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1 Introduction  
1.1 The Era of Touch 
Touch plays a key role in human interaction with the surrounding 
environment by encoding information about properties such as 
temperature, pain, force, pressure, texture and shape detection. 
Information arises from the multiple receptors available within the 
human skin, in particular in hands and fingers, [1], [2]. Tactile sensing 
supports most of the manipulation tasks such as object handling, 
grasping, controlling and many other associated tasks, [3]. 
Furthermore, tactile sensing allows determining, by means of 
contact, objects physical properties. During manipulation, the hand 
partially occludes the object from sight. Thus, tactile sensing allows 
to obtain measurements in areas that are inaccessible through vision. 
Prior behavioural studies have demonstrated the tactile reliance of 
human manipulation, for both simple grasping and dexterous 
manipulation. Artificial tactile sensors should be able to measure 
contact conditions such as force and location and to retrieve related 
geometrical information. The fields of application of tactile sensing 
include prosthetics, [4]–[6], medicine, [7], dentistry, [8], minimally 
invasive surgery, [9], augmented and virtual reality, [10], [11], 
telepresence, [12], [13], mechatronics, [14] and robotics, [15]–[17]. 
Providing a tactile feedback is essential in order to perform 
manipulation tasks autonomously or to retrieve interaction 
information, [18]–[20]. 

1.2 General aim of the Thesis 
The scientific challenge of this PhD thesis is to devise new tactile 
sensors and haptic interfaces, identifying innovative solutions in 
terms of design and development, exploiting them for applications in 
different biorobotics fields such as: medical robotics, wearable 
technologies, collaborative robotics, neuroscience robotics, 
rehabilitation robotics and implantable technologies. Touch is deeply 
involved and highly relevant in Biorobotics applications that rely on 
tactile information as main communication channel, such as surgical 
robotics, prosthesis, telepresence and collaborative robotics.   
Several aspects have been taken in account in order to find novel 
solutions going beyond the state-of-the-art. In particular, such thesis 
contributes to the fields of touch for biorobotics application with soft 
tactile sensors, tactile sensing through mechatronic platform and 
haptic interfaces for telepresence. The research work that was 
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performed within this topic during the PhD program of the candidate, 
is presented in this thesis dividing it in three main sections 
concerning:  i) Optical sensing solution for soft tactile sensor array, ii) 
Tactile sensing through mechatronic platform for medical 
applications and iii) Haptic feedback for medical telepresence 
applications.  

The Section 1 is further divided in three case studies that explain the 
use of embedded optical fibers as sensing elements in soft tactile 
sensors, in particular focusing on the Fiber Bragg Grating (FBG) 
technology. Thanks to their characteristics such as flexibility, 
electromagnetic immunity, high sensitivity, light weight, multiplexing 
and distributed sensor capabilities, optical sensing technologies can 
be considered as an good alternative to conventional transducers. In 
Section 1.1 after a short explanation of the transduction principle, it 
is explained the design and development of a novel soft tactile 
sensors array able to solve both contact location and force. Such a 
sensor has been characterized through a mechatronic platform with 
4 degree of freedom (X-Y-Z and Rotation) developed to perform 
automatic force-controlled indentation throughout the sensor 
surface. The promising results obtained from this soft sensor paved 
the path for the development of new tactile sensors (based on the 
same concept and technology) that were integrated onto a robotic 
hand for tactile sensing and control of the robotic manipulator 
(Section 1.2) and on a custom human-like robotic forearm to mimic 
the human skin (Section 1.3).  

Section 2 of this thesis deals with the development of a mechatronic 
platform, which was also adopted to characterize the soft sensor 
described in Section 1.1. Such a robotic platform was used for 
detection of nodules in anatomopathological analyses via force and 
ultrasound measurements (Section 2.1) and for the experimental 
evaluation of the fingertip of a biomimetic finger able to reproduce 
the tactile feedback as the one provided by the spiking activity of 
human mechanoreceptors (Section 2.2). Three motorized 
translational stages ensured the motion of the sensor along X-Y-Z 
axes, while a motorized rotational stage ensured the rotation along 
one of the axis. A probe, with varying diameter depending on the 
application, was used to indent the sample. A load cell mechanically 
linked to the indenter, was employed to collect data about the force 
arising from the contact between sensor and probe. Moreover, such 
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a load cell was responsible of the trigger generated upon reaching 
the threshold value (FMAX) used to pilot the indentations. 

The last Section (Section 3) of this thesis refers to the development 
of an haptic interface based on a piezoelectric transducer embedded 
in a soft polymer to deliver vibro-tactile feedback in telepresence 
conditions. Section 3.1 presents the design, fabrication procedure 
and characterization for the developed vibro-tactile haptic 
transducer with polymeric encapsulation. In Section 3.2 we present 
a tactile telepresence system for real-time transmission of 
information about object stiffness to the human fingertips. 
Experimental tests were performed across two laboratories (Italy and 
Ireland). In the Italian laboratory, a mechatronic sensing platform 
(the same mentioned in previous Section 1 and 2) indented different 
rubber samples. Information about rubber stiffness was converted 
into on-off events using a neuronal spiking model and sent to a vibro-
tactile glove in the Irish laboratory. Moreover, going further in this 
direction, in Section 3.3 we present a tele-palpation apparatus that 
enables the user to detect nodules with various distinct stiffness 
buried in an ad-hoc polymeric phantom for medical applications. 

In the present thesis, the candidate exploited different aspects 
related to the touch area with different approaches, that are 
connected between them through the design and development of a 
robotic platform. The proposed platform has been used for detection 
of nodules in anatomopathological analyses (Section 2), for 
characterization of the human-like soft skin (Section 1) and for the 
telepresence applications (Section 3). 
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1 Optical Sensing Solution for Soft Tactile 
Sensor Array 

1.1 A Machine-Learning-Based Approach To Solve Both 
Contact Location And Force In Soft-Material Tactile 
Sensors1 

1.1.1 Framework 
Tactile sensing allows determining, by means of contact, objects 
physical properties. Touch plays a key role in human interaction with 
the surrounding environment by encoding information about 
properties such as temperature, pain, force, pressure, texture and 
shape detection. Information arises from the multiple receptors 
available within the human skin, in particular in hands and fingers, 
[1], [2]. Moreover, tactile sensing supports most of the manipulation 
tasks such as object handling, grasping, controlling and many other 
associated tasks, [3]. Artificial tactile sensors should be able to 
measure contact conditions such as force and location and to retrieve 
related geometrical information. The fields of application of tactile 
sensing include prosthetics, [4]–[6], medicine, [7], dentistry, [8], 
minimally invasive surgery, [9], augmented and virtual reality, [10], 
[11], telepresence, [12], [13], mechatronics, [14] and robotics, [15]–
[17]. Providing a tactile feedback is essential in order to perform 
manipulation tasks autonomously or to retrieve interaction 
information, [18]–[20]. 

Conventional tactile sensors are usually built using inflexible and 
relatively stiff materials, that limit their capacity to deform or to 
adapt their shapes to external constraints. Regardless of their high 
resolution or precision, such sensors tend to be functional only in a 
specific domain. The emerging class of soft materials, which includes 
deformable components such as gels, polymers and fluids, 
represents a solution for the increasing demand of flexibility, [21]–
[24]. Nowadays, state-of-the-art provides evidence of development 
of soft tactile sensors used in several applications, [25]–[30]. Next 
soft tactile sensor generations will be able to change configuration 

                                                           
1 This section has been excerpted from the paper, [280], that is under 
review in an international scientific journal, with the PhD candidate 
being first author of the study.  
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depending on the surface where they are attached. Along this trend, 
in this work we adopt a soft material to realize a flexible tactile 
sensor. The transducer has to be flexible as well, so as to be 
integrated in the soft matrix. Among all the available technologies, 
optical fibers can successfully meet the aforementioned 
requirements. The use of optical fibers as sensing elements in tactile 
sensors is growing fast thanks to their characteristics such as 
flexibility, electromagnetic immunity, high sensitivity, light weight, 
multiplexing and distributed sensor capabilities, [31]–[34]. Such 
sensors can be considered as a good alternative to classic sensors to 
measure mechanical variables. Indeed, optical fibers have been used 
with promising results in different scenarios, such as smart textiles, 
[35], automotive, [36], medicine,  [37], and civil engineering, [38]. 
Fiber optic-based sensors can be developed in different ways 
depending on the adopted working principle, for example: hybrid 
optoelectronic, [39], micro and macro bending [40], [41], 
interferometry, [42], and Fiber Bragg Grating (FBG) sensors, [43]–
[45]. The latter technology was chosen for our sensor, due to its 
reliability in measuring strain and capability to use a single fiber for 
reading information from multiple transducers, via wavelength 
separation, [46]–[52]. State-of-art on FBG technology gives evidence 
of different scenarios. Typically such gratings are used as elongation 
sensors leveraging the axial deformation of the gratings, with 
illustrative applications including cardiac and respiratory monitoring, 
[53] structural monitoring of bridges, [54] and tissue palpation in 
minimally invasive surgery, [44]. Moreover, FBGs have been 
successfully used also for the development of tactile sensors, [55]. In 
this work we present a soft tactile sensor based on FBG sensing 
elements that, compared to related works, [45]–[48], [52] shares the 
idea of embedding the optical fiber inside a soft polymer that 
mediates loads applied to the buried FBGs. Amongst the available 
soft materials we chose to adopt Dragon Skin 10 medium (Smooth-
on, USA ) due to its low delamination and high flexibility, and 
investigated its behaviour with the developed FEM numerical model. 
Within this paper we intend to measure the force and, 
simultaneously, to locate the point of contact between the sensor 
and the objects. Accurate detection of both variables is crucial for 
many applications and it is still an open research topic. We defined 
the force range (up to 2.5N), by considering gentle touch tasks like 
those typically occurring in fine manipulation activities, [13], [56]–



9 
 

[59]. Moreover, we advance the state of the art by proposing a 
model-based calibration to obtain the sensor inverse function using 
machine learning. A neural network for force coding of a tactile 
sensor based on Fiber Bragg Grating was proposed by Saccomandi et 
al., [45] whereas, differently from this work, the training set was 
retrieved exclusively from experimental data and there was no 
indentation localization Provided that the model is accurate, this 
approach can significantly reduce individual calibration requirements 
of soft tactile sensors and the time to market, enhancing their 
industrial impact. In particular, a Finite Element Model (FEM) 
simulation of the sensor has been employed to generate a huge set 
of data to train a neural network, later validated through 
experimental data, and thus getting the inverse function from the 
sensor output, namely the load amplitude and position. Moreover, 
the numerical model has been used to study the variation in the FBGs 
output as consequence of changes of design parameters such as the 
thickness of the soft encapsulating material, in searching the optimal 
trade-off between sensitivity and receptive field. Our investigation 
on the effect of thickness complements the study recently published 
by Lun et al., [60] focused on shape sensing. 

The present work is organized as follows: in the Materials & Methods 
Section, we present the sensor design followed by the numerical 
model and the adopted constraints. Then, a brief description on the 
FBG working principle and its application to our sensor is given. Both 
numerical and experimental results, discussion and concluding 
remarks are presented in the Results & Discussion Section: model 
simulation, experimental data, comparison between model and 
experimental data and neural networks results. 

1.1.2 Materials & Methods 
DEVELOPMENT OF SOFT SENSOR INTEGRATING FBG TRANSDUCERS 
The sensor was fabricated by embedding an optical fiber throughout 
a soft polymeric matrix in order to obtain a thin and flexible pad, 
leading to sensors that could be easily wrapped, embedded or 
attached onto a specific surface. 

A Fiber Bragg Grating (FBG) is a microstructure with a typical length 
between 1 mm and 24 mm inscribed in the core of a single mode 
optical fiber. The realization process is based on the transverse 
illumination of the fiber with an ultraviolet laser beam and the 
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generation of an interference pattern in its core through a phase 
mask. Therefore, a resonant structure is created by means of a spatial 
periodic modulation of the refraction core index. When a light source 
is injected into the optical fiber, generally with an optical 
interrogator, the FBG acts as a narrow band filter: part of the light is 
transmitted and goes through the fiber, while another narrow part is 
reflected back. Such a reflected spectral segment is centred around 
the Bragg wavelength (λB) and it is defined by the effective refraction 
index (𝑛eff) of the fiber core and the grating period (𝛬B) as in Equation 
1: 

𝜆B = 2 𝑛eff 𝛬B 
(1) 

 
FBGs are sensitive strain, that leads to variations of λB. One of the 
biggest advantages of FBGs is the possibility to add multiples gratings 
in a single optical fiber, provided that a constraint is respected: all the 
reflected wavelengths need to be different, thus avoiding 
overlapping and consequentially data loss from one or more gratings. 
The chosen optical fiber (DTG’s In Reduced Cladding Fibers, FBGS, 
Geel, Belgium), 115 µm of diameter, housed 4 FBGs, placed along its 
length in selected slots. Each grating was 8 mm long and spatially 
coupled with the adjacent FBG providing a short interval (centre to 
centre) of 12 mm (d) between FBG1-FBG2 and FBG3-FBG4, and a long 
interval of 48 mm (3d) between FBG2-FBG3 (Figure 1A). FBG1 and 
FBG2 were placed at a short distance (d) to evaluate the crosstalk 
between close adjacent gratings. Then a longer distance (3d) was set 
between FGB2 and FBG3 so to evaluate the relationship between 
material thickness and sensors positioning with respect to combined 
force-position measurement accuracy. Furthermore, the fourth 
grating (FBG4) was added for obtaining a symmetric configuration 
(FBG1-FBG2 versus FBG3-FBG4) that was also functional for 
investigating reproducibility in a single setup. The following nominal 
reflected wavelengths have been chosen for the FBGs in the 
proposed sensor: 1544 nm, 1546 nm, 1553 nm, 1555 nm (from FBG1 
to FBG4). The polymer employed to cover the sensor was Dragon Skin 
(10 medium, Smooth-on, USA). This silicone rubber is highly 
stretchable (high elongation at break), [61], and soft (shore A 10), 
thus enabling the sensor to be twisted, wrapped, bent and stretched 
within optical fiber physical limits (Figure 1C). Moreover, such a 
rubber allows proper demoulding of the sensor, without 
delamination of the thin polymer layer. 
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Figure 1: A. Ultra-soft tactile sensor array integrating Fiber Bragg Grating (FBG) 
transducers (marked in colours). B. Inset of the sensor highlighting the effect of the 
applied load on it. C. Deformability and ultra-soft properties of the sensor. 

The sensors had a parallelepiped shape and same physical dimension 
apart from the thickness (thickness refers to the whole encapsulating 
material, with the optical fiber embedded at the middle of the brick). 
They were 110 mm long, 24 mm wide and with a variable thickness, 
ranging from 1 mm to 8 mm in the performed FEM simulations. 
Following the simulations, two sensors were fabricated, with 1 mm 
and 6 mm thickness, respectively. The optical fiber was aligned with 
the longitudinal axis and laterally centred in the middle of the brick. 
During the fabrication process, the liquid polymer was casted inside 
a customized mould. To minimize air bubbles, vacuum degassing of 
the liquid rubber was performed before casting. The optical fiber was 
held in the desired position in the mould before starting the casting 
process. The rubber was cured at room temperature until 
solidification and subsequent demoulding of the sensor. 

As showed in Figure 1A, we applied loads along the sensor top 
surface. The polymeric matrix mediated the transmission of the 
applied load to the optical fiber, thus passing from an unstrained to 
a strained condition, as highlighted in the inset (Figure 1B). Figure 2 
explains the FBG working principle applied to our study. In the upper 
part of the figure a lateral view of the sensor is presented, illustrating 
6 example cases, from no indentation (N) to indentation in five 
locations (P1-P5). In the bottom part of Figure 2 the outputs of two 
FBGs are displayed per each case in either the 1 mm thick sensor and 
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the 6 mm thick sensor. Each case refers to a particular indentation 
site, apart from N, which represents the null load condition 
(unstrained condition for the optical fiber). P2 and P4, correspond to 
the cases where the load is applied above FBG1 (for P2) and FBG2 
(for P4). Such conditions represent, respectively, the cases with max 
strain suffered by FBG1 and FBG2 and thus with max shift of the 
reflected signals, since higher strain entails higher grating period 
variation and thus higher shifts of the reflected wavelengths. The 
effect of the thickness of the soft polymeric packaging material on 
the strain acting on the optical fiber is investigated in the present 
study. 

 

Figure 2: Working principle of the FBG transducers in the developed phantom. Only 
FBG1 and FBG2 are showed for ease of illustration 

SOFT SENSOR FINITE ELEMENT MODEL SIMULATION 
A FEM simulation of the sensors was performed by means of 
COMSOL Multiphysics (COMSOL Inc., Palo Alto, CA, USA), with the 
structural mechanics module. Such simulations addressed the 
evaluation of load/unload cycles applied onto the sensor surface. 
Moreover, we investigated the effect of thickness in determining a 
suitable trade-off between receptive field and sensitivity. The 
developed model was employed to generate a very large dataset to 
train a neural network to obtain the sensor inverse function, namely 
the detection of the indentation sites and the applied load. The 
model reproduced the sensor with parametric thickness, in the 1 mm 
– 8 mm range. We assumed to deal with linear elastic sensor 
deformations (working assumption). Hence, we defined the Young 
modulus (E), Poisson coefficient (ν) and density (d) for both the 
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encapsulation polymer and the optical fiber. In literature, [62]–[65], 
we found the following values for the rubber: E = 100 kPa,  ν = 0.49, 
d = 1070 kg/m3, while, for the optical fiber we adopted the values 
reported in the datasheet, i.e., E = 36 GPa, ν = 0.17, d = 2203 kg/m3. 
The simulation was based on the experimental protocol described in 
the following paragraph, which consisted in applying a load onto a 
specific location of the sensor through a cylindrical indenter. The load 
was applied on an area equal to the size of the cylindrical indenter 
surface along the sensor top side. Each pair of force and position 
values corresponded to a certain strain of the fiber. In this work, the 
used force ranged between 0.1 N to 2.5 N, with steps of 0.1 N, and 
the indentation position between 0 and 86 mm, with steps of 0.25 
mm. Since the sensor was attached to a flat rigid surface, in the FEM 
simulation a null displacement was set at the bottom surface of the 
sensor. We assumed a perfect bonding between the optical fiber and 
the encapsulation polymer. We adopted some simplifications in the 
model in order to reduce the computational time to retrieve the 
solution. Taking into account the small diameter of the optical fiber, 
∅115 µm, with respect to the thickness of the sensor (1 mm or 6 mm), 
we described the optical fiber by means of a truss element, i.e., a 
slender member that can only sustain axial forces. Such a 
modification allowed to treat the optical fiber as a 1D solid. 
Moreover, thanks to the symmetry of the sensor, we only considered 
half sensor, thus further reducing the computational burden. Mesh-
independence was carefully obtained through preliminary runs. In 
particular we applied a finer mesh around the optical fiber and on the 
surface where we applied the normal load (i.e., indenter area). 

EXPERIMENTAL SETUP AND PROTOCOL  
The experimental phase was carried out by means of a mechatronic 
platform, developed to perform automatic force-controlled 
indentation throughout the sensor surface (Figure 3A-D). Three 
motorized translational stages ensured the motion of the sensor 
along X-Y-Z axes. Such stages allowed motion with 2.5 µm step 
resolution along the horizontal X-Y axes (8MTF-102LS05, STANDA, 
Vilnius, Lithuania) and motion with 5 µm step resolution along the 
vertical Z axis (8MVT120-25-4247). An aluminium cylindrical probe of 
6 mm diameter was used to indent the sample. A load cell (Nano 43, 
ATI Industrial Automation, Apex, NC, USA), mechanically linked to the 
indenter, was employed to collect data about the force arising from 
the contact between sensor and probe. Moreover, such a load cell 
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was responsible of the trigger generated upon reaching the threshold 
value (FMAX) used to pilot the indentations. An optical interrogator 
(si425, Micron Optics, Atlanta, USA) was used to collect the data 
coming out from the FBGs transducers, namely the reflected 
wavelengths of the different gratings. All the components of the 
setup were controlled through LabVIEW routines (National 
Instruments Corp., Austin, USA) by means of a PC Graphical User 
Interface (GUI) (Figure 3E). Furthermore, using such software 
ensured the synchronization of the data coming out from the load 
cell and the optical interrogator, thus enabling and facilitating data 
elaboration.  

 

Figure 3: A-D. Indentation process during the experimental acquisition (the direction of 
the arrow indicates relative motion). E. Block diagram of the experimental setup. 

The protocol consisted in automatic force-controlled indentations of 
the sensor in different sites and using several FMAX (i.e., load/unload 
cycles). We considered as reference position a point located 12 mm 
before the centre of the first grating (FBG1). The X coordinates of the 
indentations ranged from this reference position up to 86 mm with 2 
mm steps. The FMAX ranged from 1 N up to 2.5 N with steps of 0.5 N 
(i.e., on each site 4 indentations were performed). Considering such 
a procedure, we obtained 176 load/unload indentations (44 sites and 
4 forces), that were repeated 3 times each. 

FEM-BASED MACHINE LEARNING TO RETRIEVE SENSOR INVERSE FUNCTION AND 

EXPERIMENTAL DATA ANALYSIS 
As a first step, we assessed the predictive capability of the numeric 
model that was used to train a neural network so as to obtain the 
inverse sensor function. During the experimental sessions, 
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indentation force values, indentation sites and FBGs reflected 
wavelengths were stored. In particular, per each indentation we 
retrieved the maximum normal force value, the position of the 
indenter and the corresponding reflected wavelength of the four 
FBGs. Such values were then compared with the numerical model 
output to validate the proposed simulations. The strain suffered by 
the fiber during the load/unload cycle of the cylindrical indenter was 
retrieved from the FEM simulations. Moreover, the solid 
displacement of the soft polymer and the coupled relative 
displacement of the optical fiber were analysed. Each pair of probe 
position and exerted force corresponded to a certain axial strain of 
the fiber. Since the position of the 4 FBG transducers along the fiber, 
the FMAX level and the indentation sites were known experimental 
parameters, we used the Δε, retrieved from the numerical model to 
build the sensor direct function and, thus, obtaining the reflected 
wavelengths. The strain was converted into reflected wavelengths 
via Equation 2. 

∆λ = 0.78∙λ∙ε (2) 
  

Where λ is the reflected wavelength and ε is the strain suffered by 
the fiber. To obtain the sensor inverse function using machine 
learning we designed a cascade of two feedforward neural networks, 
each with 10 hidden neurons. The architecture of each neural 
network was a two-layer feed-forward network with sigmoid hidden 
neurons and output neurons. The Levemberg-Marquardt method 
was employed to train the network. The first neural network (NN1) 
had 4 inputs, which were the FBGs reflected wavelengths, and 1 
output, which was the estimated position. The second neural 
network (NN2) was in cascade, with 5 inputs, which were the 4 FBGs 
reflected wavelengths plus the position estimated by NN1, and 1 
output, which was the estimation of the applied force (Figure 4B). For 
both the neural network cascade (NN1 and NN2), we employed the 
FEM model data as training set, part of the the experimental data 
(25% of the total) as the validation set and the rest of the 
experimental data (75% of the total) as test set. FEM model data 
were employed to train both the neural networks, by using the 
Levenberg-Marquardt training algorithm. To assess the neural 
networks performance, Root Mean Square Error (RMSE) and 
correlation coefficient (R) between output and target were 
estimated. We applied the same procedure to the experimental data 
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as well (Figure 4), thus first retrieving the reflected wavelengths from 
the sensor direct function (experimental), and then obtaining the 
sensor inverse function using the trained neural network. 
Experimental data were also used to validate the neural networks. 
The whole data-processing was performed by means of the Neural 
Networks toolbox (Matlab, The MathWorks, Inc., MA, USA). 

 

Figure 4: Machine-learning-based construction of the sensor inverse function. A. Block 
diagram of the training part based on the numerical model. B. Graphical view of the 
network connectivity  C. Block diagram of the validation part based on the 
experimental data. 

1.1.3 Results & Discussion 
FEM MODEL RESULTS 
Numerical model results are summarized in (Figure 5). Figure 5D 
shows the model of the 1 mm-thick sensor, with an overall view of 
the fiber strain. Figure 5E, represents the axial stain suffered by the 
optical fiber as a function of the distance from the indenter. Figure 
5A-C and Figure 5F-H show the behaviour of the encapsulating 
polymer and of the optical fiber, respectively. The chosen graphs are 
2D cut-views on the sagittal plane through the fiber and the indenter 
axis, and they highlight the solid displacement due to the applied 
load (on the left for the polymeric matrix, on the right for the optical 
fiber). For a given load, changes in the sensor thickness lead to a 
change in the axial strain transduced by the optical fiber, affecting 
the receptive field. We thus numerically investigated the effect of 
sensor thickness on the axial strain, which is shown in Figure 6. 
Counterintuitively, by increasing the thickness, the axial strain 
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propagating in the soft material up to the FBG sites increases as well 
in an initial range of thickness. For thickness above 6 mm, the trend 
reverts and the axial strain starts decreasing. 

 

Figure 5: A. Schematic of the solid displacement due to the applied load (half sensor is 
considered in the whole panel, thanks to symmetry). B. Contour plot of the z 
displacement of the polymeric matrix versus the radial distance (r) from the indenter 
axis. C. Contour plot of the displacement of the polymeric matrix. D. 3D view also 
showing the axial strain experienced by the optical fiber during indentation. E. Graph 
showing the axial strain versus the radial distance (r). F-G-H. Same of panel A-B-C but 
for the optical fiber. 

 

Figure 6: A. Axial strain of the optical fiber for different thickness of the sensor. B. 
Detail of the panel A highlighting the axial strain under the indenter. As showed in 
Figure 2 the thickness refers to the whole encapsulating material, with the optical 
fiber embedded at the middle of the brick. 

EXPERIMENTAL RESULTS 
Figure 7 shows the reflected wavelengths for the 4 FBGs as a function 
of the indentation location both for the experimented force values 
and normalized with respect to force, highlighting a linear response 
in the considered range of forces. This result highlights the difference 
in receptive field between the 1 mm-thick sensor (dashed lines) and 
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the 6 mm-thick sensor (straight lines): counterintuitively, for the 
same load and indentation site, higher thickness values permit to 
enhance strain transmission. Cross-talk between adjacent FBGs is a 
key factor since it allows the joint discrimination of force and position 
by means of the neural network. The output of the thinner sensor 
has no crosstalk between FBG2 and FBG3 and nearly negligible 
crosstalk between FBG1 and FBG2 or FBG3 and FBG4, whereas the 
thicker sensor shows a considerable crosstalk in both cases 
Moreover, Figure 7D shows the relationship between the sensor 
output (i.e., wavelength variation) and the applied load for 
indentations performed with different forces onto the centre of each 
of the gratings. Figure 7D demonstrates linearity (R2 = 0.995 for 6mm 
and R2 = 0.983 for 1mm) and repeatability (max 0.08nm std and mean 
0.018nm std of Δλ over the force range for 6mm and max 0.03nm std 
and mean 0.007nm std of Δλ over the force range for 1mm), as well 
as greater sensitivity of the ticker sensor. 

 

Figure 7: Experimental data showing the wavelength variation of the different FBG 
sensors as a function of the position of the applied load for both the sensors 1mm 
(dashed lines) and 6mm (continuous lines). A. The wavelength shift function of the 
position is represented for 1N indentation force B. The wavelength shift function of the 
position is represented for 2.5N indentation force C. The wavelength shift per unit 
indentation force is represented, in order to highlight the linear character observed for 
the corresponding trend (some deviations being associated with higher indentation 
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forces) D. Relationship between the sensor output (wavelength variation) and the 
applied load for indentations performed with different forces onto the centre of each 
of the gratings. For each thickness (1mm dotted line and 6mm solid line), the plots 
show 48 datasets: the transient forces spanned while targeting 4 force values (1 N, 1.5 
N, 2 N, 2.5 N), for 4 FBG transducers and 3 experimental repetitions. 

MODEL VALIDATION 
The comparison between numerical simulations and experimental 
data is shown in Figure 8 (1 mm-thick sensor on the left, 6 mm-thick 
sensor on the right); reflected wavelength values are shown as a 
function of the indented points, for all the 4 FBGs. The optical fiber 
(thick yellow line), the FBG grating (thick blue line) and the 
indentation sites (black dots) are schematically represented at the 
bottom of the figure at hand. The reflected wavelength variations 
predicted by the model (blue line) are directly compared to the 
experimental data (red dots) per each indentation site and each FBG, 
showing that the numerical simulations accurately predicted the 
experimental observation for both sensors. 

 

Figure 8: Comparison of the experimental data (red dots) and the model data (blue 
line) for all the FBG sensors embedded in the soft polymeric matrix. The indented points 
(black dots) and the position of the FBG (blue line) are shown at the bottom of the 
figure. The size of the black dots doesn’t represent the size of the indenter.   

SENSOR INVERSE FUNCTION 
The accuracies in sensing the indentation location by means of the 
proposed neural networks are reported in Figure 9. Training results, 
based on the numerical simulation data (for both the 1 mm- and the 
6 mm- thick soft sensors) are shown in Figure 9A, while Figure 9B 
reports the validation results based on the experimental data. Each 
graph shows the estimated position, namely the output of the neural 
network, as a function of the nominal position, namely the target of 
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the neural network. A perfect fit would correspond to a state where 
network output is equal to the targets (data on the bisecting solid 
line in figure). The correlation coefficient (R) and Root Mean Square 
Error (RMSE) were calculated for each case. High R values (R = 0.993 
for model training,  R = 0.992 for validation and R = 0.9917 for 
experimental test) and low RMSE values (RMSE = 1.81 mm for model 
training, RMSE 2.63 mm for validation and RMSE = 2.45 mm for 
experimental test) were obtained when indenting the thicker sensor 
(for the thinner one we got R = 0.854 and RMSE = 8.47 mm for model 
training, R = 0.926 and RMSE = 7.53 mm for validation and R = 0.844 
and RMSE = 10.73 mm for experimental test).  

 

Figure 9: Accuracy in sensing the indentation location by means of the proposed neural 
network, based on the developed numerical model, for both the 1 mm-thick and the 6 
mm thick sensors, Input: reflected wavelengths (λ1; λ2; λ3; λ4), Output: indenter 
location position along the optical fiber. A. Training results. B. Validation results. C. 
Test results. 

The accuracy in sensing the indentation force is finally shown in 
Figure 10. We obtained the same trend as that one resulting when 
estimating the indentation position. High correlation and smaller 
error were obtained with the thicker sensor: R = 0.998 and RMSE = 
0.029 N for the model training, R = 0.979 and RMSE = 0.166 N for 
validation and R = 0.977 and RMSE = 0.164 N for test (whereas for 
the thinner one we obtained R = 0.618 and RMSE = 0.52 N for model 
training, R = 0.306 and RMSE = 0.58 for validation and R = 0.191 and 
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RMSE = 0.69 N for test). Table 1 summarizes the results of the 
adopted neural networks.  

 

 

Figure 10: Accuracy in sensing the force exerted by means of the proposed neural 
network, based on the developed numerical model, for both the 1 mm-thick and the 6 
mm thick sensors, Input: reflected wavelengths (λ1; λ2; λ3; λ4) and the probe position 
along the optical fiber, Output: force along the optical fiber. A. Training results. B. 
Validation results. C. Test results. 

Table 1: Correlation coefficient and root mean square error 

 

Model 
training 
NN1 

Model 
Training 
NN2 

Experim
ental 
validatio
n NN1 

Experim
ental 
validatio
n NN2 

Experim
ental 
test NN1 

Experim
ental 
test NN2 

R (1mm) 0.85442  0.61882  0.92644  0.30669  0.84419 0.19075 
RMSE 
(1mm) 

8.47 mm 0.52 N 7.53 mm 0.58 N 10.7 mm 0.69 N 

R (6mm) 0.99272  0.99861  0.99244  0.97938  0.99078 0.97735 
RMSE 
(6mm) 

1.81mm 0.029 N 2.63 mm 0.166 N 2.45 mm 0.164 N 

 

DISCUSSIONS 
In this work we presented the model-based development and 
calibration of a soft tactile sensor able to solve both the magnitude 
and the position of an applied normal load on its surface. Four FBGs 
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transducers housed in an optical fiber were embedded in a soft 
silicone brick. The silicone mediates the transmission of the applied 
load to the buried FBGs, thus inducing strain on the optical fiber, 
which in turns induces a shift of the nominal reflected wavelengths 
of the FBGs. Such a shift depends on both the applied load and the 
indentation site. We built a numerical model, based on the working 
assumption of linear elastic sensor deformations in the range of 
forces considered, successfully validated through experimental 
results. We used the model to create a large calibration dataset and 
machine learning to obtain the sensor inverse function. 

As part of the numerical investigation, we considered a parametric 
sweep to probe the effect of sensor thickness on the receptive field 
of the gratings. Simulations results indicated that, for the chosen 
working parameters, a thickness of 6 mm contemporarily provided 
very good crosstalk between sensors and proper sensitivity of 
individual sensors (whereas the 1 mm-thick crosstalk between 
adjacent FBGs was much lower). Once calibrated the neural network 
with numerical results, it was able to resolve the applied normal load 
(0.97 R) and its location (0.99 R). In this study we exploited widely 
used NNs available through a common software library: more refined 
algorithms could be used for achieving higher computational 
performances (even if the main computational burden with a neural 
network approach is associated with training, whereas the operation 
of the trained network is relatively lean). Moreover, since both the 
receptive field and the sensitivity of the buried FBGs are better in the 
ticker sensor we claim that the 6mm-sensor shows better 
performances in terms of localization and intensity prediction. 
Anyhow, in those application where there are some constraints in 
terms of thickness or were flexibility is a key factor the 1mm-sensor 
could be preferable compared to the 6mm-sensor. With respect to 
previous studies, we originally demonstrated one main element of 
novelty: the capability to detect simultaneously, using machine 
learning and a numerical model of the sensor, the location and 
intensity of an applied load onto soft tactile sensors suitable for 
covering large areas in robotic applications. Nevertheless, we 
originally demonstrated a design/calibration methodology that can 
be extended to a wider set of materials and geometries, thus bringing 
a positive contribution at the crossroad between machine learning 
and soft tactile sensors design. The proposed tactile sensor is 
intended to be wrapped, twisted and attached on different surfaces 
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and it could be effectively employed for a broad range of 
applications, including those where electromagnetic immunity is a 
key requirement (such as magnetic resonance imaging). Scalability is 
another advantage of the proposed sensor. Indeed, multiple FBGs 
can be housed along the same optical fiber with only minor 
arrangements, thus enhancing sensing capabilities without 
penalizations in terms of bulkiness/complexity. Future studies will 
address dynamic effects and will involve the development of more 
complex geometries. As mentioned before, one of the main 
achievement of the present work is the model-based design and 
calibration. Starting from such results, future works will involve the 
development of an artificial skin that aims at localizing the point of 
contact in a curved 2D matrix and the applied load force. 
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1.2 Tactile Sensing and Control of Robotic Manipulator 
Integrating Fiber Bragg Grating Strain-Sensor2 

1.2.1 Framework 
The sense of touch is a key sensory modality of prehensile 
manipulation. Through tactile perception, humans are able to 
perceive object properties such as size, hardness, temperature, 
contour, etc. Information arises from the multiple receptors available 
within the human skin, especially across hand and fingers, [1], [2]. 
During manipulation, the hand partially occludes the object from 
sight. Tactile sensing allows to obtain measurements in areas that are 
inaccessible through vision. Prior behavioural studies have 
demonstrated the tactile reliance of human manipulation, for both 
simple grasping and dexterous manipulation, [3]. In the last years, 
the field of robotics has expanded toward more complex 
environments, [66], including dangerous and not accessible scenarios 
such as nuclear meltdown disasters and space missions to other 
planets, where robots are demanded to take over human jobs. The 
successful automation of complex human-like manipulative tasks 
depends on robot’s perception capabilities, including through a 
tactile sensor, to characterize the relation between the operated 
objects and the robotic manipulator, [18], [19], [67]. Although the 
human hand represents a point of inspiration for many prehensile 
robotic hardware, [68], [69], the field of artificial tactile sensing 
covers a large spectrum of underlying principles, [70]. The literature, 
for instance, shows relative success with capacitive, piezoelectric, 
piezoresistive and resistive sensors. Such sensing systems rely on 
changes of the measured variable (i.e. capacitance, electrical charge, 
resistance, etc.) that involve different advantages and disadvantages. 
Capacitive sensors consist of two conductive plates interfaced by 
means of a compressible dielectric material, [71]–[73]. The 
transduction principle relies on the capacitance variations that occur 
when, during the loading phase, the gap between the plates changes. 
Such transducers entail high sensitivity and frequency response but 
are susceptible to electro-magnetic noise, tend to be non-linear and 

                                                           
2 This section has been excerpted from the paper, [281], that has 
been published in an international scientific journal: Frontiers in 
NeuroRobotics, with the PhD candidate being first author of the 
study. 

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics
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to have hysteresis. Capacitive sensors are extensively used in robotic 
applications for tactile feedback, [58], [74]–[76]. Piezoelectric 
sensors depend on the electrical charge generation in the quartz 
crystal, as it deforms by applying a load. Such sensors are frequently 
employed for dynamic sensing, due to a very high frequency 
response and can be used to build flexible tactile sensors, [56], [77]–
[83]. On the other hand, piezoelectric sensors suffer temperature 
sensitivity and are generally fragile, [84]. Piezoresistive sensors rely 
upon the electrical changes in resistance occurring to the material 
during load/pressure application, [85]–[87]. Such sensors are widely 
used as they are relatively easy to produce and can be flexible, [88]. 
The main drawbacks of these transducers refer to the low 
repeatability, fragility to shear forces, non-linear response and 
hysteresis. Among all the technologies, the use of optical fibers as 
transducers for tactile sensors is spreading due to the multiple 
advantages such as: electromagnetic immunity, flexibility, high 
sensitivity, multiplexing capability and lightness, [31]–[33]. Several 
studies promote such sensors for different fields of application such 
as: automotive, [36], medicine, [37] and smart textile, [35] among the 
other ones. Depending on the working principle, fiber optic based 
sensors entail different ways of operation: micro and macro bending, 
[40], [41], interferometry, [42], hybrid optoelectronics, [39] and Fiber 
Bragg Grating (FBG), [43]. In parallel to the development of tactile 
sensors, the robotics community has produced a vast amount of 
research on hand design. Hand design is typically application-driven, 
leading to different arrangements ranging from simple two-finger 
grippers to complex contraptions that mimic the mechanics of the 
human hand [89]–[92]. This work presents the case of a four-finger 
under-actuated hand (Cam-Hand) that endows Jet Propulsion 
Laboratory’s (JPL) quadruped RoboSimian robot with both 
manipulation and versatile mobility capabilities [93], [94]. This robot 
uses its limbs for mobility and manipulation such as grasping. Each 
seven degree of freedom limb consists of a set of three elbow 
assemblies and an actuator mechanically linked to the main body. 
The limbs end with a six-axis force sensor which interfaces the Cam-
Hand (Figure 11).  
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Figure 11: (A) Cam-Hand. (B) Inset of the sensorized finger. The red lines represent the 
FBGs. Each optical fiber houses 6 FBGs (8mm length). 

The hand consists of an aluminium body and four aluminium fingers 
configured for many uses including being used as a gripper tool. The 
chosen design, conceived for use in scenarios that require robust 
manipulation, resulted in a system that enhances grip strength and 
robustness over dexterity and flexibility. Not being designed to 
prioritize complex manipulation tasks or handling fragile objects 
limits the variety of tasks the robot is able to perform. The present 
work is aimed at overcoming these limitations and enhancing safety 
and control during interaction with the surrounding environment. 
The RoboSimian Cam-Hand has been redesigned by sensorizing the 
artificial fingers to enable tactile feedback. New sensorized robotic 
fingers have been devised, embedding optical fiber sensing 
technologies, to gain information on grasped object properties as 
well as the contact conditions. The choice of the robotic hand 
sensorization was based on some crucial requirements such as i) the 
ability to provide information about the contact (i.e., intensity), ii) the 
ability to provide information about the grasped objects (i.e., size, 
rigidity, etc.) and iii) the ability to perform manipulation tasks (i.e., 
estimation of grasp stability), [95]. Moreover, it is worth to mention 
that the robotic hand presents additional constraints related to the 
physical integration of the sensors. The adopted technology has to 
meet the requirements imposed by the robotic hand layout and 
design. Hence, the sensorization needs to be achieved without 
affecting the dexterity of the hand, i.e. without drawbacks in terms 
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of bulkiness and encumbrance. Considering the aforementioned 
physical and tactile requirements, FBG technology was chosen to 
realize the sensor due to its adaptability to the design of the artificial 
hand, for its reliability in strain measurements and for the 
multiplexing capabilities that entail a high spatial resolution without 
an overwhelming amount of wires. State-of-art regarding 
applications adopting FBGs as transducers give evidence of tactile 
sensors used in different scenarios. Compared to related works (i.e., 
soft tactile sensors embedding FBGs), [44]–[47], [51], [52], [96], the 
present sensor shares the concept of encapsulating the optical fiber 
in a soft matrix. Such cover not only protects the fiber from 
mechanical ruptures but also affects the transduction of the signal by 
mediating the transmission of pressure to the buried FBGs. In 
comparison to previous studies embedding FBGs in prototypical 
matrices (e.g., parallelogram bricks), the location of our FBGs were 
based on the design of the robotic hand, expressly functional to 
gripping tasks. One common elastomer used as encapsulating 
material is PDMS [45], [46], [52], [96], while in this study a soft 
Dragon Skin silicone (20 medium, Smooth-on, USA) was used, due to 
its higher flexibility and lower delamination between layers. Further 
details on the adopted elastomer, are given in the Materials & 
Methods Section. The scope of the present study goes beyond the 
development of a soft and flexible tactile sensor. The novelty of the 
work also relies in the demonstration of a closed-loop control 
strategy for fine manipulation (Fragile Task), and in extracting 
features of manipulated objects, whereas in state of the art studies 
FBG wavelength variations were used to estimate several quantities 
(e.g., pressure, force, hardness) but within an open-loop scheme, 
without affecting the control variable. 

1.2.2 Materials & Methods 
FIBER BRAGG GRATING TRANSDUCTION PRINCIPLE  
An FBG is a reflector, formed by systematic variation of refractive 
index, inscribed in the core of an optical fiber. This resonant 
microstructure acts as a narrow band filter. When light propagates 
along the optical fiber, and reaches the etched FBGs, part of the 
source is reflected back. This reflected signal is called Bragg 
Wavelength (λB) and it depends on the grating spatial period (ΔB) and 
the effective refraction index (ηeff) of the optical fiber as in Equation 
3:  
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λB = 2 ∙ ηeff ∙ ΛB (3) 

Strain conditions and temperature variations imparted on the FBGs 
leads to variation of λB resulting in changes of the grating spatial 
period (ΛB), or effective refraction index (ηeff). In the present work the 
contribution of temperature is negligible, since the whole 
experimental session was performed at room temperature.  

SENSORIZED ROBOTIC HAND DESIGN   
The Cam-Hand body houses the driving electronics and three 
brushed DC motors (Maxon precision motor, Sachseln, Switzerland). 
The finger geometry follows a cam profile on the outside and a hook 
style shape on the inner profile. The system is comprised of two outer 
fingers slaved together and two inner fingers that are independent. 
Through continuous rotation of the fingers the Cam-Hand is able to 
achieve a huge number of configurations and grasping angles. The 
Cam-Hand includes four fingers and.  the inner fingers were 
sensorized due to their independent actuation. Optical fibers 
(Technica Optical Components, Atlanta, GA, USA) that exhibit a 
diameter of 80 µm (100 µm with polyimide coating) were chosen 
since small diameters  allows low bending radius configurations. The 
fibers house 6 FBGs, each grating is 8 mm long and located at a 
distance of 10 mm, centre-to-centre, from the adjacent FBG. Table 2 
provide further details about the chosen technology. 

Table 2: Datasheet of the optical fibers integrating FBG transducers 

Reflectivity Coating Wavelengths SLSR* FWHM** 

>70% Polyimide 
1535:5:1570

nm 
>15db 0.5nm 

*SLSR: Side Lobe Suppression Ratio 
**FWHM: Full Width Half Max 
 

The optical fibers were encapsulated in a soft polymeric material 
integrated into the rigid artificial finger. According to previous works, 
[12], Dragon Skin (20 medium, Smooth-on, USA) was chosen as the 
soft material for encapsulating the optical fibers. This polymer shows 
remarkable physical properties such as high elongation at break and 
high flexibility [61]. Moreover, during grasping, the silicone mediated 
the transmission of pressure, applied by the grasped object to the 
robotic finger, to the buried FBGs. Maintaining the same design of 
the previous Cam-Hand, new customized fingers were developed, in 
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aluminium, with a notch to allow the insertion of the soft material 
and the relative optical fibers (Figure 11B). Such groove held an 
irregular shape that followed the curvature of the robotic fingers. 
Both the side of the finger presented the groove and were connected 
by means of a series of  holes (3.5 mm diameter) whose purpose was 
to hold the polymer in a fix in a fixed position. Approximately, the 
notch resulted 62 mm in length, 4.4 mm in width and 2.5 mm height. 
The liquid polymer was casted to filling the notch and thus filling out 
the shape of the artificial finger when not sensorized. The final design 
includes two optical fibers located at each side of the finger. The 
sensitive area of the finger is approximately 60 mm, which 
corresponds to the front part of the finger, namely the area 
responsible for the grip. Several iterations of moulds where created 
to realize the polymeric filling and fabrication process. This involves 
three consecutive steps:  

i) Realization Development of the first layer of silicone with a 
groove to insert the optical fiber  

ii) Insertion of the optical fiber in the right position  
iii) Realization Development of the second layer of silicone to 

cover and protect the optical fiber 

In step i) and iii) the silicone was degassed to minimize air bubbles 
and cured at room temperature until solidification.  

CAM-HAND CONTROLLER  
The movements of the Cam-Hand were piloted by means of a DC 
voltage supply (HMC804x Power Supply, Rohde & Schwarz, Munich, 
Germany), a relays circuit (4-channel 5V USB Relay Module, 
SainSmart, USA) and an optical interrogator (Hyperion si155, Micron 
Optics, GA, USA), that was reading the FBGs output. A Graphical User 
Interface was realized in LabVIEW (National Instruments, TX, USA) to 
control the previous units and for data acquisition (Figure 12).  
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Figure 12: Block diagram of the experimental setup. The blue line shows the static 
controller while the red line shows the dynamic controller. λ represents the whole 
bandwidth of wavelengths sent through the optical fiber, λFBGs represents the reflected 
wavelengths of the different gratings  

A positive voltage was applied to the DC motor to close the hand and 
vice versa a negative voltage to open it. At constant load, higher 
voltage values entailed higher motor speed (rpm) and 
consequentially faster movements of the fingers. Through the power 
supply, the voltage flow was regulated to set the velocity and the 
relays were switched on/off to close/stop/open (+V/0/-V) the 
fingers. The initial configuration, also called free configuration 
corresponded to a condition where the fingers were open and ready 
to perform the grasp, while the grasp configuration matched with the 
condition of the fingers closed around the objects. Two controllers 
were developed: i) static controller and ii) dynamic controller. In the 
first case a fixed voltage equal to 13.5 V was given to the motor, thus 
allowing the fingers to close or open at constant speed. Depending 
on the FBGs output and through switching the relays, the static 
controller achieved the action of closing, stopping and opening the 
fingers. Two threshold, lower and upper, were set on the mean of all 
FBGs wavelength variation. Enabling the static controller activated 
the transition from the free configuration to the grasp configuration. 
When the mean wavelength variation was lower than the first 
threshold the controller allowed the flow of a positive voltage and 
the corresponding closing movement. When the mean wavelength 
variation trespassed such threshold, due to the higher pressure 
applied from the object to the sensorized finger and the 
consequentially higher strain suffered by the optical fiber, and 
entered in the grasp configuration, the controller disabled the 
voltage flow and stopped the hand. Opening the hand, thus giving 
negative voltage, took place when the mean wavelength variation 
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raised over the upper threshold. In the second controller, instead, 
the given voltage was not constant but function of the mean 
wavelength variation. Through a PID controller (Proportional – 
Integrative – Derivative), in a closed loop, different values of voltage 
(based on the mean wavelength variation) were given in order to 
maintain a steady grab condition. A desirable value was established 
for the mean wavelength variation, corresponding to a certain grab 
condition, hereafter called set point, and the controller aimed at 
regulating the voltage values and at switching the relays on/off in 
order to reach this value and sequentially to maintain it. Scope of 
such controller was to respond, dynamically, with different voltages 
to changes in size of the grasped object without slipping or breaking. 

EXPERIMENTAL MATERIALS AND PROTOCOLS 
The performance of the proposed version of the Cam-Hand was 
evaluated through different tasks that involved the action of 
grabbing several objects in various conditions. Within this work, four 
tasks were performed: i) Size Task, ii) Material Task, iii) Fragile Task 
and iv) Dynamic Task. The first and second tasks assessed the 
capability of the sensorized fingers to estimate mechanical 
properties of grasped object, namely size and rigidity. The third task, 
representing a qualitative test, evaluated the ability of the system to 
grab fragile objects without slipping or breaking them, thus obtaining 
a measure of the sensitivity of the Cam-Hand. The last task measured 
the Cam-Hand capacity to adapt dynamically its position based on 
objects that could change size. For the Size Task 5 plastic cylinders, 
3D printed in ABS, with varying diameter from 10 mm to 50 mm with 
step of 10 mm were realized. The height of such cylinders was 
constant and equal to 150 mm (Figure 13A). For the Material Task 4 
cylinders, with 30 mm of diameter and 150 mm of height, realized in 
different materials were used. Such cylinders had increasing Young 
Modulus: Dragon Skin E ≈ 0.34 MPa, Vytaflex E ≈ 2 MPa (60A, 
Smooth-on, USA), ABS E ≈ 2.2 GPa and Aluminium E ≈ 70GPa (Figure 
13B). For the Fragile Task commercial nachos were used, that can be 
considered very fragile objects (Figure 13C). The Dynamic task 
involved the realization of a mechanical jack composed by two 
concentric cylinders with, respectively, diameter of 29 mm and 23 
mm and height of 40 mm and 28 mm. These objects were realized in 
ABS with a 3D printer and the top and bottom part were covered by 
a thin layer (5 mm) of Dragon Skin 20. The mechanical jack was 
attached to a motorized linear stage (A-LST0500B-C, Zaber 
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Technologies Inc., Vancouver, Canada) that could control its length 
by moving back and forward (Figure 13D). 

 

Figure 13: Representation of the used objects for the different tasks. (A) Material task: 
5 ABS 3D printed cylinders with increasing diameter ranging from 10mm to 50mm with 
10mm step. (B) Material task: 4 cylinders with fixed diameter of 30mm, but with 
different and increasing Young Modulus ranging from ≈200kPa to ≈70GPa. (C) Fragile 
task: Nachos used to test the sensitivity of the Cam-Hand. (D) Dynamic task: 
mechanical jack with variable length. 

For the first three tasks the procedure consisted in performing a 
grasp with the Cam-Hand piloted by the static controller as follow:  

i) The sample was manually held between the robotic fingers 
in free configuration.  

ii) By enabling voltage flow, the Cam-Hand started closing its 
fingers until reaching the grasp configuration.  

iii) After a few seconds of grasping, the robotic hand was 
manually released and brought back to the free 
configuration.  

Each trial of the first two tasks was executed 10 times for 
repeatability, thus having 50 tests for Size Task and 40 tests for 
Material Task. For the Fragile Task 20 repetitions were achieved. For 
the first and the second task the lower threshold was set to 0.01 nm, 
while for the Fragile Task was set to 0.1604 nm. In the Dynamic Task 
a grasp of the mechanical jack was performed with the Cam-Hand 
piloted by the dynamic controller. The set-point was set to 0.16 nm, 
this value was reached after enabling voltage flow and passing from 
free configuration to grasp configuration. After the grasping action, 
random values of travel range (from -25 to 25 mm) and velocity (from 
0.5 to 3 mm/s) were given to the linear motorized stage. 
Consequentially the mechanical jack linked to the stage started to 
move with different random velocity into different random position. 
The Cam-Hand adapted its position, with a velocity proportional to 
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the velocity of the stage, based on the mean wavelength variation 
(Figure 14). Moreover, another test was performed in which random 
values of travel range were given, but the values of velocity were 
increasing starting from 0.5 mm/s and increasing by 0.1 mm/s each 
0.75 s. After reaching the destination the velocity was reinitialised to 
0.5 mm/s. In order to measure the force required to break the 
commercial nachos, an experimental task was performed. Fifteen 
nachos were brought to fracture by applying a compressing force 
using a robotic platform composed by a load cell (Nano 43, ATI 
Industrial Automation, Apex, NC, USA) and a motorized vertical stage 
(8MVT120-25-4247, STANDA, Vilnius, Lithuania). During the 
experiments the motorized stage was commanded with a speed of 
2.5 mm/s until breakage of the nachos samples, while the load cell 
was tracking the applied load force. We thus estimated the sensitivity 
of the FBG sensor as the ratio between the peak wavelength variation 
measured during grasping and the load breaking the nachos. 

 

Figure 14: (A) Experimental setup for the dynamic task. (B) Cam-Hand with mechanical 
jack at minimum extension. (C) Cam-Hand with mechanical jack at maximum extension 
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DATA ANALYSIS  
The Neural Network Pattern Recognition App, developed within the 
Neural Network Toolbox in Matlab (MathWorks, Inc., MA, USA) was 
employed, to predict the diameter and the rigidity, respectively in the 
Size Task and in the Material Task, of the grasped objects from the 
FBGs wavelength variation. In the Size Task The proposed classifier 
comprised 12 input neurons, namely all the FBGs reflected 
wavelength exerted during the grab, while in the Material Task there 
was 1 input neuron, namely the slope of the wavelength variation 
function of time (Δλ/Δt) tracked during the grab. Both the neural 
network comprised 10 hidden neurons and 1 output neuron which 
was the cylinder diameter value in mm in the first task and the 
material rigidity in the second task. The neural networks were trained 
using conjugate gradient backpropagation method. The 
experimental data were divided in three complementary subsets: i) 
training set, ii) validation set and iii) testing set. For each class (i.e., 
diameter) 10 repetitions were performed and 8 trials were used for 
training, 1 trial for validation and 1 trial for test. To reduce variability 
multiple rounds of cross-validation, using different partitions, were 
performed. The “Leave-one-out cross-validation” method was 
adopted, that used one observation as test set (and one as validation 
set) and the remaining as training set. Such partition was repeated, 
each time changing the test set and consequentially the other two 
subsets, until all the 10 trials were considered one time as test set. 
The results of the different cross-validation were combined (i.e., 
averaged) to assess the neural networks predictive performance by 
means of a confusion matrix. For the Material Task, we were 
interested in tracking the temporal wavelength variation among all 
the different materials. Within the Fragile Task the ability of the Cam-
Hand to deal with fragile objects was assessed, by calculating the 
number of broken samples during grasps. To assess the performance 
of the Cam-Hand to follow the changes in the grasped objects 
(Dynamic Task). The Root Mean Square Error (RMSE), the Normalized 
RMSE (NRMSE) and the NMRSE calculated for the data included in 
the interquartile range (NRMSE(IQR)) were calculated as expressed in 
Equation 4-6.   

RMSE = 
√∑ (𝑥1,𝑛−𝑥2,𝑛)

2𝑁

𝑛=1

𝑁
 

(4) 
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NRMSE = RMSE / 𝑥̅ (5) 
NRMSE(IQR) = RMSE(IQR) / 𝑥̅(IQR) (6) 

 

1.2.3 Results & Discussion 
Through different tasks the capability of the proposed FBGs-based 
robotic hand to provide tactile feedback was assessed. By evaluating 
the performance of the proposed classifier for size recognition of 
different grasped objects, an overall accuracy of 99.36% was 
achieved. Individual accuracy values were calculated for each 
diameter: 99.3% for 10 mm, 99.4% for 20 mm, 99.6% for 30 mm, 
98.5% for 40 mm and 99.9% for 50 mm. Moreover, it is relevant to 
observe that misclassification, within the different classes, happened 
mainly with their relative neighbours (Figure 15).  

 

Figure 15: Confusion matrix showing the accuracy (99.36%) of a classifier for size 
discrimination of the grabbed sample. 5 cylinders with different size were tested. 10 
trials were performed per each sample. 8 out of 10 trials were used for training, 1 out 
of 10 for validation and 1 out of 10 for testing. To improve generalization we applied 
the «leave one out cross validation» method. The numbers in brackets represent the 
experimental data processed by the classifier. 
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Physical properties of grasped objects strongly affected the FBGs 
wavelength variation. The slope of the wavelength variation function 
of time (Δλ/Δt) increased monotonically with increasing Young 
Modulus across the different materials (Figure 16A). High 
repeatability was achieved across all trials: the median value of the 
slope was 0.87 ± 0.02 nm/s for Dragon Skin 20, 1.61 ± 0.04 nm/s for 
Vytaflex, 2.48 ± 0.05 nm/s for ABS and 3.54 ± 0.12 nm/s for 
Aluminium (Figure 16).  

 

Figure 16: Box plot of the FBGs ∆λ⁄∆𝑡 (slope of the signal) for the different materials. 
From left to right the Young Modulus is increasing. Boxes represent interquartile 
ranges; blue lines show the median value and black dashed lines show the complete 
range across samples.   

Furthermore, the classifier used to predict the rigidity showed an 
accuracy of 100% for all the classes Within the Fragile Task, when 
performing a grasp on the nachos, only one sample among the 20 
executed trials was broken (Figure 17).  
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Figure 17: Picture showing the fragile test performed by grasping a commercial 
nachos. 

The results of the Dynamic Task presented similar performances in 
the two experimental conditions, both in the experiments with 
constant velocity (Figure 18) and in those where velocity increased 
from one position to the next (Figure 19). Error values were: RMSE = 
0.019 nm, NRMSE = 12% and NMRSE(IQR) = 1.2% for the first 
condition and RMSE = 0.014 nm, NMRSE = 9% and NMRSE(IQR) = 
2.2% for the second condition. The mean force value needed to break 
the sample was experimentally estimated to be 9.49 N ± 3.13 N. 
Combining this result with the FBG wavelength variations recorded 
in the fragile task turns out in a sensitivity estimation of at least 139 
pm/N.  
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Figure 18: Graph showing the dynamic task results. In the upper plot, the red line 
represents the set point value equal to 0.16 nm, the blue line represents the process 
variable, namely the wavelength variation of the mean of the FBGs. In the bottom plot 
the blue line represents the position of the motorized translational stage. 

 

Figure 19: Graph showing the dynamic task results. In the upper plot, the red line 
represents the set point value equal to 0.16 nm, the blue line represents the process 
variable, namely the wavelength variation of the mean of the FBGs. In the bottom plot 
the blue line represents the position of the motorized translational stage. 
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DISCUSSIONS 
The results obtained through the different tasks turned out in very 
high precision in identifying relevant properties of grasped objects 
(Size Task, Material Task and Fragile Task) as well as the contact 
conditions (Dynamic Task). Within the Size Task the sensorized hand 
allowed recognizing the diameters of the cylinders from Bragg 
wavelength variations, using the proposed neural network for 
pattern recognition (99.36% accuracy). Since the trials of the Material 
Task were performed using the static controller, thus selecting a 
constant velocity for fingers movements, such condition also allowed 
estimating the hardness of the different materials via the temporal 
variation of the Bragg wavelength (100% accuracy using the 
proposed classifier). Our hypothesis relied on the evidence that, at 
constant speed, harder material involved faster Bragg wavelength 
signal variation. Within the Fragile task, from observation made on 
several grabbed samples (nachos) the reliability of the sensorized 
finger was evaluated in handling such kind of fragile objects. The 
achieved experimental results are quite generalized, since each 
nacho had a different shape and size. The scope of the task was to 
understand qualitatively the sensitivity of the sensor. The results of 
the Dynamic Task provided evidence of the capability of the 
sensorized finger to adapt its position based on the variation of the 
length of a mechanical jack. Furthermore, it is clear that in both the 
performed conditions and during the entire travel range the 
difference between the set point and the process variable was very 
low as demonstrated from the NRMSE(IQR) values. However, the 
results presented some peaks related to the phase of inversion of the 
motion of the stage as highlighted from the NRMSE values, which 
were based on the entire raw dataset and not only the interquartile 
range. When the stage reached a position, it moved immediately into 
another position and therefore direction. Consequentially, the 
robotic finger passed from the action of closing to the action of 
opening (or vice versa) that caused an error of the controller in 
maintaining constant grasp conditions. Although the PID controller 
was not always accurate, the maximum and minimum values of 
wavelength variation were acceptable for keeping a good grasp 
without breaking or slipping the object. We believe that the peaks 
encountered in the task are not related on the sensor performance 
but on the used motor drivers (relays circuit). The scope of the work 
was mainly centred around the evaluation of the proposed tactile 
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sensorization and not in the realization of a perfect controller. 
Furthermore, the mechanical jack linked to the motorized stage 
through a long steel bar could have influenced the presented results. 
Future work will address the integration of the sensorized Cam-Hand 
in a robotic arm, thus bypassing the issues of the controller, since the 
actuation part will be managed by the motor controllers of the arm. 
Moreover, next investigations will carry out experimental tasks with 
either other shapes (not only cylinders) but will also evaluate wider 
ranges of diameters and rigidity to increase the variety of the grasped 
samples. Besides, next studies will deal with the calibration of the 
system in order to estimate the relationship between the wavelength 
variation and the applied pressure to the robotic finger. A limitation 
of the present study is related to temperature compensation ability. 
FBGs directly respond to strain and temperature changes. Such 
intrinsic sensitivity to both physical variables require a compensation 
method in order to split the contribution due to mechanical actions 
from the one due to possible temperature changes. Considering that 
the environmental conditions of the laboratory were stable within 
the performed experiments, the temperature contribution was not 
considered. Future studies will aim at introducing temperature 
compensation solutions, for example by means of dummy FBGs being 
not affected by strain but by temperature changes only. 

The present work introduced a robotic hand sensorized with optical 
fibers, embedding FBGs transducers, to convey tactile feedback in 
robotic manipulative tasks. To the best of our knowledge this is the 
first study that demonstrates the application of FBG technology in a 
robotic hand in order to achieve fine object manipulation and 
features extraction based on closed-loop control. The choice to 
sensorize such a gripper with optical fibers is based on  their flexibility 
in the integration process, but also on their high sensitivity in strain 
measurements. Thanks to this integration of tactile sensors, the new 
Cam-Hand design targeted the following abilities: i) estimation of the 
grasped object size, ii) detection of a value related to the Young 
modulus of the grasped objects iii) grasping of objects with different 
mechanical properties (i.e. fragile, deformable, stiff) without their 
slippage or breakage, and iv) dynamic adaptation of the fingers in 
order to maintain constant the wavelength variation, independently 
from the shape of the objects. We believe that the multiple 
advantages of FBG technology can move forward the current state of 
the art. Beyond the aforementioned advantages, optical fibers 
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ensure light weight solutions and distributed sensor capabilities. 
Another interesting advantage of using such a technology is the 
multiplexing capability. Multiple FBGs can be housed along one single 
optical fiber by means of just minor arrangements, hence improving 
the sensing capabilities without drawbacks in terms of complexity 
and bulkiness. Finally, FBGs pave the way for RoboSimian to operate 
in those application scenarios that require electromagnetic 
immunity, where most of the conventional sensors are unsuitable. 
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1.3 Design and Development of Large-Area FBG-Based 
Sensing Skin for Collaborative Robotics3 

1.3.1 Framework 
During the last decades, the interest in the field of robotics and the 
development of related technologies have led to a closer and closer 
cooperation between men and machines. A new generation of robots 
has been introduced to help humans in performing several tasks, 
ranging from industrial production, transportation, and delivery of 
goods, up to medical assistance and rehabilitation. As robots and 
humans move towards sharing the same environment, is expected 
that equipping them with a tactile sensory experience would increase 
their intelligence, permitting to establish safe and collaborative 
human-robot interactions, even in an unfamiliar scenario, [97]. A 
harmless behaviour and interplay with the real world intimately 
depend on the availability of some form of tactile feedback, [25], 
since this is the sensory modality enabling humans to explore object 
properties, develop body awareness and interact with the 
surrounding environment through contact and manipulation. Since 
Lumelsky’s first elucidation about the development of a robotic sense 
of touch, [16], [97], a variety of tactile systems, suitable for mimicking 
the activity of both low (i.e., large-area skin) and high (i.e., fingertips) 
sensor density human body sites, have been proposed, by exploring 
different approaches and transduction principles. The integration of 
force and torque transducers inside the mechanical structure of 
robotic solutions has represented one of the first attempts aiming at 
gathering information by preventing a direct contact between 
sensors and external objects, [15]. By seeking to embed the outer 
surface of robots with tactile sensors, prototypes of large-area 
integrated skins have been introduced. A robust, low-cost, low-noise 
capacitive force sensing array is reported in, [57]. Each sensing 
element of this system is a three-plate capacitive sensor equipped 
with a multi-vibrator circuit having a pulse train output, inspired to 
human mechanoreceptors. Such a design allows minimizing stray 
capacitance and noise coupling, as well as a robust signal 

                                                           
3 This section has been excerpted from the paper, [282], that has 
been published in an international conference: 2019 IEEE 
International Workshop on Metrology for Industry 4.0 and IoT, with 
the PhD candidate being co-author of the study. 

http://www.metroind40iot.org/home
http://www.metroind40iot.org/home
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transmission in noisy electrical environments. A force transduction 
capacitive system has been proposed by Hoshi et al., [67]. The “Skin 
by Touch Area Receptor,” or STAR, is a high-density element array, in 
which each sensor is linked through communication chips, to avoid 
long wires encumbrance. Another design of integrated skin has been 
investigated by Ohmura et al., [25], consisting of a 32-element light-
weight, conformable and scalable skin based on optical mode of 
transduction. The so-called “cut-and-paste” tactile sensor consists of 
a photo-reflector covered by urethane foam. The light scattered by 
this foam upon deformation gives a measure of the intensity of the 
applied force. A highly compliant artificial skin, capable of 
simultaneously detecting multi-axis strains and contact pressures has 
been introduced by Park et al., [98]. This system consists of an 
elastomer matrix hosting multi-layered micro-channels filled with a 
conductive liquid. “HEX-O-SKIN” is the attempt made by 
Mittendorfer et al., [99]. The basic transducer of this tactile system 
consists of a hexagonal PCB holding an electronic board to pre-
process data and deliver information, and a bunch of custom and off-
the-shelf sensors (e.g., proximity, pressure, vibration, and 
temperature). HEX-O-SKIN can be modularly disposed to create a 
skin-like coverage on a robot backbone.   

In recent years, the interest in fiber optic-based sensors (FOSs) has 
gained momentum especially for applications in robotics and 
medicine, [43], [100]–[102], being a viable alternative to traditional 
sensors to investigate several mechanical and thermal parameters, 
[96], [103]. In particular, the use of FBG-based technology for force 
measurement adds remarkable advantages to those solely offered by 
the FOSs, [2], [104], such as immunity to drifts, linear and additive 
response to both strain and temperature, and inherent self-
referencing capability. Furthermore, FBGs allow reducing cabling 
requirements and issues about installation: by taking advantage of 
the intrinsic capability of the FBG transduction principle, [35], a 
wavelength-separated array able to simultaneously read a large 
number of outputs from the same fiber has been the choice that best 
fitted the proposed system design. In, [96] two different designs for 
FBG-based tactile systems have been presented for both low and 
high spatial resolution applications, respectively. The 3x3 array 
mimicking human body skin consists of a diaphragm type transducer, 
that is deformed by an external force. When this force concentrates 
on the contact mesa of the transducer, the membrane is deflected 
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and determines an elongation of the embedded FBG sensor with a 
subsequent shift of its output (i.e., Bragg wavelength). Like human 
insensitive skin, this transducer is able to sense a maximum force 
range of 5 N, with a spatial resolution of about 20 mm. The sensing 
array mimicking the skin of a finger consists of 9 transducers 
resembling a bridge, being arranged along three optical fibers. This 
array shows a spatial resolution better than the previous one (5 mm), 
due to a shorter length of Bragg gratings. Both systems show a non-
linear calibration curve. However, developing an effective and 
efficient application of an artificial skin in the form of a large-area 
highly distributed tactile sensor system, instead of a high-density 
sensor matrix, is still an open challenge, [103]. In this work, the design 
and development of a polymeric FBG-based artificial sensing skin, 
mimicking the human sense of touch in perceiving pressure, and its 
integration on a custom human-like robotic forearm is presented 
(Figure 20). A preliminary assessment of the tactile sensor system 
performance has been performed to evaluate the sensitivity, in terms 
of the relationship between the applied load and the occurred shift 
of the gratings Bragg wavelengths. 

 

Figure 20: Large-Area FBG-based sensing skin on a human-like robotic forearm  
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1.3.2 Materials & Methods 
We designed and developed a polymeric large-area artificial skin 
integrating optical sensors to enable the perception of external force 
in a 3D-printed human-like forearm of a robotic manipulator. 
Specifically, we followed the requirements and expectations 
concerning the realization of a tactile sensing system for a robotic 
sense touch proposed in, [97], also taking into account the features 
of human touch, [2], [104]. The system consists of an 8 mm thick 
polymeric layer (Dragon Skin 10 Medium; Smooth-on Inc, PA, USA) 
equipped with an 80 µm in diameter and 430 mm in length 
engineered optical fiber (FEMTOPlus Grating; FemtoFiberTec GmbH, 
Berlin, Germany). Such optical fibers were chosen since small 
diameters allowed low bending radius configurations. The silicone 
rubber allowed the fabrication of a thin, light-weight and flexible 
substrate, that offered compensating features, such as the capability 
to stretch or wrinkle, preserving both the integrity of wires and 
sensors and the stability of the coverage. In comparison with 
previous works, [105], the novelty of the proposed silicone coating 
lies in its shape. Specifically, such a coating offers a curved surface 
(15500 mm2 in area), that allows covering three-dimensional objects 
and prevents the embedded sensors from any pre-strain. The 
polymeric frame is endowed with 16 FBGs of 4 mm in length, whose 
centre-to-centre distances and Bragg wavelengths (λB) are spatially 
distributed. We customized the sensor distribution along the fiber 
core in order to achieve a varying spatial FBGs density, matching 
density of human mechanoreceptors across the forearm skin (i.e., 
decreasing when moving from elbow to wrist, [3], [66]).  

EXPERIMENTAL SET-UP 
To assess the capability of the developed artificial skin in perceiving 
the applied loads in terms of position and intensity, a mechatronic 
platform was employed (Figure 21). This platform consisted of a 4 
degree of freedom system of motorized stages: a Cartesian 
manipulator made of a precision vertical (Z) positioner (8MVT120-25- 
4247, STANDA, Vilnius, Lithuania) and X-Y stages (8MTF-102LS05), 
which guaranteed translational movements, while a rotator 
(8MR190-2) enabled 360° degrees rotations. The apparatus provided 
force measurement thanks to a 6-axis miniaturized load cell (Nano-
43, ATI Industrial Automation, Apex, USA). Specifically, the load cell 
acted as a single axis sensor to perform the experiments in force-
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control mode of the platform along the loading direction of the skin 
(z-axis). A customized probe, mechanically linked to the force sensor, 
was used to exert indentations across the skin outer surface. Such a 
tool was composed by an aluminium cylinder of 15 mm in length and 
13 mm in diameter, equipped with an aluminium sphere of 6.5 mm 
in radius at the tip level, to mimic the size of a human fingertip. FBGs 
required an interrogation unit able to illuminate the gratings with a 
broad spectrum, and detect the reflected wavelength.  (SmartScan, 
Smart Fibres Ltd, United Kingdom). An ad-hoc Graphical User 
Interface (GUI) was developed in LabVIEW (National Instruments, TX, 
USA) to control the instrumentation of the setup and enable both 
data gathering and recording. 

 

Figure 21: Experimental setup. A) Mechatronic platform for force-controlled 
indentation. B) Inset of the indentation onto the polymeric matrix 

EXPERIMENTAL PROTOCOL AND DATA ANALYSIS 
 The relationship between the applied force (FZ) and the resulting 
wavelength shift (Δλ) of each sensor (k = Δλ/FZ) was evaluated by 
exerting a 3 N vertical load above each grating, according to the FBGs 
positions along the optical fiber, by means of the mechatronic 
platform. During the experimental session, data about the exerted 
force, its point of application and the readout of the entire FBG array 
were recorded at a sampling rate of 500 Hz and offline processed 
through an in-built routine in MATLAB (MathWorks, Natick, USA) in 
order to compute the mean value of the sensitivity. 
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1.3.3 Results 
The correspondence between the applied force and the wavelength 
variation of a strained FBG is shown in Figure 22.  This graph is an 
example of the output signal arising during the loading phase on the 
centre of the FBG sensor. The sensitivity evaluated for each grating is 
reported in Figure 23. As shown, the median value across the FBGs is 
0.26 nm·N-1, while the interquartile range is 0.08 nm·N-1.  

 

Figure 22: Example of recorded data during an indentation above one of the embedded 
FBGs. The upper plot shows the exerted force as a function of time; the bottom plot 
shows the corresponding wavelength shift of the strained FBG. 
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Figure 23: Box plot of the sensitivity. The blue line represents the median value; the 
bottom and top edges of the box indicate the interquartile range; whiskers represent 
the whole dataset (excluding outliers); black circles represent outliers values; red 
scatter points represent the sensitivity across the FBGs.   

CONCLUSIONS 
In this paper, the design and development of a novel large-area 
distributed tactile sensor system, in the form of a polymeric FBG-
based sensing skin, are presented. A mechanical characterization has 
been performed to assess the performance of the system in 
perceiving pressure. Results show that the skin enables repeatable 
force measurements with a median value of 0.26 nm·N-1 in 
sensitivity. From this exploratory analysis it is also evident the effect 
of the polymeric encapsulation on the FBGs response. In literature, 
no FBG-based sensing skins have been yet developed to equip 
human-shaped robotic arms with a tactile sensory experience. We 
choose to sensorize the artificial skin with optical fiber sensing 
systems due to the multiple advantages offered, such as: i) high 
spatial sensitivity, ii) flexibility in the integration process, and iii) 
multiplexing capabilities that limit the wire encumbrance. Moreover, 
with respect to previous studies, we have added an element of 
novelty by fabricating a curved polymeric frame to house the optical 
fiber. Future works will involve a deeper analysis regarding the 
performance of the present artificial skin in terms of spatial 
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sensitivity and force range, towards the final goal of integrating the 
tactile sensor onto a robotic arm.  
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2 Tactile Sensing Through Mechatronic 
Platform for Medical Applications 

2.1 A biomechatronic platform for detection of nodules 
in anatomopathological analyses via force and 
ultrasound measurements4 

2.1.1 Framework 
Cancer is an abnormal and uncontrolled cell growth that invades 
healthy tissues, and that can spread via metastases to other locations 
in the body, [106]. Various cancer treatments involve chemical and 
radiation therapies or surgery, [107]–[109]. Following surgical 
intervention, biopsy is performed on the lymph nodes excised from 
the tissue to properly characterize cancer spread and examine 
whether it has developed the ability to spread to other lymph 
nodules or organs too. The accuracy in estimating the amount of 
spread of cancer is extremely important to avoid complications 
caused by an extensive resection of healthy lymph nodes and tissues. 
Accurate localization of tumours in tissues resected during surgery 
can also allow the surgeon to decide and modify unanticipated the 
planned intervention so to remove malignant tissues missed in pre-
operative imaging and planning. Stiffness of human tissue is higher 
for tumour nodules with respect to healthy tissues, [110]–[115]. 
Hence, inspecting the mechanical properties of cancerous tissues can 
contribute to the detection of nodules. Intraoperative palpations of 
the resected malignant tissue provide essential information about 
the presence of abnormalities, [116]. Indeed, such investigation is 
part of the general practice performed by a specialist through manual 
palpation to retrieve several information about cancer nodules, 
[117]. The reliable confidence of medical practitioners to detect 
tumour is achieved with rigorous training before they reach proper 
expertise in examining various organs and detecting abnormalities, 
[118]. The human capability to detect lumps in the tissues, however, 
degrades with increasing lump depth, decreased compliance of the 
tissue, deformation of the finger pad induced by the lump itself, and 

                                                           
4 This section has been excerpted from the paper, [283], that is under 
review in an international scientific journal, with the PhD candidate 
being first author of the study. A preprint of the submitted paper is 
available online: Link 

https://www.preprints.org/manuscript/201904.0013/v1
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the finger indentation velocity, [119], [120]. Ultrasound analysis, 
[121], can complement stiffness data because of the different 
acoustic properties of cancer nodules, as demonstrated by 
intraoperative ultrasonography recordings having reported influence 
(varying from 2.7% up to 73%) on the surgical procedures that were 
preoperatively planned, [122]–[125]. In this study, we combined 
stiffness and ultrasound data to aid the intraoperative histological 
exams performed on tissues excised during surgery. Such an 
examination is crucially essential in case of misdiagnosis or 
unforeseeable  diagnostic queries that arise during surgery. Results 
from the examination may be used as a guide for surgical resection 
and decision-making to modify the surgical procedure (Figure 24). 

 

Figure 24:Block diagram of the histological procedure. Grey: traditional manual 
procedure. Green: semi-automatic procedure as modified by the introduction of the 
developed platform. 

With instrumented tools, automatic classification of tumours in 
tissues can be addressed by machine learning techniques: 
supervised-unsupervised classification, clustering and learnt neural 
networks, [126], [127]. The proposed system aims at reproducing the 
activity of anatomopathologists in intra-operative tumour 
identification using feedback from vision, stiffness, [128], and 
ultrasound measurements, [129]. Using a robotic platform and 
machine learning techniques for classification, the focus of this work 
is to detect and localize nodules buried in phantoms mimicking the 
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elastic and ultrasound properties of excised human tissues. 
Specifically, the experimental evaluation was carried out by means of 
Agar-based phantoms that can be fabricated to mimic the liver, 
cardiac, brain and soft tissues, [130]–[132], either in their acoustic 
and mechanical properties and temperature dependency, [133], 
[134]. This study is organized as follows: Section 2.1.2 describes the 
experimental setup, the technical specifications of the used 
phantoms, the experimental protocol and data analysis methods. 
Results are presented in Section 2.2.3, showing data analyses based 
on stiffness and ultrasound measures separately, as well as by 
merging the two measurement systems. The last part of Section 2.2.3 
concludes with the discussion of the entire work and presents 
potential future investigations. 

2.1.2 Materials & Methods 
PLATFORM DESIGN  
A platform was developed to detect embedded rigid inclusions 
surrounded by a soft matrix. The automated system consists of the 
following components (Figure 25): 

i) Three motorized translational stages and one rotational 
stage allowing to move the sample. A commercial stage 
(8MTF-102LS05, STANDA, Vilnius, Lithuania) with 10 cm of 
travel range and a resolution of 2.5 µm was used for the X 
and Y axes, while another translational stage (8MVT120-
25-4247) was used to indent the sample along the Z axis, 
having a travel range of 2.5 cm and a resolution of 5 µm. 
Additionally, a fourth stage was mounted on the 
mechatronic platform (8MR190-2-28) in order to enable 
the rotation of the sample. Such stage had 360° rotation 
range with 0.01° resolution. 

ii) An ultrasound probe (Sonomed 16 MHz mod. 2014059, 
Warsaw, Poland), with fractional bandwidth equal to 0.25 
at -6 dB, used in pulse-echo mode. This needle-type probe, 
3 mm in diameter, was selected also for directly contacting 
and indenting the sample. A 30 Vpp pulsed excitation was 
delivered to the probe via a transmitter (US-Key, Lecoeur-
Electronique, Chuelles, France) connected to a PC via 
USB2. The experimental setup was completed with the 
ultrasound data acquisition device, NI FlexRIO (National 
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Instruments Corp., Austin, TX, USA), for acquisitions at 
high frequency (1.6 GHz). 

iii) A load cell (Nano 43, ATI Industrial Automation, Apex, NC, 
USA) to collect interaction forces, up to 18N with 0.004N 
resolution along normal axis, arising at the interface 
between the ultrasound probe and the sample, also used 
in the control loop of the translation stages in order to 
operate force-controlled indentations. The developed 
software used this force data to calculate the stiffness and 
to trigger the high frequency US imaging at the threshold 
point of contact (0.2 N). 

iv) A waterproof HD-camera (Hero5 Session, GoPro, San 
Mateo, California, U.S.) with 10 MP and 4K resolution, 
integrated to perform the sample shape recognition and 
to create a matrix of points to be indented. 

v) A stainless-steel disk fixed on the top of the motorized 
stages for the positioning of the sample, but also to permit 
the reflection of the ultrasound signal back to the probe. 
The disk had 16 cm diameter and 1 cm thickness. 

The software routines for controlling the platform and the automatic 
scan of the samples, data acquisition, and the graphical user 
interfaces were developed in LabVIEW, LabVIEW Real-Time and 
LabVIEW FPGA (National Instruments Corp., Austin, TX, USA), while 
the data analysis were performed using MATLAB (The MathWorks, 
Inc., Natick, Massachusetts, United States). 

 

Figure 25: A. Block diagram of the experimental setup. B. Experimental setup showing 
the different components. 

PHANTOM OF HEALTHY TISSUE AND INCLUSIONS 
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Tests were performed on four Agar block-shaped phantoms, realized 
to mimic both the mechanical and the acoustic properties of diseased 
human tissues. Each phantom had a soft surrounding matrix to 
represent human healthy tissues and hard inclusions embedded 
inside to represent tumour nodules. Each fabricated phantom was 
nominally 60 mm wide, 100 mm long and 15 mm thick, while the 
buried spherical inclusions had different diameters ranging from 3 
mm to 12 mm. The volume of the phantom was large enough to 
introduce up to 8 inclusions, 2 per each diameter, in different X-Y 
positions with adequate separation distance (Figure 26) in order to 
execute computer-aided detection trials.  

 

Figure 26: Rendering of the Agar phantom used during the experimental acquisition. 
The spherical inclusions are marked in yellow (∅ 12-9-6-3 mm). Dimensions of the 
phantom are 100x60x15 mm3. 

Agar-based phantoms were prepared using a predefined 
concentration of Agar in distilled water. Changing the concentration 
of Agar resulted in a variation of both the mechanical and acoustic 
properties. A concentration of 2 g of Agar in 100 ml of water was used 
to represent a healthy human tissue (fabricating a phantom entirely 
with this concentration results in 1.59 MRayl acoustic impedance, 
1457 m/s speed of sound and 0.33 N/mm mechanical impedance). A 
concentration of 8 g of Agar in 100 ml of water was used for 
simulating a tumour tissue (fabricating a phantom entirely with this 
concentration results in 1.92 MRayl acoustic impedance, 1534 m/s 
speed of sound and 4.6 N/mm mechanical impedance). 
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EXPERIMENTAL PROTOCOL 
The experimental protocol consisted in an automatic scan of the 
sample. The procedure was divided in two steps: 

i) visual analysis; 
ii) stiffness and ultrasound analysis. 

The purpose of the visual analysis was to recognize the shape of the 
sample by acquiring its boundaries and to create the indentation 
matrix, namely the points to be analysed. Such analysis is crucial 
when dealing with real tissues, where the shape and size is unknown 
or irregular, so that the scan can be defined automatically. The visual 
part (Figure 27) consisted in subtracting the background image from 
the sample image, thus obtaining the shape, the size and the 
orientation. Starting from this new image (Figure 27C), a set of 
indentation points was created with a 2 mm step along the X-Y axes.  

 

Figure 27: Visual part: positioning of the sample, boundary detection and creation of 
the indentation matrix. A. Background. B. Sample in its original position. C. Boundary 
detection. D. Positioning, rotation and creation of the indentation matrix. 

Once the visual analysis was completed, it was possible to start the 
acquisition of force and ultrasound data. Per each X-Y point of the 
indentation matrix, the phantom was indented along the Z axis at 
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constant speed (0.5 mm/s). The compression force was recorded and 
at a low threshold (0.2 N, to avoid damaging the tissues) a trigger 
signal was generated for ultrasonic pulse transmission and to record 
the reflected signal (Figure 28).  

 

Figure 28: A. Experimental protocol involving indentation of an ultrasound probe at 
regulated contact force. B. Normal force. C. Z position. D. Ultrasound signal reflected 
from the steel metal plate. E. Zoom of ultrasonic scan shown in D. 

DATA ANALYSIS  
The detection and localization of the different inclusions was were 
based on the elaboration of indentation force (FZ), vertical position 
(Z) and ultrasound data. The stiffness k for each indentation was 
calculated according to Equation (7). 

k = (∆FZ) ⁄ ∆Z (7) 
The ultrasound technique used for the detection of the inclusions 
was based on the reflectometric method that varied the reflection 
signal for tissue-like matrix and inclusions. In practice here, we 
considered more reliable to work with the variation of the signal 
reflected from the reference steel plate, interfaced with the bottom 
of the phantom, at the interface with the reference steel plate to be 
more reliable rather than processing considering the very low-
amplitude signal reflected from the inclusion (the reflection 
coefficient was less than 1%). The ultrasonic analysis consisted in 
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processing the signal reflected in each point, using the Correlation 
Index Amplitude (CIA) parameter, [135], defined in Equation (8). 

CIA = 1 - (
𝑚𝑖𝑛(√∑ 𝑆𝑟𝑒𝑓

2 ,√∑ 𝑆𝑖
2)

𝑚𝑎𝑥(√∑ 𝑆𝑟𝑒𝑓
2 ,√∑ 𝑆𝑖

2)

) (8) 

In this equation Si and Sref denote the signal acquired in each point 
and the reference signal, respectively. The reference signal was 
acquired in a position outside the inclusions but inside the tissue-like 
matrix. The CIA assumed values between 0 and 1 and a high CIA 
indicates the detection of an inclusion as the two signals become 
poorly correlated. Per each indented point, a colour map was created 
both for stiffness and correlation index amplitude. An unsupervised 
classifier, called Fuzzy C-mean (FCM) clustering, was used to classify 
each indentation of the scan on the phantom. Such unsupervised 
classification system, starting from the elaborated data, enabled the 
diversification categorization of the point and the subsequently 
organization into different clusters. In this way, it was possible to 
divide the data into: (a) tumour prediction class, which were the sites 
classified as inclusions, and (b) healthy prediction class, which were 
the sites classified as non-inclusions. From the wrong classification 
prediction points, we obtained the number of false positive number, 
i.e., soft matrix points classified as inclusions, and the false negative 
number, i.e., inclusions classified as soft matrix. Furthermore, new 
datasets results were obtained and classified by merging the stiffness 
and the ultrasound data using AND-OR logics. In the AND case, we 
considered tumour only the points identified as inclusion in both the 
datasets simultaneously, thus we expected an increase in the total 
number of false negatives. In the OR case, we considered tumour all 
the points classified as inclusion in either the stiffness dataset or the 
ultrasound dataset, thus we expected an increase of the number of 
false positives and reduced false negatives, as it is crucial to include 
all of the cancerous tissue even with a larger healthy parts. Through 
a confusion matrix, the accuracy and the misclassification rate were 
calculated for all the datasets and methods 

2.1.3 Results & Discussion 
All the experimental results presented in this paragraph have been 
repeated over 4 replicas of the developed phantoms. 

RESULTS FROM STIFFNESS MEASUREMENTS  
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An example elaboration of the stiffness analysis for one of the 4 
phantoms is shown in the top parts of Figure 29. The bottom part of 
Figure 29A shows the positions of the inclusions inside the 
indentation matrix. Since the inclusions were embedded in a soft 
matrix, their stiffness was depending not only on the materials 
properties, but also on the dimensions of the buried inclusions. The 
stiffness values indeed increased with the dimension of the 
inclusions. Stiffness analysis was clearly capable to detect the bigger 
inclusions, namely 12 mm and 9 mm. Figure 29B, showing the results 
for the whole indentation matrix, confirmed this trend. A visual 
inspection of the image allows discriminating big inclusions 
compared to the soft surrounding matrix. 

 

Figure 29: A. (Top) Graph showing stiffness as a function of position, calculated as 
ΔFz/ΔZ, for the central row. (Bottom) Graph showing ultrasound signal processing 
(CIA). B. (Top) 3D graph showing stiffness across the whole indentation matrix. 
(Bottom) 3D graph showing ultrasound signal processing (CIA). 

The results of the identification based on stiffness measures are 
shown in Figure 30A, as a result of the Fuzzy C-mean (FCM) clustering. 
The results of this unsupervised classification system confirmed the 
ability of the stiffness measurement system to recognize all the 
points belonging to the big inclusions, thus without false negatives. 
Such performances were evident from the high number of true 
positive (green points) for 12 mm and 9 mm inclusions. However, 
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stiffness analysis was not able to reliably identify the smallest 
inclusions, as pointed out by the high number of false negatives (red 
points) for 6 mm and 3 mm inclusions (Figure 30A). 

 

Figure 30: Classification (TP-TN-FP-FN) of all the points of the indentation matrix for 
the analyses with stiffness (A) and ultrasound (B) measurements. 

RESULTS FROM ULTRASOUND MEASUREMENTS 
Ultrasound data analysis is shown in Figure 29 (bottom part). In 
Figure 29A, the intensity of the CIA signal is shown to increase 
consistently above the inclusions. But, unlike the stiffness 
measurements, higher CIA values were observed also for the smaller 
inclusions. Thanks to the high CIA peak recorded for each inclusion, 
this approach led to detecting all the inclusions buried in the 
phantom (Figure 29B), showing the results for the whole indentation 
matrix confirmed this trend. As for the stiffness measurement part, 
Figure 30B shows the results of the FCM clustering, highlighting the 
ability of the ultrasound system to systematically detect the 
inclusions. This trend is visible in Figure 30B where there are true 
positives (in green) in each of the inclusion. Remarkably, false 
positives (in yellow) and false negatives (in red) were obtained in the 
area at the boundary between the inclusion and the soft matrix, 
confirming high specificity in identifying the sites to focus on for 
histological analyses. 

AND-OR LOGICS TO MERGE STIFFNESS AND ULTRASOUND MEASUREMENTS  
New datasets were obtained and classified by merging stiffness and 
ultrasound measurements using AND-OR logics. Figure 31 shows the 
results for both the combinations. The AND logics (Figure 31A) turned 
out in an increase of false negatives and decrease of false positives. 
The growth of false negative predictions can lead to the worst-case 
scenario, since might mean loss of identified tumours. Instead, the 
OR logics demonstrated to be a safer approach since it turned out in 
an acceptable increase of false positives and a very good decrease of 
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false negatives. As shown in Figure 31B, the OR logics between 
stiffness and ultrasound measurements was able to correctly 
discriminate all the inclusions, even the smaller ones. Such results 
were achieved thanks to the complementarity of the two systems. 
The stiffness analysis was better in localizing bigger inclusions, 
whereas the ultrasound analysis was better for smaller ones 
(compare Figure 30A and Figure 30B). 

 

Figure 31: Classification (TP-TN-FP-FN) for all the points of the indentation matrix 
following the AND-OR logics of stiffness- and ultrasound-based classifications shown 
in Figure 7. 

This is further confirmed by looking at the confusion matrices 
obtained with the 4 experimented phantoms and with all the 
identification techniques, i.e., based on just stiffness measurements, 
just ultrasound, and with the AND-OR logics (Figure 32) 

 

Figure 32: A. Confusion Matrix with classification based on stiffness measurements. B. 
Confusion matrix with ultrasound measurements. C. Confusion Matrix with 
classification based on inclusions as recognized by stiffness OR ultrasound 
measurements. D. Confusion Matrix with classification based on inclusions as 
recognized by stiffness AND ultrasound measurements. 

DISCUSSIONS 
In this work we presented a platform for identification of cancer 
nodules in ex-vivo tissues. Such tool, oriented towards automation of 
diagnostic procedures during surgery has the scope to increase the 
effectiveness of histopathological evaluations. Such exams need to 
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be performed as correctly as possible because the report may lead in 
a modification of the surgical procedure. The human capability to 
detect these lumps depends on the physician expertise and tactile 
capabilities. The presented platform combines three different 
measurements, such as camera vision, stiffness calculations via 
force-position sensing and ultrasound recordings to perform an 
automatic scan and evaluation of the indented tissue. In this work, 
the tests were performed in laboratory environment using 4 Agar 
phantoms that mimicked the mechanical and acoustic properties of 
human ex-vivo tissues. The phantoms integrated 8 spherical 
inclusions with different diameters (3 mm up to 12 mm) to reproduce 
tumors inside healthy tissues. The results, summarized in the 
confusion matrices, demonstrated the ability of the platform to 
automatically identify the inclusions, particularly when 
complementing stiffness with ultrasound measurements via OR 
logics. In particular, as reported in the confusion matrix, the tactile 
presents valuable classification results in detecting the inclusions as 
reflected from the 78.82% of TP and 88.78% of TN. Moreover, it 
shows a low percentage of FP and FN, 11.22% and 21.18% 
respectively. We observe that the tactile analysis provides 
satisfactory shape recognition and tumor detection for inclusions up 
to 6 mm in diameter. On the other hand, it missed the smaller 
inclusions that are buried deeper into the softer matrix. The 
ultrasound can be a very good guiding tool for localization and 
detection of tumors, including the smaller ones, because the 
amplitude of reflected signals from the surface of the inclusions 
remains independent of the size. The ultrasound data presents high 
amount of TN of 95.48% and a low FP of 4.52%. However, the 
ultrasound alone shows limitations that are reflected in high number 
of FN of 49.77%. To improve the performance, the classified datasets 
were logically merged using the OR and AND. As expected, the results 
of OR logic gave evidence of higher rate of inclusion recognition, 
88.90% of TP and 85.70% TN, maintaining low error rates, 11.10% FN 
and 14.30% FP. Interestingly, the AND logic localizes the bigger 
inclusions with increased TN of 98.96% and reduced the FP to 1.44%, 
but the TP of 40.14% and FN of 59.86% misses the correct shape and 
smaller tumors entirely. Moreover, we found that the ultrasound is 
also sensitive to the air bubbles formed in the agar inclusions and 
detects early reflections from the surface of the these bubbles. 
Tactile data, however, covers these air bubbles inside the inclusion, 
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giving the true shape of the inclusion in the OR logic. Within the 
present work, we adopted a scan resolution inspired by the probe 
diameter (3 mm). To keep a balance between the scan speed and 
area, we decided to scan with step of 2 mm. Lesser resolution values 
(i.e., 3 mm) lead to insufficient data points in the scanned area, while 
higher values (i.e., 1 mm) would introduce unaffordable scan time 
and oversampling. The phantoms are the simplistic versions of the 
biological tissues, hence, further developments will address the 
experimentation of the robotic platform on ex-vivo human tissues in 
clinical environment. In the future, when placed in the operating 
theatre, the developed system will enable the anatomopathologist 
to access data remotely with the purpose to assist the surgeon in 
adapting the procedures during surgery. Information obtained from 
the platform can also be used to provide haptic feedback to the 
anatomopathologist by means of wearable interfaces,  [11], [12], 
[136]. The analysis of vision data, now used only for detecting the 
boundary of the tissue and thus to define the indentation matrix, will 
be improved to provide a visual report too. Such a new procedure 
will target the extraction of several features from the pictures of both 
healthy and tumorous tissues to learn their differences via artificial 
intelligence methods and thus complement stiffness and ultrasound 
measurements. Moreover, the results will be translated in an 
electronic report and integrated with the management software 
(e.g., HL7) of the healthcare system. It is our opinion that the 
presented robotic platform is able to obtain and replicate the 
perfomance also with ex-vivo tissues. We foresee our device in a real 
operating condition (i.e., anatomopathological laboratory). Such 
considerations are supported by preliminary studies performed on 
animal ex-vivo tissues. Further studies will deal with deeper 
examination on such samples.  
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2.2 A Neuromorphic Model to Match the Spiking 
Activity of Merkel Mechanoreceptors with 
Biomimetic Tactile Sensors for Bioengineering 
Applications5 

2.2.1 Introduction 
The objective of reproducing the dynamics of the human 
somatosensory system is typically pursued for two main 
bioengineering applications: neuroprosthetics and neurorobotics. 
Regarding the neuroprosthetics field, users of current artificial hand 
prostheses report the complete absence of sensory feedback as a 
relevant drawback of those systems, [137], [138]. Tactile feedback 
restoration would then lead to an improved capability of 
manipulation, and possibly to a better embodiment of the prosthesis; 
such restoration could be possible thanks to a signal closely 
mimicking the physiological way in which the tactile peripheral 
system encodes information. In the neurorobotics field, the interest 
in mimicking tactile systems lies on the idea of building models which 
reproduce the advantageous features of natural sensory systems, as 
the reduction of the computational cost, [139]. The developed 
artefacts, in turn, can be integrated for use in application domains 
such as surgical, industrial or field robotics, as well as used to test 
scientific hypotheses, [140], [141]. In order to mimic touch 
perception, the capability to reproduce mechanoreceptors dynamics 
is necessary. Mechanoreceptors are subcutaneous cells deputed to 
the detection of mechanical interaction with the skin: those sensory 
receptors respond to mechanical stimuli, as pressure and vibration, 
and convert them into an electrical signal that is conveyed to the 
central nervous system through afferent pathways. 
Mechanoreceptors are characterized by the type of stimulation the 
receptors respond to, the size of their receptive field and their rate 
of adaptation. Here we will focus on Merkel nerve endings, labelled 
as Slowing-Adapting type 1 (SA1), [104]. SA1 units detect sustained 
pressure, low frequency stimulations and precisely localized spatial 
deformation. The objective of this study is to define a function which 

                                                           
5   This section has been excerpted from the paper, [284], that has 
been published in an international scientific journal: IEEE 
Transactions on Medical Robotics and Bionics, with the PhD 
candidate being co-author of the study. 

https://www.ieee-ras.org/publications/t-mrb
https://www.ieee-ras.org/publications/t-mrb
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allows the matching between the activation of an artificial spiking 
neuron and the sustained firing characteristics of Merkel 
mechanoreceptors. In particular, we proposed a function with few 
parameters to tune. It works with the raw sensor signal, without 
additional online processing, such as differentiation and filtering of 
the collected signals. Following such approach, the real-world input 
space can be mapped properly into a set of artificial neuron outputs, 
mimicking the naturalistic encoding of sensory stimuli via spikes 
patterns that can be injected into the human nervous system. When 
a transducer is integrated upstream of the sensory chain, the 
designed block in the neuromorphic tactile system receives the 
sensor measured-estimate as input and conveys this signal as 
modulating input signal into the Izhikevich model, [142], known for 
being able to emulate a wide range of neuronal dynamics when its 
parameters are properly tuned; the output then can be relayed either 
to a human neural interface or to a neuro-robotic system. In order to 
emulate the sustained firing of Merkel receptors, in this work we 
refer to the seminal study by Knibestöl and colleagues that 
systematically described the receptors properties, [143]. Models 
attempting to reproduce human mechanoreceptors firing are on the 
rise and the recent state of the art includes several works. Arleo’s 
group implemented a leaky integrate-and-fire model with threshold 
fatigue for braille stimulation encoding, [144], [145]. Our group used 
the Izhikevich model to encode surface properties, [146] and to 
categorize naturalistic stimuli, [147], and demonstrated applications 
in both neuroprosthetics, [86] and neurophysiology, [148]. The 
Izhikevich neuronal model was also used by Thakor’s group with the 
aim to emulate the spiking activity of human mechanoreceptors, 
[149]. Recently, the Izhikevich model was used to reproduce the 
dynamics of regular spiking and fast spiking mechanoreceptors in 
order to elicit the sensory perception of touch and pain in amputees; 
the neuron voltage was computed according to the signal coming 
from the sensorized fingertip of a robotic arm prosthesis, [150]. Yi 
and Zhang mimicked the response of Fast Adapting type I 
mechanoreceptors with piezoelectric sensors elicited by sinusoidal 
stimuli; not knowing the relation between external stimuli and the 
corresponding mechanoreceptor currents, they adopted a simplified 
mechanotransduction model based on two parameters: intercept 
constant and gain, [151]. The generated continuous analogue electric 
signal was converted in spike trains by an Integrate-and-Fire neuron 
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model. The average inter-spike interval and the first spike latency 
were compared with the response at the same set of stimuli of 
macaque monkeys, obtaining a reasonable matching. Our approach 
aims at preserving the computational simplicity pursued by Yi and 
Zhang, while still relying on experimental observations. In a series of 
studies, Bensmaia and colleagues, [152]–[156] ,accurately 
reproduced the temporal dynamics of different kind of 
mechanoreceptors by proposing a transfer function between the 
time evolution of the pressure and its derivatives, and the input to 
different kinds of integrate-and-fire neurons. To this aim, they found 
model parameters, tested on a set of combinations of periodic 
functions, that predicted the timing of individual spikes in response 
to novel stimuli. In their latest work, they compared the model 
responses with the measured ones when the same stimulus is 
applied, showing a level of precision of the order of ms. This model 
was compared by Valle and colleagues with nerve stimulation 
techniques based on amplitude modulation, to restore sensory 
feedback and assess the stimulation performance in real-life grasping 
tasks, [157]. They found that a hybrid strategy, accounting for 
biomimetic frequency and amplitude modulation, improved manual 
dexterity and prosthesis embodiment. In a real scenario, the 
prosthesis control board should include the motors control, sensors 
reading and processing, user intention decoding algorithms and 
models for sensory feedback. Therefore, it is important that each 
module is computationally efficient to meet the control 
requirements. To this aim, the model we propose is lean, 
computationally very light, and not requiring derivatives of sensor 
data. The parameters of the proposed model are openly available to 
be easily reproducible by third parts. In comparison to some of 
previous works, [152], [154]–[156], in this study we focus specifically 
on emulating the spiking activity of a single class of 
mechanoreceptors (SA1) during sustained stimulation. In this study, 
we introduce and characterize a general porting function block 
(Figure 33) to be tuned to properly convert the sensor output to the 
input current to the artificial neuron.  
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Figure 33: Schematic representation of the implemented mechano-neuro transduction. 
Block diagram describing the different steps of the transduction from mechanical 
stimulus to neuromorphic spike trains, with samples of signal evolution. From left to 
right: the electrical signal generated by the mechanical stimulus in the sensor is used 
to reconstruct the stimulus indentation by means of a tailored calibration inverse 
function. The indentation is converted into a virtual current by means of a suited 
porting function (see Results). The virtual current is finally injected in the Izhikevich 
model to generate the neuromorphic spike trains mimicking the firing activity of Merkel 
mechanoreceptors. 

This tuning operation aims at ensuring that the output of the 
Izhikevich model emulates the sustained firing behavior of natural 
human mechanoreceptors. Thus, the block proposed in this study can 
be intended as a generalized interface to tactile sensors. For this 
reason, having modelled the proposed block directly from the 
applied indentation depth, a calibration inverse function is needed to 
get back the measurand value from a given transducer output, which 
has the form of an electrical signal. Doing so, the calibration inverse 
function serves as a conditioning block in order to perform this 
conversion prior to application of the proposed model. 

2.2.2 Materials & Methods 
IMPLEMENTED IZHIKEVICH ARTIFICIAL NEURON MODEL  
In the Izhikevich model, the membrane potential v and the 
adaptation variable u are updated according to the following 
nonlinear differential equations (9-11): 

 

𝑣̇ = 𝐴𝑣2 + 𝐵𝑣 + 𝐶 − 𝑢 +
𝐼𝑖𝑛𝑝𝑢𝑡

𝐶𝑚

 
(9) 

𝑢̇ = 𝑎(𝑏𝑣 − 𝑢) (10) 

𝑖𝑓 𝑣 ≥ 30 𝑚𝑉 , 𝑡ℎ𝑒𝑛 {
𝑣 ← 𝑐    

 𝑢 ← 𝑢 + 𝑑
 (11) 
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In this study, the model is discretized by means of a custom 
MATLABTM (Natick USA) script implementing the Euler’s method 
with 100 µs integration time. Each simulated recording lasted 1000 
ms, during which the signal was converted into temporal sequences 
of spikes. The regular spiking dynamics is used in this work as 
evidences have been provided about its reliability to encode tactile 
information during tasks involving sustained indentation phases, 
[86], [147]. The model parameters to achieve regular spiking 
behavior are shown in Table 3.  

This kind of neuron model generates a single spike at the onset of the 
stimulation (Figure 34A) for input currents up to 3.75 nA (Figure 34B). 
Beyond this threshold point, the neuron is able to generate a 
sustained activity (Figure 34A) with a monotonous increase in the 
firing rate (FR), defined as the number of spikes over the simulation 
time (Figure 34B). We tested input currents ranging from 2.60 to 
30.00 nA with a 0.05 nA step. This range was chosen as it allows 
observing the threshold crossing and results in physiological FR 
values. 

Table 3: Parameters for the implemented regular spiking artificial 
neuron model 

A 
B 

C 

0.04 
1

𝑚𝑉𝑚𝑠
 5 

1

𝑚𝑠
 140 

𝑚𝑉

𝑚𝑠
 

a b c d 

0.02 
1

𝑚𝑠
 0.2 65 𝑚𝑉 8 𝑚𝑉 
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Figure 34: Artificial neuron dynamics. (A) Neuron membrane potential corresponding 
to three different input currents, i.e. 3.75 nA, 4.5 nA and 9 nA, supplied to the Izhikevich 
model (the current onset is shown by the arrows). The neuron membrane potential is 
measured in mV. (B) Firing Rate for input current ranging from 2.60 nA to 30.00 nA for 
the Izhikevich Neuron Model. Coloured dots represent the FR corresponding to the 
three current levels depicted in the left panel. 

SPIKING MODEL BENCHMARKING METHODS 
The firing dynamics of Merkel receptors was characterized in several 
previous neurophysiological studies, [3]. In particular Knibestöl, 
[143], analysed the responses to application of sustained indentation 
stimuli for one second, reporting neural features that can be directly 
compared with the artificial neuron FR proposed in this study. Briefly, 
in the neurophysiological investigation that we selected as a 
benchmarking reference, recordings were acquired percutaneously 
via microneurography from 101 mechanoreceptor afferents from 
human median and ulnar nerves; mechanical stimuli were delivered 
with a 1 mm2 tip probe attached to a moving coil controlled by a 
waveform generator. Stimuli were driven by supplying the coil with 
rectangular pulses of 1 s fixed duration at indentation depths ranging 
from 0.5 to 4 mm, therefore undergoing a variation of indentation of 
3.5 mm. In the aforementioned study by Knibestöl, [143], two 
different measures were used to evaluate the neural response: the 
total number of nerve impulses evoked during the stimulus 
application, [158], and the mean impulse frequency of the sustained 
discharge during the last 0.5 s of the stimulus. Here, to compare the 
biological neuron to the artificial model we considered the former 
measure. The resulting average FR ranged between 1 and 35 spikes/s. 
The FR values used in this study were extracted directly from the 
figures in , [143], where a total of 16 samples is available. Then, an 
analytical relationship between the indentation stimulus applied to 
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the skin and the biological FR has been obtained based on the point 
measures. Although in many studies the stimulus-response 
relationship for cutaneous mechanoreceptors has been described by 
a simple power function, [158]–[160], we looked for a sigmoid-
shaped fitting in the form suggested by Knibestöl, [143] with the 
addition of an offset term: 

𝐼 = 𝑜 +
𝑅𝑚 ⋅ (𝑥 − 𝛼)𝛾

(𝑥 − 𝛼)𝛾 + 𝛽
 (12) 

where o is an offset (vertical displacement of the function), Rm is an 
amplitude coefficient, α is a horizontal displacement of the function, 
γ determines the slope and the speed of convergence to the 
horizontal asymptote and β determines the position of the inflection 
point. The coefficients were determined by using the fit MATLABTM 
function. This allows, in the present work, to have a generalized 
function that is used to provide a larger set of biological data samples 
for benchmarking purposes. We used the sigmoid fit and the input-
FR relationship computed in Figure 34B to estimate the relationship 
between the applied indentation and the input current to be injected 
into the neuron model (Figure 35).  

 

Figure 35: Comparison of biological neuron and artificial neuron dynamics. (A) Circles 
represent experimental firing rates associated to different indentations collected in the 
study by Knibestöl, and the continuous blue line shows a sigmoid fit. (B) Given two 
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example indentations, the procedure for finding the corresponding input current, 
looking for the FR value of the sigmoid fitting and then passing it to the artificial neuron 
dynamics is shown. 

For this purpose, we evaluated the performance of a set of six 
functions (1st to 5th order polynomial and sigmoid) in capturing such 
relationship and adapted the input to the Izhikevich neuron model, 
so to achieve an output firing that reproduced the benchmark 
biological characteristics: 

(i) Polynomial porting functions: 

                               𝐼 =  ∑ 𝑤𝑖𝑥𝑖𝑖=𝑛
𝑖=0      (13) 

 

with 1≤n≤5; 

(ii) Sigmoid porting function 

𝐼 = 𝑜 +
𝑅𝑚 ⋅ (𝑥 − 𝛼)6

(𝑥 − 𝛼)6 + 𝛽
 (14) 

 

where I is the Izhikevich input current and x is the variation of 
indentation. The goodness of fit was evaluated by computing the 
adjusted residual variance (𝐴𝑑𝑗𝜎𝑟𝑒𝑠

2 ), defined as the complementary 
of the adjusted determination coefficient, [161], [162]: 

𝐴𝑑𝑗𝜎𝑟𝑒𝑠
2 = 1 − 𝐴𝑑𝑗𝑅2 =  

∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑁
𝑖

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖

⋅
𝑁 − 1

𝑁 − 𝑚
 (15) 

 

The function with lower 𝐴𝑑𝑗𝜎𝑟𝑒𝑠
2   is used to generate the input 

current leading to the spiking train sequences for each indentation 
experimental sequence. 

EXPERIMENTAL EVALUATION WITH BIOMIMETIC TACTILE SENSOR 
To assess the feasibility of the proposed framework, an experimental 
application was implemented as a final step of the study. In these 
experiments, an aluminum probe mounted on a mechatronic 
indentation platform was used to stimulate a biomimetic fingertip 
with an array of sixteen pressure sensors (2x2 array of four MEMS). 
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Using biomimetic tactile platforms, aimed at mimicking the 
mechanical behavior of real fingertips, to build models of the 
biological skin-receptor complexes, is a widespread method, [163]–

[165]. The biomimetic fingertip we used is the hybrid silicon tri-axial 
force sensing platform described in, [166], [167]. Its polymeric 
packaging was designed to reproduce the skin response to 
stimulation, [168]. This device was used in the past years to replicate 
tactile features such as roughness encoding, [169], naturalistic 
textures discrimination, [147], and to restore such abilities in 
amputees, [4]. The probe had a surface of 1 mm2 and was indented 
at 5 mm/s along the direction orthogonal to the finger (Figure 36) in 
order to emulate the experimental conditions described by 
Knibestöl, [143].  

 

Figure 36: Biomimetic tactile sensor platform. It is composed of an aluminium probe 
rising to indent the artificial finger. (A) No-contact position. (B) Rising phase. (C) 
Indentation Phase. (D) 1 second of sustained indentation. (E) Unloading phase. (F) 
Return to the initial position. 

The probe started the indentation from a no-contact position defined 
as the minimum distance from the finger at which the output sensor 
voltage did not significantly change. The mechatronic platform was 
controlled and data were recorded with custom LabVIEWTM (Austin, 
USA) routines. Experiments were conducted with different protocols: 
trapezoidal and triangular waves of stimulation, with incremental 
amplitudes, were applied to the artificial finger by controlling the 
probe indentation depth. ‘Trapezoidal wave’ means that, between 
loading and unloading phase, the finger was held in position for one 
second, in order to achieve a sustained stimulation. The null-load 
phase was held for one second before starting with the next 

Table 4: Parameters for fitting biological data 

𝑹𝒎 𝜶 𝜷 𝜸 𝒐 

27.54 𝑛𝐴 0.42 𝑚𝑚 0.21 𝑚𝑚4 4 0.79 𝑛𝐴 
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stimulation. ‘Triangular wave’ means that the loading phase was 
immediately followed by the unloading phase. The probe started 
from a non-contact position and was pushed incrementally against 
the finger, adding 75 µm each repetition to the indentation depth, 
until reaching 0.75 mm indentation (hence, 10 indentation depths 
were experimented). This cycle was repeated 5 times. We tested the 
applicability of our model (Figure 33) as follows. For the calibration 
of our sensor we used voltage and position values from the triangular 
wave stimulation experiment: starting from the acquired data, we 
computed the sensor inverse calibration function. Then the output 
voltage of the other experiment was used for evaluating the whole 
model chain (Figure 33). Every sensing channel was linked to one 
artificial neuron. Among the sixteen channels of the finger, voltage 
readings from sensor number fifteen were used: this sensor was 
chosen because it was the one that displayed the highest voltage 
variation during the experimental protocol since it had the probe 
fully within its receptive field (this experimental condition resembling 
the characterization of the so called ‘hot spot’ of mechanoreceptors 
in neurophysiology). We removed the offset of the voltage signal 
measuring the sensor output baseline before the experiments. The 
inverse calibration function of the sensor was obtained by fitting the 
relationship between voltage signal variation and indentation depth 
with a second order polynomial function. We tested the calibration 
function with the validation dataset obtained via the trapezoidal 
wave protocol, comparing the final spiking response to its sustained 
one-second-long plateau of stimulation to Knibestöl’s experimental 
recordings. The indentation tested with the artificial finger had a 
total range of 0.75 mm. FR values obtained with this experiment 
were compared with the physiological ones, shown in the left panel 
of Figure 35. Since the experiment comprised five repetitions of 
trapezoidal waves, the mean FR among consistent indentation levels 
in different trials was considered, along with the FR standard 
deviation. 

2.2.3 Results & Discussion 
PORTING FUNCTION COMPUTATION 
In order to have a broader set of comparison data, we interpolated 
the biological experimental data, [143], with a sigmoid function, 
whose parameters are shown in Table 4. In this way, starting from 16 
samples, a set of 151 coordinates was obtained to describe the input 
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current to the artificial neuron model. Figure 37A shows how such 
current, when injected into the artificial neuron model as a function 
of the applied indentation, generates the same firing rate obtained 
in biological data. To derive the analytical approximation of this 
relationship a set of six functions (Eq. 13 and 14) were tested to fit 
the data points (Figure 37A) The fitted parameters are shown in 
Figure 37B. 

As we aim for a lean analytic function, we compared the fitting 
quality with 𝐴𝑑𝑗𝜎𝑟𝑒𝑠

2 , penalizing higher order fits (see Material and 
Methods). We observed that, although 𝐴𝑑𝑗𝜎𝑟𝑒𝑠

2  penalized higher 
order fits, a linear fit led to a high 𝐴𝑑𝑗𝜎𝑟𝑒𝑠

2  of 0.0522 (Figure 37B).  

 

Figure 37: Input current to the Izhikevich neuron model as a function of indentation. 
(A) Red dots indicate biological data approximation as resulting from the procedure 
described in Figure 3. The lines superimposed to the data correspond to the different 
fits tested: 1st to 5th order polynomial and sigmoid functions. (B) Adjusted residual 
variance of the experimental data fits performed with the functions displayed in panel 
A. 

A third-order fit showed instead an important drop in 𝐴𝑑𝑗𝜎𝑟𝑒𝑠
2  to 

0.0125, thus appearing to be a proper compromise between error 
reduction and model complexity. The best 𝐴𝑑𝑗𝜎𝑟𝑒𝑠

2  value was 
obtained for the sigmoid fitting (0.0040); fifth order fitting was also 
tested to evaluate the outcome with an additional parameter, but led 
to a greater 𝐴𝑑𝑗𝜎𝑟𝑒𝑠

2  value (0.0057), so that, even if with a slight 
difference, the sigmoid function displayed the best fitting quality 
(Figure 37B). The spiking train sequences obtained for three 
indentation samples is depicted in Figure 38. 
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Figure 38: Spike patterns associated to indentation depths. (A) Sigmoid function 
described in equation (8) (light blue line), associating indentation depths to input 
currents to the artificial neuron model. Circle markers indicate values for three example 
stimuli. (B) Membrane potentials of the implemented SA1 artificial mechanoreceptor 
model, in correspondence to the three input currents associated to the different 
indentation depths marked in panel (A). 

EVALUATION OF THE COMPLETE CHAIN OF SA1 ARTIFICIAL SPIKING 

MECHANORECEPTOR MODEL 
The sensor inverse calibration function was computed by data 
coming from the triangular wave experiments, and the obtained 
function was able to fit the data with a RMSE of 26 μm by employing 
a second order polynomial fitting (Figure 39A). The average FR 
obtained from the artificial finger data via the complete chain of SA1 
artificial spiking mechanoreceptor model (Figure 33) reliably 
reproduced the physiological FR values that had been characterized 
by Knibestöl with the same indentation depths considered in the 
present study, achieving a FR RMSE of 1.98 ± 0.21 spikes/s (Figure 
39B). 

 

Figure 39: Validation on the proposed SA1 artificial mechanoreceptor model by means 
of experimental data with a biomimetic tactile sensor. (A) Sensor inverse calibration 
function, to estimate the applied indentation from the output voltage of the sensor. (B) 
Firing rate during one second of stimulation for different variations of indentation 
depth. Red circles are experimental data from Knibestöl fitted with the blue line. Green 
dots are average FR computed with experimental data from the biomimetic tactile 
sensor. Green bars indicate ± standard deviation. 
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DISCUSSION 
This study describes a middleware between physical sensors used in 
bioengineering applications and SA1 mechanoreceptor neuronal 
models producing spiking outputs. The method was validated by 
experimenting a sensorized biomimetic finger indented with a 1 mm2 
probe that could apply controlled indentation depths. The output of 
the artificial neuron achieved good resemblance to the one of human 
nerves and therefore is deemed applicable to an in vivo implant. 
Specifically, we defined a function describing the relationship 
between the sensed indentation depth and the virtual current that 
should be injected to an Izhikevich Regular Spiking neuron model to 
make its output consistent with the firing response of a biological SA1 
receptor. In order to compare the proposed architecture with human 
physiological output, we relied on data available on 
neurophysiological literature, [143]. Our method has been proven to 
constitute a mean for interfacing the nervous system with the real 
physical extent of the stimulation, regardless of the type of sensor 
and nature of the transducer used for collecting the stimulus. 
Different functions have been tested in fitting our model with data 
deriving from biological recordings. The linear fit is the simplest one 
and that with the worst performance. The sigmoid fit is among the 
most complex ones, but it ensures the best error results. The third 
order fit is a good compromise between complexity and goodness-
of-fit. With respect to similar previous works, [151]–[156], we note 
that in the study by Saal and colleagues, the authors compared the 
timing of the spiking train with the one recorded on monkeys, 
achieving precision up to ms, [156] and the authors stated that the 
model was computationally efficient enough so that a simplified 
version of the model could be employed in real time applications. In 
this perspective, we point out that the model developed in this work 
is already lean enough to be employed online, since it relies on the 
Izhikevich model that had already been used in real time by our group 
with human subjects having peripheral neural implants, [86]. 
According to the proposed implementation, a calibration of the 
tactile sensory system is necessary before its usage. Indeed, any 
given sensor will output an electrical signal that is linked via a 
function to the real value of the measurand, according to the 
characteristics of that sensor. A reliable quantitative estimation of 
the received stimulus is then necessary to achieve the desired neuron 
dynamics by means of the proposed model: by applying the 
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calibration inverse function of the sensor to the sensor electrical 
output, an estimate of the measurand is obtained. The novelty of this 
study lies in the generalization of the method for feeding any given 
sustained stimulation to neural interfaces. The porting function uses 
the measurand estimate to feed the Izhikevich neuron with the 
proper current magnitudes. So far, a simple proportional coefficient 
named Gain Factor (GF) had been used to convert raw output signals 
from sensors into current inputs for the Izhikevich neuron. GF had 
been tuned to guarantee enough discrimination among stimuli and 
not-excessive amplification of the noise carried by the signal, [147]. 
In the aforementioned study, by properly tuning the GF, the 
generated spike trains demonstrated able to yield to classification of 
naturalistic textures with the accuracy of 97%, but they did not 
investigate the physiological plausibility of the generated spike 
trains. From this perspective, the porting function presented in this 
study replaces the GF parameter of the model used in, [147]. The 
resulting spike trains emulate to some extent the biological model, 
thus paving the way for enhanced future applications in neuro-
robotics and bionics. Indeed, biomimetic temporal patterns have 
been exploited to elicit artificial sensory feedback using a prosthesis 
in different studies, with the advantage of improving the prosthesis 
embodiment, [86], [150], [157], [170]. Among these approaches, the 
Izhikevich model was successfully used to discriminate stimuli and 
obtain natural sensations, but, to the best of our knowledge, the 
matching of the generated spike trains with the physiological one has 
not been investigated, [86], [150]. We believe that the proposed 
porting function improves the biological plausibility of the spike 
trains of the Izhikevich model. We select an appropriate input value 
to obtain the firing rate we would observe in a real mechanoreceptor 
with equal stimulation. This should lead to a better embodiment of 
the prosthesis with less training of the amputee. The main 
differences between our resulting spike trains and the biological ones 
are (i) the determinism of our model, compared to the stochastic 
nature of the biological system, [171], and (ii) the long-term 
behavior, since the adaptation of Merkel cells is slower, [172]. 
However, this characteristic can be achieved by properly tuning the 
parameters of the Izhikevich neuron model. 

CONCLUSION 
Reproducing the dynamics of the human somatosensory system is 
paramount for neuroprosthetics and neurorobotics applications. In 
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order to restore tactile feedback, it is convenient to reproduce 
mechanoreceptors dynamics according to a specific stimulus. In this 
work, we proposed and validated a method for obtaining the input 
to the spiking models of mechanoreceptors from the output of 
physical sensors typically employed in bioengineering applications. 
When indenting an artificial finger with a probe at different depths, 
the output voltage of its MEMS sensors was converted into the 
artificial mechanoreceptor input according to the designed porting 
function. The resulting spike trains appeared to be coherent with 
physiological recordings and the firing activity changed with 
indentation depth according to a physiological curve. Thanks to our 
study, in future works embedding a physical transducer will not 
require any change in the mechanoreceptor model, but only to apply 
the calibration inverse function to the sensor output and then to 
obtain, by means of the porting function, the proper input to an 
artificial neuron model in order to generate neuromorphic signals. In 
the perspective of its application to bionic limb prostheses, the 
model should be refined by ad hoc acquisition of human physiological 
data, similar to the approach pursued by other groups with primate 
subjects, [151]–[156]. We will also test the model with different 
stimuli, such as sinusoidal vibratory indentations, to unveil its ability 
to mimic the behavior of SA1 mechanoreceptors at different 
frequencies. Besides, since each stimulation is neutrally decomposed 
by different kinds of human mechanoreceptors (SA1, SA2, FA1, FA2), 
the method proposed in this work could be extended to other kinds 
of mechanoreceptor, possibly combining other porting functions 
with accurately selected parameters of the Izhikevich neuron. 
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3 Haptic Feedback For Medical Telepresence 
Applications   

3.1 Encapsulation of Piezoelectric Transducers for 
Sensory Augmentation and Substitution with 
Wearable Haptic Devices6 

3.1.1 Framework 
In recent years, the development of haptic devices for different 
application purposes has increased. The growing spread of tactile 
displays is due to the high potential of the tactile sense as a 
communication channel for the remote transmission of information 
in a variety of situations. Due to the high number of tactile receptors 
located on our skin, particularly on the hands, [1], [2], the sense of 
touch represents a means to deliver information, which can also 
come from other sensory modalities such as vision and audition in 
sensory-disabled subjects, [173]–[177]. In this case, the information 
coming from one sensory channel is conveyed to the tactile sense in 
an understandable way. Technologies based on different actuation 
principles were integrated in haptic feedback systems. Polymeric 
actuators, like electro-active polymers, have been used for the 
development of tactile displays for rehabilitation or virtual reality 
applications, [178]. The ability of dielectric polymers to undergo large 
displacements, [179], [180] and their muscle-like behaviour made 
them suitable for the integration in haptic devices. Applications 
include tactile displays for the communication of textual and 
graphical information for blind persons, where electroactive silicone 
polymers were used for the development of planar arrays of pins, 
[180], [181]. These actuators were also integrated into tactile 
displays for the blind. A relevant example is a finger-tactile display 
initially designed to stimulate fingertips, made of a soft polymer 
which includes a matrix of dielectric elastomer dots that expand or 
compress transmitting information to the fingers, [182]. Arrays of 
piezo-electrically activated pins were also designed for the 
development of rewritable Braille cells, where a 
polydimethylsiloxane (PDMS) membrane encapsulated an 

                                                           
6 This section has been excerpted from the paper, [11], that has been 
published in an international scientific journal: Micromachines, with 
the PhD candidate being co-author of the study. 

https://www.mdpi.com/journal/micromachines
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incompressible fluid, [183], [184]. Electro-active polymers for virtual 
reality applications were used to develop haptic interfaces, like mice, 
joysticks, trackballs, gamepads, steering wheels, styluses, tablets, 
and pressure-sensitive spheres, [185]. The polymers’ properties of 
softness and compliance, together with the easiness of their shaping 
with dedicated and customizable polymerization processes, make 
them a useful matrix for the encapsulation of transducers based on 
other actuation principles. A polymeric encapsulation can also 
facilitate the integration of the transducers in more complex haptic 
systems, i.e., wearable tactile displays for sensory substitution 
and/or augmentation in contexts like manufacturing, virtual reality, 
and rehabilitation. Anyway, the use of polymers as a soft interface 
between a transducer and the external environment is more 
common for the fabrication of sensors, especially tactile sensors 
based on MEMS, electrodes, or polyvinylidenefluoride (PVDF) 
sensing technology, [186]–[191]. Largely employed in the 
development of interfaces for haptic feedback are also vibro-tactile 
actuators. Vibro-tactile stimulation can be used for sensory 
substitution in sensory-disabled, or for sensory augmentation in non-
disabled, individuals. Haptic stimulation for force feedback can, in 
fact, improve object manipulation tasks in virtual environments, and 
can be largely employed for rehabilitation, navigation, rescuing, and 
robot remote control purposes, [192]–[196]. Haptic displays were 
also proven useful in robotic surgery and in industrial environments, 
enhancing human-robot co-working. They can, in fact, allow the 
development of alerting devices in all those contexts where the 
interaction with automated machinery can be dangerous. Different 
vibro-tactile wearables can be found in the literature, designed for 
the various purposes already mentioned before, and actuated with 
technologies like pneumatic and piezoelectric actuators, vibrating 
motors, or solenoids, [197]. Vibro-tactile gloves were designed to 
allow deaf-blind individuals to communicate with the not-disabled 
community, [198], or to improve manipulation tasks in virtual reality 
applications, [199]. Belts and vests were developed to give vibro-
tactile feedback in virtual reality (VR) applications, [200], [201], or to 
assist the navigation of visually impaired individuals, [202], [203], as 
were vibro-tactile wristbands. Prototypes of head-mounted devices 
were developed to haptically guide the user in unknown 
environments via tactors, [204], [205]. In the following, we focus on 
the development and evaluation of a piezoelectric transducer 
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encapsulated in a polymeric matrix, and on its integration in 
wearable haptic displays to deliver information via the tactile sense, 
starting from the hypothesis that the introduction of a compliant 
interface between the stiff piezoelectric element and the soft human 
skin can have an influence at a perceptual level. In previous studies a 
polymeric layer has usually been introduced to cover an array of 
active elements, [182], or a tactile sensor, [186], [191]. Our 
customized fabrication procedure allows to obtain an encapsulated 
element that enables the development of a single encapsulated 
actuator, scalable in size, with a very good match between modelled 
transduction and the actual prototype, and which can be integrated 
in a straightforward manner in wearable haptic devices for the 
stimulation of different body areas on single or multiple contact 
points. We found that the geometry and the material selected for the 
encapsulation of the transducer resulted in a system capable of 
reliably delivering vibro-tactile information, where this was 
confirmed both on the side of electromechano transduction 
behaviour and on the human somatosensory perception. The Section 
3.1.2 of this work presents the design and fabrication procedure for 
the developed vibro-tactile haptic transducer with polymeric 
encapsulation, the finite element method (FEM) modelling of its 
transduction properties, and the procedures for its experimental 
evaluation; then, the results are provided and discussed with respect 
to the modelling and its assessment via bench tests, and the 
transducer is used within a psychophysical protocol involving healthy 
subjects; finally, the conclusions draw the perspectives for future 
applications of the system. 

3.1.2 Materials & Methods 
PIEZOELECTRIC ENCAPSULATED TRANSDUCER  
The implemented solution consists in the integration of a 
piezoelectric disk (7BB-12-9, MuRata, Kyoto, Japan), 12 mm in 
diameter and 220 µm in thickness, in a polymeric matrix 
(polydimethylsiloxane, PDMS, Dow Corning (Midland, MI, USA) 184-
Silicone Elastomer). The PDMS encapsulation serves both the 
mechanical and electrical roles. It allows electric contacts to be 
encapsulated, providing electrical insulation of the element. In 
addition, it allows obtaining a system that can be easily inserted in 
wearable haptic devices, such as gloves and wristbands for the 
upper-limb stimulation, or ankle bands and insoles for the lower-limb 
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stimulation. The compliance of the polymeric encapsulation 
constitutes also an adaptation interface between the stiffness of the 
transducer (Piezo devices made of lead zirconate titanate (PZT) on a 
brass mass) and the softness of the human skin The development of 
the encapsulated transducer is articulated in different steps. The first 
step is the development of two polymeric (PDMS) elements in the 
shape of spherical cups with the same diameter of the piezoelectric 
disk 2 mm in height (Figure 40a). These elements are obtained by a 
casting process in customized 3D-printed moulds. Elements are also 
provided with a housing on the flat side, designed to contain the 
electrical wires connected to the piezoelectric disk. In order to fix the 
wires on the transducer, the spherical cups are placed on the 
opposite sides of the piezoelectric disk after the application of a 
conductive epoxy (CircuitWorks conductive epoxy—Chemtronics 
(Kennesaw, GA, USA) ), (Figure 40b), and the whole resulting system 
is closed in a further 3D printed customized mould for the final 
polymeric encapsulation, which will be made of the same material 
(Figure 40c). The role of the polymeric spherical cups protruding from 
each side of the external surface is to keep the piezoelectric element 
centred in the encapsulating polymer (Figure 40d). At the same time, 
they create two bumps on the external sides of the element in order 
to focus the transducer deformation, the vibro-tactile stimulus, in a 
specific contact area on the skin. The choice of a spherical cup as a 
contact region on the skin is due to heuristic design criteria. On one 
side, a spherical protrusion simplifies the implementation of some 
steps of the encapsulation process. Furthermore, protruding edges, 
[189] or bumps, [182]–[184] showed proper functionality in the 
design of matrices of tactile actuators, and bumps are the most used 
in Braille displays. We opted for a spherical-like shape to avoid sharp 
edges on the actuator surface and to increase the comfort of the 
wearer. The dimensions were chosen in order to have a perceptible 
protrusion which could help position the actuator on a specific 
contact point on the skin, but also to avoid a very large difference in 
height from the actuator surface. The resulting contact area was 
about 18.2 mm2 which, in case of multiple transducers, results in a 
spatial distribution just higher than the minimal range guaranteeing 
reliable two-point discrimination on fingertips (0.5 mm [206] –1.6 
mm [104]). 
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Figure 40: a) Upper view of one of the spherical cups; (b) Encapsulated transducer with 
the two spherical cups on the opposite sides and the embedded electrical contacts; (c) 
3D printed customized mould for the development of the geometry of the transducer 
with PDMS polymer. In this structure, the piezoelectric element with the spherical cups 
and the electrical connections will be centred; (d) Upper view of the transducer, with 
evidence of the internal structure where two spherical cups enclose the piezoelectric 
disk and the electrical wires. 

FEM MODEL OF TRANSDUCER’S ELECTRO-MECHANICAL BEHAVIOUR  
A finite element method (FEM) simulation of the piezoelectric 
transducer was performed using COMSOL Multiphysics (COMSOL 
Inc., Palo Alto, CA, USA). We considered the geometry introduced in 
the previous paragraph. The mechanical properties of PDMS 
necessary to run the simulations were the Young’s modulus, 
Poisson’s ratio, and density. The acoustic properties were not 
explicitly needed as inputs for the simulation. They were consistently 
derived by the numerical solver so that no additional characterization 
was required. The density was verified from the mass/volume ratio 
of auxiliary samples. The derived value was in agreement with the 
one available in the adopted library (970 kg/m3). Regarding the PDMS 
Poisson’s ratio, we adopted 0.5 from the literature, [207], [208] (its 
dispersion is low, and the same value was provided as the reference 
PDMS Poisson’s ratio in the material library of the chosen solver). 
Differently, the PDMS Young’s modulus sensibly depends on the 
actual material composition and therefore we assessed the reference 
value provided in the material library through a complementary 
calibration experiment described in the following paragraph. Finally, 
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as for the PZT material properties, we adopted the elastic and 
piezoelectric coefficients and electric permittivity provided by the 
material library of the chosen solver (an extensive characterization of 
this commercial material was beyond the present scope). The 
purpose of the numerical simulations was to estimate the normal 
force exerted by the piezoelectric transducer at different frequencies 
and driving voltages. In particular, we chose 50V, 100V, and 150V as 
the driving peak-to-peak voltages for the sake of definiteness, and 
we selected a frequency range between 200 Hz and 700 Hz. The 
choice of such a frequency interval allows the activation of the 
transducer within the Pacinian frequency range, centred around 300 
Hz, [104], [173], [209], [210] , for which the maximum sensitivity for 
vibro-tactile stimulation is expected. Furthermore, previous studies, 
[211] showed that the subjective amplitude perception of the vibro-
tactile stimulus is not influenced by the frequency in this specific 
interval (200–700 Hz). Based on the experimental conditions 
described below, we imposed a null displacement (u = 0) on the 
bottom and lateral surface of the PDMS encapsulation material, 
whereas we imposed a compression load of 1 N on the PDMS upper 
surface (see Figure 41).  

 

Figure 41: (a) Schematic of the actuator showing the boundary conditions on the PDMS 
structure; (b) Detail of the piezoelectric disk showing the driving voltage imposed on 
the element; (c) View of the meshed geometry of the whole encapsulated transducer. 

We imposed the driving voltage on the piezoelectric disk (∆V0), and 
we gathered via a load cell (Nano43, ATI Industrial Automation, Apex, 
NC, USA), the resulting force normal to the PDMS bottom surface. In 
addition, we preliminarily set up the numerical discretization so as to 
obtain grid-independent results, which led to a mesh composed of 
675,062 tetrahedral elements (160,731 volume elements, 23,068 
surface elements, and 843 edge elements). We also considered an 
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axisymmetric model, derived from the three-dimensional one 
through minor geometrical simplifications, to assess the adopted 
numerical technology. For all the runs, we considered the fully-
coupled (i.e., electro-mechanical) problem by exploiting the 
corresponding modules natively provided with the FEM simulation 
environment. 

PRELIMINARY MECHANICAL CHARACTERIZATION OF THE PDMS  
A mechanical characterization of the PDMS was performed in order 
to assess the Young’s modulus. A cylindrical probe (φ 6 mm) moving 
along the Z-axis through a motorized translational stage was used to 
indent a PDMS sample (30 mm × 30 mm × 3 mm). The probe was 
mechanically linked with a load cell (Nano 43, ATI Industrial 
Automation) in order to apply a predefined value of force and, thus, 
establish a relationship between the applied force and the 
corresponding polymer displacement (indentation; set to be null 
when contact was first established). The resulting experimental trend 
was then compared to the one obtained from a numerical simulation 
of the considered indentation test, exploiting, in particular, the 
Young’s modulus provided by default by the adopted numerical 
solver.  

EXPERIMENTAL SETUP  
In order to perform the mechanical characterization, the transducers 
were actuated by means of a piezo haptic driver (DRV2667 Evaluation 
module, Texas Instruments, Dallas, TX, USA) using a graphical user 
interface (GUI) (LabVIEW, National Instruments, Austin, TX, USA) that 
activated the driver through an electronic board (sbRIO 9636, 
National Instruments). Before human evaluation of the system, we 
assessed the ability of the haptic interface to deliver perceptible and 
discriminable stimuli using a load cell (Nano 43, ATI Industrial 
Automation), in order to provide input stimuli and record the 
resultant vibrations (Figure 42), [212]. Such measurements were 
then compared with the FEM simulations described in previous 
paragraph. 
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Figure 42: Experimental setup for the evaluation of the normal force. (a) Schematic 
drawing of the experimental setup. 1. PC running a GUI to send selected waveforms to 
the piezoelectric transducer via a driving electronics; 2. Electronic board for the 
communication between the GUI and the piezo haptic driver; 3. Piezo haptic driver for 
the activation of the piezoelectric transducer; 4. Load cell for force measurement: the 
measured forces are saved for post-processing. (b) Detail of the measurement system, 
where the encapsulated transducer is fixed on the load cell. 1. Section of the 
measurement system, in which the encapsulated transducer in fixed in a 3D printed 
housing linked to the load cell, with detail of the experimental boundary conditions; 2. 
CAD representing the measurement system, with a 3D printed housing linked on the 
upper part of the load cell; 3. CAD representing the whole measurement system, in 
which the encapsulated transducer is inserted. 

EXPERIMENTAL PROCEDURE  
The experimental mechanical characterization of the encapsulated 
transducer was performed in order to evaluate the element 
behaviour with the variation of the driving voltage (measured in 
peak-to-peak-Vpp) and the frequency. In order to do so, we 
measured the amplitude of the normal force (FZ) exerted by the 
piezoelectric element on a load cell. To stabilize the transducer 
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during the experimental tests, a 3D-printed housing was fixed on the 
load cell (Figure 42). Furthermore, a load of 1 N was placed on the 
upper surface of the encapsulated transducer in order to keep it 
stable during the measurements and to emulate a typical pre-load 
that can be exerted on the device during its use. Such an offset load 
was then subtracted from the dynamic measurements of the load 
cell. piezoelectric element was driven with stimuli lasting 1 s. The 
stimulation signals were characterized by three values of amplitude 
(50, 100, and 150 Vpp), kept constant across each stimulation, and 
21 values of frequency varying between 200 Hz and 700 Hz, with 25 
Hz steps. These settings were consistent with those adopted for the 
model. The values of the normal force (FZ) exerted on the load cell 
during the excitation were acquired across 10 repetitions for each 
vibration frequency and each peak-to-peak voltage. 

DATA ANALYSIS FOR THE ELECTROMECHANICAL CHARACTERIZATION OF THE 

ENCAPSULATED TRANSDUCER 
The waveforms obtained from the measurements of the load cell 
were then analysed with the calculation of the signal power 
(standard deviation of the amplitude of FZ). The data analysis was 
performed across 750 samples for each frequency value, where the 
sampling window was selected in the central part of the signal to 
focus on the steady state of the dynamic activation of the 
piezoelectric transducer. Spectral analysis was performed on FZ using 
the MATLAB (R2016b, MathWorks, Natick, MA, USA) wavelet 
coherence package, [213], for each peak-to-peak voltage and each 
frequency value in the range between 200 Hz and 700 Hz, with 25 Hz 
steps and 50 Hz steps. 

SYSTEM INTEGRATION FOR PSYCHOPHYSICAL EVALUATION  
The described encapsulated transducer was used for the 
development of a wearable vibro-tactile device for the stimulation of 
the hand, i.e., a haptic glove (Figure 43a-d). For the psychophysical 
evaluation of the tactile display, we designed three experimental 
configurations: two single-finger, with the stimulation of the index 
(SF-I) or thumb (SF-T) fingertip; and one bi-finger (BF-S), with the 
simultaneous  stimulation of the index and thumb fingertips. In the 
SF-I and SF-T configurations, one transducer was integrated, 
respectively, on the tip of the index finger (Figure 43c) or thumb 
(Figure 43d) of a spandex glove; for the BF-S configuration two 
transducers were integrated on the tips of the index finger and 
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thumb of the same spandex glove (Figure 43b). In all configurations, 
the glove allowed a secure positioning of the vibrating element on 
the participant’s fingers. The transducers provided a contact area 
with the finger pad of approximately 250 mm2. The electrical 
actuation was delivered to the transducers via the electronics, i.e., a 
piezo haptic driver controlled using a GUI and interfaced with the 
driver through an electronic board, [212]. 

 

Figure 43: Experimental setup with the three experimental configurations. (a) Bi-Finger 
Synchronous (BF-S) configuration: two piezoelectric transducers, embedded in a 
spandex glove, stimulate synchronously the tips of the index and thumb finger; (b) 
Single-Finger Index (SF-I) configuration: single-finger stimulation on index fingertip 
with one piezoelectric transducer embedded in a spandex glove; (c) Single-Finger 
Thumb (SF-T) configuration: stimulation on thumb fingertip with one piezoelectric 
transducer embedded in a spandex glove. 

PSYCHOPHYSICAL EVALUATION  
We evaluated the ability of the integrated wearable haptic system to 
deliver accurate tactile feedback using a two-alternative forced 
choice (2-AFC) psychophysical protocol. According to previous 
studies, we chose to use frequency modulation as a mean to deliver 
haptic information. Even if the exact number of discriminated levels 
is not clear yet, it can increase when stimuli differing in frequency are 
relatively compared, [210]. Studies regarding the amplitude 
modulation showed instead that, for constant frequencies, when the 
vibration amplitude increases, the perceived frequency also 
increases, [214]. According to these studies, and to the experimental 
data from our measurements, we decided to select a fixed driving 
voltage of 150 Vpp for the psychophysical experiments. This value 
corresponds to the higher value of normal force exerted on the 
actuators’ sides and, according to preliminary psychophysical tests, 
was the one which showed the best performance across 10 
participants, [212]. The frequency modulation was then performed 
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in the range between 200 Hz and 700 Hz, that guarantees a proper 
functioning of the transducer according to the FEM analyses. Thirty-
three healthy participants (15 females and 18 males), aged between 
25 and 37, participated in psychophysical experiments. Haptic 
stimulation was performed on the dominant hand which, for 31 
participants, was the right hand. No participant had previously 
performed any activity presumably compromising finger tactile 
sensitivity. All participants provided written informed consent for 
inclusion before they took part in the study. The study was conducted 
in accordance with the Declaration of Helsinki, and the protocol was 
approved by the Ethics Committee for non-clinical experimentation 
of Scuola Superiore Sant’Anna of Pisa. 

EXPERIMENTAL PROCEDURE  
A tactile discrimination task with the 2-AFC procedure, [215] was 
designed, and was performed by each participant. Periodic vibro-
tactile stimulation was delivered using the haptic glove described in 
the previous paragraph. The experimental session consisted of the 
presentation of 150 pairs of stimuli divided into 15 sequences, as 
described in the following. Each participant was presented with 
paired vibro-tactile stimuli (Figure 44a-b) and was asked to identify 
which stimulus of the pair had the higher frequency content (Figure 
44c).  
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Figure 44: Stimulation and task. (a) An example of a pair of stimuli: 250 ms of sinusoidal 
oscillations with a frequency of 200 Hz followed by 250 ms sinusoidal oscillation with a 
frequency of 700 Hz. The peak-to-peak amplitude activating the transducer was fixed 
at 150 V; (b) A 0.04 s slice of the vibro-tactile stimulation shown in panel (a), depicting 
the frequency transition at 0.25 s; (c) Participant decision phase: after perceiving the 
vibro-tactile stimuli pair, the participant was asked to determine whether the first or 
the second had higher frequency content. 

A stimulation sequence included a single presentation of each of the 
10 pairs of stimuli described in Table 5 in random order. An 8 s 
interval was introduced to separate each subsequent stimuli pair, 
leading to a sequence duration of about 2 min. A rest period of about 
1 min spaced the 15 sequences, for a total average duration of 45 
min. Two randomized sequences were used for training purposes. 
These sequences were not included in the statistical analyses and 
were sufficient for the participants to familiarize with the stimuli. As 
briefly explained in the introduction, we delivered vibro-tactile 
stimuli following three experimental configurations. In this way, we 
were allowed to test the human hand tactile sensitivity to frequency 
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variations under different perceptual conditions. Each configuration 
was tested with 11 participants. Each participant was comfortably 
seated on a chair for the duration of the experiment for all tested 
configurations, and he/she was acoustically isolated from the 
environment with white noise provided by headphones. 

Table 5: Experimental stimulation parameters. Ten pairs of vibro-tactile stimuli. First 
vibro-tactile stimulus f1, second vibro-tactile stimulus f2 and related frequency variation 
∆f = f2 - f1. 

f1 

[Hz] 
700 650 600 550 500 400 350 300 250 200 

f2 

[Hz] 
200 250 300 350 400 500 550 600 650 700 

∆f 

[Hz] 

-

500 

-

400 

-

300 

-

200 

-

100 
100 200 300 400 500 

 
DATA ANALYSIS FOR PSYCHOPHYSICAL EXPERIMENTS  
Data analysis was performed using the Statistics Toolbox in MATLAB. 
To compare the performance of different configurations, the Kruskal-
Wallis test was used. For each configuration and frequency variation, 
the vibro-tactile perception of a population of participants was 
evaluated by the median and the 95% confidence interval of the rates 
of identification of stimuli having an increasing frequency (Δf > 0), 
calculated with binofit test. A logistic fit of the resulting psychometric 
curves was computed for each configuration across presented 
frequency variations. To analyse the significance of participants 
responses for each frequency variation Δf and experimental 
configuration, the binofit test was used.    

3.1.3 Results & Discussion 
ENCAPSULATED PIEZOELECTRIC TRANSDUCER  
We developed an encapsulated transducer, 18 mm in diameter and 
4 mm in thickness (Figure 45) (see methods for details). Its shape is 
characterized by two spherical cups which protrude out 250 µm from 
the upper and lower levels of the polymeric matrix (upper part of 
Figure 45a-b). These elements allow skin stimulation at a specific 
contact point. The presence of the spherical cups allows to centre the 
piezoelectric element in the polymeric shell, as shown in the lower 
part of Figure 45. 
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Figure 45: Embedded piezoelectric transducer. (a, upper part) Drawing of the lateral 
view of the piezoelectric transducer embedded in the polymeric matrix, with evidence 
of the two protrusions on the external opposite faces of the geometry; (a, lower part) 
Drawing of the upper view of the piezoelectric transducer embedded in the polymeric 
matrix; (b, upper part) Lateral picture of the developed prototype showing the side of 
the actuator; (b, lower part) Upper picture of the developed prototype showing the 
whole surface of the actuator. 

RESULTS OF THE PRELIMINARY EXPERIMENTAL MECHANICAL 

CHARACTERIZATION OF THE PDMS  
Results from the experimental characterization of PDMS validated 
the stiffness of PDMS test blocks, maintaining the mechanical 
parameters of the material as available in the software library. In 
particular, the trend of the obtained force vs. displacement was 
compared with the one obtained from the model of the considered 
indentation test. The simulation outcomes appear to match the 
experimental data, to consider the library parameters of the material 
accurate enough to describe the PDMS used in our study (Figure 46). 
As a consequence, we could safely exploit the parameters available 
in the COMSOL material library to run the FEM dynamic simulations 
presented in the next paragraph. 
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Figure 46: Characterization of the PDMS Young modulus and corresponding model 
calibration, based on complementary indentation experiment. The close agreement 
between experimental (blue dots) and simulated data (red line) confirmed the 
suitability of the chosen parameter. 

TRANSDUCER FEM MODEL AND EXPERIMENTAL CHARACTERIZATION  
The results of the FEM model are shown in Figure 47 (solid lines with 
circles), together with the corresponding experimental measures 
(dots). The model was able to accurately predict the observed 
experimental response. For each driving voltage and each frequency, 
the mean value and the standard deviation of the normal force (over 
the 10 repetitions) are represented in Figure 47. In most cases, the 
vertical bars representative of the standard deviation are hardly 
visible thanks to the high repeatability of the experimental 
conditions. From Figure 47 we can conclude that, as expected, the 
amplitude of the vibrational component of the normal force 
increases with the increase of the transducer driving voltage. Figure 
47 also show the vibration amplitude is weakly varying over the 
analysed frequency range for each driving voltage (for 150 Vpp 
driving voltage, the variation of the normal force amplitude is about 
0.025 N across the selected frequency range). These results 
demonstrated that the variation of the normal force is mainly related 
to the driving voltage amplitude.  
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Figure 47: Normal force exerted during transducers actuation. Predicted trend (solid 
lines with circles) and experimental measures (dots) of the normal force for the 
considered driving voltages. For each experimental point, the standard deviation is 
represented by vertical bars. 

Increasing the voltage value (from 50 V to 150 V) three times leads 
to a fractional variation of the recorded force of about 300% ± 25% 
over the whole range of frequencies. Increasing the frequency value 
three times (from 200 Hz to 600 Hz) leads, instead, to a force 
variation always lower than 10% for all of the driving voltage 
conditions (50 V, 100 V, and 150 V). The weak relationship from the 
value of frequency within the selected range allows a straightforward 
application of the transducer in haptic displays for the stimulation of 
the human hand. Spectral analysis showed coherence with the 
nominal stimulation parameters. For each stimulation amplitude (50, 
100, and 150 Vpp, see Figure 48a-c) the encapsulated transducer 
showed coherency in the stimulus presentation within the whole 
examined frequency range, with evident vibratory changes across 
the analysed peak-to-peak amplitudes and frequencies. The same is 
visible in Figure 48d–f showing the frequency values selected for the 
psychophysical testing (range 200Hz–700Hz, with 50 Hz steps). These 
experimental results allow to conclude that the vibro-tactile stimuli 
delivered to the participants were coherent with the frequency 
values selected for the experimental testing and, thus, the 
transducers embedded in the polymeric matrix can deliver vibro-
tactile information in a reliable manner 
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Figure 48: Frequency power spectrum of the normal force. Spectral analysis of the 
normal force recorded by the load cell while activating the piezoelectric 
actuator/polymer system. (a) Results for 50 Vpp and 200-700 Hz, with 25 Hz steps 
(mechanical characterization); (b) Results for 100 Vpp and 200-700 Hz, with 25 Hz steps 
(mechanical characterization); (c) Results for 150 Vpp and 200-700 Hz, with 25 Hz steps 
(mechanical characterization); (d) Results for 50 Vpp and 200-700 Hz, with 50 Hz steps 
(psychophysical experiments); (e) Results for 100 Vpp and 200-700 Hz, with 50 Hz steps 
(psychophysical experiments); (f) Results for 150 Vpp and 200-700 Hz, with 50 Hz steps 
(psychophysical experiments). 

PSYCHOPHYSICS RESULTS  
Results from psychophysical testing for all the experimental 
configurations are shown in Figure 43 and are reported hereafter. 
The average performance over all the 10 frequency variations was 
significantly above chance for both bi- and single-finger 
configurations, with non-significant differences between the mean 
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discrimination performances achieved under different stimulation 
configurations (as shown in Figure 49a: n = 11 for every group; 77 ± 
11% for BF-S vs. 70 ± 8% for SF-I vs. 66 ± 12% for SF-T; p=0.51, Kruskal-
Wallistest). In particular, frequency differences larger than 100 Hz 
were reliably identified in all configurations (Figure 49b-c-d) 
developed integrated haptic system was thus effective in delivering 
vibro-tactile information for both single-finger and bi-finger 
configurations when the frequency delivered to the skin was within 
the 200–700 Hz range and the stimulus variation was larger than 100 
Hz. Furthermore, in the explored frequency variation range (∆f = 
−500 –500 Hz) the psychometric curves obtained from experimental 
data for single-finger configurations, as well as the one for bi-finger 
configuration, were accurately fitted by logistic curves over the 
whole range of frequency variations (Figure 49b–d), χ2 = 0.43 for BF-
S, χ2 = 0.68 for SF-I and χ2 = 1.02 for SF-T). When calculating the 
psychometric curves to evaluate performance as a function of 
frequency variation, the differences between bi-finger and single-
finger configurations showed that two-digit perception has a 
frequency sensitivity to vibro-tactile stimulation comparable to the 
one relative to single-finger perception (compare Figure 49b with 
Figure 49c,d).  

 

Figure 49: Stimuli perception with single-finger configuration. (a) Comparison between 
the fraction of correct responses (i.e., increasing frequency variations identified as 
increasing or decreasing frequency variations identified as decreasing) in all the three 
configurations. Boxes represent the interquartile range and black dashed lines show 
the complete range across participants; (b) Psychometric curve for BF-S stimulation 
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configuration. Each dot represents the fraction of times each stimulus was classified as 
having an increasing frequency (median across participants). If the identification rate 
is significantly different (average>50%, binofit test) from chance the dot is red, 
otherwise, it is black. The filled area indicates the 95% confidence interval (binofit test) 
across participants and the black horizontal dashed line represents chance; (c) Same 
as (b) for SF-T stimulation configuration; (d) Same as (b) for SF-I stimulation 
configuration. 

For all configurations, Figure 50 shows the comparison between 
logistic fits of frequency variations identified as increasing. Over the 
full range of frequency variation, the two single-finger configurations 
and the bi-finger configuration had similar logistic fit curves.   

 

Figure 50: Comparison of logistic fit of psychometric curves for all configurations. 
Comparison of logistic fit curves over the whole range of frequency variation. The 
curves are similar for all the three experimented configurations. 

CONCLUSIONS   
In this work we i) described the mechanical behaviour of a 
piezoelectric disk encapsulated in a polymeric matrix, specifically 
designed for the integration in wearable haptic displays, and ii) 
characterized the behavioural performance in sensory discrimination 
of healthy human subjects wearing such displays. The FEM modelling 
showed that the normal force exerted by the encapsulated element 



97 
 

presents a constrained variation across the experimented frequency 
range for the three selected driving voltages. This modelled 
behaviour was confirmed by the experimental testing. The 
psychophysical testing of an integrated haptic system, a vibro-tactile 
glove for the stimulation of the index and/or thumb fingertips of the 
human hand, demonstrated that the developed haptic transducer is 
effective in delivering vibro-tactile information. The transducer 
described herein presents some advantages with respect to the 
recent technological solutions for wearable tactile displays, such as: 
i) the piezoelectric actuator enables the selection of a wide range of 
stimulation frequencies in the perceptual frequency range with a fine 
selection of frequency steps. This is true especially when 
piezoelectric elements are compared to polymeric actuators, like 
dielectric elastomers. The former allows selecting frequencies in both 
low and high frequency ranges. They can be used for the stimulation 
of both slowly-adapting and fast-adapting tactile receptors, in 
particular Pacinian corpuscles more sensitive to vibro-tactile stimuli; 
ii) piezoelectric disks also limit the space required by the actuator, 
enabling a straightforward integration in wearable systems like 
gloves, and provide appropriate spatial resolution for being placed 
on different areas of the skin. These advantages are evident when 

our solution is compar the block proposed in this study ed to 

tactile actuators like pneumatics, vibrating motors, solenoids and to 
exoskeletons. In fact, a wearable device should fit the wearer’s body 
and allow the natural movements of the body part on which it is 
applied. When worn on the hands, tactile actuators must be 
lightweight and have limited dimensions, [197]. The introduction of 
a polymeric shell to encapsulate the active element allows obtaining 
an integrated actuator which can easily fit in a wearable system for 
the stimulation of different body areas. The polymeric encapsulation 
also behaves as an interfacing layer between the piezoelectric 
element and the user’s skin, and our particular geometry allows the 
selection of a precise contact site to stimulate the insulation of the 
electrical connections increasing the actuator safety, and obtain an 
easy-fitting element. The transducer presented herein, thanks to its 
particularly shaped polymeric encapsulation and its broad range of 
actuation frequencies, can be effectively employed for the 
development of tactile displays suitable to different application 
scenarios. This encapsulated piezoelectric transducer can be 
integrated within tactile displays for sensory substitution to assist the 
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blind or visually-impaired, deaf or hearing-impaired, and combined 
sensory impaired (deaf-blind) individuals. Several examples can be 
found in the literature about tactile aids used to convey the 
information coming from one sensory channel to the tactile sense in 
a perceptible manner, [173], [174], [177], [216]. Other applications 
can involve the integration of our encapsulated actuator in devices 
providing non-invasive tactile feedback to amputees. It can be also 
integrated in sensory augmentation technologies for healthy subjects 
in applications such as virtual reality, gaming, rehabilitation, 
navigation, rescuing, and remote control of robots, where vibro-
tactile stimulation is already widely used, [192]–[196]. Haptic 
feedback also has significant advantages in robotic surgery and 
industrial environments for human-robot co-working activities. We 
are also considering the possibility to integrate this encapsulated 
actuator in haptic wearable systems for alerting purposes, in 
environments where the interaction with automated machinery can 
be dangerous for operators. This solution may improve safety in 
dangerous workplaces and the adoption of collaborative robotics in 
common applications. Towards deployment in such scenarios, this 
study will be complemented with future experiments where these 
novel vibro-tactile transducers can be integrated into different 
wearables, according to the particular application they will be 
involved in. 
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3.2 Neuromorphic Vibro-tactile Stimulation of 
Fingertips for Encoding Object Stiffness in 
Telepresence Sensory Substitution and 
Augmentation Applications7 

3.2.1 Framework 
The use of haptic technologies to deliver tactile information in real-
time has grown in recent years, because of the effectiveness of the 
human tactile sense as a communication channel for different kinds 
of object information. We use the sense of touch to interact with the 
surrounding world, especially through the hands, which represent 
the most somato-sensitive part of our body, [59], [217]. Individuals 
who have experienced the loss of this sense cannot properly perform 
actions, such as using tools or holding objects. For these persons, 
motor control tasks can also become extremely difficult or impossible 
to perform, [218], [219]. The possibility to deliver tactile information 
directly onto the users’ skin, and especially on the hands, via tactile 
feedback can enhance the performance of tasks executed in different 
scenarios. This could contribute, amongst others, to rehabilitation 
procedures, as well as to the development of tactile aids for visual 
and audition sensory disabled persons since the seminal works of 
Bach-y-Rita, [220]–[224], as it has been discussed in perspective and 
review papers on the topic, [225], [226]. These individuals could 
improve their communication and navigation abilities through the 
use of wearable or hand-held haptic aids, particularly those which 
deliver information related to another sense via the tactile channel, 
[227]. The delivery of tactile information is also fundamental in 
contexts where fine control of mechanical tools or robotic hands is 
required. More generally, the real-time representation of tactile 
information is highly important in virtual reality and telepresence 
contexts, where a user is allowed to perceive his/her presence in a 
virtual or remote real environment. Therefore, in order to reach a 
higher level of realism in these situations, visual and auditory stimuli 
shall be accompanied by haptic sensations with tactile feedback, 
[13]. The stimulation of the tactile sense facilitates direct contact 
with virtually or remotely explored objects, providing the perception 

                                                           
7 This section has been excerpted from the paper, [136], that has 
been published in an international scientific journal: Sensors, with 
the PhD candidate being co-author of the study. 

https://www.mdpi.com/journal/sensors/special_issues/tactile_sensors
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of characteristics such as weight, stiffness, thermal and geometric 
properties. In the last decades, a variety of research has focused on 
the development of devices for the provision of tactile information in 
telepresence, mainly with sensory augmentation or substitution 
purposes, [228]–[231]. However, there is still a significant gap 
between the wealth of research prototypes and the limited number 
of wearable haptic technologies that have reached a proper 
readiness level to turn into commercial devices. Tactile information 
presented on the skin is collected by all the mechanoreceptors 
distributed in the stimulated areas and the dedicated receptors can 
then provide information about the characteristics of an object, [19]. 
In general, the hand is the most selected area to be stimulated 
because receptors within the skin of human hands have the highest 
body density and are able to encode a relatively wide range of 
stimulation frequencies, [104], [173], [209], [210], with a concurrent 
role of the different receptor types, [66], [232]. Slowly adapting (SA) 
fibers (Merkel and Ruffini mechanoreceptors) respond dominantly to 
sustained stimuli with main frequencies up to 100 Hz, [233], while 
rapidly adapting (RA) fibers (Meissner and Pacinian 
mechanoreceptors) are involved in the representation of vibrations 
and tickle, with activation frequencies reaching 200–300 Hz for 
Pacinian receptors, [232]. The maximum spatial sensitivity is 
achieved on the index phalanx, where the location of the presented 
tactile stimulation is precisely encoded, [234]. The delivery of tactile 
feedback in telepresence operations, [192], [193], [195], [196] is 
fundamental to augmenting users’ perception capabilities in 
scenarios such as industrial manufacturing. When robotic end-
effectors are highly involved in both force and precision gripping 
tasks, there could be the possibility to improve high-precision 
manipulation activities with the development of human–robot 
control systems. Another important application is robotic surgery, 
where tactile feedback on a surgeon’s hand can transmit the 
characteristics of the inspected tissues, [194], [235], [236]. In the last 
few years, much effort has been devoted to this field, for the 
development of systems for biomedical applications such as 
telemedicine and tele-robotics, and for the development of tactile 
sensors and actuators for non-structured environments, [7]. In the 
last ten years, the advantages offered by medical robots for different 
procedures became clearer to the medical community, [237]. A 
telling example is minimal invasive surgery (MIS), where the surgeon 
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works out of the operating table and the manipulations are 
transmitted to the operation site by means of instruments, [238]. In 
all these situations, a major drawback on performance is the absence 
of direct tactile feedback on the surgeon’s hands. In fact, tactile 
information is indicative of the condition of the operated tissues, but 
is also useful to ensure the correct manipulation of instruments, 
[239]. An instrumented palpation would help to characterize tissues 
according to their elasticity and stiffness, to precisely localize 
tumours and lesions. For these purposes, some devices were 
developed in order to detect tumorous tissues, [7], or to manipulate 
and characterize the properties of organs during robotics-assisted 
surgical interventions, [240]. Some feedback mechanisms are being 
evaluated in laboratory environments in robotic surgery, like in the 
“Da Vinci” system (Intuitive Surgical Inc., Sunnyvale, CA, USA), where 
a force feedback system partially compensates for the absence of 
direct tactile feedback, [7], or in which some tactile sensors were 
integrated in order to deliver tactile feedback on the surgeon’s hands 
via a pneumatic tactile display, [7], [241]. Force feedback devices 
such as the “Phantom” were also integrated in the “Zeus” surgical 
system, [237]. Despite all these initial efforts, we are still far from a 
satisfactory delivery of tactile sensation in surgical environments. In 
the present study, we tested the reliability of a tactile telepresence 
system in delivering feedback information about the stiffness, i.e., 
the ratio between a compression force and the resulting deformation 
of the tissue, of selected polymeric samples to the hand of an 
operator placed remotely with respect to the inspecting system. The 
study was designed with possible applications in the field of industrial 
and surgical robotics. Our approach is based on the conversion of 
information about the stiffness of rubber surfaces in vibro-tactile 
stimuli by means of neuronal spiking models. This encoding strategy 
enables the real-time conversion of force information in neuronal 
spikes, which are delivered directly on the skin of the fingertips of the 
hand of a remote human subject. In our novel approach, the spikes, 
usually delivered via neuronal electric stimulation directly on nerves 
to restore tactile sensation in amputees, [86] or to investigate how 
tactile information is encoded in the brain, [148], are presented 
mechanically on the surface of the skin. The developed feedback 
strategy is based on a spiking neuron model and thus allows a 
discrete-events encoding of tactile information: the proposed 
approach aims at merging together the simplification mechanisms of 
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the discrete event-driven sensory feedback control (DESC) policy, 
[174] with the possibility of delivering qualitatively-rich haptic 
information. Technically, the advantages of the proposed solution 
are the elegant and adaptable formulation via the differential 
equations that govern the Izhikevich artificial neuron, in place of the 
case-based programming that typically occurs with state machines in 
traditional systems. Another major technical advantage of the 
developed system is in its capability to reduce the bandwidth 
required to transfer and store information, as demonstrated in 
previous studies, [147], with the potential advantages in enabling the 
streaming of data from large networks of tactile sensors in haptic 
telepresence applications. The main purpose of the present study is 
thus to investigate the mechanisms of tactile perception and the 
feasibility of the proposed feedback strategy, according to which 
vibro-tactile information is delivered to the skin with an encoding 
strategy resembling the tactile receptor language, with the 
adaptation of models recently presented by our group, [86], [147], 
[148]. The assumptions made in proposing this experimental 
paradigm are quite strong, because the temporal characteristics of 
the code delivered to the skin resemble the output—not the input—
language of the receptors: this approach somehow resembles the 
contingency–mimetic strategy, [242]–[244]. The scientific question 
addressed is then whether this language can be effectively 
understood even if delivered onto the skin surface rather than into 
the nerve (the approach typically pursued in prosthetics, [86]). The 
telepresence device is constituted of a mechatronic platform for the 
automatized indentation of rubber samples and of a haptic display (a 
vibro-tactile glove) for the remote transmission of vibro-tactile 
information, [11]. Using a two-alternative forced-choice (2-AFC) 
psychophysical protocol, we evaluated the reliability of this wearable 
haptic system in delivering stiffness information about remote 
objects in real-time. 

3.2.2 Materials & Methods 
EXPERIMENTAL SETUP  
The experimental setup was composed of two main subsystems, 
which allowed for the execution of the experiments in telepresence. 
The first sub system was a mechatronic platform for the indentation 
of samples of different rubber surfaces. It consisted of a Cartesian 
manipulator with three translational degrees of freedom, a load cell 
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for the measurement of the normal force during the indentation of 
the samples (Nano 43, ATI Industrial Automation, Apex, NC, USA), a 
probe mounted on the load cell and a Graphical User Interface (GUI) 
made in LabView (National Instruments Corp., Austin, TX, USA) in 
order to control the movement of the sliders and acquire data from 
the load cell (Figure 51A). This first subsystem was located in a 
laboratory of The BioRobotics Institute of Sant’Anna School of 
Advanced Studies—Pisa, Italy. The second sub-setup was located in a 
remote environment with respect to the indentation platform, i.e., a 
laboratory within the Trinity College Institute of Neuroscience in 
Dublin, Ireland. The apparatus comprised a textile glove equipped 
with two vibro-tactile piezoelectric elements which were placed on 
the index and thumb fingertips respectively, a control electronics and 
a GUI made in LabView, which allowed the transmission of data from 
the mechatronic platform to the haptic glove (Figure 51B). The 
communication between the two blocks of the experimental setup 
was performed via a User Datagram Protocol (UDP) channel. The 
mechatronic platform for the automatic indentation of the rubber 
samples (Figure 51A) allowed for the investigation of the 
participants’ discrimination thresholds in the experimental condition 
of passive touch, with the purpose of characterizing relevant 
psychophysical parameters. The platform allowed for the 
measurement of the normal force (FZ) generated during the rubber 
compression stage. In particular, it executed indentation protocols 
with controlled testing velocities and positions, and selectable force 
targets. The vertical element of the slider mechanism was a precision 
positioner, and could ensure the vertical application of loads up to 10 
kg along the z-axis. The couple of sliders along the x- and y-axes had 
the same performance as the vertical positioner. The probe was fixed 
to the load cell: it was a cylindrical tip made of aluminium with a 
diameter of 6 mm. During the indentation of the rubber samples, the 
vertical slider was driven with a constant velocity of 0.5 mm/s, which 
was always the same for each investigated specimen. The choice of a 
constant indentation velocity allowed us to characterize the stiffness 
of the samples without taking into account variations due to the 
viscoelastic behaviour of the materials. In each experimental trial, 
the rubber pair, the force and the duration used to indent each 
rubber sample were randomized, in order to guarantee a very 
challenging task for the participants during the experimental 
protocol. The tactile feedback system allowed for the vibro-tactile 
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stimulation on the remote user’s hand, giving information regarding 
the stiffness of the indented rubber samples (Figure 51B). It was 
composed of an electronic board (sbRIO 9636, National Instruments 
Corp., National Instruments, Austin, TX, USA) for the communication 
between the received force signal and the piezoelectric elements in 
the glove; a piezoelectric evaluation module (DRV2667 Evaluation 
module, Texas Instruments, Dallas, TX, USA) for the activation of the 
piezoelectric transducers; a vibro-tactile interface for bi-digital 
stimulation, made of a textile glove embedding two piezoelectric 
disks (7BB-12-9, MuRata, Kyoto Prefecture, Japan) encapsulated in a 
polymeric matrix with a customized process, [11], [212]. The 
mechatronic platform moved the rubber samples in order to indent 
those selected for the current experimental session. The six rubber 
samples were placed on a Delrin support (170 × 130 × 17 mm3) 
provided with six housings (30 × 30 × 3 mm3). The position of the 
centre of each sample was represented by a couple of coordinates 
(x-y). These coordinates were randomized with a GUI made in 
LabView, which allowed for the movement of the horizontal sliders 
along the x-y axes. Once the target x-y position was reached, the 
translation mechanism allowed indenting the rubber via the probe 
along the z-axis. The rubber compression lasted until the measured 
FZ on the load cell reached a random threshold level, that was varied 
in the 4 to 8 N range during the experimental protocol. Once the 
threshold was reached, the loading phase was interrupted, and the 
support returned to the reference position (x = 0; y = 0; z = 0). 
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Figure 51: Experimental setup. (A) Subsystem I: 1. Sliders system with load cell and 
probe for the indentation of the rubber samples at controlled velocity; 2. Interface for 
the control of the platform operation and for sending data from the load cell to the 
second environment (remote laboratory); (B) Subsystem II: 1. GUI for the activation of 
the glove; 2. Driving electronics; 3. Haptic glove for the bi-digital stimulation of the 
hand. The two sub-setups were spatially separated, since the former was located in 
Italy and the latter in Ireland. The plots at the bottom of the figure depict how the 
normal force readings are converted into spikes by means of the implemented 
Izhikevich artificial neuron model. 

SPIKE-BASED ENCODING OF CUTANEOUS FEEDBACK INFORMATION VIA THE 

IZHIKEVICH MODEL  
The activation of the piezoelectric transducers on subsystem II was 
triggered by a spiking neuron model which converted the normal 
force measured by the load cell on subsystem I (Figure 51) into spike 
trains. The implemented neuromorphic feedback strategy was based 
on a regular Izhikevich spiking model, where  and  represent the 
neuron membrane potential and recovery variable, [245] (see (16)–
(19) of the model). The Izhikevich spiking model was implemented 
via a GUI made in LabView (National Instruments). The parameters 
of the model were selected with a pilot evaluation to define a set of 
coefficients able to convert the measurements of the load cell into a 
train of spikes reflecting the magnitude and rate of change of the 
interaction force FZ arising between the probe and the rubber 
samples 𝐹𝑡ℎ = 0.08 N;  𝐴 = 0.04 mS−1mV−1;  𝐵 = 5 ms−1;  𝐶 =
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140 mVms−1;  𝑎 = 0.02 ms−1;  𝑏 = 0.2 ms−1;  𝑐 = 65 mV;  𝑑 =
8 mV; 𝑉𝑡ℎ = 30 mV; 𝑘 = 10 mVms−1N−1). 

If (𝐹𝑧 − 𝐹𝑡ℎ) > 0, then  𝐹𝑖𝑛 = (𝐹𝑧 − 𝐹𝑡ℎ), else 𝐹𝑖𝑛 = 0 (16) 
𝑑𝑣

𝑑𝑡
= 𝐴𝑣2 + 𝐵𝑣 + 𝐶 − 𝑢 + 𝑘𝐹𝑖𝑛 (17) 

𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣 − 𝑢) (18) 

and the after-spike resetting conditions:  

if  𝑣 ≥ 𝑉𝑡ℎ, then {
𝑣 ← 𝑐

𝑢 ← 𝑢 + 𝑑
 (19) 

 

Figure 52 shows some examples of how rubber samples were 
combined during the psychophysical testing (see Table 6 for selected 
combinations). 

 

Figure 52: Example combinations of stimulus pairs presented in the experimental 
protocol. In each experimental trial, the rubber pair, the force and the duration used to 
indent each rubber sample were randomized, in order to guarantee a very challenging 
evaluation condition. The panels of this figure show some selected stimulation 
conditions. (A) Material 1 slightly stiffer than material 2: softer rubber sample indented 
with higher force (resulting in longer stimulation duration for the softer rubber 
sample); (B) Material 1 slightly stiffer than material 2: stiffer rubber sample indented 
with higher force (resulting in longer stimulation duration for the stiffer rubber 
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sample); (C) Material 2 stiffer than material 1: both rubber samples indented with the 
same force (resulting in longer stimulation duration for the softer rubber sample); (D) 
Material 2 stiffer than material 1: indentation duration kept constant (resulting in 
stiffer rubber sample being indented with a higher force); (E) Material 2 stiffer than 
material 1: softer rubber sample indented with longer duration (resulting in lower level 
of indentation force for the softer rubber sample). 

Table 6: Normalized stiffness variations of the selected pairs of stimuli. 

 
Stimulus 

1 

Stimulus 

2 

Normalized 

Δstiffness 
𝟐(𝐒𝐭𝐢𝐟𝐟𝐧𝐞𝐬𝐬𝟐 – 𝐒𝐭𝐢𝐟𝐟𝐧𝐞𝐬𝐬𝟏)

(𝐒𝐭𝐢𝐟𝐟𝐧𝐞𝐬𝐬𝟏+ 𝐒𝐭𝐢𝐟𝐟𝐧𝐞𝐬𝐬𝟐)
 

1 Econ 80 
Ecoflex 

30 
−1.88 

2 Pdms 
Dragon 

Skin FX 
−1.61 

3 Pdms 
Dragon 

Skin 10 
−1.28 

4 
Smooth 

Sil 950 

Dragon 

Skin 10 
−1.04 

5 
Dragon 

Skin 10 

Dragon 

Skin FX 
−0.67 

6 Pdms 
Smooth 

Sil 950 
−0.37 

7 
Smooth 

Sil 950 
Pdms 0.37 

8 
Dragon 

Skin FX 

Dragon 

Skin 10 
0.67 

9 
Dragon 

Skin 10 

Smooth 

Sil 950 
1.04 

10 
Dragon 

Skin 10 
Pdms 1.28 

11 
Dragon 

Skin FX 
Pdms 1.61 

12 
Ecoflex 

30 
Econ 80 1.88 

 

The obtained spikes were then delivered to the glove by means of a 
piezoelectric driver (DRV2667, Texas Instruments), working in 
analogue mode, so that the on–off activity of the transducers was 
regulated by the neuromorphic model, proportional to the 
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magnitude of the normal force measured by subsystem I. The 
actuation parameters for the piezoelectric driver in analogue mode 
were a 40.7 dB gain, a peak-to-peak voltage amplitude of 200 V and 
a Boost voltage of 105 V. Figure 53 shows example spike train 
patterns obtained for the rubber samples and indentation forces 
experimented during the psychophysical protocol.   

 

Figure 53: Conversion of the acquired normal forces in spike trains, per each selected 
rubber. The spikes were then delivered to the wearer of the haptic glove by means of 
encapsulated piezoelectric transducers. (A) Different indentations of the same rubber 
(Ecoflex 30) with different force threshold levels (upper panel), and corresponding spike 
trains per each rubber indentation (lower panel); (B) same of panel (A), for rubber Econ 
80; (C) same of panel (A), for rubber Dragon Skin FX; (D) same of panel (A), for rubber 
PDMS; (E) same of panel (A), for rubber Dragon Skin 10; (F) same of panel (A), for 
rubber Smooth Sil 950. Spike activity was higher in the middle of the indentation, when 
the force level reached the threshold. The stimulation patterns shown in this figure 
were paired and presented to the participant according to the combination possibilities 
discussed in Figure 3. Note how the spike activity changed passing from a softer rubber 
(i.e. Ecoflex 30, in panel (A)) to a harder rubber (i.e. Econ 80, in panel (B)). Please note 
that in panel D (upper panel) there is a single non-coherent slope, probably an outlier 
of the measured Fz during the automatized indentation protocol. 

PSYCHOPHYSICAL EXPERIMENTS  
We evaluated the efficacy of the telepresence system in delivering 
reliable information regarding rubber stiffness using a two-
alternative forced-choice (2-AFC) psychophysical protocol. 
Specifically, a control test was performed investigating an active 
touch condition naturally with the own hand, while the actual 
experimental protocol was focused on the investigation of the 
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communication of stiffness information with neuromorphic tactile 
telepresence. The two protocols are detailed in the following. An 
active touch experiment was performed in order to evaluate the 
benchmark performance of a cohort of participants who actively 
judged, via their own hand, the stiffness of the same rubber samples 
used in the telepresence experiment. This experimental protocol 
regarding active touch involved 10 participants, (five females and five 
males aged between 23 and 32, recruited from university students 
and staff of the BioRobotics Institute of the Sant’Anna School of 
Advanced Studies—Pisa). Participants self-reported having no 
pathologies regarding the tactile sense, nor was their tactile 
sensitivity compromised by previous activities. The tactile task 
involved the index fingertip of the dominant hand (one left-handed 
and nine right-handed). During the active touch experiment, 
participants were invited to take a seat and to place their dominant 
arm on a table. To avoid seeing the stimuli during the experiment, 
participants were also invited to insert their arm in a box where a 
cushion was placed for positioning the arm in a comfortable manner, 
with their palm facing down. During the task, the experimenter 
inserted in the box the holder containing the selected rubber stimuli, 
and guided the index fingertip of the participant’s dominant hand 
onto the two selected rubber samples, sequentially. The tactile 
telepresence experiment involved ten participants (seven females 
and three males aged between 20 and 31, recruited from university 
students and staff of the Institute of Neuroscience Trinity College—
Dublin). Participants self-reported having no pathologies regarding 
the tactile sense, nor was their tactile sensitivity compromised by 
previous activities. The tactile stimulation was performed on the 
participants reported dominant hand (one left-handed and nine 
right-handed). The experiment was conducted in accordance with 
the Declaration of Helsinki, and the protocol was approved by the 
Ethics Committee for non-clinical experimentation of Sant’Anna 
School of Advanced Studies Pisa and by the Research Ethics 
Committee of the School of Psychology, Trinity College Dublin. All 
participants gave written informed consent. During the telepresence 
experiment, each participant was invited to take a seat in a remote 
laboratory (Ireland) with respect to the one where the indentation 
platform was placed (Italy), and was invited to wear the vibro-tactile 
glove on the dominant hand. Each participant was asked to wear a 
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headset which provided white noise in order to mask the sound from 
the activation of the piezoelectric transducers. 

BENCHMARKING PROTOCOL: EVALUATION OF THE STIFFNESS OF THE RUBBER 

SAMPLES UNDER ACTIVE TOUCH  
The active touch experimental protocol was carried out for 
benchmarking purposes to evaluate the physiological acuity in 
discriminating stiffness variations. It consisted of a 2-AFC tactile 
discrimination task (Figure 53A). In each trial, the participant was 
provided with a pair of samples of rubber stimuli, characterized by 
different stiffness. The participant was asked to touch the centre of 
each polymeric sample with the index fingertip of the dominant 
hand. In order to perform the task, the experimenter guided the 
index finger of the participant onto the first stimulus of the selected 
pair of stimuli, then rotated the lodging of the stimuli, and guided the 
finger of the participant onto the second stimulus. The participants 
were allowed to touch the stimuli as long as they needed and with 
the force they preferred in order to perceive the rubber stiffness. 
Participants were asked to provide a verbal evaluation of which 
stimulus of the presented pair was perceived as stiffer.  
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Figure 54: Experimental protocol for psychophysical experiments. (A) Stiffness 
evaluation with active touch. The participant index was guided towards the selected 
stimuli of the given couple. After the tactile evaluation, the participant was asked to 
judge which rubber of the pair was stiffer. (B) Stiffness evaluation with vibro-tactile 
stimulation in telepresence. 1. The mechanical platform, placed in a laboratory in Italy, 
indented the selected rubber of the given couple; 2. The measured normal force was 
converted in spikes using the Izhikevich artificial neuron spiking model; 3. The resulting 
spikes were delivered to the vibro-tactile glove, placed in a remote laboratory in 
Ireland, for the haptic bi-digital stimulation of the participants’ hand. After the 
transmission of the spikes representing the second stimulus, the participant was asked 
to judge which rubber of the pair was stiffer. 

For the active touch experiment, seven rubber samples were 
selected and combined in order to obtain six pairs in which 
normalized delta stiffness could be equally distributed along the 
psychophysical axis (see Table 6 for the list and properties of the 
selected stimuli). In the following analyses, the stiffness variation was 
normalized according to the mean of the calculated stiffness per each 
pair (as defined in Table 6), resulting in normalized stiffness 
variations comprised between 0.37 and 1.88. The experimental 
protocol consisted in the presentation of the six pairs of stimuli, in 
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direct and reverse order, for a total of 12 trials (see Table 6). In this 
way, both the increasing and decreasing stiffness conditions were 
considered. The whole experiment consisted in the presentation of 
72 trials in blocks of 12, with a 5 min break between the third and 
fourth block. The presentation of 12 trials took about 4 min, for a 
total duration of the experiment of about 20 min. Before each 
experimental session, every participant was presented with a 
training session, in order to familiarize them with the stimuli and the 
protocol. Each training session was about 5 min long and it consisted 
of touching all the samples in an increasing order of stiffness. All the 
participants understood the task with only one training session. A 
participant’s performance during these training sessions was not 
included in the main statistical analyses since we decided to analyse 
the data after the candidate was informed about the protocol and 
the experimental setup.  
 
EXPERIMENTAL PROTOCOL: EVALUATION OF THE STIFFNESS OF THE RUBBER 

SAMPLES VIA SPIKE-BASED VIBROTACTILE STIMULATION IN TELEPRESENCE  
The actual experimental protocol for evaluating the proposed spike-
based cutaneous tactile feedback strategy consisted of a 2-AFC 
tactile discrimination task (Figure 54B). The participant was provided 
with pairs of vibro-tactile signals in sequence, in which the timing of 
the vibro-tactile spikes delivered by the glove was linked via the 
Izhikevich artificial neuron model to the amplitude of the normal 
force exerted on the load cell during the indentation of the samples, 
as described in the previous paragraph. The participant was asked to 
give a verbal description of the perceived vibro-tactile signals, 
identifying the stiffer rubber of the given pair of stimuli. In the 
telepresence task the participant received the stimuli fully under the 
control of the remote mechatronic platform, without the possibility 
to feel the pair of stimuli again. Before an experimental session, each 
participant underwent a training session, in order to familiarize them 
with the stimulation apparatus and procedure. Each training session 
consisted of the presentation of six randomized trials, also provided 
in reverse order, for a total of 12 trials (Table 6). The trial session was 
about 15 min long. The performance of participants during these 
sessions was not included in the statistical analyses. The whole 
experiment consisted in the presentation of 72 trials in blocks of 12, 
with a 5 min break between the third and fourth block in order to 
ensure concentration and avoid distress. In comparison with the 
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active touch benchmarking protocol, the speed constraints of the 
mechatronic platform in the indentation of the stimuli, as well as in 
the transitions between the stimuli in a pair, enlarged the time 
required for the presentation of 12 trials, which took about 15 min. 
The duration of the total experiment was about 1 h and 30 min. 
 
DATA ANALYSIS  
Data analysis was performed using the Statistics Toolbox in Matlab 
(R2016b, MathWorks, Natick, MA, USA). For each stiffness variation, 
the success rate was evaluated across the population of participants, 
together with the 95% confidence interval (binofit test) of the rates 
of identification of stimuli with increasing stiffness(normalized 
∆stiffness> 0). A logistic fit of the resulting psychometric curves was 
computed for the presented stiffness variations using the Matlab 
nlinfit function, using a custom fitting cumulative distribution 
function. The significance of participants’ responses for each 
normalized stiffness variation (normalized ∆ stiffness) was computed 
using the Matlab binofit test. 

3.2.3 Results & Discussion 
Psychophysical Tests In the benchmark active touch experiment, we 
evaluated the capability of the human fingertip to perceive stiffness 
variations across pairs of rubber stimuli. To do so, experiments were 
performed according to a 2-AFC experimental protocol, with a 
sample of 10 volunteers. In the active touch condition, the 
discrimination performance was above 95% for all the stiffness 
variations, except for the stimulus closest to the origin, for which the 
stiffness variation was small (e.g., the pair PDMS/Smooth Sil 950 as 
showed in Table 6). The discrimination of each rubber stiffness by the 
active touch volunteers showed an average 90 ± 2% of correct 
responses over the whole range of stiffness variations (Figure 55A). 
In the telepresence experiment, we assessed how the spike-based 
stimulation delivered through the glove enabled a sensory feedback 
for the stiffness of the rubber samples. A 2-AFC experimental 
protocol was used with a sample of 10 volunteers. The stimulus 
stiffness was encoded by the temporal pattern of spikes during the 
vibro-tactile stimulation delivered to the fingers of the telepresence 
participants. For the telepresence condition, the discrimination 
performance was above 85% for large stiffness variations. The 
performance in discriminating the stiffness of the experimented 
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rubber samples by the telepresence participants showed an overall 
average of 74±7% (Figure 55A). In both active- and telepresence-
touch conditions, all stiffness variations were identified significantly 
better than by chance (probability of success > 50% in a binofit test 
of 10 participants), except for the first stimulus of the explored range 
of stiffness variation, for which the stiffness variation was small 
(Figure 55B,C and Table 6). In both the experimental conditions, the 
participant’s response was given by chance only when the pair with 
normalized ∆stiffness = 0.37 (stimuli of comparable stiffness) was 
presented. The experimental data were well-fitted by the symmetric 
logistic cumulative distribution function (CDF) (20), suggested by 
Ulrich and Miller, [246], over the whole range of stiffness variations 
inspected in the test configuration:  

𝐺(𝑥) = 0.5 + 0.5 [1 + 𝑒
−𝑥−𝑎

𝑏 ]
−1

 (20) 

 

The fitting function denotes the probability of a correct response at 
difference x, where a represents the perceptual threshold and b > 0 
a scale parameter that affects the steepness of the curve. The 
experimental data were well fitted by the logistic CDF fit over the 
whole range of stiffness variations (see the black dashed line in Figure 
55B,C). According to this model, the perceptual threshold above 
which participants could discriminate the difference in normalized 
stiffness of the rubber stimuli was a = 0.64 for the active touch 
condition, and a = 1.28 for the telepresence condition. The curve 
relative to the telepresence experiment displayed lower 
performance in comparison to the one relative to the active touch 
condition, for normalized ∆stiffness > 0.37. The overall difference in 
performance between the telepresence and active touch benchmark 
experimental conditions (Figure 55) corresponded indeed to an 
effect size of 2.1 (corrected Hedge’s). This suggests a better 
performance when the stiffness discrimination task was performed 
with the same set of stimuli in the active touch benchmark, naturally 
with the human hand. However, the two logistic fits showed more 
similar behaviour when normalized ∆stiffness was far from the values 
close to the origin of the psychometric curve (|normalized ∆stiffness| 
> 0.67, see Table 6), with the effect size (corrected Hedge’s g) of the 
difference between the two groups being 1.1 for |normalized 
∆stiffness| = 1.88. Furthermore, considering that in the telepresence 
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condition the rubber stiffness was converted to vibro-tactile 
stimulation while both the indentation force and duration were 
randomized and not a-priori known by the participants, we can state 
that the telepresence task was more challenging than the benchmark 
active touch one.  

 

Figure 55: Psychophysics results of telepresence experiments. (A) Boxplot of correct 
responses for the two experimental conditions. Boxes represent interquartile range and 
black dashed lines show the complete range across participants. The red dashed line 
represents chance level; (B) Psychometric curve for the psychophysics experiments with 
active touch. Each dot represents the fraction of times each stimulus was classified as 
having increasing stiffness (median across participants). If the identification rate is 
significantly different (probability of success>50%, binofit test) from chance (50%) the 
dot is red, otherwise it is black. Errorbars indicates the 95% confidence interval across 
participants and the red horizontal line represents chance. Black dashed line represents 
the logistic CDF fit; (C) Same as (B) for the psychophysics experiments in telepresence. 

CONCLUSIONS  
The goal of the present work was to evaluate the capability of a 
haptic system, a vibro-tactile glove, in delivering reliable information 
about rubber stiffness in a telepresence configuration using a 
neuronal spiking model to trigger the delivery of stimuli. We 
investigated this topic using customized piezoelectric transducers 
embedded in a textile glove for the simultaneous stimulation of index 
and thumb fingertips. In order to do so, we compared the results 
from the vibro-tactile stimulation of the hand with the benchmark 
experimental data relative to the active exploration of the rubber 
stimuli performed with the index fingertip. We analysed the 
reliability of a telepresence system in delivering, directly on the skin 
of a remote hand, haptic information about the stiffness of selected 
polymeric samples. The stimuli were indented by an automated 
system and their stiffness encoded according to a neuronal spiking 
model heuristically adapted from our previous implementations that 
emulate the firing activity of human mechanoreceptors, [86], [147], 
[148]. This approach has some analogies with what has been termed 
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contingency-mimetics, that applies biomimicry at the level of the 
sensory organ instead of the nerve, [242]–[244]. We showed that the 
application of spike-based vibro-tactile stimuli on the hand enabled 
the remote discrimination of most of the selected pairs of stimuli 
characterized by different stiffness. The stiffness discrimination 
performance was achieved by means of the proposed spike-based 
encoding of tactile information and was compared with that 
obtained via direct active touch exploration. During active touch 
exploration, participants were allowed to directly touch the rubber 
stimuli with no restrictions to the force and the duration of the 
contact, that were under human voluntary control. In the very 
challenging telepresence conditions created according to the 
indentation protocol, the indentation force and the duration of the 
contact were completely randomized and not known to the 
participants. We acknowledge the several differences between the 
two experimental conditions: the time taken by the task (20 min for 
the active task vs. 90 for the telepresence task), the active vs. passive 
approach, the auditory masking (absent in the active task), and the 
control of the force and indentation velocity for the telepresence vs. 
no control in the active task. Despite this, with our work we aimed at 
demonstrating the proof of principle of a telepresence task, where 
tactile feedback can be representative of object characteristics (i.e., 
stiffness). Therefore, we preferred to design our experiment so that 
the proposed method was assessed in more challenging conditions 
than the natural benchmark. This study will be complemented with 
future research where participants will actively control a robotic arm 
in immersive telepresence, mimicking an active industrial task while 
receiving tactile information about the robot contact forces and 
displacement, whereas with typical virtual-reality-based human–
machine interfaces the human operator can hardly recognize states 
when the robot has established contact with the objects in its 
environment. In order to deepen the explanation of the physical 
determinants of the responses given by the participants, we 
calculated the average inter-spike interval (ISI) for each rubber 
stimulus in the initial phase of the stimulation (calculated in a 
window of 120 ms after the first spike, that guarantee at least three 
spikes to be considered per each stimulus; see raster plots in Figure 
53). Though with non-perfect separation between different rubber 
samples, the analysis demonstrated an inverse correlation between 
the ISI and the stiffness (Table 7; Figure 56), meaning that stiffer 
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stimuli result in lower ISI (or more compliant ones result in higher ISI). 
This is because the force varies in a steeper manner in a stiffer 
stimulus while being indented at a constant velocity. A 
complementary analysis to investigate the psychophysical results 
was the estimation of the normalized ISI variation (defined as the 
normalized stiffness variation; see Table 6) as a function of the 
normalized stiffness variation within each pair of stimuli 
experimented via the developed neuromorphic haptic interface 
(Figure 57): a monotonic trend can be appreciated, however very low 
normalized ∆ ISI were achieved at low normalized ∆ stiffness. This 
explains the non-significant discrimination of the developed 
neuromorphic haptic interface while being used to remotely touch 
rubber samples with similar stiffness (see Figure 55C). Accordingly, 
future improvements of the system should aim at tuning the 
coefficients of the differential Equations (3)–(6) of the developed 
neuromorphic haptic interface, to amplify the ISI differences 
particularly with rubber samples of similar stiffness. 

Table 7: Correspondence between the stiffness of the experimented stimuli and the 
inter-spike interval at the onset of the indentation as a result of the implemented 

neuromorphic haptic encoding strategy. 

 Stiffness ± std (N/mm) Mean ISI ± std (s) 

Econ 80 78.9 ± 4.9 0.012 ± 0.001 

PDMS 34.5 ± 0.2 0.0179 ± 0.002 

Smooth Sil 950 23.8 ± 0.7 0.019 ± 0.002 

Dragon Skin 10 7.5 ± 0.1 0.039 ± 0.004 

Dragon Skin FX 3.7 ± 0.1 0.041 ± 0.004 

EcoFlex 30 2.5 ± 0.1 0.043 ± 0.008 
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Figure 56: Experimented stimuli sorted from the stiffer to the more compliant, and 
related inter-spike interval. Error bars show the standard deviation of the inter-spike 
interval (ISI). 

 

Figure 57: Experimented stimuli sorted from the stiffer to the more compliant, and 
related inter-spike interval. Error bars show the standard deviation of the inter-spike 
interval (ISI). 
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DISCUSSIONS 
Tactile information provided with haptic devices can partially 
compensate for a missing sense. Sensory substitution can be 
fundamental in cases of persons with blindness or visual impairment, 
deafness or hearing impairment and combined sensory impairment 
(deaf–blind). In these situations, the information coming from one 
sensory channel can be conveyed to the tactile sense in a perceptible 
manner, [173], [174], [177], [216], [224] to allow, as an example, 
obstacle avoidance in assisted walking or remote communication 
with vibro-tactile patterns. However, we are also aware of the 
intrinsic limitations in the possibilities to integrate perceptually (not 
only cognitively) a substitute sense in the own natural sensory 
scheme, as discussed in the work of Deroy and Auvray, [225]. Vibro-
tactile stimulation can also be widely used in the field of non-invasive 
feedback in amputees and sensory augmentation for healthy 
subjects in applications such as virtual reality, gaming, rehabilitation, 
navigation, rescue and remote control of robots, [192]–[196]. 
Examples of tactile devices for sensory augmentation providing 
whisker-type distance information were developed in the shape of 
head mounted systems, [247]–[249] or belts, [250], [251] to improve 
navigation, as well as handheld systems for the detection of 
distances, [251]. Tactile information was proven useful also in 
industrial environments for human–robot co-working activities. The 
development of alerting haptic devices, in environments where the 
interaction with automated machinery can be dangerous for 
operators, may also improve safety and the adoption of collaborative 
robotics in common applications. Our tactile device can be classified 
within state of the art technologies where haptic feedback is used to 
provide sensory augmentation, with a particular focus on the remote 
perception of stiffness and potential applications in several fields, 
including robotic surgery. Our preliminary experimental protocol 
followed a simplified characterization approach for the rubber 
samples. Since the stiffness of the specimens was investigated via a 
constant indentation velocity of the probe, we did not consider 
variations in dynamic deformation behaviour due to the viscoelastic 
characteristics of the rubber samples, which is an important aspect 
for the tactile characterization of a biological tissue. Towards the 
applicability in robotic surgery scenarios, this study will be 
complemented with future experiments involving different 
indentation velocities to investigate the effects of viscoelasticity in 
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the perception of stiffness. According to the proposed spike-based 
encoding paradigm, tactile displays installed on robotic manipulators 
are expected to allow surgeons to feel in real time the stiffness of 
human tissues, while force information is collected by force sensors 
installed on the robotic end effectors. The tactile device herein 
presented is grounded on a novel neuromorphic discrimination 
mechanism for the recognition of the stiffness of rubber samples. 
Accordingly, a sequence of vibro-tactile pulses are delivered on the 
skin surface, resembling the neural spikes produced by the mechano 
receptive endings underneath. Hence, the proposed strategy for 
encoding haptic data is non-homologous to physiological perception 
via the own fingers. The assumptions made in proposing such a 
strategy for the development of sensory substitution and 
augmentation devices were very strong. As a matter of fact, tactile 
devices are based on cognitive discrimination mechanisms, [252] that 
are slow and require efforts when compared to natural perceptual 
processes, thus demanding a certain familiarization before allowing 
the perception of information in a reliable manner, [225]. 
Physiological perception, achieved with the classical senses, allows 
the immediate discrimination of sensations, grounded on specialized 
neuronal architectures and on the training undertaken during the 
whole past life of a subject, and has important implications for the 
usability of a device in real-world applications. In this framework, we 
had evidence that the proposed neuromorphic model enabled the 
participants in our experiments to perceive the stiffness of materials 
in an intuitive manner. Further studies are however required to 
evaluate the degree of embodiment of the provided neuromorphic 
haptic perception, in comparison to the natural perceptual 
mechanisms of the somatosensory system. For applications that may 
encounter some limitations in delivering stimuli to the skin, we 
envisage the possibility to convert the trains of spikes in audio data. 
In this respect, a proof of feasibility is provided by 
electrophysiological experimental set-ups, that typically have 
loudspeakers or headsets to convert the recorded neural signals into 
audio data in real-time (with auditory patterns that may help the 
experimenter in identifying, as an example, a specific neuron type). 
Moreover, some ongoing initiatives, aiming at converting neural data 
into pleasant music and rhythms (see, e.g., [253]), provide additional 
evidence regarding the feasibility of achieving a meaningful auditory 
representation of spikes, as an alternative to haptic interfaces. 
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3.3 Haptic glove and platform with gestural control for 
neuromorphic tactile sensory feedback in medical8 

3.3.1 Framework 
MOTIVATION AND CHALLENGE DEfiNITION  
The impact of haptic devices has grown tremendously over the last 
decade, [254]–[256]. These devices connect the user to a virtual 
object, providing tactile feedback directly to the human skin. Through 
the sense of touch humans are able to gather a wide range of 
information about the surrounding environment. Thus, the delivery 
of tactile information is crucial for sampling objects, in particular 
when they are occluded from sight. Haptic devices pave the way for 
most of the telepresence applications based on the sense of touch as 
a communication channel. However, if compared to the advanced 
technologies that are available commercially to convey vision and 
auditory information with a very high level of fidelity, tactile 
telepresence technologies are still in a pioneering phase. The present 
study addresses this challenge with specific reference to potential 
applications in medical robotics, by proposing a marker less gesture-
based controller of a mechatronic platform with tactile sensory 
feedback delivered to a user seeking remote buried nodules. This 
task is selected as a benchmarking reference of the developed 
system because palpation is a very important practice in medical 
diagnosis and surgical intervention. 

RELATED WORK AND STATE OF THE ART  
The development of technologies inspired by the study of human 
sense of touch is being contributed to by the integration of several 
research fields, such as biomedical engineering, robotics and bio-
robotics, measurement and instrumentation, computer graphics, 
cognitive science, neuroscience, and psychophysics. Research on 
human tactile sensing has characterized the role of functionally 
diverse skin receptors, [1], [66], [232], [257], densely populating the 
fingertips (up to hundreds of units per square centimetre). 
Biologicalmechanoreceptorsallowforahighresolutionofsensedinform
ation,andencode a wide range of temporal and spatial stimulations, 

                                                           
8 This section has been excerpted from the paper, [285], that has 
been published in an international scientific journal: Sensors, with 
the PhD candidate being first author (with equal contribution) of the 
study. 

https://www.mdpi.com/journal/sensors
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[104], [173], [209], [210]. Artificial tactile sensors and haptic 
interfaces are the two parts (remote and close to the operator, 
respectively) of a tactile telepresence application. Considering the 
development of tactile sensors and artificial skins, [57], [258], 
applications of tactile sensing include tactile-based material 
recognition, [259], [260], tactile based object manipulation, and slip 
detection, [261]–[263]. Haptic devices could contribute to the 
performing of different tasks in various scenarios: in rehabilitation 
procedures, to develop tactile aids for visual and auditory sensory 
disabled persons, [175], [221], [264]–[266]; and in telepresence 
operations, to improve user perception capabilities through vibro-
tactile feedback, [192], [193], [195], [196], [267]. Beyond these 
applications, tactile technologies employed in telepresence  and 
teleoperation scenarios have been widely used in the field of 
minimally invasive surgery (MIS) and robotic minimally invasive 
surgery (RMIS), to overcome the absence of both tactile and force 
feedback conveyed to the physician. Feedback is crucial for helping 
the surgeon to preserve healthy tissues, as well as for detecting 
differences in stiffness throughout the palpated sites, [7], [194], 
[235]–[237], [239], [240]. Despite the growth in recent interest and 
research, the degree of maturity of touch sensing is still lagging 
behind that of other perceptive technologies, such as audio or 
computer vision, [14], [268]–[272][36–41]. A plausible explanation is 
in the biological complexity of the sense of touch, where the 
distributed sensitized region covers the entire body, [273], while 
other human senses have localized sensitive areas. In a previous 
work, [136], we developed a mechatronic platform interfaced with a 
vibro-tactile glove for tactile augmentation in telepresence under 
passive exploration of remote stimuli. The results demonstrated the 
efficiency of the system in presenting mechanical information about 
test objects. The stiffness of different materials, converted into 
spikes with proper frequency through a neural model, was used to 
drive piezoelectric disks embedded in the index and the thumb of a 
vibro-tactile glove. The designed psychophysical protocol for 
discriminating stiffness, tested with 2-Alternative Forced Choice 
passive touch, unveiled specific perceptual thresholds, derived using 
the Ulrich–Miller Cumulative Distribution Function. Although passive 
touch conveys information about the miscellaneous properties of the 
explored object, an active exploration permits enrichment of the 
tactile signals, thanks to integration with the proprioceptive inputs, 
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[274]–[276]. Remote tele-palpation under active touch with gesture-
based control and spike-based feedback is the objective of the 
present study. 

CONTRIBUTION OF THE PRESENT STUDY  
Building on the findings of the previous study, here we propose a 
telepresence system with active exploration of a silicon phantom 
that embeds elements with different stiffness within. In this 
condition, the user can directly control and move the indenting 
platform, with an additional optical sensor for tracking the hand 
movements. We investigated two experimental conditions of 
telepresence: (i) ILS, where the platform was placed In Line of Sight 
of the user, [12]; (ii) NILS, where the platform was Not In Line of Sight, 
in a different location with respect to the user, for a more challenging 
task. Hence, the objective of the present study is to investigate the 
mechanisms of tactile perception under active gestural control and 
the effectiveness of the proposed spike-based feedback strategy. In 
particular, the delivered vibro-tactile feedback mimics the language 
of tactile receptors, generated by a neuromorphic model, [4], [148], 
[277]. The present work is organized as follows: Section 3.3.2 is 
partitioned into (i) Experimental Setup; (ii) Platform and Inclusions 
Characterization Protocols; and (iii) Psychophysical Experiments sub-
sections. In these sections, the telepresence system with the related 
two sub-systems and the used phantom are described and details 
about the performed characterizations and the performed protocols 
are given. The results, the discussion and conclusions of the present 
study are reported in Section 3.1.3 

3.3.2 Materials & Methods 
EXPERIMENTAL SETUP  
The experimental apparatus was composed of two essential sub-
setups, positioned at a proper distance for achieving telepresence 
conditions (Figure 58A).  
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Figure 58: Experimental apparatus. (A) Left: the haptic sub-system comprising a textile 
glove with a detail of the encapsulated piezoelectric disk for index fingertip vibro-tactile 
stimulation and optical sensor for hand gesture tracking; right: tactile sub-system 
comprising a 3-axis Cartesian manipulator with load cell and the indenter, and a detail 
on the silicon phantom displaying nodules placement. The two sub-setups were 
spatially separated to achieve Line of Sight (ILS) and Not In Line of Sight (NILS) 
telepresence conditions. The plots at the bottom of the figure show the neural encoding 
of the normal force arising during the sliding phase of the phantom into spike trains for 
all the polymers, from the softest (red) to the hardest (green). (B) Details about the 
reference coordinates of the gesture 

The first sub-setup consisted of a piezoelectric disk (7BB-12-9, 
MuRata, Kyoto Prefecture, Japan) encapsulated in silicone rubber, 
with a customized process, which was placed on the index fingertip 
of a textile glove to deliver the feedback, [11]. An optical sensor (Leap 
Motion, CA, USA) tracked the user’s hand gesture. We defined as 
haptic sub-system this first sub-setup located in a laboratory of The 
BioRobotics Institute of Sant’Anna School of Advanced Studies, 
Pontedera (Pisa, Italy). A graphical user interface (GUI) was 
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developed using LabVIEW (National Instruments Corp., USA) for 
acquiring speed and position of the hand’s centre of mass, handling 
communication with the other remote sub-setup, and recording 
hand position data. We defined as tactile sub-system, the second 
remote sub-setup used for the exploration of the phantom. This 
platform included: a Cartesian manipulator (X–Y and Z, 8MTF-
102LS05 and 8MVT120-25- 4247, STANDA, Vilnius, Lithuania); a 6-
axis load cell (Nano 43, ATI Industrial Automation, Apex, USA) to 
measure contact forces between a customized indenter with a 
spherical tip of 3 mm radius, mounted on the load cell; and the 
phantom during the active sliding. A second GUI was designed for 
real-time control of the motorized stages and data communication. 
In the ILS session, the tactile sub-system was placed near the user to 
perform experiments in stream lined telepresence. In the NILS 
session, instead, it was located in a remote laboratory in Florence, 
Italy, which was about 50 km apart from the haptic sub-system, thus 
increasing the challenge of the proposed task. Data communication 
between the two sub-setups was provided through the User 
Datagram Protocol (UDP) that ensured a maximum latency of 15 ms. 
The adopted communication protocol allowed bidirectional 
streaming of data: hand gestures from the haptic sub-system to the 
mechatronic platform, and normal force from the tactile sub-system 
to the glove to be encoded and then delivered (Figure 59). 

 

Figure 59: Block diagram: bidirectional data streaming between the haptic and tactile 
sub-systems provided via UDP: the optical controller conveyed speed and position of 
the centre of mass of the user’s hand from the first environment to the Cartesian 
manipulator in the remote one (blue arrow) and, while sliding, normal force data 
collected by the load cell from the platform to the vibro-tactile glove to deliver the 
spike-based stimulation (green arrow). 

During experiments, the user actively explored and searched for 
stiffer areas in the polymeric phantom. Four different rubber 
materials were used to cast 12 hemispherical inclusions (3 replicas of 
each material), of 5 mm radius, randomly inserted across the X–Y 
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plane in a silicon cuboidal block, 100×100×15 mm3 in size. The 
chosen polymers for the inclusions were: Sorta Clear 40 (Smooth-on, 
PA, USA) as the stiffest, polydimethylsiloxane (PDMS) Sylgard 184 
(Dow Corning, USA), Dragon Skin 30, and Dragon Skin 20, while 
Dragon Skin 10, the softest, was used for the cuboidal block. The 
platform control during the experimental session was based on the 
user’s hand movements, tracked by the 3-D optical sensor. The 
infrared light-based gesture sensor used had a field of view of about 
150 degrees and a range between 25 and 600 mm above the device, 
and it showed proper performance when it had a high-contrast view 
of the hand to be detected and tracked. Therefore, the device was 
placed just below and close to the rest position of the user’s hand, 
and the workspace was set according to the specifications of the 
gesture sensor. Details about the reference coordinates of the 
gesture sensor, highlighting the rest position and volume, are shown 
in Figure 1B. As the user’s hand moved out of this volume, the 
motorized stages followed along the same direction at a speed 
proportional to the displacement of the user’s hand. The assigned 
speed was calculated using the difference ρ – ρ0, where ρ was the 
distance between the hand centre of mass and the centre of the 
sensor, and ρ0 was the radius of the neutral spherical region, set to 
50 mm. The user was provided with visual feedback about the 
position of the indenter on the phantom in the remote environment, 
without any information on the location of the inclusions. The 
contact between the indenter tip and the polymeric test object 
generated a force. To avoid mechanical damage to the phantom and 
load cell due to the user’s upward movement, a force threshold 
(0.5N) was introduced. The measured force was sent to the haptic 
sub-system to been coded into spike patterns, which triggered the 
piezoelectric actuator. We implemented a neuromorphic feedback 
strategy based on a regular Izhikevich spiking model discretized using 
Euler’s method at 5 kHz, [245]. The chosen model efficiently encodes 
the temporal dynamics of a mechanoreceptor including the biological 
plausibility of the computationally intense Hodgkin–Huxley model, 
[278] and the computational efficiency of the integrate-and-fire 
model, [279]. The neuromorphic activation of the transducer was 
achieved by setting the input to the neuron proportional to the 
magnitude of the normal force measured by the remote subsystem. 
Further details about the neural model and a definition of its 
parameters can be found in our previous works, [136]. Initial 
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calibrations were also performed to counterbalance the effect of 
saturation of the neural model, [12]. The spikes generated by the 
Izhikevich model were sent to the vibro-tactile glove by means of a 
piezoelectric driver (DRV2667, Texas Instruments). This driver 
facilitated the setting of the actuation parameters in analog mode to 
have a gain of 40.7 dB, 200 V peak-to-peak voltage amplitude, and 
105 V offset voltage. 

PLATFORM AND INCLUSIONS CHARACTERIZATION PROTOCOLS  
A characterization protocol was performed aiming at assessing the 
uncertainty of the apparatus in tracking and reproducing the user’s 
hand pose. Five subjects (4 men and 1 woman between 28 and 30 
years of age), enrolled among the staff of The BioRobotics Institute 
of Sant’Anna School of Advanced Studies, took part in the 
experiment. They were asked to drive the stages of the platform in 
order to perform a set of target trajectories within the X–Y Cartesian 
plane. The target trajectory and the subject’s relative position on this 
plane were part of the GUI providing visual feedback in the haptic 
sub-system. The cluster consisted of 2 square-shaped (s1= 60 mm 
and s2 = 30 mm, in length) and 2 circular (r1 = 30 mm and r2 = 15 
mm, in radius) trajectories, which had to be followed 3 times by each 
subject, starting from their centres. Deviations in the trajectories, 
used to evaluate the system in terms of performance, were 
calculated using the area comprised between the perimeter of the 
target and executed trajectories, by means of the boundary function 
(MATLAB, The MathWorks, Inc., Natick, Massachusetts, USA). The 
error rates between the tracked area and target were calculated as 
their ratio and are reported in Section 3.3.3. Moreover, before 
involving human subjects, the phantom was mechanically 
characterized to assess the vertical stiffness (∆FZ/∆z) of the nodules 
and the surrounding soft material by means of the proposed platform 
equipped with a flat indenter. The adopted experimental protocol 
consisted of 5 trials in which the entire set of inclusions experienced 
an indentation at a fixed force threshold (FZ = 0.5 N) and speed (v = 
0.125 mms-1). To estimate the stiffness of the investigated polymers, 
the vertical component of the force collected during each 
compression was processed through scripts in MATLAB and results of 
such a characterization are reported in Section 3.3.3. 

INCLUSIONS IDENTIFICATION EXPERIMENTAL METHODS  
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Psychophysical experiments were performed to validate the 
proposed system for delivering stiffness information about the 
palpated nodules in both ILS and NILS tactile telepresence conditions. 
The experiments involved 10 participants (7 men and 3 women 
between 24 and 33 years of age) in ILS, and 15 (9 men and 6 women 
between 25 and 37 years of age) in NILS, enrolled among the 
university students or staff of The BioRobotics Institute of Sant’Anna 
School of Advanced Studies, Pisa, Italy. The participants took a 
comfortable posture at the control workstation in the laboratory, 
where the haptic sub-system was located. They wore the vibro-tactile 
glove on their dominant hand and a headset to eliminate 
environmental noise. To familiarize participants with the driving of 
the tactile platform, each participant took part in a fifteen minute 
training session. Moreover, this preliminary task got the users 
accustomed to the vibro-tactile signal exerted by the piezoelectric 
actuator of the glove. Answers provided during the training sessions 
were not included in the analysed results. Both ILS and NILS 
psychophysical experiments consisted of a tactile identification task: 
within six minute time-period of the protocol, the participants 
unreservedly explored the silicon block and pressed a button on a 
keyboard on any occasion of perceived frequency variation in the 
vibro-tactile feedback. The performances of the participants were 
evaluated in MATLAB in terms of rate of correct identification of the 
inclusions, using parameters calculated for both ILS and NILS 
populations and for each participant. Specifically, we evaluated: (a) 
the number of true positives (TP), (b) the number of false positives 
(FP), and (c) accuracy (TP/P, with P = collected responses—FP). These 
parameters were computed as a function of the center-to-center 
distance between the position of the perceived inclusions and the 
nearest actual inclusion. If the perceived position was felt to be 
within a radius of 10 mm from the centre of the nearest inclusion 
(i.e., the distance was equal to the diameter of the inclusion), the 
perceived inclusion was classified as TP; otherwise it was classified as 
FP. The classification of collected responses was also evaluated for a 
lower tolerance, 5 mm, and two greater ones, 15 mm and 20 mm. A 
logistic fitting, using a Cumulative Distribution Function (CDF) [56] 
and the nlinfit MATLAB function, was performed for each material to 
carry out the rate of correct perception and the perceptual 
thresholds for both the investigated experimental conditions. 
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3.3.3 Results & Discussion 
3.1. Platform and Inclusions Characterization Results In the platform 
characterization, the trajectories followed by each user for individual 
tests are shown in Figure 60. The target areas, the tracked areas, their 
difference, and the error rates for all the presented trajectories are 
reported in Table 8 in terms of mean and standard deviation amongst 
subjects. Based on the user’s gestures, the platform was able to easily 
follow square geometries (error rate lower than 5%) as well as 
circular trajectories (but with higher average errors, comprised 
between 5% and 13%, being the task more challenging than tracking 
square geometries). The error rate increased with the area being 
explored, presumably due to non-constant spatial resolution of the 
gesture-sensor. 

 

Figure 60: Graph highlighting target trajectories (blue lines) and tracked trajectories 
(grey lines) within the X–Y Cartesian plane: (A) square shaped; (B) circular shaped. The 
grey lines starting at the origin represent the path to reach the target trajectories. 

Table 8: Results from characterization of the apparatus 

n = 15 

Square 

(s1 = 60 

mm) 

Square 

(s2 = 30 

mm) 

Circle 

(r1 = 30 

mm) 

Circle 

(r2 = 15 

mm) 

Target Area 

(mm2) 
3600 900 2827.43 706.86 

|Tracked Area 

– Target Area| 

(mm2) (µ ± σ) 

74.05 ± 

65.79 
43.27 ± 40.99 

143.90 ± 

121.28 

91.74 ± 

89.82 

Error Rate (%) 

(µ ± σ) 

2.01 ± 

1.83 
4.81 ± 4.55 5.09 ± 4.29 

12.98 ± 

12.71 



130 
 

 

the phantom characterization, the stiffness of each material was 
measured by assuming the  polymers  had  a  linear  response  in  the  
range  of  applied  forces.  According  to  the  operated  
characterization, the stiffer materials were Sorta Clear (3.69 N∙mm-1) 
and PDMS (3.68 N∙mm-1), while Dragon Skin 30 (2.88 N∙mm1), Dragon 
Skin 20 (2.74 N∙mm-1), and Dragon Skin 10 (2.14 N∙mm-1) showed 
lower values (Figure 61).  

 

Figure 61: Mechanical characterization of the phantom: scatter points are the stiffness 
values collected for each material (Dragon Skin 10—DS10; Dragon Skin 20—DS20; 
Dragon Skin 30—DS30; polydimethylsiloxane—PDMS; Sorta Clear 40—SC) across the 
five trials of indentation; boxes represent interquartile ranges for the five materials; 
blue lines show the median values and black dashed lines the full ranges among the 
measured 

INCLUSIONS IDENTIFICATION EXPERIMENTAL RESULTS  
In the psychophysical experiments with tactile feedback in ILS and 
NILS telepresence conditions, we successfully delivered a 
neuromorphic stimulation encoding the stiffness of the tele-palpated 
phantom. The inclusions recognized by the user were recorded with 
a key press. An example of the path followed and the responses are 
shown in Figure 62. 
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Figure 62: Example of responses given by a participant across an experimental session: 
coloured circles mark the position of the inclusion set; black represent the position of 
the indenter when the subject pressed the key, and light blue line represents the trail 
of the probe on the phantom surface. 

Results show that an average of 63% and 60% of the inclusions were 
correctly perceived and declared within a tolerance of 10 mm to the 
nearest inclusion, for ILS and NILS experiments, respectively. In both 
cases, with a tolerance higher than the inclusion diameter (i.e., >10 
mm), the rate of identified inclusions was slightly higher (Figure 63). 
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Figure 63: Tolerance of recognized inclusions: each (dots for ILS and squares for NILS) 
represents the mean accuracy (blue line), mean false positive (red line), and mean true 
positive (yellow line) responses evaluated through a classification based on the 
admitted centre‐to‐centre distance between perceived inclusions and the real ones. 

The identification rate for all the participants, across populations, 
was evaluated for each material and is presented in Figure 64 with 
increasing stiffness along with the interquartile range (IQR) for the 
accuracy of declared inclusions. Performance, in terms of correct 
identification of inclusions, was 65% and 70% for stiffer stimuli 
including both populations. The minimum accuracy in perceiving the 
inclusions with lower stiffness was found to be 52%, with the 
exception of the softest Dragon skin 20 material in NILS condition, 
whose rate decreased down to 33%. The global performance of 
identified inclusions, across all materials, showed an average of 63% 
and 60%, respectively, for ILS and NILS conditions (Figure 64).  

𝐺(𝑥) = [1 + 𝑒
−𝑥−𝑎

𝑏⁄ ]−1 (21) 
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Figure 64: Psychometric curves for the psychophysical experiments: (A) ILS telepresence 
condition; (B) NILS telepresence condition. Black diamonds show the identification rate 
for all the encapsulated materials (average across participants); error bars are the 
interquartile range across participants; red dashed lines represent the logistic 
cumulative distribution function (CDF) fit. 

The CDF fitting function, introduced in Section 3.3.2 and reported in 
Equation (21), represents the probability of a correct response at a 
stiffness x, where a denotes the perceptual threshold, and b > 0 a 
scale parameter that affects the curve steepness. With respect to our 
previous study, [136], the equation has been updated in order to 
account for an identification task rather than for a two-alternatives 
forced choice task. The final evaluation of the perception, found by 
fitting the response datasets into the CDF, demonstrated that the 
user could distinguish an inclusion with stiffness higher than a = 2.5 
N·mm-1 and a = 2.9 N·mm-1 in ILS and NILS conditions, respectively 
(Figure 64). 

DISCUSSION AND CONCLUSIONS  
This work assesses the usability of the developed tactile system in 
tele-palpation to localize various stiffer polymeric nodules in the 
surrounding soft matrix during active exploration. The promising 
results demonstrate the ease and successful augmentation for 
navigation in a soft terrain. The four types of inclusions are observed 
to be paired with respect to their stiffness values (Softer: DS20, DS30; 
Stiffer: PDMS, SC) that are also reflected in the user’s accuracy graph. 
The present study was conducted within two different telepresence 
conditions. Initially, in a more controlled environment, the sensing 
platform was placed near the user (In Line of Sight—ILS), while 
afterwards, the platform was moved to a remote location (Not In Line 
of Sight—NILS). Particularly, the latter condition presented two 
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challenges: remote platform control and stiffness discrimination with 
the haptic glove. The intrinsic absence of vision of the platform in 
NILS with respect to ILS is displayed in the perceptual thresholds (a = 
2.9 N·mm-1 versus a = 2.5 N·mm-1). Additionally, the network latency 
introduced a delay of the order of ms, demanding the subject’s 
attention on the active control, to coordinate the proprioceptive 
information with the moving platform, occasionally compromising 
attention to the sensory feedback. It was also observed that the 
subjects mostly took linear exploratory paths in both conditions, 
which was proven to be the best manoeuvre trajectory in the 
apparatus characterization (as reported in Table 8). We showed that 
the presented tactile telepresence system enabled the correct 
discrimination of the inclusions throughout the polymeric matrix, 
especially for the stiffer ones, in both ILS and NILS telepresence 
conditions. This work enriches the findings of our previous works, 
[12], [136], [148], confirming that the adoption of spike-like 
stimulation, emulating the firing activity of skin mechanoreceptors, 
offers a usable language of feedback that can be delivered directly on 
the skin surface, to provide perceptual augmentation in tele-
palpation with gestural active exploration. Future works will be 
headed towards exploring the recognition of buried nodules along 
two directions: upgrading the number and realism of phantoms for 
medical applications, and enriching the mechanical information 
encoded. We will evaluate higher variations of material stiffness with 
the aim of discriminating healthy tissues from tumours, which are 
generally stiffer than the surroundings, [111], [112], [114]. 
Furthermore, we will also include the evaluation of encoded 
feedback for both normal and shear components of the contact force 
through the neuromorphic model. This enrichment is expected to 
lead to a more detailed appreciation of stiffness in cases of 
anisotropic mechanical behaviour of biomaterials. 
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