
UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

PHD THESIS

Usage Control in the
Internet of Everything

Author

Athanasios Rizos

Supervisors

Fabio Martinelli
IIT-CNR

Andrea Saracino
IIT-CNR

February, 2020

To my family and all my friends for all their support
throughout the period of the preparation of this work.

“With your mind power, your determination, your instinct,
and the experience as well, you can fly very high.”

AYRTON SENNA

Abstract

The Internet of Things (IoT) is a world-wide network of heterogeneous intercon-
nected objects, uniquely addressable, which are based on standard communication
protocols and are able to interact with each other in order to share information
based on communication protocol. Over the last years, IoT devices have become
more and more pervasive to our daily life. Moreover, IoT is also one of the techno-
logical factors that enable the Internet of Everything (IoE) which includes not only
Things, but also People, Data and Processes.

Security of IoT and IoE is a major aspect nowadays. The communication pro-
tocols that are used on this area lack of mechanisms that enforce policies contin-
uously and control the access to the resources. In addition to the previous, the
difference of the communication protocols in terms of architecture and character-
istics has the effect that information sharing is difficult to be controlled via a single
tool or mechanism.

Thus, there is the challenge of enhancing the security features of IoT proto-
cols with a single mechanism so as to be able to cope with this aspect. For this
reason, we present in this thesis a hierarchical Usage Control (UCON) model that
is based on a distributed verion of the standard UCON model. UCON enhances
Attribute Based Access Control (ABAC) models in two novel aspects: continuity
of control, and mutability of attributes. Hence, we can control with this access
requests inside complex IoE architectures. In order to demonstrate the viability of
our approach, we present how UCON can be added on the most common commu-
nication protocols, how we can enhance the interoperability of UCON for different
IoE services, and finally we present the hierarchical UCON accompanied by policy
simplification methods.

I

Acknowledgement

I would like firstly to thank my supervisors for their guidance throughout the period
of the PhD and the University of Pisa for the opportunity that they gave to me.

Furthermore, I would like to thank Prof. Pierpaolo Degano and Prof. Paolo
Ferragina for their crucial help and guidance during this period. Also, I would like
to thank the internal committee and the external reviewers of my thesis and all the
people of the Department of Computer Science of the University of Pisa for their
assistance.

I would like also to thank all my colleagues in the Institute of Informatics and
Telematics (IIT) of the National Research Council of Italy (CNR).

At this point, I would like to thank the European Union and the NeCS European
Project (H2020 - GA #675320) for the opportunity given to me, contributing on
the research over this very important topic and my colleagues in NeCS for the
collaboration we had.

Finally, I would like to thank my family, my friends and all the people I collab-
orated with for their continuous support and help.

II

Contents

1 Introduction 1
1.1 Goal and Overview of the Thesis 7

1.1.1 Overview Regarding IoT Protocols 8
1.1.2 Overview Regarding Interoperability of IoT Devices and

Services . 9
1.1.3 Overview Regarding Enhancements in Usage Control . . . 10
1.1.4 Structure of the Thesis 12

1.2 Research Questions of the Thesis 12
1.2.1 Answers to the Research Questions 13

1.3 Publications . 14

2 Background 16
2.1 The Internet of Everything . 16

2.1.1 The Internet of Things 16
2.1.2 From the Internet of Things to the Internet of Everything . 17

2.2 Application Layer Communication Protocols 19
2.2.1 Constrained Application Protocol (CoAP) 21
2.2.2 Message Queuing Telemetry Transport Protocol (MQTT) . 24
2.2.3 Advanced Message Queuing Protocol (AMQP) 25
2.2.4 Hypertext Transfer Protocol (HTTP) 26
2.2.5 Extensible Messaging and Presence Protocol (XMPP) . . 27
2.2.6 Other Protocols . 28
2.2.7 Summary Over the Protocols 30

2.3 Access Control . 31
2.3.1 Role Based Access Control (RBAC) 32
2.3.2 Attribute Based Access Control (ABAC) 32

III

2.3.3 Security Policy Languages 33
2.4 Usage Control . 36

2.4.1 Usage Control Model . 36
2.4.2 Usage Control Architecture 39
2.4.3 Usage Control Policy Language (U-XACML) 41
2.4.4 Distributed Usage Control 43
2.4.5 Why Usage Control . 46

2.5 If This Then That (IFTTT) . 47
2.6 Related Work . 49

2.6.1 Related Work Regarding Protocol Security 49
2.6.2 Related Work Regarding Usage Control in the Internet of

Things . 51
2.6.3 Related Work Regarding Efficient Policy Management of

Usage Control in the Internet of Everything 53

3 Distributed Usage Control and Internet of Things Communication 55
3.1 Addition of Usage Control in IoT Application Layer Protocols . . 55

3.1.1 Usage Control in MQTT Protocol 56
3.1.2 Distributed Usage Control in CoAP Protocol 62
3.1.3 Usage Control in Other Protocols 65

3.2 Application of Usage Control in Combination of IoT Application
Layer Protocols . 65
3.2.1 Architecture . 66
3.2.2 Experimental Evaluation 67

3.3 Usage Control for Interoperable IoT Devices and Services 71
3.3.1 Enforcing Usage Control Obligations via IFTTT 73
3.3.2 Experimental Evaluation 78

3.4 Limitations of Usage Control in the Internet of Things 85

4 Hierarchical Usage Control 88
4.1 Hierarchical Systems . 89
4.2 Hierarchical Usage Control Architectural Model 90

4.2.1 Descending from the Top Holon to the Bottom Holon . . . 91
4.2.2 Ascending from the Bottom Holon to the Top Holon . . . 91

4.3 Use Case Example of Hierarchical Usage Control 93

5 Policy Management in Usage Control over the Internet of Everything 95
5.1 Enhancing Usage Control for Performance: An Architecture for

Systems of Systems . 95
5.1.1 Accompanying Information about Risk Aggregation . . . 96
5.1.2 The Proposed Architecture 99

5.2 From Attribute-Based Access Control (ABAC) to Role-Based Ac-
cess Control (RBAC) . 108
5.2.1 Mechanism for Security Policy Based Management and

Enforcement in the IoT 109
5.2.2 Use Case Example: A Digital Supply Chain Scenario . . . 115
5.2.3 Test Case . 117

6 Conclusion 120
6.1 Future Research Directions . 124

List of Figures

2.1 The Internet of Everything (IoE) Example. 17
2.2 Constrained Application Protocol (CoAP) Architecture. 22
2.3 Message Queuing Telemetry Transport Protocol (MQTT) Archi-

tecture. 24
2.4 Advanced Message Queuing Protocol (AMQP) Architecture. . . . 26
2.5 Extensible Messaging and Presence Protocol (XMPP) Architecture. 28
2.6 XACML Policy Language Model. 35
2.7 Usage Control Model Components. 38
2.8 Usage Control Framework Diagram. 39
2.9 Usage Control Policy Language (U-XAMCL) Model. 42

3.1 Usage Control in MQTT Architecture. 57
3.2 UCON in MQTT Workflow Diagram. 58
3.3 UCON in MQTT Testbed Logical Representation. 60
3.4 Timings on the Simulated Testbed. 61
3.5 Performance on the Real Testbed. 62
3.6 Architecture Diagram of Usage Control in CoAP Protocol. 63
3.7 Workflow Diagram of Usage Control in CoAP Protocol. 65
3.8 Architecture Diagram of the Proposed Framework. 66
3.9 Use Case Diagram. 68
3.10 Subscription Timings for Both Protocols. 71
3.11 Revoke Timings for Both Protocols. 72
3.12 Logical Architecture of Usage Control in IFTTT. 74
3.13 Sequence Diagram of the Proposed Framework. 75
3.14 Example of Usage Control Obligation via IFTTT in a Smart-greenhouse

Installation. 79

VI

3.15 Example of Usage Control Obligation via IFTTT in a Smart-office
Installation. 81

3.16 Example of IFTTT Applet Structure. 82
3.17 Timings for Handling a Request and a Revoke of Access. 85

4.1 Diagram of the Hierarchical Usage Control Architectural Model. 91
4.2 Use Case Example of the Hierarchical Usage Control Architectural

Model. 93

5.1 Total Risk Reverse Tree. 98
5.2 Risk Aware Usage Control Architecture. 100
5.3 The Proposed Architectural Model. 101
5.4 Initiation Phase-Sequence Diagram. 103
5.5 Operation Phase-Sequence Diagram. 104
5.6 Exemplified Test Case Scenario. 106
5.7 Results of the Executed Tests. 107
5.8 Process Diagram for the Initialization Phase. 112
5.9 Use Case of a Digital Supply Chain of an Electronics Factory. . . 115
5.10 Digital Supply Chain - Test Case Details. 116

List of Tables

2.1 Comparison of IoT Protocols . 21
2.2 Comparison of IFTTT and its Alternatives. 48

3.1 Timings for comparing results between Raspberry and Desktop ex-
periments. 61

3.2 Timings in Milliseconds (ms) for Both Protocols. 70
3.3 Timings in milliseconds (ms) over the attribute number. 84

5.1 Comparison Matrix of the Alternatives for the Administrator. . . . 99
5.2 Comparison Matrix of the Alternatives for a new Employee. . . . 99
5.3 Results of the Executed Tests. 108
5.4 List of Critical Group Attributes. 113
5.5 Definition of Accepted Roles of each Subject per Class. 113
5.6 Roles and Privileges per Class. 118

VIII

Chapter 1

Introduction

The Internet of Things (IoT) is a world-wide network of heterogeneous intercon-
nected objects, uniquely addressable, which are based on standard communication
protocols [115], and are able to interact with each other in order to share informa-
tion [44]. Over the last years, IoT devices have become more and more pervasive
to our daily life. IoT has already, and will have in the future, a significant impact
on several aspects of everyday life and behavior of users [43].

The number of connected devices has already passed the 20 billion milestone
and we are heading to 50 billion devices by 2025 [32] [128]. This number becomes
even more dramatic if we consider the Internet of Everything (IoE) paradigm,
which also includes user devices such as smartphones, smartwatches, tablets, etc.
[91]. Moreover, many new smart devices are going to enter our houses and replace
the traditional ones, such as smart TVs, refrigerators, thermostats, ovens, lights,
showers, and many others [104]. This is a paradigm that things are rapidly evolv-
ing in the area of modern wireless telecommunications [6]. Thus, the most obvious
effects of the IoT shall be visible in both working and domestic fields.

The security predictions for the following years claim that IoT security is a top
concern anticipating more vulnerabilities and attacks from cyber-criminals [12]
[118]. They also claim that the devices that are sold are not secure by design
and that patching of IoT devices has been proven to be difficult to manage [147].
Moreover, attacks on IoT devices has been found as both simple and destructive
[157]. The main motivation of hackers is to hijack devices so as to create powerful
botnets so that all the hijacked devices will be ready to act in unity.

In addition to the previous, IoT communication protocols, in their current form,
lack of crucial security features and mechanisms [9]. Furthermore, the difference

1

of the communication protocols in terms of architecture and characteristics has the
effect that information sharing is difficult to be controlled via a single tool. Thus,
there is the challenge of enhancing the security features of IoT protocols with a
single mechanism so as to be able to cope with this aspect.

Furthermore, IoT is also one of the technological factors that enable the “IoE”
which, according to Cisco1, is the networked connection of not only Things, but
also of People, Data and Processes [63]. This definition means the goal of connect-
ing people in more relevant and valuable ways, converting Data into intelligence to
make better decisions on information sharing, and delivering the right information
to the right recipient [34].

Differently from IoT, where objects store the information produced in order to
provide sharing or querying to them, in IoE, there is no duplicating of the infor-
mation, but the values are extracted by filtering, aggregating, and merging the data
originally created [160]. Undoubtedly, the IoE is already impacting the everyday
life of many people and its importance is expected to rise in the next few years
[115].

Moreover, apart from the IoT and the IoE, the term Cyber-Physical System
(CPS) has been also introduced. This term does not refer only to the connectiv-
ity and coordination between computational and physical resources that are able
to communicate with sensors like IoT. It also refers to the indication of monitor-
ing and mostly to the usage of actuators that can modify both the cyber and the
physical environment [142]. CPS is targeting to adaptability, autonomy, efficiency,
functionality, reliability, safety, and usability [38] and combines different scientific
fields such as cybernetics, design and process science, mechatronics [25]. Exam-
ples of CPS include smart grid, autonomous automobile systems, medical monitor-
ing, process control systems, robotics systems, and automatic pilot avionics [69].
Summarizing, the previous lead to the fact that CPS is a part of IoE [110].

The IoE is an inherently complex ecosystem, due to the many different ar-
chitectures and protocols used, and the different types of hardware and software
present in IoT devices. Thus, securing the communications and operations of the
IoE area has become of capital importance [112]. Besides, there are a lot of im-
mature products and cheap devices being released in the market with insufficient
security mechanisms.

As a result, several security issues have been identified, such as interception
of communications, data compromise by unauthorized parties to collect Personal

1http://ioeassessment.cisco.com/

2

Identifiable Information (PII), authentication can be brute-forced, credentials can
be extracted from device firmware, mobile apps or intercepted at login, and new
firmware can be uploaded with malware [10]. IoT devices could be very different,
because they typically have different types of hardware, depending on the provided
functionalities, and software applications to manage them. Thus, it is of paramount
importance to provide techniques that allow secure information exchange between
IoT devices although it is very difficult to control the information exchange in
IoT, due to the different architectures and characteristics of the communication
protocols that are used in this area.

Considering the previous facts, it is necessary to have a unique mechanism that
should make easier the information exchange of the different devices that are used
in the same environment. But, in order to have a unique mechanism which eases
the control of all the smart devices owned by the same user, a necessity has arisen
to be able to easily communicate with a set of distinct IoT devices. To this aim,
several protocols have been proposed in the scientific literature, and among them,
Message Queue Telemetry Transport (MQTT)2, which is recently standardized by
OASIS3 and Constrained Application Protocol (CoAP) are two of the most widely
used [3] [10]. Both protocols were designed for IoT and Machine-to-Machine
(M2M) applications.

On the one hand, CoAP was introduced as a standard by the Internet Engi-
neering Task Force (IETF) in 2014 [131] and its key features are simplicity for
constrained environments, very low overhead, and easy interoperability with Hy-
pertext Transfer Protocol (HTTP). Similarly to HTTP, CoAP uses the REpresenta-
tional State Transfer (REST) model. Hence, CoAP uses a Client/Server communi-
cation pattern, in which Servers make resources available and Clients interact with
resources using REST methods (Get, Post, Put, Delete). When a Client requests
access to a certain piece of information, the access granting decisions are based on
the optional use of the Datagram Transport Layer Security (DTLS) library, which
provides the security-oriented features of CoAP. CoAP security mechanisms only
rely on the optional use of DTLS for controlling the access and enforcing autho-
rization policies.

On the other hand, MQTT works according to the Publish/Subscribe protocol
pattern, where a central Broker handles the communications and data sharing, col-
lecting data from a set of Publishers and redistributing them to a set of Subscribers,

2http://mqtt.org
3https://www.oasis-open.org/

3

according to their specified interests. The Broker is working as a middleman by
receiving all the subscription requests and distributing the information published
to every Subscriber interested. According to [141], the MQTT standard and the
existing implementations, provide support only for basic authentication and simple
authorization policies, applied to Subscribers at subscription time and enforcing
such policies only in case of subscription of clients to message topics. While the
spreading of IoT devices is widely and rapidly increasing, the problem of secur-
ing all those data from IoE is growing and getting more relevant [146]. Since
MQTT is based on HTTP functionalities, most of the MQTT security solutions
seem to be either application specific, or just leveraging Transport Layer Security
(TLS)/Secure Socket Layer (SSL) protocols [3]. Currently, OASIS MQTT security
subcommittee is working on a standard to secure MQTT messaging using MQTT
Cybersecurity Framework [96].

Although the effort concerning security of IoT communication protocols is ris-
ing, two main obstacles occur. The first one is that, although the protocols have
the ability to deal with various components that become Publishers/Subscribers
or Clients/Servers, the fact that they use different platforms makes it difficult to
create and enforce a generic security policy [68]. The second problem is that the
current efforts are mainly directed to message communication security, to avoid
eavesdropping, integrity violation and Man In The Middle (MITM) attacks [21].
Still no efforts have been done in the directions of supporting policy enforcement
at Broker level, nor it has been considered the possibility of dynamically revok-
ing subscriptions. MQTT security subcommittee has not provided any result yet
on how authorized part of the MQTT ecosystem can remain authorized for all the
duration of usage of a service [96].

Summarizing the previous, in addition to mobility, security is a high require-
ment for IoT and IoE. But, the connection of the cybernetic and the physical world
means that vulnerabilities in terms of security and privacy are not limited to the
hardware of our computer but they can be found to our energy grid systems, phys-
ical access control systems, cloud services, or even when we cross the street in a
smart city [63]. Also, due to the heterogeneity of IoT devices, regarding hardware
components, software implementation, and communication protocols, their man-
agement becomes very difficult. The most important challenge is to create scalable
and feasible security mechanisms for controlling access requests in a future with
billions of heterogeneous devices connected to the Internet. In the IoE, the evalu-
ation of requests for access to certain piece of information, must provide policies

4

about attributes related to each component which are called security policies. The
latter means the definition of a set of rules according to which access request is
evaluated [125].

The process of mediating access requests to resources of a system is called
access control and is determining whether the request should be granted or denied.
The decision is enforced by a mechanism implementing regulations established by
a security policy. Different access control policies can be applied, corresponding
to different criteria for defining what should be allowed [125].

But, modern interconnected System of Systems (SoS), such as IoE systems,
require scalable and efficient security mechanisms, for controlling a very large
number of access requests in a future with billions of heterogeneous devices con-
nected to the Internet. The evaluation of requests for access to certain pieces of
information and services commonly relies on dedicated policies [93], which in-
corporate object, subject, and environmental attributes. Such policies are based on
predefined rules, while access control is a process by which use of system resources
is regulated according to a security policy and is permitted only by authorized en-
tities (users, programs, processes, or other systems) according to that policy [132].
A multitude of access control policies can be defined, corresponding to distinct
criteria for what should be allowed and what not [125].

There are various access control models in the literature [105]. Whereas most
of them provide specific types of access control, the Attribute-Based Access Con-
trol (ABAC) models appear as the most generic because they consider various types
of different attributes. A withdraw of the most access control models is that the ac-
cess request is checked only once initially, which indicates the challenge that there
are no mechanisms that check the values of attributes during a session so at to
reevaluate the policies and eventually the right of continuing access granting.

This type of continuous control is a feature that Usage Control (UCON) model
[76] can provide. UCON enhances ABAC models [152] in two novel aspects [106]:
continuity of control, and mutability of attributes. Continuity of control is the eval-
uation of access decision happens not only at request time, but also when the re-
quester executes access rights on the resource [75]. Mutability of attributes means
that if there occur changes in attribute values while a session is in progress and the
security policy is not anymore satisfied, UCON can revoke immediately the access
and terminate the usage of the resources [166].

Furthermore, ABAC models evaluate security policies in eXtensible Access
Control Markup Language (XACML) [152]. In addition, UCON uses a XACML

5

extension called XACML with Continuous Usage Control Features (U-XACML)
[26]. XACML is an Extensible Markup Language (XML)-based language stan-
dardized by OASIS4 with a very high expressiveness potential, hence fitting the
flexibility requirements of complex environments, such as IoE ones.

To further increase its expressiveness, XACML pairs standard ABAC con-
structs such as authorizations and prohibitions with Obligations, i.e. mandatory
actions that have to be performed in conjunction with the policy enforcement [26].
Obligations can be of two types according to their target. These are obligations
focusing on attribute updates and obligations that force subjects to enforce them.
Currently, XACML does not provide a standard for the description of the obligation
semantics targeting subjects. There is an existing effort of OASIS to standardize
obligations, but only in the level of introducing a tag responsible for forcing at-
tribute updates when necessary. While the intention is the one of non imposing
constraints on format of the represented information, the direct consequence is that
every obligation management engine has to be developed ad-hoc.

Having a standard semantic for representation which is meaningful at least in
an application macro-environment, such as IoE, can push developers and policy
editors to use common expressions to represent and enforce obligations. In partic-
ular, it is possible to express obligations as commands for an inter-operable service
or platform used by a multitude of IoT/IoE devices, such as If This Then That
(IFTTT)5. In real world implementations, obligations are agreed before obtaining
the rights and at that time obligation-related authorization rules are checked.

This arises the necessity of a unique way that could achieve more secure data
distribution amongst the various IoT devices together with seamless interaction
between them when an obligation must be enforced. IFTTT is a free web-based
platform used to create applet chains of conditional statements in IoT settings.
Each applet chain, also called Recipe or Applet, is triggered by changes that happen
within various web-services and as a result does specific actions on other web-
services. Expressing triggers through UCON obligations will allow the device
receiving the policy evaluation decision to easily execute the obligations, without
hard-coding the actual obligation interpretation, demanded to the specific UCON
applet.

Yet, IoE environments carry inherent limitations in terms of both computational
and communications capacity. Accordingly, corresponding optimizations must be

4https://www.oasis-open.org/committees/xacml/
5https://www.ifttt.com/

6

implemented to the original UCON design, seeking to maintain operational effi-
ciency at run-time, but also further security objectives related to resilience. Such
optimizations must be initially integrated architecturally, and further enhanced
within the components of the deployed policy based management systems.

Furthermore, managing complex IoT systems is further complicated by the
presence of different communication protocols, application standards, architectures
and interaction models, which make the management of security in this environ-
ment an extremely challenging task [85]. Still, such a task is mandatory, con-
sidering both issues for captured and processed data, and the effect of IoT devices
actions in the physical world. To manage security and privacy in IoT environments,
UCON has been successful used as a control tool able to handle seamless access
management and data protection [72].

1.1 Goal and Overview of the Thesis

This section gives and overview of the thesis and its goal. Taking into considera-
tion all the previous, we identified the gap of providing more secure solutions in
the level of IoT protocols, whereas in the meanwhile to also consider the enforce-
ment of more complex security policies that the IoE creates. Thus, we do not only
need a solution that can work to each protocol separately, but we need a mechanism
that can be used simultaneously in more than one protocols and enforce policies
accordingly. Moreover, this mechanism must be very light so as to perform effi-
ciently in IoT constraint environments but powerful enough to provide continuous
control in the access to the resources.

So, in order to cope with the previous aspects, the goal of this thesis is to de-
fine and evaluate a generic policy enforcement architectural model that is based
to a extended and adapted version of UCON framework, targeting to provide con-
tinuous access control and policy enforcement on the IoE. This model shall target
to provide a hierarchical variation of UCON that will continuously enforce poli-
cies and control the access to the resources of complex IoE systems. This model
shall be able to provide a holistic solution independently from the type, application
protocol, policy attribute number or language between all components of an IoE
environment. i.e. when attributes refer to the behavior of people, which increases
policy complexity, UCON can cope with it seamlessly.

7

1.1.1 Overview Regarding IoT Protocols

In order to achieve the goal of this thesis we firstly started on understanding the
status of the current bibliography and finding the gaps described above. The next
step was to identify how UCON is able to work alongside IoT protocols in order
to enhance their security capabilities. Considering the architecture of IoT applica-
tion protocols we tried to figure out the most viable way for UCON to be added
on their architecture. This way is by intercepting access requests in the commu-
nication level besides the fact that the communication pattern is not the same in
every protocol. Our survey, though, revealed that most of the IoT protocols follow
two main communication patterns which are either the Publish/Subscribe or the
Client/Server one. For this reason we selected to work with two protocols, where
each of them uses one of the previous mentioned communication patterns. After
surveying wich protocol could be the most appropriate we made the choice to use
in the case of the Publish/Subscribe pattern the MQTT protocol, and in the case
of the Client/Server pattern the CoAP protocol. Our goal in this step was to add
UCON in the architecture and workflow of the protocols so as to prove that UCON
can acomplish this task.

Firstly, we added UCON in MQTT where we aim at enforcing dynamically fine
grained policies, which do not only consider the identity of the Subscriber as a pa-
rameter for granting access to data, but also dynamic attributes such as Subscriber
reputation, data reliability, or environmental conditions of a specific application.
The proposed framework is designed to be general, easy to integrate in the Broker
component, remaining oblivious to both Publishers and Subscribers. The addition
of UCON in fact, does not modify the MQTT protocol, enforcing the policies in-
dependently from the implementation of Publisher and Subscriber, which allows
the proposed solution to be compatible with any Off-the-Shelf MQTT Publisher/-
Subscriber application. Furthermore, we demonstrate the viability of the approach
by presenting a real implementation of the framework on both general purpose
and performance constrained devices, discussing also the performance measured
on two Rasperry Pi 3 model b6, used respectively as Broker and Subscriber.

After understanding and exploring the results of this work, our next step was to
try and see how UCON can perform the same task in CoAP protocol. But, the result
showed us that considering IoT it is better to use distributed UCON [109]. The
proposed solution is based on a fully distributed Peer-to-Peer (P2P) UCON system

6https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

8

[85]. It has been specifically designed to be implemented in IoT architectures and
it is based on a group of smart-nodes which have their own logical architecture that
can match UCON.

By working on a distributed environment, each node has its own access directly
to local attributes that are accessed only by this node. Conversely, there are also
the remote attributes the values of which can be remotely acquired by other nodes.
The policies in the distributed UCON framework consider both attribute types. By
using this version of UCON framework, we have the ability to create subsystems
that have a standalone Usage Control System (UCS) with its own Policy Enforce-
ment Point (PEP)s and local attributes. At the same time, all of them are connected
together in a distributed system which allows access to remote attributes [27].

This work gave the possibility of creating for the first time, a SoS, consisted
of different IoT subsystems, so that the latter can exchange information about at-
tributes, and achieve the security enhancement of both CoAP and MQTT proto-
cols by adding strong authorization capabilities provided by the distributed UCON.
With this solution, we aim to provide dynamic policy enforcement towards more
secure data distribution on both protocols at the same time.

1.1.2 Overview Regarding Interoperability of IoT Devices and Ser-
vices

Moreover, we enhance the interoperability between the protocols, by sharing at-
tribute values via distributed UCON. This work presents the implementation of
UCON on top of CoAP and MQTT. We highlight that the presence of UCON does
not impact how the protocols work, which means any CoAP and/or MQTT appli-
cation can support it. To further our approach, we measure the performance of a
real implementation.

In addition to the previous, we found that the interoperability in IoE is not
only a protocol matter, but also between services. This is a matter of how UCON
can not only stop the access when necessary, but also to start other services as a
result to the previous revoke. For this part, we achieved this goal by presenting the
application of IFTTT triggers to express and enforce UCON obligations. This work
is describes a novel architecture where the standard UCON framework is combined
with the IFTTT platform services. Our architecture, is providing a standardized
format of obligations so that they can trigger valid IFTTT Applets. The proposed
architecture is designed to be independent from the specific device implementation,

9

specific application and communication protocols.
Thus, our work does not alter the XACML model and workflow, whereas we

enhance its capabilities by proposing a standardized way of expressing obligations,
reusing pre-existing components, being thus non intrusive. In this work we dis-
cuss the full operative workflow, detailing both UCON and IFTTT operation parts,
proposing two relevant use cases and a set of performance experiments to demon-
strate the viability. Moreover, our work does not interfere with the execution of the
IFTTT Applets and does not require any modification in the model of UCON. Our
contribution on this part is to define a standardized way of expressing obligations
in XACML where the recipient of the obligation can create a valid IFTTT expres-
sion out of it in order to trigger an existing Applet. We present the viability of the
proposed approach by presenting the details of the architecture and implementa-
tion of our framework, relevant use-cases and also a set of experiments to measure
the timings that an obligation needs to be enforced over an example that triggers
an existing IFTTT Applet created for this purpose.

1.1.3 Overview Regarding Enhancements in Usage Control

Based on the previous findings we have created a hierarchical architectural model
based on the distributed version of UCON on which we can control access requests
inside a system of systems that is consisted of subsystems in the area of IoE. On
this system, we have the ability to exchange attribute information between the sub-
systems and mediate action requests considering policies that either affect the local
subsystem or the global system. This hierarchical model, will can control complex
IoE systems, even though they work with different communication protocols and
different types of attributes, that although inside the subsystems a specific access
request may be permitted, but a total violation of the resource usage may lead to a
revoke of an upper hierarchically entity.

On the top of the previous, we identified and tried to mitigate the limitations of
the original and distributed UCON [45]. The current UCON architecture, requires
the complete re-evaluation of access permissions per user-asset-session triplet, both
at the initiation and at runtime. This, has been experimentally proven to require
many computational resources, especially as the users, assets, sessions and policy
attributes increase [46]. Accordingly, we describe the developed architectural op-
timizations to the original UCON, seeking to positively affect run time efficiency,
scalability, and resilience against active attacks. In order to achieve that, a service

10

group functionality is introduced to the existing model alongside with a dynamic
role allocation subsystem, both based on risk aggregation. Thus, the right of ac-
cess will be granted to a user, based on his allocated role for each group of services
and not for one service at a time. The integrated optimizations improve the per-
formance of the model, while increasing its resilience by allowing the mitigation
of specific types of active attacks that are based on request flooding. Architectures
of this nature can be described in three abstraction levels, maintaining consistency
and completeness. These levels are the (i) architectural model and components,
(ii) protocol and interface, and (iii) implementation. In this thesis, we present and
discuss the suggested architecture in all three levels, highlighting the integrated
optimizations to the original UCON and the corresponding affects.

Moreover, security policy-based management is founded on the establishment
of explicit goals and courses of action, in order to govern decisions in respect to the
use of assets. These are instantiated as a set of rules in distinct levels of abstraction,
which within their formulation bind the actions required to meet the policy goals
to a set of preconditions. Finally, these preconditions are evaluated, by the use of
a policy administration and enforcement subsystem, in order to determine if the
action is permissible. Monitoring the values and evaluating such preconditions
in order to enforce fine-grained security policy based management, requires the
consumption of resources, such as network bandwidth, computational capacity and
storage, which in constrained distributed dynamic systems commonly exceeds the
capacity of both the edge nodes and the proximity network.

The last part of this thesis presents a mechanism for the specification and en-
forcement of security policies within such environments, where the computational
burden is transferred to high-tier nodes, while low-tier nodes apply risk-aware pol-
icy enforcement based on a compromise solution. The proposed mechanism for
calculating such a solution is founded on a compensatory multi-criteria decision
making function, based on the calculation of the Euclidean distance between the
run-time values of the preconditions and their ideal values, as those are specified
within the established policy rules.

Summarizing, the overall contribution of this thesis shall be to provide for the
first time continuous access control in IoE ecosystems in the level of communica-
tion protocols. This continuous access control is based on UCON ABAC model
and also several enhancements to it are proposed so as to deal with the complexity
of IoE. The biggest advantage is that apart from the merging of UCON and pro-
tocols to communicate with each other there is no other modification to protocol

11

structure and components. Finally, another contribution is to provide overall policy
enforcement in a IoE SoS independently from the protocol the various IoT devices
use.

1.1.4 Structure of the Thesis

The structure of this thesis is the following: In Chapter 2 we provide background
information about IoT protocols, detailing also UCON and its distributed version
and we discuss the limitations that motivated this thesis. In Chapter 3 we analyze
the way how we can use UCON together with IoT protocols, and how we can build
on the interoperability proving that we do not need to change either the protocol
or the UCON architectures. In Chapter 4 we present the hierarchical model that
we created and 5 our proposed optimizations considering UCON limitations and
optimized policy management in IoT. Finally, Chapter 6 provides the conclusions
that stem out of this work.

1.2 Research Questions of the Thesis

After surveying the literature and during the conduction of this thesis material the
following research questions arised.

1. Since IoE is a continuous changing and dynamic ecosystem, are the commu-
nication protocols that distribute information inside an IoE ecosystem capa-
ble of providing monitoring and control on the access continuously?

2. Is UCON capable of contributing towards the addressing of the previous
question?

3. Can UCON be used as it is in the workflow of the communication protocols,
or are there any modifications / alterations of it necessary to achieve the goals
of this thesis?

4. Do the communication protocols need any modifications to be used together
with UCON?

5. Can we provide a solution that is protocol independent and can work inside
an heterogeneous ecosystem?

6. How can we deal with the increased complexity in IoE ecosystems?

12

1.2.1 Answers to the Research Questions

Regarding the first research question, the methodology that was followed was to
survey the models and the architecture of the most used communication protocols
that are used in this area. Following that, the next step was to survey and find their
security limitations over access control techniques and continuous access monitor-
ing so as to justify the need of UCON. These survey is described in Chapter 2 and
also in the first and second publications of the publication list in Section 1.3.

Furthermore, trying to understand how UCON can be architecturally combined
with these protocols we checked firstly to find any similarities in the architecture of
any of the protocols surveyed that lead to the first result of implementing UCON in-
side MQTT protocol. The next step was to understand whether we can use UCON
in other protocols so as to prove that it is in fact independent of the protocol ar-
chitecture. Following the previous methodology we achieved to do the same in the
CoAP protocol that does not belong in the Publish/Subscribe group like MQTT,
but in the Client/Server one. These two are the main groups of the communication
protocols and, by achieving to inesrt UCON in one protocol of each group, we
proved that UCON can work seamlessly with the major communication protocols
used in IoT. This work is presented in the penultimate publication of the list in
Section 1.3. By doing that we answer to the second question and this was proved
by conducting experiments in both a simulated and a real IoT environment. In ad-
dition to the previous, and regarding the third research question, we realized that
UCON can work simultaneously in a variety of protocols without alterations and
have the ability to provide continuous access monitoring and policy enforcing.

One of the major advantages of our approach is the fact there was not any mod-
ification needed in UCON architecture and model which answers to the third ques-
tion above. Moreover, another advantage is that apart from creating the connection
in the central entity of MQTT protocol (Broker) and CoAP protocol (Server) to be
able to call UCON and vice versa there was not any modification in the protocol
architecture either and the components used were not explicitly created but off-the-
self ones. Especially the satellite components that either publish or subscribe for
information have no modifications at all. The architecture and the result of this
effort are presented in 3 and the outcome has been published in the publications
one, two and six of the list presented in Section 1.3.

For question number five, we show in Chapter 3 that by taking advantage of a
more recent architecture of UCON that is distributed and provides attribute sharing

13

amongst the several instances of the UCON frameworks. This version gives the
ability to have a global system of several UCON instances, that attribute changes
in one instance can affect the policy decisions to the other. Also we can build a
complex, hierarchical structure, as shown in 4, where each instance can operate
individually, but with the correct changes in shared attributes, there can be policy
enforcement from higher in hierarchy components to lower ones. The following
appear to Chapters 3 and 4 and also in the sixth publication of the list in Section
1.3.

But, the complexity of IoE ecosystems leads to numerous attributes and poli-
cies that are not only complex, but difficult to deal with while maintaining ef-
ficiency, scalability and time restrictions which is the last research question. In
order to answer to this question, we tried to address this issue by surveying and
grouping the several systems of a certain bigger SoS where the same level of ac-
cess is needed and the same attributes and values must appear to provide access to
resources. Thus, we can reduce time evaluation by providing access to the whole
group of services which acts as a reply to the last research question. The research
methodology that we followed towards this aspect is shown in the first part of
Chapter 5 and its outcome is presented in publications three and four of the list
in the following section. Moreover, in order to reduce the attribute number of the
policies and, thus, the evaluation time of them, we have created a mechanism to
pre-compute the attribute values and extract a single value that acts as the role of
the subject that asks for access to the resources. The evaluation is done for this role,
which provides simpler policies and less time evaluation. Finally, the methodology
for this appears in the last part of Chapter 5 and its outcome in the last publication
of Section 1.3.

1.3 Publications

This section presents the outcome of this thesis.

• La Marra A., Martinelli F., Mori P., Rizos A., Saracino A. (2018) Introducing
Usage Control in MQTT. In: Katsikas S. et al. (eds) Computer Security.
SECPRE 2017, CyberICPS 2017. Lecture Notes in Computer Science, vol
10683. Springer, Cham

• La Marra A., Martinelli F., Mori P., Rizos A., Saracino A. (2017) Improv-
ing MQTT by Inclusion of Usage Control. In: Wang G., Atiquzzaman M.,

14

Yan Z., Choo KK. (eds) Security, Privacy, and Anonymity in Computation,
Communication, and Storage. SpaCCS 2017. Lecture Notes in Computer
Science, vol 10656. Springer, Cham

• V. Gkioulos, A. Rizos, C. Michailidou, F. Martinelli and P. Mori, “Enhanc-
ing Usage Control for Performance: A Proposal for Systems of Systems”
2018 International Conference on High Performance Computing & Simula-
tion (HPCS), Orleans, 2018, pp. 1061-1062

• Gkioulos V., Rizos A., Michailidou C., Mori P., Saracino A. (2019) En-
hancing Usage Control for Performance: An Architecture for Systems of
Systems. In: Katsikas S. et al. (eds) Computer Security. SECPRE 2018,
CyberICPS 2018. Lecture Notes in Computer Science, vol 11387. Springer,
Cham

• La Marra A., Martinelli F., Mori P., Rizos A., Saracino A. (2019) Using
IFTTT to Express and Enforce UCON Obligations7. In: Heng SH., Lopez J.
(eds) Information Security Practice and Experience. ISPEC 2019. Lecture
Notes in Computer Science, vol 11879. Springer, Cham

• Rizos A., Bastos D., Saracino A., Martinelli F. (2019) Distributed UCON
in CoAP and MQTT Protocols. In: Katsikas S. et al. Computer Secu-
rity. SECPRE 2019, CyberICPS 2019. Lecture Notes in Computer Science,
Springer (To Appear)

• Michailidou C., Gkioulos V., Shalaginov A., Rizos A., Saracino A.(2019)
RESPOnSE - Risk Aware Security Policy Based Management In Constrained
Distributed Dynamic Systems. Under review in Pervasive and Mobile Com-
puting, an Elsevier Journal

7Awarded with Best Paper Award of the ISPEC 2019 Conference

15

Chapter 2

Background

This chapter provides with the background information about IoE, IoT, access con-
trol, UCON and the related work considering all the areas that this thesis deals
with.

2.1 The Internet of Everything

As discussed above, IoE is a concept that extends the IoT emphasis on M2M com-
munications to describe a more complex system that also encompasses data, people
and processes [92].

2.1.1 The Internet of Things

IoT consists of a network of heterogeneous interconnected objects that interact with
each other in order to collect and share information. Following the vast evolution
of electronics, sensors and actuators, researchers and engineers aim to exploit the
potentials of systems in order to introduce new types of services targeting to inter-
connect every single device that people interact with [40]. This process leads us to
the era of urban computing, because, in the IoE, many heterogeneous devices, such
as the power grid, transportation means, traffic lights etc., can be interconnected.
This inter-networking of Cyber-physical devices and other items embedded with
electronics, software, and sensors allows them to collect and exchange data [40].
The connectivity of computing devices, systems and services is Internet Protocol
(IP) based. There are many devices already deployed, featuring sensors and ac-
tuators, that are applied in a variety of domains such as residential automation

16

Figure 2.1: The Internet of Everything (IoE) Example.

industrial systems, military and healthcare [20]. From the perspective of imple-
menters, there is a need for rapid development whilst issues about the limitations
of resources have to be tackled [3]. One example of urban IoT architecture is the
Smart City services, which are based on a centralized architecture where all the var-
ious peripheral devices installed all over the urban areas generate different types
of data that are delivered to a control center via various communication protocols
where the data is stored and processed [163].

2.1.2 From the Internet of Things to the Internet of Everything

The recent advancement in connection technologies, smart devices, sensor technol-
ogy and networks combined with a strong interaction with people and social envi-
ronments have a huge impact on everything, from city planning to military, health,
and transportation [160]. However, IoE provides links among not only things, but
also data, people, and (business) processes. That is why the IoT environment is
transforming into the IoE one. IoE has become a very common phrase in order
to give a description about adding Internet connectivity and intelligence to almost
every device so as to be able to provide to them special functionalities [160].

Figure 2.1 shows that the IoE is the interconnection of Things, People, Data
and Processes among them. There is a need to provide a common ground for in-

17

tegrating information coming from heterogeneous sources. Such a shared ecosys-
tem would allow for the interaction among data, sensor inputs, and heterogeneous
systems. We can have countless IoE applications in our everyday life around the
globe [61]. Presently, it becomes a lot easier to network smart objects with each
other, due to advancement in sensors and wireless technology. Some of the most
commonly deployed applications include home and industrial automation, e-health
system, environmental and infrastructure monitoring and management and smart
transportation system:

• Home automation and security that may include smart grid, appliance con-
trol, light management etc.

• Industrial automation and management of manufacturing equipment and as-
sets.

• E-Health system spanning from heart rate monitoring to remote surgeries.

• Environmental monitoring (e.g. air, water quality, soil, wildlife).

• Infrastructure management and monitoring of urban and rural assets.

• Smart transportation system (e.g. smart parking, traffic control, vehicle to
vehicle communication etc.).

• Industrial projects in food industry, agriculture, surveillance etc.

A nice example of IoE that includes various type of IoT services, their usage
of people and data processing of them is “IFTTT”1. IFTTT is a free web-based
services platform where it is possible to create chains of simple conditional state-
ments, called applets. This is an example of an area of combining several different
services together expressed in a high level language. In IFTTT, services are com-
bined via a simple if statement that on the one hand we have the cause which
triggers a specific action to happen without the need of creating specific applica-
tions for this scope. The applet is triggered by changes that occur within other web
services such as Gmail, Facebook, Instagram, or Pinterest. For example, an applet
may send an e-mail message if the user tweets using a hashtag, or copy a photo on
Facebook to a user’s archive if someone tags a user in a photo. IFTTT employs the
following concepts for every applet:

1https://ifttt.com/

18

• Services: The basic building blocks. They mainly describe a series of data
from a web service such as YouTube.

• Triggers: The “this” part of an applet and trigger the action.

• Actions: The “that” part meaning the results from the trigger.

• Applets: The predicates made from Triggers and Actions. For example, if
you like a picture on Instagram (trigger), an IFTTT app can send the photo
to your Dropbox account (action).

• Ingredients: Basic data available from a Trigger. For example, in an email
Trigger they are the subject, body, attachment etc.

All triggered applets by the various changes cause policy re-evaluation before
granting any actions. Exchanged data might be very sensitive and they have to be
continuously protected so there will be no violation when they are moving among
different and heterogeneous services of IFTTT. In this area, UCON can be very
useful because it can control information sharing by monitoring continuously at-
tributes over different IFTTT services and enforce appropriate policies.

2.2 Application Layer Communication Protocols

This paragraph surveys the most known communication protocols for IoT. The
most known are CoAP [20], MQTT [82], Extensible Messaging and Presence Pro-
tocol (XMPP) [3], HTTP [22], Advanced Message Queuing Protocol (AMQP)
[83]. Their main characteristics and differences are shown in Table 2.1.

In the area of IoT, the devices are generally constrained in regards to compu-
tational power and network availability, so application protocols are usually de-
signed to be very light. Popular protocols for IoT include CoAP, MQTT, XMPP,
AMQP, Web Application Messaging Protocol (WAMP) and also HTTP for web
compatibility [73]. Considering most of these protocols have similar purposes and
goals, the main differences between them are the communication patterns and the
security features they support. The CoAP and HTTP protocols only use the Re-
quest/Response communication pattern, while MQTT only uses the Publish/Sub-
scribe. AMQP and XMPP are Message-Oriented Middleware (MOM) protocols,
which are more complex and support different communication patterns. WAMP is

19

based on WebSockets, which allows a great deal of flexibility regarding communi-
cation patterns.

The Request/Response communication pattern is one of the most basic com-
munication patterns. In a Client/Server architecture, it allows Clients to perform
real-time requests on resources held on a Server. For each request from a Client to
the Server, a response follows from the Server to the Client. The Publish/Subscribe
pattern is comprised of three entities: a Broker, one or Publishers and one or more
Subscribers. A Publisher composes messages which are pushed to Subscribers.
Subscribers have the option to subscribe to specific messages which are organized
in Topics. The Broker manages the messaging between publishers and subscribers,
therefore neither Subscribers or Publishers need knowledge of each other. Asyn-
chronous Messaging is usually associated with MOM protocols, which comprise a
category of inter-application communication software. In asynchronous systems,
message queues provide temporary storage when the destination program is busy
or not connected. In addition, most asynchronous MOM systems provide persistent
storage to back up the message queue. Thus, the main difference is that in MOM
protocols the messages are stored and delivered, while in for example in MQTT
they are simply routed.

When deciding which communication pattern fits better for a particular IoT
system, it is important to consider the following questions:

• Does information need to be updated in real-time for continuous values (non-
discrete values)?

• Does information need to be updated on demand?

• Is published information always used?

• Does the system require strong authentication?

• Does the system require data confidentiality?

The answers to these questions help deciding which communication pattern
and protocol to choose for use in that particular IoT system.

As for the protocol characteristics, the protocols that provide a form of Quality
of Service (QoS) are CoAP, MQTT and AMQP. All protocols use the Transmis-
sion Control Protocol (TCP) transport layer and the TLS/SSL security layer apart
from CoAP that uses the User Datagram Protocol (UDP) and DTLS respectively.
Data Distribution Service (DDS) has the ability to to use both TCP and UDP for

20

Table 2.1: Comparison of IoT Protocols

Protocol→
/ Features ↓ MQTT CoAP XMPP AMQP WAMP HTTP

Open
Standard Yes (OASIS, ISO) Yes (IETF) Yes (IETF) Yes (OASIS, ISO) Yes Yes (IETF)

Architecture Centralized Centralized Decentralized Centralized Decentralized Centralized
Transport

Layer TCP UDP TCP TCP TCP TCP

Publish
/ Subscribe Yes No Yes Yes Yes No

Request
/ Response No Yes Yes Yes Yes Yes

Asynchronous
Messaging Yes No Yes Yes Yes No

RPC No Yes Yes Yes Yes Yes
WebSocket Yes No No Yes Yes Yes

TLS Yes No Yes Yes Yes Yes
DTLS No Yes No No No No
SASL No No Yes Yes No No

transport and both TLS and DTLS for security layer respectively [65]. In terms of
header size MQTT provides the smaller with 2 bytes whereas CoAP has 4 bytes
and AMQP 8 bytes [3]. HTTP performs better in non-constrained environments
due to high overload. According to [40], among the two most widely used pro-
tocols (MQTT and CoAP), CoAP provides less CPU load and has lower delays
for high packet loss in comparison to MQTT. Also, CoAP can be applied in very
constrained environments, which is useful in the area of the IoT.

As a synopsis to the basis, this comparison gives the details about the existence
of QoS. During literature review, we identified that MQTT is more general purpose
and CoAP is the one that is targeting the most constrained environments. Finally,
it refers to the communication pattern which in the case of all the main protocols is
either Publish/Subscribe (e.g. MQTT) or Client/Server (e.g. CoAP). The following
paragraphs survey briefly the protocols, motivating the choice to focus on MQTT
and CoAP. From now and on and for the shake of simplicity, they will described
briefly as IoT protocols.

2.2.1 Constrained Application Protocol (CoAP)

CoAP is an application layer protocol designed for the IoT and for M2M applica-
tions. The protocol was introduced as a standard by the IETF in 2014 [131] and its
key features are simplicity for constrained environments, very low overhead, and
easy interoperability with HTTP.

Communication in CoAP happens over a Client/Server architecture and follows

21

Figure 2.2: Constrained Application Protocol (CoAP) Architecture.

the Request/Response pattern. A Client sends a request to the Server to perform
an action on a resource. Each request is composed by a method code (Get, Post,
Put, Delete) and a Uniform Resource Identifier (URI) which identifies the targeted
resource on a Server. After receiving the request, the Server processes the request
and sends a response to the Client containing the information acquired by other
Clients and in accordance with the requested action. A token is used in order to
match responses to requests. The response contains a code similar to HTTP ones
and, if requested, the respective resource representation.

CoAP offers the ability for a Client to follow the updates of a certain resource
on a scheduled basis, without sending multiple requests, via a feature called Ob-
serve [58]. When the Observe flag is set on inside a CoAP Get request, the Server
continues to reply after the initial response, streaming resource state changes to the
Client as long as they occur. After being set, an observation can be canceled at any
point by the Client if it wants to stop receiving resource updates. This operation is
triggered by sending a request to the Server with the Observe flag off or by reply-
ing to a resource update with a reset message to the Server. Figure 2.2 presents the
CoAP architecture, showing a Server interacting with multiple Clients and, on the
right side, a Client interacting with other Server.

Conversely to HTTP, CoAP uses the UDP instead of the TCP for message ex-
changing. In essence, this means that reliability for message exchange is not guar-

22

anteed as UDP doesn’t support mechanisms for reliable communications, focusing
instead on fast and simple message exchanging. As a result, CoAP implements
two request types: Confirmable (CON) and Non-Confirmable (NON). On the one
hand, CON requests achieve reliable communications by expecting an acknowl-
edgement (Ack) message from the Server in response to each request. On the other
hand, NON requests are “fire and forget” messages that do not expect any con-
firmation that the request was indeed received by the Server. As a result to the
previous, CoAP provides two QoS levels: at least once (using CON requests), and
At most once (using NON requests). Because CoAP uses UDP it supports multi-
cast requests, where one Client can send the same request to multiple Servers at
the same time. However, a CoAP Server always replies in unicast to a multicast
request. The CoAP protocol by itself does not provide any security features (e.g.
authentication), so security is not designed in the context of the application layer
but instead, it is optionally supported at the transport layer [52]. CoAP supports the
DTLS protocol [113]. DTLS provides three modes for secure message exchanging:
PreSharedKey, RawPublicKey and Certificate [42]. These modes allow for strong
authentication and data encryption and integrity in transit. However, they do not
provide refined authorization capabilities. In the PreSharedKey mode there is a list
of pre-shared keys and each key includes a list of which endpoints it can be used to
communicate with. In the RawPublicKey mode each endpoint holds an asymmetric
key pair without a certificate (a raw public key) that defines its identity and includes
a list of other endpoints it can communicate with. Finally, in Certificate mode each
endpoint has an asymmetric key pair with an X.509 certificate that binds it to its
subject and is signed by some common trust root. A CoAP endpoint is either the
source or the destination of a CoAP message, and is identified by an Internet Pro-
tocol (IP) address and an UDP port number. However, with DTLS enabled, the
endpoint is identified as defined by the security mode as explained above. Default
ports for CoAP are 5683 (with no security) and 5684 (with DTLS enabled). This
work focuses on the CoAP protocol since it is the most constrained one and widely
used in the area of IoT. Existing security features of CoAP protocol rely only on
the use of DTLS, which does not deal with what happens after the information is
shared to the Client and does not provide a continuous checking mechanism on the
access to the information shared between Client(s) and Server(s). Our work ad-
dresses this problem by providing continuous verification of access authorization
to resources on Server(s).

23

Figure 2.3: Message Queuing Telemetry Transport Protocol (MQTT) Architecture.

2.2.2 Message Queuing Telemetry Transport Protocol (MQTT)

MQTT is a Publish/Subscribe protocol designed for constrained devices used in
telemetry applications. MQTT is designed to be very simple on the Client side
either this is the Subscriber or the Publisher. Hence, all of the system complexities
reside on the Broker which performs all the necessary actions for the MQTT func-
tionality. MQTT is independent from the routing or networking specific algorithms
and techniques. However, it assumes that the underlying network provides a point-
to-point, session-oriented, auto-segmenting data transport service with in-order de-
livery (such as TCP/IP) and employs this service for the exchange of messages.

MQTT is also a topic-based Publish/Subscribe protocol that uses character
strings to create and control support of hierarchical topics. It is possible for a
Publisher to publish to multiple topics and for a Subscriber to subscribe to multi-
ple topics at the same time. In Figure 2.3, we can see the topology of the protocol.
It shows Publishers that publish data to topic(s) in the Broker. Subscribers authen-
ticate with the Broker in order to subscribe to topics. The Broker is responsible
to send value updates for each topic that every Subscriber is subscribed to. The
Publishers and the Subscribers can be very constrained devices, especially in the
case of Publishers which can be simple sensors. Conversely, the Broker must pro-
vide enough computational power to be able to handle the amount of data being
distributed. Depending on how critical is the application, MQTT provides three
QoS levels for message delivery [19]. QoS level 0 only offers a best-effort delivery

24

service, in which messages are delivered either once or not at all to their destina-
tion. No re-transmission or acknowledgment is defined. QoS level 1 re-transmits
messages until they are acknowledged by the receivers. Hence, QoS level 1 mes-
sages may arrive multiple times at the destination because of the re-transmissions,
still multiple copies are not natively handled. QoS level 2 ensures not only the
reception of the messages, but also that they are delivered only once.

We primarily focused on the MQTT protocol since it is the most generic among
the IoT protocols described, and libraries are available for all major IoT develop-
ment platforms, like Arduino, for several programming languages (C, Java, PHP,
Python, Ruby, Javascript) and for the two major mobile platforms (iOS and An-
droid) [24]. The authentication to the Broker can be done by providing the fol-
lowing credentials [82]: Topic to be Subscribed on, Username and Password. The
most known effort to add more security features in MQTT is SMQTT [24], but
no solution is given to the policies that are followed by the information after it is
delivered to the Subscribers.

2.2.3 Advanced Message Queuing Protocol (AMQP)

AMQP is an open messaging protocol that can be used to build cross-platform,
hybrid applications. AMQP version 1.0 is an OASIS standard [97] and an Interna-
tional Organization for Standardization (ISO) standard [139]. AMQP is a MOM
protocol and its characteristics include being a wire-protocol, interoperable, reli-
able, and efficiently supporting multiple messaging applications and communica-
tion patterns. This protocol operates over TCP, supports TLS and has integration
with the Simple Authentication and Security Layer (SASL) protocol for authenti-
cation. Similarly to MQTT, AMQP uses a centralized Client/Server architecture
and, while supporting multiple communication patterns, it prefers the Publish/-
Subscribe pattern. Following the pattern nomenclature the central entity is called
Broker, however in AMQP the Publishers and Subscribers are referred to as Pro-
ducers and Consumers respectively. The AMQP architecture is shown in Figure
2.4.

In AMQP there are two important concepts: exchanges and queues. When a
Producer sends a message to the Broker, the message is published to an Exchange,
which is comparable to a mailbox. The Exchange is responsible for routing the
messages to different Queues with the help of bindings and routing keys. Queues
are entities that store and forward messages. Subsequently, the Broker either deliv-

25

Figure 2.4: Advanced Message Queuing Protocol (AMQP) Architecture.

ers the message to Consumers subscribed to the Queues, or consumers fetch/pull
messages from the Queues on demand.

Furthermore, the complexity of AMQP is greater in comparison to other pro-
tocols like MQTT, since it is comprised of several layers. The lowest layer de-
fines a symmetric, asynchronous protocol for the transfer of messages between
two processes over a network. Above this, the messaging layer defines an ab-
stract message format, with standard encoding. Then a type system, and finally a
set of standardized but extensible “messaging capabilities.” AMQP provides QoS
message-delivery guarantees such as at-most-once, at-least-once and exactly-once.

2.2.4 Hypertext Transfer Protocol (HTTP)

HTTP is the foundation of data communication for the World Wide Web [28].
Hypertext is structured text that uses logical links (hyperlinks) between nodes con-
taining text. HTTP is the protocol to exchange or transfer hypertext. The standards
development of HTTP was coordinated by the IETF and the World Wide Web Con-
sortium (W3C)W, culminating in the publication of a series of Requests for Com-
ments (RFCs). The first definition of HTTP/1.1, the version of HTTP in common
use, occurred in RFC 2068 in 1997, although this was obsoleted by RFC 2616 in
1999. HTTP functions as a Request-Response protocol in the Client/Server com-
puting model. A web browser, for example, may be the Client and an application
running on a computer hosting a web site may be the Server. The Client submits an

26

HTTP request message to the Server. The Server, which provides resources such
as Hypertext Markup Language (HTML) files and other content, or performs other
functions on behalf of the client, returns a response message to the Client. The
response contains completion status information about the request and may also
contain requested content in its message body. A web browser is an example of a
user agent. HTTP is an application layer protocol designed within the framework
of the Internet Protocol Suite. Its definition presumes an underlying and reliable
transport layer protocol, and TCP is commonly used. However, HTTP can use un-
reliable protocols such as the UDP. HTTP resources are identified and located on
the network by Uniform Resource Locators (URL)s, using the URI schemes “http”
and “https”. URIs and hyperlinks in HTML documents form inter-linked hypertext
documents.

2.2.5 Extensible Messaging and Presence Protocol (XMPP)

XMPP is an open standard introduced in 2011 and developed by the IETF [122].
It is based on the XML and enables the near-real-time exchange of structured data
between network entities. XMPP is a MOM protocol and the successor of Jabber,
a protocol that was used for on-line instant messaging (IM). This protocol uses a
decentralized client-server model which supports asynchronous Client to Server
and Server to Server messaging. XMPP entities are referred by globally unique
addresses, often called Jabber IDs or JIDs. The XMPP architecture is shown Figure
2.5.

The two most important concepts of XMPP are XML stanzas and XML streams.
XML stanzas are small pieces of structured data and there are three types of stan-
zas: message, presence, and iq (short for “info/query”). These three types are
part of a first-level element whose qualifying namespace is “jabber:client” or “jab-
ber:server”, and stanzas usually have one or more child elements (with accompa-
nying attributes, elements, and XML character data). XML streams are open TCP
connections between Clients and Servers or between Servers which allow exchange
of XML stanzas over a network. A stream only supports unidirectional communi-
cation from the initiating entity to the receiving entity (e.g. Client to Server). Thus,
in order to achieve two way exchange of stanzas two streams must be negotiated.

Stream negotiation is a multi-stage process and stream features can be ei-
ther mandatory-to negotiate or voluntary-to-negotiate. Authenticating a stream
could be achieved using the SASL protocol, and for Client to Server connections

27

Figure 2.5: Extensible Messaging and Presence Protocol (XMPP) Architecture.

its use is mandatory. XMPP uses a specific XML namespace profile of SASL
(“urn:ietf:params:xml:ns:xmpp-sasl”). Transport security using TLS can also be
defined by the receiving entity as mandatory-to-negotiate which means that negoti-
ating a stream can ultimately involve four layers: first TCP, then TLS, then SASL
and finally XMPP.

The XMPP natively uses the Asynchronous Messaging communication pattern,
where entities send messages whenever they decide to and in real-time. However,
it also supports Request/Response pattern (using the iq stanza) and work has been
developed to allow for support of the Publish/Subscribe [39] pattern.

2.2.6 Other Protocols

In this section, we present a couple of protocols that, although they belong to the
application layer communication protocol group, they either not intend to IoT or
they are more than simple protocols for communication.

2.2.6.1 Websocket Protocol

WAMP is a protocol created by Crossbar.io developers in 2012 [29]. It is a sub-
protocol of WebSocket, offers routed Remote Procedure Call (RPC) and supports
the Publish/Subscribe pattern. The WebSocket protocol is a browser-based pro-
tocol standardized by the IETF in 2011 [90]. The Websocket protocol [37] was
developed as part of the HTML5 initiative to facilitate communications channels
over TCP [65]. Websocket is neither a Request/Response nor a Publish/Subscribe
protocol. In Websocket, a Client initializes a handshake with a Server to establish

28

a session. The handshake process is intended to be compatible with HTTP-based
server-side software so that a single port can be used by both HTTP and Websocket
Clients [37]. However, what comes after the handshake does not comply with the
HTTP rules. In fact, during a session, the HTTP headers are removed and Clients
and Servers can exchange messages in an asynchronous full-duplex connection.
The session can be terminated when it is no longer needed from either the Server
or the Client side. Websocket was created to reduce the Internet communication
overhead while providing real-time full-duplex communications.

2.2.6.2 Web Application Messaging Protocol

There is also a Websocket sub-protocol called Websocket Application Messaging
Protocol (WAMP) that provides Publish/Subscribe messaging systems [65]. Web-
socket runs over the reliable TCP and implements no reliability mechanisms on its
own. If needed, the sessions can be secured using the Websocket over TLS/SSL.
During the session, Websocket messages have only 2 bytes of overhead. As re-
ported by relevant studies [108], the HTTP polling (in REST) repeats header infor-
mation when the data transmission rate increases, thus increasing latency.

The goal of WAMP is to provide an open standard for soft real-time message
exchange between application components and ease the creation of loosely cou-
pled architectures based on microservices. It provides bi-directional, full-duplex
communication channels over a single, persistent TCP connection. This protocol
has four main features which provide different benefits: First, a single and persis-
tent TCP connection that allows for higher performance since it does not require
the need to set a new TCP connection for every request. Second, bi-directional
communications that allow Client and Server both to send data independently of
each other. Third, full-duplex communications that allow both Client and Server
to send data simultaneously. Forth, the WebSocket protocol does not put any con-
dition for the exchange of messages, which means any rules can be defined within
the protocol and all messaging patterns are supported. With this in mind, Web-
Sockets can be used to encapsulate other protocols based on TCP, such as: HTTP,
MQTT or AMQP. In HTTP, the HTTP upgrade header is used in order to make the
change from the HTTP protocol to the WebSocket protocol. In the case of MQTT
and AMQP, these protocols need to be set up after the WebSocket connection is
established.

Websocket is estimated to provide a three-to-one reduction in latency against

29

the half-duplex HTTP polling, but it is not designed for resource constrained de-
vices as the previous protocols and its Client/Server based architecture does not
suit IoT applications [65]. However it is designed for real-time communication, it
is secure, it minimizes overhead and with the use of WAMP it can provide efficient
messaging systems and it can compete any other protocol running over TCP.

2.2.6.3 Alljoyn Protocol

Qualcomm recently introduced AllJoyn, an open-source, general networking frame-
work which supports multiple direct networking technologies (Wi-Fi Direct, Blue-
tooth, etc.) [78], and enables ad hoc, proximity-based communication without the
use of an intermediary Server [154]. Now, this open project is hosted by AllSeen
Alliance2, and many consumer brands has signed on [95]. AllJoyn’s vision is to en-
able the IoE near users, which provides a software framework and a set of services
that enable interoperability among connected products and software applications,
across manufacturers, to create dynamic proximal networks [154]. The range of
consumer products enabled by AllJoyn is very wide: From the mobile devices
consumers always have with them, to the appliances and media equipment in their
homes, to the electronics in their cars and the office equipment in their workplaces
[151]. Technically, AllJoyn was developed as a mesh networking service which
offers automatic discovery and communication for a number of different devices,
agnostic of operating system [80]. And furthermore, the goal of AllJoyn is to be
crossplatform with support for Android, OS/X, Windows variants, gaming engines
and other thin clients.

However, the AllJoyn technology is not powerful enough to manage complex
smart IoT environments [151]. In fact, AllJoyn does not scale well because it
does not support communications among devices belonging to different broadcast
domains and it does not provide any feature for the storage and real-time analytics
of huge amount of data (Big Data problem). Thus, when the number of devices
and information acquisition frequency increase, data management becomes quite
hard [167].

2.2.7 Summary Over the Protocols

Summarizing the previous, in [40] it is claimed that CoAP is more Resource-
friendly than MQTT. But, in terms of Message Oriented Approach (MOA), MQTT

2https://allseenalliance.org/

30

stands out and MQTT also needs less Random Access Memory (RAM) but more
Central Processing Unit (CPU) load than CoAP. All the protocols mentioned above
use TCP as transport layer and TLS/SSL as security layer. Only CoAP uses UDP
and DTLS respectively [3].

Furthermore, according to [143], MQTT provides the smallest header size of
two bytes, although it is based on TCP. Moreover, it provides three levels of QoS
which puts this protocol in the first place in terms of QoS, even though it needs ex-
tra load in the network for message retransmission [40]. On the other hand, XMPP
requires processing and storing XML data, which necessitates memory space too
large for most IoT devices. In addition, HTTP performs better in non constrained
environments when PC, Laptop and Servers are used. It is generally not applicable
in IoT constrained devices due to its high overhead. AMQP [65], is more suitable
for server-to-server communication than device-to-device communication. Web-
socket is neither a Request/Response nor a Publish/Subscribe protocol. In Web-
socket, a Client initializes a handshake with a Server to establish a Websocket
session. The handshake process is intended to be compatible with HTTP-based
server-side software so that a single port can be used by both HTTP and Web-
socket Clients [23]. According to [65], MQTT messages experience lower delays
than CoAP for lower packet loss and vice versa. When the message size is small
the loss rate is equal. AllJoyn [151], is a full stack of protocols intended for IoT.
Though quite popular, the main disadvantage of AllJoyn is that the application
protocol cannot be separated from the rest of the protocol stack. Due to this fact,
Alljoyn is a complete framework and not only an application layer protocol. Thus,
it is not taken into consideration in this thesis.

2.3 Access Control

Access control describes the process of providing security mechanisms to mediate
every request to sources of a system in order to get access to information. Also,
it can be describes as a process by which use of system resources is regulated
according to a security policy and is permitted only by authorized entities (users,
programs, processes, or other systems) according to that policy [132]. In order
to control access requests the 40-year-old framework of the access matrix [56]
has been extended as researchers have found it to be inadequate for their needs.
This control over requests occurs by checking the relevant attributes only once
when the access is initially requested. The evaluation is done by providing specific

31

policies about the relevant attributes to each component. These policies are called
security policies. The languages with which security policies are described are
called security policy languages. Some examples in the literature are ABAC [60],
Context Aware Access Control (CAAC) [164], Role-based Access Control (RBAC)
[127], Task-Based Access Control (TBAC) [144] models, Risk-Adaptable Access
Control (RAdAC) [36]. This paragraph briefly surveys RBAC and ABAC models
and XACML that used in access control.

2.3.1 Role Based Access Control (RBAC)

RBAC is a widespread approach for regulating the access to information and re-
sources [127]. The principal idea of this model is that a set of roles is created based
on the application environment, where as an example, these roles can arise from
the hierarchy of an organization or a company. Each subject is assigned to a role,
depending on which, it is also entitled to a set of privileges. Hence, considering
this example, subjects that are higher in the hierarchy have the possibility to per-
form more actions over the resources, whilst subjects belonging in the base of the
hierarchy have limited access. The RBAC model can be characterized as flexible,
since subjects can be reassigned to roles if needed and also privileges can be given
to roles or taken from them considering the current state of the application environ-
ment. Another positive aspect of this model is that subjects can be also organized
in groups based on their role or some common characteristics, while each group
has its own permissions. As an example, a group can be the IT department of a
company with permissions to modify user-names/passwords, but no permissions
on changing data related to the salary of the employees.

Notwithstanding the benefits in efficiency [100], RBAC also comes with a cer-
tain amount of limitations. The inability to take into account time and location
constraints, and the fact that in order to change the privileges of a user the role
must be also changed, are a only a few examples commonly discussed in bibli-
ography. Thus, to overcome these limitations, a new model came to fill the gap
which is called ABAC [60] and considers many different attributes related both to
the subject and the object, in order to grant or deny access to a resource.

2.3.2 Attribute Based Access Control (ABAC)

ABAC defines an access control example where access is granted to users through
the use of policies enhanced by attributes. There are various types of attributes

32

(e.g. subject, object, environment) [165]. Unlike RBAC, that defines specific roles
describing the privileges associated with subjects, the difference with ABAC is the
fact that the policy is expressed by a complex set of rules containing many differ-
ent attributes. The values of these attributes can take various types (e.g. string,
integer etc.). In the case of UCON, attributes may change values during the access.
Although the concept itself existed for many years, ABAC is considered as a “next
generation” authorization model because it provides dynamic, context-aware and
risk-intelligent access control to resources [162]. Moreover, the policies in ABAC
can include attributes from many different systems allowing enhanced flexibility
and expressiveness.

Considering the attributes they can be of the following types:

• Subject attributes: attributes that describe the user attempting the access (e.g.
age, clearance, department, role, job title).

• Action attributes: attributes that describe the action being attempted (e.g.
read, delete, view, approve).

• Object attributes: attributes that describe the object (or resource) being ac-
cessed (e.g. the object type (medical record, bank account), the department,
the classification or sensitivity, the location).

• Contextual (environment) attributes: attributes that deal with time, location
or dynamic aspects of the access control scenario policies.

With ABAC you can have as many policies as you like that cater to many dif-
ferent scenarios and technologies and ABAC policies of this type can be expressed
in formal languages such as XML [152].

2.3.3 Security Policy Languages

Since, a policy is defined as “a set of rules to administer, manage, and control ac-
cess to system resources”, these policy rules operate as “the binding of a set of
actions to a set of conditions, where the conditions are evaluated in order to de-
termine whether the actions are performed”. Furthermore, these conditions are
defined as “a representation of the necessary state and/or prerequisites that define
whether a policy rule’s actions should be performed, while this representation need
not to be completely specified, but may be implicitly provided in an implementa-
tion or protocol”.

33

Policy enforcement (i.e. the execution of a policy decision) is governed by the
outcome of policy decisions (i.e. the rule-based evaluation of conditions), which
are initiated by internal or external policy requests, leading to the execution of
corresponding policy actions (i.e. operations) to affect and/or configure system
specific operations and resource management. In order to provide fine-grained
policy-based security management, the conditions evaluated within the policy rules
must be matched against specific attribute values. Moreover, each rule can integrate
a multitude of condition statements that must all be evaluated as “true” for the
rule to become active providing a positive (or negative depending on the policy
specification) policy decision.

Policy specification languages such as XACML [98], Ponder [30], KAoS [149],
WS-Policy [5] and Rei [64] support capturing and evaluating within the policy rules
a multitude of conditions, which if supported by the policy specification language
may be matched against (i) subject, (ii) object, (iii) action/event and (iv) environ-
mental attributes. These languages are highly expressive and designed to match
natural language expressiveness, while still being machine enforceable. The ex-
act values of those attributes can be alphabetic (e.g. object name) and/or numeric
(e.g. subject age), while they can be integrated within the policy rules as exact
values (e.g. subject rank = corporal), ranges of values (e.g. time = {08:00-16:00}
- working hours), or sets of values (e.g. “MSc students” ∪ “BSc students”). These
are only a few of the potential integration approaches supported by contemporary
policy specification languages, while attributes can also be defined across various
types, such as single valued (e.g. serial number), multivalued (e.g. color), compos-
ite (e.g. full name), or even null value attributes.

According to [67], there are several policy languages that are targeting to secu-
rity and privacy. They are many and difficult to categorize them all by one charac-
teristic only. Moreover, the organization of large amount of information, especially
in the field of the IoE needs explicitly defining, enforcement and management of
strategies and access granting. Since policy is considered as a set of rules that de-
scribe how to maintain a certain situation, a policy language is a set of syntax and
semantics in order to express formally policies.

The categorization of policy languages can be done taking into account several
characteristics but the four biggest categories of them are type, intention of use,
scope, and design and implementation details. Considering the type of the sub-
categories are policy languages considering security, accountability, availability,
privacy, data carriage, data usage control, and network and device management.

34

Figure 2.6: XACML Policy Language Model.

Furthermore, in terms of intention of use, the subcategories are those of users re-
quirements, enterprise, and multiple parties interaction.

In addition to the previous, taking into account the scope of the language, the
subcategories are data exchange, service requester/provider, agreement descrip-
tions, authorization, access control, and application monitoring. Last but not least,
in the category of design and implementation details, there are four subcategories,
for which there exist more specific subcategories. In the first sub-category of us-
ability, they are divided into human and machine oriented languages. In the second
sub-category of context sensitivity, they are divided into context and non sensitive.
In the third sub-category of syntax, they are divided into XML, high-level, func-
tional language, and specific. Finally, in the subcategory of extensibility, they are
divided into application specific and general purpose languages.

Considering the widespread area of classification rules for the languages above,
the overall classification of a language must be considered via all the four cate-
gories and their subcategories. For example, there is XACML, which is a policy
language of security and data control type, access control scope, enterprise poli-
cies intention of use, machine-oriented, XML based, application independent and
context sensitive [98]. The policy language model of XACML is shown below in
Figure 2.6. For more information readers can refer to [98].

Another example is, SecPAL, which is security and data control type, but of
data exchange and authorization scope, all intentions of use, human-oriented, spe-
cific syntax, application independent and context sensitive [11].

35

2.4 Usage Control

In the IoE, all the application layer communication protocols use access control
mechanisms. But, IoE devices can be very different in terms of hardware, com-
munication protocol, software applications, operating system etc. Thus, it is very
difficult to create a simple security policy for all of them. Moreover, the rapid
change of People behavior and the constantly changes in the values of sensors or
in the states of actuators lead to the fact that there is need of continuous control
and re-evaluation of the attribute values in order to revoke granted access when
necessary. The goal of UCON is to provide continuous access control. The net
result is a plethora of seemingly ad hoc extensions without underlying intellectual
unity [106]. The concept of UCON is comprehensive enough to encompass tra-
ditional access control, digital rights management, trust management etc. UCON
unifies these areas systematically in a single framework and goes beyond in its
scope [105]. UCON, [105], introduces mutable attributes and new decision factors
besides authorizations; these are obligations and conditions. Mutable attributes
represent features of subjects, object, and environment that can change their values
as a consequence of the operation of the system [35]. The novelties that UCON
provides differentiate it not only from other ABAC models, but also from CAAC
[164], RBAC [127] and TBAC [144] models.

2.4.1 Usage Control Model

UCON model consists of various components which are shown in Figure 2.7 and
they are described below [105]:

• Subjects: Entities associated with attributes that hold and exercise certain
rights on objects. Attributes are properties of the subjects that can be used
for the authorization process. Examples of attributes include identities, roles,
credits, memberships, security levels, etc. A subject can be a user, a group, a
role, or a process. A user is an individual entity that has certain rights on an
object. A group is a set of users who holds same rights. A role is a named
collection of users and relevant permissions [127]. Groups and roles may
have hierarchical relationships. In UCON, there can be consumer, provider
and identified subjects.

• Objects: Entities that subjects hold rights on, whereby the subjects can
access or use objects. Objects are also associated with attributes, either by

36

themselves or together with rights. Examples of object attributes are secu-
rity levels, ownerships, classes, etc. Object classes are used to categorize
objects so authorization can be based not only on individual objects but also
on sets of objects that belong to same class [126]. In some cases, objects are
associated with attributes together with rights that can be applied on them.
Examples of the attributes for objects with rights are credits, roles, mem-
berships, etc. In UCON, objects can be either privacy sensitive or privacy
non-sensitive. Objects may have hierarchy on them.

• Rights: Privileges that a subject can hold on an object. Rights consist
of a set of usage functions that enable a subject’s access to objects. The
authorizations of rights require associations with subjects and objects. Like
subjects and objects, rights can also be divided into consumer, provider and
identified rights.

• Authorization rules: A set of requirements that should be satisfied be-
fore allowing subjects’ access to objects. There exist two kinds of authoriza-
tion rules, the obligation and the rights related. The first is used to check
if a subject has valid privilege to exercise certain rights on a digital object.
Examples include identity verification, proof of payments, etc. The second
is used to check if a subject has an obligation which has to be done after
obtaining or exercising rights on a digital object. Examples include metered
payment agreement, usage log report etc.

• Conditions: A set of decision factors that the system should verify at au-
thorization process along with authorization rules before allowing usage of
rights on a digital object. There are two types of conditions: Dynamic and
Static. Dynamic conditions include information that has to be checked for
updates at each time of usage, whereas Static conditions do not change. An
example of dynamic condition is the number of usage times and an example
of static condition is an allowed printer name.

• Obligations: Mandatory requirements that a subject has to consider after
obtaining or exercising rights on an object. In real world implementations,
obligations are agreed before obtaining the rights and at that time obligation-
related authorization rules are checked. For example, a consumer subject is
obliged to accept metered payment agreements before obtaining the rights

37

Figure 2.7: Usage Control Model Components.

for the usage of certain digital information. Access control has hardly rec-
ognized the obligation concept.

Since mutable attributes change their values during the usage of an object,
UCON model allows to define policies which are evaluated before and continu-
ously during the access. In particular, a usage control policy consists of three
components that arise from the model above:

• Authorizations: Predicates which evaluate subject and object attributes,
and also the actions that the subject requested to perform on the object. Pre-
Authorizations are evaluated when the subject requests to access the object,
while Ongoing-Authorizations are predicates which are continuously evalu-
ated while the access is in progress.

• Conditions: Requirements that evaluate the attributes of the environment.
In this case too, Pre-Conditions are evaluated when the subject requests
to access the object, while Ongoing-conditions are continuously evaluated
while the access is in progress.

• Obligations: Predicates which define requirements that must be fulfilled
before the access Pre-Obligations, or that must be continuously fulfilled
while the access is in progress Ongoing-Obligations.

38

Figure 2.8: Usage Control Framework Diagram.

The continuous evaluation of the policy when the access is in progress aims
at interrupting the access when the execution right is no more valid, in order to
reduce the risk of misuse of resources. Hence, in the UCON model it is crucial
to be able to continuously retrieve the updated values of the mutable attributes, in
order to perform the continuous evaluation of the policy and to promptly react to
the attributes change by interrupting those ongoing accesses which are no longer
authorized.

2.4.2 Usage Control Architecture

The framework of UCON includes three main blocks, shown in Figure 2.8 [85].
In more detail, one of them has to provide the functionalities, another one com-
municates with controlled systems to check for the requests and the last one is
responsible for acquiring the attribute values.

• UCS: The most complex block because it contains all the necessary mech-
anisms for communicating with other blocks, collecting information, and

39

taking the decisions. In order to achieve this functionality UCS has also to
provide some actions regarding to the access granting for a session.

• Controlled Systems: The components on which the UCON policy can be
enforced. Each Controlled System communicates with the UCS issuing the
request to access a resource by performing a specific operation on it. These
components are called PEPs.

• Attribute Environment: This component interacts with UCS for attribute
value retrieval but it is not controlled by it.

2.4.2.1 Components and Actions of Usage Control System (UCS)

Since, UCS is a complex component of UCON it is worth describing its compo-
nents, which according to [87], are:

• Policy Decision Point (PDP): Takes as an input an access (usage) re-
quest and an access (usage) policy returning the decisions which can be ei-
ther Permit, or Deny, or Undetermined.

– Permit

– Deny

– Undetermined

• Policy Information Point (PIP): Retrieves attributes related to sub-
ject, object and environment of received access requests. Each PIP acts as
the interface between the UCS and a specific Attribute Manager (AM) which
is a non controlled component that has the values of the attributes that have
to be acquired by each PIP. The latter has custom implementation for each
specific application, each AM and the type of the attribute that should be
retrieved. PIPs communicate with the Attribute Environment through AM
which are not part of the UCS [17].

• Session Manager (SM):Database which stores all the active sessions, with
the necessary information to perform policy re-evaluations.

• Context Handler (CH): The core of the UCS, responsible for routing mes-
sages among the various components. Firstly, it forwards the access request
to the various PIPs for attribute retrieval, then the complete access to the

40

PDP and as a result to return the decision to the PEP. Finally, it receives a
notification from PIPs when the value of an attribute changes and forwards
the new value to the PDP for policy re-evaluation.

• Policy Administration Point (PAP): Policy storage component. Poli-
cies can be included in the request made by PEP. Thus, this component is
not mandatory.

In order to evaluate continuously the access requests, UCON provides the fol-
lowing actions [66]:

• TryAccess: Each PEP sends a request to the UCS so as to perform an ac-
tion or access a resource, to be evaluated against a policy. After collecting
the necessary attributes from the PIPs, UCS responds with a Permit, Deny or
Undetermined decision. If the answer is Permit, the response is containing
the SessionID for the session that will start. If the answer is Deny, the re-
sponse is delivered to the PEP and the session is tracked in the SM as denied.

• StartAccess: Action invoked by the PEP having the SessionID as a param-
eter. This is the actual start of using the requested service. There is another
evaluation from the PDP and, after an affirmative response, CH confirms the
session to the SM as active.

• RevokeAccess: If the value of a mutable attribute changes, the PIP sends
it to the CH for re-evaluation because it might change the policy decision.
If this event occurs, the usage has to be revoked. CH informs both PEP and
SM that this session is revoked. On the one hand, the SM keeps the session
recorded but in an inactive state, whereas on the other hand the PEP blocks
the usage to the resource.

• EndAccess: When the subject wants to terminate the usage of resources.
When it is received by the UCS, it deletes the session details from the SM
and communicates to the PIPs that the attributes related to that policies are
not needed anymore, unless other sessions are using it.

2.4.3 Usage Control Policy Language (U-XACML)

In Figure 2.9 we can see the model of U-XACML which is the language used by
UCON [26]. It is an extension of XACML which is standardized by OASIS [99].

41

Figure 2.9: Usage Control Policy Language (U-XAMCL) Model.

In order to express the continuous control feature of UCON, U-XACML specifies
the time when the access decision must be taken by the clause “DecisionTime”
inside the tag “Condition” having as admitted values “pre, on, post”. To express
the attribute updates, U-XACML defines also a new element called “AttrUpdates”,
that contains a collection of single “AttrUpdate” elements to specify update actions.
The time of update is stated by the element “UpdateTime” that has values of “pre,
on and post”.

There is a set of attributes associating each of the following: Subjects, re-
sources and environments. This description is done by the following elements:
“AttributeDesignator” that indicates who issues the attribute and who is targeting
this attribute to. Moreover, “AttributeValue” contains the actual attribute value.

The top-level policy elements are the following:

• PolicySet: is an optional element which provides the resulting policy via
the combination of several <Policy> elements applicable to the access re-
quest. The decision made by UCON must be evaluated continuously when
the access is in progress. The U-XACML policy specifies when the access
decision is made by the “DecisionTime” in the <Obligation> and <Condi-
tion> elements.

• Policy: consists of one or more <Rule> elements. An access decision im-
plied by the <Policy> is a combination of the result of the evaluation of

42

each <Rule> it contains. XACML identifies several combining algorithms:
deny-overrides, permit-overrides, flrst-applicable and only-one-applicable.
The access decision produced by the <Policy> is accompanied with a set of
<Obligations>.

• Rule: it has three main parts:

– <Target> which denotes rule’s applicability to an access request

– <Condition>s which are predicates over attributes

– <Effect> is the result of the access decision evaluation.

A Rule returns either “Permit”, “Deny” or “Non Applicable” if the <Target>
and/or <Condition>s are not satisfied. Authorizations and conditions pro-
posed in UCON are modeled in U-XACML by means of the <Target> and
<Condition> elements. <Target> element puts constraints on the immutable
attributes only, while <Condition> elements cover mutable attributes of a
subject, object and environment.

An example of a U-XACML is shown in the Listing 2.1 below where we can
see the items described above. For demonstration purposes the “on” and “post”
conditions, since they contain the same content as the “pre” condition, they are not
detailed. In Listing 2.1 we also see that the subject-id value must be a string equal
to “SUBID” and the attribute that is resource attribute must be an integer greater
than zero in order for the policy to result in a “Permit” decision.

2.4.4 Distributed Usage Control

IoT technologies improve our life and increase the quality of it. But a question
that should always be taken into serious consideration is the way of protecting the
access and sensitive data. Indeed, controlling the access and usage in the area of
IoT has become of major importance [137].

Upon the assumption that data are stored in trustworthy places (data providers)
we consider that there is a form of access control when there is a request to access
this information. The question is how the consumers of the data can use that piece
of information [8] [76].

A distributed system is considered as a system that is consisted of actors which
are information processing devices and there is an owner of each actor and is re-
sponsible for its behavior. Actors are responsible for operations on the data or

43

1<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd−17"
2PolicyId="policyDep" RuleCombiningAlgId=
3"urn:oasis:names:tc:xacml:1.0:rule−combining−algorithm:first−applicable"
4Version="3.0">
5<Description>policyDep</Description>
6<Target></Target>
7<Rule Effect="Permit" RuleId="rule−permit">
8<Target><AnyOf><AllOf>
9<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string−equal">
10<AttributeValue
11DataType="http://www.w3.org/2001/XMLSchema#string">SUBID
12</AttributeValue>
13<AttributeDesignator
14AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject−id"
15Category="urn:oasis:names:tc:xacml:1.0:subject−category:access−subject"
16DataType="http://www.w3.org/2001/XMLSchema#string"
17MustBePresent="true">
18</AttributeDesignator>
19</Match></AllOf></AnyOf></Target>
20

21<Condition DecisionTime="pre">
22<Apply FunctionId=
23"urn:oasis:names:tc:xacml:1.0:function:integer−greater−than">
24<Apply FunctionId=
25"urn:oasis:names:tc:xacml:1.0:function:integer−one−and−only">
26<AttributeDesignator AttributeId="att1"
27Category="urn:oasis:names:tc:xacml:3.0:attribute−category:resource"
28DataType="http://www.w3.org/2001/XMLSchema#integer"
29MustBePresent="true"></AttributeDesignator></Apply>
30<AttributeValue DataType=
31"http://www.w3.org/2001/XMLSchema#integer">0</AttributeValue></Apply>
32</Condition>
33

34<Condition DecisionTime="ongoing">EQUAL TO pre</Condition>
35

36<Condition DecisionTime="post">EQUAL TO pre</Condition>
37</Rule>
38

39<Rule Effect="Deny" RuleId="urn:oasis:names:tc:xacml:3.0:defdeny">
40<Description>DefaultDeny</Description>
41<Target></Target>
42</Rule>
43</Policy>

Listing 2.1: Example of an UXACML Policy.

44

communication not subjecting to usage control [109]. They can communicate be-
tween each other and may have different roles that can change dynamically.

In order to control the way on how data is used, the owners of data providers
must define the appropriate UCON policies that include all the requirements that
must be satisfied by data consumers that receive data from data providers. These
policies must consider the following [13]:

• Data providers interests.

• Data owners preferences.

• Governing laws and regulations.

• Specific agreements between actors.

To this scope obligations are a very helpful tool of UCON in order to man-
age future requirements [59]. Since monitoring and enforcement are difficult in
open infrastructures such as the Internet, and the IoT we assume implementations
in infrastructures that already provide a structured form of communication and in-
formation distribution in IoT. These infrastructures are the IoT protocols. Also,
this is because the information systems in these contexts are easier to control than
systems in, say, public P2P networks. Moreover, for some of the actors in these
contexts, it can be assumed there might be obligation violation.

With the continuous increasing amount of digital personal data, especially in
IoT, we believe that usage control will play a key role on future technologies, par-
ticularly in the context of mobile computing and IoE. Any technical solution will
likely come in conjunction with organizational, legal, and methodological support.
Because most privacy regulations incorporate the notion of “purpose”, this must
be allowed for in the policy language, possibly based on dedicated ontologies [62].
Heterogeneous systems pose particular problems; it is unclear, for example, how
an IoT device can control the usage of the resources. This is a goal that we try to
achieve in this thesis.

2.4.4.1 Distributed Usage Control in the Internet of Things

In our framework, we target on a distributed UCON where the data of attributes
are stored in trustworthy databases. Only UCS components have access to this
gathered piece of information. This framework is based on a fully distributed P2P

45

UCON system [85]. It has been specifically designed to be implemented in IoT
architectures with constrained devices and it is based on a group of smart-nodes
which have their own logical architecture that can match UCON, as described in
the previous sections.

In IoT most devices are constrained and they cannot host mechanisms to handle
and manage access requests mainly due to the lack of computational power and
limited storage capabilites.

With this architecture, we can have one separate UCS on each separate node.
Furthermore, each node has its own access directly to local attributes that are ac-
cessed only by this node. Conversely, there are also the remote attributes the values
of which can be remotely acquired by other nodes. The policies in the distributed
UCON framework consider both attribute types.

By using this version of UCON framework, we have the ability to create sub-
systems that have a standalone UCS with its own PEPs and local attributes. At
the same time, all of them are connected together in a distributed system which al-
lows access to remote attributes [27]. All the nodes communicate with a distributed
database that is hosting all the attributes. When every node needs to evaluate a pol-
icy that has remote attributes in addition to local attributes, it communicates with
the distributed database so as to acquire the values of the remote attributes.

The functionality of this framework is presented in Chapter 3.

2.4.5 Why Usage Control

UCON is an implementation of the ABAC model [165]. Differently from RBAC
model [127] where every subject gets only one specific role each time, UCON can
evaluate different attributes simultaneously. Apart from the advantages of UCON
previously described about attribute mutability and continuity of control, the fact
that UCON is based on ABAC provides another advantage over other models: The
ability to consider the role of a subject as an attribute, combining the feature of
the role in RBAC model with the ABAC model, providing, thus, a generic attribute
for each role to take into consideration when evaluating the overall policy as an
attribute.

As mentioned above, except from the ABAC and the RBAC models, there is
also the TBAC [144] and the CAAC model [164]. TBAC model provides access
control via a task-oriented procedure instead of the traditional subject/object one.
Furthermore, CAAC model provides again an application specific approach such

46

as TBAC. The main disadvantage of TBAC and CAAC models, is that they are
targeting on the application level. Hence, they must be adjusted specifically for
each application which does not stand as a general solution to the heterogeneous
environment of the IoE. Considering also the additional features of UCON, such as
risk and trust awareness [70], it can provide a more general and holistic approach.

Moreover, it is worth noting that, there already exists a distributed UCON
model [109] that focuses on how data usage control could be implemented in dis-
tributed systems. This is a proof that UCON can fit widely on different types of
implementations and architectures which is crucial for the IoE environment that
this thesis proposal is targeting at. The ability of UCON to be hosted in multiple
machines with different components on each one of them is a powerful tool, but
the challenge that still exists, is to be able to create both a local and a global model
of UCON, simultaneously, in order to express and enforce local and global policies
respectively.

2.5 If This Then That (IFTTT)

IFTTT is a free web-based platform used to create applet chains of conditional
statements in IoT settings. Each applet chain, also called Recipe or Applet, is
triggered by changes that happen within various web-services and as a result does
specific actions on other web-services.

IFTTT creates chains of simple conditional statements that are called Applets
and are triggered by changes that happen within web-services.An example is, when
a user likes a video on Youtube, to add it to his/her Spotify acccount. After an
Applet is triggered, there is an action that happens on another web-service. In fact,
given a certain set of criteria, IFTTT gathers web-services in one place so that
they can easily interact between each other [103]. IFTTT consists of the following
structure:

• Services: The basic building block of IFTTT. They describe data and ac-
tions controlled by an Application Programming Interface (API), and each
service has a specific set of Triggers and Actions.

• Triggers: The “This” part of the Applet, causing thus the triggering of the
Action.

• Actions: The “That” part of the Applet which is the result of a Trigger.

47

Table 2.2: Comparison of IFTTT and its Alternatives.

Name Cost Connections Apps/
Devices

Number of
Services Access

IFTTT Free One-to-One Yes/Yes >600 App/Browser
Microsoft Flow Free/Paid Multiple Yes/No 226 App/Browser

Zapier Free/Paid Multiple Yes/No >1500 Browser
Yonomi Free Multiple No/Yes 200 App

Stringify Free Multiple Yes/Yes 70 App/Browser
Workflow Free Multiple Yes(iOS)/No N/A App

• Applets/Recipes: The complete part of an example when a successful
Trigger that leads to the execution of an Action.

• Ingredients: The data that are available after the triggering to guide the
Action.

An advantage of IFTTT is that it can work with various platforms and devices
in IoT. In order to create an Applet, the only necessary step is to mix Ingredients
in such a way that they make sense so that the Trigger can interact correctly with
the Applet. Then, there must be a definition of the pieces of information utilized
by each Trigger and Action. A drawback of IFTTT is that it allows only a single
Trigger and a single Action. The same Trigger can be used for other Actions but
not inside the same Applet. But, in fact, creating an Applet is so easy, that it can be
done via the specific application of IFTTT which is available on the major mobile
operating systems.

There are various competitors of IFTTT and in Table 2.2 we see a summary
of the pros and cons of them. More in detail, the biggest competitor of IFTTT is
Microsoft Flow. It is free for up to 750 runs/month, it can allow multi step con-
nection and works with many apps including Gmail, Facebook etc. and can be ac-
cessed either via apps or browsers. The cons are that, up to now, the apps are around
226 and it does not work with physical devices. But, it also supports Do/While and
For/Each loops whereas IFTTT supports only If conditionals. Hence, it is more dif-
ficult and complicated to operate. Another example is Zapier that works only with
apps and not physical devices. It allows multi step connection between devices and
has a simple free usage up to 100 runs/month and also paid plans of use. On the
contrary, Yonomi works only with physical devices and not with apps, but allows
multi-step connection between the about 100 compatible devices, it is free and fo-
cuses more on home applications. Furthermore, Stringify is also free and can

48

host multiple connections but has only about 70 services and cannot be accessed
via a browser like IFTTT but only via an app. Finally, there is also Workflow that
works only with iOS apps and allows multiple step systems. It is again free but
there is not a list of compatible services but only the most famous iOS apps are
used like Safari, Photo Gallery, Facebook etc.

2.6 Related Work

IoT is a paradigm which includes applications spanning from e-health to industrial
controls. IoT architectures are distributed targeting on constrained devices. The
different nature of these devices together with the additional complexity that the
components of IoE add, makes the introduction of security mechanisms very diffi-
cult, especially when considering the requirement of dynamic policy (re-)evaluation.

2.6.1 Related Work Regarding Protocol Security

There are some efforts considering the enhancement of the security of IoT proto-
cols, that are responsible for distributing information. In [81], the authors present
a survey about the privacy and security challenges targeting on Smart-Home En-
vironment which is a part of IoT. They focus on the existing solutions and the
problems that they have. These solutions are the standard implemented solutions
that exist on the basic implementations of the protocols. This means that in the
case of protocols, like MQTT or CoAP, they continue to face the problems that we
address with the solutions that we propose below.

Yet, no up-to-date solution is targeting on how UCON can be architecturally in-
tegrated in the IoT protocol functionality like the ones that we propose below [73],
[72], [116]. In addition to the previous, a more efficient solution should try to prove
that UCON can fit not only in one protocol, but also in other protocols with dif-
ferent architectures simultaneously, providing interoperability and attribute sharing
among different protocols. Thus, such an effort will give the opportunity for the
first time to provide one compact and complete security enhancement solution for
different protocols together in IoT [116].

2.6.1.1 Related Work Regarding MQTT Protocol

The most significant effort of securing MQTT is called SMQTT [135]. In this vari-
ant of MQTT the goal is to augment MQTT protocol by using extra security fea-

49

tures based on Key/Ciphertext Policy-Attribute Based Encryption (KP/CP-ABE)
using lightweight Elliptic Curve Cryptography. This type of lightweight Attribute
Based Encryption, needs extra overhead caused by the time and the computational
power that is significant considering the constrained devices used in IoT. SMQTT
has to encrypt data continuously. This continuous encryption leads to significantly
worse resource usage. Thus, a solution that does not produce such a significan over-
head should be favored. Moreover, since Publishers can be very constrained de-
vices, encrypting the data on such devices needs significant computational power or
specific hardware components. Hence, such an action may cause battery draining
and instability of IoT systems. Moreover, since SMQTT needs specific Publishers
and Subscribers in order to (en)decrypt data it cannot offer a security enhancement
in the existing or non specifically equiped IoT systems. Finally, our solution can
work with any type of Subscribers of Publisher which enhances the generic nature
of our solution [73], [72]. The solution that we propose below takes advantage
of using computational power provided by the Broker which by default has more
computational power than the Publishers and Subscribers. Furthermore, it does not
require specific Publishers or Subscribers and it does not alter their functionalities.

Moreover, the authors of [79] propose a solution to securing Smart Mainte-
nance Services. Their goal is to proactively predict and optimize the Maintenance,
Repair and Operations (MRO) processes carried out by a device maintainer for
industrial devices deployed at the customer. They focus on the MQTT routing in-
formation asset and they define two elementary security goals regarding the client
authentication. Their solution is based on TLS which is already a basic feature of
the protocol. They proposed on how to use it more efficient as a hardware element.
Although they claim that the performance impact is not significant, the adoption of
an additional hardware component might be critical in the constrained environment
of IoT whereas the solution that we propose does not require specific components
or additional hardware [73], [72].

Apart from the previous, in [138], the authors present the adoption of Event-
Guard in order to secure generally Publish/Subscribe overlay services. EventGuard
is a dependable framework and a set of defense mechanisms for securing a Pub-
lish/Subscribe services. It comprises of a suite of guards to enhance security. But
their solution does not target on a specific Publish/Subscribe protocol like MQTT,
but general in these type of protocols which means that they are not targeting
specifically IoT constrained protocols.

50

2.6.1.2 Related Work Regarding CoAP Protocol

Over the past few years a number of research works have presented new ways to
improve the security of CoAP. Most of these works are focused on reducing the
overhead of using DTLS on top of CoAP. In [111], the authors introduced Lithe
which proposes improvements in the integration between CoAP and DTLS to allow
increased performance and more efficient packet sizes and energy consumption. In
[148], the authors propose a lightweight security scheme in CoAP using Advanced
Encryption Standard (AES) 128 symmetric key algorithm, introducing an object
security (payload embedded)-based authentication mechanism with integrated key
management. Finally, in [16] the authors introduced RESTful DTLS connections
as CoAP resources using Elliptic Curve Cryptography (ECC)-based cryptography,
achieving gains in Read Only Memory (ROM) and RAM occupancy. The IETF
supports efforts to secure CoAP, like DTLS for CoAP [42], or the Object Security
for Constrained RESTful Environments (OSCORE) group which is developing a
mode for protecting group communication over CoAP [145]. The new DTLS stan-
dard (1.3) adds improvements in performance and security [114] which CoAP can
take advantage. However our solution, provides a continuous control monitoring
mechanism, that according to the values of critical attributes, can revoke the access
when policy is violated [116].

2.6.2 Related Work Regarding Usage Control in the Internet of Things

IoT includes applications spanning from various areas with a large variety of ar-
chitectures targeting on constrained devices. Although there exist applications of
UCON in GRID [87], Cloud [17] systems and SIP-based Multimedia delivery [66],
there is only one targeting on IoT [85]. In that work, the authors present a version
of UCON called Usage Control in the Internet of Things (UCIoT) that aims to bring
the UCON on IoT architectures. As also the authors of [109] state, UCON can be
distributed which means that the UCIoT framework can deal with heterogenous
and distributed architectures of connected devices. Their work mainly focuses on
an implementation of UCIoT in a smart home environment. They present specific
policies alongside experiments on testbed. They do not, though, state how this
framework (UCIoT) can be applied to the several application protocols. Their im-
plementation in a P2P environment does not state how the UCON framework deals
with each protocol. The solutions that we propose in the next chapter address this
lack of addressing these protocols and how UCON can work alongside them.

51

Considering, obligation standardization and interoperability over devices and
services in the area of IoE, the framework described above considers an application
of UCON targeting there [85], but the authors there focus more on implementing
a specific version of UCON that focuses on IoT, whereas our work does not need
any specific modification on UCON framework and can be used not only on smart-
home environments. Furthermore, considering the interoperability, with the vast
variety of IFTTT Applets that exist, the solution that we propose targets on enabling
a very wide range of applications instead of only revoking the access. The authors
propose a distributed model of the standard UCON framework, discussing a smart
home use case.

The focus of these works, however, is not centered on obligations, they only
exploit in an appropriate way the authorization constructs. Considering IFTTT an
effort to create simple policy algorithms for IoT is presented in [94]. This work
focuses more on the policy specification and how it could be predicted according
to the user features and the specific IoT domain. This work does not study the
way the policies are written or the obligation format and context but focuses more
on the part of how to create a policy according to what is happening in a specific
IoT domain. Furthermore, enforcement mechanisms are not considered in their
analysis.

In [153], the author describes the development of a specific framework that can
modify the concepts of the IFTTT platform so as to provide services that can be
used in order to make home automation systems more secure. This work, though,
creates specific services in the IFTTT platform and also depends only on the secu-
rity mechanisms of IFTTT without any control on the installed environment and,
also, no continuous way of evaluation or policy enforcement. In [140], the authors
describe also some possible security and privacy risks in the Applets of IFTTT. In
our case, in order to control whether our system has been compromised or not we
can always compare the amount of executions of the Applet that we expected with
the actual ones that really happened from the history of the IFTTT platform. Also,
via the handling of the data included in an obligation we can always have control
of what data are being shared in the IFTTT platform.

Concerning the XACML model for policies, in [31], the authors present a de-
scription of obligation expression based on examples in Grid and networking se-
curity. The work is very specific to this limited environments and does not provide
a way to formalize the obligations semantic. Finally, in [18], the authors present
a variation of XACML specific for obligation extraction. Firstly, they propose a

52

method of creating a new file for obligations in XACML which is produced by the
initial file but they do not give a clear description of how the obligation part should
be constructed so as to be easily readable by both the PDP and the PEP. Though
interesting, their approach is not based on standard XACML, differently from our
solution that integrates in XACML 3.0 policies without requiring any modification
to the standard architecture and workflow.

Additionally, they try to define a set of relations between obligations and pa-
rameters to describe them but they do not provide any formalized way of expressing
them. Also, they do not consider continuous evaluation with obligations that could
be fulfilled before, after or during an action. As a matter of fact, they do not pro-
vide examples, timings or use cases on how their approach can be applicable in
enforcing the obligations within the PEP.

2.6.3 Related Work Regarding Efficient Policy Management of Usage
Control in the Internet of Everything

The area of IoT includes various protocols and applications that target to a wide
range of constrained environments. Thus, the complexity to create security en-
forcement tools that can handle policies in such environments increases. It be-
comes more complex when the security policies have to take in to account dynamic
environments.

Multiple challenges related to information security have been solved through
application of Computational Intelligence (CI) and problem solving approaches.
The main motivation for this is the ability of such methods to automate process-
ing tasks and facilitate faster decision making, which have been completed before
mostly manually by domain experts [129]. With growing complexity of policy
management involving large number of attributes and Object/Subject properties,
one needs advanced models capable of both efficient timely handling of data pro-
cessing as well as delivering accurate and reliable results over time. Therefore,
so-called Hybrid Intelligence (HI) can be utilized to mitigate weaknesses of stand-
alone methods and bring optimized solutions under constraints [1]. The basic prin-
ciple of HI is to use multi-stage solution capable of re-training and adjusting the
whole decision model when new Objects/Subjects are added, properties changed,
etc.

53

2.6.3.1 Decision Making Algorithms

Decision Making process has been proven to be a very challenging task in the in-
formation security field, mainly because of the large amount of information which
need to be taken into account and the demand of a deeper understanding of the
potential trade-offs which the decision makers have to consider in order to reach
the optimal solution. To this end, a number of techniques have been developed
over the years, aiming at overcoming the limitation of human processing capabil-
ities and providing to the decision makers the possibility of structuring complex
problems and evaluating all the available alternatives. These methods belong to a
category of algorithms known as Multi-Criteria Decision Analysis (MCDA) and
are briefly presented below.

A comprehensive survey on the MCDA and their various categories was pre-
sented by Greene et al. in [53]. Even though their study is focused on the geo-
graphic information systems, they also provide an analysis on the various MCDA
techniques, their main characteristics and their distinction. Two main categories
which can be identified are the Multi-attribute decision making methods (MADM)
[161] and the Multi-objective decision making methods (MODM) [4], where the
first having a single objective evaluate a number of different criteria and attributes
and the second are used in problems with multiple, often conflicting, objectives.

Another level of distinction is the one among the non-compensatory and the
compensatory approaches. The methods belonging to the first category do not con-
sider the possibility that the benefits on some attributes can overbalance shortfalls
of others [84]. On the other hand, compensatory methods allow the aforementioned
trade-off giving thus a level of freedom to the decision maker.

An additional category is the one of the weighting methods, where usually an
expert of the application environment is asked to provide a certain level of prefer-
ence or weight to each of the criteria, before an aggregation takes place. The most
known method belonging to this category is the Analytic Hierarchy Process (AHP)
[119] [121] which provides a way to structure into an hierarchy the criteria and
to compare them pair-wise by assigning to them relative weights with respect to a
final goal. Finally, worth to be mentioned are the outranking methods whose out-
come is a ranking of the alternatives based on a concordance-discordance principle,
meaning that an alternative is better than another if the majority of the attributes re-
inforce this claim (concordance) and if the minority cannot offset it (discordance)
[15].

54

Chapter 3

Distributed Usage Control and
Internet of Things
Communication

This chapter presents our work towards enhancing IoT security via UCON. Firstly,
we used the standard UCON to add it in the MQTT protocol. After identifying
the limitations of UCON and the advantages that distributed UCON can offer, we
used it for our further efforts. Hence, we present the addition of UCON in MQTT
protocol followed by the addition of distributed UCON in CoAP protocol. Then,
we present the addition of distributed UCON to both protocols simultaneously.
Finally, we present UCON interoperability and obligation standardization via ex-
pressing enforcing UCON obligations through IFTTT.

3.1 Addition of Usage Control in IoT Application Layer
Protocols

In this section we present our work of adding UCON in IoT protocols providing
the architectures, the workflow, use case scenarios and timing evaluation. We will
discuss firstly how UCON can be installed in a couple of protocols and then how it
can work in a more complex environment of coexisting ecosystems that are com-
municating via different protocols.

55

3.1.1 Usage Control in MQTT Protocol

This part describes the architecture of including UCON in MQTT, presenting first
the model, then the operative workflow and the performed implementation.

3.1.1.1 System Model

As previously mentioned, MQTT protocol is based on the Publish/Subscribe model,
thus the entities participating to the protocol can act either as Publishers or Sub-
scribers. Publishers could be sensors or other devices which collect and provide
specific data, when available, periodically or even as a stream. Subscribers are in-
stead entities that register to the Broker to receive, when available, specific data or
set of information grouped under a Topic. The Broker acts as middleware and co-
ordinator, managing the subscription requests and dispatching data to Subscribers,
when made available by prosumers.

The MQTT protocol supports ID and password-based authentication for both
Publishers and Subscribers. The enforcement is performed on Broker’s side, which
keeps track of the ID and authentication password of authorized Publishers and
Subscribers. However, we argue that this authentication model is too simplistic
and coarse grained, making it impossible to check the right to access information
over time. In fact, once a Subscriber has been authorized, the subscription remains
valid until the Subscriber explicitly invokes an unsubscribe for the topic(s) it was
registered for. The same goes for Publishers which keeps the right to publish con-
tinuously or on demand, till they have valid credentials. In real applications, several
features might imply a condition for a subscription to decay, or for a publication to
be denied. Detected Publisher malfunction or corruption, conditions on time spans
in which a subscription should be allowed, and Subscriber reputation, are just few
examples of aspects on which a more complex policy should be enforced.

To enforce policies with similar conditions to the aforementioned ones, and to
have the possibility of revoking a subscription, usage control has been added to the
MQTT logical architecture.

In Figure 3.1, we depict the logical architecture of the proposed framework.
As shown, the UCS is physically integrated in the Broker Device, i.e. the

physical machine that is hosting the Broker software, which enables the MQTT
protocol. It is worth noting that we consider in this example three abstract PIPs,
which are conceptually grouping the PIPs reading attributes related to the subject
(PIPS), to the resource (PIPR) and to the environment (PIPE). The PEP is (par-

56

Figure 3.1: Usage Control in MQTT Architecture.

tially) embedded in the Broker, to dynamically control the subscription events. In
particular, the PEP will intercept the subscription events and interact directly with
the Broker subscription manager, deleting and inserting the entries for Subscribers
from the list of authorized ones, according on the UCS decision. In such a way,
the PEP ensures that no Subscribers can register by avoiding the enforcement of
the usage control policy. Since the PEP is embedded in the Broker, the proposed
architecture remains compatible with any implementation of MQTT Subscribers.
The only requirement is that the Subscriber is configured to access with username
and password, otherwise the connection will be refused by the Broker.

3.1.1.2 Operative Workflow

In Figure 3.2, we report the envisioned workflow. For the sake of simplicity, we
will consider a simple system made out of a Broker and a single Publisher and
Subscriber.

The workflow is initiated by a subscription request from the Subscriber to the
Broker. This request is intercepted by the the PEP, which interprets it, so as to
take the credentials of the Subscriber that are needed in order to create and send
the request to the UCS for evaluation. Hence, the PEP invokes the TryAccess

sending to the CH request and policy. The request is eventually filled by attributes
retrieved through the PIP, then is sent, together with the policy, to the PDP for
evaluation, which should return a Permit or Deny decision. In case of Deny, the
subscription request is dropped and the Subscriber will be notified, as if a wrong
username/password has been inserted. In case of Permit, the SM creates the session
and sends its ID to the PEP (via the CH) which is informed about this decision and
performs the StartAccess. Supposing a permit decision has been received, the

57

Figure 3.2: UCON in MQTT Workflow Diagram.

Broker informs the Subscriber about the successful subscription and starts to send
data related to the topic when available, eventually stimulating Publishers in an
idle state.

To illustrate the revoke workflow, we suppose that one of the attributes rel-
evant for the Subscriber policy changes its value (OnAttributeUpdate). This
causes the PIP to send this new attribute to the CH that forwards it to the PDP for
reevaluation. Supposing that the value of this attribute leads to a conclusion that
this session must be revoked (Deny decision), the CH invokes the RevokeAccess

on the PEP, also informing the Subscriber that the access is no longer granted
(RevokeAccess). The termination of the access could happen also if the Sub-
scriber is no longer interested to the data, invoking the Unsubscribe. The unsub-
scribe triggers the PEP to send an EndAccess to the CH. The latter informs the
PIP to take the last value of the attribute (PostAttributeUpdate). Also the UCS
informs the Broker that the Subscriber is no longer subscribed and forces the un-
subscription of this specific Subscriber from the Broker. Moreover, the SM is also
informed that this session is over so that the record should be archived or deleted
Finally, if this Subscriber is assumed to be the only one that was interested to the
Publisher, the Broker informs him to stop data publication due to fact that there is
no more any interest from any Subscriber.

We point out that the simplification of considering a single Publisher/Subscriber

58

does not harm generality. In fact, the protocol is not modified and by using mul-
tiple Subscribers/Publishers do not introduce any additional criticality, since both
MQTT Broker and UCS can support multiple components natively.

3.1.1.3 Implementation of Usage Control in MQTT

As previously mentioned the UCS is a Java-based configurable framework, easy
to integrate in any system with a Java runtime environment. The software used to
implement the Broker is the open source MQTT Broker Moquette1. Though not
largely used as the Mosquitto2 Broker, Moquette is easier to integrate with the UCS
framework, since they are based on the same programming language. The Broker
has been partially modified to include in it the PEP functionalities. In particular, the
subscription request is intercepted by hooking the subscription handling method,
as to invoke TryAccess and StartAccess and waiting results before allowing or
denying the subscription. If a Deny decision is received, the Broker will return a
wrong user/password message to the Subscriber.

If there is a policy violation, the RevokeAccess is invoked. Hence, the PEP
calls the Unsubscribe function so as to prevent the Subscriber from receiving mes-
sages, while the EndAccess is invoked to remove the session details on the UCS
side.

In Figure 3.3, is depicted the architecture of our testbed. In one Raspber-
ryPi3 (central in Figure 3.3) we run the Broker which includes the PEP, and the
UCS as Java ARchive (JAR)s. The code of the Subscriber4 and the Publisher5

were running unmodified in different Raspberries.Furthermore, additional tests
have been performed by having the Subscriber host in an Android application
called MyMQTT, which can be accessed through Google Play. Hence, the Sub-
scriber code can be almost completely executed in the same device of the Pub-
lisher. Moreover, it is or the latter can be a small sensor that gives the data to the
Broker as shown in Figure 3.3. Since the framework is general, none of these con-
figurations affects the functionality or requires any modifications to the framework.

1https://github.com/andsel/moquette
2https://mosquitto.org
3http://raspberry.org
4https://github.com/pradeesi/MQTT_Broker_On_Raspberry_Pi/blob/master/subscriber.py
5https://github.com/pradeesi/MQTT_Broke_On_Raspberry_Pi/blob/master/publisher.py

59

Figure 3.3: UCON in MQTT Testbed Logical Representation.

3.1.1.4 Experimental Evaluation of Usage Control in MQTT

To demonstrate the viability of the proposed approach, the overhead introduced by
UCON has been measured in a simulated and in a real environment. The frame-
work has been tested in two different environments: the first one is a virtual ma-
chine installing Ubuntu 16.04 64-bit, equipped with an Intel i7-6700HQ with 8
cores enabled, 8GB-DDR4 RAM running in 2133MHz. The second one is a Rasp-
berry Pi 3 with a Broadcom ARRMv7 Quad Core Processor running on 1.2GHz
and 1GB of LPDDR2 RAM on 900MHz, running official Raspbian as operative
system. The Publisher and the Subscriber were installed in two other Raspberries.

The complete set of results is in Table 3.1. All values have been extracted as
the average times computed on 10 runs of the framework in every setting. The first
column describes the title of the timings which are all described in milliseconds.
The second column describes the timings when the Raspberries are used, and the
third one the scenario where we used the Desktop-PC.

In Table 3.1, the detailed timings are reported, considering a policy with a
single attribute. In Figure 3.4 and Figure 3.5 are reported the performance variation
at the increase of the number of attributes used in the policy. As shown, the timing
behavior is almost linear to the amount of attributes, which is expected, due to the
longer time needed to collect a larger number of attributes and for the evaluation

60

Table 3.1: Timings for comparing results between Raspberry and Desktop experi-
ments.

Event Timings (ms) Raspberry Desktop
Total Tryaccess Time 770 91
Total Startaccess Time 169 26

Total Subscription Time 969 121
UCON Subscription Part 939 118
MQTT Subscription Part 30 3

Total Endaccess Time 211 27
Unsubscribe Time With UCON 213 27

Unsubscribe Time Without UCON 2 0
Revoke Duration in Broker 216 27
Revoke Duration on UCON 455 41

Figure 3.4: Timings on the Simulated Testbed.

performed by the PDP. However, in the real case, even considering 40 attributes,
the timings are still acceptable for most of applications. Moreover, it is worth
noting that policies with a large number of attributes such as 40 are quite unusual
[85].

As expected, the low computational power of the Raspberry alongside the exis-
tence of a real network among the MQTT components, explains the longer timings
than in the simulated environment. However, also considering a limited amount of

61

Figure 3.5: Performance on the Real Testbed.

attributes which is usual as mentioned above the overhead is slightly bigger than
one second.

Considering the subscription time, we see that there is some overhead caused
be UCS. This is not considered as a constraint because, since the Broker provides a
buffer, we can still send all the published messages between the time of the request
and the actual acceptance of the Subscriber. This causes no packet loss to the
Subscriber and high QoS. Furthermore, the most significant time is the one of the
revocation. This time is in fact the actual time in which the policy is violated and
should be minimized. As shown, this time is equivalent to 216ms in the real use
case and 27ms in the Virtual Machine, considering a policy with a single attribute.
For several applications, this time can be considered as negligible. As shown, the
time between a non-valid value is taken and revocation of the access is very small.
Finally, it is worth mentioning that in the ongoing phase, i.e. after a successful
StartAccess, no delay is introduced by UCON while delivering messages to the
Subscribers independently also of the number of attributes.

3.1.2 Distributed Usage Control in CoAP Protocol

CoAP protocol follows the Client/Server model. Each Client can either request
and/or provide data to the CoAP system. Clients could be very constrained devices

62

Figure 3.6: Architecture Diagram of Usage Control in CoAP Protocol.

whereas the Server has to provide enough computational power to support all the
communications and actions of the CoAP system. The registration and manage-
ment of the Clients is performed by the Server that assigns unique tokens to each
Client. Yet, this model is very simple and does not provide any mechanisms for
checking the access during time. All the Clients remain connected as soon as they
firstly register correctly. In reality, there might occur cases in which sensitive in-
formation should not be delivered to specific Clients. To achieve such continuous
monitoring of the access rights of the Clients, the CoAP architecture has been en-
hanced by the addition of UCON.

In Figure 3.6 we present the architecture of the proposed enhancement in CoAP
architecture. The UCS is in the same device with the Server of CoAP. UCS can
communicate also with other UCSs that can provide the values of remote attributes.
The component that performs this communication is CH. There are various PIPs
that are receiving the values from the various AMs regarding subject, resource and
environmental attributes. The PEP is also installed in the Server and every new
request that comes from a Client is firstly sent from the Server to the PEP for be-
ing evaluated by UCS. For every session of the UCS there is a unique sessionID
assigned and stored in the SM. This unique sessionID is matched with the unique
token assigned to each Client by the CoAP Server. The PEP enforces the decision
of the UCS by interacting accordingly with the Server that manages the subscrip-
tions. Thus, we ensure that there is no chance that a Client can be registered in the
system without being monitored by UCON. Furthermore, we manage to achieve
our goal without making any modification to the Clients.

63

3.1.2.1 Operative Workflow of Distributed Usage Control in CoAP

In Figure 3.7, we report the workflow of an instance of UCON to a system that uses
the CoAP protocol. For the sake of simplicity, we will consider a simple system
made out of one Client that publishes information (CLIENT_P) and another one
Client that requests for information (CLIENT_R) which is marked with red color
on the right part of Figure 3.7.

The workflow starts with the request for access by the CLIENT_R to the Server
(Task 1). When the request arrives to the Server it initiates the communication
with the local PEP (PEP_L) (Task 2). At this point, we should mention that the
components of the local UCS (UCS_L) are marked with green color and have the
(L) identification to their names, whereas the components of the remote UCS are
marked with light blue color and have the (R) identification to their names. As
soon as the request is received by the PEP_L, it communicates with the UCS_L
by performing the TryAccess action to the CH component of the UCS_L, which
is marked in the workflow as CH_L, containing the request and the policy (Task
3). The request has to be enhanced with the attribute values that the CH requests
from the various PIPs that take them from the specific AMs (Tasks 4-5). If the
value cannot be provided by a local PIP (PIP_L), the CH_L communicates with a
remote CH (CH_R) of a remote UCS (UCS_R) (Task 6). CH_R is responsible to
acquire the attribute value from PIP_R (Task 7-8) and return it to the CH_L (Task
9). Then all the above are sent to the local PDP (PDP_L) to be evaluated (Task
10) and the PDP_L replies with the result to the CH_L (Task 11). Considering the
result is either Permit or Deny, the request is approved or not accordingly and the
CLIENT_R is informed about this (Tasks 12-14).

Then, in the case of a Permit in the previous request, the CLIENT_R per-
forms another request to obtain data, which in our case will be provided by the
CLIENT_P (Task 15), after the Server communicates with PEP_L (Task 16) and
gets a Permit on that request. For this to happen, PEP_L must perform the Star-
tAccess to the CH_L which again passes through evaluation by the PDP_L as pre-
viously (Tasks 4-11). Supposing that CLIENT_P starts sending data to the Server
(Task 20) that must be delivered to CLIENT_R, the Server distributes them with-
out any interference by UCON (Task 21). In the meantime, UCS_L is performing
a continuous re-evaluation of the policy (Task 22). In the case that there is a pol-
icy violation, the access of CLIENT_R should be revoked (Task 23). The CH_L
informs the glspep_L (Task 24) and the latter informs the Server (Task 25). The

64

Figure 3.7: Workflow Diagram of Usage Control in CoAP Protocol.

Server deletes CLIENT_R from its authorized Clients and informs it about this fact
(Task 26).

3.1.3 Usage Control in Other Protocols

In the previous sections we proved that both UCON and distributed UCON can
be added in the workflow of the protocols taking as an example one protocol of
each communication pattern (MQTT for Publish/Susbcribe and CoAP for Clien-
t/Server). Accordingly UCON can be added in the other protocols mentioned above
since they must follow one of the mentioned communication patterns. Since the
pattern does not change, by following our previous work we can add UCON in
each protocol simply by adjusting the previous procedure to the specific compo-
nents and architecture of each protocol.

3.2 Application of Usage Control in Combination of IoT
Application Layer Protocols

To the best of our knowledge, up to now the efforts for policy enforcement and
continuous monitoring of the access in IoT application layer protocols are still
limited. In this part, we present our work on increasing the security of both CoAP
and MQTT protocols with dynamic policy enforcement of UCON policies together
with the ability of sharing attribute values for access evaluation purposes between
protocols [116]. We demonstrate the general methodology that proves the ability

65

Figure 3.8: Architecture Diagram of the Proposed Framework.

of integrating UCON in a seamless way without modifying the protocols. In order
to demonstrate the viability of our approach we present also a real implementation
of our framework together with performance evaluation.

3.2.1 Architecture

Taking advantage of the distributed version of the UCON framework [85], we cre-
ated a similar architecture in our framework in order to combine simultaneous con-
trol of accesses using different IoT application layer protocols.

As shown in Figure 3.8, we consider a system of interconnected subsystems
using different IoT protocols. These standalone subsystems include a set of smart-
devices communicating via the same instance of CoAP or MQTT protocol. All of
these subsystems work standalone with a separate instance of UCS that is installed
accordingly to the protocol each time, enhancing thus their security and continuous
monitoring of the access. Thus, all the devices of every system are connected to
the same instance of UCS by communicating with their own PEPs. For example,
we can have the systems (Ci, i ∈ N>0) that use the CoAP protocol and the systems
(Mj, j ∈ N>0) that use the MQTT protocol. For the sake of simplicity, in Figure
3.8 we present only a couple of subsystems for each protocol. Because of the
different architecture of each IoT protocol, the PEP component of UCON has to be

66

specifically adjusted to each protocol, whereas the UCS does not change but can
be executed in different components according to the protocol used. Every system
has their own local attributes. In the meantime, each system (Ci/Mj) for their local
evaluation of access requests may need access to the values of remote attributes
that belong to another subsystem (Cx,Mx). This communication between different
instances of UCS for sharing attribute values gives us the ability to control different
protocols without the necessity of the sensors that provide the attributes to use the
same protocol for communication. At this point, it is worth mentioning that the
use and functionality of both protocols works as standard despite the addition of
UCON.

3.2.2 Experimental Evaluation

In this section we introduce a use case for the proposed framework and present ex-
periments in both simulated and real environments to help demonstrate the results.

3.2.2.1 Example of Use Case

For this use case we consider a scenario of a MQTT system (system M) and a
CoAP system (system C) within a smart home. Both systems have a UCS installed
(UCSm and UCSc respectively). Figure 3.9 describes the topology of our use case
scenario.

In this scenario, a smart-vacuum-cleaner performs an access request to UCON
in order to operate. The policy states that it is allowed to operate only if the power
consumption and noise levels are within a certain threshold. Some appliances like
a smart-TV, a smart-meter (that measures power consumption) and a smart-speaker
together with the vacuum cleaner belong to the same system, communicating via
MQTT protocol (System M). Furthermore, we consider a smart washing machine,
a smart thermostat and a smart noise sensor that are also inside the same home but
communicate via CoAP protocol and they belong to a CoAP System (System C).
In order for the vacuum cleaner (Subscriber) to start cleaning, it must first connect
to the Broker of system M to subscribe to the power consumption values which
are gathered and stored by the smart meter (Publisher). The Broker receives this
request and forwards it to the UCSm. UCSm realizes that in the policy regard-
ing authorization of subscriptions contains a noise level attribute that cannot be
retrieved locally by a PIP. Since this value is not local to the system M but belongs
to the UCSc of System C, the UCSm contacts the UCSc and asks for access to the

67

Figure 3.9: Use Case Diagram.

value of the noise level from the noise sensor.
After receiving the value from the UCSc, the UCSm evaluates the request and

forwards the result to the Broker, which, in case of “Permit”, allows the vacuum
cleaner to retrieve the data coming from the smart meter. In parallel, the UCSm
continuously checks all the attributes and evaluates the policy. In the event that
the value of the noise level or the power consumption rises above policy-defined
threshold, the policy is violated and the access of the vacuum cleaner to the data of
the smart meter is revoked, which also leads to the cancellation of the subscription
from the MQTT system. Thus, without this information the vacuum cleaner will
halt its task.

On the other hand, the opposite scenario is happening on System C. The smart
washing machine (Client C1) wants to receive the data coming from the smart noise
sensor (Client C2) of System C. In this instance the policy states that the smart
washing machine is able to receive the data only if the power consumption is below
a certain threshold. The CoAP Server of System C forwards this request to UCSc
that checks the request conformance with the policy. However, the value of the
power consumption belongs to UCSm, which means that the UCSc has to retrieve
the attribute value remotely. Thus, UCSc communicates with UCSm, acquires this
value, evaluates the request and forwards the result to the Server of System C. If the
result is “Permit”, the Client C1 retrieves the data and operates normally. If at any

68

given point the value of the power consumption or the noise level rises above the
defined threshold, the policy is violated and the access of C1 to the data is revoked
by the UCSc, which leads to the halt of the washing machine task.

3.2.2.2 Implementation

The UCS framework was implemented as a Java application. The software used
to implement the Broker of the MQTT protocol was Moquette6. This Broker is
based on the same programming language as the UCS framework which helped
making sure that they could be integrated in the same device. Regarding MQTT
Subscribers and Publishers we used off the shelf Python-based implementations.
These ran as standard, without any modifications. Only the Moquette Broker was
partially modified so as to host the PEP and call the UCS when invoking the TryAc-
cess, StartAccess, EndAccess actions and wait the response from UCS. In the case
of negative response, the Broker responses with wrong user/password message.

The software used for the CoAP system was Californium7 which is also devel-
oped in Java like Moquette. Californium is a well-known implementation of CoAP
and provides implementation of both Clients and Servers. Following the same
pattern of the MQTT implementation, the Clients of CoAP ran without any modi-
fication whereas the Server was partially modified in order to host the PEP and the
UCS. When a Client wants to observe some resource on a Server, the PEP calls the
UCS invoking the same actions as previously in the case of the Moquette Broker.
In the case of a negative response, the Server returns a message to the Client that
it was not allowed to observe that resource. If, in the case of both protocols, there
is a policy violation, RevokeAccess is invoked by the UCS to the PEP and on both
cases the session is terminated and the Subscriber or the Client, depending on the
protocol, is removed.

3.2.2.3 Testbed and Timing Evaluation

To demonstrate the viability of the proposed approach we examined the overhead
of UCON in a real environment. The framework was tested in a virtual machine
with Ubuntu 18.04 64-bit powered by an Intel i7-6700HQ using only 4 of its logical
CPUs and 4GB of RAM. We considered a scenario containing one MQTT and one
CoAP system, respectively. In this scenario we intercepted requests of each system

6https://github.com/andsel/moquette
7https://github.com/automote/Califorium

69

Table 3.2: Timings in Milliseconds (ms) for Both Protocols.

Protocol CoAP MQTT
Time (ms) / No. Attrs

(Local/Remote) 5/0 5/1 5/2 5/3 5/4 5/5 5/0 5/1 5/2 5/3 5/4 5/5

Subscription Time (UCON) 2407 2660 2783 2831 2901 2905 2455 2708 3065 2882 2884 2971
Subscription Time (Protocol) 1 1 1 2 2 2 3 4 4 3 3 3

Total Subscription Time 2408 2661 2785 2832 2903 2907 2458 2712 3070 2885 2887 2974
Revoke Time (UCON) 852 917 919 959 985 964 949 980 1155 1069 1058 1064

Unsubscribe Time (Protocol) ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1
Total Revoke Time 853 918 920 960 986 966 949 980 1156 1070 1059 1065

considering a constant number of 5 local attributes and a variable number of remote
attributes coming from the other system that varies from 0 to 5. In Table 3.3, we
report the detailed timings for each one of the setups described above taking the
median of 5 experiments per setup. Firstly, we present the scenario that the CoAP
system has the local attributes and the MQTT has the remote attributes and vice
versa.

The process of a Client to subscribe to a Server for acquiring data in CoAP
is called observation and in MQTT is called subscription. Hence, whenever we
want to refer to both operations simultaneously we will use the term subscription
for both of them. We appose the subscription time only for UCON which consists
of the summary of the times of the TryAccess and StartAccess actions. We also
provide the subscription time that is needed only for the protocol and then we give
the total sum of subscription times which is the sum of the previous two times.
Considering the subscription time, we recognize that the time in each protocol is
very low, especially for CoAP given that CoAP is more constrained as shown in
Figure 3.10.

Also, we notice that there is some overhead caused by UCON. But, this over-
head of UCON is happening only at the subscription time and there is no overhead
in the functionality of each protocol when distributing information after granting
permission. Moreover, the ongoing evaluation is happening in the UCS without
causing any overhead to the protocol functionality. For unsubscribing (RevokeAc-
cess) we consider again two different times for each protocol. The first time is the
time of the execution of the RevokeAccess action for UCON and the second one is
the time for the unsubscription of the components in the protocols (Subscriber and
Client for MQTT and CoAP respectively) as shown in Figure 3.11.

Again the time of UCON is near one second which produces some overhead
comparing to the approximately 1ms of the protocols, but yet again this is not
crucial considering real IoT scenarios and it happens only in the revoke time and

70

Figure 3.10: Subscription Timings for Both Protocols.

not during the sessions of the protocols. Finally, when there are not any remote
attributes the timings are significantly lower, but as the number of remote attributes
increases the timings of UCON also increase although not significantly.

3.3 Usage Control for Interoperable IoT Devices and Ser-
vices

As shown above, in order to enhance security and privacy in IoT ecosystems,
UCON has been a tool able to provide continuous access control inside IoT proto-
cols in a seamless way[73]. Apart from mutable attributes, UCON introduces new
decision factors besides authorizations; these are obligations and conditions [105].
The main feature of UCON is to handle Obligations are part of U-XACML policy

71

Figure 3.11: Revoke Timings for Both Protocols.

language that is used in UCON [26]. U-XACML has a very high expressiveness po-
tential, hence fitting the flexibility requirements of complex environments, such as
IoE ones. Since the third version of XACML, which is also the base of U-XACML
there is a tag for describing obligations which are mandatory actions that have to be
performed in conjunction with the policy enforcement [26]. Obligations are target-
ing either the PEP or the PIP. Currently, XACML does not provide a standard for
the description of obligation semantic regarding the obligations targeting the PEP.
While the intention is the one of non imposing constraints on format of the rep-
resented information, the direct consequence is that every obligation management
engine has to be developed ad-hoc. Having a standard semantic for representation
which is meaningful at least in an application macro-environment, such as IoE, can
push developers and policy editors to use common expressions to represent and en-

72

force obligations. In particular, it is possible to express obligations as commands
for an inter-operable service or platform used by a multitude of IoT/IoE devices,
such as IFTTT8. As stated in Chapter 2, IFTTT is a free web-based platform used to
create applet chains of conditional statements in IoT settings. Expressing triggers
through UCON obligations will allow the device receiving the policy evaluation
decision to easily execute the obligations, without hard-coding the actual obliga-
tion interpretation, demanded to the specific UCON applet.

This section presents the application of IFTTT triggers to express and enforce
UCON obligations that are targeting the PEP. We will describe a novel architec-
ture where the standard UCON framework is combined with the IFTTT platform
services. The proposed architecture is designed to be independent of the spe-
cific device implementation, specific application and transport level communica-
tion protocols. Thus, the proposed framework does not alter the XACML model
and workflow, whereas we enhance its capabilities by proposing a standardized
way of expressing obligations, reusing pre-existing components, being thus non
intrusive.

In the following paragraphs, we will discuss the full operative workflow, de-
tailing both UCON and IFTTT operation parts, proposing two relevant use cases
and a set of performance experiments to demonstrate the viability of the proposed
approach.

3.3.1 Enforcing Usage Control Obligations via IFTTT

This subsection describes the proposed framework for evaluating UCON policies
and enforcing obligations via IFTTT including the workflow, the implementation
and the process of including IFTTT Triggers in the standard XACML.

3.3.1.1 Architecture

Our goal is to create such an obligation format that the PEP can execute IFTTT
Applets without the need of specific PEP per Applet. To this aim, we propose a
framework that is implementing the PEP on a smart-device so as to perform access
requests and receive the responses to and from the UCS respectively. If in the
response of the UCS there is an obligation, the PEP has to extract and enforce it by
performing the corresponding Trigger to an IFTTT Applet. The components of the
proposed framework are shown in Figure 3.12. Firstly, the UCS has to be installed

8https://www.ifttt.com/

73

Figure 3.12: Logical Architecture of Usage Control in IFTTT.

on a smart-device which can be any appliance, computer, smartphone that is able to
run an operating system capable of installing and running third party applications.
Such a device can be a RaspberryPi or a smart-TV. Then, UCS has to communicate
with the device that hosts the PEP. Other smart but not very powerful IoT devices,
such as a smart temperature or light sensors, can be used from the various PIPs in
order to acquire information about attribute values by the AMs and provide it to
the UCS. The PEP can either reside in the same device as the UCS or in a separate
device. The interpretation of the obligation coming from the UCS, is to the values
that are necessary for the IFTTT Trigger and the enforcement is to perform the
triggering of the Applet. The triggering happens via a web request from the PEP
with the IFTTT by making a web request that enforces the obligation. This means
that the PEP must have access to the Internet so as to communicate with the IFTTT
servers. Then, the IFTTT server is responsible to execute the Applet when receiving
the Trigger of the obligation. After that, the necessary information will be extracted
from the IFTTT server and the Action service will be executed.

3.3.1.2 Operative Workflow

The complete workflow of our framework is presented in Figure 3.13. This figure
describes the communication between the PEP and UCS from sending the request
until the obligation enforcement and the triggering of the Applet. For better under-

74

Figure 3.13: Sequence Diagram of the Proposed Framework.

standing we will describe the workflow in two parts. These parts are i) the com-
munication between the PEP and the UCS (tasks 1-3, 7-9, 13-16) and ii) obligation
enforcement for by the PEP to IFTTT (tasks 4-6, 10-12, 17-19).

3.3.1.2.1 Communication between PEP and UCS

As shown in Figure 3.13, the PEP primarily initiates communication with the UCS
by performing the TryAccess action for evaluation of the request (task 1). Then,
the CH component of the UCS receives the request and the values of the attributes
from the various PIPs . All the previous, are sent to the PDP for evaluation where
the answer is Permit or Deny according to their compliance with the policy that ar-
rives together with the request (task 2). If the answer is Deny, the PEP is informed
about it (task 3). But, if the answer is Permit, the SM starts keeping a record of
the session by assigning a unique ID to it and the PEP is informed that the access
was initially granted and retrieves the session ID (task 3). In both cases, if there
is an obligation in the response, the PEP has to extract and enforce it. The PEP,
then, starts the actual usage of the resources by performing the StartAccess action
to the UCS for the session with the specific ID (task 7). After another evaluation
from the PDP (task 8), if the answer is Permit or Deny there may be an obligation
in the response to the PEP, whereas the PEP is responsible for interpreting and
enforcing it (task 9). For more information about the procedure inside UCS com-
ponent, readers can refer to [76]. Moreover, while a session is in progress, there is

75

a continuous re-evaluation of the session (task 13). In the case of policy violation,
the UCS performs the RevokeAccess and the sends the appropriate message to the
PEP (task 14). On the contrary, if the subject wants to terminate the session while
it is on progress, the PEP has to inform the UCS about it by performing the En-
dAccess action (task 15) and receive the answer (task 16). Both in RevokeAccess
or an EndAccess the message from UCS to the PEP may include, as previously, an
obligation so after Task 14 or Tasks 15,16 the Tasks 17-19 of the obligation hap-
pen. We can see that obligations can be performed after every action of UCON,
and they must include all the necessary information so that the PEP can trigger the
Applet.

3.3.1.2.2 Communication between PEP and IFTTT

The PEP must not only communicate with the UCS, but also to extract the obli-
gations and enforce them by triggering the IFTTT Applet. About obligation en-
forcement, firstly the IFTTT Applet has to be created in the IFTTT platform and
the Trigger has to be a web request service. The Applet is executed by making
the web request from the PEP to the IFTTT platform and, if the data received are
correct, the platform performs the Action. The type of the Action depends on what
the creator of the Applet selected and is not controlled by the UCS. The role of the
PEP is to extract the information related to the obligation. For the tasks that may
include obligations, the PEP must firstly extract the information included in the
obligation (tasks 4,10,17). The next step is to enforce the obligation by perform-
ing the corresponding Trigger of the IFTTT Applet that has to run. To do so, the
PEP has to create and send the appropriate web request to the IFTTT server (tasks
5,11,18). The correctness of the web requestis verified by the IFTTT server and it
is not controlled by the PEP (tasks 6,12,19).

3.3.1.3 Obligation Standardization

According to the OASIS standard [99], obligation, as part of a policy for access
control, is a XACML tag that describes when the obligation will be triggered. If it
is triggered on a Permit or on a Deny it must be included in the appropriate policy
rule. Furthermore, in U-XACML, the format of the obligation does not change
compared to XACML[26]. But, in U-XACML, according to the time of execution,
the corresponding obligation Pre, OnGoing must be included in the appropriate
condition (Pre, Ongoing) respectively.

76

In our case, we consider the enforcement of obligations that have not attribute
updates targeting the PIPs, but obligations that target the PEP and include the nec-
essary data of an IFTTT Trigger. When an obligation targets the PEP, the payload
that the PEP has to extract and enforce is included in the “ObligationId” as a string
variable that has no specific type. In our framework, this string has the form of a
JavaScript Object Notation (JSON) structure that includes the names and the values
of the variables that are necessary to perform the IFTTT Trigger.

As an example, we consider a couple of obligations that happen a) after a suc-
cessful set of TryAccess action followed by a successful StartAccess (Oblig1) and
b) after a RevokeAcess (Oblig2). In Listing 3.1, we can see a simplified version of
a policy written in U-XACML focusing on the obligation part. The first obligation
example is an expression of (Oblig1) and the second obligation part is an expres-
sion of (Oblig2). Both are included inside the corresponding policy rules. We can
see the ObligationId string, expressed in such a format of JSON structure so that it
can be included in the U-XACML file without issues including the IFTTT payload.

The string of the obligation, which is in JSON format, includes the specific
values for the Trigger of the IFTTT to happen. The Trigger is a web-request.
For this action we selected the Webhooks9 service when we created the Applet in
the IFTTT platform. Webhooks service provides the ability for a web request to
be the Trigger of the Applet but, generalizing, any other IFTTT service could be
used supposing that the PEP is accordingly altered. The Webhooks services gives
to each IFTTT acccount a unique Key that should be included in every request for
identification purposes. Since the Key remains the same for all the different Applets
of each user of the same Webhooks service account, the only way to distinguish
each application between each other, is done via the unique EventName that every
instance of the Webhooks service must have. Webhooks gives also the opportunity
to include some payload variables in the web-request. The Payload can include
values of attributes, plain text, or everything other information acquired by the
UCS or the PEP. In total, in order for the obligations to include the IFTTT data
for the Trigger as shown in Listing 3.1, they must include the (Key, EventName,
Payload) values. Summarizing, for the two types of obligations mentioned above,
the requirements and decision that has to be issued by the UCS to the PEP, are the
following:

-TryAccess∧StartAccess→Permit→Oblig1,
Oblig1 = (Key1, EventName1, Payload1)

9https://www.ifttt.com/maker_webhooks

77

1<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd−17"
2PolicyId="policyIfttt" RuleCombiningAlgId="..." Version="3.0">
3<Description>Description</Description>
4<Rule Effect="Permit" RuleId="rule−permit">
5<Target>Target</Target>
6<Condition DecisionTime="pre">Condition</Condition>
7<Condition DecisionTime="ongoing">Condition
8<ObligationExpressions>
9<ObligationExpression FulfillOn="Permit"
10ObligationId="{\"EventName\":\"ucon_oblig_enforc\",
11\"Key\":\"bhOEWZ5qcbgMoa_w4−Nny_\",
12\"Value1\":\"UCON_request_for_access_happened\",
13\"Value2\":\"with_result\",
14\"Value3\":\"PERMIT\"}"/>
15</ObligationExpressions>
16</Condition>
17<Condition DecisionTime="post">Condition</Condition>
18</Rule>
19<Rule Effect="Deny" RuleId="rule−deny">
20<Description>Description</Description>
21<ObligationExpressions>
22<ObligationExpression FulfillOn="Deny"
23ObligationId="{\"EventName\":\"ucon_oblig_enforc\",
24\"Key\":\"bhOEWZ5qcbgMoa_w4−Nny_\",
25\"Value1\":\"UCON_REVOKE_happened\",
26\"Value2\":\"because_the_result_was\",
27\"Value3\":\"DENY\"}"/>
28</ObligationExpressions>
29</Rule>
30</Policy>

Listing 3.1: Simplified Policy Example Including Obligations.

-RevokeAccess→Deny→Oblig2,
Oblig2 = (Key2, EventName2, Payload2)
Every time that the PEP executes correctly the web request, the Applet should

run and users should see this in the IFTTT panel and also monitor that the Action
happened. The execution can also be monitored the control panel of the IFTTT
platform account related to the Applet that was executed.

3.3.2 Experimental Evaluation

In this section, we present two relevant use cases for application of the proposed
framework. Furthermore, a set of experiments to evaluate the performance over-

78

Figure 3.14: Example of Usage Control Obligation via IFTTT in a Smart-
greenhouse Installation.

head introduced and demonstrate the viability of our approach is reported.

3.3.2.1 Examples of Use-Cases

The first example is advanced management through policy enforcement for remote
urban farming in smart greenhouses. One of the motivations to consider this use
case is that there are several pre-existing examples of IFTTT Applets designed10

to manage watering and other smart devices in a greenhouse, which can be ex-
ploited to enforce UCON obligations. The representation of the scenario is shown
in Figure 3.14.

The policy here for UCON is to monitor via smart-sensors various attributes of
a greenhouse, e.g. humidity, temperature through the proposed framework and pro-
vide access to a smart-heating device to perform a scheduled heating of the plants.
The obligations are targeting to the watering schedule of the smart-watering device
that is responsible for watering the plants. The goal in this example is to main-
tain the temperature and humidity levels of the greenhouse to the desired values
via controlling the smart-heating with UCS and change the schedule of the smart-

10https://ifttt.com/greeniq

79

watering device with IFTTT via the obligations coming from UCS. More in detail,
the PEP is in the smart-heating device and asks for permission to operate on the
smart-greenhouse. The PEP communicates with the UCS in order to request access
to operate. The UCS monitors the values of the humidity, temperature and provides
the answer. There are also other smart-sensors that can be used such as the avail-
ability of electricity/batteries etc. After a successful request, in the response sent by
the UCS after the StartAccess action, there is an obligation including a schedule for
the smart-watering device to operate less frequently. When the PEP receives this
obligation, it has to enforce it by performing the web-request to the IFTTT platform
containing the schedule for the smart-watering device. When the IFTTT executes
the Applet the smart-watering device is operating on the defined schedule. In the
meantime, if the weather is too hot or the smart-heating device is operating for too
long, the UCS, during the continuous re-evaluation procedure, receives this infor-
mation from the smart-temperature sensor. Thus, understands that there is a policy
violation that may affect the plants inside the smart-greenhouse. So, the UCS per-
forms the RevokeAccess to the PEP (smart-heating device) to stop operating. An
obligation is also included that provides a schedule targeting the smart-watering
device which has to operate more intensively so that the temperature decreases and
the humidity level increases. This obligation is extracted and enforced by the PEP
and is sent to the IFTTT platform. Summarizing, in the case of the obligation after
the StartAccess the smart-heating device operates and the watering schedule is less
intensive. In the case of the obligation after the RevokeAccess the smart-heating
device stops operating and the watering schedule is more dense so as to lower the
temperature and provide better conditions in the greenhouse.

Another example is smart management through policy enforcement for con-
trolling a smart-office. The goal of this scenario is to continuously monitor the
presence of the people inside an office and the air quality of the room while they
are inside. The motivation in this example is the optimized use of the appliances
that control the convenience of the people inside an office (such as air quality, tem-
perature etc.). Frequently we face the situation that when there are several people in
an office during meetings, the air quality is not optimal disturbing, thus, the meet-
ing and make the people feel annoyed. The policy in this example is the control
by the UCS of the access of the smart-heating device operation inside the room
as scheduled and the operation of the ventilation system by the IFTTT platform
through obligations. The control of the access is based on the continuous moni-
toring of attributes such as temperature and air quality provided by smart-devices

80

Figure 3.15: Example of Usage Control Obligation via IFTTT in a Smart-office
Installation.

installed inside the office. The UCS can be in this case installed in a RaspberryPi
that also provides sensors about air-quality11. The representation of this scenario
is shown in Figure 3.15 where there are shown two cases of this scenario. On the
left there is the case with a few people inside the office. The PEP is installed in the
smart-heating device and request for access from the UCS to operate as scheduled.
The UCS monitors the attributes of the temperature and air-quality and provides
the answer. In the response of the UCS after the StartAccess there is an obligation
for the IFTTT to force the stop of the ventilation system. On the right there is the
case with too many people inside the office. In this case, there is a policy violation
because the attributes indicate that the condition inside the office is not comfort-
able. Then, independently of the schedule of the smart-heating, UCS issues the
RevokeAccess action to force the smart-heating device to stop. The obligation that
comes together with the RevokeAccess and must be enforced, forces, through the
execution of the IFTTT Applet, the smart-ventilation system to start operating. In
this example, the first obligation comes with the response after a successful Star-
tAccess and forces through the IFTTT the smart-ventilation system to stop. The
second obligation comes with the RevokeAccess and forces through the IFTTT the
smart-ventilation system to operate.

11http://bit.ly/2MlxI4i

81

Figure 3.16: Example of IFTTT Applet Structure.

3.3.2.2 Implementation

The UCS comes as a JAR or Web application ARchive (WAR) file, to be deployed
on the device(s) intended to evaluate the access decisions. The Trigger was the
Webhooks service, whereas the Action service was the “Send me an email” service
of IFTTT platform that sends an email to the owner of the account of the Applet.

In Figure 3.16 there are shown the two services of the Applet. On the left, there
is the Trigger part which provides a box for specifying the unique EventName of
the Webhooks service. On the right part there is the Action service that includes
the subject and the body of the email structure. On both the subject and the body
of the email plain text can be combined with data coming from variables. These
data may be included in the obligation (e.g. EventName, Value1-3) as they are
described in Listing 3.1. The data may be also variables that the IFTTT platform
provides, such as the “OccuredAt” in Figure 3.16 that gives the timestamp of the
execution of the Applet. For validating that either the account of the Applet or
the system that enforces obligations have not been compromised and there are no
flooding attacks, users can compare the number, data and time of Applet executions
in the IFTTT control panel with obligations ran in the PEP. For this Applet we con-
sider two obligations that must be filled with details according the standardization

82

of the previous section. The first one happens after a succesful StartAccess action
(Oblig1) and the second one happens after a RevokeAccess action (Oblig2). The
Key is obtained by the Webhooks service and the unique EventName is set up in
the Trigger service as shown on the left part of Figure 3.16. There is the possibil-
ity of either executing the same instance of the Webhooks service with a different
Payload, or creating two difference instances for each obligation (Oblig1, Oblig2).
In the first case, which is the one used in this work, the EventName is the same
and the Payload only changes, and in the second case both the EventName and
the Payload change. In Listing 3.1 there are the examples of the obligations. It is
worth noticing that the Payload includes three values. Whenever the UCS sends an
obligation to the PEP, this obligation must include the Key, the EventName and the
values. The link that the web-request has to be sent to has the following format in
order for the Trigger to be successful.

• https://maker.ifttt.com/trigger/A/with/key/B

A:← EventName

B:← Key

This is necessary because in the case of creating multiple Applets, both the
IFTTT and the PEP must distinguish them. The three values that are included in
the obligation, explain in plain text what happened in UCON part and show the dif-
ference between Oblig1 and Oblig2. Hence, every time that the Applet is executed,
the recipient of the email can distinguish which obligation has been enforced.

3.3.2.3 Testbed and Timing Evaluation

For evaluating the viability of our framework, we selected to create the following
testbed. We used a virtual machine with Ubuntu 18.04 installed on a PC with
constrained settings in terms of the enabled CPU cores and the amount of RAM
used. In particular we used 2 cores of an i7-6700HQ CPU and 1GB of RAM. In this
virtual machine we ran both the UCS and the PEP applications. When receiving an
obligation, the PEP was forced to trigger an IFTTT Applet that was created for this
scope. We have selected to study the performance of our framework by monitoring
both the timings that UCON actions happen and the timings that our system needs
to extract, create and send the web request of the obligation. However, since we
cannot interfere with the time that actually the Applet is executed in the IFTTT
platform or the synchronizing settings of the email recipient, we do not consider

83

Table 3.3: Timings in milliseconds (ms) over the attribute number.

Time (ms) / Attribute No. 1 5 10 15 20 25 30 35 40
Total TryAccess Time 312.6 387.8 380.6 358 380 393.6 433.4 476.2 477.8
Total StartAccess Time 79 94.2 76.8 98.2 90.6 127 106.2 131.4 169.8

Permit Enforcement Time 739.8 728.8 688.2 675.4 666.8 590.8 523.6 512.2 559.6
Total RevokeAccess Time 52 70.2 72.8 92.6 103.8 121.4 115.6 170.4 146.4
Revoke Enforcement Time 685.6 714.2 715.4 701.6 729.8 719 713.6 734.2 727

them in our timing evaluation. Although the execution of the Applet is related to
the traffic of the IFTTT servers, we did not face in any experiment times larger than
1-2 minutes.

Our evaluation is based on the number of the attributes that our system has
starting from a simple case with one attribute until a case with 40 attributes. We
executed every experiment five times and took the average out of them, while in-
creasing the number of the attributes to multiples of 5. The results of the execution
are shown in Table 3.3. In this table we can see that the number of attributes
increases the time that the UCS need to evaluate the TryAccess and StartAccess
request. Both these timings if added together lead to the summary that from the
time that the PEP sends the request via the TryAccess until the time it has back the
response of the StartAccess by the UCS, the time varies from 400ms in the case of
one attribute until 650ms seconds in the case of 40 attributes whereas it increases
in a linear way. Nevertheless, we observe that the average time that the PEP needs
to extract and enforce the obligation is independent of the number of attributes and
equal to 450-700ms in every case. This is something that was expected since the
attribute values are used only by the UCS for the re-evaluation but to summarize
we can identify that in any case the overall time from the time that the PEP starts
a request until the time that the obligation Trigger has happened is a bit more than
one second.

In addition, we can see that the time for UCS to execute the RevokeAccess
varies from 50ms to 150ms from 1 to 40 attributes respectively. The time that the
PEP needs to extract end enforce the obligation in this case, remains similar to the
one of the previous case and between 600-700 ms.

In Figure 3.17, we show the total timings for firstly handling a request and
secondly handling a revoke. In the first case, which is marked with a dashed line,
we report the time that from sending the TryAccess from the PEP to the UCS, until
the time that the obligation is executed by the PEP to the IFTTT. We can identify
that the total time does not change much when the attribute number is increasing

84

Figure 3.17: Timings for Handling a Request and a Revoke of Access.

which reveals a stability in the timings aroun 1100-1200ms. In the second case,
which is marked with a continuous line, we report the time that the RevokeAccess
is triggered until the time that the obligation is executed by the PEP. Again, we
can see that the increased number of the attributes does not change significantly
the timings.

Summarizing, obligations is an access and usage control tool which enables a
capillary control that goes beyond evaluating the right to perform or not an action.
However, in the XACML 3.0, specific semantic for standardized obligation repre-
sentation and enforcementwhen the obligation is targeting the PEPs is not consid-
ered. This section shows a way to define an obligation semantic that is specific to
IoT environments, using IFTTT Triggers to be enforced by PEPs that are directly
connected to IFTTT Applets. We have reported two specific use cases which moti-
vate our work and reported performance results to demonstrate the viability of the
proposed approach, detailing how the proposed solution is not disruptive for the
standard UCON workflow, enabling seamless integration [74].

3.4 Limitations of Usage Control in the Internet of Things

The previous sections of this chapter presented our work towards UCON and how
it can be added in the protocols’ architecture. Following each one of the implemen-
tations and architectural structure regarding each group of protocols (Publish/Sub-
scribe or Client/Server) it is possible to create the architectural model of UCON in
each one of the protocols aforementioned.

85

However, there are also limitations in large-scale heterogeneous systems such
as IoT [73] [72] [116], where the number of attributes incorporated within the de-
ployed security policies can grow exponentially, as is also the case with the com-
plexity of those policies. This increases the demand for resources but also sets
significant limitations in run-time efficiency and scalability of UCON.

Furthermore, in such systems, the number of the attributes which need to be
evaluated grows continuously. Hence, the possibility of mistakes and conflicts
during the policy development increases. In the case of an application environment
that consists of several services, where there are many subjects that want access
to these services and the corresponding resources, the time and computational cost
needed for the initial evaluation or re-evaluation of the policies increase radically.
This is due to the fact that each session is evaluated for a specific subject object
pair, and re-evaluated continuously in the same manner.

The scalability issues that arise can be faced by limiting the number of at-
tributes to be evaluated. This could happen via combining the attributes by ex-
tracting a certain policy for access to a set of services, which require the same
constraints in order to provide access to resources. Moreover, for every group of
services the amount of attributes for re-evaluation can be reduced by combining
them into a role following the pattern of RBAC models. Each user role will be re-
evaluated by UCON, in order to provide or not access to the resources of a specific
group of services.

The proposed enhancements in the existing UCON model, arise by the combi-
nation of the benefits provided by both these two approaches, where attribute based
aggregation is utilized both for subject roles and object groups. Consequently,
these aggregated values are incorporated within the predefined security policies,
reducing the required resources for policy evaluation and accordingly increasing
the scalability potential of such deployments.

Moreover, we see that even upon adopting and using the distributed UCON
framework for IoT, we find occasions that certain subsystems may not be aware
of the overall policy satisfaction on the whole ecosystem that they belong to. A
policy that might result to “Permit” decision locally, may result to a global policy
violation of the ecosystem. This should be controlled by higher tiers in the ecosys-
tem, so that there is an overall management that controls the overall behavior of
it. Then, according to the available resources, the next in hierarchy holons may
have a separate management inside their subsystem and so on and so forth. Thus,
we introduce a hierarchical alternative of distributed UCON in order to build such

86

policies, so that via forcing attribute updates, higher holons may interfere to lower
in hierarchy holons and impose ceratin activities to the lower tiers.

87

Chapter 4

Hierarchical Usage Control

In this chapter we describe the hierarchical architectural model of UCON.
Since, IoE ecosystems are composed of smaller structures that control separate

type of devices and they are isolated from each other, they can also be split into
smaller independent structures for security reasons, in order to avoid being com-
promised. Sometimes, it is possible to create smaller systems, for increasing speed
of connection between devices and limit information load. Finally, there can be
split subsystems of a more general system due to limited connection coverage.

Hence, we understand the necessity of having a unique framework that can
control the universal access on the resources over complex IoE SoS. This gives the
ability not only to control the access over complex systems, but enforce policies
independently from the protocol, the communication pattern or the hardware of the
devices.

In this chapter, we propose the security enhancement of complex IoE struc-
tures, which we consider as SoS by providing a hierarchical version of UCON [76]
based on distributed UCON [109].

Since our goal is to use our model on the IoE area, we express IoE ecosystems
as SoS, hierarchically structured by IoT subsystems that may use different devices,
communication protocols or patterns. UCON has been proven above to be adapt-
able in the area of IoT [85] and that it can work simultaneously with IoT protocols
[116]. It has been found in the literature that, in IoT, the structure of the SoS can
be hierarchical but there is no tool to enforce policies throughout the whole SoS
[7] [117] [55]. With this work, we aim to provide dynamic policy enforcement to-
wards more secure data distribution on complex SoS of IoT subsystems. Moreover,
we enhance the interoperability between the various systems, by sharing attribute

88

values via UCON. This work presents a hierarchical alternative of UCON target-
ing IoE SoS. We highlight that the presence of UCON does not impact how the
various IoT systems work, which means it can be supported in various protocols as
presented in our previous studies [73], [116]. To further enhance the viability our
approach, we provide a relevant use-case scenario.

4.1 Hierarchical Systems

Hierarchical theory is a promising area of general systems theory [136]. This the-
ory deals basically with the decomposition of a system into subsystems forming
a hierarchical structure and is, therefore, on method of dealing with complexity.
These subsystems or infimals are coordinated by a supremal in such a way as to
obtain original system objectives. Hence, hierarchical theory is applicable to sys-
tems with a natural hierarchical structure or whose dimensionality is so high as to
present computational difficulties. Thus, it would be particularly appropriate for
use in public and societal systems problems.

Hierarchy theory, as well as empirical evidence, suggests that complexity of-
ten takes the form of modularity in structure and functionality [159]. Therefore,
a hierarchical perspective can be essential to understanding complex ecological
systems. But, how can such hierarchical approach help us with modeling spa-
tially heterogeneous, nonlinear dynamic systems like landscapes, be they natural
or human-dominated?

The theoretical basis for the spatially explicit hierarchical modeling approach
is called Hierarchical Patch Dynamics Paradigm (HPDP), which emerges out of
the integration between hierarchy theory and patch dynamics [159] [158]. Hier-
archy theory emerged from a diversity of studies in various disciplines, including
management science, economics, psychology, biology, ecology, and systems sci-
ence [134], [133], [107], [88]. It has been significantly refined and expanded in the
context of evolutionary biology and ecology by a series of books published in the
past two decades [89], [123], [124], [2]. The concepts of “levels” in organization
and “hierarchy” are not recent at all [156]. Much of the theory is only pertinent to
nested hierarchies in which lower-level components are completely contained by
the next higher level, although some general attributes are found in both nested and
non-nested hierarchical systems [150].

According to hierarchy theory, complex systems have both a vertical structure
that is composed of levels and a horizontal structure that is composed by holons.

89

A holon is a model-component acting as an autonomous system giving directions
to “lower” components and the other side looking “up” and serving as a part of a
“higher” holon1. Hierarchical levels are separated by different characteristic rates
of processes (e.g. behavioral frequencies, relaxation time, cycle time or response
time). Higher levels are characterized by slower and larger entities whereas lower
levels by faster and smaller entities. Generally speaking, the relationship between
two adjacent levels is asymmetric: the upper level exerts constraints (e.g. as bound-
ary conditions) to the lower level, whereas the lower provides initiating conditions
to the upper. On the other hand, the relationship between subsystem “holons” at
each level is relatively symmetric in that they interact in both directions. The in-
teractions among components within the same holon are more strongly and more
frequently than those between holons.

Thus, it appears more than necessary to point out that hierarchy, as used in
the scientific context, does not always refer to a system that is rigidly controlled
by overwhelming top-down constraints and in which bottom-up effects generated
by local interactions are insignificant. Certainly, hierarchy theory does not sug-
gest this, either. As discussed earlier, hierarchy theory emphasizes both top-down
and bottom-up perspectives. While dominance hierarchies do exist in natural, so-
cial, and engineered systems [101], the local dynamics of, and interactions among,
components are fundamental to the very existence of any functioning hierarchies.
Indeed, the relative importance or relationship between top-down constraints and
bottom-up forces in determining system dynamics is a key to understanding most if
not all complex systems. Neither does hierarchy theory imply inflexibility or a lack
of diversity and creativity. On the contrary, an appropriate hierarchical, dynamic
structure not only provides opportunities for diversity, flexibility, and creativity, but
also for higher efficiency and stability that are difficult to obtain in non-hierarchical
complex systems.

4.2 Hierarchical Usage Control Architectural Model

This section presents the architectural model of hierarchical UCON.
This model consists of several UCS that can exchange attribute values so that

they can behave as a complete IoT SoS whereas, in the meanwhile, each subsystem
can host its own SoS that it is the highest tier etc.

1https://www.holon.se/folke/kurs/Distans/Ekofys/Recirk/Eng/holarchy_en.shtml

90

Figure 4.1: Diagram of the Hierarchical Usage Control Architectural Model.

4.2.1 Descending from the Top Holon to the Bottom Holon

As presented in Figure 4.1, we consider as a starting point, an system with a UCS
that has an overall usage control role on the whole ecosystem (System Oa(0)).

This system apart from the overall view that it has, it can also get an overall
view of every other subsystem of his SoS. These systems must declare that they are
one level lower in hierarchy and, in the meantime to have individual identification
inside their same level. So, since they are one tier lower than the central one they
should be (System Oa(1)). Then we add their own identification and for the second
tier in hierarchy and it becomes in total (System Oa(1)b(1)) for the first of this tier
until the last one (N) of this tier (System Oa(1)b(N)). In accordance with the previous,
as we move inside every holon, we have a new subsystem of individual holons that
composite their own SoS.

Supposing that we reach the last tier holon in the hierarchy we reach to a
point that each UCS is now controlling only access requests by devices and it
is the lowest level. A UCS system of this level could be described as System
Oa(W)b(X)c(Y)....z(Z).

4.2.2 Ascending from the Bottom Holon to the Top Holon

The last description in the previous section indicates the whole path that someone
should follow in order to find all the higher holons that control it. More specifically,
a System a(W)b(X)c(Y)....z(Z) indicates the following path.

• zZ: This is the “Z” subsystem of the “z” system.

91

• cY: This is the “Y” subsystem of the “c” system that is higher in hierarchy
of the “z” system.

• bX: This is the “X” subsystem of the “b” system that is higher from the “c”
system.

• aW: This is the “W” subsystem of the “a” system which belongs to the highest
holon (System Oa(0)).

In fact, the value “W” indicates the overall hierarchy levels after the highest
one which is System Oa(0). So, if for example, “W” equals to 3, it means that there
are 3 lower levels from the highest one.

In order to provide an in-depth monitoring of every holon inside an ecosystem,
we need to provide information about each component of each subsystem to the
higher, in hierarchy, systems. Then, each holon of the upper level will create an
provide information about its status to the higher holons and so on and so forth.
Thus we will reach the point, that the highest holon in the hierarchy of the system
will be aware of the whole situation of the ecosystem.

This can be achieved by the expression of the status of every component to the
higher holon via an attribute value. This value will be shared with the attributes
of the various UCSs of the same subsystem that will collect them and provide a
new attribute of its situation to the higher subsystem that it belongs until we reach
the highest holon. Taking advantage of the distributed UCON that is presented in
the previous chapter, each node can share an attribute to the other nodes about its
situation. Hence, the higher holons can have a detailed view of the situation in
every SoS that belongs to them.

Let us consider the scenario that an access request results to a “Permit” decision
from the UCS of a lower holon for its own local policy. We may face a situation that
this permitted access should be revoked because, although locally it is accepted,
globally it causes a change to the whole ecosystem that is not permitted. So the
highest holon may enforce an attribute update on its decision from the UCS that
will be transfered by each holon until it reaches the node that the device should be
revoked. Thus, we achieve less payload which in the area of IoE is crucial, and
also we achieve interoperability between different UCSs.

92

Figure 4.2: Use Case Example of the Hierarchical Usage Control Architectural
Model.

4.3 Use Case Example of Hierarchical Usage Control

As an example we will present how our model fits on a smart-neighborhood sce-
nario. We consider as our system a small part of a smart-city consisting of a set
of subsystems that are the smart building. Now, every smart building can be a
separate system consisting of several subsystems which in this case are the smart-
appartments. Moreover, each apartment can be a separate system that consists of
several subsystems that are the rooms of the apartment etc. This scenario is shown
in Figure 4.2. On this way, we have created a top-tier SoS consisting of several
other subsystems that can form their own SoS and so on and so forth.

In the meanwhile every separate SoS has its own local attributes, but the other
entities of the same SoS can have access on them as remote attributes. Every UCS
provides its local attributes to the central distributed database that can be accessed
from the other tier nodes.

On this use-case we examine the hierarchy towards the overall eco-friendly
behavior of the smart-neighborhood in terms of energy consumption. More in
detail, the highest holon in hierarchy is the UCS of the overall neighborhood that
collects the attributes of the energy consumption of all the smart-building and, in

93

the meanwhile, has its own local attributes that control the energy consumption of
the road lightening etc. The next hierarchy holon is the UCS of the smart-building
that has its own SoS and its own local attributes that affect the power consumption
of the public places in the building, (e.g. elevator, stair lights etc.). The next holon
in hierarchy is the UCS of the smart-apartment that again can have a separate SoS
whereas the next holon is the smart-room.

Every device in every UCS that belongs to the same SoS can have its own
policy about power consumption. But it has to refer its overall power consumption
in the higher hierarchically holon so that the latter can have an overall evaluation
of the consumption of its SoS. This holon has to make available this value on the
distributed database so that the higher than it can manage the higher tier power
consumption etc.

As an example we consider a smart-vacuum cleaner that wants to operate. The
request is evaluated by the UCS of the room that may result to “Permit”. As a
result the attribute value of the overall consumption in the distributed database
about this room is updated. The same happens to the attribute value of the overall
consumption of the smart-building etc. On this way, we reduce the number of the
attributes that have to be distributed amongst the several UCS reducing thus the
payload.

Supposing that the central and highest in hierarchy holon is receiving an overall
power consumption that should not be allowed. Then it has to find which is the
least energy efficient next in hierarchy holon (in our case the smart-building) and
update its max allowed energy consumption. Then again the smart-building has to
update the max allowed energy consumption of the smart-apartment and when we
reach the device level which is the lowest holon in the hierarchy, the UCS that the
vacuum cleaner belongs to, has to revoke the access of the vacuum cleaner because,
although it may locally could operate in first place, then due to the overall behavior
of the whole ecosystem, it must stop operating.

More details on how the various UCSs communicate and exchange attributes
were already presented on the previous chapter. The only difference with this
model is that we consider the overall behavior attributes of the various SoS (e.g.
the overall power consumption) and the ability to be controlled by the higher holon
SoS via the tolerance attributes (e.g. max energy consumption allowed).

94

Chapter 5

Policy Management in Usage
Control over the Internet of
Everything

This section is about complex policy management and simplification in UCON.
More specifically, it is about about handling the access over complex environments
such the one of IoE where policies can be very complex. This happens via service
and attribute grouping, leading us to move from ABAC to RBAC models.

5.1 Enhancing Usage Control for Performance: An Ar-
chitecture for Systems of Systems

Modern interconnected systems of systems, require scalable and efficient security
mechanisms, for controlling a very large number of access requests in a future
with billions of heterogeneous devices connected to the Internet. The evaluation
of access requests to certain pieces of information and services commonly relies
on dedicated policies [93], which incorporate object, subject, and environmental
attributes.

As presented earlier in this thesis, a limitation of access control is that the
access request is only checked once, at the initiation, which highlights the lack
of capabilities related to checking alterations on the values of attributes during a
session which is a feature of UCON [76]. Yet, the examined environments carry
inherent limitations in terms of both computational and communications capac-

95

ity. Accordingly, corresponding optimizations must be implemented to the origi-
nal UCON design, seeking to maintain operational efficiency at run-time, but also
further security objectives related to resilience. Such optimizations must be ini-
tially integrated architecturally, and further enhanced within the components of the
deployed policy based management systems.

In this part, we build on the results previously presented in this thesis, in order
to mitigate the limitations of policy management in UCON. Namely, the current
UCON architecture, requires the complete re-evaluation of access permissions per
user-asset-session triplet, both at the initiation and at runtime. This, has been ex-
perimentally proven to be very time consuming especially when the number of
users, assets, sessions and policy attributes increases [73],[72], [45]. Accordingly,
we describe the developed architectural optimizations to UCON architecture, seek-
ing to positively affect run time efficiency, scalability, and resilience against active
attacks. In order to achieve that, a service group functionality is introduced to the
existing model alongside with a dynamic role allocation subsystem. Thus, the right
of access will be granted to a user, based on his allocated role for each group of
services and not for one service at a time. The integrated optimizations improve
the performance of the model, while increasing its resilience by allowing the miti-
gation of specific types of active attacks that are based on request flooding.

Architectures of this nature can be described in three abstraction levels, main-
taining consistency and completeness. These levels are the (i) architectural model
and components, (ii) protocol and interface, and (iii) implementation. So, we
present and discuss the suggested architecture in all three levels in the next para-
graph, highlighting the integrated optimizations to UCON and the corresponding
affects.

5.1.1 Accompanying Information about Risk Aggregation

Large-scale applications create a challenging field in regard to access and usage
control. The number of the attributes which need to be evaluated grows contin-
uously and hence, the possibility of mistakes and conflicts during the policy de-
velopment increases. Therefore, the architectural model that will be presented in
this section considers the risk level that each attribute encapsulates, and aggregates
these values for policy decisions. For example, if a subject wants to access a clas-
sified document and the policy takes into account the role of the subject, then it
is possible to assign different level of risk to different roles, e.g the administrator

96

of the system comes with a low level of risk while a new-hired employee with a
high level of risk. Risk Aggregation methods are presented in this section for the
purpose of better understanding. They were used for fulfilling the scope of this
thesis but the research regarding risk aggregation is out of the scope of this thesis.

So, this model shall be a qualitative risk model for systems that make use of
UCON, and its goal is to aggregate the risk values of the attributes into one single
value, that will characterize the total risk of a given request. In order to achieve
the aggregation, the model exploits the AHP [120]. Having the total risk value
the security administrator has the possibility to define policies which are based
only on this value or, as it will be explained later in this section, policies of any
other granularity level. In order to make the functionality of the model clearer a
set of definitions must be given [86]. For this work, we assume that there is no
interdependence between the attribute for the aggregation procedure.

• Full Policy: A policy considering the attributes as they are extracted when
acquiring the attribute values but not yet aggregated.

• RA-Policy: A risk aware policy is a policy which is written by considering
the risk level of aggregated attributes. It has generally a smaller number of
attributes with respect to the correspondent Full-Policy. Hence, it is easier to
define and evaluate.

• Initial Request: A generated request enriched with the related attributes ex-
tracted.

• Aggregated Request: A request automatically computed by our framework,
starting from an initial request, translating it to the aggregation level required
by the current RA-Policy.

The framework is based on a reverse tree structure which is depicted in Fig-
ure 5.1 [86]. The total risk value, which was calculated by the aggregation of the
attributes’ risk values, forms the root of the tree. The upper levels consist of sev-
eral blocks which represent groups of attributes that are related to each other. For
example, a possible group could be the attributes related to environmental factors,
such as the location or the time of the request. The leaves of the tree represent the
attributes that participate in the Full Policy, whilst the Total Risk value is the one
being considered by the RA-Policy.

97

Figure 5.1: Total Risk Reverse Tree.

As stated above, the method used for the aggregation of the risk values of the
attributes is the AHP. This method demands the definition of three elements: the
goal, the criteria and the alternatives. Regarding the risk-aware model the goal
is to characterize the total risk of the given request, the criteria are the various
attributes and the alternatives are the possible risk levels (i.e. Low Risk, Medium
Risk, High Risk). A set of comparison matrices is created, where an expert on
the specific field of the usage control application environment, defines a level of
preference among the criteria, stating by this way the relevance of each criterion
with respect to the goal.

A comparison matrix is N ×N, where N is the number of the alternatives.
Each element of the matrix takes a value in the interval [1,...,9] which defines
the importance of an element in comparison with another one. Let us consider the
previous example of accessing a classified document. Regarding the attribute of the
role of the subject, it is reasonable to assume that the administrator of the system
can be assigned with a lower level of risk than a new employee. The comparison
matrix which represents this statement is shown in Table 5.1. The meaning of this
matrix is that if the value of the role is the administrator then the value of Low
Risk is considered to be 7 times more relevant than the Medium and 9 times more
relevant than the High or Unacceptable Risk. On the contrary, if the value of the
role is new employee then the High Risk alternative will be valued more than the
others as shown in Table 5.2.

Finally, regarding the integration of the risk-aware framework to UCON, there
is no need for any modification of the original model. The only requirement is the
addition of a set of PIPs, which will acquire the risk values from the AHP blocks.

98

Table 5.1: Comparison Matrix of the Alternatives for the Administrator.

Administrator Low Medium High Unacceptable
Low 1 7 9 9
Medium 1/7 1 3 5
High 1/9 1/3 1 1
Unacceptable 1/9 1/5 1 1

Table 5.2: Comparison Matrix of the Alternatives for a new Employee.

New Employee Low Medium High Unacceptable
Low 1 1/4 1/9 1/9

Medium 4 1 1/9 1/9

High 9 9 1 1
Unacceptable 9 9 1 1

The proposed architecture is shown in Figure 5.2 [86], where the attributes are
grouped into two sets. Each one of the sets will be aggregated using AHP and the
results of these aggregations will be the input to a final AHP problem which will
compute the single total risk value.

Having this architecture, it is also possible to define policies of different granu-
larity levels, although it must be noted that excessive aggregation levels can affect
the expressiveness of the policy, as discussed earlier [86]. For example, a policy
can be defined by using only the single value of total risk, such as “Subject can
access object if the total risk of the request is at most medium”, or combine this
value with attributes either coming directly from the AMs or coming as outcome
from any AHP block, such as “Subject can access object if the total risk is at most
medium and the time of the request is within the working hours” or “Subject can
access object if the total risk is low and the risk of the environmental group of at-
tributes is medium”. Thus, this model is totally configurable and adjustable to the
requirements of the application environment.

5.1.2 The Proposed Architecture

In this paragraph, we present the architecture for enhancing the UCON model, in
two abstraction levels, namely: (i) the architectural model and its components, (ii)
protocol and interface. The aim of this architectural enhancement is to improve

99

Figure 5.2: Risk Aware Usage Control Architecture.

the existing UCON model in terms of performance and efficiency. To this end, a
service group functionality has been introduced in the current architecture. Along-
side the dynamic user role allocation, this functionality gives the possibility for a
faster access evaluation and response. Policy attributes are aggregated integrating
criticality and risk metrics, allowing for the mapping of service groups but also for
the allocation of distinct roles across these groups to every subject. Accordingly,
the extraction of the service groups and the current user role (for each group) at
run-time is achieved by the Group Handler (GH), and in accordance to the current
attribute values. For example, considering that an application environment consists
of ten services, the architecture for the enforcement of UCON policies proposed in
[77], has to evaluate the subject’s request for each one of them. On the contrary,
this architecture, after grouping the services, will grant access to these groups in
accordance to the predefined policies, and the dynamically allocated user roles,
which are independently calculated for each group. Hence, if a user has access to
a group, in accordance to his role for this group, and makes a request for a ser-
vice belonging in this group the evaluation will be faster, improving the run-time
efficiency.

5.1.2.1 The Architectural Model and its Components

The suggested architecture of the UCS remains unaltered to the one presented in
Section 2.4.2 used in Chapter 3, with the exception of the introduction of a GH

100

Figure 5.3: The Proposed Architectural Model.

as an internal sub-component of the CH, for the purpose of providing high-level
compatibility with prior studies and implementations. The components of the ar-
chitecture and their interconnections are in Figure 5.3. The actions used by the
PEP to interact with the UCS in order to perform an access request, a start/end of
usage of resources are the same as in the UCON model described earlier. The same
applies for the actions used by the UCS to interact with the PEP in order to revoke
access when needed.

The proposed architecture consists of the same components as in UCON with
the addition of the GH. The discrete services provided by these components are:

1. Existing components of UCS: They have all the same architecture and they
provide the same services as described in 2.4.

2. CH-Context Handler: The CH operates as the controller of the other com-
ponents, and is responsible for the management and supervision of the ses-
sion initiation and session re-evaluation processes.

101

• GH-Group Handler: This sub-component of the CH is responsible
for the computation of both the service groups and subscriber roles
that correspond to a session, in accordance with the risk aggregation
model describer earlier, where the aggregated values of the correspond-
ing attributes, are mapped into such roles and groups. In respect to the
services, this computation can be done apriori and in the simplest form
integrated as a Look up Table, although the GH can also incorporate
the capacity for empirical environmental observation for dynamic ser-
vice group management at run-time. As for the computation of the user
roles, this is done at runtime in two occasions, the initiation of a ses-
sion for a specific service group and the re-evaluation of access for a
specific service group, but not on a per-session basis as in the original
model.

5.1.2.2 Protocol and Interface

In this part we provide the sequence diagrams for the session initiation and re-
evaluation processes, discussing the operations and providing corresponding ex-
amples. For the rest of this paragraph Series of steps refer to Figures 5.4 and 5.5,
which provide the sequence diagrams during the initiation and operation phases in
the following scenarios.

1. Session establishment: Series of steps: 1-3-4-5:
In the initial steps of every session establishment request, the PEP translates
the request into a TryAccess message towards the CH, which includes the
unique identifier (Service ID) of the service that the subscriber requests ac-
cess to. Consequently, the CH extracts the service group which corresponds
to the given identifier, in accordance with the service grouping established
during deployment, based on the risk aggregation method described earlier.
Furthermore, the CH seeks to establish whether the subscriber has initiated
similar request for this service, by querying the SM for active TryAccess en-
tries. Provided that the SM replies negatively, therefore this request is not
part of an active DoS attack, in step-3 the CH requests from the SM a no-
tification about active sessions for the examined subscriber within the same
service group. Given that no such sessions are identified, in step-4 the CH
retrieves the required attributes from the PIP, extracts the subscriber’s role
that corresponds to the examined service group, and requests a policy evalu-

102

Figure 5.4: Initiation Phase-Sequence Diagram.

ation from the PDP, based on the service group and extracted subscriber role.
Further, in step-5, given that the permission is granted, the CH requests from
the SM to initiate a corresponding session and send a permission notification
to the dedicated PEP.

103

Figure 5.5: Operation Phase-Sequence Diagram.

2. Denial of Service avoidance: Series of steps: 1-2
In this scenario the activities executed for step-1 are identical with those
described for the session establishment scenario. Yet, given that the SM re-
ports that TryAccess entries are still active for the same subscriber-service
pair, (i.e. the time to live has not expired) this request is recognised as part
of a DoS-Request-flooding attack, and the request is immediately denied in
step-2. This improves the resilience of the UCON architecture, in compari-
son to the original UCON [77].

3. Initial session denial: Series of steps 1-3-4-6:
In this scenario the activities executed for step-1, step-3, and step-4 are iden-
tical with those described for the session establishment scenario. Yet, given
that the request is evaluated as "Deny" by the PDP, the PEP is notified ac-
cordingly by the CH. It must be noted that in this scenario, the TryAccess
entry in the SM remains active for the corresponding time to live, leading to
the previously described Denial of Service avoidance scenario, if an identical

104

request is delivered within this time to live.

4. Request for the same service group: Series of steps 1-3-7/;
In this scenario the activities executed for step-1 and step-3 are identical
with those described for the session establishment scenario. Yet, given that
the requesting subscriber has and active/permitted session for the examined
service group, the CH immediately evaluates the request as "allow" notify-
ing the corresponding PEP in step-7. This improves both the efficiency and
scalability of the usage control architecture, in comparison to the original
UCON.

5. No attribute change: Series of steps 8-9:
During the session re-evaluation phase, the CH requests the ActiveSessions
entry from the SM. Accordingly, the CH requests from the SM the specific
information for the first-in-queue session. Based on these information, and
the timely values of the corresponding attributes from the PIP, the role of
the subscriber is re-evaluated. Given that the role has not been changed, no
further action is taken and the CH proceeds to the next-in-queue session, as
described in step-9.

6. Attribute change with permission: Series of steps 8-10-12:
In this scenario the activities executed for step-8 are identical with those
described for the No attribute change scenario. Given that a change occurred
in the subscriber’s role, the CH requests and new access evaluation from the
PDP, in step-10, and updates the corresponding session entry of the SM in
step-12, given that permission is granted by the PDP.

7. Attribute change with denial: Series of steps 8-10-11:
In this scenario the activities executed for step-8 and step-10 are identical
with those described for the Attribute change with permission scenario. Yet,
given that the policy evaluation result by the PDP is Deny, the session in the
SM is closed and the corresponding PEP is notified, as described in step-11.

5.1.2.3 Test Case Scenario

The test case which has been utilized for the initial evaluation of the proposed
architecture, and its comparison with the original UCON, is presented in figure
5.6. The test case refers to the cloud service deployment of a state owned airport

105

Figure 5.6: Exemplified Test Case Scenario.

operator, which is distinguished between a global deployment (with three groups
of services, whose instances are available across all the managed airports) and a
local deployment (with three groups of services in dedicated local instances per
airport). A set of object, subject, and environmental attributes have been defined
for the definition of the corresponding policies, while four distinct types (roles) of
users have also been established.

Moreover, we present the results from one of the executed scenarios within
this test case. In this, one of the operators’ employees registers and seeks to obtain
access for services S1, S2, and S3 of service group 1G. We executed the registra-
tion process for this scenario with the original UCON, and the Enhanced-UCON
architecture presented in this section, for policies with 1, 5, 10, 15, 20, 25, 30,
35, and 40 attributes. Each test was conducted for ten repetitions, and the average
times for the evaluation are presented in table 5.3 and figure 5.7. The table presents
the elapsed time, in milliseconds, for each of the services, the total time, and the
percentage of improvement. The test environment for this scenario was a virtual
machine installing Ubuntu 16.04 64-bit, equipped with an Intel i7-6700HQ with 8
cores enabled, 8 GB DDR4 RAM.

The results highlight a significant improvement in terms of run-time efficiency,
as both the number of micro-services and attributes (incorporated within the se-

106

Figure 5.7: Results of the Executed Tests.

curity policy) increase. This improvement is not affected by the characteristics of
the services towards which the access request is directed, as the services belong to
the same group, for which the users role remain unaltered. A small degradation
is noticeable for the initial service registration in low attribute policies, but this is
quickly replaced by significant improvement of up to approximately 85%. In total
the average performance, across all tests and repetitions, decreases by 1.346% for
the first service, while for the second it improves by 77.195%, and for the third by
77.785%. The overall average improvement for three services, across all tests and
repetitions, has been 39.154%.

5.1.2.4 Summary

In this part we presented an Enhanced-Usage CONtrol (E-UCON) architecture,
where the standard functionality of the model is extended in order to support groups
of services and users. This extension aims to improve the model in terms of per-
formance and run-time efficiency, and to provide the scalability required from the
application domain. The aforementioned improvements, result from the fact that
the right of access will be assigned to user roles towards groups of services and not
only in one service at a time, which reduces the evaluation time and the computa-
tional requirements. Furthermore, the proposed architecture improves the standard
model in terms of security, as it gives the possibility of recognizing and preventing
active attacks, such as specific types of Denial of Service based on request flooding.
Finally, in this part we presented a method of simplifying the writing of security

107

Table 5.3: Results of the Executed Tests.

Number of
attributes

1 5 10 15 20 25 30 35 40

Original UCON-times in milliseconds (ms)
1st service 141.1 175.3 210.6 256.9 291.2 322.9 367.5 415 493.9
2nd service 56.6 76.9 105.6 134.8 153 211.8 245.7 256.3 318.8
3rd service 48.1 77.6 96.1 132.1 162.4 185.6 211.3 242 294.7
Total time 247.8 331.9 414 525.5 608.9 721.9 827.3 915.7 1110.4

Enhanced UCON-times in milliseconds (ms)
1st service 142.7 179 223.4 259 303.1 335.2 368.3 394.8 487.6
2nd service 16.7 17.8 23.4 30.1 34 37.3 57.2 63.3 64.7
3rd service 14.4 19.4 28.2 24.2 24.1 48.9 33 44.3 65.5
Total time 175.4 216.9 277.1 315.3 362.5 422.2 461.1 504.2 618.9

Optimization percentage-%
1st service 1.134 2.111 6.078 0.817 4.087 3.809 0.218 -4.867 -1.276
2nd service -70.495 -76.853 -77.841 -77.671 -77.778 -82.389 -76.720 -75.302 -79.705
3rd service -70.062 -75.000 -70.656 -81.681 -85.160 -73.653 -84.382 -81.694 -77.774
Total -29.217 -34.649 -33.068 -40.000 -40.466 -41.515 -44.264 -44.938 -44.263

policies through the aggregation of the risk values related to individual attributes,
is also integrated in the UCON model.

The experiments show that the aforementioned enhancements result in signifi-
cant improvements in performance and evaluation time, especially in realistic de-
ployments with multiple micro-services governed by complex or semi-complex
policies.

5.2 From Attribute-Based Access Control (ABAC) to Role-
Based Access Control (RBAC)

Constrained nodes [14] and constrained dynamic networks [33] are commonly de-
ployed within a variety of application domains, due to operational constraints that
arise from technical, physical, financial, regulatory and other limitations. IoT [54],
emergency response [71], military operations [47] and remote ecosystem moni-
toring [57] are common areas where such systems and networks are frequently
utilized, seeking to provide connectivity and access to services.

The constrained nature of such networks is characterized by low achievable
throughput, high packet loss and packet loss variability, asymmetric link character-
istics, and limits on reachability over time. Furthermore, due to their inherent dy-
namicity, they present high rate of change and unpredictability within the network

108

topology graph, but also uncertainty regarding predominant traffic flow models,
which are primarily bound to scenario specific parameters.

The continuous proliferation of connected devices, deployed services, and in-
formation (generated, stored, or in transit, also potentially classified) across the
aforementioned application domains, along with the requirement for fine-grained
policy-based security management, increases both the complexity and size of the
deployed security policies [102]. Accordingly, the specification and enforcement
of security policies is a challenging task, seeking under such limitations to provide
suitable monitoring, control, and audit solutions, in order to oversee data flows
across communication and control links but also access to services.

Providing security policy based management across these systems is a chal-
lenging task [48] [49] [50] [51] . A recommended terminology for policy-based
management is provided in RFC-3198 [155], and the necessary concepts are uti-
lized in the sections below. To this scope, this work describes a mechanism for
the specification and enforcement of security policies which has been developed to
provide effective fine-grained security policy-based management, still respecting
the operational constraints of constrained distributed dynamic systems. The mech-
anism is utilized at the edge nodes deployed within the proximity network of such
systems, while the computational burden is transferred to the policy specification
and pre-deployment phases for the initialization, and to higher tier nodes during
run time. We present it in two distinct phases, namely the initialization phase in
preparation for policy deployment, followed by a comprehensive description of the
processes involved in run-time operation. During run-time, the computational bur-
den is transferred to high-tier nodes, while low-tier nodes apply risk aware policy
enforcement based on a compromise solution.

5.2.1 Mechanism for Security Policy Based Management and Enforce-
ment in the IoT

This mechanism is about the more efficient security policy-based management and
enforcement within constrained distributed and dynamic systems, such as the IoT.
The mechanism is utilized at the edge nodes deployed within the proximity net-
work of such systems, while the computational burden is transferred to the policy
specification and pre-deployment phases for the initialization, and to higher tier
nodes which provide more computational power during run time.

The described operations have been developed in accordance to the following

109

requirements:

• Policy rules capture multiple pre-conditions that are mutable in run-time.

• Each pre-condition is associated with a criticality and a freshness metric.

• The possible types and ranges of the pre-conditions are limited only by the
specification language.

Accordingly, the mechanism operates under the following assumptions:

• High-tier nodes have the required resource capabilities for the enforcement
of fine-grained security policy-based management, in accordance to the tra-
ditional Conditions→ Rules→ Capabilities paradigm.

• Low-tier nodes enforce security policy based management, based on the fol-
lowing assumptions:

– Assets can be classified into a predefined number of classes in accor-
dance to a delimited number of axioms and their specific data/object-
property values. These axioms are defined in order to establish the
attributes of those assets, allowing their classification in accordance to
the similarities of the preconditions governing their specific action re-
quirements.

– In each subject we can assign a dynamic role per class in accordance
to the values of its attributes. The role is inferred at high-tier nodes
(who in run-time enforce dynamic ABAC per asset), and be delivered
to low-tier nodes.

– The utilized classification mechanism must provide membership func-
tions for the classification of new assets, or the re-classification of as-
sets with mutable attributes, without requiring continuous re-training
for minor changes in addition to the periodic maintenance.

– The utilized classification mechanism must allow for the forced assign-
ment of a specific asset within a pre-determined class (even a singular
class) based on a criticality metric, in order to support tailored security
policy based management for specific assets.

– The assigned subject role must be able to be re-inferred in run time,
both as a periodic process and as an event-triggered process.

110

– The security administrators must be allowed to precisely define the per-
missible margins for subject role assignment.

Accordingly, there is a risk integrated by the security administrators in order
to support fine-grained security policy based management at the constrained edge
nodes deployed at the proximity networks of constrained distributed dynamic sys-
tems, such as those described earlier but the risk technologies and research are out
of the scope of this thesis. However for better clarification, risk is instantiated in
the following processes:

• Grouping assets into classes.

• Assigning roles to subjects in accordance to the run-time values of mutable
attributes, allowing for constrained elasticity to the exact permissible values.

• Defining security policies in a per-class/per-role basis.

• Specific design trying to avoid possible coherence issues.

The following subsections present the developed mechanism for the satisfac-
tion of these requirements. We divided the presentation of the mechanism into
two distinct phases, namely the initialization phase in preparation for policy de-
ployment, followed by a comprehensive description of the processes involved in
run-time operation phase.

5.2.1.1 Initialization Phase

In Figure 5.8 we depict the process which the proposed mechanism uses during
the initialization phase, in order to classify the assets, establish permissible subject
roles and define the necessary policies per role so as to regulate access. It consists
of six steps enumerated below. In the defined process, steps 2, 5 and 6 are cyclical
in order to ensure policy completeness, as described bellow in detail.

1. Create Asset Taxonomy

This first step refers to create a taxonomy of the assets sufficiently detailed
for the creation of the policies. This taxonomy can be formalized depend-
ing on the required granularity level. The inputs can come from a lot of
parameters such as the following:

• Asset identification process.

111

Figure 5.8: Process Diagram for the Initialization Phase.

• Earlier risk analysis results.

• Contemporary threats and attacks.

• Published vulnerabilities.

• Internal historical data.

2. Select Asset Group

This is the first one of the cyclical group of steps in this initialization phase
where there should be a policy separation between nodes. This separation
depends not only on the inputs of step-1 but also on the conditions of the
system on that moment. This process is cyclical because all the children
nodes of a parent node have been selected and there have been specified
suitable policies for them.

3. List Critical Group Attributes

In this step, the responsible person for the security has to create each asset
as an individual between the previously defined classed and select which are
the critical attributes for it and give it a unique identifier. Furthermore, there
must be a specific range of the value of every attribute associated also with a
criticality level.

4. Apply Multinomial Assets Classification

Multinomial classification is applied to the assets belonging to the defined
groups, in order to identify classes based on the similarity of their attributes
and criticality values. There are several methods for the asset classification
[130] but their analysis is out of the scope of this thesis.

112

Table 5.4: List of Critical Group Attributes.

Attributes >
Asset Identifier ∨ Y1 Y2 ... Yn

X1 F(X1,Y1) F(X1,Y2) ... F(X1,Yn)
X2 F(X2,Y1) F(X2,Y2) ... F(X2,Yn)
X3 F(X3,Y1) F(X3,Y2) ... F(X3,Yn)
...
Xk F(Xk,Y1) F(Xk,Y2) ... F(Xk,Yn)

Table 5.5: Definition of Accepted Roles of each Subject per Class.

Class Accepted Role
Class A Role-A1, Role-A2, Role-A3
Class B Role-B1, Role-B2, Role-A3
Class C Role-A1, Role-C2, Role-C3

5. Define Accepted Subject Roles for each Class

This steps defines all the roles that each class can accept, accompanied by the
privileges and the actions that each subject accordingly has and can perform
to the class. There is no specific number of the roles per class and it is highly
depended on the application environment and its requirements. Moreover,
there is no interdependency between roles and classes. The same role can be
assigned to many classes without the prohibition of the policy to be identical.
An example is shown in Table 5.5

6. Policy Rules Definition per Role

In this step, we have to define the policy rules for every role and for every
class that this role is included. As we stated in the previous steps, there can
be different policy rules for the same role if it belongs in different classes.
The rules are defined by taking into consideration all the attributes of each
subject and also the environmental ones. After evaluating the values of this
attributes we give a role to a subject for every asset on the class. We can
consider an example for the classes and the roles, given in Table 5.5 using
one environmental (EnvAtt) and one subject (SubAtt) attribute. Then we can
assign the roles as follows:

• If EnvAtt=E1, SubAtt=S1 then for Class A the subject gets the role
“Role-A1”.

113

• If EnvAtt=E2, SubAtt=S2 then for Class A the subject gets the role
“Role-A2”.

In this step we have to mention that we must include such mechanisms to
avoid policy conflicts but this is out of the scope of this thesis.

5.2.1.2 Run-time Phase

This phase includes two steps. The first one (Step 7) is about extracting the role
and the second one (Step 8) is about assigning the access rights for each role based
on the policies about it per class.

7. Role Extraction

In this step, we have the arrival of a request from a subject to access one
of the assets of a class that was created in step 4. For this request and this
subject we have to assign a role to it for this class. This role has to be trans-
ferred from the high-tier nodes to the lower ones and is calculated based on
the run-time values of the attributes as we described before. This assignment
can be handled as a Multi-Criteria Decision Making (MCDM) problem. In
such a problem, we have to define a goal and we have to choose the most ap-
propriate option among the alternatives that meet our scope. In our case, the
goal is to extract the role and as alternatives all the accepted roles for every
class as we presented them in step-6. There are several multi-criteria deci-
sion analysis methods but those methods are out of the scope of this thesis.
The procedure for the extraction of the role is not happening only once, but
also periodically so that we can ensure continuously the validity of the roles.
The time period to re-check the validity of roles is application and criticality
depended.

8. Assignment of Access Rights

Finally, in this step after having extracted the the role, the higher-tier nodes
will send the answer to a PDP in the low-tier nodes. This PDP will then
match the assigned role to the subject that made the request and it will assign
to it the appropriate rights. Then, if the same subject with the same role make
another request for a different asset inside the same class there will not be a
new communication between the low and the high-tier nodes unless there is
a trigger for role re-evaluation such as expiration of attribute value freshness
or policy violation. Such a case was presented in section 5.1 [45, 46].

114

Figure 5.9: Use Case of a Digital Supply Chain of an Electronics Factory.

5.2.2 Use Case Example: A Digital Supply Chain Scenario

The revolution of Industry 4.0 is fundamentally reshaping the traditional manufac-
turing processes. The new manufacturing paradigm encompasses a full application
of IoE with sensors placed in every step of the production, automated procedures,
worldwide spread networks and advanced analytics of big data. The natural conse-
quence of this change is to redefine also the well-known and standardized process
of a supply chain to a more digitized environment. Digital Supply Chains (DSC)
form an ecosystem, fully transparent across the entire organization, from the stage
of the product development until the purchase and the delivery. One of the main
characteristics of a DSC is that all data, regarding the management and operational
processes, the quality control, the production planning etc. are available real-time
to all the participating entities. In a recent study [41], 33% of the participating
companies have already started to move towards a more digitized supply chain,
whereas 72% of them plan to do so within the next five years.

An example of a DSC of an electronics factory is depicted in Figure 5.9. The
key players of the chain are:

1. Suppliers who are responsible for providing to the factory all the necessary
materials for the production of the final product.

2. Factory which materializes the production considering the demand of the
market and the time schedule of the delivery.

3. Warehouse where the final product is stored, waiting for transportation.

115

Figure 5.10: Digital Supply Chain - Test Case Details.

4. A logistics company which is responsible to transport in the best and safest
way the products with respect to a specific time schedule.

5. Distribution of the products, which can be either to retailers or directly to
other corporate customers such as factories or companies.

6. End customers who demand a continuous information flow about the status
of their order from the time of the purchase until the final delivery.

The transparent ecosystem of a DSC presupposes the continuous use and ex-
change of both data and services. This process, if not secured, may lead to security
breaches and information leakage to unauthorized parties, both within and outside
the DSC. Figure 5.10 shows some examples of subjects, services and information
per entity of the aforementioned supply chain. Furthermore, the last row of the ta-
ble includes a number of exemplary attributes which can be monitored through the
security policies, providing thus fine-grained security policy based management.
The scenario which has been utilized for the evaluation of the proposed solution,
refers to the DSC of Figure 5.9. In an environment like this, each entity manages
certain resources locally and at the same time it has to share information with the
other entities. In the following part we present a specific test case for the proposed
mechanism within this scenario.

116

5.2.3 Test Case

The test case which has been utilized for the evaluation of the proposed model
refers to a company belonging to the corporate customers of the supply chain
shown in Figure 5.9. With respect to the mechanism given in section 5.2.1 the
actions taken for each step are the following:

5.2.3.1 Initialization Phase

• Step 1: The information security administrator of the company, having con-
ducted an asset identification process and also having analyzed previous in-
cidents within the company, created the Asset Taxonomy. This taxonomy
includes assets such as various Data (i.e Financial Documents, Customer
Information, Customer Reviews etc.), Services (i.e Customer Relationship
Manager, Remote Diagnostics and Maintenance etc.) and Sensors within the
company’s HQ (i.e temperature sensor, CCTVs, smoke detector etc.).

• Steps 2, 3: The selected asset group and the one used throughout the eval-
uation is the Invoices belonging to the Financial Data of the company. The
asset group contains a total number of 150 invoices. Each one of the invoices
is correlated with 25 attributes.

• Step 4: Having the assets and the values of their attributes this step initiates.
In this step the assets are classified based on their similarities in distinct
classes. If two assets have the same values for a number of specific attributes,
they will be classified in the same group.

• Step 5: The security administrator considering the several operations which
take place within the company, defines 3 roles per class and assigns to each
one of them specific privileges. The roles and the corresponding privileges
are given in Table 5.6.

• Step 6: Finally, the security administrator defined several sets of policies in
order to regulate the access to the asset groups. These policies are based
on the possible attributes that the subject can have, as well as on a number
of environmental attributes. The evaluation of the policies result into the
assignment of a role to a subject for the class he/she requested access to. For
this test case, for Class A an example of the policies that have been defined
are:

117

Table 5.6: Roles and Privileges per Class.

Class A
Manager

Read, Modify, Share
Employee

Read
Intern

No access

Class B
Manager

Read, Modify, Share
Sys Admin

Read, Modify, Share
Guest

No access

Class C
Sys Admin

Read, Modify, Share
Employee

Read, Modify
Intern

No access

Class D
CEO

Read, Modify, Share
Employee

Read, Modify
Guest
Read

Class E
IT

Read, Modify, Share
Stuff
Read

Intern
Read

1. Policy 1: If the subject belongs to the Accounting and Finance De-
partment, his identifier is within the 4893XXXX range, the time of the
request is between 6-9am and the connection type is through an Ether-
net cable then the role of the subject is Manager.

2. Policy 2: If the subject belongs to the Marketing Department, his iden-
tifier is within the 8849xxxx range, the time of the request is between
5-7pm and the connection type is through an Ethernet cable then the
role of the subject is Employee.

3. Policy 3: If the subject belongs to the Production Department, his iden-
tifier is within the 5634XXXX range, the time of the request is between
12-2am and the connection type is wireless with WEP encryption then
the role of the subject is Intern.

5.2.3.2 Run-time Phase

Steps 7, 8: In this step we must meet with the prerequisite to assign in all the
attributes a numerical value that is inside the given scale for it so as to conform
with the steps described in 5.2.1.2.

For the purposes of this test case we assume the following requests coming
from two different subjects:

Subject A: belongs to the Marketing Department, his/her Identifier is 48934583,
the time of the request is 10am and he/she is connected to the network via an Eth-
ernet cable.

Subject B: belongs to the Accounting and Finance Department, his/her iden-
tifier is 56349812, the time of the request is 10am and he/she is connected to the

118

network via Wi-Fi.
The final step of the procedure is to actually assign the roles to these subjects

based on their attributes. As previously mentioned in the methodology, the security
administrator, based on a number of factors (i.e. the importance of the asset), is
able to define how rigorous the acceptable distance will be in order for a role to be
assigned.

Out of all the possible roles that can be assigned, the first one that satisfies the
requirements will be assigned to the subject, unless the security administrator set a
different rule.

Consequently, the policy administration and enforcement subsystem (provi-
sioned in a high-tier node) transfers these roles to a PDP in the lower-tier nodes.
This component is responsible for storing the access rights per role, match the role
to the predefined access rights, and assign them to the subject upon request.

119

Chapter 6

Conclusion

IoT pervasiness is everywhere these days and shall be higher in the next years. IoT
security is a top concern as we anticipate more vulnerabilities and attacks from
cyber-criminals, we face another issue that the devices that are sold are not secure
by design and that patching of IoT devices has been proven to be difficult [147].
Moreover, attacks on IoT devices has been found as both simple and destructive
[157].

IoE does not speak only about networked connection of “Things” like IoT, but
it includes the People and how they interact in an interconnected ecosystem, the
Data management and all the Processes that the previous create [63]. Thus, cre-
ating more secure mechanisms to continuous monitor and enforce policies in this
area has crucial importance towards this new era. Furthermore, these mechanisms
should be able to deal with the obstacles of heterogeneity, differences between de-
vices and protocols for communication and type of operating system. In addition
to the previous, these mechanisms should not add extra payload on the endpoint
devices, and not interfere with the protocol specifications and functionalities. Fi-
nally, since IoE is a complex ecosystem consisting of several SoS, these mecha-
nisms should be able to take into account behaviors that affect not only a local
subsystem, but also the whole IoE ecosystem.

So, the goal of this thesis, as stated in the start, was to define and evaluate
a generic policy enforcement architectural model that is based to a extended and
adapted version of UCON framework, targeting to provide continuous access con-
trol and policy enforcement on the IoE. This model shall target to provide a hier-
archical variation of UCON that will continuously enforce policies and control the
access to the resources of complex IoE systems. This model shall be able to pro-

120

vide a holistic solution independently from the type, application protocol, policy
attribute number or language between all components of an IoE environment. i.e.
when attributes refer to the behavior of people, which increases policy complexity,
UCON can cope with it seamlessly.

Firstly, we identified that current security mechanisms for IoT protocols are
mainly focused on ensuring standard security properties such as message confi-
dentiality and integrity, together with authentication. Moreover, to the best of our
knowledge, we found out that up to now the efforts for policies enforcement, which
would ensure much more flexible, expressive and effective properties, are still quite
limited. We discovered also, that the correct component to integrate UCON with,
was the communication protocol level, because this the area where access decisions
are made and policies can be enforced regarding the violation of access rights. So
our target was to enhance the security of the communication protocols by using
UCON.

As a first step, we selected MQTT protocol on which to add UCON and enable,
thus, the dynamic enforcement of UCON policies. We have presented a general
methodology which allows to integrate UCON in a seamless way, without requiring
protocol modifications. We included also an implementation has been presented,
with performance evaluation to demonstrate the viability of the approach.

The next step was to check that our solution can be integrated not only in
one protocol, but can be generic, independently of the protocol. Since IoT pro-
tocols follow two communication patterns (Publish/Subscribe and Client/Server)
and MQTT is following the Publish/Subscribe one, we selected as next step to add
UCON in CoAP protocol. For this reason, we used a distributed version of UCON
which enables attribute sharing between UCSs.

We identified then, that we can take advantage of the attribute sharing ability
of distributed UCON and that achieve the increase of security of both CoAP and
MQTT protocols with dynamic policy enforcement of UCON policies together
for access evaluation purposes between protocols. We have presented the gen-
eral methodology of our approach that proves the ability of integrating UCON in
a seamless way without modifying the protocols accompanied by an implementa-
tion of our framework that together with performance evaluation demonstrated the
viability of our approach.

Realizing that IoE is an area that devices are meant to interact with each other,
we tried to create a way that a specific action on one device, may cause an interac-
tion to an other device. But, instead of changing the components of UCON every

121

time for a new device, we took advantage of the obligations part of that come with
the response from the UCS and force the PEPs to do specific actions.

Obligations is a powerful access and usage control tool which enables a cap-
illary control which goes beyond evaluating the right to perform or not an action.
However, in the XACML 3.0 specific semantic for standardized obligation repre-
sentation and enforcement is not considered. Thus, in order not to change for every
action the PEPs, we have proposed a way to define an obligation semantic that is
specific to IoT environments, using IFTTT triggers to be enforced by PEPs that
are directly connected to IFTTT Applets. We have also reported two specific use
cases which motivate our work and reported performance results to demonstrate
the viability of the proposed approach, detailing how the proposed solution is not
disruptive for the standard UCON workflow, enabling seamless integration.

Since, in IoE there are structures that may be considered as complex ecosys-
tems, composed of smaller structures that control separate type of devices, we
realized the necessity of having a unique framework that can control the universal
access on the resources over complex IoT SoS. This gives the ability not only to
control the access over complex systems, but enforce policies independently from
the protocol, the communication pattern or the hardware of the devices. For this,
we presented an alternative of UCON SoS based on the distributed UCON, that
is hierarchically structured. With this solution, we our goal was to cover the fact
that access requests that could be permitted in a small local IoE subsystem, may
be rejected by the higher in hierarchy holon due to policy violation in the whole
system, or, more globally, to the whole IoE ecosystem. We also highlighted that
the presence of UCON does not impact how the various IoT systems work.

Finally, we understood that an ABAC model like UCON inside IoE could gen-
erate large amounts of attributes for evaluation. Moreover, IoE environments are
constraint and large amounts of attributes may create limitations in performance.

Thus, we presented an Enhanced-Usage CONtrol (E-UCON) architecture, where
the standard functionality of the model is extended in order to support groups of
services and users. This extension aims to improve the UCON model in terms of
performance and run-time efficiency, but also to provide the scalability required
from the application domain. The mentioned improvements, result from the fact
that the right of access will be assigned to user roles towards groups of services
and not only in one service at a time, which reduces the evaluation time and the
computational requirements. Furthermore, the proposed architecture improves the
standard model in terms of security, as it gives the possibility of recognizing and

122

preventing active attacks, such as specific types of Denial of Service based on re-
quest flooding.

Extending our research towards the attribute and policy simplification, we pre-
sented a mechanism for the enforcement of risk-aware security policies in dis-
tributed dynamic and constrained environments by giving a comprehensive de-
scription of its functionality considering two phases, the initialization and the run-
time. The first one includes the preparation for the policy deployment and pro-
cesses such as the classification of the assets, the establishment of permissible
subject roles and the definition of policies per role take place. The second phase
includes the proposed mechanism that exploits a compensatory multi-criteria deci-
sion making algorithm, influenced by Technique for Order Preference by Similar-
ity to Ideal Solution (TOPSIS), which by considering the actual values defined in
the security policy, the run-time values of the subject at the time of the request or
any upcoming reevaluation and the criticality of the assets, computes the optimal
compromise solution and assigns a role to a subject.

Summarizing, our work has presented a way on which UCON can be applied
in the area of IoE via being added in the level of communication protocols. We
also included various modifications and alternatives of UCON so as to be adapted
in a better way and achieve better performance. So we presented a way that we
can create a SoS of UCSs that can be inserted in a IoE ecosystem, and enforce not
only local, but also global decisions continuously, in a seamless way. This thesis
covers the gap of continuous access control in the area of IoE by using UCON
model. We have presented also some enhancements that try to make our solution
more efficient especially regarding the resource limitations in IoE SoS.

However, we saw that there are limitations in our work, such as the risk in-
troduced when grouping services and attributes. Another limitation is the neces-
sity of continuous update and check in the shared database of distributed UCON
framework. Also, we have to take into consideration the task of reducing the
overhead and the time needed for UCON actions in comparison to the protocol
(un)subscription times. Moreover, we shall consider enhancements in the actual
UCON model itself, so that it can adapt better to newer techniques and environ-
ments.

123

6.1 Future Research Directions

As future work, in the area of IoT protocols, we plan to create evaluation scenarios
in real applications so as to define and enforce policies in a real applicative setting.
Furthermore, we intend to make UCON framework a default feature of the IoT
protocols. The main goal is to try and insert UCON in the standards of the protocols
and also try to mediate the related limitations described in the previous paragraph.

Regarding obligation standardization and IFTTT, we plan to perform an im-
plementation on a larger testbed with a real parental control scenario with several
coexistent IFTTT Applets and a wider number of attributes. Furthermore, we plan
to extend the standardization effort, giving a formal definition of the grammar to
be used for defining IFTTT obligations.

As for the simplification of policies, attribute and service grouping, we intent
to perform further enhancements related to (i) credential management, (ii) trust,
and (iii) task delegation that will cover the aforementioned limitations and will be
integrated and tested within E-UCON. This work includes the developing of an
extended and heterogeneous test-bed for experimentation, which will be utilized
in order to evaluate the performance of the proposed enhancements in different
and more demanding use cases. Another goal is to create a model for transform-
ing ABAC models into RBAC ones and simplify the evaluation procedure and the
policy complexity.

124

Acronyms

ABAC Attribute-Based Access Control. 5, 6, 11, 18, 32, 33, 36, 46, 95, 110, 122,
124

Ack acknowledgement. 23

AES Advanced Encryption Standard. 51

AHP Analytic Hierarchy Process. 54, 97–99

AM Attribute Manager. 40, 63, 64, 74, 99

AMQP Advanced Message Queuing Protocol. 19–21, 25, 26, 29, 31

API Application Programming Interface. 47

CAAC Context Aware Access Control. 32, 36, 46, 47

CH Context Handler. 40, 41, 57, 58, 63, 64, 75, 101–105

CI Computational Intelligence. 53

CoAP Constrained Application Protocol. 3, 8, 9, 13, 19–23, 30, 31, 49, 51, 55,
62–70, 121

CON Confirmable. 23

CPS Cyber-Physical System. 2

CPU Central Processing Unit. 31

DDS Data Distribution Service. 21

DTLS Datagram Transport Layer Security. 3, 20, 21, 23, 31, 51

125

ECC Elliptic Curve Cryptography. 51

GH Group Handler. 100–102

HI Hybrid Intelligence. 53

HPDP Hierarchical Patch Dynamics Paradigm. 89

HTML Hypertext Markup Language. 27, 28

HTTP Hypertext Transfer Protocol. 3, 4, 19, 21, 22, 26, 27, 29–31

IETF Internet Engineering Task Force. 3, 21, 26–28, 51

IFTTT If This Then That. 6, 9, 10, 18, 19, 47–49, 52, 55, 73–85, 122, 124

IoE Internet of Everything. 1, 2, 4–7, 9–12, 14, 16–18, 30, 34, 36, 45, 47, 49, 52,
72, 73, 88, 89, 92, 95, 115, 120–123

IoT Internet of Things. 1–4, 6–9, 12, 13, 16–21, 23, 25, 28, 30, 31, 43, 45–53, 55,
65, 66, 70, 71, 73, 74, 85, 86, 88–90, 108, 109, 120–122, 124

IP Internet Protocol. 23, 24

ISO International Organization for Standardization. 25

JAR Java ARchive. 59, 82

JSON JavaScript Object Notation. 77

M2M Machine-to-Machine. 3, 16, 21

MCDA Multi-Criteria Decision Analysis. 54

MOA Message Oriented Approach. 30

MOM Message-Oriented Middleware. 19, 20, 25, 27

MQTT Message Queue Telemetry Transport. 3, 4, 8, 9, 13, 19–21, 24–26, 29–31,
49, 50, 55–57, 59, 61, 65–70, 121

NON Non-Confirmable. 23

126

P2P Peer-to-Peer. 8, 45, 51

PAP Policy Administration Point. 41

PDP Policy Decision Point. 40, 41, 53, 58, 61, 64, 75, 103–105, 114, 119

PEP Policy Enforcement Point. 9, 40, 41, 46, 53, 56–59, 63, 64, 66, 69, 72–78,
80–85, 101–105, 122

PII Personal Identifiable Information. 2

PIP Policy Information Point. 40, 41, 56–58, 63, 64, 67, 72, 74, 75, 77, 98, 102,
105

QoS Quality of Service. 20, 21, 23–26, 31, 62

RAdAC Risk-Adaptable Access Control. 32

RAM Random Access Memory. 31, 51, 60

RBAC Role-based Access Control. 32, 33, 36, 46, 86, 95, 124

REST REpresentational State Transfer. 3

ROM Read Only Memory. 51

RPC Remote Procedure Call. 28

SASL Simple Authentication and Security Layer. 25, 27, 28

SM Session Manager. 40, 41, 57, 58, 63, 75, 102–105

SoS System of Systems. 5, 9, 12, 14, 88–94, 120, 122, 123

SSL Secure Socket Layer. 4, 20, 29, 31

TBAC Task-Based Access Control. 32, 36, 46, 47

TCP Transmission Control Protocol. 20–22, 24, 25, 27–31

TLS Transport Layer Security. 4, 20, 21, 25, 28, 29, 31, 50

TOPSIS Technique for Order Preference by Similarity to Ideal Solution. 123

127

U-XACML XACML with Continuous Usage Control Features. 6, 41–43, 71, 72,
76, 77

UCIoT Usage Control in the Internet of Things. 51

UCON Usage Control. 5–14, 16, 19, 33, 36–43, 45–47, 49, 51, 52, 55, 56, 60,
62–67, 69–73, 76, 79, 83, 85, 86, 88–90, 92, 95–101, 104–106, 108, 120–
124

UCS Usage Control System. 9, 39–41, 45, 46, 56–59, 62–64, 66–70, 73–77, 79–
84, 90–94, 100, 101, 121–123

UDP User Datagram Protocol. 20–23, 27, 31

URI Uniform Resource Identifier. 22, 27

URL Uniform Resource Locators. 27

W3C World Wide Web Consortium. 26

WAMP Web Application Messaging Protocol. 19, 20, 28, 29

WAR Web application ARchive. 82

XACML eXtensible Access Control Markup Language. 5, 6, 10, 18, 32, 34, 35,
41, 43, 52, 53, 72, 73, 76, 85, 122

XML Extensible Markup Language. 6, 27, 28, 31, 33, 35

XMPP Extensible Messaging and Presence Protocol. 19, 27, 28, 31

128

Bibliography

[1] Abraham, A.: Hybrid intelligent systems: evolving intelligence in hierar-
chical layers. In: Do Smart Adaptive Systems Exist?, pp. 159–179. Springer
(2005)

[2] Ahl, V., Allen, T.F.: Hierarchy theory: a vision, vocabulary, and epistemol-
ogy. Columbia University Press (1996)

[3] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.:
Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications. IEEE Communications Surveys Tutorials 17(4), 2347–2376
(Fourthquarter 2015). https://doi.org/10.1109/COMST.2015.2444095

[4] ARTICTE, P.N.: Raster Procedures for Multi-Criteria/Multi-0biective De-
cisions. Photogrammetric Engineering & Remote Sensing 61(5), 539–547
(1995)

[5] Asir S Vedamuthu and David Orchard and Frederick Hirsch and Maryann
Hondo and Prasad Yendluri and Toufic Boubez and Ümit Yalçinalp: Web
Services Policy 1.5 - Primer. techreport, World Wide Web Consortium -
W3C (Sep 2007)

[6] Atzori, L., Iera, A., Morabito, G.: The Internet of Things:
A survey. Computer Networks 54(15), 2787 – 2805 (2010).
https://doi.org/https://doi.org/10.1016/j.comnet.2010.05.010, http:
//www.sciencedirect.com/science/article/pii/S1389128610001568

[7] Azimi, I., Anzanpour, A., Rahmani, A.M., Pahikkala, T., Levorato, M., Lil-
jeberg, P., Dutt, N.: HiCH: Hierarchical Fog-Assisted Computing Architec-
ture for Healthcare IoT. ACM Trans. Embed. Comput. Syst. 16(5s), 174:1–

129

174:20 (Sep 2017). https://doi.org/10.1145/3126501, http://doi.acm.org/10.
1145/3126501

[8] Backes, M., Pfitzmann, B., Schunter, M.: A Toolkit for Managing Enterprise
Privacy Policies. In: Snekkenes, E., Gollmann, D. (eds.) Computer Security
– ESORICS 2003. pp. 162–180. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2003)

[9] Bastos, D., Shackleton, M., El-Moussa, F.: Internet of Things: A survey
of technologies and security risks in smart home and city environments. In:
Living in the Internet of Things: Cybersecurity of the IoT - 2018. pp. 1–7
(March 2018). https://doi.org/10.1049/cp.2018.0030

[10] Bastos, D., Shackleton, M., El-Moussa, F.: Internet of Things: A survey
of technologies and security risks in smart home and city environments. In:
Living in the Internet of Things: Cybersecurity of the IoT - 2018. pp. 1–7
(March 2018). https://doi.org/10.1049/cp.2018.0030

[11] Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: Design and semantics of
a decentralized authorization language. Journal of Computer Security 18(4),
619–665 (2010)

[12] Bera, A.: 80 IoT Statistics (Infographic) (2019), https://safeatlast.co/blog/
iot-statistics/

[13] Bettini, C., Jajodia, S., Wang, X.S., Wijesekera, D.: Provi-
sions and Obligations in Policy Rule Management. Journal of
Network and Systems Management 11(3), 351–372 (Sep 2003).
https://doi.org/10.1023/A:1025711105609, https://doi.org/10.1023/A:
1025711105609

[14] Bormann, C., Ersue, M., Keranen, A.: Terminology for Constrained-Node
Networks. RFC 7228, RFC Editor (May 2014), https://tools.ietf.org/html/
rfc7228

[15] Bouyssou, D.: Outranking methods. Encyclopedia of optimization pp.
1919–1925 (2001)

[16] Capossele, A., Cervo, V., De Cicco, G., Petrioli, C.: Security as a CoAP re-
source: an optimized DTLS implementation for the IoT. In: 2015 IEEE in-
ternational conference on communications (ICC). pp. 549–554. IEEE (2015)

130

[17] Carniani, E., D’Arenzo, D., Lazouski, A., Martinelli, F., Mori, P.: Us-
age Control on Cloud Systems. Future Gener. Comput. Syst. 63(C), 37–55
(Oct 2016). https://doi.org/10.1016/j.future.2016.04.010, http://dx.doi.org/
10.1016/j.future.2016.04.010

[18] Chadwick, D., Lischka, M.: Obligation Standardization. In: W3C Workshop
on Access Control Application Scenarios. pp. 1–5 (2009), https://www.w3.
org/2009/policy-ws/papers/Chadwick.pdf

[19] Chen, D., Varshney, P.K.: QoS Support in Wireless Sensor Networks: A
Survey. In: International conference on wireless networks. vol. 233, pp. 1–7
(2004)

[20] Chun, S.M., Park, J.T.: Mobile CoAP for IoT mobility manage-
ment. In: 2015 12th Annual IEEE Consumer Communications
and Networking Conference (CCNC). pp. 283–289 (Jan 2015).
https://doi.org/10.1109/CCNC.2015.7157990

[21] Cirillo, F., Wu, F.J., Solmaz, G., Kovacs, E.: Embracing the Future Internet
of Things. Sensors 19(2), 351 (2019)

[22] Colitti, W., Steenhaut, K., Caro, N.D., Buta, B., Dobrota, V.: Evaluation
of constrained application protocol for wireless sensor networks. In: 2011
18th IEEE Workshop on Local Metropolitan Area Networks (LANMAN).
pp. 1–6 (Oct 2011). https://doi.org/10.1109/LANMAN.2011.6076934

[23] Colitti, W., Steenhaut, K., Caro, N.D., Buta, B., Dobrota, V.: Evaluation
of constrained application protocol for wireless sensor networks. In: 2011
18th IEEE Workshop on Local Metropolitan Area Networks (LANMAN).
pp. 1–6 (Oct 2011). https://doi.org/10.1109/LANMAN.2011.6076934

[24] Collina, M., Corazza, G.E., Vanelli-Coralli, A.: Introducing the
QEST broker: Scaling the IoT by bridging MQTT and REST. In:
2012 IEEE 23rd International Symposium on Personal, Indoor and
Mobile Radio Communications - (PIMRC). pp. 36–41 (Sept 2012).
https://doi.org/10.1109/PIMRC.2012.6362813

[25] Colombo, A.W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P.,
Harrison, R., Jammes, F., Lastra, J.L., et al.: Industrial cloud-based cyber-
physical systems. The IMC-AESOP Approach (2014)

131

[26] Colombo, M., Lazouski, A., Martinelli, F., Mori, P.: A proposal on enhanc-
ing XACML with continuous usage control features. In: Grids, P2P and
Services Computing, pp. 133–146. Springer US (2010)

[27] Costantino, G., La Marra, A., Martinelli, F., Mori, P., Saracino, A.:
Privacy Preserving Distributed Attribute Computation for Usage Con-
trol in the Internet of Things. In: 2018 17th IEEE International Con-
ference On Trust, Security And Privacy In Computing And Commu-
nications/ 12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE). pp. 1844–1851 (Aug 2018).
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00279

[28] crew, I.O.: Hypertext Transfer Protocol (HTTP) (2018), https://www.iotone.
com/term/hypertext-transfer-protocol-http/t557

[29] Crossbar.io: Web application messaging protocol (wamp) (2012), https://
wamp-proto.org/

[30] Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Speci-
fication Language. In: Sloman, M., Lupu, E.C., Lobo, J. (eds.) Policies for
Distributed Systems and Networks. pp. 18–38. Springer Berlin Heidelberg,
Berlin, Heidelberg (2001)

[31] Demchenko, Y., Koeroo, O., de Laat, C., Sagehaug, H.: Extending XACML
Authorisation Model to Support Policy Obligations Handling in Distributed
Application. In: Proceedings of the 6th International Workshop on Middle-
ware for Grid Computing. pp. 5:1–5:6. MGC ’08, ACM, New York, NY,
USA (2008). https://doi.org/10.1145/1462704.1462709, http://doi.acm.org/
10.1145/1462704.1462709

[32] Department, S.R.: Internet of Things (IoT) connected devices installed base
worldwide from 2015 to 2025 (2016), https://www.statista.com/statistics/
471264/iot-number-of-connected-devices-worldwide

[33] Ersue, M., Romascanu, D., Schoenwaelder, J., Herberg, U.: Management of
Networks with Constrained Devices: Problem Statement and Requirements.
RFC 7547, RFC Editor (May 2015), https://tools.ietf.org/html/rfc7547

[34] Etzion, O., Fournier, F., Arcushin, S.: Tutorial on the Internet of Every-
thing. In: Proceedings of the 8th ACM International Conference on Dis-

132

tributed Event-Based Systems. pp. 236–237. DEBS ’14, ACM, New York,
NY, USA (2014). https://doi.org/10.1145/2611286.2611308, http://doi.acm.
org/10.1145/2611286.2611308

[35] Faiella, M., Martinelli, F., Mori, P., Saracino, A., Sheikhalishahi,
M.: Collaborative Attribute Retrieval in Environment with Faulty At-
tribute Managers. In: 2016 11th International Conference on Avail-
ability, Reliability and Security (ARES). pp. 296–303 (Aug 2016).
https://doi.org/10.1109/ARES.2016.51

[36] Farroha, B., Farroha, D.: Challenges of "operationalizing" dynamic sys-
tem access control: Transitioning from ABAC to RAdAC. In: 2012 IEEE
International Systems Conference SysCon 2012. pp. 1–7 (March 2012).
https://doi.org/10.1109/SysCon.2012.6189525

[37] Fette, I., Melnikov, A.: The WebSocket Protocol. 6455 (Dec 2011).
https://doi.org/110.17487/RFC6455, https://tools.ietf.org/html/rfc6455

[38] Foundation, N.S.: Cyber-Physical Systems (CPS) (2012), https://www.nsf.
gov/pubs/2011/nsf11516/nsf11516.pdf

[39] Foundation, X.S.: Xep-0060: Publish-subscribe (October 2019), https:
//xmpp.org/extensions/xep-0060.html

[40] Fysarakis, K., Askoxylakis, I., Soultatos, O., Papaefstathiou, I., Manifavas,
C., Katos, V.: Which IoT protocol? comparing standardized approaches
over a common m2m application. In: Global Communications Conference
(GLOBECOM), 2016 IEEE. pp. 1–7. IEEE (2016)

[41] Geissbauer, R., Vedso, J., Schrauf, S.: Industry 4.0: Building the digital
enterprise. https://pwc.to/2Hr5BuU, accessed: 2019 - 02 - 21

[42] Gerdes, S., Bergmann, O., Bormann, C., Selander, G., Seitz, L.:
Datagram Transport Layer Security (DTLS) Profile for Authentication
and Authorization for Constrained Environments (ACE). Internet-Draft
draft-ietf-ace-dtls-authorize-07, Internet Engineering Task Force (Mar
2019), https://datatracker.ietf.org/doc/html/draft-ietf-ace-dtls-authorize-07,
work in Progress

133

[43] Gershenfeld, N., Krikorian, R., Cohen, D.: The Internet of Things. Scientific
American 291(4), 76–81 (2004), http://www.jstor.org/stable/26060727

[44] Giusto, D., Iera, A., Morabito, G., Atzori, L.: The Internet of Things:
20th Tyrrhenian Workshop on Digital Communications. Springer Publish-
ing Company, Incorporated (2014)

[45] Gkioulos, V., Rizos, A., Michailidou, C., Martinelli, F., Mori, P.: En-
hancing Usage Control for Performance: A Proposal for Systems of Sys-
tems (Research Poster). In: 2018 International Conference on High Per-
formance Computing Simulation (HPCS). pp. 1061–1062 (July 2018).
https://doi.org/10.1109/HPCS.2018.00169

[46] Gkioulos, V., Rizos, A., Michailidou, C., Mori, P., Saracino, A.: Enhancing
Usage Control for Performance: An Architecture for Systems of Systems.
In: Katsikas, S.K., Cuppens, F., Cuppens, N., Lambrinoudakis, C., Antón,
A., Gritzalis, S., Mylopoulos, J., Kalloniatis, C. (eds.) Computer Security.
pp. 69–84. Springer International Publishing, Cham (2019)

[47] Gkioulos, V., Wolthusen, S.: Enabling dynamic security policy evaluation
for service-oriented architectures in tactical networks. Norsk informasjon-
ssikkerhetskonferanse (NISK) 8(1), 109–120 (Dec 2015)

[48] Gkioulos, V., Wolthusen, S.D.: Reconciliation of ontologically defined se-
curity policies for tactical service oriented architectures. In: Doss, R., Pira-
muthu, S., Zhou, W. (eds.) Future Network Systems and Security. pp. 47–61.
Springer International Publishing, Cham (2016), Efficient Security Policy
Reconciliation in Tactical Service Oriented Architectures

[49] Gkioulos, V., Wolthusen, S.D.: A Security Policy Infrastructure for Tac-
tical Service Oriented Architectures. In: Cuppens-Boulahia, N., Lambri-
noudakis, C., Cuppens, F., Katsikas, S. (eds.) Security of Industrial Con-
trol Systems and Cyber-Physical Systems. pp. 37–51. Springer International
Publishing, Cham (2017)

[50] Gkioulos, V., Wolthusen, S.D.: Constraint Analysis for Security Policy Par-
titioning Over Tactical Service Oriented Architectures. In: Grzenda, M.,
Awad, A.I., Furtak, J., Legierski, J. (eds.) Advances in Network Systems.
pp. 149–166. Springer International Publishing, Cham (2017)

134

[51] Gkioulos, V., Wolthusen, S.D., Flizikowski, A., Stachowicz, A., No-
galski, D., Gleba, K., Sliwa, J.: Interoperability of security and qual-
ity of Service Policies Over Tactical SOA. In: 2016 IEEE Sympo-
sium Series on Computational Intelligence (SSCI). pp. 1–7 (Dec 2016).
https://doi.org/10.1109/SSCI.2016.7850077

[52] Granjal, J., Monteiro, E., Silva, J.S.: Security for the internet of things: a
survey of existing protocols and open research issues. IEEE Communica-
tions Surveys & Tutorials 17(3), 1294–1312 (2015)

[53] Greene, R., Devillers, R., Luther, J.E., Eddy, B.G.: GIS-based multiple-
criteria decision analysis. Geography Compass 5(6), 412–432 (2011)

[54] Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet
of Things (IoT): A vision, architectural elements, and future di-
rections. Future Generation Computer Systems 29(7), 1645 – 1660
(2013). https://doi.org/https://doi.org/10.1016/j.future.2013.01.010, http://
www.sciencedirect.com/science/article/pii/S0167739X13000241, including
Special sections: Cyber-enabled Distributed Computing for Ubiquitous
Cloud and Network Services & Cloud Computing and Scientific Applica-
tions âĂŤ Big Data, Scalable Analytics, and Beyond

[55] Guo, J., Chen, I., Tsai, J.J.P., Al-Hamadi, H.: A hierarchical cloud
architecture for integrated mobility, service, and trust management of
service-oriented IoT systems. In: 2016 Sixth International Conference
on Innovative Computing Technology (INTECH). pp. 72–77 (Aug 2016).
https://doi.org/10.1109/INTECH.2016.7845021

[56] Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in Op-
erating Systems. Commun. ACM 19(8), 461–471 (Aug 1976).
https://doi.org/10.1145/360303.360333, http://doi.acm.org/10.1145/
360303.360333

[57] Hart, J.K., Martinez, K.: Environmental Sensor Networks: A revolution
in the earth system science? Earth-Science Reviews 78(3), 177 – 191
(2006). https://doi.org/https://doi.org/10.1016/j.earscirev.2006.05.001, http:
//www.sciencedirect.com/science/article/pii/S0012825206000511

135

[58] Hartke, K.: Observing Resources in the Constrained Application Protocol
(CoAP). RFC 7641 (Sep 2015). https://doi.org/10.17487/RFC7641, https:
//rfc-editor.org/rfc/rfc7641.txt

[59] Hilty, M., Basin, D., Pretschner, A.: On Obligations. In: di Vimercati,
S.d.C., Syverson, P., Gollmann, D. (eds.) Computer Security – ESORICS
2005. pp. 98–117. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

[60] Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J., Cogdell,
M.M., Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K.: Guide to at-
tribute based access control (ABAC) definition and considerations. National
Institute of Standards and Technology (NIST) Special Publication 800(162)
(2013)

[61] Hussain, F.: Internet of Everything, pp. 1–11. Springer International Pub-
lishing, Cham (2017). https://doi.org/10.1007/978-3-319-55405-1_1, https:
//doi.org/10.1007/978-3-319-55405-1_1

[62] Ianella, R.: Open Digital Rights Language (ODRL), https://www.w3.org/ns/
odrl/2/ODRL20.html

[63] Jara, A.J., Ladid, L., Gómez-Skarmeta, A.F.: The Internet of Everything
through IPv6: An Analysis of Challenges, Solutions and Opportunities.
JoWua 4(3), 97–118 (2013)

[64] Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing
environment. In: Proceedings POLICY 2003. IEEE 4th International Work-
shop on Policies for Distributed Systems and Networks. pp. 63–74 (June
2003). https://doi.org/10.1109/POLICY.2003.1206958

[65] Karagiannis, V., Chatzimisios, P., VÃązquez-Gallego, F., Alonso-
ZÃąrate, J.: A Survey on Application Layer Protocols for the In-
ternet of Things. Transaction on IoT and Cloud Computing 1(1)
(Jan 2015). https://doi.org/10.5281/zenodo.51613, https://doi.org/10.5281/
zenodo.51613

[66] Karopoulos, G., Mori, P., Martinelli, F.: Usage Control in SIP-based
Multimedia Delivery. Comput. Secur. 39, 406–418 (Nov 2013).
https://doi.org/10.1016/j.cose.2013.09.005, http://dx.doi.org/10.1016/j.
cose.2013.09.005

136

[67] Kasem-Madani, S., Meier, M.: Security and Privacy Policy Languages:
A Survey, Categorization and Gap Identification. CoRR abs/1512.00201
(2015)

[68] Keoh, S.L., Kumar, S.S., Tschofenig, H.: Securing the Internet of Things: A
Standardization Perspective. IEEE Internet of Things Journal 1(3), 265–275
(June 2014). https://doi.org/10.1109/JIOT.2014.2323395

[69] Khaitan, S.K., McCalley, J.D.: Design Techniques and Applications of Cy-
berphysical Systems: A Survey. IEEE Systems Journal 9(2), 350–365 (June
2015). https://doi.org/10.1109/JSYST.2014.2322503

[70] Krautsevich, L., Lazouski, A., Martinelli, F., Mori, P., Yautsiukhin, A.:
Usage Control, Risk and Trust, pp. 1–12. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15152-1_1,
https://doi.org/10.1007/978-3-642-15152-1_1

[71] Kyng, M., Nielsen, E.T., Kristensen, M.: Challenges in Designing Inter-
active Systems for Emergency Response. In: Proceedings of the 6th Con-
ference on Designing Interactive Systems. pp. 301–310. DIS ’06, ACM,
New York, NY, USA (2006). https://doi.org/10.1145/1142405.1142450,
http://doi.acm.org/10.1145/1142405.1142450

[72] La Marra, A., Martinelli, F., Mori, P., Rizos, A., Saracino, A.: Improving
MQTT by Inclusion of Usage Control. In: Wang, G., Atiquzzaman, M., Yan,
Z., Choo, K.K.R. (eds.) Security, Privacy, and Anonymity in Computation,
Communication, and Storage. pp. 545–560. Springer International Publish-
ing, Cham (2017)

[73] La Marra, A., Martinelli, F., Mori, P., Rizos, A., Saracino, A.: Introducing
Usage Control in MQTT. In: Katsikas, S.K., Cuppens, F., Cuppens, N.,
Lambrinoudakis, C., Kalloniatis, C., Mylopoulos, J., Antón, A., Gritzalis,
S. (eds.) Computer Security. pp. 35–43. Springer International Publishing,
Cham (2018)

[74] La Marra, A., Martinelli, F., Mori, P., Rizos, A., Saracino, A.: Using IFTTT
to Express and Enforce UCON Obligations. In: Heng, S.H., Lopez, J. (eds.)
Information Security Practice and Experience. pp. 213–231. Springer Inter-
national Publishing, Cham (2019)

137

[75] Lazouski, A.: Access and Usage Control in Grid (2011)

[76] Lazouski, A., Martinelli, F., Mori, P.: Survey: Usage Control in
Computer Security: A Survey. Comput. Sci. Rev. 4(2), 81–99 (May
2010). https://doi.org/10.1016/j.cosrev.2010.02.002, http://dx.doi.org/10.
1016/j.cosrev.2010.02.002

[77] Lazouski, A., Martinelli, F., Mori, P., Saracino, A.: Stateful Data Usage
Control for Android Mobile Devices. International Journal of Information
Security pp. 1–25 (2016). https://doi.org/10.1007/s10207-016-0336-y, http:
//dx.doi.org/10.1007/s10207-016-0336-y

[78] Le, A., Keller, L., Fragouli, C., Markopoulou, A.: MicroPlay: A
Networking Framework for Local Multiplayer Games. In: Proceed-
ings of the First ACM International Workshop on Mobile Gam-
ing. pp. 13–18. MobileGames ’12, ACM, New York, NY, USA
(2012). https://doi.org/10.1145/2342480.2342485, http://doi.acm.org/10.
1145/2342480.2342485

[79] Lesjak, C., Hein, D., Hofmann, M., Maritsch, M., Aldrian, A., Priller, P.,
Ebner, T., Ruprechter, T., Pregartner, G.: Securing smart maintenance ser-
vices: Hardware-security and TLS for MQTT. In: 2015 IEEE 13th Interna-
tional Conference on Industrial Informatics (INDIN). pp. 1243–1250 (July
2015). https://doi.org/10.1109/INDIN.2015.7281913

[80] Li, L., Li, Y., Lin, J., Zhang, T.: Enhanced AllJoyn Network with Central-
ized Management, pp. 183–188. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-47401-3_24, http://dx.doi.
org/10.1007/978-3-662-47401-3_24

[81] Lin, H., Bergmann, N.W.: IoT Privacy and Security Chal-
lenges for Smart Home Environments. Information 7(3) (2016).
https://doi.org/10.3390/info7030044, http://www.mdpi.com/2078-2489/7/
3/44

[82] Locke, D.: Mq telemetry transport (mqtt) v3. 1 protocol specification. IBM
developerWorks Technical Library (2010)

[83] Luzuriaga, J.E., Cano, J.C., Calafate, C., Manzoni, P., Perez, M., Boronat,
P.: Handling mobility in IoT applications using the MQTT protocol. In:

138

2015 Internet Technologies and Applications (ITA). pp. 245–250 (Sept
2015). https://doi.org/10.1109/ITechA.2015.7317403

[84] Malczewski, J.: GIS and multicriteria decision analysis. John Wiley & Sons
(1999)

[85] Marra, A.L., Martinelli, F., Mori, P., Saracino, A.: Implementing Us-
age Control in Internet of Things: A Smart Home Use Case. In:
2017 IEEE Trustcom/BigDataSE/ICESS. pp. 1056–1063 (Aug 2017).
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.352

[86] Martinelli, F., Michailidou, C., Mori, P., Saracino, A.: Too Long, did
not Enforce: A Qualitative Hierarchical Risk-Aware Data Usage Con-
trol Model for Complex Policies in Distributed Environments. In: Pro-
ceedings of the 4th ACM Workshop on Cyber-Physical System Security,
CPSS@AsiaCCS 2018, Incheon, Republic of Korea, June 04-08, 2018.
pp. 27–37 (2018). https://doi.org/doi:10.1145/3198458.3198463, http://doi.
acm.org/10.1145/3198458.3198463

[87] Martinelli, F., Mori, P.: On Usage Control for GRID Sys-
tems. Future Gener. Comput. Syst. 26(7), 1032–1042 (Jul 2010).
https://doi.org/10.1016/j.future.2009.12.005, http://dx.doi.org/10.1016/
j.future.2009.12.005

[88] McIntire, C.D., Colby, J.A.: A Hierarchical Model of Lotic
Ecosystems. Ecological Monographs 48(2), 167–190 (1978).
https://doi.org/10.2307/2937298, https://esajournals.onlinelibrary.wiley.
com/doi/abs/10.2307/2937298

[89] McIntire, C.D., Colby, J.A.: A hierarchical model of lotic ecosystems. Eco-
logical Monographs 48(2), 167–190 (1978)

[90] Melnikov, A., Fette, I.: The WebSocket Protocol. RFC 6455 (dec 2011).
https://doi.org/10.17487/RFC6455, https://rfc-editor.org/rfc/rfc6455.txt

[91] van der Meulen, R.: Gartner Says 8.4 Billion Connected “Things” Will Be
in Use in 2017, Up 31 Percent From 2016 (2017), https://www.gartner.com/
newsroom/id/3598917

139

[92] Miraz, M.H., Ali, M., Excell, P.S., Picking, R.: A review on Internet of
Things (IoT), Internet of Everything (IoE) and Internet of Nano Things
(IoNT). In: 2015 Internet Technologies and Applications (ITA). pp. 219–
224 (Sep 2015). https://doi.org/10.1109/ITechA.2015.7317398

[93] Moore, B., Ellesson, E., Strassner, J., Westerinen, A.: RFC 3060: Policy
Core Information Model – Version 1 Specification (Feb 2001), http://www.
ietf.org/rfc/rfc3060.txt

[94] Nadkarni, A., Enck, W., Jha, S., Staddon, J.: Policy by Example: An Ap-
proach for Security Policy Specification. arXiv preprint arXiv:1707.03967
(2017)

[95] Namiot, D., Sneps-Sneppe, M.: Proximity as a service. In: 2012 2nd Baltic
Congress on Future Internet Communications. pp. 199–205 (April 2012).
https://doi.org/10.1109/BCFIC.2012.6217947

[96] NIST: MQTT and the NIST Cybersecurity Framework Version 1.0.
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/cn01/
mqtt-nist-cybersecurity-v1.0-cn01.pdf (2014), [Online; accessed 22-
January-2017]

[97] OASIS: Oasis advanced message queuing protocol (amqp) version
1.0 (October 2012), http://docs.oasis-open.org/amqp/core/v1.0/os/
amqp-core-overview-v1.0-os.html

[98] OASIS Standard: eXtensible Access Control Markup Language
(XACML) Version 3.0. http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-os-en.html. (Jan 2013)

[99] OASIS Standard: eXtensible Access Control Markup Language
(XACML) Version 3.0. http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-os-en.html. (Jan 2013)

[100] O’Connor, A.C., Loomis, R.J.: 2010 economic analysis of role-based access
control. NIST, Gaithersburg, MD 20899 (2010)

[101] O’Grady, P.J., Kim, Y., Young, R.E.: A hierarchical ap-
proach to concurrent engineering systems. International Journal
of Computer Integrated Manufacturing 7(3), 152–162 (1994).

140

https://doi.org/10.1080/09511929408944605, https://doi.org/10.1080/
09511929408944605

[102] O’Neill, M.: The Internet of Things: do more devices mean
more risks? Computer Fraud & Security 2014(1), 16 – 17
(2014). https://doi.org/https://doi.org/10.1016/S1361-3723(14)70008-
9, http://www.sciencedirect.com/science/article/pii/S1361372314700089

[103] Ovadia, S.: Automate the Internet With "If This Then That"
(IFTTT). Behavioral & Social Sciences Librarian 33(4), 208–211
(2014). https://doi.org/10.1080/01639269.2014.964593, https://doi.org/10.
1080/01639269.2014.964593

[104] Palumbo, F., Ullberg, J., Štimec, A., Furfari, F., Karlsson, L., Coradeschi, S.:
Sensor network infrastructure for a home care monitoring system. Sensors
14(3), 3833–3860 (2014)

[105] Park, J., Sandhu, R.: Towards Usage Control Models: Beyond Tradi-
tional Access Control. In: Proceedings of the Seventh ACM Symposium
on Access Control Models and Technologies. pp. 57–64. SACMAT ’02,
ACM, New York, NY, USA (2002). https://doi.org/10.1145/507711.507722,
http://doi.acm.org/10.1145/507711.507722

[106] Park, J., Sandhu, R.: The UCONABC Usage Control Model.
ACM Trans. Inf. Syst. Secur. 7(1), 128–174 (Feb 2004).
https://doi.org/10.1145/984334.984339, http://doi.acm.org/10.1145/
984334.984339

[107] Pattee, H.H.: Hierarchy Theory: The Challenge of Complex Systems (1973)

[108] Pimentel, V., Nickerson, B.G.: Communicating and Displaying Real-Time
Data with WebSocket. IEEE Internet Computing 16(4), 45–53 (July 2012).
https://doi.org/10.1109/MIC.2012.64

[109] Pretschner, A., Hilty, M., Basin, D.: Distributed Usage Control. Commun.
ACM 49(9), 39–44 (Sep 2006). https://doi.org/10.1145/1151030.1151053,
http://doi.acm.org/10.1145/1151030.1151053

[110] Rad, C.R., Hancu, O., Takacs, I.A., Olteanu, G.: Smart Monitoring of Potato
Crop: A Cyber-Physical System Architecture Model in the Field of Preci-
sion Agriculture. Agriculture and Agricultural Science Procedia 6, 73 – 79

141

(2015). https://doi.org/http://dx.doi.org/10.1016/j.aaspro.2015.08.041, http:
//www.sciencedirect.com/science/article/pii/S2210784315001746, confer-
ence Agriculture for Life, Life for Agriculture

[111] Raza, S., Shafagh, H., Hewage, K., Hummen, R., Voigt,
T.: Lithe: Lightweight Secure CoAP for the Internet of
Things. IEEE Sensors Journal 13(10), 3711–3720 (Oct 2013).
https://doi.org/10.1109/JSEN.2013.2277656

[112] Raza, S., Duquennoy, S., HÃűglund, J., Roedig, U., Voigt, T.: Secure
communication for the Internet of Things: a comparison of link-layer se-
curity and IPsec for 6LoWPAN. Security and Communication Networks
7(12), 2654–2668 (2014). https://doi.org/10.1002/sec.406, http://dx.doi.org/
10.1002/sec.406

[113] Rescorla, E., Modadugu, N.: Datagram Transport Layer Security Ver-
sion 1.2. RFC 6347 (Jan 2012). https://doi.org/10.17487/RFC6347, https:
//rfc-editor.org/rfc/rfc6347.txt

[114] Rescorla, E., Tschofenig, H., Modadugu, N.: The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3. Internet-Draft draft-ietf-tls-dtls13-
31, Internet Engineering Task Force (Mar 2019), https://datatracker.ietf.org/
doc/html/draft-ietf-tls-dtls13-31, work in Progress

[115] RFID, I.D.N.E.., Nanosystems, I.G.M..: Internet of Things in 2020, A
Roadmap for the Future (2009)

[116] Rizos, A., Bastos, D., Saracino, A., Martinelli, F.: Distributed UCON in
CoAP and MQTT Protocols. In: Computer Security. Springer International
Publishing, Cham (2019), to Appear

[117] Roca, D., Milito, R., Nemirovsky, M., Valero, M.: Tackling IoT Ul-
tra Large Scale Systems: Fog Computing in Support of Hierarchi-
cal Emergent Behaviors, pp. 33–48. Springer International Publishing,
Cham (2018). https://doi.org/10.1007/978-3-319-57639-8_3, https://doi.
org/10.1007/978-3-319-57639-8_3

[118] Rouse, M.: Interner of Things: A definition (2016), https://
internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

142

[119] Saaty, R.: The analytic hierarchy process - what it is and how
it is used. Mathematical Modelling 9(3), 161 – 176 (1987).
https://doi.org/http://dx.doi.org/10.1016/0270-0255(87)90473-8,
http://www.sciencedirect.com/science/article/pii/0270025587904738

[120] Saaty, R.: The analytic hierarchy process - what it is and how
it is used. Mathematical Modelling 9(3), 161 – 176 (1987).
https://doi.org/http://dx.doi.org/10.1016/0270-0255(87)90473-8,
http://www.sciencedirect.com/science/article/pii/0270025587904738

[121] Saaty, T.L.: The analytic hierarchy and analytic network processes for the
measurement of intangible criteria and for decision-making. In: Multiple
criteria decision analysis, pp. 363–419. Springer (2016)

[122] Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP):
Core. RFC 6120 (Mar 2011). https://doi.org/10.17487/RFC6120, https://
rfc-editor.org/rfc/rfc6120.txt

[123] Salthe, S.N.: A Hierarchical Framework for Levels of Reality: Un-
derstanding Through Representation. Axiomathes 19(1), 87–99 (Mar
2009). https://doi.org/10.1007/s10516-008-9056-x, https://doi.org/10.1007/
s10516-008-9056-x

[124] Salthe, S.N.: Evolving hierarchical systems. Columbia University Press
(2010)

[125] Samarati, P., de Vimercati, S.C.: Access Control: Policies, Models, and
Mechanisms, pp. 137–196. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2001). https://doi.org/10.1007/3-540-45608-2_3, https://doi.org/10.
1007/3-540-45608-2_3

[126] Sandhu, R.S., Samarati, P.: Access control: principle and prac-
tice. IEEE Communications Magazine 32(9), 40–48 (Sept 1994).
https://doi.org/10.1109/35.312842

[127] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-
Based Access Control Models. Computer 29(2), 38–47 (Feb 1996).
https://doi.org/10.1109/2.485845, http://dx.doi.org/10.1109/2.485845

143

[128] Security, H.: Number of connected devices reached 22 billion, where
is the revenue? (2019), https://www.helpnetsecurity.com/2019/05/23/
connected-devices-growth

[129] Shalaginov, A.: Soft Computing and Hybrid Intelligence for Deci-
sion Support in Forensics Science. In: 2016 IEEE Conference on
Intelligence and Security Informatics (ISI). pp. 304–306 (Sep 2016).
https://doi.org/10.1109/ISI.2016.7745495

[130] Shalaginov, A.: Advancing Neuro-Fuzzy Algorithm for Automated Clas-
sification in Largescale Forensic and Cybercrime Investigations: Adaptive
Machine Learning for Big Data Forensic. Ph.D. thesis, Norwegian Univer-
sity of Science and Technology (2018)

[131] Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol
(CoAP). RFC 7252 (Jun 2014). https://doi.org/10.17487/RFC7252, https:
//rfc-editor.org/rfc/rfc7252.txt

[132] Shirey, R.: RFC 4949: Internet Security Glossary – Version 2 (Aug 2007),
https://tools.ietf.org/rfc/rfc4949.txt

[133] Simon, H.A.: The Organization of Complex Systems, pp. 245–261. Springer
Netherlands, Dordrecht (1977). https://doi.org/10.1007/978-94-010-9521-
1_14, https://doi.org/10.1007/978-94-010-9521-1_14

[134] Simon, H.A.: The Architecture of Complexity, pp. 457–476. Springer US,
Boston, MA (1991). https://doi.org/10.1007/978-1-4899-0718-9_31, https:
//doi.org/10.1007/978-1-4899-0718-9_31

[135] Singh, M., Rajan, M.A., Shivraj, V.L., Balamuralidhar, P.: Secure MQTT
for Internet of Things (IoT). In: 2015 Fifth International Conference on
Communication Systems and Network Technologies. pp. 746–751 (April
2015). https://doi.org/10.1109/CSNT.2015.16

[136] Smith, N., Sage, A.: An introduction to hierarchical systems the-
ory. Computers & Electrical Engineering 1(1), 55 – 71 (1973).
https://doi.org/https://doi.org/10.1016/0045-7906(73)90027-X, http://www.
sciencedirect.com/science/article/pii/004579067390027X

144

[137] Smith, S.W.: Trusted Computing Platforms, pp. 1–239. No. 1, Springer
US (2005). https://doi.org/10.1007/b103637, https://www.springer.com/gp/
book/9780387239163

[138] Srivatsa, M., Liu, L.: Securing Publish-subscribe Overlay Services with
EventGuard. In: Proceedings of the 12th ACM Conference on Computer
and Communications Security. pp. 289–298. CCS ’05, ACM, New York,
NY, USA (2005). https://doi.org/10.1145/1102120.1102158, http://doi.acm.
org/10.1145/1102120.1102158

[139] for Standardization, I.O.: Iso/iec 19464:2014 - advanced message queuing
protocol (amqp) v1.0 specification (2014), https://www.iso.org/obp/ui/#iso:
std:iso-iec:19464:ed-1:v1:en

[140] Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., Jia, L.: Some Recipes
Can Do More Than Spoil Your Appetite: Analyzing the Security and Pri-
vacy Risks of IFTTT Recipes. In: Proceedings of the 26th International
Conference on World Wide Web. pp. 1501–1510. WWW ’17, International
World Wide Web Conferences Steering Committee, Republic and Canton
of Geneva, Switzerland (2017). https://doi.org/10.1145/3038912.3052709,
https://doi.org/10.1145/3038912.3052709

[141] Talaminos-Barroso, A., Estudillo-Valderrama, M.A., Roa, L.M., Reina-
Tosina, J., Ortega-Ruiz, F.: A Machine-to-Machine protocol bench-
mark for eHealth applications - Use case: Respiratory rehabilita-
tion. Computer Methods and Programs in Biomedicine 129, 1 – 11
(2016). https://doi.org/http://dx.doi.org/10.1016/j.cmpb.2016.03.004, http:
//www.sciencedirect.com/science/article/pii/S0169260715302959

[142] Tan, Y., Goddard, S., Pérez, L.C.: A Prototype Architecture for
Cyber-physical Systems. SIGBED Rev. 5(1), 26:1–26:2 (Jan 2008).
https://doi.org/10.1145/1366283.1366309, http://doi.acm.org/10.1145/
1366283.1366309

[143] Thangavel, D., Ma, X., Valera, A., Tan, H.X., Tan, C.K.Y.: Performance
evaluation of MQTT and CoAP via a common middleware. In: Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE
Ninth International Conference on. pp. 1–6. IEEE (2014)

145

[144] Thomas, R.K., Sandhu, R.S.: Task-based authorization controls
(TBAC): a family of models for active and enterprise-oriented au-
thorization management, pp. 166–181. Springer US, Boston, MA
(1998). https://doi.org/10.1007/978-0-387-35285-5_10, https://doi.org/10.
1007/978-0-387-35285-5_10

[145] Tiloca, M., Selander, G., Palombini, F., Park, J.: Group OSCORE -
Secure Group Communication for CoAP. Internet-Draft draft-ietf-core-
oscore-groupcomm-04, Internet Engineering Task Force (Mar 2019), https:
//datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-04, work
in Progress

[146] Tragos, E.Z., Angelakis, V., Fragkiadakis, A., Gundlegard, D., Nechi-
for, C.S., Oikonomou, G., PÃűhls, H.C., Gavras, A.: Enabling re-
liable and secure IoT-based smart city applications. In: 2014 IEEE
International Conference on Pervasive Computing and Communication
Workshops (PERCOM WORKSHOPS). pp. 111–116 (March 2014).
https://doi.org/10.1109/PerComW.2014.6815175

[147] TrendLabs: Trend Micro Security Predictions for 2018 (2017), http://bit.ly/
30PQ2og

[148] Ukil, A., Bandyopadhyay, S., Bhattacharyya, A., Pal, A., Bose, T.:
Lightweight security scheme for IoT applications using CoAP. Interna-
tional Journal of Pervasive Computing and Communications 10(4), 372–392
(2014)

[149] Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch,
L., Johnson, M., Kulkarni, S., Lott, J.: KAoS policy and domain services:
toward a description-logic approach to policy representation, deconfliction,
and enforcement. In: Proceedings POLICY 2003. IEEE 4th International
Workshop on Policies for Distributed Systems and Networks. pp. 93–96
(June 2003). https://doi.org/10.1109/POLICY.2003.1206963

[150] Valentine, J.W., May, C.L.: Hierarchies in biology
and paleontology. Paleobiology 22(1), 23âĂŞ33 (1996).
https://doi.org/10.1017/S0094837300015992

146

[151] Villari, M., Celesti, A., Fazio, M., Puliafito, A.: AllJoyn Lambda: An archi-
tecture for the management of smart environments in IoT. In: 2014 Interna-
tional Conference on Smart Computing Workshops. pp. 9–14 (Nov 2014).
https://doi.org/10.1109/SMARTCOMP-W.2014.7046676

[152] De Capitani di Vimercati, S., Samarati, P., Jajodia, S.: Policies,
Models, and Languages for Access Control. In: Proceedings of the
4th International Conference on Databases in Networked Information
Systems. pp. 225–237. DNIS’05, Springer-Verlag, Berlin, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31970-2_18, http://dx.doi.org/
10.1007/978-3-540-31970-2_18

[153] Vorapojpisut, S.: A Lightweight Framework of Home Automation Systems
Based on the IFTTT Model. JSW 10(12), 1343–1350 (2015)

[154] Wang, Y., Wei, L., Jin, Q., Ma, J.: Alljoyn Based Direct Proximity Service
Development: Overview and Prototype. In: 2014 IEEE 17th International
Conference on Computational Science and Engineering. pp. 634–641 (Dec
2014). https://doi.org/10.1109/CSE.2014.138

[155] Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B., Her-
zog, S., Huynh, A., Carlson, M., Perry, J., Waldbusser, S.: Terminology
for Policy-Based Management. RFC 3198, RFC Editor (November 2001),
https://tools.ietf.org/html/rfc3198

[156] Wilson, D.: Forms of hierarchy: A selected bibliography. General Systems
14, 3–+ (1969)

[157] Woolf, N.: DDoS attack that disrupted internet was largest of its kind in
history, experts say (2016), https://www.theguardian.com/technology/2016/
oct/26/ddos-attack-dyn-mirai-botnet

[158] Wu, J.: Hierarchy and Scaling: Extrapolating Information along a Scal-
ing Ladder. Canadian Journal of Remote Sensing 25(4), 367–380 (1999).
https://doi.org/10.1080/07038992.1999.10874736, https://doi.org/10.1080/
07038992.1999.10874736

[159] Wu, J., Loucks, O.L.: From Balance of Nature to Hierarchical Patch Dy-
namics: A Paradigm Shift in Ecology. The Quarterly Review of Biology

147

70(4), 439–466 (1995). https://doi.org/10.1086/419172, https://doi.org/10.
1086/419172

[160] Yang, L., Di Martino, B., Zhang, Q.: Internet of Everything. Mobile Infor-
mation Systems 2017 (2017)

[161] Yoon, K.P., Hwang, C.L.: Multiple attribute decision making: an introduc-
tion, vol. 104. Sage publications (1995)

[162] Yuan, E., Tong, J.: Attributed based access control (ABAC) for Web ser-
vices. In: IEEE International Conference on Web Services (ICWS’05).
p. 569 (July 2005). https://doi.org/10.1109/ICWS.2005.25

[163] Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of
Things for Smart Cities. IEEE Internet of Things Journal 1(1), 22–32 (Feb
2014). https://doi.org/10.1109/JIOT.2014.2306328

[164] Zhang, G., Parashar, M.: Context-aware dynamic access control for perva-
sive applications. In: Proceedings of the Communication Networks and Dis-
tributed Systems Modeling and Simulation Conference. pp. 21–30 (2004)

[165] Zhang, L.x., Zou, J.s.: Research of ABAC Mechanism Based on the Im-
proved Encryption Algorithm Under Cloud Environment, pp. 463–469.
Springer Netherlands, Dordrecht (2015). https://doi.org/10.1007/978-94-
017-9618-7_46, http://dx.doi.org/10.1007/978-94-017-9618-7_46

[166] Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal Model and Pol-
icy Specification of Usage Control. ACM Trans. Inf. Syst. Secur. 8(4), 351–
387 (Nov 2005). https://doi.org/10.1145/1108906.1108908, http://doi.acm.
org/10.1145/1108906.1108908

[167] Zheng, K., Lv, T., Li, Y., Lu, Y.: The analysis and implementation of AllJoyn
based thin client communication system with heartbeat function. In: Inter-
national Conference on Cyberspace Technology (CCT 2014). pp. 1–4 (Nov
2014). https://doi.org/10.1049/cp.2014.1293

148

