
Supporting humans with
autonomous systems:

deep learning for activity, state
and environment recognition

Giacomo Dabisias

Supporting humans with
autonomous systems:

deep learning for activity, state
and environment recognition

Perceptual Robotics Laboratory, Tecip

Scuola Superiore Sant’Anna

Author:

Giacomo Dabisias

Supervisor:

Emanuele Ruffaldi

Ph.D Course
Perceptual Robotics

Academic Year
2016 / 2017

March 12th, 2018

I

Abstract

Autonomous Systems can support human activities in several situations,

ranging from daily tasks to specific working activities. All these systems

have in common the need of understanding their environment and the

state of the human interacting with them. Once such information has been

assessed by the system, it can either perform autonomously actions, sug-

gest them or simply present additional information about the activity or

environment to the user.

It is necessary to consider that different activities need different levels of

confidence in the decision making process. Critical systems, such as vehicles

in autonomous driving scenarios, need the highest possible accuracy given

that they take autonomous decisions; on the other hand, critical safe systems,

need a lower level of confidence given that they can just provide a feedback

to the user to ease the decision making process.

It is also important to notice that Autonomous Systems interact usually

with 3D environments while sensors acquire mostly 2D images. This re-

quires the ability to reconstruct precisely the surrounding environment from

multiple views using triangulation techniques.

All this brings up several challenges given the high variability of both

activities, environments and people, making traditional computer vision

approaches less adequate. This is due also to the fact that often it is not

possible to identify clearly the input variables of the system, given the high

correlation between them or the high dimensionality of the input space.

Machine learning has shown promising results in such scenarios and in

particular deep learning is the evolution of machine learning that has shown

most effective results in terms of quality and performance of the learning

tasks. Deep Learning can cope well with variable scenarios by scaling to

highly dimensional decision spaces that typically suffer the problem of

feature identification and selection.

This work will show some developed applications in activity, state and

environment recognition, presenting how human decisions can be supported

by autonomous systems using deep learning techniques. The first part of

the thesis will present the state of the art solutions to the aforementioned

problems along with the latest deep learning techniques. In the second part

II

of this work, we will describe in depth three different developed applica-

tions in activity, state and environment recognition. Finally we will present

possible future works along with remaining open research questions.

Acknowledgments

Firstly I would like to thank my tutor Emanuele for all the time he spent

with me discussing, researching and teaching me. It’s because of him if I

can finally write this chapter ending this journey. He was not only my tutor,

but also a mentor and friend during all these years, helping me with good

advice in every situation.

Thanks Filippo for completing with me all our studies. We started

together the bachelor and are now together at the end of our PhD. Meeting

you at the first year was the best possible thing which could happen.

Thanks to everyone at Percro for making my time more relaxed every day;

for the rubber band wars with Massimo and Paolo, Peppolonis’ inside stories,

the Mexican tequila with Juan, the technical discussions with Alessandro

Filippeschi, the great lunches with Maddaloni and for the friendship with

everyone else.

Thanks Conte Landolfi for your everyday wisdom.

A special thanks goes to Michel Sainville, the best house mate one could

ever imagine, with whom I grew everyday in the last three years discussing,

laughing and crying.

Thanks to my girlfriend Sofia, who is supporting me in everyday life

with happiness and joy.

Thanks to all my friend that are dearest to me; Sara, Stella, Luca F., Luca

G., Marco, Mattia, Francesca Elisa, Leonardo, Alberto, Sofiya, Laura and all

the others: you are the best friends one could ever imagine and you have

always helped me during my academic years.

I would like to thank also my entire family for the continuous support

towards this goal, was it with good advice or amazing food.

A special thanks goes to all the team of Blue Vision Labs were I spent

my internship. I did not only learn an incredible amount of new things, but

I also made a lot of dear friends. Thanks again Hugo, Peter, Lukas, Ross,

Michal, Filip S., Filip H., Suraj, Robert, Guido, Ivan and all the others!

To my grandfather

Contents

1 Introduction 1

1.1 Research aims and questions 2

1.2 Contributions . 5

1.3 Involved Projects . 6

1.4 Thesis Structure . 7

2 State of the Art 9

2.1 History . 9

2.2 Self Maintenance . 11

2.3 Sensing and Navigating . 11

2.4 Performing tasks . 13

3 Classic Detection 15

3.1 3D Object Detection . 15

3.1.1 Models . 17

3.1.2 Keypoint Extraction 17

3.1.3 Keypoint Descriptors 19

3.1.4 Matching Descriptors 22

3.1.5 Clustering Correspondences 23

3.1.6 Estimate Object Pose 25

3.1.7 Qualitative Analysis 26

3.1.8 Measurements . 27

3.1.9 Multi Object Detection 28

3.1.10 Final Remarks . 28

3.2 Face Detection . 28

3.2.1 Haar Detector . 28

3.2.2 HoG Detector . 30

3.2.3 Haar Vs HoG . 31

3.3 Body Pose Estimation . 32

Contents

4 Deep Learning 35

4.1 Deep Neural Network . 35

4.2 Convolutional Neural Networks 38

4.3 Recurrent Neural Networks . 41

4.3.1 Long Short Term Memory 42

5 Deep Learning Detection 43

5.1 Object Recognition . 43

5.1.1 2D Detection . 45

5.1.2 3D Detection . 47

5.2 Face Detection . 49

5.3 Body Pose Estimation . 50

5.4 Performance . 52

5.4.1 Training . 52

5.4.2 Inference . 53

6 Activity Recognition 55

6.1 PELARS Project . 55

6.2 Background . 57

6.3 Architecture . 59

6.4 Low Level Data Acquisition 63

6.5 ML Activity Recognition . 68

6.5.1 Datataset Acquisition 68

6.5.2 Initial Project Classification 69

6.5.3 Improved Project Classification 69

6.5.4 Data Pre-processing 70

6.6 Method . 71

6.6.1 Deep Learning approach 71

6.6.2 Traditional Approaches 73

6.7 Results . 75

6.7.1 Deep Learning Results 75

6.7.2 Supervised Learning Results 77

6.7.2.1 Phases . 77

6.7.2.2 Scoring . 77

6.7.2.3 Effect of Phase 78

6.8 Discussion . 79

6.8.1 Traditional Approach 79

6.8.2 Deep Learning Approach 80

6.9 Conclusion . 81

Contents

7 Human State Evaluation 83

7.1 RAMCIP Project . 83

7.2 Objective . 85

7.3 Data Acquisition . 87

7.3.1 Subjects . 87

7.3.2 Sensors and Protocol 87

7.3.3 Data Pre-processing and Features Extraction 90

7.4 Deep Learning Method . 92

7.4.1 Data Preparation . 93

7.4.2 Exploration of Parameters 94

7.4.3 Results . 96

7.5 Classic ML Method . 99

7.6 Discussion . 99

7.6.1 Effect of Distance from Camera 101

7.6.2 Effect of Network Depth 102

7.7 Conclusion . 102

8 Environment Recognition 103

8.1 VALUE System . 103

8.2 Triangulation of Contents . 106

8.3 Method . 107

8.3.1 2D Object Detection 108

8.3.2 Robust Voting-based Triangulation 108

8.3.3 Large-Scale System . 111

8.4 Experiments . 112

8.4.1 Data Sets . 112

8.4.2 2D Detection . 113

8.4.3 Results . 114

8.5 Conclusion . 117

9 Conclusions 119

Appendix 125

A List of Publications 125

Bibliography 127

List of Figures

1.1 General overview of the Detection and Classification split

analysed in this work. Each computer vision activity per-

formed by an AS can be split in Classification and Detection.

In each subfigure we present on the left side of each bar the

available ML solutions and the task involved in the assess-

ment while on the right side we present the classical approach.

. 3

2.1 An image showing the autonomous rover built by the APL

group in 19641. 10

2.2 Example of two robots capable of connecting autonomously

to a charging station. Figure (a) shows Sony’s Aibo1 and

Figure (b) shows Ugobe’s Pleo2. 11

2.3 An example of 3D mapped environment from the IROS 2014

Challenge1. 12

3.1 3D object recognition pipeline1. For each input image, key-

points are extracted. The next step consists in the compu-

tation on features to describe the local region around key-

point. Matches between descriptors are computed based on

a distance metric and positive ones are clustered. Finally a

transformation from the input object to the clustered points is

estimated. 16

3.2 Spherical reference frame for a descriptor1. 19

3.3 Histogram based descriptor1. 20

3.4 Signature based descriptor1. 21

3.5 Example of a KD-tree1. 23

3.6 An example of "Good" correspondences1. 24

3.7 Example of Haar features. (a) represents a 2-rectangle feature,

(b) represents a 3-rectangle feature and (c) represents a 4-

rectangle feature1. 29

3.8 Example of Haar features in face recognition1. 29

3.9 Example of gradients computed on a face [130]. 31

List of Figures

3.10 Example of estimated body poses1. 32

4.1 Example of artificial neuron. Input values xi are multiplies

by weights wi and then summed up along with a bias vector

b. The output is passed through an activation function f to

produce the final output y. The actual Neuron is only the first

part of the image summing pu all values along with the bias.1 36

4.2 Examples of possible activation functions.1 37

4.3 Example of multilayer NN with fully connected layers.1 . . . 38

4.4 Examples of a Convolutional layer. The depth of the features

increases in the next layer1. 39

4.5 Examples of an activation map. The size of the image is

reduces given that the kernel is convolved only inside the

image1. 39

4.6 Examples of a pooling layer. The image is down sampled,

making it smaller, but the feature depth is unchanged1. . . . 40

4.7 Examples of CNN features. The initial layers are similar while

later layers specialise for the detected content1. 40

4.8 Figure (a) shows the inception layers as a composition of

several filters[150]. Figure (b) shows skip layers allow input

parameters to flow through the network making it capable of

learning the identity function[73]. 41

4.9 Schematics representing a sequence of LSTM neurons1. . . . 42

5.1 Example bounding boxes and predicted classes using the

Mask R-CNN network [66]. Each segmented object is col-

ored with a different color and a label is associated to the

surrounding bounding box. 48

5.2 Example of face recognition pipeline in OpenFace1. 49

5.3 General detection pipeline of OpenPose1 51

5.4 Performance comparison between an integrated TX1 GPU, an

Intel core i7 CPU and between a Desktop Titan X GPU and an

intel Xeon processor1. 54

6.1 Mock up of the PELARS system1. 56

6.2 Image representing the Arduino Programming IDE. 60

6.3 Talkoo components example. 61

6.4 The general architecture of the PELARS Server. 63

6.5 General overview of the PELARS data acquisition architecture. 64

6.6 Detected face position and gaze estimation using OpenFace. 65

List of Figures

6.7 Angle of the head motions as corresponding to the snapshots

taken by the system. 66

6.8 PELARS desk as seen from the rgb camera. 67

6.9 Example of the interface for the object tracking task. 68

6.10 Quality of solution scores (QuaOS) of each team during the

three sessions. 70

6.11 Neural Network structure of the model which obtained the

best results . 74

6.12 Resulting grades of the projects output developed by the

tested groups of students. 77

6.13 Distribution of phases among session of the 6 teams. Each

session is split in the three phases, first plan, then build and

finally reflect . 78

7.1 The Ramcip Robot.1. 84

7.2 An overview of the objectives of the RAMCIP project.1. . . . 86

7.3 Confidence level of the tracker as a function of the distance

from the camera. 91

7.4 Time series of right foot x, y and z coordinates in the CoM

reference frame during pre-fatigue task of subject one. For

the whole x, y and z coordinated trajectories (black) the valid

CoM estimation is highlighted in red, green and blue. 92

7.5 Accuracy as a function of window size and data stride. For

every window size (30 samples: cyan, 60 samples: gray, 90

samples: red, 120 samples: green, 150 samples: blue) we ex-

plored different data stride starting from 5 samples to window

size, with increments of 15 samples. The optimal values re-

sulted with a window size of 150 samples and a data stride of

approximately between one tenth and a third of the window

size. Median, first and third quartiles are shown, whiskers

show the 1.4 interquartile range values. 96

7.6 Accuracy as a function of the dropout. Median, first and third

quartiles are shown, whiskers show the 1.4 interquartile range

values. 97

7.7 Accuracy as a function of the learning rate. Median, first and

third quartiles are shown, whiskers show the 1.4 interquartile

range values. 98

List of Figures

7.8 Accuracy as a function of the L2 regularization. Median,

first and third quartiles are shown, whiskers show the 1.4

interquartile range values. 98

7.9 Confusion matrices for the training set with F1 Score 0.95 (A)

and for the test set with F1 Score 0.76 (B). The classification

outputs are non fatigued (NF) and fatigued (F). 99

7.10 ROC curves for the test set for the three approaches SVM, NN

and DT. The proposed approach exhibits a greater area under

the curve, compared to the other classifiers. 100

7.11 Classification results, fatigued (F) and non fatigued (NF), for

three subjects: 1 (top), 5 (center), 15 (bottom), outputted by the

trained NN. The dashed box represents the fatiguing portion

of the trial; left represents the pre-fatigue phase classification

(blue), right represents the post-fatigue classification (red).

The blue and red vertical lines represent respectively the end

of the two phases. 100

7.12 Representation of the correctness of the recognition as a func-

tion of the distance from the camera. Note that the sampling

of the points along time is affected by the windowing and

confidence level of the tracking. 101

8.1 We use VALUE to automatically find the 3D locations of all

traffic lights in Manhattan, such that they can be used for

autonomous driving. Zero images were manually labeled to

make this semantic map. 104

8.2 The 3D representation of a cluster of views with 4 contents

shown as red dots. Each content is connected with the voters

using a green line. The green view and the green content

correspond to the one shown in the figure 8.3. 107

8.3 Image of the highlighted view and content of figure 8.2 show-

ing the content projected over the detected position. The

re-projection difference is 0.5 pixels. A detected content is a

content which has been detected by the ML system, while a

reconstructed content is a content which passed the voting

scheme and has an associated 3D position. 108

8.4 The overview of the system. The final output consists of a list

of 3D detections. These can be passed back into the input of

the system to obtain better results. 109

List of Figures

8.5 An example of a cluster in the map consisting of several traver-

sals in differing conditions. Top: Close-up of the dataset clus-

tering. Bottom row: example frames that are from different

traversals belonging to the highlighted cluster and associated

traffic lights. 109

8.6 Performance of the system as a function of number of passes

through a location. As the amount of data increases both

recall and 3D localisation accuracy (as measured by negative

reprojection error) increase. 114

8.7 Failure modes of the presented method. When not enough

data from a particular location are provided both (a) false

negative detections due to the undetected objects or (b) tem-

porarily consistent wrong detections can manifest. The largest

challenge is (c) consistent and repeated detections of a objects

that look similar to a traffic light over a period of time. . . . 115

8.8 Number of detected contents in respect of a precision parame-

ter. The precision value is multiplied by the distance threshold

when voting for a content. 116

List of Tables

1.1 Mapping of RQs onto Contributions 5

3.1 Qualitative evaluation for the keypoint extraction. 26

3.2 Qualitative evaluation for the keypoint descriptors. 26

3.3 Qualitative evaluation for the clustering algorithms. 26

5.1 YOLO Layers. 46

5.2 YOLO9000 Layers. 46

6.1 Table of the 18 session scores organized by team. The five

scores expressed in a 5 level Likert-type are reported 71

6.2 Machine Learning Tasks performed over Data 72

6.3 Results for the 120s window, 0.242 overall 76

6.4 Results for the 240s window, 0.129 overall 76

6.5 Results for the 360s window, 0.193 overall 76

6.6 Best network results for the different network configurations 76

6.7 Best error scores after removing isolated features 76

6.8 Effect of phases in the inclusion of the classifier. P=plan,

W=work, R=reflect. Values are accuracy percentages. 78

7.1 Age, sex and Mini Mental State Examination Weighted Sum

score, and the self-assessed level of Tiredness (1-10) for every

participant at the end of the trial. 88

7.2 Durations of the three phases for all the subjects. 89

7.3 Markers provided by the skeleton tracker and the relative

terminology used in this work. 90

7.4 Dataset composition . 93

7.5 Optimal hyper-parameters for the NN. 96

8.1 Result of the evaluation among the algorithms. The first two

columns report the average and maximum triangulated error

respectively, the third is the re-projection error in pixels and

the fourth the running time of the algorithm. 106

8.2 Per-dataset statistics of 2D detection and clustering. 112

8.3 The results of the method on two datasets. 112

List of Tables

8.4 Statistics of the number of passes per cluster. As the mapping

fleet traverses the environment each place is visited several

times. As discussed in the text more passes through the envi-

ronment result into higher performance of the system. 115

Acronyms

AS Autonomous System

AR Activity Recognition

ML Machine Learning

NN Neural Network

DL Deep Learning

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

R-CNN Recurrent Convolutional Neural Network

DBN Deep Belief Networks

MCI Mild Cognitive Impairments

PELARS Practice-based Experiential Learning Analytics Research and Sup-

port

RAMCIP Robotic Assistant for MCI Patients at home

VALUE Large Scale Voting-based Automatic Labelling for Urban Environ-

ments

MMSE WS Mini Mental State Examination Weighted Sum Score

AD Alzheimer’s Disease

ROS Robot Operating System

CoM Center of Mass

MMLA Multi Modal Learning Analytics

GPU Graphics Processing Unit

PAF Part Affinity Fields

ILP Integer Linear Programming

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

PBL Project Based Learning

List of Tables

RA Reference Axis

RF Reference Frame

1

Chapter 1

Introduction

“If you look at the field of robotics today, you can say robots have

been in the deepest oceans, they’ve been to Mars, you know?

They’ve been all these places, but they’re just now starting to

come into your living room. Your living room is the final frontier

for robots.”

Cynthia Breazeal, [110]

We are starting to live exactly at the edge of time in which Robots are

coming to our living rooms.

Autonomous Systems (AS) are becoming an ubiquitous reality in modern

day society. In general, an AS can be defined as a robot or system that

performs behaviors or tasks with a high degree of autonomy. The main

goal of such systems is to improve the overall human quality of life in

all possible aspects; from self driving vehicles to assistive robots. Usually

robotic systems are triggered by human actions, acting on the inputs of a

user. ASs instead shift this paradigm, making robots capable of anticipating

human needs and actions. This implies that ASs have to be able to take

decisions based on the performed activity, the general state of the person

interacting with it and the surrounding environment. To do this, ASs need

to have some kind of intelligence which has been studied deeply in the field

of Machine Learning (ML).

ML, according to Arthur Samuel, gives "computers the ability to learn

without being explicitly programmed." The term was coined by him in 1959

while at IBM. Despite being already studied for several decades, ML had

only lately a major success with the rediscovery of Neural Networks (NN).

Warren McCulloch and Walter Pitts (1943) created a computational model for

NNs based on mathematics and algorithms called threshold logic. Since then,

NNs had some minor success at character recognition in 1990 when they

were used to recognise automatically recipients of post correspondence and

digits on cheques. After that, NNs were not investigated much given that the

high computational load could not be processed in a reasonable amount of

2 Chapter 1. Introduction

time on present calculators. This changed recently with the advances in GPU

hardware and software and at the same time with the research advances in

Deep Learning (DL) using Deep Neural Networks (DNN).

DL was introduced to the ML community by Rina Dechter in 1986 and

got a major success in 2006 with a publication by Hinton et al. [69]. Since then

DNN have been used to investigate several branches of computer science,

creating many new fields of research and making autonomous systems a

viable possibility.

Recent GPU’s have started to target ML computation, DNNs more pre-

cisely, implementing dedicated hardware to be able to overcome the compu-

tational problem which was afflicting them. Given that quickly GPUs were

able to cope with the power demand of simple NNs, more complex networks

have been created, which were able to solve complex challenges, as image

recognition and detection, to a certain degree of precision. Almost human

performance has been reached in the last years thanks to the discovery of

Convolutional Neural Networks (CNN), which gave autonomous systems

new capabilities, making the interaction between humans and machines

almost natural.

Thanks to these advancements, we are starting to have the first proto-

types of fully autonomous vehicles and robots, which brings up a series of

challenges in the interaction between human and machine.

1.1 Research aims and questions

The aim of this thesis is to investigate the ability of ASs to detect an activity

(Research Aim 1 (RA1), evaluate the state of the person interacting with the

AS (Research Aim 2 (RA2) and perceive their environment (Research Aim 3

(RA3) through modern ML techniques.

Source data is usually noisy, given that it comes from unconstrained

real world scenarios. We would like to avoid the filtering of it given that

usually the noise input model is unknown. ML has proven very effective at

extracting strong features from input streams, making the task simpler.

This leads to the following research questions:

Research Question 1 (RQ1): Is it possible for autonomous systems to

extract high level information from a system represented by an ensemble of

noisy sources of data?

1.1. Research aims and questions 3

feature based

2D/3D 2D/3D 3D

OBJECTS FACES BODY POSE
openface

CLNF
HOG
HAAR

openpose
RF

template matching

DL | CA
DETECTION

CNN
TASK VALUE

DL | CA
CLASSIFICATION

TASK
PELARS

TASK
RAMCIPSVM SVM

DL = Deep Learning
CA = Classical Approach

FIGURE 1.1: General overview of the Detection and Classi-
fication split analysed in this work. Each computer vision
activity performed by an AS can be split in Classification
and Detection. In each subfigure we present on the left side
of each bar the available ML solutions and the task involved
in the assessment while on the right side we present the

classical approach.

4 Chapter 1. Introduction

Each of the described tasks can be split in Detection and Classification,

see figure 1.1. Detection deals with the extraction of particular information

from a larger stream of information while Classification deals with recog-

nizing, differentiating and understanding ideas and objects. In this work

Detection is used to extract semantic content from an observed scene, which

can be then processed and utilised by a Classification system in order to

make decisions and take actions. This leads us to the question:

Research Question 2 (RQ2): What kind of ML technique is able to solve

the Detection/Classification problem in the different explained scenarios?

Given that this work focuses on the interaction between humans and

machines, we will analyse three different categories of detection: Objects,

Faces and Body poses. For each of them we want to answer the following

questions:

Research Question 3 (RQ3): Is it possible for autonomous systems to

detect with sufficient precision objects?

Research Question 4 (RQ4): Is it possible for autonomous systems to

detect, with sufficient precision faces?

Research Question 5 (RQ5): Is it possible for autonomous systems to

detect, with sufficient precision body poses?

It is important to notice also that all the depicted interactions between

AS and humans are happening in 3D space. This poses a series of problems

and questions regarding the possibility of inferring precisely a 3D position

given 2D information. Nowadays 3D sensors are available, which produce

depth images of space, but are more complex to interact with and have a

series of limitations, which are not present in common 2D cameras. This

brings us to the question:

1.2. Contributions 5

Research Question Constributions Focus

RQ1 C1, C3 Scene Understanding
RQ2 C1, C2, C3 Machine Learning
RQ3 C1, C3 Object Detection
RQ4 C1 Face detection
RQ5 C2 Pose estimation
RQ6 C3, C4 Triangulation techniques

TABLE 1.1: Mapping of RQs onto Contributions

Research Question 6 (RQ6): Is it possible to reconstruct, accurately

enough for an ASs, 3D information given a series of 2D measurements, or is

a 3D sensors necessary for the interaction between AS and Humans?

1.2 Contributions

To answer the aforementioned research questions we developed three dif-

ferent systems. Each of these system will answer partially the proposed

research questions as depicted in Table 1.1.

C1: The first system has been developed to create an autonomous system

capable of recognizing activities. This has been done by recognizing

the actions of students during different hands on learning activities.

C2: The second system consists of an autonomous robot interacting with

elderly patients. In this context, we researched the possibility of ex-

tracting non invasive measures of the state of the patient, using a 3D

sensor. This was done to adapt the behavior of the robot to suit best

the needs of the patient.

C3: The third system has been developed to test the ability of an au-

tonomous system to augment a urban environment. In this scenario we

developed specifically a system capable of detecting and 3D localising

traffic lights for autonomous driving.

C4: Additionally, to test the possibility of using 2D data to interact with

a 3D environment, we evaluated different triangulation techniques

which are present in all three aforementioned systems

6 Chapter 1. Introduction

1.3 Involved Projects

Several projects have contributed to the research developed in this work.

This section briefly introduces them.

• Practice-based Experiential Learning Analytics Research

and Support (PELARS) is a European project that studies how people

learn about science, technology and mathematics when using their

hands as well as their heads. A big part of the project is making

more explicit the implicit practices of science teachers: “Lab demos”

and hands-on experiments have been a big part of science teaching

for as long as anyone can remember, but how to model and analyse

these practice, while empowering teachers, is far less understood. So,

the PELARS project aims at finding ways of generating “analytics”

(data about the learning process and analysis of this data), which

helps learners and teachers by providing feedback from hands-on,

project-based and experiential learning situations. This project will be

discussed in detail in Chapter 6.

• Robotic Assistant for MCI Patients at home (RAMCIP) is a European

Project which aims to research and develop real robotic solutions for

assistive robotics for the elderly and those suffering from Mild Cogni-

tive Impairments (MCI) and dementia. This is a key step to developing

a wide range of assistive technologies. We will adopt existing technolo-

gies from the robotics community, fuse those with user-centred design

activities and practical validation, trying to create a step-change in

robotics for assisted living. This project will be discussed in detail in

Chapter 7.

• Large Scale Voting-based Automatic Labelling for Urban Environ-

ments (VALUE). We developed a system capable of recognizing 3D

contents in a urban environment in order to add them to a semantic

map that can be used by autonomous agents to navigate it. Contents

are firstly detected in 2D iamges and then views of the same content

are grouped together in order to produce its 3D location in space. This

project was developed jointly with Blue Vision Labs (BVL), London,

UK. This project will be discussed in detail in Chapter 8.

1.4. Thesis Structure 7

1.4 Thesis Structure

This thesis is organised as follows:

In Chapter 2 we will present the state of the art in ASs and in classical

detection systems. Chapter 4 and Chapter 5 will analyse in depth the avail-

able ML solutions to the presented problems. In Chapter 6 we present the

PELARS system along with its results, which will demonstrate the ability of

an AS to do Activity Recognition (AR). After this, we will show in Chapter

7 an example of non invasive extraction of human state using a 3D sensor.

In Chapter 8 we discuss the construction and evaluation of a system capable

of augmenting 3D maps. Finally in Chapter 9 we will discuss the achieved

results and present possible future work.

9

Chapter 2

State of the Art

2.1 History

The idea of AS dates back several centuries, starting with early Greek myths

of Hephaestus and Pygmalion who include concepts of animated statues or

sculptures [31]. The first automatic devices were called "automata", which

is defined as a self-operating machine or control mechanism designed to

automatically follow a predetermined sequence of operations, or respond to

predetermined instructions.

There are other examples in ancient China, for example in the Lie Zi

text, written in the 3rd century BC. It contains a description of a much

earlier encounter between King Mu of Zhou (1023-957 BC) and a mechanical

engineer known as Yan Shi, an ’artificer’.

Later on, around the 8th century, we find the first wind powered au-

tomata, which were defined as "statues that turned with the wind over the

domes of the four gates and the palace complex of the Round City of Bagh-

dad". We still can’t speak of autonomous systems given the complete lack of

decision making and human interaction.

First simple ASs can be found in 1206 when Al-Jazari described complex

programmable humanoid automata, which he designed and constructed

in the Book of Knowledge of Ingenious Mechanical Devices. One example of

an early AS was a boat with four automatic musicians that floated on a

lake to entertain guests at royal drinking parties. The mechanism had a

programmable drum machine with pegs (cams) that bump into little levers

that operate the percussion. It was possible to play different rhythms and

drum patterns if the pegs were moved around.

During the Reneissance the studies of automata witnessed a considerable

revival. Numerous clockworks were built in the 16th century, mainly by

the goldsmiths of central Europe. Leonardo da Vinci started sketching

and building hundreds of automatic machines, making the interest in such

devices grow in the next centuries.

10 Chapter 2. State of the Art

All these examples can not be regarded as ASs given that they were

still mainly mimicking human and were mainly considered objects of art

than of engineering. In more recent history, a new field of science was born,

Cybernetics, which filled the gap between automatas and ASs . Norbert

Wiener defined cybernetics in 1948 as "the scientific study of control and

communication in the animal and the machine" [167]. He was a mathematics

professor at MIT working to develop automated rangefinders for anti-aircraft

guns with “intelligent” behavior [68].

This theory motivated the first generation of ASs research in which sim-

ple sensors and effectors were combined with analog control electronics

to create systems that could demonstrate a variety of interesting reactive

behaviors. In 1964 one of the first AS was built by the APL Adaptive Ma-

chines Group, led by Leonard Scheer at the John Hopkins University. They

built an autonomous rover system capable of navigating the APL’s hallways,

identifying objects as electrical outlets in the walls, which it could use to

plug itself in to recharge its battery, see Figure 2.1.

FIGURE 2.1: An image showing the autonomous rover built
by the APL group in 19641.

1
http://cyberneticzoo.com/tag/autonomous/

With the advent of digital electronic controllers and the new born interest

in artificial intelligence [166, 56], more complex autonomous systems were

built. The new systems were used in several different fields, but mainly for

military purpose initially. We have many examples in several domains as

maritime, air, ground and space vehicles [156].

In modern days, ASs became widespread and a series of common sub-

problems were categorized. Each AS needs to self maintain itself, sense and

navigate the environment, perform tasks, learn from its history.

http://cyberneticzoo.com/tag/autonomous/

2.2. Self Maintenance 11

2.2 Self Maintenance

A fundamental requirement for complete physical autonomy is the ability of

a robot to be aware of its internal state. This ability is called "proprioception".

Many of the commercial robots available in the market today can find and

connect autonomously to a charging station, like Sony’s Aibo (Figure 2.2a)

or Ugobe’s Pleo (Figure 2.2b).

(A) (B)

FIGURE 2.2: Example of two robots capable of connecting
autonomously to a charging station. Figure (a) shows Sony’s

Aibo1 and Figure (b) shows Ugobe’s Pleo2.
1
http://www.sony-aibo.com/

2
http://www.pleoworld.com/

In the battery charging example, the robot can tell proprioceptively

that its batteries are low, and it then seeks the charger. Other examples

of proprioceptive sensors are thermal, optical and haptic, as well as those

measuring the Hall effect (electric) [63]. These abilities will be required more

and more for robots in order to work autonomously near people and in

harsh environments. Autonomous rovers used to explore extraterrestrial

planets need often to work autonomously for several years, without the

possibility of any physical maintenance [159].

This brought to the development of even more advanced systems capable

of self repairing [52]. In this case the system is able not only to asses an

incorrect self state, but also to remedy it by taking appropriate actions. It is

important to notice that this kind of failures can affect both hardware and

software.

2.3 Sensing and Navigating

Autonomous systems need to sense the environment in order to navigate it

[93, 42]. To do this they are usually equipped with a set of sensors, which

allow them to perceive the space surrounding them. The most common

sensors are 2D cameras and depth sensors [9]. Both are usually used to

http://www.sony-aibo.com/
http://www.pleoworld.com/

12 Chapter 2. State of the Art

construct a 3D map of the explored space in order to avoid obstacles and to

map unknown areas, Figure 2.3.

FIGURE 2.3: An example of 3D mapped environment from
the IROS 2014 Challenge1.

1
https://github.com/introlab/rtabmap/wiki/

IROS-2014-Kinect-Challenge

Examples of other sensors used to understand the environment are:

electromagnetic spectrum, sound, touch, smell, temperature and altitude.

Within the depth sensors, a great variety of models is available, from

commercial ones as the Kinect v1 and Kinect v2 [164] to more precise models

like laser scanners. The first ones are less accurate (v1 ≥ 1.5 mm at 50 cm.

About 5 cm at 5 m), but cheap, while laser scanners are much more precise

(<1mm), but are more expensive. It is also important to notice that the

different systems have different update frequencies. This it not relevant

if static scenes are scanned, but it can cause problems when fast moving

objects are scanned. While commercial sensors have frequencies between

30Hz and 60Hz, laser scanners can reach over 1KHz for single scanned line.

Many ASs are hence equipped with stereo cameras, which are also capa-

ble of inferring the depth. These cameras have the advantage that they are

usually cheaper, don’t need specialised software and have more software

support. We will analyse in a Section 8.2 the advantages and disadvantages

of 2D sensors against depth sensors.

https://github.com/introlab/rtabmap/wiki/IROS-2014-Kinect-Challenge
https://github.com/introlab/rtabmap/wiki/IROS-2014-Kinect-Challenge

2.4. Performing tasks 13

2.4 Performing tasks

Once the environment has been sensed, the ASs need to take actions in

order to fulfill a certain objective. To do this, the AS need to be able to

take conditional decision, which are usually determined by some machine

learning algorithm [120].

An example of such a system can be found i the Cataglyphis rover. This

robot has demonstrated, during the final NASA Sample Return Robot Cen-

tennial Challenge in 2016, fully autonomous navigation, decision-making,

sample detection, retrieval, and return capabilities. The rover relied on a

fusion of measurements from inertial sensors, wheel encoders, Lidar, and

camera for navigation and mapping.

More common examples of self adapting systems can be found for ex-

ample in robotic lawn mowers [45], which can adapt their programming by

detecting the speed at which grass grows or some vacuum cleaning robots

[137], which are able to sense how much dirt is being picked up and use this

information to plan the amount of time spent in different areas.

Usually these systems try to maximize an objective score given by an

objective function. Classically this could be done using calculus trying

to minimize a cost function or maximizing an objective score. Nowadays

Reinforcement Learning (RL) is used to train directly an AS by examples

without having the need to define an objective function, but by just defining

an objective score. This made it possible to train easily non linear function

which gave promising results lately [101].

Very often ASs need to manipulate objects. To do this they need to firstly

identify an object in space and then compute the objects pose. A pose is

defined by 6 degrees of freedom, 3 for rotation and 3 for translation. A

classically approach to solve this problem consists in the use of descriptors,

which can be seen as strong invariant features of an object. Techniques which

are based on this have the disadvantage of being influenced strongly by

external factors as lighting conditions. Nowadays DL techniques are used

to overcome the problems which come from having different environments.

These techniques are able to find stronger features which are no man crafted,

adapting better to real world scenarios. We will present in the next chapter

the classical approaches and in Chapter 4 the more recent techniques.

15

Chapter 3

Classic Detection

“There is nothing more deceptive than an obvious fact.”

Arthur Conan Doyle, [40]

3.1 3D Object Detection

This chapter will introduce the state of the art in detection algorithms not

based on ML, but on classical computer vision techniques. The general

pipeline for a 3D object recognition algorithm, which identifies a model in a

scene, consists of the following steps:

• Preprocessing of the depth and RGB images. This step is used to filter

the image from noise and unnecessary information. The two images

are then merged together to create a point cloud. Segmenting and

filtering objects by color can improve significantly performances and

should always be done when possible.

• Extraction of keypoints from the model and the scene. Keypoints are

point of interest that carry a big amount of information given their

position and color.

• Creation of a descriptor for each keypoint. Given that keypoints could

change from the model to the scene due to light, different scales and

deformations, a descriptor is used to describe each keypoint. In general

a descriptor consists of a set of attributes, which are scale invariant and

flexible to deformation and noise, of the keypoint and its surrounding.

• Matching of scene and model descriptors. The general strategy consists

in calculating a distance between each descriptor of the model and the

scene. If the distance is lower than a certain threshold then the two

descriptors are matched.

• Clustering of the found correspondences between descriptors. This

step is used to avoid sparse correspondences which are of no interest.

16 Chapter 3. Classic Detection

The results are clustered since a good match between the model and

the scene is found only when a big number of correspondences is

found in a relative compact space.

• Examine a plausible solution and estimate a possible object pose. All

the clusters are evaluated using some voting scheme and, if good

enough ,a possible pose is estimated using the previously found corre-

spondences.

The first three steps have to be performed on the model and on the scene,

Figure 3.1. It is important to notice that they are computed only the first time

on the model and have to be recomputed for each new scene point cloud.

FIGURE 3.1: 3D object recognition pipeline1. For each input
image, keypoints are extracted. The next step consists in the
computation on features to describe the local region around
keypoint. Matches between descriptors are computed based
on a distance metric and positive ones are clustered. Finally
a transformation from the input object to the clustered points

is estimated.
1
http://pointclouds.org/documentation

http://pointclouds.org/documentation

3.1. 3D Object Detection 17

3.1.1 Models

Creating 3D models remains a quite difficult task, expecially when creating

models of small objects like a cup or a fork. It is possible to create model

using low cost depth cameras, but there are mainly two problems:

• Homogeneous objects have few geometric features making it hard

to understand the current object position while moving around the

scanner. To avoid this problem it is often enough to place some other

objects around the model or to use markers. The drawback of this

solution is that there is the need of some post processing to remove the

additional objects.

• Most scene reconstruction algorithms are made for rooms or big scenes

and tend to approximate small objects; this leads to the problem that a

lot of key-geometrical structures get lost. As an example if you try to

scan a rubick cube you will probably just get a uniform cube.

There are some specialized libraries for scene reconstruction like kinectfusion

and the opensource version kinfu, but both suffer of the described problems.

There are also specialized 3D scanners of different dimensions which give

professional results, but they come at a higher price.

3.1.2 Keypoint Extraction

Keypoint extraction is done using either RGB or depth information. There

are three main categories of keypoints that can be subdivided based on

the cloud information which are used. A genera survey can be found in

[154]. Here we will present just a few of the most commonly used keypoint

detectors.

1. RGB:

• SIFT [97] (Scale-Invariant Feature Transform) is one of the most

used algorithms , which works analysing the RGB values of the

point cloud. To find points of interest SIFT tries to locate points

which have a high color gradient with the sorrounding. This

points usually belong to figure edges or relevant images on uni-

form surfaces.

• SURF [10] (Speeded Up Robust Feature) is several times faster and

more robust against different image transformations than SIFT.

It uses an integer approximation of the determinant of Hessian

blob detector. The determinant of the Hessian matrix is used as

18 Chapter 3. Classic Detection

a measure of local change around the point and keypoints are

chosen where this determinant is maximal.

• FAST [162] (Features from Accelerated Segment Test) is a corner

detection method. The algorithm is very efficient computationally

and in general is one of the fastest keypoint detectors available.

To detect keypoinys, FAST evaluates a circle of 16 pixels to classify

whether a candidate point is a corner. If a set of contiguous pixels

in the circle are all brighter than the intensity of the candidate

pixel plus a threshold value or they are all darker than the in-

tensity of candidate pixel minus a threshold, then the candidate

point is classified as corner.

• ORB [131] (Oriented FAST and Rotated BRIEF) aims to provide

a fast and efficient alternative to SIFT. ORB consists in a fusion

of the FAST and BRIEF descriptor with several modifications to

enhance performance. It uses FAST to detect keypoints and Harris

to detect the best ones among them. An additional enhancement

has been added to make the detector rotation invariant.

• SUSAN [143] (Smallest Univalue Segment Assimilating Nucleus)

uses a circular region to detect if a candidate pixel is a keypoint.;

the candidate pixel is called nucleus. Similarly to FAST is uses

a comparison function to evaluate the pixels in the area and

determine if the nucleus is a keypoint or not. The function is

based mainly on the brightness difference threshold of the pixels

in the area.

• Harris [39] is capable of identifying similar regions in images

taken from different viewpoints that are related by a simple ge-

ometric transformation: scaling, rotation and shearing. To do

this, the algorithm follows a sequence of steps which consists in:

Identify initial region points using scale-invariant Harris-Laplace

Detector, normalize each region to be affine invariant using affine

shape adaptation, select proper integration scale, differentiation

scale and spatially localize interest points, update the affine re-

gion using these scales and spatial localisations and finally iterate

the previous steps if the stopping criterion is not met.

2. DEPTH:

• NARF [147] (Normal Aligned Radial Feature) works by analysing

the depth values of the point cloud. To find points of interest

3.1. 3D Object Detection 19

NARF tries to find points for which the depth value changes

rapidly in their sorrounding. This technique allows to find edge

points which are of particular interest in 3D images.

• 3D SURF [83] is an extension of SURF which is based on the vox-

elization of an input cloud. Each produced bin is then described

using a modified version of SURF.

3. RGB and/or Depth: Sampling has two working modes: Uniform and

Random. Uniform sampling is very fast and scans the whole scene,

but in principle acquires more points than necessary if the model in

the scene occupies only a small fraction of it. Random sampling in

contrast can be tuned on the number of desired points but could in

principle get keypoints of undesired areas.

3.1.3 Keypoint Descriptors

Descriptors are needed since matching single keypoints is unfeasible given

scale, light and rotation changes from the model to the scene. To avoid all

these problems, not single keypoints are matched, but regions surrounding

the keypoints. This includes cubic regions, spheres (Figure 3.2), couples of

points with their direction relatively to the keypoints and so on. In general a

descriptor defines a keypoint and its surrounding.

FIGURE 3.2: Spherical reference frame for a descriptor1.
1
http://pointclouds.org/documentation/tutorials/how_

features_work.php

Descriptors can be local, Figure 3.4, or global, Figure 3.3; the first ones

consider the keypoints relatively to a small surrounding region, while the

second ones consider the entire scene . There are three main descriptors

which represent the main descriptor categories: FPFH [134] , SIFT [97] and

Shot [135]; all of them can be found in different flavors with small variations.

In general we have signature based methods and histogram based methods. The

first ones describe the 3D surface neighborhood of a given point by defining

http://pointclouds.org/documentation/tutorials/how_features_work.php
http://pointclouds.org/documentation/tutorials/how_features_work.php

20 Chapter 3. Classic Detection

an invariant local Reference Frame (RF). This frame encodes, according to

the local coordinates, one or more geometric measurements computed indi-

vidually on each point of a subset of the support. Histogram-based methods

describe the support by accumulating local geometrical or topological mea-

surements (e.g. point counts, mesh triangle areas) into histograms according

to a specific quantized domain (e.g. point coordinates, curvatures . . .). This

domain requires the definition of either a Reference Axis (RA) or a local RF.

In broad terms, signatures are potentially highly descriptive thanks to the

use of spatially well localized information, whereas histograms trade-off de-

scriptive power for robustness by compressing geometric structure into bins.

FPFH is a histogram based descriptor, SIFT is a signature based descriptor

and Shot is both a signature and histogram based descriptor.

1. FPFH (Fast Point Feature Histogram) is a faster to calculate version of

PFH (Point Feature Histogram). The goal of the PFH formulation is to

encode a point’s k-neighborhood geometrical properties by generaliz-

ing the mean curvature around the point using a multi-dimensional

histogram of values. The figure below presents an influence region

diagram of the PFH computation for a query point, marked with red

and placed in the middle of a circle (sphere in 3D) with radius r, and

all its k neighbors (points with distances smaller than the radius r)

are fully interconnected in a mesh. The final PFH descriptor is com-

puted as a histogram of relationships between all pairs of points in the

neighborhood, and thus has a computational complexity of O(k2).

FIGURE 3.3: Histogram based descriptor1.
1
https:

//computervisionblog.wordpress.com/tag/point-cloud-library-2

https://computervisionblog.wordpress.com/tag/point-cloud-library-2
https://computervisionblog.wordpress.com/tag/point-cloud-library-2

3.1. 3D Object Detection 21

2. SIFT (Scale Invariant Feature Transform) descriptor, a signature based

descriptor, uses the gradient information of a region around the key-

point to create a descriptor. Color gradient is used to encode the

changes around the keypoint. To be more precise SIFT relies on a set

of local histograms, that are computed on specific subsets of pixels

defined by a regular grid superimposed on the patch. Later on also

RGB has been introduced as an additional feature in some versions of

the SIFT descriptor

FIGURE 3.4: Signature based descriptor1.
1
http:

//pointclouds.org/documentation/tutorials/pfh_estimation.php

3. SHOT (Signature of Histograms of OrienTations) descriptor combines

the advantages from both signature based methods and histogram

based methods. It encodes histograms of basic first-order differential

entities (i.e. the normals of the points within the support), which are

more representative of the local structure of the surface compared to

plain 3D coordinates. The use of histograms brings in the filtering effect

required to achieve robustness to noise. Having defined an unique and

robust 3D local RF, it is possible to enhance the discriminative power

of the descriptor by introducing geometric information concerning

the location of the points within the support, thereby mimicking a

signature. This is done by first computing a set of local histograms over

the 3D volumes defined by a 3D grid superimposed on the support

and then grouping together all local histograms to form the actual

descriptor.

4. BRIEF [22] (Binary Robust Independent Elementary Features) was

developed to lower the memory usage of keypoint detectors and de-

scriptors, in order to be used in memory constraint systems. BRIEF

uses smoothened image patches and selects a set of location pairs in

an unique way. Then some pixel intensity comparisons are done on

these location pairs. For each location a quick comparison function is

evaluated to produce a binary string which can be used as a descriptor.

http://pointclouds.org/documentation/tutorials/pfh_estimation.php
http://pointclouds.org/documentation/tutorials/pfh_estimation.php

22 Chapter 3. Classic Detection

5. HOG [38] (Histogram of oriented Gradients) will be described more in

detail in connection with its use for face detection in 3.2

3.1.4 Matching Descriptors

Given two sets of descriptor vectors coming from two acquired scans, there

are two methods to find corresponding descriptors. It is possible to match

descriptors or keypoints, depending if the point clouds are organized; a point

cloud is "organized" if there is a viewpoint in space where the point cloud

can be described like an image (X, Y coordinates) and a last parameter: depth.

It is possible to match points or descriptors, even if, as stated previously,

point matching is not a good solution. The following three methods are

available:

1. Brute force.

2. Indexing using KD-trees, K-Means trees etc.

3. Using organized data to search for a correspondence in a small region.

To find the best matches between model and scene descriptors, FLANN (Fast

Library for Approximate Nearest Neighbors) [103] is one the most popular

choices. FLANN is a library for fast approximate nearest neighbor searches

in high dimensional spaces. It is a specific implementation of a KD-tree,

see Figure 3.5, or k-dimensional tree, which is a data structure used for

organizing points in a space with k dimensions. Model descriptors or scene

descriptors are inserted into a KD-tree; for each descriptor of the other set, the

nearest neighbor in the KD-tree is found. Once two desriptors are matched,

a correspondence is created and stored. In general all algorithms used for

minimum distance search can be used to match descriptors, depending on

the search space dimensions.

Naturally, not all estimated correspondences are correct. Since wrong

correspondences can negatively affect the estimation of the final transforma-

tion, they need to be rejected. This could be done using RANSAC (RANdom

SAmple Consensus) or by trimming down the amount of correspondences

using only a certain percent. RANSAC is an iterative method to estimate pa-

rameters of a mathematical model from a set of observed data that contains

outliers. It is a non-deterministic algorithm in the sense that it produces a

reasonable result only with a certain probability, with this probability in-

creasing as more iterations are allowed. RANSAC works very well with well

structured objects which have a "geometrical" shape. This method tries to

extract keypoints that lie on the geometrical structure specified; for example

3.1. 3D Object Detection 23

FIGURE 3.5: Example of a KD-tree1.
1
http://groups.csail.mit.edu/graphics/classes/6.838/S98/

meetings/m13/kd.html

if a plane is specified then RANSAC will try to find keypoints which lie on a

plane.

There is also the possibility of using PPF (Point Pair Features)[43], four-

dimensional descriptors of the relative position and normals of pairs of

oriented points on the surface of an object ; this algorithm covers the whole

recognition pipeline, implementing a custom version of each step. Compared

to traditional approaches based on point descriptors, which depend on local

information around points, this algorithm creates a global model description

based on oriented point pair features and matches the model locally using a

fast voting scheme. The global model description consists of all model point

pair features and represents a mapping from the point pair feature space

to the model, where similar features on the model are grouped together.

Such a representation allows to use much sparser object and scene point

clouds, resulting in very fast performance. Recognition is done locally using

an efficient voting scheme, similar to the Generalized Hough Transform,

to optimize the model pose, which is parametric in terms of points on the

model and rotation around the surface normal on a reduced two-dimensional

search space. Descriptors are matched using a hash table that allows an

efficient lookup during the matching phase. This method could be used in

principle to match any kind of descriptor.

3.1.5 Clustering Correspondences

This step is used to avoid sparse correspondences which are of no interest.

The found correspondences are clustered since a good match between the

model and the scene is found, see Figure 3.6, only when a big number of

correspondences is found in a relative compact space. A possible method

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

24 Chapter 3. Classic Detection

is called General Hough Trasform (GHT) [6]; this method is based on the

Hough Transform (HT), which is a popular computer vision technique

originally introduced to detect lines in 2D images. Successive modifications

allowed the HT to detect analytic shapes such as circles and ellipses. Overall,

the key idea is to perform a voting of the image features (such as edges

and corners) in the parameter space of the shape to be detected. Votes are

accumulated in an accumulator whose dimensionality equals the number

of unknown parameters of the considered shape class. For this reason,

although general in theory, this technique can not be applied in practice

to shapes characterized by too many parameters, since this would cause

a sparse, high-dimensional accumulator leading to poor performance and

high memory requirements. By means of a matching threshold, peaks in

the accumulator highlight the presence of a particular shape in the image.

The GHT extends the HT to detect objects with arbitrary shapes, with each

feature voting for a specific position, orientation and scale factor of the shape

being sought. To reduce the complexity, the gradient direction is usually

computed at each feature position to quickly index the accumulator.

GHT has though well known limitations to deal with 3D shapes and

6-degree-of-freedom poses (in particular, curse of dimensionality and sparse-

ness of the voting space). To avoid this problem a more general RANSAC

approach is often used.

FIGURE 3.6: An example of "Good" correspondences1.
1
http://pointclouds.org/documentation/tutorials/

correspondence_grouping.php

Another possible algorithm is Geometric Consistency (GC) [24]. This

algorithm is based on a mathematical condition that checks the consistency

of pairs of correspondences in the 3D space. It can be used in combination

http://pointclouds.org/documentation/tutorials/correspondence_grouping.php
http://pointclouds.org/documentation/tutorials/correspondence_grouping.php

3.1. 3D Object Detection 25

with a local surface descriptor for surface representation. A local surface

descriptor is characterized by its centroid, its local surface type and a 2D

histogram. The 2D histogram shows the frequency of occurrence of shape

index values vs. the angles between the normal of reference feature point

and that of its neighbors. Instead of calculating local surface descriptors for

all the 3D surface points, they are calculated only for feature points that are in

areas with large shape variation. In order to speed up the retrieval of surface

descriptors and to deal with a large set of objects, the local surface patches

of models are indexed into a hash table. Given a set of test local surface

patches, votes are cast for models containing similar surface descriptors.

Local surface patches candidate models are hypothesized based on potential

corresponding.

The first algorithm performs better in most situations, but is slower while

the second one is faster, but generates a lot of false positives that have to

be filtered. GHT has also the advantage that it can be fine tuned, while GC

allows for almost no tuning.

3.1.6 Estimate Object Pose

After clustering the accepted correspondences and voting for each result,

a set of possible solutions is extracted along with a possible pose using

the GHT. The pose can then be refined using a registration algorithm. The

registration procedure consists in the process of aligning two point clouds

to obtain the minimum distance between them. A famous iterative example

of such an algorithm is Iterative Closest Point (ICP) [173]; in this algorithm,

one point cloud, the reference or target, is kept fixed, while the other one

is moved to best match the reference. This algorithm iteratively revises the

transformation (combination of translation and rotation) needed to minimize

the distance from the source to the reference point cloud. The basic steps are

the following:

1. For each point in the source cloud find the nearest point in the reference

cloud.

2. Estimate the combination of rotation and translation using a mean

squared error cost function that will best align each source point to its

match found in the previous step.

3. Transform the source points using the obtained transformation.

26 Chapter 3. Classic Detection

4. Iterate over the previous steps until some convergence criterion is met,

usually a fixed number of iterations or a distance error between source

and reference point cloud.

The main disadvantage of such an algorithm relies in its high resource

demand due to the ICP complexity; in fact to obtain real time results quality

parameters have to be lowered. The main advantage of this algorithm is

that it achieves very good alignment results, refining the initially estimated

pose. If used to make only small alignments, fast results can be achieved

with minimum effort.

A faster version of ICP exists and is called projective-ICP [50], but it

needs a good initialization. There exists also a GPU implementation of such

algorithm which improves drastically the speed and is used in applications

as KinectFusion [109]/

3.1.7 Qualitative Analysis

The following tables 3.1, 3.2, 3.3 show a qualitative analysis of the different

proposed methods in terms of the different pipeline steps required in an

object recognition pipeline.

Quantity Quality Used info
NARF Low High Depth
SIFT High Medium Color

Sampling Variable Randomic -
PPFE Low High Depth

TABLE 3.1: Qualitative evaluation for the keypoint extrac-
tion.

Time Quality Type
SHOT Fast High Hist. & Sig.
FPFH Slow Medium Signature
SIFT Slow High Histogram
PPFE Fast High Signature
PFH Very Slow Medium Signature

TABLE 3.2: Qualitative evaluation for the keypoint descrip-
tors.

Time Quality Flexibility
Hough Fast High High

Geometric Fast Low Low

TABLE 3.3: Qualitative evaluation for the clustering algo-
rithms.

3.1. 3D Object Detection 27

3.1.8 Measurements

It is important to measure the quality of the recognized object in the scene;

to do this three main quantitative measures have to be considered, which

have to be added to the qualitative measures displayed in Figure 3.1.7:

• If the object is recognized.

• What is the error in the pose estimation.

• Robustness against cluttering and noise.

The first parameter can be evaluated on standard datasets, calculating false

positives and false negatives. It is quite complex to find false positives and

false negatives without having a human analyzing the scene and comparing

it to the detected object. One possible solution is to align the recognized

object with the scene using a registration algorithm as ICP and then calculate

the fitness of the alignment. The main problem in this case is to find a good

threshold for the fitness value, which can discriminate false positives and

false negatives.

The second parameter is evaluated calculating the distance and rotation

error between the estimated object and the real object [75]. A lot of different

measures (�) have been implemented to compute the difference of two

rotations expressed as quaternions (q1, q2) or rotation matrices (R1, R2), like:

1. Inner Product of Unit Quaternions:

�3 : S3
◊ S3

æ R+,

�3(q1, q2) = arccos(|q1 · q2|)

2. Geodesic on the Unit Sphere:

�6 : SO(3) ◊ SO(3) æ R+,

�6(R1, R2) = Î log(R1R2
T)ÎF

where Î . . . ÎF denotes the frobenious norm, log(R) = ◊
2 sin(◊)(R ≠ RT)

and 1 + 2 cos(◊) = Tr(R).

The third error can be estimated adding a constant uniform gaussian

noise, occluding a fixed percentage of the object and then calculating the

previously described errors. It is important to notice also that all this mea-

sures make sense assuming that the algorithm remains real-time or almost

real-time since we are evaluating ASs that interact with humans. This gives

a strong constraint when trying to optimize the quality of the detector. By

this we mean that relaxing this condition allow to get almost arbitrary good

results.

28 Chapter 3. Classic Detection

3.1.9 Multi Object Detection

Detecting N objects in a scene increases a lot the computational requirements

of the algorithm. Some stages of the pipeline remain almost the same and

do not add any overhead, like the calculation of keypoints and descriptors

for each model which can be done offline in a preliminary phase. The main

performance issue is given in the comparison of the descriptors from the

models and the scene; in the worst case we have O(k2) comparisons, which

slows down a lot the detection process. A first solution could be to create in

parallel N different detectors, but this depends on the number of available

processing cores. Acceptable results can still be achieved having small point

clouds and a good pre-filtering stage that removes all the non interesting

regions [29].

3.1.10 Final Remarks

As described before there is no perfect solution to the problem of detecting

an object in a 3D scene in real time. The pipeline remains very complex and

needs a lot of parameter tuning to obtain good results, depending too much

on the input, which has to be recognized. The algorithms need to be imple-

mented efficiently on GPU to obtain good performance results, since now

the computational complexity is too demanding. ML approaches simplify

drastically the problem given that the parameters are learned automatically

by the system and computation can be easily done on GPUs by default.

3.2 Face Detection

The most used classical face detection algorithm remains the Viola and Jones

[161] one that is based on Haar features. Another well known algorithm

is based on HoG. Both approaches are based on Support Vector Machines

(SVM), which was one to the most used ML techniques before the rediscovery

of NNs, as described previously. We will describe in the following both

approaches specifying the critical aspects that made such systems perform

worst than newer systems based on CNNs.

3.2.1 Haar Detector

A Haar detector is a machine learning based approach where a cascade

function is trained from a lot of positive and negative images. It is then used

to detect objects in other images. This kind of detector is based on Haar

features that are usually computed over rectangular pixel areas.

3.2. Face Detection 29

A Haar-like feature considers adjacent rectangular regions at a specific

location in a detection window. The value of a feature corresponds to

the difference between sums of pixel intensities in different regions. A 2-

rectangle feature, Figure 3.7 (a), consists in the sum of the pixels in the white

rectangle area minus the sum of the pixels in the black rectangle area. A

three-rectangle feature computes the sum within two outside rectangles

subtracted from the sum in a center rectangle, Figure 3.7 (b). Finally a

four-rectangle feature computes the difference between diagonal pairs of

rectangles, Figure 3.7 (c).

FIGURE 3.7: Example of Haar features. (a) represents a 2-
rectangle feature, (b) represents a 3-rectangle feature and (c)

represents a 4-rectangle feature1.
1
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_

detection.html

This kind of features can be used, for example, to identify faces noticing

that the region around the eyes is darker than the region of the cheeks.

Therefore a common Haar feature for face detection is a set of two adjacent

rectangles that lie above the eye and the cheek region, Figure 3.8. The

position of these rectangles is defined relative to a detection window that

acts like a bounding box to the target object .

FIGURE 3.8: Example of Haar features in face recognition1.
1
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_

detection.html

http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html

30 Chapter 3. Classic Detection

Initially, the algorithm needs a lot of positive and negative examples to

train the classifier. The next step consists in computing descriptors for the

given examples. For this, Haar features shown in Figure 3.7 are used. Each

feature is a single value obtained by subtracting the sum of the pixels under

white rectangle from the sum of the pixels under the black rectangle.

The speed with which features may be evaluated does not adequately

compensate for their number. For example, in a 24x24 pixel sub-window

there are a total of M = 162,336 possible features, and it would be pro-

hibitively expensive to evaluate them all when testing an image. Thus, the

object detection framework employs a variant of the learning algorithm

AdaBoost to both select the best features and to train classifiers that use

them. This algorithm constructs a “strong” classifier as a linear combination

of weighted simple “weak” classifiers.

The algorithm can be improved even more given that most areas of an

image don’t contain faces, so it is possible to use Cascading. in cascading,

each stage consists of a strong classifier. All the features are grouped into

several stages where each stage has certain number of features.

The job of each stage is to determine whether a given sub-window is

definitely not a face or may be a face. A given sub-window is immediately

discarded as not a face if it fails in any of the stages.

The Viola and Jones approach offers real-time performance and scale-

location invariance, but it still has a few disadvantages as intolerance to

object rotations, sensitivity to illumination variations, occlusion etc.

3.2.2 HoG Detector

The essential thought behind the HoG descriptors is that objects and shapes

in an image can be described by the color intensity gradients or edge direc-

tions. An image is divided into small connected regions called cells, and for

the pixels within each cell, a histogram of gradient directions is computed.

The image descriptor is the concatenation of the computed histograms.

The HoG descriptor has a few key advantages over other descriptors.

Since it operates on local cells, it is invariant to geometric and photometric

transformations, except for object orientation. Such changes would only

appear in larger spatial regions. The HoG descriptor is thus particularly

suited for human detection in images.

In the example of face recognition, an SVM is trained with examples of

HoG features computed for faces (positive and negative examples), Figure

3.2. Face Detection 31

FIGURE 3.9: Example of gradients computed on a face [130].

3.9. HoG suffers mostly of the same disadvantages of Haar except that it is

robust to illumination changes.

3.2.3 Haar Vs HoG

HoG features are capable of capturing object outline/shape better than Haar

features. On the other hand, simple Haar features can detect regions brighter

or darker than their immediate surrounding region better than HoG features.

In general HoG features can describe shape better than Haar features and

Haar features can describe shading better than HoG features. That is also

why Haar features are good at detecting frontal faces and not so good for

detecting profile faces. This is because the frontal face has features such as

the nose bridge that is brighter than the surrounding face region. But the

profile face most prominent feature is it’s outline or shape, hence HoG would

perform better for profile faces. HoG and Haar features are complementary

features, hence combining them might even result in better performance.

Given the work of Abrah et al. [2] and Negri et al.[108] it is possible to see

that Haar performs generally better than HoG. It is important to notice that

both detectors have to be executed on windows of different scales, which

have to be slid over the figure resulting in high computational cost. Also

both approaches suffer of several problems like side views, illumination,

occlusion etc. Newer ML methods as CNNs overcome this problems as

described in Chapter 4.

32 Chapter 3. Classic Detection

3.3 Body Pose Estimation

A body pose consists in general of rigid parts and joints. The human body

has 244 degrees of freedom with 230 joints, making pose estimation a very

hard problem. Algorithms must account for large variability introduced by

differences in appearance due to clothing, body shape, size, and hairstyles.

Additionally self occlusion is something very common, given that often parts

of a body are covered by other parts during movements. Typically body

pose estimation systems are based on a template matching approach, in

which the pose estimation is achieved by maximizing the similarity between

an observation and a template model.

FIGURE 3.10: Example of estimated body poses1.
1
https://www.slideshare.net/cameraculture/kinect-tutorial

The most commonly used model to reconstruct a human pose is based

on part-models, see Figure 3.10. To represent mathematically a human body,

parts are connected to each other using springs. Hence this kind of model

is also known as Spring model [15]. The position of each part is expressed

by the compression and expansion level of the springs. It is important to

notice that there are geometric constrain on the orientation of the springs.

For example, limbs of legs cannot move 360 degrees. Hence parts cannot

have that extreme orientation. This reduces the possible poses space making

it more tractable for algorithms.

The spring model forms a graph G(V,E) where nodes (V) corresponds

to the parts and edges (E) represent springs connecting two neighboring

parts. Each location in image can be expressed by the x and y coordinates

of the pixel location. Let pi(x, y) be the point at ith location. Then, the

cost associated in joining the spring between ith and the jth point can be

https://www.slideshare.net/cameraculture/kinect-tutorial

3.3. Body Pose Estimation 33

given by S(pi, pj) = S(pi ≠ pj). Hence, the total cost associated in placing

l components at locations Pl is given by

S(Pl) =
lÿ

i=1

iÿ

j=1
sij(pi, pj) (3.1)

The above equation simply represents the spring model used to describe

body pose.

Several approaches have been used successfully to estimate and track

body poses [102]. Most of them are based on template matching, achieving

good results, but suffering often from the occlusion problems [61].

One of the most successful approaches, which was used in conjunction

with Kinect v1 camera, is the work of Shotton et al. [139] that uses a single

depth image to estimate the body pose. It is based on Random Decision

Forests which are trained on a dataset of labeled body poses. In addition,

several synthetic images have been created to enrich the training dataset

given the high variability of the possible input poses. Final results show

over 90% confidence in the detection of almost all body parts at ≥ 200Hz on

an Xbox GPU.

35

Chapter 4

Deep Learning

“We need to go deeper.”

Inception, [76]

Here we will briefly introduce DL to cover the state of the art and the

topics of the following chapters. DL is based on DNN which are larger NNs

with a higher number of layers, bigger training sets and specialized layers

as convolutional, recurrent, LSTM . . .

4.1 Deep Neural Network

DNNs are computing systems inspired by the biological neural networks

that constitute animal brains. Such systems learn tasks by examples, gen-

erally without task-specific programming. They have found most use in

applications where it is difficult to find features, where input data is noisy,

or where the input space is very large given the ability of DNNs to extract

meaningful information discarding the rest.

A DNN is based on a collection of connected units called artificial neu-

rons, analogous to axons in a biological brain. Each connection (synapse)

between neurons can transmit a signal to another neuron, Figure 4.1. The

receiving (postsynaptic) neuron can process the signal(s) and then signal

downstream neurons connected to it. Neurons may have a state, gener-

ally represented by real numbers, typically between 0 and 1. Neurons and

synapses may also have a weight that varies as learning proceeds, which

can increase or decrease the strength of the signal that it sends downstream.

Further, they may have a threshold such that only if the aggregate signal is

below (or above) that level, the downstream signal is sent. These thresholds

are called activation functions and several of them are available based on the

learning problem, Figure 4.2. In general they are necessary since a sequence

of linear operations can be aggregated as a single linear operation and so

having multiple layers would be useless. This way the neural network is

not a sequence of linear operations, but a sequence of linear operations

36 Chapter 4. Deep Learning

FIGURE 4.1: Example of artificial neuron. Input values xi are
multiplies by weights wi and then summed up along with
a bias vector b. The output is passed through an activation
function f to produce the final output y. The actual Neuron
is only the first part of the image summing pu all values

along with the bias.1
1
https://tex.stackexchange.com/questions/132444/

diagram-of-an-artificial-neural-network

interleaved with non linear ones, which makes it possible for the network to

learn more complex functions.

Typically, Artificial Neural Networks are organized in layers. Differ-

ent layers may perform different kinds of transformations on their inputs.

Signals travel from the first (input) to the last (output) layer, possibly after

traversing the layers multiple times. When each neuron of one layer is con-

nected to each neuron of the next layer, the system is called a fully connected

network, Figure 4.3.

A DNN is composed of a pipeline of linear matrix multiplications, which

are followed, after each stage, by a nonlinear function called activation

function. These non linear functions are usually a sigmoid function as TanH

or Relu. The general behavior can be synthesized as follows: given an input

vector x, a series of matrices Ai composed of weights w(k,j), a bias vector b,

an activation function F and an output Yi, it is possible to write stage i as:

Yi = F (Aix + b) (4.1)

The output Yi will then be the input of the next stage of the pipeline, until

reaching the end where a classifier or regressor computes the final output.

DNNs can be used for nonlinear classification or regression. In the first case

the network is trained to obtain a label indicating the category to which

the input belongs, while in the latter, the network learns to fit an unknown

https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network

4.1. Deep Neural Network 37

FIGURE 4.2: Examples of possible activation functions.1
1
http:

//www.turingfinance.com/misconceptions-about-neural-networks

function using the input and output data in order to estimate points which

are not present in the input set.

In DNNs, each layer of nodes trains on a distinct set of features based

on the previous layer’s output. The further you advance into the neural

net, the more complex are the features your nodes can recognize, since

they aggregate and recombine features from the previous layer, see Figure

4.7. This is known as feature hierarchy, and it is a hierarchy of increasing

complexity and abstraction. It makes deep-learning networks capable of

handling very large, high-dimensional data sets with billions of parameters

that pass through nonlinear functions.

The original goal of the DNN approach was to solve problems in the same

way that a human brain would. To train such networks a backpropagation

algorithm is used, which back propagates gradients through the network

to adjust it to the correct output. This kind of networks suffer some times

from producing low level features or overfitting the input data, given that

each neuron receives inputs from all the previous ones. To overcome this

problem, a technique called Dropout has been introduced [145]. Dropout

is expressed as a probability value which deactivates a connection between

two neurons with a probability D. This encourages the network to find

higher level features given that neurons can not rely on having always the

http://www.turingfinance.com/misconceptions-about-neural-networks
http://www.turingfinance.com/misconceptions-about-neural-networks

38 Chapter 4. Deep Learning

FIGURE 4.3: Example of multilayer NN with fully connected
layers.1

1
http://neuralnetworksanddeeplearning.com/chap6.html

same information from the previous layer. In general, techniques used to

reduce the problem of overfitting are called regularization.

In recent times, DL has been proved to be an improved solution of NN

capable of extracting higher-level complex information through a hierarchi-

cal abstraction and learning process [107]. DL demonstrated to be a valuable

approach in solving complex problems, such as human action recognition

[126, 138], image segmentation [26] and clustering [115].

Several applications have been developed utilizing DL to complement

RGB-D sensors in ML and to obtain a higher accuracy despite imperfect

sensor data. Examples can be found in several domains. In action recognition

[138], where Shahroudy et al. proposed a new deep learning network for

hierarchical RGB-D features factorization for action recognition and a ML

algorithm to improve action classification. In object recognition [46], Eitel et

al. proposed a system based on two separate CNNs, one for the RGB data

stream and one for the depth; the two streams are consecutively combined

with a late fusion network to improve the robustness of the approach.

4.2 Convolutional Neural Networks

CNNs are NNs where a certain number of layers is composed of Convo-

lutional layers; these kind of networks have been mainly used for image

analysis. The use of these networks started after the great results achieved

with Alexnet [88], which improved greatly over the state of the art methods

in image classification.

Convolutional layers apply a convolution operation to the input, passing

the result to the next layer [44]. The idea is to have a sliding window of size

K that is convolved over the whole image in parallel. Each convolutional

neuron processes data only for its receptive field (window). It performs a

http://neuralnetworksanddeeplearning.com/chap6.html

4.2. Convolutional Neural Networks 39

FIGURE 4.4: Examples of a Convolutional layer. The depth
of the features increases in the next layer1.

1
https://www.slideshare.net/JunhoCho1/

convolutional-neural-network-76817816

weighted sum between his receptive field and a weight matrix called Kernel

of Filter. Each neuron can apply several filters making the output image

"deeper", Figure 4.4. Each produced output image from using one filter is

called activation map, Figure 4.5.

FIGURE 4.5: Examples of an activation map. The size of
the image is reduces given that the kernel is convolved only

inside the image1.
1
https://www.slideshare.net/JunhoCho1/

convolutional-neural-network-76817816

Often Convolutiona Layers are followed by a pooling operation that

reduces the size of the input image. The pooling layer operates on a window

aggregating values into a single value, Figure 4.6. This can be done, for

example, using a max() function (Max Pooling) or avg() (Average Pooling).

Given the two operations of Convolution and Pooling, an image is made

smaller and deeper while progressing through a CNN. This corresponds to

fixing attention to some areas and extracting higher level features at each

level of the CNN, Figure 4.7.

It would be possible, in principle, to use Fully Connected NNs to process

images, but the number of parameters would be intractable. The convolution

operation brings a solution to this problem as it reduces the number of free

parameters, allowing the network to be deeper with fewer parameters. In

other words, it resolves the vanishing or exploding gradients problem in

https://www.slideshare.net/JunhoCho1/convolutional-neural-network-76817816
https://www.slideshare.net/JunhoCho1/convolutional-neural-network-76817816
https://www.slideshare.net/JunhoCho1/convolutional-neural-network-76817816
https://www.slideshare.net/JunhoCho1/convolutional-neural-network-76817816

40 Chapter 4. Deep Learning

FIGURE 4.6: Examples of a pooling layer. The image is
down sampled, making it smaller, but the feature depth is

unchanged1.
1
http://cs231n.github.io/convolutional-networks/

training traditional multi-layer neural networks with many layers by using

backpropagation.

FIGURE 4.7: Examples of CNN features. The initial layers are
similar while later layers specialise for the detected content1.

1
https:

//www.slideshare.net/akshaymuroor/deep-learning-24650492

The structure of CNNs also allows fast training and inference on GPUs

making CNNs the most commonly used networks type for detection and

classification on images.

Latest works have improved CNNs using inception [150] and skip layers

[73].

The inception layers consists of a series of variable size convolutional

filters that get combined at the end into a deep output, Figure 4.8a. Skip

http://cs231n.github.io/convolutional-networks/
https://www.slideshare.net/akshaymuroor/deep-learning-24650492
https://www.slideshare.net/akshaymuroor/deep-learning-24650492

4.3. Recurrent Neural Networks 41

(A) (B)

FIGURE 4.8: Figure (a) shows the inception layers as a com-
position of several filters[150]. Figure (b) shows skip layers
allow input parameters to flow through the network making

it capable of learning the identity function[73].

layers are layers which can be skipped, meaning that there is a connection

between each layers and all the successive ones, Figure 4.8b. This makes

it possible to learn the identity function, which is usually hard to train in

CNNs.

4.3 Recurrent Neural Networks

The idea behind Recurrent Neural Networks (RNN) is to enhance NNs with

the ability of tracking time. This means that each neuron need the ability of

tracking previous examples to make the current output not only dependent

on the current input, but also of the previous one. The decision a recurrent

net reached at time step t ≠ 1 affects the decision it will reach one moment

later at time step t. So, recurrent networks have two sources of input, the

present and the recent past, which combine to determine how they respond

to new data.

That sequential information is preserved in the recurrent network’s

hidden state, which manages to span many time steps as it cascades forward

to affect the processing of each new example.

Recurrent networks rely on an extension of backpropagation called back-

propagation through time. Time, in this case, is simply expressed as the

combination of a series of steps that have to be computed one after the

other. Adding a time element only extends the series of functions for which

we calculate derivatives with the chain rule. This can be summarized as

unfolding a RNN in time. The unfolded network contains k inputs and

outputs, but every copy of the network shares the same parameters. Then

the backpropagation algorithm is used to find the gradient of the cost with

respect to all the network parameters.

42 Chapter 4. Deep Learning

FIGURE 4.9: Schematics representing a sequence of LSTM
neurons1.

1
https://deeplearning4j.org/lstm.html

It is important to remember that RNNs suffer from the vanishing and

exploding gradients problem [117, 70], but there are several solutions present

in literature to overcome it [13].

4.3.1 Long Short Term Memory

Long Short Term Memory (LSTM) [71] has been introduced to overcome

some problems affecting RNNs and to give networks the ability to decide

when to use memory and when to erase it. They have been explicitly de-

signed to avoid the long-term dependency problem. These networks have

been widely used for speech recognition [60] and for object tracking [55]

where context and previous state are fundamental.

Figure 4.9 shows the schematics of an LSTM neuron. The first decision of

an LSTM neuron is to erase or not old information. This decision is made by

a sigmoid layer ‡1 called the "forget gate layer". It looks at ht≠1 and xt, and

outputs a number between 0 and 1 for each number in the cell state Ct≠1.

A 1 represents store this while a 0 represents erase this. It is important to

notice that the value is a continuous value between 0 and 1 and so different

levels of keep/erase can be obtained.

The next step is to decide what part of the new information has to be

kept. First, an input gate layer decides which values to update, ‡2. Next, a

tanh function creates a vector of new candidate values which is combined

with the current input and the previous state to create the new input.

The last step consists in deciding what to output. This output will be

based on the current state, but will be filtered. First, we run a sigmoid layer

‡3 that decides what parts of the cell state to output. Then, the output is

passed through a tanh function (to push the values to be between -1 and 1)

and multiply it by the output of the sigmoid gate, in order to output only

the selected components.

https://deeplearning4j.org/lstm.html

43

Chapter 5

Deep Learning Detection

“A baby learns to crawl, walk and then run. We are in the

crawling stage when it comes to applying Artificial Intelligence.”

Dave Waters, [149]

5.1 Object Recognition

Several different techniques have been researched for object recognition

[80]. The field can be split between 2D and 3D detection, with possible pose

estimation in both cases. Research is still focused mainly on using 2D images

for detection given the human ability of solving this problem without depth

information. Adding an additional dimension to the problem might bring to

performance issues if not addressed correctly. Current DNNs have already

hundreds of layers and millions of parameters when working with relatively

small images (640x480 for example). Adding a depth value to the input can

be tractable if the image is used as a 2D image with 4 channels (rgb-d) using

2D convolutions. The use of 3D convolutions in space instead makes the

problem a lot more complicated given that it is necessary to convolve a 3D

region over a 3D space (possibly at different scales). Other possible solutions

are available, but it is important to notice that the additional data might not

bring any benefit; 3D datasets are not widely available and are relatively

small compared to existing 2D datasets. The most widely used 2D datasets

for benchmarking deep learning algorithms are:

• MNIST: handwritten digits (http://yann.lecun.com/exdb/mnist/)

• NIST: similar to MNIST, but larger (https://www.nist.gov/srd/

nist-special-database-19)

• CIFAR10 / CIFAR100: 32×32 natural image dataset with 10/100 cate-

gories (http://www.cs.utoronto.ca/~kriz/cifar.html)

• Caltech 101: pictures of objects belonging to 101 categories (http://

www.vision.caltech.edu/Image_Datasets/Caltech101/)

http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/srd/nist-special-database-19
https://www.nist.gov/srd/nist-special-database-19
http://www.cs.utoronto.ca/~kriz/cifar.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/

44 Chapter 5. Deep Learning Detection

• Caltech 256: pictures of objects belonging to 256 categories (http://

www.vision.caltech.edu/Image_Datasets/Caltech256/)

• Caltech Silhouettes: 28×28 binary images contains silhouettes of the

Caltech 101 dataset (http://people.cs.umass.edu/~marlin/

data.shtml)

• STL-10 dataset is an image recognition dataset for developing unsuper-

vised feature learning, deep learning, self-taught learning algorithms.

It is inspired by the CIFAR-10 dataset but with some modifications.

(http://www.stanford.edu/~acoates//stl10/)

• The Street View House Numbers (SVHN) (http://ufldl.stanford.

edu/housenumbers/)

• NORB: binocular images of toy figurines under various illumination

and pose (http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/)

• Imagenet: image database organized according to the

• WordNethierarchy (http://www.image-net.org/)

• Pascal VOC: various object recognition challenges (http://pascallin.

ecs.soton.ac.uk/challenges/VOC/)

• Labelme: A large dataset of annotated images (http://labelme.

csail.mit.edu/Release3.0/browserTools/php/dataset.php)

• COIL 20: different objects imaged at every angle in a 360 rotation(http:

//www.cs.columbia.edu/CAVE/software/softlib/coil-20.

php)

• COIL100: different objects imaged at every angle in a 360 rotation

(http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.

php)

• COCO: a large-scale object detection, segmentation, and captioning

dataset (http://http://cocodataset.org/)

There are also several 3D image datasets as described in [49], but the

main disadvantage of those is that they are created in artificial environments,

making it really hard for NNs to generalize features for real world scenarios.

These facts brings up the problem that NNs need always training datasets

that are not required in most of the classical approaches to detection, or at

least they need smaller ones. Also the size of the datasets which are necessary

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://people.cs.umass.edu/~marlin/data.shtml
http://people.cs.umass.edu/~marlin/data.shtml
http://www.stanford.edu/~acoates//stl10/
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
http://www.image-net.org/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://http://cocodataset.org/

5.1. Object Recognition 45

for training can be very big given that the objective of NNs is to generalize

features, while in classical approaches features are created manually.

5.1.1 2D Detection

2D detection is based mainly on CNNs having as output either bounding

boxes or heat maps. The most common networks used in the first approach

are YOLO [128], Recurrent CNN (R-CNN) [58], Fast R-CNN [57] and Faster

R-CNN [129]. All this networks have a GPU implementation, which makes

them very fast, but it is important to notice that for some tasks classical

approaches might be faster. This is due to the very high number of layers

which are present in many DNNs, which make the computation perform at

a speed which is less than real time (assuming 30fps). For example ResNet

[67], which was the 2015 ILSVRC winner, has 157 layers and is very deep

compared to Alexnet having only 8 layers.

YOLO is composed of single neural network that is applied to the full

image. This network divides the image into regions, and predicts bounding

boxes and probabilities for each region. These bounding boxes are weighted

by the predicted probabilities. Since the whole detection pipeline is a single

network, it can be optimized end-to-end directly on detection performance.

The networks structure is close to a fully convolutional neural network,

outputting bounding boxes in the image. The network is extremely fast

and open source, which made it widely used. It has about 9 layers in the

original version and 3 times more in YOLO9000; Table 5.1 and 5.2 shows the

structure of the classical YOLO and YOLO9000 networks .

R-CNN is based on the creation of region proposals, using a process

called Selective Search. Selective Search splits the input image into windows

of different sizes, and for each size it groups together adjacent pixels by

texture, color or intensity to identify objects. Once the proposals are created,

R-CNN creates bounding boxes around the proposed regions and passes

them through a modified version of AlexNet (the winning submission to

ImageNet 2012).

Fast R-CNN improves over R-CNN using a technique known as RoIPool

(Region of Interest Pooling). At its core, RoIPool shares the forward pass

of a CNN for an image across its subregions. The CNN features for each

region are obtained by selecting a corresponding region from the CNN’s

feature map. Then, the features in each region are pooled (usually using max

46 Chapter 5. Deep Learning Detection

TABLE 5.1: YOLO Layers.

Layer Kernel Stride Output Shape
Convolution 3×3 1 (416, 416, 16)
MaxPooling 2×2 2 (208, 208, 16)
Convolution 3×3 1 (208, 208, 32)
MaxPooling 2×2 2 (104, 104, 32)
Convolution 3×3 1 (104, 104, 64)
MaxPooling 2×2 2 (52, 52, 64)
Convolution 3×3 1 (52, 52, 128)
MaxPooling 2×2 2 (26, 26, 128)
Convolution 3×3 1 (26, 26, 256)
MaxPooling 2×2 2 (13, 13, 256)
Convolution 3×3 1 (13, 13, 512)
MaxPooling 2×2 1 (13, 13, 512)
Convolution 3×3 1 (13, 13, 1024)
Convolution 3×3 1 (13, 13, 1024)
Convolution 1×1 1 (13, 13, 125)

TABLE 5.2: YOLO9000 Layers.

Layer Kernel Stride Output Shape
Convolution 3×3 1 (224, 224, 32)
MaxPooling 2×2 2 (112, 112, 32)
Convolution 3×3 1 (112, 112, 64)
MaxPooling 2×2 2 (56, 56, 64)
Convolution 3×3 1 (56, 56, 128)
Convolution 1x1 1 (56, 56, 64)
Convolution 3×3 1 (56, 56, 128)
MaxPooling 2×2 2 (28, 28, 128)
Convolution 3×3 1 (28, 28, 256)
Convolution 1x1 1 (28, 28, 128)
Convolution 3×3 1 (28, 28, 256)
MaxPooling 2×2 2 (14, 14, 256)
Convolution 3×3 1 (14, 14, 512)
Convolution 1x1 1 (14, 14, 256)
Convolution 3x3 1 (14, 14, 512)
Convolution 1×1 1 (14, 14, 256)
Convolution 3x3 1 (14, 14, 512)
MaxPooling 2×2 2 (7, 7, 512)
Convolution 3×3 1 (7, 7, 1024)
Convolution 1x1 1 (7, 7, 512)
Convolution 3x3 1 (7, 7, 1024)
Convolution 1×1 1 (7, 7, 512)
Convolution 3x3 1 (7, 7, 1024)
Convolution 1×1 1 (7, 7, 1000)

5.1. Object Recognition 47

pooling). Faster R-CNN also jointly trains the CNN, classifier and bounding

box regressor in a single model.

Faster R-CNN improves the region proposer by reusing the features of

the image computed by the forward pass of the CNN instead of using

Selective Search as in Fast R-CNN. The Region Proposal Network works

by passing a sliding window over the CNN feature map, outputting the

potential bounding boxes and probabilities.

Techniques which output heat maps are usually called segmentation

networks. In this category we have mainly fully convolutional networks as

Dense Convolutional Network (DenseNet) [73] and Mask R-CNN [66]. It is

important to notice though that DenseNet is a generic multilayered CNN

which can be used for many other purposes.

DenseNet has each convolutional layer connected to every other layer in

a feed-forward fashion. Whereas traditional CNNs with L layers have L

connections, one between each layer and its subsequent layer, DenseNet has

L ú
L+1

2 direct connections. For each layer, the feature-maps of all preceding

layers are used as inputs, and its own feature-maps are used as inputs into

all subsequent layers. DenseNets has several compelling advantages: they

alleviate the vanishing-gradient problem, strengthen feature propagation,

encourage feature reuse and substantially reduce the number of parameters.

Mask R-CNN does prediction on single pixel level. It does this by adding

a branch to Faster R-CNN that outputs a binary mask that says whether

or not a given pixel is part of an object. Some other minor modifications

have been implemented in order to make the network produce correctly

segmentation and classification. Some example output are shown in Figure

5.1.

5.1.2 3D Detection

3D object recognition using DL is becoming popular only recently. Classical

approaches are still the majority and are usually based on template matching

and voting schemes as described in Chapter 3. There are though some

interesting approaches that have been researched with success in the field.

One possible approach consists in mimicking the work of CNNs, but

doing it in 3D space sliding a 3D volume over a point cloud. This is not

properly a ML technique, but it resembles it functionality. It has been

48 Chapter 5. Deep Learning Detection

FIGURE 5.1: Example bounding boxes and predicted classes
using the Mask R-CNN network [66]. Each segmented object
is colored with a different color and a label is associated to

the surrounding bounding box.

implemented efficiently by Wang et al. in [163] with an additional voting

scheme. A proper 3D CNN is also possible and has been implemente by

Maurana et al. in [100] and by Zhou et Tuzel in [174]. The idea behind this

works is to create an architecture that integrates a volumetric Occupancy

Grid representation with a supervised 3D Convolutional Neural Network

(3D CNN). VoxNet, for example, achieves accuracy beyond the state of the

art on the most used RGB-D datasets.

Another possible approach comes from the use of Deep Belief Networks

(DBN). In ML, a DBN is a generative graphical model, or alternatively a class

of deep neural network, composed of multiple layers of latent variables,

with connections between the layers, but not between units within each layer.

A DBN can learn to probabilistically reconstruct its inputs when trained on

a set of examples without supervision. After this step, the network can be

further trained with supervision to learn classification tasks. Such networks

has been trained with success by Nair et al. [106], presenting state of the art

results on the NYU Object Recognition Benchmark (NORB) dataset [90], and

by Wu et al [172].

Recently Qi et al. [123] have developed a NN which uses directly a 3D

pointcloud as input without convolutional operations on it. The network

is composed of a first stage which does classification and a second stage

5.2. Face Detection 49

which does segmentation of the point cloud to obtain in the end smaller

point clouds of detected objects along with labels. There has been also an

improved version of this work again by Qi et al. [124] which improves the

previous work by using hierarchical NN recursively on a nested partitioning

of the input pointcloud.

5.2 Face Detection

Face detection has reached super human capabilities in the last years. The

best algorithms achieve over 99% detection rate using very deep CNNs

trained on several hundreds of millions of parameters [136, 151]. This

results have bee achieved thanks to the big datasets that have been build

in a distribute way using the photo tagging feature. Millions of users have

tagged images on social networks creating dataset of hundreds of millions

of images.

An opensource implementation of such a system is OpenFace [3], which

is a Python and Torch implementation of face recognition with DNNs. It

is actually a face recognition system that is also capable of clustering and

classifying faces. We used this in Chapter 6 to recognise the faces and the

gaze of students performing activities. Figure 5.3 shows the typical workflow

of OpenFace for face recognition.

FIGURE 5.2: Example of face recognition pipeline in
OpenFace1.

1
https://cmusatyalab.github.io/openface/

The following overview shows the workflow for a single input image.

https://cmusatyalab.github.io/openface/

50 Chapter 5. Deep Learning Detection

• Detect faces with a pre-trained models using dlib or OpenCV.

• Prepare the image for the NN. OpenPose uses dlib’s real-time pose

estimation with OpenCV’s affine transformation to make the eyes and

bottom lip appear in the same location in every image.

• Use a DNN to create a 128-dimensional unit hypersphere. This is a

generic representation for anybody’s face. Unlike other face represen-

tations, this embedding has the nice property that a larger distance

between two faces embeddings means that the faces are likely not of

the same person. This property makes clustering, similarity detection

and classification tasks easier than other face recognition techniques,

where the Euclidean distance between features is not meaningful.

• Apply a clustering or classification technique to the features to com-

plete the recognition task.

5.3 Body Pose Estimation

Body pose estimation can be done using RGB or depth images. Most of

the work in this field is done using rgb images for the reasons explained

previously. The best classical approach is still the Microsoft system explained

in Section 3.3 that is based on Random Forests and uses depth information.

A first simple approach is to train CNNs directly from the rgb images

to the output pose. Tompson et al. [155] did something similar in the sense

that they trained a CNN to detect body parts in RGB images, and then used

these as input for a spatial model to remove false positives. Thoshev et

al. [157] instead trained directly a 7 layer CNN from the rgb image to the

output pose. This gives a rough output but has the advantage of using the

whole image and thus capturing its context. To refine the pose, a cascade

of classifiers is used, which is trained to predict a displacement of the joint

locations from previous stage to the true location. Thus, each subsequent

stage can be thought of as a refinement of the currently predicted pose.

An example of work that instead uses single depth images is Huangs

et al. [74] work in which they train a CNN from the depth images to the

joint positions in 2D camera coordinates. To do this they define a special

loss function that takes account of the human body constrains. This type

of approach has the disadvantage that it needs a lot of data given the high

variability of possible human poses. They overcome the problem with the

classical technique of generating mock depth images of body poses using

the MakeHuman software [153].

5.3. Body Pose Estimation 51

DeepCut [121] is a state-of-the-art approach to multi-person pose estima-

tion based on integer linear programming (ILP) that jointly estimates poses

of all people present in an image by minimizing a joint objective. This objec-

tive aims to jointly partition and label an initial pool of body part candidates

into consistent sets of body-part configurations corresponding to distinct

people. In 2016 an improved version of DeepCut was proposed, which is

called DeeperCut [77] .

OpenPose [23, 141, 165] is an opensource library for multi-person key-

point detection written in C++ using OpenCV and Caffe. It can be used

to detect body poses, faces and hands using 2D rgb images. It improves

over DeeperCut achieving a higher accuracy. The used algorithm is based

on Part Affinity Fields (PAFs) that are a set of 2D vector fields that encode

the location and orientation of limbs over an image domain. The detection

system takes, as input, a color image and produces, as output, the 2D lo-

cations of anatomical keypoints for each person in the image. First, a NN

simultaneously predicts a set of 2D confidence maps S of body part locations

and a set of 2D vector fields L of part affinities, which encode the degree

of association between parts. Finally, the confidence maps and the affinity

fields are parsed by greedy inference to output the 2D keypoints for all

people in the image. The general pipeline is depicted in Figure 5.3.

FIGURE 5.3: General detection pipeline of OpenPose1

1
https://arxiv.org/pdf/1611.08050.pdf

The main disadvantage of this library comes from the prediction speed.

We evaluated the library using an Nvidia Geforce 1080 GPU, which is cur-

rently one of the best performing off the shelf GPUs in the consumer sector.

We were not able to achieve real time performances, but got roughly 10fps

with 0.5s latency. Shottons algorithm instead is extremely quick with roughly

200fps on lower end consumer hardware without the use of GPUs. This is

mainly due to the fact that the evaluation is done on only 3 decision trees

of depth 20. The classical approach has also the advantage of being able to

run on embedded hardware without GPUs, which are often not available on

ASs. It has the disadvantage though of needing depth information, while

OpenPose can work with just rgb data.

https://arxiv.org/pdf/1611.08050.pdf

52 Chapter 5. Deep Learning Detection

5.4 Performance

A DNN has an initial computationally intense step that consists in the

training of the network. Once the networks has been trained, it is possible to

do inference on new data.

5.4.1 Training

To train a NN first an input value is passed through the network computing

the output. This output is compared to the expected output and an error

vector is computed. Using this, the error is back propagated through he

network changing the weights of the network to converge to the expected

result. This is an iterative process which should converge to a minimum.

Usually it is better to input the whole dataset, or a part of it (batch), and

compute an aggregated error vector which is used to update the network

weights. This allows also to compute the error gradient in parallel, since

different bathes can be passed in parallel through several copies of the same

network.

This can be done on one or multiple GPUs; batches are distributed across

GPUs memory along with the network weights. It is possible to instantiate

multiple networks on the same card in order to exploit parallelism also on a

single one. Also matrix multiplication can be parallelised slightly achieving

a complexity of �(n2) instead of �(n3).

Several problems arise when using distributed machines for parallel

training of DNN. The objective is to maintain a linear speedup with the

number of used GPUs. IBM Research obtained close to ideal scaling [28]

with new distributed deep learning software, which achieved record com-

munication overhead and 95% scaling efficiency on the Caffe deep learning

framework over 256 NVIDIA GPUs in 64 IBM Power systems. Previous

best scaling was demonstrated by Facebook AI Research of 89% for a train-

ing run on Caffe2 [59], at higher communication overhead. IBM Research

also beat Facebook’s time by training the model in 50 minutes, versus the

1 hour Facebook took. Using this software, IBM Research achieved a new

image recognition accuracy of 33.8% for a neural network trained on a very

large data set (7.5M images). The previous record published by Microsoft

demonstrated 29.8% accuracy [27].

“Ironically, this problem of orchestrating and optimizing a deep

learning problem across many servers is made much more dif-

ficult as GPUs get faster. This has created a functional gap in

5.4. Performance 53

deep learning systems that drove us to create a new class of DDL

software to make it possible to run popular open source codes

like Tensorflow, Caffe, Torch and Chainer over massive scale

neural networks and data sets with very high performance and

very high accuracy. Here a variant of the “Blind Men and the

Elephant” parable is helpful in describing the problem that we

are solving and context for the promising early results we have

achieved. Per Wikipedia: “. . . Each blind man feels a different

part of the elephant body, but only one part, such as the side or

the tusk. They then describe the elephant based on their partial

experience and their descriptions are in complete disagreement

on what an elephant is.” Now, despite initial disagreement, if

these people are given enough time, they can share enough in-

formation to piece together a pretty accurate collective picture

of an elephant. Similarly, if you have a bunch of GPUs slogging

through the task of processing elements of a deep learning train-

ing problem – in parallel over days or weeks, as is typically the

case today – you can synch these learning results fairly easily.

But as GPUs get much faster, they learn much faster, and they

have to share their learning with all of the other GPUs at a rate

that isn’t possible with conventional software. This puts stress on

the system network and is a tough technical problem. Basically,

smarter and faster learners (the GPUs) need a better means of

communicating, or they get out of sync and spend the majority of

time waiting for each other’s results. So, you get no speedup–and

potentially even degraded performance–from using more, faster-

learning GPUs.”

Hillery Hunter

5.4.2 Inference

Inference consists in a single forward pass of an input through the network.

In general this step is very quick, compared to the training phase, but it

might be not quick enough for real time results needed in some ASs. There

are some techniques to speed up he computation; for example it is possible

to write the computed network on an FPGA [89] (Field Programmable Gate

Array) board or even an ASIC [116] (Application Specific Integrated Circuit)

chip which is then able to pass input values through the network in just a

few clock cycles instead of several milliseconds on off the shelf GPUs.

54 Chapter 5. Deep Learning Detection

Other possible solutions consist in using specialized off the shelf hard-

ware as for example the Movidius usb stick [78], which is providing a low

energy consumption deep learning architecture. Embedded GPUs are also

available in products as the Jetson TX1 and Tegra K1 boards, which are al-

ready used in many ASs as for example Drones and self driving cars. Figure

5.4 shows a performance comparison of some widely used architectures.

FIGURE 5.4: Performance comparison between an integrated
TX1 GPU, an Intel core i7 CPU and between a Desktop Titan

X GPU and an intel Xeon processor1.
1
https://devblogs.nvidia.com/parallelforall/

inference-next-step-gpu-accelerated-deep-learning/

https://devblogs.nvidia.com/parallelforall/inference-next-step-gpu-accelerated-deep-learning/
https://devblogs.nvidia.com/parallelforall/inference-next-step-gpu-accelerated-deep-learning/

55

Chapter 6

Activity Recognition

“Facial recognition software can pick out a person in a crowd,

but the vending machine at work can’t recognize a dollar with a

bent corner.”

Jeff Dwoskin, [160]

To understand if it is possible to do successfully activity recognition

using ML we developed the PELARS system, see Section 1.3. We used the

data collected with this system to test if it is possible to infer if students,

working on a project in a small group, are actually developing a successful

project or not. This research is focused at answering RQ1, RQ2, RQ3, RQ4

by showing that it is actually possible for an ML system to take as input an

ensemble of noisy data sources and predict with high accuracy the outcome

of an observed activity. We also show that NNs perform best compared to

traditional approaches.

6.1 PELARS Project

PELARS is a project about learning and making. It studies how people learn

about science, technology and mathematics when they use their hands as

well as their heads. A big part of the project is making more explicit the

implicit practices of science teachers: "Lab demos" and hands-on experi-

ments have been a big part of science teaching for as long as anyone can

remember, but how to model and analyse these practice, while empowering

teachers, is far less understood. So, the PELARS project aims at finding ways

of generating "analytics" (data about the learning process and analysis of

this data), which helps learners and teachers by providing feedback from

hands-on, project-based and experiential learning situations.

There are many tried and true practices in the teaching and learning of

science, technology, engineering and mathematics (STEM) that involve expe-

riential, practice and hands-on learning. Science and engineering teachers

56 Chapter 6. Activity Recognition

FIGURE 6.1: Mock up of the PELARS system1.
1
http://www.learningmaking.eu/about-pelars/

understand the importance and value of the "demonstration" and the "labora-

tory", although many of these practices are historical or traditionally routed,

and unstudied. Coming less from a tradition of constructivist education

and embodied learning, these laboratory and experimental, project-based

learning techniques come "from the lab", and have an immeasurable, if

known, value to the nurturing and training of creative STEM thinkers and

doers. Further, particular trends in Do-It-Yourself learning of STEM sub-

ject matter (through systems and platforms, communities and resources

online and off) prove inspiration for understanding and designing systems

for learning support in more convention contexts of European education

(high-school and undergraduate engineering education, as well as design

and human-computer-interaction contexts).

The PELARS project goes through three phases. First, we look at the prac-

tices of teachers and teaching institutions. How do the best STEM teachers

do what they do? What are the specific values embedded in, and value of,

the "demonstration", the "practical", the "laboratory" both in terms of institu-

tional emphasis (how teachers are supported) as well as individual learning

processes? Secondly, the PELARS convenes over a period of iterative design

phases, explicitly derived from the constraints and inspiring practices of

http://www.learningmaking.eu/about-pelars/

6.2. Background 57

real teachers, where propositional design prototypes and experiments are

tested and assayed with teaching and learning communities. This phase

includes designers and design researchers who create laptop-electronics,

and interactive kits for learning, as well as mobile learning and physical

environment (furniture and interior design) designers, pedagogy experts

and curriculum development partners, see Figure 6.1. Finally, the results of

iterative design through the second phase will bring us to a trial of PELARS

systems in real classrooms, workshop environments and educational milieu.

6.2 Background

The roots of project-based learning extends back almost a century to John

Dewey’s approach that argues for "laboratory schools" in which students

are engaged with the process of enquiry in their learning activities. It is

important to define the concept and explain its main features. Project-based

learning is a form of situated learning, in which students engage in real-

world activities that are similar to the activities that professionals engage in

[87]. Project-based learning activities that support learners’ participation in

open-ended tasks are one of the most commonly used teaching approaches

for improving 21st century skills [12], and they emphasise the engagement of

learners in projects that are personally meaningful and they encompass driv-

ing questions, investigations, and collaboration [86]. However, the hands-on

and open-ended nature of project-based learning creates challenges for track-

ing the learning process. One of the key challenges faced in project-based

work is the support of the group work and ensuring that students succeed

in the planned learning outcomes [19, 87].

Current research in multi modal learning analytics (MMLA) focuses on

better understanding the complexity of learning through the advances of

high-frequency multimodal data capture, signal processing, and machine

learning techniques [114, 127]. MMLA offers an opportunity to capture

different insights about learning in project-based learning tasks in which

students have the opportunity to generate unique artifacts like computer

programs, robots and small-groups collaboration to solve open-ended tasks

[18, 16]. MMLA builds upon multimodal human interaction, educational

data mining and many other fields that include learning sciences and cogni-

tive sciences to capture the complexity of learning through data intensive

approaches [168, 140].

In terms of the focus on purposes and context, there is an emerging body

of work with MMLA to capture small group work on project-based learning

58 Chapter 6. Activity Recognition

that has grown mainly out of the work of Blikstein and Worsley investi-

gating engineering students’design activities [16, 25, 113]. Recently, within

this research domain, Blikstein et al. [17] explored multimodal techniques

for capturing code snapshots to investigate students learning computer

programming as well as video and gesture tracking for engineering tasks;

Worsley et al. [170] presented different approaches for data classification that

included points about how these techniques have a significant impact on the

relation of research and learning theories. Both of these initial approaches

provided the means for other researchers to begin to explore MMLA with

small groups of students across different subjects. In addition, notable data

sets from the MMLA grand challenges workshop Ochoa et al. [113], pre-

sented the Math Data and Oral Presentation Quality Data Corpora that

has enabled the community to analyse and discuss the different require-

ments and results within this field. Moreover, Ochoa and colleagues’ work

[112] used existing multimedia processing technologies to produce a set of

features for accurate predictions of experts in groups of students solving

math problems, which illustrated the benefits of MMLA to support students’

learning in these contexts. Similarly, Chen et al. [25] expanded from the Oral

Presentation Quality Data corpus to further examine the feasibility of using

multimodal technologies for the assessment of public speaking skills; and

Grover and colleagues [62] have explored how to develop computational

models of social learning environments. In their work Grover and colleagues

managed to classify the quality of collaboration from body movement and

gestures of pair programmers working together with acceptable accuracy

rates. Although most of the existing MMLA research approaches focus on

learners’ data, Prieto et al. [122] and Martinez-Maldonado et al. [99] have

focused their research efforts on how MMLA can support teaching actions

and orchestration in the classroom.

On the other hand, in terms of the technical focus, in order to make

sense of complex data streams coming from multiple data sources, MMLA

researchers employ various computational techniques. These approaches

include logistic regressions, different feature reduction algorithms, and sta-

tistical models to investigate MMLA to identify features and predict student

performances. These approaches all have advantages and disadvantages

depending on the main research question and the purposes of data analysis

and have potential to provide insights how to proceed with a multimodal

data-set. Regardless of which computational approach is taken on board, it

is clear to us drawing from the literature that MMLA has a role to play to

6.3. Architecture 59

support education in project-based learning approaches and it has the po-

tential to provide new means for gathering insights for complex open-ended

learning activities which otherwise are extremely challenging to monitor

and support with existing traditional standardised evaluation approaches.

Lastly, small group work where students create unique solutions to open-

end and complex problems provide challenges that span the technical, user

experience, and new ways to support education are required for the research

to contribute to practice.

6.3 Architecture

The PELARS Learning Analytic System (LAS) is based on a client-server ar-

chitecture in which a number of remote clients acquire data during student’s

learning sessions and send the acquired information to a remote server. Here

we refer to a single remote server but, due to the nature of the involved pro-

cessing, the remote server can be easily realized as a cloud service. The LAS

contains a subsystem called Learning Environment (LE) that corresponds to

the location where the students are working on a project.

In this location the following elements have been identified: the furniture

in which the LAS will be integrated; the Arduino Kit for the experiments;

a Collector, which collects all the information gathered by the LAS and

the Sensors, analyses the scene and extracts relevant information about

objects and actions. The final results are available for the teachers through

a Web Interface. The LE comprises a series of elements that contribute to

the learning experience while, at the same time, collect information about

the activity of the students. The sources of information for the LAS are

constituted by sensors embedded in the furniture. In the following sections

the details of the different blocks will be described, together with their

interconnections.

Arduino Programming IDE The programming IDE, Figure 6.2, is the tool

used by the students for interfacing with the code and developing the

projects. PELARS designed, developed and produced a novel learning

kit called Talkoo using a novel communication protocol called ESLOV, based

on the Arduino platform, which enables working with modular hardware

components through a visual programming interface. The base for the

modular Talkoo kit is a hub that connects any combination of the other 12

modules with a computer. The amount of modules created for the initial

Talkoo kit is easily expandable. We chose a series of boards that are very

60 Chapter 6. Activity Recognition

FIGURE 6.2: Image representing the Arduino Programming
IDE.

commonly used when prototyping: relay, piezo buzzer, RGB LED, rotary

encoder, potentiometer, button, light sensor, color sensor, temperature sen-

sor, dc motor control, servo motor control and 6 axis EMU, see Figure 6.3.

We created the firmware needed for each one of the modules as well as the

hub in a way that allows for users to include as many units of the same

kind (up to the theoretical limit of 127 units, limitation imposed because

of the underlying protocol used: I2C). The processors chosen for the hub

and the modules are different, while still being both from the same brand

and family (ATMEL, ATMega). The capabilities of the processors allowed

for the basic functionality required for the prototype: I2C communication,

sufficient processing power to process the ESLOV protocol, memory to host

the needed libraries and analog/digital pins to interface with sensors and

actuators. All modules are re-programmable microcontroller boards. The

main feature of this prototype is the possibility of addressing each one of

the modules and negotiating all of the addresses when hot-plugging the

modules on the fly.

The connection between modules at a logical level is controlled through

the Talkoo Visual Programming Language (VPL). This software is a tool

where users design programs through the connection of graphical elements:

visual blocks and connection lines instead of text-based code. Each hardware

module (excluding the hub) has a graphical representation on the screen,

which, upon connection to the hub or to another module connected to the

6.3. Architecture 61

FIGURE 6.3: Talkoo components example.

hub, will automatically show up on the IDE’s screen and make itself avail-

able for the user. Each block has inlets (inputs) and outlets (outputs) when

needed. Users can literally draw connections between the outputs and in-

puts from different modules. There are also a series of logical blocks that will

allow users to filter and manipulate data within the IDE and send it to other

programs or over the Internet to a server. The VPL design served the purpose

of giving users the smallest learning curve to get creative with this technol-

ogy following the PELARS project requirements, type of students/users and

use scenarios.

Desk and vision sensors Due to the exploratory nature of the project

we opted for a two-camera setup configuration with a frontal Logitech

c920 Webcam and a top-down Kinect v2 RGB-D camera. After calibrating

the pose of these two cameras, it is possible to relate objects and motions

with respect to the student’s table. Single camera configuration could be

considered in the future, but it would require larger field of view. The

other, and more useful focus, is the one of the students that were tracked

both in terms of hand motions and head motions. These two indicators

can be connected to the measure of student’s collaboration as they emerge

from the Collaborative Problem Solving (CPS) framework developed in

PELARS. For facilitating the tracking, PELARS adopted fiducial markers

at student wrist that provide precise positioning at the cost of issues of

occlusion. Further image processing could be possible for extracting specific

interaction gestures and phases of student interactions.

We captured over time also the audio level at the table to understand

how much learners are communicating. To do this we used the microphone

incorporated in the used webcam and computed the power spectral density

of the input signal.

While we researched and prototyped concepts for passive or ambient

tracking of student behavior and patterns, at the same time we also wanted

to give students tools to actively input their own perception of the current

state of work. We wanted to know, not just what the students are doing, but

62 Chapter 6. Activity Recognition

also, how they feel about what they are doing. Furthermore, our contextual

research emphasized that it is often difficult for teachers to be constantly

aware of each student’s current status in their work because there are simply

too many students in the classroom to orchestrate. We wanted to give

students a way to communicate to their teachers how their project is going

without the teacher needing to constantly check in with each group or

individual. To this end, we designed a simple set of buttons that would allow

a student to input their current status: the Sentiment Feedback Box. The

Sentiment Feedback Box is a physical, internet-enabled box with two buttons.

The left button is for inputting a positive sentiment and is represented with

a light bulb icon on the front of the physical button. The right button

serves to input a negative sentiment and is represented with a storm-cloud

icon. The concept of positive sentiment is flexible and is intended to be

used to denote a moment of success, a happy feeling or a bright idea. The

concept of negative sentiment is similarly flexible and is associated with

frustration, difficulty, or even failure. The data obtained through interaction

with the Sentiment Feedback Box is constantly collected and aggregated by

the Learning Analytics System, adding a richer, learner-driven perspective

to the session.

Mobile Annotation System We developed a mobile annotation system

which allowed students to take photographs, record video, and report via a

form and free text their plan, progress, and reflective thoughts.

Collector The Collector is a piece of software responsible of acquiring the

information produced by the different sensors and of elaborating the data in

order to extract the Learning Metrics. The collector is a stand-alone appli-

cation which collects and processes information from the various sensors

(Vision and Desk) and the Arduino IDE. All the information extracted by

the Collector will be sent to the Server deferred, or in real-time. It is writ-

ten in C++ and consists in a series of threads and queues producing and

consuming resources.

Server The Server is a dedicated machine hosting a Web Server and a

database. Inside the Web Server three Applications will be executed: the

Acquisition App that receives data from the Collector and stores into the

Database, the LA Core App that performs computations over the acquired

data and a Web App that provides the front-end to the user. The Web App

provides mainly two types of services: the Administration of the LAS and

6.4. Low Level Data Acquisition 63

DB

Object
Mapper

Websocket
Collector REST Data

Access

Web InterfaceCollector

REST Jobs

REST Collector

Visualizations

Data collection

FIGURE 6.4: The general architecture of the PELARS Server.

the Visualization of the learning traces in the form of dashboard or custom

visualizations. Figure 6.4 shows a general overview of the PELARS Server.

WebApp The Web Server is exporting a web interface, accessible from any

computer, for Teachers that will be able to manage the collection of data

from learning sessions and visualization of data. The Visualization is based

on two concepts: the Dashboard that allows the users to visualize the key

elements about a group of students, and a Traces Visualization that presents

the information collected for a given user along.

6.4 Low Level Data Acquisition

Low-level data acquisition deals with basic face recognition and hand track-

ing as a way to assess whether the students are interacting with the system,

looking one to another o handling objects present in the PELARS desk.

Figure 6.5 shows an overview of the PELARS data acquisition architecture.

Face detection Faces are captured using the Logitech C920 Webcam. The

webcam operates through gstreamer to be able to use the h.264 protocol

which allows a very low latency on the processing of full HD images.

We exploited OpenFace, explained in 5.2, in order to get more detailed

and meaningful feature to pass as input to the machine learning algorithms

64 Chapter 6. Activity Recognition

FIGURE 6.5: General overview of the PELARS data acquisi-
tion architecture.

developed for behavior analysis. The results are, for each detected face, the

3D head pose, the coordinates of facial feature points, e.g. chin tip, nose

tip, lip corners etc. and 3D face model fitted to the face. The most relevant

features we extracted using this software are, for each face: the pose, gaze

direction and eye closure along with the 2D positions of the key points of

the face, Figure 6.6.

The output of the face detection system for each image consists in an

array of JSON objects with the following structure:

• 2Dfeatures: Facial feature points (2D coordinates). The 2D feature

point coordinates are normalised to image size so that the lower left

corner of the image has coordinates 0,0 and upper right corner 1,1. The

feature points are identified according to the MPEG-4 standard (with

extension for additional points), so each feature point is identified by

its group and index. For example, the tip of the chin belongs to group

2 and its index is 1, so this point is identified as point 2.1.

• Eyeclosure_left: Boolean indicating whether the left eye is closed or

open

• Eyeclosure_right: Boolean indicating whether the right eye is closed

or open

• gaze_direction: Global gaze direction, taking into account both head

pose and eye rotation. This is the current estimated gaze direction

relative to the camera axis. Direction is expressed with three values

determining the rotations around the three axes x, y and z, i.e. pitch,

6.4. Low Level Data Acquisition 65

FIGURE 6.6: Detected face position and gaze estimation
using OpenFace.

yaw and roll. Values (0, 0, 0) correspond to the gaze direction parallel

to the camera axis. Positive values for pitch correspond to gaze turning

down. Positive values for yaw correspond to gaze turning right in the

input image. Positive values for roll correspond to face rolling to the

left in the input image. The values are in radians.

• Pose: Composed by translation and rotation of the head from the

camera. Translation is expressed with three coordinates x, y, z. The

coordinate system is such that when looking towards the camera, the

direction of x is to the left, y is up, and z points towards the viewer -

see Figure 6.6. The global origin (0,0,0) is placed at the camera. The

reference point on the head is in the center between the eyes. The

returned coordinates are in meters. Rotation is instead expressed as

a quaternion, obtained from the euler angles returned by the original

algorithm.

The camera is set in the LAS in such a way that when faces are detected

they are facing towards the screen. This allows to detect how many persons

are using the Arduino IDE at the same time. The Collector also computes

the distance of each face from the camera in order to avoid capturing faces

of people which are further away than a certain threshold which can be set.

To compute the face distance we assumed a fixed mean size for faces and

then used the intrinsic parameters of the camera to compute the distance.

Strong changes in face sizes could influence the system, but this has not been

investigated.

66 Chapter 6. Activity Recognition

FIGURE 6.7: Angle of the head motions as corresponding to
the snapshots taken by the system.

Figure 6.7 shows the gaze orientation of a single subject, expressed in

euler angles, during a test session. Data is extracted from the snapshots

taken during the session. Note that if all the three values are 0 then the

subject is looking straight towards the camera. It is also important to say

that, differently from head rotation [105], gaze directions represent where the

eyes are pointing to, regardless of the head pose. Therefore, it is a powerful

estimation of a student’s level of engagement with the screen.

Hand tracking Hands are captured using a fiducial marker provided by

the Aruco library [104]. Detection is done using partially the GPU to reduce

the computational load on it. The library identifies the marker’s unique id

which allows movement tracking. All markers wore by users are unique

in order to allow the correct evaluation of the captured data. Each hand

position is referred to a base reference system positioned on the table, see

Figure 6.8. The markers are attached to each side of the wristbands. This

way we can track hands in almost all positions, as long as the markers are

seen by the camera. For each marker, the relative 3D position with respect

to the table is computed. This allows to relate faces and hands since they

are positioned in the same reference frame (table). The system has to be

calibrated initially to set the base reference system using the marker with id

0, which has to be used only for this purpose.

6.4. Low Level Data Acquisition 67

FIGURE 6.8: PELARS desk as seen from the rgb camera.

Object Recognition and Annotation The goal of the PELARS object recog-

nition software is to track the location of objects as they are manipulated

by the students. This can give us information about how students make

use of the space, or how they distribute tasks among themselves: builder,

programmer and documenter. 2D Objects can be captured from a video

stream using a custom C++ tool that we developed. The tool is based on the

BOLD descriptor (Binary Online Learned Descriptor) [7] which is used to

recognize and track textureless objects. The tool works as follows: the user

identifies in the first frame of the video the object, which has to be tracked.

It is possible to associate a name to each object. The program segments the

tables using a given mask taken as input parameter and then extracts the ob-

jects computing a unique descriptor for each object. The program identifies

in each frame the different objects, and stores the position in a separate file

as a JSON message. The program generates a new video stream in which

each object is identified as a colored dot. To make the system more stable,

the position of the object is passed through a low pass filter that stabilizes

the center of the identified object. This creates a trade off between position

precision and system reactiveness. The user can set the filter sample length

as input parameter to adjust this value. The final output of the tool consists

of a file containing Json messages that can be parsed to obtain for each frame

68 Chapter 6. Activity Recognition

FIGURE 6.9: Example of the interface for the object tracking
task.

the identified object and a video showing the center of the recognized object

with colored dots, see Figure 6.9.

We did not use object recognition in the following experiments given

the high variability of objects present on the table. Students were building

different projects and using different tools for it, so it was not possible to

find common useful objects to track.

6.5 ML Activity Recognition

Supervised machine learning approaches have been employed for associat-

ing the measured student actions with the resulting scores by the experts. In

the following we use Deep Learning techniques and traditional Supervised

Learning techniques to evaluate the outcome of projects and the possibility

of inferring the current working phase.

6.5.1 Datataset Acquisition

The analysed data has been acquired in 3 sequential educational interven-

tions with 18 engineering students at an European University (average age

20 years old, 17 men and 1 woman). The students were divided into 6

groups made up of 3 students. Each student group used the PELARS system

over 3 days completing one open-ended design tasks for each session. First,

the students were introduced to the system with a workshop to familiarise

them with it, and then their first task was to prototype an interactive toy.

The second task was the prototyping of a color sorter machine, and in the

third task the students have been asked to build an autonomous automobile.

6.5. ML Activity Recognition 69

Each of these design sessions ranged from 60 to 80 minutes. As can be seen,

each of the tasks introduced a more complex design concept to be solved

with respect to the previous ones. Students were asked to perform an initial

phase of planning, followed by execution/building and finally a documen-

tation/reflection phase. During the activity the students had to document

their planning, building and reflecting phase through the mobile annotation

tool, see Figure 6.3. The research observers used the mobile tool to divide

the students work flow into the planning, building and reflecting phases.

6.5.2 Initial Project Classification

To grade the students’ design projects, a scoring scheme was developed

that combined different approaches for collaborative problem solving (CPS)

in small groups as well as bringing the design thinking principles. We

started with the seminal work done with engineering students [4] that was

initially adopted by [169] for multimodal learning analytics. From these

initial frameworks, we began to develop a framework for CPS (blinded)

that we could apply to the PELARS context. We used a version of our CPS

framework with the mobile system and an agreed set of codes for on-fly

observations to initially grading the student’s projects. From the initial

score of the students’ work, the team of researchers reviewed the students’

work collected in the LAS, which included snapshots of the students’ plan,

video of solutions and learners text input. The 18 sessions were graded with

these criteria, where 50% of the grade was the expert’s opinion based on the

documentation collected by students, 25% was how the students planned

and delivered the artifact and the remaining 25% was the student’s own

self-assessment of the quality of their projects. The resulting scores were

categorised in three classes: poor, ok and good. This classification of the

sessions was used as the reference point for the previous machine learning

based classification work (blinded) in which the nature of this evaluation

allowed only to reliably classify the works in two classes: good and bad.

6.5.3 Improved Project Classification

Based on the issues present in the previous scoring each of the sessions has

been re-evaluated and re-scored by experts looking at videos, documentation

(from the mobile tools) and final project outcome (the artifact). The aim was

to generate a more rich scoring that reflected the learning practices for

engineering courses. The new scoring has been based on 5 different aspects

expressed in a scale from 1 to 5 and are shown in Figure 6.1:

70 Chapter 6. Activity Recognition

FIGURE 6.10: Quality of solution scores (QuaOS) of each
team during the three sessions.

• Level of Clarity [Loc] (5=very clear, 3=legible, 1=not understandable)

• Independent Thinking [InTh] (5=independent, 3=based off instruction,

1=same as instruction)

• Corresponds with plan [CorPI] (5=Fully, 3=partially, 1=not at all)

• Does it Work? [DoWo] (5=fully, 3=partially, 1=not working)

• Quality of solution [QuaOS] (5=great, 3=mediocre, 1=poor)

6.5.4 Data Pre-processing

Data was collected at variable data rates (around 2Hz), yet it was not syn-

chronised. For this reason, we needed a processing stage that aggregates

indicators from the different variables in windows of same duration. The

aggregation was performed based, for most of the variables, on counting

for most of the variables. However, only for the distance/proximity fea-

tures we employed averaging. Considering the fact that, students’ sessions

were different in terms of their lengths due to the open-ended nature of the

project-based learning activities, we employed zero padding for sessions

that were too short. For the investigation presented in this work, we tested

6.6. Method 71

TABLE 6.1: Table of the 18 session scores organized by team.
The five scores expressed in a 5 level Likert-type are reported

Team Session Loc InTh CorPI DoWo QuaOS
A 1 5 2 5 4 3
A 2 1 1 5 5 5
A 3 5 3 5 4 5
B 1 2 3 3 3 2
B 2 1 3 3 1 1
B 3 2 4 1 3 2
C 1 1 4 3 5 4
C 2 2 1 5 5 5
C 3 5 3 2 2 2
D 1 4 5 1 1 1
D 2 5 3 4 4 4
D 3 5 4 3 3 3
E 1 4 4 4 3 3
E 2 2 1 3 3 3
E 3 2 2 3 4 2
F 1 2 5 3 5 5
F 2 3 5 2 1 2
F 3 1 3 2 1 1

window sizes of 10, 20 and 30 minutes, and we also tested the case of one

single window for the whole learning activity.

6.6 Method

A supervised machine learning approach has been employed for associating

the measured students’ actions with the resulting scores by the experts. In

particular we have performed a two stage approach with different tech-

niques. One assessment is based on large data quantities and uses DL for

regressing the 5 scores by the experts. The second, based on traditional

machine learning, deals with the simpler 3-levels assessment of the sessions

and tries to address the problem of explaining the causes of the outcome

depending on measured features and phases. Table 6.2 shows a synthetic

view of the two tasks together with the inputs, outputs and details about the

algorithms as discussed in the rest of this section.

6.6.1 Deep Learning approach

The input data is a set of timeseries that have different rates and partial

synchronization. In this work we decided to use a windowing approach

with dense network for compensating such difference, leaving the use of

recurrent neural network techniques for future work. Given a session of

duration T seconds we split it into non-overlapping windows of length L

seconds (120, 240 and 360) obtaining ÁT/LË windows. For a given input we

72 Chapter 6. Activity Recognition

TABLE 6.2: Machine Learning Tasks performed over Data

Method Deep Learning Traditional
Task Regression Classification
Input 18 variables 9 variables per-window
Output 6 scores over 5 levels 1 score with 3 levels
Metrics Regression Score Classifier Accuracy
Windowing 120,240 and 360 seconds 10,20,30,90 minutes
Phase Exclusion Reflection Reflection
Method Multiple layers NB, LR, SVML, SVMR

compute an aggregated statistics for each window (averaging or summation).

The following aggregated statistics (18 values in total) have been employed:

• Total number of faces looking toward the screen FLS

• Total number of connected Arduino components IDEC

• Mean distance between faces DBF

• Mean distance between hands DBH

• Mean hand movement speed HMS

• Mean audio level AUD

• Software blocks used IDEVSW

• Variety of hardware IDEVHW

• Number of interconnections between blocks IDEX

The total input consists of a series of 18 dimensional vectors consisting

of the metrics indicated above and depending on the time chosen to window

the data.Three different window sizes have been tested: 120s, 240s and 360s.

Deep learning has been tested to check the feasibility of non-linear re-

gression on the input data gathered from the sensors. For the purpose of

this experiment regression has been used since the output values can be

a set of continuous values. The network has been implemented using a

Python library for deep neural networks called Keras [30]. This high-level

library allows to abstract the use of the GPU optimized processing libraries

Tensorflow [1] and Theano [14].

Given the input data, we tested a fully connected network that was

trained to fit a function that has an 18 dimensional domain and a 6 dimen-

sional co-domain. Several additional DNN parameters have been tuned to

obtain the best possible solution along with the window size for the input

data creation. These parameters include:

6.6. Method 73

• Dropout

• Regularization

• Epochs

• Layers

Input data is randomly split, as usual, in training and test data, with an

additional minor split of the training data into training and validation. In

these experiments 20% of the sessions are removed as test sessions, leaving

80% for training. Of this 80% another 20% has been used as validation set

during the training phase. It is important to notice that complete sessions

have been left out for testing and not just random inputs (windows) since

they are usually correlated and could alter the final results if used.

The results of the net are evaluated using a mean squared error distance

between the predicted value vector and the true value vector obtained in the

test data set. A mean squared error has also been computed for each of the

six output values along with the variance in order to understand if any of

the output values had a different behavior. Three different NN architectures

have been tested, growing from one to three fully connected layers of size

1024, 512 and 256. The best obtained net was created using the following

parameters:

• Dropout 0.5

• No regularization

• 100 Epochs

• 3 Dense Layers of size 1024, 512, 256

• 240s Window size

The network structure can be see in Figure 6.11.

6.6.2 Traditional Approaches

The supervised approach we used is based on a supervised classification

task that matches the observers’ scores. The purpose of this approach is to

identify the data features that can support different score classifications that

have been evaluated by human observers (experienced teachers) as poor, ok,

and good. Among the different families of classifiers available, we tested

various parametric ones namely Naive Bayesian (NB), Logistic Regression

74 Chapter 6. Activity Recognition

FIGURE 6.11: Neural Network structure of the model which
obtained the best results

6.7. Results 75

(LR) and Support Vector Machines with linear (SVML) and Gaussian kernel

(SVMR). We avoided the non-parametric ones (Nearest neighbours) or deci-

sion trees with the purpose of reducing the overfitting effect. In particular,

NB is a simple classifier that employs a strong assumption about features,

a condition that holds valid for most of the variables we employed in our

investigation except for the ones related to the Arduino IDE. We decided not

to use the ensemble of classifiers [85], as we would like to study the model

behind these classifications as much as performing the classification itself.

We used cross-validation (k=4) for understanding the effect of different

parameters such as window size and the inclusion of different phases. Due

to the small sample size (18 sessions from 18 engineering students working

in 6 groups of 3 students) and the high variance of the data we avoided

the leave-one-out scheme. The data acquired from the PELARS LAS was

exported and then processed in Python using the sklearn [119] toolkit that

provides state-of-the-art machine learning techniques integrated with a

common interface. The test of the classifiers was performed by varying

the window size, the score (binary or original 3-level), the inclusion of the

different phases (planning, building, and reflecting) and, most importantly,

the effect of features identified and described above (FLS, DBL, DBH, HMS,

IDEC, IDEVHW, IDEVSW, IDEX, AUD)

6.7 Results

6.7.1 Deep Learning Results

The overall results for the different network structures are illustrated in

Table 6.6, 6.3, 6.4 and 6.5 show the mean and variance for the error between

expected output and predicted value. We then compared 120s, 240s and

360s window sizes. These sizes where chosen arbitrarily given a first rough

estimation of the input data. The 240s NN achieves a mean squared error of

0.13 as shown in Table 6.4 across the improved classification of the student’s

outcomes. We then investigated the different features by removing them

individually. In general, the results get worse as expected, see Table 6.7. This

result illustrated that this feature of distance between faces is a substantial

input for project-based work in the PELARS context. Additionally, the

results show that the smallest window performs worse than the others, see

Table 6.3. The network achieving the best results is shown in Figure 6.11 and

is using a window size of 240s.

76 Chapter 6. Activity Recognition

TABLE 6.3: Results for the 120s window, 0.242 overall

120s Window Loc InTh CorPi DoWo QuaOS OG
Mean 0.182 0.238 0.166 0.197 0.155 0.228
Var 0.074 0.112 0.069 0.076 0.061 0.099

TABLE 6.4: Results for the 240s window, 0.129 overall

240s Window Loc InTh CorPi DoWo QuaOS OG
Mean 0.086 0.175 0.150 0.175 0.154 0.084
Var 0.074 0.056 0.084 0.092 0.062 0.048

TABLE 6.5: Results for the 360s window, 0.193 overall

360s Window Loc InTh CorPi DoWo QuaOS OG
Mean 0.213 0.077 0.237 0.147 0.196 0.181
Var 0.097 0.006 0.083 0.063 0.071 0.057

TABLE 6.6: Best network results for the different network
configurations

1024 0.186 with 360s
1024, 512 0.174 with 360s

1024, 512, 256 0.129 with 240s

TABLE 6.7: Best error scores after removing isolated features

Removed Feature Best Result
No features removed 0.129

All faces data 0.21
All Arduino data 0.21

DBF 0.15
DBH 0.21
HMS 0.19
AUD 0.18

Hand pos 0.21
Arduino comp 0.19

6.7. Results 77

1 2 3 4 5 6

Team (Session)

0

0.5

1

1.5

2

2.5

3

S
co

re

FIGURE 6.12: Resulting grades of the projects output devel-
oped by the tested groups of students.

6.7.2 Supervised Learning Results

6.7.2.1 Phases

Although, we had a small sample size of 18 sessions, the total amount of

data generated from these sessions was rich and big due to the multimodal

nature of our investigation. The project-based learning activities lasted

within the range of 33 minutes to 75 minutes (median 63 min±13), with a

total activity time of 17 hours and 10 minutes. Each project-based learning

activity’s project outcome was graded based on the criteria described earlier,

and different patterns along the three sessions were observed. Figure 6.12

shows the different grades of the group’s outcomes. The presented values

are poor=1, ok=2, good=3 and the colors represent the different created

student projects over the three sessions.

The design phases annotated by the observer (planning, building, and re-

flecting) varied broadly among the sessions as well as among the groups. The

mean scores for the time spent on these phases among the sessions are plan-

ning (11min±10min), building (41min±16min) and reflection (4min±7min).

Figure 6.13 shows the duration of each session and the timing of the phases

for different groups of students.

6.7.2.2 Scoring

The three-level scoring we initially identified using human observation (poor,

ok, good) posed difficulties to the classification activity, and we needed to

move to a binary version in which we aggregated ok graded groups with

good graded groups. For example, NB and SVM classifiers score 0.8 and

78 Chapter 6. Activity Recognition

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (s)

T
e
a
m

 (
S

e
ss

io
n
)

T1/1
T1/2
T1/3
T2/1
T2/2
T2/3
T3/1
T3/2
T3/3
T4/1
T4/2
T4/3
T5/1
T5/2
T5/3
T6/1
T6/2
T6/3

FIGURE 6.13: Distribution of phases among session of the
6 teams. Each session is split in the three phases, first plan,

then build and finally reflect

TABLE 6.8: Effect of phases in the inclusion of the classifier.
P=plan, W=work, R=reflect. Values are accuracy percent-

ages.

PWR PW W WR
NB 0.8 0.8 0.6 0.75
SVML 0.6 0.75 0.75 0.8
SVMR 0.75 0.75 0.75 0.75
LR 0.6 0.75 0.5 0.6

0.75 respectively with a window of 30min and binary classification, however

this value decreases to 0.5 for both of the classifiers when we use a three-

way classification. This situation is clearly not ideal, however in order to

achieve adequate results, we took this binary approach which still has great

value to be able to identify project-based learning groups who perform

poorly from others. Alternatively, it can be used to identify those group

performances that are considered good in a binary fashion. This example

shows the limitations of traditional ML approaches in respect to DL ones.

6.7.2.3 Effect of Phase

The selection of the phases used to train the classifier have a strong effect of

the capacity to recognise the classifiers. For example, with a 30min window

and binary classification, the exclusion of reflection (PW) phase in student

activities provided stronger results across the different classifiers, while the

exclusion of both planning and reflection reduced the classification power.

See Table 6.8 for the details.

In order to provide the most reliable results and use the strongest classi-

fication power, we focus our results on data collected from the planning and

working stages of the student activities excluding the reflecting stages.

As can be seen in Table 6.8, across the different tests of the classifiers NB

is performing the best, followed by the SVML and SVMR. LR has the worst

6.8. Discussion 79

results among the traditional classifiers. SVMR is the most consistent among

different phases, discriminating among all always with an accuracy of 75%.

Having established the window size as 30 mins, grade classifications as

poor vs. ok plus good scored projects, learning activity stages as planning

and building phases, and the statistical methods we will use as NB and

SVML, we now present the results of our analysis on the effects of the

multimodal learning analytics features. We start from the full set of features

with a given selection of the other parameters mentioned above and we

proceed removing features, as a form of model selection.

Regarding the effects of the multimodal learning analytics features on

predicting students’ group performances in open-ended project-based learn-

ing, below results are found:

• IDEC (Arduino IDE) removal does not effect the results of the classi-

fiers,

• Removal of all faces and hands duration has very little effect on the

classifiers,

• Distance measures DHB and DBL alone are capable of predicting the

results with a high accuracy (0.75) across classifiers,

• The audio level feature AUD alone is currently a strong feature for

classification (1.0 with Naive Bayes) with time windows 5min, 10min

and 30min and binary scoring.

Interestingly the logistic regression is capable of an optimal result (1.0)

when considering IDEX, IDEVHW, IDEVSW and DBL, which are the main

IDE features, except component counts and the distance between learners

(DBL). One of the main limitations of our approach is the scoring of the

sessions that is limited to a binary classification with respect to a richer

3-level human scoring.

6.8 Discussion

6.8.1 Traditional Approach

In the linear regression approach, we focused on identifying the different

phases of work in relation to accuracy in predicting the group’s artifact

quality. We found that the planning and building stages of students learning

activities are better predictors of their artifact quality than the reflection

stage (in the intervention the reflection phase signalled the end of making

80 Chapter 6. Activity Recognition

artefacts and coding to documenting with a mobile device the work). Then,

we investigated the certain features of the MMLA, in order to determine

which features can predict the student’s artefact quality with higher accuracy.

Our results show that the distance between hands and distance between

learners are key features to predict student’s performances in project-based

learning activities. In our case, they highly correlate with the quality of the

student’s artefacts in project-based learning. These results are aligned with

existing MMLA research findings that show the potential of hand motion

and speed, and the location of the learners to predict student success at

various learning outcomes [17, 113, 62].

There are three main aspects of PBL: students are asking driving ques-

tions, doing investigations to answer these questions, and collaborate to-

gether to solve these questions [86]. It is important that MMLA research aims

to support these three main aspects of Project Based Learning (PBL). The

results presented here show that the value of the distance between students’

hands and distance between students are well aligned with the argument

that closer students may fruitfully collaborate, which is an important aspect

of PBL.

The other features of MMLA such as Hand Motion Speed (HMS) and

Faces Looking at the Screen (FLS) did not perform very well to predict

students’ artefact quality across the classifiers. While the Arduino IDE

the Number of Active Blocks (IDEC), the Variety of Hardware (IDEVHW)

and Software Blocks used (IDEVSW) and the number of interconnections

between blocks as a Measure of Complexity (IDEX) were able to predict

students’ outcomes, they were only marginal across the classifiers. Further-

more, the audio signal level (AUD) appears to be a promising feature to

predict performance, however more investigation is needed for using this

feature in combination with others.

6.8.2 Deep Learning Approach

The DNN results are more promising and show the feasibility of this method

as an efficient approach for MMLA. In our investigation with this approach,

we obtained a mean squared error of 0.129 with a window of size 240s as

shown in Table 6.4. One important result that emerged from our results

and is worth to notice is how the smallest window performs worse than the

others, see Table 6.3. This is possibly due to the low information amount

in that time window. The 240s interval performs the best, while the 360s

6.9. Conclusion 81

interval gives no performance gain as can be seen in Table 6.5. This suggests

that the information gain from 240s to 360s is negligible for our purposes.

It is possible to see that (see table 6.7) by removing a single feature, in

general results get worse except partially in the case of the distance between

faces. This shows that this is a very strong input feature. It is also important

to notice that the network learned some higher level features, which do not

consist of a single input, given that by removing any single input we can not

achieve the optimal results that we achieved using them all.

All results show a reasonably low variance evidencing the stability of the

results, which is a positive sign in terms of the learned features. The fact that

strong features have been trained is possibly due to the 0.5 dropout value,

which "encourages" the network to find high level, strong features discarding

the low level, weak features. Regularization gave no significant boost of

the results, but this is probably due to the relatively "small" amount of

training data, avoiding partially the problem of over-fitting. This parameter

should become more relevant when more data will be added to the training

set. A future step could consist in removing pairs or triplets of features to

understand the relationship and importance of the input features further

and make the factors on the learning process more visible. We aim to further

investigate these in our immediate future work.

6.9 Conclusion

We showed that traditional ML techniques are able to solve some recognition

tasks as for example inferring the phase of the students’ work. Using the

same instruments to predict the overall project quality gave bad results and

we needed to switch to a binary classification, Section 6.7.2.2. This shows the

limitations of traditional ML techniques. DNNs instead are able to predict

correctly the complex outcomes of the projects without limitations as shown

in Section 6.7.1. Distances between student’s hands and faces, while they

are working on projects, is a strong predictor of student’s artefact quality.

All this indicates the possibility of activity recognition in student collabo-

rative projects, answering RQ1, RQ3, RQ4. This shows also that new and

promising approaches such as DNNs, and more traditional regression ap-

proaches in some situations, can be used to classify MMLA data depending

on the research questions and contexts being investigated, answering RQ2.

Although, it is traditionally notoriously challenging to provide evidence

about the robust and objective evaluations of project-based learning activ-

ities, techniques and types of data we presented here can be the first step

82 Chapter 6. Activity Recognition

towards effective implementation and evaluation of project-based learning

at a scale.

83

Chapter 7

Human State Evaluation

“We’re going to become caretakers for the robots. That’s what

the next generation of work is going to be.”

Gray Scott, [94]

Human internal state can be potentially provided by physiological sig-

nals which are difficult to interpret, partially due to technical limitations

(e.g., availability of sensors, different sources of information), and their inter

subject variability [152]. In the context of robotic systems we cannot rely

on complex biological recordings, such as electromyography, complex labo-

ratory setups, such as marker-based motion capture systems or sensorized

hallways or even wearable sensors, which can obstruct the user during his

everyday life activities. For these reasons the user internal state must be

indirectly inferred from the available sensor sources, which usually consist

in RGB-D cameras, range sensors and sometimes tactile sensors [148]. This

task is non trivial since we often have to deal with sensors which are noisy

and sensitive to light conditions or occlusions. For this reason these parame-

ters are often assumed constant during the human machine interaction. To

overcome these problems we try to evaluated the fatigue of MCI patients

using ML techniques with depth images captured from a Kinect v1 sensor.

This will answer RQ2 and RQ5 as part of the RAMCIP project presented in

Section 1.3.

In the following we show that this it is actually possible to detect the in-

ternal state of a person with non invasive ML techniques, allowing assistive

robots to infer the patients state in order to adapt their behavior dynamically.

Figure 7.1 shows an image of the Ramcip Robot.

7.1 RAMCIP Project

The project RAMCIP is an EU Horizon 2020 funded project, under the grant

agreement no: 643433. The project started on the 1st of January 2015 and

will last for more than 36 months.

84 Chapter 7. Human State Evaluation

FIGURE 7.1: The Ramcip Robot.1.
1
http://www.fundacioace.com/en/ramcip-segunda-reunion-anual/

http://www.fundacioace.com/en/ramcip-segunda-reunion-anual/

7.2. Objective 85

RAMCIP aims to research and develop real robotic solutions for assistive

robotics for the elderly and those suffering from MCI and dementia. This

is a key step for developing a wide range of assistive technologies. We

adopt existing technologies from the robotics community, fuse those with

user-centred design activities and practical validation, with the aim to create

a step-change in robotics for assisted living.

According to the RAMCIP vision, future service robots for the assisted

living environments of MCI and Alzheimer’s Disease (AD) persons should

be capable of providing safe, proactive and discreet assistance in a series of

significant aspects of the user’s daily life, ranging from food preparation,

eating and dressing activities to managing the home and keeping it safe,

both for the user and other persons, e.g. grandchildren, while at the same

time, the robot should assist the user to maintain positive affect and also

exercise cognitive and physical skills. It should be underlined that although

for the latter, the focus of assisted living robot companions has so far been in

initiating and managing specific physical or cognitive training interventions.

The RAMCIP project foresees future robots to have this capacity embedded

in their daily behaviour; i.e. providing such exercise subtly, by modifying

the way they assist.

Working toward addressing the question of how a service robot can

realize the above, the RAMCIP project will research and develop a service

robot that will first of all have advanced high-level cognitive functions.

These functions will be driven by thorough modeling and monitoring of

the home environment, the user and other co-located persons, allowing

the robot to take optimal decision regarding when and how to provide

assistance, in a proactive and discreet way. Assistance provision will also

be driven by enabling the robot to understand user commands and affect,

through multimodal, adaptive and emphatic HR communication channels,

see Figure 7.2

7.2 Objective

In order for RAMCIP to successfully realise its vision, several prerequisites

are set in the form of major scientific and technological objectives throughout

the duration of the project. The overall project success will be defined by

the effectiveness and efficiency of the appropriate synthesis, as well as the

individual quality of the specific achievements. The main objectives of the

RAMCIP project are:

86 Chapter 7. Human State Evaluation

FIGURE 7.2: An overview of the objectives of the RAMCIP
project.1.

1
http://www.ramcip-project.eu/ramcip/content/ramcip-vision

• Objective 1: To develop a service robot that will be capable of robustly

understanding actions, complex activities and behaviour of multiple

people in the user’s home.

• Objective 2: To develop a service robot that will provide proactive,

discreet and optimal assistance to the user.

• Objective 3: Establishment of advanced communication channels

between the user and the robot.

• Objective 4: Establishment of advanced physical interaction between

the robot and the home environment.

• Objective 5: Establishment of assistance activities involving physical

interaction between the robot and the user.

• Objective 6: To validate RAMCIP project results in real-life scenarios.

Evaluation of the RAMCIP robot prototype will take place in two pilot

sites, in Poland and in Spain, through trials that will involve MCI and

AD patients.

The majority of these objectives needs to evaluate the current state of the

patient in order for the assistive robot to decide which actions to perform. To

do this we acquired data from a set of patients affected by MCI and trained

a DNN to discriminate fatigue and not fatigue by observing the patients

walking patter.

http://www.ramcip-project.eu/ramcip/content/ramcip-vision

7.3. Data Acquisition 87

7.3 Data Acquisition

The current study was approved by the ethics committee of the Lublin

Medical University (Protocol Number KA-0245/2A/2016) and performed

in accordance with the ethical standards laid down by the Declaration of

Helsinki. All subjects provided written informed consent prior to the partici-

pation.

7.3.1 Subjects

A group of 20 elderly people (10 Male, 10 Female aged 71 ± 10.03) partici-

pated in the experiment. Subjects were suffering from memory impairments

with different level of severity. The subjectively reported memory impair-

ments were verified with Mini Mental State Examination Weighted Sum

Score (MMSE WS) [51]. Participants assessed with values in the range 30-27

are considered as cognitively intact, between 26 and 23 as suffering from

MCI, while lower values indicate the presence of dementia. All participants,

either subjectively, reported increasing memory problems (age-assotiated

memory impairments), or has been confirmed with such test. Table 7.1

reports the statistics of the subjects indicating age, sex, MMSE WS and the

self-assessed level of physical fatigue reached during the experiment.

7.3.2 Sensors and Protocol

The experiment consisted in acquiring data while the subjects were walking

on a flat ground in two states: fatigued and non fatigued. Each trial was

composed of three phases.

During the first phase (pre-fatigue) the subjects walked back and forth

straight, for up to 3 minutes, on approximately a 4 meter distance. The

second phase of the experiment was based on the recommendation of the

6 minute walk test [47], which is a well known and standardized test for

fatigue induction. The test consists in walking on a flat ground, at a self-

preferred speed, for 6 minutes. The 6-minutes walking phase can be ex-

tended to multiple 6 minutes long rounds. The test has been previously

successfully used among different groups of healthy and diseased partici-

pants [142, 98, 95]. Due to the specific health conditions of the participants,

the initial 6 minutes intervals have been treated as an indicator, with the

possibility of reducing the fatiguing time interval. For safety reasons, the

aforementioned test has been chosen in order to minimize the potentiality

occurrence of hazardous events. The evaluation of the fatigued state was

self-assessed by the participant and assessed by a physician by measuring

88 Chapter 7. Human State Evaluation

Subject Age Sex MMSE WS Tiredness
1 78 M 23 7
2 75 F 27 5
3 64 M 27 0
4 71 F 19 1
5 88 F 12 6
6 68 F 19 3
7 80 M 30 0
8 60 F 27 6
9 67 F 28 8
10 86 F 26 7
11 69 M 25 1
12 69 M 14 1
13 74 M 26 5
14 57 M 17 8
15 89 M 19 7
16 85 F 24 1
17 60 M 24 6
18 60 M 26 4
19 63 F 27 8
20 64 F 25 3

TABLE 7.1: Age, sex and Mini Mental State Examination
Weighted Sum score, and the self-assessed level of Tiredness

(1-10) for every participant at the end of the trial.

the heart rate and the blood pressure of the subject and by checking the state

of the patient with a sphygmomanometer. In the third phase (post-fatigue)

the subject walked again back and forth for up to 3 minutes as in phase one.

Participants were allowed to interrupt the experiment at any time.

Table 7.2 reports the duration of the three phases for every subject. The

content of the table highlights the high degree of intraclass variability be-

tween the subjects. This is mainly due to the different age-related clinical

conditions (typically cardiovascular and pulmonary diseases). Moreover, the

MCI condition is often reflected in changes in balance and walking patterns

[5] deviating from the regularity that characterizes the healthy behavior. This

increased irregularity can partially mask the purely fatigue-driven changes

making the classification task more challenging.

In particular, it is possible to group the behavior of the subjects in three

categories: (1) full pre-phase followed by fatiguing (12 subjects: 2-5,7,9,11,13-

14,17-20), (2) full pre-phase with fatigue at the end (5 subjects: 1,6,8,15,16),

(3) interrupted pre-phase due to fatigue (2 subjects: 4,10). For the learning

approach discussed later in the paper we have considered all the pre-phases

7.3. Data Acquisition 89

Id Sess. pre (s) Fatiguing phase (s) Sess. post (s)
1 180 - 40
2 180 360 180
3 180 720 180
4 85 - 33
5 180 300 90
6 180 - 120
7 180 260 120
8 180 - 180
9 180 90 180

10 165 - 90
11 180 360 180
12 240 360 180
13 180 360 140
14 180 180 180
15 180 - 180
16 195 - 180
17 180 360 180
18 180 360 180
19 180 360 180
20 180 160 180

TABLE 7.2: Durations of the three phases for all the subjects.

as non fatigued situation without using the information of fatigued situation

at the end of the pre-phase.

The RGB-D sensor employed for the data capture is a Kinect v1 camera

running at 30Hz with a 640x480 resolution. We were constrained in the use

of this camera given that it is was part of the specifications of the Robot

developed in the RAMCIP project. The RGB-D camera was positioned at the

beginning of the path pointing in the direction where the subject walked,

with a minimum distance of 1 meter and an angle of approximately 20¶.

The OpenNI2 library [33] was employed to process data coming from the

Kinect sensor. To extract the full body kinematics in terms of the 3D positions

of 15 body markers we used the Nite2 skeleton tracker by OpenNI which

was presented in Section 3.3. The acquisition system is capable of tracking

the human skeleton at 30Hz, which is the maximum camera acquisition

speed.

We used the torso, shoulders and lower limb markers (feet, ankle and

knee) to extract features which were used as input for the machine learning

system. The ROS (Robot Operating System) [125] was employed to acquire

and archive the data.

90 Chapter 7. Human State Evaluation

Marker Name symbol
Head mHE

Neck mNE

Torso mT O

Left Shoulder mSL

Left Elbow mEL

Left Hand mDL

Right Shoulder mSR

Right Elbow mER

Right Hand mDR

Left Hip mHL

Left Knee mKL

Left Foot mF L

Right Hip mHR

Right Knee mKR

Right Foot mF R

TABLE 7.3: Markers provided by the skeleton tracker and
the relative terminology used in this work.

7.3.3 Data Pre-processing and Features Extraction

We filtered the data provided by the OpenNI2 software at 3Hz by using a

low-pass Butterworth filter [21] of 3rd order to reduce noise effects. After

the filtering step, we computed a fixed reference frame on the estimated

participants center of mass (CoM) for each skeleton sample. The body

markers were expressed relatively to this new frame in order to make the

trajectories independent from the Kinect camera position w.r.t the participant

[54].

The OpenNI2 skeleton tracker provides always all body markers, even

when they are not visible, and infers the position of the occluded ones. Each

marker position is provided with a confidence level label: 0 for not found,

0.5 for inferred and 1 for tracked. During the data capturing phase, the

confidence level of the relevant markers was almost always 1, except for the

feet for which the tracker reported inferred state when the distance of the

subject was far from the camera (5m) or, in few cases, when the subject was

close to the camera (2m). The distribution of these values is shown in Figure

7.3.

In order to obtain a stable estimation of the CoM we employed a moving

window approach. For each of the selected samples, the CoM was estimated

as the mean of the centroid of the left shoulder, right shoulder, left hip and

right hip markers over the whole window. We selected only the samples for

which all these markers had a high confidence value for a time interval of

7.3. Data Acquisition 91

Confidence (0.5 = Inferred, 1.0 = Tracked)
0.5 1.0

2

1

3

4

5

6

D
ist

an
ce

 (m
)

Marker Tracking Confidence as a Function of the Distance

FIGURE 7.3: Confidence level of the tracker as a function of
the distance from the camera.

size wCoM , centered around the sample. We picked a value of 21 samples for

wCOM after evaluating the stability of the CoM position.

Let cC
K (where K subscript and C superscript indicates the Kinect and

the CoM reference frames respectively) be such centroid. The estimation of

the CoM frame, T C
K , with respect to the Kinect frame has been geometrically

computed from the torso, hip and shoulder markers. By computing the

median along each component of the windowed velocity of the CoM posi-

tion over consecutive samples, we obtained a vector whose direction is an

estimation of the walking direction (WD) and whose norm is an estimation

of the walking speed. Once the T C
K transformation matrix has been esti-

mated, we computed the markers coordinates in the CoM reference frame

by multiplying each marker for the matrix T K
C = (T C

K)≠1:

mC
xx = T K

C mK
xx (7.1)

We selected only the trajectories of six markers as significant for our ML

task. The selected markers, called interest markers hereafter, are: right foot,

left foot, right ankle, left ankle, right knee and left knee:

Ó
mC

F R, mC
F L, mC

AR, mC
AL, mC

KR, mC
KL

Ô
(7.2)

92 Chapter 7. Human State Evaluation

as shown in Table 7.3. Note that the superscript C indicates that we express

the coordinates (x, y, z) in the CoM reference frame.

An illustration of the CoM estimation is illustrated in figure 7.4. The

trajectory of a marker, in the CoM frame, is represented (black). The selected

samples, corresponding to a stable computation of the CoM, are highlighted

in red, green and blue for x, y, and z coordinates respectively.

0 10 20 30 40 50
-1

-0.5

0

0.5

1

1.5

Po
sit

io
n

(m
)

Time (s)

Timeseries
Valid x coord
Valid y coord
Valid z coord

Moving window

FIGURE 7.4: Time series of right foot x, y and z coordinates
in the CoM reference frame during pre-fatigue task of subject
one. For the whole x, y and z coordinated trajectories (black)
the valid CoM estimation is highlighted in red, green and

blue.

The resulting valid data percentages for both phases of each participant

are shown in Table 7.4. The data selection process reduced the available

data for the analysis to an average of 50% per subject in both phases, and

minimum to 32% for some subjects, independently from the fact that they

completed or not the session.

The windowing approach for the CoM estimation decomposes the time

series of samples in chunks of contiguous samples. These are used as input

for the ML task discussed in the following section.

7.4 Deep Learning Method

The objective of the ML task is to classify input gait data as fatigued and

non fatigued. We used DNNs for this task given their wide use and the

promising results detailed in Chapter 5.

To find the optimal deep neural network configuration for this task

we explored several parameters based on the classification accuracy of the

7.4. Deep Learning Method 93

Id Valid Data % pre Valid Data % post
1 46.6 48.1
2 49 55.8
3 53.2 42.3
4 48.8 45.1
5 51.6 37.4
6 42.7 40
7 55.6 57.5
8 38.2 32.8
9 55 53

10 44 34
11 46.5 38.3
12 58.6 60.4
13 73.8 77.1
14 55 46.4
15 70.5 57.5
16 46.6 34.2
17 51.4 46.7
18 35 48.6
19 44.5 48.4
20 62.1 58.8

TABLE 7.4: Dataset composition

network. We used the Keras1 library to train our model. The training has

been performed on a machine with 2 Intel Xeon E52650 processors running

at 2.0GHz with 10 cores each, 64 GB of RAM and a Nvidia k20m GPU with

5GB of dedicated memory.

7.4.1 Data Preparation

The interest markers features discussed in Section 7.3 corresponded overall to

a 18 dimensional space.

The data structure, after the pre-processing, consisted in a list of subjects

containing each 2 different data fields, which are:

• a list of chunks of pre-fatigued data. Each chunk is a matrix of one row

for each sample and the 18 columns of the aforementioned features.

• A list of chunks of post-fatigued data with the same structure as pre-

fatigued.

Due to chunks having a variable number of rows, we employed a win-

dowing strategy (with window size and data stride criteria) for decomposing

each chunk into windows of fixed size. The effective input of the DNN is the
1https://keras.io/

94 Chapter 7. Human State Evaluation

flattened version of a matrix of size window size times 18. A window size

of 60 samples (2 seconds at 30 Hz) and a stride of 15 samples (0.5 seconds

at 30 Hz) were used. Usually bigger windows sizes may result in a higher

recognition accuracy, since a longer observation of the subject usually results

in a better prediction. On the other hand, we need to consider that, given a

fixed window size, the robot has to observe the subject and track its skeleton

reliably until a valid window of at least window size is recorded. Once this

window has been recorded, the robot can predict the status of the user. The

window size increases linearly with the latency that the robotic assistant will

have in the prediction time. This could be an issue if a quick result is needed,

since the system needs to accumulate valid skeleton data until window size

samples are recorded. We found a 60 samples window to be a good trade-off

value.

The following pre-processing has been applied to the input data:

1. data has been normalized in order to have zero mean and unitary

variance.

2. The data have been split randomly into training and testing sets using

80% of the points for training and 20% for testing.

3. Training data points have been split into training and validation using

an 80%-20% split.

4. For each input vector, an output label has been created. The labels

consist of 2-dimensional on hot encoded vectors, representing the

fatigued and non fatigued classes. All the output labels have been

stacked into a final label matrix which was also split into training and

testing accordingly to the input data.

7.4.2 Exploration of Parameters

The DNN has been trained testing several different parameters. The parame-

ters were explored using grid search on a log scale with a one-fold validation

approach. We preferred this approach over cross-validation because in the

majority of the cases a single big enough validation set represents a good

trade-off reducing the computational load compared to cross-validation.

• Window size and data stride. The two parameters are used during the

data pre-processing to decide the temporal dimension of the windows

and the temporal overlapping between consecutive windows (data

stride). We performed a grid search increasing the window size from 1

7.4. Deep Learning Method 95

second (30 samples) to 5 seconds (150 samples). At the same time we

spanned the data stride from 5 samples up to the size of the window,

increasing by 0.5 seconds (15 samples) at every step.

• Number of hidden layers. We tested several different hidden layer

configurations. In the first architecture, the number of layers ranged

from 1 to 9 with the number of neurons decreasing with the NN depth

by a factor of 2. The second architecture had a hourglass structure, in

which the number of neurons in every layer initially decreases with

the depth and then increases again. This resulted in a DNN thick at

the ends and thin in the middle [92]. In general, we chose to use fully

connected layers, but several other architectures could be of interest,

like RNNs.

• Dropout. We tested four different configurations, no dropout, 10%,

30% and 50%.

• Learning Rate. Learning rate determines the size of the steps we

take to reach a minimum (usually local) during the gradient descent

optimization. A too small learning rate leads to a slow convergence,

while a too high learning rate can interfere with the convergence of the

optimization problem causing the loss function to oscillate around a

minimum or diverge.

• Regularization. L2 regularization is another form of regularization.

It consists in adding a term dependent upon the squared magnitude

of the net weights to the loss function, thus penalizing the weights

magnitude itself.

As an additional exploration we also studied the effects of different

training epochs and batch sizes. A low number of epochs could cause the

optimization process to terminate too early without reaching the optimal loss

while a too high number could lead to over-fitting the input data, loosing

generalization. We found a good value to be 300. Thus, it was used for all

the further tests. The batch size was chosen equals to 512 samples. The

parameters exploration phases was performed using Adam as optimizer

with —1 = 0.9, —2 = 0.999, Á = 1 ◊ 10≠8 and null decay. All test have been

carried out on the aforementioned machine using an automated script which

tested the different configurations and saved for each one a configuration

file and the trained DNN, along with the input data and the evaluation of

the network on the total input set in order to gain statistics for each subject.

96 Chapter 7. Human State Evaluation

Hyper-parameters Value
Dropout 0.0

Learning Rate 9 ◊ 10≠3

Regularization 2 ◊ 10≠5

TABLE 7.5: Optimal hyper-parameters for the NN.

7.4.3 Results

The proposed approach achieved a best accuracy of 78.3% on the test set us-

ing a NN with 5 fully connected layers. The input layer dimension depends

on the window size and the number of feature, resulting in a total dimension

of 1080. The optimal hyper-parameters are summer up in Table 7.5.

This configuration is optimal for a windows size of 2 seconds (60 samples)

and stride of 15 samples.

Ac
cu

ra
cy

 (%
)

Accuracy as a Function of Window Size and Data Stride

5 20 5 20 35 50 5 20 35 50 65 80 5 20 35 50 65 80 95 110 5 20 35 50 65 80 95 110 125 140
20

30

40

50

60

70

80 win size: 30 samples
win size: 60 samples
win size: 90 samples
win size: 120 samples
win size: 150 samples

Data Stride (samples)

FIGURE 7.5: Accuracy as a function of window size and data
stride. For every window size (30 samples: cyan, 60 samples:
gray, 90 samples: red, 120 samples: green, 150 samples: blue)
we explored different data stride starting from 5 samples to
window size, with increments of 15 samples. The optimal
values resulted with a window size of 150 samples and a
data stride of approximately between one tenth and a third
of the window size. Median, first and third quartiles are

shown, whiskers show the 1.4 interquartile range values.

7.4. Deep Learning Method 97

0.1 0.3 0.50.0

Accuracy as a Function of the Dropout

Dropout

Ac
cu

ra
cy

 (%
)

45

80

55

50

60

65

70

75

FIGURE 7.6: Accuracy as a function of the dropout. Median,
first and third quartiles are shown, whiskers show the 1.4

interquartile range values.

Figure 7.5 shows the accuracy achieved by the NNs as a function of

the window size and data stride. No significant difference in accuracy was

found when using the two different NN architectures detailed in Section

7.4.2.

Figure 7.6 shows the accuracy achieved by the NNs as a function of the

dropout. We found that for the task a null or a small dropout achieve a

greater accuracy than a more aggressive approach.

Figure 7.7 shows the accuracy achieved by the NNs as a function of the

learning rate. We found that the accuracy initially increases with the learning

rate but it starts to decrease when the learning rate is too high.

Figure 7.8 shows the accuracy achieved by the NNs as a function of

the regularization. Again, we found that a too aggressive regularization

approach leads to a worse classification performance of the NN.

For each session of each subject, we computed the major prediction value

(fatigued/not-fatigued) and used this to create a confusion matrix. The

confusion matrices of the optimal NN for the training set and for the test set

are shown respectively in Figure 7.9 (a) and (b) together with their F1 Scores.

98 Chapter 7. Human State Evaluation

Ac
cu

ra
cy

 (%
)

Learning Rate

Accuracy as a Function of the Learning Rate

45

80

55

50

60

65

70

75

0.0004 0.0019 0.0088 0.0100 0.0214 0.04620.0001 0.0996

FIGURE 7.7: Accuracy as a function of the learning rate.
Median, first and third quartiles are shown, whiskers show

the 1.4 interquartile range values.

Accuracy as a Function of the L2 Regularization

45

80

55

50

60

65

70

75

40

35

Ac
cu

ra
cy

 (%
)

0.0017 0.0299 0.53230.0001
Regularization

FIGURE 7.8: Accuracy as a function of the L2 regularization.
Median, first and third quartiles are shown, whiskers show

the 1.4 interquartile range values.

7.5. Classic ML Method 99

95% 5%

4% 96%

Predicted Labels Predicted Labels

Confusion Matrix Training Set

NF

F

NF

FTr
ue

 L
ab

el
s

Tr
ue

 L
ab

el
s 78% 22%

72%28%

Confusion Matrix Test Set

NF F NF FA B

FIGURE 7.9: Confusion matrices for the training set with F1
Score 0.95 (A) and for the test set with F1 Score 0.76 (B). The
classification outputs are non fatigued (NF) and fatigued (F).

7.5 Classic ML Method

We further assessed the performances of our approach, comparing the accu-

racy achieved by our model with two standard ML approaches: the decision

tree (DT) [96] and Support Vector Machine (SVM) [171]. For the SVM we

used a radial basis function (RBF) kernel and we performed a grid search

approach to find the optimal C and “ parameters. The first parameter in-

fluences the soft margin cost function, while the second parameter is the

inverse of the standard deviation of the RBF kernel, thus defining the in-

fluence of a training example. We found as optimal solutions C = 7.84
and “ = 0.001. The comparison of the classification accuracy on the test

set between our approach, the DT and SVM achieved an accuracy of 63.4%

and 75% respectively. The comparison between the ROC curves of the three

approaches (SVM, DT and DNN) are shown in fig. 7.10.

7.6 Discussion

As detailed in section 7.3.2 some subjects did not perform the fatiguing phase

of the protocol since they felt already fatigued at the end of the pre-fatigue

trial. For these subjects, it is legitimate to assume that the onset of physical

fatigue may have been occurred at some point during the first phase of the

protocol. Figure 7.11 shows the classification results for three subjects (1, 4,

15). The dashed box represents the fatiguing portion of the trial; on the left

we show the pre-fatigue phase (blue) and on the right the post-fatigue one

(red). The blue and red vertical lines represent the end of the two phases

respectively. The three subjects shown did not perform the fatiguing protocol.

While for subject 4 the DNN shows an unsure classification behavior, for

subject 1 and 15 it starts to clearly classify a fatigued behavior at the end of

100 Chapter 7. Human State Evaluation

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.2 0.4 0.60.0 0.8 1.0
0.0

0.4

0.2

0.6

0.8

0.1
Receiver Operating Characteristic for the Test Test

ROC curve SVM (area = 0.72)
ROC curve DT (area = 0.61)

ROC curve NN (area = 0.89)

FIGURE 7.10: ROC curves for the test set for the three ap-
proaches SVM, NN and DT. The proposed approach exhibits
a greater area under the curve, compared to the other classi-

fiers.

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
NF

F

Fa
tig

ue
d

Subject 1 Fatigued for 0 seconds

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
NF

F

Examples of Classification Results

Fa
tig

ue
d

Subject 4 Fatigued for 0 seconds

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
NF

F

Time (s)

Fa
tig

ue
d

Subject 15 Fatigued for 0 seconds

FIGURE 7.11: Classification results, fatigued (F) and non fa-
tigued (NF), for three subjects: 1 (top), 5 (center), 15 (bottom),
outputted by the trained NN. The dashed box represents the
fatiguing portion of the trial; left represents the pre-fatigue
phase classification (blue), right represents the post-fatigue
classification (red). The blue and red vertical lines represent

respectively the end of the two phases.

7.6. Discussion 101

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
0

5

D
is

ta
nc

e
(m

) Distance from Camera

Correct

Mismatched

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
0

5

D
is

ta
nc

e
(m

)

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
0

5

Time (s)

D
is

ta
nc

e
(m

)

Subject 15

Subject 1
Examples of Classification Results as a Function of Distance

Subject 4

FIGURE 7.12: Representation of the correctness of the recog-
nition as a function of the distance from the camera. Note
that the sampling of the points along time is affected by the

windowing and confidence level of the tracking.

the pre-fatigue phase. Despite the fact that this behavior was considered

wrong, we could argue that the net is performing its classification task

correctly, while the provided labels were wrong. These considerations not

only further validate our approach, but may also introduce new possible

ideas for future developments and investigations. We could, for example,

train a new NN using as labels the classification results of the presented

network for the uncertain subjects and validate it with the data from a new

experiment.

7.6.1 Effect of Distance from Camera

As discussed in Section 7.3, there is an relationship between the distance

from camera and the stability of the tracking system in particular relating the

pose estimation of the feet. We verified a posteriori if there is also such an

effect of the DNN classification capability, but overall there was not such an

effect. Anyway for better understanding how distance and walking pattern

can affect specific classifications we report in Figure 7.12 the distance of the

subject from the camera with the results of the classification for subjects 1, 4

and 15.

102 Chapter 7. Human State Evaluation

7.6.2 Effect of Network Depth

The mean prediction time of our DNN on an Nvidia GeForce 960 is 2ms.

Given that this video-card is not a high end card, we can easily assume that

a better one could have even lower prediction times. This time is really low

compared to the latency of the system (2s) and does not effect negatively

the ability of the robotic assistant to detect promptly the fatigue level of the

patients. In principle, it could be possible to train several nets for different

window sizes in order to use increasingly longer windows, when available,

to have an increasing accuracy. Performance can be increased even more by

using ASICS as described in Chapter 4.

7.7 Conclusion

With this work we show that it is possible to infer human state using non

invasive sensors and ML techniques. In particular we analysed the Detection

and Classification process, which is depicted was depicted in Figure 1.1. We

do this by inferring fatigue in MCI patients analysing their gait pattern as

an example case of human state evaluation. Given that the patients have

minor disabilities, the data is very noisy and unbalanced, making the task

even harder.

To analyse the gait of the MCI patients we track their lower limb body

pose using an ML technique based on RFs as explained in Section 5.3, show-

ing that this system (Detection) is reliable enough to give us good results in

the Classification step. This answers RQ5, leaving open the possibility to

use more advanced sensors as the Kinect v2.

We tested DL techniques and classical ML approaches showing that DL

gives the best results in Classification; we did this to answers RQ2. It is

important to notice that ML are giving good results because the input data is

very noisy and this techniques are able to filter it out finding strong features

with high order non linear functions. Another advantage of ML techniques

is that it is very hard to find hand crafted features which are good fatigue

estimators, while in this case there is no need of such.

103

Chapter 8

Environment Recognition

To answer RQ1, RQ2 and RQ3 we tried to develop a system capable of

augmenting the environment to allow navigation for autonomous systems.

VALUE (Large Scale Voting-based Automatic Labelling for Urban Environ-

ments) was developed with the general idea of localising in 3D space any

type of content (traffic signs, traffic lights, shops etc. . .) . In the specific

case we tried to identify automatically in 3D traffic lights in maps of urban

environments. Given that this system relies on the ability of triangulat-

ing precisely a 3D location from multiple 2D images with detections, we

investigated the quality of several triangulation techniques to answer RQ6.

8.1 VALUE System

“Some Google employees have their self-driving vehicles take

them to work. These car robots don’t look like something from

"The Jetsons"; the driverless features on these cars are a bunch of

sensors, wires, and software. This technology "works".”

Tyler Cowen, [32]

The next generation of self-driving cars will likely operate more robustly

by using maps of their environment [79]. These maps allow the robots to

have strong priors on their environments to improve perception [8], and

have metric and semantic components for localisation and planning (top-left

and top-right in Figure 8.1) [111]. For self-driving cars in urban environments,

these semantic maps typically contain static objects such as road signs, traffic

lights, road markings, etc. It is common to manually label these [146], but

on the city-scale this becomes prohibitively expensive, and furthermore it

needs to be laboriously relabelled as the urban landscape inevitably changes.

A system that can automatically generate such labels for entire cities without

the need for hand-labeling would be very valuable to overcome this issue.

In this work we present such a system.

104 Chapter 8. Environment Recognition

FIGURE 8.1: We use VALUE to automatically find the 3D
locations of all traffic lights in Manhattan, such that they
can be used for autonomous driving. Zero images were

manually labeled to make this semantic map.

While the idea of using machine learning for automatic content detection

has been explored before, the use of large-scale accurate maps together

with machine learning opens new possibilities. Our work is inspired by

the possibility to merge large amounts of noisily labelled but accurately

localised data from a particular location. With this, we compute accurate,

denoised estimations of the semantic information of a superior quality.

Our contribution is a novel and simple system that

1. takes images, their accurate 3D position in a large-scale environment

and returns the 3D positions of static object in the environment

2. improves both object detection rate and 3D object position accuracy

as areas are revisited, making it scale and work better with very large

data sets

8.1. VALUE System 105

3. deliberately avoids the need for visually matching objects in-between

the images, a problem that prevents most similar systems from work-

ing on objects that (a) inherently look similar to each other (like traffic

lights) and (b) can appear very differently based on time of day, light-

ing, weather conditions, season, etc.

We evaluate our system on two new large datasets taken from San Fran-

cisco and New York City, in total comprising almost 0.4M images over 40

km2 from different times and weather conditions over a period of several

weeks to robustly recover position of the traffic lights in the environment.

We demonstrate that significantly superior results can be obtained using

even only mediocre and noisy 2D detection algorithms, if enough data are

provided.

A number of works explore robust detection of the static 3D objects in

the environment.

The basic component in a vision-based systems is an accurate 2D detec-

tion of the object in a single image or video. Recently, this approach has been

dominated by DL techniques [81, 34, 118]. In this work we decided to adopt

a full CNN as described by Huang et al. [72] to detect traffic lights in a large

collection of pictures.

Given two detections of the same object coming from a stereo camera, it

is possible to determine the 3D position of the object by triangulation [65,

91]. These approaches are viable, for example, for the online detection of

relative positions of objects around the vehicle

Similarly, if the position of multiple cameras observing the same object

are known, a multi-view triangulation approach can be used [64]. This

has an advantage over live detection since a significantly higher number

of potential views from different cameras can be collected over extended

periods of time, resulting into potentially significantly higher performance.

We take this approach in our work when we use large collection of 2D

observations to produce accurate, denoised 3D output.

A common problem in applying such approaches relies in the need to

accurately localise a set of sensors in the area. This problem can be addressed

by using a highly-precise GPS system. Unfortunately, accuracy of GPS in

dense urban environments is limited due to low sky visibility. An alternative

approach in these environments consists in using a map-based localisation.

Here state-of-the-art structure-from-motion systems have demonstrated

ability to construct large-scale map of the environments [82]. We follow this

106 Chapter 8. Environment Recognition

approach and construct a large-scale map of the city to localise accurately

the positions of all the sensors.

The most closely related work to ours is [48] where they use, similarly to

us, high-accuracy localisation of camera-equipped vehicles to map positions

of traffic lights in the environment. Our work is novel for the use of a

robust triangulation method operating jointly on the set of all the data from

a particular location, resulting in improved performance as the amount of

data increases.

8.2 Triangulation of Contents

There are several options for multiple view triangulations; we opted for the

recent 3DTMA [41] approach due to the smaller re-projection error and speed.

Here we present a test case in which we compared the different approaches.

The variants tested are: Direct Linear Transformation (DLT), (un) constrained

Non-Linear minimization (NLU, NLC), weighted least squares (WLSQ)

minimization 1 and 3DTMA. The DLT is the classic formulation used for

solving a linear system involving homogeneous coordinates. The non-linear

formulation uses Matlab fminunc/fminbnd with the re-projection error as

the objective function. The constrained version imposes that the solutions

are placed on the semispace centered in the view origin and containing the

frustum. The weighted least square minimization has a formulation similar

to DLT but uses the distance of each view from the estimated point to weight

the importance of the view in the solution. WLSQ is an iterative algorithm

that provides good results also with 1 iteration.

TABLE 8.1: Result of the evaluation among the algorithms.
The first two columns report the average and maximum tri-
angulated error respectively, the third is the re-projection
error in pixels and the fourth the running time of the algo-

rithm.

Avg Err. (m) Max Err. (m) R-Err. (px) Duration (s)
DLT 4.61 147 2.21e+03 0.000894
NLC 17.1 31.1 64.1 0.329
NLU 40.4 51.8 5.34e+04 0.0234
WLSQ 2.11e-10 4.91e-09 8.48e-10 0.000679
3DTMA 2.53e-06 1.16e-05 3.58e-06 0.000489

The comparison is performed using a realistic configuration of 28 views

taken from the 25k dataset spanning a space of 18 by 23 and 15 meters. We

choose a set of randomly generated points around a real content location:
1used in OpenMVG

http://imagine.enpc.fr/~moulonp/openMVG/

8.3. Method 107

100 points have been sampled with variance 50m and then filtered removing

the ones outside the image plate of the views. The views have different

an average distance 68 ± 79 meters from the chosen point. The use of a

known point set allows to evaluate triangulation without the uncertainty of

detection. Table 8.1 shows the results across the triangulation algorithms

and Figure 8.2 shows the configuration of the views and the target point.

We decided to use 3DTMA given the possibility of using also speed as an

additional parameter for future work.

The comparison is performed using a realistic configuration of 28 views

taken from the 25k dataset spanning a space of 18 by 23 and 15 meters. We

picked a set of images containing several traffic lights and choose a set of

randomly generated points around a real content location: 100 points have

been sampled with variance 50m and then filtered removing the ones outside

the image plate of the views. Figure 8.3 whows an example of triangulated

traffic lights. Table 8.1 shows the results across the triangulation algorithms

and Figure 8.2 shows the configuration of the views and the target traffic

light used in Figure 8.3. We decided to use 3DTMA given the possibility of

using also speed as an additional parameter for future work.

FIGURE 8.2: The 3D representation of a cluster of views with
4 contents shown as red dots. Each content is connected with
the voters using a green line. The green view and the green

content correspond to the one shown in the figure 8.3.

8.3 Method

Our system takes a large set of 2D images Ii, with associated camera-

intrinsics parameters qi and 6 degrees-of-freedom poses Pi œ SE(3), and

produces a set of 3D positions of objects Li œ R3. Figure 8.4 shows a general

overview of the system. In our work the images are captured from our

mapping fleet traversing various cities, and the poses are calculated using a

large-scale structure-from-motion (SFM) pipeline [84], but in general there

is no restriction on the source of the poses as long as they are accurate and

globally consistent.

108 Chapter 8. Environment Recognition

Reconstructed

Detected

FIGURE 8.3: Image of the highlighted view and content of
figure 8.2 showing the content projected over the detected
position. The re-projection difference is 0.5 pixels. A detected
content is a content which has been detected by the ML
system, while a reconstructed content is a content which
passed the voting scheme and has an associated 3D position.

The process then consists of two steps: (1) applying a noisy 2D detector to

each image Ii resulting in a set of object detections Zi µ R2, followed by (2)

estimating their final 3D positions L by a simple voting-based triangulation

algorithm.

8.3.1 2D Object Detection

We generate 2D object detections in the images using an off-the-shelf CNN

trained to predict bounding boxes for traffic lights [72]. These detections are

usually noisy and suffer from many false positives and false negatives. In

Section 8.4 we show that our system compensates for these noisy detections

if shown a large amount of data. One alternative to using a detector is to

use hand-annotated labels from, for example, Amazon Mechanical Turk [20],

which however have also been shown to suffer from label noise [53].

8.3.2 Robust Voting-based Triangulation

The output of the previous step is a large set of 2D detections. Importantly,

the 2D detection step cannot tell you which detections can be associated with

which physical 3D traffic light Di, and any feature descriptors that it might

produce to associate them would be useless under the appearance changes

8.3. Method 109

Images
SFM Poses

Detection Annotations
Annotated poses Remove static

frames

Clustering

Pick 2 images

Triangulate labels

Vote

Triangulate N views

∀

More labels
available?

Yes

3D labels

No

Delete 2D
detections

Final
3D labels

FIGURE 8.4: The overview of the system. The final output
consists of a list of 3D detections. These can be passed back

into the input of the system to obtain better results.

that we see in outdoor environments. This is true for any set of objects

that look similar (traffic lights are a good example). The only difference

between them is their position in 3D space. Without this association, classical

algorithms for multi-view triangulation can therefore not be directly used.

Instead, we use a robust voting-based triangulation algorithm to jointly

determine these 2D associations and the position of the traffic lights in 3D

space.

FIGURE 8.5: An example of a cluster in the map consisting
of several traversals in differing conditions. Top: Close-up of
the dataset clustering. Bottom row: example frames that are
from different traversals belonging to the highlighted cluster

and associated traffic lights.
.

For each pair of detections (za, zb) (where a and b are indices into 2D

detections) from two different images Ii, Ij we create a 3D hypothesis hab

110 Chapter 8. Environment Recognition

Algorithm 1 Robust Voting-Based Triangulation
Input: I set of images

Q camera intrinsics
P SE(3) camera poses
dmax maximum reprojection error
– minimum ratio of inliers

Output: L 3D positions of objects
Detect objects in 2D images:

1. for Ii œ I
2. Zi Ω detect(Ii)
3. Z Ω fii Zi

4. L Ω ÿ

5. for (za, zb) œ Z2

Compute 3D position of the object:
6. lab Ω triangulate({za, zb})

Compute inliers for computed 3D position:
7. Sab Ω {zk|’zk œ Z : fi(lij , pk, qk) ≠ zk < dmax}

Find the hypothesis with most votes:
8. a, b Ω arg maxa,b |Sab|

9. if |Sab| Ø – · mean(|S|)
10. L Ω L fi triangulate(Sab)
11. Z Ω Z ≠ Sab

12. goto 5
13. return L

under the assumption that these two detections correspond to the same

physical 3D traffic light generating in total O(N2) hypotheses where N is the

total number of detected traffic lights. The 3D position lú of each hypothesis

can be determined by K-view triangulation (in this case K = 2), where we

minimise the sum of the reprojection errors:

lú = arg min
l

ÿ

kœK

!
fi(l, pk, qk) ≠ zk

"2
, (8.1)

where K is {a,b} in this case, fi is the projection of the 3D point l into the

camera at position pk with intrinsics qk. We consider a hypothesis viable if it

satisfies the following:

1. triangulation constraint: the point is triangulated in front of each camera,

2. rays intersect in 3D space: the reprojection error is smaller than dmax,

3. the projection is stable: the angle between the optical axes is larger than

◊min,

4. distance to camera: the distance from the traffic light to either camera is

less than rmax.

8.3. Method 111

Optionally, additional constraints reflecting prior information about the

location of a traffic lights can be used to further restrict the hypothesis space.

For each hypothesis hab we compute the set of consistent inliers Sab. This

set consists of all the 2D detections that observe a traffic light at the same

location, which is computed by projecting the 3D position lú into each image

and verifying whether the projected position is less than dmax to any 2D

detection. Next, we remove the hypothesis with the maximum number of

votes and also remove the detections that voted for it (inlier detections).

This process is repeated until no hypothesis with at least – · M inliers is

found, where M is the average number of inliers per hypothesis and – is

a tunable parameter over the confidence. This creates a set of confirmed

hypotheses. An important theoretical property of this schema is that in the

case of noisy but unbiased 2D detector and a uniform distribution of the

data, it converges to the correct solution as the amount of data increases.

This is due to noisy detections forming hypotheses with small numbers of

votes, and correct detections gathering consistent votes over time. As the

amount of data increases, these two metrics begin to separate, and – is the

threshold on their ratio.

Finally, for every hypothesis we refine its 3D position by optimising the

reprojection error from (8.1) over all the hypothesis detections. This entire

algorithm is presented in Algorithm 1.

8.3.3 Large-Scale System

The above method works well for small-scale scenario, but does not scale

well to large, city-scale settings we are interested in due to its potential O(N4)
complexity where N is the number of detected traffic lights 2. Instead, we

resort to a distribution schema based on splitting the data set to clusters,

running Algorithm1 for each cluster independently, and then merging the

results.

We employ a simple clustering schema where we keep identifying the

closest images to a detected traffic light until a cluster of size Nmax is created,

at which point we remove it from the data set and continue the process until

it terminates. An illustration of these clusters is shown in Figure 8.5.

After each cluster is triangulated using Algorithm 1 it might be the case

that the same traffic light is triangulated in two different clusters. To resolve

this issue we merge all pairs of traffic lights closer than 1m, producing the

final set of labels L.
2A slightly better complexity of O(N3) can be achieved by reusing the computation of

the inliers in each iteration.

112 Chapter 8. Environment Recognition

San Francisco New York City

images 12048 360207
detections 17198 547689
clusters 172 3941
traffic lights 183 1732
detectable traffic lights 167 1906
mean # views / cluster 70.05 91.4
mean # detections / frame 1.65 2.84
images with 0 detection 1587 44483
images with 1 detections 6231 145608
images with 2 detections 2389 125924
images with 3 detections 1346 32487
images with 4 detections 369 7754
images with 5 detections 98 2700
images with 6 detections 17 802
images with 7 detections 9 283
images with 8 detections 0 80
images with 9 detections 1 51
images with 10+ detections 1 35

TABLE 8.2: Per-dataset statistics of 2D detection and cluster-
ing.

San Francisco New York City

true positives 156 1560
false positives 4 84
false negatives 11 172
duplicates 14 56
mean reprojection error 2.94 3.24

TABLE 8.3: The results of the method on two datasets.

8.4 Experiments

We evaluate the presented system on two large-scale data sets from San

Francisco and New York City that we collected using a dedicated fleet

of mapping vehicles. We demonstrate that the presented system scales

to the size of cities, and that as the amount of data increases it generates

increasingly accurate results both in terms of successfully recovered traffic

lights and their 3D positions, despite using a very inaccurate off-the-shelf

2D detector.

8.4.1 Data Sets

The San Francisco and New York City data sets have been created by captur-

ing images using a fleet of vehicles. The vehicles traversed most of the roads

8.4. Experiments 113

multiple times, in both directions, at varying times of day and weather con-

ditions. During this time they captured images at regular intervals. Example

images are shown in Figs. 8.1 and 8.5. Each of these images has associated

ground-truth 2D labels of traffic lights with label noise estimated at 5%.

We resize each image to 640◊480 pixels and use a large-scale, distributed,

structure-from-motion pipeline [82, 175] running on multiple computers to

calculate the 3D positions P of the images.

Each data set covers an area with a certain number of physical traffic

lights. Not all of them are recoverable, i.e. their 3D positions cannot be

accurately determined. We consider a traffic light recoverable if it has been

observed from at least two different viewpoints under angle difference at

least ◊min. In reality, as the amount of data increases, almost all the traffic

lights eventually become recoverable. The sizes of these data sets together

with their RMSE results are shown in Tab. 8.2. We also present the amount

of traffic lights present in our dataset along with the number of detectable

traffic lights.

8.4.2 2D Detection

We use a simple, convolutional neural network architecture to detect traffic

lights in 2D images. Firstly, we use a binary segmentation network [72] to

compute the probability that each pixel is part of a traffic light. We then use

a simple thresholding schema to compute connected components of pixels

representing traffic lights, and fit bounding boxes.

We train this network using the Bosch Data Set [11]. We split the data set

into a training set of size 5,093 and a testing set of size 8,334, covering in total

24,242 traffic lights detections. For training we use two Nvidia P5000 cards

until convergence. The network has been used to classify all the images in

our datasets.

In this work we purposely did not fine-tune the detector for either the

San Francisco or New York City data sets. There are significant differences

between the training and testing data: the Bosch data are from a suburban

area, while our data are urban; the cameras are different; and the training

data contain mostly small traffic lights while our evaluation data contain

traffic lights of all sizes. While the learned classifier achieves 90% recall on

the Bosch test data, it becomes a relatively noisy detector on our datasets

with a recall of 85% and an average Intersection-Over-Union (IOU) of 0.45.

114 Chapter 8. Environment Recognition

(A) New York City (B) San Francisco

(C) New York City (D) San Francisco

FIGURE 8.6: Performance of the system as a function of
number of passes through a location. As the amount of
data increases both recall and 3D localisation accuracy (as

measured by negative reprojection error) increase.

8.4.3 Results

We run the described clustering method from Section 8.3 on all the data.

Figure 8.5 shows the results of clustering in the San Francisco data set. Any

clusters can contains images from multiple passes of the mapping vehicles

through the area, as shown in Table 8.4.

Table 8.3 shows the statistics for the triangulation step. The presented

method is able to recover at least 90% of all the recoverable traffic lights

in both data sets, while suffering from only about 10% of false positive

detections. The average reprojection error of the triangulated traffic lights

for two datasets is 2.94 and 3.24 pixels for San Francisco and New York

respectively. Note that reprojection error incorporates both the error in the

triangulated 3D object and the underlying map accuracy. As discussed in

Section 8.3.3, during the triangulation some of the traffic lights might be

detected in two or more different clusters and must be unified in the merge

step. These form only a small fraction of all the traffic lights.

Running the 2D detector over all 372k images took 30 hours. Clustering

was performed in 1.1 minutes for San Francisco and 19 minutes for New

York City, while the final triangulation took 1.1 and 3.1 minutes respectively.

Of primary importance is the performance of the system as the number

of data increases. We characterise this by an increasing number of passes

8.4. Experiments 115

clusters
passes San Francisco New York City

1 47 476
2 43 304
3 9 229
4 6 121
5 1 49
6 4 27
7 6 0
8 6 0
9 1 0

TABLE 8.4: Statistics of the number of passes per cluster. As
the mapping fleet traverses the environment each place is
visited several times. As discussed in the text more passes
through the environment result into higher performance of

the system.

(A) (B) (C)

FIGURE 8.7: Failure modes of the presented method. When
not enough data from a particular location are provided both
(a) false negative detections due to the undetected objects
or (b) temporarily consistent wrong detections can manifest.
The largest challenge is (c) consistent and repeated detections
of a objects that look similar to a traffic light over a period of

time.

through an area. For this experiment we took a random subset of 25 clusters

with at least 5 passes and computed the statistics of the number of recovered

traffic lights and their reprojection error. The results are shown in Figure

8.6(a-b). Note that the recall starts off poorly because not all traffic lights

in a cluster are detectable in a single pass, if for instance they are angled

orthogonally to the direction of travel and increases with the number of

passes through an area. With increasing passes we are more likely to detect

the traffic light and have enough views to accurately localise it in 3D. We can

see that the likelihood of detecting a traffic light does increase with number

of passes. Note that the number of false positives for this random subset of

25 clusters is zero.

116 Chapter 8. Environment Recognition

FIGURE 8.8: Number of detected contents in respect of a
precision parameter. The precision value is multiplied by

the distance threshold when voting for a content.

Figures 8.6(c-d) show that the 3D localisation accuracy also increases

with number of passes. We measure this by taking the 3D object position

estimated using up to N passes and project it into the images from a leave-

one-out pass, measuring the reprojection error between where that 3D object

is projected into the image and where it truly appears in the image. The

statistics in Figure 8.6 show that the system converges in both recoverability

of the traffic lights and their 3D position with more data. Figure 8.8 shows

an intuitive result, which consists in the fact that there is a trade off between

number of detected contents and reprojection error. This can be tuned using

a value called reprojection factor –. Given a content Ci in 3D, its bounding

box with center Bi in an image, a corner of the bounding box Ki and its 2D

reprojection Ri in an image, the system cast a positive vote if

dist(Ri, Bi) Æ – ú dist(Bi, Ki). (8.2)

In other words this means that the reprojected points falls inside the circle

which has center Bi and radius (Bi, Ki). Lowering – lowers the size of the

radius requiring a more precise reprojection in order to cast a positive vote.

Finally, we show some failure cases. The method converges under the

assumption that the underlying detector is unbiased, but might produce

8.5. Conclusion 117

incorrect results when this assumption is broken or when only a small

amount of data are provided. Figure 8.7 shows some of these cases. While

the method is prone to generate a number of false negative detections when

not enough data are provided, the largest problem are the false positive

detections created by consistent, incorrect detections. While some of them

tend to appear only in a single pass (such as series of reflections on a deck of

the car) and thus can be resolved with more data, the incorrect detections of

traffic-light-like objects which are repeatedly and consistently observed over

periods of time posses a serious challenge to be addressed in the future.

8.5 Conclusion

We have demonstrated a simple and robust system for finding the 3D posi-

tions of static objects in complex city environments. We leverage a reliable

image pose source and a large quantity of image data to overcome the com-

mon challenges of noisy 2D labels. The resulting accurate 3D object positions

are borne out of a voting-based triangulation system that solves the data

association problem that poses a particularly difficult challenge when the

desired objects are similar in physical construction and yet appear vastly

different in images as a result of strong variations in lighting and weather.

The system is specifically designed in such a way to be parallelisable,

and therefore efficiently process very large image sets. We have evaluated

our system on city-scale data sets comprising almost 0.4M images, and

have shown that despite the very noisy input detections, the system output

increases in 3D positional accuracy and recall with more data. This has been

used to answers RQ1.

To answer RQ2 we had a look at the state of the art solutions and decided

to use CNNs given that all the most promising results in this research area

have been developed using this technique. We showed in Section 8.4.3 that

we are able to localize almost all traffic lights even if the used detections are

not optimal given that we trained our detection system on a dataset which is

very different from the evaluation one. This proves also that a robust voting

scheme can cope with a bad detections which is a fundamental assumption

for an AS.

To estimate the precision of the system we tested several different tri-

angulation techniques in Section 8.2. We used a fixed test case to evaluate

precision and convergence speed of several algorithms showing that we can

evaluated with enough precision the position of an object in space given

multiple views. Obviously the required precision depends on the task which

118 Chapter 8. Environment Recognition

the AS has to perform; for example, in the case of autonomous cars, knowing

the position of a traffic light within a few centimeters might be enough. All

this has been used to answers RQ3 and RQ6.

119

Chapter 9

Conclusions

In this thesis we analysed how Machine Learning techniques can be used

in combination with Autonomous Systems to interact with humans and

the environment. In particular, we analysed how Autonomous systems can

detect and classify activities, environments and humans states. A general

overview of the different techniques and application domains in depicted

in Figure 1.1. In the following we will resume the obtained results and

contributions which have been obtained in this work as reported in Table

1.1.

The first contribution of this work C1 consists in the development of

an autonomous system capable of recognizing activities. In particular we

developed the PELARS system to identify learning activities performed

during projectual sessions by students on a sensorised table. Such system

is composed of a set of sensors that acquire information about the students,

an annotation system based on mobile phones and tables to record images,

videos and text, and a collection and visualization system that stores and

processes the data in order to provide learning statistics to students, teachers

and researchers. The sensors were used to acquire the position of faces,

hands and objects on the PELARS table in order to measure interaction

between students. All the data is processed locally on a desktop PC, which is

used also as interface for the students to the Arduino programming toolkit.

The acquisition code is written in C++ using concurrent threads for the

acquisition and Cuda code for the processing on GPU of input signals. All

data is processed and sent to a remote server that exposes a set of Websocket

endpoints and some REST APIs for the data storage, manipulation and

visualization. The server has been written in Java and uses a MySql database

to store data.

The system has been evaluated with two different approaches: in the

first experiment we evaluated the possibility of inferring the working phase

from the acquired data using classical ML techniques, while in the second

experiment we evaluated the possibility of inferring projectual outcomes

120 Chapter 9. Conclusions

using DL techniques. Working phases and projectual outcomes have been

annotated by teachers and researchers during testing sessions. 18 engineer-

ing students at an European university were involved in the experiment as

detailed in Section 6.5.1.

The results showed in both cases the possibility of inferring working

phases and projectual outcomes from the data acquired at the sensorised

table. This allows teachers to possibly focus more on student in difficulty,

propose automatic help from the system for students in need and it provides

an easy annotation and visualization tool for both students and teachers for

post analysis of the work.

The second contribution of this work C2 consists in the development

of an autonomous system capable of evaluating the state of a person. We

developed this system in the context of the RAMCIP project, which aims at

creating an autonomous robot to help elderly people with MCI. The goal

of this work is to estimate fatigue in patients by looking at gait patterns

using non invasive techniques. The developed system is composed of a

Kinect camera, which acquired RGB-D frames at 30Hz and a Desktop pc

for the acquisition and processing of the data. In particular we acquired

the human skeleton using a skeleton tracker based on Random Forests. The

experiment dataset has been acquired by firstly letting patients walk in front

of the camera in a non fatigued state, then applying a fatiguing protocol and

finally having the patients walk again in front of the camera in a fatigued

state; in total 20 people have been recorded.

Given the extreme variability of the input data and the lack of strong

fatigue indicators from gait analysis, we opted for a DL method using

as input the position of the lower limb joints. Data had to be pre-filtered

partially to ease the training of the system given that often it was not possible

to track for enough time with high confidence the skeleton of the patient.

Results show that we were able to infer correctly the fatigue state of

patients with an accuracy of 78.3% observing the patients for 2s. This makes

it possible for autonomous robots to adapt their behavior to the state of

the person interacting with them. Also the latency of the system is crucial

for such applications given that people move around and it might be hard

to track them for a long duration with high confidence. Given the high

variability of subjects it might be strongly possible that additional data could

produce a better detection network increasing the classification accuracy.

Also a better sensor could contribute to increase the overall performance of

the system, like for example the Kinect v2.

Chapter 9. Conclusions 121

The last two contributions of this thesis C3, C4 consist in the development

an autonomous system capable of detecting and triangulating contents in

large scale 3D maps. A content can be anything that can be detected in 2D

images by a detector. In our case we tested the system by looking for traffic

lights since they are widely used in the autonomous driving sector. The

system is detecting contents, but most importantly triangulating them by

associating correctly the same content in multiple images using a voting

scheme. A 3D map consists in a set of images along with relative poses.

To test the system we developed a 3D map of San Francisco and New

York reaching up to a size of 400k frames. We used a fully convolutional

neural network to detect the traffic lights in the images and then, after

associating them correctly in the different views, triangulated them. We

evaluated the system and were able to correctly detect and triangulate over

90% of the available traffic lights. Most importantly, we showed that the

system tends to get better performances over time when new data arrives

(each street can have multiple passes during different times of the day and

different weather conditions) and this is a fundamental assumption given

that the system can have many false positives in the detection phase.

To triangulate the detected traffic lights we tested several approaches, in

order to find the most precise and fastest algorithm. This was done given that

we could not find a large comparison of state of the art triangulation systems,

leading to the constribution C4. We decided to use 3DTMA given the results

presented in Section 8.2, but several other strong candidate algorithms are

available.

We did not spend time on the optimization of our detection system that

was trained on a dataset which is very different than the one used to build

the maps. This has been done since we wanted to test the robustness of

the system to noise. We proved the robustness of the system and will test

also how much performance is gained from improving the detector in a

future work. It is also important to notice that in principle we could use

directly the final output of the system to do hard negative mining to improve

automatically the quality of the detector.

All these results are fundamental in the field of autonomous driving

given that the environment changes rapidly and that weather conditions

might influence strongly a detection system. Our system shows a way of

developing an automatic system for generic detection which can be boot

strapped with a small initial dataset and then improves over time when

more data is available.

122 Chapter 9. Conclusions

All these contributions represent an attempt to propose possible new

strategies to use ML techniques to enhance the capabilities of autonomous

systems. These new techniques are almost always performing better than

classical approaches and can push the state of the art in robotic applications.

Given that autonomous systems are getting pervasive in daily life, it is

becoming of fundamental importance to enhance the interaction quality

between them and humans, making it as natural as possible. This will

probably become the next big challenge.

123

Appendix

125

Appendix A

List of Publications

Conference
• Giacomo Dabisias, Emanuele Ruffaldi, Hugo Grimmet, and Ondruska

Peter. “VALUE: Large Scale Voting-based Automatic Labelling for

Urban Environments”. In: (2018) Accepted at ICRA2018

• Emanuele Ruffaldi, Giacomo Dabisias, Lorenzo Landolfi, and Daniel

Spikol. “Data collection and processing for a multimodal learning

analytic system”. In: SAI Computing Conference (SAI), 2016. IEEE. 2016,

pp. 858–863

• Emanuele Ruffaldi, Filippo Brizzi, Giacomo Dabisias, and Giorgio

Buttazzo. “SOMA: an OpenMP toolchain for multicore partitioning”.

In: Proceedings of the 31st Annual ACM Symposium on Applied Computing.

ACM. 2016, pp. 1231–1237

• Giacomo Dabisias, Daniel Spikol, and Emanuele Ruffaldi. “A Learning

Analytics Framework for Practice-Based Learning”. In: (2015)

• Paolo Tripicchio, Massimo Satler, Giacomo Dabisias, Emanuele Ruf-

faldi, and Carlo Alberto Avizzano. “Towards smart farming and sus-

tainable agriculture with drones”. In: Intelligent Environments (IE), 2015

International Conference on. IEEE. 2015, pp. 140–143

126 Appendix A. List of Publications

Journal
• Giacomo Dabisias, Lorenzo Peppoloni, Alessandro Graziano, Justyna

Gerłowska, Konrad Rejdak, and Emanuele Ruffaldi. “Deep learning

based automated fatigue detection in MCI subjects”. In: Transaction

on Human-Machine Systems, 2017. IEEE. 2017, xxx–yyy Ready to be

submitted

• Daniel Spikol, Emanuele Ruffaldi, Giacomo Dabisias, and Mutlu Cukurova.

“Supervised Machine Learning in Multimodal Learning Analytics for

Estimating Success inProject-based Learning”. In: JCAL, 2017. IEEE.

2018, xxx–yyy Submitted

127

Bibliography

[1] Martín Abadi et al. “Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems”. In: arXiv preprint arXiv:1603.04467
(2016).

[2] W Abrahão et al. “A comparison of Haar-like, LBP and HOG
approaches to concrete and asphalt runway detection in high resolu-
tion imagery”. In: ().

[3] Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan.
OpenFace: A general-purpose face recognition library with mobile applica-
tions. Tech. rep. CMU-CS-16-118, CMU School of Computer Science,
2016.

[4] Cynthia J. Atman et al. “Engineering Design Processes: A Compari-
son of Students and Expert Practitioners”. In: J. Eng. Educ. 96.4 (2007),
pp. 359–379. ISSN: 10694730. DOI: 10.1002/j.2168-9830.2007.
tb00945.x. URL: http://doi.wiley.com/10.1002/j.2168-
9830.2007.tb00945.x (visited on 10/15/2016).

[5] Lindsay Bahureksa et al. “The impact of mild cognitive impairment
on gait and balance: a systematic review and meta-analysis of studies
using instrumented assessment”. In: Gerontology 63.1 (2017), pp. 67–
83.

[6] Dana H Ballard. “Generalizing the Hough transform to detect arbi-
trary shapes”. In: Pattern recognition 13.2 (1981), pp. 111–122.

[7] Vassileios Balntas, Lilian Tang, and Krystian Mikolajczyk. “Bold-
binary online learned descriptor for efficient image matching”. In:
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference
on. IEEE. 2015, pp. 2367–2375.

[8] Dan Barnes, Will Maddern, and Ingmar Posner. “Exploiting 3D se-
mantic scene priors for online traffic light interpretation”. In: Intelli-
gent Vehicles Symposium (IV), 2015 IEEE. IEEE. 2015, pp. 573–578.

[9] Luis C Basaca-Preciado et al. “Optical 3D laser measurement system
for navigation of autonomous mobile robot”. In: Optics and Lasers in
Engineering 54 (2014), pp. 159–169.

[10] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up
robust features”. In: European conference on computer vision. Springer.
2006, pp. 404–417.

[11] Karsten Behrendt and Libor Novak. “A Deep Learning Approach
to Traffic Lights: Detection, Tracking, and Classification”. In: ICRA.
IEEE. 2017, pp. 1370–1377.

[12] Stephanie Bell. “Project-Based Learning for the 21st Century: Skills for
the Future”. In: The Clearing House: A Journal of Educational Strategies,
Issues and Ideas (2010).

https://doi.org/10.1002/j.2168-9830.2007.tb00945.x
https://doi.org/10.1002/j.2168-9830.2007.tb00945.x
http://doi.wiley.com/10.1002/j.2168-9830.2007.tb00945.x
http://doi.wiley.com/10.1002/j.2168-9830.2007.tb00945.x

128 BIBLIOGRAPHY

[13] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pas-
canu. “Advances in optimizing recurrent networks”. In: Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Confer-
ence on. IEEE. 2013, pp. 8624–8628.

[14] James Bergstra et al. “Theano: A CPU and GPU math compiler in
Python”. In: 9th Python in Science Conf. 2010, pp. 1–7.

[15] Reinhard Blickhan. “The spring-mass model for running and hop-
ping”. In: Journal of biomechanics 22.11-12 (1989), pp. 1217–1227.

[16] Paulo Blikstein. “Multimodal learning analytics”. In: Proceedings of
the Third International Conference on Learning Analytics and Knowledge
- LAK ’13. Ed. by Dan Suthers and Katrien Verbert. New York, New
York, USA: ACM Press, 2013, p. 102. DOI: 10.1145/2460296.
2460316. URL: http://dl.acm.org/citation.cfm?doid=
2460296.2460316 (visited on 10/13/2016).

[17] Paulo Blikstein. “Using learning analytics to assess students’ be-
havior in open-ended programming tasks”. In: Proceedings of the 1st
International Conference on Learning Analytics and Knowledge - LAK ’11.
New York, New York, USA: ACM Press, 2011, p. 110. DOI: 10.1145/
2090116.2090132. URL: http://dl.acm.org/citation.
cfm?doid=2090116.2090132 (visited on 10/14/2016).

[18] Paulo Blikstein and Marcelo Worsley. “Multimodal Learning Analyt-
ics and Education Data Mining: using computational technologies
to measure complex learning tasks”. In: Journal of Learning Analyt-
ics (2016). URL: http://epress.lib.uts.edu.au/journals/
index.php/JLA/article/view/4383/5596 (visited on 10/12/2016).

[19] Phyllis C. Blumenfeld et al. “Motivating Project-Based Learning: Sus-
taining the Doing, Supporting the Learning”. In: Educ Psychol 26.3-4
(1991), pp. 369–398. ISSN: 0046-1520. DOI: 10.1080/00461520.
1991.9653139. URL: http://www.tandfonline.com/doi/
abs/10.1080/00461520.1991.9653139 (visited on 10/13/2016).

[20] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. “Ama-
zon’s Mechanical Turk: A new source of inexpensive, yet high-quality,
data?” In: Perspectives on psychological science 6.1 (2011), pp. 3–5.

[21] Stephen Butterworth. “On the theory of filter amplifiers”. In: Wireless
Engineer 7.6 (1930), pp. 536–541.

[22] Michael Calonder et al. “Brief: Binary robust independent elementary
features”. In: European conference on computer vision. Springer. 2010,
pp. 778–792.

[23] Zhe Cao et al. “Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields”. In: CVPR. 2017.

[24] Hui Chen and Bir Bhanu. “3D free-form object recognition in range
images using local surface patches”. In: Pattern Recognition Letters
28.10 (2007), pp. 1252–1262.

https://doi.org/10.1145/2460296.2460316
https://doi.org/10.1145/2460296.2460316
http://dl.acm.org/citation.cfm?doid=2460296.2460316
http://dl.acm.org/citation.cfm?doid=2460296.2460316
https://doi.org/10.1145/2090116.2090132
https://doi.org/10.1145/2090116.2090132
http://dl.acm.org/citation.cfm?doid=2090116.2090132
http://dl.acm.org/citation.cfm?doid=2090116.2090132
http://epress.lib.uts.edu.au/journals/index.php/JLA/article/view/4383/5596
http://epress.lib.uts.edu.au/journals/index.php/JLA/article/view/4383/5596
https://doi.org/10.1080/00461520.1991.9653139
https://doi.org/10.1080/00461520.1991.9653139
http://www.tandfonline.com/doi/abs/10.1080/00461520.1991.9653139
http://www.tandfonline.com/doi/abs/10.1080/00461520.1991.9653139

BIBLIOGRAPHY 129

[25] Lei Chen et al. “Towards Automated Assessment of Public Speak-
ing Skills Using Multimodal Cues”. In: Proceedings of the 16th Inter-
national Conference on Multimodal Interaction - ICMI ’14. New York,
New York, USA: ACM Press, 2014, pp. 200–203. ISBN: 9781450328852.
DOI: 10.1145/2663204.2663265. URL: http://dl.acm.org/
citation.cfm?doid=2663204.2663265 (visited on 10/15/2016).

[26] Liang-Chieh Chen, George Papandreou, et al. “Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs”. In: arXiv preprint arXiv:1606.00915 (2016).

[27] Trishul M Chilimbi et al. “Project Adam: Building an Efficient and
Scalable Deep Learning Training System.” In: OSDI. Vol. 14. 2014,
pp. 571–582.

[28] Minsik Cho et al. “PowerAI DDL”. In: arXiv preprint arXiv:1708.02188
(2017).

[29] Changhyun Choi and Henrik I Christensen. “3D pose estimation
of daily objects using an RGB-D camera”. In: Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE. 2012,
pp. 3342–3349.

[30] François Chollet. Keras. 2015.

[31] John Cohen. Human robots in myth and science. AS Barnes, 1967.

[32] T. Cowen. Modern Principles of Economics. Worth Publishers, 2009.

[33] Leandro Cruz, Djalma Lucio, and Luiz Velho. “Kinect and rgbd
images: Challenges and applications”. In: SIBGRAPI-T. IEEE. 2012,
pp. 36–49.

[34] Gabriela Csurka and Florent Perronnin. “A Simple High Performance
Approach to Semantic Segmentation.” In: BMVC. 2008, pp. 1–10.

[35] Giacomo Dabisias et al. “Deep learning based automated fatigue
detection in MCI subjects”. In: Transaction on Human-Machine Systems,
2017. IEEE. 2017, xxx–yyy.

[36] Giacomo Dabisias et al. “VALUE: Large Scale Voting-based Auto-
matic Labelling for Urban Environments”. In: (2018).

[37] Giacomo Dabisias, Daniel Spikol, and Emanuele Ruffaldi. “A Learn-
ing Analytics Framework for Practice-Based Learning”. In: (2015).

[38] Oscar Déniz et al. “Face recognition using histograms of oriented
gradients”. In: Pattern Recognition Letters 32.12 (2011), pp. 1598–1603.

[39] Konstantinos G Derpanis. “The harris corner detector”. In: York Uni-
versity (2004).

[40] A. Doyle. The Adventures of Sherlock Holmes. Adventure 4: “The Boscombe
Valley Mystery”. Lit2Go Edition, 1892.

[41] K. Doğançay. “3D Pseudolinear Target Motion Analysis From An-
gle Measurements”. In: IEEE Transactions on Signal Processing 63.6
(2015), pp. 1570–1580. ISSN: 1053-587X. DOI: 10.1109/TSP.2015.
2399869. URL: http://ieeexplore.ieee.org/document/
7029692/.

[42] Dimiter Driankov and Alessandro Saffiotti. Fuzzy logic techniques for
autonomous vehicle navigation. Vol. 61. Physica, 2013.

https://doi.org/10.1145/2663204.2663265
http://dl.acm.org/citation.cfm?doid=2663204.2663265
http://dl.acm.org/citation.cfm?doid=2663204.2663265
https://doi.org/10.1109/TSP.2015.2399869
https://doi.org/10.1109/TSP.2015.2399869
http://ieeexplore.ieee.org/document/7029692/
http://ieeexplore.ieee.org/document/7029692/

130 BIBLIOGRAPHY

[43] Bertram Drost et al. “Model globally, match locally: Efficient and
robust 3D object recognition”. In: Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on. IEEE. 2010, pp. 998–1005.

[44] Vincent Dumoulin and Francesco Visin. “A guide to convolution
arithmetic for deep learning”. In: arXiv preprint arXiv:1603.07285
(2016).

[45] PP Dutta, A Baruah, A Konwar, et al. “A Technical Review of Lawn
Mower Technology”. In: ADBU Journal of Engineering Technology 4
(2016).

[46] Andreas Eitel et al. “Multimodal deep learning for robust rgb-d object
recognition”. In: IROS. IEEE. 2015, pp. 681–687.

[47] Paul L Enright. “The six-minute walk test”. In: Respiratory care 48.8
(2003), pp. 783–785.

[48] Nathaniel Fairfield and Chris Urmson. “Traffic light mapping and
detection”. In: ICRA. IEEE. 2011, pp. 5421–5426.

[49] Michael Firman. “RGBD Datasets: Past, Present and Future”. In:
CVPR Workshop on Large Scale 3D Data: Acquisition, Modelling and
Analysis. 2016.

[50] Robert B Fisher. “Projective ICP and stabilizing architectural aug-
mented reality overlays”. In: Virtual and Augmented Architecture (VAA’01).
Springer, 2001, pp. 69–80.

[51] Marshal F Folstein et al. “"Mini-mental state": a practical method for
grading the cognitive state of patients for the clinician”. In: Journal of
psychiatric research 12.3 (1975), pp. 189–198.

[52] Regina Frei et al. “Self-healing and self-repairing technologies”. In:
The International Journal of Advanced Manufacturing Technology 69.5-8
(2013), pp. 1033–1061.

[53] Benoît Frénay and Michel Verleysen. “Classification in the presence
of label noise: a survey”. In: IEEE transactions on neural networks and
learning systems 25.5 (2014), pp. 845–869.

[54] Moshe Gabel, Ran Gilad-Bachrach, et al. “Full body gait analysis
with Kinect”. In: IEEE EMBC. 2012, pp. 1964–1967.

[55] Quan Gan et al. “First step toward model-free, anonymous object
tracking with recurrent neural networks”. In: arXiv preprint arXiv:1511.06425
(2015).

[56] Erann Gat et al. “On three-layer architectures”. In: Artificial intelligence
and mobile robots 195 (1998), p. 210.

[57] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1440–1448.

[58] Ross Girshick et al. “Rich feature hierarchies for accurate object detec-
tion and semantic segmentation”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2014, pp. 580–587.

[59] Priya Goyal et al. “Accurate, Large Minibatch SGD: Training Ima-
geNet in 1 Hour”. In: arXiv preprint arXiv:1706.02677 (2017).

BIBLIOGRAPHY 131

[60] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech
recognition with deep recurrent neural networks”. In: Acoustics,
speech and signal processing (icassp), 2013 ieee international conference on.
IEEE. 2013, pp. 6645–6649.

[61] Daniel Grest, Jan Woetzel, and Reinhard Koch. “Nonlinear body
pose estimation from depth images”. In: DAGM-Symposium. Vol. 5.
Springer. 2005, pp. 285–292.

[62] Shuchi Grover et al. “Multimodal analytics to study collaborative
problem solving in pair programming”. In: Proceedings of the Sixth
International Conference on Learning Analytics & Knowledge - LAK ’16.
New York, New York, USA: ACM Press, 2016, pp. 516–517. ISBN:
9781450341905. DOI: 10.1145/2883851.2883877. URL: http:
//dl.acm.org/citation.cfm?doid=2883851.2883877

(visited on 10/17/2016).

[63] Edwin H Hall. “On a new action of the magnet on electric currents”.
In: American Journal of Mathematics 2.3 (1879), pp. 287–292.

[64] Richard Hartley and Andrew Zisserman. "Multiple view geometry in
computer vision". Cambridge university press, 2003. ISBN: 0521540518.

[65] Richard I Hartley and Peter Sturm. “Triangulation”. In: Computer
vision and image understanding 68.2 (1997), pp. 146–157.

[66] Kaiming He et al. “Mask r-cnn”. In: arXiv preprint arXiv:1703.06870
(2017).

[67] Kaiming He et al. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770–778.

[68] Steve J Heims and Duane W Bailey. “John von Neumann and Norbert
Wiener, from Mathematics to the technologies of life and death”. In:
American Journal of Physics 50.4 (1982), pp. 383–383.

[69] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast
learning algorithm for deep belief nets”. In: Neural computation 18.7
(2006), pp. 1527–1554.

[70] Sepp Hochreiter et al. Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies. 2001.

[71] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-
ory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[72] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. “Densely Con-
nected Convolutional Networks”. In: CoRR abs/1608.06993 (2016).

[73] Gao Huang et al. “Densely connected convolutional networks”. In:
arXiv preprint arXiv:1608.06993 (2016).

[74] Jingwei Huang and David Altamar. “Pose Estimation on Depth Im-
ages with Convolutional Neural Network”. In: ().

[75] Du Q Huynh. “Metrics for 3D rotations: Comparison and analysis”.
In: Journal of Mathematical Imaging and Vision 35.2 (2009), pp. 155–164.

[76] Inception. 2010.

https://doi.org/10.1145/2883851.2883877
http://dl.acm.org/citation.cfm?doid=2883851.2883877
http://dl.acm.org/citation.cfm?doid=2883851.2883877

132 BIBLIOGRAPHY

[77] Eldar Insafutdinov et al. “Deepercut: A deeper, stronger, and faster
multi-person pose estimation model”. In: European Conference on Com-
puter Vision. Springer. 2016, pp. 34–50.

[78] Mircea Horea Ionica and David Gregg. “The movidius myriad ar-
chitecture’s potential for scientific computing”. In: IEEE Micro 35.1
(2015), pp. 6–14.

[79] Joel Janai et al. “Computer Vision for Autonomous Vehicles: Prob-
lems, Datasets and State-of-the-Art”. In: arXiv preprint 1704.05519
(2017).

[80] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. “What is the
best multi-stage architecture for object recognition?” In: Computer
Vision, 2009 IEEE 12th International Conference on. IEEE. 2009, pp. 2146–
2153.

[81] Vijay John et al. “Traffic light recognition in varying illumination
using deep learning and saliency map”. In: Intelligent Transportation
Systems (ITSC). IEEE. 2014, pp. 2286–2291.

[82] Bryan Klingner, David Martin, and James Roseborough. “Street view
motion-from-structure-from-motion”. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. 2013, pp. 953–960.

[83] Jan Knopp et al. “Hough transform and 3D SURF for robust three di-
mensional classification”. In: European Conference on Computer Vision.
Springer. 2010, pp. 589–602.

[84] Jan J Koenderink and Andrea J Van Doorn. “Affine structure from
motion”. In: JOSA A 8.2 (1991), pp. 377–385.

[85] S Kotsiantis, Kiriakos Patriarcheas, and M Xenos. “A combinational
incremental ensemble of classifiers as a technique for predicting
students’ performance in distance education”. In: Knowledge-Based
Systems 23.6 (2010), pp. 529–535.

[86] Joe Krajcik. “Project-Based Science: Engaging Students in Three-
Dimensional Learning”. In: The Science Teacher 82.1 (2010), pp. 1–
25.

[87] Joe Krajcik and patrick Blumenfeld. “Project-based learning”. In: The
Cambridge handbook of the learning sciences. Ed. by Richard Sawyer.
New York, Cambridge, USA: Cambridge University Press, 2006,
pp. 317–334.

[88] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems. 2012, pp. 1097–1105.

[89] Griffin Lacey, Graham W Taylor, and Shawki Areibi. “Deep learning
on fpgas: Past, present, and future”. In: arXiv preprint arXiv:1602.04283
(2016).

[90] Yann LeCun, Fu Jie Huang, and Leon Bottou. “Learning methods for
generic object recognition with invariance to pose and lighting”. In:
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on. Vol. 2. IEEE. 2004,
pp. II–104.

BIBLIOGRAPHY 133

[91] Hon-Leung Lee. “Critical Points for Two-view Triangulation”. In:
arXiv preprint 1608.05512 (2016).

[92] Sidney R Lehky and TJ Sejnowski. “Network model of shape-from-
shading: neural function arises from both receptive and projective
fields”. In: Nature 333.6172 (1988), pp. 452–454.

[93] John J Leonard and Alexander Bahr. “Autonomous underwater vehi-
cle navigation”. In: Springer Handbook of Ocean Engineering. Springer,
2016, pp. 341–358.

[94] linkedin, howpublished = http://www.linkedin.com/pulse/
every-company-use-blockchain-2027-heres-how-mohit-
mamoria/.

[95] Wai-Yan Liu et al. “Reproducibility and Validity of the 6-Minute Walk
Test Using the Gait Real-Time Analysis Interactive Lab in Patients
with COPD and Healthy Elderly”. In: PloS one 11.9 (2016), e0162444.

[96] Wei-Yin Loh. “Classification and regression trees”. In: Wiley Int. Re-
views: Data Mining and Knowledge Discovery 1.1 (2011), pp. 14–23.

[97] David G Lowe. “Object recognition from local scale-invariant fea-
tures”. In: Computer vision, 1999. The proceedings of the seventh IEEE
international conference on. Vol. 2. Ieee. 1999, pp. 1150–1157.

[98] Esther Martín-Ponce et al. “Prognostic value of physical function
tests: hand grip strength and six-minute walking test in elderly hos-
pitalized patients”. In: Nature Scientific reports 4 (2014).

[99] Roberto Martinez-Maldonado et al. “Interactive surfaces and learn-
ing analytics: Data, orchestration aspects, pedagogical uses and chal-
lenges”. In: Proceedings of the Sixth International Conference on Learn-
ing Analytics & Knowledge - LAK ’16. New York, New York, USA:
ACM Press, 2016, pp. 124–133. ISBN: 9781450341905. DOI: 10.1145/
2883851.2883873. URL: http://dl.acm.org/citation.
cfm?doid=2883851.2883873 (visited on 10/15/2016).

[100] Daniel Maturana and Sebastian Scherer. “Voxnet: A 3d convolutional
neural network for real-time object recognition”. In: Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE.
2015, pp. 922–928.

[101] Volodymyr Mnih et al. “Playing atari with deep reinforcement learn-
ing”. In: arXiv preprint arXiv:1312.5602 (2013).

[102] Thomas B Moeslund and Erik Granum. “A survey of computer vision-
based human motion capture”. In: Computer vision and image under-
standing 81.3 (2001), pp. 231–268.

[103] Marius Muja and David G Lowe. “Scalable nearest neighbor algo-
rithms for high dimensional data”. In: IEEE transactions on pattern
analysis and machine intelligence 36.11 (2014), pp. 2227–2240.

[104] R Munoz-Salinas and S Garrido-Jurado. “Aruco library”. In: URL:
http://sourceforge. net/projects/aruco (2013).

[105] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. “Head pose
estimation in computer vision: A survey”. In: IEEE transactions on
pattern analysis and machine intelligence 31.4 (2009), pp. 607–626.

https://doi.org/10.1145/2883851.2883873
https://doi.org/10.1145/2883851.2883873
http://dl.acm.org/citation.cfm?doid=2883851.2883873
http://dl.acm.org/citation.cfm?doid=2883851.2883873

134 BIBLIOGRAPHY

[106] Vinod Nair and Geoffrey E Hinton. “3D object recognition with deep
belief nets”. In: Advances in neural information processing systems. 2009,
pp. 1339–1347.

[107] Maryam M Najafabadi et al. “Deep learning applications and chal-
lenges in big data analytics”. In: Journal of Big Data 2.1 (2015), p. 1.

[108] Pablo Negri, Xavier Clady, and Lionel Prevost. “Benchmarking haar
and histograms of oriented gradients features applied to vehicle
detection.” In: ICINCO-RA (1). 2007, pp. 359–364.

[109] Richard A Newcombe et al. “KinectFusion: Real-time dense surface
mapping and tracking”. In: Mixed and augmented reality (ISMAR),
2011 10th IEEE international symposium on. IEEE. 2011, pp. 127–136.

[110] Nova Science Quotes, howpublished = http://www.pbs.org/wgbh/
nova/transcripts/3318_sciencen.html.

[111] Andreas Nüchter and Joachim Hertzberg. “Towards semantic maps
for mobile robots”. In: Robotics and Autonomous Systems 56.11 (2008),
pp. 915–926.

[112] X Ochoa et al. “Mla’14: Third multimodal learning analytics work-
shop and grand challenges”. In: Proceedings of the 16th (2014). URL:
http://dl.acm.org/citation.cfm?id=2668318 (visited on
10/15/2016).

[113] Xavier Ochoa et al. “Expertise estimation based on simple multi-
modal features”. In: Proceedings of the 15th ACM on International confer-
ence on multimodal interaction - ICMI ’13. New York, New York, USA:
ACM Press, 2013, pp. 583–590. ISBN: 9781450321297. DOI: 10.1145/
2522848.2533789. URL: http://dl.acm.org/citation.
cfm?doid=2522848.2533789 (visited on 10/17/2016).

[114] Xavier Ochoa et al. “Multimodal learning analytics data challenges”.
In: Proceedings of the Sixth International Conference on Learning Analytics
& Knowledge. ACM. 2016, pp. 498–499.

[115] Charles Otto, Anil Jain, et al. “Clustering millions of faces by iden-
tity”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2017).

[116] Seongwook Park et al. “4.6 A1. 93TOPS/W scalable deep learn-
ing/inference processor with tetra-parallel MIMD architecture for
big-data applications”. In: Solid-State Circuits Conference-(ISSCC), 2015
IEEE International. IEEE. 2015, pp. 1–3.

[117] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the diffi-
culty of training recurrent neural networks”. In: International Confer-
ence on Machine Learning. 2013, pp. 1310–1318.

[118] Deepak Pathak et al. “Fully convolutional multi-class multiple in-
stance learning”. In: arXiv preprint arXiv:1412.7144 (2014).

[119] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[120] Markus Peters et al. “A reinforcement learning approach to au-
tonomous decision-making in smart electricity markets”. In: Machine
learning 92.1 (2013), pp. 5–39.

http://www.pbs.org/wgbh/nova/transcripts/3318_sciencen.html
http://www.pbs.org/wgbh/nova/transcripts/3318_sciencen.html
http://dl.acm.org/citation.cfm?id=2668318
https://doi.org/10.1145/2522848.2533789
https://doi.org/10.1145/2522848.2533789
http://dl.acm.org/citation.cfm?doid=2522848.2533789
http://dl.acm.org/citation.cfm?doid=2522848.2533789

BIBLIOGRAPHY 135

[121] Leonid Pishchulin et al. “Deepcut: Joint subset partition and labeling
for multi person pose estimation”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2016, pp. 4929–
4937.

[122] Luis P. Prieto et al. “Teaching analytics: Towards automatic extraction
of orchestration graphs using wearable sensors”. In: Proceedings of the
Sixth International Conference on Learning Analytics & Knowledge - LAK
’16. New York, New York, USA: ACM Press, 2016, pp. 148–157. ISBN:
9781450341905. DOI: 10.1145/2883851.2883927. URL: http:
//dl.acm.org/citation.cfm?doid=2883851.2883927

(visited on 10/13/2016).

[123] Charles R Qi et al. “Pointnet: Deep learning on point sets for 3d
classification and segmentation”. In: Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE 1.2 (2017), p. 4.

[124] Charles Ruizhongtai Qi et al. “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space”. In: Advances in Neural
Information Processing Systems. 2017, pp. 5105–5114.

[125] Morgan Quigley, Ken Conley, et al. “ROS: an open-source Robot
Operating System”. In: ICRA workshop. Vol. 3. 3.2. 2009, p. 5.

[126] Hossein Rahmani, Ajmal Mian, and Mubarak Shah. “Learning a
deep model for human action recognition from novel viewpoints”.
In: TPAMII (2017).

[127] Vikram Ramanarayanan et al. “Evaluating speech, face, emotion
and body movement time-series features for automated multimodal
presentation scoring”. In: Proceedings of the 2015 ACM on International
Conference on Multimodal Interaction. ACM. 2015, pp. 23–30.

[128] Joseph Redmon et al. “You only look once: Unified, real-time object
detection”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2016, pp. 779–788.

[129] Shaoqing Ren et al. “Faster R-CNN: Towards real-time object detec-
tion with region proposal networks”. In: Advances in neural information
processing systems. 2015, pp. 91–99.

[130] Mario Rojas et al. “Automatic prediction of facial trait judgments:
Appearance vs. structural models”. In: PloS one 6.8 (2011), e23323.

[131] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”.
In: Computer Vision (ICCV), 2011 IEEE international conference on. IEEE.
2011, pp. 2564–2571.

[132] Emanuele Ruffaldi et al. “SOMA: an OpenMP toolchain for multicore
partitioning”. In: Proceedings of the 31st Annual ACM Symposium on
Applied Computing. ACM. 2016, pp. 1231–1237.

[133] Emanuele Ruffaldi et al. “Data collection and processing for a multi-
modal learning analytic system”. In: SAI Computing Conference (SAI),
2016. IEEE. 2016, pp. 858–863.

[134] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. “Fast point
feature histograms (FPFH) for 3D registration”. In: Robotics and Au-
tomation, 2009. ICRA’09. IEEE International Conference on. IEEE. 2009,
pp. 3212–3217.

https://doi.org/10.1145/2883851.2883927
http://dl.acm.org/citation.cfm?doid=2883851.2883927
http://dl.acm.org/citation.cfm?doid=2883851.2883927

136 BIBLIOGRAPHY

[135] Samuele Salti, Federico Tombari, and Luigi Di Stefano. “SHOT: Unique
signatures of histograms for surface and texture description”. In: Com-
puter Vision and Image Understanding 125 (2014), pp. 251–264.

[136] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet:
A unified embedding for face recognition and clustering”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.
2015, pp. 815–823.

[137] Jonghyun Seo. Automatic vacuum cleaner. US Patent 9,376,150. 2016.

[138] Amir Shahroudy et al. “Deep multimodal feature analysis for ac-
tion recognition in RGB+ D videos”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2017).

[139] Jamie Shotton et al. “Real-time human pose recognition in parts from
single depth images”. In: Communications of the ACM 56.1 (2013),
pp. 116–124.

[140] George Siemens and Ryan S. J. d. Baker. “Learning analytics and
educational data mining: Towards communication and collabora-
tion”. In: Proceedings of the 2nd International Conference on Learning
Analytics and Knowledge - LAK ’12. New York, New York, USA: ACM
Press, 2012, p. 252. DOI: 10.1145/2330601.2330661. URL: http:
//dl.acm.org/citation.cfm?doid=2330601.2330661

(visited on 10/14/2016).

[141] Tomas Simon et al. “Hand Keypoint Detection in Single Images using
Multiview Bootstrapping”. In: CVPR. 2017.

[142] Eleanor M Simonsick et al. “Assessing Fatigability in Mobility-Intact
Older Adults”. In: Journal of the American Geriatrics Society 62.2 (2014),
pp. 347–351.

[143] Stephen M Smith and J Michael Brady. “SUSAN—a new approach
to low level image processing”. In: International journal of computer
vision 23.1 (1997), pp. 45–78.

[144] Daniel Spikol et al. “Supervised Machine Learning in Multimodal
Learning Analytics for Estimating Success inProject-based Learning”.
In: JCAL, 2017. IEEE. 2018, xxx–yyy.

[145] Nitish Srivastava et al. “Dropout: a simple way to prevent neural
networks from overfitting.” In: Journal of machine learning research 15.1
(2014), pp. 1929–1958.

[146] Johannes Stallkamp et al. “The German traffic sign recognition bench-
mark: a multi-class classification competition”. In: Neural Networks
(IJCNN), The 2011 International Joint Conference on. IEEE. 2011, pp. 1453–
1460.

[147] Bastian Steder et al. “NARF: 3D range image features for object
recognition”. In: Workshop on Defining and Solving Realistic Perception
Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS). Vol. 44. 2010.

[148] Dimitar H Stefanov, Zeungnam Bien, and Won-Chul Bang. “The
smart house for older persons and persons with physical disabili-
ties: structure, technology arrangements, and perspectives”. In: IEEE
Trans. Neural Netw. Learn. Syst. 12.2 (2004), pp. 228–250.

https://doi.org/10.1145/2330601.2330661
http://dl.acm.org/citation.cfm?doid=2330601.2330661
http://dl.acm.org/citation.cfm?doid=2330601.2330661

BIBLIOGRAPHY 137

[149] SupplyChain, howpublished = http://www.supplychaintoday.
com/artificial-intelligence-deep-learning-quotes/.

[150] Christian Szegedy et al. “Going deeper with convolutions”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 1–9.

[151] Yaniv Taigman et al. “Deepface: Closing the gap to human-level
performance in face verification”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2014, pp. 1701–1708.

[152] Adriana Tapus and Maja J Mataric. “Socially Assistive Robots: The
Link between Personality, Empathy, Physiological Signals, and Task
Performance.” In: AAAI Symposium: Emotion, Personality, and Social
Behavior. 2008, pp. 133–140.

[153] M. Team. Makehuman software. http://www.makehuman.org.
2001–2016.

[154] Federico Tombari, Samuele Salti, and Luigi Di Stefano. “Performance
evaluation of 3D keypoint detectors”. In: International Journal of Com-
puter Vision 102.1-3 (2013), pp. 198–220.

[155] Jonathan J Tompson et al. “Joint training of a convolutional network
and a graphical model for human pose estimation”. In: Advances in
neural information processing systems. 2014, pp. 1799–1807.

[156] Michael Toscano. “Department of defense joint robotics program”.
In: Proc. SPIE. Vol. 4715. 1999, p. 97.

[157] Alexander Toshev and Christian Szegedy. “Deeppose: Human pose
estimation via deep neural networks”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2014, pp. 1653–
1660.

[158] Paolo Tripicchio et al. “Towards smart farming and sustainable agri-
culture with drones”. In: Intelligent Environments (IE), 2015 Interna-
tional Conference on. IEEE. 2015, pp. 140–143.

[159] Edward Tunstel et al. “FIDO rover field trials as rehearsal for the
NASA 2003 Mars Exploration Rovers Mission”. In: Automation Congress,
2002 Proceedings of the 5th Biannual World. Vol. 14. IEEE. 2002, pp. 320–
327.

[160] twitter, howpublished = https://twitter.com/menshumor/
status/468481242153750529.

[161] Paul Viola and Michael Jones. “Rapid object detection using a boosted
cascade of simple features”. In: Computer Vision and Pattern Recogni-
tion, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on. Vol. 1. IEEE. 2001, pp. I–I.

[162] Deepak Geetha Viswanathan. Features from accelerated segment test
(fast). 2009.

[163] Dominic Zeng Wang and Ingmar Posner. “Voting for Voting in Online
Point Cloud Object Detection.” In: Robotics: Science and Systems. 2015.

[164] Oliver Wasenmüller and Didier Stricker. “Comparison of kinect v1
and v2 depth images in terms of accuracy and precision”. In: Asian
Conference on Computer Vision. Springer. 2016, pp. 34–45.

https://twitter.com/menshumor/status/468481242153750529
https://twitter.com/menshumor/status/468481242153750529

138 BIBLIOGRAPHY

[165] Shih-En Wei et al. “Convolutional pose machines”. In: CVPR. 2016.

[166] Daniel S Weld. “Recent advances in AI planning”. In: AI magazine
20.2 (1999), p. 93.

[167] Norbert Wiener. Cybernetics or Control and Communication in the Ani-
mal and the Machine. Vol. 25. MIT press, 1961.

[168] Marcelo Worsley. “Multimodal learning analytics”. In: Proceedings
of the 14th ACM international conference on Multimodal interaction -
ICMI ’12. New York, New York, USA: ACM Press, 2012, p. 353. ISBN:
9781450314671. DOI: 10.1145/2388676.2388755. URL: http:
//dl.acm.org/citation.cfm?doid=2388676.2388755

(visited on 10/14/2016).

[169] Marcelo Worsley. “Multimodal Learning Analytics as a Tool for Bridg-
ing Learning Theory and Complex Learning Behaviors”. In: Proceed-
ings of the 2014 ACM workshop on Multimodal Learning Analytics Work-
shop and Grand Challenge - MLA ’14. New York, New York, USA: ACM
Press, 2014, pp. 1–4. ISBN: 9781450304887. DOI: 10.1145/2666633.
2666634. URL: http://dl.acm.org/citation.cfm?doid=
2666633.2666634 (visited on 10/15/2016).

[170] Marcelo Worsley and Paulo Blikstein. “Analyzing Engineering De-
sign through the Lens of Computation”. In: Journal of Learning Ana-
lytics 1.2 (2014), pp. 151–186. (Visited on 10/17/2016).

[171] Ting-Fan Wu, Chih-Jen Lin, and Ruby C Weng. “Probability estimates
for multi-class classification by pairwise coupling”. In: Journal of
Machine Learning Research 5.Aug (2004), pp. 975–1005.

[172] Zhirong Wu et al. “3d shapenets: A deep representation for volumet-
ric shapes”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2015, pp. 1912–1920.

[173] Zhengyou Zhang. “Iterative point matching for registration of free-
form curves and surfaces”. In: International journal of computer vision
13.2 (1994), pp. 119–152.

[174] Yin Zhou and Oncel Tuzel. “VoxelNet: End-to-End Learning for Point
Cloud Based 3D Object Detection”. In: arXiv preprint arXiv:1711.06396
(2017).

[175] Siyu Zhu et al. “Parallel Structure from Motion from Local Increment
to Global Averaging”. In: ArXiv e-prints (2017).

https://doi.org/10.1145/2388676.2388755
http://dl.acm.org/citation.cfm?doid=2388676.2388755
http://dl.acm.org/citation.cfm?doid=2388676.2388755
https://doi.org/10.1145/2666633.2666634
https://doi.org/10.1145/2666633.2666634
http://dl.acm.org/citation.cfm?doid=2666633.2666634
http://dl.acm.org/citation.cfm?doid=2666633.2666634

	Acknowledgments
	Introduction
	Research aims and questions
	Contributions
	Involved Projects
	Thesis Structure

	State of the Art
	History
	Self Maintenance
	Sensing and Navigating
	Performing tasks

	Classic Detection
	3D Object Detection
	Models
	Keypoint Extraction
	Keypoint Descriptors
	Matching Descriptors
	Clustering Correspondences
	Estimate Object Pose
	Qualitative Analysis
	Measurements
	Multi Object Detection
	Final Remarks

	Face Detection
	Haar Detector
	HoG Detector
	Haar Vs HoG

	Body Pose Estimation

	Deep Learning
	Deep Neural Network
	Convolutional Neural Networks
	Recurrent Neural Networks
	Long Short Term Memory

	Deep Learning Detection
	Object Recognition
	2D Detection
	3D Detection

	Face Detection
	Body Pose Estimation
	Performance
	Training
	Inference

	Activity Recognition
	PELARS Project
	Background
	Architecture
	Low Level Data Acquisition
	ML Activity Recognition
	Datataset Acquisition
	Initial Project Classification
	Improved Project Classification
	Data Pre-processing

	Method
	Deep Learning approach
	Traditional Approaches

	Results
	Deep Learning Results
	Supervised Learning Results
	Phases
	Scoring
	Effect of Phase

	Discussion
	Traditional Approach
	Deep Learning Approach

	Conclusion

	Human State Evaluation
	RAMCIP Project
	Objective
	Data Acquisition
	Subjects
	Sensors and Protocol
	Data Pre-processing and Features Extraction

	Deep Learning Method
	Data Preparation
	Exploration of Parameters
	Results

	Classic ML Method
	Discussion
	Effect of Distance from Camera
	Effect of Network Depth

	Conclusion

	Environment Recognition
	VALUE System
	Triangulation of Contents
	Method
	2D Object Detection
	Robust Voting-based Triangulation
	Large-Scale System

	Experiments
	Data Sets
	2D Detection
	Results

	Conclusion

	Conclusions
	Appendix
	List of Publications
	Bibliography

