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ABSTRACT 

 

 

The study of pressure distribution over a not-defined surface, as well as the detection of 

stretching capability, are subjects matter of great interest in many fields as biomedical 

measurements, human motion detection, human-machine interfaces, and soft robotics. Novel 

and smart sensing solutions are research topics of great interest since the need for sensors with 

properties of flexibility and stretchability is growing. The emerging class of smart textiles 

holds great potential for developing new concepts of transducers and sensors, and 

investigations about their prospects deserve rising attention. 

The aim of this research is the study of concepts and applications of textile sensors for strain 

and pressure detection. An example of matrix textile sensor has been designed and developed, 

by sandwiching a piezoresistive fabric sheet between two outer fabric layers embedding 

conductive rows and columns. The location of the applied pressure can be identified by 

detecting the position where the change of resistances occurs between the external conductive 

paths. Tests regarding its metrological properties have been carried out to highlight the sensor 

advantages and drawbacks and to establish general guidelines for its use. Also, a strain-

resistance sensor based on commercial knitted textile has been designed and developed. 

Firstly, a methodology to characterize and to calibrate the strain-resistance sensor is proposed, 

suitable also for analysing the behaviour of any conductive and stretchable fabrics and useful 

to establish general guidelines for its use. Secondly, a new mathematical model is proposed to 

compensate for hysteresis and relaxation in strain sensors made of conductive textile. 

The wide selection of advantages exhibited by this class of sensors, e.g. thinness, lightness, 

flexibility, stretchability and wearability, suggests their exploitation in a huge number of 

applications, especially concerning the biomedical field. In this thesis, smart fabric sensors 

based on a piezoresistive detecting principle have been employed to monitor single planes 

neck movements and to develop a new cognitive technological tool for physical and cognitive 

training. Development, testing and data analysis phases have been accomplished, confirming 

the versatility and potentiality of the sensing solutions based on smart textiles. 
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Introduction 
 

 

Strain and pressure sensing with smart textiles 

Conventional electronic devices, fabricated on rigid yet brittle semiconductor wafers, have 

evolved towards miniaturization with the aim of realizing faster, smaller and more integrated 

devices. An alternative approach to future electronics is to integrate the attributes of flexibility 

and stretchability to realize soft and human-friendly devices. Stretchability — the ability to 

conform to and cover movable and arbitrarily shaped objects — could be exploited in the 

development of wearable devices, as well as biomedical applications, that can be embedded 

into clothes and garments or even attached directly to the skin. Possible applications of this 

include the detection of human motion, monitoring personal health and therapeutics.  

Owing to the difficulties in developing stretchable electric materials, the current 

mainstream strategy in attempting to achieve stretchability is not to develop new materials, 

but instead is to engineer new structural constructs from established materials. Device of 

particular interest are soft and flexible sensors that are enveloped in arbitrarily shaped soft 

matrices, which are both highly conformable and extensible. The goal is to gain valuable 

sensing information while minimizing the physical impact on the host system. 

The study of pressure distribution over a not-defined surface, as well as the detection of 

stretching capability, are subjects matter of great interest in many fields, such as biomedical 

measurements, human motion detection, human-machine interfaces, and soft robotics. 

Since commonly employed commercial products tend to be expensive and application 

specific, it would be worthwhile to develop a thin, versatile and flexible sensing device, free 

from geometry constraints, stretchable and able to perform multi-touch detection. For these 

reasons numerous recent research studies have been aimed to obtain sensing solutions low-

cost and versatile from the point of view both of hardware (e.g. shape and dimension) and 

software (e.g. direct management of data reading and resolution settings). They are asked to 

be not only thin and pliable, as polyester- and PCB-based products, but also flexible and 

attachable over curved and narrow surfaces, like robotic joints and fingers. They also need to 
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be customizable, suitable to be embedded in wearable systems and possibly based on 

affordable technologies. 

A large amount of different types of sensors have already been proposed for the aforesaid 

applications, mainly relying on the capacitive, piezoelectric and piezoresistive transduction 

principle. 

The latest class of smart textiles is a promising candidate to meet the above mentioned 

conditions, making the manufacturing of lightweight, soft and low cost sensors possible. 

Smart textiles are fabrics that can sense and react to mechanical, thermic, chemical, magnetic 

and electric stimuli, by means of extrinsic and intrinsic modifications. In the last years the 

development of conductive/piezoresistive fabrics has been a common research topic in the 

areas of chemistry and smart materials, leading to widespread commercial products. To date, 

conductive/piezoresistive textiles are employed to develop a wide group of Smart Fabrics 

Transducers (SFT), e.g. actuators, energy harvesting solutions and sensors. Specifically, 

conductive textiles that change their electrical properties because of the environmental impact 

can be used as sensors, and in particular as stretch or pressure sensors. 

In this framework, the present thesis aims at analysing possible smart solutions for both 

pressure and strain sensors that can be manufactured with commercial 

conductive/piezoresistive fabrics. In particular, studies on matrix multilayer textile-based 

pressure sensors and on textile-based strain sensors have been carried out. The last part of the 

thesis involved the use of smart fabric sensors in two different biomedical applications that 

can actually benefit from their properties (i.e. flexibility, thinness, lightness, wearability, 

streatchability, customizability of shape, dimension and resolution). For each application, the 

proper sensor design was studied considering the specific requirements. Development, testing 

and data analysis were carried out. 

 

Chapters organization 

This thesis is devoted to the design, development and employment of textile sensors for 

pressure mapping and strain detection, and it is divided into seven chapters. 

Chapter one presents a general discussion on the state of the art of soft and flexible 

sensors for pressure and strain measurements. The aim is to highlight the fundamental domain 
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of interest (biomedical) for this thesis that make use of pressure and strain profiles and the 

mainly employed detecting principles. A final part is dedicated to the smart fabrics 

description, focusing on their potentialities for the manufacturing of a wide class of 

transducers and sensors. 

Chapter two describes the design, development and characterization of a rectangular-

shaped textile matrix sensor, composed of two external fabric layers with a further 

piezoresistive fabric layer (EeonTexTM LG-SL-PA, Eeonyx Corp., Pinole, CA, US) 

interposed between the former ones. The two external layers consisted of a nonconductive 

textile on which parallel conductive stripes were obtained by sewing multiple copper threads, 

so that a pattern of alternate conductive and insulating bands was created. The stripes of each 

layer were oriented at 90° with respect to the stripes of the other layer. Thanks to this 

arrangement, the sensing units, called sensels, were placed at each intersection of rows and 

columns. Thus, the pressure measurements were obtained by evaluating the resistance 

changes for each sensel: when the fabrics were compressed near the crossing point, the 

electrical resistance of the interposed piezoresistive layer decreased proportionally to the 

applied pressure values. The electric measurement of the sensels was achieved according to a 

powering/reading scanning sequence based on possible circuital solutions that are reviewed in 

the text. The developed sensor was characterized in both static and dynamic conditions and 

also under stretch and fixed on curved surfaces. This study was accomplished to obtain a 

complete metrological overview of the sensor, which is fundamental for managing it with a 

deeper awareness of both its benefits and drawbacks. 

Chapter three proposes a methodology to characterize and to calibrate a strain-resistance 

sensor based on commercial knitted textile. This characterization procedure represents an 

interesting result per se. It has been conducted on a single material, but its general 

characteristics make it suitable for analyzing the behaviour of any conductive and stretchable 

fabrics. Secondly, the design of an innovative wearable device for long-term and minimally 

invasive joint angular measurements has been described. Electrolycra (Mindsets Ltd) was 

selected as the sensing element of the device because of its electromechanical properties and 

because it is elastic, highly conductive, inexpensive, light and not cumbersome. The 

validation of the wearable sensor (a goniometer) was performed using the humanoid robot 

SABIAN. Dynamic tests demonstrated that the wearable device is suitable for scenarios 

where the accuracy of measurements is less relevant than the ability to continuously track 

joint movements in a not-obtrusive way. 



Introduction 

4 
 

Chapter four is concerned with modelling of smart textiles, aimed at compensating their 

intrinsic nonlinearities. In particular, a new model is proposed to compensate for hysteresis 

and relaxation in strain sensors made of Electrolycra. These sensors are increasingly 

employed in emerging areas such as wearable electronics and soft robotics for their simple 

transduction mechanism and low cost. However, being intrinsically nonlinear, the signals 

measured from these devices need some processing, in order to increase their sensing 

accuracy. Here, a new model was proposed for the compensation of the main distortions 

intrinsic in these soft sensors, which are mainly caused by hysteresis and relaxation, whose 

combined effect produces rate-dependent hysteresis. The model capabilities are tested on 

experimental data measured on Electrolycra. The comparisons with the results obtained with 

two different models witness the good behaviour of the proposed model. 

Chapter five presents the development of a “wear and forget” device able to monitor head 

posture. This chapter consists of three parts: 1) characterization of the piezoresistive textile 

employed both in static and dynamic conditions; 2) development of the sensor design; and 3) 

validation study concerning the investigation of sensor performances using Vicon 

measurements, as the reference standard. The proposed smart textile allowed the development 

of a light, comfortable, and non-invasive wearable system. The sensor accuracy and 

repeatability in measuring cervical range of motion in each primary plane (lateral bending, 

axial rotation, and flexion/extension) for five healthy subjects were evaluated. The results 

show a good accuracy and satisfactory repeatability with maximum standard deviation value 

close to 10°. The effectiveness of the wearable system as a valid, accurate, and suitable device 

for evaluating single plane neck movements was demonstrated. 

Chapter six is about the creation of a new cognitive tool able to provide training for 

cognitive functions that take advantage of the physical activity involved in the execution of 

the task. In the present chapter, a study concerning the application of a new cognitive tool for 

episodic memory is presented and divided in two parts. The first one aims at developing a 

new sensorized device based on smart textiles, called SmartTapestry, for physical and 

cognitive training. The second part aims at understanding its technical viability and level of 

sensitivity in stimulating the same cognitive domain covered by the standardized tests, despite 

the introduction of the physical activity variable. The SmartTapestry device was tested with a 

total of 53 subjects, 29 healthy subjects and 24 subjects suffering from Mild Cognitive 

Impairment. The results show a good correlation between the two approaches (p<0.005), 
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suggesting that SmartTapestry can stimulate the same cognitive functions of traditional 

cognitive tasks, with the addition of physical exercise. 

Chapter seven reports the conclusion of the work, reporting the main obtained results, a 

critical discussion of the proposed sensors, the advantages of the approach and the possible 

future works. 

 

 

 



Chapter 1 

 

Soft and flexible sensors: state of the art 
 

 

Since the advent of electronics, advances in fabrication techniques have driven the 

development of smaller, faster, and more efficient devices. To date, the primary focus has 

been on rigid electronics. Recent interest in wearable electronics [1][2], human/machine 

interfaces [3], and soft robotics [4], among other areas [5], has led to an entirely new class of 

electronic devices – known as stretchable electronics. These emerging devices require new 

fabrication schemes that enable integration of heterogeneous soft functional materials [6]. 

One device of particular interest is soft and flexible sensors that are enveloped in arbitrarily 

shaped soft matrices, which are both highly conformal and extensible. The goal is to gain 

valuable sensing information while minimizing the physical impact on the host system. In 

addition to their compliance, these sensors have the advantages over more traditional sensors 

including impact resistance, reduced-cost, low power, and tolerance to strains over 100%. 

Due to the disparate mechanical properties of soft objects and conventional rigid 

electronics, integrating electronic devices within highly stretchable matrices has proven 

difficult. Soft sensors are typically composed of a deformable conducting material patterned 

onto, attached to, or encapsulated within an inactive stretchable material. Generally, the 

material used for fabrication of sensors is decided from some factors like the application of 

the sensor, its availability, total cost of manufacturing, and so forth. Moreover, there are 

different kinds of techniques with which the flexible sensors are developed. The dimensions 

of the final products dictate the procedure used to make the sensor prototype. 

Photolithography [7], screen-printing [8], inkjet printing [9], laser cutting [10] are some of the 

most common ones. 

Strain and pressure sensors are one of the most standardized applications of those 

innovative flexible sensors. Nowadays, a wide number of commercial and research products 

have been developed as sensitive thin skins that are able to adapt their properties and 
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performances according to the specific application. Particularly, various pressure and strain 

sensors have been developed because of their broad applications in personalized heath-

monitoring, human motion detection, human-machine interfaces, and soft robotics. The 

fundamental domain that makes use of force and deformation profiles and of interest for this 

thesis project is described in the following section. 

 

1.1 Biomedical Applications 

There are numerous potential biomedical applications for flexible strain and pressure 

sensors. Below there are the most promising examples in the field of biomedical engineering. 

1.1.1 Pressure sensors 

Arrays of force sensors of different configurations have been used also for an incredibly 

wide variety of medical applications [11], from robotic surgery and drug delivery systems to 

orthopaedics and physical therapy devices. 

First of all, minimal invasive surgery (MIS) benefits from a haptic feedback from 

sensorized tools [12]. Having a complete tactile feedback for the laparoscopic tools would 

enable the analysis of tissue characteristics and pathological conditions, maintaining the same 

time reduced anatomical openings and also improving remote-control manipulation of 

instruments. Similarly, force feedback permits collision detection with rigid structures but 

does not prevent damage to soft tissues or tearing of sutures and it reduces the force applied 

for suture sewing. Also the Vinci surgical system by Intuitive Surgical, Inc. (the only master-

slave MIS system approved by US Food and Drug Administration), that has been successfully 

used in the last years for general, urological, gynaecological, thoracoscopic, and 

thoracoscopically assisted cardiotomy procedures, provides force feedback also if it lacks 

feedback of tactile sensation [13]. 

Gait analysis can also benefit from pressure sensors use, in particular employing in-shoe 

sensor developed for providing information regarding the symmetry in foot function during 

gait. Asymmetry in foot function during gait can generate undesired torque and stress 

components that, over-time, place wear and tear on body tissues and can potentially cause 

symptoms of discomfort and pain [14][15]. Commercial products like F-Scan and iShoe 

insoles and MatScan® pressure mat by Tekscan, Inc. are commonly used by doctors to 
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analyse patients’ gait [16], and in particular the force distribution on their foot, in order to 

increase their comfort level while walking, decrease lower back and chronic knee pain, 

prevent falls and assess balance problems.  

An interesting pressure-sensitive foot insole for real-time monitoring of plantar pressure 

distribution during walking based on an optoelectronic technology was developed at Scuola 

Superiore Sant’Anna [17]. The device consisted of a flexible insole with 64 pressure-sensitive 

elements and an integrated electronic board for high-frequency data acquisition, pre-filtering, 

and wireless transmission to a remote data computing/storing unit. The transduction unit was 

made of independent silicone cells that had the shape of a pyramidal frustum with a square 

basis and an internal central curtain (Figure 1.1). Each cell covered a light emitter and a light 

receiver diodes, soldered on the PCB. The light emitter was a high-luminosity green LED and 

the receiver was an ambient-light photodiode equipped with an embedded temperature-

compensation circuit. The sensor worked as a force-to-voltage transducer: when a load was 

applied on the top surface of the cover, the silicone bulk deformed itself and the curtain 

gradually closed the light path between the emitter and the receiver, and thus the output 

voltage changed. 

 

Figure 1.1 Overview of the system architecture of the pressure-sensitive foot insole developed at 
the Scuola Superiore Sant’Anna, b) representation of the sensitive element and its functioning 
principle, c) components of the device: sensorized insole connected to the electronic board 
through flat cables, Bluetooth transmitter, Li-Ion battery [17]. 
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Pressure sensing has been commercially introduced to evaluate dental implants and for 

digital occlusal analysis to create long-lasting restorations, control bite forces during full 

mouth restorations and protect veneers during orthodontic treatment [18]. In addition, 

Electropalatography (EPG) is also another domain of application, which is a technique 

employed to monitor patterns of tongue contacts with the hard palate, especially during 

articulation and speech. Recently, textile-based sensing technologies were employed to realize 

an innovative EPG tool (Figure 1.2) able to both maintain the proper spatial resolution and 

perform quantitative pressure detection [19]. 

 

Figure 1.2 a) The sensor shielded in the latex cover and b) lateral views of the complete prototype 
with the sensor fixed on the acrylic support obtained from the plaster cast of a volunteer [19]. 

 

Force sensitive bed monitoring for the elderly is the cornerstone of methods to prevent bed 

shores incidence and promote healing, allowing clinicians to screen areas for potential ulcers, 

display peak pressure profiles and contact area [20]. Main commercial products for the aim 

are by Tekscan, Inc. (COMFORTMat System® and Body Pressure Measurement System®, 

see Figure 1.3) [16], Pressure Profile Systems, Inc. [21] and Sensor Products, Inc. (Tactilus® 

Bodyfitter®) [22]. 

Interface pressure sensing is exploited also for the sensorization of medical devices and 

simulators for clinical training. A commercial example is the MammaCare PAD system by 

Tekscan, Inc. that is a training platform comprised of tactually accurate breast models and 

instrumented with force sensors [16]. An example in literature is the modification of the 

Laerdal ®Neonatal Intubation Trainer by applying pressure sensors on areas that are mainly 

subject to stress and potential injuries (force sensing resistors-FSRs on the dental arches and 

epiglottis, a matrix textile sensor on the tongue) [23]. The device is able to provide an 
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instrumented neonatal intubation skill trainer and an objective feedback for the improvement 

of clinical competences required for such a delicate procedure. 

Pressure distribution provides important information in case of pressure garments 

employment, since the application of a correct pressure on skin portions is useful for the 

treatment of scars, ulcers and muscle pain after training [24][25].  

 

Figure 1.3 a) Seating pressure profile with Tekscan’s CONFORMat System®, b) full body pressure 
measurement profile with Tekscan’s Body Pressure Measurement System (BPMS) [16]. 

 

Orthotic and orthopaedic prosthesis research and fitting benefits from determining loading 

forces, pressures, and contact areas at the joint interfaces, in order to provide data for dynamic 

and finite stress analysis, study implant design and articulating joints, view and assess the 

impact of various joint compartment geometries and materials [26][27].  

1.1.2 Strain sensors 

Flexible strain sensors can potentially function for several biomedical applications; they 

could be utilized as body-integrated electronic devices, attached onto the clothing or directly 
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laminated on the human skin for the body strain measurement, ranging from minute skin 

motions induced by respiration and heartbeat to human body large strains like 

bending/straightening of body joints. Indeed, as largely demonstrated in the research field, 

highly stretchable and flexible strain sensors have been used especially as wearable sensors. 

Wearable sensors have revolutionized the way the activities of a person are being 

monitored [28]. They provide the information accurately and efficiently regarding the 

behaviour and actions of a person. Figure 1.4 shows a schematic of a monitoring system to 

sensing the physiological parameters like heart rate and respiratory rate or motion parameters 

of a person and transmit the data wirelessly to the cloud via any information gateway [29]. 

This is a quick and efficient system because any abnormality in the transmitted data can 

generate a notification to the healthcare or family members. 

 

Figure 1.4 Schematic representation of the use of wearable sensors for physiological and motion 
parameter monitoring for remote and personalized health-care systems [29]. 

 

Wearable sensors have many potential applications in rehabilitation, personal health, sport 

performance monitoring and entertainment. The majority of these applications require long-

term wearing of these sensors; therefore it is essential to assign an equal priority of sensor 

performance to wearability and comfort [30]. The challenge is thus the development of 
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technologies capable of monitoring continuously, similar to the “wear and forget” concept 

[31]. This means that the technology should not hinder movements, instead offering a 

comfortable wearability similar to everyday cloths. The human body is mainly composed of 

soft tissues; therefore, wearable sensors designed to interact with human bodies should be 

soft, light and conform to body geometry without obstructing natural motion [32]. Within this 

framework, solutions based on soft or flexible strain sensors represent the most promising 

approach [5]. 

Such sensors should be highly stretchable and flexible to mimic complex and large 

deformations of the human skin or clothing and sufficiently possess high sensitivity to be able 

to detect minute skin strains induced by blood flow pulse or respiration [33].  

Figure 1.5 (a) shows in vitro blood pressure monitoring using a flexible capacitive-type 

sensor. The sensor was wrapped around the carotid artery of a pig and changes on the 

diameter of the vessel due to the blood flow pressure were measured [34]. In another 

approach, highly sensitive and wearable strain sensors have been developed for the tiny skin 

motion detection induced by phonation, facial expression, tissue swelling, wound healing, 

breathing, and pulse [35][36][37][38]. Inset of Figure 1.5 (b) illustrates a resistive-type sensor 

fixed to the chest area and its response to the breathing both in still (black) and movement 

(red) sates. The same sensor attached to the wrist was also used for heartbeat measurement 

[36]. Long-term monitoring of blood flow pulse and respiration rate, as vital signs, can be 

potentially employed for the personalized health-monitoring and early diagnosis of diseases.  

Patellar reflex test was conducted by using a stretchable sensor attached onto the knee 

while the person was sat with naturally relaxed leg (Figure 1.5 (c)) [39]. At this state, a large 

strain was accommodated by the sensor since the knee was fully bent. To test the patellar 

reflex, a hammer was used to tap the patellar tendon ligament. As a normal response, the leg 

should straighten and then come to its initial position quickly (Figure 1.5 (d)). Therefore, 

flexible strain sensors are able to detect physiological data, such as blood pressure and oxygen 

saturation [34], breathing rate [1] [36] [40], heartbeat [2] [36], and beyond. 

As another application, flexible strain sensors can be used for the body movement analysis 

[41], generally implemented for joint angular measurement. Yamada et al. [1] used aligned 

carbon nanotubes (CNT) encapsulated in silicone rubber, with ten films being assembled on a 

commercial stocking over the knee joint (Figure 1.6 (a)). Similarly, Ryu et al. [42] adopted 



1. Soft and flexible sensors: state of the art 

13 
 

CNT fibers fabricated by the dry-spinning process for human motion detection (Figure 1.6 

(b)). 

 

Figure 1.5 a) A capacitive-type strain sensor wrapped around the carotid artery of a pig [34]; b) 
breathing monitoring by attaching a wearable strain sensor in the chest; inset, location of attached 
strain sensor [36]; c) schematic of the patellar reflex test, a capacitive-type sensor is mounted on 
the knee for the strain measurement [39]; d) response from a strain sensor during the patellar 
reflex test [39]. 

 

These sensors are highly stretchable, but materials and fabrication are still expensive. In 

contrast, Mengüç et al. [43][44] presented a soft suit to measure leg joint angles that was 

based on a liquid metal, eutectic gallium indium alloy, embedded in the elastomer (Figure 1.6 

(c)). 

Tognetti et al. [45] described a goniometer for knee motion detection based on knitted 

piezoresistive fabrics (single- and double-layer), whereas Shyr et al. [46] developed an elastic 

conductive webbing composed of conductive yarns (polyamide fibers coated with carbon 

particles) and elastic yarns. 
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As a conclusion, the possible applications of pressure interface monitoring and strain 

sensing in biomedical field are impossible to count in an exhaustive manner, being limited 

only by imagination. 

 

Figure 1.6 a) Strain sensor fixed to a stocking [1]; b) relative changes in resistance versus time for a 
biaxial strain sensor placed over an elbow, with the x-axis parallel to the arm (black) and the y-axis 
parallel to joint's axis of rotation (blue) [42]; c) photograph of the prototype sensing suit worn by a 
participant, from top to bottom: the hip sensor, the knee sensor and the ankle sensor [43]. 

 

1.2 Detecting principle for pressure and strain sensing 

A large amount of different types of sensors have already been proposed for the aforesaid 

applications, mainly relying on the capacitive, optical, piezoelectric and piezoresistive 

detecting principles. The main requirements are flexibility and enhanced stretch capabilities. 

Flexible pressure sensors are currently available based on different transduction methods, but 

stretch capability is less common. On the other hand, different types of flexible and 

stretchable strain sensors have been proposed. Other requirements include simple mounting or 

adhesion mechanism, minimal wiring, temperature independence, low cost and well 

established fabrication techniques. 
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In spite of the variety of technical solutions currently used to implement pressure and strain 

sensors, we mention here just those that are more common or more promising. The 

advantages and disadvantages of the main transduction methods were summarized in Table 

1.1 and explained in the following sections. 

 

Table 1.1 Transduction techniques and their relative advantages and disadvantages. 

Type 
Modulated 

parameter 
Advantages Disadvantages 

mechanical 

deformation-based 
resistance 

-low cost 

-realized as MEMS 

-easy to integrate in 

PDMS layers 

-hysteresis 

-non linearity 

-temperature and 

humidity 

susceptibility 

capacitive capacitance 

-excellent sensitivity 

-large dynamic range 

-good spatial 

resolution 

-hysteresis 

-complex electronics 

-noise susceptibility 

piezoelectric stress polarization 

-high frequency 

response 

-high sensitivity 

-high dynamic range 

-dynamic sensing 

only 

-temperature 

sensitivity 

-poor spatial 

resolution 

optical 
light 

intensity/spectrum 

-good sensing range 

-high spatial resolution 

-immunity from EMI 

-bulkiness 

-high power 

consumption 

-fragility 

magnetic magnetic field 

-high sensing range 

-good dynamic range 

-physical robustness 

-sensitivity to EMI 

-bulkiness 

-high power 

consumption 

piezoresistive resistance 

-good sensitivity 

-low noise 

-simple electronics 

-high spatial resolution 

-hysteresis 

-non linearity 

-drift 

-temperature 

sensitivity 
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1.2.1 Mechanical deformation-based sensors 

Mechanical deformation based sensors, or strain gauges, consist of a structure that 

elastically deforms when subject to a force which in turn leads to a change in its resistance. 

To optimise the change in resistance due to applied mechanical stress, strain gauges are 

typically long winding snakelike structures. In this way, when deformed, the cross-section of 

the strain gauge decreases while its conduction length increases. Here, typically, the change in 

resistance of the strain gauge material itself is secondary to the change due to its mechanical 

deformation. 

Strain gauges can also be employed to design pressure sensing units [47]. They are made 

either from resistive elements or from semiconducting materials and bonded to the stressed 

material. Since they are very sensitive and highly susceptible to humidity and temperature 

changes, strain gauges are often used with a conditioning circuit that includes a Wheatstone 

bridge followed by an amplification stage. Due to their mechanical nature, they have high 

hysteresis and often are non-linear in response. Strain gauge development is currently 

optimized through the use of micro-machined fabrication techniques, to be directly integrated 

with readout electronics and other microelectromechanical systems (MEMS) elements. 

In order to develop flexible strain gauge sensors that should be adaptable on curved 

surfaces, silicon-based or metallic strain gauges can be adapted on flexible printed circuit 

boards [48] or on flexible polyimide films and covered with polydimethylsiloxane (PDMS) 

layers [49]. An example of highly stretchable and soft strain gauge sensors were reported by 

Muth et al. [50] using embedded 3D printing technique where the viscous nanomaterial ink 

was directly embedded in elastomer films through a deposition nozzle (Figure 1.7). The ink 

forms a resistive sensing element, while the reservoir serves as a matrix material. 

In [51] a fully printable sensorized bending actuator was presented with a flexible resistive 

strain sensor directly 3D printed using easily accessible FDM printer hardware with a dual-

extrusion tool head. 
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Figure 1.7 (a) Schematic illustration of the embedded 3D printing process. A conductive ink is 
printed into an uncured elastomeric reservoir, which is capped by filler fluid; (b) photograph of 3D 
printing process for a planar array of soft strain sensors [50]. 

 

1.2.2 Capacitive sensors 

A capacitive sensor consists of two conductive plates with a dielectric material sandwiched 

between them. The applied force or strain can cause either the change in the distance between 

electrodes or in its area, modifying the capacitance. To measure the variation, several 

conditioning circuits can be used depending also on the type of the desired output signal. 

To date, capacitive sensors have primarily been used in pressure, tactile, or shear sensing. 

In addition, they seem to be temperature independent and they generally exhibit a good 

frequency response, high spatial resolution, shear sensitivity and have a large dynamic range. 

However, these sensors are more susceptible to noise, especially in a matrix configuration 

because of crosstalk noise. They suffer from severe hysteresis and require relatively complex 

electronics to filter out this noise: careful and dedicated conditioning circuitry is required to 

take advantage of the excellent sensitivity and repeatability achieved by some of their 

implementations. Another disadvantage of capacitive sensing is its susceptibility to parasitic 

capacitance. Several designs have emerged specifically for the robotic skin application, 

especially relying on MEMS and silicon micromachining [52]. In particular, a capacitive 

sensor manufactured using photolithography on a flexible substrate is presented in 

[53][54][55]. 

For flexible strain sensors, capacitive-type sensors generally employ a highly compliant 

dielectric layer sandwiched between a pair of stretchable electrodes [33]. Hydrogels, swollen 
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with ionic liquids are electrically conductive and have become a popular choice for electrodes 

in soft capacitive sensing devices [56]. Usually, hydrogels suffer from failure due to ionic 

migration and eventual electrochemical breakdown at relatively low voltages, but it was 

recently shown that incorporation of a dielectric and use with AC fields limits the voltage 

drop at the electrical double layer [57]. As these materials improve and new ones become 

available, the key considerations are the conductivity of the material at necessary strains, as 

well as its temporal stability due to solvent volatility. Additionally, the change in conductivity 

as a function of stimulus is relevant. For example, resistive strain sensors require a large 

change in conductivity associated with the application of strain; whereas capacitive sensors 

are dependent on the change in distance between the electrodes. Hydrogels have large 

potential in this space, as they are inexpensive to fabricate, potentially bio-compatible and 

biodegradable; furthermore, they can be optically transparent [4] [58]. 

Capacitive sensors depend heavily on what dielectric materials they use. Design 

considerations include the dielectric constant, dielectric loss, and dielectric mechanical 

properties. It is important that the thickness of the dielectric layer remains uniform, using 

techniques such as spin coating [59], or alternatively using commercial dielectric tapes further 

allowing easy fabrication via lamination [60]. Most of these materials have interesting 

hyperelastic and viscous properties that must be taken into account for high strain 

applications. In some cases, using advanced micro- or nano-structured geometries in the 

dielectric structure can allow for devices with enhanced sensitivity [61]. 

1.2.3 Piezoelectric sensors 

Piezoelectric materials have the ability to convert mechanical energy into electrical energy 

and have long been used for pressure and strain sensing. Among other types of sensors, 

piezoelectric sensors have the lowest power requirements [62] and the charge output from 

piezoelectric sensors lies within the range of measurement capabilities of commercially 

available analog/digital sensors. 

Piezoelectric sensors are made of crystal materials like quartz, ceramics and polymers 

showing piezoelectric properties. This means that those materials produce a voltage potential 

when the crystal lattice is deformed. The sensitivity of the crystal depends on its structure, 

allowing it to distinguish between transverse, longitudinal and shear forces. The generated 

voltage is directly proportional to the applied force, pressure or strain. Polymer 

polyvinylidene fluoride (PVDF) and ceramic lead zirconium titanate (PZT) are the mainly 
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used materials for their mechanical flexibility, high piezoelectric coefficients, dimensional 

stability, low weight and chemical inertness. 

In pressure sensing applications, the sensing element is obtained by applying a thin layer of 

metallization to both sides of the piezoelectric material, constituting a parallel plate capacitor. 

Its conditioning circuit is based on ultra-high input impedance amplifiers and the bandwidth 

of the circuit does not go down to DC, which means that piezoelectric transducers are not 

adequate for static force transduction but just for detecting dynamic forces. This problem can 

be overcome by vibrating the sensor and detecting the difference in the vibration frequency 

due to the applied force [63], however they are preferably employed as switches. 

In [64], PVDF film sensors were fabricated separately and embedded into a silicone layer 

that was moulded onto a robotic fingertip. In [65], the sensor system was further developed 

into a prototype for tactile skin for flat areas such as the palm of the hand. It showed potential 

for biomimetic artificial skin, with the ability to sense texture and forces. However, the sensor 

suffered from several limitations, as the fabrication constraints when moving to larger areas 

such a full anthropomorphic hand and the pyroelectric effect which required continuous 

compensation based on the temperature. 

Wang and co-workers fabricated a ZnO piezoelectric fine-wire-based strain sensor, 

wherein ZnO fine wires were laterally bonded with a polystyrene substrate and used to 

measure strain [66]. Pure crystalline forms of piezoelectric materials such as PZT or ZnO, 

when used as strain sensors, are usually bonded on the surface or embedded inside the host 

structure for strain measurement and have limitations to measure strain at discrete points and 

in a fixed direction. Pure piezoelectric materials are mostly brittle ceramics that are not 

amenable to flexible applications and are very weak in tension [67]. Furthermore, it is 

observed in the literature that combined mechanical and electrical loading might lead to 

premature cracking in piezoelectric materials, which markedly affects their behaviour [68].  

In [69] Gullapalli et al. demonstrated a low temperature solvothermal method for the 

synthesis of a nanocomposite material consisting of ZnO nanostructures embedded in a paper 

(cellulose) matrix. They fabricated a flexible piezoelectric nanocomposite strain sensor and 

also demonstrated strain sensing under both static and dynamic loading. Whereas, certain 

studies have demonstrated the fabrication of flexible piezoelectric sensors but require special 

techniques, thus making it uneconomical for large-scale synthesis [70].  
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1.2.4 Optical sensors 

Optical sensors employ a light source, a transduction medium and a photodetector, the 

latter often in the form of a camera or a photodiode. Their operating principles include 

modulation by the applied force of the transmitted light intensity, phase, or polarization and 

interaction of the applied force with the light external to the primary light path. In robotic 

tactile sensing, the optical sensor is generally based on intensity measurement because of its 

simplicity of construction, signal conditioning and information processing. Moreover, optical 

sensors have high spatial resolution and low susceptibility to electromagnetic noise, 

intrinsically safety and low electrical wire demand. Although they have many benefits, optical 

sensors do not allow a great spatial sensitivity and are bulky in terms of thickness. Their size 

and rigidness are the major disadvantages.  

Optical fibers have also been used as macrobend stretch sensors for pose sensing in soft 

continuum robot arms [71]. In addition, optical sensors [72] [73] are used widely for 

measuring strain of greater magnitude but are often bulky and difficult to integrate into soft 

structures. 

Prototypes of optical sensors are often composed of glass or Plastic Optical Fibers (POF) 

in conjunction with an LED and a Charge Coupled Device (CCD) camera, and forces are 

detected on the base of a change in the reflective wavelength. In this case optical fibers are 

not used just for light transmission, but as the sensor itself. The idea is that, when a 

mechanical bend or perturbation (of the order of few microns) is applied to the outer surface 

of the fiber, the light is attenuated in the core. The attenuation depends not only on the radius 

of curvature and spatial wavelength of the bend but also on the fiber parameters. Generally, 

the main disadvantages that incurred when using optoelectronics are micro-bending and 

fragility. POF-based microbending optical fiber sensors were presented in [74][75]. 

Intrinsic POF sensors have also a great potential for large-strain applications. POFs 

provide a large elastic strain range, are more flexible than silica optical fibres, and are more 

durable in harsh chemical or environmental conditions. Xiong et al demonstrated 6% strain 

before failure of a POF and cites a potential 13% increase with the improvement of 

manufacturing techniques [76]. Thus, for structural health monitoring applications, POF 

sensor systems potentially offer a larger strain range measurement capability along with more 

long-term survivability. The greater flexibility of the POF as compared to silica optical fibres 

allows larger curvatures before failure of the sensor [72]. Intensity-based measurements, 
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however, are limited in application due to the presence of multiple modes propagating 

through the optical fiber and therefore produce lower measurement accuracy and resolution 

[77]. 

1.2.5 Magnetic sensors 

Sensors based on magnetic transduction measure the change in flux density, magnetic 

induction of an inductor or magnetic coupling between circuits, caused by applied force on a 

small magnet. The flux measurement can be made by either a Hall Effect or a magneto 

resistive device, it means a device whose magnetic properties are force dependent, or a 

magnetoelastic material [78]. 

Magnetorestrictive or magnetoelastic based pressure sensors may have some positive 

characteristics, namely high sensitivity, wide dynamic range, no measurable mechanical 

hysteresis, a linear response and physical robustness. Nevertheless, a few tactile sensors that 

use the magnetic mode of transduction have been reported in literature, since they still are not 

a valuable alternative to the above-mentioned types of sensors. The major drawback of 

magnetic based tactile sensors is the fact that they cannot be used in a magnetic medium and 

they involve complex computations. 

A recently proposed method to detect soft body deformation is to measure changes in local 

magnetic fields generated by embedded miniature magnets in an elastomeric substrate 

[79][80]. Magnetic sensors have little to no effect on the mechanical response of the substrate, 

or hysteresis or dynamic artefacts, due to the noncontact nature of measurement. Furthermore, 

magnetic fields form closed 3D curves that vary continuously with the relative pose of the 

magnet embedded in the elastomer. Integrated custom magnetic curvature sensors provide the 

possibility of proprioceptive feedback motion control for soft robotic systems and have the 

potential to be extended to other sensing modalities such as tactile/force or axial deformation 

sensing following the same integration process with minimal variations [81]. 

1.2.6 Piezoresistive sensors 

Piezoresistive sensors are among the most widely used for both pressure mapping and 

strain sensing.  

Resistive-type strain sensors are typically composed of electrically conductive sensing 

films coupled with flexible substrates. When composite structures are stretched, 
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microstructural changes in the sensing films lead to the change of electrical resistance as a 

function of the applied strain. After release of the strain, reestablishment of the sensing films 

to their original states recovers the electrical resistance of sensors. Whereas, a possible 

solution to implement a pressure sensitive resistor is using a conductive elastomer or foam or 

elastomer cords in a grid pattern [82], with the resistance measurements being taken at the 

point of intersection, called sensel or taxel in analogy to a pixel (picture element) in an image 

sensing array. Also pressure sensitive elements change their resistance upon the application of 

forces. 

In the typical working configuration the current is fixed and a change in resistance is 

observed by a change in the voltage. Piezoresistive sensors take the advantages of robustness, 

low susceptibility to noise (therefore they are adequate for mesh configurations), ability to 

measure both static and dynamic loads. In addition, they generally require simple electronics 

as change in resistance can easily be quantified and therefore they are fairly easy to 

manufacture and integrate [83]. However, resistive sensors suffer from hysteresis and have a 

lower frequency response when compared to capacitive sensors. Moreover, dedicated 

strategies have to be applied to reduce hysteresis and crosstalk among sensels in the matrix 

structures. 

Micro-machined sensors 

Piezoresistors can be obtained using micromachining techniques, considering that silicon 

and other semiconductor materials have high piezoresistive responses, also if they are brittle 

and fragile. Embedding them in an elastomer, as commonly done with strain gauges, allows 

for mechanical flexibility even if decreasing sensitivity. 

An example was presented in [84], in which a silicon-based piezoresistive sensor was 

embedded directly into a soft fingertip. It was composed of four cross-beams with 

piezoresistors on its surface for detecting longitudinal and shear stresses. After packaging, the 

sensor chip was moulded into a polyurethane hemisphere representing a fingertip and it 

demonstrated high accuracy for both pushing (vertical) and sliding (lateral). The direction and 

magnitude of shear forces were detected by measuring the change in resistance of two 

perpendicularly placed standing silicon-based cantilevers embedded in PDMS. 
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Conductive elastomers and foams 

A conductive elastomer is a composite containing both flexible material and conductive 

material. A common way to fabricate a conductive elastomer is by mixing flexible material 

and conductive material, and then curing the composites by baking. Generally, highly 

extensible elastomers are loaded with electrically conductive additives, such as carbon black 

[85], metal nanoparticles [86], carbon nanotubes [35], or graphene [87]. The most commonly 

used flexible material for conductive elastomer fabrication is PDMS [88][89]. Typically, the 

additives significantly stiffen the materials, so a balance must be met between the desired 

conductivity and maintaining sufficiently soft conductors. When an external force or strain is 

applied to the sensor deforming the elastomer composite layer, its resistivity changes 

depending on the type of conductive particles, the resulting material stiffness and their 

volume percentage in the elastomer. Additionally, the motion of the conductive particles 

relative to the matrix elastomer is hysteretic and results in varying conductivities during cyclic 

loading. 

There are many methods to fabricate flexible sensors with conductive elastomers, 

including carbon nanotube growth, photolithography, and soft lithography [90]. Examples of 

these sensors used for strain sensing or pressure mapping are reported in [35][91][92][93].  

Such sensors have been quite popular because of the simplicity of their design: elastomers 

are highly stretchable, so they are excellent candidates for application on curved surfaces and 

moving parts. On the other side, elastomer-based sensors are affected by a long nonlinear time 

constant. Moreover, the resistance characteristic of elastomer based sensors is highly 

nonlinear and with severe hysteresis, low dynamic ranges and permanent deformation and 

fatigue. 

Conductive fluids 

Another approach is to confine a conductive liquid metal, such as eutectic gallium indium 

(EGaIn) inside microchannels embedded within the silicone rubber body, to create more 

resilient soft and stretchable sensors that are less prone to hysteresis. These sensors have 

demonstrated relatively high accuracy and reliability for measuring large strains [94][95]. 

Similar to conventional strain gauges, the change of the resistance of these soft sensors is a 

function only of the change in geometry, that is, the length and the cross sectional area of the 

microchannels. Their output is nearly linear over a wide range of strain and hence easily 
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predicted. Therefore, the measured change in resistance from those sensors can then be related 

to different physical parameters such as multiaxis forces [96] or multimodal strain and 

curvature [97].  

Sensors with conductive liquid metal channels offer soft and highly stretchable sensors that 

can well bond to actuators made from similar silicone rubber materials. However, the 

conductive liquid metal material is expensive and injecting it to intricate channels in a soft 

body requires manual skills or custom printing hardware to automate the process as 

demonstrated more recently [50][98]. Unfortunately, EGaIn is also costly and the creation of 

such microchannels with subsequent imbibing also increases the fabrication complexity of the 

sensor. 

Conductive polymers 

Resistive sensors can also be made of conductive polymers or semi-conductive coatings 

(inks). 

In the first case the polymer is made piezoresistive by adding conductive and non-

conductive micron particles. Polymer-based sensors are flexible, robust, and can be 

chemically resistant. They can be manufactured using large area and low cost fabrication 

techniques such as roll-to-roll fabrication and screen printing [99]. A few conductive 

polymers and their use in tactile sensing are reviewed in [82]. 

As one of the promising conductive polymers, polypyrrole (PPy) has attracted extensive 

attention, due to its ease of preparation, high conductivity, nontoxicity, and good adhesion 

with diverse substrates. An example of polymeric and mechanically flexible piezoresistive 

sensor, presented in [100], was made of a porous nylon matrix which is filled with 

electrodeposited PPy. A series of flexible strain sensors based on PPy were also developed 

[40][101]. However, these sensors exhibited low sensitivity and unsatisfying conductivity, 

which depended on the conditions and reagents used in the oxidation. Moreover, PPy is 

insoluble in any solvent and non-fusible, which has restricted its large-scale applications in 

construction of conductive networks. 

Apart from PPy, PEDOT-based materials are another promising electrode material, due to 

their excellent air and thermal stability, high transparency in the visible spectral region, and 

tunable conductivity [102]. The commercially available PEDOT:PSS has been widely used to 

develop conformal skin sensors [103][104]. Thanks to its solubility in water, it could be 
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processed easily using conventional techniques and can be used to form homogeneous slurries 

with some stretchable matrix. However, the existence of hard segments and hydrophilic PSS 

chains results in destruction of dried PEDOT:PSS film during bending and stretching, and the 

decay of conductivity with time under humid conditions [105].  

In [106] Flemion, an ion-polymermetal composite (IPMC), was used as the sensing layer 

of a 3D tactile sensor. The membrane was deposited on a patterned electrode on a PDMS 

tactile bump. When an external force was applied to the bump, the Flemion layer was 

deformed causing an internal charge redistribution and hence an output potential. Ink-based 

sensors have been developed by Tekscan (Tekscan, Inc, MA, USA) [16][107] that is the 

leader in the market of pressure mapping devices. Such sensors consist of two thin and 

flexible polyester sheets that have electrically conductive electrodes deposited typically in 

row-column pattern with sensing a location at each intersection and are separated by 0.5 mm. 

Quantum tunneling composite 

Sensors based on Quantum Tunneling Composites (QTC) can be considered as a particular 

type of piezoresistive materials, since they are conductive and show a decrease of resistance if 

compressed, twisted or stretched. QTC are composite materials of metals and non-conducting 

elastomeric binders, generally used as pressure sensors. Their working principle is based on 

the quantum tunnelling effect: the conductive elements are too far apart to conduct electricity 

if no pressure is applied, while, in presence of pressure, conductive particles move closer and 

electrons can tunnel through the insulator. 

The effect is far more pronounced than would be expected from classical (non-quantum) 

effects alone, as classical electrical resistance is linear (proportional to distance), while 

quantum tunneling is exponential with decreasing distance: the resistance can change by a 

factor of up to 10
12

 between two different states (e.g. pressured and unpressured states). This 

is the reason why they tend to be used as switches more than as actual pressure sensors. 

A sensor based on the electron tunneling principle is reported in [108]. The system, 

composed of a thin film with metal and semiconducting nanoparticles, directly turned stress 

into electroluminescent light and modulation in local current density, in linear proportionality 

to local stress. A spatial resolution better than that of the human fingertip was reported for the 

device. 
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The piezoresistive detecting principle is in general preferred for manufacturing flexible 

pressure and strain sensors, because of its advantages (i.e. robustness, low noise, simple read-

out systems and high flexibility and stretchability). Also main commercial products for 

pressure mapping and strain sensing exploit the piezoresistive detective principle [16] [22]. 

Products on the market cost thousands of dollars because of the expensive electronics 

essential to acquire data with a good temporal resolution. Furthermore, the custom acquisition 

software provided with the product is mandatory to manage pressure and strain information 

and to overcome problems typical of the piezoresistive transduction mechanism [33][109] 

(e.g. non linearity, hysteresis, low frequency response and creep) and of the scanning (e.g. 

crosstalk effect) [110]. Moreover, even if showing high-quality performances, products 

available on the market are markedly application specific and users are not allowed to access 

to raw voltage data from the elaboration software. 

For these reasons a huge number of recent research studies have been aimed to obtain 

sensing solutions based on the same working principle, but low cost and versatile from the 

point of view both of hardware (e.g. shape and dimension) and software (e.g. direct 

management of data reading and resolution settings). Pressure and strain sensors are asked to 

be not only thin and pliable, as polyester- and PCB-based products are, but also flexible and 

attachable over curved and narrow surfaces (e.g. robotic joints and fingers). They also have to 

be customizable, suitable to be embedded in wearable systems and possibly achievable with 

affordable technologies. 

 

1.3 Smart Textiles 

The recent class of smart textiles is a promising candidate to meet the conditions 

mentioned in the previous section, making the development of lightweight, wearable, soft and 

low cost sensors possible [111][112][113]. Smart textiles research represents a new model for 

generating creative and novel solutions integrating sensing functionalities and electronics into 

unusual environments and will result in new interesting discoveries. In particular, a pushing 

reason for this research is the fact that both textile and electronics fabrication processes are 

capable of automatically creating large area surfaces at very high speeds. In the last years, 

smart textiles have been attracting more and more attention, especially in the fields of 

healthcare [114], military [115], aerospace [116], leisure [117] and sports [118]. They provide 
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technological possibilities which are not possible with conventional electronics, in such a 

versatile way to be defined as the new silicon wafers [111]. 

A brief introduction to the textiles structure is mandatory for a better understanding of their 

potentialities. A textile is a drapeable and fibrous material that can be processed on textile 

machinery. It is usually made of fine and flexible fibers and threads with a high L/D ratio, 

inserted into a hierarchical structure. In particular, a fabric is generally composed of bundles 

of fibers interlaced to form a thread (first level of integration). Those are then twisted to create 

yarns (second level of integration). Yarns get turned into what is called fabric (third level of 

integration), using different techniques such weaving and knitting. Then two or more layers 

can be assembled into composite fabric units (fourth level of integration). Basic levels of 

fabric construction hierarchy are shown in Figure 1.8. 

Knitted fabrics are easily deformable while woven textiles are usually more stable and hard 

to deform. Wovens are typically manufactured using straight interconnections of wefts 

(transverse threads) and warps (longitudinal threads). Knits are typically made up of looped 

interconnections of courses and wales, where the wales are the threads that run vertically and 

the courses run horizontally across the fabric (Figure 1.9). 

 

Figure 1.8 Fabric construction platform and hierarchy. Fabric structures: (a) woven, (b) knitted, (c) 
nonwoven, (d) nets, (e) braided and (f) tufted, which can be assembled in layers (e.g. three layers) 
to form composite structures [111]. 

 

Another widespread category is the one of non-woven fabrics, normally made from 

filaments that are strengthened by different bonding techniques, as adhesive or thermal 

bonding, mechanical interlocking or fluid jet entanglement. 
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Figure 1.9 Typical interconnection paths of wefts and warps in wovens (a) and of wales and courses 
in knits (b) [117]. 

 

Smart textiles, also known as intelligent textiles, electro or e-textiles, are fabrics that can 

sense and react to mechanical, thermic, chemical, magnetic and electric stimuli, by means of 

extrinsic and intrinsic modifications at any level of integration. In case of extrinsic 

modifications, fabrics can be altered by attaching discrete or self-contained sensing elements 

like resistors or integrated circuit chips to the fabric (those are usually referred to as electronic 

textiles) or by coatings application. 

Coating techniques are other types of extrinsic or external modification to the fabric 

substrates. They can involve fibers, yarns or fabrics and include screen printing, ink-jet 

printing, electrodeposition, vapor deposition of thin films, and sputtering. Coatings alter the 

fabrics mechanics in their tensile, shear and bending properties, because of the change in the 

yarn mobility after the coating application [119]. In case of intrinsic modifications, fibers and 

yarns are directly made of materials that are sensitive to different mechanical or chemical 

stimuli. Some of the commonly employed methods to make fibers out of sensitive materials 

are electrospinning, wet-spinning, self-assembly and die extrusion. 

Intelligent textiles can show several particular properties. They may be phase changing 

materials, shape memory materials, or thermochromatic materials, according to their smart 

performances [120]. However, the main class of smart fabrics involved in a huge number of 

applications is the one of conductive/piezoresistive textiles. The development of 

conductive/piezoresistive fabrics has been a common research topic in the areas of chemistry 

and smart materials [121]. There are different ways to produce electrically conductive fabrics. 

One method is to integrate conductive yarns in a textile structure, e.g. by weaving. 
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Conductive properties can be given to threads by several techniques during and after the 

thread manufacturing process. The different conductive thread types are enumerated in Figure 

1.10 and showed in Figure 1.11: extruded wires (the conductive yarn consists of metal 

multifilaments), twisted metal wire (the metal wire is twisted around the polymer yarn), and 

yarn with metal coating (the polymer yarn is physically/ chemically coated with a thin metal 

layer). 

 

Figure 1.10 Techniques to enable conductivity in fabrics [111]. 

 

 

Figure 1.11 (a) Twisted metal wire: The metal wire is twisted around the polymer yarn; (b) Metal 
coating: The polymer yarn is physically/chemically coated with a thin metal layer; (c) Metal fibers: 
The conductive yarn consists of metal multifilaments [112]. 

 

Another very common technique entails the application of metal or conductive polymer 

coatings to the fabric surface. Coatings can be water-based conductive inks that have to 
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contain an appropriate highly conductive metal precursor such as Ag, Cu and a carrier 

vehicle. These specialized inks can be printed onto various materials, and in particular onto 

textiles, to create electrically active patterns. 

Other types of piezoresistive coatings typically entail either conductive particle polymers 

(CPP) or inherently conductive polymers (ICP). CPP are also referred to as conductive doped 

polymers, since they can be made either of organic or inorganic constituents: organic (i.e. 

carbon) particles and inorganic (i.e. metal) particles can be mixed in with polymeric matrices. 

On the contrary, ICP do not need to be doped to achieve conductivity. Most ICP (e.g. PANi, 

polypyrrole (PPy), polyacetylene, polythiophene and PEDOT-PSS) are prepared via chemical 

or electrochemical oxidation of the monomer in solution or in the vapor phase. 

It is important to remember that using proper coatings can provide textiles also with 

electrostrictive, pH sensitive, and humidity sensitive properties. Methods for applying 

coatings onto fibers and fabric depend on the consistency of the coatings themselves. Liquid 

polymers can be applied by electrochemical deposition, sputtering (Au, Cu), electrospinning, 

spinning, printing, electroplating, spraying, or wet-spinning. More solid coatings such as 

carbon loaded pastes or other organically doped polymers can be applied by screening, dip-

coating, soft lithography, by hand or using masking techniques. 

The main commercial piezoresistive textiles are the EeonTex
TM

 Conductive Textiles by 

Eeonyx Corp. [122] and the Electrolycra by Mindsets Ldt [123] (Figure 1.12). 

The first are made using a proprietary coating technology developed by the Eeonyx 

company. Individual fibers within a fabric or yarn are completely and uniformly coated using 

the aqueous process with doped PPy, an inherently conducting polymer, or with carbon 

loaded polymers [124]. Available fabrics can be woven, knitted, and nonwoven and typical 

substrates include polyester, nylon, glass, and Kevlar®. Different products show particular 

resistance variation if stretched or pressed. On the other hand, the Electrolycra looks and feels 

like ordinary lycra but it is highly conductive because it is weaved with Silver plated 76% 

Nylon 24% elastic fibers. Its conductivity depends on how tightly it is stretched, showing 

increasing resistance if pulled [125]. 

Generally, the resistance provided by a smart fabric is measured with two electrodes placed 

in contact with the same side of a material under test. Measured values depend on the type of 

material and, for non-homogeneous fabrics, even from the orientation of the specimen. 
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Because of the lack of standards, manufacturers often adopt their own measurement protocols 

and give the user the value of the surface or linear resistance. 

 

Figure 1.12 a) EeonTexTM Conductive Textiles by Eeonyx Corp. [122] and b) Electrolycra by 
Mindsets Ldt [123]. 

 

Fabrics that have been treated or modified to act as sensors, actuators and/or other types of 

transducers create a generalized category of smart fabric transducers (SFT), which allow to 

either measure or influence the environment where they are employed. SFT can be used as 

actuators (e.g. electroactive fabrics and auxetic fabrics) [126] or as antennas [127], for EMI 

shielding [128], for heat regulation [129] and as batteries and energy harvesting solutions 

[130] (i.e. exploiting the kinetic or the thermal energy of the wearer or their environment to 

generate electrical power). 

Next to these possible employments, smart fabrics are mainly used as sensors. In 

particular, fabrics that have sensing properties of diverse physical nature, such as capacitive, 

resistive, optical and solar are usually refereed as Smart Fabric Sensors (SFS) [111]. Actually 

they can be employed as temperature/humidity sensors [131], optical sensors [132], shape 

memory sensors [133], sensors for gases and chemicals detection [134], pressure/force and 

strain/motion sensors [135][136] (Figure 1.13). The last two classes are those that are of 

fundamental importance for the present thesis and they will be deeply described in the next 

section. 
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Figure 1.13 Examples of textile wearable sensors for motion detection: a) sensorized glove made of 
strain sensing fabric for hand posture and gesture monitoring [135], and b) an intelligent knee 
sleeve used to provide feedback on the knee flexion angle for injury prevention programs [136]. 

 

1.3.1 Smart fabric pressure sensors 

Fabric pressure sensors are extremely advantageous for their lightness, softness, flexibility 

and even wearability. For these reason such sensors are present also as patented commercial 

products [137]. 

Fabric pressure sensors can be presented in either capacitive or resistive configurations: 

- capacitive fabric pressure sensors: 

Capacitive designs range from adapted electronics to intrinsically modified materials. In 

the first case, e-textiles employ conventional capacitors that are mounted on a frame which 

can be sewn or glued to a fabric substrate and soldered to other wires or electronics 

components. Otherwise, fabric capacitors can be constructed using compliant conductive 

materials that act as electrode plates separated by dielectric layers of different kind. In the 

case of conductive thread/fabrics, the plates can be woven or sewn [138], while in case of 

conductive inks or polymers they can be painted, printed and sputtered [139]. Dielectric 

spacers are typically synthetic foams, non-conductive fabrics or soft polymers. 

Fabric sensor capacitors can be used either as a single element or they can also be placed in 

arrays to obtain distributed measurements [140]. In array configurations, capacitance is 

measured at intersecting rows and columns of electrodes, which are connected to 

multiplexers, DAQ systems and microcontrollers. As previously explained, capacitive sensors 
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suffer from low SNR, crosstalk in case of matrix structure for the presence of parasitic 

capacitances and severe hysteresis. 

- resistive fabric pressure sensors: 

Finding a correlation between pressure and electrical resistance is another way of 

constructing fabric pressure sensors and the electrical resistivity can be quantified by 

measuring resistance, conductance or resistivity changes. These types of sensors can be 

manufactured at all fabric structure levels, i.e. yarn, fiber, or coatings. 

The main design employed to create pressure sensing large areas with textiles is the 

matrix-based approach inspired by Tekscan products [117]. This means that the piezoresistive 

fabrics are sensed laying them into interdigitated grids of conductors, that can be simply 

arranged in parallel lines placed in orthogonal directions on the top and bottom of a single 

fabric sheet, thus creating a matrix. 

Matrix fabric sensors can rely on several configurations (namely sandwich or multilayer, 

machine sewn, trapped conductor and woven topographies) that can be grouped into two main 

categories. In the first class the piezoresistive sheet can be sensed by sandwiching it between 

two layers embedding conductive elements, while in the second class conductive components 

(i.e. conductive threads) are directly sewn in the sensing fabric (Figure 1.14). 

 

Figure 1.14 Four possible topographies to sense the piezoresistive fabric layer creating a matrix 
structure: a) sandwich, b) machine sewn, c) trapped conductor, and d) woven [117]. 

 

Actually the last described sensors, also available on the market [141], are not provided 

with studies about either well-defined metrological properties or improving strategies that 

support their use in dynamic multitouch modality. Thus, one of the aims of the present thesis 

will be the description of a piezoresistive multilayered matrix pressure sensor with the 
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analysis of its properties for both static and dynamic measurement conditions, with the 

realization of a thorough sequence of experimental tests. 

1.3.2 Smart fabric strain sensors 

Fabric strain sensors are predominantly used for sensing and monitoring body parameters, 

as the textile is in contact with the skin over a large body area. This means that monitoring 

can take place at several locations on the body. A specific structure of textile sensors is that 

integrating fibers featuring piezo-resistive properties, enabling their use as strain or 

deformation sensor. 

Fabrics can be made sensitive to mechanical strain by different methods at the different 

levels of the structure hierarchy; fibers can become strain sensitive when made out of strain 

sensing materials, yarns can have different topologies by interlacing sensing fibers with no 

sensing fibers and fabrics can be modified by introducing sensing fibers or by applying a 

coating with strain sensing materials to achieve the same goal [111]. 

Metal fibers such as stainless-steel fibers can be knitted to construct a piezoresistive textile 

[142], as shown in Figure 1.15. When stretched in the wale direction, the resistance of the 

knitted sensor initially increases and then decreases. The initial increase in resistance is due to 

the increased length that the current sees. However, in the decreasing resistance phase, the 

gaps between the strands of yarn reduce, allowing better contact adding parallel conductivity 

paths which results in a lowered net resistance. Other mechanisms that enable strain sensing 

entail inserting sensing fibers into nonconductive knits. In a similar way, yarns can become 

sensing elements by wrapping piezoresistive fibers around an elastic core [143]. However, 

hysteresis and linearity are also problems need to be solved. Generally, linearity increases at 

the expense of sensor sensitivity [144]. 

- Piezocoatings to enable sensing features 

Fabrics can be converted to ‘smart fabrics’ by applying piezoresistive [145], piezoelectric 

[146] or piezocapacitive [147] coating materials, usually in the form of polymers due to their 

elastic properties. Coatings are usually either externally modified by conductive fillers or 

intrinsically sensitive to changes in elongation, pressure and other mechanical stimuli. 

Sensing coatings are typically applied to stretchable substrates such as fibers, yarns and 

fabrics to make them strain sensitive. 
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For intrinsically conductive coatings the most important conductive polymers applied to 

fabrics are PPy [148], polythiophenes [149], PEDOT-PSS [150] and PANi [151]. The 

application technique as well as the nature of the substrate will have an impact on the sensor 

properties. However, intrinsically conductive polymer coatings by themselves are typically 

not as flexible as other polymeric based matrices with conductive inclusions [152]. This is 

part of the motivation for exploring extrinsically conductive polymers. These consist of 

mixtures of conductive or semiconductive fillers and nonconductive insulating matrices. 

Coatings of these mixtures can be applied to fabrics to give them sensing properties. The 

particles can be of any size; in particular, nanocomposites have been shown to possess special 

sensing properties. 

 

Figure 1.15 Strain fabric sensors. (a) Stainless-steel knitted fabric sensor. (b) Yarn sensor composed 
of a single wrapping of carbon-coated fiber (CCF) with elastic fibers and polyester fibers. (c) SEM 
micrograph of polypyrrole-coated Lycra fibers at 6% strain (d) PEDOT-printed sensor on woven 
cotton fabric [111]. 

 

Coated sensor characteristics will depend on several factors; internal mechanics and 

geometry of the yarn or fabric substrate; the thickness, consistency, brittleness, elasticity and 

composition of the coating; and the coating mechanism. In the case of piezoresistive coatings, 

a change in electrical resistance will be observed as a result of the application of strain to the 

substrate. This change can be quantified by the gauge factor, which is a measure of the 



1. Soft and flexible sensors: state of the art 

36 
 

sensitivity of a given strain sensor. It relates the normalized change in resistance with the 

applied strain. Positive or negative gauge factors are obtained depending on the material itself 

and depending on how the fabric substrate deforms under applied load. A positive gauge 

factor indicates an increase in resistance with applied strain, typical of metals. A negative 

gauge factor in turn indicates that there is more conductivity when the fabric sensor undergoes 

strain. 

In the case of coated fabric sensors, the relationship between resistance and strain is often 

obtained experimentally. A gauge length is chosen and a conventional tensile test is 

conducted for such a characterization [153]. 

Also these types of sensors, available on the market [123] too, are not provided with 

studies about either well-defined metrological properties or improving strategies that aim at 

compensating their intrinsic nonlinearities. Therefore, the further objective of the present 

thesis will be the description of a piezoresistive textile strain sensor with the analysis of its 

properties for both static and dynamic measurement conditions. Moreover, such study will 

enable the identification of novel challenging applications. 

 

 



Chapter 2 

 

Multilayer matrix textile-based pressure sensor 

 

 

2.1  Introduction 

Matrix textile sensors hold great potential for measuring pressure distribution in 

applications of modern daily lives, mainly regarding the biomedical field, but also robotics, 

automotive systems, wearable and consumer electronics. However, an experimental analysis 

of their metrological properties is lacking in literature, thus compromising their widespread 

acceptance. 

In the present Chapter, an 8x8 textile sensor was assembled by sandwiching a 

piezoresistive fabric sheet between two outer fabric layers embedding conductive rows and 

columns. The sensor structure, its electrical circuit and characteristics are described in detail, 

analyzing its properties for both static and dynamic measurement conditions with the 

execution of a thorough sequence of experimental tests. The knowledge of the proposed 

sensor metrological features and its possible optimizing solutions may help the user in 

managing the sensor with a deeper awareness of both its benefits and drawbacks. 

 

2.2  Sensor development 

2.2.1  The three layers matrix structure 

The textile sensor assembled for the metrological characterization has a multilayer (or 

sandwich) matrix structure. This topography is the most employed, since it offers a simple 

and easily fixable implementation and allows a large volume production. 
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The piezoresistive textile employed is a stretchable and knitted fabric (EeonTex
TM

 LG-SL-

PA, Eeonyx Corp., Pinole, CA, US [122]) composed of 91% of nylon and 9% of elastane. The 

fibers within the fabric are coated with conductive polymers to provide both superficial and 

transversal electrical resistance (respectively 30–50 kΩ/100 mm and ∼0.05 MΩ [154] through 

the 0.5 mm thickness) that tend to decrease with stretch or pressure application. If the fabric 

fibers are stretched, the yarns diameters get thinner and the impedance lowers since the 

contact areas among the fibers decreases [124]. The EeonTex structure was analyzed using 

the scanning electron microscope (FEI Helios NanoLab™ 600 DualBeam FIB/SEM, 

Hillsboro, Oregon, US) provided of a detector for EDS microanalysis (Bruker, Billerica, 

Massachusetts, US), to study both the integration levels of the hierarchical structure [111] and 

the composition of the material. 

The resistive sheet was sandwiched between two layers that consisted of a non-conductive 

textile on which parallel conductive strips (20 mm wide) were obtained by sewing multiple 

copper threads (with a diameter of 110 μm), so that a pattern of alternate conductive and 

insulating bands was created. Outside layers (each one 0.65 mm thick) can be cut from long, 

wide rolls of pre-manufactured fabric (Texe srl, Firenze, Italy). They were placed so that the 

conductive stripes on the top and the bottom layers were orthogonal to each other, creating a 

grid (Figure 2.1 (a)). The crossing of row i with column j produces the pressure sensitive 

element ij. 

The three components were held together with a series of stitches that did not alter the 

electrical properties of the fabrics and additional outer layers of felt were applied to protect 

the conductive elements from wear and tear. The sensor overall thickness resulted around 4.6 

mm. Slipping between the three layers can occur in case of improper sensor positioning, thus 

compromising the sensels topography. To overcome this problem, users are recommended to 

eliminate undesired folding of textiles by fixing the sensor in a stable position. The sensor 

realized for the study includes 8 rows and 8 columns, for a total of 64 sensels. Being the 

single sensel area of 400 mm
2
 (a value that can be easily customized for different application 

requirements), the size of the entire sensing area was 160 × 160 mm
2
 (Figure 2.1 (b)). 

The pressure applied at each sensel is measured by connecting the row of the top layer to 

an energy supply unit and the column of the bottom layer to a reading circuitry based on 

inverting amplifiers. If no pressure is applied to the sensor, there is just a negligible contact 

between the resistive sheet and the conductive stripes: the sensel results as open circuits 
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exhibiting a high resistance (∼0.5 MΩ). When a pressure is applied, a physical contact is 

created between the conductive stripes and the piezoresistive textile, and the transversal 

resistivity of the latter tends to decrease in relation to the applied load (down to ∼100–500 Ω). 

The measurement of the electrical resistance at each ij crossing allows to reconstruct the 

applied pressure map (Figure 2.1 (c)). The electric signal was transmitted through metal wires 

soldered on the boundary of the outer layers in correspondence to each conductive stripe 

(soldering points are represented in Figure 2.1 (a)), without affecting the sensor wearability 

and possibility of mass production. 

 

Figure 2.1 (a) The three layers of the flexible matrix textile sensor with indicated soldering points, 
(b) the complete sensor involved in the study and (c) the description of sensels location: the 
sensitive areas are at the intersection of conductive rows and columns embedded in the fabric and 
distanced by a piezoresistive layer. 

 

2.2.2  The powering/reading circuitry 

The main problem when dealing with matrix structures is the presence of crosstalk 

between adjacent elements, since the electrical behaviour of each sensitive element is affected 

by the presence of the surrounding resistive elements that introduces parallel of currents 

interfering with measurement. For a better comprehension of the problem, please refer to 

Figure 2.2. The measurement of Ri,j is affected by the other three transversal resistances 

(Ri,j−1, Ri+1,j−1 and Ri+1,j) in series, that appear in parallel to Ri,j. This error is particularly 

evident in case the resistances have the same order of magnitude, which is common in case of 

multitouch. If resistances among rows and columns are also present (e.g. Ri,i+1 and Rj−1,j), 

other parallel paths must be included for the evaluation of Ri,j. General methods for 

preventing these surrounding currents are reported in literature [155]. 

One possible solution is performing field effect transistor switching at every measuring 

point, thus measuring elements in a complete independent way. However the solution is very 
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much expensive to be employed for a large area development. Another possible solution is 

inserting diodes at all the measuring points; in this case the leak resistances between 

electrodes still exist and it is also required to create anisotropy in the pressure-sensitive 

material, i.e. cutting slits in the sheet and inserting insulators between electrodes. 

 

Figure 2.2 Crosstalk analysis scheme for a portion of the matrix while measuring Ri,j (right current 
path: solid arrow, undesired leakage current: dotted arrow). 

 

In 1981 Purbrick proposed the voltage mirror or voltage feedback loop method [110][156]. 

This solution removes crosstalk currents by setting the drive lines that are not connected to 

the measuring point at the same potential of the output voltage. In this case the unwanted 

effects of crosstalk are reduced by including the loop formed by buffers on the rows and 

switches on the columns: the buffers impose the output voltage on all the rows, except to the 

powered one, while the switch connects the columns that are not active to Vout, so that all the 

terminals of the resistances of the matrix different from Ri,j are at the same potential. 

Therefore, in ideal conditions, no current can flow across them. 

Similar to this approach, Hillis proposed the zero potential/grounding method in 1982 

[110][157]. In this solution the voltage of the scanning electrodes different from the measured 

one is set to a zero potential. In this case, instead of generating equal potential for the 

respective electrodes, the voltage is zero and the circuit is simplified respect to the voltage 

mirror solution. 
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The scanning method used in this work was designed considering the above mentioned 

points. The conceptual diagram of the scanning circuit is shown in Figure 2.3. The powering 

voltage Vcc was applied to the row to be selected, and other rows were brought to zero 

voltage. As for column direction, operational amplifiers were connected to all of the columns, 

grounding all the columns except to the measured one. In this way also the error in 

measurement due to leak resistance between electrodes was removed. 

 

Figure 2.3 The powering/reading circuit based on the grounding method: the powering voltage 
Vcc (5 V) is applied to the rows while the sensel resistance is measured through the acquisition 
board at the columns. The MUX/DEMUX is employed for row/column scanning. In particular, every 
row is driven to Vcc through independent buffers while the others are switched to ground and the 
input of the trans-resistance amplifiers acts as a virtual ground so that the columns not active are 
grounded. The gain of the amplifiers can be tuned to obtain the desired voltage range by varying Rr 
and additional inverting amplifiers are introduced for measuring positive voltages with the Arduino 
Mega Board. 

 

LM741 general-purpose operational amplifiers (Texas Instrument Inc., Dallas, Texas, US) 

were employed and powered with an external dual power supply. Moreover, different 

inverting resistances Rr were chosen to study different calibration curves. Two multiplexers 

(ADG732 32:1, Analog Devices, US), connected one to the rows and the other to the 
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columns, and an Arduino Mega Board (Arduino, Italy) with a 16-bit microcontroller (32 MHz 

clock) were employed to manage the powering/reading scanning sequence (Figure 2.3). Since 

the employed microcontroller board was designed just for measuring positive voltages, 

inverting operational amplifiers with unitary gain were added downstream of the reading 

circuit. The output voltage measurements were sent via serial communication to the host PC 

for further processing. An acquisition rate of 10 Hz was set. 

 

2.3  Sensor characterization 

2.3.1 Static calibration 

A static calibration procedure was performed using a mechanical testing machine (Instron 

Corp, Canton, MA) provided with an electronically calibrated 1 kN load cell. Ten loads values 

equally spaced from 0 to 100 kPa were applied on a square area of the sensor, using a 

rectangular indenter (60 × 60 mm
2
). The voltage signals derived from the 9 compressed 

sensels (rows i = 3, 4, 5 and columns j = 3, 4, 5) were then recorded through the acquisition 

board (Figure 2.4). Three replicates were performed for each load value. 

In particular, the mean values and the standard deviations (SD) of the 9 sensels involved in 

the calibration were considered for each replicate; then the results were averaged on the three 

trials and SD were considered to evaluate the static repeatability. 

The achievement of a mean calibration curve available for the whole sensor, that is 

representative of the mean response of each sensor element within the measurement range, is 

a common approach when dealing with matrix structures [158]. The mean curve can be 

applied to every active element of the matrix sensor under the hypothesis that each element 

would respond the same way to the same applied pressure, following the calculated 

calibration function. The limits of such a hypothesis were quantified and discussed in the 

results and discussions section where the results of the measurement repeatability among 

sensels are reported. 

The measuring range was chosen in accordance with previous related studies [154], since it 

covers most possible biomedical applications ranges.  
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Figure 2.4 Sensor sensels involved in static tests: the 3 × 3 matrix in the yellow frame is the area 
involved for the static calibration, while S3,5, S5,5 and S5,3 (green sensels) were loaded separately for 
the shear test and all together to prove the grounding efficacy in case of multitouch. If the current 
leakage is present, the current path reported with the red arrow would result in the detection of a 
phantom touch (false output from the red sensel S3,3). 

 

Moreover, the whole calibration procedure was repeated using four gain resistances Rr 

(160, 220, 330, 560 Ω) in order to define different calibration curves and working ranges. The 

equation relating the sensel resistance Ri,j and the output voltage Vout is the following: 

𝑉𝑜𝑢𝑡 =  −
𝑅𝑟

𝑅𝑖,𝑗
𝑉𝑐𝑐         (2.1) 

The stage of inverting amplifiers with unity gain assures the measurement of a positive 

voltage (see Figure 2.3). A complete analysis with the four different Rr was realized only for 

the static calibration. Other tests that are described in the following sections were obtained 

just with one representative Rr (i.e. 220 Ω), since in those contexts behaviours are independent 

from the analog front-end were investigated. 
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2.3.2 Stretch and curved surface tests 

In order to evaluate the sensor behaviour under stretching conditions, the three fabrics were 

stretched of the 20% of their dimensions in both directions. Higher percentage of stretching 

could be obtained for the EeonTex fabric (maximum extension ≈150% in both directions) but 

not for the external layers. The ten static loads employed for the static calibration were 

applied on the square area covering the 9 sensels involved in the previous test. The 

experiment was repeated three times. 

Differences between mean pressure measurement for the 9 sensels in case and in absence 

of stretch were calculated as a root mean square error (RMSE, see equation (2.2) [159]), 

considering the results without stretch as reference. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑖−𝑝𝑖̂)2𝑛

𝑖=1

𝑛
         (2.2) 

where pi and 𝑝𝑖̂ are the measured pressures for the n = 9 sensels with and without stretch, 

respectively. In addition, thin and flexible pressure sensors are often required to bend around 

curved surfaces; therefore it is important to understand the effect of such deformation on 

output. 

To this aim, the sensor was fixed on a regular curved surface with a radius of curvature of 

45 mm and the same apparatus described in the previous section was used to apply the 

sequence of ten static loads from 10 to 100 kPa (three tests). Since a normal load could be 

applied only on a single column of sensels (rows i = 3, 4, 5 and central column j = 4), just the 

three sensels voltage outputs could be compared with their corresponding ones for the sensor 

tested on a flat surface. 

2.3.3 Shear test 

A novel static load test was performed to study the effect of shear load on the sensor 

output. Literature rarely reports results indicating how thin-film sensors react to this type of 

loading. On the contrary shear forces are often present in tasks requiring pressure 

measurement, therefore it is important to define how these sensors behave under this loading 

condition. In particular, it is worthwhile to understand if shear load affects normal load 

measurements. For this reason, a Modular Compact Rheometer 302 (MCR 302, Anton Paar 

GmbH, Graz, Austria) was employed to apply static normal loads on sensels (from 5 to 25 
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kPa with steps of 5 kPa), using a circular tool (provided with the instrument equipment) with 

a radius of 25 mm. The tool just allowed loadings of a single sensel for each test. The 

equipment was able to realize tests with controlled shear rate: 

a) a constant shear rate of 100 s
−1

; 

b) a shear rate linearly increasing from 10 to 300 s
−1

. 

Consequently, the applied shear stress is proportional to the normal stress (0.7 kPa of shear 

stress every 5 kPa of normal stress). Differences from the baseline condition (without shear) 

were considered for 3 sensels voltage outputs (S3,5, S5,5 and S5,3, see Figure 2.4). 

2.3.4 Drift test 

The same sequence of loads employed for the static calibration was applied three times on 

the sensor square area for 10 min to evaluate the sensor drift properties. Drift is the change in 

sensor output when a constant force is applied over a period of time. The drift error was 

calculated according to equation (2.3) [160]: 

𝐷𝑟𝑖𝑓𝑡 𝑒𝑟𝑟𝑜𝑟 (%) =
𝑝𝑚𝑒𝑎𝑛(𝑡𝑒𝑛𝑑)−𝑝𝑚𝑒𝑎𝑛(𝑡0)

𝑝𝑚𝑒𝑎𝑛(𝑡0)
100      (2.3) 

where pmean(t0) is the mean sensel voltage output at t = 0 (after reaching the steady state) 

and pmean(tend) is the mean sensel voltage output at t = 10 min. 

2.3.5 Temperature and noise tests 

The dependence of the sensor output on temperature was investigated by applying a 

constant load of 10 kPa on a round area of 2000 mm
2
 for 5 min and considering the mean 

value of the loaded sensels (also averaged in time) at three temperatures: 27 °C, considered as 

the room temperature where other tests were performed, 35 °C and 42 °C. The last two 

temperatures were reached inserting the device into a laboratory oven and can be considered 

the extreme thermal conditions that the sensor can experience in case of biomedical 

applications. 

The signal to noise ratio (SNR) was calculated during the same test for the data acquired at 

the three temperatures, according to equation (2.4) [161]: 

𝑆𝑁𝑅 = 20𝑙𝑜𝑔10
𝑉𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑆𝐷(𝑉𝑚𝑒𝑎𝑛)
         (2.4) 
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𝑉𝑚𝑒𝑎𝑛
̅̅ ̅̅ ̅̅ ̅ and SD (Vmean) are the mean and the standard deviation of the temporal trend of the 

output (averaged on the loaded sensels). 

2.3.6 Multitouch analysis 

Additional tests were performed to prove the actual removal of crosstalk current thanks to 

the use of the grounding method. Indeed, the solution has been demonstrated just theoretically 

in literature, but without any experimental proof. To this aim, a sequence of ten equally 

spaced static loads from 10 to 100 kPa was applied to three sensels S3,5, S5,5 and S5,3 (green 

squares in Figure 2.4) that are at the square vertices of the 3 × 3 matrix involved in the static 

calibration procedure. Loads were applied using three square indenters (20 × 20 mm
2
 each 

one). 

The mean behaviour of the three sensels was compared to the mean behaviour of 

themselves during the static calibration of the 3 × 3 matrix: if the leakage currents are 

avoided, the two mean output should be comparable. Moreover, in case of triple touch, a 

fourth signal output from S3,3 should not be present (red square in Figure 2.4). This false 

pressure detection is the most representative evidence of low accuracy in case the non-active 

electrodes are not grounded and it is indicated in literature as ‘phantom touch’ [162]. 

2.3.7 Hysteresis tests 

Calibration with static loads is inadequate for piezoresistive sensors if they have to be 

employed in dynamic tasks, since they typically suffer from hysteresis [109]. 

A dynamic analysis was carried out applying on the matrix three loading/unloading cycles 

(from 0 to 100 kPa) at four different rates (v1 = 0.1 mm/min, v2 = 1 mm/min, v3 = 10 mm/min, 

v4 = 50 mm/min). The three cycles were averaged afterward. The study involved both the 

same square area and the equipment employed for the static tests and the sensor output was 

aligned with the load cell output with a sampling frequency of 10 Hz. Measurement accuracy 

respect to the applied pressure trends was analyzed in terms of RMSE. Hysteresis evaluation 

was performed considering the maximum difference in sensor output during loading and 

unloading and expressed as a percentage of the working range, as indicated in equation (2.5) 

[160]. 

𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥
|𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑙𝑜𝑎𝑑−𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑢𝑛𝑙𝑜𝑎𝑑|

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑚𝑎𝑥
100    (2.5) 
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In the literature there are different approaches to compensate for the hysteresis with data 

processing actions. Chua and Chen successfully adapted the general Preisach model 

(generally employed in the field of ferromagnetism) to increase the accuracy of their silicon 

piezoresistive pressure sensor [161] [163]. However the wiping-out and congruency 

properties that constitute necessary and sufficient conditions for the application of the model 

scarcely fit with our case study. Hall et al. used a fourth-order polynomial regression equation 

to predict compression force with terms that depended on both the current output voltage and 

the loading history represented as a moving integral [164]. The best windows size of the 

moving integral strictly depends on the loading velocity: a window of 5 s can be adequate for 

a compression velocity of 1 mm/min, but completely ineffective for slower signals and 

disruptive for faster ones. 

In this work a quasi-static calibration was realized to compensate for hysteresis, calculating 

two different fittings for loading (Vout(ti) ≤ Vout(ti+1)) and unloading (Vout(ti) > Vout(ti+1)) and 

using data from tests at v1, v2 and v3 at the same time. This method introduces very small 

delays (just one sample) and allows to fit data from a wider range of speed solicitation with an 

improved accuracy. 

In the Results session it will be possible to notice that curves at v4 cannot be related to the 

other ones without introducing considerable errors. High speed stresses need for ad hoc 

calibrations that will not be evaluated in the present work. 

2.3.8 Long term dynamic stability test 

In order to study the long term dynamic stability of the sensor, the 3 × 3 matrix highlighted 

in Figure 2.4 was tested with loading/unloading cycles from 0 to 50 kPa, for 120 min and at a 

velocity of 10 mm/min. The same apparatus employed for the hysteresis analysis was used in 

this test. Peaks were detected and their mean value and SD were reported. 

 

2.4  Results and discussions 

2.4.1 SEM/EDS textile structure analysis 

The SEM analysis confirmed that the third integration level of the EeonTex
TM

 LG-SL-PA 

is a knitted structure [111]. Differently from weaving, in knitted fabrics the yarn follows a 
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meandering path, called course, creating symmetric loops above and below the mean path of 

the yarn. These meandering loops are easy to be stretched in different directions providing 

knit fabrics with much more elasticity than woven fabrics (up to 500%). For this reason, 

knitting is very suitable for garments that must be elastic or stretch in response to the wearer’s 

motions, such as socks and hosiery. Knitted garments are often more form-fitting than woven 

garments, because their elasticity allows them to contour to the body’s outline more closely. 

Thanks to their elasticity, knitted structures undergo structural deformations of both the 

yarns and weaves if compressed or pulled. This lead to measurable changes of their electrical 

impedance. Figure 2.5 (a) shows that the fabric is made up of looped interconnections of 

courses and wales, where the wales are the threads that run vertically and the courses run 

horizontally across the fabric. 

 

Figure 2.5 SEM images at the fabric level (a) with the knitted structure scheme, at the yarn level (b) 
and the fiber level (c); EDS microanalysis results are reported in (d). 

 

Regarding the yarn level (second integration level), Figure 2.5 (b) shows that each yarn is 

composed of multiple fibers running in parallel. Each fiber is composed of a coating around 

an internal core (Figure 2.5 (c)). The EDS analysis detected the element composition of a 
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single fiber: it is made of carbon, oxygen and nitrogen (percentages are reported in Figure 2.5 

(d)). Hydrogen, obviously present, is too light to be observed. The composition is compatible 

with the nylon-elastane structure, but it does not give information regarding the conductive 

formulation of coating. Detected elements are compatible with both polypirrole [165] and 

carbon coatings [124]. 

2.4.2 Static calibration 

The mean calibration curves calculated for the sensor are reported in Figure 2.6 (a). The 

selection of a proper gain resistance is fundamental for defining sensitivity and working range 

adequate for an application: low resistance values (e.g. 160 Ω) are inadvisable for the poor 

sensitivity, especially at high loadings, while high resistance values (e.g. 560 Ω) assure higher 

sensitivity but reach saturation at 50 kPa. The latter are recommended for low pressure 

detection tasks, as grasping analysis or compression therapy monitoring [166]. Halfway 

resistance values provide for both good sensitivity and wide working range. For this reason an 

intermediate resistance (i.e. 220 Ω) had been chosen for the remaining tests. 

 

Figure 2.6 (a) Calibration curves obtained considering the mean voltage outputs for 9 matrix 
sensels for the four gain resistance values (error bars are due to the three performed trials); (b) 
standard deviations SD (expressed as a percentage) of the single sensels outputs respect to the 
mean calibration curve versus applied static loads (from 0 to 100 kPa) and (c) second order 
polynomial fittings employed to calculate P from static measurements of Vout (all R2 ≈ 0.99). 
Parameters of the second order polynomial fittings are reported in the table for the four 
resistances. 

 

The percentage deviation (SD%) of the single sensels curves from the overall calibration 

curve takes into account the spatial repeatability among different active elements. It was 
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calculated for each resistance (Figure 2.6 (b)). Results indicated an overall error within 30% 

and 20% of the measured values, decreasing for high pressures. For the case of the highest 

gain resistance, SD% decreased markedly since output voltages rapidly converged to the 

saturation value.  

Such a simplified but effective approach has been accepted also in prior works [158], 

allowing the convenient use of one single mean calibration curve for the whole sensor. These 

deviations may appear of some weight, especially for those cases where the pressure load is 

applied on a low number of elements. However, when the load is spread over a higher number 

of elements the application of one single overall calibration curve seems well-justified, 

although with the approximations set by the measured deviations. 

The relationship between the measured pressure P (in kPa) and the mean voltage output 

Vout (in V) averaged on the 9 pressed sensels resulted in second order polynomial fittings 

(equation (2.6)). Fitting parameters are reported in Figure 2.6 (c) for the four resistances. 

They had been applied for all the static analysis reported in the following sections. Fitting 

results are markedly accurate (all R
2
 ≈ 0.99) and therefore strongly remarkable for static 

pressure evaluation tasks (e.g. posture analysis and bedsores prevention). 

𝑃 = 𝑎𝑉𝑜𝑢𝑡
2 + 𝑏𝑉𝑜𝑢𝑡         (2.6) 

In Figure 2.6 (a) is possible to notice that the application of lower pressures (within 40 

kPa) assures a better sensitivity respect to the case of major loads. In addition, in case of low 

pressures the sensor behaviour can be considered linear. This is considered a good property 

for sensors management [167]. 

2.4.3 Stretch and curved surface tests 

Static calibration tests with the 20% stretched sensor showed low differences respect to the 

not stretched condition, with a RMSE equals to 2.63 kPa (Figure 2.7 (a)). Regarding test 

performed on a curved surface, no strong differences with the reference condition were 

detected on the three loaded sensels (RMSE of 3.11 kPa, Figure 2.7 (b)). In particular, results 

for pressures lower than 40 kPa slightly overestimate the applied loads, while higher 

pressures underestimate them. 

The presented results are positive since they allow a simple use for the sensor in case of 

both moderate stretch and employment on curved surfaces that are not markedly sharp, adding 
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worth to the sensor flexibility and softness. Conditions of stretching and adaptation on curved 

surfaces are typical for wearable applications [168]. 

 

Figure 2.7 (a) Static mean curves for the sensor in case of 20% of stretch in both planar directions 
versus reference condition (sensor without stretch on a plane), (b) static mean curves for the 
sensor in case of use on a curved surface versus reference condition. Error bars refer to the trials 
performer three times. 

 

2.4.4 Shear test 

Shear tests showed that sensels response to normal loads is not significantly affected by the 

additional stress (Figure 2.8): RMSE values respect to the condition with just normal loads 

are 1.27 kPa and 0.69 kPa for the constant and linear shear cases, respectively. The fact that 

normal load detection is not disturbed by shear increases the measurement accuracy. On the 

other hand, the fact that the sensor is not sensitive to shear (at least for the low stresses that 

could be produced with the available equipment) can be considered a limit in the sensor 

potentialities. 

2.4.5 Drift test 

Drift is generally related to the stress relaxation behaviour typical of elastic materials. For 

the presented sensor, the percentage drift is more significant for low loads, then it decreases 

for higher values (Table 2.1). This can be explained considering that the sensitivity of the 

sensor decreases for pressures higher than 40 kPa. Results are compatible with performances 

of other piezoresistive sensors [169] and confirm the suitability of the sensor for static 

measurement tasks. 
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Figure 2.8 Static tests comparing sensels response to just normal load (baseline), normal load with 
constant shear and normal load with linearly increasing shear. Means and SD values were 
calculated on three sensels stressed separately. 

 

Table 2.1 Drift errors (in %), averaged over three tests, in correspondence to static loads (in kPa) 

applied for 10 min on a 3 × 3 sensels area of the sensor. 

Pressure 10 20 30 40 50 60 70 80 90 100 

Drift 

error % 

(SD) 

4.23 

(0.33) 

3.40 

(0.41) 

2.36 

(0.04) 

1.61 

(0.09) 

1.06 

(0.21) 

1.09 

(0.08) 

1.17 

(0.27) 

0.79 

(0.14) 

0.73 

(0.07) 

1.27 

(0.05) 

 

2.4.6 Temperature and noise tests 

Tests for the evaluation of the sensor output in dependence to temperature showed a 

voltage variation of 2.65% at 35 °C and 14.22% at 42 °C respect to RT. Temperature 

dependence is a well-known limit of piezoresistive sensors, since conductive materials 

resistivity is highly sensitive to temperature changes. This drawback has limited effects for 

wearable applications that are typical of textile sensors because a narrow range of 
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temperatures can be experienced. Moreover, the sensor provided very low noise readouts, 

with a SNR of 41.77 ± 2.58 dB that did not exhibit a significant correlation with temperature. 

2.4.7 Multitouch analysis 

The mean calibration curves obtained averaging the three sensels S3,5, S5,5 and S5,3 outputs 

during the static loading of the complete 3 × 3 matrix area (see Figure 2.4) and just the three 

sensitive units produced slight differences, with a RMSE equals to 3.31 kPa (Figure 2.9 (a)). 

The result confirmed that the output voltage of each sensel is not affected by the loading of 

close sensitive elements. In addition, no phantom touches were present during the triple 

loading (Figure 2.9 (b)). Therefore, the effectiveness of grounding in the current leakage 

removal was empirically assessed. 

 

Figure 2.9 (a) The mean static stress curves obtained for the three sensels S3,5, S5,5 and S5,3 during 
the loading of the 3 × 3 matrix area and the loading of just the three sensels, (b) an image of the 3 × 
3 matrix during the loading of S3,5, S5,5 and S5,3 at 50 kPa, showing the absence of phantom touches. 

 

2.4.8 Hysteresis tests 

The employment of static fittings in case of dynamic analysis (in a wide range of cyclic 

loading rate, from 0.1 to 50 mm/min) entailed low quality measurements, due to hysteresis. 

The problem is a typical drawback of the piezoresistive detecting principle and it is related to 

a delay in the material reaction to applied stress, which is depending on its previous 

conditions [109][158][160][163]. In fact, sensor performances are comparable with other 



2. Multilayer matrix textile-based pressure sensor 

54 
 

sensing solution based on the same working rationale [158][160]. Moreover, tests showed that 

sensor output was higher during unloading than loading in correspondence of identical loads 

(Figure 2.10), similar to other piezoresistive pressure sensors [160]. 

Figure 2.10 and Table 2.2 show that hysteresis, evaluated in accordance to equation (2.5), 

tended to decrease with the loading rate. On the other hand, at higher stress velocity the 

sensor fails in following and covering the entire required response range. Both behaviours can 

be explained considering that high dynamic stresses do not allow the electric properties of the 

sensing material to reach a steady state condition. This double effect balances out accuracy, 

leading to similar values (calculated as RMSE according to equation (2.2)) for the different 

loading rates (5.38 kPa on average, see Table 2.2). 

 

Figure 2.10 Measured versus applied pressure for loading/unloading cycles averaged on three 
repetitions. Tests were carried out at v1 = 0.1 mm/min, v2 = 1 mm/min, v3 = 10 mm/min, v4 = 50 
mm/min. 

Table 2.2 Hysteresis and accuracy errors (RMSE) for the different loading rates. 

Loading rate (mm/min) Hysteresis (%) RMSE (kPa) 

0.1 28.12 5.96 

1 23.25 5.64 

10 22.22 5.07 

50 15.73 4.87 
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As previously explained, main post-processing techniques employed to compensate 

hysteresis are not satisfying for the present study. More precisely, moving average methods 

[164] depend on parameters, as the window size, that are too heavily related to the loading 

rate. On this basis, in the present work two different calibration curves were considered, both 

resulting as dual exponential fittings (see equation (2.7)). 

𝑃 = 𝑎𝑒𝑏𝑉𝑜𝑢𝑡  + 𝑐𝑒𝑑𝑉𝑜𝑢𝑡          (2.7) 

The first curve was calculated as the best fitting for the loading sections of the cycles at v1, 

v2 and v3 (Figure 2.11 (a)) and it has to be applied when the sensor is in a unload phase (when 

Vout(ti) ≤ Vout(ti+1)). The second curve was obtained as the best fitting for the unloading 

sections of the cycles at v1, v2 and v3 (Figure 2.11 (b)) and it has to be applied when the 

sensor is in a unload phase (when Vout(ti) > Vout(ti+1)). Fitting parameters are summarized in 

Figure 2.11 (both R
2
 ≈ 0.98). 

 

Figure 2.11 Dual exponential fittings and related fitting parameters for the loading (a) and 
unloading (b) sections of the stress cycles for three different loading rates (v1 = 0.1 mm/min, v2 = 1 
mm/min, v3 = 10 mm/min). 
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The presented fittings allow managing measurement information from a wide range of 

stress speed, but they are not accurate in case of higher velocities, e.g. 50 mm/min. These high 

dynamic conditions should require further ad hoc studies. 

Thereafter, the new calibration curves were applied in repeated load/unload cyclic tests at 

the three velocities v1, v2 and v3, providing substantial improvements in terms of both 

hysteresis and accuracy errors (Table 2.3). Results can be easily assessed from Figure 2.12, 

confirming that an adequate post-processing can enhance the sensor performances in case of 

dynamic measures. This approach suffers from the limit of requiring additional calibration 

phases respect to the traditional static ones. Moreover, it needs for different fittings according 

to the loading velocity range. This condition supposes an approximate prior knowledge of the 

stress rate that is typical of a particular application. 

 

Figure 2.12 (a) Applied pressure curves versus measured pressure curves calculated using both the 
static and the load/unload fittings for v1, v2 and v3, (b) hysteresis cycles using the static and the 
load/unload fittings for the three loading rates. 
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2.4.9 Long term dynamic stability test 

Mean and SD values calculated on the 258 detected peaks during the 2 h long test are 

52.59 kPa and 0.77 kPa, respectively (Figure 2.13). The reduced deviation proves the 

dynamic stability of the sensor that is mandatory for long term dynamic and cyclic 

measurements, as in case of gait analysis. 

 

Table 2.3 Hysteresis and accuracy errors (RMSE) for the different loading rates obtained with the 

load/unload fitting. 

Loading rate (mm/min) Hysteresis (%) RMSE (kPa) 

0.1 14.42 2.29 

1 6.12 3.74 

10 4.03 2.63 

 

 

 

 

Considering the complete pool of presented results, it is possible to confirm the good 

performances of the sensor for a wide range of applications that can also benefit from its 

thinness, lightness, flexibility, stretchability and wearability. Presented results provides 

valuable insights on the design issues and performances of piezoresistive textile pressure 

sensors, and in particular on their strengths and limitations [170]. Specifically, a better 

understanding of the loading options, applications and reliability has been obtained, 

highlighting and partially solving the undesired effects that has to be taken into account in the 

processing of data. This information should facilitate researchers and users in determining the 

best design and employment of their smart sensing solutions. 
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Figure 2.13 Measured pressure (averaged on the 9 loaded sensels) during the dynamic stability 
analysis: (a) the complete 2 h long test, (b) a 20 min expanded section of trace (a). 

 

 

 



Chapter 3 

 

Textile-based strain sensor 

 

 

3.1  Introduction 

Strain sensors based on smart textiles either have intrinsic electric properties that are not 

normally associated with traditional textiles or they can act as a substrate for attachment of 

sensors, output devices and printed circuit boards [113]. To date, several works have been 

published that summarise textile fabrication techniques [111][112] and applications of these 

smart fabrics in intelligent clothes, representing a new type of human-machine interface 

[171].  

For the present thesis, we focused our attention on strain-resistant textile sensors. These 

sensors are based on the piezoresistive effect. Piezoresistive sensor technology is common 

method of creating textile-based strain sensors along with capacitive, inductive, and 

impedance sensors. Piezoresistive technology offers advantages respect to other sensor 

technologies: high responsivity, small size, simplicity and repeatability [172]. Capacitive 

sensing approach in smart textiles is mainly used for pressure detection [173], and 

development of these sensors is more complex due to requirement for separation of 

conductive panels and the usage of dielectric material. Whereas, inductive or impedance 

sensors in electro-textiles are mainly used for the measurement of physiological parameters of 

the human body, with a serious problem due to signal interference during trials [174]. 

Usually, piezoresistive strain sensor exploit the electrical resistance change due to an 

applied mechanical stretching. This means that forces experienced by everyday clothing 

during movement can be detected without the need for additional, less-comfortable devices 

[175]. 
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Textiles stretch sensors could be divided into two broad groups, stitched and knitted. 

Stitched sensors are based on conductive thread stitched onto fabric substrates 

[176][177][178]. The stitched structure creates the sensing mechanism, but the sensor 

response relies heavily on the physical characteristics of the textile substrate to which it is 

stitched. For knitted stretch sensors, in contrast, a conductive textile is used in place of a 

standard thread and generally follows the wales and courses of the common knitted structure. 

Consequently, with the knitted stretch sensor, it is difficult to create a free-form sensor 

pattern, but it can be more easily integrated into a wearable device and the final system could 

be simpler and more comfortable. 

These devices have interesting potential uses, but they must overcome limits related to 

their manual manufacturing, which causes additional variabilities within the well-known 

limits of these materials: hysteresis and low accuracy. Moreover, the lack of a specific 

procedure for the electromechanical characterization of these materials complicates the 

identification of an adequate conductive textile for a specific application. 

Mattman et al. [177], Gioberto and Dunne [30], and Guo et al. [179] analysed the 

mechanical properties using a tensile tester, while simultaneously analysing the electrical 

properties using a digital multimeter [30][177] or a pre-programmed microprocessor and a 

computer [179]. In general, the following sensor properties were examined: working range, 

working function, sensitivity, stability, electrical hysteresis, relaxation behaviour, dependency 

on strain rate, long-term cycling, ageing and wash-ability. Shyr et al. [180] performed stretch-

recovery measurements of elastic-conductive webbings to analyse the effect of webbing 

structures on tensile hysteresis and the electrical contact resistance. These studies quantified 

sensors’ features, highlighting the relationship between fabrication methodology and the 

specific material composition. It is evident that a generic, but rigorous approach to the 

characterization of conductive textiles is required. 

Therefore, in the present Chapter we propose a methodology to characterise whatever 

electrically conductive knitted textile, in order to optimise and calibrate its sensing 

capabilities. The key aspect of this methodology is that it is not limited to a specific material 

because it is derived by merging approaches found in literature and mechanical concepts. 

Moreover, we reported a case study where the tests of the procedure have been used to select 

a suitable conductive textile and to steer the design of the sensor. Device usability was then 

assessed by tracking the elbow flexion/extension of an adult participant, and the device’s 
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dynamic performances were validated using the encoder of the knee joint of the SABIAN 

humanoid robot [181].  

Understanding the electro-mechanical features of the proposed sensor and its possible use 

as wearable device may help the user in managing the sensor with a deeper awareness of both 

its benefits and drawbacks. 

 

3.2  Material characterization 

A warp-knitted textiles have been taken into consideration and the investigation started 

with the description of the three integration levels of their hierarchical structure [113]: the 

fabric (the third integration level) composed by turned yarn knitted or weaved, the yarn itself 

(second level) composed of twisted fibers, and the fibers (first level). 

To clarify the three level hierarchy, in Figure 3.1 (a) we reported the example of 

Electrolycra [123] that shows a typical knitted structure. It is made up of looped 

interconnections of courses and wales, where the wales are the threads that run vertically and 

the courses run horizontally across the fabric [111]. There are two major varieties of knitting: 

weft and warp. Weft knitting, the most common, presents wales perpendicularly to courses, 

whereas in warp knitting, wales and courses run in parallel. Electrolycra strained at 50% is 

presented in Figure 3.1 (c), clearly showing its warp knitted structure. 

In relation to the yarn level, Figure 3.1 (e) and Figure 3.1 (f) show that each yarn strand is 

composed of multiple fibers running in parallel, with each fiber (Figure 3.1 (g)) being 

composed of a coating around an internal core (Figure 3.1 (h) and Figure 3.1 (i)). The element 

composition analysis of a single fiber was conducted using energy-dispersive X-ray 

spectroscopy (BRUKER). Figure 3.1 (j) shows the results of a single fiber, and Figure 3.1 (k) 

and Figure 3.1 (l) demonstrate that each fiber has a non-conductive core with a silver particle 

coating. The coating represents the extrinsic modification introduced to enable conductivity of 

the fabric substrate at the fiber level. 

In order to determine the mechanical and electrical properties of the fabric, uniaxial cyclic 

strain tests have to be conducted using a material testing machine. Resistance values need to 

be simultaneously recorded with force and elongation. The complete description of the 
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electromechanical behaviour of the conductive textile can be obtained through the evaluation 

of the following nine factors and parameters. 

 

1) Preferential direction 

Courses and wales of the knitted structure could offer different paths to the current, thus 

resistance change should be assessed horizontally, (along courses direction - CD) and 

vertically (along wales direction - WD). This factor is important to identify the most 

appropriate deformation direction of the fibers during strain cycles. 

2) Pre-stretching 

The history of stretching range can determine the electromechanical behaviour of an 

elastomeric material (e.g. Mullins effect). Measurements are necessary to assess the influence 

of high deformations, so-called pre-stretching, applied before cyclic strains in the desired 

range. 

3) Strain rate 

Tests have to be carried out to measure the dependence of the textile behaviour on the rate 

of applied strain. This parameter is crucial and usually set in a range that depends on the 

specific application. 

4) Sample dimensions 

This consists in assessing whether the sensor behaviour depends on its size. This is 

important especially when there are limitations in the sensor dimensions. 

5) Temporal stability 

The long-term behaviour and thus the reliability of the sensors have to be estimated by 

measuring basic performances at different times (often known as “test-retest” approach). 

Aging and other degrading effects have to be investigated to assess the working life of the 

device. 
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Figure 3.1 SEM images (HELIOS NANOLAB 600i DualBeam FIB/SEM). Fabric level: a) Electrolycra at 
0% of strain and b) its corresponding warp knitting scheme, c) 50% strained Electrolycra, and d) its 
corresponding scheme. Yarn level: e) surface and f) cross-section of the fibers that compose a 
single strand of yarn; Fiber level: g) single fiber cross-section and h) the external conductive layer 
with i) the particle coating; j) Fiber composition: k) nonconductive fiber and l) external silver 
particle coating. 
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6) Hysteresis  

This refers to the dependence of the state of the system on its history and it is important to 

quantify the sensor capability of following the changes of the input parameter (strain) 

regardless the direction (loading or unloading) the change is made. 

7) Working range 

The maximum and minimum values of applied strain that can be measured by the sensor. 

The designer has to compare this working range and the expected deformation to be sure that 

the material is able to cover the entire range and without damages. 

8) Relaxation behaviour 

This is visible as a temporal decrease of resistance in response to a fixed amount of strain 

applied to the sensor. When this drift is significant the sensor reaches low levels of reliability 

for prolonged static conditions. 

9) Curve fitting 

The experimental data have to be described with an analytical function that relates strain 

and resistance values. This is crucial to derive the calibration curve of the sensor. 

 

The electro-mechanical tests described above were performed at room temperature by 

using a material testing machine (model 4464, Instron Inc., Norwood, MA), which allows 

imposing a desired strain to the textile. Each end of the sample was fixed mechanically using 

clamps with copper sheets and welded wires to detect the sensor voltage. These wires were 

connected to a data acquisition board (DAQ, National Instrument®) to measure the electrical 

resistance values, which were simultaneously recorded for different strains with a sampling 

frequency of 10 Hz. The resistance value R, in particular, is measured by means of the voltage 

divider shown in Figure 3.2, as 𝑅 = 𝑅1
𝑉𝑖𝑛−𝑉𝑅

𝑉𝑅
, with Vin = 3.2 V and R1 = 10.5 Ω. We cut the 

conductive textiles into pieces of different sizes using a Laser cutter (VLS 3.50, Universal 

Laser Systems), as laser cutting guarantees high precision without affecting the sample’s 

functionality. If not otherwise specified, we tested a different sample (2 cm width × 3 cm 

length) for each measurement, with a strain rate of 60 mm/min. 
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Figure 3.2 Voltage divider used to measure the resistance of the sensor. 

 

The nine factors reported above have been investigated through a series of tests. 

Preferential direction has been evaluated by testing the resistance-strain behaviour along both 

directions. Pre-stretching was evaluated as follows: after five cycles of 60% of strain, each 

sample was respectively pre-strained at 100%, 150%, 200% and 250%, then another five 

cycles of 60% strain were performed. To evaluate the strain rate, different deformation 

velocities (50, 60, 100, 200, 400, 600 mm/min) were applied, in order to cover the typical 

motion speed range of the human body [177]. The sample dimension was tested through 

cyclic measurements using samples of different length-width ratios (1.5, 2, 3, and 6). 

Temporal stability of the sensor was evaluated once a week for two months, more 

specifically, uniaxial cyclic strain tests were executed for 10 min. In order to measure the 

relaxation behaviour, each sample was stretched at a speed of 60, 200 or 600 mm/min, and 

held at increasing values of strain (20, 30, 40, and 50 %) for 2 min. 

 

3.3  Sensor development 

Device usability was assessed by tracking the flexion/extension of human joints, in order to 

offer a possible simple and wearable solution for continuous monitoring. 
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3.3.1 Sensor design 

Prior to designing the device, it is important to briefly analyse the quantitative parameters 

necessary for monitoring human joint angles. In this work, the elbow joint was investigated, 

which has two degrees of freedom (DOF): flexion-extension and prono-supination. The 

attention was focused on the humeroulnar joint that supports flexion-extension of the elbow. 

Literature findings [138] showed that the elbow’s centre of rotation is not fixed during 

flexion-extension, however human motion studies often simplify the analysis with acceptable 

approximation [182]. The human body is schematically represented as a system of rigid links, 

connected by ideal joints. The simplified biomechanical model of the elbow adopted in this 

study, composed of two cylinders connected by a spherical shell with fixed radius and 

rotational axis, is shown in Figure 3.3 [183]. 

 

Figure 3.3 A biomechanical model of the elbow joint. a) full extended; b) bent at a θ angle. 

 

A single sensor, fixed in correspondence with the joint, is sufficient to measure the elbow 

joint flexion-extension. The sensor location should be carefully evaluated, however, such that 

the entire range of sensor extension is utilised for maximising the sensitivity range [178]. The 

strain, particularly the elongation (ΔL, where L represents the sensor length), is directly 

related to the circular arch length (see Figure 3.3). Based on the simplified biomechanical 

model, elongation L is related to the bending angle θ and scaled by the joint radius r: 

∆𝐿 = 𝑟𝜃            (3.1) 
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The radius of the elbow joint is an anthropometric parameter, specific to each subject. By 

combining equation (3.1) and a linearized characteristic of the sensor, it is possible to estimate 

the relationship between the bending angle (in degrees) and the sensor resistance: 

𝜃 =
𝐿0

100𝑎𝑟
(

∆𝑅

𝑅0
− 𝑏)

180

𝜋
         (3.2) 

where the parameters a and b are specific for each sample, and R0 is the initial resistance 

corresponding to the length L0. This biomechanical model could be extended to measure the 

rotation angle of each single axis joint, such as the knee or wrist. 

The integration of the textile into a wearable device was a key point. The idea was to 

design a goniometer sensing system to allow monitoring of joint motion in a non-intrusive 

and comfortable way. For this purpose, the Lycra textile was selected for its favourable 

features: it is light, comfortable, skin-tight and highly stretchable. To begin, we verified that 

the double-layer conductive textile/Lycra does not influence the electrical characteristic of the 

sensor and that the tensile force increases by an acceptable value. 

Two hooks, each one constituted of two coaxial cylinders, were designed to fix the sensing 

material on a Lycra elbow sleeve and set up the electrical connections. The hooks were 

produced by a 3D printer (PROJET HD 3000 3D Systems) using an acrylic resin (see Figure 

3.4 (a)). 

The final sensing device is composed of a strip (2 × 14 cm) of conductive material fixed on 

a customised Lycra sleeve by two hooks. Electrical resistance values were acquired using the 

same setup adopted during the characterization phase. A graphical user interface was designed 

to make using the device simple and suitable for a wide range of users. Flexion/extension 

angles were shown in real-time and were stored for off-line analysis. 

3.3.2 Early Evaluation of Human and Robot Motion Detection 

Preliminary qualitative tests were performed to assess the usability of the wearable 

goniometer and its capability to track the elbow joint movement of an adult volunteer during 

cyclic flexion/extension tasks (Figure 3.4 (a)). 

For validation, dynamic tests were performed using the humanoid robot SABIAN, 

developed by the Scuola Superiore Sant’Anna in collaboration with the Waseda University of 

Tokyo [181]. SABIAN was built with a total of 16 DOF, 14 for the legs and two for the waist. 
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Its joints are actuated by DC Maxon motors and each joint is equipped with an encoder 

integrated with the corresponding actuator. These encoders provide 1024 pulses per rotation, 

giving a resolution of 0.35°. 

For these tests, we designed a custom sleeve for SABIAN’s knee and applied the sensor in 

correspondence with the robot joint (Figure 3.4 (b)). Flexion/extension cycles were performed 

by rotating the knee joint with a sinusoidal trajectory at 0.15 Hz. This movement frequency 

was chosen in relation to the robot’s capabilities. Flexion/extension angles measured with our 

sensor and the encoder data were collected simultaneously, and all data were synchronised 

and analysed using a custom MATLAB® code. 

 

Figure 3.4 a) Wearable goniometer sensing device: conductive material fixed on a Lycra sleeve with 
two specially designed cylindrical hooks. An adult volunteer tested the performance of the device 
with a traditional goniometer. b) Validation tests using the humanoid robot SABIAN: the wearable 
device is fixed in correspondence with the knee joint. 
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3.4  Results and discussions 

3.4.1 Material characterization 

The first phase of this work concerned the electromechanical characterization of the smart 

fabric. Four textiles were taken into consideration: Electrolycra (Mindsets Ltd), 

EeonTex™LG-SL-PA (Eeonix), EeonTex™LR-SL-PA (Eeonix) and 4900 Stretch 

Conductive Fabric (Holland Shielding Systems B.V). This approach offers a very simple and 

compact sensing solution that relies on commercially available conductive fabric and does not 

require complex hardware or skills to implement. To explore the electromechanical responses 

of these conductive fabrics for their applications in stretch sensing, preliminary stretch-

resistance tests were conducted: 

- EeonTex™LR-SL-PA (Eeonix) is not a stretchable material and it can be used only for 

compression, as a pressure sensor; 

- The fabric 4900 Stretch Conductive Fabric (Holland Shielding Systems B.V) can be 

stretched up to twice its length, but its conductivity increases only up to 25%; 

- The EeonTex™LG-SL-PA (Eeonix) showed resistance change only after a 30% strain 

and the initial resistance value suffered from drifting (it was different after each 

flexion-extension cycle); 

- Electrolycra (Mindsets Ltd) showed a repeatable resistance-strain behaviour with an 

appropriate working range, compatible with human joint movements. 

Because of these preliminary suitable electro-mechanical properties, the Electrolycra was 

analysed in-depth. The manufacturer [123] declares the material’s resistance to be 5 Ω per 100 

mm. This value increases to 20 Ω when the material is stretched to 150 mm along one axis, but 

drops to 2.5 Ω when stretched at a 90° angle. Previous works have adopted Electrolycra as a 

strain sensor to reconstruct the spatial configuration of a soft octopus inspired robot arm [125] 

and as the electrodes of a capacitive transduction mechanism [138], but neglecting much 

information on the material behaviour. 

1) Preferential direction 

Five stretch-recovery cycles were performed along the CD and the WD (Figure 3.5). Since 

the results were not repeatable and presented hysteresis and drift between the cycles, 

additional characterization steps were required to choose a preferential direction. 
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2) Pre-stretching 

The effect of increasing values of pre-stretching on the resistance-strain behaviour was 

evaluated along both the CD and the WD. These high values of pre-stretching caused two 

effects: damage and breakage of the textiles along the WD, and improvement of the sensor 

behaviour along the CD. 

A comparison of the mean value of five stretch-recovery cycles before and after 100%, 

150% and 200% of a single strain cycle along the CD is shown in Figure 3.6 (a). The 250% 

pre-stretching results are not reported because the textile was significantly damaged. It is 

noteworthy that a trade-off was necessary: whereas 100% pre-stretching improved linearity 

and decreased the hysteresis, 200% caused a higher resistance change range, but also slightly 

wider hysteresis. The SEM analysis (Figure 3.6 (b)) demonstrated that the 200% pre-

stretching reduced the yarn tension; consequently, the density of wales and courses decreases 

after the pre-stretching. This caused a plastic deformation of the knitted strain sensor; 

therefore, the initial length and resistance values for the next characterization steps and 

application were set to these pre-stretching values. 

 

 

Figure 3.5 Resistance change along the a) courses direction (CD) and b) wales direction (WD) of 
Electrolycra fabric. 
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Figure 3.6 Pre-stretching: a) mean stretch-recovery cycle of five cycles performed before and after 
a single cycle of pre-stretching by 100%, 150% and 200%; b) SEM image of a sample that was pre-
stretched with a single cycle of 200% strain. 

 

3) Strain rate 

The sensor possessed similar trends when strain velocity was increased from 60 mm/min to 

200 mm/min, with marginal changes in resistance and hysteresis (Figure 3.7). The trend was 

also similar in the case of 50 mm/min, but resistance values remained slightly higher in the 

second part of the plot (on the right of Figure 3.7). This could be related to relaxation time 

(analysed in one of the following characterization tests); however, these results demonstrate 

that the sensor behaviour is practically independent from the deformation velocity. This result 

is important for the design since it means that the sensor can be used to track body 

movements at a wide range of velocities. 

4) Sample dimensions 

The sensor behaviour for different length-width ratios (r) is reported in Figure 3.8. 

Electrolycra’s capacity for sensing appears to be slightly dependent on the ratio. Specifically, 

a higher ratio (r = 6) improves its performance in terms of a higher sensing range and a lower 

hysteresis. 

5) Temporal stability 

The results of tests performed over two months are presented in Figure 3.9. It can be 

observed that there was a slow decline in the sensor resistance range during this time. 
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Figure 3.7 Sensor resistance at increasing strain rate (50, 60, 100, 200 mm/min), covering a typical 
motion speed range for the human body. 

 

 

Figure 3.8 Dependency between different length-width ratios (r). 
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Figure 3.9 Long-term stability of the sensor over eight weeks. 

 

6) Hysteresis  

Hysteresis, typically caused by friction and structural change in materials, is crucial for the 

strain sensor due to its negative influence on sensor durability [180]. Typically, elastic 

materials have higher hysteresis because they require longer recovery time. Both tensile and 

electrical hysteresis were measured, the former for a strain-force curve (Figure 3.10 (a)) and 

the latter for a strain-resistance curve (Figure 3.10 (b)). The tensile hysteresis was calculated 

as in [125] and the mean hysteresis (see Figure 3.10 (a)) was approximately 17.8%. A 

resistance vs. strain plot (Figure 3.10 (b)) showed how to calculate the electrical hysteresis 

(see also equation 2.5) of the sensor and presented the maximal hysteresis error, 14.8% of the 

full-scale, at 28% strain. Piezoresistive hysteresis is known for a major drawbacks of 

resistance-type sensors, which makes the calibration of the materials for their use very 

difficult. Few studies were conducted to compensate piezoresistive hysteresis through 

structural modification or using mathematical modelling. However, in this first phase of 

Electrolycra characterization the hysteresis was only quantified and examined qualitatively. 

Whereas, a thorough study of the hysteresis compensation with a comparison between 

different mathematical models used will be dealt with in the next Chapter. 
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Figure 3.10 Hysteresis: (a) mechanical and (b) electrical. 

 

7) Working range 

The resistance-strain behaviour of the sensor was maximised at 50% strain and then, after a 

plateau, began to decrease for higher strain values (Figure 3.10 (b)). Consequently, 

Electrolycra’s usable working range could be considered to be between 0 and 50% strain. 

The relationship between resistance and deformation is due to the specific fabric structure. 

The electrical current must pass from one conductive yarn strand to another because of the 

warp knitted structure and the preferential direction along the courses. Consequently, the 

overall resistance is determined by the resistance of the yarn plus the contact resistance of the 

strand-to-strand contacts. When the fabric was subjected to stretching along the courses, as 

shown in Figure 3.1 (c), there is the transformation of yarn strands into loops. This 

transformation allows for the elongation of the fabric, resulting in an increase in resistance. 

Meanwhile, stretching causes the contact resistance to change. According to Holm’s 

contact theory [184], contact resistance is inversely proportional to the number of contact 

points and the contact pressure. As the load applied on the fabric increases, the yarn strands 

are more distant and the contact points lessen, but the contacting pressure on the overlapped 

yarn strands increases. Up to 50% fabric elongation, the overall resistance of the sensor 

therefore increased due to two factors: yarn strand elongation and the decrease of the number 

of contact points. After approximately 50% elongation, the overall resistance shows a plateau, 
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followed by a decrease. This behaviour could partly be explained by the increase in contact 

pressure. The contact pressure becomes more influential on the overall resistance, which 

decreases with the applied strain. 

Comparing the resistance change without the pre-stretching along the courses direction (in 

Figure 3.5 (a) and Figure 3.6 (a)), and the resistance change after the pre-stretching, it is clear 

that the relationship between resistance and deformation, previously described, affects not 

only the material structure, but also the sensor behaviour. The textiles show less hysteresis, a 

larger working range and more linearity. Consequently, this characterization step will 

influence the sensor design in relation to the specific application. 

8) Relaxation behaviour  

Figure 3.11 reports resistance vs. time plots for increasing strain (20, 30, 40, 50%) reached 

at one of three different speeds (60, 200, 400 mm/min). After the target strain was reached, it 

was kept constant. The plots clearly show that the initial overshoot and the corresponding 

steady state increased with increasing speed. 

 

Figure 3.11 Relaxation behaviour of Electrolycra fabric at 20, 30, 40 and 50% strain applied at three 
speeds (60, 200, 600 mm/min), with waiting times of 2 min. 

 

The total difference between the highest value during the overshoot and the lowest value 

after 120 s was lowest for 50% strain at 60 mm/min (0.82 Ω), where the long-term drift was 
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most dominant (0.58 Ω). In contrast, this difference was highest for 40% strain at 600 mm/min 

(1.15 Ω), where the overshoot was most dominant (0.75 Ω). In general, there was an increase 

in resistance with an increase in strain for all different speeds. 

9) Curve fitting 

Finally, the strain-resistance linear characteristic of the Electrolycra sensor was calculated 

(Figure 3.12). After 200% pre-stretching, eight stretch-recovery cycles within the sensor 

working range were performed and data were averaged. Resistance was expressed as a 

normalised relative resistance: 
𝑅−𝑅0

𝑅0
, where R0 is the resistance at zero value strain. For each 

5% of strain, the standard deviation was calculated (vertical bars in Figure 3.12); the 

maximum standard deviation value was 0.2, in correspondence with 30% strain. The results 

show that Electrolycra’s normalised resistance was proportional to the strain during the tensile 

stretch-recovery cycles, in which the coefficient of determination (R
2
) of the linear regression 

curve was 0.998. The linear characteristic of the Electrolycra shows a gauge factor (𝐺𝐹 =
∆𝑅

𝜀𝑅0
, 

where ΔR is the variation of the sensor resistance and ε is the applied strain) of about 2.56. 

The GF for metallic strain gauges is usually around 2. Conductive fabric strain sensors 

comparable to Electrolycra show a GF of 1.42, in linear range (7.6–26% of elongation) [111]. 

Considering that a high GF value is a positive factor for strain gauge realization, and 

Electrolycra GF is about 2.56 in linear range (up to 50% of deformation), this can be 

considered a further advantage of the proposed sensor. 

 

The first phase of this work resulted in a characterization methodology based on nine steps. 

In general, this methodology can be adopted to characterise, design and calibrate a strain 

sensor to fulfil the application requirements. 

The first evaluation steps are relevant to understand how the electrical properties of the 

material are related to the strain changes. The following three steps: i) preferential direction, 

ii) working range and iii) sample dimension offer important information about how to size the 

sensor. In particular, both the horizontal and vertical directions should be measured. In fact, as 

shown with Electrolycra, the material could present a preferential direction, meaning that the 

material presents a linear trend along this direction, and the working range must be measured. 

The sample dimension can be chosen in relation to the application and the working range; 
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however, a test is necessary to prove that the material’s behaviour is independent from the 

sample dimensions. 

The pre-stretching test, during the calibration phase, could improve the sensor properties, 

as it did with the Electrolycra. In such a case, it is necessary to find the percentage of pre-

stretching that offers the most benefits in terms of linearity and repeatability, and without 

damaging the textile. 

Once sized the sample, the following steps are relevant to evaluate time dependency: i) 

temporal stability, ii) relaxation behaviour, iii) hysteresis. These tests offer information about 

how to design the acquisition system. It is useful to know if the measurements are temporally 

stable and if they are affected by the stress relaxation of the textile material. 

Finally, in relation to the specific application of the textile sensor, it is relevant to know 

how it behaves with a range of strain rates and to identify the best curve fitting of the 

electrical-strain relationship of the sensor. 

The above reported role of each measured parameter has been used for the design of the 

wearable device for measuring joint angle and our resulting choices are summarized in Table 

3.1. 

 

Figure 3.12 The normalised relative resistance-strain relationship of Electrolycra. Data were 
averaged from eight stretch-recovery cycles measured within the sensor working range. 
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Table 3.1 Design choices for the wearable device deriving from the characterization procedure 

performed on Electrolycra. 

Parameter Role in the design Choice for the wearable device 

Preferential direction -Different behaviour 

-Not completely reliable tests 

Deformation along CD for the 

higher resistance change (after 

evaluating pre-stretching 

performances) 

Pre-stretching -100%: low resistance change, 

medium linearity, low hysteresis 

-150%: medium resistance 

change, medium linearity, low 

hysteresis 

-200%: high resistance change, 

low linearity, medium 

200% was selected to maximize 

the sensitivity of the sensor 

Strain rate Almost independent in the 

relevant velocity range 

No choice needed 

Sample dimension Slightly dependent on length-

width ratio 

Ratio set to 6 for maximizing 

sensing range and minimizing 

hysteresis 

Temporal stability Slow decline of performances No choice needed 

Hysteresis Evaluated for possible 

compensation 

No choice needed 

Working range The resistance-strain curve has a 

plateau and then a decrease after 

50% of deformation 

Working range set to: 0-50% 

Sensor dimension set to: 2 cm 

width x 12 cm length 

Relaxation behaviour Stability evaluated No choice needed 

Curve fitting Simple modelling: easy to 

implement, low accuracy 

Complex modelling: difficult to 

implement, high accuracy 

Linear model fitting 

experimental data is enough 

reliable to describe the 

dynamics of the movement 

 

3.4.2 Device performance 

Experimental tests conducted with the adult volunteer qualitatively proved the usability of 

the developed device as a wearable goniometer. The device resulted easy to wear and 

comfortable during motion, without affecting the natural motion of the elbow joint. 
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The device realised for the SABIAN’s knee joint was customised starting from the known 

geometrical features of the robot and calculating the linear characteristic of the Electrolycra 

sensor to find coefficients a and b of equation (3.2). 

Data acquired from our fabric-based sensor and from the SABIAN encoder during the 

flexion/extension tasks are shown in Figure 3.13. The root-mean-square error (RMSE) was 

8.9°. This error is not negligible, and therefore it is important to briefly discuss its causes. The 

linear fitting is an approximation of the sensor behaviour and does not take into account the 

hysteresis. In particular, the results presented in Figure 3.13 show an overestimation of the 

higher angle values and an underestimation of the lower angle values. The acceptability of 

this RMSE is related to the intended application. If the priority is to acquire more accurate 

angle measurements, another curve fitting or a different modelling technique should be 

applied that accounts for the hysteresis error. The drawbacks in such a case would be a more 

complicated model and the higher computational cost required. 

Another limit to this process was due to the approximation of the SABIAN knee joint 

radius r, which, unlike the human joint, was not easy to quantify. In addition, some errors 

may also come from the wearable sleeve sliding on the skin. Any skin-mounted sensor will 

likely suffer from soft-tissue artefacts, however, even without sliding error. 

 

Figure 3.13 The plot shows 2 min of the SABIAN knee flexion/extension, both the encoder output 
and the wearable goniometer output. 
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Considering the first results presented in this Chapter, it is possible to confirm that the 

introduction of a general approach can be used for the assessment of the electro-mechanical 

properties of a piezoresistive conductive textile, applied as a stretch sensor. This approach is 

easy to follow and could be employed for other textile strain sensors for their design, 

characterization and optimization (e.g. the pre-stretching that increases accuracy and 

repeatability). The second results shown that the developed wearable goniometer possesses 

the necessary wearability and sensing capabilities for long-term monitoring, following the 

“wear and forget” concept. Indeed, even though the RMSE is not negligible, the sensor signal 

still provides sufficient motion measurement capabilities that could be useful for specific 

applications. The developed device is an example of the application of Electrolycra to monitor 

human joint movements, which shows the potential of this sensor to be used as a wearable 

sensor without being stressful for the wearer. 

Next Chapters focus on the improvement of the sensor performance (in particular rate-

dependent hysteresis) and on the development of a new wearable sensing device whose 

application could be extended to different scenarios, as tracking neck movements. 

 



Chapter 4 

 

Model-based compensation of rate-dependent hysteresis in 

a textile-based strain sensor 

 

 

4.1  Introduction 

This Chapter is concerned with modelling of conductive textiles, aimed at compensating 

their intrinsic nonlinearities. In particular, a new model is proposed to compensate for 

hysteresis and relaxation in strain sensors made of Electrolycra. These sensors have 

interesting potential uses, but they present remarkable electro-mechanical hysteresis. 

Piezoresistive hysteresis is known for a major drawbacks of resistance-type sensors. 

Depending on the magnitude of the effect, it makes the calibration of the materials for their 

use very difficult, limiting severely the applicability of these materials as sensors. A system 

with hysteresis is defined as a system whose output does not only depend on the current input 

but also on the history of the input. Friction force and structural changes in the material are 

regarded as the main causes of this undesirable behaviour [185]. 

Some approaches have been introduced to reduce the impacts of these factors through 

structural modification [186] or by varying the production parameters applied to specific 

designs [187]. However, the correction of nonlinear hysteresis using mathematical modelling 

is unavoidable to improve the stretch sensing accuracy. Few studies were conducted to 

compensate piezoresistive hysteresis. For strain sensing application, a hysteresis compensator 

based on a modified dynamic Preisach model was applied on a strain sensor made of 

conductive polymer nanocomposites [188]. This model could compensate for both the static 

effect and the relaxation and input-rate dependence of conductive polymers. In [189] a 

modified Prandtl-Ishilinskii (MPI) model was adopted to compensate for piezoresistive 

hysteresis of the nanocomposite for skin-mountable stretch sensing. The MPI model 
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formulates rate-independent and monotonic hysteresis behaviour. This means this model can 

compensate velocity independent and monotonic piezoresistive characteristics of the 

nanocomposite. However, these studies presented limited results in terms of performance and 

generalizability. 

This Chapter present a thorough experimental investigation probing the electromechanical 

response of the Electrolycra subjected to cyclic loading and propose a new model to 

compensate for its intrinsic nonlinearities, thus improving its sensing accuracy and paving the 

way to precise strain measurement in soft highly stretchable sensors. The new model was 

developed in collaboration with the University of Genoa (Department of Naval, Electric, 

Electronic and Telecommunications Engineering), and it is a variant of a power-law (PL) 

model recently proposed [190] to reproduce hysteresis and creep (another rate-dependent 

phenomenon) in piezoelectric actuators (PEAs), which are largely used for micro- and nano-

positioning applications [191][192]. In this work the PL model is properly modified in order 

to compensate for the rate-dependent hysteresis of the conductive textile. The model can be 

exploited to accurately estimate the strain of the textile, given the measurement of its 

electrical resistance and is valid at different strain rates. The model parameters are identified 

on a set of experimental data and its accuracy is validated on a different set. In addition, the 

model is also validated by using experimental data sets foreseen the use of the elbow joint of 

the iCub robot. Comparisons with the well-known MPI model and an algebraic model that 

relates strain and resistance through a third-order polynomial are also provided, to benchmark 

the performances of the proposed model. 

 

4.2  Experimental setup 

After a thorough characterization of the electro-mechanical properties of the Electrolycra 

presented in the previous Chapter, here we focus our attention on the compensation of its 

hysteresis. 

Electrolycra looks and feels like ordinary lycra but it is highly conductive because it is 

weaved with silver plated 76% nylon 24% elastic fibers [125]. Its conductivity depends on 

how tightly it is stretched; if it is stretched, its resistance R increases. In particular, we are 

interested in the relationship between strain 𝑆 = 100
𝐿−𝐿0

𝐿0
% and resistance R, where L is the 

current sample length, whereas L0 is the sample resting length.  
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As demonstrated in the previous Chapter, Electrolycra can be stretched beyond its initial 

length, with better performances after pre-stretching of 200% [193]. Moreover, this material 

has a preferential direction along which resistance significantly changes and a major strain is 

possible, with a working range of strain S from 0% to 50%.  

Additional tests were performed for the present work to better understand Electrolycra 

electromechanical behaviour and to validate the developed model with new experimental 

datasets. The electromechanical tests were performed at room temperature by using the 

Instron material testing machine (model 4464, Instron Inc., Norwood, MA), with the same 

setup adopted during the characterization phase and presented previously. 

Due to material preferential direction [125][193], uniaxial cyclic strain tests have been 

conducted along this direction on a specimen 20 mm wide and with length L0 = 100 mm along 

the preferential direction. The dimensions of the specimen were chosen arbitrarily, as the 

sensor behaviour depends only slightly on the length-width ratio [193]. 

 

4.3  Experimental protocol 

13 datasets of applied strain S and corresponding resistance R were collected, belonging to 

three different classes: 

 Different strain patterns (datasets SP1, SP2 and SP3): three strain profiles 

composed of pieces of triangular waves with 5 periods each (see Figure 4.1). The 

sample is stretched at a constant rate of 50 mm/min. In SP1 each piece is 

characterized by a different offset (10%, 20%, 20% and 30%) and amplitude (20%, 

20%, 30% and 20%); in SP2 the offset is constant (10%) and only the amplitude 

changes (10%, 20%, 30% and 40%); in SP3 the amplitude is constant (20%) and 

the offset changes (10%, 20% and 30%). 

 Different strain rate (datasets from SR1 to SR9): nine strain profiles composed of 

triangular waves. For each dataset, the sample is stretched at a different rate, from 

20 mm/min (SR1) to 100 mm/min (SR9), with an increasing step of 10 mm/min. 

Figure 4.2 shows the time evolution of strain and resistance (left panels) and the 

relationship between S and R (right panel) for datasets SR1 and SR9. The other 

datasets, not shown to improve the visibility of the graph, are distributed among the 
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curves of datasets SR1 and SR9. Notice that this relationship is hysteretic and, as 

the strain rate increases, the loop rotates counterclockwise around its low-left 

corner. Moreover, each loop is traveled clockwise, as marked by the arrows in 

Figure 4.2. These datasets allow to evaluate the influence of the strain rate on the 

sensor characteristics. 

 Relaxation behaviour (dataset RB1): in this case the sample was stretched at a 

speed of 1000 mm/min, and held at increasing values of strain (10%, 20%, 30%, 

40%, and 50%) for 30 sec (see Figure 4.3). Notice the temporal decrease 

(relaxation) of the resistance in response to a constant strain applied to the sensor. 

This effect is particularly visible when the textile is stretched (black ellipse), 

whereas it is negligible when the textile is relaxed (gray ellipse). 

 

Figure 4.1 Measurements of applied strain (bottom panels) and corresponding resistance (top 
panels) as a function of time, for datasets SP1 (a), SP2 (b) and SP3 (c). 

 

Figure 4.2 Measurements of applied strain (left bottom panel) and corresponding resistance (left 
top panel) as a function of time for datasets SR1 (gray curves) and SR9 (black curves). The right 
panel shows the same measurements in the (S;R) plane. 
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Figure 4.3 Measurements of applied strain (bottom panel) and corresponding resistance (top 
panel) as a function of time for datasets RB1. Notice (see the black ellipse) the relaxing behaviour 
of the resistance in response to a constant strain, when the textile is stretched. 

 

4.4  Hysteresis model 

In order to accurately employ the Electrolycra as a strain sensor, S must be estimated based 

on the measurement of the resistance R. An inverse model (simply referred to as model, in the 

following) able to reproduce both the hysteresis characteristic and the relaxation dynamics, is 

therefore necessary, which takes in input the measured resistance R and provides an 

estimation Ŝ of the corresponding strain S. To estimate the strain, the model must be 

connected in cascade to the sensor, as shown in Figure 4.4. 

The model must be able to compensate for the typical nonlinear behaviours of 

Electrolycra: 

1) the relationship between Electrolycra input S and output R is hysteretic, and the 

hysteresis loop is traveled clockwise; 

2) the hysteresis loop rotates counterclockwise around its lower-left corner as the strain 

rate increases; 

3) in the presence of a constant strain, Electrolycra resistance slowly drifts (relaxing 

dynamics); 

4) the relaxation is negligible for up-down strain steps. 
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Figure 4.4 Block scheme showing how to connect the model to the Electrolycra in order to estimate 
the strain S based on the measurement of the resistance R. 

 

This section describes a new model developed in collaboration with the University of 

Genoa (Department of Naval, Electric, Electronic and Telecommunications Engineering), 

henceforth called asymmetric power-law model (APL), able to compensate for these 

behaviours. The normalized version of model input R and output Ŝ are ξ = R/R0 + α and ψ = 

Ŝ/S0 + β, respectively, being ξ and ψ dimensionless quantities in the range [-1, 1]. 

The model is composed of a set of N elementary hysteretic cells each one characterized by 

a state variable xk whose dynamics is defined through the implicit formulation hk(xk, ẋk, t) = 0, 

k = 1, …, N. Functions hk are defined as follows: 

ℎ𝑘(𝑥𝑘, 𝑥̇𝑘, 𝑡) = {

𝑥̇𝑘 − 𝜎 (
𝜉(𝑡)−𝑥𝑘(𝑡)+1

𝜌𝑘+1
) 𝑖𝑓 − 1 ≤ 𝜉(𝑡) − 𝑥𝑘 ≤ 𝜌𝑘

𝑥𝑘 − 𝜉(𝑡) − 1 𝑖𝑓 𝑥̇𝑘 ≤ 0

𝑥𝑘 − 𝜉(𝑡) + 𝜌𝑘  𝑖𝑓 𝑥̇𝑘 ≥ 𝜎

   (4.1) 

where 𝜌𝑘 =
2𝑘

𝑁+1
− 1 (k = 1, …, N) are thresholds equally spaced in the range (-1, 1). 

The corresponding nonlinear vector field is shown in Figure 4.5 (left panel), and its shape 

is determined by parameters σ > 0 and p > 0. 

The model output ψ is computed as: 

𝜓(𝑡) = 𝑓−1(𝜔0𝜉 + ∑ 𝜔𝑘𝑥𝑘 +  𝜔𝑁+1
𝑁
𝑘=1 )      (4.2) 

where f is assumed to be a strictly-increasing piecewise-affine (PWA) function, defined as 

a weighted sum of an odd number M of PWA basis-functions ϕj(j = 1, …, M) [190]: 

𝑓(𝜓) = ∑ 𝜇𝑗𝜙𝑗(𝜓)𝑀
𝑗=1          (4.3) 
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Coefficients ωk (k = 0, …, N+1) and μj (j = 1, …, M) are obtained by solving a quadratic 

programming problem based on experimental measurements of model inputs and outputs. 

By applying a high-frequency triangular input ξ, the relationship between the state xk of the 

k-th APL cell and the input ξ is the trapezoidal hysteresis loop shown in black in Figure 4.5 

(right panel). As the rate of the input increases, the loops are hinged at the lower-left corner. 

By summing states xk as in equation (4.2), it results (see Figure 4.6, left panel) that the 

hysteresis loop between the model output ψ and ξ is traveled counterclockwise (see arrows) 

and rotates clockwise around its lower-left corner as input rate increases. This allows to 

compensate for the Electrolycra’s nonlinearities. The right panels in Figure 4.6 show instead 

the response (bottom panel) of the model to a stepwise input (top panel). Notice that the 

relaxation dynamics is exhibited only for increasing input steps. 

Model parameters are N, M, σ, p, ωk, and μj and can be optimized with a procedure 

completely similar, mutatis mutandis, to the one proposed in [194] for the model of 

piezoelectric materials. 

 

Figure 4.5 Vector field (left panel) and hysteresis loops at different input rates (right panel) of the 
k-th cell of the APL model. In the left panel, curve colors become darker as the input rate increases. 

 

4.5  Tests on iCub 

Preliminary tests (reported in the previous Chapter) were performed to assess the usability 

of the conductive textile as wearable goniometer and its capability to track the elbow joint 

movement during cyclic flexion/extension tasks. For model validation, Electrolycra strain 

sensor was applied to a robot iCub (Figure 4.7) to estimate elbow angle rotation. Because the 

sensor attached to the robot changes its length following elbow angle rotation, the change in 
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resistance measured by the sensor can be used to estimate the rotation angle. In this process, 

hysteresis behaviour of resistance change was compensated by the APL model, and MPI and 

polynomial curve fitting models for comparison. 

The iCub is a 53 degree-of-freedom (dof) humanoid robot of the same size as a three or 

four year-old child. The total number of dof for the upper body was set to 38 (seven for each 

arm, nine for each hand and six for the head) [195]. The elbow is driven by Kollmorgen 

medium-power motor (20 Nm) occupying almost the entirety of the upper arm link, and it is 

equipped with relative position sensing (Hall effect sensors integrated within the motors) and 

miniature 12-bit absolute magnetic encoders (AS5045; Austria Microsystems) [196]. The 

iCub is an open systems platform: researchers can use it and customize it freely since both 

hardware and software are licensed under the GNU General Public Licence (GPL). For the 

tests, flexion/extension cycles were performed by rotating the elbow joint with aperiodic 

movements that simulate the natural human elbow movements. Electrolycra was applied in 

correspondence with the robot joint (Figure 4.7 (b)) and the change in resistance was 

measured using the same acquisition circuit adopted during the tests on Instron. Sensor 

resistance variation and the encoder data were collected simultaneously, and all data were 

synchronised and analysed using a custom MATLAB® code. The change in resistance of the 

stretch sensor was converted to the flexion angle using the APL model. The parameters of the 

APL model were estimated using reference data obtained from the encoder. 

 

Figure 4.6 Left panel: hysteresis loops ψ vs ξ. Curve colors become darker as the input rate 
increases. Right panels: applied input (top) and APL model output (bottom). 
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Figure 4.7 Validation tests using the humanoid robot iCub: a) experimental setup; b) Electrolycra 
fixed in correspondence with the elbow joint. 

 

4.6  Results and discussions 

The APL model was added to the MATLAB toolbox HystTool [197], which automatically 

fits its parameters to experimental data. We chose to use as training set the datasets SP1, SR1, 

SR4, SR7, SR9, whereas the other sets are used for validation purposes. The model inputs ξ 

and outputs ψ have been obtained by normalizing the values of R and S contained in the 

training set, with R0 = 7.16 Ω, α = -2.61, S0 = 25% and β = -1. Through HysTool we set N = 

11 and M = 9 (a further increase of their values does not decreases significantly the estimation 

error), σ = 2.15 * 10
-2

 and p = 0.73. The other fitting parameters (obtained by solving a 

quadratic problem) are listed in Table 4.1 (left columns). 

HysTool has been also used to fit the MPI model (already implemented in the tool), in 

order to perform a comparison with the solution adopted in [189]. The MPI model relies on 

the same parameters of the APL model, with the exception of σ and p. By setting a priori N = 

11 and M = 9, the resulting optimal parameters are listed in Table 4.1 (right columns). 
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Table 4.1 APL and MPI model parameters. 

 APL model MPI model 

k, j ωk (× 10
-6

) μj (× 10
5
) ωk (× 10

-6
) μj (× 10

5
) 

0 2.523  1.483  

1 0.843 0.412 0.510 0.518 

2 1.522 0.014 0.808 -0.143 

3 0.522 0.092 0.337 0.295 

4 0.513 0.190 0.220 0.506 

5 0.002 1.405 0.233 2.516 

6 0.022 0.293 0.102 0.692 

7 0.041 0.056 0.070 0.131 

8 0.106 0.716 0.043 0.841 

9 0.276 -0.160 0.038 -0.367 

10 0.457  0.068  

11 0.695  0.070  

12 3.827  0.026  

 

A third model (used as benchmark also in [189]) has been considered, which simply 

expresses the strain as a cubic (CU) function of the resistance, by neglecting the hysteresis: 

𝑆 = 𝑐3𝑅3 + 𝑐2𝑅2 + 𝑐1𝑅 + 𝑐0        (4.4) 

Coefficients c0, …, c3 are obtained through least squares optimization on the considered 

data, leading to c0 = -69.5, c1 = 7.816 Ω
-1

; c2 = -0.2112 Ω
-2

 and c3 = 0.003512 Ω
-3

. 

Figure 4.8 shows the root mean square error (RMSE) obtained with the APL, MPI and CU 

models on all the 13 available datasets, being tk (k = 1, …, K) the sampling times. The RMSE 

is defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ (𝑆̂(𝑡𝑘) − 𝑆(𝑡𝑘))2𝐾

𝑘=1        (4.5) 

As expected, the CU model leads to larger errors, since it does not represent hysteresis, 

whereas the APL model outperforms in most cases the MPI model, as it is able to reproduce 
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rate-dependent effects. In the following sections, more detailed results are shown for each 

class of datasets. 

 

Figure 4.8 RMSE obtained on all the 13 datasets employing APL model (blue curve), MPI model (red 
curve) and CU model (green curve). Squares mark the datasets used also to train the models. 

 

4.6.1 Different strain patterns 

On datasets SP1, SP2 and SP3 the performances of the APL and MPI models are 

comparable. Indeed, in these datasets the strain rate is constant, and therefore also the MPI 

model (which only models rate-independent hysteresis) is accurate. The absolute error e(t) = 

|S(t) - Ŝ(t)| as a function of time on datasets SP2 and SP3 (not used to train the model) is 

shown in Figure 4.9, confirming that the accuracies of APL and MPI models are comparable 

and higher with respect to the CU model. 

4.6.2 Different strain rate 

The APL model, instead, outperforms the MPI model on datasets SR1-SR9, since the MPI 

model is not able to reproduce the rotation of the hysteresis loops as the strain rate increases. 

This is clearly visible in Figure 4.10, which shows the time evolution of the measured and 

estimated strains (one period) for datasets SR2 (left) and SR9 (right). The bottom panels show 

the corresponding absolute errors. It can be noticed that the APL model is the only one able to 

correctly estimate the strain at both low and high rate with an error always lower than 4%, as 

it reproduces the loop rotation, as visible in Figure 4.11. 
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Figure 4.9 Time evolution of e(t) = |S(t) - Ŝ(t)| for dataset SP2 (top panel) and SP3 (bottom panel) 
with APL (blue), MPI (orange) and CU (green) model. 

 

 

Figure 4.10 Measured (black dashed curves) and estimated (color curves) strain S for datasets SR2 
(top left panel) and SR9 (top right panel). The bottom panels show the corresponding absolute 
errors. Blue curves: APL model; orange curves: MPI model; green curves: CU model. 

 

The ideal characteristic of the compensated sensor shown in Figure 4.4 should be Ŝ = S. 

Figure 4.12 shows the characteristics obtained with the CU (left), MPI (center) and APL 

(right) models on datasets SR1, …, SR4. If the CU model is used, hysteresis is not 

compensated, as demonstrated by the loops in the (S, Ŝ) plane. With the MPI model, the loop 
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areas are greatly reduced, however the characteristics deviate from the ideal one (black 

dashed line) as the input rate decreases. On the contrary, by exploiting the APL model, 

hysteresis is well compensated and the characteristics remain close to the ideal one for all the 

considered input rates. 

 

Figure 4.11 Measured (gray points) and estimated (colored curves) strain S vs. resistance R for the 
lowest (SR1 – left panel) and the highest (SR9 – right panel) strain rates. Blue curve: APL model; 
orange curve: MPI model; green curve: CU model. 

 

 

Figure 4.12 Estimated strain Ŝ with CU (left panel), MPI (middle panel) and APL (right panel) model 
as a function of the measured strain S. The black dashed line represents the ideal characteristic Ŝ = 
S. 

 

4.6.3 Relaxation behaviour 

For dataset RB1, the lowest error is achieved with the APL model because it is the only 

one able to reproduce the relaxation dynamics. This is also visible in Figure 4.13 (see in 
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particular the inset), where the APL model estimates an almost constant strain in response to a 

time decreasing resistance, meaning that the relaxation dynamics is at least partially 

compensated. In other steps the compensation is worse, especially in the first part of the steps, 

but anyway it is better than those obtained with the other considered models. It is also 

important to remark that this dataset has not been used to identify the model parameters; this 

test is therefore a further proof of the generalization capability of the model. 

 

Figure 4.13 Measured (black dashed lines) and estimated (color curves) strain S computed on 
dataset RB1. Blue curve: APL model; orange curve: MPI model; green curve: CU model. 

 

4.6.4 Tests on iCub 

The APL model was added to the MATLAB toolbox HystTool [197], which automatically 

fits its parameters to experimental data. The data used for the robotic application are the three 

"natural" movements shown in the following figures. We chose to use a portion (highlighted 

in gray) of movement 1 (Figure 4.14) and of movement 3 (Figure 4.16) to train the 3 models 

(APL, MPI and CU). The remaining parts of movements 1 and 3 and the entire movement 2 
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(Figure 4.15) were not used to train the models, but only for validation purposes. The models 

were trained from R and angle θ measurements (rather than S). 

 

Figure 4.14 Measured (black curves) and estimated (color curves) angle θ for natural movement 1 
(top panel). The bottom panel shows the corresponding absolute errors. Blue curves: APL model; 
red curves: MPI model; green curves: CU model. 

 

 

Figure 4.15 Measured (black curves) and estimated (color curves) angle θ for natural movement 2 
(top panel). The bottom panel shows the corresponding absolute errors. Blue curves: APL model; 
red curves: MPI model; green curves: CU model. 
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Figure 4.16 Measured (black curves) and estimated (color curves) angle θ for natural movement 3 
(top panel). The bottom panel shows the corresponding absolute errors. Blue curves: APL model; 
red curves: MPI model; green curves: CU model. 

 

In some parts of the natural movement 2 the compensation is worse, but anyway it is better 

than those obtained with the other considered models. 

Figure 4.17 shows the RMSE obtained with the APL, MPI and CU models on all the three 

natural movements. 

As expected, the CU model leads to larger errors, since it does not represent hysteresis, 

whereas the APL model outperforms the MPI model, as it is able to reproduce rate-dependent 

effects. It can be noticed that the APL model is the only one able to correctly estimate the 

angle in all the three natural movements with an error always about 4%, as visible in Figure 

4.17. 

These results confirming that the accuracies of APL model are higher with respect to the 

MPI and CU models. 
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Figure 4.17 RMSE obtained on all the three natural movements employing APL model (blue curve), 
MPI model (red curve) and CU model (green curve). 

 

In conclusion, the APL model provided a good hysteresis compensation performance even 

with a small calibration dataset. These results confirm that an adequate processing can 

enhance the sensor performances in case of dynamic measurements, without a prior 

knowledge of the strain rate typical for a particular application, extending its general 

applicability. Moreover, since hysteresis is caused by the intrinsic mechanical properties of 

the elastic material (that requires longer recovery time) the approach can be extended to all 

the sensors which are based on elastomer deformations and present rate-dependent hysteresis 

to improve their estimation performance. 

In addition, analogously to the PL model, also the APL model is suitable for 

implementation on digital devices (e.g., microcontrollers [198]), making it suitable for a real-

time estimation of the textile strain, given the measurement of its electrical resistance. This 

allows to develop accurate strain sensors based on piezoresistive textile, suitable for wearable 

and soft robotics applications. 



Chapter 5 

 

Biomedical application I: a wearable sensing device for 

monitoring single planes neck movements 

 

 

5.1  Introduction 

Neck mobility is fundamental for many Activities of Daily Living and a reduction in the 

Range Of Motion (ROM) can reduce the quality of life of the affected subjects. The 

evaluation of cervical spine mobility and the measurement of cervical ROM are important 

methods used in clinical settings for diagnosis and prognosis of patients with cervical spine 

disorders but also to quantify manipulation effects [199]. A reduction of ROM has been found 

to be a useful indicator of cervical physical impairment [200]. Indeed, modifications of ROM 

have been observed in subjects with traumas, head and neck problems, disturbances of 

termporomandibular joints and masticatory muscles, cervicogenic headache, neck pain, 

cervical dystonia, cervical radiculopathy and Whiplash-Associated Disorders (WADs) 

[199][200][201][202][203]. Therefore, the measurement of ROM has been used to assess the 

severity of the disability and the effectiveness of a rehabilitation program [201]. Generally, in 

clinical settings, physiotherapists and clinicians carry out visual estimation of cervical ROM. 

However, an adequate tool could be useful for a quantitative measurement of cervical ROM, 

taking into account that age and gender affect the physiological ROM [200][201].  

In literature, different methods have been proposed for ROM measurement based on 

expensive technologies, such as optoelectronic system [202][203], electromagnetic tracker 

[200][204][205], and ultrasonic techniques [206]. A recent study investigated the validity of 

the Coda Motion 3-D Analysis System (Charnwood Dynamics Ltd., Leicestershire, UK) for 

measuring cervical ROM in healthy adults, with good results [207]. All of them provide 

accurate data but they need a structured environment and a qualified staff. Another system 

used to evaluate cervical ROM is the electrogoniometer [208][209], it produces a good 
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precision of data but an accuracy less than satisfactory [210]. Other wearable devices were 

proposed, such as a cervical goniometer [211] and a device based on a new iPhone-

application [212]. However, these instruments is not so user-friendly and acceptable by 

patients. Moreover, concerning the iPhone-application, the technology used in smartphones 

innovates rapidly and then it will need continuous validity and reliability evaluation. 

Wearable inertial sensors are other systems adopted for monitoring neck movements [213]. In 

their use, the benefits are that they are wearable and acceptable for patients, inexpensive and 

provide accurate data. However, the output data require a post-processing with very complex 

algorithms [214]. 

Accurate measurement of the cervical ROM is important not only for orthopaedists, who 

carry out surgeries on the neck, but also for therapists, who provide therapy and treatment of 

the neck. This parameter allows to evaluate the efficacy of such interventions [215]. However, 

most of the existing measurement systems evaluate neck ROMs including trunk motion. The 

measurement of pure neck ROM needs trunk stabilization [202], which makes clinicians or 

researchers unable to measure neck ROM during Activity of Daily Living. As the new device 

aims to measure the neck ROM without taking into account the compensating movement of 

the trunk, it could allow clinicians to assess the effectiveness of interventions for the neck. In 

addition, a precise measurement of the cervical ROM is also important because a repeatable 

measurement is suitable for a clinical setting and for research field. In particular, the feature 

of repeatability should guarantee a valuable tool in the management of patients with a reliable 

clinical outcome. 

In the last years, several studies have employed smart textiles as sensors to monitor 

physiological parameters or for quantitative analysis of movements. Indeed, smart textiles 

represent a valid solution to conventional solid-state sensors because of their comfortable 

wearability, lightweight, and capacity to adapt to different body structures without hindering 

physiological movements [216], providing satisfying accuracy of the collected data. The main 

advantages of these textiles are that feature electronics and interconnections woven into them, 

presenting physical flexibility and typical size that cannot be achieved with other existing 

electronic manufacturing techniques [112]. 

In the wearable field, conductive textiles are widely used for a new on-body capacitive 

sensing approach to derive activity related information. Cheng et al. [217] considered a 

capacitor build out of a conductive textile based electrodes integrated in a collar and the 
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human body as dielectric (Figure 5.1 (a)). They investigated electrode positions at the neck 

for a better recognition of speaking, head motions (shaking, nodding), head positions, deep 

breathing, chewing and swallowing. In addition, different strain sensors based on 

piezoresistive textiles have been proposed for neck movement measurement, such as foam 

sensor composed of polypyrrole-coated polyurethane foam [218] and a fiber-shaped textile 

knitted with hierarchical polyurethane fibers and coated of silver nanowires and styrene–

butadiene–styrene [219] (Figure 5.1 (b)). These studies presented the development of a 

prototype sensing textile and their potential in measuring neck movement by evaluating 

resistance changes when the human’s neck moves, but a device validation is missing. 

 

Figure 5.1 a) Sensor placement in an elastic band and integration in a pullover collar are shown 
[217]; b) e-textile attached on a human’s nape and corresponding resistance changes when the 
human’s neck turns down and up [219]. 
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It is clear the wide scope of application of the smart fabrics and their potential employment 

in diagnosis and monitoring of several diseases. In this framework, the primary objective was 

to develop a Wearable Sensor Device (WSD) based on smart fabrics that overcomes the 

limitations of current technologies used for measuring neck movements. Although there are 

very few studies on the use of smart fabrics for the measurement of cervical ROM, the 

challenge of the proposed work was the development of a “wear and forget” device for a 

continuous monitoring of the three-dimensional movement of head and cervical spine. The 

key idea is to place the WSD along the neck; therefore, the system must be light, non-

intrusive and simple to wear. 

Thus, the present work consists of three parts. The first aim has been the characterization 

of the piezoresistive textile employed with the analysis of its properties for both static and 

dynamic measurement conditions, in order to optimize and calibrate its sensing capabilities. 

The second part focuses on the identification of a sensor design able to provide a comfortable 

wearability on subjects’ neck. Finally, in the third part of the study, the reliability of the 

developed WSD for measurement of cervical head movements was investigated, by using 

Vicon measurements as the Reference Standard (RS). 

 

5.2  Material characterization 

Among the available possibilities on the market of conductive textile, the Electrolycra 

(Mindsets Ltd, United Kingdom) has been selected for this study, also thanks to its features 

previously studied. Previous works have also adopted Electrolycra as a strain sensor in several 

applications such as the sensorisation of continuum soft robots for reconstructing their spatial 

configuration [125], and as to reveal bending and force in a soft body [138]. 

Electrolycra main characteristics, previously investigated, are that it can be stretched 

beyond its initial length, with better performances after pre-stretching of 200%. Moreover, 

this material has a preferential direction along which resistance significantly changes and a 

major strain is possible, with a working range from 0% to 50% of strain and electrical 

hysteresis of about 14.8%. Additional tests were performed in the framework of the present 

work to better understand and characterize Electrolycra electrical and mechanical properties 

in conditions that are more suitable for this application. Therefore, the electromechanical tests 

were performed at room temperature by using the Instron material testing machine (model 
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4464, Instron Inc., Norwood, MA), with the same setup adopted during the characterization 

phase and presented in the Chapter 3. 

Due to material preferential direction [125][193], uniaxial cyclic strain tests have to be 

conducted along this direction. In order to characterize our material, the first phase consisted 

in cutting Electrolycra for preparing several specimens with 20 mm in wide and 100 mm in 

length along the preferential direction. Tests carried out to extract stress-strain relation have 

been performed in static and dynamic condition. 

A static characterization has allowed to evaluate the sensor behaviour under normal 

condition, without impact, acceleration and vibration. Twenty strain values equally spaced 

from 5% to 100% were applied to the sensor, and the output signal was recorded for two 

minutes. Three replicates were performed for each strain value. In particular, the mean values 

and the Standard Deviations (SD) were considered for each replicate; then the results were 

averaged on the three trials and SD were considered to evaluate the static repeatability of the 

sensor. 

In order to describe the behaviour of the sensor for different percentage of deformation, in 

the absence of stresses at constant strain rate, dynamic tests were performed [177]. Ten strain 

values equally spaced from 10% to 100% were applied to the sensor, with a strain rate of 50 

mm/min. For each deformation, five cycles were performed. 

In addition, tests included different level of velocity were carried out, in order to evaluate 

and confirm the influence of the strain rate on the sensor characteristics, previously found. 

These tests were performed applying on the sensor the same strain (50%) at ten different 

strain rates (from 10 mm/min to 100 mm/min equally spaced). This range of strain rate covers 

reasonably the typical velocity of neck human movements. 

 

5.3  Sensor design identification 

The integration of the conductive textile into a wearable device was a key point. The 

challenge was to realize a wearable sensing system for monitoring neck movements in a non-

intrusive and comfortable way. In addition, since the device has to deform or expand by 

following the neck movement, it is crucial its perfect adhesion on the skin around the joint. 

For this purpose, an adhesive tape was selected as interface between the sensor and the skin 



5. Biomedical application I 

103 
 

(Kinesio Tape, Kinesio Co., Ltd, Tokyo). This tape has several advantages: it is not invasive 

and readily available on the market, it does not limit movement and does not require a 

complex process of integration with the Electrolycra. The Kinesio Tape is widely used in the 

sports field for healing purpose of traumatized tissues and muscles. Its favourable features are 

elasticity, adhesiveness and breathability of the tissues.  

The double-layer conductive textile/adhesive tape was characterized to verify the influence 

on the electrical behaviour of the sensor. Tests were carried out on a 20 mm × 100 mm sample 

of double-layer Electrolycra/Kinesio Tape. These tests, performed in a static condition, were 

compared with those performed on a single layer Electrolycra. Ten strain values equally 

spaced within the sensor working range were applied, and the output signal was recorded for 

two minutes. Three replicates were performed for each strain value. In particular, the mean 

values and the SD were considered for each replicate; then the results were averaged on the 

three trials and SD were considered to evaluate the static repeatability. 

The final sensing system is composed of stripes (20 mm × 100 mm) of conductive textile 

fixed on Kinesio Tape using two simple clips placed at the extremities with welded wires to 

detect the sensor voltage. These wires were connected to the same acquisition circuit adopted 

during the characterization phase to acquire the electrical resistance value. 

 

5.4  Evaluation of system reliability 

Literature findings [220] showed that the neck’s center of rotation is not unique; however, 

despite this result, the human body is often treated as a system of rigid links, connected by the 

geometrically ideal joints [221]. As such, we can model the neck as a spherical joint with 

three Degrees Of Freedom (DOF), and not as a kinematic chain. The simplified 

biomechanical model adopted in this work, is composed of two cylinders connected by a 

spherical shell with fixed radius and three rotational axes (Figure 5.2). 
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Figure 5.2 A biomechanical model of the neck in a) lateral bending, b) rotation, and c) flexion-
extension. 

 

The sensor location should be carefully evaluated and standardized to guarantee 

comparable measurements and optimize the sensor’s capability in detecting head movement. 

Considering that the sensor can only measure the amount of stretch and in order to measure 

each movement, it is necessary to place two sensors on the opposite sides of the joint. For the 

lateral bending, sensors are placed on both sides under the angle of the mandible and in 

correspondence with the trapezius scapula insertion (Figure 5.3 (a)). In the case of rotation, 

sensors are placed on both sides on the anterior part of angle of the mandible and in 

correspondence of the trapezius muscle (Figure 5.3 (b)). Finally, for the flexion-extension 

movement, one sensor is placed between the hyoid bone and the sternum (extension), the 

other between C2 and C7 vertebrae (flexion) (Figure 5.3 (c)). 

The key advantage of this approach is that it allows the use of the geometric relationship 

between the elongation of each pair of sensors (ΔL, where L represents the sensor length) and 

the angle θ relate to each plane [46][193][222] (as also shown in Figure 3.3): 

∆𝐿 = 𝑟𝜃           (5.1) 

where r is the neck joint radius, an anthropometric parameter that is specific for each 

subject. By combining this equation and the characteristic of the sensor, it is possible to 

evaluate the relationship between the sensor resistance and the angle (in degrees) of lateral 

bending, rotation and flexion-extension. 



5. Biomedical application I 

105 
 

 

Figure 5.3 Position of the WSDs for the a) lateral bending, b) axial rotation and c) flexion-extension 
measurements. 

 

5.4.1 Accuracy and repeatability 

For the investigation of the accuracy and repeatability of the developed WSD in 

measuring the cervical head movement, the optoelectronic system (Vicon Bonita, Vicon 

Motion System Ltd, Oxford, UK) was used as RS [202][213][215]. It was composed of six 

infrared cameras acquiring the trajectories of reflective markers at 100 Hz. Seven spherical 

markers (5 mm in diameter) were attached on each subject, three were positioned on the head 

(glabella, right and left sphenofrontal suture) and four on the upper body (body of sternum, 

right and left sternoclavicular joint and T10 vertebra) (see Figure 5.4). Neck angles measured 

with both systems (WSD and RS) were synchronized and analyzed using a custom 

MATLAB® code (MathWorks Inc., Natick, MA, USA). 
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Figure 5.4 Position of the WSD and spherical markers for the flexion/extension measurement 
during the testing procedure: a) frontal and b) rear view of the subject. 

 

Five young healthy volunteers (one male and four females, mean age 24.8 ± 3.5 yrs) were 

recruited and asked to perform active head movements. They were asked to seat and to 

assume a natural head and neck position, which was stabilized as reference posture (i.e. still, 

straight head and looking forwards). The reference posture of each participant was initially 

recorded by both systems (i.e. WSD and RS) for 5 s. They were asked to perform three head 

movement tasks: right/left Lateral Bending (LB), right/left Axial Rotation (AR), and 

Flexion/Extension (FE). For each task, the subject started in the reference posture, moved in 

one direction, moved in the opposite direction, and moved back in the reference posture (e.g. 

for a FE task, the patient was invited to flex, extend and then return to the reference posture). 

Two modalities of execution were required for each task: 

 the Amplitude Modality (AM) according to which subjects were asked to move 

their head at their best, always keeping inside their ‘maximum normal’ range, and 

to carry out each head movement task in 10 s; 

 the Continuous Modality (CM) according to which subjects were asked to move at 

a comfortable speed repeating the single task three times continuously. 

For what concern the AM, five trials were recorded for each movement, whereas for the 

CM only one. Before testing, written informed consent was obtained from the participants, 

also for publication of both subjects’ data and all accompanying images. All methods 
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included in the protocol were carried out in accordance with the guidelines laid down in the 

Declaration of Helsinki. 

The angles obtained by the two systems were compared in terms of movement patterns and 

ROM. The accuracy parameter was estimated on individual subjects’ tests (both in AM and 

CM cases) in terms of Root Mean Square Error (RMSE) between RS and WSD signals. 

Whereas, to evaluate the validity of our WSD to measure the ROM, the Spearman correlation 

coefficient rs and the Mann-Whitney u-test for non-parametric independent variables were 

performed between ROM calculated from RS measurement and ROM calculated from WSD 

measurement (in AM case), at the 0.05 significance level. 

To evaluate the repeatability of the sensor, it was necessary to firstly consider the intra-

subject repeatability during the AM [223]. Therefore, for each movement only tests with RS 

curves sufficiently overlapped were taken into account. This because it is necessary to have 

the same input measures in order to monitor the repeatability of the sensor. These selected 

data intervals were resampled on a 0-600 basis to allow for curve comparison. For each task 

and variable, the intra-subject repeatability was assessed by the SD at each sample of the 

curves obtained from five repetitions performed by the subject, averaged over the movement 

cycle. If movements were correctly repeated the sensor repeatability was evaluated. In 

addition, a statistical comparison between the mean SD values of averaged RS signals and the 

mean SD values of averaged WSD signals was performed, to evaluate if there are small 

differences in repeatability between WSD and the reference Vicon system. Spearman 

correlation coefficient rs and Mann-Whitney u-test at the 0.05 significance level were used. 

 

5.5  Results and discussions 

5.5.1 Material characterization 

The mean calibration curve calculated for the sensor in static condition is reported in 

Figure 5.5 (a). For each 5% of strain, the SD was calculated (bars) and the maximum standard 

deviation value was 3.2%, for 35% strain. It is worthwhile to notice in Figure 5.5 (a) that the 

sensor shows a working range from 0% to 50% of strain in static condition. The sensor 

behaviour is quite linear and the resistance variation grows up to 93% of strain in 

correspondence of its maximum working range. 
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Whereas a typical normalized relative resistance vs. strain plot in dynamic condition is 

shown in Figure 5.5 (b), indicating a quite linear rise in resistance when applying strain. 

Electrolycra’s usable working range is confirmed to be between 0% and 50% strain, also in 

dynamic condition. This is also highlighted by the resistance–strain relationships of the sensor 

exhibiting a similar shape in the working range, whereas for higher strain values the 

resistance-strain behaviour tends to decrease. From a visual inspection, it is possible to notice 

that the sensor’s sensitivity is higher in dynamic condition rather than in static condition. 

Indeed, the resistance variation grows up to 130% of strain in correspondence of its maximum 

working range. 

The electrical hysteresis of the sensor was calculated on the resistance-strain relationship 

obtained from the mean curve of five cycles at 50 mm/min and 50% strain. The hysteresis 

value is 13.8% of the full-scale, at 25% strain, comparable with the value obtained in the 

Chapter 3 e presented in [193] (14.8% of the full-scale, at 28% strain). Moreover, the 

calculated hysteresis confirms that elastic materials have higher hysteresis because they 

require longer recovery time.  

The dependency on the strain rate is shown in Figure 5.6. The strain rate velocity was 

increased from 10 mm/min to 100 mm/min equally spaced. The increase in speed has shown a 

marginal rise in resistance. This trend may be due to sensor drift, rather than a true frequency 

response. In particular, the sensor drift was investigated in Chapter 3, in which results shown 

that the initial overshoot and the corresponding steady state increased with increasing speed. 

Therefore, the sensor behaviour for lower strain velocity is nearer to the static condition. This 

result is aligned to the literature evidence [177]. In addition, the result shown in Figure 5.6 is 

important for the design since it means that the sensor could be used to track body movements 

within a wide range of velocities, but with different calibration procedure. This study aims to 

monitor cervical head movements and these movements can be considered sufficiently slow 

compared to the other human joints movements. Despite the dynamic calibration offers a 

higher sensor’s sensitivity compared to the static calibration, tests results suggest the choice 

of a static calibration procedure as more suitable for this kind of application. In conclusion, 

Electrolycra textile required a static calibration within its working range along its preferential 

direction after pre-stretching of 200%. In this way, we are sure that our sensor will be able to 

detect all neck human movements. 
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Figure 5.5 (a) Static calibration curve obtained from 5% to 100% of strain equally spaced. For each 
strain value, three replicates were performed; the mean values and the SD (bars) were showed. (b) 
Dynamic calibration curves obtained from 10% to 100% of strain equally spaced performed at 50 
mm/min. For each strain value five cycles were carried out and the mean values of the five cycles 
were shown. 

 

 

Figure 5.6 Normalized relative resistance of the sensor characteristics at increasing strain rate. 
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5.5.2 Sensor design identification 

The mean static calibration curves calculated for the double-layer (black line) and single 

layer (gray line) are reported in Figure 5.7 (a). From a visual inspection, it is possible to 

notice that the double-layer sample influences the static calibration curve with a significant 

increase in sensitivity. The reasons for the increase in the normal operating range have been 

credited to the material composition of the adhesive tape. In fact, the Kinesio Tape is made of 

100% acrylic fiber [224]. Acrylic fibers are synthetic textile fibers made up of 85% by 

acrylonitrile and 15% by other co-monomers [225]. The features of these fibers are: low 

specific weight, high resilience, easy to undergo thermoplastic treatments, surface resistance 

of 1.9 × 10
15

 Ω/cm and electrical resistivity 1.6 × 10
16

 Ω [226]. Therefore, these features could 

be the cause of the increase in conductivity of double-layer with an increase in the normal 

operating range and sensitivity of the sensor. The maximum standard deviation value was 

3.5% in correspondence with 30% strain in the calibration curve calculated for the double-

layer. 

The strain-resistance characteristic of the double-layer conductive textile/adhesive tape 

was calculated (Figure 5.7 (b)). Resistance was expressed as a normalized relative resistance: 

𝑅−𝑅0

𝑅0
, where R0 is the resistance at zero value strain. The relationship between the strain (in %) 

and the normalized relative resistance resulted in second-order polynomial fittings (equation 

5.2). It has been applied for all the analysis reported in the following sections. Fitting result is 

markedly accurate (R
2
 = 0.987) and therefore strongly remarkable for tracking all tasks 

performed during the measurement protocol (i.e. AM and CM execution modalities). 

∆𝐿

𝐿0
= 𝑎 ∗ (

∆𝑅

𝑅0
)

2

+ 𝑏 ∗ (
∆𝑅

𝑅0
)         (5.2) 

By combining this equation and the geometric relationship (equation 5.1), it is possible to 

evaluate the relationship between the sensor resistance and angle (in degrees) of LB, AR and 

FE. 
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Figure 5.7 (a) Static calibration curve obtained from 5% to 50% of strain equally spaced for the 
double-layer (black line) and single layer (gray line). For each strain value three replicates were 
performed; the mean values and the SD (bars) were showed. (b) Second-order polynomial fittings 
employed to calculate Strain from static measurements of Normalized relative resistance (R2 = 
0.987). Parameters of the second-order polynomial fittings are reported in the textbox. 

 

The final sensing system is composed of stripes (20 mm × 100 mm) of conductive textile 

fixed on Kinesio Tape. The sensor length was customized starting from the working range, 

the maximum ROM of LB, AR, FE [227], and the average circumference of the human neck 

[228]. The length of the strips had to guarantee the use of the sensor within the working range 

(0-50% strain) for the expected maximum deformation. A graphical user interface was 

designed to make using the device simple and suitable for a wide range of users. LB, AR and 

FE angles were shown in real-time and were stored for off-line analysis. 

The main advantage of the final WSD is that it does not limit and restrict the neck 

movement during usage. The intended features of this WSD other than the cost will be easy of 

wear to the user with minimum or no assistance. This compact configuration allows user to 

operate in any environment in a comfortable way. 

 

5.5.3 Evaluation of system reliability 

Over the 90 movements measured by both systems, 21 movements were discarded for 

some problems: (i) 16 movements not correctly performed due to execution of composite 

movements (i.e. generally AR was paired with a not negligible lateral bending component 
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and, therefore, it was not a single plane neck movement); (ii) 5 movements for recording 

problems due to marker occlusions especially during FE movement tasks. 

Through the comparison with RS we evaluated the sensor accuracy and repeatability in 

measuring neck angle and the validity of our WSD to measure the ROM. 

1) Accuracy 

The mean RMSE values on each head movement task calculated for each subject are 

reported in Table 5.1. The RMSE value of AR for the subject 1 is not available since all five 

trials were discarded. Finally, for LB, AR and FE movements the mean RMSE value was 

6.04±0.67, 10.16±2.11 and 12.31±3.22, respectively. 

Table 5.1 Mean RMSE value over five repetitions in amplitude modality for each subject. 

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  [°] 
LB  

Lateral Bending 

AR  

Axial Rotation 

FE  

Flexion/Extension 

Subject 1 6.68 NA 8.49 

Subject 2 5.08 10.05 13.13 

Subject 3 5.94 12.46 15.39 

Subject 4 5.85 10.78 15.16 

Subject 5 6.67 7.35 9.38 

 

Three performances of CM in LB, AR and FE cases are reported in Figure 5.8. These tests 

have allowed to evaluate the response of the WSD in continuous and more dynamic neck 

movements. The most important aspect, resulting from such tests, is the ability of the WSD to 

follow the motion dynamics, as can be seen from the RMSE values shown in the Figure 5.8. 

Indeed, these values are slightly lower than the RMSE values calculated for AM cases. 

The RMSE values calculated to assess the sensor accuracy (Table 5.1) are not entirely 

negligible, but in line with another study [215]. Therefore, results shown a good accuracy in 

the detection of LB angle, with an average RMSE of 6.04°, whereas in the AR an error of 

10.16° is obtained. The performance of the developed WSD in monitoring FE movement is 

less accurate with RMSE values of 12.31°. These errors resulting from validation of the WSD 

may be considered acceptable for specific applications. However, if the purpose is to obtain a 
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more accurate LB, AR and FE angles, a method to reduce the accuracy error should be 

implemented. A possible solution should be the adoption of another curve fitting or a 

modification of the original geometrical model that correlates the elongation of the sensor 

with the angle measured. This could be obtained experimentally by identifying a corrective 

parameter for the model, which could allow an improvement in accuracy. The disadvantage in 

such a case would be a more complicated model with higher computational costs. 

 

Figure 5.8 Some examples of measurements from both systems during the CM execution for (a) 
lateral bending, (b) axial rotation, and (c) flexion/extension. 

 

In addition, the ROM data for all movements obtained from WSD system were positive 

correlated (rs > 0.77 and p < 0.05) with those measured by RS. According to [229], 

Spearman’s coefficient values were considered excellent if rs > 0.90, good for rs > 0.75, 

moderate for rs > 0.50. According to the results, the correlation was statistically significant (rs 

> 0.77) and the results of Mann-Whitney test underline no significant difference (p > 0.10) 

between ROM obtained from both measurement systems (WSD and reference Vicon system), 
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which means that proposed device could be considered a valid device for measuring cervical 

ROM. 

 

2) Repeatability  

Two motion patterns for intra-subject repeatability were reported by a graphical 

representation (Figure 5.9). From a visual inspection, it is possible to notice that in Figure 5.9 

(a) the band thickness is thin over the all movement, therefore the intra-subject repeatability 

can be considered acceptable. Whereas, a greater SD shown in Figure 5.9 (b) indicates a 

lower intra-subject repeatability, which cannot be considered acceptable. Therefore, all 

movements with a lower intra-subject repeatability were discarded from the assessment of 

sensor repeatability. 

 

Figure 5.9 Angle pattern and its repeatability for two representative cases. Five repetitions were 
averaged and the mean is represented by black line, whereas the gray band corresponds to the SD. 
(a) LB movement performed in a repeatedly way (narrow gray band) and (b) AR movement in no 
repeatedly way (large gray band). 

 

The intra-subject repeatability was evaluated for each movement task during AM and the 

mean and maximum SD of averaged movements are reported in Table 5.2. It is worthwhile to 

notice that subjects mainly executed LB and FE movements in a repeatedly way. Moreover, it 

is reasonable that a low value of the maximum SD corresponds to a high intra-subject 

repeatability. Therefore, we have defined a threshold value on the maximum SD to 

discriminate which tasks can be considered for assessing sensor repeatability. This value was 
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set at 8°, acceptable to consider good the intra-subject repeatability and not to affect the 

outcome measures. Movements with a maximum SD above the threshold are indicated in 

bold. These data indicate a lower intra-subject repeatability and therefore, these are data 

discarded for the assessment of sensor repeatability. 

Table 5.2 Mean and Maximum SD of averaged movements for the assessment of intra-subject 

repeatability. 

𝐷𝑒𝑣. 𝑆𝑡𝑑.̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(max) [°] 

LB  

Lateral Bending 

AR  

Axial Rotation 

FE  

Flexion/Extension 

Subject 1 1.45 (2.62) 4.13 (8.27) 9.62 (22.79) 

Subject 2 1.96 (3.68) 4.2 (7.75) 3.91 (6.18) 

Subject 3 2.56 (4.15) 5.19 (13.89) 8.76 (18.25) 

Subject 4 3.63 (7.63) 4.21 (11.44) 6.05 (11.06) 

Subject 5 2.92 (6.75) 2.87 (6.49) 4.58 (7.67) 

 

The sensor repeatability was evaluated by resampling the sensor signals and superimposing 

the five movements repetitions (Figure 5.10). The mean and maximum SD of averaged sensor 

signals are reported in Table 5.3. It is important to highlight that the SD of averaged sensor 

signals is influenced by both the intra-subject and sensor repeatability. For this reason, the 

mean and maximum sensor SD values are higher than those shown in Table 5.2. However, the 

developed WSD shown satisfactory repeatability with maximum SD values close to 10°. 

In addition, a statistical comparison between the mean SD values reported in Table 5.2 and 

5.3 was performed, to evaluate if there are small differences in repeatability between proposed 

WSD and the RS system. A positive correlation coefficient (rs > 0.83 and p < 0.05) was 

obtained, and no significant difference (p > 0.29) were found in repeatability between 

proposed WSD and reference Vicon system. 

Therefore, the WSD data can be considered acceptable as precise measurements. 

 



5. Biomedical application I 

116 
 

 

Figure 5.10 Examples of sensor repeatability assessed on LB, AR and FE task, respectively: (a), (c) 
and (e) illustrate the repeatability of task (according to the RS), whereas the sensor repeatability 
for the same tasks is seen in (b), (d) and (f). 
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Table 5.3 Mean and Maximum SD of averaged movements for the assessment of sensor 

repeatability. 

𝐷𝑒𝑣. 𝑆𝑡𝑑.̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(max) [°] 

LB  

Lateral Bending 

AR  

Axial Rotation 

FE  

Flexion/Extension 

Subject 1 3.31 (6.12) \ \ 

Subject 2 3.0 (10.26) 4.29 (12.85) 5.02 (11.66) 

Subject 3 3.02 (6.85) \ \ 

Subject 4 3.47 (9.23) \ \ 

Subject 5 3.45 (13.1) 2.5 (6.45) 5.16 (13.59) 

 

 

5.5.4 Limits of the study 

Sensor accuracy and repeatability suffer from different sources of noise. The systems were 

attached differently, i.e. WSD uses a measuring unit fixed on two points for each neck 

movement, whereas RS uses four markers attached at different anatomical points on the upper 

body and three markers on the head. Each system can thus be influenced differently by soft 

tissue motion artefacts. Indeed, some errors may also come from the wearable sleeve sliding 

on the skin. Any skin-mounted sensor will likely suffer from soft-tissue artefacts, however, 

even without sliding error. Additionally, another limit to our process was due to the 

approximation of the neck joint radius r, which was not easy to quantify. It is important to 

underline that the sensor repeatability is also affected by the intra-subject variability. 

However, the results of this study also provide evidence of the reliability of sensor 

placement using the chosen setup procedure. Another possible improvement of sensor 

performances could be obtained through a further study of different anatomical landmarks 

more suitable to achieve better results in terms of sensor accuracy and repeatability. 
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Considering the complete pool of presented results it is possible to confirm that WSD 

measurements are enough repeatable and accurate for the evaluation of single plane neck 

movements and good valid for the measurement of cervical ROM [230]. For this reason, it is 

expected to be especially useful in orthopaedics, rehabilitation and sports medicine. In this 

regard, to guarantee a long-term neck monitoring next study has been planned to improve the 

physical structure of our WSD (e.g using a neck band or turtleneck top) and to evaluate the 

complications related to wearability that will affect system performance. In addition, only 

healthy young participants were enrolled in this study. When measuring patients with neck 

disorders, neck deformities or shortenings of the neck may be exist. Future studies will be 

scheduled to characterize the system on a much larger sample size, including patients with 

neck disorders and elderly people. 

 

 



Chapter 6 

 

Biomedical application II: development and testing of a 

new cognitive technological tool for episodic memory 

 

 

Studies about the potentialities of smart fabrics and sewing materials allow to design novel 

concepts adjustable for different aims. For instance, smart textiles can be employed to develop 

novel and manageable devices useful in clinical practice. These may be key elements to 

develop interactive platforms on which to base study and therapy protocols: fabrics intrinsic 

properties allow the achievement of light, soft and transportable products and the textile 

nature itself permits an easy integration in complex fabric prototypes. 

In this Chapter, the development of a textile interactive device is described, proving the 

validity of the described materials in the manufacturing of efficient research instruments: 

- a sensing tapestry useful for active aging exercises for elderly people, obtained in 

collaboration with the Clinic Neuropsychology Laboratory of Pontedera and the TIM 

Joint Open Laboratory (JOL WHITE) of Pisa. 

This application employed conductive textiles just to perform touch detection, i.e. as 

human-machine interfaces, thus neglecting the pressure information. 

 

6.1  Introduction 

Coupled with a trend for low fertility rates and increased life expectancy—particularly in 

developed countries—the world is ageing rapidly. Today, almost 98 million Europeans 

(19.2% of the entire population) are aged 65 and over and will reach 150 million by 2080 

(29.1% of the entire future population) [231]. Population ageing leads to increased 



6. Biomedical application II 

120 
 

physiological reduction of some cognitive functions as well as physical function impairment 

[232]. Moreover, there will be more elderly people suffering from degenerative diseases, 

including dementia, impacting the ability of older adults to live safely and independently 

[233]. In this regard, there is a growing urgency to identify the most effective strategies to 

prevent cognitive decline [234]. There are currently no definitive pharmacological treatments 

able to improve symptoms or slow progression of dementia diseases [235]. Therefore, there is 

increased interest for cognitive training (CT) that is assumed to improve, or at least stabilize, 

performance in a given cognitive domain (i.e. near transfer effect). CT is based on the 

principles of neuronal plasticity and cognitive ability restoration, but also generalized effects 

beyond immediate training contexts are expected (i.e. far transfer effects) [236]. The most 

common approaches for CT use structured material for each function or cognitive process, 

usually administered through paper and pencil or, in recent years, computerized tools [237]. 

In recent years, to maximize the effect of such interventions, the interest to combine CT 

with a program of physical exercises is growing, in order to benefit from the synergistic 

impacts of the two typologies of training [238]. In this way, exercise training has led to 

improved executive functions, episodic memory, processing speed and other cognitive 

processes in older adults [239]. 

An important clarification concerns the typologies of the subject that, more than others, 

might take advantage of the aforementioned kind of intervention. CT and combined cognitive-

physical training are based upon the principle of brain plasticity. For this reason, in order to 

exploit the treatment potential, subjects retaining a large range of cognitive capacities are 

considered perfect targets [240]. Therefore, several studies regarding CT and a combination 

of CT and physical exercise take into consideration subjects without full-blown disease. In 

particular, the main categories are represented by older adults and subjects suffering from 

mild cognitive impairment (MCI) [241][242]. MCI often represents an early stage of dementia 

[243]. MCI is a clinical condition characterized by objective slight deficits in one single 

domain (e.g. memory) or in multiple cognitive domains, which do not yet configure as overt 

dementia [244]. Its prevalence in the population aged 65 years or over has been estimated at 

10% [245]. Between 16–41% of patients with MCI develop dementia within one year [246]. 

Therefore, early identification and management of MCI may help prevent further 

deterioration. 
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More recent studies have examined the efficacy of combined training formats such as 

pairing exercise and cognitive training, either in simultaneous and sequential formats 

[247][248][249]. For example, cognitive training followed by aerobic training in the same 

session produced significantly greater gains on executive functions and verbal episodic 

memory when compared to cognitive training alone [250]. Hiyamizu et al. [251] contrasted 

combined simultaneous training (strength and balance training plus cognitive tasks) with a 

pure physical training group and uncovered a significant advantage for the combined 

simultaneous training group. In [252], older adults simultaneously performed a verbal 

working memory test and a cardiovascular training session to improve cognitive and motor-

cognitive dual task performance. Both multimodal and pure cognitive training groups showed 

the same degree of cognitive improvement, with the exception of a visual memory task, which 

improved more in the multimodal group. 

Following such a research line, the main goal of the present study is to provide a tool for 

cognitive functions that take advantage of physical activity in the execution of the task. 

Specifically, this study aims to design and develop a new CT tool, called SmartTapestry, to 

combine physical exercise and a traditional cognitive test. In particular, the SmartTapestry 

tool involves the episodic memory domain, particularly vulnerable to decline in aging, while 

the exercise training is a physical one, which involves exercises for articulation, 

reinforcement and stretching of upper limbs. The characteristics of SmartTapestry will allow 

its utilization at home, reducing the presence of clinical staff, empowering the ecological 

aspect of the training and its potential frequency by reducing costs. Indeed, according to 

Tulving’s theoretical paradigm regarding specificity of encoding [253], if patients perform the 

task in a more ecological and familiar environment, such as their own house, it could enhance 

the possibility of generalization. In addition, home-utilization could produce an intensification 

of session frequency, which is one of the most important aspects of cognitive rehabilitation 

[254]. 

The current study comprises two parts. The first aims at developing the SmartTapestry 

system, for physical and cognitive training. The second part involves evaluating the 

equivalence between a classical assessment instrument for episodic memory [255] and a 

parallel form of such exercises administered through SmartTapestry. Such equivalence will 

allow the use of SmartTapestry for rehabilitation purposes: a future study will determine 

whether SmartTapestry will improve the efficacy of training, taking advantage of the 

introduction of physical activity, in order to include SmartTapestry in a future rehabilitation 
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protocol performed at home. Before testing the efficacy of SmartTapestry as a CT tool, the 

present Chapter presents the instrument and demonstrates its effectiveness in stimulating the 

episodic memory domain by comparing scores obtained with SmartTapestry with those 

obtained by a standard paper-and-pencil test in a sample of 53 subjects. Additionally, since 

SmartTapestry was designed as an ecological tool to be used daily, the perceived usability is 

also evaluated. 

 

6.2  Traditional test 

The type of chosen test focuses on a specific cognitive function: episodic memory. 

Episodic memory loss is one of the most reported in the elderly [232]. We chose as a 

cognitive exercise the subtest Verbal Paired Associated (VPA) Learning Task of the Wechsler 

Memory Scale-Fourth Edition WMS-IV (Pearson Assessment 2009, 2010UK) [255]. The 

WMS-IV is an individually administered battery of tests, widely used to evaluate multiple 

aspects of memory in people aged 16–90. In particular, VPA is used for episodic memory 

assessment. The subtest comprises: (i) immediate recall subtest; (ii) delayed recall subtest; 

(iii) recognition subtest. 

Immediate recall subtest: this subtest measures the immediate verbal memory of the 

associated word pairs. 14 or 10 word pairs are read to the subject (the WMS-IV provides an 

adult version and one for the elderly aged 65 and older). Later, the examiner reads the first 

word of each pair and asks the subject to recall the associated word. In the subtest, there are 

four versions of the same list of word pairs presented in a different order. The examiner will 

read these four versions and every time, after presenting each list, proceed to the recall (from 

here reported as Imm1, Imm2, Imm3, and Imm4). The raw score is the sum of the correct 

answers to the four versions. 

Delayed recall subtest: this subtest is administered 20–30 minutes after the subtest 

Immediate recall condition. Deferred condition evaluates long-term memory for word pairs. 

The first word of each pair learned in the immediate condition is presented to the subject, who 

is asked to provide the associated word. The raw score is the sum of the correct answers. 

Recognition subtest: this subtest must be given subsequent to the previous one. A list of 

word pairs is read to the subject, who are asked to identify each pair as one of those already 
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present in the previous subtest or as a new couple. The raw score is the sum of the correct 

answers. 

 

6.3  SmartTapestry system 

SmartTapestry is a sensorized tapestry, designed and developed in order to be used in a 

combined training protocol involving both physical and cognitive training. 

Regarding the physical training, in elderly subjects many orthopaedic pathologies 

(osteoarthritis and impingement subacromiale) affect the shoulder joint, which often show a 

reduction in range of motion (ROM) and flexibility, particularly in flexion-extension and 

abduction movements [256]. Exercises for upper limbs help combat these pathologies if 

targeted to specific muscular reinforcement [257]. Specifically, the subject placed standing in 

front of the system will have to raise the upper limb to perform the exercise. This task 

involves flexion and rotation (internal and external) movements on the frontal plane. If the 

subject is placed as to have the side system, they can carry out the same exercise by 

performing abduction and rotation (external and internal) movements on the sagittal plane. 

For this purpose, SmartTapestry is 60 x 90 cm size so that any subject, at the front or side 

position, can touch any point of the system and the use of the upper limb within a medium 

ROM is required. 

With respect to the cognitive exercise, SmartTapestry allows administration of the 

cognitive tasks described above with modalities that comprise an alternative with respect to 

traditional approaches (Figure 6.1). The elements that make up the system are the 21 Italian 

alphabet letters, which are the items that have to be recalled in the task, plus the 'yes' and 'no' 

answers used for the recognition subtest. The position of the letters in the tapestry are random 

and new for all subjects, and do not follow any provision already used commercially (i.e. 

QWERTY or alphabetical order). Each letter is 15 x 15 cm in size and the subject can select it 

with the open palm of the hand. In this way, letters can be also recognized by those who have 

modest presbyopia. As a result, the letters are arranged on a 4 x 6 matrix that guarantees the 

presence of at least 23 targets and respects the size required for the entire system (60 x 90 cm) 

and for each element (15 x 15 cm). 



6. Biomedical application II 

124 
 

Therefore, SmartTapestry was designed with the following elements (Figure 6.2 and 

Figure 6.3): 

- A sensitive base (60 x 90 cm) containing (Figure 6.2): 

 24 sensitive elements obtained with a double sheet of conductive textile 

(Adhesive Conductive Fabric - ACF by Mindsets Ltd.) divided by a 1.5 cm 

thick foam layer (Figure 6.3 (a)). In correspondence with each unit, holes were 

driven into the foam for allowing contact of the two fabric layers in case of 

touch (the sensing units work as on–off switches); 

 Electronic hardware for data acquisition (Multifunction DAQ System NI USB- 

6218 by National Instruments), connected to the fabric patches with conductive 

threads sewn into the foam, and a USB connection to a laptop; 

- Interchangeable layers to be placed above the sensitive base with Velcro hooks, 

containing the various targets of the exercises; 

- A laptop with a custom LabVIEW graphic user interface to select the desired exercise 

(tests are administrated through the software) and acquire data from the tapestry (sequence of 

correct answers and total test score); 

- A mobile support structure for the tapestry, able to adjust the height according to the 

subject's requirements. 
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Figure 6.1 Concept of the SmartTapestry. 

 

 

Figure 6.2 The soft layers composing the sensitive base. 

 



6. Biomedical application II 

126 
 

 

Figure 6.3 a) Development phases of the 24 sensing units in the soft base layer, and b) the 
SmartTapestry. 

 

6.4  Participants 

The recruitment was performed at the neuropsychological clinic of Pontedera (Italy), by 

means of the medical records of MCI outpatients starting from September 2014 until May 

2017. The diagnosis for MCI was made according to Petersen criteria [244]; all examined 

subjects were also evaluated by a neurologist and underwent instrumental exams (TC, RMI). 

Subjects showing dementia or who were completely deficit incumbent so that they could not 

perform the activity were not included. After analyzing the medical records, we contacted by 

telephone a total of 144 subjects, among patients and their familiars, which met the general 

requirement criteria mentioned above (Figure 6.4). 

Subsequently, further inclusion criteria of this study were verified by telephone: (i) ability 

to stand for one hour and a half without any help; (ii) right hand dominance; (iii) absence of 

hearing loss; (iv) absence of depression and other psychopathological issues; (v) absence of 



6. Biomedical application II 

127 
 

other neuromotor impairment. Subjects with physical impairment were held if this impairment 

was able to be appropriately corrected with prosthesis (e.g. glasses or hearing aid). At the end 

of this preliminary screening, a total of 99 subjects confirmed inclusion criteria. 30 of them 

were deemed cognitively normal whereas, according to the medical records and as confirmed 

by telephone, the 69 remaining subjects were considered MCI (Figure 6.4). 

Before starting the protocol, as a mental status exam to verify the inclusion criteria and 

document the MCI diagnosed, the battery of tests in the MODA [258] (‘Milan Overall 

Dementia Assessment’) was used. This retest was used during the first assessment to 

neutralize the risk that some MCI subjects become demented in the meantime. Then, to test 

the impairment in daily-life activities the ‘Activities of Daily Living (ADL)’ [259] and the 

‘Instrumental Activities of Daily Living (IADL)’ [260] scales were used as another element to 

confirm the condition of MCI. Finally, in order to perfect the clinical judgment, 

neuropsychologists conducted a clinically structured interview. A total of 24 of the 69 

subjects confirmed the MCI diagnosis, and the remainder were converted to dementia in the 

meantime. In addition, enrolled MCI subjects were classified as MCI type I (amnesic, single 

domain) and II (amnesic, multiple domain) =13, and MCI type III (non-amnesic, single 

domain) and IV (non-amnesic, multiple domain) =11, according to the diagnostic algorithm 

proposed by Peterson during the neuropsychology international symposium [261]. 

Nevertheless, one participant from the healthy cohort was excluded from the final dataset 

because not enough data were acquired to compute the output measures. Table 6.1 

summarizes the demographic characteristics of the 53 people involved in the study: 24 people 

diagnosed with MCI and 29 healthy subjects (Figure 6.4). 

Table 6.1 Description of Participants. 

 Mean (SD) 

All subjects 

Mean (SD) 

Healthy 

Mean (SD) 

MCI 

Men 27 14 13 

Women 26 15 11 

Age (years) 56.53 (21.34) 41.96 (16.91) 75.73 (4.91) 

Education (years) 14.60 (3.83) 16.48 (2.82) 12.33 (3.70) 

This Table reports the mean value and the Standard Deviation (SD) for the subjects involved in the 

study (53 participants). 
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Figure 6.4 Recruitment process. A total of 144 subjects, among patients and familiars, which 
possibly met the general requirement were contacted by telephone. At the end of the recruitment 
process, the total group considered eligible for this study was 54 subjects. 

 

6.5  Experimental protocol 

Prior to testing, written informed consent was obtained from the participants. The study 

design and protocol, including subject privacy and sensitive data treatment, were approved by 

the Ethics Committee of the Scuola Superiore Sant’Anna, Pisa. All methods included in the 

protocol were carried out in accordance with the guidelines laid down in the Declaration of 

Helsinki. 

All subjects performed both traditional cognitive tasks (TCT) and the parallel forms of 

these cognitive exercises administered through the SmartTapestry system. Each task session 

took approximately one hour, and was supervised by neuropsychologists and engineers in a 

laboratory setting. Half of the subjects performed before TCT and then SmartTapestry, half of 

the subjects vice versa. Each subject was randomly assigned to one of those designs. 

During the traditional test, a neuropsychologist administrated the exercise as required by 

the traditional protocol whereas, during the SmartTapestry test, as soon as the participant was 
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ready, he/she pressed ‘start’ on the software module and thus the instructions were 

autonomously administered by SmartTapestry software. The instructions and the list of word 

pairs are provided by the software, while the subject has to type the remembered word by 

touching letters displayed on the tapestry (Figure 6.5). The data were acquired and stored by a 

computer. 

At the end of the trial, the system usability scale (SUS) [262] was administered to 

participants in order to evaluate the perceived usability of the proposed system. The SUS is a 

survey instrument comprising ten items giving a global view of subjective assessments of 

usability. It is based on a 5-point Likert scale, (from ‘Strongly disagree’ to ‘Strongly agree’). 

It was developed according to the three usability criteria defined by the ISO 9241-11: (i) 

effectiveness, the ability of users to complete tasks using the system; (ii) efficiency, the 

resources expended by users to achieve goals; and (iii) satisfaction, the users’ subjective 

comfort using the system. 

 

Figure 6.5 Participant performing the SmartTapestry test; on the bottom it is possible to notice the 
laptop with the LabVIEW graphic user interface for the test administration. 
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6.6  Comparison of the two tests 

Raw scores of each test consisted of six signals: four immediate recall subtests, one 

delayed recall subtest and one recognition subtest. Considering the different numbers of 

associated word pairs administered to adults and elderly (14 and 10, respectively), raw scores 

were normalized with respect to the total number of associated word pairs. These were used 

for the data analysis that was performed offline using Matlab software (MathWorks Inc., 

Natick, MA, USA). Statistical analysis between the dataset related to the TCT and the other 

one related to the SmartTapestry approach was performed to reach the objective of this study. 

For each subtest, the normal distribution of the normalized raw scores was verified using the 

Kolmogorov-Smirnov normality test. Because all raw scores were not normally distributed, 

the Spearman (ρ) correlation coefficient was used to evaluate the relation between the 

different approaches on the entire sample (53 participants). In addition, to investigate 

similarity in the performances of the SmartTapestry test between the two cohorts (MCI vs 

healthy subjects) and between the two MCI groups (type I and II vs type III and IV), a Mann-

Whitney u-test for non-parametric independent variables was carried out. The alpha level of 

significance was set to 0.05 for all statistical tests. 

After completion, each SUS item’s score contribution ranged from 0 to 4. For positively 

worded items (1, 3, 5, 7 and 9), the score contribution is the scale position minus 1. For 

negatively worded items (2, 4, 6, 8 and 10), it is 5 minus the scale position. To obtain the 

overall SUS score, the sum of the item score contributions was multiplied by 2.5. Thus, SUS 

scores range from 0 to 100 in 2.5-point increments. Finally, the Mann- Whitney and the 

Kruskal-Wallis tests were applied to SUS results in order to compare different conditions or 

users. 

 

6.7  Results and discussions 

The main objective of the present study was to demonstrate the effectiveness of 

SmartTapestry in stimulating the episodic memory domain by comparing scores obtained 

with SmartTapestry with those obtained by a standard paper-and-pencil test in a sample of 53 

subjects (29 healthy and 24 MCI). 
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The statistics with respect to the performed performance for the entire sample in the two 

tests is reported in Table 6.2. Spearman coefficients between the TCT and SmartTapestry are 

reported together with the relevant p-value. According to [263], in neuropsychology 

correlation coefficients between 0.35 and 0.50 indicate good correlation, whereas correlation 

coefficients higher than 0.50 indicate excellent correlation. According to the results, strong 

positive correlations were obtained for all exercises (p < 0.005), which means that both 

instruments are substantially equivalent in the stimulation of episodic memory (Table 6.2). 

Another important goal of this work was to investigate whether the two cohorts had 

different performance. The results of the Mann-Whitney test are also reported in Table 6.2. 

These results underline a significant difference (p < 0.005) in the performance of the 

SmartTapestry test between healthy and MCI subjects for all exercises, which confirms that 

the test is able to detect the differences in the cognitive abilities of the subjects. 

Table 6.2 Spearman Correlation and Mann-Whitney Test. 

 Imm1 Imm2 Imm3 Imm4 Delayed Recog. 

ρ* 0.4265 0.5233 0.6018 0.7484 0.7601 0.5247 

p* 1.5E-03 5.8E-05 1.9E-06 1.2E-10 4.1E-11 5.5E-05 

p** 1.9E-03 3.2E-06 3.6E-08 7.2E-09 4.7E-08 2.0E-07 

*Spearman correlation coefficients (TCT/SmartTapestry) 

**Mann-Whitney U independent sample tests (MCI/Healthy - SmartTapestry) 

 

These results are also highlighted in the scatter plot of Figure 6.6 between the two tests, 

where the red stars represent the healthy subjects and the blue circles represent the MCI 

subjects. It can be clearly observed that MCI subjects have lower performance compared to 

healthy subjects (Table 6.3). It is also important to notice in the scatter plot that the two 

cohorts seem to be increasingly grouped as that the exercises are performed according with 

the SmartTapestry performance. We could hypothesize that this result might be due to the 

MCI condition itself or because MCI subjects are generally older than other experimental 

subjects. These findings are aligned with the most recent results in this area; indeed, both age 

and MCI condition lead to physiological decline of all executive functions [264]. 
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Figure 6.6 Scatter plot of normalized correct answers between traditional administration and 
SmartTapestry in immediate, delayed and recognition subtests. Red stars are healthy subjects the 
blue circles are MCI subjects. 

 

Analyzing the differences between the two tests in the entire sample, it can be seen that the 

scores obtained with the SmartTapestry tool are higher to those obtained with TCT (Table 6.3 

and Figure 6.7), despite the two sets of scores being significantly correlated.  

Additionally, the analysis of the two cohorts separately shows that the scores obtained with 

the two tests follow different trends. Healthy subjects achieved higher scores with 

SmartTapestry compared to TCT in all subtests (Table 6.3 and Figure 6.7). These results can 

suggest facilitation in the memory performance may be due to the multiple nature of the 

mnemonic trace: the SmartTapestry task involves auditory (the auditory track repeating the 

list of words), visual-spatial (the position of the letters in the tapestry) and kinaesthetic 

information (the movements of the arms needed to press the letters in the tapestry). In fact, the 

subject has both to remember the associated word and press it on the tapestry, and this may 

help in cognitive consolidation for the added visual search strategy. In addition, this trend 

could be explained by the presence of a potential motivating factor. The technological nature 

of the device may lead the subject to enhance their attention during the training with 

SmartTapestry, with satisfactory results. 

In contrast, MCI subjects obtained higher score in Imm2, Imm3 and Imm4 subtests 

administered with TCT compared to SmartTapestry (Table 6.3 and Figure 6.7). This might be 
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explained by a greater request, in terms of cognitive resources, during the execution of the 

task using SmartTapestry. In fact, SmartTapestry demands the subject to process information 

in two ways, both verbal and visual. Moreover, for the task accomplishment, the subject has 

to organize a motor plan and put in place a visual search. This result is aligned with the 

literature [265], which underlines that the addition of a motor task during the execution of a 

cognitive task causes a worse performance in elderly subjects. Contents listed might lead a 

subject with reduced cognitive resources, as is the case for MCI subjects, to develop 

weariness more quickly and perform worse in immediate memory subtests. Regarding the 

delayed subtest, the score obtained with SmartTapestry is higher compared to TCT (0.5667 

and 0.5333, respectively). This improvement can be explained by the mechanisms of implicit 

memory, recruited by the motor part of the task. The output channel for the response, using 

SmartTapestry system, in fact, impose that the subject pushes some part of the tapestry, where 

letters are printed, so to form the right word. The repetition of this task could recruit neural 

networks involved in implicit memory. The combined effects of explicit and implicit memory 

allow MCI subjects to recall in the delayed condition during the SmartTapestry test, which is 

better than during TCT. 

Concerning the Recognition subtest, healthy and MCI subjects showed comparable 

performance in the two types of administration (Table 6.3 and Figure 6.7). Such results can be 

explained by the nature of the task, based on similar cognitive mechanisms and on a ‘yes-no’ 

paradigm. 

Table 6.3 Mean value of normalized correct answers for immediate, delayed and recognition 

subtests. 

Mean 

Value 
 Imm1 Imm2 Imm3 Imm4 Delayed Recognition 

All 

subjects 

SmartTapestry 0.4272 0.6437 0.7229 0.7606 0.7526 0.9325 

TCT 0.3081 0.5895 0.6941 0.7434 0.6916 0.9358 

Healthy 
SmartTapestry 0.5049 0.7660 0.8695 0.9212 0.9064 0.9871 

TCT 0.3251 0.6429 0.7857 0.8448 0.8227 0.9828 

MCI 
SmartTapestry 0.3333 0.4958 0.5458 0.5667 0.5667 0.8667 

TCT 0.2875 0.5250 0.5833 0.6208 0.5333 0.8792 
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Figure 6.7 Mean value of normalized correct answers for immediate, delayed and recognition 
subtests in all subjects (left panel), healthy (centre panel) and MCI (right panel) subjects. 

 

Analyzing the two groups of MCI subjects with diagnosis of type I and II and MCI 

subjects with diagnosis of type III and IV (Table 6.4 and Figure 6.8), it is possible to observe 

significant differences (p < 0.05) in the performance of the SmartTapestry test between 

amnesic and non-amnesic MCI in all the conditions with the exception of the first immediate 

recall task and the recognition task. These findings are in line with our expectations, in fact 

they reflect the amnesic MCI’s (MCI I and II) consolidation process deficits as compared to 

non-amnesic MCI (MCI III and IV) [266]. In addition, MCI subjects with diagnosis of type 

III and IV achieved higher scores in all subtests compared to MCI subjects with a diagnosis of 

type I and II. 

SmartTapestry was designed to be an ecological sensorized tool able to combine a 

traditional test for episodic memory with physical activity. This can lead to a set of mixed 

tools which can be used daily at home, reducing the presence of clinical staff, to train at the 

same time the brain and the body so as to improve the cognitive treatments efficacy [267]. In 

this framework, our CT tool has the capability to perform cognitive and physical training for 

the user at home, in particular for MCI subjects that are at risk of conversion to dementia. 

Furthermore, another important aspect is that neuropsychologists can plan personalized 

training which involve face-to-face and at-home treatments. Therefore, it is important to 

demonstrate not only the efficacy of the tool from a clinical point of view, but also the 
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influence of the use of our technology in real life in terms of efficacy, efficiency and usability 

[268]. 

 

Table 6.4 Mean value of normalized correct answers and Mann-Whitney Tests between two groups 

of MCI subjects. 

SmartTapestry 

Mean Value 
Imm1 Imm2 Imm3 Imm4 Delayed Recognition 

MCI 

Type I and II 
0.30 0.4231 0.4692 0.4692 0.4692 0.8359 

MCI 

Type III and IV 
0.3727 0.5818 0.6364 0.6818 0.6818 0.9030 

p* 0.2991 0.0355 0.0198 0.0063 0.0138 0.2535 

*Mann-Whitney U independent sample tests (MCI type I and II vs MCI type III and IV) 

 

 

Figure 6.8 Mean value of normalized correct answers between two groups of MCI subjects for 
SmartTapestry test. 
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According to Bangor et al. [269], a SUS score higher than 70 indicates a usable product, 

and higher than 90 a very usable one. In terms of usability, the examined results show that the 

SmartTapestry approach is well evaluated (84.34±12.13) by participants. In particular it was 

found to be not usable for five volunteers (58.50±7.83), usable for 21 of them (78.33±5.44) 

and excellent for 27 participants (93.80±3.42).  

In Table 6.5, descriptive statistics are reported and the results show that the odd-numbered 

items have a mean value higher than 4 and a mode value equal to 5, except for Item1. On the 

other hand, the even-numbered items have a mean value lower than 2 and a mode value equal 

to 1. 

Regarding users’ perceived satisfaction using the SmartTapestry system, the results are 

positive because 56.60% of the sample would like to use the SmartTapestry system frequently 

(Item1). In particular, the percentage increases to 66.67%, considering MCI participants who 

could gain the most benefit from the proposed system in the future. 

The proposed system was also perceived as being easy to use because 43 participants gave 

a score of 4 to 5 to Item3. However, participants suffering from MCI (3.83±1.20) thought the 

SmartTapestry system was less easy to use then healthy ones did (4.48±0.99) (Item3 p = 

0.030). To confirm this, MCI subjects (2.38±1.44) considered that they would need the 

support of a technical person to be able to use this system more than healthy ones did 

(1.55±0.95) (Item4 p = 0.024). This difference between MCI and healthy participants could be 

explained by the difference in age between the two cohorts and by the fact that MCI subjects 

have greater learning difficulties. 

The SmartTapestry approach was perceived as efficient because 48 persons found the 

various functions in this system to be well integrated (Item5) and no participants thought there 

was excessive inconsistency in this system (Item6). 

Gender was found to significantly impact overall SUS scores and this might be related to 

the hypothesis that women in general are more health conscious [270]. In particular, women 

(87.50±11.83) gave the SmartTapestry system an overall SUS score higher than men did 

(81.30±11.84) (p = 0.023).  

However, considering only the male sample, male participants suffering from MCI 

(92.17±4.90) gave the SmartTapestry system an overall SUS score higher than healthy ones 
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did (82.86±10.96) (p = 0.021), evaluating the proposed system as being more usable because 

ill users tend to be more health conscious. 

Regarding the impact of age, subjects aged 65–75 years (74.15±15.47) gave the 

SmartTapestry system an overall SUS score lower than those aged 31–55 (93.18±4.48) (p = 

0.019). Indeed, age influenced the overall SUS score because elderly users typically have a 

less positive attitude towards technology [271]. 

 

Table 6.5 SUS results. 

Item Question Mean SD Mode 

Item1 I think that I would like to use SmartTapestry 

frequently 
3.64 1.23 3 

Item2 I found SmartTapestry unnecessarily complex 1.68 1.11 1 

Item3 I thought the SmartTapestry tool was easy to use 4.19 1.13 5 

Item4 I think that I would need the support of a 

technical person to be able to use SmartTapestry 
1.92 1.25 1 

Item5 I found that the various functions in this system 

were well integrated 
4.58 0.72 5 

Item6 I thought that there was too much inconsistency 

in SmartTapestry tool 
1.32 0.64 1 

Item7 I would image that most people would learn to 

use SmartTapestry very quickly 
4.47 0.85 5 

Item8 I found SmartTapestry very cumbersome to use 1.36 0.81 1 

Item9 I felt very confident using SmartTapestry 4.49 0.85 5 

Item10 I needed to learn a lot of things before I could 

get going with SmartTapestry 
1.36 0.83 1 
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Considering all of the above, it is reasonable to state that SmartTapestry has a high degree 

of usability, underlining participants’ willingness to use the SmartTapestry tools in their daily 

routine. 

 

 

6.8  A case report 

This section reports a case study about the use of the SmartTapestry tool. The main 

purpose of this section is to investigate the peculiarities, in terms on cognitive performances 

and process, bring out from a careful observation of the subject’s behaviour during the use of 

the SmartTapestry system. 

The final purpose of the entire study, in fact, is also to outline the future applications of 

this new CT tool with elderly people and subjects suffering MCI. For this reason, it was 

decided to study in details how a healthy subject and an MCI subject use the system and 

which supports and which difficulties he/she meet in their use. In particular, the purpose of 

this study is to highlight the information achievable from the use of this instrument with 

single subjects. The choice of case report form derives from the necessity to study in detail the 

functioning of the instrument with subjects which have specifics needs, strengths and 

weakness. In this perspective, the study has the intention to highlight the clinical hints that 

could be glimpsed from singles cases.  

The subjects selected for the case report are one healthy elderly subject and a subjects 

whom is suffering from MCI. In the two following boxes are reported information about the 

two chosen subjects. In the case of the subject suffering from MCI also a short medical report 

was presented. 
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Anamnesis D. P. 

The participant D. P. is a 63 year-old Caucasian woman. She attended 8 years of school 

and had reported to the experimenter to be in full neuropsychological and medical health. The 

subject reported to never have experience of psychiatric disorders, such as mood alterations or 

anxiety. Moreover, the subject does not believe to forget things, in a suspect way, in the last 

period or to go towards changing in her way to think. The subject is oriented, aware, 

collaborate, and with full insight. Considered all the aspects listed above, it was decided to 

consider the subject D. P. as the control subject. 

 

Anamnesis M. R. 

The participant M. R. is a 70 year-old Caucasian woman with a diagnosis of MCI. She had 

several cognitive and behavioural limitation based on neuropsychological assessment, 

neurological examination and instrumental exams (TC and echo-Doppler). Mrs. M. R. 

reported that since a couple of years suffer from episodic anterial-grade memory issues. These 

problems began in a subtle manner and got worse over time. In fact, she referred that 1 year 

after the memory impairment begins she had experienced an episode of topographic 

disorientation, coming back home from the dentist. In the meanwhile, it started also absent-

minded episode. In the last 3-4 months the memory problems are getting worse and for this 

reason, the subject decided to turn to a neurologist. Moreover, simultaneously with the 

memory deterioration, M. R. started to show some behavioural changes, such as initial 

insomnia, negative thoughts, irritability, mild agitation and amotivational syndrome. In 

relation to these symptoms, the subject was treated for two months with Zoloft, Samyr, and 

Illumina, prescribed by the neurologist. As result of an interview about her relatives was been 

reported that in her father’s family branch there were been two cases of Alzheimer’s disease. 

In general, there were not referred cases of mood disorder or depression among family 

members.  

The neurologist assessment and the instrumental exams reported a couple of newsworthy 

parameters: an enlargement of apical liquor system and a carotid siphons calcification. A 

complete neuropsychological assessment was prescribed to avoid misdiagnosis, between MCI 

and depression, and clarify the case. During the neuropsychological assessment the subject 

appears vigilant, collaborative and with full insight. The assessment consisted of a 
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comprehensive battery of neuropsychological tests, such as Milan Overall Dementia 

Assessment (MODA); Wechsler Memory Scale IV (WMS-IV); prospective memory task of 

Rivermead Behavioural Memory Test (RBMT); Attentional Matrix; Stroop Test; Trail 

Making Test A and B; Boston Naming Test (BNT); Street Test; Birmingham Object 

Recognition Battery; Brixton Test; Tower of London Test; Verbal Judgments Test. Based on 

the performance shown during the neuropsychological assessment was formulated the 

following clinical opinion: the subject shown a global cognitive functioning peaceable at 

inferior limit of normality. The study of Memory domain depict a weakening of visuospatial 

information treatment in all the dimension (short-term, long-term, working memory), but the 

global performance deposes against a true amnesia. The testing of attentional skills describes 

a selective impairment on dual task, in part attributed to anxiety. The deep study of executive 

functioning shows a planning skill inefficiency and conceptual elaboration weakness of verbal 

material. 

 

6.8.1 Results and discussions 

In this subsection, results of the two selected subjects on the two aforementioned cognitive 

tests (Verbal Paired Associated and SmartTapestry system) are reported. Therefore, in Table 

6.6 are reported the results of the two test used to probe the functioning of memory domain, in 

particular, the episodic component of long-term memory. For the assessment of this 

neurocognitive skills, as previously explained, are generally used two parallel forms of the 

test, according to the subject age. People under 65 years old are put through on a test 

composed of 14 pairs of words to remember. On the other side, people over 65 years old are 

put through on a test composed of 10 pairs of words to remember. So to may compare the 

results of the two subjects, a normalization based on the maximum score was done. In this 

way, all the subjects have a range of possible score from 1 to 10 for the subtest: Imm1, Imm2, 

Imm3, Imm4 and Delayed. And a range of possible scores from 0 to 30 for the Recognition 

subtest. 

As previously explained, it is required to carry out an auditory-verbal memory task using a 

sensorized tapestry to deliver the response. This tapestry is thought to stimulate the use of 

upper limbs, in particular, to encourage the shoulder girdle mobilization during this cognitive 

task. In fact, as reported in Table 6.6, the clinical subject shows lower scores in all the sub-

tests with SmartTapestry system, as compared to the healthy subject. Moreover, the control 
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subject seems to be facilitated in the tasks using the smart tools systems, indeed the results 

accomplished with the traditional form of the exercise are lower if compared to the results 

achieved with the smart system. As mentioned previously, this could be explained by the 

multimodal nature of the exercise [272]. In fact, the task include verbal information that the 

subject must remember, but also a visual support, provided by the SmartTapestry, used to 

emit the response. So the information undergoes to two kinds of treatment, first as verbal 

information, then as visual information. This multiple treatments of the mnemonic trace could 

be the reason why the control subjects is facilitated by the use of SmartTapestry system [272]. 

These results are aligned with those previously shown in Section 6.7. 

On the other hand, the subject suffering from MCI obtained essentially the same results 

using traditional and new approach. In particular, she achieved higher score in Imm1, Imm3 

and Delayed subtests administered with SmartTapestry compared to traditional approach, and 

comparable score in Imm2 and Imm4. Whereas, for the Recognition subtests, she achieved an 

higher score with traditional approach. This result follows the previously results obtained with 

a sample of 24 MCI subjects. But it also highlight as in this particular case, the clinical 

subject shows an improving about the majority of the performance using this new approach, 

as compared to the traditional test. This could be explained by the clinical history of the 

subject, which didn’t show a true amnesia. In addition, during the neuropsychological 

assessment the subject appeared vigilant, collaborative and with full insight. She did not let it 

scare by the technological nature of the device, on the contrary, she has allowed herself to be 

transported more by the potential motivating factor, obtaining satisfactory results. 

 

Also this case study confirm that the instrument is able to properly discern between a 

healthy subject and a subject suffering from MCI. In addition, the SmartTapestry system has 

proved to be useful also for people with MCI, enhancing the ability to encode, store and 

retrieval the information provided, at the same time, the possibility to do some exercise. 
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Table 6.6 Subjects' results for SmartTapestry tests. 

Test Results Clinical subject Control subject 

Verbal Paired Associated Imm1 0 1 

Verbal Paired Associated Imm2 6 5 

Verbal Paired Associated Imm3 4 6 

Verbal Paired Associated Imm4 6 8 

Verbal Paired Associated Delayed 5 5 

Verbal Paired Associated Recognition 30 28 

SmartTapestry system Imm1 3 4 

SmartTapestry system Imm2 6 9 

SmartTapestry system Imm3 6 8 

SmartTapestry system Imm4 6 8 

SmartTapestry system Delayed 7 6 

SmartTapestry system Recognition 27 30 

 

 

6.9  Concluding remarks 

The aim of this work is twofold. Firstly, it aims to design an innovative “ecological” tool 

able to combine cognitive exercise with physical activity, in order to obtain the best benefits 

from the cognitive rehabilitation training and the physical exercise. The other goal of this 

feasibility study is to compare the traditional subtest with our SmartTapestry tool that 

includes physical activity. 

The results suggest a good correlation between the two approaches. Such findings 

suggested that the instrument could be comparable in stimulating the episodic memory. 

Furthermore, the multimodal approach (auditive-visual-kinaesthetic) may improve subjects' 

performance. The high usability score underlines the participants’ willingness to use the 

SmartTapestry tools in their daily routine. This could be crucial for a new rehabilitation 

strategy and both MCI and healthy subjects could benefit from such a program. 
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Moreover, thanks to this design, the new cognitive tool can be customized according to 

elderly needs and can be easily integrated at home. In particular, in this study, we investigate 

the episodic memory domain, as an example; however, future improvement of the tool could 

include in the study other cognitive domains combined with physical exercise. Moreover, 

further improvement of the study should include also the analysis of upper limb movements 

while performing SmartTapestry test. 

In addition, on the basis of this preliminary study and with the purpose to investigate the 

potential use of SmartTapestry as a rehabilitation tool, we believe it necessary to improve this 

study by analyzing the efficacy of this new CT tool within the MCI and healthy elderly 

populations matched by age, in order to assess how differences in cognitive performance 

could interfere with the task. In addition, future analyses should include the CT with different 

cognitive domain and exercise training, with the aim of creating a complete and efficient 

home rehabilitation tool. 

As a conclusion, also with this application, smart textiles resulted a winning choice to 

develop innovative, economic and manageable devices useful in clinical practice. 

 

 

 



Conclusions 

 

 

Pressure mapping and strain detection are very often required in a huge number of practical 

situations regarding biomedical measurements, human motion detection, human-machine 

interfaces, and soft robotics. In particular, the use of sensors showing properties of flexibility 

and stretchability is increasing, therefore new and smart sensing solutions are widely matter 

of research. Smart textiles represent a valid opportunity to develop new concepts for 

transducers and sensors, and studies regarding their potentialities of employment deserve 

rising attention. In this perspective, the present thesis aimed to study the potentialities of the 

emerging class of textile sensors for strain and pressure detection. These sensors exhibit a 

wide selection of advantages as thinness, lightness, flexibility, stretchability and wearability. 

Such properties suggest their use in a huge number of applications, especially concerning the 

biomedical field. 

The first study of the thesis regarded the design, development and characterization of a 

rectangular-shaped textile matrix sensor, assembled by sandwiching a piezoresistive fabric 

sheet between two outer fabric layers embedding conductive rows and columns. The location 

of the applied pressure can be identified by detecting the position where the change of 

resistances occurs between the external conductive paths. The sensor structure, its electrical 

circuit and characteristics were described in detail, after studying both the integration levels of 

the hierarchical structure and the composition of the piezoresistive fabric sheet. The readout 

circuit was developed considering the grounding theories for crosstalk avoidance and the 

electronics was compact and featured by a low powering voltage, so that the possible 

development of a wireless communication module can be easily envisaged to improve 

usability. The pressure measurement range and the calibration curve were studied by tuning 

circuital parameters. Repeatability, time drift, temperature dependence, SNR (signal-to-noise 

ratio) and dynamic response were analyzed. Novel tests were employed to consider the sensor 

sensitivity to stretch, shear force and surface curvature. A special analysis was taken over 

hysteresis and dynamic accuracy, focusing on a possible compensating solution. Results 

indicated that the system provides overall good quality performances with the main drawback 

of a limited dynamic accuracy, typical of piezoresistive sensing elements. Nevertheless, fabric 
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sensors are robust, cheap, easy-to-use and employable to cover large area three dimensional 

surfaces. In addition, this first study provided valuable insights on the design issues and 

performances of piezoresistive textile pressure sensors, and in particular on their strengths and 

limitations. 

The second part of the present thesis regarded the description of a piezoresistive textile 

strain sensor with the analysis of its metrological properties for both static and dynamic 

measurement conditions and its possible application as wearable goniometer for joint angle 

measurements. Also for this textile sensor, the electrical circuit and sensor characteristics 

were described in detail, after studying both the integration levels of the hierarchical structure 

and the composition of the piezoresistive fabric. The main result was the introduction of a 

general approach that can be used for the assessment of the electro-mechanical properties of a 

piezoresistive conductive textile, applied as a stretch sensor. This approach is easy to follow 

and could be employed for other textile strain sensors for their design, characterization and 

optimization (e.g. the pre-stretching that increases accuracy and repeatability). The 

methodology could be applied to other elastic and conductive materials, with different 

properties, to describe their behaviour. In addition, a skin-mounted sensor for joint angle 

measurement was developed. The wearable goniometer made of Electrolycra is simple, light, 

low-cost and did not limit the joint’s range of motion. The validation results on the human 

subject were not yet quantitative, but promising. The dynamic tests obtained using the 

SABIAN robot confirmed that the developed device is capable of tracking joint movements. 

Even though the RMSE was not negligible, the sensor signal still provided sufficient motion 

measurement capabilities that could be useful for specific applications.  

The developed device was an example of the application of Electrolycra to monitor human 

joint movements. However, being intrinsically nonlinear, the signals measured from this 

device need some processing, in order to increase its sensing accuracy. Therefore, an 

improvement of the sensor performance has been necessary for the compensation of the main 

distortions intrinsic to this sensor, which are mainly caused by hysteresis and relaxation. 

To this aim, a novel model (APL) has been proposed, able to reproduce the rate-dependent 

hysteresis of a piezoresistive textile (Electrolycra). The model has been derived from the 

power-law (PL) model, suitable for piezoelectric actuators, which also exhibit rate-dependent 

hysteresis, but with remarkable differences. The APL model has been validated on 13 datasets 

(only 5 of them have been exploited to identify the model parameters) comprising 
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measurements of strain and resistance, in three completely different scenarios. For the model 

validation also a robotic application was chosen, by using the humanoid robot iCub able to 

perform aperiodic movements that simulate the natural human elbow movements. The APL 

model provided a good hysteresis compensation performance even with a small calibration 

dataset. These results confirmed that an adequate processing can enhance the sensor 

performances in case of dynamic measurements, without a prior knowledge of the strain rate 

typical for a particular application, extending its general applicability. Moreover, since 

hysteresis is caused by the intrinsic mechanical properties of the elastic material (that requires 

longer recovery time) the approach can be extended to all the sensors which are based on 

elastomer deformations and present rate-dependent hysteresis to improve their estimation 

performance. Analogously to the PL model, also the APL model is suitable for 

implementation on digital devices, making it suitable for a real-time estimation of the textile 

strain, given the measurement of its electrical resistance. This allows to develop accurate 

strain sensors based on piezoresistive textile. The development of APL model also adds 

relevant results to the wearable technologies field. In particular, a correct estimation of the 

strain for wearable flexible sensors is of a paramount important for joint angle measurements, 

posture monitoring, motion patterns recognition, and so forth. For this reason, it is expected to 

be especially useful for real-time continuous measurement without influencing the wearer’s 

activity. 

The use of textiles allows the manufacturing of lightweight, wearable, washable, thin and 

stretchable sensors. The wide characterization reported here could provide precious guidelines 

to help researchers and users in taking advantages from all of these benefits, supporting them 

in choosing the best sensor design and application. 

In the remaining part of the thesis, the employment of fabric sensors was investigated into 

two different biomedical contexts, tailoring the sensor design phases to the specific 

requirements. 

The first biomedical application concerned the development of an innovative wearable 

sensor device (WSD) based on conductive textile sensors for tracking cervical head 

movement. Electrolycra was selected as the sensing element because it is elastic, highly 

conductive, low cost, light and not cumbersome, and also thanks to its features previously 

studied. The first result of this study was the characterization of the conductive textile to 

determine its electro-mechanical behaviour and its calibration curve. The second result was 
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the use of Electrolycra as a strain sensor combined with Kinesio Tape to develop a WSD that 

allowed continuous measurement without influencing the wearer’s activity, following the 

“wear and forget” concept. Among the other characteristics, our WSD is non-invasive, easy to 

use, inexpensive and it offers the possibility of measurements outside of the laboratory 

setting. In the third phase of our investigation, the active head range of motion (ROM) was 

measured in a group of healthy young man and women to validate the WSD by comparison 

with a non-invasive optoelectronic instrument. The level of concordance for the angle patterns 

with the reference system (RS) was acceptable and low differences in the measured angle 

were observed compared to the RS. The WSD can be used with a greater confidence to assess 

an individual’s single plane neck motion in clinical situations and in daily activities. 

Therefore, further research is required to evaluate the system’s ability to measure neck-paired 

movements. The results also suggested that WSD measurements were enough repeatable and 

accurate for the evaluation of single plane neck movements and good valid for the 

measurement of cervical ROM. For this reason, it is expected to be especially useful in 

orthopaedics, rehabilitation and sports medicine. In this regard, to guarantee a long-term neck 

monitoring next study has been planned to improve the physical structure of our WSD (e.g 

using a neck band or turtleneck top) and to evaluate the complications related to wearability 

that will affect system performance. 

The last biomedical application regarded the cognitive training (CT), which is defined as 

guided practice on a set of standard tasks designed to stimulate particular cognitive functions. 

Smart textiles were still involved in the project, but a different design was studied to develop 

an interactive interfaces relied on conductive fabrics to perform touch detection without 

pressure measurement. The aim of this feasibility study was twofold. Firstly, it aimed to 

develop a new cognitive ‘ecological’ tool, called SmartTapestry, which allows the 

administration of standardized psychometric tests with modalities that are alternative respect 

to tradition. The novelty of the system is that it was designed to require a commitment to the 

subject both on the cognitive (memory in relation to the reference standardized tests) and on 

that motor side (upper limb articulation movement). The second goal aimed to compare the 

traditional subtest with our SmartTapestry system that includes physical activity. The results 

of our comparison underlined that the SmartTapestry approaches could be used to stimulate 

episodic memory. Furthermore, the multimodal approach (auditive-visual-kinaesthetic) may 

improve subjects' performance. This could be crucial for a new rehabilitation strategy and 

both MCI and healthy subjects could benefit from such a program. Moreover, thanks to this 
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design, the new cognitive tool can be customized according to elderly needs and can be easily 

integrated at home. In this study, SmartTapestry was tested for a particular cognitive domain 

(episodic memory), but for the design of the device, other cognitive domains could also be 

easily investigated. The results of this study may be useful in designing ecological and 

combined cognitive-physical tools, which can be used daily at home, reducing the presence of 

clinical staff, to train at the same time the brain and the body so as to improve the cognitive 

treatments efficacy. In addition, this study also confirmed that smart textiles can be embedded 

in a versatile way into design items that can find space also on the market. 

In conclusion, this work represents a fundamental effort in providing valuable insights on 

the design issues and performances of piezoresistive textile as strain or pressure sensors. 

Textile sensors hold great potential for measuring strain and pressure distributions in 

applications of modern daily lives, but their widespread acceptance was still compromised 

because a rigorous experimental study of their metrological properties was scarce in literature. 

With this thesis, a better understanding of the applications and reliability of fabric strain and 

pressure sensors was obtained, highlighting and partially solving the undesired effects that 

have to be taken into account in the processing of data. These topics are a precious instrument 

to help researchers and users in determining the best design and employment of their smart 

sensing solutions. 

Furthermore, the work highlights that textile sensors have to be accurately customized for 

the various employments, from the point of view of both hardware and characterization. 

Indeed ad hoc design and tests were needed for each application, and some expertise is 

required to properly tailor development and metrological depiction. 

Despite, only two conceivable implementations were investigated in this study, envisaged 

applications for fabric sensors are actually uncountable, particularly in the biomedical 

scenario. Their use is especially encouraged in contexts where accuracy error margins are 

acceptable, while flexibility, stretchability, lightness, washability and wearability are features 

of primary importance. 
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In the context of this PhD project, another important work was carried out in collaboration 

with the Department of Developmental Neuroscience, IRCCS Stella Maris Foundation. This 

work focused on the use of inertial sensors to understand the development of bimanual upper 

extremity activities both in children with typical development and with neurodevelopmental 

disorders. 

Understanding development of bimanual upper limb (UL) activities in both typical and 

atypical conditions in children is important for: i) tailoring rehabilitation programs, ii) 

monitoring progress, iii) determining outcomes and iv) evaluating effectiveness of 

treatment/rehabilitation. Recent technological advances, such as wearable sensors, offer 

possibilities to perform standard medical monitoring. Body-worn motion sensors, mainly 

accelerometers, have shown very promising results but, so far, these studies have mainly 

focused on adults. In this framework, a systematic review was firstly performed to report the 

evidence of upper limb (UL) activity of both typically developing (TD) children and children 

with neurodevelopmental disorders (NDDs) that are reliably reported and comparable, using a 

combination of multiple wearable inertial sensors, both in laboratory and natural settings. 

Articles were selected from three research databases (PubMed, Web of Science and 

EBSCO). Included studies reported data on children aged 0-20 years old simultaneously 

wearing at least two inertial sensors on upper extremities. The collected and reported data 

were relevant in order to describe the amount of physical activity performed by the two UL 

separately. A total of 21 articles were selected: 11 including TD, and 10 regarding NDDs 

(Figure I.1). For each article, a review of both clinical and technical data was performed. To 

summarize the main findings obtained from the systematic review, this Appendix reports both 

clinical and technical data extraction in Table I.3, I.4, I.5, I.6, I.7, and I.8. We considered 

inertial sensors used for following aims: (i) to establish activity intensity cut-points; (ii) to 

investigate validity and reliability of specified markers, placement and/or number of inertial 
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sensors; (iii) to evaluate duration and intensity of natural UL movements, defined motor tasks 

and tremor; and (iv) to assess efficacy of certain rehabilitation protocols. 

Our conclusions were that inertial sensors are able to detect differences in use between 

both hands and that all reviewed studies support use of accelerometers as an objective 

outcome measure, appropriate in assessing UL activity in young children with NDDs and 

determining intervention effectiveness. Amongst the different inertial sensors, the triaxial 

accelerometer is the most commonly used in the articles, and it seems to be the most suitable 

and reliable to monitor and to collect consistent data about body movement. In addition, use 

of inertial sensors exhibits several positive aspects if compared to traditional clinical 

assessments. Firstly, clinical assessments need to be administered by trained therapists and 

therefore outcomes can be easily influenced by level of training and experience. Moreover, 

subjects have to visit the clinic every time they want to check progress, which not only makes 

the whole process very time consuming but also raises the burden on healthcare costs. 

Consequently, wrist actigraphy could be introduced as a more affordable and accessible 

follow-up strategy for a wide number of distant healthcare centres. Evaluation of differences 

between dominant and non-dominant UL measured by inertial sensors could play an 

important role as criteria for evaluating age-appropriate development in neurological 

functions both in TD children and children with NDDs. Therefore, the accelerometer could be 

introduced as a reliable assessment tool and as a quantitative evaluation method for 

developmental disorders. This information could be useful in planning UL rehabilitation 

strategies. 

On the basis of our conclusion obtained from the analysis of reviewed articles, an 

experimental study was carried out to determine the validity of Actigraph GT3X+ to measure 

asymmetry in use of the two ULs during the Assisting Hand Assessment (AHA) in patients 

aged 3-25 years with unilateral cerebral palsy (UCP) compared to age-matched TD subjects. 

In the UCP the quantitatively measurement of the asymmetry in the use of ULs can overcome 

the limitation of many outcome measures which are dependent on the experience of 

therapists. 50 UCP (mean age 9.93±5.23) and 50 TD (mean age 10.14±5.19) subjects were 

assessed with AHA while wearing Actigraphs on their wrists. The mean activity of each hand 

(MADH and MANDH, dominant and non dominant, respectively) and the asymmetry index (AI) 

were calculated. Following sections report the study design and results obtained.  
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Figure I.1 Flowchart of selection of included articles. 

 

Introduction 

Cerebral palsy (CP) is the most common cause of chronic childhood physical disability in 

industrialised societies. The incidence is between 2 and 3 per 1000 live births and increases to 

40–100 per 1000 live births among very premature and very low birth-weight infants [273]. 

Unilateral Cerebral Palsy (UCP), where the motor impairment impacts one side of the body, 

constitutes the most frequent form of CP, comprising 30-40% of children with CP [274][275]. 

Recent estimations of incidence and prevalence of CP have shown a significant increase in 

UCP in Europe [276]. In children with UCP, the presence of abnormal movement patterns at 

the impaired upper limb (UL) has been shown to be associated with lower levels of unimanual 

capacity and bimanual performance impeding activities of daily life [277]. 

UL function is important for performing activities of daily living, as self-care, work, 

leisure, and household activities. These activities include both global and fine-motor 

movements and involve the cooperation between the ULs, where one of the hand conducts the 
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action and the contralateral hand assists in completing the motor task, playing a secondary 

role. For this reason, the two hands are commonly called “dominant” and “non-dominant”, 

respectively with optimization of the bilateral collaboration between the two sides, referred to 

as “handedness” [278]. 

The assessment of UL (hand and arm) function and performance and handedness is 

important in both clinical practice and research. Clinicians interested in the evaluation and 

treatment of the upper extremity of children with UCP can choose from a wide range of 

assessment tools and classification systems. In systematic reviews of existing clinical tools 

[279][280] the best measure of unimanual capacity was the Melbourne Assessment of 

Unilateral Upper Limb Function (MUUL, upgraded to MA2) [281][282]; although the 

Shriners Hospital Upper Extremity Evaluation (SHUEE) [283], and the Quality of Upper 

Extremity Skills Test (QUEST) [284] can also be utilised. The best performance-based 

measure of bimanual upper limb activity in children with UCP is the Assisting Hand 

Assessment (AHA) [285]. The ABILHAND-Kids [286], a parent-report, performance-based 

questionnaire with excellent clinical utility and psychometric properties, has also been 

recommended. 

A major limitation of many UL measures is that they only provide a subjective description 

of UL performance, where the rater visually scores the range, quality of movement, capacity 

and performance during execution of tasks. These assessments are therefore highly dependent 

on the examiner’s experience. There are few tests which require a certificated training course 

for assessors (e.g. AHA), which highlights the potential bias due to rater experience. 

Recently with the advent of technology, some innovative devices have been developed to 

quantitatively measure different parameters integrated into the clinical assessment conducted 

with traditional tools [287]. These technology assessments included energy cost associated to 

human motor activity [288], the classification of specific features of motor activity [289], 

kinematic movement analysis integrated with physiological sensors [290], the identification 

of circadian motor asymmetry [291] and monitoring of motor activities by quantification of 

performance indexes and variables [292][293]. 

There is increased use commercial devices, such as wearable sensors, including 

accelerometers which can be worn as bracelets (e.g. IMUs, ETHOS, Actigraphs). This 

differential approach, based on two symmetrically located sensors, has been used for the study 

of unbalanced conditions: such handedness assessment in healthy [294] or unhealthy subjects 
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[295] (e.g upper limb mobility of post-stroke patients). Most studies adopt a multiple sensor 

arrangement with accelerometers placed on both wrists [296][297][298]. 

There is increased use of technological devices to record and provide raw data that can be 

further evaluated, however these devices need validation. In the validation process, the 

selected tool should be tested for its suitability and applicability for the purpose. Technology 

measures can provide quantitative data, however they are often designed for “standardized 

applications”, which means that the quantity and quality of data may be related to the 

methodology of use. An advantage of wearable sensors data capture is that the subject is free 

to behave in the most natural and spontaneous way. 

The primary purpose of this study was to examine the validity of accelerometers, such as 

the Actigraph GT3X+, worn on the both wrists, to measure asymmetry in use of the two ULs 

during the AHA in children and youth aged 3-25 years old with UCP compared to age-

matched typically developing (TD) subjects. The hypothesis to be tested is that triaxial 

accelerometers (Actigraph GT3X+), in a standardized setting, can discriminate the differences 

in the use of the two upper limbs in UCP subjects compared to TD and detect asymmetry in 

UCP group related to clinical outcome measures (Assisting Hand Assessment scores and 

Manual Ability Classification System). 

 

Study participants and settings 

Data were collected at the Stella Maris Research Centre, Pisa in Italy and at the 

Queensland Cerebral Palsy and Rehabilitation Research Centre in Brisbane, Australia. 

Potential participants were identified from a database of children with hemiplegia at the 

Department of Developmental Neuroscience of the IRCCS Stella Maris (Pisa, Italy) for the 

UCP children and from a clinical register at the Queensland Cerebral Palsy and Rehabilitation 

Research Centre (Brisbane, Australia). A convenience sample of TD were identified as 

volunteers.  

Eligible children and their parents were then invited to participate in the study trial and 

informed consent to participate was obtained from the child and/or by her/his parents prior to 

begin the assessment. Ethics approval was obtained from the various relevant ethics 

committees at participating hospitals and universities in Italy by Tuscany Paediatric Ethics 
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Committee (78/2016) and in Australia at the Child Health Queensland Ethics in Human 

Research as part of the PREDICT study (NHMRC 465128). The study has been registered at 

the www.clinicaltrials.gov (NCT03054441). 

Participants of the CP group were selected based on the following inclusion criteria:  

(i) diagnosis of UCP confirmed by a medical physician; 

(ii) aged between 3 and 25 years old at study assessment; 

(iii) located in Italy or Queensland (Australia).  

Exclusion criteria were: 

(i) medical complications that would interfere with study participation (e.g., 

uncontrolled seizures, epilepsy); 

(ii) predominantly dystonia or athetoid movement patterns; 

(iii) insufficient cognitive level to follow instructions; 

(iv) other progressive neurological disorders; 

(v) marked visual or hearing impairment.  

Participants of the healthy group were selected based on the following inclusion criteria:  

(i) age between 3 and 25 years old at study assessment; 

(ii) no clinical documented disorders; 

(iii) right-hand dominance; 

(iv) located in Italy or Queensland (Australia). 

 

Materials  

Actigraphs: Each participant wore an activity monitor (wGT3X-BT Monitor, ActiGraph, 

Florida, FL, model 7164; 4.6cm x 3.3cm x 1.5cm, 19g) on each wrist. The accelerometers 

were fastened to the wrist using custom-made Velcro wristbands. The Actigraph GT3X+® 

monitor was selected for this study as it has been identified as a reliable instrument for 

measuring movement intensity [299][300]. The wrist was identified as potentially viable 

location for wearing the Actigraph GT3X+® monitor when assessing use of the upper limb in 

children with UCP. 
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AHA: The Assisting Hand Assessment (β-version 5.0) measures and describes the 

effectiveness with which a child with unilateral disability makes use of his impaired 

(assisting) hand during bimanual activities [285]. The AHA is scored from video recordings 

(lasting about 20 minutes) of the play activity, subsequently scored based on 20 predefined 

items using a four-point rating scale. There are different versions of the AHA, which are 

comparable with each other, allowing the comparisons amongst subjects of different ages and 

the detection of potential changes over time in the same subject [301]. Children aged 5-12 

years old are tested with the School-Kids AHA, using a board game [302]. There are two 

different themes for the board games: “the Captive in the Fortress Game” and “the Alien 

Game”. In both versions, children have a mission to complete, which involves performing 

different tasks during the course of the game. On each board there is a path with several steps, 

linked to a specific card with the instruction about how to reach the next step. For children 

younger than 5 years old, or if greater than 5 years but are not interested in board game due to 

their cognitive level, toys from the AHA kit can be used as a free play session. For adolescent 

participants, the Ad-AHA board game “Go with the Ice Floe” is used. UCP and TD 

participants undertook different versions of the AHA assessment, depending on their age and 

on their cognitive ability. 

The Edinburgh Handedness Inventory (EHI) is a simple and brief quantitative method 

of assessing of handedness, composed by 10 items (writing, drawing, throwing, scissors, 

toothbrush, knife without a fork, spoon, broom, striking a match, open the lid of a box) [303]. 

Handedness is calculated based on the activities mainly done with right or left hand: it is the 

ratio between the difference of the two values divided by their sum, expressed in percentage. 

It can range from -100 (left-handed) to +100 (right-handed). Participants of TD group have 

been tested with EHI. 

The Manual Ability Classification System (MACS) classifies how children with CP use 

their hands to handle objects in daily activities. The MACS describes five levels based on the 

children’s self-initiated ability to handle objects and their need for assistance or adaption to 

perform manual activities in everyday life. It is suitable for children between 4 and 18 years 

[304]. 
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Methods  

This trial was conducted in clinical environment, in a quiet room during a play session. 

Each child wore two wearable accelerometers (Actigraph GT3X+), that had been initialized 

and embedded on Velcro-strap bracelets on both wrists during performance of the AHA test 

using the age-appropriate version: Kids-AHA for children between 18 months and 12 years 

(free play for children aged less than 5 years, alien game or fortress game for children aged 

between 5 and 12 years) or Ad-AHA board game “Go with the Ice Floe” for adolescents aged 

12 years or more. 

The AHA assessment was video recorded, as described in the manual, and the start and end 

times of the test were registered. In addition, the MACS levels of UCP participants were rated 

by therapists together with participant’s family. The EHI Test was performed as a structured 

interview to determine the handedness/laterality of each TD participant and it was scored with 

the online software (http://zhanglab.wdfiles.com/local--files/survey/handedness.html). The 

AHA was scored by a certified AHA rater from the video recording and expressed in AHA 

units and EHI. Acceleration data were recorded in 3 axes at 80 Hz (stored locally in the 

device), downloaded using ActiLife 6 software (Actigraph, Pensacola, FL), down-loaded to 1 

Hz and converted to activity counts within the ActiLife 6 software. The activity counts 

provide an index of the intensity of physical activity at a given time point: the higher the 

counts, the greater the intensity [305]. In addition, the activity counts across three axes were 

combined using a Vector Magnitude. 

Movement of each upper limbs during the AHA was quantified by the mean activity count. 

Mean activity counts were defined as the mean of activity counts per second over the entire 

monitoring period. The Mean Activity was extracted separately for the dominant hand 

(MADH) and non-dominant hand (MANDH), regarding the values of Vector Magnitude. To 

quantify the dominant hand movement relative to the non-dominant hand movement during 

AHA, an asymmetry index was computed. The asymmetry index (AI) was calculated 

processing the mean activity of each UL obtained by the accelerometers data of the AHA 

collection following the Edinburgh Inventory formula: 

𝐴𝐼 =
𝑀𝐴𝐷𝐻 − 𝑀𝐴𝑁𝐷𝐻

𝑀𝐴𝐷𝐻 + 𝑀𝐴𝑁𝐷𝐻
∗ 100 

http://zhanglab.wdfiles.com/local--files/survey/handedness.html
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The AI value of 0 indicates both ULs contributed equally to activity during the AHA 

assessment, while positive or negative values indicate greater contributions from dominant or 

non-dominant UL compared to the contralateral limb, respectively. Clinical (AHA unit scores 

and MACS levels) and Actigraph (MADH, MANDH and AI) data were analyzed using the 

Statistical Package for Social Sciences (SPSS, version 20.0). Median and 95% confidence 

intervals (CI) were calculated and reported. Age and sex measures for both groups were 

calculated to check for differences between groups by means of Mann–Whitney U 

independent sample tests. 

Initially, intra group differences (for TD and for UCP) between the MADH and the MANDH 

were evaluated by means of Wilcoxon matched-pairs signed rank test. Between-group 

differences (UCP vs TD) for all actigraphic parameters (MADH, MANDH and AI) were 

evaluated using the Mann–Whitney U independent sample tests. For the MACS level of UCP 

group, the three groups (MACS I, II and III) were compared using the Kruskall–Wallis. Two 

sided p-values <0.05 were regarded statistically significant and post hoc analyses were made 

by Mann Whitney U post hoc tests with p-values <0.017. Finally, in the UCP group, 

Spearman ρ correlation has been used to examine the relationship between the MADH, the 

MANDH and the AI with AHA scores, respectively. 

 

Results and discussions 

Participants  

A total sample of 106 children (55 UCP and 51 TD) were evaluated and 100 met the full 

inclusion criteria. The reasons of exclusion were: 

(i) Movement disorder associated with CP (n=2); 

(ii) Insufficient cognitive levels to comply with the instructions (n=3); 

(iii) Left-hand dominance for a TD subject (n=1). 

The UCP group consisted of 50 subjects with CP (mean age 9.93±5.23 years, median 8.90, 

IQR 8.86, range 3-25) diagnosed as hemiplegia according to Hagberg’s classification [306]. 

Gender and affected side were distributed as follows: male = 30, female = 20; and affected 

side was right = 33 and left = 17. Children were classified on the MACS level I=16, MACS 

II=23 and MACS III=11 [304]. 
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The TD group consisted of 50 subjects (mean age 10.14±5.19 years, median 8.90, IQR 

5.08, range 3-24.91, 30 Male, 20 Female). All TD presented right hand handedness, as 

confirmed by the EHI scores (>0.8). No statistically significant differences were found 

between the two groups for age and sex. 

Intra and between groups comparisons of UCP and TD: Mean activity of 

dominant hand (MADH), Mean activity of non dominant hand (MANDH) and 

Asymmetry index (AI) (Table I.1) 

To our knowledge this is the first study aimed to evaluate the validity of accelerometers 

(Actigraph GT3X+) for detecting the asymmetry in the use of the two ULs in children with 

UCP. The semi-structured setting of the AHA allowed a consistent environment, in which the 

spontaneous use of the two ULs can be detected both in TD and UCP subjects. The use of the 

Actigraphs for each UL was the only additional request respect to the traditional assessment 

with the AHA. Performing the AHA wearing the two Actigraphs did not interfere with 

subjects’ play and the Actigraphs were well accepted due to their resemblance to a digital 

watch. 

Within each group (UCP and TD) the MADH was significantly higher than the MANDH 

(p<0.000001 and p<0.000001, respectively). This is the most important result, which shows 

that the Actigraphs were able to quantify the differences in the mean activity between the two 

hands (DH and NDH) in both groups (TD and UCP) showing that the DH had greater activity 

than NDH. The DH, in fact, also in TD, had a more active role during bimanual activities than 

the NDH which acted as support and for stabilization with an expected lower quantity of 

movement 

For the between-groups comparisons, the MADH was significantly higher in the UCP group 

than the TD group (p=0.001) while the MANDH was significantly lower in UCP than in TD 

group (p<0.000001) (Figure I.2). This finding is in contrast with other studies 

[308][309][310], where it is reported that the non-paretic hand of children with hemiplegia 

was significantly impaired, although to a lesser extent than the paretic hand of children with 

UCP, with respect to the dominant hand of the TD group. As the actigraphic data measures 

the quantity of movement, the higher activity demonstrates the higher movements in UCP 

subject utilized in their DH in order to support the activity of impaired hand. 
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For the UCP group, these data confirm that children with UCP have develop their 

handedness on the less affected side [311]. The values of MADH and of MANDH found some 

outliers in UCP group. In particular, for the MADH there was the subject #38 who had a very 

high value and it could be related to the particular active behaviour of the child during the 

assessment, while subjects #3 and #22 are were young adults who were very quiet and they 

moved their non-affected arms few times. The three outliers (#48, #49 and #50) with higher 

values of MANDH were the subjects with higher values of AHA. 

 

Figure I.2 Mean activity of DH and NDH in TD and UCP groups. 

 

In addition, the values of AI of UCP were significantly higher than those of TD group 

(p<0.000001) (Figure I.3). In TD the asymmetry index was very low demonstrating a high 

cooperation between the two hands and similar amount of activity in contrast to the 

significantly higher values of asymmetry in UCP. As manual activities typically require the 

co-operation of both hands, and also tend to be specialized for different functions [307]. For 

instance, when we remove the lid from a jar or we button up a shirt, the NDH holds the object 

in a stable position while the DH acts upon it. The NDH therefore plays a postural role in 

stabilizing the object and at the same time provides a spatial reference frame into which the 

DH manipulates the object. While the NDH offers stability, it does not however mean that the 

hand is immobile. On the contrary, the NDH ensures a static or dynamic stabilization. For 
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instance, in handwriting, the pen cannot be dexterously manipulated by the DH if the page is 

not stabilized and periodically re-positioned by the NDH so that the position and orientation 

of the page always remain appropriate to the DH action. Based on these previous findings, our 

results confirm that in TD, the NDH has lower values than the DH. 

 

Figure I.3 Asymmetry index in TD and UCP groups. 

 

 

Table I.1 Mean activity of DH and NDH in TD and UCP groups. 

MEAN 
UCP  

mean [CI 95%] 

TD  

mean [CI 95%] 
p* 

MADH 97.71 [92.32-103.09] 86.60 [81.1-92.09] 0.001 

MANDH 38.8 [33.65-43.95] 74.72 [70.1-79.33] <1.0E-06 

p** <1.0E-06 <1.0E-06  

AI 45.88 [40.75-51.02] 7.27 [5.47-9.6] <1.0E-06 

*Mann-Whitney U independent sample tests 

**Wilcoxon matched-pairs signed rank test 
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Relationship among MACS levels in UCP group (Table I.2) 

Another important finding were the differences in Actigraph data according to the MACS 

levels. The MACS classifies how children with CP use their hands to handle objects in daily 

activities and it is expected that it is highly correlated to the AHA performance, which 

evaluates the spontaneous use of the assisting hand (affected hand) during a semi-structured 

play session requiring bimanual handling. There was a significant difference among the 

MACS levels (I, II and III) on both clinical (AHA, p<0.000001) (Figure I.4) and the 

Actigraph data (MADH, MANDH and AI; p = 0.004, 0.001 and <0.000001, respectively). The 

AHA unit values were significantly higher for MACS I than MACS II (p<0.000001) and 

MACS III (p<0.000001) and also between MACS II and MACS III (p<0.000001). In the UCP 

group there were a few outliers, including case #13 and #31 whom had lower values than 

expected for their MACS level I and III, respectively. In contrast cases #5 and #40 had higher 

values than expected for their MACS level II. These discrepancies could be related to a lower 

or higher performance during the assessment as AHA with respect to the use of their hands 

during daily activities. 

 

Figure I.4 AHA scores of UCP children grouped by MACS levels. 

 

Further analysis of the mean activity of each hand separately in relation to MACS levels 

found a significant difference between hands. 
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The MADH values were significantly lower in the MACS I and in the MACS III than the 

MACS II (p=0.004 and p=0.012, respectively) and similar between MACS I and MACS III 

(p=0.251) (Figure I.5). 

 

Figure I.5 Mean activity of DH of UCP children grouped by MACS levels. 

 

The MANDH values were significantly higher in the MACS I and in the MACS II than the 

MACS III (p<0.000001 and p=0.001, respectively) while the values were similar between 

MACS I and MACS II (p=0.168) (Figure I.6).  

This finding could be related to the crucial difference between MACS II and MACS III. 

Children classified as MACS II can achieve the required tasks using alternative ways of 

performance with both hands and also extra activity of the DH for have success in bimanual 

tasks that can determine higher values of MADH. This usually does not occur in MACS III 

who require environmental support to achieve their goals. 

When comparing MACS levels with AI, the data confirmed that there were significant 

differences among levels with a significant increase in the AI so that the UCP children at 

MACS level III have the highest level of asymmetry between limbs. In particular, the AI 

values were significantly lower in the MACS I and the MACS II than the MACS III 

(p<0.000001 and p=0.004) and also in the MACS I with respect to MACS II (p=0.001) 

(Figure I.7). 
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Figure I.6 Mean activity of NDH of UCP children grouped by MACS levels. 

 

 

Figure I.7 Asymmetry index of UCP children grouped by MACS levels. 
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Table I.2 Clinical and Actigraph data according to the MACS levels of the UCP group. 

UCP 

MACS I 

(n. 16) 

MACS 

II (n. 23) 

MACS III 

(n. 11) 
p* 

p** 

I vs II 

p** 

I vs III 

p** 

II vs III 

MADH 
86.90 ± 

22.22 

106.29 ± 

15.01 

95.47 ± 

12.61 
0.004 0.004 0.251 0.012 

MANDH 
48.33 ± 

19.25 

39.9 ± 

14.91 

22.62 ± 

11.18 
0.001 0.168 <1.0E-06 0.001 

AI 
29.89 ± 

16.37 

48.7 ± 

11.21 

63.25 ± 

12.60 
<1.0E-06 0.001 <1.0E-06 0.004 

AHA 

score 

79.06 ± 

7.59 

58.7 ± 

9.42 

36.45 ± 

10.38 
<1.0E-06 <1.0E-06 <1.0E-06 <1.0E-06 

*Kruskall-Wallis 

**post-hoc analysis by Mann-Whitney U independent sample tests 

 

Relationship between AHA in UCP group 

All the findings in UCP children were confirmed by the strong correlation between AHA 

unit scores and all the quantitative actigraphic parameters (MADH and MANDH and AI). 

Clinical scores on the AHA of UCP group ranged from a minimum of 16 to a maximum of 

89 AHA units (logits). There was a significant negative correlation between AHA unit scores 

and the MADH values (Spearman’ ρ= -0.285, p=0.045) (Figure I.8) and the AI (Spearman’ ρ = 

-0.819, p<0.000001) (Figure I.9) while it was significantly positive between AHA unit scores 

and the MANDH (Spearman’ ρ = 0.668, p<0.000001) (Figure I.8). 

As expected, higher AHA score were related to a good symmetry of upper limbs use (and 

therefore low AI values) and the lower activity of DH with higher values of NDH. 

 

Concluding remarks 

This study confirmed that accelerometry is a valid tool, able to measure the amount of 

movement of the two ULs to quantify comparisons between limbs. This study confirmed 

construct validity between the Actigraph and MACS levels and severity of bimanual 

coordination on the AHA.  
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Our work confirms validity of the Triaxial Accelerometer approach with Actigraphs, to the 

traditional evaluation without require time or effort to the child. Our data confirms the 

relationship between wearable sensors such as the Actigraph as clinical assessments and 

added other quantitative data to clinical scores. The clinical implications confirm that 

quantitative data provide a more detailed description of upper limb activity and symmetry, 

with the opportunity to have a sensitive tool for detect spontaneous and intervention-induced 

changes. Future perspectives, may confirm that accelerometry could become a reliable and 

not invasive assessment tool for systematically measuring the UL activity, addressing further 

studies of the bimanual activities and handedness in clinical situations. Use of wearable 

sensors for planning UL activity strategies in interventions, may enable customization in 

relation to subjects’ rehabilitative needs with a sensitive tool to detect spontaneous and 

intervention-induced changes. Our ongoing work is the data collection by actigraphy of daily 

life activities for testing the hypothesis that the accelerometry could be a reliable tool also in 

real-world conditions, encompassing potential differences between the experimental situation 

and recording the real-life spontaneous upper limb use. 

 

Figure I.8 Correlation between mean activity of DH and NDH and AHA scores in UCP group. 
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Figure I.9 Correlation between asymmetry index and AHA scores in UCP group. 
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Table I.3: Study Data in Typically Developing Children. 

Author Study 

type 

Aims Setting Sample 

Size  

Mean Age 

(yrs) 

Inclusion 

Criteria 

Exclusion 

Criteria 

Reference 

Standard 

[312] 

Birmingham 

A. T. et al. 

(1985)  

Survey To evaluate the variation 

of tremor frequency and 

amplitude in relation to 

the age  

Laboratory 109 n=22 (7-9), 

n=28 (9-11), 

n=24 (11-

13), n=22 

(13-15), 

n=13 (16-18) 

To be attending 

specific schools 

or fit classes 

NA NA 

[313] 

Avi Sadeh et 

al. (1994) 

[STUDY 1]  

Lab-based 

validation 

and 

calibration 

study 

To develop a new sleep-

wake scoring algorithm 

Laboratory 16 13.8±1.9 Volunteers NA NA 

[314] 

Deutsch K. 

M. et al. 

(2006) 

Observatio

nal study 

To investigate the 

mechanical and neural 

components of postural 

finger tremor 

Laboratory 39 n=20 

(6.4±3), 

n=19 

(10.5±0.3), 

n= 21 

(20.8±1.4) 

Volunteers Neurological 

disorders, 

influencing 

tremor 

NA 

[315] 

Graves 

L.E.S. et al. 

(2008) 

Observatio

nal study 

To examine the 

contribution of the upper 

limb and total body 

movement to adolescents' 

energy expenditure 

whilst playing 

videogames 

Laboratory 13 11-17 Good health 

picture 

NA NA 
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[316] 

Davila E. M. 

(2011) 

Observatio

nal study 

To evaluate the influence 

of wearing AMs on the D 

vs ND wrists on 

measurements of free 

living PA  

Laboratory 

+ outpatient 

20 12-17 1) volunteer 

participants from 

Bozeman, 

Montana, 2) 12-

17 yrs 

NA NA 

[317] 

Phillips L. 

R. S. et al. 

(2012) 

Lab-based 

validation 

and 

calibration 

study 

 To develop physical 

activity intensity cut-

points for use with 

GENEA accelerometer 

Laboratory 44 10.9 ± 1.9 NA NA NA 

[318] 

MacArthur 

B. et al. 

(2014) 

2x2 mixed 

design 

with 

random 

allocation.  

To measure percentage 

of time engaged in 

MVPA and estimated EE 

with accelerometry in 

playing AVG vs 

unstructured OP  

ELC 

playground, 

ELC room 

16  

(8 OP vs. 

8 AVG) 

OP= 6.6±0.7, 

AVG= 

6.3±0.9 

1) good health, 

2) healthy 

weight (BMI 

percentile= 5-

85), 3) no limit 

for physical 

activity. 

Grass allergies. 

Skin 

sensitivity to 

light. Failure 

to complete all 

session within 

a 3-week 

period. 

NA 

[319] 

Lemmens R. 

J. M. et al. 

(2015) 

Cross 

sectional 

study 

To evaluate the reliability 

of arm-hand tasks 

accelerometer records 

Laboratory 32 n=16 

children 

(8.5±1.7), 

n=16 

(14.6±1.5) 

Volunteers Motor 

problems with 

arm, hand or 

shoulder 

NA 

[320] 

Kaneko M. 

et al. (2015) 

Observatio

nal Study 

To quantify age-

appropriate 

developmental changes 

of SNS 

Laboratory 233 4-12 Student at the 

Fukuoka 

Municipal 

Elementary 

School 

NA NA 

[321] 

Dadashi F. 

et al. (2015) 

Observatio

nal study 

To characterise front-

crawl swimming skills 

Outdoor 

pool 

9 16.0 ±1.8 Recreational 

swimmers 

NA NA 
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[GROUP 2] 

[322] 

Mackintosh 

K.A. et al. 

(2016) 

Observatio

nal study 

To validate and compare 

ANNs 

Laboratory, 

semi-

structured 

setting 

27 10.8 ±1.0 Volunteers 

recruited via a 

local primary 

school. The 

children attended 

the the 

laboratory only 

if: 1) rested state, 

2) at least 2h 

postprandial, 3) 

strenous exercise 

and coffeine 

avoided in the 

previous 24h 

NA NA 

ANNs: Artificial Neural Networks, AVG : Active Videogames, EE: Energy Expenditure, ELC: Early Learning Center, OP: Outdoor Play, NA: not available 
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Table I.4: Study Data in Children with Neurodevelopmental Disorders. 

Author Study 

type 

Aims Setting Sample 

Size  

Disease Mean 

Age 

(yrs) 

Inclusion Criteria Exclusion Criteria Reference 

Standard 

[323] 

Floyd A. G. 

et al. (2007) 

Multy-

centered 

study 

To analyze 

the UL 

motor 

physiology 

Laborato

ry 

15 NP-C 25 ± 10 1) => 12 years of 

age, 2) confirmed 

diagnosis of NP-C 

by abnormal 

cholesterol 

esterification and 

abnormal filipin 

staining 

1) concurrent enrolment 

in other clinical trials, 2) 

drugs or diet 

supplements, interfering 

with digestive absorption 

of study medication, 3) 

significant history of 

gastrointestinal disorders, 

HIV or hepatitis, 4) not 

comply with study 

procedures 

EDSS 

[324] 

Gordon A. 

M. et al. 

(2007) 

Single-

blinded 

randomiz

ed 

control 

study 

To examine 

the efficacy 

of the 

HABIT 

Summer 

camp 

20  

(10 

HABIT 

vs 10 

CG) 

UCP total 

sample

= 

9.6±6.0

, 

HABIT

= 4.5-

13.7,  

CG= 

3.9-

10.6 

1) ability to extend 

the wrist>20° and 

the fingers at the 

metacarpophalange

al joints>10° from 

full flexion, 2) 

JTHF: >50% 

difference between 

the involved and 

the non-involved 

hand, 3) ability to 

lift the involved 

arm>6 inches, 4) 

BBIT= mean score 

+/-<1DS 

1) health problems 

unassociated with CP, 2) 

current/untreated 

seizures, 3) visual 

problems interfering with 

the intervention or 

testing, 4) MAS> 3.5, 5) 

orthopaedic surgery on 

the involved upper 

extremity, 6) dorsal 

rhizotomy, 7) botox 

therapy in the UL in the 

prior 6 months or within 

the period of study, 8) 

intrathecal baclofen. 

AHA, 

BOT-2, 

CFUS, 

JTHF 
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[325] 

Strohrmann 

C. et al. 

(2013)   

Longitudi

nal study 

i) to 

monitor 

children 

activities in 

daily life, 

ii) to 

evaluate the 

use of body 

worn 

sensors for 

motor 

assessment 

in children 

Laborato

ry 

4 CP (2), 

acquired 

stroke 

(2) 

10.5 ± 

2,12 

1) neurological 

diagnosis leading 

to stationary stay, 

2) age= 5-18 years, 

3) cognitive ability 

to understand the 

aim of the tasks 

NA Motor 

Capacity 

Assessment 

[326] 

Zoccolillo L. 

et al. (2015) 

cross-

sectional 

experime

ntal 

quantitati

ve study* 

i) to 

monitor 

physical 

activity 

during 

VGT vs 

convention

al therapy, 

ii) to 

quantify if 

VGT 

enhances 

number of 

movements 

Outpatie

nt + 

inpatient 

8 UCP 6,6 ± 

1,4 

1) UCP, 2) 4-14 

yrs, 3) GMFCS: I-

IV, 4) any Xbox 

with Kinect at 

home. 

1) IQ<35, 2) severe 

comorbidities, 3) 

incapacity to stand, even 

with an external support. 

QUEST, 

ABILHAN

D-kids 
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[327] 

Sokal B. et 

al. (2015) 

Cross 

sectional, 

observati

onal 

design 

i) to 

evaluate the 

UL activity, 

ii) to 

compare 

the use of 

the affected 

arm 

between 

children 

and adult 

with 

hemiplegia 

Not 

reported 

28 UCP 3.9 ± 

1.7 

NA 1) serious or recurring 

medical complications, 

2) spasticity medication 

within the last 3 months, 

3) previous paediatric 

CIMT, 4) fixed 

contractures in the 

affected-arm, 5) invalid 

accelerometer records 

(insufficient time, only 1 

wrist, unrealistic records, 

malfunction) 

PMAL-R, 

PAFT 

[328] 

Bergamini 

E. (2014) 

Three 

experime

ntal 

sessions 

i) to 

identify a 

biomechani

cal 

performanc

e indicators 

of 

wheelchair 

propulsion, 

ii) develop 

and assess 

the efficacy 

of a 

specific 

training 

program 

Basketba

ll court 

12  

(6 EG 

vs 6 

CG) 

paraplegi

a (4), 

myelome

ningocel

e (3), 

poliomye

litis (2), 

spastic 

diplegia 

(1), 

below-

knee 

amputati

on (1), 

knee 

arthropro

thesis (1) 

total 

sample

= 17.1 

± 2.7, 

EG= 

13-20, 

CG= 

12-20 

At least two years 

of previous 

wheelchair 

basketball 

experience. 

Medical 

contraindications 

NA 
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[329] 

Kaneko M. 

et al. (2016) 

Observati

onal 

study 

i) to 

establish a 

quantitative 

evaluation 

system of 

soft 

neurologica

l signs 

Laborato

ry 

33 ADHD 7-11 1) patients of the 

Kurume University 

Hospital, 2) 

positive DSM-IV 

criteria for ADHD 

diagnosis, 3) 

WISC-III>70 

NA NA 

[330] 

Le Moing 

A.G. et al. 

(2016) 

Observati

onal 

study 

i) to 

highlight 

the 

feasibility 

of 

quantifying 

the range of 

upper limb 

movements 

Laborato

ry 

7 DMD 18.5+/-

5.5 

1) patients of the 

Institute of 

Myology, 2) age> 

10 years old, 3) 

non-ambulant, 4) 

able to sit for at 

least 3 hours in the 

wheelchair 

1) cognitive impairment, 

2) occurrence of 

neurological/inflammator

y/infectious/endocrine/ac

ute orthopaedic disease 

in the precious month, 3) 

scheduled surgery within 

3 weeks of inclusion 

date, 4) surgery of the 

upper limbs in the 

previous three months 

MyoSet 

(MyoPinch

, MyoGrip 

and 

MyoPlate), 

BBT, 

Minnesota 

Test 
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[331] 

O'Neil M.E. 

et al. (2016) 

Observati

onal 

study 

i) to 

evaluate the 

inter-

instrument 

reliability 

and 

concurrent 

validity of 

3 

acceleromet

er-based 

motion 

sensors for 

measuring 

PA 

intensity 

Clinical 

standardi

zed 

setting 

57 CP: 

hemipleg

ia (29), 

diplegia 

(26), 

quadriple

gia (3) 

12.5±3.

3 

1) GMFCS= I-III, 

2) ambulatory 

children, 3) 6-20 

years old, 4) able to 

follow instructions 

and protocol 

directions, 5) able 

to wear 3 pairs of 

accelerometers and 

1 portable indirect 

calorimeter. 

1) recent musculoskeletal 

injuries, limiting their PA 

levels, 2) orthopaedic 

surgery within the 

precious 6 months, 3) 

botulinum toxin or 

phenol injections within 

the previous three 

months, 4) previous 

unstable medical 

conditions limiting PA 

levels, 5) unstable 

emotional or behavioural 

status.  

NA 

[332] 

Coker-Bolt 

P. et al. 

(2016) 

Prospecti

ve pre-

test/post-

test study 

To 

determine 

the 

feasibility 

and use 

acceleromet

ers before, 

during and 

after a 

CIMT 

program 

Outpatie

nt + 

Laborato

ry 

12  UCP 4.9 

±1.33 

1) UCP, 2) able to 

use the affected UL 

as a gross assist 

during play and 

self-care activities, 

3) no significant 

developmental 

delays, 4) 

ambulatory, 5) no 

additional health 

impairments 

1) significant intellectual 

disabilities, 2) seizure 

disorders, 3) botulinum 

toxin injections in the 

previous 6 months 

MA2 

ADHD: Attention Deficit Hyperactivity Disorder, AHA: Assisting Hand Assessment, BOT-2: Bruininks–Oseretsky Test of Motor Proficiency, CFUS: Caregiver 

Functional Use Survey, CG: Control Group, CIMT: Constraint-Induced Movement Therapy, DMD: Duchenne Muscular Dystrophia, EDSS: Extended Disability 

Status Scale, EG: Experimental Group, IQ: Intelligence Quotient, JTHF: Jebsen–Taylor Test of Hand Function, MA2: Melbourne Unilateral Upper Limb 

Assessment – 2, MAS: Modified Ashworth Score, NP – C: Nieman Pick C, PAFT: Pediatric Arm Function Test, PMAL-R: Pediatric Motor Activity Log – 

Revised, QUEST: Quality of Upper Extremity Skills Test, UL: upper limb VGT: Video-Game based Therapy. 
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Table I.5: Technical Data for collection phase in Typically Developing Children. 

Author Sensors 

Number 

Sensors Type & Make Placement Wear time Sample 

frequency 

[312] 

Birmingham 

A. T. et al. 

(1985) 

2 Accelerometers (Bruel and Kjaer 

type 4367). 

Terminal phalanx of each middle 

finger 

3 min for each hand 5-second epoch 

[313] 

Avi Sadeh et 

al. (1994) 

[Study 1] 

2 Actigraphs (AMA-32, Ambulatory 

Monitoring, Inc., Ardsley, NY). 

Each wrists 2 nights (about 7 hours 

to night) 

1-minute 

epochs. 

[314] 

Deutsch K. 

M. et al. 

(2006) 

2 Uniaxial wireless accelerometers 

(Coulbourn T45-10, calibrated on 

each day of testing). 

Dorsal surface of the tip of the 

distal segment of each index finger. 

three 10-s consecutive 

trials, about 5 s breaks 

between trials. 

200 Hz 

[315] 

Graves L.E.S. 

et al. (2008) 

6 1) Actiheart (Cambridge 

Neurotechnology Cambridge, UK), 

2) 4 uniaxial ActiGraph 

accelerometers (GT1M, Fort 

Walton Beach, FL, USA) 

1) on the skin at the base of the 

sternum, 2) on the midaxillary line 

of the right and left hip and on each 

forearm proximally from the wrist 

joint . 

60 min 2) 30 Hz 

[316] 

Davila E. M. 

(2011) 

2 Actical triaxial AMs (Respironics 

Co., Inc., Bend, OR, USA). 

Dorsal side of each wrist Full seven days (24 

hrs/day). 

15-second 

epoch 

[317] 

Phillips L. R. 

S. et al. (2012) 

3 + 1 Triaxial wireless accelerometers 

GeneActive (Unilever Discover, 

Colworth, UK) + ActiGraph GT1M 

(Actigraph, Pensacola, FL, USA). 

Each wrist and + right hip 

(ActiGraph GT1M worn adjacent to 

the hip mounted GENEA) 

Activities: 5 min; 

Lying supine: 10 min. 

GENEA: 80 Hz, 

ActiGraph 

GT1M: 1 s 

epochs. 
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[318] 

MacArthur 

B. et al. 

(2014) 

3 Actical accelerometers (Actical, 

Philips Respironics Co. Inc., Bend, 

OR). 

Each wrist + hip 20 minutes 15-second 

epoch 

[319] 

Lemmens R. 

J. M. et al. 

(2015) 

7 Sensor devices, composed by a 

triaxial accelerometer, triaxial 

gyroscope, triaxial magnetometer 

(SHIMMER Research, Dublin, 

Ireland). 

Chest + Dominant and non-

dominant arm-hand: on the dorsal 

side of the hand, of the wrist and on 

the upper arm 

Not specified. 128 Hz 

[320] 

Kaneko M. et 

al. (2015) 

4 wearable sensors composed of 

three-axis acceleration and three-

axis angular velocity sensors 

(WAA-006, WAA-010, ATR-

Promotions, Kyoto, Japan) 

both hands and elbows four motor tasks: 10 s 

for each task 

100 Hz 

[321] 

Dadashi F. et 

al. (2016) 

3 waterproofed IMUs (Physilog III, 

BioAGM, CH, 3D accelerometer, 

3D gyroscope). 

2 IMUs placed on the dorsal side 

and distal end of the forearms, one 

on the sacrum. 

Not specified. 500 Hz 

[322] 

Mackintosh 

K.A. et al. 

(2016) 

9 triaxial accelerometer (Actigraph 

wGT3X+, Florida, USA) 

on the lateral plane of each ankle, 

knee, hip, wrist, and centre of the 

chest. 

30 minutes 100 Hz 

IMU: Inertial Measurement Unit, Hz: Herz 
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Table I.6: Technical Data for analysis phase in Typically Developing Children. 

Author Accelerometer data 

comparison 

Differences between the two hands Data cleaning Threshold to assess the 

intensity of arm 

movement 

[312] 

Birmingham 

A. T. et al. 

(1985) 

RMS of tremor amplitude, 

dominant peak and its 

frequency. 

For rest tremor, amplitude in the dominant hand 

was significantly lower in adolescence and early 

adult life than in childhood, for the non-dominant 

hand the statistically significant difference was 

sustained to later life. For work tremor, dominant 

hand frequency declined significantly with age, 

both hands continue to decline in adulthood. 

Frequency analysis 

of the tremor 

waveform was 

filtered to remove 

frequencies above 

50 Hz to prevent 

alias contamination 

NA 

[313] 

Avi Sadeh et 

al. (1994) 

[Study 1] 

Accelerometric data matched 

with PSG scoring performed 

to develop the scoring 

algorithm: PS probability of 

sleep 

The mean activity level of the dominant wrist 

was significantly higher than that of the 

nondominant wrist during PSG-determined sleep 

(6.84 vs. 6.16), as well as during wakefulness 

(25.8 vs. 22.3). 

NA NA 

[314] 

Deutsch K. 

M. et al. 

(2006) 

The peak frequency within 

two frequency bands (5-15 

Hz and 15-30 Hz) and the 

proportion of power 

exhibited at the peak 

frequency determined (based 

on power spectral density 

calculated using Welch's 

averaged periodogram 

method). 

The peak frequency of the finger of the dominant 

hand (21.4 Hz) was higher than nondominant 

hand (20.7 Hz) in the 15-30 Hz frequency band. 

No significant differences in proportion of power 

exhibited at peak frequency within the 5-15 Hz 

of postural tremor as a function of age, hand 

dominance or hand configuration. Postural 

tremor of nondominant hand was significantly 

more regular than dominant hand. 

Band-pass filtered 

(1– 50 Hz) 

NA 
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[315] 

Graves 

L.E.S. et al. 

(2008) 

Means and standard 

deviations of activity counts 

(counts/min)  

Activity of the dominant limb was significantly 

greater than non-dominant during tennis and 

bowling (P < 0.001) and non-dominant limb 

activity was significantly greater during boxing 

than bowling or tennis (P < 0.001). Activity 

counts from the left wrist for tennis and boxing (r 

= 0.710 and 0.744, P · 0.01) and the right wrist 

for boxing (r = 0.586, P < 0.05) were 

significantly correlated with EE.  

Band pass filtering 

(0.21 – 2.28 Hz) 

NA 

[316] 

Davila E. M. 

(2011) 

Data Trasformation: AEE, 

Time. Data Summarization 

Characteristics: Bouts 

Duration, Intensity 

Thresholds. 

No statistical differences between outcome 

variables for any bout duration (1, 5, 10 minutes) 

within L and MV intensity categories between 

AMs (D versus ND, LW versus RW) or model 

(1R versus 2R). Dominant and RW AMs were 

no-significantly higher than ND and LW, 

respectively, within MVPA intensity. In contrast, 

ND and LW AMs were non-significantly higher 

than D and RW within L intensity PA. Identical 

results within gender. 

Quantity control 

checks were 

performed to 

identify periods on 

non-wear. 

Light (AEE < 0.05 

kcals/kg/min), moderate 

(0.05 < AEE < 0.09 

kcals/kg/min), vigorous 

(AEE ≥ 0.10 

kcals/kg/min). 

[317] 

Phillips L. 

R. S. et al. 

(2012) 

VM with gravity-substracted. Both sides demonstrated good criterion validity 

(right: r=0.9, left: r=0.91) and good concurrent 

validity (right: r=0.83, left: r=0.845). ROC 

analysis proved GENEA monitors able to 

successfully discriminate among all intensity 

levels. 

NA Sedentary (< 1.5 METs), 

light (1.5-2.99 METs), 

moderate (3-5.99 METs) 

and vigorous (≥ 6 METs). 

The accelerometer counts 

for activities were coded 

into binary indicator 

variables (0 or 1) based on 

intensity. 
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[318] 

MacArthur 

B. et al. 

(2014) 

Percentage of time in MVPA 

calculated by summing the 

number of 15-second 

intervals in which the activity 

counts were ≥ 574 counts/15 

seconds. 

The accelerometers placed on the wrists did not 

find differences in the conditions in percentage 

MVPA (right: 48.8±29.5%, left: 47.6±28.8%). 

NA MVPA: activity counts ≥ 

574 counts/15 seconds. 

[319] 

Lemmens R. 

J. M. et al. 

(2015) 

ICC parameter (based on 

VM). 

Within-subject reliability calculated for the 2 arm 

hands separately, median ICCs ranged between 

0.68-0.92. Between subject reliability for the 2 

arm hands separately, median ICCs ranged 

between 0.61-0.90. 

Zero time-phase, 

low-pass filtered 

(1.28 Hz) 

NA 

[320] 

Kaneko M. 

et al. (2015) 

Postural stability of the hands 

and elbows, rotational speed, 

mirror movement, two 

parameters of bimanual 

symmetry, compliance 

All indices had a tendency to increase with age. Low-pass filter (6 

Hz) 

NA 

[321] 

Dadashi F. 

et al. (2016) 

Average propulsive phases of 

right and left arms, pull and 

push phases (Δpull, Δpush), 

sum of aerial recovery and 

entry catch phases (ΔNProp), 

index of coordination (IdC). 

By increasing the velocity, the duration of arm 

under-water phases (Δpull + Δpush) and 

accordingly IdC did not change significantly. G2 

group used 2,8% lower catch-up pattern (P<0,01) 

by increasing the arm under-water phases 

(P<0.016) and using 6.5 more arm stroke 

(P<0.001). No changes in the stroke length and 

cycle velocity variation were observed (P > 

0.22). 

NA NA 
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[322] 

Mackintosh 

K.A. et al. 

(2016) 

Mean and variance of the 

accelerometer counts in each 

15 s window. These extracted 

features were used as inputs 

into the ANNs, a specific 

type of machine learning 

model. RMSE. 

The ANNs for left and right wrist accelerometers 

had a lower correlations with predicted EE. No 

significant differences in RMSE analysis. 

Despite significant advantages in terms of 

compliance, they could lead to potentially 

marginal losses in EE prediction accuracy. 

NA 1,4% of collected data 

were removed when EE < 

0,5 MET (measured with 

MetaMax 3B) 

AEE: Activity Energy Expenditure, AM: Activity Monitors, ICC: Intraclass Correlation Coefficient, IMU: Inertial Measurement Unit, MET: Molecular 

Electronic Transducers, PSG: Polysomnography, RMS: Root Mean Square, RMSE: Root Mean Square Error, ROC: Receiver Operating Characteristic, VM: 

Vector Magnitudes. 
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Table I.7: Technical Data for collection phase in Children with Neurodevelopmental Disorders. 

Author Sensors 

Number 

Sensors Type & Make Placement Wear Time Sample 

frequency 

[323] 

Floyd A. G. 

et al. (2007) 

2 Piezoresistive uniaxial 

accelerometers with linear 

sensitivities of 4.5 mV/g in the 

biological tremor range (0-25 Hz) 

Over the dorsum of both hands Multiple recording 

and total recording 

time lasted 1-2 h 

300 Hz 

[324] 

Gordon A. 

M. et al. 

(2007) 

2 Accelerometers (Manufacturing 

Technology Inc. Fort Walton 

Beach, FL, model 7164) 

Each wrist During the AHA test 

session 

10 Hz 

[325] 

Strohrmann 

C. et al. 

(2013)   

10 ETH Orientation Sensor (ETHOS)= 

IMU composed by a 3D 

accelerometer, a 3D gyroscope and 

a 3D digital compass.  Not 

commercially available. 

Upper (wrists and upper arms) and 

lower extremities (upper legs and feet) 

and the trunk. 

1h, once per week 

over a course of four 

weeks. 

100 Hz 

[326] 

Zoccolillo L. 

et al. (2015) 

5 Wireless triaxial accelerometers 

(Trigno, Delsys®). 

Posterior part of forearms, of shanks 

and of lower trunk in correspondence 

of the centre of mass (L2-L3). 

During 5 continuous 

minutes of video-

game based therapy 

and 5 minutes of CT. 

Not specified 

[327] 

Sokal B. et 

al. (2015) 

2 Biaxial wireless accelerometers 

(Model 71256, Actigraph, 

Pensacola, FL) 

Dorsal side of both wrists just above 

the styloid process 

During waking hours 

for at least 9 hours 

daily for 3 

consecutive days 

after the testing 

session. 

10 Hz, integrated 

over a user-

specified epoch 

(2 s). 

[328] 

Bergamini 

E. (2014) 

3 IMUs (Opal, APDM Inc., Portland, 

Oregon, USA).  

Both wrists and backrest of the 

wheelchair. 

Time was manually 

recorded. Total time 

not reported. 

128 Hz 
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[329] 

Kaneko M. 

et al. (2016) 

4 Acceleration and angular velocity 

sensors (WAA-006, WAA-010, 

ATR-Promotions, Kyoto, Japan) 

Both hands and elbows two motor tasks 

(imitative motor task 

and a maximal-effort 

motor task): 10 s for 

each task 

100 Hz 

[330] 

Le Moing 

A.-G. et al. 

(2016) 

2 Watch-like devices contained a 

three-axis accelerometer, a three-

axis gyroscope, and a three-axis 

magnetometer 

On each wrist at least 30 minutes to 

complete all the 

tasks, without 

concerning potential 

resting period 

NA 

[331] 

O'Neill M.E. 

et al. (2016) 

6 1) StepWatch activity monitor 

(uniaxial), 2) Actigraph GT3X 

(triaxial), 3) BodyMedia 

SenseWear Pro Armband (triaxial). 

1) superior to the left/right malleolus, 

2) on a waist elastic belt superior to 

the right/left iliac crest, 3) dorsal side 

of each upper arm at the midbelly of 

the triceps muscle 

During each data 

collection, lasting 2-

2,5 hours 

1 s for 

ActiGraph, 3 s 

for StepWatch, 

and 60 s for 

SenseWear. 

[332] 

Coker-Bolt 

P. et al. 

(2017) 

2 Triaxial Actigraph GT9X Link 

(Actigraph, Pensacola, FL) 

on each wrist 6 hours a day before 

and after the CIMT 

program (tot: 12 

hours) 

30 Hz 
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Table I.8: Technical Data for analysis phase in Children with Neurodevelopmental Disorders. 

Author Accelerometer data 

comparison 

Differences between the two hands Data cleaning Threshold to assess the 

intensity of arm 

movement 

[323] 

Floyd A. G. 

et al. (2007) 

Side-to-side relationship of 

tremor amplitude, peak 

tremor frequencies and 

amplitude variability. 

Action tremor amplitudes were relatively 

symmetric between the dominant and non-

dominant hands,  postural tremor was not 

symmetric bilaterally (3 of 8 patients were 

unilateral), amplitudes of bilateral cases 

correlated within subjects. 

In the FTN trials only, 

frequencies below 2 

Hz were excluded 

NA 

[324] 

Gordon A. 

M. et al. 

(2007) 

Percentage of hand use 

(activity counts) 

The percentage of use of involved extremity 

remain the same in controls, 70% of the task 

performance, while increased from 62.6 to 

77.8%  for the children who received HABIT 

(not correlate with the change in AHA scores). 

Use of the non-involved extremity remained the 

same across testing sessions in both groups. 

NA NA 

[325] 

Strohrmann 

C. et al. 

(2013)   

TIME, mean value of MI, 

MIV, DF, SM, ARE, 

RANG, ArmSync, gait 

parameters (all based on 

VM). 

MIV is larger for the unaffected hand, the energy 

associated to the dominant frequency of the 

affected hand vs. unaffected hand was much 

lower, the SM parameter of the unaffected side 

vs. affected side was twofold. 

Low-pass filtered (45 

Hz) 

NA 

[326] 

Zoccolillo L. 

et al. (2015) 

RMS of acceleration. Hemiparetic side was moved less than healthy 

side. In VGT the paretic side was moved -

20±13% less than the other side, while this 

difference was not significant in CT (-10±28%).  

Low-pass filtered (20 

Hz) and after the 

mean substraction for 

removing the 

contribution of gravity 

acceleration. 

NA 
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[327] 

Sokal B. et 

al. (2015) 

Duration SV, duration 

ratio SV, intensity SV, 

intensity ratio SV. 

Partecipants moved their more-affected arm for 

55.7% and their less-affected arm for 64.9%, 

ratio 0.86. The intensity of more-affected arm 

was 41.3 counts/s and for less-affected arm was 

60.5, ratio 0.71. 

Segments when 

partecipants appeared 

to have removed the 

accelerometers were 

removed. 

Raw values for each 2 s 

recording epoch were 

dichotomized around a 

low threshold (i.e., 2) with 

above-threshold values set 

to a positive costant and 

at- or below-threshold 

values set to zero. 

[328] 

Bergamini 

E. (2014) 

 Symmetry index, a peak 

of the acceleration 

magnitude and CV (all 

based on VM). 

Symmetry index: - CG: ES2 (48.92%) and ES3 

(47.86%), - EG: ES2 (47.77%) and ES3 

(48.62%). These values indicate good symmetry. 

Low-pass filtered (12 

Hz) 

NA 

[329] 

Kaneko M. 

et al. (2016) 

Rotational speed, mirror 

movement, postural 

stability of rotating elbow, 

temporal change of 

rotational size in each 

index, bimanual 

symmetry, compliance. 

All scores of ADHD children was lower than TD 

children. In bimanual symmetry the score of 

ADHD children increased with age and was 

significantly different to TD aged 8 and 10 years 

old. The variability of children’s score in 

compliance and temporal change of rotational 

size in ADHD vs. TD was larger. 

low-pass filter (6 Hz) NA 

[330] 

Le Moing 

A.-G. et al. 

(2016) 

Norm of the angular 

velocity, ratio of the 

vertical component of the 

acceleration, model-based 

computed power, elevation 

rate 

Not find any side effect between the dominant 

and non-dominant hands. Patients performed 

better with their dominant side but this was not 

statistically significant, due to the small size of 

the population and the advanced stage of the 

disease. 

NA NA 
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[331] 

O'Neill M.E. 

et al. (2016) 

Median (IQR) evaluated 

and compared between 

right and left side for each 

parameter and each device, 

ICC, CIs 

Each accelerometer is stable in data collection on 

both sides, indicating that movement 

asymmetries may not influence PA measures. 

Because all 3 accelerometer models exhibited 

excellent inter-instrument reliability for 

measuring PA in a variety of real-world 

activities in TD, it may be appropriate also for 

CP to wear accelerometers on the right side. 

NA NA 

[332] 

Coker-Bolt 

P. et al. 

(2017) 

Active duration, mean 

activity count, use ratio 

and magnitude ratio (all 

based on VM, down-

sampled to 1 Hz). 

Significant increase in the duration and mean 

actvity count of affected upper limb use during 

each camp day and in three of five days in 

comparison to pre-test data, respectively. No 

significant changes in all scores pre- vs. post-

CIMT. 

NA Upper limb activity when 

the vector sum activity 

count > 0. 

ARE: Average Rotation Energy, ArmSync: Synchrony of Arm Movement, CIs: Confidence Intervals, CT: Conventional Therapy, CV: Intercycle Variability, DF: 

Dominant Frequency, FTN: finger – to – nose, IQR: Interquartile Range, MI: Movement Intensity, MIV: Movement Intensity Variation, RANG: Range of 

Angular Velocity, SM: Smoothness of Movement, SV: Summary Variable, TIME: Task Completion Time. 
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