
Autore:

Gianluca Borgese _______________

Relatori:

Prof. Luca Fanucci _______________

Prof. Calogero Pace _______________

Design of embedded digital systems for
data handling and elaboration in

and scientific

Anno

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria

Corso di Dottorato di Ricerca in
INGEGNERIA

(SSD: Ing

Tesi di Dottorato di Ricerca

Design of embedded digital systems for
data handling and elaboration in industrial

and scientific applications

Anno 2013

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
INGEGNERIA DELL'INFORMAZIONE

(SSD: Ing -Inf-01)

Tesi di Dottorato di Ricerca

I

I

SOMMARIO

Oggigiorno in molti settori di ricerca sia di tipo industriale che scientifico,
l'elaborazione e il trattamento veloce ed efficiente dei dati risulta essere sempre più
importante, soprattutto vista la sempre più crescente espansione dei sistemi che
gestiscono una grande mole di dati multimediali in real-time. Con elaborazione e
trattamento dei dati si può intendere un numero elevato di possibili manipolazioni
di dati (calcolo logico-aritmetico, compressione, filtraggio numerico,
memorizzazione, trasmissione, etc) svolte da uno o più sistemi hardware/software
nell'ambito di differenti applicazioni. Nella prima parte di questo lavoro di tesi si
introdurranno i concetti alla base dell'elaborazione e del trattamento dei dati e si
presenteranno le varie tipologie di sistemi "Embedded", soffermandoci
principalmente sulle tipologie trattate in questo lavoro di tesi. Successivamente si
tratteranno nello specifico le tre piattaforme embedded progettate: la piattaforma
inertial/GPS basata su due microcontrollori a 8-bit per l'acquisizione dei dati
provenienti da più sensori (termometri, accelerometri e giroscopi) e la gestione di
altri dispositivi (modulo GPS e modulo Zigbee); la piattaforma di emulazione
basata su un FPGA per svolgere test funzionali su delle interfacce di
comunicazione seriale basate su un nuovo protocollo, denominato FF-LYNX,
modellizzate dapprima in System-C e poi implementate su FPGA, da impiegare
nell'ambito degli esperimenti di fisica delle alte energie; la piattaforma di calcolo
DCMARK basata sempre su FPGA per risolvere velocemente equazioni
differenziali non lineari che sono alla base dei sistemi dinamici complessi
impiegando un approccio basato sulle CNNs (Cellular Neural Network).Tutti i lavori
hanno portato a risultati scientifici interessanti nell'ambito della progettazione di
dispositivi embedded. Nella fattispecie, il sistema inertial/GPS ha dimostrato di
essere un'efficiente piattaforma impiegabile in differenti ambiti come la body motion
recognition, la fall detection, la fotogrammetria aerea, la navigazione inerziale, etc
e nuovi spunti potranno nascere in seguito all'integrazione spinta del sistema; Il
sistema di emulazione che ha permesso di validare e verificare il corretto
funzionamento delle interfacce di comunicazione del protocollo FF-LYNX,
risultando essere un mezzo di indagine molto più veloce ed affidabile delle
simulazioni ad alto livello; il sistema di calcolo DCMARK che sfruttando un
innovativo approccio multi-processore, ha consentito di affrontare la risoluzione di
equazioni differenziali non lineari in tempi anche dieci volte più brevi rispetto ai più
moderni processori multi-core.

II

ABSTRACT

Nowadays, in several research fields, both industrial and scientific, fast and
efficient data handling and elaboration is more and more important, especially in
view of the more and more growing expansion of systems that manage in real-time
a large amount of multi-media data. With data handling and elaboration it is
possible to define an big number of data manipulations (arithmetic-logic calculation,
compression, numerical filtering, storing, transmission, etc) executed by one or
more hardware/software systems within different applications. In the first phase of
this thesis work the concepts at the bottom of data handling and elaboration will be
introduced and the various typologies of "Embedded" systems will be discussed,
focusing mainly over the typologies treated in this thesis work. Subsequently, the
three embedded platforms designed will be treated in detail: the inertial/GPS
platform, based on two 8-bit microcontrollers, for the acquisition of data coming
from many sensors (thermometers, accelerometers and gyroscopes) and for the
management of other devices (GPS module and ZigBee module); the emulation
FPGA-based platform to conduct functional test on serial communication
interfaces, based on the new FF-LYNX protocol, modelized firstly in System-C and
then implemented on FPGA, to be used within high energy physics experiments;
the FPGA-based calculation platform. named DCMARK, that uses a CNN (Cellular
Neural Network) approach to rapidly solve non-linear differential equation at the
bottom of complex dynamical systems. All these works brought to interesting
scientific results within the design of embedded devices. In particular, the
inertial/GPS system demonstrated to be an efficient platform usable in different
fields such as body motion recognition, fall detection, aerial photogrammetry,
inertial navigation, etc and new ideas may be born after the deep integration of
system; the emulation system which allowed to validate and verify the proper
working of communication interfaces of FF-LYNX protocol, proving to be an
investigation instrument faster and more reliable than high level simulation; the
DCMARK calculation system which, using an innovative multi-processor approach,
allowed to tackle the solving of non-linear differential equation up to ten times more
quickly than the more modern multi-core processors.

III

INDICE

SOMMARIO .. I

ABSTRACT II

1. INTRODUCTION ... 1

1.1. Data handling and elaboration ... 1

1.1.1. Multi-sensor data fusion 1

1.1.2. Data transmission 1

1.1.3. Arithmetic-logic elaboration 1

1.2. Embedded systems .. 2

1.2.1. Microcontroller-based systems 2

1.2.2. FPGA-based systems 3

1.2.3. DSP-based systems.................................. 4

1.2.4. System on chip (SoC) 5

2. DEVELOPMENT OF AN INERTIAL/GPS PLATFORM FOR
MOTION DATA HANDLING 6

2.1. Introduction ... 6

2.2. System design strategy .. 6

2.3. System architecture .. 7

2.3.1. Power board 8

2.3.2. Main board 8

2.3.3. High resolution camera 8

2.4. System working and data protocol .. 10

2.5. Host data handling.. 13

2.5.1. Inertial data elaboration 13

2.5.2. GPS data handling 16

2.6. Remote GUI ... 16

2.7. System testing .. 18

2.7.1. Accelerometers/Gyroscopes test 18

2.7.2. GPS module test 19

2.7.3. Inertial-based trajectory reconstruction test 21

2.8. Conclusions and future developments 23

3. DEVELOPMENT OF AN EMULATION PLATFORM FOR THE
FF-LYNX PROJECT 25

3.1. Introduction ... 25

3.2. FF-LYNX protocol basis ... 26

3.3. FF-LYNX top-down design flow ... 29

3.4. FF-LYNX protocol system-C modeling 30

IV

3.4.1. The ISE (Integrated Simulation Environment) platfor m .. 30

3.4.2. The ISE applications 35

3.5. FPGA-based emulation platform ... 36

3.5.1. Emulation system overview 36

3.5.2. VHDL emulation system 37

3.5.3. Emulator GUI software 39

3.5.4. FF-LYNX emulator working 40

3.6. Emulation test ... 43

3.7. Protocol test time comparison... 46

3.8. Conclusions and future developments 47

4. DEVELOPMENT OF A CALCULATION PLATFORM FOR
DYNAMICAL SYSTEMS SIMULATION 48

4.1. Introduction ... 48

4.2. Cellular Neural Networks (CNNs) basis 49

4.2.1. Architecture of CNNs 49

4.2.2. Global behavior of CNNs 52

4.2.3. Possible applications 52

4.3. General system architecture .. 53

4.3.1. DE4-230 FPGA development board 53

4.3.2. System on programmable chip (SoPC) 53

4.4. Distributed computing microarchitecture (DCMARK) 55

4.4.1. Single cell block 56

4.4.2. Parallel cell configuration module 57

4.5. Complex physical dynamics investigation 59

4.5.1. Discretization of KdV equation 60

4.6. KdV implementation on DCMARK ... 61

4.6.1. MCode implementation step 61

4.6.2. Cells network implementation step 63

4.6.3. DCMARK performances and used resources 64

4.7. Analysis settings and results .. 64

4.7.1. KdV simulation test 64

4.7.2. Calculation results 66

4.8. Performance comparison ... 68

4.9. Conclusions and future developments 69

CONCLUSIONS .. 70

REFERENCES .. 71

V

1

1. INTRODUCTION

1.1. Data handling and elaboration

In the modern era of technology, in which people are surrounded by a large
amount of data from TV, radio, internet, etc, there is a more and more growing
need of high performance compact systems to acquire, manage and if necessary
to transmit data. An example of this kind of system is a Smart phone which has to
manage different type of multimedia data (images, videos, sounds, files, etc) and
control several electronic modules such as accelerometer and gyroscope sensors,
GPS, Bluetooth and Wi-Fi modules, etc. These embedded devices allow to
elaborate in real-time thousands of data using many kind of data handling
typologies according to the sort of data. There are several kind of data handling
typologies: arithmetic-logic elaboration, data compression, numerical filtering, data
storing, data transmission, etc. For each typology a dedicated module exists.

1.1.1. Multi-sensor data fusion
The Multi-sensor data fusion (MSDF) [1] is a typical process of handling and
integration of multiple data coming from more sensors (temperature, pressure,
radiation, etc) into a consistent, complete, accurate, and useful representation. The
resulting information is some sense, better than would be possible when these
sources were used individually. The main idea is to build a compact data frame
ready to be transmitted to other devices for some post-elaboration processes. The
expectation is that fused sensor data is more informative and synthetic than the
original inputs. Indeed, a creaming off of input data is necessary to hold just
significant information. The use of MSDF allows also, in such applications, to
harden and improve the information content. For example, in inertial/GPS data
fusion, high-frequency acquired inertial sensor data information, integrates the low-
frequency acquired GPS data information, during the periods in which GPS data
are not present, guaranteeing a nonstop monitoring of body trajectory. The MSDF
has also many other application fields such as geospatial information system (GIS),
oceanography, wireless sensor networks, cheminformatics, etc. The

1.1.2. Data transmission
In every communication protocol, both wireless and wired, the significant
information to transmit has to be encapsulated into a well-defined data packet
which contains also several functional and security fields such as preambles,
addresses, security codes, type of packet, cyclic redundancy check (CRC), etc. All
these fields guarantee both a proper functionality and a good level of reliability to
the detriment of data packet size. So when a packet is received, it is necessary to
extract data from the packet. Having a large transmission packet is no good for the
throughput of the link. It is a challenge to build a no large data packet with an high
security and hardness level.

1.1.3. Arithmetic-logic elaboration
There are a lot of typologies of data elaboration to conduct with an embedded
system, among those the arithmetic-logic (AL) calculation is the main typology
since it is the base for other elaborations. In every industrial and scientific research
field there is the necessity to execute AL calculations. In order to do AL operations

2

it is possible to use various approaches using microcontrollers, FPGA, DSP, etc.
An example of AL operations are mainly in algorithms of signal elaboration or
numerical equation solving in which there are a lot of simple mathematical
operations to be performed repeatedly.

1.2. Embedded systems

For a start, it must be explained what is an embedded system. An embedded
system [2] is an applied computer system which is designed to control one or more
functions, often with real-time computing constraints. It is formed principally by one
or more processing unit for executing the system functions (such as
microcontrollers, FPGAs, DSPs, etc), a memory unit for the data storing and some
peripherals for communicating with the outside world. One of the first modern
embedded systems was the Apollo Guidance Computer, developed by Charles
Stark Draper at the MIT Instrumentation Laboratory, in 1966. It was considered the
riskiest item in the Apollo project as it employed the developed monolithic
integrated circuits to reduce the size and weight. The embedding of devices into
appliances started before the birth of modern PC. Today, embedded systems are
deeply ingrained into everyday life. The main idea at the bottom of embedded
systems was encapsulating much of system's functionality in the software that runs
in the system, therefore it is possible to upgrade the system, acting on software,
without modifying the hardware. An embedded system is dedicated to specific
tasks, so it is possible optimizing it to reduce the size and the cost. By contrast, a
general-purpose computer is designed to do multiple tasks. With the advent of
digital age, the dominance of the embedded systems is increased. Each portable
devices such as digital watches, MP3 players, cameras, etc are based on an
embedded system, they are widespread in consumer, industrial, commercial and
military applications. A proper example of embedded system is a Smart phone
which represents a complete platform where several different devices (4G, GPS,
Bluetooth modules, etc) are integrated on the same chip or board. In the next
paragraphs some kind of embedded systems will be shown, such as systems
based on microcontroller, FPGA, DSP and SoC.

1.2.1. Microcontroller-based systems
A simple embedded system can have a microcontroller as main managing unit. A
microcontroller [3] is a small computer on a single integrated circuit containing a
processor core, memory, and programmable input/output peripherals, in particular,
it has commonly the following features:

1. Central processing unit (from 4-bit to 64-bit processors);
2. Volatile memory (RAM) for data storage;
3. ROM, EPROM, EEPROM or Flash memory;
4. Serial input/output such as serial ports UARTs, I²C, USB, SPI;
5. Peripherals: timers, event counters, PWM generators and watchdog;
6. Analog-to-digital converters, digital-to-analog converters.

A microcontroller can be programmed using mainly C and assembly languages but
some high performance version based on ARM technology can host also Linux
operating system. In an embedded system there can be one or more
microcontrollers which control other devices of system. In Fig. 1 there is an

example of microcontroller-based embedded system
microcontroller is
interfaced with several sensors (humidity, temperature, barometric sensors) and
with a Zigbee radio transceiver for wireless communication.

be integrated on a same PCB dual-
minimize area, volume and weight.

1.2.2. FPGA-based systems
Another kind of embedded system is based on FPGA devices
platform. An FPGA (Field-programmable gate array)
circuit which can be configured by a designer
language (HDL). Today FPGAs have large resources of logic gates and RAM
blocks to implement complex digital computations. FPGAs can be used to
implement any logical function that an ASIC could perform. The ability to update
the functionality after shipping offer advantages for many applications.
contain programmable logic components called "logic blocks", and a hierarchy of
reconfigurable interconnects that allow the blocks to be
blocks can be configured to perform complex
simple logic gates. In most FPGAs, the logic blocks also include memory elements,
which may be simple flip-flops or more complete blocks of memory
possible to see block diagram of a FPGA
applications.

Fig. 1 - Example of microcontroller

3

based embedded system, where a single

interfaced with several sensors (humidity, temperature, barometric sensors) and
with a Zigbee radio transceiver for wireless communication. All these devices can

-layer board using SMD components in order to

Another kind of embedded system is based on FPGA devices which control whole
programmable gate array) [4] is an integrated

be configured by a designer using a hardware description
FPGAs have large resources of logic gates and RAM

blocks to implement complex digital computations. FPGAs can be used to
implement any logical function that an ASIC could perform. The ability to update

offer advantages for many applications. FPGAs
components called "logic blocks", and a hierarchy of

ts that allow the blocks to be wired together. Logic
blocks can be configured to perform complex combinational functions, or

. In most FPGAs, the logic blocks also include memory elements,
r more complete blocks of memory. In Fig. 2 it is

possible to see block diagram of a FPGA-based embedded system for automotive

xample of microcontroller-based embedded system.

4

1.2.3. DSP-based systems
A DSP (Digital Signal Processor) [5] is special microprocessor which is specialized
in digital signal processing. Digital signal processing algorithms typically require a
large number of mathematical operations to be performed quickly and repeatedly
on a series of data samples. Signals are constantly converted from analog to
digital, manipulated digitally, and then converted back to analog form. The
architecture of a DSP is optimized specifically for digital signal processing. Fig. 3
shows a typical architecture of an embedded smart sensor based on a DSP.

Fig. 2 - Example of FPGA-based embedded system.

Fig. 3 - Example of DSP-based embedded system (Smart sensor).

5

1.2.4. System on chip (SoC)
A system on chip (SoC) [6] is an integrated circuit which integrates in a single chip
all parts of a computer and often other electronic devices (digital, analog, mixed-
signal, radio modules, etc). A system based on SoC technology is a
typical embedded system. A microcontroller typically is a single-chip system with
no much RAM memory, about hundreds of kB, while a SoC can integrate one or
more powerful processors (sometimes multi-core) needing to use large external
memory chips (Flash, RAM, EEPROM, etc). This kind of system can run operating
system such as Linux or Windows.
A SoC is formed typically by:

1. Microcontroller(s), microprocessor(s) or DSP core(s);
2. Graphics or multi-media processor(s);
3. Memory blocks such as ROM, RAM, EEPROM and Flash memory;
4. Timing sources including oscillators and phase-locked loops;
5. Peripherals including counter-timers, real-time timers and power-on

reset generators, radio modules;
6. External interfaces such as USB, FireWire, Ethernet, USART, SPI;
7. Analog interfaces including ADCs and DACs;
8. Voltage regulators and power management circuits.

These blocks are connected by either a proprietary or industry-standard bus. SoCs
can be fabricated using several technologies such as full custom, standard cell,
FPGA, etc. These systems consume less power and have a lower cost and higher
reliability than the multi-chip systems that they replace. In Fig. 4 it is shown a SoC
Nvidia Tegra 600-series.

Fig. 4 - Example of SoC Nvidia Tegra 600-series.

6

2. DEVELOPMENT OF AN INERTIAL/GPS PLATFORM FOR
MOTION DATA HANDLING

2.1. Introduction

Nowadays, in many research fields such as body motion recognition (BMR), fall
detection (FD), aerial photogrammetry (AP), inertial navigation (IN), etc, there is
the necessity to acquire and transmit all body motion parameters (axial
accelerations, angular rates, global position, speed, etc) by wireless to a remote
host system for control and tracking purposes. The possibility to acquire these
motion information in a remote real-time way is more and more requested.
With regard to BMR [7], [8] and FD [9], there are several areas of interest (e.g.: 3D
virtual reality, biomedical applications, robotics) in which it is extremely important to
detect and recognize all or some human body movements and maybe to reproduce
those using a robot. AP [10] and IN [11], [12] fields are older than BMR and FD, but
we can find a multitude of different and innovative approaches and applications
such as pedestrian navigation in harsh environments [13], agriculture automated
vehicles [14], or animal motion analysis [15].
 In the market there are several kind of systems which are not general purpose but
are highly specialized for a particular application. Some systems use high
performance and high cost devices, others are not wireless-based or are too
heavy. The main idea is to design a low-cost, complete and flexible system with
these features and which can be used for several applications. This system should
be compact, portable, lightweight and highly integrated.

2.2. System design strategy

To reach these features it is necessary to design the architecture in a smart way
and to select single components in order to save space and to decrease system
weight as much as possible. In the first prototype, in order to reduce space and
weight, we chose, as inertial sensor, a MEMS inertial measurement unit (IMU)
(Analog Devices ADIS16350), constituted by a tri-axial accelerometer and a tri-
axial gyroscope. This IMU is a strapdown type system which is intrinsically
compact, highly integrated and low-cost but it is not very accurate. In the market

Table 1 - Comparison with commercial IMUs

IMU Name
HG9900

HoneyWell
MMIMU

DraperLab
ADIS16350

AnalogDevices
Typology Laser MEMS MEMS
Gyros Bias (1σσσσ) [°/hr] < 0.003 1 54
Gyros Random Walk [°°°°/√√√√hr] < 0.002 0.030 4.2
Accelers Bias (1σσσσ) [mg] < 0.025 0.1 0.7
Accelers Random Walk [m/s/√√√√hr] 0.0143 0.035 2.0
Acc_Bias Pos. Error (1hr) [km] ~ 1.59 ~ 6.35 ~ 44.5

Size [mm]
139.7 x

162.6 x 135.6
68.5 (Ø) x
35.5 (h)

23.2 x 22.7
x 23.3

Weight [kg] < 3 0.260 0.016
Power Consumption [W] < 10 < 3 < 0.285
Price [k$] ~ 100 ~ 1.3 ~ 0.6

7

there are many kind of very high performance IMU but they don't respect our trade-
off requirements of low space, weight and cost (Table 1). We designed the system
on two different planar boards (main and power boards) using a PCB dual layer-
fashion approach. The supply battery packet was reduced to only two rechargeable
NiMh AAA batteries. With a reduced battery packet, the system energy budget is
very important to consider. To generate the necessary voltage levels we needed
two high-efficiency switching step-up voltage regulators to convert a 2.4V nominal
input voltage in two output voltage levels: 5V and 3.3V. In order to handle many
motion data, it is important to exploit the available wireless and wired transmission
bands organizing data in easily transmissible short packets.
In addition to hardware system side, a remote C-based graphical user interface
(GUI) is installed on an Pc-host to control system operations, set inertial sensor
parameters (offset, calibration, alignment, etc), display motion variables progress,
track trajectories, shoot photo, etc. A trajectory reconstruction algorithm Kalman-
based is implemented in the system software for supporting applications such as
inertial navigation or motion parameters detection These data elaborations are
conducted on software side, instead of hardware side, in order to reduce the
computational load of microcontrollers, to speed system operations up and to
obtain an easier data handling using the remote GUI.

2.3. System architecture

As explained previously, this system is designed on two separated boards: Main
Board and Power board. The first manages all control operations, acquiring data
from inertial sensor and GPS module, sending data packets to the host pc and
receiving command packets from inertial system by wireless; the latter provides the
two supply voltage levels to main board.

Fig. 5 - Complete inertial/GPS system block diagram.

8

2.3.1. Power board
The Power board is constituted by two step-up converters (Maxim MAX756) which
allow to provide both 5V and 3.3V voltage guaranteeing up to 400mA load current
and an efficiency of about 85% (input voltage over 2.2V). As said before, the two
rechargeable NiMh battery pack have a nominal voltage of 2.4V and a nominal
capacity of about 2650mAh. Considering a nominal input energy of about 6.36Wh
against a max required load power of about 625mW (worst case), our system has
an autonomy of about 9 hours (experimentally verified).

2.3.2. Main board
The Main board is the control core of whole system. The modules on the board
are: two 8 bit microcontrollers (Atmel ATMEGA8) (called Master and Slave), a GPS
module (Fastrax UP500), a zigbee transceiver (Maxstream XBEE) and an inertial
sensor (AnalogDevice ADIS16350). To support some applications such as aerial or
ground photogrammetry, an high resolution camera (Canon SX200IS) was
interfaced. Main features of these devices are:

1. ADIS16350: is a low-power (165mW @ 5V) complete inertial
measurement station. It is constituted by one tri-axial accelerometer,
one tri-axial gyroscope and one tri-axial thermometer for thermal
compensation. It transfer inertial data with 14 bit resolution, to the
output registers, accessible via a 2MHz SPI interface, at a maximum
sample rate of 819.2Hz (350Hz bandwidth). The inertial sensors are
precision aligned across axes, and are calibrated for offset and
sensitivity.

2. UP500: is a low-power (90mW @ 3V) GPS receiver module with
embedded antenna and fix rate up to 5Hz. Communication is based on
NMEA protocols, via RS232 link up to 115.2kbps. It supports
WAAS/EGNOS correction to improve position resolution up to about
2m.

3. XBEE: is a low-power (165mW @ 3.3V) 2.4GHz transceiver which
implements ZigBeeTM protocol and has a transmission range of about
80m. Transmission and reception buffers allow efficient data stream
packetization, also required to reach the rated communication speed
because every data exchange requires the presence of an about 20
bytes long header. It is interfaced through RS232 protocol up to
115.2kbps.

As we can see in Fig.5, Master microcontroller is connected to ADIS16350 through
SPI interface, to XBEE through USART interface, to Slave microcontroller through
TWI interface and to the high resolution camera by means of one I/O pin.
The Slave microcontroller is connected only to UP500 by means of USART
interface and to Master microcontroller as said before. Another Slave I/O pin is
used to send an interrupt to Master when a new GPS frame is ready. Master and
Slave are clocked with two 14.7654MHz quartz.

2.3.3. High resolution camera
 We used a low-cost 12,1Mpixels Canon SX200IS camera (5-60mm lens focus, 4X
digital zoom, 12X optical zoom, shutter speed 1s -1/3200s) (Fig. 6a). The firmware
was updated with an unofficial version in order to acquire full control of the camera

9

functions. In particular, we exploited the possibility to remotely shoot photos
applying a 3V pulse to the USB port, using a BJT, as in Fig. 6b, and to store photos
in uncompressed format (RAW), as required for photogrammetry applications [16].
For georeferencing each picture, a progressive number, corresponding to the file
number on the memory card, is recorded on the inertial data frame.

Fig. 6 - Canon SX200i Camera (a), Camera/Microcontroller interfacing (b).

Fig. 7 - First inertial/GPS system prototype v2.2.

10

2.4. System working and data protocol

Thanks to a simple but complete remote GUI, the Pc-host can start every system
operation, as will be explained in next sections. There are three kinds of command
packets (Fig. 8) that can be sent to the system:

1. operation request (GPS/Inertial data readout, photo shooting, offset
readout);

2. configuration setting;
3. configuration readout.

Each command packet is identified by system by means of different opcodes (Fig.
9).

The system requirement was to transmit synchronized data from inertial sensor,
operating at 100Hz, and GPS module operating at 5Hz (Fig. 10). This inertial
sensor sample rate is important to get a good position resolution in case of
trajectory tracking calculations. Hence the data stream has to contain 20 inertial
frames plus one GPS frame every 200ms.
The inertial data frame is 20 bytes long and contains the following fields: supply
voltage, x/y/z temperatures, x/y/z angular rates, x/y/z linear accelerations. The
sensor has to be read by the Master every 10ms and this is guaranteed by a
dedicated timer.
The most important problem is constituted by the verboseness of GPS data: in fact,
NMEA sentences contain hundreds of bytes. So we had to select only the
necessary information, otherwise we were able to reach the specified data rate.

Fig. 8 - Command structure.

Fig. 9 - Command opcodes.

11

Because we were not interested in all GPS information, at the start up the Slave
initializes the GPS module to send only four sentences:

1. GGA: Global Positioning System Fix Data;
2. GSA: GPS DOP and active satellites;
3. VTG: Track Made Good and Ground Speed;
4. RMC: Recommended Mininum Navigation Information.

These NMEA sentences contain main information which can be useful for several
different applications.
Moreover, the Slave creams off the received sentences and stores in RAM only the
information to display, i.e. a total of 72 bytes.
Even if reduced in this way, the time required to send such information is still too
high (about 6.25ms) in order not to compromise the regularity of the inertial sensor
reading.
So we decided to divide the GPS answer in 8 packets of 9 bytes and to send, every
20 ms, two inertial frames plus a GPS packet. So, in 200ms, we send 8 frames of
51 bytes (frame number, 2 inertial frames, 1 GPS packet, photo number) and last 2
frames of 42 bytes (frame number, 2 inertial frames, photo number) as shown in
Fig.11.
Data acquired from PC are reconstructed, displayed and stored in a text file for
further elaboration; GPS data are also processed at run-time to display the
trajectory. The frame number is used to identify each frame within a second (50
frames/s) and is used for:

1. reconstruction of GPS information;
2. identification of any frame lost in reception.

Finally, the Photo number allows for the association of picture files in the SD card
with time, position and attitude of the camera.
The complete system protocol is better explained in the flow chart in Fig. 12.

Fig. 10 - Inertial/GPS system operations.

12

Fig. 12 - Data protocol flow chart.

Fig. 11 - GPS/Inertial data timing (in red the GPS data, in green the
inertial data).

13

After the reception of a data request from host pc, master microcontroller sends a
GPS data request to slave microcontroller and waits for response checking the
GPS data ready flag. When slave acquires and creams off a GPS frame it sets the
GPS data ready flag so that master starts a 10ms timer up and acquires an inertial
frame storing it on RAM. Then master asks slave a single GPS packet which is
received on TWI line and immediately stored on RAM. When 10ms timer stops,
master acquires a second inertial frame storing it on RAM. In the end master sends
the two inertial frames and a GPS packet to XBEE module which sent them to
host-pc. When these operations are over, master restarts 10ms timer and begin a
new operation cycle. If there is an interruption of GPS operations, master continues
to send to host-pc only inertial frames respecting the 10ms timing.

2.5. Host data handling

2.5.1. Inertial data elaboration
Data acquired from the inertial sensor can be processed to obtain position and
orientation of a body and to track a three dimensional trajectory. This technique is
called inertial navigation and it is used in a wide range of applications.
Inertial data are processed following the scheme [17] in Fig.13
where:

1. U_acc: signals from accelerometers;
2. U_omega: signals from gyroscopes;
3. a: linear acceleration;
4. v: linear velocity;
5. ω: angular velocity;
6. C: rotation matrix.

The subscripts b denote the body coordinate system (that is the navigation
system’s reference frame) while the subscripts n denote the local coordinate
system (in which the body move).
The first step of trajectory reconstruction algorithm is the correction of
accelerometers and gyroscopes signals. The correction of errors on signals is the
most important step of algorithm, because errors influence overall system
performance [18]. In particular, propagation of orientation errors caused by noise,
perturbing gyroscope signals, is identified as the critical cause of a body position
drift. The main cause of errors are: scale factor, bias, drift, temperature, non-
orthogonality. In order to compensate them it is necessary to perform a procedure
of calibration. A first coarse calibration was executed using the automatic
calibration of ADIS16350 managed from remote GUI software. Then a finer
calibration was conducted manually. Among all calibration methods proposed in
literature, the most appropriate calibration technique for low-cost sensors is the
”modified multi-position calibration method” [19], [20]. Its aim is to find all calibration
parameters (bias, scale factor, non-orthogonality, etc) of sensors. It consists in
laying out sensors in different linearly independent positions in order to define a
system of linearly independent equations which outnumbers the set of calibration
parameters to find.

14

The linear acceleration and angular velocity error can be modeled as:

�� = ���� + ����� + 	���_��
 −
�� + ���� 																																�1�

�� = ����� + ������ + 	����_��
 −
�� + �����																					�2�

Where:

1. ���� and ����� are the sensor bias;
2. ���� and ����� are the sensor scale factors;
3. 	���_� and 	����_� are the sensor thermal constants;
4. ���� and ����� are the sensor measurement noises, ���� = ���� ∗

����� !	"�#! and ����� = ����� ∗ ����� !	"�#!, ���� and �����are
noise densities;

5.
 and	
� are the temperatures during the measurement and at sensor
start-up respectively.

In Table 2 there are the calibration parameters obtained according to [19], [22],
[23].

Fig. 13 - Block diagram of the trajectory reconstruction algorithm.

15

After the calibration phase, it is necessary to compensate the centrifugal
acceleration and the acceleration of gravity effects obtaining accelerations in body
coordinate system . The former is compensated subtracting the vector product
between angular velocities (from gyroscopes) and linear velocities (from numerical
integration of accelerations), the latter is compensated adding the scalar product
between transposed rotation matrix and the gravity acceleration. After a numerical
integration velocities in body coordinate system are obtained. In order to pass to
local coordinate system the linear velocities are multiplied by the rotation matrix
and then are integrated to have body trajectory. The angular velocities are also
integrated, obtaining the information about the orientation (Euler angles) and the
rotation matrix (for transformation from b-frame to n-frame). The equations to
integrate and the rotation matrix are [21]:

$% = &��_' sin $ +	�+_' cos $. tan 1 +	�2_'																											�3�

1% = &��_' cos $ −	�+_' sin $.																																																				�4�

5% = &��6 sin $ + +	�+6 cos $. sec 1		 																																							�5�

)6(

coscoscossinsin

sinsincoscossinsinsinsincoscossincos

cossincossinsincossinsinsincoscoscos

















−
+−+

++−
=

θφθφθ
ψθφψφψθφψθψθ

ψθφψφψθφψθψθ
n
bC

Table 2 - Calibration
parameters

9:;;_< 0.012133g

9:;;_= 0.023295g

9:;;_> -0.03593g

9?=@A_< 0.3766 °/s

9?=@A_= 0.1963°/s

9?=@A_> 0.6270°/s

B:;;_< 0.00775

B:;;_= 0.008838

B:;;_> 0.008041

B?=@A_< 0.004818

B?=@A_= 0.004042

B?=@A_> 0.009385

;:;;_C 4 mg/°C

;?=@A_C 0.1°/s/°C

D:;; 1.85mg √F>

D?=@A 0.05°/s √F>

16

where transformation from reference axes to a new frame is expressed as:

1. rotation through angle 5 about reference z-axis;
2. rotation through angle 1 about new y-axis;
3. rotation through angle $ about new x-axis.

However, also with a perfect correction of errors, it isn’t possible to obtain a great
position accuracy for long time using only MEMS IMU but it is necessary to include
information from GPS module, integrated in our system. Inertial and GPS modules
are complementary: the former is characterized by high measurement frequency
but short-term accuracy while the second by long-term accuracy but low
measurement frequency. The main idea is to reconstruct trajectory by means of
inertial data acquired between two GPS acquisitions and then to correct
accumulated errors in inertial data using the stable information from GPS module.
The Kalman filter is the most used algorithm for this purpose. In literature there are
several implementation of Kalman filter depending on the features of devices [3].
To obtain a correct integration of Inertial and GPS data it is important to have high
synchronization between data acquisitions. The implementation of Kalman filtering
is included into remote GUI.

2.5.2. GPS data handling
In order to plot a GPS trajectory in a two dimensional graph it is necessary at first
to transform GPS geodetic coordinates (longitude λ, latitude φ, height h) to ECEF
(Earth-Centered-Earth-Fixed) coordinates (Xe, Ye, Ze) and then to NED (Nord-
East-Down) coordinates (xn, yn, zn) according to following equations. N(φ) is the
normal that is the distance from the surface to the Z-axis along the ellipsoid
normal. a is the semi-major ellipsoid axis and e is the first numerical ellipsoid
eccentricity. Rn/e is a transformation matrix from ECEF to NED coordinates. Xer,
Yer, Zer are ECEF reference coordinates.

2.6. Remote GUI

The Remote GUI is developed using LabWindows© development environment
based on C language. The GUI allows to manage every system operation. As
seen in Fig.14 in the window there are three main sections: a graph section to
display GPS trajectory, angular velocity and linear acceleration; a boxes section to

λφφ
λφφ

λφφ

coscos))1)(((

sincos))((

coscos))((

2 heNZ

hNY

hNX

e

e

e

+−=

+=
+=

)sin1(
)(

22 φ
φ

e

a
N

−
=

















−
−
−

×=
















ere

ere

ere

en

n

n

n

ZZ

YY

XX

R

z

y

x

/

















−−−
−

−−
=

φλφλφ
λλ

φλφλφ

sinsincoscoscos

0cossin

cossinsincossin

/ enR

17

show inertial sensor parameters (supply voltage, x-y-z linear accelerations, angular
velocities and temperatures) and GPS parameters (time, latitude, longitude,
altitude above mean sea level, height of geoid above WGS84 ellipsoid, speed,
heading and PDOP; a command section to initializing XBEE radio-bridge, to
start/stop system operations and to shoot photos. It is also possible to save data
into a text file for offline analysis. In the top of window there is a menu in which
user can access inertial sensor setting mode and manually change gyroscope
dynamics, number of tapes of Bartlett FIR digital filter, sample rate, accelerometer
ad gyroscope offset or use automatic procedures of axial alignment, offset
compensation, calibration (Fig. 15). The numerical integration algorithm, the
Kalman filter and the coordinates transformation are integrated into the GUI.

Fig. 14 - System GUI with an example of GPS trajectory.

18

2.7. System testing

In order to verify proper working of system many kind of tests are conducted on
system modules.

2.7.1. Accelerometers/Gyroscopes test
To test accelerometers and gyroscopes, two type of tests were conducted. In the
first test, the system was placed on a strobe speed-controlled turntable with
velocity of 33 rpm and 45 rpm, to evaluate biases and the correct angular velocity
measured by gyroscopes; in the second test, system was placed on a radio-
controlled toy car (Fig. 17) and various movements were performed to test the
performance of the whole inertial system (Fig.16).

Fig. 15 - Calibration, operation control and other sub-windows.

19

2.7.2. GPS module test
Moreover, the system was mounted on a car in order to verify GPS module
operations and the coordinates transformation algorithm using GPS data (Fig.14).
Another kind of test allows to analyze the proper working of GPS module along a
closed path and comparing results with a high accuracy differential GPS module.
From this test we valued position errors along x, y and z axis using a statistical

Fig. 16 - Sensor responses for various movements performed (slewing
rounds, spins, back/forth).

Fig. 17 - System mounted on a toy car for a test.

20

analysis. In Fig.18 the trajectory comparison between our GPS module and
differential GPS module is shown. In Table 3 and Fig. 19 there are the error
distribution parameters. The mean position error is lower than 1m for x and y axis
with a standard deviation lower than 2m, only for the z axis the mean position error
is of about 5m.

Fig. 18 - Results comparison between our GPS (red) and differential GPS (blue).

21

2.7.3. Inertial-based trajectory reconstruction tes t
After the GPS trajectory reconstruction test, we conducted an Inertial-based
trajectory reconstruction test to verify the quality of trajectory reconstruction
algorithm and of Kalman filtering. For this test the strobe speed-controlled turntable
was used. As it can be seen in Fig. 20 using just the reconstruction algorithm, after
about 25 loop at 33rpm, there is an increasing of offset and bias which deform the
circular trajectory with a spiral divergence; with Kalman filtering the trajectory is
very stable and it is evident the decreasing of x/y error as shown in Table 4 with
respect to Table 5 without Kalman filter. In Fig. 21 the x/y position error fluctuation
using the Kalman filter is shown while in Fig. 22 the x/y position error fluctuation
without Kalman filter.

Table 3 - Error distribution parameters

X-error Mean 0.573m
Y-error Mean -0.143m
Z-error Mean 4.267m

X-error σσσσ 1.825m
Y-error σ σ σ σ 1.480m
Z-error σσσσ 1.997m

Fig. 19 - X/Y/Z error distributions.

22

Fig. 20 - Trajectory reconstruction without (top) and with (bottom)
Kalman filtering.

Fig. 21 - X/Y axis error fluctuations with Kalman filter.

23

2.8. Conclusions and future developments

A flexible and low-cost wireless GPS/Inertial system [24] which can be used for
many kinds of applications is presented. The main features of prototype are low
weight, high compactness, high autonomy, fast remote data managing and
elaboration (Table 6). The future developments will be the GPS/Inertial data fusion,
the replacement of MEMS sensor station with the new model which integrates a tri-
axial magnetometer and an automatic thermal compensation, the replacement of
the ZigBee module with the new model having a transmission range up to 1km and
assembling all new modules and SMD components on the new PCB dual-layer
board (Fig.23) to reduce more and more space and weight in order to increase
system flexibility. In addition, the remote system GUI will be modified to manage
data elaboration for various applications such as fall detection, body motion
recognition, inertial navigation, etc. Many kind of tests in several scenarios will be
conducted in order to demonstrate flexibility and general purpose capability of
platform.

Table 5 - Error distribution
parameters (without Kalman filter)

Abs Max X-error 59.68m
Abs Max Y-error 60.57m

X-MSE (mean square error) 1.5256e+5m2
Y-MSE (mean square error) 1.4943e+5m2

Fig. 22 - X/Y axis error fluctuations without Kalman filter.

Table 4 - Error distribution
parameters (with Kalman filter)

Abs Max X-error 0.0066m
Abs Max Y-error 0.0084m

X-MSE (mean square error) 3.30e-3m2
Y-MSE (mean square error) 6.50e-3m2

Table 6 -

Fig. 23 - 3D PCB system board v2.3 image.

24

 Main technical features

3D PCB system board v2.3 image.

25

3. DEVELOPMENT OF AN EMULATION PLATFORM FOR THE
FF-LYNX PROJECT

3.1. Introduction

Before describing the topic of this chapter, it is important to introduce the FF-LYNX
(Fast and Flexible links) project. This project was promoted and financed by INFN
(Istituto Nazionale di Fisica Nucleare), the most important research institute in Italy
within the field of High Energy Physics (HEP) experiments. This project, started in
January 2009, was born with the first aim to define a new serial communication
protocol, to satisfy the typical requirements of HEP scenarios. It was intended to
become a new flexible standard within different experiments minimizing
development costs and efforts, because today each HEP experiment uses a
different kind of custom communication protocol. The second aim of FF-LYNX
project was to implement this protocol in radiation-tolerant, low power interfaces.
High Energy Physics (HEP), is a branch of physics that studies the most basic
constituents of matter, i.e. subatomic particles, and their interactions. Particle
accelerators are the main instruments for High Energy Physics. They are complex
machines that produce beams of high energy particles. A typical HEP experiment
consists in colliding particle beams and analyzing the results of the collisions using
particle detectors around the interaction point. Large Hadron Collider (LHC) [25] at
CERN (the European Organization for Nuclear Research) in Geneve (Switzerland)
is the largest and most powerful particle accelerator over the world.
The electronic architectures used into experiments are very similar with respect to
systems for acquisition of data from sensors and for control and management of
the detector. Signals generated by sensors in particle detection are handled by
Front-End (FE) electronics embedded in the detectors and transferred to remote
data acquisition (DAQ) systems. In Fig. 24 a schematic representation of a
common HEP experiment.

Fig. 24 - Schematic example of HEP experiment.

26

After a collision between two particles such as two protons, there are the
generations of new different particles (collision events) which have to be captured
by the detectors that surround the interaction point. These detectors, formed by
many high performance sensors (pixels, strips, etc), are interfaced with Front-End
(FE) devices that acquire signals and execute a signal conditioning (amplification,
shaping, buffering, analog to digital conversion). So these raw digital data
organized, in Event Data packets, are stored onto FE memory buffers temporarily.
Since the interesting events are a very small fraction of the total, the total amount
of data has to be filtered. To do this, a small amount of key information about
collision event, in the guise of Trigger packets, is send to TTC (Trigger, Timing and
Control) system which performs a fast, approximate calculation and identify if that
event is significant or not. If the event is important, then a Trigger command is sent
back to FE electronics to command a data readout. At this point, that Event Data
packet is sent towards the DAQ (Data Acquisition System). In this way, the amount
of data to be transferred is reduced to rates that can be handled by the readout
system (a typical order of magnitude is hundreds of MB/s from each FE device),
and only the interesting events are selected. Clearly each packet is sent through
the communication channel based on different custom protocols.
The part of work presented in this chapter constituted two phases of the FF-LYNX
design flow and was carried out at the Pisa division of INFN. It dealt with the
simulation of FF-LYNX System-C interface models using a simulation platform and
the design of an FPGA emulation platform for verify and test those interface
models. In the first phase, these interfaces, defined in System-C language, are
simulated using an ISE (Integrated Simulation Environment) platform. In the
second phase of work, these interfaces were implemented on FPGA emulation
platform to continue the verify process.

3.2. FF-LYNX protocol basis

The FF-LYNX protocol [26] is a double-wire serial protocol defined at the data-link
layer of the ISO/OSI model. The two separate wires correspond to clock and data
lines. It guarantees a high level of flexibility as regards data rate and data format. It
is possible to communicate with three different data rates: 4xF, 8xF and 16xF, as
shown in Fig. 25; F represents the frequency of the reference clock. Considering
the LHC reference clock (40 MHz) there are 160, 320 and 640 Mbps respectively.
The main feature of FF-LYNX protocol is the time multiplexing of two channels,
named THS and FRM. The THS channel is used to transmit Triggers, Frame
Headers and Synchronization patterns and employs two bits. The FRM channel is
used to transmit data packets (information inserted into one or more data frames
as Fig, 26) and employs 2, 6 or 14 bits in the three data rate options. A data packet
is a high-level transmission unit which can be formed by several 16bit words. This
data packet can fit a single data frame (if packet is formed by less than 16 words)
or can be splitted into several data frames. It uses two kinds of data packets: the
Variable Latency Frame (VLF) and the Fixed Latency Frame (FLF) packets, where
the latency is defined as the data packet transfer time. The VLF is a generic data
frame type while the FLF is used as trigger data frame type. The robustness of

27

critical information against transmission errors is obtained by means of Hamming
codes and custom encoding techniques.
These techniques guarantee the correct recognition of commands and the
reconstruction of their timing in the THS channel. In the FRM channel single bit-
flips are corrected and burst errors are detected. There is a significant reduction of
the number of physical links thanks to the use of the same protocol for the
transmission of triggers, fixed and variable latency reducing the overall material
budget. Hence, this protocol is suitable for the distribution both of DAQ signals and
of Timing, Trigger and Control (TTC) signals, that is for the Up-Link (Front-End
devices to DAQ system) and for the Down-Link (Trigger and Control System to
Front-End devices) paths. On the THS channel, Triggers are higher priority signals
with respect to Frame Headers and Synchronization commands; these latter can
be transmitted only when there are no Triggers for at least three consecutive clock
cycles, in agreement with the current specifications of the LHC experiments. On

FRM channel the Data Frames are tagged by Frame Headers transmitted on the
THS channel.

Fig. 25 - Channel partitioning through time-division multiplexing (TDM), with the
master clock taken as the period for the TDM cycles.

28

The structure of a data frames is shown in Fig. 26. It is formed by: the Frame
Descriptor (FD) which contains information such as the length of the frame and the
type of data transmitted, the Label which represents a field that can be employed
to add optional information, the Payload which constitutes the user data and a
Cycle

Redundancy Check (CRC) that can be optionally applied to the Payload to
increase robustness against transmission errors.
In FF-LYNX system, as already mentioned, there are two categories of data with
respect to latency constraints, the VLF and the FLF packets: the former have no
latency constraints, while the latter must have a fixed latency.
The FF-LYNX protocol is implemented in Transmitter (TX) (Fig. 27.a) and Receiver
(RX) (Fig. 27.b) interfaces with a serial port (DAT) on one side and two parallel
ports (16-bit port for the VLF packets, 2/6/14-bits port for the FLF ones) with their
control (data_valid, get_data, trg) and configuration signals (e.g.: flf_on, label_on)
on the
other side. Control signals are used by host devices to manage the data

transmission operations.

The FF-TX Transmitter is constituted of the following modules:

1. TX Buffer: it is structured as two FIFOs, for storing input data on VLF
bus and on FLF bus.

Fig. 26 - The basic FF-LYNX frame structure.

Fig. 27 - Functional architecture of the FF_TX (a) and FF_RX (b) interfaces.

29

2. Frame Builder: it controls the assembly of frames for the transmission of
data stored in the FLF and VLF FIFOs.

3. THS Scheduler: it works out the arbitration between triggers and frame
headers. It receives TRG and HDR commands and passes them to the
Serializer avoiding THS sequences overlaps.

4. Serializer: It generates the serial output stream by receiving the Frame
Descriptor field from the Frame Builder and frame words from the
VLF/FLF FIFO. In addition, it sends TRG and HDR patterns into the
THS channel, according to the commands that arrive from the THS
Scheduler.

The FF-RX Receiver is constituted of the following modules:
1. Deserializer: It converts the FF-LYNX serial data stream into parallel

form. it separates the THS channel and the FRM channel and provides
the data words to store into the RX Buffer.

2. THS Detector: It detects the sequences of triggers, headers and
synchronization patterns in the THS channel;

3. Synchronizer: It generates the reference clock on the base of
information coming from the THS Detector.

4. Frame Analyzer: It controls the reception of data frames, their storing
into the RX Buffer and the transmission of stored data to the receiver
host.

5. RX Buffer: It buffers data to send to host devices in parallel form.

3.3. FF-LYNX top-down design flow

As already mentioned, the FF-LYNX project was to follow a well-defined top-down
design flow (Fig. 28). This flow consists of six main phases: The protocol definition
phase in which the communication interfaces are modeled using System-C
language, the high-level validation phase which consists in verify the proper
functionality of protocol interfaces employing a simulation platform called ISE
(Integrated Simulation Environment), the definition of hardware interfaces using
VHDL language, the implementation of interfaces on FPGA devices for the
emulation phase and at the end, the design of test ASIC chip implementing these
FF-LYNX TX/RX interfaces. In this chapter, mainly the FPGA prototyping phase will
be described in detail.

30

3.4. FF-LYNX protocol system-C modeling

3.4.1. The ISE (Integrated Simulation Environment) platform
After the theoretical definition of protocol structure, an ISE (Integrated Simulation
Environment) platform, based on models written in System-C language [27], was
developed. These System-C models describe protocol interfaces, electrical links
and I/O test modules with a timing accuracy at clock cycle level. The aim of the ISE
platform is to simulate and characterize readout architectures based on FF-LYNX
communication protocol, in this case study, with input data compatible with
possible working environment in which this protocol could be employed. For this
goal, physics GEANT4 input data are used and FoM (Figures of Merit), defined in
Table 7, are evaluated.
With this ISE platform it is possible to conduct all kind of analysis in different
operating conditions, setting different values of link speed, trigger rate, packet rate,
packet average size, bit error rate in electrical serial links. It is possible also to
include injection of errors in communication links and memory blocks. All the
models that form the ISE are known as "Simulator".
The developed System-C link simulator is composed by two main modules: the FF-
LYNX TX interface and the FF-LYNX RX interface. This model architecture is
parameterized and modular, allowing the reusability of System-C code and the run-
time behavior tuning. This feature is important during the simulation phase when
frequent changes in parameter values are needed for FoM estimations.
The Simulator is laid out in a Client/Server architecture (Fig. 29). In the Server side
there are two main blocks, the Test Bench and the Server Main modules, while in
the Client side there are the Sim Framework and the Client Main modules.

Fig. 28 - The FF-LYNX design flow.

31

Concerning the Server side, the Test Bench module contains the System-C
protocol interfaces and its task is to transfer input data from the Server Main to the
protocol interfaces and then to receive protocol interface outputs. The Server Main
behaves as a functional master module, it stores temporarily both data coming
from the Client and data waiting to be transmitted back to it. Both the Server and
the Client have a Sim Interface module that interfaces the Server side with the

Fig. 29 - The ISE Client-Server architecture; it can be implemented on
SMP (symmetric multi processor) workstation or computing grid.

Table 7 - Figures of Merit (FoM)

Figures of Merit (FoM) Description
Sent Pkt number of VLF packets sent
Lost Pkt number of VLF packets lost
LPR (Lost Packet Rate) Lost Pkt over Sent Pkt

CPDR (Corrupt Packet Descriptor Rate) number of VLF packets received with
incorrect length

CPPR (Corrupt Packet Payload Rate) number of VLF packets received with
damaged payload

Mean, Min, Max PL (Mean, Min, Max
Packet Latency)

mean, min and max value of the packet
latency

Std PL (Standard Deviation of Packet
Latency) standard deviation of the packet latency

Sent Trg (Sent Triggers) number of triggers sent
Lost Trg (Lost Triggers) number of triggers lost
Lost Hit number of FLF packets lost or corrupted
LTR (Lost Trigger Rate) lost triggers over sent triggers
FTR (Fake Trigger Rate) the rate at which fake triggers are received
Lost Hit Rate lost hits over sent hits

32

Client side. The message passing is implemented on top of TCP/IP sockets. As
regards the Client side, the Sim Framework module is made of a Stim_Gen module
that generates the stimuli patterns and a FoM_Gauge module that gauges the
figures of merit from the simulation results. The Client Main manages their
initialization and provides the highway through which data flows from the Sim
Interface module to the Sim Framework module and viceversa.
The ISE architecture, being modular, allows to easily change every single module
of the system, as long as the module interface remains the same. Thanks to the
Client/Server approach there is a high degree of flexibility since the Server side can
be relocated on a different (remote) machine or re-implemented for another
architecture type (i.e.: FPGA emulator), without modifying the Client side. In this
environment a typical simulation is based on one or many "runs" which can have
different simulator configurations (parameter settings) to evaluate how the system
behaves after these variations. As shown in Fig. 29, the ISE platform can be also
implemented both in Symmetric Multi-Processing (SMP) machines (i.e.: multi-core
and/or multi-processor) and in powerful computing grids (i.e. hundreds or
thousands of processors) by spreading the load on multiple processing units, in
order to decrease the simulation time and conduct longer and deeper analysis.
An example of a simulation carried out in the ISE environment is shown in Fig. 30
where the packet latency time (mean, max, min and standard deviation metrics)
related to VLF data packets varies with the protocol speed (4x, 8x, 16x). For this
analysis the physical layer considered is a coaxial cable. In Fig. 31 and 32 there
are two examples of performance analysis that can be carried out, since the early
protocol development steps, by using the ISE platform.
The analysis in Fig. 31 and 32 regards the evaluation of mean sync time and false
sync percentage for different values of the N_unlock and of the N_lock thresholds
used in the Synchronization module of the FF-RX interface. Sync time, expressed
in 40 MHz reference clock cycles, is the time for system re-synchronization after a
synchronization loss, while false sync percentage depends on fake synchronization
events. N_unlock and N_lock are thresholds that indicate the minimum number of
detected synchronization sequences on one of the possible THS channels (4, 8 or
16 in the three speed options) for synchronization unlocking and locking
respectively. The synchronization mechanism is based on the counting of THS
sequences in each channel and the reaching of two counting thresholds (a high
threshold, N_lock, and a low one, N_unlock) was chosen to distinguish a
synchronization lock state (when synchronization is considered as acquired) and
an out-of-lock state (when synchronization is being looked for).

33

Fig. 30 - Mean, minimum, maximum and standard deviation of
packet latency with different link speeds.

Fig. 31 - Mean synchronization time for different threshold
settings.

34

This mechanism is hence called Dual Threshold (DT): the transition from the out-
of-lock state to the sync lock state takes place when one of the counters reaches
the high threshold (thus becoming the in-charge counter) while the inverse
transition occurs when a counter that is not in charge reaches the low threshold.
As already mentioned, the Synchronization module is used for the detection of THS
channel and the recovery of the reference clock. In these examples three different
synchronization algorithms are considered: Privileged Dual Threshold (PDT), Fair
Dual Threshold (FDT) and Mixed Dual Threshold (MDT). Using the PDT algorithm,
when a counter hits the high threshold, it resets all the other counters but not itself.
With the FDT algorithm, as soon as a counter hits the higher threshold, it resets all
the counters including itself. The MDT algorithm combines the two previous
variations giving an intermediate level of privilege to the in-charge counter. Taking
into account the results of these system-level simulations the PDT synchronization
algorithm was used for further development steps of the protocol and hardware
implementation of its building blocks. Indeed, with N_unlock and N_lock equal to
respectively 3 and 4, the PDT synchronization technique represents the best trade-
off between mean sync time and false sync percentage.
In general terms, the ISE platform allows to tune the parameters of a generic
system architecture to design (FF-LYNX protocol interfaces, in this case) according
to results of performance analysis and to analyze in detail the behavior of the
system during a typical working. In ISE the system architecture to verify is defined
using System-C models. If the system works properly during simulation then, on
the basis of System-C models and of performance analysis, HDL models are
defined and implemented onto FPGA. Thanks to the flexibility of ISE platform, it is
possible to use the simulator in the FPGA emulator by replacing the server section
with the emulator without modifying the client section. As already said previously,
this client-server architecture allows to take advantage of socket communication

Fig. 32 - False synchronization percentage time for different
threshold settings.

35

and to provide a scalable environment suitable for Symmetric Multi-Processing
(SMP) workstations or computing grids.

3.4.2. The ISE applications
The developed ISE environment can be also used for an early evaluation of the
impact of a new communication protocol and its hardware solutions on the
performance of data acquisition systems; this drives to great advantages in terms
of reduction of development time and costs for a new project/experiment or an
upgrade of an ongoing one. Particularly, the ISE environment was used to
characterize the Track-Trigger architecture proposed for the upgrade of the CMS
Silicon Tracker, whose data are used in CMS to reconstruct the trajectories of the
charged particles. Achievable data-rate was evaluated comparing different
algorithms used for clustering, pairing and track-let finding. The performance of the
readout system (e.g.: lost hit rate, corrupted hit rate, cluster rate, pair rate) was
analyzed using different protocol configurations (e.g.: size of FLF packets) and
hardware implementations (e.g.: Front-End buffer size, number of links, link
speed). In performance analysis physics event classes (i.e.: loss rate, corrupted hit
rate, cluster rate, pair rate for given physics events) were considered.
By using GEANT4 data as ISE inputs an analysis was conducted; examples of the
achievable results are reported in Fig. 33 and 34 if using the FF-LYNX protocol
described in Section 2 for the upgrade of the CMS tracker. Particularly, Fig. 33
shows the achievable data rate, Mbps, at different Z values (longitudinal positions
in the CMS tracker) (Z0=0 cm, Z1=69 cm, Z2=137 cm, Z3= 206 cm) and for
different detector layers while Fig. 34 reports the achievable transmission efficiency
as a function of the effective available bandwidth.

Fig. 33 - Cluster data rate (Mbps) at different Z and different
detector layers.

36

3.5. FPGA-based emulation platform

3.5.1. Emulation system overview
In order to test the FF-LYNX protocol interfaces and to validate the ISE simulation
results, an FPGA-based emulator platform was designed. This emulator system
(Fig. 35) is based on a C++ Graphical User Interface (GUI), used for the
configuration and the control of the emulator, and on the VHDL emulator core. The
VHDL emulator is implemented on an Altera Stratix II GX FPGA device
(EP2SGX130GF1508 which provides 133,000 equivalent Logic Elements, 7 Mbit
total RAM memory, 8 PLLs, 78 LVDS channels, 63 multipliers and adders blocks
and 20 Transceiver channels with a data rate from 600 Mbps to 6.375 Gbps) [28]
housed on a commercial PCIe board (PLDA XpressGXII board) [29] which can
handle a 3.6 GB/s data rate (effective, full duplex). This FPGA development board
was chosen to guarantee a large bandwidth to perform extensive emulations with
high data rates with an acceptable efficiency in terms of emulation time. A typical
real working scenario is to receive data from a CMS Tracker Front-End chip with a
1.8 Gbps data rate (from physics simulation). Three or four FF-LYNX TX/RX
interfaces working at 640 Mbps (maximum data rate allowed by the FF-LYNX
protocol with a reference clock frequency of 40 MHz) could handle this data rate.
The PCIe board, with its large bandwidth, allows realistic emulations. In our case,
for one second of emulation, sending the test vectors and receiving the emulation
results take about 62.5ms. In addition, having a single FPGA development board
which can be mounted on a workstation instead of having a platform composed by
many separated parts, it allows to increase the level of compactness of the whole
emulation system. This is a key feature towards the reuse of the same emulator
environment as test bed when doing irradiation tests on the ASIC chips
implementing rad-tolerant FF-LYNX building blocks.

Fig. 34 - Transmission efficiency vs. available bandwidth (Gbps) for
Z=Z0, different detector layers.

37

3.5.2. V
HDL emulation system
The VHDL emulator system is formed by three main functional blocks, as shown in
Fig. 36: the PCIe XpressLite core, the Interface Logic and the FF-Emulator core.

The PCIe XpressLite core in Fig. 36 is an IP-core block provided by PLDA. It
manages the communication with the PCIe bus and therefore with the host
workstation. The Interface Logic is another block provided by PLDA, but it can be
customized by the user and it is used to interface the PCIe XpressLite core to the
user custom application block that is the FF-Emulator core. The FF-Emulator is a
custom developed core whose block diagram is shown in Fig. 37.
The FF-emulator core is divided in two modules: a Test Controller (TC) that
manages the emulation test and the FF-LYNX TX and RX interfaces that represent
the Device Under Test (DUT). The TC has a simple structure based on the
following building blocks:
TC core that includes two functional paths. The TX path manages the data
transmission toward the FF-TX block. It is made of the TX Controller and the TX
RAMs. The RX path manages the data reception from the FF-RX block. It is made
of the RX Controller and the RX RAMs;
TC configuration registers that contain test parameters as emulation window
duration, number of VLF packets, presence or not of FLF packets, size of the FLF
packets, TX TC buffer size, etc;
The TX controller starts the transmission of a trigger (or of a FLF packets, when
they are enabled) or the transmission of a VLF packet at pre-defined clock cycles
(TX Time Stamps). The arrival timing of the received triggers and frames is stored
and then compared with the TX to evaluate the trigger and the packet latency. The
TX and RX RAMs are divided in five different types of RAM:

Fig. 35 - Emulation system: GUI, Workstation and Development
board.

Fig. 36 - VHDL emulator system.

38

VLF_TS (Variable Latency Frame Time Stamp) RAM to store the time stamps (TS)
associated to VLF data packets transmitted/received to/from FF-LYNX interfaces;
VLF_LEN (Variable Latency Frame Length) RAM to storie the length (number of
16bit words) of the VLF data packets transmitted/received to/from FF-LYNX
interfaces;
VLF_DW (Variable Latency Frame Data Word) RAM to store the VLF data packets
transmitted/received to/from FF-LYNX interfaces;
TRG_TS (Trigger Time Stamp) RAM to store the time stamps associated to
triggers or FLF data packets (if they are enabled) transmitted/received to/from FF-
LYNX interfaces;
FLF_DW (Fixed Latency Frame Data Word) RAM to store the FLF data packets (if
they are enabled) transmitted/received to/from FF-LYNX interfaces.
The TX and RX Controllers are made up of (i) time stamp counters whose current
values are compared with values stored in the TX TS RAMs or stored in the RX TS
RAMs, (ii) FSMs (Finite State Machine) to control the test flow and (iii) two FIFO
buffers (only for TX Controller): one configurable buffer to store VLF data
temporarily and another to store VLF data lengths associated to VLF data buffered
on the first buffer. These two buffers allow to load a complete packet before
sending it on FF-LYNX link.

Fig. 37 - FF-Emulator core block diagram.

39

3.5.3. Emulator GUI software
The C++ GUI software is organized as shown in Fig. 38
It is based on three main parts: the PLDA drivers to interface the Host-PC with the
PCIe PLDA board, the Data Manager to manage the emulator operations and the
GUI (Fig. 39) to set all the emulation variables and to display emulation results. In
the Data Manager block three important parts can be found: the EmuRun part
which manages an emulation run on the base of several parameters set by user
(as FF-LYNX interface data rate, emulation window duration, packet and trigger
rate, number of triggers and packets, etc); the StimGen part that generates the
VLF/FLF data packets and the time stamps and store them in the TX RAMs; the
Figures of Merit (FoM) Gauge that, according to emulation results, allows to define
some FoM (as shown in Table 7), useful for validating and verifying FF-LYNX
protocol efficiency.

Fig. 38 - C++ emulator software block diagram.

40

3.5.4. FF-LYNX emulator working
An emulation run is initialized by the user by means of the Emu GUI software. At
the beginning it is necessary to set the FF-LYNX interface data rate (4x, 8x, 16x),
the test configuration (choosing an internal or external connection between TX and
RX modules under test), the TC TX buffer size, the emulation window duration, the
number of packets and triggers, the size of VLF packets, the presence or not of
FLF packets and the packet and trigger rate. Then the run can be started (Fig. 40).
On VHDL emulator core side, by means of the Interface Logic module, the user
emulation settings are stored on TC registers and the time stamps, the packet
lengths and the data words, sent from the host PC, are stored into the TX RAMs.
The TS counter of the TX Controller is started. When its value is equal to the value
stored in the currently pointed locations of the VLF_TS or FLF_TS RAMs (as
explained in Fig. 41), the system is ready to send triggers or packets towards the
FF-LYNX TX interface. When the count value equals the TS RAM values, the TS
and VLF_LEN RAM current pointers are increased by one. If count value is equal
to VLF_TS RAM value then a number N of words of VLF_DW RAM are loaded and
after stored on VLF data FIFO buffer. N is equal to the corresponding pointed value
of VLF_LEN RAM and then it is stored on VLF data length buffer. After data storing
into buffer, it needs to start interface operations. Data_Valid signal of FF-LYNX TX
Back-end Interface is set high to show there are data packets ready for sending. If
Get_Data signal of FF-LYNX TX Back-end Interface is low, data packets will wait
for being sent, otherwise they are sent to FF-LYNX TX interface respecting the
number N of VLF data words indicated by value stored on VLF data length buffer.
If count value is, instead, equal to the current pointed value of TRG_TS RAM and if
FLF packets setting is active (from GUI software) (as in Fig. 42), then the

Fig. 39 - Emulator GUI.

41

corresponding value of FLF_DW RAM is sent to the FF-LYNX TX interface. FLF
packets are sent without waiting or buffering because FLF packets, having to
maintain fixed latency, have priority over VLF packets. Then, Trigger signal of FF-
LYNX TX Back-end Interface is set high. If FLF packets is not active, only Trigger
signal is set high. All operations are executed until TS counter reaches the last
value of TS RAMs. After the data transmission operations towards the FF-LYNX
TX interface block is finished, FF-LYNX TX interface block will send data to FF-
LYNX RX interface block according to the FF-LYNX protocol. The RX Controller in
the TC core will manage the interface with the FF-LYNX RX Back-end plus the
data reception and storage tasks on the respective RX RAMs. At the end of this
loop-fashion process, the RX RAM is read by the host system which, as already
explained, will use it for generating FoM.

Fig. 40 - A typical test setup using the emulation platform.

42

Fig. 41 - FF-LYNX emulator working (example of VLF packet transmission).

Fig. 42 - LYNX emulator working (example of FLF packet transmission).

43

3.6. Emulation test

Using the proposed emulation environment it is possible to extract some interesting
graphs about the obtained FoM, thus assessing the performances of the
communication protocol and its hardware building blocks, and evaluating their
suitability when applied to the physics experiment of interest.
As example, next figures show some tests carried out using 8x FF-LYNX interfaces
and links. Particularly, Fig. 43 shows the achieved packet latency, in 40 Mhz
reference clock cycles, as a function of the packet size expressed in data words.
The achieved results provide important suggestions about the most suited way to
configure the communication protocol and its interfaces for the project of interest
(e.g. an HEP experiment); indeed Fig. 43 shows that when the packet size
increases over 52 data words there is a sharp increase of the packet latency. This
increasing is due to packet queuing in TX buffer of FF-LYNX interface under test.
Below 52 data words there is a proportional increasing, with an "heuristic law" of
roughly 4 clock cycles of latency increase for each new data word in the packet
size, simply due to the necessary time to send larger and larger packets.
Fig. 44 shows the Packet latency, in 40 MHz reference clock cycles, as a function
of the trigger gap, i.e. the distance, still expressed in clock cycles, between
consecutive triggers. Fig. 44 shows that when the trigger rate increases the packet
latency increases too. Packet latency increases because trigger priority is higher
than data priority and so, when increasing the trigger rate, VLF packets are forced
to wait into buffer before being sent.
To be noted that in Fig. 43 and 44 for the packet latency all 3 main cost metrics
defined in Table 7 were measured by emulation: min, max and mean PL.

Fig. 43 - Packet latency vs. Packet size.

44

Fig. 45 shows the loss rate of data words as a function of the TC buffer size. The
achieved results prove that by increasing the TC buffer size it is possible to
decrease data word loss, because of a more data buffering. In Fig. 46 there is an
important result that underlines the importance of emulator approach as a
necessary part of protocol interface development and validation. It shows the
differences between high level simulation and emulation when measuring, as
example, the packet latency as a function of the distance (in 40 MHz reference
clock cycles) of consecutive packet transmissions. As reported in Fig. 46, using a
packet size equal to 8 words (16bit), when packet gap decreases at 30 clock cycles
or lower there is a mismatch between simulation results obtained thanks to ISE
platform and emulation results obtained with FPGA emulator. The difference is due
to protocol modeling inaccuracies proper of the high-level abstraction approach. In
the specific case of the FF-LYNX simulation environment the System-C model of
the protocol interfaces does not fit perfectly the real physical protocol interfaces:
the model does not consider the finiteness of TX buffer and a consequent possible
buffer overflow with packet loss. These packets which would be really lost, instead,
are seen as packets still buffered and so there is a fake packet latency increasing
in Fig. 46 for the high level simulation vs. the real-world emulation.

Fig. 44 - Packet latency vs. Trigger gap.

45

Fig. 45 - TC buffer size vs. data word loss rate.

Fig. 46 - Packet latency vs. packet gap.

46

3.7. Protocol test time comparison

A key issue of a design and verification environment is the time needed to simulate
or emulate a given time frame of the real system. Hence, several tests were done
to assess the protocol test time of the proposed FPGA emulator compared to the
protocol test time achievable with other high performance (HP) computing
machines or with a distributed computing GRID. The following protocol test
conditions were adopted:

1. Test time: 60s;
2. Speed: 4x, 8x;
3. Trigger rate: 133 kHz, 400 kHz;
4. Packet rate: 133 kHz, 400 kHz;
5. Packet size: 5 or 8 words (16bit).

The HP machines used for the comparison are:
1. Intel Core Duo 2 T9300 (45 nm CMOS technology) processor with a 2.5

GHz clock speed, 2 cores, 6 MB of L2 cache and a 64 bit instruction
set;

2. Intel Xeon X7550 (45 nm CMOS technology) processor with a 2.0 GHz
clock speed, 8 cores, 18 MB of L3 cache and 64 bit instruction set;

3. INFN (Istituto Nazionale di Fisica Nucleare) PISA CSN4Cluster data
center [30], formed by a network of 256 AMD Opteron 2356

QUADCORE 2.3 GHz processors with a total elaboration power of 10
Terafloat/s and a data storage capacity of 10 TeraBytes.

In Table 8 the achieved test timing results are summarized. It is worth noting that
by using the FPGA emulator platform very fast tests can be performedconducted: 1
minute of real system time can be emulated in roughly 6 minutes and so very long
experiments in great details can be carried out. Thanks to our platform, the test
time is decreased by a factor of about 20x and 100x compared to HP computing
machines such as the 8-core Intel Xeon and the 2-core Intel CoreDuo respectively.
The testing time performance of the proposed emulator platform is comparable to
the results achievable with a much complex and costly 256 CPU GRID computing
center [30].

Table 8 - Test Time Comparison.

Test Environment Test Time
Simulation on Intel Core Duo@2.5GHz 11h 47m
Simulation on Intel Xeon 8-Core@2.0GHz 2h 21m
Simulation on INFN CSN4Cluster (256 CPUs) 3m 21s
FPGA Emulator 6m 40s

47

3.8. Conclusions and future developments

In this chapter an emulation platform for the verification and validation of FF-LYNX
protocol interfaces was introduced. The FF-LYNX protocol is fast and flexible and
is utilizable for several applications in HEP, medical and space research fields. The
design of this platform is one phase of the top-down design flow of the ASIC chip
which implements the FF-LYNX protocol interfaces. The proposed FPGA-based
platform allows a deeper and faster verification of FF-LYNX protocol interface
model with respect to high level simulations conducted with ISE platform. The
verification time was decreased of about fifty times less than high level simulator of
ISE platform. In addition, the System-C models, designed during the protocol
definition phase, was quite good for validate the protocol functionality but it did not
model the hardware protocol interface behavior perfectly, so it was necessary to
use a VHDL language for the design, avoiding every model error. After the
verification conducted with this platform, the ASIC chip was designed using a IBM
180nm technology. Thanks to the flexibility of this platform, it was possible to
modify the emulation system to be used as test bed to test the proper working of
the ASIC chip, both in standard conditions and during X-ray irradiations to verify its
hardness against the TD (Total Dose). In the future, this platform will be modified to
be a test bed for the ASIC chip during heavy ions irradiation in order to test its
hardness against SEEs (Single Event Effect).

48

4. DEVELOPMENT OF A CALCULATION PLATFORM FOR
DYNAMICAL SYSTEMS SIMULATION

4.1. Introduction

During the last year of work, a new kind of digital embedded system was designed
in order to support investigation and research on complex physical dynamics.
Nowadays, in several fields of physics and engineering it is necessary to analyze
various complex problems such as numerical differential equation solving, high-
definition image processing, target recognition and tracking, etc., in which there are
a lot of data to elaborate. So, data handling and elaboration time are important and
critical factors.
In order to tackle these problems, higher and higher performance computers, such
as multi-core processor (McP) grid could be used. This approach is not very
efficient because of the complexity in programming parallel code, the managing
and controlling of a large grid and the necessity to have access to such facilities.
Besides, these McP grids are expensive and power-hungry and it is impossible to
use those in embedded applications such as industrial controllers, missile guidance
systems, video surveillance, etc.
It is possible to use several hardware technologies such as digital signal
processing (DSP) devices [31], reconfigurable digital devices (e.g.: FPGAs) [32],
[33], [34], symmetric multi-processing (SMP) machines [35] in order to solve that
problem. Neural network systems [36] and cellular neural network (CNN)
paradigms [37], [38] are employed to achieve the purpose.
The CNN architecture, which will be introduced in 4.2 section, takes advantage
over the neural network one thanks to its lower implementation complexity. It is
convenient to investigate locally interconnected dynamical structures thanks to the
CNN distributed computing approach. The evolution of this idea is the cellular
neural network universal machine (CNN-UM) which is a new CNN computing
structure formed by an array of NxM dedicated processors [39]. The CNN
paradigm can be implemented in many kind of technologies such as analog
devices [40], [41], hybrid digital devices, embedded architectures, digital signal
processing systems and reconfigurable platforms as FPGAs [42]. Clearly, there are
pros and cons in the choice of each technology. By using the analog approach
there is the advantage to have higher computing performances but a lower
accuracy due to non-linearity and dispersion of analog component parameters.
With a reconfigurable digital approach we have lower design costs, higher
accuracy but lower elaboration performances.
Recently, there is the possibility to use graphic processing unit (GPU) systems,
thanks to programming environments such as the Compute Unified Device
Architecture (CUDA). This approach led to significant improvements in data
managing and elaboration speed due to the highly parallelized hardware
architecture typical of graphic processors [43]. Speedup ratios ranging from tens to
hundreds, w.r.t. standard CPU approach, were demonstrated in several application
fields such as image processing [44] and fluid dynamic simulations [45]. GPU are
relatively low cost and natively integrated in common PC platforms but their
architecture is, as expected, optimized for the algorithms to be executed by the PC
graphic board. So the implementation of the CNN-UM always requires the re

49

organization of the algorithm in order to efficiently use the GPU resources in terms
of number of parallel processes and internal data transfer rate [46].
In this chapter an FPGA based distributed computing microarchitecture (DCMARK)
based on the CNN-UM paradigm is proposed. In literature there are many similar
approach in several research fields [47], [48], [49], [50] in confirmation of its
efficiency. The guiding idea was to push the number of digital computing units,
working in parallel, to the limit of the CNN cell’s number, replicating the CNN
architecture, taking advantage, at the same time, of the efficiency of the hardware
implementation of the local interconnection. The choice of an FPGA platform for
the development phase was obvious, but the possibility to maintain a high degree
of reconfigurability in the system convinced us to select it as the final
implementation technology.
A calculation system (DCMARK Calculator) was developed to this aim, of which
DCMARK is the computing part. This system is used to solve partial differential
equation systems, in particular, as a well known benchmark, we chose the one
dimensional Korteweg de Vries equation system [51]. Using this type of
architecture it is possible to reduce the elaboration time, increase the CNN array
size (number of computing cells), increase equation solution accuracy and obtain a
run-time fast calculator.

4.2. Cellular Neural Networks (CNNs) basis

A cellular neural network (CNN) is an artificial neural network which features a
multi-dimensional array of neurons and local interconnections among the cells.
The original CNN paradigm was first proposed by Chua and Yang in 1988. The two
most fundamental ingredients of the CNN paradigm are: the use of analog
processing cells with continuous signal values, and local interaction within a finite
radius. A CNN is a nonlinear analog circuit which processes signals in real time. It
is made of a massive aggregate of regularly spaced cloned circuit, called cells,
which communicate with each other directly only through their nearest neighbors.

4.2.1. Architecture of CNNs
Any cell in a CNN is connected only to its neighbor cells. The adjacent cells can
interact directly with each other. Cells not directly connected together may affect
each other indirectly because of the propagation effects of the dynamics of CNNs.
An example of a two-dimensional CNN is shown in Fig. 47.

Every cell is influenced by a limited number of cells in its environment. This locality
of connections between the units is the main difference between CNNs and other
neural networks. Large CNN chips can be implemented using VLSI techniques.
The Fig. 44 shows the emphasized
(gray). The cells marked in gray represent the neighborhood cells of the black cell.
The neighborhood includes the black cell itself. This is called a "3*3
Similarly, we could define a "5*5-neighborhood", a "7*7
The basic circuit unit of CNNs is called a cell.
elements, which typically are linear capacitors, linear resistors, linear and nonlinear
controlled sources, and independent sources. All the cells of a CNN have the same
circuit structure and element values. A typi
48.

Each cell contains one independent voltage source
current source I (Bias), several voltage controlled current sources I

Fig. 47 - Cellular Neural Network schematic structure

Fig. 48 - Typical circuit of a single cell

50

Every cell is influenced by a limited number of cells in its environment. This locality
of connections between the units is the main difference between CNNs and other

chips can be implemented using VLSI techniques.
 cell (black) connected to the nearest neighbors

The cells marked in gray represent the neighborhood cells of the black cell.
The neighborhood includes the black cell itself. This is called a "3*3-neighborhood".

neighborhood", a "7*7-neigborhood" and so on.
The basic circuit unit of CNNs is called a cell. It contains linear and nonlinear circuit
elements, which typically are linear capacitors, linear resistors, linear and nonlinear
controlled sources, and independent sources. All the cells of a CNN have the same
circuit structure and element values. A typical circuit of a single cell is shown in Fig.

Each cell contains one independent voltage source Eu ij (Input), one independent
current source I (Bias), several voltage controlled current sources In

u ij, In
y ij, and one

Cellular Neural Network schematic structure.

Typical circuit of a single cell.

voltage controlled voltage source Ey ij

are coupled to neighbor cells via the control input voltage of each neighbor cell.
Similarly, the controlled current sources I
the feedback from the output voltage of each neighbor cell.
The cell C(i,j) has direct connections to its neighbors through two kinds of weights:
the feedback weights a(k,l;i,j) and the control weights b(k,l;i,j), where the index pair
(k,l;i,j) represents the direction of signal from C(i,j) to C(k,l). The coefficients
a(k,l;i,j) are arranged in the feedback
b(k,l;i,j) are arranged in the control-Template or B
the B-Template are assumed to be the same for all the cells in the network. The
global behavior of a CNN is characteriz
Template, the B-Template, and the Bias I.
Template Set consists of 19 coefficients
assumed to be constant over a certain operation interval. Therefore, the total input
current to the cell is given by the weighted sum of control inputs and weighted sum
of feedback outputs. In addition, a const
the capacitance C and resistance R, the state voltage x(i,j) satisfies the following
differential equation:

G
HIJ,L

H#
= −

1
M IJ,L �

k denotes the neighborhood of the specific cell

Without loss of generality, the time constant T = R*C can be set to 1.
The only nonlinear element in each cell is a piecewise
voltage source with characteristic

N�O, P�

A widely used nonlinearity is the piecewise

N�O, P� � Q&I�O, P�. �

Fig. 49 - The piecewice

51

y ij (Output). The controlled current sources In
u ij

are coupled to neighbor cells via the control input voltage of each neighbor cell.
Similarly, the controlled current sources In

y ij are coupled to their neighbor cells via
the feedback from the output voltage of each neighbor cell.
The cell C(i,j) has direct connections to its neighbors through two kinds of weights:
the feedback weights a(k,l;i,j) and the control weights b(k,l;i,j), where the index pair

ents the direction of signal from C(i,j) to C(k,l). The coefficients
a(k,l;i,j) are arranged in the feedback-Template or A-Template. The coefficients

Template or B-Template. The A-Template and
med to be the same for all the cells in the network. The

global behavior of a CNN is characterized by a Template Set containing the A-
Template, and the Bias I. If we assume a "3*3-neighborhood", the

Template Set consists of 19 coefficients. The external input to the cell is typically
assumed to be constant over a certain operation interval. Therefore, the total input
current to the cell is given by the weighted sum of control inputs and weighted sum
of feedback outputs. In addition, a constant bias term (I) is added to the cell. Due to
the capacitance C and resistance R, the state voltage x(i,j) satisfies the following

�R��SNS � �ST�
S

� 1								�7�

specific cell

Without loss of generality, the time constant T = R*C can be set to 1.
in each cell is a piecewise-linear voltage controlled

� � � Q�I�O, P��								�8�

nonlinearity is the piecewise-linear function (Fig. 49) as given by:

�. � 0.5 ∗ �|I � 1| � |I � 1|�								�9�

The piecewice-linear function.

The block diagram of a cell C(i,j) is shown in the

4.2.2. Global behavior of CNNs
In image processing, n-by-m rectangular grid arrays are often used. n and m are
the numbers of rows and columns, respectively. Each cell in a CNN
an element of the array. Assuming that each cell is connected to its nearest
neighbors only ("3*3-neighborhood") and that the local connections of a cell do not
depend on the cell's position, the Template set contains 19 coefficients (A
Template: a1 .. a9, B-Template: b1 .. b9, Bias I). The behavior of the CNN is
completely determined by this Template set.
New CNN-Templates for arbitrary tasks may be found using a training algorithm, or
by defining local rules for a given global task. The lo
equilibrium state depending on the inputs and outputs of the neighbor cells. The
inputs and the outputs of the neighbor cells are assumed the be constant.
dynamics of the cell is not specified. If
found, simulations are very helpful to test the dynamic global behavior of the entire
clone of cells.
Optimal coefficient calculation leads to solutions which converge after short time.
This means that the output of every cell reaches its fi
short time.

4.2.3. Possible applications
CNNs can be used in many scientific applications:
In signal processing, CNNs show great promise in solving many complex problems
that cannot be solved satisfactorily using convent

Fig. 50 - A block diagram of a cell C(i,j)

52

of a cell C(i,j) is shown in the Fig. 50.

Global behavior of CNNs
m rectangular grid arrays are often used. n and m are

the numbers of rows and columns, respectively. Each cell in a CNN corresponds to
Assuming that each cell is connected to its nearest

neighborhood") and that the local connections of a cell do not
depend on the cell's position, the Template set contains 19 coefficients (A-

Template: b1 .. b9, Bias I). The behavior of the CNN is
completely determined by this Template set.

Templates for arbitrary tasks may be found using a training algorithm, or
by defining local rules for a given global task. The local rules describe a cell's
equilibrium state depending on the inputs and outputs of the neighbor cells. The
inputs and the outputs of the neighbor cells are assumed the be constant. The
dynamics of the cell is not specified. If template values for the local rules are
found, simulations are very helpful to test the dynamic global behavior of the entire

Optimal coefficient calculation leads to solutions which converge after short time.
This means that the output of every cell reaches its final output y=+1 or y=-1 after

CNNs can be used in many scientific applications:
, CNNs show great promise in solving many complex problems

that cannot be solved satisfactorily using conventional approaches.

A block diagram of a cell C(i,j).

53

1. solve the maximum-likelihood estimation of signals in the presence of
intersymbol interference and white Gaussian noise

In image processing that deals with gray-scale image inputs, CNNs can be applied
to perform

1. Feature extraction & classification;
2. Motion detection & estimation;
3. Collision avoidance;
4. Object counting and size estimation;
5. Path tracking.

In analyzing 3-D complex surfaces, the CNN is capable of
1. Detecting minima and maxima;
2. Detecting area with gradients that exceed a given threshold.

In solving partial differential equations, CNN is suitable for reducing non-visual
problems to geometric maps for

1. Thermographic maps;
2. Antenna-array images;
3. Medical maps and images.

4.3. General system architecture

The complete block diagram of the whole calculation system is shown in Fig. 51. It
is divided into three main parts:

1. a Terasic DE4-230 FPGA Development Board;
2. the System on Programmable Chip (SoPC) which contains our

Distributed Computing Microarchitecture block implemented on the
FPGA;

3. an host PC with a Graphic User Interface (GUI) for calculation
management.

 The Development board and the host PC communicate using an Ethernet protocol
connection.

4.3.1. DE4-230 FPGA development board
The DE4-230, from Terasic Tech.inc, is an FPGA Development Board (Fig. 52)
equipped with an Altera Stratix IV GX EP4SGX230 FPGA featuring about 228,000
Logic Elements (LEs), 91,200 Adaptive Logic Modules (ALMs), 14,283kb
Embedded Memory and 8 Phase Locked Loops (PLLs). The board includes: 64MB
Flash memory, 2MB SSRAM memory, 2kb EEPROM memory, two DDR2 memory
slots up to 8GB, three USB 2.0 ports, RS-232 port, four Serial ATA 3.0 ports, four
Gigabit Ethernet ports, a PCI Express x8 edge connectors (up to 5.0Gbps/lane for
Gen2), SD card slot, 9 SMA connectors. As it can be shown in the following, the
board demonstrated to be a powerful platform for the implementation and test of
the DCMARK idea and is ready for future evolutions.

4.3.2. System on programmable chip (SoPC)
SoPC is a complete system controlled by an Altera NIOS II IP softcore processor.
In the system there are: a Triple Speed Ethernet (TSE) module for
communications, our Distributed Computing System (DCSYS), and Scatter-Gather
(SG) DMA modules for fast transmission operations between devices. NIOS II
processor manages all main SoPC operations such as communications between

TSE module and the host PC, devices interrupt handling, MicroC/OS II Operative
System (OS) supervising, etc. NIOS II is programmed by the user using the Eclipse
software, based on C language. The SoPC allows to interconnect system devices
thanks to an Altera communication bus facility called Avalon. There are several
kinds of Avalon buses for every need such as Memory
Master (M) and Slave (S) structure for device command and control operations and
STreaming (ST) bus with a Source (SRC)
data transmissions.

Fig. 51 - DCMARK Calculator block diagram.

Fig. 52 - DCMARK Calculator block diagram.

54

TSE module and the host PC, devices interrupt handling, MicroC/OS II Operative
System (OS) supervising, etc. NIOS II is programmed by the user using the Eclipse

The SoPC allows to interconnect system devices
communication bus facility called Avalon. There are several

kinds of Avalon buses for every need such as Memory-Mapped (MM) bus with a
Master (M) and Slave (S) structure for device command and control operations and
STreaming (ST) bus with a Source (SRC) and Sink (SNK) structure for continuous

DCMARK Calculator block diagram.

DCMARK Calculator block diagram.

55

4.4. Distributed computing microarchitecture (DCMARK)

The DCMARK, included into the Distributed Computing System (DCSYS) block of
SoPC, is based on the CNN-UM approach in which several custom processors
execute a group of sequential operations at the same time in order to elaborate
particular information. At the first computing step each processor acquires status
data from the neighboring processors (with a limited sphere of influence) and after
a determined number of clock cycles (elaboration time) they will give their local
results. These results can be analyzed versus time and/or space. With a time
analysis we study just one single processor (a fixed spatial point) results versus
time while with a space analysis we study all processors (all spatial points) results
at a fixed time step.
In this paper, by way of example, a 1-D locally interconnected dynamical system is
investigated. This system is based on a discretized partial differential equation
where every point of the spatial array is a dynamical element. Each processor of
DCMARK is dedicated to a dynamical element of the spatial array. In our case
every dynamical element has a neighborhood formed by four dynamical elements
(two on its right and two on its left).

56

4.4.1. Single cell block
Each calculation unit of DCMARK is called a Cell and is based on a Von Neumann
elaboration architecture, thus its RAM memory stores both Data and Micro-Code
(MCode). The MCode approach was chosen in order to easily modify the physical
phenomenon investigation just changing the implemented equation (as long as it is
expressible with sums and multiplications).
The Cell (Fig. 54) has a 40bit Data Bus and an 8bit Address Bus. Its Arithmetic
Logic Unit (ALU) allows to execute Floating Point (FP) additions and
multiplications. In order to demonstrate the DCMARK idea, this first implementation
of the Cell uses ALTERA blocks for the adder and multiplier, leading to a maximum
amount of about 200 Cells to be integrated in the FPGA device adopted. This
number is expected to be substantially increased by working on the customization
of the ALU block and thanks to the continuing growth of the available device size.
The Cell, that can be clocked up to 180MHz, contains:

1. a Control Module, implemented as a Finite State Machine (FSM) which
controls the micro-code execution and enables the control signals;

2. a 40bit x 256 RAM memory;

Table 9 - DCMARK microinstructions

Instruction OpCode N° Clock Cycles Function

FETCH 000000 2 Fetching operation

LDA 000001 2 Loading data in Reg A

LDB 000010 2 Loading data in Reg B

LDI 000011 2 Loading Status Cell in Reg I

ST 000100 1 Storing Result on a Data RAM location

STM2 000101 2 Storing M2 Reg on M2 RAM location

STM1 000110 2 Storing M1 Reg on M1 RAM location

STP1 000111 2 Storing P1 Reg on P1 RAM location

STP2 001000 2 Storing P2 Reg on P2 RAM location

ADD 001001 8 Adding Reg A to Reg B

SUB 001010 8 Subtracting Reg B from Reg A

MUL 001011 6 Multiplying Reg A by Reg B

JUMP 001100 1 Jumping to a micro -code RAM Location

3. a 32bit Floating Point (FP) Adder;
4. a 32bit Floating Point (FP) Multiplier;
5. a 8bit Program Counter;
6. a 40bit Instruction Register;
7. three 32bit Operation Registers (A, B and C) for arithmetical operations;
8. five 32bit input/output (I/O) Registers (I, M

current status data from its neighborhood;
9. a 6x1 40bit Data Multiplexer;
10. a 2x1 8bit Multiplexer;
11. a 2x1 32bit Result Multiplexer.

The Micro-Code is written using a group of 13 custom mi
Table 9.
Each instruction stored in RAM has the fol

4.4.2. Parallel cell configuration module
In order to quickly program the RAMs of
Configuration Module (PCCM) (Fig.
The PCCM is formed by:

1. a Configuration Block: it is a Finite State Ma
configuration File from Configuration ROM and programs all

2. a Configuration ROM: it stores
initial status variables and constants;

3. a Write Decoder: it allows to address every Cell for one
parallel programming.
different initial status variable on each cell RAM while parallel
programming allows to store MCode and constants on all cell RAM at
the same time.

Fig. 53 - RAM data word structure.

57

a 32bit Floating Point (FP) Adder;
a 32bit Floating Point (FP) Multiplier;

a 40bit Instruction Register;
three 32bit Operation Registers (A, B and C) for arithmetical operations;
five 32bit input/output (I/O) Registers (I, M2, M1, P1, P2) for acquiring
current status data from its neighborhood;
a 6x1 40bit Data Multiplexer;

a 2x1 32bit Result Multiplexer.

Code is written using a group of 13 custom micro-instructions as in

uction stored in RAM has the following format (Fig. 53):

Parallel cell configuration module
the RAMs of all the Cells, we designed a Parallel Cell

 55).

a Configuration Block: it is a Finite State Machine (FSM) which reads a
configuration File from Configuration ROM and programs all the Cells;
a Configuration ROM: it stores a Configuration File containing MCode,

variables and constants;
a Write Decoder: it allows to address every Cell for one-to-one and

 One-to-one programming allows to store a
different initial status variable on each cell RAM while parallel
rogramming allows to store MCode and constants on all cell RAM at

RAM data word structure.

Fig. 54 - DCMARK single cell block diagram (working registers are in sky
registers are in dark blue; the blue and green lines rep

the 8bit address bus respectively).

Fig. 55 - DCSYS block diagram.

58

DCMARK single cell block diagram (working registers are in sky-blue and I/O
registers are in dark blue; the blue and green lines represent the 40bit data bus and

the 8bit address bus respectively).

DCSYS block diagram.

blue and I/O

resent the 40bit data bus and

59

4.5. Complex physical dynamics investigation

One of the most important topic of contemporary science focuses on the study of
continuous [52],[53] and discrete [54], [55] dynamical systems, analyzing their
organization as non linear evolving structures [56]. Chaos is the most striking
feature of their behavior. The concept of dynamical system is connected to a
mathematical model which describes its time evolution and it is often characterized
by differential equations [57]. Differential equation solving allows to define and
forecast the future evolution of system in time and space. To allow a more and
more detailed analysis of dynamic systems it is absolutely necessary to perform
long and heavy numerical simulations which would require powerful, fast and
expensive elaborators (sometime multi-core grid). In order to verify the quality of
our DCMARK approach we began to investigate a no complex problem
characterized by a one-dimension partial differential equation.
A case study: 1-D Korteweg de Vries equation
The Korteweg de Vries takes its name from Diederik Korteweg and Gustav de
Vries who, in 1895, proposed a mathematical model which allowed to predict the
waves behaviour on shallow water surfaces [51]. The solutions of this equation
were self-reinforcing solitary waves named Solitons and had several interesting
properties. Mainly, these solutions are permanent shape, and localized within a
region and when they interact with other solitons they don't change their speed or
shape (neither a signal amplification or signal fading) but they just have a phase
shift [58], [59]. There are many research topics explained by the KdV equation,
such as the already mentioned shallow-water waves [60], the ion-acoustic waves in
plasma [61], [62], the wave propagation in nonlinear lattice [63], the non-linear
transmission networks [64], [65] and the Fermi-Pasta-Ulam recurrence problem
[66].
The main idea is modulating solitons and transmitting them on communication lines
such as optical fibers.
The one-dimension (1-D) Korteweg de Vries differential equation is the following
[63]:

[T�#, I�
[# = −6T�#, I� [T�#, I�[I − []T�#, I�[I] 								�10�

Where u(t,x) is the solitonic propagating wave. The progressive wave (called
soliton) of the KdV equation has the following expression:

T�#, I� = − ν

2 ∙ sech` a
√ν
2 �I − ν# − I��b								�11�

Where ν	 is the wave velocity and I�	is the initial spatial constant.
Furthermore, the KdV equation can be analytically solved by the inverse scattering
transform [67], [68]

60

4.5.1. Discretization of KdV equation
 In order to implement the equation on DCMARK we had to discretize (10).
Considering the second term in right-end side of (10) we can lay down:

T�#, I� [T�#, I�[# = 1
2
[cT�#, I�d`

[I 																							�12�

hence, as in [62], the (10) becomes:
 [T�#, I�

[# = −3[cT�#, I�d`[I − []T�#, I�[I] 											�13�

We used for the numerical discretization of spatial derivative terms of (13), a
space-centered finite difference method [69] and we divided the KdV equation in N
single equations [40]:
 [TJ[# =

1
2∆I] c�TJf` − TJg`� + 2�TJgh − TJfh�d 		+

3
2∆I 	�TJfh`− TJgh`�																																																																																																�14�

where i=0,...,N. are the space iteration index and ∆I is the space step of the
discrete grid.
 For the time derivative term of (14), just for the first iteration, we used a forward
time finite difference method (15) as in [59], [61] because there is no preceding
value at the first step of numerical integration process. Hence, for the other
iterations, we used a centered-time finite difference method (16). We set iJh = h

`∆jk, iJ` =]
`∆2 and ih = h

∆jk, i` =]
∆2

TJSgh = TJS + ∆# liJhm&TJf`S − TJg`S . + 2&TJghS − TJfhS .n 						
+ iJ` oTJfhS ` − TJghS `pq																																																																		�15�

TJSgh = TJSfh + ∆# lihm&TJf`S − TJg`S . + 2&TJghS − TJfhS .n
+ i` rTJfhS ` − TJghS ` + TJS&TJfhS − TJghS .sq																																	�16�

where k=0,...,M. are the time iteration index, i=0,...,N. are the space iteration index
and ∆# is the integration time. Using this combined approach we have a stable loop
propagation of a soliton through all cells for all time cycles.
This kind of discretization is less accurate than other types but it is also the best
technique in terms of implementation easiness and resources saving on embedded
systems.
The linchpin of the calculator idea is to consider every single TJ with i=0,...,N. a
single solitonic state cell which calculates its future state value on the basis of state
values of its first and second neighbors that is TJ∓� with a=1,2 as in [41], [71].

61

4.6. KdV implementation on DCMARK

The implementation of KdV equation on DCMARK consists of two main
implementation steps: a MCode step and a Cells Network step.

4.6.1. MCode implementation step
MCode step consists of dividing (15) and (16) in single micro-instructions to be
stored on RAM.
We defined 14 arithmetical operations for (15), where ROpx is the operation result
which is stored on RAM:

1. Opi1 : �TJf` − TJg`� => ROp1
2. Opi2 : �TJgh − TJfh� => ROp2
3. Opi3 : �ROp2 + ROp2� => ROp3
4. Opi4 : �ROp1 + ROp3� => ROp4
5. Opi5 : �Kh ∗ ROp4� => ROp5
6. Opi6 : �TJfh ∗ TJfh� => ROp6
7. Opi7 : �TJgh ∗ TJgh� => ROp7
8. Opi8 : �ROp6 − ROp7� => ROp8
9. Opi9 : �K` ∗ ROp8� => ROp9
10. Opi10 : �ROp5 + ROp9� => ROp10
11. Opi11 : �∆# ∗ ROp10� => ROp11
12. Opi12 : �TJ + ROp11� => ROp12
13. Opi13 : �TJ + ZERO� => (updating TJSfh)
14. Opi14 : �ROp12 + ZERO� => (updating TJ)

For (16) we defined 17 arithmetical operations, but the first eight are the same as
those for (15):

1. Op9 : �TJfh − TJgh� => ROp9
2. Op10 : �TJ ∗ ROp9� => ROp10
3. Op11 : �ROp8 + ROp10� => ROp11
4. Op12 : �K` ∗ ROp11� => ROp12
5. Op13 : �ROp5 + ROp12� => ROp13
6. Op14 : �∆# ∗ ROp13� => ROp14
7. Op15 : &TJSfh + ROp14. => ROp15
8. Op16 : �TJ + ZERO� => (updating TJSfh)
9. Op17 : �ROp15 + ZERO� => (updating TJ)

The Opi13, Opi14 and Op16, Op17 have the task to update the Cell Status
variables at the end of every iteration, that is the old value of TJ becomes TJSfh and
the new value of TJ is updated.
After the arithmetic operations definition we started to write all MCode copies
according to a well-defined process. This process starts loading the Cell Status
variable TJS, from RAM and storing it on I/O Register I to be available for other
neighbor Cells and then storing on RAM the four neighbor Cell Status variables TJf`S ,	TJfhS ,	TJghS ,	TJg`S stored in I/O Registers M2, M1, P1 and P2, respectively. After
every iteration step this process is re-executed.

This loading/storing operations are conducted using the micro
I, that is LDI, STM2, STM1, STP1 and STP2.
In the RAM structure, shown in Fig.
store the 137 micro-instructions, Status Variables part to store the Cell Status
variables, Constants part to store the constants defined
Operation Variables to store the partial operation results. We have also four free
locations for possible modifications.

The MCode is formed by 137 micro
the first iteration) only 74 micro-instructions are executed in the computing loop.
The content of Configuration File stored on Configuration ROM has the structure as
shown in Fig. 57.

Fig.

62

This loading/storing operations are conducted using the micro-instructions in Table
s LDI, STM2, STM1, STP1 and STP2.

 56, we find four main parts: Micro_Code part to
instructions, Status Variables part to store the Cell Status

tore the constants defined in (15) and (16) and
Operation Variables to store the partial operation results. We have also four free

is formed by 137 micro-instructions but after the system start-up (after
instructions are executed in the computing loop.

The content of Configuration File stored on Configuration ROM has the structure as

Fig. 56 - RAM structure.

4.6.2. Cells network implementation step
Cells Network step lies in connecting properly every Cell with its first and second
neighbors according to Cell relationship shown in
 In particular, using the approach in [
network as in Fig. 58.

Fig. 57 - ROM Configuration File structure.

Fig. 58 - Cell Ring Block diagram (for Cell #2 case: red line shows the link to first left
neighbor, blue line the link to first right neighbor, green line the link to second left

neighbor and violet line the link to second right neighbor).

63

Cells network implementation step
Cells Network step lies in connecting properly every Cell with its first and second

relationship shown in (15) and (16).
In particular, using the approach in [41], we connected the Cells building a Ring

ROM Configuration File structure.

Cell Ring Block diagram (for Cell #2 case: red line shows the link to first left

neighbor, blue line the link to first right neighbor, green line the link to second left
and violet line the link to second right neighbor).

Cell Ring Block diagram (for Cell #2 case: red line shows the link to first left

64

4.6.3. DCMARK performances and used resources
The preliminary version of a Single Cell processor and of DCMARK is implemented
on FPGA Stratix IV GX. In Table 10 we find the resources used, without any kind of
design optimization.
As regards the Single Cell computing time, every Cell executes a KdV iteration
(integration step) producing a 32bit output value in about 3,77µs with a 100MHz
system clock hence with a throughput of about 8,488,063 bit/s. But considering a
Cell Ring of N Single Cells this throughput has to be multiplied by N.
Using the FPGA Altera Stratix IV GX, we can implement up to 200 Single Cells on
our DCMARK.

4.7. Analysis settings and results

We executed two kinds of analysis:
1. a high-level test by means of a MatLab software simulator in order to

verify the quality of equation discretization and to study the variation of
parameters such as number of Cells, ∆x, ∆t, Initial Cell Status and
number of iterations.

2. a calculation test using the whole calculation system to verify the
correctness of results compared to simulation results and elaboration
time.

4.7.1. KdV simulation test
The first parameters to tune are ∆x and ∆t. According to [61] these two parameters
have to be related on the basis of (17), called Courant-Friedrichs-Lewy (CFL)
condition, to have convergence.

ν	 ∙ ∆#/∆I ≤ G																												�17�

where ν is the wave velocity by which the wave goes from IJ to IJgh and C is a
constant which depends on the equation. In a nutshell, ∆# has to be smaller than ∆I/ν.
Then we chose the number of Cells closed in the Ring Network and the Initial Cell
Status.
A hyperbolic secant squared function is chosen:

Table 10 - Single cell used resources

FPGA
Resources

Used
Resources

ALMs 561

Combinatorial ALUTs 860

Total Registers 800

Total Block Memory bits 10,240
DSP Block 18-bit

elements 4

DSP 36x36 1

 u~ = K ∙ sech`
0 � O � ���I �

This function avoids divergence integration problems, thanks to its zero
envelope for I → �∞.
We conducted three types of simulations: time, spac
In the following figures we can see some simulation results with th
settings of Table 11:

As we can see in Fig. 59 a soliton, starting from the tenth cell, travels through the
100 cell ring network and after about 1500 iterations (15 s) it completes one loop. A
soliton travels from a cell to another in about 15 iterations (0.15s) with a steady
wave velocity of about 3.3 mm/s.

Table 11 - Simulation parameters configuration

Simulation
Parameters

N° Cells

∆I

∆#
N° of Iterations

Initial Cell Status

Fig. 59 - Matlab KdV time simulation of 100 cell network with a 2*sech^2 as initial
status function (10th cell output).

65

` IJ with �O� � IJ � ��I,
��O��/∆I, ∆I � IJgh � IJ .

This function avoids divergence integration problems, thanks to its zero-tangent

We conducted three types of simulations: time, space and time/space simulations.
In the following figures we can see some simulation results with the parameter

, starting from the tenth cell, travels through the
100 cell ring network and after about 1500 iterations (15 s) it completes one loop. A
soliton travels from a cell to another in about 15 iterations (0.15s) with a steady

mulation parameters configuration.

Parameter
Values Notes

100 Ring-like network

0.5 mm according to

CFL condition 0.01 s

10000

u~ � 2 ∙ sech`IJ �5 � IJ � 5

Matlab KdV time simulation of 100 cell network with a 2*sech^2 as initial

status function (10th cell output).

Matlab KdV time simulation of 100 cell network with a 2*sech^2 as initial

66

In Fig. 60 there is a time/space graph in which it is clear that soliton travels with a
steady wave velocity (constant slope lines) through the cell ring network.

These results confirm both the stability of KdV equation numerical solving after
many integration steps and the physical phenomenon emergence of soliton
propagation.

4.7.2. Calculation results
In our tests we deployed up to the maximum number of Single Cells implementable
on DCMARK, that is 200 Single Cells. The Single Cell is still a prototype core and
so it is not optimized for saving FPGA resources. Many Altera library IP cores
(such as floating point adders and multipliers, RAMs, counters, etc) with several
unused features are instantiated on Single Cell. Our idea for future developments
is to design our own cores in order to significantly decrease the Single Cell FPGA
requirements.

Fig. 60 - . Matlab KdV space/time simulation of 100 cell network with a 2*sech^2 as

initial status function.

Table 12 - Calculation parameters configuration

Calculation
Parameters

Parameter
Values Notes

N° Cells 100 Ring-like network

iJh = 1/�2∆x]� 4

∆I = 0.5	��
iJ` = 3/�2∆x� 3

ih = 1/∆x] 8

i` = 3/∆x 6

∆# 0.01 s
according to CFL

condition

Initial Cell Status u~ = K ∙ sech`IJ −5 < IJ < 5

K = 2,

67

As previously said, using the Analysis GUI we monitored the analysis evolution.
In the Configuration File, stored on the Configuration ROM, we set as Initial Cell
Status the hyperbolic secant squared function as in simulation tests.
In table IV we show the calculation parameter values for a typical KdV analysis.
Fig.61 shows the LabWindows GUI image plotting a KdV calculation result
obtained using the DCMARK Calculator according to the parameters settings in
Table 12. Therefore, we noticed that the same result of the Matlab simulation is
obtained. This result is also confirmed by a numerical comparison between Matlab
and DCMARK data.

Fig. 61 - . LabWindowsTM GUI with results of a KdV time calculation using a 100 cells

DCMARK (10th cell output) with a 2*sech^2 as initial status function.

68

4.8. Performance comparison

After the Test Phase (Simulation/Calculation) we underlined the differences
between MatLab KdV simulations on PC and KdV calculation on FPGA using our
DCMARK approach. As elements of comparison we chose two PCs with the
following processors:

1. Intel Core-i7 2630QM, 2GHz clock speed, 4 Cores, 8 Threads, 64bit
Instruction Set, 6MB Intel Smart Cache.

2. Intel Pentium M 760, 2GHz clock speed, 1 Core, 1 Thread, 32bit
Instruction Set, 2MB L2 Cache.

The parameters settings (∆I, ∆# and Initial Cell Status) are those in Tables 11, 12
and as we can see in Table 13 the elaboration time for DCMARK system is about
10 times shorter than Intel Core i7 PC and about 70 times shorter than Intel
Pentium M PC already for the 100 cells problem. Doubling the cell number, as
expected, the performance gap increases. DCMARK performances are unrelated
from the number of cells and so, as long as the FPGA resources are saturated,
from the complexity of the investigated problem.

In Fig.62, we find linear fitted curves about testing time variation with respect to
number of iterations for the two study cases: 100 and 200 cells system. It is again
underlined the independence of DCMARK performances from the number of cells.

Table 13 - DCMARK calculator performance
comparison

Elaboration Device N°
Cells

N°
Iterations

Elaboration
Time

Intel Core i7 100
300000 13 s
400000 17 s
500000 21 s

Intel Pentium M 100
300000 1 m 18 s
400000 1 m 45 s
500000 2 m 14 s

FPGA DCMARK
Calculator

100
300000 1.2 s
400000 1.6 s
500000 2 s

Intel Core i7 200
300000 26 s
400000 34 s
500000 42 s

Intel Pentium M 200
300000 2 m 41 s
400000 3 m 33 s
500000 4 m 31 s

FPGA DCMARK
Calculator

200
300000 1.2 s
400000 1.6 s
500000 2 s

69

4.9. Conclusions and future developments

In this chapter we introduced an innovative kind of distributed computing
architecture, called DCMARK, for investigating complex physical dynamical
problems. DCMARK is the union of a FPGA-based extremely parallelized
computing platform and a PC based user interface for setting and analyzing the
results of calculations. The main features of this system are the total system
reconfigurability for analysing different types of cell-based phenomena and an
elaboration time independent from the complexity (in terms of number of cells) of
the studied problem.
This hardware calculation approach allows to exploit many concurrent processes
executed at the same time, decreasing the elaboration time. Besides, using an
FPGA device we exploited its intrinsic reconfigurability and flexibility. The results
are promising since, for example, a 100 Cells DCMARK allows to execute KdV
equation integration steps 10 times faster than a 4-core processor.
 The future development steps to increase the performances will be: the
optimization of Single Cell in terms of used resources in order to tackle more and
more difficult problems and the improving of the GUI usability. Another important
development would be to switch to an ASIC approach, that will lead to loosing
reconfigurability but gaining speed, as well as reducing area and improving general
system potentiality. Vice versa, taking advantage of the reconfigurability, the
DCMARK Calculator can be used in order to implement innovative learning
techniques, as in [72] or in analogy to [73].

Fig. 62 - . Comparison between PCs and DCMARK elaboration time increasing the

number of iterations and the number of Cells .

70

CONCLUSIONS

This work covered several aspects of design of embedded digital systems for data
handling and elaboration. Attention was focused on the design of systems to
support both industrial and scientific applications.
At first, an overview of modern embedded systems and a description of the
concept of data handling and elaboration were presented. Then the three different
embedded platforms were introduced and described in detail.
In the first chapter, the microcontroller-based inertial/GPS platform was introduced.
This system allows a smart management and creaming off of digital sensor data,
thanks to a proper cooperation of two microcontrollers, and improves the wireless
link throughput by means of an efficient buffering and transmission of selected data
to host PC. The test demonstrated also the good performance of system with
regard to trajectory tracking, using a sensor data-fusion approach, and the battery
autonomy. The possibility to integrate all components of this platform on a single
dual-layer PCB board would allow to use the system for several different
applications such as body motion recognition, fall detection, etc.
In the second chapter, the FPGA-based emulation platform was described. The
system was thought firstly to conduct a validation of FF-LYNX protocol interfaces,
deeper and faster than the System-C simulations executed on high performance
PC. The platform allowed to verify the FF-LYNX interface working up to fifty times
more quickly than high level simulator. Thanks to this validation, VHDL FF-LYNX
interface models were implemented on ASIC chip for the last phase of design flow.
The flexibility of the platform guaranteed, with the right modifications, to use that as
test bed for verify the proper working of ASIC chip.
In the last chapter, another FPGA-based platform was treated. This calculation
platform was designed for executing complex calculations, in particular to solve
non-linear differential equations. The innovative approach was based on a
distributed computing micro-architecture which follows a CNN structure. Using this
architecture, it is possible to decrease the calculation time up to ten times less than
modern multi-core processors. The main result was that the calculation time was
almost unrelated from the size and complexity of spatial and temporal grid. The
possibility to use larger and larger FPGAs, would guarantee to tackle more and
more complex problems and so to improve the computing power of platform.

71

REFERENCES

1. H. B. Mitchell, Multi-sensor data fusion – an introduction , Springer-
Verlag, 2007.

2. S. Heath, Embedded systems design , Newnes, 2003.
3. G. J. Lipovski, Introduction to microcontrollers , Elsevier, 2004.
4. H. F. W. Sadrozinski, J. Wu, Applications of field-programmable

gate arrays in scientific research , Taylor & Francis, 2010.
5. J. G. Proakis, D. G. Manolakis, Digital signal processing: principles ,

algorithms and applications , Pearson, 2006.
6. A. A. Jerraya, W. Wolf, Multiprocessor systems-on-chips , Elsevier,

2005.
7. L. Cheng, S. Hailes, "On-body wireless inertial sensing foot control

applications", Proceedings of "PIMRC'08" IEEE 19th International
Symposium on Personal, Indoor and Mobile Radio Communications,
PIMRC, Cannes (France) 15-18 September 2008, pp. 1-5.

8. M. D. Cooney, C. Becker-Asano, T. Kanda, A. Alissandrakis, H.
Ishiguro, "Full-body gesture recognition using inertial sensors for playful
interaction with small humanoid robot", Proceedings of "IROS'10"
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Taipei (Taiwan) 18-22 October 2010, pp. 2276-2282.

9. Q. Li, J. A. Stankovic, M. A. Hanson, A. T. Barth, J. Lach, G. Zhou,
"accurate fast fall detection using gyroscopes and accelerometer-
derived posture information", Proceedings of "BSN'09" the 6th
International Workshop on Wearable and Implantable Body Sensor
Networks, Berkeley CA (USA) 3-5 June 2009, pp. 138-143.

10. J. Skaloud, "Direct georeferencing in aerial photogrammetric mapping",
Photogrammetric Engineering and Remote Sensing, Vol. 68, 2002, pp.
209-210.

11. S. Z. Jamal, "Tightly coupled GPS/INS airborne navigation system",
Aerospace and Electronic Systems Magazine, Vol. 27, 2012, pp. 39-42.

12. H. Che, P. Liu, F. Zhang, Q. Wang, "A Deeply coupled GPS/INS
Integrated navigation system suitable for high dynamic environments",
Proceedings of "CSNC'12" the 3rd China Satellite Navigation
Conference, Guanzhou (China) 15-19 May 2012, pp. 617-626.

13. S. Godha, G. Lachapelle, M. E. Cannon, "Integrated GPS/INS system
for pedestrial navigation in a signal degraded environment, Proceeding
of "ION GNSS'06" the 19th International Technical Meeting of the
Institute of Navigation Satellite Division, Fort Worth TX (USA) 26-29
September 2006.

14. Y. Li, M. Efatmaneshnik, A. G. Dempster, “Attitude determination by
integration of MEMS inertial sensors and GPS for autonomous
agriculture applications”, GPS Solutions, Vol. 16, no. 1, 2012, pp. 41-
52.

15. S. M. Warner, T. O. Koch, T. Pfau, "Inertial sensors for assessment of
back movement in horses during locomotion over ground", Equine
Veterinary Journal, Vol. 42, 2010, pp. 417-424.

72

16. G. Artese, V. Achilli, A. Trecroci, M. Gencarelli, G. Borgese, C. Pace,
"Integrazione di strumentazione inerziale e GPS con fotocamera per
fotogrammetria diretta: realizzazione di un prototipo e primi test", atti del
convegno nazionale ASITA 2010, Brescia (Italy) 9-12 November 2010.

17. R. Dorobantu, B. Zebhauser, "Field Evaluation of a Low-Cost
Strapdown IMU by means GPS", Ortung und Navigation, 1/1999,
DGON, Bonn.

18. Oliver J. Woodman, "An introduction to inertial navigation", University of
Cambridge, August 2007.

19. Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, N. El-Sheimy, "A new
multi-position calibration method for MEMS inertial navigation systems",
Measurements Science and Technology, No. 18, pp. 1897-1907, 2007.

20. G. Artese, M. Gencarelli, A. Trecroci, G. Borgese, C. Pace,
"Metodologie di calibrazione delle strumentazioni inerziali: il modified
multi-position calibration method per la calibrazione dei giroscopi",
Bollettino SIFET (ISSN 1721-971X) , No. 1, pp. 171-83, 2010.

21. D.H. Titterton, J.L. Weston, "Strapdown Inertial Navigation Technology",
Paul Zarchan Editor in Chief, second edition, 2007.

22. Analog Devices, "ADIS16350/ADIS16355- High precision tri-axis inertial
sensor", datasheet rev. B, 2007-2009.

23. G. Artese, A. Trecroci, "Calibration of a low cost MEMS INS sensor for
an integrated navigation system", Proceedings of the International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2008 Beijing.

24. G. Borgese, L. Rizzo, C. Pace, G. Artese, "Compact Wireless
GPS/Inertial System", Proceedings of "FBW'11" Fly by Wireless
Workshop (FBW) the 4th Annual Caneus, Montreal (Canada) 14-17
June 2011.

25. L. Evans, P. Bryant, LHC machine, Journal of Instrumentation, vol. 3,
2008.

26. G. Bianchi et al, "FF-LYNX: fast and flexible electrical links for data
acquisition and distribution of timing, trigger and control signals in future
high energy physics experiments", Nuclear Instruments and Methods in
Physics Research A, vol. 617 (2010) 289–290.

27. T. Grötker et al., System design with SystemC , Springer, 2002, ISBN
978-1-4020-7072-3.

28. Altera Corporation, Stratix II GX device handbook, Volume 1 and 2,
2009.

29. PLDA, XpressGXII reference manual, version 1.1, may 2008.
30. A. Ciampa, Grid data center INFN Pisa, Proc. of Workshop CEP 50,

Pisa (Italy) November 2011.
31. K. Valasoulis, D. I. Fotiadis, I. E. Lagaris, A. Likas, "Solving differential

equations with neural networks implementations on a DSP platform",
Proceedings of the 14th International Conference on Digital Signal
Processing, Santorini (Greece) July 2002.

32. L. Piñuel, I. Martin, F. Tirado, "A special-purpose parallel computer for
solving partial differential equations", Proceedings of "PDP'98" the16th
Euromicro Workshop on Parallel and Distributed Processing, Madrid

73

(Spain) 21-23 January 1998.
33. Y. Osana et all, "ReCSiP: An FPGA-based general-purpose

biochemical simulator", Electronics and Communications in Japan, Part
2, Vol. 90, No. 7, 2007.

34. C. Huang, F. Vahid, T. Givargis, "A custom FPGA processor for
physical model ordinary differential equation solving", IEEE Embedded
Systems Letters, Vol. 3, No. 4, December 2011.

35. K. He, Y. Jiang, S. Dong, "A hybrid parallel framework for cellular potts
model simulations", Proceedings of the 15th International Conference
on Parallel and Distributed Systems, Shenzhen, Guangdong (China) 11
December 2009.

36. J. Hertz, R. G. Palmer,A. S. Krogh, Introduction to the theory of
neural computation , Perseus Books, 1990, ISBN 0-201-51560-1.

37. L. O. Chua, L. Yang," Cellular neural networks: theory", IEEE
Transactions on Circuits and Systems, 1998, 35:1257–1272.

38. L. O. Chua, L. Yang," Cellular neural networks: applications", IEEE
Transactions on Circuits and Systems, 1998, 35:1273–1290.

39. T. Roska, L. O. Chua, "The CNN universal machine: an analogic array
computer", IEEE Transactions on Circuits and Systems II, 1993, 40(3):
163-173.

40. P. Arena, L. Fortuna, A. Rizzo, M. G. Xibilia, "Extending the CNN
paradigm to approximate chaotic systems with multivariable
nonlinearities", Proceedings of "ISCAS 2000" the IEEE International
Symposium on Circuits and Systems, Geneve (Switzerland) 28-31 May
2000.

41. L. Fortuna, A. Rizzo, M. G. Xibilia, "Modeling complex dynamics via
extended PWL-based CNNS", International Journal of Bifurcation and
Chaos, Vol. 13, No. 11, 2003, pp. 3273-3286.

42. O. Y. H. Cheung, P. H. W. Leong, E. K. C. Tsang, B. E. Shi, "A scalable
FPGA implementation of cellular neural networks for gabor-type
filtering", International Joint Conference on Neural networks,
Vancouver, BC, (Canada) 16-21 July 2006.

43. B. G. Soos, A. Rak, J. Veres, G. Cserey, "GPU powered CNN simulator
(SIMCNN) with graphical flow based programmability", Proceeding of
"CNNA'08" the 11th International Workshop on Cellular Neural
Networks and Their Applications, Santiago de Compostela (Spain) 14-
16 July 2008.

44. R. Dolan, G. DeSouza, "GPU-based simulation of cellular neural
networks for image processing", Proceedings of "IJCNN'09" the
International Joint Conference on Neural Networks, Atlanta Georgia
(USA) 14-19 June 2009.

45. M. Griebel, P. Zaspel, "A multi-GPU accelerated solver for the three-
dimensional two-phase incompressible Navier-Stokes equations",
Computer Science-Research and Development, Vol. 25, Issue: 1-2,
May 2010

46. T. Y. Ho, P. M. Lam, C. S. Leung, "Parallelization of cellular neural
networks on GPU", Pattern Recognition, Vol. 41, Issue: 18, August
2008.

74

47. Z. Nagy, P. Szolgay, "Configurable multilayer CNN-UM emulator on
FPGA", IEEE Transactions on Circuits and Systems-I: Fundamental
Theory and Applications, Vol. 50, No. 6, June 2003.

48. Z. Nagy, Z. Vöröshazi, P. Szolgay, "Emulated digital CNN-UM solution
of partial differential equations", International Journal of Circuit Theory
and Applications, 2006, 34:445-470.

49. Z. Vöröshazi, A. Kiss, Z. Nagy, P. Szolgay, "FPGA based emulated-
digital CNN-UM implementation with GAPU", Proceedings of the 11th
International Workshop on Cellular Neural Networks and their
Applications, Santiago de Compostela (Spain) 14-16 July 2008.

50. S. Kocsardi, Z. Nagy, A. Csik, P. Szolgay, "Two-dimension
compressible flow simulation on emulated digital CNN-UM",
Proceedings of " CNNA'08" the 11th International Workshop on Cellular
Neural Networks and their Applications, Santiago de Compostela,
(Spain) 14-16 July 2008.

51. D. J. Korteweg, G. de Vries, "On the change of form of long waves
advancing in a rectangular canal, and on a new type of long stationary
waves", Philosophical Magazine, 1895, 39:422–443.

52. Bilotta, E., Stranges, F. Pantano, P., "A Gallery of Chua attractors: Part
III", International Journal of Bifurcation and Chaos, 17 (3), 657-734,
2007.

53. Bilotta, E., Di Blasi, G., Stranges, F., Pantano, P., "A gallery of Chua
attractors. Part VI", International Journal of Bifurcation and Chaos, 17
(6), 1801-1910, 2007.

54. Bilotta, E., Pantano, P., "Emergent patterning phenomena in 2D cellular
automata", Artificial Life, 11 (3) , pp. 339-362, 2005.

55. Bilotta, E., Pantano, P., "Structural and functional growth in self-
reproducing cellular automata", Complexity, 11(6), 12-29, 2006.

56. Bilotta, E., Pantano, P. "The language of chaos", International Journal
of Bifurcation and Chaos, 16 (3), 523-557, 2006.

57. M. W. Hirsch, S. Smale and R. Devaney, "Differential equations,
dynamical systems, and an introduction to chaos", Academic Press,
2003. ISBN 0-12-349703-5.

58. P. G. Drazin, R. S. Johnson, "Solitons: an introduction", Cambridge
University Press., 2nd ed., 1989, ISBN 0-521-33655-4.

59. N. J. Zabusky, M. D. Kruskal, “Interaction of solitons in a collitionless
plasma and the recurrence of initial states”, Physical Review Letters,
1965, 15(6):240-242.

60. W. Hereman, "Shallow Water Waves and Solitary Waves",
Encyclopedia of Complexity and Systems Science, Springer, 2009,
8112-25.

61. H. Washimi, T. Taniuti, "Propagation of ion acoustic solitary waves of
small amplitude", Phys Rev Lett, 1966, 17:996-8.

62. S. Giambò, P. Pantano, "Three-Dimensional Ion-Acoustic Waves in a
Collisionless Plasma", Lettere al Nuovo Cimento, 1982, 34:380-4.

63. M. Wadati, " Wave Propagation in non linear lattice", J. of the Phys Soc
Jpn, 1975, 38:673-80.

75

64. K. Fukushima, M. Wadati, T. Kotera, K. Sawada, Y. Narahara,
"Experimental and theoretical study of the recurrence phenomena in
nonlinear transmission line", J Phys Soc Jpn, 1980, 48:1029-35.

65. P. Pantano, "Inhomogeneous Dispersive and Dissipative Nonlinear
Transmission Lines and Solitons", Lettere al Nuovo Cimento, 1983,
8:209-14.

66. G. Gallavotti (Ed.), "The Fermi-Pasta-Ulam Problem: A Status Report",
Lect. Notes Phys, 2008, 728.

67. C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, "Method for
solving the Korteweg de Vries equation", Phys Rev Lett, 1967,
19:1095-7.

68. C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, "The
Korteweg de Vries equation and generalizations VI. Methods for exact
solution", Commun Pure ApplMath, 1974, 27:97-133.

69. A. C. Vliegenthart, “On finite- difference methods for the Korteweg-de
Vries Equation”, Journal of Engineering Mathematics,1971, 5(2):137-
155.

70. L. Fortuna, M. Frasca, A. Rizzo, “Generating solitons in lattices of
nonlinear circuits”, ISCAS 2001, The 2001 IEEE International
Symposium on Circuits and Systems, pag. 680-683, vol. 2, May 6-9
2001, Sydney, NSW, Australia.

71. M. Remoissenet, Waves called solitons , Springer, 1996.
72. B. Luitel, G. K. Venayagamoorthy, "Decentralized Asynchronous

Learning in Cellular Neural Networks", IEEE Transactions on Neural
Networks and Learning Systems (TNNLS), Vol. 23, Issue: 11, 2012.

73. M. Papadonikolakis, C. Bouganis, "Novel Cascade FPGA Accelerator
for Support Vector Machines Classification", IEEE Transactions on
Neural Networks and Learning Systems (TNNLS), Vol. 23, Issue: 7,
2012.

76

