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SOMMARIO 

Oggigiorno in molti settori di ricerca sia di tipo industriale che scientifico, 
l'elaborazione e il trattamento veloce ed efficiente dei dati risulta essere sempre più 
importante, soprattutto vista la sempre più crescente espansione dei sistemi che 
gestiscono una grande mole di dati multimediali in real-time. Con elaborazione e 
trattamento dei dati si può intendere un numero elevato di possibili manipolazioni 
di dati (calcolo logico-aritmetico, compressione, filtraggio numerico, 
memorizzazione, trasmissione, etc) svolte da uno o più sistemi hardware/software 
nell'ambito di differenti applicazioni. Nella prima parte di questo lavoro di tesi si 
introdurranno i concetti alla base dell'elaborazione e del trattamento dei dati e si 
presenteranno le varie tipologie di sistemi "Embedded", soffermandoci 
principalmente sulle tipologie trattate in questo lavoro di tesi. Successivamente si 
tratteranno nello specifico le tre piattaforme embedded progettate: la piattaforma 
inertial/GPS basata su due microcontrollori a 8-bit per l'acquisizione dei dati 
provenienti da più sensori (termometri, accelerometri e giroscopi) e la gestione di 
altri dispositivi (modulo GPS e modulo  Zigbee); la piattaforma di emulazione 
basata su un FPGA per svolgere test funzionali su delle interfacce di 
comunicazione seriale basate su un nuovo protocollo, denominato FF-LYNX, 
modellizzate dapprima in System-C e poi implementate su FPGA, da impiegare 
nell'ambito degli esperimenti di fisica delle alte energie; la piattaforma di calcolo 
DCMARK basata sempre su FPGA per risolvere velocemente equazioni 
differenziali non lineari che sono alla base dei sistemi dinamici complessi 
impiegando un approccio basato sulle CNNs (Cellular Neural Network).Tutti i lavori 
hanno portato a risultati scientifici interessanti nell'ambito della progettazione di 
dispositivi embedded. Nella fattispecie, il sistema inertial/GPS ha dimostrato di 
essere un'efficiente piattaforma impiegabile in differenti ambiti come la body motion 
recognition, la fall detection, la fotogrammetria aerea, la navigazione inerziale, etc 
e nuovi spunti potranno nascere in seguito all'integrazione spinta del sistema; Il 
sistema di emulazione che ha permesso di validare e verificare il corretto 
funzionamento delle interfacce di comunicazione del protocollo FF-LYNX, 
risultando essere un mezzo di indagine molto più veloce ed affidabile delle 
simulazioni ad alto livello; il sistema di calcolo DCMARK che sfruttando un 
innovativo approccio multi-processore, ha consentito di affrontare la risoluzione di 
equazioni differenziali non lineari in tempi anche dieci volte più brevi rispetto ai più 
moderni processori multi-core.   
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ABSTRACT 

Nowadays, in several research fields, both industrial and scientific, fast and 
efficient data handling and elaboration is more and more important, especially in 
view of the more and more growing  expansion of systems that manage in real-time 
a large amount of multi-media data. With data handling and elaboration it is 
possible to define an big number of data manipulations (arithmetic-logic calculation, 
compression, numerical filtering, storing, transmission, etc) executed by one or 
more hardware/software systems within different applications. In the first phase of 
this thesis work the concepts at the bottom of data handling and elaboration will be 
introduced and the various typologies of "Embedded" systems will be discussed, 
focusing mainly over the typologies treated in this thesis work. Subsequently, the 
three embedded platforms designed will be treated in detail: the inertial/GPS 
platform, based on two 8-bit microcontrollers, for the acquisition of data coming 
from many sensors (thermometers, accelerometers and gyroscopes) and for the 
management of other devices (GPS module and ZigBee module); the emulation 
FPGA-based platform to conduct functional test on serial communication 
interfaces, based on the new FF-LYNX protocol, modelized firstly in System-C and 
then implemented on FPGA, to be used within high energy physics experiments; 
the FPGA-based calculation platform. named DCMARK, that uses a CNN (Cellular 
Neural Network) approach to rapidly solve non-linear differential equation at the 
bottom of complex dynamical systems. All these works brought to interesting 
scientific results within the design of embedded devices. In particular, the 
inertial/GPS system demonstrated to be an efficient platform usable in different 
fields such as body motion recognition, fall detection, aerial photogrammetry, 
inertial navigation, etc and new ideas may be born after the deep integration of 
system; the emulation system which allowed to validate and verify the proper 
working of communication interfaces of FF-LYNX protocol, proving to be an 
investigation instrument faster and more reliable than high level simulation; the 
DCMARK calculation system which, using an innovative multi-processor approach, 
allowed to tackle the solving of non-linear differential equation up to ten times more 
quickly than the more modern multi-core processors. 
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1. INTRODUCTION  

1.1. Data handling and elaboration 

In the modern era of technology, in which people are surrounded by a large 
amount of data from TV, radio, internet, etc,  there is a more and more growing 
need of high performance compact systems to acquire, manage and if necessary 
to transmit data. An example of this kind of system is a Smart phone which has to 
manage different type of multimedia data (images, videos, sounds, files, etc) and 
control several electronic modules such as accelerometer and gyroscope sensors, 
GPS, Bluetooth and Wi-Fi modules, etc. These embedded devices allow to 
elaborate in real-time thousands of data using many kind of data handling 
typologies according to the sort of data. There are several kind of data handling 
typologies: arithmetic-logic elaboration, data compression, numerical filtering, data 
storing, data transmission, etc. For each typology a dedicated module exists. 

1.1.1. Multi-sensor data fusion 
The Multi-sensor data fusion (MSDF) [1] is a typical process of handling and 
integration of multiple data coming from more sensors (temperature, pressure, 
radiation, etc) into a consistent, complete, accurate, and useful representation. The 
resulting information is some sense, better than would be possible when these 
sources were used individually. The main idea is to build a compact data frame 
ready to be transmitted to other devices for some post-elaboration processes. The 
expectation is that fused sensor data is more informative and synthetic than the 
original inputs. Indeed, a creaming off of input data is necessary to hold just 
significant information. The use of MSDF allows also, in such applications, to 
harden and improve the information content. For example, in inertial/GPS data 
fusion, high-frequency acquired inertial sensor data information, integrates the low-
frequency acquired GPS data information, during the periods in which GPS data 
are not present, guaranteeing a nonstop monitoring of body trajectory. The MSDF 
has also many other application fields such as geospatial information system (GIS), 
oceanography, wireless sensor networks, cheminformatics, etc. The 

1.1.2. Data transmission 
In every communication protocol, both wireless and wired, the significant 
information to transmit has to be encapsulated into a well-defined data packet 
which contains also several functional and security fields such as preambles, 
addresses, security codes, type of packet, cyclic redundancy check (CRC), etc. All 
these fields guarantee both a proper functionality and a good level of reliability to 
the detriment of data packet size. So when a packet is received, it is necessary to 
extract data from the packet. Having a large transmission packet is no good for the 
throughput of the link. It is a challenge to build a no large data packet with an high 
security and hardness level. 

1.1.3. Arithmetic-logic elaboration  
There are a lot of typologies of data elaboration to conduct with an embedded 
system, among those the arithmetic-logic (AL) calculation is the main typology 
since it is the base for other elaborations. In every industrial and scientific research 
field there is the necessity to execute AL calculations. In order to do AL operations 
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it is possible to use various approaches using microcontrollers, FPGA, DSP, etc. 
An example of AL operations are mainly in algorithms of signal elaboration or 
numerical equation solving in which there are a lot of simple mathematical 
operations to be performed repeatedly. 

1.2. Embedded systems 

For a start, it must be explained what is an embedded system. An embedded 
system [2] is an applied computer system which is designed to control one or more 
functions, often with real-time computing constraints. It is formed principally by one 
or more processing unit for executing the system functions (such as 
microcontrollers, FPGAs, DSPs, etc), a memory unit for the data storing and some 
peripherals for communicating with the outside world. One of the first modern 
embedded systems was the Apollo Guidance Computer, developed by Charles 
Stark Draper at the MIT Instrumentation Laboratory, in 1966. It was considered the 
riskiest item in the Apollo project as it employed the developed monolithic 
integrated circuits to reduce the size and weight. The embedding of devices into 
appliances started before the birth of modern PC. Today, embedded systems are 
deeply ingrained into everyday life. The main idea at the bottom of embedded 
systems was encapsulating much of system's functionality in the software that runs 
in the system, therefore it is possible to upgrade the system, acting on software, 
without modifying the hardware. An embedded system is dedicated to specific 
tasks, so it is possible optimizing it to reduce the size and the cost. By contrast, a 
general-purpose computer is designed to do multiple tasks. With the advent of 
digital age, the dominance of the embedded systems is increased. Each portable 
devices such as digital watches, MP3 players, cameras, etc are based on an 
embedded system, they are widespread in consumer, industrial, commercial and 
military applications. A proper example of embedded system is a Smart phone 
which represents a complete platform where several different devices (4G, GPS, 
Bluetooth modules, etc) are integrated on the same chip or board. In the next 
paragraphs some kind of embedded systems will be shown, such as systems 
based on microcontroller, FPGA, DSP and SoC. 

1.2.1. Microcontroller-based systems 
A simple embedded system can have a microcontroller as main managing unit. A 
microcontroller [3] is a small computer on a single integrated circuit containing a 
processor core, memory, and programmable input/output peripherals, in particular, 
it has commonly the following features: 

1. Central processing unit  (from 4-bit to 64-bit processors); 
2. Volatile memory (RAM) for data storage; 
3. ROM, EPROM, EEPROM or Flash memory;  
4. Serial input/output such as serial ports UARTs, I²C, USB, SPI; 
5. Peripherals:  timers, event counters, PWM generators and watchdog; 
6. Analog-to-digital converters, digital-to-analog converters. 

A microcontroller can be programmed using mainly C and assembly languages but 
some high performance version based on ARM technology can host also Linux 
operating system. In an embedded system there can be one or more 
microcontrollers which control other devices of system. In Fig. 1 there is an 



 

example of microcontroller-based embedded system
microcontroller is  
interfaced with several sensors (humidity, temperature, barometric sensors) and 
with a Zigbee radio transceiver for wireless communication.

be integrated on a same PCB dual-
minimize area, volume and weight. 
 

1.2.2. FPGA-based systems 
Another kind of embedded system is based on FPGA devices
platform. An FPGA (Field-programmable gate array)
circuit which can be configured by a designer
language (HDL). Today FPGAs have large resources of logic gates and RAM 
blocks to implement complex digital computations. FPGAs can be used to 
implement any logical function that an ASIC could perform. The ability to update 
the functionality after shipping offer advantages for many applications.
contain programmable logic components called "logic blocks", and a hierarchy of 
reconfigurable interconnects that allow the blocks to be 
blocks can be configured to perform complex
simple logic gates. In most FPGAs, the logic blocks also include memory elements, 
which may be simple flip-flops or more complete blocks of memory
possible to see block diagram of a FPGA
applications. 

Fig. 1 - Example of microcontroller
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based embedded system, where a single 

interfaced with several sensors (humidity, temperature, barometric sensors) and 
with a Zigbee radio transceiver for wireless communication. All these devices can 

-layer board using SMD components in order to 
 

Another kind of embedded system is based on FPGA devices which control whole 
programmable gate array) [4] is an integrated 

be configured by a designer using a hardware description 
FPGAs have large resources of logic gates and RAM 

blocks to implement complex digital computations. FPGAs can be used to 
implement any logical function that an ASIC could perform. The ability to update 

offer advantages for many applications. FPGAs 
components called "logic blocks", and a hierarchy of 

ts that allow the blocks to be wired together. Logic 
blocks can be configured to perform complex combinational functions, or 

. In most FPGAs, the logic blocks also include memory elements, 
r more complete blocks of memory. In Fig. 2 it is 

possible to see block diagram of a FPGA-based embedded system for automotive 

 

xample of microcontroller-based embedded system. 
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1.2.3. DSP-based systems 
A DSP (Digital Signal Processor) [5] is special microprocessor which is specialized 
in digital signal processing. Digital signal processing algorithms typically require a 
large number of mathematical operations to be performed quickly and repeatedly 
on a series of data samples. Signals are constantly converted from analog to 
digital, manipulated digitally, and then converted back to analog form. The 
architecture of a DSP is optimized specifically for digital signal processing. Fig. 3 
shows a typical architecture of an embedded smart sensor based on a DSP. 
 

 

 

Fig. 2 - Example of FPGA-based embedded system. 

 

Fig. 3 - Example of DSP-based embedded system (Smart sensor). 
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1.2.4. System on chip (SoC) 
A system on chip (SoC) [6] is an integrated circuit which integrates in a single chip 
all parts of a computer and often other electronic devices (digital, analog, mixed-
signal, radio modules, etc). A system based on SoC technology is a 
typical embedded system. A microcontroller typically is a single-chip system with 
no much RAM memory, about hundreds of kB, while a SoC can integrate one or 
more powerful processors (sometimes multi-core) needing to use large external 
memory chips (Flash, RAM, EEPROM, etc). This kind of system can run operating 
system such as Linux or Windows. 
A SoC is formed typically by: 

1. Microcontroller(s), microprocessor(s) or DSP core(s); 
2. Graphics or multi-media processor(s); 
3. Memory blocks such as ROM, RAM, EEPROM and Flash memory; 
4. Timing sources including oscillators and phase-locked loops; 
5. Peripherals including counter-timers, real-time timers and power-on 

reset generators, radio modules; 
6. External interfaces such as USB, FireWire, Ethernet, USART, SPI; 
7. Analog interfaces including ADCs and DACs; 
8. Voltage regulators and power management circuits. 

These blocks are connected by either a proprietary or industry-standard bus. SoCs 
can be fabricated using several technologies such as full custom, standard cell, 
FPGA, etc. These systems consume less power and have a lower cost and higher 
reliability than the multi-chip systems that they replace. In Fig. 4 it is shown a SoC 
Nvidia Tegra 600-series.  
 

 
 

  

 

Fig. 4 - Example of SoC Nvidia Tegra 600-series. 
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2. DEVELOPMENT OF AN INERTIAL/GPS PLATFORM FOR 
MOTION DATA HANDLING 

2.1. Introduction 

Nowadays, in many research fields such as body motion recognition (BMR), fall 
detection (FD),  aerial photogrammetry (AP), inertial navigation (IN), etc, there is 
the necessity to acquire and transmit all body motion parameters (axial 
accelerations, angular rates, global position, speed, etc) by wireless to a remote 
host system for control and tracking purposes. The possibility to acquire these 
motion information in a remote real-time way is more and more requested.  
With regard to BMR [7], [8] and FD [9], there are several areas of interest (e.g.: 3D 
virtual reality, biomedical applications, robotics) in which it is extremely important to 
detect and recognize all or some human body movements and maybe to reproduce 
those using a robot. AP [10] and IN [11], [12] fields are older than BMR and FD, but 
we can find a multitude of different and innovative approaches and  applications 
such as pedestrian navigation in harsh environments [13], agriculture automated 
vehicles [14], or animal motion analysis [15]. 
 In the market there are several kind of systems which are not general purpose but 
are highly specialized for a particular application. Some systems use high 
performance and high cost devices, others are not wireless-based or are too 
heavy. The main idea is to design a low-cost, complete and flexible system with 
these features and which can be used for several applications. This system should 
be compact, portable, lightweight and highly integrated. 
 

2.2. System design strategy 

To reach these features it is necessary to design the architecture in a smart way 
and to select  single components in order to save space and to decrease system 
weight as much as possible. In the first prototype, in order to reduce space and 
weight, we chose, as inertial sensor, a MEMS inertial measurement unit  (IMU) 
(Analog Devices ADIS16350), constituted by a tri-axial accelerometer and a tri-
axial gyroscope. This IMU is a strapdown type system which is intrinsically 
compact, highly integrated and low-cost but it is not very accurate. In the market 

Table 1 - Comparison with commercial IMUs 

IMU Name 
HG9900 

HoneyWell 
MMIMU  

DraperLab  
ADIS16350 

AnalogDevices 
Typology Laser MEMS MEMS  
Gyros Bias (1σσσσ)  [°/hr]  < 0.003 1 54 
Gyros Random Walk [°°°°/√√√√hr]  < 0.002 0.030 4.2 
Accelers Bias (1σσσσ) [mg] < 0.025 0.1 0.7 
Accelers Random Walk [m/s/√√√√hr]  0.0143 0.035 2.0 
Acc_Bias Pos. Error (1hr) [km] ~ 1.59 ~ 6.35 ~ 44.5 

Size [mm] 
139.7 x 

162.6 x 135.6 
68.5 (Ø) x 
35.5 (h) 

23.2 x  22.7 
x 23.3 

Weight [kg]  < 3 0.260 0.016 
Power Consumption [W] < 10 < 3 < 0.285 
Price [k$] ~ 100 ~ 1.3 ~ 0.6 
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there are many kind of very high performance IMU but they don't respect our trade-
off requirements of  low space, weight and cost (Table 1). We designed the system 
on two different planar boards (main and power boards) using a PCB dual layer-
fashion approach. The supply battery packet was reduced to only two rechargeable 
NiMh AAA batteries. With a reduced battery packet, the system energy budget is 
very important to consider. To generate the necessary voltage levels we needed 
two high-efficiency switching step-up voltage regulators to convert a 2.4V nominal 
input voltage  in two output voltage levels: 5V and 3.3V. In order to handle many 
motion data, it is important to exploit the available wireless and wired transmission 
bands organizing data in easily transmissible short packets.   
In addition to hardware system side, a remote C-based graphical user interface 
(GUI) is installed on an Pc-host to control system operations, set inertial sensor 
parameters (offset, calibration, alignment, etc), display motion variables progress, 
track trajectories, shoot photo, etc. A trajectory reconstruction algorithm Kalman-
based is implemented in the system software for supporting applications such as 
inertial navigation or motion parameters detection These data elaborations are 
conducted on software side, instead of hardware side, in order to reduce the 
computational load of microcontrollers, to speed system operations up and to 
obtain an easier data handling using the remote GUI. 

2.3. System architecture  

As explained previously, this system is designed on two separated boards: Main 
Board and Power board. The first manages all control operations, acquiring data 
from inertial sensor and GPS module, sending data packets to the host pc and 
receiving command packets from inertial system by wireless; the latter provides the 
two supply voltage levels to main board. 
 

 
 

 

Fig. 5 - Complete inertial/GPS system block diagram. 
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2.3.1. Power board 
The Power board is constituted by two step-up converters (Maxim MAX756) which 
allow to provide both 5V and 3.3V voltage guaranteeing up to 400mA load current 
and an efficiency of about 85% (input voltage over 2.2V). As said before,  the two 
rechargeable NiMh battery pack have a nominal voltage of 2.4V and a nominal 
capacity of about 2650mAh. Considering a nominal input energy of about 6.36Wh 
against a max required load power of about 625mW (worst case), our system has 
an autonomy of about 9 hours (experimentally verified). 

2.3.2. Main board 
The Main board is the control core of whole system. The  modules on the board 
are: two 8 bit microcontrollers (Atmel ATMEGA8) (called Master and Slave), a GPS 
module (Fastrax UP500), a zigbee transceiver (Maxstream XBEE) and an inertial 
sensor (AnalogDevice ADIS16350). To support some applications such as aerial or 
ground photogrammetry, an high resolution camera (Canon SX200IS) was 
interfaced. Main features of these devices are: 

1. ADIS16350: is a low-power (165mW @ 5V) complete inertial 
measurement station. It is constituted by one tri-axial accelerometer, 
one tri-axial gyroscope and one tri-axial thermometer for thermal 
compensation. It transfer inertial data with 14 bit resolution, to the 
output registers, accessible via a 2MHz SPI interface, at a maximum 
sample rate of 819.2Hz (350Hz bandwidth). The inertial sensors are 
precision aligned across axes, and are calibrated for offset and 
sensitivity. 

2. UP500: is a low-power (90mW @ 3V) GPS receiver module with 
embedded antenna and fix rate up to 5Hz. Communication is based on 
NMEA protocols, via RS232 link up to 115.2kbps. It supports 
WAAS/EGNOS correction to improve position resolution up to about 
2m. 

3. XBEE: is a low-power (165mW @ 3.3V) 2.4GHz transceiver which 
implements ZigBeeTM protocol and has a transmission range of about 
80m. Transmission and reception buffers allow efficient data stream 
packetization, also required to reach the rated communication speed 
because every data exchange requires the presence of an about 20 
bytes long header. It is interfaced through RS232 protocol up to 
115.2kbps.  

As we can see in Fig.5, Master microcontroller is connected to ADIS16350 through 
SPI interface, to XBEE through USART interface, to Slave microcontroller through 
TWI interface and to the high resolution camera by means of one I/O pin.  
The Slave microcontroller is connected only to UP500 by means of USART 
interface and to Master microcontroller as said before. Another Slave I/O pin is 
used to send an interrupt to Master when a new GPS frame is ready. Master and 
Slave are clocked with two 14.7654MHz quartz. 

2.3.3. High resolution camera 
 We used a low-cost 12,1Mpixels Canon SX200IS camera (5-60mm lens focus, 4X 
digital zoom, 12X optical zoom, shutter speed 1s -1/3200s) (Fig. 6a). The firmware 
was updated with an unofficial version in order to acquire full control of the camera 
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functions. In particular, we exploited the possibility to remotely shoot photos 
applying a 3V pulse to the USB port, using a BJT, as in Fig. 6b, and to store photos 
in uncompressed format (RAW), as required for photogrammetry applications [16]. 
For georeferencing each picture, a progressive number, corresponding to the file 
number on the memory card, is recorded on the inertial data frame. 

 
 
  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 6 - Canon SX200i Camera (a), Camera/Microcontroller interfacing (b).  

 

Fig. 7 - First inertial/GPS system prototype v2.2. 
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2.4. System working and data protocol 

Thanks to a simple but complete remote GUI, the Pc-host can start every system 
operation, as will be explained in next sections. There are three kinds of command 
packets (Fig. 8) that can be sent to the system:  

1. operation request (GPS/Inertial data readout, photo shooting, offset 
readout); 

2. configuration setting; 
3. configuration readout. 

Each  command packet is identified by system by means of different opcodes (Fig. 
9).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The system requirement was to transmit synchronized data from inertial sensor, 
operating at 100Hz, and GPS module operating at 5Hz (Fig. 10). This inertial 
sensor sample rate is important to get a good position resolution in case of 
trajectory tracking calculations. Hence the data stream has to contain 20 inertial 
frames plus one GPS frame every 200ms. 
The inertial data frame is 20 bytes long and contains the following fields: supply 
voltage, x/y/z temperatures, x/y/z angular rates, x/y/z linear accelerations. The 
sensor has to be read by the Master every 10ms and this is guaranteed by a 
dedicated timer. 
The most important problem is constituted by the verboseness of GPS data: in fact, 
NMEA sentences contain hundreds of bytes. So we had to select only the 
necessary information, otherwise we were able to reach the specified data rate. 
 

 

Fig. 8 - Command structure. 

 

Fig. 9 - Command opcodes. 
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Because we were not interested in all GPS information, at the start up the Slave 
initializes the GPS module to send only four sentences: 

1. GGA: Global Positioning System Fix Data; 
2. GSA: GPS DOP and active satellites; 
3. VTG: Track Made Good and Ground Speed; 
4. RMC: Recommended Mininum Navigation Information. 

These NMEA sentences contain main information which can be useful for several 
different applications.  
Moreover, the Slave creams off the received sentences and stores in RAM only the 
information to display, i.e. a total of 72 bytes. 
Even if reduced in this way, the time required to send such information is still too 
high (about 6.25ms) in order not to compromise the regularity of the inertial sensor 
reading. 
So we decided to divide the GPS answer in 8 packets of 9 bytes and to send, every 
20 ms, two inertial frames plus a GPS packet. So, in 200ms, we send 8 frames of 
51 bytes (frame number, 2 inertial frames, 1 GPS packet, photo number) and last 2 
frames of 42 bytes (frame number, 2 inertial frames, photo number) as shown in 
Fig.11. 
Data acquired from PC are reconstructed, displayed and stored in a text file for 
further elaboration; GPS data are also processed at run-time to display the 
trajectory. The frame number is used to identify each frame within a second (50 
frames/s) and is used for: 

1. reconstruction of GPS information; 
2. identification of any frame lost in reception. 

Finally, the Photo number allows for the association of picture files in the SD card 
with time, position and attitude of the camera. 
The complete system protocol is better explained in the flow chart in Fig. 12.  

 

Fig. 10 - Inertial/GPS system operations. 
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Fig. 12 - Data protocol flow chart. 

 

Fig. 11 - GPS/Inertial data timing (in red the GPS data, in green the 
inertial data). 
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After the reception of a data request from host pc, master microcontroller sends a 
GPS data request to slave microcontroller and waits for response checking the 
GPS data ready flag. When slave acquires and creams off a GPS frame it sets the 
GPS data ready flag so that master starts a 10ms timer up and acquires an inertial 
frame storing it on RAM. Then master asks slave a single GPS packet which is 
received on TWI line and immediately stored on RAM. When 10ms timer stops, 
master acquires a second inertial frame storing it on RAM. In the end master sends 
the two inertial frames and a GPS packet to XBEE module which sent them to 
host-pc. When these operations are over, master restarts 10ms timer and begin a 
new operation cycle. If there is an interruption of GPS operations, master continues 
to send to host-pc only inertial frames respecting the 10ms timing. 

2.5. Host data handling 

2.5.1. Inertial data elaboration 
Data acquired from the inertial sensor can be processed to obtain position and 
orientation of a body and to track a three dimensional  trajectory. This technique is 
called inertial navigation and it is used in a wide range of applications. 
Inertial data are processed following the scheme [17] in Fig.13 
where: 

1. U_acc: signals from accelerometers; 
2. U_omega: signals from gyroscopes; 
3. a: linear acceleration; 
4. v: linear velocity; 
5. ω: angular velocity; 
6. C: rotation matrix. 

The subscripts b denote the body coordinate system (that is the navigation 
system’s reference frame) while the subscripts n denote the local coordinate 
system (in which the body move). 
The first step of trajectory reconstruction algorithm is the correction of  
accelerometers and gyroscopes signals. The correction of errors on signals is the 
most important step of algorithm, because errors influence overall system 
performance [18]. In particular, propagation of orientation errors caused by noise, 
perturbing gyroscope signals, is identified as the critical cause of a body position 
drift. The main cause of errors are: scale factor, bias, drift, temperature, non-
orthogonality. In order to compensate them it is necessary to perform a procedure 
of calibration. A first coarse calibration was executed using the automatic 
calibration of ADIS16350 managed from remote GUI software. Then a finer 
calibration was conducted manually. Among all calibration methods proposed in 
literature, the most appropriate calibration technique for low-cost sensors  is the 
”modified multi-position calibration method” [19], [20]. Its aim is to find all calibration 
parameters (bias, scale factor, non-orthogonality, etc) of sensors. It consists in 
laying out sensors in different linearly independent positions in order to define a 
system of  linearly independent equations which outnumbers the set of calibration 
parameters to find. 
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The linear acceleration and angular velocity error can be modeled as:  
 

�� = ���� + ����� + 	���_��
 − 
�� + ���� 																																�1� 
 

�� = ����� + ������ + 	����_��
 − 
�� + �����																					�2� 
 
Where: 

1. ���� and ����� are the sensor bias; 
2. ���� and ����� are the sensor scale factors; 
3. 	���_� and 	����_� are the sensor thermal constants;  
4. ���� and ����� are the sensor measurement noises, ���� = ���� ∗

����� !	"�#! and ����� = ����� ∗ ����� !	"�#!, ���� and �����are 
noise densities; 

5. 
 and	
� are the temperatures during the measurement and at sensor 
start-up respectively. 

 
In Table 2 there are the calibration parameters obtained according to [19], [22], 
[23]. 
 
 
 
 

 

Fig. 13 - Block diagram of the trajectory reconstruction algorithm. 
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After the calibration phase, it is necessary to compensate the centrifugal 
acceleration and the acceleration of gravity effects obtaining accelerations in body 
coordinate system . The former is compensated subtracting the vector product 
between angular velocities (from gyroscopes) and linear velocities (from numerical 
integration of accelerations), the latter is compensated adding the scalar product 
between transposed rotation matrix and the gravity acceleration. After a numerical 
integration velocities in body coordinate system are obtained. In order to pass to 
local coordinate system the linear velocities are multiplied by the rotation matrix 
and then are integrated to have body trajectory. The angular velocities are also 
integrated, obtaining the information about the orientation (Euler angles) and the 
rotation matrix (for transformation from b-frame to n-frame). The equations to 
integrate and the rotation matrix are [21]: 

 
$% = &��_' sin $ +	�+_' cos $. tan 1 +	�2_'																											�3� 

1% = &��_' cos $ −	�+_' sin $.																																																				�4� 

5% = &��6 sin $ + +	�+6 cos $. sec 1		 																																							�5� 
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Table 2 - Calibration 
parameters 

9:;;_< 0.012133g 

9:;;_= 0.023295g 

9:;;_> -0.03593g 

9?=@A_< 0.3766 °/s 

9?=@A_= 0.1963°/s 

9?=@A_> 0.6270°/s 

B:;;_< 0.00775 

B:;;_= 0.008838 

B:;;_> 0.008041 

B?=@A_< 0.004818 

B?=@A_= 0.004042 

B?=@A_> 0.009385 

;:;;_C 4 mg/°C 

;?=@A_C 0.1°/s/°C 

D:;; 1.85mg √F> 

D?=@A 0.05°/s √F> 
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where transformation from reference axes to a new frame is expressed as: 

1. rotation through angle  5  about reference z-axis; 
2. rotation through angle  1  about new y-axis; 
3. rotation through angle  $  about new x-axis. 

However, also with a perfect correction of errors, it isn’t possible to obtain a great 
position accuracy for long time using only MEMS IMU but it is necessary to include 
information from GPS module, integrated in our system. Inertial and GPS modules 
are complementary: the former is characterized by high measurement frequency 
but short-term accuracy while the second by long-term accuracy but low 
measurement frequency. The main idea is to reconstruct trajectory by means of 
inertial data acquired between two GPS acquisitions and then to correct 
accumulated errors in inertial data using the stable information from GPS module. 
The Kalman filter is the most used algorithm for this purpose. In literature there are 
several implementation of Kalman filter depending on the features of devices [3]. 
To obtain a correct integration of Inertial and GPS data it is important to have high 
synchronization between data acquisitions. The implementation of Kalman filtering 
is included into remote GUI. 

2.5.2. GPS data handling 
In order to plot a GPS trajectory in a two dimensional graph it is necessary at first 
to transform GPS geodetic coordinates (longitude λ, latitude φ, height h) to ECEF 
(Earth-Centered-Earth-Fixed) coordinates (Xe, Ye, Ze) and then to NED (Nord-
East-Down) coordinates (xn, yn, zn) according to following equations. N(φ) is the 
normal that is  the distance from the surface to the Z-axis along the ellipsoid 
normal. a is the semi-major ellipsoid axis and e is the first numerical ellipsoid 
eccentricity. Rn/e is a transformation matrix from ECEF to NED coordinates. Xer, 
Yer, Zer are ECEF reference coordinates. 
 

 
 

 
 

2.6. Remote GUI 

The Remote GUI  is developed using LabWindows© development environment  
based on C language. The GUI  allows to manage every system operation. As 
seen in Fig.14 in the window there are three main sections: a graph section to 
display GPS trajectory, angular velocity and linear acceleration; a boxes section to 
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show inertial sensor parameters (supply voltage, x-y-z linear accelerations, angular 
velocities and temperatures) and GPS parameters (time, latitude, longitude, 
altitude above mean sea level, height of geoid above WGS84 ellipsoid, speed, 
heading and PDOP; a command section to initializing XBEE radio-bridge, to 
start/stop system operations and to shoot photos.  It is also possible to save data 
into a text file for offline analysis. In the top of window there is a menu in which 
user can access inertial sensor setting mode and manually change gyroscope 
dynamics, number of tapes of Bartlett FIR digital filter, sample rate, accelerometer 
ad gyroscope offset or use automatic procedures of axial alignment, offset 
compensation, calibration (Fig. 15). The numerical integration algorithm, the 
Kalman filter and the coordinates transformation are integrated into the GUI.  

 

 
 
 
 
 
 
 

 

Fig. 14 - System GUI with an example of GPS trajectory. 



18 

 

 

2.7. System testing 

In order to verify proper working of system many kind of tests are conducted on 
system modules.  

2.7.1. Accelerometers/Gyroscopes test 
To test accelerometers and gyroscopes, two type of tests were conducted. In the 
first test, the system was placed on a strobe speed-controlled turntable with 
velocity of 33 rpm and 45 rpm, to evaluate biases and the correct angular velocity 
measured by gyroscopes; in the second test, system was placed on a radio-
controlled toy car (Fig. 17) and various movements were performed to test the 
performance of the whole inertial system (Fig.16). 

 

Fig. 15 - Calibration, operation control and other sub-windows. 
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2.7.2. GPS module test 
Moreover, the system was mounted on a car in order to verify GPS module 
operations and the coordinates transformation algorithm using GPS data (Fig.14). 
Another kind of test allows to analyze  the proper working of GPS module along a 
closed path and comparing results with a high accuracy differential GPS module. 
From this test we valued position errors along x, y and z axis using a statistical 

 

Fig. 16 - Sensor responses for various movements performed (slewing 
rounds, spins, back/forth). 

 

Fig. 17 - System mounted on a toy car for a test. 



20 

 

analysis. In Fig.18 the trajectory comparison between our GPS module and 
differential GPS module is shown. In Table 3 and Fig. 19 there are the error 
distribution parameters. The mean  position error is lower than 1m for x and y axis 
with a standard deviation lower than 2m, only for the z axis the mean position error 
is of about 5m. 
 
 

 

Fig. 18 - Results comparison between our GPS (red) and differential GPS (blue). 
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2.7.3. Inertial-based trajectory reconstruction tes t 
After the GPS trajectory reconstruction test, we conducted an Inertial-based 
trajectory reconstruction test to verify the quality of trajectory reconstruction 
algorithm and of Kalman filtering. For this test the strobe speed-controlled turntable 
was used. As it can be seen in Fig. 20 using just the reconstruction algorithm, after 
about 25 loop at 33rpm, there is an increasing of offset and bias which deform the 
circular trajectory with a spiral divergence; with Kalman filtering the trajectory is 
very stable and it is evident the decreasing of x/y error as shown in Table 4 with 
respect to Table 5 without Kalman filter. In Fig. 21 the x/y position error fluctuation 
using the Kalman filter is shown while in Fig. 22 the x/y position error fluctuation 
without Kalman filter. 
 
 

Table 3 - Error distribution parameters 

X-error Mean 0.573m 
Y-error Mean -0.143m 
Z-error Mean 4.267m 

X-error σσσσ 1.825m 
Y-error  σ  σ  σ  σ  1.480m 
Z-error σσσσ 1.997m 

 

 

  

Fig. 19 - X/Y/Z error distributions. 
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Fig. 20 - Trajectory reconstruction without (top) and with (bottom) 
Kalman filtering. 

Fig. 21 - X/Y axis error fluctuations with Kalman filter. 
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2.8. Conclusions and future developments 

A flexible and low-cost wireless GPS/Inertial system [24] which can be used for 
many kinds of applications is presented. The main features of prototype are low 
weight, high compactness, high autonomy, fast remote data managing and 
elaboration (Table 6). The future developments will be the GPS/Inertial data fusion, 
the replacement of MEMS sensor station with the new model which integrates a tri-
axial magnetometer and an automatic thermal compensation, the replacement of 
the ZigBee module with the new model having a transmission range up to 1km and 
assembling all new modules and SMD components on the new PCB dual-layer 
board (Fig.23) to reduce more and more space and weight in order to increase 
system flexibility. In addition, the remote system GUI will be modified to manage 
data elaboration for various applications such as fall detection, body motion 
recognition, inertial navigation, etc. Many kind of tests in several scenarios will be 
conducted in order to demonstrate flexibility and general purpose capability of 
platform. 

Table 5 - Error distribution 
parameters (without Kalman filter) 

Abs Max X-error  59.68m 
Abs Max Y-error 60.57m 

X-MSE (mean square error) 1.5256e+5m2 
Y-MSE (mean square error) 1.4943e+5m2 

 

 

Fig. 22 - X/Y axis error fluctuations without Kalman filter. 

Table 4 - Error distribution 
parameters (with Kalman filter) 

Abs Max X-error  0.0066m 
Abs Max Y-error 0.0084m 

X-MSE (mean square error) 3.30e-3m2 
Y-MSE (mean square error) 6.50e-3m2 

 



 

 
 

 

 

 

 

 

Table 6 - 

Fig. 23 - 3D PCB system board v2.3 image.

24 

 Main technical features 

 

 

3D PCB system board v2.3 image. 
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3. DEVELOPMENT OF AN EMULATION PLATFORM FOR THE 
FF-LYNX PROJECT 

3.1. Introduction 

Before describing the topic of this chapter, it is important to introduce the FF-LYNX 
(Fast and Flexible links) project. This project was promoted and financed by INFN 
(Istituto Nazionale di Fisica Nucleare), the most important research institute in Italy 
within the field of High Energy Physics (HEP) experiments. This project, started in 
January 2009, was born with the first aim to define a new serial communication 
protocol, to satisfy the typical requirements of HEP scenarios. It was intended to 
become a new flexible standard within different experiments minimizing 
development costs and efforts, because today each HEP experiment uses a 
different kind of custom communication protocol. The second aim of FF-LYNX 
project was to implement this protocol in radiation-tolerant, low power interfaces. 
High Energy Physics (HEP), is a branch of physics that studies the most basic 
constituents of matter, i.e. subatomic particles, and their interactions. Particle 
accelerators are the main instruments for High Energy Physics. They are complex 
machines that produce beams of high energy particles. A typical HEP experiment 
consists in colliding particle beams and analyzing the results of the collisions using 
particle detectors around the interaction point. Large Hadron Collider (LHC) [25] at 
CERN (the European Organization for Nuclear Research) in Geneve (Switzerland) 
is the largest and most powerful particle accelerator over the world. 
The electronic architectures used into experiments are very similar with respect to 
systems for acquisition of data from sensors and for control and management of 
the detector. Signals generated by sensors in particle detection are handled by 
Front-End (FE) electronics embedded in the detectors and transferred to remote 
data acquisition (DAQ) systems. In Fig. 24 a schematic representation of a 
common HEP experiment.  

 

 

Fig. 24 - Schematic example of HEP experiment. 
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After a collision between two particles such as two protons, there are the 
generations of new different particles (collision events) which have to be captured 
by the detectors that surround the interaction point. These detectors, formed by 
many high performance sensors (pixels, strips, etc), are interfaced with Front-End 
(FE) devices that acquire signals and execute a signal conditioning (amplification, 
shaping, buffering, analog to digital conversion). So these raw digital data 
organized, in Event Data packets, are stored onto FE memory buffers temporarily. 
Since the interesting events are a very small fraction of the total, the total amount 
of data has to be filtered. To do this, a small amount of key information about 
collision event, in the guise of Trigger packets, is send to TTC (Trigger, Timing and 
Control) system which performs a fast, approximate calculation and identify if that 
event is significant or not. If the event is important, then a Trigger command is sent 
back to FE electronics to command a data readout. At this point, that Event Data 
packet is sent towards the DAQ (Data Acquisition System). In this way, the amount 
of data to be transferred is reduced to rates that can be handled by the readout 
system (a typical order of magnitude is hundreds of MB/s from each FE device), 
and only the interesting events are selected. Clearly each packet is sent through 
the communication channel based on different custom protocols. 
The part of work presented in this chapter constituted two phases of the FF-LYNX 
design flow and was carried out at the Pisa division of INFN. It dealt with the 
simulation of FF-LYNX System-C interface models using a simulation platform and 
the design of an FPGA emulation platform for verify and test those interface 
models. In the first phase, these interfaces, defined in System-C language, are 
simulated using an ISE (Integrated Simulation Environment) platform. In the 
second phase of work, these interfaces were implemented on FPGA emulation 
platform to continue the verify process.  

3.2. FF-LYNX protocol basis 

The FF-LYNX protocol [26] is a double-wire serial protocol defined at the data-link 
layer of the ISO/OSI model. The two separate wires correspond to clock and data 
lines. It guarantees a high level of flexibility as regards data rate and data format. It 
is possible to communicate with three different data rates: 4xF, 8xF and 16xF, as 
shown in Fig. 25; F represents the frequency of the reference clock. Considering 
the LHC reference clock (40 MHz)  there are 160, 320 and 640 Mbps respectively. 
The main feature of FF-LYNX protocol is the time multiplexing of two channels, 
named THS and FRM. The THS channel is used to transmit Triggers, Frame 
Headers and Synchronization patterns and employs two bits. The FRM channel is 
used to transmit data packets (information inserted into one or more data frames 
as Fig, 26) and employs 2, 6 or 14 bits in the three data rate options. A data packet 
is a high-level transmission unit which can be formed by several 16bit words. This 
data packet can fit a single data frame (if packet is formed by less than 16 words) 
or can be splitted into several data frames. It uses two kinds of data packets: the 
Variable Latency Frame (VLF) and the Fixed Latency Frame (FLF) packets, where 
the latency is defined as the data packet transfer time. The VLF is a generic data 
frame type while the FLF is used as trigger data frame type. The robustness of 
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critical information against transmission errors is obtained by means of Hamming 
codes and custom encoding techniques.  
These techniques guarantee the correct recognition of commands and the 
reconstruction of their timing in the THS channel. In the FRM channel single bit-
flips are corrected and burst errors are detected. There is a significant reduction of 
the number of physical links thanks to the use of the same protocol for the 
transmission of triggers, fixed and variable latency reducing the overall material 
budget. Hence, this  protocol is suitable for the distribution both of DAQ signals and 
of Timing, Trigger and Control (TTC) signals, that is for the Up-Link (Front-End 
devices to DAQ system) and for the Down-Link (Trigger and Control System to 
Front-End devices) paths. On the THS channel, Triggers are higher priority signals 
with respect to Frame Headers and Synchronization commands; these latter can 
be transmitted only when there are no Triggers for at least three consecutive clock 
cycles, in agreement with the current specifications of the LHC experiments. On 

FRM channel the Data Frames are tagged by Frame Headers transmitted on the 
THS channel. 
 
 

 
 
 
 
 
 
 
 

 

Fig. 25 - Channel partitioning through time-division multiplexing (TDM), with the 
master clock taken as the period for the TDM cycles. 
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The structure of a data frames is shown in Fig. 26. It is formed by: the Frame 
Descriptor (FD) which contains information such as the length of the frame and the 
type of data transmitted, the Label which represents a field that can be employed 
to add optional information, the Payload which constitutes the user data and a 
Cycle 

Redundancy Check (CRC) that can be optionally applied to the Payload to 
increase robustness against transmission errors. 
In FF-LYNX system, as already mentioned, there are two categories of data with 
respect to latency constraints, the VLF and the FLF packets: the former have no 
latency constraints, while the latter must have a fixed latency.  
The FF-LYNX protocol is implemented in Transmitter (TX) (Fig. 27.a) and Receiver 
(RX) (Fig. 27.b) interfaces with a serial port (DAT) on one side and two parallel 
ports (16-bit port for the VLF packets, 2/6/14-bits port for the FLF ones) with their 
control (data_valid, get_data, trg) and configuration signals (e.g.: flf_on, label_on) 
on the  
other side. Control signals are used by host devices to manage the data 

transmission operations.  
 
The FF-TX Transmitter is constituted of the following modules: 

1. TX Buffer: it is structured as two FIFOs, for storing input data on VLF 
bus and on FLF bus.  

 

Fig. 26 - The basic FF-LYNX frame structure. 

 

Fig. 27 - Functional architecture of the FF_TX (a) and FF_RX (b) interfaces. 
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2. Frame Builder: it controls the assembly of frames for the transmission of 
data stored in the FLF and VLF FIFOs. 

3. THS Scheduler: it works out the arbitration between triggers and frame 
headers. It receives TRG and HDR commands and passes them to the 
Serializer avoiding THS sequences overlaps. 

4. Serializer: It generates the serial output stream by receiving the Frame 
Descriptor field from the Frame Builder and frame words from the 
VLF/FLF FIFO. In addition, it sends TRG and HDR patterns into the 
THS channel, according to the commands that arrive from the THS 
Scheduler.  

The FF-RX Receiver is constituted  of the following modules: 
1. Deserializer: It converts the FF-LYNX serial data stream into parallel 

form. it separates the THS channel and the FRM channel and provides 
the data words to store into the RX Buffer. 

2. THS Detector: It detects the sequences of triggers, headers and 
synchronization patterns in the THS channel;  

3. Synchronizer: It generates the reference clock on the base of 
information coming from the THS Detector.  

4. Frame Analyzer: It controls the reception of data frames, their storing 
into the RX Buffer and the transmission of stored data to the receiver 
host. 

5. RX Buffer: It buffers data to send to host devices in parallel form. 
 

3.3. FF-LYNX top-down design flow 

As already mentioned, the FF-LYNX project was to follow a well-defined top-down 
design flow (Fig. 28). This flow consists of six main phases: The protocol definition 
phase in which the communication interfaces are modeled using System-C 
language, the high-level validation phase which consists in verify the proper 
functionality of protocol interfaces employing a simulation platform called ISE 
(Integrated Simulation Environment), the definition of hardware interfaces using 
VHDL language, the implementation of interfaces on FPGA devices for the 
emulation phase and at the end, the design of test ASIC chip implementing these 
FF-LYNX TX/RX interfaces. In this chapter, mainly the FPGA prototyping phase will 
be described in detail. 
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3.4. FF-LYNX protocol system-C modeling 

3.4.1. The ISE (Integrated Simulation Environment) platform 
After the theoretical definition of protocol structure, an ISE (Integrated Simulation 
Environment) platform, based on models written in System-C language [27], was 
developed. These System-C models describe protocol interfaces, electrical links 
and I/O test modules with a timing accuracy at clock cycle level. The aim of the ISE 
platform is to simulate and characterize readout architectures based on FF-LYNX 
communication protocol, in this case study, with input data compatible with 
possible working environment in which this protocol could be employed. For this 
goal, physics GEANT4 input data are used and FoM (Figures of Merit), defined in 
Table 7, are evaluated.  
With this ISE platform it is possible to conduct all kind of analysis in different 
operating conditions, setting different values of link speed, trigger rate, packet rate, 
packet average size, bit error rate in electrical serial links. It is possible also to 
include injection of errors in communication links and memory blocks. All the 
models that form the ISE are known as "Simulator". 
The developed System-C link simulator is composed by two main modules: the FF-
LYNX TX interface and the FF-LYNX RX interface. This model architecture is 
parameterized and modular, allowing the reusability of System-C code and the run-
time behavior tuning. This feature is important during the simulation phase when 
frequent changes in parameter values are needed for FoM estimations. 
The Simulator is laid out in a Client/Server architecture (Fig. 29). In the Server side 
there are two main blocks, the Test Bench and the Server Main modules, while in 
the Client side there are the Sim Framework and the Client Main modules.  

 

Fig. 28 - The FF-LYNX design flow. 
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Concerning the Server side, the Test Bench module contains the System-C 
protocol interfaces and its task is to transfer input data from the Server Main to the 
protocol interfaces and then to receive protocol interface outputs. The Server Main 
behaves as a functional master module, it stores temporarily both data coming 
from the Client and data waiting to be transmitted back to it. Both the Server and 
the Client have a Sim Interface module that interfaces the Server side with the 

 

Fig. 29 - The ISE Client-Server architecture; it can be implemented on 
SMP (symmetric multi processor) workstation or computing grid. 

 

Table 7 - Figures of Merit (FoM) 

Figures  of Merit (FoM)  Description  
Sent Pkt  number of VLF packets sent 
Lost Pkt  number of VLF packets lost 
LPR (Lost Packet Rate) Lost Pkt over Sent Pkt 

CPDR (Corrupt Packet Descriptor Rate) number of VLF  packets received with 
incorrect length 

CPPR (Corrupt Packet Payload Rate) number of  VLF packets received with 
damaged payload 

Mean, Min, Max PL (Mean, Min, Max 
Packet Latency) 

mean, min and max value of the packet 
latency 

Std PL (Standard Deviation of Packet 
Latency) standard deviation  of the packet latency 

Sent Trg (Sent Triggers) number of triggers sent 
Lost Trg (Lost Triggers) number of triggers lost 
Lost Hit number of FLF packets lost or corrupted 
LTR (Lost Trigger Rate) lost triggers over sent triggers 
FTR (Fake Trigger Rate) the rate at which fake triggers are received 
Lost Hit Rate lost hits over sent hits 
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Client side. The message passing is implemented on top of TCP/IP sockets. As 
regards the Client side, the Sim Framework module is made of a Stim_Gen module 
that generates the stimuli patterns and a FoM_Gauge module that gauges the 
figures of merit from the simulation results. The Client Main manages their 
initialization and provides the highway through which data flows from the Sim 
Interface module to the Sim Framework module and viceversa.  
The ISE architecture, being modular, allows to easily change every single module 
of the system, as long as the module interface remains the same. Thanks to the 
Client/Server approach there is a high degree of flexibility since the Server side can 
be relocated on a different (remote) machine or re-implemented for another 
architecture type (i.e.: FPGA emulator), without modifying the Client side. In this 
environment a typical simulation is based on one or many "runs" which can have 
different simulator configurations (parameter settings) to evaluate how the system 
behaves after these variations. As shown in Fig. 29, the ISE platform can be also 
implemented both in Symmetric Multi-Processing (SMP) machines (i.e.: multi-core 
and/or multi-processor) and in powerful computing grids (i.e. hundreds or 
thousands of processors) by spreading the load on multiple processing units, in 
order to decrease the simulation time and conduct longer and deeper analysis. 
An example of a simulation carried out in the ISE environment is shown in Fig. 30 
where the packet latency time (mean, max, min and standard deviation metrics) 
related to VLF data packets varies with the protocol speed (4x, 8x, 16x). For this 
analysis the physical layer considered is a coaxial cable. In Fig. 31 and 32 there 
are two examples of performance analysis that can be carried out, since the early 
protocol development steps, by using the ISE platform. 
The analysis in Fig. 31 and 32 regards the evaluation of mean sync time and false 
sync percentage for different values of the N_unlock and of the N_lock thresholds 
used in the Synchronization module of the FF-RX interface. Sync time, expressed 
in 40 MHz reference clock cycles, is the time for system re-synchronization after a 
synchronization loss, while false sync percentage depends on fake synchronization 
events. N_unlock and N_lock are thresholds that indicate the minimum number of 
detected synchronization sequences on one of the possible THS channels (4, 8 or 
16 in the three speed options) for synchronization unlocking and locking 
respectively. The synchronization mechanism  is based on the counting of THS 
sequences in each channel and the reaching of two counting thresholds (a high 
threshold, N_lock, and a low one, N_unlock) was chosen to distinguish a 
synchronization lock state (when synchronization is considered as acquired) and 
an out-of-lock state (when synchronization is being looked for). 
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Fig. 30 - Mean, minimum, maximum and standard deviation of 
packet latency with different link speeds. 

 

Fig. 31 - Mean synchronization time for different threshold 
settings. 
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This mechanism is hence called Dual Threshold (DT): the transition from the out-
of-lock state to the sync lock state takes place when one of the counters reaches 
the high threshold (thus becoming the in-charge counter) while the inverse 
transition occurs when a counter that is not in charge reaches the low threshold.  
As already mentioned, the Synchronization module is used for the detection of THS 
channel and the recovery of the reference clock. In these examples three different 
synchronization algorithms are considered: Privileged Dual Threshold (PDT), Fair 
Dual Threshold (FDT) and Mixed Dual Threshold (MDT). Using the PDT algorithm, 
when a counter hits the high threshold, it resets all the other counters but not itself. 
With the FDT algorithm, as soon as a counter hits the higher threshold, it resets all 
the counters including itself. The MDT algorithm combines the two previous 
variations giving an intermediate level of privilege to the in-charge counter. Taking 
into account the results of these system-level simulations the PDT synchronization 
algorithm was used for further development steps of the protocol and hardware 
implementation of its building blocks. Indeed, with N_unlock and N_lock equal to 
respectively 3 and 4, the PDT synchronization technique represents the best trade-
off between mean sync time and false sync percentage.  
In general terms, the ISE platform allows to tune the parameters of a generic 
system architecture to design (FF-LYNX protocol interfaces, in this case) according 
to results of performance analysis and to analyze in detail the behavior of the 
system during a typical working. In ISE the system architecture to verify is defined 
using System-C models. If the system works properly during simulation then, on 
the basis of System-C models and of performance analysis, HDL models are 
defined and implemented onto FPGA. Thanks to the flexibility of ISE platform, it is 
possible to use the simulator in the FPGA emulator by replacing the server section 
with the emulator without modifying the client section. As already said previously, 
this client-server architecture allows to take advantage of socket communication 

 

Fig. 32 - False synchronization percentage time for different 
threshold settings. 
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and to provide a scalable environment suitable for Symmetric Multi-Processing 
(SMP) workstations or computing grids. 
 

3.4.2. The ISE applications 
The developed ISE environment can be also used for an early evaluation of the 
impact of a new communication protocol and its hardware solutions on the 
performance of data acquisition systems; this drives to great advantages in terms 
of reduction of development time and costs for a new project/experiment or an 
upgrade of an ongoing one. Particularly, the ISE environment was used to 
characterize the Track-Trigger architecture proposed for the upgrade of the CMS 
Silicon Tracker, whose data are used in CMS to reconstruct the trajectories of the 
charged particles. Achievable data-rate was evaluated comparing different 
algorithms used for clustering, pairing and track-let finding. The performance of the 
readout system (e.g.: lost hit rate, corrupted hit rate, cluster rate, pair rate) was 
analyzed using different protocol configurations (e.g.: size of FLF packets) and 
hardware implementations (e.g.: Front-End buffer size, number of links, link 
speed). In performance analysis physics event classes (i.e.: loss rate, corrupted hit 
rate, cluster rate, pair rate for given physics events) were considered.  
By using GEANT4 data as ISE inputs an analysis was conducted; examples of the 
achievable results are reported in Fig. 33 and 34 if using  the FF-LYNX protocol 
described in Section 2 for the upgrade of the CMS tracker. Particularly, Fig. 33 
shows the achievable data rate, Mbps, at different Z values (longitudinal positions 
in the CMS  tracker) (Z0=0 cm, Z1=69 cm, Z2=137 cm, Z3= 206 cm) and for 
different detector layers while Fig. 34 reports the achievable transmission efficiency 
as a function of the effective available bandwidth. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 33 - Cluster data rate (Mbps) at different Z and different 
detector layers. 
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3.5. FPGA-based emulation platform 

3.5.1. Emulation system overview 
In order to test the FF-LYNX protocol interfaces and to validate the ISE simulation 
results, an FPGA-based emulator platform was designed. This emulator system 
(Fig. 35) is based on a C++ Graphical User Interface (GUI), used for the 
configuration and the control of the emulator, and on the VHDL emulator core. The 
VHDL emulator is implemented on an Altera Stratix II GX FPGA device 
(EP2SGX130GF1508 which provides 133,000 equivalent Logic Elements, 7 Mbit 
total RAM memory, 8 PLLs, 78 LVDS channels, 63 multipliers and adders blocks 
and 20 Transceiver channels with a data rate from 600 Mbps to 6.375 Gbps) [28] 
housed on a commercial PCIe board (PLDA XpressGXII board) [29] which can 
handle a 3.6 GB/s data rate (effective, full duplex). This FPGA development board 
was chosen to guarantee a large bandwidth to perform extensive emulations with 
high data rates with an acceptable efficiency in terms of emulation time. A typical 
real working scenario is to receive data from a CMS Tracker Front-End chip with a 
1.8 Gbps data rate (from physics simulation). Three or four FF-LYNX TX/RX 
interfaces working at 640 Mbps (maximum data rate allowed by the FF-LYNX 
protocol with a reference clock frequency of 40 MHz) could handle this data rate. 
The PCIe board, with its large bandwidth, allows realistic emulations. In our case, 
for one second of emulation, sending the test vectors and receiving the emulation 
results  take about 62.5ms. In addition, having a single FPGA development board 
which can be mounted on a workstation instead of having a platform composed by 
many separated parts, it allows to increase the level of compactness of the whole 
emulation system. This is a key feature towards the reuse of the same emulator 
environment as test bed when doing irradiation tests on the ASIC chips 
implementing rad-tolerant FF-LYNX building blocks. 

 
 

 

Fig. 34 - Transmission efficiency vs. available bandwidth (Gbps) for 
Z=Z0, different detector layers. 
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3.5.2. V
HDL emulation system 
The VHDL emulator system is formed by three main functional blocks, as shown in 
Fig. 36: the PCIe XpressLite core, the Interface Logic and the FF-Emulator core.  
 
 
 
 
 
 
 
 
 
 
The PCIe XpressLite core in Fig. 36 is an IP-core block provided by PLDA. It 
manages the communication with the PCIe bus and therefore with the host 
workstation. The Interface Logic is another block provided by PLDA, but it can be 
customized by the user and it is used to interface the PCIe XpressLite core to the 
user custom application block that is the FF-Emulator core. The FF-Emulator is a 
custom developed core whose block diagram is shown in Fig. 37. 
The FF-emulator core is divided in two modules: a Test Controller (TC) that 
manages the emulation test and the FF-LYNX TX and RX interfaces that represent 
the Device Under Test (DUT). The TC has a simple structure based on the 
following building blocks: 
TC core that includes two functional paths. The TX path manages the data 
transmission toward the FF-TX block. It is made of the TX Controller and the TX 
RAMs. The RX path manages the data reception from the FF-RX block. It is made 
of the RX Controller and the RX RAMs; 
TC configuration registers that contain test parameters as emulation window 
duration, number of VLF packets, presence or not of FLF packets, size of the FLF 
packets, TX TC buffer size, etc; 
The TX controller starts the transmission of a trigger (or of a FLF packets, when 
they are enabled) or the transmission of a VLF packet at pre-defined clock cycles 
(TX Time Stamps). The arrival timing of the received triggers and frames is stored 
and then compared with the TX  to evaluate the trigger and the packet latency. The 
TX and RX RAMs are divided in five different types of RAM: 

 

Fig. 35 - Emulation system: GUI, Workstation and Development 
board. 

 

 

Fig. 36 - VHDL emulator system. 
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VLF_TS (Variable Latency Frame Time Stamp) RAM to store the time stamps (TS) 
associated to VLF data packets transmitted/received to/from FF-LYNX interfaces; 
VLF_LEN (Variable Latency Frame Length) RAM to storie the length (number of 
16bit words) of the VLF data packets transmitted/received to/from FF-LYNX 
interfaces; 
VLF_DW (Variable Latency Frame Data Word) RAM to store the VLF data packets 
transmitted/received to/from FF-LYNX interfaces; 
TRG_TS (Trigger Time Stamp) RAM to store the time stamps associated to 
triggers or FLF data packets (if  they are enabled) transmitted/received to/from FF-
LYNX interfaces; 
FLF_DW (Fixed Latency Frame Data Word) RAM to store the FLF data packets (if 
they are enabled) transmitted/received to/from FF-LYNX interfaces. 
The TX and RX Controllers are made up of (i) time stamp counters whose current 
values are compared with values stored in the TX TS RAMs or stored in the RX TS 
RAMs, (ii) FSMs (Finite State Machine) to control the test flow and (iii) two FIFO 
buffers (only for TX Controller): one configurable buffer to store VLF data 
temporarily and another to store VLF data lengths associated to VLF data buffered 
on the first buffer. These two buffers allow to load a complete packet before 
sending it on FF-LYNX link. 
 

 
 
 
 
 
 
 
 

 

Fig. 37 - FF-Emulator core block diagram. 
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3.5.3. Emulator GUI software 
The C++ GUI software is organized as shown in Fig. 38  
It is based on three main parts: the PLDA drivers to interface the Host-PC with the 
PCIe PLDA board, the Data Manager to manage the emulator operations and the 
GUI (Fig. 39) to set all the emulation variables and to display emulation results. In 
the Data Manager block three important parts can be found: the EmuRun part 
which manages an emulation run on the base of several parameters set by user 
(as FF-LYNX interface data rate, emulation window duration, packet and trigger 
rate, number of triggers and packets, etc); the StimGen part that generates the 
VLF/FLF data packets and the time stamps and  store them in the TX RAMs; the 
Figures of Merit (FoM) Gauge that, according to emulation results, allows to define 
some FoM (as shown in Table 7), useful for validating and verifying FF-LYNX 
protocol efficiency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 38 - C++ emulator software block diagram. 
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3.5.4. FF-LYNX emulator working 
An emulation run is initialized by the user by means of the Emu GUI software. At 
the beginning it is necessary to set the FF-LYNX interface data rate (4x, 8x, 16x), 
the test configuration (choosing an internal or external connection between TX and 
RX modules under test), the TC TX buffer size, the emulation window duration, the 
number of packets and triggers, the size of VLF packets, the presence or not of 
FLF packets and the packet and trigger rate. Then the run can be started (Fig. 40). 
On VHDL emulator core side, by means of the Interface Logic module, the user 
emulation settings are stored on TC registers and the time stamps, the packet 
lengths and the data words, sent from the host PC, are stored into the TX RAMs. 
The TS counter of the TX Controller is started. When its value is equal to the value 
stored in the currently pointed locations of the VLF_TS or FLF_TS RAMs (as 
explained in Fig. 41), the system is ready to send triggers or packets towards the 
FF-LYNX TX interface. When the count value equals the TS RAM values, the TS 
and VLF_LEN RAM current pointers are increased by one. If count value is equal 
to VLF_TS RAM value then a number N of words of VLF_DW RAM are loaded and 
after stored on VLF data FIFO buffer. N is equal to the corresponding pointed value 
of VLF_LEN RAM and then it is stored on VLF data length buffer. After data storing 
into buffer, it needs to start interface operations. Data_Valid signal of FF-LYNX TX 
Back-end Interface is set high to show there are data packets ready for sending. If 
Get_Data signal of FF-LYNX TX Back-end Interface is low, data packets will wait 
for being sent, otherwise they are sent to FF-LYNX TX interface respecting the 
number N of VLF data words indicated by value stored on VLF data length buffer.  
If count value is, instead, equal to the current pointed value of TRG_TS RAM and if 
FLF packets setting is active (from GUI software) (as in Fig. 42), then the 

 
 

Fig. 39 - Emulator GUI. 
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corresponding value of FLF_DW RAM is sent to the FF-LYNX TX interface. FLF 
packets are sent without waiting or buffering because FLF packets, having to 
maintain fixed latency, have priority over VLF packets. Then, Trigger signal of FF-
LYNX TX Back-end Interface is set high. If FLF packets is not active, only Trigger 
signal is set high. All operations are executed until TS counter reaches the last 
value of TS RAMs. After the data transmission operations towards the FF-LYNX 
TX interface block is finished, FF-LYNX TX interface block will send data to FF-
LYNX RX interface block according to the FF-LYNX protocol. The RX Controller in 
the TC core will manage the interface with the FF-LYNX RX Back-end plus the 
data reception and storage tasks on the respective RX RAMs. At the end of this 
loop-fashion process, the RX RAM is read by the host system which, as already 
explained, will use it for generating FoM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 40 - A typical test setup using the emulation platform. 
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Fig. 41 - FF-LYNX emulator working (example of VLF packet transmission). 
 

 
Fig. 42 - LYNX emulator working (example of FLF packet transmission). 
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3.6. Emulation test 

Using the proposed emulation environment it is possible to extract some interesting 
graphs about the obtained FoM, thus assessing the performances of the 
communication protocol and its hardware building blocks, and evaluating their 
suitability when applied to the physics experiment of interest.   
As example, next figures show some tests carried out using 8x FF-LYNX interfaces 
and links. Particularly, Fig. 43 shows the achieved packet latency, in 40 Mhz 
reference clock cycles, as a function of the packet size expressed in data words. 
The achieved results provide important suggestions about the most suited way to 
configure the communication protocol and its interfaces for the project  of interest 
(e.g. an HEP experiment); indeed Fig. 43 shows that when the packet size 
increases over 52 data words there is a sharp increase of the packet latency. This 
increasing is due to packet queuing in TX buffer of  FF-LYNX interface under test. 
Below 52 data words there is a proportional increasing, with an "heuristic law" of 
roughly 4 clock cycles of latency increase for each new data word in the packet 
size,   simply due to the necessary time to send larger and larger packets.  
Fig. 44 shows the Packet latency, in 40 MHz reference clock cycles, as a function 
of the trigger gap, i.e. the distance, still expressed in clock cycles, between 
consecutive triggers. Fig. 44 shows that when the trigger rate increases the packet 
latency increases too. Packet latency increases because trigger priority is higher 
than data priority and so, when increasing the trigger rate, VLF packets are forced 
to wait into buffer before being sent. 
To be noted that in Fig. 43 and 44 for the packet latency all 3 main cost metrics 
defined in Table 7 were measured by emulation: min, max and mean PL.  
 
 
 

 

Fig. 43 - Packet latency vs. Packet size. 
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Fig. 45 shows the loss rate of data words as a function of the TC buffer size. The 
achieved results prove that by increasing the TC buffer size it is possible to 
decrease data word loss, because of a more data buffering. In Fig. 46 there is an 
important result that underlines the importance of emulator approach as a 
necessary part of protocol interface development and validation. It shows the 
differences between  high level simulation and emulation when measuring, as 
example, the packet latency as a function of the distance (in 40 MHz reference 
clock cycles) of consecutive packet transmissions. As reported in Fig. 46, using a 
packet size equal to 8 words (16bit), when packet gap decreases at 30 clock cycles 
or lower there is a mismatch between simulation results obtained thanks to ISE 
platform and emulation results obtained with FPGA emulator. The difference is due 
to protocol modeling inaccuracies proper of the high-level abstraction approach. In 
the specific case of the FF-LYNX simulation environment the System-C model of 
the protocol interfaces does not fit perfectly the real physical protocol interfaces: 
the model does not consider the finiteness of TX buffer and a consequent possible 
buffer overflow with packet loss. These packets which would be really lost, instead, 
are seen as packets still buffered and so there is a fake packet latency increasing 
in Fig. 46 for the high level simulation vs. the real-world emulation. 
 
 

Fig. 44 - Packet latency vs. Trigger gap. 
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Fig. 45 - TC buffer size vs. data word loss rate. 
 

 

Fig. 46 - Packet latency vs. packet gap. 
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3.7. Protocol test time comparison 

A key issue of a design and verification environment is the time needed to simulate 
or emulate a given time frame of the real system. Hence, several tests were done 
to assess the protocol test time of the proposed FPGA emulator compared to the 
protocol test time achievable with other high performance (HP) computing 
machines or with a distributed computing GRID. The following protocol test 
conditions were adopted:  

1. Test time: 60s; 
2. Speed: 4x, 8x; 
3. Trigger rate: 133 kHz, 400 kHz; 
4. Packet rate: 133 kHz, 400 kHz; 
5. Packet size: 5 or 8 words (16bit). 

The HP machines used for the comparison are: 
1. Intel Core Duo 2 T9300 (45 nm CMOS technology) processor with a 2.5 

GHz clock speed, 2 cores, 6 MB of L2 cache and a 64 bit instruction 
set;  

2. Intel Xeon X7550 (45 nm CMOS technology) processor with a 2.0 GHz 
clock speed, 8 cores, 18 MB of L3 cache and 64 bit instruction set; 

3. INFN (Istituto Nazionale di Fisica Nucleare) PISA CSN4Cluster data 
center [30], formed by a network of 256 AMD Opteron 2356 

QUADCORE 2.3 GHz processors with a total elaboration power of 10 
Terafloat/s and a data storage capacity of 10 TeraBytes. 

 
In Table 8 the achieved test timing results are summarized. It is worth noting that 
by using the FPGA emulator platform very fast tests can be performedconducted: 1 
minute of real system time can be emulated in roughly 6 minutes and so very long 
experiments in great details can be carried out. Thanks to our platform, the test 
time is decreased by a factor of about 20x and 100x compared to HP computing 
machines such as the 8-core Intel Xeon and the 2-core Intel CoreDuo respectively. 
The testing time performance of the proposed emulator platform is comparable to 
the results achievable with a much complex and costly 256 CPU GRID computing 
center [30]. 
 
 

Table 8 - Test Time Comparison. 

Test Environment  Test Time  
Simulation on Intel Core Duo@2.5GHz 11h 47m  
Simulation on Intel Xeon 8-Core@2.0GHz 2h 21m  
Simulation on INFN CSN4Cluster (256 CPUs) 3m 21s  
FPGA Emulator  6m 40s  
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3.8. Conclusions and future developments 

In this chapter an emulation platform for the verification and validation of FF-LYNX 
protocol interfaces was introduced. The FF-LYNX protocol is fast and flexible and 
is utilizable for several applications in HEP, medical and space research fields. The 
design of this platform is one phase of the top-down design flow of the ASIC chip 
which implements the FF-LYNX protocol interfaces. The proposed FPGA-based 
platform allows a deeper and faster verification of FF-LYNX protocol interface 
model with respect to high level simulations conducted with ISE platform. The 
verification time was decreased of about fifty times less than high level simulator of 
ISE platform. In addition, the System-C models, designed during the protocol 
definition phase, was quite good for validate the protocol functionality but it did not 
model the hardware protocol interface behavior perfectly, so it was necessary to 
use a VHDL language for the design, avoiding every model error. After the 
verification conducted with this platform, the ASIC chip was designed using a IBM 
180nm technology. Thanks to the flexibility of this platform, it was possible to 
modify the emulation system to be used as test bed to test the proper working of 
the ASIC chip, both in standard conditions and during X-ray irradiations to verify its 
hardness against the TD (Total Dose). In the future, this platform will be modified to 
be a test bed for the ASIC chip during heavy ions irradiation in order to test its 
hardness against SEEs (Single Event Effect). 
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4. DEVELOPMENT OF A CALCULATION PLATFORM FOR 
DYNAMICAL SYSTEMS SIMULATION 

4.1. Introduction 

During the last year of work, a new kind of digital embedded system was designed 
in order to support investigation and research on complex physical dynamics. 
Nowadays, in several fields of physics and engineering it is necessary to analyze 
various complex problems such as numerical differential equation solving, high-
definition image processing, target recognition and tracking, etc., in which there are 
a lot of data to elaborate. So, data handling and elaboration time are important and 
critical factors.  
In order to tackle these problems,  higher and higher performance computers, such 
as multi-core processor (McP) grid could be used. This approach is not very 
efficient because of the complexity in programming parallel code, the managing 
and controlling of a large grid and the necessity to have access to such facilities. 
Besides, these McP grids are expensive and power-hungry and it is impossible to 
use those in embedded applications such as industrial controllers, missile guidance 
systems, video surveillance, etc.  
It is possible to use several hardware technologies such as digital signal 
processing (DSP) devices [31], reconfigurable digital devices (e.g.: FPGAs) [32], 
[33], [34], symmetric multi-processing (SMP) machines [35] in order to solve that 
problem. Neural network systems [36] and cellular neural network (CNN) 
paradigms [37], [38] are employed to achieve the purpose.  
The CNN architecture, which will be introduced in 4.2 section, takes advantage 
over the neural network one thanks to its lower implementation complexity. It is 
convenient to investigate locally interconnected dynamical structures thanks to the 
CNN distributed computing approach. The evolution of this idea is the cellular 
neural network universal machine (CNN-UM) which is a new CNN computing 
structure formed by an array of NxM dedicated processors [39]. The CNN 
paradigm can be implemented in many kind of technologies such as analog 
devices [40], [41], hybrid digital devices, embedded architectures, digital signal 
processing systems and reconfigurable platforms as FPGAs [42]. Clearly, there are 
pros and cons in the choice of each technology. By using the analog approach 
there is the advantage to have higher computing performances but a lower 
accuracy due to non-linearity and dispersion of analog component parameters. 
With a reconfigurable digital approach we have lower design costs, higher 
accuracy but lower elaboration performances.  
Recently, there is the possibility to use graphic processing unit (GPU) systems, 
thanks to programming environments such as the Compute Unified Device 
Architecture (CUDA). This approach led to significant improvements in data 
managing and elaboration speed due to the highly parallelized hardware 
architecture typical of graphic processors [43]. Speedup ratios ranging from tens to 
hundreds, w.r.t. standard CPU approach, were demonstrated in several application 
fields such as image processing [44] and fluid dynamic simulations [45]. GPU are 
relatively low cost and natively integrated in common PC platforms but their 
architecture is, as expected, optimized for the algorithms to be executed by the PC 
graphic board. So the implementation of the CNN-UM always requires the re 
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organization of the algorithm in order to efficiently use the GPU resources in terms 
of number of parallel processes and internal data transfer rate [46].  
In this chapter an FPGA based distributed computing microarchitecture (DCMARK) 
based on the CNN-UM paradigm is proposed. In literature there are many similar 
approach in several research fields [47], [48], [49], [50] in confirmation of its 
efficiency. The guiding idea was to push the number of digital computing units, 
working in parallel, to the limit of the CNN cell’s number, replicating the CNN 
architecture, taking advantage, at the same time, of the efficiency of the hardware 
implementation of the local interconnection. The choice of an FPGA platform for 
the development phase was obvious, but the possibility to maintain a high degree 
of reconfigurability in the system convinced us to select it as the final 
implementation technology.  
A calculation system (DCMARK Calculator) was developed to this aim, of which 
DCMARK is the computing part. This system is used to solve partial differential 
equation systems, in particular, as a well known benchmark, we chose the one 
dimensional Korteweg de Vries equation system [51]. Using this type of 
architecture it is possible to reduce the elaboration time, increase the CNN array 
size (number of computing cells), increase equation solution accuracy and obtain a 
run-time fast calculator. 

4.2. Cellular Neural Networks (CNNs) basis 

A cellular neural network (CNN) is an artificial neural network which features a 
multi-dimensional array of neurons and local interconnections among the cells.  
The original CNN paradigm was first proposed by Chua and Yang in 1988. The two 
most fundamental ingredients of the CNN paradigm are: the use of analog 
processing cells with continuous signal values, and local interaction within a finite 
radius. A CNN is a nonlinear analog circuit which processes signals in real time. It 
is made of a massive aggregate of regularly spaced cloned circuit, called cells, 
which communicate with each other directly only through their nearest neighbors.  

4.2.1. Architecture of CNNs 
Any cell in a CNN is connected only to its neighbor cells. The adjacent cells can 
interact directly with each other. Cells not directly connected together may affect 
each other indirectly because of the propagation effects of the dynamics of CNNs. 
An example of a two-dimensional CNN is shown in Fig. 47.  

 
 



 

Every cell is influenced by a limited number of cells in its environment. This locality 
of connections between the units is the main difference between CNNs and other 
neural networks. Large CNN  chips can be implemented using VLSI techniques. 
The Fig. 44 shows the emphasized  
(gray).  The cells marked in gray represent the neighborhood cells of the black cell. 
The neighborhood includes the black cell itself. This is called a "3*3
Similarly, we could define a "5*5-neighborhood", a "7*7
The basic circuit unit of CNNs is called a cell.
elements, which typically are linear capacitors, linear resistors, linear and nonlinear 
controlled sources, and independent sources. All the cells of a CNN have the same 
circuit structure and element values. A typi
48.  

   
Each cell contains one independent voltage source
current source I (Bias), several voltage controlled current sources I

Fig. 47 - Cellular Neural Network schematic structure

Fig. 48 - Typical circuit of a single cell
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Every cell is influenced by a limited number of cells in its environment. This locality 
of connections between the units is the main difference between CNNs and other 

chips can be implemented using VLSI techniques.  
 cell (black) connected to the nearest neighbors 

The cells marked in gray represent the neighborhood cells of the black cell. 
The neighborhood includes the black cell itself. This is called a "3*3-neighborhood".  

neighborhood", a "7*7-neigborhood" and so on.  
The basic circuit unit of CNNs is called a cell. It contains linear and nonlinear circuit 
elements, which typically are linear capacitors, linear resistors, linear and nonlinear 
controlled sources, and independent sources. All the cells of a CNN have the same 
circuit structure and element values. A typical circuit of a single cell is shown in Fig. 

 

Each cell contains one independent voltage source Eu ij (Input), one independent 
current source I (Bias), several voltage controlled current sources In

u ij, In
y ij, and one 

 

Cellular Neural Network schematic structure. 
 

Typical circuit of a single cell. 
 

 

 

 



 

voltage controlled voltage source Ey ij 

are coupled to neighbor cells via the control input voltage of each neighbor cell. 
Similarly, the controlled current sources I
the feedback from the output voltage of each neighbor cell.
The cell C(i,j) has direct connections to its neighbors through two kinds of weights: 
the feedback weights a(k,l;i,j) and the control weights b(k,l;i,j), where the index pair 
(k,l;i,j) represents the direction of signal from C(i,j) to C(k,l). The coefficients 
a(k,l;i,j) are arranged in the feedback
b(k,l;i,j) are arranged in the control-Template or B
the B-Template are assumed to be the same for all the cells in the network. The 
global behavior of a CNN is characteriz
Template, the B-Template, and the Bias I.  
Template Set consists of 19 coefficients
assumed to be constant over a certain operation interval. Therefore, the total input 
current to the cell is given by the weighted sum of control inputs and weighted sum 
of feedback outputs. In addition, a const
the capacitance C and resistance R, the state voltage x(i,j) satisfies the following 
differential equation:  
 

G
HIJ,L

H#
= −

1
M IJ,L �

k denotes the neighborhood  of the specific cell
   
Without loss of generality, the time constant T = R*C can be set to 1. 
The only nonlinear element in each cell is a piecewise
voltage source with characteristic  
 

N�O, P�

A widely used nonlinearity is the piecewise
 

N�O, P� � Q&I�O, P�. �
 

 
   
 
 
 
 
 
 
 
 

Fig. 49 - The piecewice
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y ij (Output). The controlled current sources In
u ij 

are coupled to neighbor cells via the control input voltage of each neighbor cell. 
Similarly, the controlled current sources In

y ij are coupled to their neighbor cells via 
the feedback from the output voltage of each neighbor cell.  
The cell C(i,j) has direct connections to its neighbors through two kinds of weights: 
the feedback weights a(k,l;i,j) and the control weights b(k,l;i,j), where the index pair 

ents the direction of signal from C(i,j) to C(k,l). The coefficients 
a(k,l;i,j) are arranged in the feedback-Template or A-Template. The coefficients 

Template or B-Template.  The A-Template and 
med to be the same for all the cells in the network. The 

global behavior of a CNN is characterized by a Template Set containing the A-
Template, and the Bias I.  If we assume a "3*3-neighborhood", the 

Template Set consists of 19 coefficients. The external input to the cell is typically 
assumed to be constant over a certain operation interval. Therefore, the total input 
current to the cell is given by the weighted sum of control inputs and weighted sum 
of feedback outputs. In addition, a constant bias term (I) is added to the cell. Due to 
the capacitance C and resistance R, the state voltage x(i,j) satisfies the following 

�R��SNS � �ST�
S

� 1								�7� 
 

specific cell 

Without loss of generality, the time constant T = R*C can be set to 1.  
in each cell is a piecewise-linear voltage controlled 

� � � Q�I�O, P��								�8� 
 
 

nonlinearity is the piecewise-linear function (Fig. 49) as given by:  

�. � 0.5 ∗ �|I � 1| � |I � 1|�								�9� 

   

 
The piecewice-linear function. 

 

 



 

The block diagram of a cell C(i,j) is shown in the 

4.2.2. Global behavior of CNNs
In image processing, n-by-m rectangular grid arrays are often used. n and m are 
the numbers of rows and columns, respectively. Each cell in a CNN 
an element of the array. Assuming that each cell is connected to its nearest 
neighbors only ("3*3-neighborhood") and that the local connections of a cell do not 
depend on the cell's position, the Template set contains 19 coefficients (A
Template: a1 .. a9, B-Template: b1 .. b9, Bias I). The behavior of the CNN is 
completely determined by this Template set. 
New CNN-Templates for arbitrary tasks may be found using a training algorithm, or 
by defining local rules for a given global task. The lo
equilibrium state depending on the inputs and outputs of the neighbor cells. The 
inputs and the outputs of the neighbor cells are assumed the be constant. 
dynamics of the cell is not specified. If
found, simulations are very helpful to test the dynamic global behavior of the entire 
clone of cells.  
Optimal coefficient calculation leads to solutions which converge after short time. 
This means that the output of every cell reaches its fi
short time. 

4.2.3. Possible applications 
CNNs can be used in many scientific applications: 
In signal processing, CNNs show great promise in solving many complex problems 
that cannot be solved satisfactorily using convent

Fig. 50 - A block diagram of a cell C(i,j)
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of a cell C(i,j) is shown in the Fig. 50.  

Global behavior of CNNs  
m rectangular grid arrays are often used. n and m are 

the numbers of rows and columns, respectively. Each cell in a CNN corresponds to 
Assuming that each cell is connected to its nearest 

neighborhood") and that the local connections of a cell do not 
depend on the cell's position, the Template set contains 19 coefficients (A-

Template: b1 .. b9, Bias I). The behavior of the CNN is 
completely determined by this Template set.  

Templates for arbitrary tasks may be found using a training algorithm, or 
by defining local rules for a given global task. The local rules describe a cell's 
equilibrium state depending on the inputs and outputs of the neighbor cells. The 
inputs and the outputs of the neighbor cells are assumed the be constant. The 
dynamics of the cell is not specified. If  template values for the local rules are 
found, simulations are very helpful to test the dynamic global behavior of the entire 

Optimal coefficient calculation leads to solutions which converge after short time. 
This means that the output of every cell reaches its final output y=+1 or y=-1 after 

CNNs can be used in many scientific applications:  
, CNNs show great promise in solving many complex problems 

that cannot be solved satisfactorily using conventional approaches.  

 

A block diagram of a cell C(i,j). 
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1. solve the maximum-likelihood estimation of signals in the presence of 
intersymbol interference and white Gaussian noise  

In image processing that deals with gray-scale image inputs, CNNs can be applied 
to perform  

1. Feature extraction & classification;  
2. Motion detection & estimation;  
3. Collision avoidance;  
4. Object counting and size estimation;  
5. Path tracking.  

In analyzing 3-D complex surfaces, the CNN is capable of  
1. Detecting minima and maxima;  
2. Detecting area with gradients that exceed a given threshold.  

In solving partial differential equations, CNN is suitable for reducing non-visual 
problems to geometric maps for  

1. Thermographic maps;  
2. Antenna-array images;  
3. Medical maps and images.  

4.3. General system architecture 

The complete block diagram of the whole calculation system is shown in Fig. 51. It 
is divided into three main parts: 

1. a Terasic DE4-230 FPGA Development Board; 
2. the System on Programmable Chip (SoPC) which contains our 

Distributed Computing Microarchitecture block implemented on the 
FPGA; 

3. an host PC with a Graphic User Interface (GUI) for calculation 
management. 

 The Development board and the host PC communicate using an Ethernet protocol 
connection. 

4.3.1. DE4-230 FPGA development board 
The DE4-230, from Terasic Tech.inc, is an FPGA Development Board (Fig. 52) 
equipped with an Altera Stratix IV GX EP4SGX230 FPGA featuring about 228,000 
Logic Elements (LEs), 91,200 Adaptive Logic Modules (ALMs), 14,283kb 
Embedded Memory and 8 Phase Locked Loops (PLLs). The board includes: 64MB 
Flash memory, 2MB SSRAM memory, 2kb EEPROM memory, two DDR2 memory 
slots up to 8GB, three USB 2.0 ports, RS-232 port, four Serial ATA 3.0 ports, four 
Gigabit Ethernet ports, a PCI Express x8 edge connectors (up to 5.0Gbps/lane for 
Gen2), SD card slot, 9 SMA connectors. As it can be shown in the following, the 
board demonstrated to be a powerful platform for the implementation and test of 
the DCMARK idea and is ready for future evolutions. 

4.3.2. System on programmable chip (SoPC) 
SoPC is a complete system controlled by an Altera NIOS II IP softcore processor. 
In the system there are: a Triple Speed Ethernet (TSE) module for 
communications, our Distributed Computing System (DCSYS), and Scatter-Gather 
(SG) DMA modules for fast transmission operations between devices. NIOS II 
processor manages all main SoPC operations such as communications between 



 

TSE module and the host PC, devices interrupt handling, MicroC/OS II Operative 
System (OS) supervising, etc. NIOS II is programmed by the user using the Eclipse 
software, based on C language. The SoPC allows to interconnect system devices 
thanks to an Altera communication bus facility called Avalon. There are several 
kinds of Avalon buses for every need such as Memory
Master (M) and Slave (S) structure for device command and control operations and 
STreaming (ST) bus with a Source (SRC) 
data transmissions. 
 
 
 
 
 

Fig. 51 - DCMARK Calculator block diagram.

Fig. 52 - DCMARK Calculator block diagram.
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TSE module and the host PC, devices interrupt handling, MicroC/OS II Operative 
System (OS) supervising, etc. NIOS II is programmed by the user using the Eclipse 

The SoPC allows to interconnect system devices  
communication bus facility called Avalon. There are several 

kinds of Avalon buses for every need such as Memory-Mapped (MM) bus with a 
Master (M) and Slave (S) structure for device command and control operations and 
STreaming (ST) bus with a Source (SRC) and Sink (SNK) structure for continuous 

 
DCMARK Calculator block diagram. 

 

 
DCMARK Calculator block diagram. 
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4.4. Distributed computing microarchitecture (DCMARK) 

The DCMARK, included into the Distributed Computing System (DCSYS) block of 
SoPC, is based on the CNN-UM approach in which several custom processors 
execute a group of sequential operations at the same time in order to elaborate 
particular information. At the first computing step each processor acquires status 
data from the neighboring processors (with a limited sphere of influence) and after 
a determined number of clock cycles (elaboration time) they will give their local 
results. These results can be analyzed versus time and/or space. With a time 
analysis we study just one single processor (a fixed spatial point) results versus 
time while with a space analysis we study all processors (all spatial points) results 
at a fixed time step.  
In this paper, by way of example, a 1-D locally interconnected dynamical system is 
investigated. This system is based on a discretized partial differential equation 
where every point of the spatial array is a dynamical element. Each processor of 
DCMARK is dedicated to a dynamical element of the spatial array. In our case 
every dynamical element has a neighborhood formed by four dynamical elements 
(two on its right and two on its left). 
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4.4.1. Single cell block 
Each calculation unit of DCMARK is called a Cell and is based on a Von Neumann 
elaboration architecture, thus its RAM memory stores both Data and Micro-Code 
(MCode). The MCode approach was chosen in order to easily modify the physical 
phenomenon investigation just changing the implemented equation (as long as it is 
expressible with sums and multiplications). 
The Cell (Fig. 54) has a 40bit Data Bus and an 8bit Address Bus. Its Arithmetic 
Logic Unit (ALU) allows to execute Floating Point (FP) additions and 
multiplications. In order to demonstrate the DCMARK idea, this first implementation 
of the Cell uses ALTERA blocks for the adder and multiplier, leading to a maximum 
amount of about 200 Cells to be integrated in the FPGA device adopted. This 
number is expected to be substantially increased by working on the customization 
of the ALU block and thanks to the continuing growth of the available device size. 
The Cell, that can be clocked up to 180MHz, contains: 

1. a Control Module, implemented as a Finite State Machine (FSM) which 
controls the micro-code execution and enables the control signals; 

2. a 40bit x 256 RAM memory; 

Table 9 - DCMARK microinstructions 

Instruction OpCode N° Clock Cycles Function 

FETCH 000000 2 Fetching operation  

LDA 000001 2 Loading data in Reg A  

LDB 000010 2 Loading data in Reg B  

LDI 000011 2 Loading Status Cell in Reg I  

ST 000100 1 Storing Result on a Data RAM location  

STM2 000101 2 Storing M2 Reg  on M2 RAM location  

STM1 000110 2 Storing M1 Reg on M1 RAM location  

STP1 000111 2 Storing P1 Reg on P1 RAM location  

STP2 001000 2 Storing P2 Reg on P2 RAM location  

ADD 001001 8 Adding Reg A to Reg B  

SUB 001010 8 Subtracting Reg B from Reg A  

MUL 001011 6 Multiplying Reg A by Reg B  

JUMP 001100 1 Jumping to a micro -code RAM Location  

 



 

3. a 32bit Floating Point (FP) Adder;
4. a 32bit Floating Point (FP) Multiplier;
5. a 8bit Program Counter; 
6. a 40bit Instruction Register;
7. three 32bit Operation Registers (A, B and C) for arithmetical operations;
8. five 32bit input/output (I/O) Registers (I, M

current status data from its neighborhood;
9. a 6x1 40bit Data Multiplexer;
10. a 2x1 8bit Multiplexer; 
11. a 2x1 32bit Result Multiplexer.

 
The Micro-Code is written using a group of 13 custom mi
Table 9. 
Each instruction stored in RAM has the fol

 

4.4.2. Parallel cell configuration module
In order to quickly program the RAMs of 
Configuration Module (PCCM) (Fig. 
The PCCM is formed by: 

1. a Configuration Block: it is a Finite State Ma
configuration File from Configuration ROM and programs all 

2. a Configuration ROM: it stores
initial status variables and constants;

3. a Write Decoder: it allows to address every Cell for one
parallel programming. 
different initial status variable on each cell RAM while parallel 
programming allows to store MCode and constants on all cell RAM at 
the same time. 

 
 
 
 
 

Fig. 53 - RAM data word structure.
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a 32bit Floating Point (FP) Adder; 
a 32bit Floating Point (FP) Multiplier; 

 
a 40bit Instruction Register; 
three 32bit Operation Registers (A, B and C) for arithmetical operations; 
five 32bit input/output (I/O) Registers (I, M2, M1, P1, P2) for acquiring 
current status data from its neighborhood; 
a 6x1 40bit Data Multiplexer; 

a 2x1 32bit Result Multiplexer. 

Code is written using a group of 13 custom micro-instructions as in 

uction stored in RAM has the following format (Fig. 53): 

Parallel cell configuration module  
the RAMs of all the Cells, we designed a Parallel Cell 

 55). 

a Configuration Block: it is a Finite State Machine (FSM) which reads a 
configuration File from Configuration ROM and programs all the Cells; 
a Configuration ROM: it stores a Configuration File containing MCode, 

variables and constants; 
a Write Decoder: it allows to address every Cell for one-to-one and 

 One-to-one programming allows to store a 
different initial status variable on each cell RAM while parallel 
rogramming allows to store MCode and constants on all cell RAM at 

 
RAM data word structure. 

 

 



 

 
 
 

Fig. 54 - DCMARK single cell block diagram (working registers are in sky
registers are in dark blue; the blue and green lines rep

the 8bit address bus respectively).

Fig. 55 - DCSYS block diagram.
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DCMARK single cell block diagram (working registers are in sky-blue and I/O 
registers are in dark blue; the blue and green lines represent the 40bit data bus and 

the 8bit address bus respectively). 
 

 
DCSYS block diagram. 

 

 

 
blue and I/O 

resent the 40bit data bus and 
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4.5. Complex physical dynamics investigation 

One of the most important topic of contemporary science focuses on the study of 
continuous [52],[53] and discrete [54], [55] dynamical systems, analyzing their 
organization as non linear evolving structures [56]. Chaos is the most striking 
feature of their behavior. The concept of dynamical system is connected to a 
mathematical model which describes its time evolution and it is often characterized 
by differential equations [57]. Differential equation solving allows to define and 
forecast the future evolution of system in time and space. To allow a more and 
more detailed analysis of dynamic systems it is absolutely necessary to perform 
long and heavy numerical simulations which would require powerful, fast and 
expensive elaborators (sometime multi-core grid). In order to verify the quality of 
our DCMARK approach we began to investigate a no complex problem 
characterized by a one-dimension partial differential equation. 
A case study: 1-D Korteweg de Vries equation 
The Korteweg de Vries takes its name from Diederik Korteweg and Gustav de 
Vries who, in 1895, proposed a mathematical model which allowed to predict the 
waves behaviour on shallow water surfaces [51]. The solutions of this equation 
were self-reinforcing solitary waves named Solitons and had several interesting 
properties. Mainly, these solutions are permanent shape, and localized within a 
region and when they interact with other solitons they don't change their speed or 
shape (neither a signal amplification or signal fading) but they just have a phase 
shift [58], [59]. There are many research topics explained by the KdV equation, 
such as the already mentioned shallow-water waves [60], the ion-acoustic waves in 
plasma [61], [62], the wave propagation in nonlinear lattice [63], the non-linear 
transmission networks [64], [65] and the Fermi-Pasta-Ulam recurrence problem 
[66]. 
The main idea is modulating solitons and transmitting them on communication lines 
such as optical fibers. 
The one-dimension (1-D) Korteweg de Vries differential equation is the following 
[63]: 
 
 

[T�#, I�
[# = −6T�#, I� [T�#, I�[I − []T�#, I�[I] 								�10� 

 
Where u(t,x) is the solitonic propagating wave. The progressive wave (called 
soliton) of the KdV equation has the following expression: 

 

T�#, I� = − ν

2 ∙ sech` a
√ν
2 �I − ν# − I��b								�11� 

 
Where ν	 is the wave velocity and I�	is the initial spatial constant. 
Furthermore, the KdV equation can be analytically solved by the inverse scattering 
transform [67], [68] 
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4.5.1. Discretization of KdV equation 
 In order to implement the equation on DCMARK we had to discretize (10). 
Considering the second term in right-end side of (10) we can lay down: 
 

T�#, I� [T�#, I�[# = 1
2
[cT�#, I�d`

[I 																							�12� 
 
hence, as in [62], the (10) becomes: 
 [T�#, I�

[# = −3[cT�#, I�d`[I − []T�#, I�[I] 											�13� 
 
We used for the numerical discretization of spatial derivative terms of (13), a 
space-centered finite difference method [69] and we divided the KdV equation in N 
single equations [40]: 
 [TJ[# =

1
2∆I] c�TJf` − TJg`� + 2�TJgh − TJfh�d 		+

3
2∆I 	�TJfh`− TJgh`�																																																																																																�14� 

 
where i=0,...,N. are the space iteration index and ∆I is the space step of the 
discrete grid. 
 For the time derivative term of (14), just for the first iteration, we used a forward 
time finite difference method (15) as in [59], [61] because there is no preceding 
value at the first step of numerical integration process. Hence, for the other 
iterations, we used a centered-time finite difference method (16). We set iJh = h

`∆jk, iJ` = ]
`∆2 and ih = h

∆jk, i` = ]
∆2 

  

TJSgh = TJS + ∆# liJhm&TJf`S − TJg`S . + 2&TJghS − TJfhS .n 						
+ iJ` oTJfhS ` − TJghS `pq																																																																		�15� 

 

TJSgh = TJSfh + ∆# lihm&TJf`S − TJg`S . + 2&TJghS − TJfhS .n
+ i` rTJfhS ` − TJghS ` + TJS&TJfhS − TJghS .sq																																	�16� 

 
where k=0,...,M. are the time iteration index, i=0,...,N. are the space iteration index 
and ∆# is the integration time. Using this combined approach we have a stable loop 
propagation of a soliton through all cells for all time cycles. 
This kind of discretization is less accurate than other types but it is also the best 
technique in terms of implementation easiness and resources saving on embedded 
systems.  
The linchpin of the calculator idea is to consider every single TJ with i=0,...,N. a 
single solitonic state cell which calculates its future state value on the basis of state 
values of its first and second neighbors that is TJ∓� with a=1,2 as in [41], [71]. 
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4.6. KdV implementation on DCMARK 

The implementation of KdV equation on DCMARK consists of two main 
implementation steps: a MCode step and a Cells Network step. 

4.6.1. MCode implementation step 
MCode step consists of dividing (15) and (16) in single micro-instructions to be 
stored on RAM. 
We defined 14 arithmetical operations for (15), where ROpx is the operation result 
which is stored on RAM:  
 

1. Opi1 : �TJf` − TJg`� => ROp1 
2. Opi2 : �TJgh − TJfh� => ROp2 
3. Opi3 : �ROp2 + ROp2� => ROp3 
4. Opi4 : �ROp1 + ROp3� => ROp4 
5. Opi5 : �Kh ∗ ROp4� => ROp5 
6. Opi6 : �TJfh ∗ TJfh� => ROp6 
7. Opi7 : �TJgh ∗ TJgh� => ROp7 
8. Opi8 : �ROp6 − ROp7� => ROp8 
9. Opi9 : �K` ∗ ROp8� => ROp9 
10. Opi10 : �ROp5 + ROp9� => ROp10 
11. Opi11 : �∆# ∗ ROp10� => ROp11 
12. Opi12 : �TJ + ROp11� => ROp12 
13. Opi13 : �TJ + ZERO� => (updating TJSfh ) 
14. Opi14 : �ROp12 + ZERO� => (updating TJ) 

 
For (16) we defined 17 arithmetical operations, but the first eight are the same as 
those for (15): 
 

1. Op9 : �TJfh − TJgh� => ROp9 
2. Op10 : �TJ ∗ ROp9� => ROp10 
3. Op11 : �ROp8 + ROp10� => ROp11 
4. Op12 : �K` ∗ ROp11� => ROp12 
5. Op13 : �ROp5 + ROp12� => ROp13 
6. Op14 : �∆# ∗ ROp13� => ROp14 
7. Op15 : &TJSfh + ROp14. => ROp15 
8. Op16 : �TJ + ZERO� => (updating TJSfh ) 
9. Op17 : �ROp15 + ZERO� => (updating TJ) 

 
The Opi13, Opi14 and Op16, Op17 have the task to update the Cell Status 
variables at the end of every iteration, that is the old value of TJ becomes TJSfh and 
the new value of TJ is updated. 
After the arithmetic operations definition we started to write all MCode copies 
according to a well-defined process. This process starts loading the Cell Status 
variable TJS, from RAM and storing it on I/O Register I to be available for other 
neighbor Cells and then storing on RAM the four neighbor Cell Status variables TJf`S ,	TJfhS ,	TJghS ,	TJg`S  stored in I/O Registers M2, M1, P1 and P2, respectively. After 
every iteration step this process is re-executed. 



 

This loading/storing operations are conducted using the micro
I, that is LDI, STM2, STM1, STP1 and STP2.
In the RAM structure, shown in Fig. 
store the 137 micro-instructions, Status Variables part to store the Cell Status 
variables, Constants part to store the constants defined 
Operation Variables to store the partial operation results. We have also four free 
locations for possible modifications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The MCode is formed by 137 micro
the first iteration) only 74 micro-instructions are executed in the computing loop.
The content of Configuration File stored on Configuration ROM has the structure as 
shown in Fig. 57. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 
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This loading/storing operations are conducted using the micro-instructions in Table 
s LDI, STM2, STM1, STP1 and STP2. 

 56, we find four main parts: Micro_Code part to 
instructions, Status Variables part to store the Cell Status 

tore the constants defined in (15) and (16) and 
Operation Variables to store the partial operation results. We have also four free 

 

is formed by 137 micro-instructions but after the system start-up (after 
instructions are executed in the computing loop. 

The content of Configuration File stored on Configuration ROM has the structure as 

 
Fig. 56 - RAM structure. 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.6.2. Cells network implementation step
Cells Network step lies in connecting properly every Cell with its first and second 
neighbors according to Cell relationship shown in
 In particular, using the approach in [
network as in Fig. 58. 

 

Fig. 57 - ROM Configuration File structure.

Fig. 58 - Cell Ring Block diagram (for Cell #2 case: red line shows the link to first left 
neighbor, blue line the link to first right neighbor, green line the link to second left 

neighbor and violet line the link to second right neighbor).
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Cells network implementation step  
Cells Network step lies in connecting properly every Cell with its first and second 

relationship shown in (15) and (16).  
In particular, using the approach in [41], we connected the Cells building a Ring 

 
ROM Configuration File structure. 

 

 
Cell Ring Block diagram (for Cell #2 case: red line shows the link to first left 

neighbor, blue line the link to first right neighbor, green line the link to second left 
and violet line the link to second right neighbor). 

 

 

Cell Ring Block diagram (for Cell #2 case: red line shows the link to first left 
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4.6.3. DCMARK performances and used resources 
The preliminary version of a Single Cell processor and of DCMARK is implemented 
on FPGA Stratix IV GX. In Table 10 we find the resources used, without any kind of 
design optimization. 
As regards the Single Cell computing time, every Cell executes a KdV iteration 
(integration step) producing a 32bit output value in about 3,77µs with a 100MHz 
system clock hence with a throughput of about 8,488,063 bit/s. But considering a 
Cell Ring of N Single Cells this throughput has to be multiplied by N.  
Using the FPGA Altera Stratix IV GX, we can implement up to 200 Single Cells on 
our DCMARK. 
 
 
 
 
 
 
 
 
 
 

4.7. Analysis settings and results 

We executed two kinds of analysis:  
1. a high-level test by means of a MatLab software simulator in order to 

verify the quality of equation discretization and to study the variation of 
parameters such as number of Cells, ∆x, ∆t, Initial Cell Status and 
number of iterations. 

2. a calculation test using the whole calculation system to verify the 
correctness of results compared to simulation results and elaboration 
time. 

 

4.7.1. KdV simulation test 
The first parameters to tune are ∆x and ∆t. According to [61] these two parameters 
have to be related on the basis of (17), called Courant-Friedrichs-Lewy (CFL) 
condition, to have convergence. 
 

ν	 ∙ ∆#/∆I ≤ G																												�17� 
 

where ν    is the wave velocity by which the wave goes from IJ to IJgh and C is a 
constant which depends on the equation. In a nutshell, ∆# has to be smaller than ∆I/ν. 
Then we chose the number of Cells closed in the Ring Network and the Initial Cell 
Status. 
A hyperbolic secant squared function is chosen: 

Table 10 - Single cell used resources 

FPGA  
Resources 

Used  
Resources 

ALMs 561 

Combinatorial ALUTs 860 

Total Registers 800 

Total Block Memory bits 10,240 
DSP Block 18-bit 

elements 4 

DSP 36x36 1 

 



 

 u~ = K ∙ sech`
0 � O � ���I �

 
This function avoids divergence integration problems, thanks to its zero
envelope for I → �∞. 
We conducted three types of simulations: time, spac
In the following figures we can see some simulation results with th
settings of Table 11: 
 
 
 
 
 
 
 
 
 
 
 
As we can see in Fig. 59 a soliton, starting from the tenth cell, travels through the 
100 cell ring network and after about 1500 iterations (15 s) it completes one loop. A 
soliton travels from a cell to another in about 15 iterations (0.15s) with a steady 
wave velocity of about 3.3 mm/s.  

 
 
 
 
 

Table 11 - Simulation parameters configuration

Simulation 
Parameters 

N° Cells 

∆I 

∆# 
N° of Iterations 

Initial Cell Status 

Fig. 59 - Matlab KdV time simulation of 100 cell network with a 2*sech^2 as initial 
status function (10th cell output).
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` IJ with �O� � IJ � ��I, 
��O��/∆I, ∆I � IJgh � IJ . 

This function avoids divergence integration problems, thanks to its zero-tangent 

We conducted three types of simulations: time, space and time/space simulations. 
In the following figures we can see some simulation results with the parameter 

, starting from the tenth cell, travels through the 
100 cell ring network and after about 1500 iterations (15 s) it completes one loop. A 
soliton travels from a cell to another in about 15 iterations (0.15s) with a steady 

mulation parameters configuration. 

Parameter 
Values Notes 

100 Ring-like network 

0.5 mm according to 

CFL condition 0.01 s 

10000  

u~ � 2 ∙ sech`IJ �5 � IJ � 5 

 

 
Matlab KdV time simulation of 100 cell network with a 2*sech^2 as initial 

status function (10th cell output). 
 

 

Matlab KdV time simulation of 100 cell network with a 2*sech^2 as initial 
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In Fig. 60 there is a time/space graph in which it is clear that soliton travels with a 
steady wave velocity (constant slope lines) through the cell ring network. 

 
These results confirm both the stability of KdV equation numerical solving after 
many integration steps and the physical phenomenon emergence of soliton 
propagation. 
 

4.7.2. Calculation results 
In our tests we deployed up to the maximum number of Single Cells implementable 
on DCMARK, that is 200 Single Cells. The Single Cell is still a prototype core and 
so it is not optimized for saving FPGA resources. Many Altera library IP cores 
(such as floating point adders and multipliers, RAMs, counters, etc) with several 
unused features are instantiated on Single Cell. Our idea for future developments 
is to design our own cores in order to significantly decrease the Single Cell FPGA 
requirements. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 60 - . Matlab KdV space/time simulation of 100 cell network with a 2*sech^2 as 

initial status function. 

Table 12 - Calculation parameters configuration 

Calculation 
Parameters 

Parameter 
Values Notes 

N° Cells 100 Ring-like network 

iJh = 1/�2∆x]� 4 

∆I = 0.5	�� 
iJ` = 3/�2∆x� 3 

ih = 1/∆x] 8 

i` = 3/∆x 6 

∆# 0.01 s 
according to CFL 

condition 

Initial Cell Status u~ = K ∙ sech`IJ −5 < IJ < 5 

K = 2, 
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As previously said, using the Analysis GUI we monitored the analysis evolution. 
In the Configuration File, stored on the Configuration ROM, we set as Initial Cell 
Status the hyperbolic secant squared function as in simulation tests. 
In table IV we show the calculation parameter values for a typical KdV analysis. 
Fig.61 shows the LabWindows GUI image plotting a KdV calculation result 
obtained using the DCMARK Calculator according to the parameters settings in 
Table 12. Therefore, we noticed that the same result of the Matlab simulation is 
obtained. This result is also confirmed by a numerical comparison between Matlab 
and DCMARK data. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 61 - . LabWindowsTM GUI with results of a KdV time calculation using a 100 cells 

DCMARK (10th cell output) with a 2*sech^2 as initial status function. 
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4.8. Performance comparison 

After the Test Phase (Simulation/Calculation) we underlined the differences 
between MatLab KdV simulations on PC and KdV calculation on FPGA using our 
DCMARK approach. As elements of comparison we chose two PCs with the 
following processors: 

1. Intel Core-i7 2630QM, 2GHz clock speed, 4 Cores, 8 Threads, 64bit 
Instruction Set, 6MB Intel Smart Cache.  

2. Intel Pentium M 760, 2GHz clock speed, 1 Core, 1 Thread, 32bit 
Instruction Set, 2MB L2 Cache. 

The parameters settings (∆I, ∆# and Initial Cell Status) are those in Tables 11, 12 
and as we can see in Table 13 the elaboration time for DCMARK system is about 
10 times shorter than Intel Core i7 PC and about 70 times shorter than Intel 
Pentium M PC already for the 100 cells problem. Doubling the cell number, as 
expected, the performance gap increases. DCMARK performances are unrelated 
from the number of cells and so, as long as the FPGA resources are saturated, 
from the complexity of the investigated problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig.62, we find linear fitted curves about testing time variation with respect to 
number of iterations for the two study cases: 100 and 200 cells system. It is again 
underlined the independence of DCMARK performances from the number of cells. 

Table 13 - DCMARK calculator performance 
comparison 

Elaboration Device N° 
Cells 

N° 
Iterations 

Elaboration 
Time 

Intel Core i7 100 
300000 13 s 
400000 17 s 
500000 21 s 

Intel Pentium M 100 
300000 1 m 18 s 
400000 1 m 45 s 
500000 2 m 14 s 

FPGA DCMARK 
Calculator 

100 
300000 1.2 s 
400000 1.6 s 
500000 2 s 

Intel Core i7 200 
300000 26 s 
400000 34 s 
500000 42 s 

Intel Pentium M 200 
300000 2 m 41 s 
400000 3 m 33 s 
500000 4 m 31 s 

FPGA DCMARK 
Calculator 

200 
300000 1.2 s 
400000 1.6 s 
500000 2 s 
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4.9. Conclusions and future developments 

 
In this chapter we introduced an innovative kind of distributed computing 
architecture, called DCMARK, for investigating complex physical dynamical 
problems. DCMARK is the union of a FPGA-based extremely parallelized 
computing platform and a PC based user interface for setting and analyzing the 
results of calculations. The main features of this system are the total system 
reconfigurability for analysing different types of cell-based phenomena and an 
elaboration time independent from the complexity (in terms of number of cells) of 
the studied problem. 
This hardware calculation approach allows to exploit many concurrent processes 
executed at the same time, decreasing the elaboration time. Besides, using an 
FPGA device we exploited its intrinsic reconfigurability and flexibility. The results 
are promising since, for example, a 100 Cells DCMARK allows to execute KdV 
equation integration steps 10 times faster than a 4-core processor. 
 The future development steps to increase the performances will be: the 
optimization of Single Cell in terms of used resources in order to tackle more and 
more difficult problems and the improving of the GUI usability. Another important 
development would be to switch to an ASIC approach, that will lead to loosing 
reconfigurability but gaining speed, as well as reducing area and improving general 
system potentiality. Vice versa, taking advantage of the reconfigurability, the 
DCMARK Calculator can be used in order to implement innovative learning 
techniques, as in [72] or in analogy to [73]. 

 
Fig. 62 - . Comparison between  PCs and DCMARK elaboration time increasing the 

number of iterations and the number of Cells . 
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CONCLUSIONS 

This work covered several aspects of design of embedded digital systems for data 
handling and elaboration. Attention was focused on the design of systems to 
support both industrial and scientific applications. 
At first, an overview of modern embedded systems and a description of the 
concept of data handling and elaboration were presented. Then the three different 
embedded platforms were introduced and described in detail.  
In the first chapter, the microcontroller-based inertial/GPS platform was introduced. 
This system allows a smart management and creaming off of digital sensor data, 
thanks to a proper cooperation of two microcontrollers, and improves the wireless 
link throughput by means of an efficient buffering and transmission of selected data 
to host PC. The test demonstrated also the good performance of system with 
regard to trajectory tracking, using a sensor data-fusion approach, and the battery 
autonomy. The possibility to integrate all components of this platform on a single 
dual-layer PCB board would allow to use the system for several different 
applications such as  body motion recognition, fall detection, etc. 
In the second chapter, the FPGA-based emulation platform was described. The 
system was thought firstly to conduct a validation of FF-LYNX protocol interfaces, 
deeper and faster than the System-C simulations executed on high performance 
PC. The platform allowed to verify the FF-LYNX interface working up to fifty times 
more quickly than high level simulator. Thanks to this validation, VHDL FF-LYNX 
interface models were implemented on ASIC chip for the last phase of design flow. 
The flexibility of the platform guaranteed, with the right modifications, to use that as 
test bed for verify the proper working of ASIC chip. 
In the last chapter, another FPGA-based platform was treated. This calculation 
platform was designed for executing complex calculations, in particular to solve 
non-linear differential equations. The innovative approach was based on a 
distributed computing micro-architecture which follows a CNN structure. Using this 
architecture, it is possible to decrease the calculation time up to ten times less than 
modern multi-core processors. The main result was that the calculation time was 
almost unrelated from the size and complexity of spatial and temporal grid. The 
possibility to use larger and larger FPGAs, would guarantee to tackle more and 
more complex problems and so to improve the computing power of platform. 
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