object Pose
	Qualitative Analysis
	Measurements
	Multi Object Detection
	Final Remarks

	Face Detection
	Haar Detector
	HoG Detector
	Haar Vs HoG

	Body Pose Estimation

	Deep Learning
	Deep Neural Network
	Convolutional Neural Networks
	Recurrent Neural Networks
	Long Short Term Memory


	Deep Learning Detection
	Object Recognition
	2D Detection
	3D Detection

	Face Detection
	Body Pose Estimation
	Performance
	Training
	Inference


	Activity Recognition
	PELARS Project
	Background
	Architecture
	Low Level Data Acquisition
	ML Activity Recognition
	Datataset Acquisition
	Initial Project Classification
	Improved Project Classification
	Data Pre-processing

	Method
	Deep Learning approach
	Traditional Approaches

	Results
	Deep Learning Results
	Supervised Learning Results
	Phases
	Scoring
	Effect of Phase


	Discussion
	Traditional Approach
	Deep Learning Approach

	Conclusion

	Human State Evaluation
	RAMCIP Project
	Objective
	Data Acquisition
	Subjects
	Sensors and Protocol
	Data Pre-processing and Features Extraction

	Deep Learning Method
	Data Preparation
	Exploration of Parameters
	Results

	Classic ML Method
	Discussion
	Effect of Distance from Camera
	Effect of Network Depth

	Conclusion

	Environment Recognition
	VALUE System
	Triangulation of Contents
	Method
	2D Object Detection
	Robust Voting-based Triangulation
	Large-Scale System

	Experiments
	Data Sets
	2D Detection
	Results

	Conclusion

	Conclusions
	Appendix
	List of Publications
	Bibliography


