
Augmented Reality

in Teleoperated

Human-Robot Interaction

Filippo Brizzi





A B S T R AC T

Nowadays, robots are becoming more and more complex, providing in-
creasingly functionalities, precision and e�ectiveness. Yet, the amount and
variety of tasks that robots can accomplish autonomously is limited. For
this reason, when dealing with complex tasks, usually robots are controlled
by a human operator through teleoperation. Teleoperation allows humans to
perform tasks in environments that are harsh or not accessible and to reduce
travel needs as in the case of telemedicine. The downside of teleoperation
comes from a reduced perceptual capability and the control of a robot that
has a di�erent kinematic structure or capabilities than the human, requiring
specific training.

To overcome these di�culties it is possible to employ Mixed and Aug-
mented Reality display and feedback. The idea is to overlay on the visual
feedback received from the remote robot virtual cues providing information
about the remote environment or about the task in execution, which are not
directly inferable from the video. Virtually generated features can be used
not only during the actual task execution, but also for training purposes. In
order to recreate a specific scenario scientist and engineers started to create
Virtual Environments (VE) that are replicas of real world scenarios. In this
case the operator controls a simulated version of the target robot. This
thesis describes a set of software approaches and design solutions finalized
at the creation of integrated real-time AR/VR applications, with a focus
on fast prototyping and reconfigurability.

The first part of the thesis presents the state of the art software solutions
created to provide tools that ease the development of AR/VR applications.
The software is described and presented along with real examples. The
second part, instead, focuses on the study and analysis of the impact of AR
and VR in two specific scenarios: industry and medicine.
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1
I N T RO D U C T I O N

Augmented Reality (AR) refers to the technique of overlaying, over a
live direct or indirect view of the real environment, synthetic data. The
purpose of AR can be of several types: recreational, for education, military,
navigation or medical. AR’s possible applications are theoretically endless.
The only limit is the ability of generating fictional images to augment the
reality.

The term Augmented Reality was coined in 1990 by researchers Tom
Caudell and David Mizell while working at Boing. However, both the first
idea of AR and its first implementations can be traced far backward in
time.

The concept of AR is very fascinating as it allows to enhance the reality,
composing any information or images. This has inspired several fictional
writers and scientists. In 1901, L. Frank Baum, author of the Wizard of
OZ, in the novel The Master Key, imagines the existence of spectacles that
provide the capability to see the goodness or evilness of the other people,
as a letter overlaid on their forehead. More than one hundred years after
Baum’s vision, Google presented the Google Glasses, giving to the people
the possibility to experience what Baum predicted in his novel.

The history of AR as science starts during the Second World War when
a Head-up Display (HUD) was mounted in the English military airplanes to
help the pilots finding, in the sky around them, the objects detected by the
radar (Figure 1.2). Aviations all over the world have kept investing more
and more sophisticated HUDs, also for commercial planes, exploiting the
benefits that AR can have in helping the pilots, both during training and
real flights. Nowadays HUDs are becoming popular also in cars as a tool to
show navigation directions and car status. The limitation of current HUDs
is that they don’t have any knowledge of what is happing on the other side
of the screen, thus they cannot adapt their visual feedback to respond to
environmental changes.

The first wearable device with AR capability is the EyeTap, invented in
1980 by Professor Steve Mann, see Figure 1.1. The EyeTap can not only
be worn and carried around but, unlike the aforementioned HUD, it uses
cameras to sense the world and adapt the visual feedback to respond to the
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Figure 1.1: An example of a HUD mounted on a plane.

natural scene. EyeTap represents the first milestone in the creation of a
complete AR capable device. In 1993, Steven Feiner introduced KARMA
[45], an AR system that explains to end-users how to do simple maintenance
of a laser printer using a novel see through head mounted display. This
is one of the first examples of AR as a tool for supporting the execution
of a given task. In 1999 Hirokazu Kato created ARToolKit [67], the first
successful open-source library that helps in the creation of AR applications,
providing support for rendering and tracking. This was an important step
in the evolution of AR as it allowed developers and researchers to speed-up
the development of AR applications and contributed to the creation of a
shared and common codebase.

Researchers and engineers have kept working and improving AR devices
for years and in 2013 we have witnessed the first release of a developer ready
AR device: the Google Glasses and the Meta 1 developer kit. Three years
later Microsoft released the HoloLens1 augmented reality headset, which
is the first device providing full AR capabilities. In 2017 Meta released
its new headset, the Meta 22, which promised to change the o�ce as we

1https://www.microsoft.com/en-us/hololens
2https://www.metavision.com/
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Figure 1.2: One version of the EyeTap device invented by Steve Mann.

know it, replacing all physical monitors with virtual ones. A lot of money is
flowing in the AR industry, with companies like Magic Leap3 that have been
founded for over one billion dollars. Apple and Google have released software
updates, for iOS4 and Android5, giving phones the ability to perceive the
world and augment it through the phone camera. In June 2016, with the
release of Pokemon GO, augmented reality has reached millions of people
becoming one of the most popular trend in Google Search. AR is ready to
enter in people’s everyday life and it is going to change the world as we
know it.

To better understand what AR is, it is interesting to see it in the context
of other technologies. AR is part of what Milgram and Kishino [78] call
Mixed Reality (MR). MR refers to those applications where real and virtual
images are fused together. MR is composed of AR and Augmented Virtuality
(AV). While in the case of AR we overlay virtual object in a real scene,
in AV a virtual environment is augmented with images of the real world.
In other words they di�er depending whether there is a predominance of
virtual objects (AV) or real ones (AR). To the extremes of MR we have, the
Real Environment where no augmentation is done, and Virtual Reality (VR)
on the opposite side. A VR environment is one where the visual feedback
doesn’t contain any live images of the real environment, but it’s all either
graphically generated or previously recorded. Figure 1.3 shows a diagram
of the di�erent level of reality.

3https://www.magicleap.com/
4https://developer.apple.com/arkit/
5https://developers.google.com/ar/
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Figure 1.3: Milgram’s mixed reality continuum.

augmented reality for human robot interaction One
of the fields where AR has proven its strength and utility is in Human-Robot
Interaction (HRI) applications. Robotics engineering is evolving very fast
producing increasingly sophisticated robots, with more and more capabili-
ties, expanding quickly the range of possible applications. In parallel, also
the study of Artificial Intelligence (AI) is growing, providing autonomous
capabilities to robotic devices. However, for many tasks involving robots
the complexity is too high to be handled by an AI, and a human operator
is needed to control the robot. Examples of these tasks can be found in
medicine, industrial scenarios and space, where there is the need of highly
precise movements and low reaction time to unexpected events. In many of
these scenarios the operator cannot even be co-located with the robot, either
because the robot is in a hazardous scenario, or because it is di�cult to
reach, as in space. Teleoperation is the name of the technique of controlling
a robot from a remote location. Controlling a robot is not usually a trivial
task as the robot may not have an intuitive kinematic structure and may
have several degrees of freedom. In addition, in the case of teleoperation,
we have the problem that the operator, not being co-located with the robot,
may have di�culties in understanding the remote environment. Finally, an
additional problem is the latency between the operator commands and the
robot actuation, which can be very high in environments like space.

AR has proved to be an e�ective solution in providing support and
guidance in the execution of a task. First of all, with a correct placement
of one or multiple cameras on top of a robot, it is possible to give to the
operator an egocentric view of the remote scene, enhancing his/her sense
of presence and embodiment. On top of the images, coming from the
remote environment, it is possible to display a set of virtual cues providing
information related to the task. Examples of these virtual features, called
in the literature virtual fixture [100], are the highlighting of target objects,
showing the optimal trajectory to be followed, or providing the distances
from obstacles and from target key objects. Examples of the use of AR in
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HRI can be found in space teleoperation [81], medicine [53] and in industrial
application [26].

virtual reality for human robot interaction Not only
AR, but also VR is used in HRI application. The advantage of VR with
respect to AR is that it allows to create virtual replicas of a real scenario,
including the physical interaction. This simulation can be used for multiple
purposes as training or validation, both for new algorithms and robotic
devices. One of the most important fields, where VR and HRI are used
together as a tool for training, is medicine. Still nowadays the majority
of medicine students practice surgical operations on dead bodies, or spent
long time observing highly experienced doctors performing live operations.
Thanks to the combination of a robotic haptic device reproducing doctors’
surgical instruments and a VE simulating the patient, it is possible to give
to the doctor a complete visuo-haptic feedback. In these cases a VE, is not
only used to provide the visual feedback, but also to compute the interaction
between the robot and its virtual objects extracting the forces that need
to be displayed to the doctor. It is possible to find several examples of
training application for medicine in the literature, as needle insertion [29]
or abdominal palpation [131]. In addition, one advantage of training in a
simulated environment is that every session can be recorded and students
can compare di�erent executions and measure their performance.

Validation is also an important field where VEs are used. Robots are very
expensive, so before testing new algorithms or proceeding to production, a
simulation of the robot in VR is used. This allows to make a pre-evaluation,
reducing the risk of damages and waste of money. Another example is to
validate a robotic console that teleoperates a robot. These kind of consoles
are often developed separately from the remote robot, and usually are
designed to be able to control several di�erent robots. For this reason
a common way to validate the console is to create a VE implementing
physics and use the device to control a simulation of a robot in the virtual
world. An example is the validation of a haptic device to perform an
ultrasonography (USG) examination or the hybrid system used to test the
interface to perform abdominal palpation.
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1.1 research aims and questions

This thesis comes with two aims, one technical and the other methodological.
The first research aim (RA1) is to define, design and create a set of
software tools for easy and fast development of highly performing AR/VR
applications, with a focus on HRI scenarios. The second research aim (RA2)
is, instead, focused on the analysis and evaluation of the e�ects of AR in the
interaction with robots when accomplishing medical and industrial tasks.
These quite general aims have been split into several research questions in
order to allow a step-by-step analysis and resolution.

All the work presented in this thesis started with the question: what do
I need to implement a working and usable application that uses the power
of AR to help doctors in performing remote examinations? In particular,
what elements are already provided in the state of the art, and which are
the challenges that still need to be tackled? (Research Question 1 (RQ1)).

AR applications, in particular in the HRI world, are composed of several
components, each one dealing with a di�erent aspect. While there are several
tools and studies that deal with specific problems (tracking, rendering,
...), very few software solutions can be found that allows to orchestrate
altogether the di�erent components. A software is needed to allow all
the components to work together live and in real-time respecting all time
constraints. This means that this software needs to provide the possibility
to connect the components so that one output can be the input to another
one. This brought to the second question: how can we handle in the same
application graphics rendering, Computer Vision (CV), haptics and robotic
communication, satisfying the real-time constraints dictated by the usability
needs? (RQ2)

Another important aspect, that had to be taken into account, was
that there weren’t any exact specifications of the requirements for the AR
application that I had to implement. This was originated from the fact
that AR is still a young and not well known world, where there isn’t a
state of the art of user studies showing which is the best possible feedback
configuration. This introduced the question: how is it possible to create an
application that can be easily customized and adapted, according to the
users feedback, for constant improvement? (RQ3)

Every component involved in an AR application has its own reference
system, graphics, CV algorithms and the robot kinematic. In order to
be able to register all these blocks together it is necessary to align all
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Figure 1.4: This image shows the research path followed in the thesis. Start-
ing from the investigation of the requirements for an Application, I moved
to the definition of the building Blocks. From there the question of how to
connect these blocks led me to the design of a new Software Architecture
and a framework to handle a Pose Graph. The implementation started
from the lower level going up until I was able to create the applications I
needed. At that point I was able to move to the Analysis and to perform
a user study to evaluate and extract analytics on AR.

of their reference systems. Is it possible to find an integrated approach
that allows to ease the calibration of systems and the computation/query
of transformations, while preserving the e�ciency of use and execution?
(RQ4)

Finally when all the previous pieces came together, and the problem of
how to create an AR application was solved, a last question remained open.
What are the best and most e�ective features to be provided to the users
in applications in the medical and industrial scenarios? (RQ5)

Figure 1.4 shows the process that brought to the formulation of the
above research questions and the path taken to answer them.

7



1.2 contributions

In this section the list of the contributions of this thesis is presented. The
research aims/questions answered by each contribution are reported between
brackets.

C1: Analysis of the requirements and the state of the art for AR applica-
tions in telemedicine and general HRI (Chapters 2). (RQ1)

C2: Analysis of the current existing middleware/architectural framework
for robotics, computer vision, and graphics (Chapters 2 and 3). (RQ1)

C3: Development of a framework for real-time integration of graphics
rendering, computer vision, haptics and robotic communication. The
framework has also a strong focus on modularity and fast prototyping
(Chapters 3). (RQ2, RQ3)

C4: Development of a library to handle pose graphs. The library supports
di�erent types of calibration and e�cient query and update of the
transformations (Chapters 4). (RQ4)

C5: Implementation and evaluation of a user interface to perform remote
palpation and one to perform an USG examination. (Chapters 5).
(RQ5)

C6: Analysis of di�erent AR features and their impact on user experience
in industrial scenarios (Chapters 6). (RQ5)

1.3 thesis structure

This thesis is organized as follows:
Chapter 1. This chapter introduces the context of Augmented and

Virtual Reality and their application in HRI. The list of the research
questions we tried to address in the work are presented, together with a
summary of the contributions.

Chapter 2. AR is a complex domain with several non trivial require-
ments that are listed and analyzed in this chapter. In addition a survey of
the existing tools and reference applications are presented.

Chapter 3. The software architecture developed for enhancing and
improving the development and performance of AR applications is presented
in this chapter.
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Chapter 4. This chapter describes the framework created to handle,
easily and e�ciently, generic pose graphs, and the solution implemented to
compute reference systems calibration.

Chapter 5. Two applications of telemedicine and AR/VR are described
in this chapter. In addition, a user study for the validation of a robotic
device is presented.

Chapter 6. This chapter show a possible application of AR in industrial
teleoperation, together with a user study to evaluate the impact of di�erent
AR features in industrial task execution.
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2
B AC KG RO U N D A N D C H A L L E N G E S O F A R / V R I N
H R I

Augmented reality is a vast world with several di�erent possible applica-
tions and developments. It can provide to users information about the
environment to help them accomplishing certain tasks, both in an industrial
scenario, and in the everyday life, as for example visualizing direction for
navigation. AR can help designers, architects and engineers in visualizing
3D models before creating expensive prototypes, and AR can be social since
that di�erent people can look at the same hologram at the same time. One
additional field where AR is showing its potential is in HRI scenarios. AR
has the power to improve and enhance the interaction between humans and
robots, cutting down the learning curve, which is often steep due to the
complexity of robotics devices. VR also plays an important role in HRI
applications, as it provides a tool to create simulated scenarios that can be
used for training and testing.

In this chapter we are going to review the state of the art, presenting the
existing softwares and tools, some of which have been utilized in this work.
It is important to point out that the focus of this thesis is in the integration
of AR and VR with robotics devices. This introduces additional complexity
that happens to invalidate some of the available solutions and studies,
introducing the necessity for doing an adaptation or even re-implementation
in few cases.

2.1 ar/vr

One of the most commonly accepted definitions of AR is the one provided
by Ron Azuma that states that AR technology has the following three
requirements [7]:

1. Combine real and virtual.

2. Is interactive in real time.

3. Is registered in three dimension.
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The first point is straightforward, the user needs to have the possibility
to visualize, somehow, the real environment augmented with the virtual
information. The next two points are less obvious and introduce additional
complexity. AR being interactive in real time means that the virtual objects
need to respond and adapt to user inputs (e.g. head and body movements)
and environment modification in real-time. Finally, the last requirement
states that augmented objects need to be placed registered according to
the real world. This because, in order to have a faithful and convincing
feedback, objects should interact with the real environment as if they were
real. If the user sits in front of a desk looking at a 3D model of a car,
the model should lay on the table and should respect the physics of the
environment, thus not intersecting with other object and following the law
of gravity.

For VR the requirements are more relaxed, as there is only the need of
visualizing virtual objects and no registration in three dimensions is needed.
On the other hand, the interaction requirement remains valid, as the VE
needs to modify according to user movement and in the eventuality of an
input device, such as a controller.

Starting from these three points we have divided the components that
constitute an AR application into three categories that will be presented
and discussed in the following.

2.1.1 Graphics Rendering

Rendering is, at the moment, the most advanced and complete topic in an
AR application. Thanks to the advancement in the video games and movies
industry it is possible to find plenty of, either open-source or proprietary,
rendering software, each one with its own perks and capabilities. The two
most important and famous ones are Unity 3D and Unreal Engine. These
editors have evolved to provide to users a simple and intuitive interface
that helps in the creation of cross-platform 3D application, abstracting the
complex programming parts and the target devices. While these systems
work great in standard environments, as in a desktop computers, they have
extensibility limitations that makes them hard to use in custom setups. For
this reason many other frameworks have been released that operate at a
lower level, providing more flexibility and the possibility to be composed
easily with other software. This is needed when using novel devices, either
displays or cameras, and when integrating third party software.
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It is possible to find in the literature two main approaches on how to
structure the rendering implementation in an application: Scene Graph (SG)
and Data Flow (DF) based approaches. The SG method consists in creating
a hierarchy of entities. Each entity has a parent and its properties are the
composition of the parent’s ones and its own. The hierarchy is used to
specify the position and behavior of each graphics component in a tree like
structure. The framework organizes the processing in separate loops, each
one handling a di�erent property, in particular the graphics, the physics and
the collision. The user can customize the behavior of each entity with some
flexibility. This approach is found in systems such as OpenSceneGraph [23],
XVR [25] or Unity 3D and Unreal Engine. Conversely, in the DF based
approach the user describes the application in terms of streams of data and
events that are connected in a flow of information floating from one entity
to the other. Examples of frameworks using this approach are the ones
following the X3D standard like InTml [47] InstantReality [13] and FlowVR
[3].

2.1.2 Displays

When dealing with displays it is important to distinguish between VR and
AR. While for the first type the current technology allows to have convincing
experience, for the latter displays are one of the major limitations that
prevents AR to be of wider usage.

There are two levels of VR, depending on the engagement of the user
in the VE: immersive VE and non-immersive VE. The second is the one
provided through a normal 2D or 3D display. The virtual world is only
inside the rectangle delimited by the screen, and turning the head around
makes it disappear. Immersive VEs instead are always around us, providing
a sensation of real presence in the virtual world. There are two kind of
technology that can provide an immersive VE: Head Mounted Display
(HMD) and CAVE. Oculus Rift and HTC Vive are the most advanced
and complete HMDs, providing a high resolution display, precise 6 Degree
Of Freedom (DOF) tracking and controllers. The drawback of these two
systems is that they require powerful PCs to support the rendering and
tracking algorithms, and they are tethered to the workstation. On the other
hand several vendors provide HMDs with only the lenses, where the user
uses the smartphone as a screen. This solution has the advantage that the
HMD is not tethered, and the drawback that the tracking is only 3DOF and
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the quality of the rendering is limited by the phone capabilities. CAVEs [33]
have a completely di�erent approach. A CAVE is a room where the walls
and the floor are projector screens. The projection is in 3D and the user
movements inside the room are tracked, so that the feedback is adjusted
based on the position. Despite CAVEs being much more cumbersome than
an HMD and also requiring more computational power to run all the needed
projectors, they have the advantage of allowing the users to move freely
and to see themselves.

In order to provide the best possible visualization feedback researchers
and doctors have studied the human eyes coming up with a set of properties.
The human eye has a resolution of about 1 arc minute, meaning that it
can resolve up to 60 pixels per degree at the fovea. The most advanced
HMDs are still far from this resolution, as the HTC Vive can reach around
11 arc minute. In addition to this, the visual acuity of the human eye is not
uniformly distributed among all the retina, but it is more sensitive in the
center and decreases moving to the edges. The current rendering systems
provide uniform rendering on the entire display, but this is a waste of power
as the eye is not able to perceive it. Using eye tracking techniques it is
possible to render at di�erent resolutions based on the position of the pupil.
Companies like SMI customize HMDs adding the support for eye tracking.
Another feature of the human eye is the field of view. Humans have around
200° horizontal field of view, with 114° overlapping between the eyes. The
only VR system that can provide these configurations are CAVEs, while
most HMDs, like Oculus and Valve, have around 90° of horizontal field of
view. The latest important feature of the human eye is the refresh rate
that has a lower bound fixed at 30 Hz [21]. Current HMDs are capable
of reaching 90 to 120 Hz to improve the motion perception, thus reducing
blurring perception.

In the case of AR the situation is more complicated as the user needs
to receive as input both images from the real world and from the virtual
rendering. To achieve this there are three main possible solutions, video
based displays, see-through displays and projector based displays. Video
based displays use image processing to combine virtually generated images
with a video of the real world obtained from a camera (see Figure 2.1). This
approach allows to use VR HMD to do AR, simply by attaching a stereo
camera in the front of the device, just at eye height. Figure 2.2 shows an
HTC Vive HMD with a ZED stereo camera mounted at eye level. The
images coming from the cameras are augmented with the desired virtual
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Figure 2.1: Structure of video based AR displays.

Figure 2.2: A HTC Vive HMD with a ZED stereo camera to create a video
based AR display.

objects and then sent back to the HMD and displayed to the user. This
approach allows to use mature technology coming from VR to do AR with
a high fidelity. However this approach has several drawbacks: first of all
the field of view of both the cameras and the display is narrower than the
one of a human being, second the resolution of the cameras needs to be
very high to give a good perception of the environment. On the other side,
increasing the camera’s resolution increases the amount of data that has to
be streamed to the computer and then back to the headset increasing the
latency. As we will see later latency is a key factor when dealing with AR
and VR applications.

The second approach is to use see-through displays to do AR. Figure 2.3
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Figure 2.3: Structure of see-through AR displays.

shows a schematic of the functioning of a see-through display system. In this
case the display is transparent allowing users to easily see the world around
themselves. There are several ways to implement a see-through display.
Rendered images can be projected on the display using beam splitter (e.g.
half mirrors or combined prism) as in the case of the HUD in airplanes,
Google Glasses or Steve Mann’s EyeTap (see Figure 1.1). Another approach
is the one used in Meta 2, where a display is placed over the forehead
and the rendered images reflect on the transparent reflective glass screen
placed in front of the user. Hololens use yet another kind of technology,
called waveguide, where the hologram is created progressively extracting
a collimated image guided by total internal reflection in a waveguide pipe.
The pipe is a thin sheet of glass or plastic that the light bounces through.

Projection based AR displays overlay the virtually generated images
directly on the surface of the physical objects. Figure 2.4 shows an example
of how it is possible to dynamically color a real physical model.

An interesting categorization of AR displays is the one based on the
position of the display with respect to the user, as shown in Figure 2.5.
Over the years technology is advancing and displays are becoming lighter,
while providing wider and brighter images. Despite retinal displays are
still not feasible, HMDs are constantly evolving and improving. The main
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Figure 2.4: A physical model of Taj Mahal augmented with projected
texture [98].

advantages of HMDs are the good field of view and that they are always
positioned in front of our eyes. The downside is that they may be heavy,
causing fatigue, and also, if the tracking and registration is not perfect, they
can cause nausea and dizziness. Cellphones and tablets fall in the hand-held
display category. They are a great example of video based displays and are
becoming very popular in the AR world thanks to the wide di�usion and
the relative small price. In addition with the release from Apple and Google
of their AR toolkit they have become a complete AR platform. Lastly there
are spatial displays that are standalone installations not tighten to the users,
and range from displays to projectors [29].

2.1.3 Tracking

Tracking is an important part of an AR application as it allows to track
the 6DOF movement of the user and of the device. This is mandatory in
order to fulfill the second and third point of Azuma’s requirements. There
are several ways to implement a tracking system.

The simplest way to create a tracking system is by using an Inertial
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Figure 2.5: AR displays on eye-to-world spectrum [17].

Measurement Unit (IMU) sensor (gyroscope and accelerometer). While
IMUs are great at measuring rotations, they have drift issues. For this
reason IMU are alway paired with other systems, which use IMUs only
for computing the orientation. Both systems use vision to compute the
current position, but with an important di�erence. One, used by the Oculus
Rift and the HTC Vive, uses external cameras, while the other approach,
used by Hololens, Meta 2 or Apple ARKit, uses the cameras present on the
device, in what is called the inside-out technique.

The first approach has the disadvantage of needing external cameras,
thus limiting the possible workspace, but has the advantage that it is very
precise, fast and reliable. This technique is mainly used by VR headsets
that are tethered and can’t move too far from the workstation. Even if the
technology used by HTC Vive and Oculus seems the same their approach to
tracking is diametrically di�erent. In the case of HTC the cameras are not
actual cameras, but just infra red projectors that emit light with a certain
pattern, constantly. In fact the cameras don’t even have to be plugged to
the PC. The markers on the headset are photo sensors that trigger every
time they are hit by a ray of infrared light coming from the camera. Based
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on which sensors are triggered at every instant it is possible to compute
the position of the headset. Oculus Rift instead has passive markers on the
headset that reflect infrared light, and the infrared cameras scan the images
looking for the markers to reconstruct the position. In both the systems the
position obtained from the infrared system is fused with the one coming
from the IMUs.

In the inside-out approach the idea is to use the embedded camera the
same way humans use eyes. The software, for every camera frame, looks
for points of interest (keypoints), like edges or corners, and associates a
descriptor to them, based on feature as orientation and position. Once it has
these points, the algorithm tries to match them with the ones in the previous
frames to find the transformation between the two camera poses associated
with the images. This method is referred to as SLAM (Simultaneous
Localization and Mapping) and comes from studies on autonomous robots
as it allows them to navigate unknown environments. This system is less
precise than the previous one, as it requires to be in an environment with
lots of particular points. If the user is facing a plain wall the algorithm
has a very hard time trying to detect his movement. It is possible to find
in the literature several algorithms for detecting and describing points of
interest. The SURF algorithm [12] for example, is very robust, but also
computational demanding, while the ORB algorithm [101] is less robust, but
also more e�cient to compute. Also for SLAM it is possible to find several
algorithms in the literature that di�ers on the algorithm for keypoints
detection and the supported cameras, color mono [82], color stereo [88] and
depth [69].

environment detection Detecting user movements is fundamen-
tal to have a registered AR application, but in order to have a complete
experience there is also the need for the AR system to detect and recognize
the environment around the user. This starts with the ability of detecting
planes, like tables, walls or the floor, so that it is possible to place objects
accordingly. Algorithms to detect planes are present in the major CV
open-source softwares as OpenCV and PCL. In addition it is important to
be able to detect generic objects and track their pose. This information
can be used as a feedback to the user depending on the application that is
running. Object detection is still an open research field, which is rapidly
evolving.
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2.2 human robot interaction

The interactions targeted in this work belong to two categories: teleoperation
of humanoid robots in industrial scenarios and interaction with haptic
devices in telemedicine applications.

2.2.1 Humanoid Robots

A humanoid robot is a robot with a body shaped to resemble the human
one. The choice of the design is for easing their interaction with people and
with environments that are designed for humans, like building, construction
places and even cities. Humanoid robots usually have a head, a torso, two
arms and two legs; sometimes the robots may have only part of the body,
for example from the waist up. There are also robots that have highly
accurate heads, designed to replicate human facial features and are studied
by psychologists to understand interactions. DARPA Robotics Challenge
in June 2015 provided a great contribution to the evolution of humanoid
robots, which have proven to be able to perform a wide amount of tasks
autonomously, like driving a car or using a drill. Despite the fact that AI
is constantly improving there are still a whole plethora of complex tasks
where these robots need human guidance. Examples of these cases are
excavator machines that are controlled by an operator through the use of
levers and knobs, up to robot assistants for surgical operations. Operating
a robot is not a trivial task, and usually requires long time training for an
operator, due to the di�culty of mapping the user’s controls with the robot
kinematics. For this reason humanoid robots are particularly suitable to
be teleoperated, in particular in pair with body-based interfaces, as the
straightforward mapping between the human operator’s motion and the
robot’s motion greatly ease the execution.

Several approaches are possible to teleoperate a robot. The first is to
use a camera and CV algorithms to track user movements. An example is
the work of Song et al. where the teleoperation of a humanoid robot, is
done using the motion reconstruction tool provided by the Microsoft Kinect
and user movement are mapped to the robot’s ones [124]. The advantage
of this approach is that the user can move freely without any hardware
overhead, and it is very fast to setup. However, the tracking precision is
not very high, with a lot of noise, and can fail depending on the lighting
condition, or if the user exits from the field of view or assumes strange
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positions. Another approach is to use an exoskeleton. An exoskeleton, as
the name suggests, is a robotic device that is designed to be worn by an
operator. In the case of teleoperation the exoskeleton includes a robotic
arm where the user inserts his/her own arm and moves it, moving the robot.
The movements of the exoskeleton are then mapped to the ones of the
remotely controlled robot [16, 27]. The advantage of this approach is the
high precision and reliability, and it can be enhanced with haptic feedback.
The drawback is that exoskeletons are usually cumbersome and expensive.
A third approach consists in using inertial sensing [79]. In this case the user
wears a set of IMUs, typically on his arms, that are used to reconstruct
his/her movements. The position of the arm is then used to move the arm
of the robot. This approach allows to have a less cumbersome and expensive
setup than an exoskeleton, and provides a higher precision than a camera
based system.

software One of the key factors in the fast evolution of robotics
has been the introduction of the Robot Operating System (ROS) [97],
which has become the de facto standard software architecture for robotic
applications. ROS, since its release, has been used as a base to implement,
share and distribute almost all software for robotics, created by researchers
and industry. Most of all commercial robots come with ROS support. Several
open-source packages are available to compute a plethora of tasks, as inverse-
kinematics to move a robotic arm to a given position, or packages to compute
the best grasp strategy and many more. ROS has definitely contributed in
increasing the evolution speed of robotics, providing a platform where it is
possible to share and discuss new works and improvements. ROS has been
widely used in this work to interact with several robotic devices and has
allowed to speed up the implementation of several applications providing
out of the box solutions.

2.2.2 Haptic Devices

A haptic device is used to provide a fictional sense of touch or force to the
user. The device applies to the user handling it a force, a vibration or simply
motions to stimulate tactile receptors and a force feedback. Di�erently
from the eyes, which have an update rate of 30-60Hz, the human’s skin and
muscles perceive touch and forces at more than 1kHz [19]. In addition it is
very sensitive to jitter. Variation in the update period results in a non fluid
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feedback which is felt as a trembling or shaking, and it drastically impacts
the experience, as the human palm can sense movements as low as 0.2µm

[66].
There are several types of haptic devices, each one with its own pecu-

liarities. The first ones are those specialized in displaying forces, and are
also the first ones to be studied. These kind of devices can be exoskeletons
or handled joystick, like the Phantom from Geomagic or any Delta like
device [95]. Handled robotic devices have the advantage of being able to
display high forces in 3 to 6 DOFs. For this reason they are often used in
teleoperation scenarios that require precise and delicate movements, like
demolition machines [62] or medicine [10]. The disadvantage is that, in
order to use the device, the user has to constantly keep his/her hand on
the device, thus completely distorting the sense of touch. To overcome
this limitation it is possible to implement an encountered interface that
gives some autonomy to the device. In this scenario the haptic device
autonomously comes into contact with the user’s hand only when there is a
force to be displayed [36].

Vibrotactile devices, instead, aim at simulating the sense of touch via
vibration, and are usually very small and wearable. In general, vibrotactile
feedback is used as a simple stimulus to which an information is associated.
One of the earliest and simplest examples is the cellphone vibration when
pressing a key; the feedback is used to notify the user that the key has
been correctly pressed. Other examples are in collaborative robotics where
robots send information to a user via vibrotactile stimuli [117].

Electrical muscle stimulation is another way of providing a force feedback
that is based in stimulating the muscles by passing a current on the skin
surface through electrodes. The electric current triggers muscle contractions
and generates torque at the joints [138, 72]. The main applications aim at
creating free-hand interaction systems, either for games [44] or for public
spaces [93].

software The computation of the correct forces to be displayed by
a haptic device depends whether the user is interacting with real objects
or with a VE. In the first case the controlled robot has sensors to measure
forces that are used to compute the sti�ness of the remote interacting object.
The sti�ness is streamed through the network and displayed to the user
through the haptic device.
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In the second case the real device is interacting in a VE with a virtual
surface, where there are no sensors. To compute the force every surface can
be considered as a spring, and Hooke’s law can be used: F = kX, where k is
the sti�ness constant and X is the depth of the indentation performed in the
surface. During the modeling of the virtual world it is possible to statically
associate the sti�ness value (k) to every mesh. The main problems arise
when computing X. Surfaces are usually not flat and they are modified by
the interaction. In addition the force changes based on the shape of the tool
that is touching the surface and other parameters. Luckily, many algorithms
are present in the literature that deal with most of the possible scenarios and
also several libraries are available that implement those procedures. The
two most important and complete software are CHAI3D [31] and H3DAPI
[39].

2.3 teleoperation

Teleoperation, as the name suggest, is the technique of controlling a device
without being physically connected to it. This can range from remote
controlled toy cars, where the user shares the same environment as the
controlled device, to scenarios where the operator and the device are at
thousands of kilometers. Remote teleoperation introduces the complexity of
establishing a communication protocol between the remote robotic system
and the user interface. In this scenario robots are usually equipped with
cameras to allow the operator to visualize the environment where the robot
operates. This means that the images coming from the cameras, need to be
streamed across the network. In addition, if a haptic device is involved, the
remote robot needs to stream the values of the forces it is perceiving. In the
opposite direction, the user sends the commands to teleoperate the robotic
device. Video streaming is a well studied field, with lots of compression
algorithms, as H.264, and available libraries and tools. More complex is the
streaming of force values and the commands from the operator. There are
two main problems, latency and jitter. When a user operates on a haptic
device its inputs are collected at least at 1 kHz and sent via the network to
the robot. The robot moves its end-e�ector to measure the forces, and sends
back the values to the haptic device. This means that it may happen that,
when the force is received, the user has in the mean time already moved the
controller, and the feedback is not aligned. In addition, if the network is
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not stable some packets may be lost causing a non uniform feedback (jitter),
and the haptic device may start shaking or jumping. Various approaches are
present in the literature to overcome these issues, as the scattering theory
[143] or the wave-variable approach [143].
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3
S O F T WA R E A RC H I T E C T U R E A N D I N T E G R AT I O N

An AR application, even a basic one, is an orchestration of several com-
ponents that need to communicate and synchronize with each other. The
tracking system provides the movements of the head to the rendering soft-
ware that in turn uses them to adjust the position of the virtual objects. In
addition the images coming from the camera are streamed to the algorithm
that detects planes and surfaces, which are then used by the physics system.
If the tracking system is implemented using SLAM, the images from the
camera will be shared by both the tracking software and the environment
detection algorithm. Each one of these modules has precise time constraints,
dictated both by the technology and by user requirements. As seen in
Chapter 2, tracking, rendering and the control of haptic devices all have
strict requirements for update rate, latency and jitter, and in addition, they
are not trivial problems. For this reason orchestrating all these tasks is
often a daunting problem.

An interesting property of AR systems is that every component is
independent from the others, they just need to agree on the format of the
data they exchange. The rendering software doesn’t depend on how the
tracking is computed, as long as the head pose is provided in a known
format. The same principle is valid also for the physics system that is not
a�ected by the algorithm used to track planes or do mesh reconstruction.
This is an important aspect as it allows re-usability of the code, which can
be adapted to di�erent scenarios.

Another characteristic aspect of AR applications is the looped execution
structure. Tracking software executes the same algorithm for every frame,
as well as the graphics engine that recompute the virtual scene based on the
refresh rate of the screen. Figure 3.1 shows an example of the components
involved in an AR application, and how these components are connected
and interact.

This chapter presents a novel software architecture, Compact Component
(CoCo), implemented with the purpose of providing an easy way to create AR
applications, in HRI scenarios, with a focus on code re-usability, flexibility
and most important performance. The library is open-source and constantly
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Figure 3.1: Example structure of the components that concur in the creation
of a generic AR application. We can see on the left the input sensor devices,
like color or depth cameras, which produce images that are then processed
by other independent components. On the right the output devices, which
are the display(s) and possibly a haptic device.

updated1.

3.1 related work

It is possible to find in the literature several libraries that provide func-
tionalities to implement a specific component, but there is a shortage of
software to orchestrate the components all together. During the years
several attempts have been made to designe and create a general framework
to support the development of AR applications [75, 11, 130], but no one has
managed to reach a widespread usage. Nevertheless, interesting solutions,
applicable to the AR field, can be found in the robotic world [80].

AR and robotic applications are very similar in the structure and share
several requirements. In a robotic application, among all, there is the need
to control the motors and the sensors, to compute the planning for the
motion or the grasping and the localization. It is easy to find a similarity
with the situation described above for AR, given that, also in this case,
all these components execute independently from each other, and interact
only to exchange data. In the following we are going to analyze the most
prominent software architecture for robotics.

1https://github.com/cocomr/coco
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3.1.1 ROS

ROS [97] is a distributed computing platform, with support for data passing.
Users can create custom nodes (processes) that can output or receive data in
a publisher-subscriber fashion over TCP/IP. Each node is independent from
each other and connections between nodes happen at runt-time. Nodes can
live on di�erent machines and share the same parameters and configurations.
The power of ROS comes from its modularity and simplicity. Every node can
be developed stand-alone and combined with whatever other one, providing
that they agree on the data they want to exchange. ROS provides also a
build system that makes it easy to create and share new nodes. In addition,
it provides a long list of support tools that spans from server parameter,
graphic debugging tools and simulators, to easy serialization and playback
of data.

The main and important drawback of ROS is performance. Despite
being a distributed system that allows virtually infinite parallelism, ROS
comes with drawbacks. Every node is a process and all the data is shared via
TCP/IP, thus requiring copying of data multiple times, even if in the same
machine. When dealing with high frame rate (haptics) or big data (images)
data copy can become the bottleneck that hijacks real-time execution. ROS
has a way to overcome this by using nodelets, which provide multi-thread
support, thus allowing for zero-copy shared-memory communications. The
problem with nodelets is that they are not easily configurable. Either a
piece of code is born as a nodelets or it cannot be instantiated as one. In
addition, a third party node can not be run as a nodelet.

For the sake of completion it is important to cite YARP (Yet Another
Robotic Platform) [77]. YARP is a software middleware very similar to
ROS, as it provide communication support between nodes, in a distributed
environment. YARP was developed before ROS, but it wasn’t able to find
the same space and propagation.

3.1.2 Orocos

Orocos [22] is another important middleware framework for robotics, and
also one of the first developed and still maintained. It di�ers from ROS as
it is designed to support the implementation of low-level robotic control.
Low-level robotic control is characterized by simple algorithms, each one
with a specific focus (control of the motors of the arm, wrist, leg, etc.)
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that can run in parallel and need to exchange data with each other. The
scenario is very similar to the one described for ROS, with a single important
di�erence: these algorithms need to run in strict real-time fashion at high
frame rate (Ø 1kHZ). This makes a distributed system, as ROS, unfeasible
to support this scenario. The problem is that TCP/IP timing cannot be
controlled and its latency cannot be always predicted with 100% accuracy.
Orocos overcome ROS limitations by providing support to multi-threads
shared-memory communication and to hard real-time scheduling running
on Linux RTOS. At the same time it also supports a good level of flexibility
and reconfigurability, where each node is independent from the others. The
drawbacks of Orocos are that, being an old project, it doesn’t exploit all the
advantages of new software technologies, and it needs to run on a special
version of Linux, limiting its integration with other software.

Another di�erence between ROS and Orocos is that, while the first
exploits a publisher/subscriber communication pattern, the second uses a
data flow programming approach [125].

3.1.3 MIRA

MIRA [41] is another interesting framework developed to support robotics
application. It has a structure very similar to ROS with few notable
exceptions. ROS uses a centralized system, where each node has to connect
to a master to do any information lookup, and this introduces a single
point of failure. On the other hand MIRA is a full decentralized system
with a reliable fault-tolerance system. In addition MIRA is more flexible
than ROS for what concerns the instantiation of nodes in either processes
or threads, by just specifying it in the configuration file. Unfortunately
it doesn’t provide tools for soft real-time execution, using a best-e�ort
approach in the scheduling of the execution. This is mainly due to the
publisher-subscriber approach used in the communications that conversely
from data-flow doesn’t allow for strict management of execution order and
predictability.

3.2 the architecture

The purpose of the CoCo library is to provide stronger timing guarantees
than ROS, while being more flexible and easy to use than Orocos. CoCo
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tries to combine the real-time solutions introduced by Orocos with the
flexibility and reconfigurability of ROS. This allows CoCo to be feasible
both for supporting prototyping and production execution. This has great
value as it speeds up the development, reducing testing time.

CoCo achieves these capabilities by being a component-based system,
in which each node is a sequential independent unit of execution capable of
exchanging data with other nodes, and of triggering other nodes execution
and operations.

CoCo, like Orocos, implements a data flow programming approach.
AR applications, as we can see from Figure 3.1, have a logical structure
where the data produced by an input component flows through several
other components, up to an output device. Using a data flow programming
approach it is easier for the developers to map the design of their applications
to actual C++ code, speeding up the development.

CoCo has been developed in C++11 exploiting the latest features of
the language to be lightweight, easy to use and multi-platform. Compo-
nents are loosely coupled to increase modularity and reduce development
dependencies: in terms of C++ this means that the only common element
between components is the exchanged data format. Components are stored
in dynamic libraries and they can be instantiated at run-time by name.
A CoCo application is typically launched by providing an XML file that
specifies which components to load and their configuration parameters,
together with the desired connections and execution policies. Thanks to the
configuration through the XML file it is possible to quickly and easily update
the application, introducing new components or modifying the connections.
Programmers can test several di�erent configurations without changing a
single line of C++ code, thus without having to recompile the components’
code. Meanwhile, the loader operates at C++ level guaranteeing that the
performances are not compromised.

3.2.1 Components

Components are the building blocks of CoCo applications and represent
atomic blocks of execution written in C++. To create a custom component
the programmer needs to inherit from the base class coco::TaskContext. This
allows the user to utilize, inside his/her class, all the CoCo functionalities.
A component is characterized by the following elements:
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• Callbacks, containing the code that is executed in the main loop.

• Declarative attributes that can be set at run-time via the XML
configuration file.

• Operations that can be invoked thread safe and asynchronously.

• Input and output ports that are used to exchange data with other
components.

Components can be classified into three categories: producer, worker
and sink, depending on their position in the flow of data. Producers are
components that, as the name suggests, produce data and don’t receive
any input information. The most notable examples are camera and sensor
drivers. These kind of components are usually executed periodically, based
on the refresh rate of the device they are connected to. Workers are pass-
through components, they receive data from producers or other workers,
and process them, creating new ones. Examples of workers can be image
filters, haptic rendering, objects detection, etc.. Mainly they execute only
when new data is available and are, hence, synchronized to the producers
they are connected to. The last type of components, sinks, consists of
those blocks that are the collectors of all the data processed by the other
components. In an AR application the most notable example is the graphics
rendering component that uses the information computed by the tracking,
physics, users input, etc., to create the virtual scene to be rendered to the
display. Sink components don’t usually output data to other components
as they communicate directly with the hardware (displays, robotic devices,
etc.).

3.2.1.1 Callbacks

Callbacks are the engine that drives the execution and characterizes each
component. There are four callbacks, inherited from the coco::TaskContext
class, which the programmer needs to implement with its custom code.
When the component is instantiated, the run-time system calls these func-
tions, executing them according to the policy specified in the XML file and
described later in Section 3.2.3.

The first two callbacks, init() and onConfig(), are used to initialize
and configure the component, based on the parameters expressed in the
XML file. CoCo run-time guarantees that, before executing any onConfig()
function, the init() function for each component is executed and completed.
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The main callback is onUpdate(), which is executed in a loop, either
periodically with a timer, or triggered by data reception (see Section 3.2.3
and 3.2.1.4). This function is the central part of the component, and
contains the code to perform the processing of the data. The onUpdate()
implementation should not block the execution, by doing for example active
waiting on an event.

3.2.1.2 Attributes

Attributes are the mechanism that allows a component to expose its internal
private variables. This is done to be able to set those variables from the
XML file. The programmer can create an Attribute<T> object, templated
on the type of the variable that will be bind with the Attribute. The
Attribute constructor takes the reference of the associated variable, and
a unique name within the class’s attributes. From outside the class, it is
possible to access the attribute by name, and then use a getter and setter
to read or update the variable’s value. This is used by the XML loader that
can read the value specified by the programmer in the file, and set it in the
components. In addition, attributes can also be used by other components
to read and update each others variables.

3.2.1.3 Operations

Operations are equivalent to attributes, but they expose methods instead
of variables. Each operation is associated with a member function of the
component and a name, which must be unique within the component.
The name allows other components to retrieve the operation and call the
embedded function with the desired parameters. An operation contains
a handle of the function, thus calling the function through the operation
doesn’t introduce any overhead with respect to a direct invocation. However,
it is not recommended to call another component’s operation directly, as
this is not thread-safe and may produce synchronization problems. This
is due to the fact that the operation’s method may access component’s
variables while they are being accessed by the onUpdate() callback.

CoCo provides a solution to overcome this problem and guarantee thread-
safe execution. The solution is based on the deferred invocation of the
operation and its underlying function. The operation can postpone its
execution by queuing the call in its component’s pending list of operations.
Every time a component is triggered, before executing the onUpdate()
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function, the run-time support checks whether there are pending operations,
and in case it calls them one after the other. The task invoking the function
to enqueue an operation on another task can add to the call a function to
get the return value of the operation.

3.2.1.4 Ports

Ports are the key mechanism for data exchange between components inside
CoCo, and they have been designed to support di�erent patterns of data
exchange and provide an e�cient mechanism to transfer large entities such
as images or point clouds.

Ports can be either input or output, are templated on a given type and
have an unique name within the component that owns them. Input ports
can be marked as event to specify that the execution of the component
should be controlled by the reception of data in that port. In other words,
whenever an event port receives data, it will report it to the run-time
manager that will wake up the component and start its execution. Input
ports provide functions to read the data they receive, while output ports
grant the possibility to read from them. The connections of the ports are
not specified in component code and are independent from the ports. In
other words a port doesn’t care from whom it receives the data or to whom
it sends them, as the connection is done at run-time.

Any C++ types, with a copy constructor, can be exchanged between
ports, and thread-safety is guaranteed. The use of C++’s shared pointers
allows to perform zero-copy communications, with the only overhead of
copying the pointer and handling the reference counting value. This is very
important when dealing with big objects like images or point clouds. The
use of ports together with shared pointers is the key feature that allows
CoCo to provide (soft) real-time capabilities.

Both reading and writing are non-blocking. This means that when
reading from an input port that doesn’t contain any data the function
will return immediately and it will not wait for new data to be received.
The opposite is also true, as writing in a full bu�er will cause the data
to be dropped and the execution resumes instantly, without waiting for
the bu�er to free space. Components can have multiple input and output
ports. Multiple input event ports can work synchronized so to guarantee
that execution happens only when data is present in all of them.
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3.2.1.5 Peers

To improve the modularity and re-usability it is possible to create sub-
components called peers. Peers are used to extend the functionalities of
a component preserving code encapsulation and re-usability as they can
be instantiated multiple times for di�erent components and the binding is
decided at run-time. Peers are components by themselves inheriting all the
functionalities such as ports, attributes and operations. The main di�erence
relies in the fact that peers execution is controlled by the owner component,
and typically they are used via operations. Thanks to operations there is
no limit in the number of peers that can be associated to a component or
to another peer, giving the possibility to create a tree of peers with any
desired depth or width.

3.2.2 Connections

Connections, as the name suggest, are the entities that connect components’
ports to each other and allow the flowing of data between components.
The only requirements to connect two ports are that: they must belong
to di�erent components, one has to be output and the other input and
they are templated on the same C++ type. Connections between ports are
many-to-many, meaning that a single element, written to an output port,
can be received by multiple recipients, and that multiple data, coming from
di�erent output port, can be written in the same input port. When the
programmer writes in an output port, the message is broadcast by default
to all the input ports connected. Conversely, when reading from an input
port connected to multiple output ports, data is received one at a time,
using a round robin schedule for polling. Alternatively, CoCo provides a
special read function that retrieves data from all the incoming connections,
and returns them in a vector. Ports manage their several connections with
a ConnectionManager object that handles all the connections abstracting
the complexity to the port and the user.

The data written in an output port and not yet read is stored in
the connection that owns the bu�er. When creating a connection the
programmer specifies the desired policy for it, in particular, the policy for
the bu�er, for the synchronization and for the type of transport. CoCo
supports three di�erent types of bu�er:
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Figure 3.2: Basic example of how ports can be connected with each other
in a many-to-many fashion.

• DATA: The connection has a bu�er of length 1 and new incoming
data always overrides existing data even if it has not been read yet.

• BUFFER: The connection has a FIFO bu�er of length as specified
in the configuration file. If the bu�er is full new incoming data is
discarded without blocking.

• CIRCULAR: The connection has a circular FIFO bu�er of length
as specified in the configuration file. If the bu�er is full new incoming
data overrides the oldest one.

A DATA bu�er is equivalent to a CIRCULAR one with length 1 except
much more e�cient, given that it doesn’t rely on any data structure.

The connections support two synchronization policies: LOCKED and
UN-SYNC. In the first case data access is regulated by mutexes while in
the second case there is no resource access control policy. A lockless policy
could be added providing high-e�cient data access. The un-sync policy
applies for the connections between components inside the same thread.

CoCo provides a common interface for all the connections allowing to
easily create a custom one. It is possible to easily add a new bu�er type
and also change the type of mutex used. For example, when passing small
data through a connection, like shared pointers or primitive types, the
mutex from the standard library introduces too much overhead, and can be
substituted with a spin lock.
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3.2.3 Execution

The execution takes place inside a container called activity that can hold
multiple components. Every activity has a system thread associated to it.
An activity executes in loop, and during every cycle all the components are
executed sequentially. Periodicity or triggering are specified at the level
of activity: a triggered activity is activated when any of the contained
components receive some data in a event input port. Periodic activities
execute at a constant rate specified by the user in milliseconds.

The XML configuration file of an application contains the list of activities,
each one with its list of components and its configuration. The activity’s
configuration comprises the periodic nature, as period in milliseconds or
triggering. In addition, one of the activities can be marked as “main” for
being associated to the main thread of the CoCo application.

The component-activity separation allows the developer to reconfigure
the flow of execution at run-time, without the need of customizing or
recompiling the components. An improvement of the model discussed
above relies on increasing the granularity of components activation, which
is supporting multiple rates inside an activity or controlling the triggering.

The component-activity separation allows the developer to reconfigure
the flow of execution at run-time, without the need to customize or recompile
the components. An improvement of the model discussed above relies on
increasing the granularity of components activation to support multiple
rates inside an activity based on di�erent triggering.

3.2.3.1 Metrics

There are two metrics to measure the performance of a task based, loop
application: service time (TS) and latency (L). The first one measures the
time between two successful completion of a round of execution. The lower
bound for this value is, of course, the time between the generation of two
inputs (TP ). If this value is higher it means that periodically one of the
input is dropped. For example if a camera goes at 30Hz, it provides a new
frame every 33.3ms. An algorithm processing the image needs to complete
in less than 33.3ms to be able to be ready when a new frame arrives. In
any case the processing software cannot have a service time of less than
33.3ms, as it is synchronized with the time of the component that produces
the information.
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The latency, instead, measures the time for an input to be processed
and become output. It is constituted by the sum of the computation time
(TC) of all the tasks concurring in producing the result. In a sequential unit
of execution the latency should be less than the service time, otherwise,
what happens is that, while the block is still processing the data at time
Tn, the new data at time Tn+1 arrives, and its processing is delayed or even
canceled.

3.2.3.2 Scheduling and Partition of Components

The graph created by the connections, namely the data-flow graph, specifies
the dependencies of each component, providing constraints on the order
of execution. The triggering system guarantees that the dependencies,
specified by the data-flow graph, are satisfied during the execution. So, the
schedule comes for free once the user has specified the connections.

The scheduling sequence is not enough in a parallel application, as
also the partition of the tasks into threads needs to be provided. This
corresponds in placing CoCo components into activities. The easiest solution
is to instantiate one activity for every component, so that each component
runs in a di�erent thread. However, this introduces a lot of overhead if
there are lots of components with short execution time, due to the context
switch time. The best solution would be to instantiate a number of threads
equal to the number of cores, so that no context switch happens. This may
not be feasible as dependencies between tasks may need more activities, not
to create dead-locks. Another limitation is that any component inside an
activity can trigger it, and once the activity is awoke it will execute all the
components it manages, regardless whether all of them have received the
needed trigger. This is a strong requirement necessary to reduce control flow
checks and simplify the run-time support to reduce the overall overhead. In
addition this allows more predictability in the system and ease the testing
and debugging. On the other hand it limits the possible partitions as shown
in Figure 3.3.

From a performance point of view, a feasible partition is the one that
allows to obtain a service time equal to the one of the producer components.
In addition, an optimal partition is the one that minimizes the latency. The
partition of tasks in activities is a NP-complete problem, as to find the
optimal solutions, all the possible combinations need to be tested. To be
able to evaluate the feasibility of a schedule/partition system it is necessary
to have timing statistics for each component. For this reason the application
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(a) A feasible partition schema.

(b) A non feasible partition schema.

Figure 3.3: Circles represent components, arrows connections , and rectan-
gles are activities. Figure (a) shows a feasible partition, while Figure (b)
shows an unfeasible one. In the second case activity components f may be
executed before receiving the data from component c, resulting in undefined
behavior or skipping one iteration.
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needs to be profiled, instantiating one activity per component, so to collect
timing statistics for each component. Note that for a given schedule there
may be no possible partition that guarantees the desired service time.

3.2.3.3 Parallel Execution Patterns

In order to improve service time and latency it is possible to parallelize the
computation applying known patterns, studied for this purpose. There are
two general ways to parallelize an application: task or data based. In the
first case the parallelization happens between tasks operating on di�erent
data. In the second case, instead, the parallelization is done by splitting
the data in independent chunks that are processed by multiple parallel
instantiation of the same task.

Data parallelism is the most desired type of parallelism as it reduces the
computation time of a single task, thus the latency. Reducing the latency
has also the benefit of contributing in keeping the service time optimal. The
problem with data parallelism is that it is not always possible, as it requires
data to be splittable in independent chunks. There are, however, several
examples of possible applications in CV and image processing.

Task parallelism is characterized by two main patterns, pipeline and
farm.

pipeline Pipeline is the simplest one and consists in concatenating
tasks one after the other, each one taking input from the previous and
outputting to the following. Each task executes in parallel to the others, and
this allows that, when a task is executing on data at time Tn, the previous
task can execute on data at time Tn+1, and the following on data at time
Tn≠1. This means that the service time of the whole pipeline is not the
sum of the TC of all the tasks, as it would be if run sequentially, but is the
maximum between the TP and the highest TC among all the tasks. Parallel
pipeline, however, doesn’t improve the latency, as each data is processed
sequentially, by one task after the other. Figure 3.4 shows a simple example,
where each task is associated with a TC and the first with TP . Pipeline are
supported in CoCo by default; through the use of connections and activities
it is possible to create a pipeline with the desired degree of parallelism.

farm Pipeline has the limitation that, if a T
i

C
is higher than TP , a

bottleneck is introduced that causes the TS to increase. Pipelines are
feasible only if all the components TC is lower than the TP . When this is
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Figure 3.4: Simple example of a pipeline composed of three tasks (a, b, c),
each one with its computation time and the initial production time.

not the case the only solution is to use the farm paradigm. The idea behind
a farm is to take the task that causes the bottleneck and duplicate it, so
that, when new data arrives, and the task is still executing the previous one,
this is redirected to the duplicated task. In the farm paradigm tasks are
called workers and their number must be Nw Ø ÁTC

TP
Ë, in order to guarantee

that, when a new data arrives, there is at least one free worker that can
start executing with the new data right away. Di�erently from pipelines,
farms need additional support to be executed, in the form of two special
tasks, the scatter at the beginning, and the gather at the end. The scatter
receives the data, look for a free worker, and forward the data to it. The
gather instead receives data from the workers, and forward it to the next
connected tasks. Scatter and gather are used to mask the farm from the
other components that see the farm as two standard nodes.

In CoCo it is possible to easily instantiate a component as a farm that is
simply a special type of activity. The programmer, in the XML file, specifies
the number of workers, the component and port that will provide data to
the scatter and the component and port that will get data from the gather.
The loader will modify the ConnectionManager object associated to the
scatter port, so that, instead of broadcasting every message, it checks for
an available worker and sends the message only to it. All of this is done
automatically, at run-time, during initialization, and doesn’t require any
modification in the source code. In addition, it is even possible to create
farms where the workers are a pipeline of multiple components, providing
more flexibility.
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Figure 3.5: An example of how a farm can help reducing the service time
of a pipeline, when one of the node computation time is greater than the
production time.

Farm allows to prevent possible stall due to problems in the execution.
Suppose to have a pipeline of few nodes, each one with TC < TP , so that
TS = TP . Unfortunately, only in real-time OS, and with very deterministic
algorithm, the computation time is guaranteed to be constant; what happens
normally is that for certain input, or due to unpredictable OS scheduling
policies, a task can take long time to complete, slowing down the service
time of the overall application. To overcome this, a solution is to put the
pipeline in a farm, duplicating it. Each pipeline execute sequentially, and
every new data is redirected to a free pipeline. Figure 3.6 shows an example
where the three tasks (a, b, c) execute on the same thread, but there are
several instantiation of them. If, unfortunately, one of them gets stuck, the
execution can continue on the other instantiation.

3.2.3.4 Real-Time Execution

The applications targeted by the CoCo framework fall in the so called
soft real-time domain. A real-time application is characterized by several
independent components, each one with a computation time, a period and
a deadline. There are several levels of constraints in a real-time application
that goes from hard to soft real-time. In the hard case it is enough for a com-
ponent to miss its deadline to cause catastrophic consequences. Examples
are airplane or car control. In order to guarantee hard real-time constraints,
components need to have constant computation time and run in a special
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Figure 3.6: A farm of pipelines. Instead of parallelizing within the pipeline,
the parallelization happens duplicating it. This allows to prevent possible
stall in the computation guaranteeing the same best performance.

OS. Orocos is an example of a framework that supports hard real-time
applications. In AR applications there are no such constraints, as skipping a
frame will simply cause the tracking to have a jump, which is, yes annoying,
but not dangerous. In addition, standard consumer OSs, like Linux or
Windows manage the scheduling of threads and process in a best e�ort
manner, with heuristics that don’t guarantee execution at the desired time.
Nevertheless there are few approaches that can improve the performance of
an application improving the predictability and reducing overhead. First of
all, OSs provide tools to change the priority of user threads, thus giving
them precedence over system or background processes. In addition it is
possible to pin each thread to a specific physical core (a�nity). This allows
to reduce context switch time, also exploiting cache locality. In the latest
years the standard Linux kernel has added the possibility to use the earliest
deadline first (EDF) scheduling algorithm [126] for any application. EDF
is an optimal scheduling algorithm as it guarantees to provide a feasible
schedule if this exists. The problem with EDF is that it requires each thread
to provide its computation time as constant parameter, and this is not
possible for the majority of AR components.

Another way to improve performance is to manage memory wisely,
avoiding continuous allocations and deallocations of memory blocks. Every
time we allocate or deallocate memory a thread needs to communicate
with the OS, and this introduces overhead. A possible solution is to use a
memory pool allocator, which firstly allocate a big chunk of memory that is
never deallocated, but redistributed to the threads when needed. However,
this approach cannot be enforced by CoCo itself as memory is managed by
components’ developer.
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3.2.4 Performance Measurements

The CoCo library provides also a utility to easily calculate execution time
of blocks of code. This functionality can be used by the user inside its
components to quickly evaluate the computational load, and it has been
inserted inside the core of the library to obtain precise statistics on the
components’ performance. The profiling step is activated passing a specific
flag to the launcher, and statistics of the execution are provided with a
certain time interval. The measurements include, for each component, the
number of executions and the total execution time, and mean and variance
of the average computation and service time. This last value is used to
evaluate the feasibility of the application scheduling because it represents
the mean time between two activations of a component and should be equal
to the period for periodic components.

3.2.5 ROS Interoperability

The integration and interoperability with ROS is a mandatory requirement
when developing robotic applications. ROS has become the de facto standard
in robotics and many vendors provides the control software of their devices
directly as ROS nodes. Thanks to the simplicity and versatility of CoCo it
is very straightforward to transform a component so that it can be used as
a bridge between ROS and CoCo. To do so the user has to simply create
a CoCo component inside a standard ROS package and compile it as a
library. In this way the component can declare a ros::NodeHandle object
and use it to register or publish topics. Received data can be transformed
to be exchanged through CoCo ports. When an application contains a
ROS component a di�erent launcher has to be used that is a ROS node
embedding the same functionalities and the same behavior of the standard
launcher.

3.2.6 Data Manager Component

A CoCo component can be used as a data manager, e.g. a component
that contains information that are updated and queried asynchronously.
Examples of data manager components are the transformation manager
(see Section 4), a sensors’ parameter manager, or an application specific
data handler. Data manager components are used to store information that
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can be retrieved easily at any time, and they need to provide an interface
for updating and querying. In CoCo there are two ways for components
to communicate with each other: ports and operations. When using ports,
any component that wants to update the data manager needs to connect
one of its ports to the data manager update port, and write the update
data in it. This approach has the advantage that the data manager can
manage the update as it prefers, without blocking the source component.
Conversely it has the disadvantage that the updating component has no
easy way to know if the update was successful. Another approach is to use
operations; operations can be invoked directly, by the updating component,
and block until the update is complete. Alternately, the operation can be
enqueued with a return callback, so that it is performed in a non blocking
manner, but the result can be still received. A data manager query is done
via an operation, in order to get the result immediately, even if there is
the need to block for the query to complete. In addition, it would even be
possible to use an observer pattern for querying. Every task that wants
to connect to the data manager registers a callback (via an operation for
example) that is called when the data manager is updated. The choice of
the best policy often depends on the update/query time, and the size of
the exchanged objects.

3.3 components loader

There are two ways to instantiate a CoCo application. The first one is to
manually (in C++) create an executable where the desired components are
instantiated, connected and launched. This has the enormous drawback that
every time the user wants to change an attribute value or a connection s/he
must recompile all the application. Conversely, CoCo comes with a loader
that takes in input an XML configuration file containing the specifications of
the application in terms of components, connections and activities. In this
way, to update an existing application it is enough to change the XML file
and reload it. In addition, it is possible, with an independent loading system,
to perform optimization on the application and check for inconsistencies.

However, XML is very verbose to express complex semantic, and this
causes the configuration file to increase exponentially when adding new
components or connections. Furthermore, the XML syntax doesn’t have
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an intuitive mapping with the semantic of a CoCo application. All of this
makes it di�cult for an user to write and maintain the XML file.

For these reasons, we have introduced a new formalism to define the
components data flow graph and the activities partition. This formalism
is based on a Domain Specific Language2 (DSL) that in the future will be
possible to parse and use to instantiate a CoCo application. The advantage
of using a DSL is that it allows to create a syntax customized for a specific
use case, thus reducing verbosity and increasing readability.

Below the DSL syntax is presented.

Listing 3.1: The DSL syntax.

# Component and peer i n s t a n t i a t i o n .
a1 = MyComponent ( )
# Mul t i p l e i n s t a n t i a t i o n o f the same component .
a2 = MyComponent ( )
b = AnotherComponent ( )
p = MyPeer ( )

# A t t r i b u t e i n i t i a l i z a t i o n .
a1 . a n a t t r i b u t e = a va lue

# Binding a peer to a component .
a1 << p

# Connecting por t s .
conn po l i cy = Connect ionPol icy ( buffer , s i z e ,

synchron izat ion ,
t r anspo r t )

a1 . out por t >> b . i n p o r t + conn po l i cy
# Ports can be connected many≠to≠many .
a2 . i n p o r t << a1 . out por t + conn po l i cy

# D e f i n i t i o n o f a macro v i r t u a l component t ha t
# compose # m u l t i p l e a l r eady i n s t a n t i a t e d components
# in a sub graph .
MyVirtualComponent = Compose ( a1 , a2 , b)
# Bind a por t o f a sub≠component .
MyVirtualComponent : : out por t = b . out por t
# Bind an a t t r i b u t e o f a sub≠component .
MyVirtualComponent : : s ome at t r ibute = a1 . a n a t t r i b u t e

2https://en.wikipedia.org/wiki/Domain-specific language
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# Al l o ca t e a copy o f a1 , a2 , b and t h e i r connec t ions .
av = MyVirtualComponent ( )
# This connects av . a1 . ou t po r t to c . i n p o r t
av . out por t >> c . i n p o r t

# A c t i v i t y i n s t a n t i a t i o n
e x e p o l i c y = Execut ionPol i cy ( p e r i o d i c i t y , per iod )
a c t i v i t y = Act iv i ty ( po l i cy , a1 , a2 , . . . )
# Farm . A farm i s c rea t ed s p e c i f y i n g a component
# ( or a v i r t u a l one ) , an input and output por t
# and the number o f workers .
# The loader w i l l l ook t ha t t h e r e i s one and only
# one connect ion between the worker input por t
# and any o ther component output por t .
# Otherwise an error i s r a i s ed .
farm = Farm( a1 , a . in por t , a . out port , num worker )

Listing 3.2 contains the code to create a connection in the XML con-
figuration file, while Listing 3.3 shows how to create the same connection
with the new DSL. This comparison clearly shows the benefit of the DSL,
which allows to have a more compact and intuitive definition.

Listing 3.2: The XML code to create a connection between two components.
<connect ion data=”BUFFER” p o l i c y=”LOCK”

t ranspor t=”LOCAL” b u f f e r s i z e=”10”>
<s r c task=” task1 ” port=”OUT”/>

<dest task=” task2 ” port=”IN”/>
</ connect ion>

Listing 3.3: The DSL code to create the same connection as in Listing 3.2
p o l i c y = Connect ionPol icy (BUFFER, 10 , LOCK, LOCAL)
task1 .OUT >> task2 . IN + p o l i c y

3.4 visuo-haptics modules for mixed reality

The CoCo framework has been used as the infrastructure for the realization
of a set of libraries, called CoCo Mixed Reality (CoCoMR), targeting
the creation of visuo-haptics applications for MR scenarios. One of the
complexities in this kind of applications stands in the di�erent rates at which
each component executes. A standard visuo-haptics application can be
composed of a module reading frames from a camera at 30 Hz or more, the
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Figure 3.7: Overall view of modules and components

graphics renderer module that runs between 60 to 120 Hz depending on the
visualization nature and a module controlling the haptic device running at
least at 1 kHz. Three modules sets (Vision, Haptic and Display) have been
developed to target each specific scenario, and thanks to the CoCo features
they can be combined and customized as desired at run-time. CoCoMR
contains also common utilities and a shared interface to allow di�erent
components to exchange data through the CoCo ports. An overview of the
core modules is shown in Figure 3.7.

3.4.1 Vision Module

The vision module provides the services for the computer vision part of an
MR application that are the acquisition of image sources, the tracking of
features or fiducial markers, and, in the case of tele-presence applications,
the streaming.

Components in the vision module exchange data structures that corre-
spond to images, RGB-D images, and camera parameters (intrinsics matrix
and distortion). In particular color images are encoded with the possibility
of using several color formats (grayscale, RGBA, YUYV and YUV420)
with the aim of limiting the conversion from sensors (typically producing
images in YUYV) and toward computer vision algorithms that employ
often grayscale images. The YUV420 is instead the layout used by video
compressors. YUV420 is a planar representation in which Y, U and V are
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separated with U and V halved in resolution. This means that the per pixel
size is 3/2 bytes instead of 3. RGB-D data is stored as a combination of
the color image and the depth image (float or signed int16).

Producer components are the following:

• CameraReader : using gstreamer or OpenCV captures camera frames
and shares them with the other CoCo components.

• RgbdCameraReader : same as CameraReader, but captures also the
depth bu�er. The component supports multiple cameras such as
Kinect 360 or One, Asus Xtion and Intel R200 directly through
libfreenect, OpenNI or libfreesense. For each camera there is a specific
CoCo peer embedding the di�erent APIs for each vendor. If provided
by the driver, cameras are associated with the intrinsics.

• LeapReader : it interfaces the LeapMotion API with CoCo providing
to the other components position, orientation and fingers pose of the
hands.

• StreamingReceiver : it is used to receive via TCP and decodes image
and depth streams in case of applications for tele-operation.

Filtering and sink components are:

• MarkerTracker : receives a camera bu�er and produces in output the
pose of eventual markers present in the image.

• MeshReconstructor : receives the image and the depth bu�ers from
RgbdCameraReader and creates a mesh interpolating the missing
points.

• StreamingServer : receives an image and/or a depth bu�er and sends
it via TCP. Must be coupled with StreamingReceiver at the client
side.

3.4.2 Haptic Module

The haptic module provides haptic rendering that is the generation of force
feedback following the convention of computer graphics rendering [112].
There are several challenges in haptic rendering tasks mainly relating to
the high rate of the update loop, 1kHz, and especially when the interacting
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Figure 3.8: General structure of the haptic module.

surface is dynamically updated as coming from a RGB-D camera. CoCo
provides internally the support for the haptic rendering of implicit surfaces
or point clouds. Other techniques can be integrated such as volumetric voxel
models [102] or the 3DOF spherical proxy algorithm [109] for triangular
meshes to external libraries such a CHAI3D.

The rendering of implicit surfaces is based on the Salisbury algorithm
[113] that updates a contact proxy based on an implicit surface described
as a distance to the surface and the local gradient. CoCo supports the
creation of procedural implicit surfaces expressed on constructive solid
geometry over building blocks such as cylinders, planes and spheres. The
HapticImplicitSurf component is configured over a functional description
of the surface, and it tracks the proxy over the surface, generating force
feedback with friction parameters.

Contact rendering of live point clouds, or point-sampled meshes, is based
on the identification of the points around the proxy via k-d tree and the
creation of a local surface from such points. The KDTreeBuilder component
is responsible for the creation of the k-d tree either from a point cloud
or the vertices of a meshes provided by the adapter MeshReconstruction
component. The HapticCloud component provides haptic rendering over
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these points using the k-d tree emitted by the KDTreeBuilder. This is an
example of the large resource management of CoCo: the KDTreeBuilder
has an input port with the new point cloud and inside its loop it performs
a slow update, while, at the same time, the last value of the k-d tree is
available over the output port. The port mechanism allows the reuse of the
values in the ports, much like happens in a classical front-back bu�er, but
only in a more general way.

For a complex scene with multiple surfaces (or layered materials) it is
possible to coordinate di�erent rendering components, or aggregate them
inside a single component, called HapticRenderer, which invokes the various
renderers using the peer mechanism. As discussed, anyway, the peers share
the same activity, meaning the same OS thread. The module structure and
its connections are shown in Figure 3.8.

3.4.3 Display Module

The Display module has been developed to provide a reasonably good
visualization capability for MR applications with the main idea of displaying
images or point clouds produced by a set of cameras looking more at
performance than display visual e�ects. There is no intention to replicate
features found in more sophisticated 3D engines, such as shadows or large
complex models.

The display module is based on OpenGL 3.3 and it is responsible for
the rendering of 3D objects and the eventual images obtained from cameras.
It is composed of a single component and several peers, mainly due to the
single-threaded nature of the OpenGL API. Multi-threaded OpenGL could
be an option but it is known to impact the performance of the overall 3D
rendering, and multi-threading can be exploited only for the memory transfer
between CPU and GPU bu�ers, e.g. for uploading point cloud or texture
data. The recent introduction of the Vulkan API3 has opened the way for
multi-threading with GPU and it could be an interesting enhancement for
the graphics part of CoCo. The component (GLManager) is the graphics
manager and it is in charge of initializing the OpenGL context and the
rendering window across a variety of devices. The OpenGL camera and
every element that has to be rendered are associated to a peer. GLManager

3https://www.khronos.org/vulkan/
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Figure 3.9: General structure of the display module.

queries the camera peer for the projection/view matrices and then iterates
over all the other peers calling their rendering function.

When instantiating the GLManager component it is possible to specify
the frame rate, setting the desired period in the activity containing it, the
window resolution and the visualization type covering 2D, 3D stereo and
Oculus Rift DK2. CoCoMR supports the creation of multiple visualization
windows in Linux by instantiating at run-time one GLManager component
for each desired display. Furthermore GLManager can render on texture and
produce the result through a port allowing the streaming of the visualization
scene or using CoCoMR as the input for CV algorithms that require the
synthetic rendering of the estimated entity (e.g. hand’s pose).

The decision of creating a custom graphics module, instead of using
the several existing ones, was due to strict requirements of AR applica-
tion in HRI, such as the compatibility with Linux and the possibility to
communicate fast and e�ciently with custom and commercial sensors.
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3.4.3.1 Camera

The GLCameraManager peer, one per GLManager, is in charge of managing
the OpenGL camera, specifying the initial position of the camera through
CoCo attributes and the type of camera through additional peers. Camera
controllers are also expressed as peers: first person shooter style camera
(FPSCamera peer) and arcball camera (ArcBallCamera peer). Camera
can be moved either using mouse and keyboard or by sending the desired
position to the GLCameraManager dedicated port.

3.4.3.2 Camera Images

Two peers are available to render images provided by cameras. GLImage:
renders a 2D image in the background of the virtual world. The image is
scaled to fit the resolution of the window. GLRGBDImage renders the 3D
scene obtained from the MeshReconstructor component. In case of very
noisy meshes it supports the possibility to average the position of the mesh
points among multiple sequential frames. Furthermore with the support
of a geometric shader it is possible to clean the scene removing the big
triangles that connect objects far from each others, which are introduced
by the triangulation algorithm in MeshReconstructor.

3.4.3.3 3D Objects

The GLEntity peer is used to render any mesh in the 3D world. It supports
all the standard formats and provides a set of basic shaders to support
textures and lights. GLEntity exposes several attributes to set the object’s
initial pose and scale, the eventual color if not present in the mesh file
and the possibility to run a subdivision algorithm on the object’s surface.
GLEntity can be further specialized associating custom peers to it. A peer,
to be supported, has to expose an operation named preRender that takes
as input a pointer to the GLEntity object. The operation is called by the
component before the OpenGL draw function and can be used to modify
the standard behavior of a virtual object. For example it could be possible
to alter its color according to external information, to change the mesh
shape or to modify the pose.

The display module also supports the rendering of Universal Robot
Description Format (URDF) objects from ROS through the GLUrdf peer.
This feature is very useful when performing robot teleoperation because it
allows to easily check that the camera mounted on the robot and the robot
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itself are correctly registered. Details of registration are provided in the
following section. Furthermore it allows to have a clear vision of the robot
pose when the camera only focuses on the end-e�ectors. It can also be used
to simulate a robot in a pure virtual environment.

3.4.4 Components Classification

Components can be classified according to di�erent parameters. The first
one is the activation type that can be either periodic or triggered. In the first
case the component is executed according to a timer, while in the second case
upon reception of data. The second parameter for components’ classification
is based on their category. The category can be producer, worker or sink,
as we have seen in Section 3.2.1. Activation type and category are strictly
related, as a producer is always periodic, and a worker is triggered. Producer
components don’t usually have input, with the notable exception of the
HapticRender task. In this case the component takes as input the k-d tree
generated from KDTreeBuilder task, and a position, to compute the proxy.
However, both the k-d tree and the pose don’t trigger the execution, as the
proxy needs to be computed at a constant rate to avoid jitter and delays.
Every time the rendering task is activated it checks if a new k-d tree is
available and queries the transformation manager for the latest desired
pose, and then computes the position of the proxy, and outputs it. The
last classification parameter is the type of the exchanged data. These types
can be big, as images, meshes and k-d tree, or small as poses and camera
parameters.

Table 3.1: Components classification.

Group Component Activation Category Output Data

Vision CameraReader Periodic (30/60 Hz) Producer Big (RGB image)
RgbdCameraReader Periodic (30 Hz) Producer Big (RGB + depth image)
LeapMotionReader Periodic (100 Hz) Producer Small (Hand Pose)
StreamingReceiver Periodic (30/60 Hz) Producer Big (RGB + depth image)
MarkerTracker Triggered Worker Small (Pose)
MeshReconstructor Triggered Worker Big (Mesh)
StreamingServer Triggered Sink -

Haptic KDTreeBuilder Triggered Worker Big (k-d tree)
HapticRenderer Periodic (1 kHz) Producer Small (Proxy Pose)
HapticDeviceDriver Triggered Sink -

Display GLManager Periodic (60/120 Hz) Sink -
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3.5 conclusion and future work

The di�usion of multicore platforms is requiring new approaches for orga-
nizing computation, in particular for demanding tasks such as visuo-haptic
mixed reality applications. The presented CoCo framework provides a solu-
tion to these challenges. The organization based on the two independent
graphs (connections and execution) allows to tackle these challenges by
providing flexibility and control, while hiding several low-level aspects.

There are several aspects that can be investigated starting from the
present work. One aspect is related to the analysis and optimization of
the scheduling resulting from the data flow and the user-defined schedule.
This could give space for the identification and reuse of common patterns
and the adaptation to a new machine with a di�erent number of cores.
In addition, studies could be made to automate the partition problem, in
such a way that the framework could decide autonomously the number of
running threads, and how to group the components. This will provide even
more abstraction to the user, while maximizing performance and minimizing
human error.

The second aspect is instead related to the support of GPUs in the
data flows. The most promising solution is based on CUDA4 mainly due
to the number of libraries in the vision and simulation world that provide
optimization for such library. The port mechanism could be easily extended
for supporting CUDA pointers, but it is necessary to introduce an automatic
mechanism for transferring the content from/to the GPU when a connection
is created between a GPU-bound port and a CPU-bound port. This
proposed solution is clearly limited to single-process architecture and it is
also subject, in terms of scheduling, to the policies of the CUDA driver.

CoCo could also be extended to support multiprocess, providing an
e�cient mechanism for data exchange between components in di�erent
processes. ZeroMQ is an optimal candidate, while reduced or no-serialization
could be employed for e�cient data exchange.
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4
T R A N S FO R M AT I O N G R A P H S A N D C A L I B R AT I O N

Transformations between reference frames are a fundamental element of any
MR application in particular when multiple image sources are used together
with other tracking and robotics devices. Transformations management
performs the estimation of unknown transformations (calibration), the
e�cient propagation of dynamic transformations in a complex setup, the
management of uncertainty when these transformations are generated by
noisy sensors, and the integration of multiple sensors concurring in the same
measure (fusion). Calibration is particularly important in MR for HRI, as
the robotic system and the camera(s) setup must be aligned and connected
to provide a correct feedback [40, 59].

This chapter presents the work done to create an easy to use and e�cient
tool for managing transformation, calibration and fusion in transformation
graphs. This is constituted by a general model to express transformations
and their uncertainty, and a software framework for designing, debugging
and supporting at run-time the execution of MR applications.

The choice of using a graph to represent frame is a natural choice and
common in the robotic field in particular when combining virtual entities
with robots joints it is easy to reach several tens of frames. Graphs are by
their own nature modular, allowing to easily combine together sub-graphs
coming from di�erent sources (graphics entities, CV and robot kinematics).
This modularity allows also to reuse sub-graphs in di�erent applications,
which can be plugged together in di�erent configuration. Furthermore,
graphs are easy to visualize, helping to debug and monitor applications.

Graph operations such as transformation queries and calibrations can
be expressed as algebraic problems in the Lie Algebra with observations as
inputs and known transformations as constraints. Another possible approach
would be to treat transformations query and calibrations as a global. These
algebraic problems can be solved as least square optimization problems using
non-linear sparse Levenberg Marquardt (LM) optimization over manifold
[60]. The LM formulation should take into account uncertainties associated
to observations and known transformations. In this work we choose to focus
on specific calibration patterns solved using graph traversal and specific
settings, but they could be generalized to a general optimization problem.
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Examples of specific calibration tasks can be found in literature for AR [40,
59].

4.1 related work

As we have seen in Section 2.1.1, the two most common models used for
creating VEs are SG and DF. In both cases the transformations of reference
systems are embedded in the application structure and sometimes mixed
with other entities. This is specifically relevant for DF structures in which
the final organization is not self explanatory. Instead, a clear schema of the
transformations and how they are related is useful not only for debugging
and analysis purposes, but also for dealing with unknown transformations
that can be solved via a calibration procedure.

The OSGAR system [28] presents an adaptation of the Open Scene Graph
library for supporting uncertainty in AR applications. The system aims at
managing the transformations present in the AR application, considering
transformations as generic 4x4 matrices, with a noise model that is based
on a purely additive 16x16 covariance matrix. In this way, the semantic
of the noise model, behind the a�ne transformation, can be discarded.
Transformations comprising uncertainty are propagated over the graph, and
specialized nodes support fusion of multiple sources.

In the robotics domain the tf2 package [51] of ROS is an excellent
example of transformation graph framework. The tf2 package provides a
service for structuring transformations in a graph, allowing the developers
to perform queries between any pair of nodes of the graph. The supported
transformations correspond to rigid body motions (rotation and translation)
without uncertainty. When the tf2 is paired with the ROS visualization
tool RViz1 it allows to visualize the reference systems together with other
information such as robotic models, visual markers and point cloud data.

4.2 spatial relational graph

Spatial transformations and reference systems in VE are based on the
concepts of rigid body transformations in physics and robotics. Each rigid
body, or in general virtual entity, in the VE is associated to a reference
frame, and two bodies are related by a six-dimensional displacement, three

1http://wiki.ros.org/rviz
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values for rotation and three for translation. In VE the spatial displacement
is not su�cient and in some cases entities are related by a scaling factor or
a more general transformation such as a projection or distortion.

The Spatial Relationship Graph (SRG) [84] is a model that allows to
describe the relationships between spatial entities in AR and MR applica-
tions. The original authors of SRG have extended the concept identifying
patterns in the Spatial Relationships for a variety of AR and MR scenarios
[96] and later integrated them in a general management framework [68].

In SRG the reference frames associated to the entities in the VE can be
organized in a Direct Acyclic Graph (DAG) in which the nodes represent
spatial frames (F). The directed edges of the graph represent the relative
poses, or more general, the transformations between nodes (T). A sequence
of contiguous nodes in the SRG is called a kinematic chain.

The nodes are built from the key entities of the VE, extracting them
from the underlying VE structure, being it SG or DF. The directed edges
correspond to the transformations that are expressed by the VE structures,
and they can be considered as semantic constraints between node pairs.
An alternative representation to this frames-transformation graph is the
one of multi-graphs in which two type of nodes are present: reference
frames and transformations. In a multi-graph the edges connect frames and
transformations (F-T) or couples of transformations (T-T). In this work we
chose to use the single graph notation to keep the graph more compact.

In the adopted SRG model the transformations expressed by the edges
are associated to a series of properties that are used to support design,
documentation and debugging as discussed later.

• Transformation type: the nature of the transformation, a relative pose
between rigid bodies or a single robotic-joint.

• Constraint: a constraint over the transformation such as limiting the
transformation to an axis.

• Uncertainty: the nature of the probabilistic model of the transforma-
tion.

• Temporal Semantics: whether the transformation may change and
how over time.

The transformation type is internally expressed as a general 3D pose,
but it can be specified as a single prismatic or revolute joint along an
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axis, since it is a common pattern found in robotics. Uncertainty expresses
the confidence level of the transformation spanning from totally known
transformations to lack of knowledge as discussed later.

Temporal semantics is important because it is the cornerstone of opti-
mization, calibration and sensor fusion. As will be discussed in the specific
sessions, an edge can be: Fixed, Dynamic, Calibration, Fusion or Temporary.

4.3 geometrical representation

In this section we are going to discuss how transformations have been
represented, together with the techniques to compute uncertainty and
composition of multiple transformations.

4.3.1 Lie Group

The SE(3) Lie group [18] has been used to express transformation. SE(3)
denotes the group constituted by the set of all the 4x4 matrices with the
following structure:

T =

A
R t

01x3 1

B

(4.1)

with R œ R3◊3 orthogonal matrix with determinant of ±1 (i.e. RR
T =

R
T

R = I3) representing the rotation, and t = [txtytz]T œ R3 for the
translation.

If we consider this set of matrices with the binary operation defined by
matrix multiplication, it is easy to see that SE(3) satisfies the four axioms
that must be satisfied by the elements of an algebraic group:

1. Closure. The set is closed under the binary operation; for any
A, B œ SE(3), we have AB œ SE(3).

2. Associativity. For A, B, C œ SE(3), (AB)C = A(BC).

3. Identity element. There must exists an identity element I œ SE(3),
such as IA = AI = A for each A œ SE(3).

4. Inverse. ’A œ SE(3) there must exist an inverse element A
≠1 such

that AA
≠1 = A

≠1
A = I.

In addition SE(3) is a Lie group as it fulfills:
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1. SE(3) is a group in RN .

2. SE(3) is a manifold in RN .

3. Both, the group product operation and its inverse are smooth func-
tions.

A manifold in RN is a topological space where the neighborhood of
every point p is homeomorphic to RN .

4.3.2 Lie Algebra

A Lie algebra is an algebra g together with a binary operation [·, ·] : g◊ g æ
g[·, ·] : g◊ g æ g called the Lie bracket that satisfies the following axioms:

1. Jacobi identity. [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all x, y, z

in g.

2. Anticommutativity. [x, y] = ≠[y, x] for all elements x, y in g.

The Lie algebra g associated to a Lie group G happens to be the tangent
space at the identity element I.

Associated to a Lie group G and its Lie algebra g there are two functions
that allow to convert from one to the other:

• Exponential map. It allows to map element from the algebra to
the manifold and determines the local structure of the manifold:
exp : g æ G.

• Logarithm map. It maps elements from the manifold to the algebra:
ln : G æ g.

In the case of the Lie algebra se(3) let

v =

A
t

Ê

B

(4.2)

denote the 6-vector of coordinates in the Lie algebra se(3), comprising two
separate 3-vectors: Ê, the vector that determine the rotation, and t which
determines the translation.

We introduce the skew matrix operator [·]◊, which is defined as:
S

WU

Q

ca
x

y

z

R

db

T

XV

◊

=

Q

ca
0 ≠z y

z 0 ≠x

≠y x 0

R

db (4.3)
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and its inverse operation [·]Ò:

S

WU

Q

ca
0 ≠z y

z 0 ≠x

≠y x 0

R

db

T

XV

Ò

=

Q

ca
x

y

z

R

db (4.4)

Furthermore, we define the 4 ◊ 4 matrix:

A(v) =

A
[Ê]◊ t

0 0

B

(4.5)

Then, the map, exp : se(3) æ SE(3), is well-defined, surjective, and
has the closed form:

e
v © e

A(v) =

A
e
[Ê]◊ V t

0 1

B

(4.6)

V = I3 +
1 ≠ cos ◊

◊2 [Ê]◊ +
◊ ≠ sin ◊

◊3 [Ê]2◊ (4.7)

with ◊ = |Ê| and

e
[Ê]◊ = I3 +

sin ◊

◊
[Ê]◊ +

1 ≠ cos ◊

◊2 [Ê]2◊. (4.8)

The logarithm map:

ln : SE(3) æ se(3)

A(v) æ v =

A
t
Õ

Ê

B (4.9)

is well-defined and can be computed as [137]:

t
Õ = V

≠1
t (with V in Eq. 4.7) (4.10)

Ê = [ln(R)]Ò

ln(R) =
◊

2 sin ◊
(R ≠ R

T )
(4.11)

The exponential form allows for a compact representation of the poses
based on the 6 values of the associated se(3) algebra. This representation is
interesting because it easily supports interpolation among di�erent relative
poses, generalizing the properties of quaternion spherical interpolation to a
generic Lie group [121].
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4.3.3 Uncertainty

There are three main sources of uncertainty in typical mixed-reality and
robotic applications: robot’s joint precision, camera based tracking, and
relative placement of sensors. Being able to measure it provides a way to
evaluate the correctness of algorithms and the possibility to compare them.

The choice of representing transformation using the SE(3) Lie group was
driven also by the possibility of extending the exponential representation to
a Gaussian distribution that is centered in the given average transformation
and has a covariance that is expressed in the 6-dimensional algebrical space
of the SE(3) Lie group.

This probabilistic representation allows to perform the operations of the
group such as inversion and composition. In addition, it has a compact
form for the combination of multiple measures as happen in the cases of
sensor fusion or calibration.

In the following we will use the notation q̃ © N (µq, Sq) for defining a
Gaussian variable q with covariance Sq and mean µq, where the mean is
expressed in SE(3) and the covariance in se(3).

The composition of two transformations (product) is:

z̃ © x̃ỹ = N
1
µxµy, Sx + Adjµy

SxAdjTµy

2
(4.12)

here AdjG is the adjoint representation of the Lie group G [118].
The distribution of the inverse transformation of the uncertain transfor-

mation x is the following:

x̃
≠1 = N

1
µ

≠1
x , Adj

µ
≠1
x

SxAdjT
µ

≠1
x

2
(4.13)

In addition it is possible to compute the estimation of the average pose
from a set of measurements not a�ected by noise, which is an iterative
operation that has some connections with the mean shift algorithm. The
algorithm starts from a prior (e.g. first element of the series) and computes
the distance to any element of the series in algebraical space. Be, xi œ SE(3)
the transformation of the set with index i = 1 . . . N , k the iteration index,
µk the resultant mean transformation at iteration k with covariance Sk,
and µ0 = x0, we have:
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vi,k = ln

1
xiµ

≠1
k

2
(4.14)

Sk Ω 1
N

Nÿ

i

vi,kv
T

i,k (4.15)

µk+1 Ω exp

Q

a 1
N

Nÿ

i

vi,k

R

b µk (4.16)

The fusion of two di�erent sources of transformation with uncertainty
can be expressed as follows [8]:

z̃ © x̃ ü ỹ = N(µz, Sz) (4.17)

where
Sz =

1
S≠1

x + S≠1
y

2≠1
(4.18)

and
µz = exp

Ë
SzS≠1

x log(µyµ
≠1
x )

È
µx (4.19)

4.4 calibration

Calibration is the task of computing an unknown transformation via a series
of measurements done for this purpose. Examples are the one of multiple
cameras that look at the same scene, the calibration between a projector
and a camera in a projective AR system, a robot equipped with a camera
located at the end-e�ector of the arm, or instead a camera placed in the
head of the robot. For a robot the reference frames of an arm are connected
with each other via transformations computed thanks to the measurement
of the joint angles.

The calibration task in the SRG has the objective of computing the
unknown fixed transformation edge that connects two reference frames,
which stay in two disjoint sub-graphs. This can be done by artificially
creating a temporary connection between the two sub-graphs with the help
of a fiducial marker, for which we can compute the transformation from
two frames in the two sub-graphs. Once we have the temporary connection
we can compute the exact transformation between the two desired frames
and store it in the graph. SRG supports two calibration approaches that
will be presented in the following two sections.
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Figure 4.1: The figure shows the convention that will be used in the
representation of the edges based on the temporal semantic of the associated
transformation.

Figure 4.1 shows the convention used to represent each edge based on
the temporal semantics of the associated transformation. This convention
will be used in all of the following transformation graphs representation.

4.4.1 Helper-Based Calibration

The first approach relies on introducing a temporary transformation that
allows to connect the two frames objective of the calibration and via repeated
measures computes the missing edge. More formally given two frames RA

and RB we have a calibration problem when there is no path in the graph
between them, so we introduce a new reference frame RC that is connected
via “temporary” transformations to both RA and RB. The accumulated
measures TAB are used to compute an estimate transformation, and then
the RC frame is being removed.

An explicative scenario is the one of a robot equipped with a camera
whose transformation to the rest of the body is unknown due to construction
issues and lack of information about the optical center of the camera. We
have the robot base RR, the camera frame RC and the robot arm end-

62



Figure 4.2: Diagram of the first form of calibration that closes the loop with
a temporary fixed edge corresponding to a marker attached in a position
nearby the end-e�ector. The diagram shows the target calibration edge as
dashed, the end-e�ector transformation that depends on the other links,
and the measured marker position.

e�ector RE whose transformation to the RR is given by the joint measures
connecting a series of intermediated frames RLi . The calibration can be
obtained by applying a fiducial marker (e.g. Aruco [54]) nearby the end
e�ector and then move the end e�ector. This means that we introduce a
RM temporary frame and two temporary transformations: TCM , computed
by the vision algorithm and TME , manually measured and constant (see
Figure 4.2). The result is that we can temporarily compute the path between
the root and the camera TRC , and when the calibration process is completed
the temporary frame is removed from the SRG. Thanks to the probabilistic
framework the partial knowledge of TRC from the mechanical design can be
added as a prior and as a boundary to the calibration.

In this framework the calibration is expressed by using the following
edge types:

• Calibration(E,C): fixed edge, objective of the task.

• Temporary(C,M): dynamic temporary edge used for closing the loop.

The algorithm is described in Algorithm 1.
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Algorithm 1 Helper Calibration
1: procedure calibrate
2: Input: TRC calibration
3: Input: TCM temporary
4: repeat
5: Trigger on new data TCM

6: Accumulate transformations TRC via temporary
7: until convergence
8: Output TRC as fixed and remove TCM

9: end procedure

Figure 4.3: Diagram of hand-eye calibration that is based on measurements
at di�erent time instants. This operation involves two dynamic edges T

R

E

and T
C

M
and computes the two fixed unknowns
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4.4.2 Motion-Based calibration

The hand-eye calibration can be employed when there is no way to artificially
create a loop in the graph for obtaining the calibration data. An example
is when the camera is placed at the end-e�ector of a robot’s arm, and it
cannot frame any robot’s part. The approach has been originally introduced
by Tsai [129] and then extended to Dual Quaternions by Daniilidis [34], and
it relies on creating a series of robot’s arm poses during which the camera,
mounted on the robot, looks at an external fixed fiducial marker. For each
pair of poses of the robot’s arm it is possible to formulate an equation with
the form AX = XB where X is the unknown transformation and A, B are
two transformations obtained from two di�erent instants of time.

The formulation in terms of SRG is straightforward: the unknown is
the fixed pose of the camera related to the end-e�ector TEC with robot
kinematics providing TRE . The algorithm employs an external fixed fiducial
marker (or chessboard) called M for which we obtain the transformation
TCM . The use of a fixed marker allows to define a loop of reference frames
E, C, M , R with two unknowns TEC and TRM , see Figure 4.3. Given two
instants of time t1 and t2 with di�erent robot’s arm poses T

ti
RE

and marker
poses T

ti
CM

, we express the loop in the two instants of times and equate
them brining us to the equation in the form AX = XB with X = TEC .

T
1
MCXT

1
ER = T

2
MCXT

2
ER (4.20)

T
2
CM T

1
MCX = XT

1
ERT

2
RE (4.21)

In comparison to the other calibration method, the hand-eye calibration
requires the introduction of another input for supporting the correct execu-
tion of the algorithm. This is a reference frame that is fixed to the temporary
frame M , called calibration anchor. In the example it corresponds to R.

The resolution of the equation via the algorithm [34] is not taking into
account the noise of the measures, in particular for the robot the noise
due to joint encoders a�ecting TRE and the camera limitations for TCM .
A possible approach for taking into account noise is to employ the Sigma
point transformation of the SE(3) distribution that allows to perform a
non-linear function [8]. This operation should be performed for every pair
of poses of the equation AX = BX.
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Algorithm 2 Hand-eye Calibration
1: procedure calibrate
2: Input: TEC calibration
3: Input: TCM temporary
4: Input: R as calibration anchor
5: repeat
6: Trigger on new data TCM

7: Accumulate transformations TRE , TCM

8: until convergence
9: Output TEC as fixed and remove TCM

10: end procedure

4.5 sensor fusion

Sensor fusion is in general the combination of multiple sensor information
providing the same information. It di�ers to the calibration process because
calibration has the objective to compute a fixed transformation via multiple
measures in time. The fusion operation comes straightforward in SE(3)
thanks to the probabilistic formulation discussed previously: contributions
can be fused using the operations presented previously. We discuss in the
following the mechanism used for the automatic computation of such fusion
in the SRG.

The declaration of a fusion edge TAB has the e�ect of computing all the
paths between the two frames (A and B) and then, based on a user-specified
update policy, the edge is updated using the information from the paths.
The policy specifies when to trigger the function operation, meaning that
it can be triggered on any update of the paths, a specific path, on a time
basis or on request of the fused edge. As previously discussed the query
mechanism uses the shortest path between two frames and, when the fusion
edge is active, any further query will go through it, instead of passing by
any of the other paths.

A simple but interesting example of fusion is provided by a surface
covered with multiple fiducial markers Mi each placed in a fixed position
with respect to the surface frame S (TSMi). We are interested in computing
the fused pose of the camera C with respect to the surface that is TCS .
After declaring TCS as sensor fusion, all the paths Pi = (TCMi , TMiS) are
computed. When fusion is triggered each path’s transformation is used for
updating TCS . Furthermore it is possible to exclude one of the paths if its
covariance is to high in order to avoid soiling the final result.
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Figure 4.4: Example of a fusion scenario where a user wants to keep constant
track of the position of a moving camera with respect to a robot. In the scene
several markers are present whose pose with respect to the robot is known.
At runtime the camera detect the markers and calculate T

i

RC
= TRMi ú TMiC

and compute the average transformation among all the i.

Figure 4.4 shows a scenario where a user wants to measure constantly
the position of a moving camera with respect to the robot. To do so we
place several markers close to the robot whose pose is known with respect to
the robot reference system. The transformation robot-markers is assumed
to be fixed, but this restriction can be relaxed if a system to constantly
track marker pose is provided. When a marker is detected by the camera,
the algorithm can compute its transformation with respect to the robot.
In order to improve the quality of the result the system merges the results
obtained from each of the visible markers by averaging them.

4.6 software implementation

SRG was implemented as a C++ library called SRGViz. It supports two
modalities: dynamic or static. In the first case the transformation graph
is created on the fly, adding new frames or transformations every time a
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new update arrives. This approach is similar to the one used by ROS TF2,
and has the advantage of speeding up the prototyping. On the other hand
it doesn’t allow for optimization, calibration and fusion. For this reason a
static modality was introduced where the transformation graph needs to
be specified at loading time via a JSON file. The file contains a list of all
the nodes and all the transformations. Each transformation is associated
with a set of properties, which are the initial value with the uncertainty,
the temporal semantic (fixed, dynamic, temporary, calibration, or fusion),
and the eventual constraint (single axis degree of freedom).

4.6.1 Query Resolution

The fact that the graph is static and the temporal semantic associated
with each edge allow to perform important optimizations. For each query
between two frames a breadth first search is performed to find a path
between the two frames. The list of frames and transformations that
constitutes the path is stored in a map with the queried frames as key. In
addition, all consecutive fixed transformations are merged in a new single
fixed transformation equal to their multiplication. This allows to reduce
the number of matrix multiplications in successive queries of the same path.
Furthermore, every time the same query is performed, instead of performing
again the search, the framework returns the path from the query map. This
is an important optimization, given that in an AR application for HRI the
queries are always for the same 3D objects or robot’s end-e�ector.

The library supports also all the operations described previously, as
composition with uncertainty, and averaging of multiple certain poses.

4.6.2 Calibration and Fusion

To perform a helper-based calibration the user needs to specify the calibra-
tion edge (i.e. the edge for which we want to know the transformation),
which must be fixed, and the temporary edge that is used to close the loop
in the graph. For motion-based calibration, the user has also to specify the
frame used as anchor. The library set up the graph so that, every time the
temporary edge is updated, the algorithm 1 or 2 is triggered.

For fusion the approach is similar as the user specifies in the JSON
file the fusion edge. The framework then computes all the disjoint paths
that connect the source to the target frame of the fusion edge. The found
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resulting paths need to contain one temporary edge each, whose update is
used to trigger the update of the fusion edge transformation.

4.6.3 Interoperability

SRGViz library supports single axis as it is specifically useful for robotics
or human tracking in which the update value is a single joint value, and the
6DOF transformation is the resulting application of a Denavit-Hartenberg
transformation or equivalent.

In addition SRGViz has a built-in support for URDF. SRGViz can,
indeed, load any URDF file and combine it with its own JSON configuration
file.

SRGViz comes with a stand-alone node for ROS that allows to manage
any transformation e�ciently. The SRGViz node is compatible with the
TF2 system for updates and has its own API for queries, which uses TF2
types to be as compatible as possible.

SRGViz supports, of course, CoCo with a dedicated component. The
component receives transformation updates via a port, and provides query
resolution via an operation. This allows to do non-blocking updates for
other components, and to have the result of the queries immediately.

4.6.4 Diagnostics

A fundamental aspect of the SRGViz management of transformations is
diagnostics. First it is possible to serialize a graph using JSON, and
to generate a graphical representation of the graph using Graphviz [42].
Secondly it is possible to access and visualize the graph using a Web page
with a REST interface. The web page allows to view the overall graph
structure, the real-time value of transformations, thanks to a WebSocket
based continuous streaming, and to update any transformation.

This is specifically useful for interfacing SRGViz with other frameworks
such as WebGL based frameworks or Unity.
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Figure 4.5: USG system setup annotated with the reference systems. On
the left side the operator with the HI, on the right side the stereoscopic
image displayed on the Oculus HMD.

4.7 real case scenarios

4.7.1 Calibration

In the following we are going to present a real case scenarios where SRGViz
has been proven successful, helping in handling complex setups and calibra-
tions.

In this scenario the user interacts, using a haptic device, with a model
of a human chest and belly in an immersive VE, wearing an Oculus Rift
DK2. The purpose of the work was to create a VE to evaluate the e�cacy
of a haptic device to perform a remote ultrasonography examination. The
complete setup together with all the reference frames involved is show in
Figure 4.5.

An important aspect of the proposed setup is the co-location of the
visual display in the HMD and the physical interaction with the Haptic
Interface (HI). Co-location means that when the user moves his/her hand
and touches the probe in the real world, it is perceived at the same location
as displayed in the HMD. Hand’s movements are rendered as an animated
virtual hand, whose pose and fingers are obtained from a Leap Motion
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sensor.
The co-location is obtained by means of the absolute positioning provided

by the HMD, and a calibration procedure that is discussed in the following.
The process involves the following 7 reference systems:

• HI base and USG end-e�ector.

• Virtual geometry: comprising mannequin mesh and implicit surfaces.

• HMD tracking camera origin and head pose.

• Leap-Motion base (attached to the HMD) and hand pose.

The above reference systems are related by a set of transformations,
some of which are dynamic and measured, others fixed and known, and
others that need to be computed by the calibration process. The origin
of the virtual world has been arbitrarily placed in the HI base, and the
virtual geometry has been positioned in a way to be reachable by the HI
end-e�ector. For the visual part the hand pose can be easily referred to the
HMD tracking origin by means of the fixed transformation from the Leap
Motion to the HMD local reference system.

The key action for achieving co-location is the calibration of the HMD
reference system with respect to the HI base. Currently, the calibration is
obtained as follows:

1. The USG probe is positioned in (0, 0, z0) and null rotation in the HI
base frame.

2. The user places his hand horizontally on top of the probe rotated
so that it is aligned with the probe. In this way the transformation
between the hand frame and the probe frame is fixed and known.

3. When the above steps are done a key is pressed on the keyboard and
the system acquires the poses of the hand and of the probe in their
respective frames and computes the calibration matrix that allows to
related the HI base frame with the HMD camera origin.

The transformation graph used for the calibration procedure and the execu-
tion is shown in Figure 4.6.

An alternative approach is based on the recognition of markers placed
on the HMD tracking camera and the HI base.

In this example the required calibration procedure is neither standard
nor immediate, nevertheless SRGViz is able to handle it easily and e�ciently,
proving its e�ectiveness, strength and flexibility.
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Figure 4.6: Transformation graph of the USG application.

4.7.2 Fusion

In this section we are going to present an application where SRGViz has
been used to automatically provide fusion capabilities of transformations
coming from multiple sources.

The application addresses the case of information sharing by a Baxter
robot with an operator that is sharing the same workspace. The operator
wears a HUD integrated in an industrial helmet, together with a stereo
camera (see Figure 4.7). The robot sends to the user information regarding
its intentions that are visualized in the HUD. Intentions can be the position
where the robot is moving its arm, or the object that it is going to grasp.

In order to have a correct feedback the user and the robot need to be
calibrated between each other. The problem is that the operator can move
constantly, thus the calibration needs to be computed for each frame. This
is done by placing a marker that is visible both from the robot and the
operator’s cameras. The markers positions are constantly fused providing a
robust estimation of the pose of the robot with respect to the operator.

Figure 4.8 shows the reference frames involved in the applications.

4.8 conclusion

In this section we presented the work done in the creation of a tool that,
exploiting the state of the art of mathematical tools for 3D transformation,
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Figure 4.7: Experimental environment with Baxter and operator wearing
the HUD.

Figure 4.8: Experimental environment with Baxter and operator wearing
the HUD.

allows to e�ciently and easily manage transformation in AR applications,
in particular when robotic devices are involved.

This work provides an improvement with respect to the current trans-
formation graphs, like ROS TF2, as it combines uncertainty management
and transformation averaging, with automatic calibration and fusion, all in
a performing and flexible C++ framework.

The framework has been tested and used in many applications, some of
which within the European Projects ReMeDi (grant number 610902) and
Ramcip (grant number 643433), and the Italian Regional project TAUM.
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5
T E L E M E D I C I N E

Increased aging in the developed countries population will require make
more medical examinations and treatment [116]. This will worsen the
shortage of physicians that is already occurring.

Tele-medicine is actually the best solution for health care systems to
keep a high standard of service quality and to serve those areas that lack
hospitals and specialists. Tele-medicine services that are already available
or under development in many of the WHO (World Health Organization)
member countries are typically focused on sharing examination results
among specialists such as in the case of tele-radiology, tele-pathology, tele-
dermatology and tele-psychiatry [140]. However, tele-medicine services
which rely on force feedback are still far from being ready for end-users.
The readiness of tele-medicine services shifts from end-users to research
level according to the importance of force feedback for the examination.
In the last twenty years telemedicine was boosted by developments in the
field of robotics, communication and visualization technologies, and it is
currently an important research topic that is delivering solutions to our
societies. There are several examples of how robotics aids telemedicine,
allowing for solutions that have the potential to fill the gap between the
required amount of examinations and physicians’ capacity. Examples of
such systems include endoscopy [132], sonography [4] and palpation [43],
[29].

AR and VR are actively contributing to tele-medicine either as a tool
for creating simulations for training and testing (VR), and as a support to
overcome the limitations of current robotic devices (AR).

Tele-medicine is composed of two modules, the doctor’s console, called
Diagnostician User Interface (DiagUI), and the remote robotic device that
interacts with the patient. The doctor uses the DiagUI to control the remote
robot, which is equipped with the appropriate tools, and interact with the
patient. In the following two sections we are going to present two DiagUI
setups, implemented with the software tools presented in Chapters 3 and 4.
The purpose of this work is to show how AR and VR can be used to create,
test and validate a DiagUI for tele-medicine.
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5.1 palpation

Palpation is an examination in which the doctor’s fingers and palms interact
with the patient’s abdomen. The doctor explores the organs and the other
tissues beneath the skin checking whether any abnormality is present, such
as organs bigger than usual, nodules or other masses. Doctors adopt various
techniques for abdominal palpation, varying the pushing location and the
force.

5.1.1 Related Work

Robotic systems were developed in the recent years to simulate palpation
[139], [127].

Inoue et al. [61] propose a simple device for abdomen palpation that
is composed of two sheets held by two wooden boards. The motion of the
board as well as the tension in the two sheets allow for varying the sti�ness
perceived by the user. Although the system proved to reliably simulate the
abdomen wall, it does not allow for the simulation of abnormalities under
the skin surface.

The HIRO system [43] features palpation of deformable tissue (breast
palpation) based on a finite element model that allows to provide haptic
feedback by means of a robot. Five thimbles are attached to the fingers of
the robotic hand to provide force feedback to the user’s fingers.

Coles et al. propose [29] a palpation and needle insertion system that
integrates haptic feedback and virtual reality. The haptic feedback is
provided by two Novint Falcon devices that actuate a tactile palpation end-
e�ector. A camera placed on top of the user’s hands tracks their motion.
Finally, an AR representation of the scene is co-located with the haptic
feedback device, and is displayed on a screen. The co-located haptic and
visual feedback increase the fidelity of the system making it suitable for
training. Currently, limitations of the system for abdomen palpation are
the lack of representation of the real patient and the representation of
abnormalities that are beneath the skin.

The approach proposed by Diez et al. [36] adopts also the encountered-
type paradigm. They simulate the skin by means of a flat rubber sheet. On
one side the user can touch the screen, whereas on the other side a robot
provides haptic feedback according to a sti�ness map that is computed
depending on an assumed tissue and nodule sti�ness. The authors propose
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an algorithm that switches from position to impedance control depending
on the interaction of the user with the screen. The user’s hand is tracked
by means of a marker-based optical tracking system. In another work [142]
the combination of visual and haptic cues is further pushed, as multiple
point haptic feedback is featured. The image of the patient is used for the
visual feedback and for creating a domain in the space in which organs and
abnormalities are immersed. The haptic feedback is then based on a blobby
objects rendering approach. The visual display is based on a 2D image of
the patient that is deformed according to the doctor’s hand depth in the
direction perpendicular to the image.

5.1.2 System Setup

This section presents the architecture and the control strategy of a novel
system for virtual remote examination. This approach combines visual and
haptics cues and it allows the doctors to move freely their hands in space
when they are out of the patient’s body and to receive a force feedback only
when they interact with the patient. An AR environment facilitates natural
interaction with the system.

The AR environment is co-located with the real hand and HI, and
the doctor’s hand is tracked regardless of the contact with the patient.
The doctor is always displayed, in the AR environment, with an avatar
of his/her hand that is suitably located with respect to the patient. This
system combines therefore the advantages of [29] (haptic rendering co-
located with the AR environment) and of [36] (encountered-type interaction).
Moreover, as for [142], in this approach the rendered force is the sum of two
contributions: the force due to the indentation in the abdomen skin and the
force due to internal structures. We progress from [142] approach as the first
contribution is based not only on the doctor’s current hand position, but
also on an online scan of the patient’s belly. Moreover, continuous tracking
of the patient allows for a continuously updated 3D representation of the
scene in the AR environment, in which the video stream of the patient
and an avatar of the doctor’s hand are displayed. This allows us to have a
consistent haptic feedback even when the patient moves, thus handling real
patients. In the future, this setting will allow us to extend the system to real
remote examination, having a third (robotic) agent performing palpation
guided by a doctor (see [89]). Therefore, this paradigm will be useful for
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Figure 5.1: The virtual palpation system. The components are shown along
with the reference frames in which the gathered data are represented.

training, for online (when combined with the robot) and o�ine remote
examination.

5.1.2.1 The palpation system

The virtual palpation system that we developed is shown in Figure 5.1. The
system includes two locations: the patient’s site (PS) and the doctor’s site
(DS). In the PS the patient lies on a table while he/she is tracked by an
RGB-D sensor (Microsoft Kinect® version 1). A computer manages the
video and depth stream to the DS. In the DS, the doctor wears 3D glasses
and sits in front of a frame that holds a 3D screen positioned horizontally.
Under the screen the doctor’s hand interacts with a high performance HI
[15] while his/her hand are tracked by means of a Leap Motion mounted
between the bottom of the screen and the HI. This solution has a su�cient
tracking workspace and does not interfere with the contact of the hand
with the HI. In the DS a computer (PC-1) manages the video and depth
stream coming from the PS. A second computer (PC-2) embeds the Matlab®

XPC Target application that runs the control of the HI. Currently, the
end-e�ector of the HI is a ball (6 cm diameter) that is used to handle
the contact with either the fingers or the hand’s palm. All the computers
involved are Intel PC (Core™ i7 4770R 3.2 GHz, 8 GB RAM, embedded
GPU) running Ubuntu Linux. The HI is a 3 DoFs robotic interface (see
Figure 5.1). The workspace is a sphere sector that spans between 0.4 and
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0.8 m from the center of rotation and include a barrel’s rotation of [≠20, 20]
deg and [≠40, 40] deg about the first two DoFs axes. The worst end-e�ector
position resolution is 0.13 µm whereas the maximum continuous and peak
force are 4N and 10N. Other HI could be used, given that they match the
features of this one.

Thanks to the aforementioned components, the doctor interacts with a
virtual model of the patient receiving a visual and a haptic feedback. The
patient virtual model is based on a point cloud representation of the chest
and abdomen surface obtained from the RGB-D sensor. When the doctor’s
hand indents the skin the virtual force that is needed for the indentation is
calculated. Moreover, this setup allows us to add components within the
patient’s virtual body such as organs and abnormalities, and to calculate
the virtual force generated by interacting with these elements. The overall
virtual force is then used to provide the doctor with a haptic feedback.
When the doctor’s hand is out of the body the HI end-e�ector is not in
contact but still follows the doctor’s hand. At the same time the doctor is
provided with a 3D AR representation of the PS in which an avatar of the
doctor’s hand is superimposed to the PS scene.

5.1.2.2 Software Setup

The system is made of several CoCo components acting either in the DS or
the PS. In the PS, the video and depth streams from the RGB-D sensor
are compressed and sent via TCP to the DS. In DS PC-1 receives the
information via TCP from the PS and runs the following modules:

• Visualization, that provides the AR feedback based on the PS video
stream and the doctor’s hand position.

• Haptic rendering, that exploits the point cloud from the PS and
the doctor’s hand position.

• Communication with the patient site computer, the Leap Motion,
and the XPC target computer for the HI control.

PC-2 receives data from PC-1 and runs the encountered haptic control that
regulates both the haptic feedback and the doctor’s hand position. Figure
5.2 shows the CoCo components running in PC-1 in DS, together with the
connections and the di�erent rates at which each module runs depending
on the di�erent computational burden of each task.
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Figure 5.2: The system architecture. Each block corresponds to a CoCo
component or peer. Ports with the same name are connected to each other
(e.g. RGBDBufOUT is connected to RGBDBufIN). For each component is
also specified the execution policy. The TransformationInterface component
embed the SRGViz library presented in Chapter 4.
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Figure 5.3: All the reference frames involved in the applications. Dotted
lines represent calibration transformations.

haptic rendering The haptic rendering is performed using the
CoCo component described in Section 3.4.2. The module takes in input
the mesh of the mannequin from the PS and the hand position from the
Leap Motion. The mesh is obtained from the reconstruction of the depth
image obtained from the Kinect in the PS, streamed to the DS and updated
at every frame. The haptic rendering module outputs the position of the
proxy on the surface of the mannequin, which, together with the hand pose,
is sent, via UDP, to the low level haptic control.

reference systems and calibration In the following ApBc

means that the position p has been obtained by the device B, is associated
to the object c and is written in the frame A. If a variable has been inferred
it has no capitol letters in its name. Each frame axis direction is associated
to the unit vectors i, j, k for the x, y and z axes respectively. The variables
available for the module are:

• LpLh and L
TLh i.e. the hand position and pose homogeneous matrix

obtained from the Leap motion.

• Lpp i.e. the proxy position from the collision detection.

• HpHE i.e. the end-e�ector position provided by the HI.

Figure 5.3 reports the frames of each hardware/software component in
PS and DS. The relationships among reference frames that are needed for
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Figure 5.4: The encountered haptic module along with its main components.

a consistent co-location of haptic and the visual feedback (dotted edges)
are obtained through a calibration procedure. The calibration procedure
consists of putting the hand on the end-e�ector where we desire to have the
contact with the skin. LpLh and HpHE are recorded in this configuration
to obtain LpL0

h and HpH0
E that are used as o�sets for the following position

transformations

• Leap to Haptic frame (L2H)

Hp = R
H

L (Lp ≠L pL0
h) +

H pH0
E (5.1)

• Haptic to Leap frame (H2L)

Lp = R
L

H(Hp ≠H pHE) +
L pL0

h (5.2)

where

R
H

L = R
L

H =

S

WU
1 0 0
0 ≠1 0
0 0 ≠1

T

XV (5.3)

The reference frames and the calibration are handled using the SRGViz
library, presented in Chapter 4, and embedded into a CoCo component.

encountered haptic control The low level control manages
the encountered protocol and computes the forces based on the indentation
of the hand with respect to the proxy position (see Figure 5.4). It is
implemented as a Matlab Simulink model that runs in external modality in
the PC-2 XPC target at 2kHz frequency.

Hand pose, proxy position and a boolean variable (ib) that is true when
the doctor’s hand is within the body are available at 100 Hz from CoCo,
via UDP. These variables are firstly converted to 2kHz frequency and then
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Figure 5.5: The state machine that regulates the haptic feedback and the
doctor’s hand position.

transformed in the HI frame. HpHE is available from the HI sensors at
2kHz. Being based on LpHh, ib showed to be stable enough to be used
without filtering. A Kalman filter was applied to LpLh and Lpp to have a
smoother signal. Given the low update rate of these variables, we exploited
the previous estimates of these variables to predict the variable evolution in
the 20 time steps between two updates.

The module returns the doctor hand position LpHh that is used for the
collision detection and the doctor’s hand pose L

THh that is used by the
visualization module.

L
THh =

C
L

RLh
LpHh

0 1

D

(5.4)

Moreover it embeds the low level control of the HI that features position
and force control given a desired position of the end-e�ector and a desired
force F to be displayed at the end-e�ector. The force control is an open
loop control that provides the correct currents to the motor. The position
control is a proportional-derivative controller based on HpHE .

We managed the transition between being out of the body and within
the body by means of a finite state machine that is shown in Figure 5.5,
and each state of the machine is labeled as sf .

In the Out Body condition the HI is in position control. The target hand
position is

Hpt =
H pp + [0 ”o 0]T + DHpHE (5.5)

where ”o = 1 mm is a small vertical o�set that guarantees undesired transi-
tions to the In body. DHpHE =H pHE ≠H pp is calculated during the last
sample before the transition from the In body state and allows us to avoid
discontinuities in the position control of the HI just after the transition.
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The target force F is set to zero during this phase. Finally, in this state
L

THh =L
TLh. In the In body state the HI is in force control. This is

obtained by setting Hpt =H pHE . We define Hp0
p as the proxy position

just after the system enters the In body state. Hence Hp0
p is the hand’s first

contact point on the undeformed skin. The target force F is then calculated
depending on the indentation vector d with respect to the first contact
point. This condition represents well the fact that during palpation the
perceived force depends on how the skin has been stretched and indented
with respect to the initial contact point (the hand does not slide on the
skin)

F = [kx(dx)ky(dy)kz(dz)]
T d (5.6)

where
ki(di) = –(d2

i + di) i = x,y,z (5.7)

and
d =H pHE ≠H p0

p (5.8)

This approach can be easily extended by continuously updating the
proxy as in the algorithm presented in [113] where d =H pHE ≠H pp and
ki calculated according to equation 5.7. In case a collision occurs with other
objects within the body, the force due to the collision can be calculated
according to one of the previous two modalities and it is managed by means
of further states. The overall target force is then calculated as the sum of
the force due to the indentation F and the collision force with each of the
objects. Currently a sphere and a cylinder are available as objects to be
inserted in the body.

Since the transition between the In body state and the Out Body state
may cause discontinuities in the hand representation we sum the di�erence
between the LpHh estimations occurring at the state transition. L

RHh is
extracted from L

TLh. Whereas the transitions among states within the
body are simply dependent on the hand position with respect to the inner
objects, the transitions between the In body state and the Out Body state
may cause discontinuities in the visualization, instability in the control of
the HI and undesirable loops between the two aforementioned states. To
prevent these e�ects, we set a timer to stay at least 0.3 s in each state and
we added two intermediate states called Body to Plane and Plane to Body
(see Figure 5.5). The first avoids to have loops between In body and Out
Body and allows for a smooth leaving of In body. The FromBody transition
occurs when the collision detection module sets the in-body flag ib to zero
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and the distance from the surface ds is dS < dthr. In the Body to Plane
state there’s no position control but a force is applied to the end-e�ector
in order to go farther from the body. When the height of the plane out of
the body is reached, the transition ToPlane occurs. In the Out Body state
there is no force applied to the end-e�ector, and a position control forces
the end-e�ector to move on a plane above the body according to HpLh x

and z components. When the user’s hand pushes the end-e�ector towards
the body, moving it below the plane, the Under Plane transition takes place.
Then, in the Plane to Body state there is neither position nor force control,
and the end-e�ector waits to be pushed towards the body. Finally, we allow
the users to go from the Body to Plane back to the In Body state in case
they start pushing again towards the body before leaving the intermediate
state.

visualization The visualization module (see Section 3.4.3) displays
on the 3D screen the remote scene as a 3D mesh, created from the point
cloud provided by the Kinect sensor, augmenting it with a virtual hand
model controlled by Leap Motion.

The mannequin and therefore its 3D representation don’t deform as the
hand penetrates their surface causing the virtual hand to disappear beneath
the mannequin mesh as soon as the indentation exceeds few centimeters.
To avoid this inconvenience the position of the hand is moved, during the
palpation, according to the position of the proxy, while the orientation is
still the one provided by the Leap Motion. We set a zero-hold policy when
the hand is not tracked.

To improve the alignment between the visual and the haptic feedback
the texture of the virtual hand gradually shifts its color towards a red shade
linearly with the depth of the end e�ector inside of the surface.

5.1.3 Experiment Setup

Two healthy volunteers tested the system for a preliminary assessment of
its usability. They carried out an experiment aimed at checking that forces
are correctly displayed, thus allowing the participant to naturally interact
with the body and to identify structures within the body. These goals
are necessary steps to allow the final user to perform a correct diagnosis.
The protocol is composed of four trials, in the first they had to indent the
patient’s skin in di�erent points, thus verifying whether the system provides
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Figure 5.6: First trial. Comparison of the end-e�ector position against the
leap motion estimation of the hand position depending on the state sf .

a natural interaction when switching between contact and non-contact with
the patient. In the second trial, the volunteers had to enter the patient’s
body at a specific point and try to move within the patient’s body. In the
third trial, the volunteers were asked to interact with a cylinder (radius
rc = 0.03 m, height hc = 0.05 m) lying 0.03 m under the skin. The cylinder’s
sti�ness was set to 800 N/m in order to facilitate the volunteers identifying
it. In the fourth trial they were left free to interact with the virtual patient
looking for abnormalities within the body. In all the trials the collision
detection module used R = 0.1 m and N = 10 for the radius search of the
k-d tree, whose leaves include at most 10 points, and an influence radius of
0.1 m in the implicit surface algorithm. We gathered a 300k point cloud
from the Kinect and all the k-d tree leaves were checked.

5.1.4 Results

We report here the results that we obtained. In the following figures, we
show only explanatory examples, but the conclusions are supported by all
the data that we gathered. In the following figures the possible states sf

are: sf = 0 i.e. In body; sf = 1 i.e. Body to Plane; sf = 2 i.e. Out body;
sf = 3 i.e. Plane to Body; sf = ≠3 i.e. Cylinder Upper Area; sf = ≠2
i.e. Around the Cylinder ; sf = ≠1 i.e. Cylinder Lateral Area. The first
trial confirmed that the system manages the transition between Out Body
and In Body conditions preserving a natural interaction. Figure 5.6 shows
that there are no jumps in the position of the end-e�ector, meaning that
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Figure 5.7: Second trial. End-e�ector position against indentation force.

the transition is fluid. When the user’s hand is outside of the body the
end-e�ector correctly tracks the hand’s position being on a plane just over
the body (see the stars in Figure 5.6). The position of the hand to be used
in the AR environment, instead, moves in 3D according to L

TLh.
The second trial shows that the force is correctly displayed to the user in

all the directions during the indentation. Figure 5.7 shows the force evolution
according to the indentation and the force transition when switching the
condition of the interaction (i.e. between inside and outside of the body).

The third trial result shows that the volunteers were able to perceive
the cylinder within the user body. Figure 5.8 shows the trajectories along
with the forces that were perceived during the contact with the cylinder’s
upper and lateral area.

Figure 5.9 shows an example of interaction of the user with the envi-
ronment when the goal was searching a cylinder. The system correctly
performs in every sf state, allowing the user to change the location of the
exploration during the non-contact phases, to perceive the resistance of the
abdomen tissue in the indentation phases and to perceive the force due the
interaction with the cylinder.

5.1.5 Discussion

The sti�ness values were selected in these preliminary tests to ease the
exploration of the belly. Increasing these values does not introduce any
technical di�culty and more extensive tests will be carried out to make
the system more specific for palpation. However, this first bench of tests
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Figure 5.9: Fourth trial. The search presents some of the elements of each
of the previous trials: we note transitions form inside to outside with free
hand and we not force exertion in di�erent locations to find the cylinder.
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demonstrate the usability and the capabilities of the system. We also
recognize that a more reliable hand tracker could avoid the need for two
intermediate states between the In Body and the Out Body states. We
highlight, however, how the interaction with the system turns out to be
very natural and fluid despite these states. The volunteers required indeed
a short training to be able to use the system. We also mention here the nice
trade o� in the volunteers’ strategy that we noted when searching for the
cylinder in the fourth trial. The users firstly try to find the cylinder from
inside the body, thus experiencing increasing values of indentation force.
When the indentation force was too high to keep searching, they exited
from the body to start from another indentation point. This resembles what
happens in palpation, in which the exploration is rather local around the
first contact point with the skin. This aspect will be further investigated.
Although there were not issues related to the resolution of the point cloud,
we plan to test our system with the Kinect One sensor, in order to check
possible improvements. In the present system Kinect was used because the
newer sensor’s drivers were not available for the Linux OS.

5.2 ultrasonography

Ultrasonography (USG) is one of the most important examinations in order
to decide if a patient needs to be directed to a specialist. The continuous
progress of HIs and VR and AR let recent tele-ultrasonography (tele-USG)
systems include a DiagUI that features both visual and force feedback. The
fidelity and usability of these systems depend strongly on the features of
such DiagUI. However, tele-USG systems are often evaluated as a whole,
and it is impossible to assess how specific DiagUI features influence the
sonographer’s performance. A specific evaluation of force and visual feedback
is fundamental to assess how a DiagUI contributes to the e�ectiveness of a
tele-USG system. First, it is important to evaluate how a DiagUI is perceived
per se before it is integrated in a complete system. Second, a validated
DiagUI allows to set up training environments in which novice sonographer
can speed-up the development of their skills. Finally, this kind of evaluation
enables specific improvement of the DiagUI, thus speeding up the process of
making a tele-USG system accepted by specialists. This problem has been
tackled within the European project ReMeDi [89] that aims at achieving
a complete tele-examination system for the cardio and abdominal USG,
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palpation, and auscultation. This system features a DiagUI, which includes
state of the art technologies for both the HI and the visualization system.

This section presents a method to evaluate the DiagUI usability in
terms of both sonographers’ performance in accomplishing USG-like tasks
and their subjective perception of the interface. In particular, experts’
perception of the DiagUI refers to the usability in a real USG task and its
pleasantness in the everyday work. This evaluation can be replicated for
other DiagUIs to allow for a comparison before the integration of a whole
tele-examination system.

5.2.1 Related Work

Tele-USG systems currently focus more on the correct transmission of images
and control of the robot at the patient site than on the features of the
DiagUI. However, DiagUIs of many tele-USG systems feature both visual
and force feedback. For example, in [111] and [2] the system includes a
6 DoFs robot composed of an orientable pantograph and an end-e�ector
that allows for 3D positioning of the probe and a reasonable decoupling of
translational and rotational DoFs. A DiagUI equipped with either a 6 DoFs
power mouse or a 6 DoFs joystick-like HI [110] allows the doctor to select a
feature on the graphical user interface (GUI) and the robot controller acts
so that the desired feature location is achieved. Pierrot et al. [94] use an
industrial 6 DoFs arm provided with a force feedback to carry out USG
examinations. In this system, the sonographer can either grab the probe
and place it manually or s/he can run an examination routine by means of
a GUI. More recently a complete tele-USG system was developed within
the European project OTELO [35]. The system includes a 6 DoFs robot
at the patient’s site and a 6 DoFs HI at the expert site. The DiagUI of
such system also features a telepresence module which includes a VE where
the patient is displayed, a USG image transmission and an audio/video
conference tool [24]. In this line Arbeille et al. [4] developed a tele-USG
system which works over a satellite link to make available echography
examination for astronauts (TERESA project [133]). In their system, the
patient and the expert sites are linked by a videoconference system. At the
patient’s site a non-specialist operator places a robot (ESTELE) on the
patient. The robot holds the probe whose pose is remotely controlled by
a sonographer who uses a probe dummy and exploits the visual feedback
from the videoconference system. In the TER tele-USG system [135], a
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new slave robot at the patient site decouples the gross positioning of the
probe from its pose fine refinement on the patient’s body. The sonographer
at the expert site uses video, audio, and haptic feedback to conduct the
examination. In particular, a videoconference system is complemented by
a 6 DoFs (3 actuated) HI (PHANToM from SensAble Technologies Inc.).
The HI displays the contact force between the probe and the patient thanks
to a force sensor mounted on the slave robot end-e�ector. The PROSIT 4
DoFs robot [87] is used by Krupa et al. in [71] to develop a portable and
kinematically suitable robotic interface at the patient’s site. This system
includes a teleoperation loop between this robot and a HI at the doctor’s
site. The authors propose to have at the doctor’s site alternatively a purely
passive probe dummy, a passively actuated probe dummy or a fully actuated
probe dummy as master of the teleoperation loop. More systems (see [1]
for a review) were developed for robotic USG examination, some of them
(e.g. [83] for tele-USG) were developed as sonographer’s UI.

With respect to these systems, our DiagUI features several advantages.
First, the translational and rotational DoFs of the probe are completely
decoupled and the interface can display forces up to 40 N in any direction.
Although only 3 DoFs are actuated, thanks to the selected design it is simple
to actuate the three rotational DoFs. Second, the aforementioned systems
focus on achieving good remote control and videoconference system, but
they do not eviscerate the problem of mapping the sonographer’s interface
workspace to the workspace needed to explore the patient’s body. Finally,
they use 2D visualization and do not investigate what visualization systems
are more suitable or simply preferred by experts. Since our DiagUI features
a 3D AR environment which can be displayed both on a screen or in an
HMD, considerable improvements lie also in the visualization.

To the author’s knowledge, none of the DiagUIs of the aforementioned
tele-USG systems was tested alone, whereas the respective tele-USG systems
were tested in clinically relevant settings. In [111] and [2] teleoperated control
and visual servoing are tested to demonstrate the validity of the system. The
navigation problem was solved by means of a position-velocity controller.
Since the sonographer operated at the patient site, the visualization system
played a minor role and it simply consisted of a GUI shown on a 2D screen.
The evaluation of the whole tele-USG system is also proposed in [35] and
[24] with a focus on the USG image processing. The main drawback of
the OTELO system [35] is the delay between the motion of the expert
and the actual motion of the robotic arm. A solution is proposed in [24]:
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visual or force feedback are used to prevent the sonographer moving too
fast, thus allowing the robot to correctly follow the sonographer’s motion.
This work proposes a first implementation of a 3D representation of the
patient’s site, witnessing a perceived importance of giving the sonographer
the possibility to navigate the patient’s site in a 3D VE. Arbeille et al. in
[5] compare three di�erent tele-USG methods: moving the probe at the
patient’s site by means of a robotic arm, and using an echograph with a
motorized probe and remote guidance, in which an operator at the patient’s
site handles the probe according to the remote expert’s instructions. This
work reports the results of 340 examinations showing that for deep organs
examinations, a motorized system allows the sonographer to position the
probe more accurately. However, no further investigations were carried out
on visualization or navigation modalities.

In a first phase, a USG examination requires the sonographer to place the
probe on the rib cage. After that a suitable point on the rib cage is reached,
the examination is driven by the USG images and this makes the orientation
of the probe crucial. Although the successful positioning of the probe is easily
achieved in traditional USG, it becomes more di�cult in teleUSG. Therefore,
we propose an evaluation of the sonographer DiagUI that excludes factors
introduced by a complete USG examination. Evaluating this DiagUI during
the whole USG task would indeed hide specific issues of positioning the
probe and being able to perceive what is underneath the skin. The proposed
evaluation investigates di�erent navigation and visualization modalities in
order to select their best combination. First, we propose a comparison of
2D and 3D visualizations of the patient’s site, which was not done in the
previously described systems. Moreover, we exploit two o�-the-shelf devices
for visualization, namely 3D LCD screen and HMD. Second, we target the
navigation modality.

A rate control allows some of the aforementioned systems to use small
HIs to operate in a large workspace. However, a pure mapping of the UI
end-e�ector translation into an operated arm velocity is detrimental for the
probe position accuracy [38]. Moreover, it requires the user to easily reach
the neutral configuration of the HI to stop the slave arm. On the other
side, a position/position control requires the DiagUI workspace be scaled
(i.e. “scaling” [50]). The main advantage of the scaling technique is that a
single smooth movement allows the user to reach any point of the patient.
However, the main drawback is a loss of resolution that may be detrimental
for the accuracy. Moreover, the proper scaling factor may depend on the

92



patient’s body size. Alternative solutions, known as “clutching” techniques
(e.g. [65] also found as “indexing” in [30]) allow the user to shift the area of
the patient which is explored. In [30] the authors exploit the dominance of
visual on haptic feedback to introduce small deviations of the visual cue in
order to translate the part of the VE (which they call virtual workspace) that
the user is exploring. Instead, Dominjon et al. present and validate in [37,
38], the “bubble” technique. This technique features a hybrid rate/position
control thus deploying the speed advantage of a pure rate control and the
accuracy advantage of a position control. Similarly, in [9] Barrio et al.
modify the bubble technique with a dead zone around the bubble. Finally,
Song et al. [123] extend the clutching technique in the case of 3D HIs by
setting a plane orthogonal to the line of sight which discriminates clutched
and declutched conditions.

We selected scaling and bubble techniques because in our opinion they
are the most appropriate for tele-USG. The indexing technique described in
[30] seems indeed more suitable when small shifts of the virtual workspace
are needed, whereas the Z-clutching technique seems to perform similarly
to the bubble technique [123].

5.2.2 System Setup

5.2.2.1 Hardware Setup

The DiagUI is composed of two parts, one including the visualization tools
and the other the HI (Figure 5.10). Visualization tools include a 3D 40”
LCD monitor (resolution 1920x1080) with 3D active glasses and the Oculus
Rift DK2 HMD (Oculus, CA) that features: 960x1080 per eye resolution,
refresh rate 60Hz, 100 deg FOV, head orientation and position tracked with
respect to a fixed frame by fusing a near infrared optical camera sensor
(60Hz frequency)and an IMU (inertial measurement unit, 1kHz frequency).
A Leap Motion sensor (Leap Motion Inc, CA) mounted on the frontal part
of the HMD allows for hand tracking (100Hz).

The haptic feedback is provided by a custom Delta-like [95] HI (Fig-
ure 5.10 b) with a 3 DoFs translational motion of the end-e�ector whose
workspace includes a cylinder (diameter 0.26m and height 0.12m). The
device can display up to 40 N force in any direction. A 3DoFs, non-actuated,
spherical wrist (Figure 5.10 a) is mounted on top of this device and hosts
an ABS printed dummy of a real USG probe which was obtained by 3D
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(a) (b)

Figure 5.10: (a) A sonographer during the experiments. He wears the HMD
and navigates the VE using the HI in front of him. The interaction with the
device is performed handling a copy of a real USG probe. In front of him
the 3D screen used as alternative to the HMD. (b) The HI of the DiagUI.

scanning of a real probe. The wrist is equipped with three encoders to
measure out the probe’s orientation. The hardware includes a joystick as
shown in Figure 5.10 b.

The firmware of the HI is embedded in a custom board based on an
ARM Cortex-M4 32 bits STM32F407VGT6 micro controller that manages
encoders’ signals, joystick’s input, motor drivers and the communication
with external devices. The high-level control, the haptic rendering and the
VE rendering are executed on a Dell Alienware x51 computer featuring a
quad-core Intel Core i7-4790K, 16GB of RAM and a GPU Nvidia GeForce
GTX 670 running Ubuntu Linux 14.04.

5.2.2.2 Software Setup

The software used to run and control the overall system is composed of three
elements: low-level, medium-level and high-level software. The low-level
software is implemented as a Matlab (Natick, MA) Simulink model, which
is compiled and downloaded into the embedded device board. The low-level
code executes at 1 kHz the algorithms that control the motor drivers, reads
sensors and computes kinematics and gravity compensation of the device
[6]. Due to the small measured friction and the low velocity of the device
during USG examinations, neither friction nor dynamics compensation are
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Figure 5.11: CoCo components, with the connections and the execution
policies.
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Figure 5.12: Structure of the software with the communication channels.
Number on edges represents the order of message passing between compo-
nents for each control cycle. (0) means that the message is sent only in
initialization phase. Communication between high level components is done
through shared-memory.

implemented.
The medium-level software is implemented as a Matlab Simulink model,

but it is executed in the host computer and communicates with the low-level
control via High-Speed USB (low-latency and 3Mbit/s e�ective throughput).
Medium-level controls the navigation modalities and it computes the force
to be displayed by the haptic device. The information needed to compute
the force comes from the high-level software which is connected via local
UDP and runs at 1kHz.

The high-level software is implemented in C++ using the CoCo frame-
work (see Section 3). The high-level software is composed of several CoCo
components running in parallel. Figure 5.11 shows all the components
involved with their connections and execution policies. In particular, the
high-level software is in charge of graphically rendering the VE for the
di�erent devices (3D screen or HMD), and to execute the collision detection
algorithm between the probe and the virtual patient that is used by the
haptic rendering module to calculate the final force. All the reference frames,
transformations and calibrations are managed by a component embedding
SRGViz (Chapter 4). The calibration procedure needed to use the haptic
device with the HMD was explained in Chapter 4.7. The graphics loop runs
at 60Hz while the collision detection module at 1kHz.

Figure 5.12 shows the overall software’s structure together with the
communication pattern. At each iteration, the medium-level software asks
the end-e�ector position to the low-level control via USB, adjusts it based
on the navigation modality and sends it to the high-level code dedicated
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component. In the high-level software the pose is adjusted to the correct
reference frame and passed to the graphics component that uses it to display
the virtual probe and to the haptic rendering module that computes the
proxy’s position on the patient surface. The proxy is sent via UDP to the
force module in the medium-level software, which computes the force and
sends it to the low-level code that drives the motors.

interaction To use the device decoupled from a remote robot we
designed a VE that contains a geometrical mesh of the patient’s body created
from the 3D scanning of a medical mannequin and the 3D representation of
a real USG probe. In addition, we created a mesh of the rib cage according
to the human anatomy and we placed into the virtual chest. This mesh is
used to simulate the interaction with ribs, which is a key part in a USG
examination. The rib cage is modeled by means of a set of toruses which
are fused together. The toruses were placed and sized to replicate a rib
cage between fourth and seventh ribs, i.e. perceiving ribs whose transversal
section varies from 15 to 20 mm and whose distance varies in the range
15-20 mm.

There are two aspects that mostly characterize the interaction of a user
with this interface. The first one is the haptic rendering, which regards
in our case the algorithm chosen to calculate the force feedback based on
the probe’s and patient’s position. The second one is about how to handle
the di�erences between the device’s workspace and the needed one. This
problem a�ects the navigation technique.

haptic rendering The force rendering is compute by the CoCo
component described in Section 3.4.2. In order to simulate the interaction
with the human chest comprising skin and ribs with di�erent sti�ness values,
we have employed the composition of two separate 3 DoFs proxies each
associated with a di�erent geometry. The first layer represents the skin
(k = 300N/m) whose geometrical model has been obtained by 3D scanning
a mannequin, and the second inner layer represents the ribs (k = 1000N/m)
whose geometry is obtained from the fusion of toruses via constructive solid
geometry. The force is saturated at 15N in each direction to prevent damages
in case of temporary communication issues.

navigation The horizontal workspace of the device is smaller than
the normal extension of a human trunk (0.26m diameter against ≥[0.70m x
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Figure 5.13: Bubble navigation. (a) When the DiagUI end-e�ector is in the
central zone, it can be moved freely in the explorable workspace and its
position is sent to the remote environment. (b) When the end-e�ector exits
the central zone, the center of the workspace is translated in the direction
of the end-e�ector.

0.45m]) causing many parts of the body to be unreachable. We excluded
the possibility of using a bigger device with larger workspace because it
could be perceived as cumbersome and di�cult to be moved. Scaling and
bubble navigation techniques were therefore selected and evaluated. The
“scaling” technique (SN), consists of scaling the position of the device up in
the remote or virtual environment.

The second implemented solution is the “bubble” technique (BN), in
which the workspace in the virtual/remote environment is translated to
make every point reachable without losing resolution. To do this we define
a vertical cylinder, smaller than the device’s workspace, in which the end-
e�ector moves freely with a 1:1 movement mapping (see Figure 5.13 a).
When the user brings the end-e�ector out of this space and moves it towards
the end of the physical workspace, the workspace translates towards the
end-e�ector and its velocity is proportional to the distance of the end-
e�ector to the surface of the cylinder. At the same time, the user perceives
a force opposite to the workspace velocity and proportional to the distance
of the end-e�ector from the cylinder, as if a spring was connected from the
end-e�ector to a massless moving cylinder (see Figure 5.13 b).

Our implementation di�ers slightly from the standard algorithm as it
uses a cylinder as workspace delimiter instead of a sphere. This change was
introduced because we need only horizontal displacements of the workspace.
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When compared to the SN, BN may require more time to bring the probe
in the desired position when moving between distant points.

latency estimation One important aspect that may a�ect users’
performance is the latency between user’s input (e.g. user’s hand position)
and DiagUI’s outputs (e.g. force rendering). Theoretically, at time t, given
the position of the end-e�ector, it is necessary to compute the force F that
the user should perceive. However, since rendering of F is mediated by
the DiagUI, F is rendered to the user at a time t

Õ
> t, thus introducing a

latency ⁄2 = t
Õ ≠ t which we aim to estimate.

The whole DiagUI works as a loop (see Figure 5.12) in which information
is propagated to give the user feedback. This loop can be arbitrarily
inspected to track the flow of information and to estimate the time the
information needs to become feedback to the user. Based on this idea, we
made two measurements of latency (⁄1 and ⁄3) to set limits to ⁄2, i.e. ⁄1 <

⁄2 < ⁄3. First, we measured the loop latency ⁄1 between the generation of
a position signal in the low-level firmware to the associated force value as
computed by the medium-level and high-level software components. Figure
5.12 shows the steps of this loop. ⁄1 comprises the round trip time (RTT)
of the communication between the embedded board and the host computer
via USB. However, it does not take into account the time needed by the
firmware and device control loop to move the end-e�ector, therefore it is
a lower bound for ⁄2. The measurement has been performed by tracking
a timestamp generated by the low-level control and computing the closed
loop latency inside the low-level control itself. Given a session of 157 s, i.e.
73527 samples, we obtained for ⁄1 5.99 ms on average with 1.43 ms standard
deviation.

In order to set an upper bound to ⁄2, we control the robot to follow a sinu-
soidal path in position control. The position control is a PID (proportional-
integrative-derivative) that has been implemented in the medium-level
software. A sinusoid along the Z axis (amplitude 0.02 m, frequency 1.5 Hz)
is generated in the medium-level software, sent to the high-level software
and received back in the medium-level software to serve as target for the
position control. The PID was tuned to have the same delay in the ascending
and descending intervals of the position target. The latency ⁄3 was then
calculated as the phase between the target sinusoid and the actual position
of the end-e�ector. This method includes the delay introduced by the posi-
tion control, which actually depends on the chosen control algorithm. Since
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(a) Experiment 1 and 2 (b) Experiment 3

(c) Experiment 4

Figure 5.14: Sphere positions in the four experiments. the chest is removed
to show the ribs. (a) The five spheres used in experiment one and two. (b)
Two spheres of experiment three along with ribs in between spheres. (c)
Spheres of experiment four and their placement on a ribs sulcus. In (b) and
(c) the blue sphere is the task starting point.

the motors’ current loop that makes the interface render the target force
F to the user is much faster (5 kHz see [136]) than this position controller,
⁄3 provides an upper bound of ⁄2. Latency ⁄3 was recorded during seven
sessions (60s each). We obtained that ⁄3 was 27.1 ms on average, standard
deviation being 1.35 ms, which is below the limit found in the literature for
producing an e�ect on performance (see [64] and [63]).

5.2.3 Experiment Setup

The goal of our study was to assess the usability of the interface and
preferences of the experts related to the navigation techniques and the
visualization modalities. Therefore, we formulated the following two hy-
potheses and related sub-hypotheses: H1 : the DiagUI allows for accurate
positioning of the probe. H1-1 : navigation modality influences accuracy
in positioning the probe over the patient. H1-2 : visualization modality
influences accuracy in positioning the probe over the patient. H2 : the
DiagUI allows the sonographer to detect the ribs of a patient. H2-1 : navi-
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gation modality a�ects accuracy in counting the ribs of a patient. H2-2 :
navigation modality a�ects accuracy in following the sulcus between two
ribs. These hypotheses are tied to tasks that are crucial for tele-USG, i.e.
being able to navigate the patient’s site environment and being able to
perceive parts of the human body. We set up four experiments, which are
described in section 5.2.3.1 and 5.2.3.2 (see Figure 5.10 a for the setup), to
verify these hypotheses.

5.2.3.1 Experiments 1 and 2

These two experiments target hypothesis H1. Experts were asked to put
the tip of the probe in a virtual sphere which was placed on the surface
of the virtual mannequin. They were asked to be as accurate as possible,
whereas no instruction was given about speed. The radius of the sphere was
selected to be 1cm as this distance is comparable to the space between two
ribs. Once the expert believed to have achieved the goal, s/he pressed a
button of the joystick to mark the position of the end-e�ector and to move
to the next sphere over the virtual patient. This was repeated for five sphere
positions, whose selection is a compromise between the positions of the
echocardiography basic acoustic windows and the need of spanning the whole
thorax of the virtual patient, to make the navigation task more significant.
The first experiment targeted hypothesis H1-1. Experts repeated the five
spheres navigation task six times. The visualization modality was 3D on
the LCD screen while participants wore glasses (3D-LCD). In the first three
trials experts navigated the VE with the BN, and after with SN. The second
experiment targeted hypothesis H1-2, i.e. to assess visualization modality.
In this experiment, experts repeated the task nine times. Navigation was
set to BN for all the trials whereas visualization varied: in the first three
trials, the 3D VE was represented on the LCD screen in 2D (2D-LCD) by
switching o� screen’s 3D modality. In trials 4 to 6, visualization modality
was 3D-LCD, whereas in the latter trials the VE was displayed in 3D in
the HMD (3D-HMD).

Accuracy in reaching the target points was the main performance mea-
sure. For each target point, error e was defined as the Euclidean distance
between the marked end-e�ector point and the target sphere center. We also
calculated the total distance and the total completion time for each trial as
variables related to the expert’s behavior during the task. In both experi-
ments, outcomes of trials carried out in the same experimental condition
were averaged.
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5.2.3.2 Experiments 3 and 4

Experiments 3 and 4 targeted hypothesis H2. Given that hypothesis H2 deals
with force feedback, we assumed that this is not a�ected by visualization,
whereas it may be influenced by the navigation technique. Therefore, the
visualization was always a 3D-LCD whereas navigation modality could be
either BN or SN.

In the third experiment two spheres were shown in the VE, aligned to a
plane which is parallel to patient’s sagittal plane, placed on the skin and
separated by five ribs (see Figure 5.14 b). Experts were asked to count the
ribs between the two spheres taking advantage of the visual and the force
feedback, i.e. looking at the screen and pushing against virtual patient’s
body to perceive the ribs. Expert were asked to focus on the rib count.
Indeed, they were encouraged to iterate multiple times between the two
spheres in case they were not sure of the result. Experts were asked to
press the joystick’s button when aligned to the starting sphere and ready
to begin exploration and to press it a second time at the destination sphere
when they were ready to tell the result. Each participant carried out six
trials, the first three in BN condition, the latter in SN. The number of ribs
between the two spheres was always five, but the participants had no clue
about this. In the third experiment, the metrics of the performance was
the number of ribs that was reported. We also checked that exerted forces
were comparable to forces which are usually recorded in USG examination.

In the fourth experiment two spheres were displayed on the mannequin,
but this time they were aligned to a transversal plane of the virtual patient.
They were placed in a ribs sulcus so that an almost circular trajectory which
is 0.177m long could be traced along the sulcus between the two spheres
(see Figure 5.14 c). Experts were asked to follow the ribs sulcus moving
from one sphere to the other. They were instructed to stay as close as
possible to the sulcus bottom, without concerning about the completion
time. Di�erently from experiment 3, they could not go back and forth
to retry in case they realized they exited from the sulcus. This task is
especially meaningful for USG. Indeed, once the probe is correctly placed
on the point to be examined, sonographers exploit the support of the ribs
to refine the pose of the probe to get the best window. As for experiment
three six trials were carried out, the first three in BN modality, the latter
in SN. Performance assessment was done as follows: we defined a “correct
zone” along the target trajectory. This zone is delimited by a cylinder
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whose external surface contains the sulcus’ bottom line and whose axis is
parallel to the virtual patient’s craniocaudal axis. Since the skin and the
ribs are elastic it is possible to move the probe slightly under the surface.
Therefore, when the probe is kept in the bottom of the sulcus the probe is
in the correct zone. Two performance metrics were then established: the
first, namely ep, is the percentage of samples in which the probe was outside
the sulcus’ bottom line with respect to the total number of task’s samples;
the second, namely ed, is the average distance covered outside the correct
zone. This latter measure is normalized with respect to the theoretical
trajectory’s length. In both experiments, outcomes of trials carried out in
the same experimental condition were averaged.

5.2.3.3 Participants and experimental protocol

Twelve experts (doctors and sonographers, average age 38.5, 9 men, 3
women), participated in the experiments. Prior to the beginning of the
experiments, participants received and read a written description of the
experiments and were asked to sign a consent form. They were also asked to
complete a pre-experiment questionnaire. We then explained to them how
the system works with a focus on the bubble navigation modality as it may
not be intuitive, especially for users that are not familiar with haptic devices.
Participants were then instructed about the goals of each experiment as
described in 5.2.3.1 and 5.2.3.2. In the following familiarization phase, that
lasted 5 to 10 minutes, participants could explore freely the VE using the
haptic device and switch between the di�erent visualization and navigation
modalities. In addition to the haptic device, experts held the joystick in
their non-dominant hand. The joystick served to mark specific phases of the
experiments i.e. switching target point in experiments 1 and 2, marking the
beginning and the end of the exploration in experiments 3 and 4. Before
each experiment experts were reminded about the instructions.

Finally, they were asked to fill a questionnaire that allowed us to gather
their preferences. The questionnaire was composed of 17 questions (see
Figure 5.19 for the detailed questions). In questions one to eight, experts
had to rate navigation modalities in relation to the task that they carried out.
Questions 9 to 11 asked the same related to visualization modality. Questions
11 to 15 asked the expert to rate four aspects of the system’s usability.
Finally, the last two questions investigated expert’s preferences: question 16
asked what combination of navigation and visualization modalities experts
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preferred to use, whereas question 17 asked which combination they consider
more usable to carry out USG examination.

5.2.4 Results
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Figure 5.15: Scatter of end-e�ector positions during the task in represen-
tative Experiment 1 trials, position markers are coloured according to the
speed. (a) Experiment 1 trial in BN condition. (b) Experiment 1 trial in
SN condition.

This section reports the results of the experiments. In the following,
boxplots report median as red lines, 25th (q1) and 75th (q3) percentiles in
blue along with whiskers within 1.5 times q3 ≠ q1 in black. Outliers are
shown as red crosses.

5.2.4.1 Experiment 1

First we show two representative trials in which navigation was set to BN
and to SN (Figure 5.15 a and b respectively). The figure shows a typical
behaviour, with some elongations beyond the targets in SN and with “pauses”
between some of the points in BN conditions.

Experiment 1 has a factorial within-subjects design whose factors are
navigation and point. Navigation has two levels whereas point has 5 levels,
i.e. the task target points. We carried out a statistical analysis to check
if outcome variables, namely error, distance and completion time were
significantly influenced by such factors. Figure 5.16 a shows the error e

in experiment 1. In general, e is smaller than 15 mm, often even smaller
than the sphere radius. A better performance in BN condition is apparent
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Figure 5.16: Error, distance and completion time results of experiments 1
((a) to (d)) and 2 ((e) to (h)). (a) and (e): error e by navigation condition.
(b) and (f): error e by target point, data were aggregated regardless of
visualization and navigation modality. (c) and (g): distance covered per trial
by navigation condition. (d) and (h) Elapsed time per trial by navigation
condition.
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but further analyses were carried out to confirm the result. Since e is a
positive measure and the goal of the experiment was to minimize it, it was
not normally distributed. This prevented from using t-tests and ANOVA
to analyze it. However, the log-transformation of error measurement e is
normally distributed, hence we used log(e) in a repeated measures two-
way ANOVA. All subsets of our data passed Shapiro-Wilk test [119] for
normality and Mauchly test [76] for homogeneity of variance (‰2(9) = 12.82,
p = 0.177 for point factor, ‰

2(9) = 8.39 p = 0.502 for interaction). Both
navigation (F (1, 11) = 5, 421, p = 0.04) and point (F (4, 44) = 2.675,
P = 0.044) were significant at – = 0.05 level, whereas their interaction
was not (F (4, 44) = 1.238, p = 0.309). A posthoc test with Bonferroni
correction confirmed that accuracy was better under BN condition (see also
Figure 5.16 a) than in SN (p = 0.04). The post hoc analysis shows that the
only significant di�erence occurs between points 3 and 4 (see Figure 5.16
b), being point 4 only reached with a smaller error.

Similarly to variable e, the log-transformed of distance and completion
time were normally distributed (we used the Shapiro-Wilk test to check for
it). A paired t-test was carried out for each of the two variables. Distance
covered in BN was significantly bigger than in the SN condition (p = 0.002),
namely 0.81 ± 0.14 m and 0.73 ± 0.13 m for BN and SN respectively. To
judge these values, we report that the theoretical minimum distance that is
required to reach the five points in the given sequence is 0.46 m. A similar
result was obtained for completion time: trials executed in BN condition
required significantly more time than in SN (p < 0.001), namely 22.3 ± 7.7 s
and 12.7 ± 6.2 s for BN and SN respectively. Figure 5.16 c and d plots show
distance and completion time grouped by navigation condition.

5.2.4.2 Experiment 2

Experiment 2 has also a factorial within-subjects design in which the two
factors are visualization and point. Visualization has three levels whereas
point has 5 levels. We carried out a statistical analysis to check e�ects of
such factors on outcome variables, namely error, distance and completion
time.

Figure 5.16 e shows the error e in experiment 2. It is generally smaller
than the sphere radius. A better performance in 2D-screen and HMD
conditions is apparent but further analyses were carried out to confirm it.
Likewise, experiment 1, we used log(e) in a repeated measures two-way
ANOVA to test the e�ects of the factors. All subsets of our data passed the
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Shapiro-Wilk test for normality. Mauchly test for homogeneity of variance
was passed except for interaction (‰2(2) = 2.27, p = 0.321 for visualization
factor, ‰

2(9) = 10.45, p = 0.324 for point factor, ‰
2(35) = 53.87 p = 0.044

‘ = 0.47 for interaction). Results show that visualization (F (2, 20) = 8.523,
p = 0.002) has a significant e�ect on error, whereas point (F (4, 40) = 2.29,
p = 0.077) and interaction were not significant (F (8, 80) = 0.77, p = 0.630).
The Bonferroni posthoc test confirmed that accuracy was better under
2D-LCD and HMD conditions (see Figure 5.16 e) than in 3D-LCD (2D-LCD
against 3D-LCD p = 0.009, HMD against 3D-LCD p = 0.007, 2D-LCD
against HMD p = 0.862).

Distance and completion time were log-transformed to obtain normally
distributed data, which was checked by means of the Shapiro-Wilk test.
Mauchly test for variance sphericity was passed (‰2(2) = 5.40, p = 0.067
for distance factor, ‰

2(2) = 3.03, p = 0.220 for completion time factor).
A repeated measures one-way ANOVA showed that visualization does not
have a significant e�ect on covered distance (F (2, 20) = 0.593, p = 0.562).
However, a low power was observed for this test (0.135). ANOVA results
show that visualization influences completion time (F (2, 20) = 6.06, p =

0.009). After Bonferroni’s correction for multiple comparisons, no significant
di�erences among visualization modalities were left. However, completion
time di�erence between 2D-LCD and HMD approached significance (p =

0.055). Figure 5.16 g and h plots show distance and completion time grouped
by visualization condition.

5.2.4.3 Experiments 3 and 4

Experiment 3 outcome is a binary variable as the experts could either be
wrong or right regarding the number of ribs. The overall percentage of
correct responses was 92.4%. Moreover, some experts who made mistakes
reported that they could not judge whether to include the first and/or the
last rib that they perceived. The percentage of correct answers grouped by
navigation condition was 90.9% and 93.9% for BN and SN respectively. A
McNemar test resulted in a non-statistically significant di�erence (as. p = 1)
between BN and SN.

Results of experiment 4 are shown in Figure 5.17. Visual inspection
of the plots suggests that percentage of error ep was similar for the two
navigation conditions, whereas BN seemed to be related to a smaller distance
ed out of the sulcus with respect to SN. A Wilcoxon test confirmed that
the e�ect of navigation on ep was negligible (as. p = 0.386).
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Figure 5.17: Percentage of error and average error of experiment 4. (a)
Error percentage for each navigation condition. (b) Average error for each
navigation condition.

5

10

15

BN SN
(a)

A
ve

ra
g

e
 F

o
rc

e
 [

N
]

(a)

5

10

15

BN SN
(b)

A
ve

ra
g

e
 F

o
rc

e
 [

m
]

(b)

Figure 5.18: Highest forces during experiments 3 and 4 trials. (a) Experi-
ment 3. (b) Experiment 4.
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1 2 3 4 5

 1)Reach a point in BN

 2)Reach a point in NS

 3)Position the probe accurately on the target point in BN

 4)Position the probe accurately on the target point in SN

 5)Count the number of ribs BN

 6)Count the number of ribs SN

 7)Follow the space between ribs BN

 8)Follow the space between ribs SN

 9)Reach a point in 2D−LCD

10)Reach a point in 3D−LCD

11)Reach a point in 3D−HMD

12)There was too much inconsistency in the system

13)Most people would learn to use this system quickly

14)The system was very cumbersome to use

15)I felt very confident using the system

Poor Excellent

I strongly
agree

I strongly
disagree

Figure 5.19: Questions 1-15 of the post-experiment questionnaire along with
answers’ statistics. Navigation and visualization scores (questions 1 to 11)
range from 1, i.e “poor” to 5, i.e. “excellent”. Usability scores (questions 12
to 15) range from 1, i.e “I strongly agree” to 5, i.e. “I strongly disagree”.

As a further assessment of the interface, we report the forces that were
experienced during the experiments 3 and 4, which are the only ones that
required to interact with the virtual patient’s body similarly to a USG
examination. Figure 5.18 shows forces recorded during the experiments.

5.2.4.4 Questionnaire

This section reports the answers to the questionnaire. In particular, Figure
5.19 shows the first 15 questions that were formulated along with the
scores provided as answers. Questions 1 to 8 were analyzed in couples to
compare navigation techniques. In general, minor di�erences between BN
and SN occurred. However, we noticed a slight preference towards SN for
reaching a point, whereas BN reaches higher scores for accurately position
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Figure 5.20: Preferences reported by experts. Bars shows the amount of
preferences per condition. “Preferred” and “Usable” refer to questions 16
and 17 respectively.

the probe. Looking at the tasks involving haptics (questions 5 to 8), we
see that BN is slightly preferred to SN for rib counting, whereas it has
much higher scores than SN for following the sulcus between two ribs. Since
di�erences were small, we did not perform further analysis on questions
1 to 6, whereas we performed a Wilcoxon signed-rank test to compare
answers to questions 7 and 8. Although a high di�erence in the median of
the answers (4 against 2), the test did not elicit a statistically significant
di�erence (Z = ≠1.594, p = 0.111). Questions 9 to 11 allow us to compare
the visualization modalities. Figure 5.19 shows high and comparable scores
of LCD representation of the patient’s site, whereas 3D-HMD seems to be
preferred with respect to the other conditions. A Friedman test showed
that this di�erence is not statistically significant at 5% level (‰2(2) = 5.615,
p = 0.06).

From questions 16 and 17 we obtained the results reported in Figure
5.20. We remark that experts were allowed to express multiple preferences.
Although there is not a strong preference towards BN or SN, we notice
that experts preferred to use the system in SN modality but they consider
BN to be more usable in a USG examination. A similar pattern occurs
for visualization: experts preferred to use the head mounted display, but
they think that a 3D visualization on an LCD is better to do a USG
examination. In general, results show a strong preference towards 3D
visualization modalities.
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5.2.5 Discussion

In the results of navigation experiments 1 and 2 (see Figure 5.16 a, b, e, f),
we note that the median error e that the experts committed in positioning
the probe is almost always below 1 cm, which is less than the sphere’s
radius. This result supports a positive answer to hypothesis H1: the DiagUI
allows for accurate positioning of the probe in terms of requirements of a
USG examination.

We notice also, when considering BN+3D-LCD experimental condition
of experiments 1 and 2, that e does not vary significantly, thus excluding
possible training e�ects on performance. Experiments 1 and 2 gave us
answers in relation to hypotheses H1-1 and H1-2. Figure 5.16 a shows
that navigation condition has an influence on the accuracy that experts
achieve. Results confirm findings of Dominjon et al. [38] as BN makes
experts improve the accuracy. Bigger di�erences were found in the total
distance that experts had to cover to complete the task and in the total
completion time. Figure 5.16 c and d show that SN technique makes the
user complete the task faster and with a smaller distance covered. Although
being in contrast with results in [38], these results support the qualitative
observations that we made after a visual inspection of the trajectories (see
examples in Figure 5.15). In SN a co-articulation of motion is indeed
apparent, and despite small elongations beyond the target points, the
total covered distance is less than in BN thanks to a smoother motion.
A smoother and faster motion is likely to be the cause of the preference
that the experts expressed towards SN (see Figure 5.20 navigation plot).
Moreover, experts reported (Figure 5.19 questions 1 and 2) a preference
towards SN for reaching a point. However, experts have perceived a better
control in positioning in BN condition, as supported by quantitative results
(Figure 5.16), as they rated BN better than SN to accurately position the
probe (Figure 5.19) and they considered BN more usable than SN (Figure
5.20 navigation plot). Although the error e was small in each visualization
condition, the analysis of visualization conditions resulted in an unexpected
deterioration of performance when using 3D visualization on a flat screen.
This result might have been due to a misleading representation of the third
dimension on the flat screen.

Performance did not di�er significantly between 2D-LCD and 3D-HMD
conditions, in agreement with the variable results reported in [114]. Dif-
ferently from navigation, visualization condition influenced significantly
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neither the covered distance nor completion time (though a main e�ect on
completion time approached statistical significance). Anyway, Figure 5.16 h
shows that completion time is lower with 3D visualization and in particular
with HMD, thus suggesting a more comfortable interaction with 3D visual-
ization. Questionnaire results confirm this suggestion as experts preferred
3D technologies and in particular HMD to navigate the VE (Figure 5.19
questions 9 to 11 and section 5.2.4.4). Interestingly, from the questionnaires
(Figure 5.20) emerged that experts perceived 2D visualization neither as
preferable nor as usable. However, in 2D-LCD condition they generally
performed as good as or even better than in other conditions. We suppose
that, in 3D conditions, the comfort and the pleasure they experienced and
that they reported us made them feel that they performed better.

Experiment 1 and 2 also highlighted that the error was not the same for
the five points (see Figure 5.16 b and f ), being 3 the point with the highest
error and 4 the point with the lowest. This di�erence achieved statistical
significance in experiment 1. The large error in point 3 may be due to the
long trajectory that links point 2 and point 3. Moreover, this trajectory was
almost perpendicular to the screen, thus favoring mistakes especially with
LCD screen. This hypothesis would also explain that the smallest errors
occurred in 3D-HMD condition.

Hypothesis H2 and related sub-hypotheses are then discussed. Exper-
iment 3 showed that experts could recognize the correct number of ribs
in most of the case regardless the navigation condition, which does not
influence significantly the percentage of correct responses. The question-
naire confirms a substantial equivalence of the two navigation conditions
with a small preference towards BN (see Figure 5.19 questions 5 and 6).
Experiment 4 shows that experts could successfully follow the sulcus be-
tween two ribs. The high error percentage (Figure 5.17) is due to the strict
criterion that we set to highlight performance di�erences between BN and
SN. Indeed, the average distance from the sulcus does not exceed 9% of
the sulcus’ length and is below 4% on average. Therefore, we can answer
positively to H2. This experiment (see Figure 5.17) along with answers to
questions 7 and 8 of the questionnaire (see Figure 5.19) suggest us that
navigation modality plays a minor role in this task, in which haptic feedback
is dominant. Therefore, we can draw conclusions with respect to H2-1 and
H2-2, i.e. navigation modality does not influence performance in USG
examination-like tasks in which haptic feedback is more important than
visual feedback.
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The analysis of forces during experiments 3 and 4 shows that the max-
imum forces that we obtained are consistent with the literature. Indeed,
Salcuedan et al. in [111] reports forces up to 10 N, Vieyres et al. in [134]
found 5 ≠ 20 N as a suitable range, whereas Gilbertson et al. measured
up to 20 N in [55]. This result supports our hypothesis that the selected
tasks replicate USG examination conditions in terms of haptic feedback.
We noticed also, that in both tasks involving force feedback experts exerted
higher forces in BN condition.

Finally, experts reported positive opinions about the system (Figure
5.19 questions 12 to 15). Although they used the system for less than 30
minutes, they felt very confident using it. Accordingly, they reported that it
is easy to learn using the system. A few experts found some inconsistency
in the system mostly due to the absence of ecographer’s images. Some
users reported that the system is cumbersome, thus supporting our design
decision of using a haptic device whose workspace is smaller than patient’s
body.

5.3 conclusion

In this chapter we have seen how AR can contribute to creation of a tele-
medicine DiagUI for palpation, and how a VE can be used to validate a
DiagUI for USG examination. In both cases AR and VR have allowed to
test the doctor’s interfaces without the need to couple them with expensive
robots. AR and VR allow researchers to develop and test new consoles in
isolation, reducing costs and time. In addition this allows to create general
interfaces that can be coupled with several remote robots, provided that
they agree on the data they exchange.

The USG DiagUI was tested with real doctor that have proven it feasible
to be used for real examination. In addition it showed that it is possible
to create robotic interfaces with a controlled low learning curve, even for
people not familiar with robotic devices or even simple joysticks.
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6
T E L E O P E R AT I O N I N A N I N D U S T R I A L S C E N A R I O

The recent advances in robotics are characterized by an impressive evolution
of humanoid robots that culminated in the DARPA Robotics Challenge
in June, 2015. Humanoid robots are designed to operate in human en-
vironments with minimal adaptations. This type of robot can be used,
particularly, in hazardous scenarios, such as rescue missions and indus-
trial manufacturing. Despite humanoid robots’ capability to autonomously
perform a gamut of tasks, those robots still need human guidance when exe-
cuting complex tasks, typically by means of teleoperation. In the particular
case of teleoperation through body-based interfaces, humanoid robots have
proved to be ideal, thanks to the capability of straightforward mapping
between the human operator’s motion and the robot’s motion [124, 27, 79].

Nevertheless, there are several aspects that render teleoperation a non-
trivial task, such as delay and high latency in the end-to-end communication,
visualization issues of remote environment, and di�culties in identifying
the right objects to interact with, as also in judging the objects’ distances
from the robot end-e�ector [86]. Producing a teleoperation system that can
provide the operator with the same quality and quantity of visual information
as what would be possible when the operator is physically present in the
remote place, is an extremely complex task. The less complex methods
utilize a static camera and a monitor [14, 56] to provide a monovision
feedback, where the perception of distances is constrained by the lack of
parallax. Such constraints are usually overcome through the learning process
of the operator. When the teleoperation scenario requires an advanced form
of visual feedback, either multi-modal feedbacks are integrated [122] or the
operator is “cheated” by utilizing some advanced visualization technique
to increase his/her illusion of being in the remote place [46, 52]. Usually
complex visual feedback requires implementation of a virtual version of
the remote environment. But, using of virtualized environments leads to
perceptual issues, such as the perception of egocentric distances [99], and
loss of visual acuity and contrast [74], which have been empirically proved
to influence the action capabilities of the body [73].

AR has been proved [81] to be a viable solution to overcome visual
feedback limitations by providing additional information to the operator.
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AR solutions for teleoperation can be divided into two categories, which are
mutually complementary: embodiment enhancement and virtual fixture.

Embodiment enhancement refers to the capability of making the operator
feel that s/he is in the remote environment, and s/he is the robot [144].
Such capability is obtained by placing the camera on the head of the robot
and showing the received image stream to the operator by means of an
HMD. The vision problem associated with this camera-based approach is
generically considered trivial, although it is often one of the major causes
of poor performance in teleoperation tasks. The motivation behind using
this method is enabling the operator to see the current position of the
end-e�ector by eliminating the problems caused by the limited field of view
and low resolution of the cameras, and the bulky size of the robots, which
obstructs the scene’s view.

The second category of AR solutions employs virtual fixtures [100] to
help the operator in overcoming the di�culties of perceiving the remote
environment, and to guide him or her in accomplishing the tasks. Virtual
fixtures refer to virtual images or objects, overlaid on the remote scene, to
provide the operator with visual cues that highlight the points of interest
and useful information for accomplishing the given task [115]. Virtual
fixtures have been proved to be capable of speeding up the execution of
a teleoperation task, especially in high latency scenarios [141]. They also
serve as an e�ective tool in teleoperation by providing sensory substitution,
particularly in perceiving a force feedback, in the absence of haptic devices
[70].

Although AR has been successfully applied to reduce the rate of task
error in many robotic teleoperation scenarios, no studies were carried out
so far to assess the impact of multiple AR features.

This work contributes to fulfill this requirement by studying the e�ects
of AR in a generic industrial assembly scenario. In particular, this work
addresses the use of both task-related and non-task related features and
their combination, by quantifying, the features’ e�ects not only on the task
performance, but also on the sense of tele-presence and embodiment for
the operator. The study shows that specific findings are associated with
di�erent types of operators’ expertise in AR/VR and gaming.
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6.1 system setup

The fundamental question addressed in this work is how di�erent types of
AR features impact the operator’s experience and performance. The other
issues addressed here include the following: 1) understanding the extent to
which excessive visual information can be detrimental and 2) evaluating
the non-task specific AR features. The focus of this work is, therefore,
on exploring the e�ects of 3D AR feedback on the presence, embodiment
and ease of task execution, while accounting for the possible e�ects of
participants’ expertise. E�ort was made to minimize the learning e�ect
that could arise during the execution of the experimental trials.

All these questions were sought to be answered by undertaking an
experiment that simulates an industrial assembly scenario; together with
telemedicine, this scenario forms the main application field for AR. The
task involves a pick-and-place operation by teleoperating a robot, seen from
an egocentric point of view. The task execution is parametrized in terms
of completion time and placement accuracy. Furthermore, the operators’
hand trajectories were analyzed, together with their subjective sense of tele-
presence and embodiment in di�erent conditions. Also, the combinations of
the chosen features were evaluated.

6.1.1 Augmented Reality

To create accurate and e�ective AR feedback, it is necessary to extract from
the remote environment as much information as possible, exploiting all the
available sensors. In the scenario presented in this work the available sensors
were an RGB-D camera and the robot’s joints encoders. Exploiting the
state of the art computer vision algorithms, it is possible to track the pose
of the target objects to be manipulated. The calibration between the robot
and the camera allows for co-locating the robot and the remote environment
by obtaining their exact relative poses. This information can be used as
an AR feature, because it is not directly inferable by humans owing to the
di�culty in perceiving distances accurately in a virtual scenario [85].

Di�erent types of augmented information were implemented. The fea-
tures can be categorized into two classes: Embodiment and Visual Vir-
tual Fixtures. These two categories of AR features were chosen, because
they are considered to be possibly the most informative ones to aid task
execution.
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(a) Embodiment. Image of the 1:1
scale model of the remote robot ani-
mated by the real robot’s movements.
The overlaid model allows to see the po-
sition of the robot limbs even if not in
the real camera view space. The pic-
ture shows the precise overlay of the 3D
model of the robot with the point cloud
from the 3D camera.

(b) Manipulation information. Blue
bar: gripper closure. Green bar: dis-
tance from target. Red beam: shortest
trajectory from the robot’s end-e�ector
to the bowl’s grasp point.

(c) Task information. In the target
pose a green 3D mesh of the task object
(bowl) is placed. The placement of the
object succeeds if the real bowl and the
green one perfectly match.

Figure 6.1: Three di�erent groups of AR features (a, b & c) used in the
experiment.
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Table 6.1: The implemented visual cues and the corresponding classes and
groups.

Class Group Feature
Embodiment - 3D Robot Model

Virtual
Fixture

Manipulation
Informa-
tion

Trajectory to the object grasping point (3D
beam) - Distance from the target object (color
bar) - Gripper closure (color bar) - Mesh of the
object to be grasped

Virtual
Fixture

Task Infor-
mation Objects Target Poses

The embodiment class comprises information that can help the operator
in improving the overall sensation of embodiment and illusion of presence.
In the setup used for this work, the embodiment class comprises two features.
The first feature enables the operator to explore the remote environment by
changing the virtual viewpoint with head and body movements. The second
and novel feature is a virtual 1:1 scale model of the remote robot that is
animated by the real robot’s movements (see Figure 6.1 a). This feature
allows the operator to see the position of the robot’s end-e�ector when it is
not visible in the camera’s field of view; besides, it helps the operator in
understanding the position of the robot in the remote environment.

The chosen visual virtual fixtures provide di�erent types of information,
which can be classified into two main sub-groups, according to the informa-
tion they deliver: Manipulation Information and Task Information.
The fixtures that belong to the Manipulation group (see Figure 6.1 b) deliver
additional information, relating to object manipulation, such as distances
from the object’s grasp points (green bar) and robot grip closure (blue bar).
They also include a red 3D beam representing, in real-time, the optimal
trajectory between the robot end-e�ector and the closest grasp point of the
object. The visual virtual fixtures that belong to the Task group are used to
highlight information relating to the task execution. They are characterized
by a green 1:1 3D mesh of the real object, placed in the task’s target pose
(see Figure 6.1 c). AR features that deliver information, relating to the
task execution, have been demonstrated to significantly reduce error rates
in assembly tasks [128].
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6.1.2 Implementation

The AR feedback component was developed using CoCo (see Chapter 3),
and SRGViz (see Chapter 4). CoCo component MeshReconstructor is used
to create a 3D mesh from camera streams and to augment it with additional
information. In particular, the first module receives and decompresses the
video and depth streams from the camera (StreamingReceiver). The RGB
channel is streamed (StreamingSerever) using H.264 compression (435kbps
on average) and the depth channel with zn16 compression from OpenNI2
(21Mbps on average). The second module (MeshReconstructor) reconstructs
a point cloud with interpolated points from the decompressed bu�ers. This
is done to enhance the quality of the mesh of the virtual scene. The third
module GLManager does the graphic rendering for the augmented scene.
The end-to-end latency of the visualization is 89ms, as computed after
synchronizing the robot and graphics computers with the Precision Time
Protocol (PTP) [32]. Sections 3.4.1 and 3.4.3 provide additional information
on the implementation of these CoCo components. The CoCo application
is run as ROS node so to be able to communicate with the robot. Figure
6.2 shows the overall system architecture.

On the operator’s side, a wearable device captures the movements of the
operator’s upper limb and his pinch grip position through inertial sensors
and a custom haptic device [57]. The raw sensor data was sent, via wireless,
to the main computational unit, where several ROS nodes reconstruct the
operator’s motion and combine it with the grip position to generate a control
signal for the teleoperated robot (Baxter Robot, Rethink Robotics, Boston,
Massachusetts, USA). On the remote robot side, the environment in which
the robot was acting was captured through a Kinect 360 camera (Microsoft,
Redmond, Washington, USA) placed on the top of the Baxter’s head, as
shown in Figure 6.5. The camera was not actuated and its field of view was
fixed with respect of the robot’s pose. From the captured point cloud, a
virtual scene was created, which was augmented by the main computational
unit with AR information coming from the ROS Control node. The visual
appearance of the robot model used in the embodiment feedback is based
on the URDF of the Baxter robot. The 3D AR scene was sent as a visual
feedback to the operator’s side and visualized with an HMD (Oculus Rift
DK2, Facebook, Menlo Park, California, USA). Further details about the
motion reconstruction algorithms, the HI and the control architecture can
be found in [92, 57].
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Figure 6.2: The system’s setup. On the operator’s side, the upper limb
motion and the grip position were captured through a wearable interface.
Operator’s motion was reconstructed and used together with the grip
position, to generate a control signal for the teleoperated robot. The remote
scene was captured and virtualized; AR information was added to the
virtual scenario, which can be visualized on the operator’s side as a 3D
visual feedback.

6.2 experiment setup

6.2.1 Participants

Twenty-two operators (16 male, 6 females), aged between 23 and 40 years, all
right-handed, participated in the study, after giving their informed consent
for participation. Their familiarity with AR and VR systems was assessed
through a written questionnaire, in which they were asked to state their
experience with AR/VR and in video games on a Likert scale (1 to 7), and
in terms of number of hours they spend on them per week. For this, they
were given the option of choosing between three answers: less than one
hour, between two and five hours, and more than five hours. Their answers
to the questionnaire are reported in Figure 6.3.

6.2.2 Experimental Protocol

The participants reported to the laboratory for a single experimental session.
Prior to the commencement of the session, they were asked to read a written
description of the experiment and then fill-in a questionnaire with answers
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(b) Questionnaire results of time spent

Figure 6.3: The results from the questionnaires regarding (a) the expertise
and (b) the hours spent weekly, interacting with AR/VR environments and
in playing video games. The answers were to be given on the Likert Scale 1
to 7 for the expertise, and 1 for less than one hour, 2 for two to five hours,
and 3 for more than five hours, time spent interacting weekly with AR/VR
and in playing video games.
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that enable assessment of their expertise. After mounting the wearable
interface, the participants were asked to perform a series of familiarization
trials, followed by experimental trials that involved performing remotely
a pick-and-place task of a given object by teleoperating the Baxter robot,
simulating the classical step of an industrial assembly task. The object
chosen for this task was a plastic bowl, which measured 16 cm in diameter
and 7cm in height. The reason behind choosing the bowl was it had radial
symmetry that helped in grasping without introducing any rotational error
while placing it. To normalize the task execution among the participants,
the starting and target positions of the bowl on the table were fixed. A
post-experiment questionnaire was used to assess the e�ects of the AR on
the participants’ experience during the experimental trials.

6.2.2.1 Familiarization

The familiarization trials were conducted for allowing the participants to
practice su�ciently so that they can perform the task correctly in its
entirety and minimize the e�ects of their learning during the experimental
trials. In particular, the participants had to perform the task of each trial
within the time frame given by the experimenters. This was done to ensure
prediction of the motion of the remote robot end-e�ector with respect to
the participant’s upper limb motion, control of the robot over the full
manipulation workspace and proper grasp and release of the remote object
with the remote robot gripper. The familiarization trials were performed
for approximately five minutes. During the first trial, the participants were
allowed to share the working space with the robot (i.e., without wearing the
HMD) and teleoperate it during several pick-and-place tasks. During the
second familiarization trial, the participants had to teleoperate the robot,
using the visual feedback (i.e., wearing the HMD) without AR information,
thus visualizing only the virtual remote scene. During familiarization, the
target object was the same as the one in the experiment, but the pick-and-
place locations were randomized. The participants performed the trials until
they and the investigators were confident that the task could be performed
in its entirety. Overall, the participants required 3-4 repetitions of the
pick-and-place trial to become proficient in executing the aforementioned
aspects of the task.
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6.2.2.2 Experimental Trials

The participants were required to perform the pick-and-place task of grasping
and moving the object as accurately as possible to its target pose. They
executed the task under five di�erent modalities of visual feedback: 1)
no AR information; 2) only AR information relating to the Manipulation
class, is visualized in the feedback; 3) only AR information, related to the
Embodiment group, is visualized; 4) only AR information, relating to the
Task group, is visualized; 5) full AR feedback (all the features relating to
Embodiment, Manipulation and Task are activated simultaneously). Figure
6.4 shows the remote scenario for the task, wherein the starting point (the
cross on the table) and the target point (the circular marker) are visible,
and the robot is grasping the target object. On the left is the virtual scene,
as displayed to the participants and on the right, the real environment.

Figure 6.4: The virtual and the real remote environments captured simul-
taneously. On the left is the 3D image, captured from the camera and
rendered in the HMD, and on the right is the same image from the real
environment. In both the images, it is possible to see the robot grasping
the target object (bowl), the starting position of the object (cross marker)
and the target position (circular marker).

To minimize the learning e�ect, the trial order was randomized. To
simulate the e�ect of non-co-location between the robot and the operator,
the operator was acoustically isolated from the environment and was asked
to teleoperate the robot over the Internet. For full experimental setup, see
Figure 6.5.

To assess the e�ects of various types of AR feedback, several variables,
relating to task execution performance and task execution modality, were
monitored. The task completion time and the accuracy of each placement
of the object were used as metrics for defining the execution performance.
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Figure 6.5: The full experimental setup. The participant teleoperate the
robot over the Internet and is acoustically isolated from the environment.
The robot-side environment is captured with an RGB-D camera and sent
to the operator as a 3D visual feedback through an HMD.

The accuracy was expressed in terms of the Euclidean distance between the
actual position and the target position; no orientation error was possible in
measuring this metric, because the object had radial symmetry.

Before the commencement of each task, the robot arm was moved to a
predefined rest position. For computing the completion time of the task,
the timer was so configured that it started as soon as the operator started
moving the arm to grasp the object, and stopped once the operator released
the object and the system tracked its pose.

The trajectories of eight operators’ right hands were also recorded
at 100Hz, which denotes the sampling frequency of the inertial sensors
(MPU9150, Invensense San Jose, California, USA) mounted on the wearable
device.
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6.2.3 Data Analysis

Analysis of the order e�ect was carried out to ensure that no learning e�ect
occurred, between successive trials. The data relating to completion time
and placement accuracy was grouped according to their trial order numbers,
and then compared, using one-way ANOVA. To quantify the di�erences
in the placement errors and execution times between the five AR feedback
modalities, all the distributions were first checked for normality, using the
Lilliefors test. Student’s t-test was used to test for the di�erences in mean,
when the resulting data was normally distributed, and Mann–Whitney
U-test, when the resulting data was non-normally distributed.

The smoothness of the participant’s right hand trajectory in the main
motion plane (x-y) was used as an indicator of skillfulness in the task
execution [120]. The e�ects of di�erent AR feedbacks, during the task, on
the smoothness of the trajectories were of particular interest.

The smoothness of the trajectory was defined as the normalized jerk
(Ĵ), a metric commonly used to determine smoothness:

Ĵ =

Û

1/2
⁄

t

j2(t)
D5

L2 dt. (6.1)

where D is the duration and L is the length of the trajectory. Low normalized
jerk is indicative of smooth trajectory, and a high jerk of a less-smooth
trajectory.

Owing to the complexity of the setup, execution anomalies (e.g., unex-
pected occlusion, grasp problems) may arise, which can drastically increase
the values of the variables of interest. With this in view and considering
the possible impact on the statistical analysis, it was decided to eliminate,
from each visualization modality, the participants with the maximum and
minimum performance scores, resulting in 20 participants per visualization
modality.

An additional analysis was performed, to take into account the e�ects
of training and personal experience, which are known to strongly a�ect the
performance of teleoperation tasks. This analysis was done by dividing the
participants into two groups according to their self-reported experience in
AR/VR and video games. The reported average hours spent weekly by
participants, in interacting with AR/VR environment and in playing video
games, were used to decide whether to insert them into the expert group (at
least two hours weekly) or non-expert group (less than two hours weekly).
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Table 6.2: All the measured times (in seconds) and errors (in meters)
are divided per participant, for each modality. Table also reports the
competency of each participant, plus the tested conditions order.

(1) (2) (3) (4) (5)
ID No AR Manipulation AR Embodiment AR Task AR Full AR Order Expertise

Time Error Time Error Time Error Time Error Time Error
1 56.0 0.0168 40.7 0.0132 32.4 0.0292 40.0 0.0251 37.6 0.0129 12345 None
2 54.5 0.0369 27.4 0.0227 118.8 0.0204 14.7 0.0124 48.1 0.0085 23451 AVR & Games
3 23.6 0.0103 24.8 0.0400 29.9 0.0351 22.4 0.0513 11.7 0.0206 34512 AVR
4 32.9 0.0144 54.5 0.0166 33.0 0.0243 35.1 0.0057 44.5 0.0597 45123 None
5 129.4 0.1041 31.7 0.0294 50.6 0.0250 33.3 0.0416 47.0 0.0232 51234 None
6 10.4 0.0408 13.1 0.0369 15.8 0.0847 32.8 0.0277 55.3 0.0667 54321 Games
7 26.4 0.0218 70.2 0.0074 33.3 0.0548 57.0 0.0903 15.4 0.0190 25134 None
8 125.4 0.0559 91.5 0.0163 43.9 0.0389 28.0 0.0195 28.5 0.0641 13524 AVR
9 81.8 0.0144 63.1 0.0914 39.5 0.0329 67.3 0.0495 32.3 0.0026 43215 None
10 38.1 0.0079 98.0 0.0327 44.8 0.0290 72.0 0.0325 30.9 0.0151 12543 None
11 28.2 0.0263 137.9 0.0293 53.0 0.0248 32.7 0.0285 34.4 0.0136 34251 AVR
12 47.4 0.0671 23.3 0.0180 20.8 0.0141 31.1 0.0253 24.7 0.0100 23154 None
13 25.0 0.0193 36.9 0.0389 31.8 0.0392 33.0 0.0175 19.7 0.0116 32514 Games
14 34.8 0.0694 16.5 0.0049 16.9 0.0146 16.3 0.0143 24.9 0.0285 21534 Games
15 38.5 0.0220 10.4 0.0183 25.9 0.0124 30.2 0.0064 32.8 0.0129 45132 None
16 32.8 0.0287 31.9 0.0200 32.0 0.0125 40.2 0.0256 24.9 0.0155 32154 None
17 37.9 0.0259 20.4 0.0248 33.8 0.0191 46.2 0.0068 25.5 0.0193 31245 None
18 30.9 0.0162 25.3 0.0113 60.4 0.0091 57.2 0.0148 41.1 0.0092 45123 AVR & Games
19 50.4 0.0244 41.6 0.0054 46.9 0.0147 96.1 0.0190 32.0 0.0205 43125 None
20 19.7 0.0236 27.5 0.0115 15.8 0.0194 16.1 0.0279 10.6 0.0051 23154 AVR & Games
21 30.6 0.0872 20.3 0.0134 27.9 0.0504 18.9 0.0239 18.0 0.0257 32154 None
22 20.7 0.0357 18.0 0.0114 27.6 0.0119 24.3 0.0236 27.0 0.0110 51432 AVR & Games

For each condition, the participants with the maximum and minimum scores
were removed from the two groups (expert and non-expert), creating thereby
18 participants for each AR modality.

Each test was considered significant at 95% confidence level (p Æ 0.05).
Statistical analysis and the trajectories’ analysis were performed using
algorithms implemented in Matlab R2015b (Mathworks Inc., Natick, Mas-
sachusetts, USA).

6.3 results

6.3.1 Order E�ect Analysis

The results show no statistical di�erence either in completion time (p =

0.3187) or in accuracy (p = 0.3688) among di�erent trials. It is, there-
fore, plausible to assume statistical significance although not all possible
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Figure 6.6: Results for the variables, relating to task execution without
considering expertise (20 participants per boxplot): (a) Accuracy for di�erent
AR feedback modalities, together with significance results. (b) Execution
time for di�erent AR feedback modalities, together with the significance
results.

combinations of visualization modalities were tested.

6.3.2 Task Execution

Significant group di�erences were found in the parameters relating to task
execution (placement accuracy and execution time) among the five modali-
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Figure 6.7: Results for the smoothness of the participants’ hand trajectory.
The values of the normalized jerk for the di�erent AR feedback modalities
together with the significance results are shown. Each boxplot depicts the
statistics of the 8 participants for which this information is reliably available.

ties of AR feedback, when the analysis is performed on all the 20 participants
without accounting expertise. Lilliefors test shows that both Execution
Time and Accuracy results are normally distributed. The accuracy obtained
during the task execution, with full AR feedback, is significantly higher
(p = 0.0058) than the one obtained during the task execution with no
AR feedback, as also the one obtained with the AR features relating to
embodiment (p = 0.0344). The accuracy obtained during the task exe-
cution with AR features, relating to manipulation, is significantly higher
(p = 0.046) than the one obtained with no AR feedback. The time required
to complete the task with full AR feedback is significantly lower (p = 0.04)
than the time required with no AR feedback. These statistics, together with
the significance results, are shown in Figure 6.6. Figure 6.6 a shows the
results for accuracy, and 6.6 b the results for the execution time (ú

p Æ 0.05,
úú

p < 0.01).

6.3.3 Trajectories Analysis

Significant group di�erences are found in the smoothness of the participant’s
hand trajectory between the five modalities of AR feedback. Particularly,
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Figure 6.8: The reported e�ects of di�erent AR classes on (a) the sense of
presence, (b) embodiment and (c) the ease of executing the task. The values
from the questionnaires results (from 1 to 7), together with the significance
results, are shown here. Each boxplot depicts the statistics for all the 22
participants. 130
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Figure 6.9: Task execution time of the expert and non-expert groups for
(a) AR/VR and (b) video games, based on the participants’ partitioning,
after removing the outliers from each group. Each bar is associated with a
participant, with 18 participants per condition. Significance of the compari-
son between experts and non-experts for each AR condition is shown with
black asterisks. Colored asterisks represent statistical significance of the
comparison of di�erent conditions, the expertise group being equal. The
bars were sorted, based on execution time, to improve visualization.
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the normalized jerk on the x-y plane, obtained during the task execution
with AR features relating to embodiment, is significantly lower (p = 0.002)
than the one on the x-y plane, obtained with no AR feedback, with AR
feedback relating to the task information (p = 0.002), or with full AR
feedback (p = 0.029). The normalized jerk on the x-y plane, obtained during
task execution with AR features relating to manipulation is significantly
lower (p = 0.027) than the one on the x-y plane, obtained during the task
execution with no AR feedback or with AR feedback, relating to the task
information (p = 0.009). These statistics, together with the significance
results, are shown in Figure 6.7 (ú

p Æ 0.05,úú
p < 0.01).

6.3.4 Questionnaires Results

Significant group di�erences are found in the reported e�ects of di�erent
AR feedback classes on the participant’s sense of acting in the remote
environment, of embodiment and on the ease of task execution. Particularly,
the AR features relating to manipulation, have a significantly stronger
e�ect (p = 0.024) on providing the sense of presence in the remote en-
vironment, as compared to that of the task-related AR feedback. The
virtual robot model has a significantly stronger e�ect on enhancing the
illusion of the embodiment towards the remote robot, as compared to that
of the manipulation-related features (p = 0.044) or the task-related fea-
tures (p = 0.02). The manipulation-related features are more e�ective
than the task-related features in facilitating task execution (p = 0.0138).
These statistics, together with significance results, are shown in Figure 6.8
(ú

p Æ 0.05,úú
p < 0.01).

6.3.5 Expertise Analysis

The partitioning of the 22 participants, based on their expertise, resulted
in 7 expert participants and 15 non-expert participants in AR/VR and in 7
expert participants and 15 non-expert participants in Video Games. These
two expertise types have 4 participants in common.

The expertise types were analyzed separately and then compared in
terms of expert vs non-expert groups. As discussed in Section 6.2.3, the
analysis was performed over 18 participants, after removing the outliers
from both expert and non-expert sub-groups for every condition.
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Figure 6.9 shows the results of the four groups’ completion time as a bar
chart. Each column is associated with a participant and is grouped, based
on visualization modality and expertise. To improve visualization, the bars
in the chart are sorted group-wise, without altering the data semantic.

6.3.5.1 AR/VR

The expert group completed the task in significantly less time than the
non-expert group during the task execution with no AR feedback (p = 0.05)
or with AR features, relating to the task information (p = 0.003). In
terms of the execution time, significant di�erences are found among the
AR/VR games non-expert groups with di�erent AR feedback modalities.
In particular, the time required to complete the task with full AR feedback
is significantly less than the time required with no AR feedback (p = 0.008)
or with the AR features, relating to the task information (p = 0.015).

Significant group di�erences are found, in terms of the execution time,
among the AR/VR expert groups with di�erent AR feedback modalities.
In particular, the time required to complete the task with the AR features
relating to task information is significantly lesser (p = 0.027) than the time
required to complete the task with the AR features relating to embodiment.

Figure 6.9 a shows the results, as also their significance, for comparison
of the execution time between AR/VR experts and non-experts (ú

p Æ 0.05,
úú

p < 0.01).

6.3.5.2 Video Games

The expert group completed the task in significantly less time than the time
taken by the non-expert group for the task execution with no AR feedback
(p = 0.007), with AR features relating to manipulation (p = 0.022) or with
AR features relating to task information (p = 0.017).

Significant group di�erences are found in terms of the execution time,
among the video games non-expert groups with di�erent AR feedback
modalities. In particular, the time required to complete the task with full
AR feedback is significantly less than the time required no AR feedback
(p = 0.003), with AR features related to embodiment (p = 0.02) or with
AR features relating to task information (p = 0.017). In terms of accuracy,
no significant group di�erences are found between the two groups.
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Figure 6.9 b shows the results, as also their significance, for comparison of
the execution time between video games experts and non-experts (ú

p Æ 0.05,
úú

p < 0.01).

6.4 discussion

The experiment revealed some di�erences between the AR feedback modali-
ties, which possibly answer the research questions of this work. The AR
e�ects were quantified in terms of placement error of the manipulated object,
task completion time and smoothness of the hand trajectory.

6.4.1 AR E�ects

Overall, the participants showed, using the full AR feedback, significant
improvement in execution, in terms of both placement error and completion
time, as compared to their execution without AR feedback. According to
the participants’ judgment, the robot model is the most e�ective AR feature
in improving the illusion of embodiment. Information like the target object
position, the robot end-e�ector position or the distance between the robot
end-e�ector and the target position can be lost during the execution, due to
technological constraints (i.e, low resolution, non-optimality of the camera
positioning and view point), and according to the experiment’s result, all
the features that focus in compensating this loss tend to lead to a more
skillful and sure execution. The motivation for this result may depend on
the autonomic responses connected to the improved sense of presence and
improved sense of embodiment.

Interestingly, the AR features relating to embodiment gave better exe-
cution results with smoother trajectories than the full AR feedback (Figure
6.7). This possibly indicates that high degree of additional information
added to the scene may lead to an execution that could be more accurate,
but more unsure from motion view point. This is probably because the
operator could have taken into account too much information in one go,
during task execution.

The features delivering information about the task execution seem to
have negligible impact on task performance. Moreover, compared to the
manipulation-related features, these features contributed less to the sense
of presence and to task execution, according to the participants’ judgment.

134



This result is not in line with the finding of previous workers about the
use of task-related features, which are usually found to improve the task
performance [128]. However, the scenario they considered did not regard the
teleoperation of a robot. These results may also be partially influenced by
the chosen task, which does not have a particularly complex or articulated
execution. The fact that execution with task-related features is comparable
to execution without AR features is further strengthened when the results
are evaluated considering the previous expertise of the participants. Both
the groups, who are considered experts in AR/VR, as well as in video games,
performed better than their non-expert counterparts in both no AR and
only task related information modalities. The performance of non-experts
under these two modalities is worse (in terms of completion time) than
their execution performance with full AR feedback. The completion time of
non-experts in AR/VR is higher when they used no AR information than
when they used the full AR feedback using task-related features compared
to the full AR feedback. The completion time of non-experts in video games
is higher when they used no AR information than when they used the full
AR feedback; it is similarly higher when they used task-related features
than when they used the full AR feedback.

6.4.2 Expertise E�ects

Interestingly, the expert gamers completed the task in lesser time than did
the non-expert gamers, even when the AR feedback relating to manipulation
information was available. This may be because the video gamers are more
proficient at utilizing and relying on synthetic visual cues. This di�erence
is lost with full AR feedback, which can improve the non-expert groups’
performance, and thus level out the di�erence between experts’ and non-
experts’ performances.

Overall, the expert groups were less a�ected than the non-expert groups
by the presence and by the modality of the AR feedback. This finding is in
line with that of Gwilliam et al. [58]. The di�erence between the e�ects
of AR for the expert gamers is not statistically significant, but that in the
completion time between the executions with embodiment-related features
and task-related features for the experts in AR/VR is statistically significant.
This could be because the experts are more proficient at performing tasks
in a virtual scenario by virtue of their more skillfulness. It is plausible to
assume that the experts already developed skills relating to virtual scenarios,
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such as judging distances and finding e�ective strategies of motion. In this
regard, AR emerges as a useful tool to assist the first time operators and
less skilled operators in executing assembly tasks.

6.5 conclusion

Although the performance of teleoperation tasks with complex visual feed-
back is strongly a�ected by the operator’s skill and expertise, additional
information delivered with AR seems to help in reducing the gap between
the performance of expert and non-expert operators. Therefore, AR could
help in shortening the learning curve, so that the operators become proficient
in the teleoperation setup and can thus perform better with just a short
familiarization program with the system. These results may be attributed
to the increased sense of presence and embodiment, which benefit from the
additional information that can be lost because of technological constraints,
but recovered and delivered through AR. The practical implication of these
results is that, AR feedback, limited to task specific information, can be
useful in supporting expert operators’ activity, and full AR feedback in
supporting non-expert operators’ activity.

Further studies are necessary to fully assess the e�ects of task-related AR
features on task performance. Those studies may require experimental trials
with more complex and articulated tasks, which possibly involve multiple
execution steps. The outcome of the present work would hopefully facilitate
future studies about the e�ect of AR on the learning curve of teleoperation
tasks.
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7
C O N C L U S I O N S

The presented work investigated the challenges faced while developing vir-
tual and augmented reality applications for human machine interaction
scenarios. The main technological challenges faced when developing AR
and VR applications for HRI can be grouped in three areas: components or-
chestration, reference systems management and choice of the best graphical
feedback and of the user interface.

The first purpose of this work was to investigate the requirements of
AR/VR applications in telemedicine and general HRI. In particular, we
wanted to understand what was already available in the literature, and
what, instead, needed to be studied and developed.

An AR application is composed of several components running in parallel
and exchanging data. These components ranges from devices’ drivers and
tracking algorithms, to graphics rendering and physic simulation. More
tasks are needed when coupling AR with HRI, like haptic rendering or
telecommunication. For most of these tasks it is possible to find a mature
state of the art that provides reliable software and algorithms. What we
found missing was a tool that reliably and e�ciently allowed to connect
together and orchestrate all these components (C1).

To overcome these limitations we investigated the main existent robotic
middleware frameworks, namely ROS and Orocos, to understand which
were their strengths and weakness. From this analysis came out that there
was deficiency in the available platforms. ROS is easy to use, has fast
prototyping capabilities and a huge community that shares code and ap-
plications. It allows to create distributed application, and has strong and
reliable serialization. On the other side ROS doesn’t allow to optimize for
performance, as there are no easy way to improve or optimize communi-
cations between tasks that always rely on TCP/IP. This becomes a huge
problem when dealing with images that can be very big, or with haptic data
that has high frame rate. The Orocos framework instead supports hard
real-time execution of tasks, but only in special Linux kernels, and it is not
as flexible as ROS. AR applications need only soft real-time guarantees,
making Orocos an overkilling solution (C2).

138



The middleware we needed was something in between, which is capable
to provide the flexibility of ROS and as performance oriented as Orocos.
Starting from this consideration we designed a new C++ framework that
could fill the missing requirements we needed. The design then led to
the implementation of the CoCo library. CoCo provides support for the
implementation of independent components that can communicate and
run according to several policies. The library is optimize for performance,
while providing easy and fast prototyping. It is implemented exploiting
the latest features of C++ and is very lightweight, allowing the integration
with any third-party software (C3). CoCo allows for fast reconfigurability,
portability and abstraction as ROS, while it exploits the shared-memory
multi-thread approach of Orocos to provide an e�cient communication
system. It has been tested in several applications, also within the European
projects ReMeDi (grant number 610902) and Ramcip (grant number 643433),
and the Italian Regional project TAUM. In all these cases CoCo has proven
the ability to handle many concurrent components and to interface with
third-party software and devices. Given the strong importance of ROS in
the robotic community, CoCo has a built in support for ROS that allows it
to work with any pre-existing software built for the robotic framework.

The second challenge regards the management of transformations and
reference systems. CoCo was not enough to create complex AR applications,
in particular when binded to robotic devices, as this introduces the additional
complexity of managing reference systems in an unified way. Several software
exists to handle transformation graphs, calibration of di�erence sensors and
management of uncertainty in measurements. But, as for the middleware,
no library allows to manage all of these problems at the same time. For this
reason we have implemented a new library, called SRGViz, that exploits the
state of the art for each single problem in an unified approach. The library
does not only allow to query and update a transformation graph, but also
provides support for calibration and fusion. This greatly simplifies the setup
of an AR application and the registration of cameras with robotic devices.
The library allows to calibrate multiple sensors on the fly while executing
the final application. This saves a lot of time because users don’t need to
launch multiple programs to have their application running. The library
is also very lightweight, allowing it to be embedded in any application. In
addition, it provides support for ROS data types and transformation file
format, so to be fully compliant and integrable with any existing software
(C4).
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The last challenge to face was to understand how to use the CoCo and
SRGViz library to create the best possible AR application that could provide
beneficial feedback to the users. The tackled scenarios were telemedicine
and teleoperation in industrial scenarios. These two scenarios represent the
ones where AR can have the greatest impact in HRI, and are also the most
studied. In the case of tele-medicine we had the specific task of creating
two user interfaces that could allows doctors to control a remote robots to
perform palpation and USG examinations.

The approach chosen for palpation was to create a DiagUI composed
of an horizontal screen, displaying the remote scene, and a haptic device
placed below it. An encountered type control is used for the haptic device,
so to allow doctors to move their hands freely. The hands are tracked by
a Leap Motion device and their pose is used to control the haptic device
position. AR is used to display a synthetic hand in the video feedback,
as doctors cannot see their hands. In addition, given that we didn’t have
access to a remote robot to perform the palpation, the evaluation of the
setup was performed doing haptic rendering on the remote image of the
patient coming from a depth camera. CoCo has been used to implement the
streaming, the AR, the haptic feedback and the devices drivers. SRGViz
helped for the transformation management and the calibration of all the
sensors (C5).

For the USG examination setup, instead we implemented a VE to test
and evaluate the haptic device chosen to perform the teleoperation. The VE
was needed as we didn’t have access to the remote robot. The VE contained
a mesh of a mannequin obtained from 3D scanning, together with a 3D
model of the human ribs. The ribs where used to calculate the interaction
between the virtual probe and the mannequin. The setup was tested with
doctors to evaluate various visualization modalities, as 2D screen, 3D screen
and HMD, and also di�erent navigation approaches for the device (C5).

The work on the teleoperation application for industrial tasks was carried
out to analyze the use of AR to improve task accomplishment, reduce the
learning curve and reduce the e�ort of the operators. The chosen task was
the teleoperation of a humanoid robot through a wearable suit that tracks
the user’s arm movements. The user needed to perform a pick and place
operation of a given object, while viewing the remote scene via an HMD
displaying the images coming from a Kinect camera mounted on the robot’s
head. We proposed three types of AR features and we tested them in
isolation and all together to evaluate their e�ectiveness. The features were
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both task-related and non-task related. Our purpose was also to evaluate
how di�erent types of AR features impact the operator’s experience and
performance. In addition, we wanted to understand the extent to which
excessive visual information can be detrimental, and evaluating the non-task
specific AR features. The results from the evaluation show that AR e�ects
strongly depend on the operator’s skill and expertise. However, AR allows to
reduce the gap between the performance of expert and non-expert operators.
Therefore, AR could help in shortening the learning curve allowing operators
to perform better with just a short familiarization phase with the system.
These results may be attributed to the increased sense of presence and
embodiment, which benefit from the additional information that can be lost
because of technological constraints, but recovered and delivered through
AR. The practical implication of these results is that, AR feedback, limited
to task specific information, can be useful in supporting expert operators’
activity, and full AR feedback in supporting non-expert operators ’ activity.
Further studies are necessary to fully assess the e�ects of task-related AR
features on task performance. Those studies may require experimental trials
with more complex and articulated tasks, which possibly involve multiple
execution steps. The outcome of the present work will hopefully facilitate
future studies about the e�ect of AR on the learning curve of teleoperation
tasks (C6).

The contribution of this thesis represents an attempt to further improve
the development of AR application for HRI scenarios, in particular for
telemedicine and teleoperation in industrial task. The underlying idea is
to relieve the burden of low level complexity from the developer, so that
they can focus on the study of the specific components. On top of that,
we also started to analyze exemplary scenarios, in order to understand
which are the requirements and the guidelines that can be followed when
implementing AR for HRI.

141



Appendix

142



A
L I S T O F P U B L I C AT I O N S

conference papers

• Lorenzo Peppoloni, Filippo Brizzi, Carlo Alberto Avizzano, and
Emanuele Ru�aldi. “Immersive ros-integrated framework for robot
teleoperation”. In: 3D User Interfaces (3DUI), 2015 IEEE Symposium
on. IEEE. 2015, pp. 177–178

• Emanuele Ru�aldi, Alessandro Filippeschi, Filippo Brizzi, Juan Manuel
Jacinto, and Carlo Alberto Avizzano. “Encountered haptic augmented
reality interface for remote examination”. In: 3D User Interfaces
(3DUI), 2015 IEEE Symposium on. IEEE. 2015, pp. 179–180

• Emanuele Ru�aldi, Filippo Brizzi, Alessandro Filippeschi, and Carlo
Alerto Avizzano. “Co-located haptic interaction for virtual USG ex-
ploration”. In: Engineering in Medicine and Biology Society (EMBC),
2015 37th Annual International Conference of the IEEE. IEEE. 2015,
pp. 1548–1551

• Lorenzo Peppoloni, Filippo Brizzi, Emanuele Ru�aldi, and Carlo
Alberto Avizzano. “Augmented reality-aided tele-presence system for
robot manipulation in industrial manufacturing”. In: Proceedings of
the 21st ACM Symposium on Virtual Reality Software and Technology.
ACM. 2015, pp. 237–240

• Alessandro Filippeschi, Filippo Brizzi, Emanuele Ru�aldi, Juan Manuel
Jacinto, and Carlo Alberto Avizzano. “Encountered-type haptic inter-
face for virtual interaction with real objects based on implicit surface
haptic rendering for remote palpation”. In: Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE.
2015, pp. 5904–5909

• Emanuele Ru�aldi and Filippo Brizzi. “Coco-a framework for multi-
core visuo-haptics in mixed reality”. In: International Conference on
Augmented Reality, Virtual Reality and Computer Graphics. Springer
International Publishing. 2016, pp. 339–357

143



• Emanuele Ru�aldi, Filippo Brizzi, Franco Tecchia, and Sandro Bacinelli.
“Third point of view augmented reality for robot intentions visualiza-
tion”. In: International Conference on Augmented Reality, Virtual
Reality and Computer Graphics. Springer International Publishing.
2016, pp. 471–478

• Emanuele Ru�aldi, Filippo Brizzi, Giacomo Dabisias, and Giorgio
Buttazzo. “SOMA: an OpenMP toolchain for multicore partitioning”.
In: Proceedings of the 31st Annual ACM Symposium on Applied
Computing. ACM. 2016, pp. 1231–1237

journal papers

• Emanuele Ru�aldi and Filippo Brizzi. “Probabilistic Spatial Relation-
ship Graph for Mixed-Reality Tele-Operation Systems”. In: IEEE
Transactions on Robotics (2017). Paper to be submitted

• F. Brizzi, L. Peppoloni, A. Graziano, E. D. Stefano, C. A. Avizzano,
and E. Ru�aldi. “E�ects of Augmented Reality on the Performance of
Teleoperated Industrial Assembly Tasks in a Robotic Embodiment”.
In: IEEE Transactions on Human-Machine Systems PP.99 (2018),
pp. 1–10. issn: 2168-2291. doi: 10.1109/THMS.2017.2782490

• Alessandro Filippeschi, Filippo Brizzi, Emanuele Ru�aldi, Juan Manuel
Jiacinto Villegas, and Carlo Alberto Avizzano. “Diagnostician Hap-
tic Interface Study for Tele-Echography Examination Feasibility”.
In: IEEE Transactions on Human Machine System (2017). Paper
resubmitted as new

144

https://doi.org/10.1109/THMS.2017.2782490


B I B L I O G R A P H Y

[1] Alireza Abbasi Moshaii and Farshid Najafi. “A review of robotic
mechanisms for ultrasound examinations”. In: Industrial Robot: An
International Journal (2014).

[2] Purang Abolmaesumi et al. “Image-guided control of a robot for
medical ultrasound”. In: TRO 18.1 (2002), pp. 11–23.

[3] Jérémie Allard, Valérie Gouranton, Löıck Lecointre, Sébastien Limet,
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[60] Christoph Hertzberg, René Wagner, Udo Frese, and Lutz Schröder.
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