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Abstract

This PhD work aims to develop an advanced monitoring and diagnostic system for indus-
trial process control loops. This study is based on techniques and algorithms which make use
of data available in industrial plants in order to evaluate performance of control loops, detect
and distinguish different causes of malfunction, and suggest counteractions to perform.

The overall activity includes modeling and simulation in MATLAB™, experimentations on
pilot plants, analysis of industrial data, and implementations in process plants.

The whole PhD activity is framed in a series of projects for development and analysis of
monitoring systems, carried out in the last 15 years within the Laboratory of Control of Chem-
ical Processes (CPCLab).

The software developed in this thesis is an evolution of the monitoring system, called PCU
(Plant Check Up), which has formed a subject of research in the past several years. Different
versions of this monitoring system are now available, which vary depending on equipments
and devices used in the plants and on variables and measurements available from DCS.

Different collaborations and partnerships with Italian industrial companies (as ENI and
ENEL) have been established in the last years. Industrial implementations constitute an inter-
esting source of inspiration on real problems and a mean of validation of the actual operating
ability of the system, as well as a large data base valuable to test new monitoring and diag-
nostic techniques. These activities are usually accompanied by technical reports, and may also
originate scientific papers for the most significant results and applications.
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Chapter 1

Introduction

1.1 Motivation

Performance monitoring/assessment of control systems of industrial plants is an important
topic in the discipline of Process Control. The common acronym which indicates this fruitful
research area is Control Performance Monitoring/Assessment (CPM/CPA).

The term monitoring means the action of watching out for changes in a statistic that reflects
the control performance over time. The term assessment refers to the action of evaluating a
statistic that reflects control performance at a certain point in time. Note, however, that both
terms are used somewhat interchangeably in the literature [83].

CPM/CPA typically allows one to maintain quality specifications and to limit products
cost. Performance deterioration is, in fact, quite common and appears with too oscillating or
too slow trends of the controlled variables. Oscillations in control loops cause many issues
which can disrupt the normal plant operation. Typically fluctuations increase variability in
product quality, accelerate equipment wear, move operating conditions away from optimality,
and generally they cause excessive or unnecessary energy and raw materials consumption.

The four main causes of control loop malfunctions – which may also happen simultaneously
– are:

• wrong design/tuning of controllers,

• problems (friction) in actuators,

• external perturbations,

• interactions between variables.
Therefore, an automatic monitoring system becomes essential in order to find out which con-
trol loops work away from optimal conditions, to identify root causes of malfunctions and to
suggest the most appropriate corrective actions.

Nowadays, control loop performance monitoring is an established area of research, and
many effective and sophisticated methods to detect malfunctioning loops have been developed.
Nevertheless, easiest and most practical methods still tend to be most successful in industrial
environments. Often, there are additional aspects - often quite trivial - such as organizational
issues, data availability and access that can compromise the use of CPM. Among others, well
established works of review, of survey, and of industrial applications are [83, 58, 38, 113]. In
[36], very recent results of surveys amongst CPM users have been reported.

1.2 Activity Overview

The present PhD activity is based on two main topics:
1. the so called “standard” diagnosis,

7



1.3. THESIS OVERVIEW

2. the so called “advanced” diagnosis.
This study is limited to performance monitoring and diagnosis of singular control loops, that
is, singular input singular output (SISO) systems; therefore, assessment of multivariate systems
with emphasis on the presence of interactions is not considered and it may represent a topic of
future developments.

The general approach of this thesis is quite practical and specifically oriented to industrial
applications and on-line implementations. Anyway, also general and theoretical aspects have
been properly studied and presented.

The first activity of the PhD concerned the standard diagnosis, with applications on basic
control systems present in traditional process plants, that make available only three variables
for each control loop: set point (SP), process (or controlled) variable (PV), controller output
(OP). Feedback controllers are of PID type which generally act on pneumatic control valves.

One of most common causes of low performance is proved to be the presence of friction
in valves, known with the term stiction (static friction). Different models for the description
of this phenomenon have been developed in the literature of the last 20-30 years. Moreover,
numerous techniques for an automatic detection have been proposed in most recent years and,
then, various methods for its quantification and for compensation of oscillations on controlled
variable have been developed. Approximately, 150 research works concerning valve stiction
have been reviewed and classified in these years of PhD studies.

The core of the first activity has focused on the quantification of friction in control valves,
which, unlike detection, is little consolidated. There are still several open issues; for example, a
reliable prediction of the position of the valve stem (MV) – signal otherwise not measured; the
identification of regular and sustained oscillations in controlled variables; the quantification of
friction in the presence of additional perturbations, such as a aggressive tuning of controllers
and external stationary and non-stationary disturbances.

The second line of research of this PhD, the advanced diagnosis, has involved smart instru-
mentation devices and innovative communication protocols, as Fieldbus. Numerous variables
– available through these new technologies – permit one to develop an advanced diagnosis
which takes into account the dynamics of internal elements of the actuator (especially the po-
sitioner), and allow one also to manage alarms and check-backs from devices. In particular,
the measurement of the actual position of the valve (MV) and, consequently, the valve position
error allows one to realize a more accurate diagnosis, which separately evaluates specific prob-
lems of the actuator from the external loop, and which identifies a higher number of causes of
malfunctioning with more reliability.

1.3 Thesis Overview

This thesis consists of 6 chapters, based on one or more original papers, produced during the
PhD activity. A fair effort has been made to get a homogeneous and straightforward text, which
did not seem simply a miscellany of different works. Each chapter starts with an abstract and a
brief introduction, and ends with conclusions. Anyway, these parts might unavoidably contain
some repetitions of problems and methodologies.

Chapter 2 acts as introductory part, to present the core of the whole PhD: friction in con-
trol valves. This chapter has the form of a review, by describing the state of the art about
valve stiction from its basic characterization through its different aspects: modeling, detection,
quantification, compensation, smart diagnosis, and commercial software packages. The most
significant works appeared in the recent literature have been analyzed, by pointing out analo-
gies and differences among various techniques, and by showing more appealing features and
possible points of weakness. The five following chapters focus on some specific topics only

8



CHAPTER 1. INTRODUCTION

revised in Chapter 2.
Chapter 3 and Chapter 4 focus on stiction quantification. Different techniques, based on

Hammerstein models, have been developed in order to perform process identification and
valve stiction estimation. A nonlinear block describes valve friction, while a linear block is
used for process dynamics. A grid method is employed to estimate stiction parameters, while
different least squares methods (linear or recursive) identify process parameters.

In Chapter 3 a first couple of nonlinear and linear model has been used. In addition, a
general methodology has been proposed in order to discard data for which is very likely to get
incorrect stiction estimates and in order to limit application to appropriate cases. Particular
attention is devoted to the fact that these estimates can be negatively affected by the inevitable
presence of further perturbations on process variables such as set point variations, incorrect
tuning of controllers and external disturbances. This basic algorithm of stiction quantification
has been then implemented into a new specific analysis module inside the latest version of
PCU software.

Afterwards, in Chapter 4 the additional presence of disturbances has been managed with
the use of specific (extended) process models. Different quantification techniques – from liter-
ature and personally developed – have been tested and their performance have been compared
by means of various types of data sets: simulation examples, experiments on pilot plants and
data obtained from industrial plants.

Chapter 5 concerns stiction compensation. Fast responses as well as a complete removal
of the oscillations on process variable induced by valve stiction are removed by means of a
specific technique. This new approach is based on estimate of the appropriate controller out-
put, associated with the desired valve position at the steady-state, by using the amplitude of
oscillation before compensation and through the estimate of valve stiction. In addition, set
point tracking and disturbance rejection are guaranteed, by monitoring the control error and
by switching temporarily to a standard PI(D) controller.

Chapter 6 regards smart diagnosis of pneumatic control valves. The use of additional vari-
ables, available by intelligent instrumentations and field bus communication systems, allows
one to assess not only valve stiction, but also other malfunctions of the whole actuator. Differ-
ent types of malfunctions have been introduced and suitable indices have been defined through
experimental runs on a pilot plant scale. The valve position error allows specific evaluation of
valve status, and detection of different causes of malfunctioning. The same logic has been then
implemented in the advanced version of PCU software and advantages in the accuracy of diag-
nosis are shown. Finally, the system has been successfully validated by on-line implementation
for control loops assessment of an industrial power plant.

Chapter 7 presents main features of a dedicated version of the system PCU, delivered to dif-
ferent companies with the objective of analyzing the most critical control loops of their indus-
trial plants. As example, a comprehensive case of application of the software is described. Two
complex plants of the chemical industry, for a total of about 100 loops and 1000 data acquisi-
tions, have been monitored and assessed. Interesting indications of causes of low performance
- controller tuning, valves, disturbances - have been obtained and also different strategies to
adopt - retuning, valve maintenance, upstream actions - have been given.

Chapter 8 sums up conclusions from the thesis and tries to propose some directions of
future works. Then, 3 appendices concerning stiction quantification have been included.

Appendix A contains additional issues not specifically included in Chapter 4 about stic-
tion quantification methods by means of Hammerstein models. Appendix B proposes another
approach of estimation by involving Expectation Maximization algorithms. Appendix C com-
pares several stiction quantification methods on further examples of industrial applications.

Finally, an unified bibliography ends this thesis.

Preliminary versions or parts of the different chapters have been presented at conferences

9



1.4. COLLABORATIONS

or published in journals, as listed below; some of them have been submitted or will be asap.
• Chapter 2 [27]: To be submitted as soon as possible, 2016.

• Chapter 3 [22]: Chemical Engineering Transactions, 32: 1201–1206, 2013.

[25]: Industrial & Engineering Chemistry Research, 53: 7507–7516, 2014.

[23]: In Proceedings of the 19th IFAC World Congress, 2014.

• Chapter 4 [29]: In Proceedings of 9th IFAC ADCHEM, 2015.

[30]: Submitted to Journal of Process Control, 2016.

• Chapter 5 [28]: Submitted to 11th IFAC DYCOPS, 2016.

• Chapter 6 [31]: In Proceedings of 10th IFAC DYCOPS, 2013.

• Chapter 7 [33]: Chemical Engineering Transactions, 43: 1369–1374, 2015.

• Appendix C [26]: to be submitted as soon as possible, 2016.

1.4 Collaborations

1.4.1 Academic collaborations

During these three years of PhD studies, some international activities of academic collabora-
tion have been established.

First of all, a period of abroad research stay has been conducted for the last part of the
PhD. Five months (June - October 2015) have been spent by the research group of Prof. Biao
Huang of Chemical and Materials Engineering of University of Alberta (Edmonton, Canada).
A research activity has been defined, by merging the areas of interest of the Canadian team
with the topics of PhD in the field of control loops monitoring.

In this context, some new specific topics, such as Bayesian statistics, Hidden Markov mod-
els, and Expectation Maximization (EM) algorithms, have been examined. These issues are
usually exposed and discussed during weekly presentations and meetings taking place within
the research group. The main activity of has been two-fold.

The first part has regarded stiction compensation. The whole activity presented in Chap-
ter 5 has been conducted during the abroad research stay. In particular, experimentations have
been carried out on a pilot plant in Laboratory of Process Control of Prof. Huang.

The second part, which is still underway, aims to develop an EM algorithm applied to the
problem of identification and estimation of friction in control valves. Some details of this ac-
tivity are reported in Appendix B.

Other academic collaborations have concerned:
• Prof. Q. P. He of Tuskegee University (Alabama, USA). A comparison of performance

of techniques for stiction quantification has been carried out. This activity has ended
with an acknowledgment inside a paper published in an international journal [75], and
it has been then the source of inspiration for a larger comparison of methods for stiction
quantification (see Appendix C). This work might also represent the starting point of
further collaborations in the fields of control loops monitoring and valve diagnosis.

• PhD student M. Daneshwar of the Universiti Sains Malaysia (Malaysia). The idea was
to model the control loop with a mixed approach (white and black box), using Neural
Networks for the description of valve friction. The algorithm - still under development -
could be applied to both conventional valves and smart valves, for which the position of
the stem is measurable.

• an extensive activity of peer reviewing for international journals and conferences, for a
total of about 40 papers in different areas of process control.
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CHAPTER 1. INTRODUCTION

1.4.2 Industrial collaborations

In parallel, some activities of industrial collaboration and partnership with Italian companies
have been carried out. All these activity are finalized to development and analysis of control
loop monitoring systems, which are gathered under the name PCU (Plant Check Up). Different
versions of this monitoring system have been developed, depending on equipments and devices
used in the industrial plants and on variables and measurements available from DCS.

In details:
• with ENI, the Italian multinational oil and gas company, to develop and maintain the

base monitoring system, called Loop Control and implemented in ENI R&M refinery of
Livorno since 2007;

• with ENEL, the largest Italian energy company, to develop the system of advanced diag-
nosis, object of experimentations in a pilot plant (IdroLab), and then implemented in the
energy plant of La Casella - Piacenza;

• with CLUI-EXERA, an international association of industrial users of control systems, for
which a dedicated version of the system PCU was developed.

These activities have been accompanied by technical reports, which for the most significant
results and applications have then originated some scientific papers in national (e.g, [21], [24],
[32]) and international (e.g., [31], [33]) field.
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Chapter 2

Loop Monitoring and Valve Stiction

Abstract 1

Valve stiction is indicated as one of the main problems affecting control loop performance
and then product quality. Therefore, it is important to detect this phenomenon as early as
possible, distinguish it from other causes, and suggest the correct action to the operator in
order to fix it. It is also very desirable to give an estimate of stiction amount, in order to be
able to follow its evolution in time to allow the scheduling of valve maintenance or different
operations, if necessary.

This chapter is a review of the state of the art about the phenomenon of stiction from its
basic characterization to smart diagnosis, including modeling, detection techniques, quantifi-
cation, compensation and a description of commercial software packages.

In particular, this study analyzes the most significant works appearing in the recent lit-
erature, pointing out analogies and differences among various techniques, showing more ap-
pealing features and possible points of weakness. The review also includes an illustration of
main features of performance monitoring systems proposed by major software houses. Finally,
the chapter gives indications on future research trends and potential advantages for loop di-
agnosis when additional measurements are available, as in newly designed plants with valve
positioners and smart instrumentation.

Each of the five subsequent chapters of the thesis broadens one topic firstly introduced in
this chapter.

1This chapter is based on [27]: Evolution from classical to advanced valve stiction diagnosis.
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2.1 Introduction

Valve malfunctions, hysteresis, backlash, dead-band, and especially stiction, have been known
since early times to be important causes of performance deterioration in control loops [120].
They affect plant routine operation and force periodical shutdown to remove them; therefore,
they influence the overall product quality and plant economy.

Oscillations in process variables, induced by stiction, can be confused with other causes
as incorrect tuning, presence of external disturbances, multi loop interaction and other valve
internal problems. In addition they cannot be completely eliminated by controller detuning or
by the presence of valve positioners.

Therefore, the problem must be diagnosed as early as possible and appropriate actions
to take should be suggested to the plant operator. This explains the large research effort on
the subject, carried out by academic research in the last years, facing different aspects of the
phenomenon. As fall out, the techniques originated by research work have been adopted in
most commercial software packages, initially proposed mostly for retuning purposes.

Several review works also appeared in the literature, even though mostly devoted to specific
issues: on stiction detection techniques [78, 48, 86, 54]; on stiction models [64], and on stiction
compensation methods [54, 131]. Global reviews, not including smart diagnosis, have been
recently proposed by [19, 39].

Following this short recall about the impact of valve stiction, this chapter aims to be a com-
prehensive survey of the most significant works concerning the phenomenon of valve stiction,
starting from modeling and ending with potentiality made possible by smart instrumentation.
This chapter follows the structure of the more recent review paper [39], with a detailed updat-
ing on last publications, new insights in the comparison of techniques and in perspective open
by smart diagnosis.

The survey consists of pointing out analogies and differences among several recent tech-
niques and showing their more appealing features and possible weak points. Results from the
comparison of different approaches are synthesized in tables reporting significant indices of
merit. Section 2.2 presents an illustration of basic aspects of the phenomenon and related os-
cillations in the control loop, while Section 2.3 presents more established models to reproduce
its effects. Section 2.4 is devoted to the illustration of stiction detection techniques, to recog-
nize its presence since the early stage, and Section 2.5 covers stiction quantification methods
which allow one to estimate the amount of stiction and its evolution in time. Section 2.6 deals
with compensation techniques, and Section 2.7 with possibilities created by the availability of
additional measurements (smart instrumentation). The chapter ends with Section 2.8, where
features of different commercial and academic software packages are synthesized, followed by
Section 2.9 where conclusions are drawn.

2.2 Phenomenon Description

The term stiction - contracted form of static friction - was coined in the process industry to
emphasize the difference between static and dynamic friction [120]. Although friction is a long-
time-studied topic, the stiction phenomenon has been defined formally only quite recently.
Choudhury et al. [47] have proposed a comprehensive description of the mechanism, thus
differentiating it from similar valve malfunctions, as backlash, hysteresis, dead-band.

Stiction is defined as a “property of an element such that its smooth movement in response
to a varying input is preceded by a sudden abrupt jump called the ‘slip-jump’, which is ex-
pressed as a percentage of the output span. Its origin in a mechanical system is static friction
which exceeds the dynamic friction during smooth movement” [47].

The phenomenon is measured as the difference between the final and initial position values
required to overcome static friction. For instance, 5% of stiction means that when the valve gets
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stuck, it will restart to move and then to vary its true position (MV) only after a cumulative
change in control signal (OP) exceeding 5% [47].

In Figure 2.1, the four main variables of a “standard” control loop are indicated. Set Point
(SP), Controlled Variable (PV) and Controller Output (OP) are usually recorded, while valve
stem position (MV) is not available in general.

Figure 2.1: The reference scheme for a “standard” control loop.

Pneumatic control valves are the most commonly used valves in process industry due to
their high performance. However, some practical issues as seal degradation, unnecessary tight-
ening, expanded metal at high working temperature, and lubricant depletion may result in
valve stiction [85].

For a normal valve, MV and OP signal are equal (or proportional) at all times. But in
the case of stiction, the valve acts like a nonlinear element and these two signals clearly differ.
Stiction in control valve may cause significant degradations in the behavior of the whole control
loop, even leading to stability problems. Note that 1% of stiction is considered enough to cause
performance problems [85].

Typically, steady-state control errors or unwanted oscillations and limit cycles in all vari-
ables are registered (see Figure 2.2). Ideally, distinctive wave shapes characterize the limit
cycles caused by stiction. Since the stem velocity remains at zero for a certain period of time,
a square-shaped MV signal is generated. This can be considered the “sign” of stiction, as other
sources of loop malfunction generate limit cycles behaving more as sinusoidal waves.

Note that increasing the amount of stiction, the amplitude and the period of oscillation of
OP and PV signals increase significantly, and the oscillation behavior is also altered [50]. The
distinctive signature of a control valve affected by stiction can be also observed in the MV(OP)
diagram: a parallelogram-shaped pattern is registered (Figure 2.2, bottom right). The valve is
stuck even though the integral component of the controller increases the active force on the
stem. Then, the valve jumps abruptly when the active force overcomes friction forces (marked
as A in Figure 2.2), and it moves with a offset respect with the desired position.

Note that this signature is typical both of a sticky pneumatic valve and a sticky electric
valve. These two types of valve differ only for the actuator, while the valve body, subjected to
the majority of friction forces, is the same, as shown in Figure 2.3.

Unfortunately, MV signal is hardly available in practice; therefore MV(OP) diagrams are
rarely accessible. Flow control loops, with fast (linear) dynamics, allow one to approximate
MV with PV and to assess stiction presence on PV(OP) diagram. Conversely, loops with slower
dynamics (level control, temperature control) show PV(OP) diagrams having elliptic shapes
also in the case of stiction (Figure 2.2, top right).

Nevertheless, similar paths on PV(OP) are obtained also for other types of oscillating loops:
external stationary disturbance or aggressive controller tuning. Furthermore, the presence of
field noise and the cases of simultaneous sources of oscillation can significantly alter wave-
forms. This is the reason why making stiction diagnosis simply by using OP and PV signals
can be a very difficult task.
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2.2. PHENOMENON DESCRIPTION

Figure 2.2: Limit cycles of a sticky valve: (left panels) oscillating time trends of OP, PV, and MV; (top
right) PV(OP) diagram; (bottom right) MV(OP) diagram.

(a) Pneumatic control valve (b) Electric control valve

Figure 2.3: Configurations of different types of control valves.
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However, the very first challenge for process control purposes is to evaluate the significance of
the oscillation in the registered variables. Therefore, also for the analysis of stiction-induced
oscillations, only significant oscillations should be evaluated.

Techniques which detect significant loop oscillation can be broadly classified into the fol-
lowing categories [156]: (i) time-domain approaches, e.g., integral absolute error (IAE) and
autocorrelation function (ACF) methods; (ii) frequency domain approaches, e.g., fast Fourier
transform (FFT) method; and (iii) hybrid approaches including wavelet transform (WT) method.
Once single/multiple significant oscillations have been identified, the hard following step is to
assess the sources (root-causes) of these malfunctions, that is, the loop(s) where the oscillation
started. Finally, the causes of oscillation have to be diagnosed. Therefore, stiction analysis is
also strictly linked with the more general issue of oscillation detection and diagnosis. The main
techniques for oscillation detection are briefly reviewed below.

Firstly, Hägglund [67], and Thornhill and Hägglund [155] proposed a simple oscillation
detection technique based on the IAE of subsequent zero-crossings of the control error (e),
between Set Point (SP) and Controlled Variable (PV). The industrial implementation of this
method has been discussed by Hg̈glund in [70]. Then, Forsman and Stattin [63] improved this
method by regularizing the upper and lower IAEs. In parallel, Miao and Seborg [105] devel-
oped a technique using a decay ratio index of the autocorrelation coefficients of the control
error. Later, Thornhill et al. [157] introduced a regularity index of the zero-crossings in the
ACF to assess loop oscillation, but its accuracy is limited by the manual choice of band pass
filters in the case of multiple oscillations. In the meanwhile, Matsuo et al. [103] presented an
oscillation detection approach with the wavelet transform. Later, Salsbury and Singhal [122]
have developed a method based on the poles of autoregressive and moving-average models
(ARMA).

More recent techniques include discrete cosine transform (DCT) by Li et al. [99], and em-
pirical mode decomposition (EMD) by Srinivasan R. et al. [147], and by Srinivasan B. and
Rengaswamy [139], which also provide solutions for nonstationary data. Zakharov and Jämsä-
Jounela [176] proposed a method by identifying peak positions of the dominant frequency
component in oscillating signals. The technique is compared against five other methods re-
ported in the literature and also introduced two indices to quantify the mean-non stationarity
and the presence of noise. In addition, Tikkala et al. [158] have developed a technique for
detecting nonstationary oscillations based on a robust zero-crossing method which computes
the moving trend of the signal and some specific statistics.

Very recent techniques are able to detect multiple oscillations in control loops. Naghoosi
and Huang [108] detect and cluster the peak values of the ACF of the variables. No frequency-
selection filtering is required in order to separate different oscillations. In parallel, Guo et al.
[66] propose a detection technique of nonstationary multiple oscillations based on an improved
wavelet packet transform (WPT), which integrates Shannon Entropy with a non-Gaussianity
test and a quasi-intrinsic mode function index. Recently, Srinivasan B. et al. [138] also devel-
oped an integrated approach to identify and detect single and multiple sources of loop oscilla-
tion.

In the next four sections, the main techniques for stiction modeling, detection, quantifica-
tion, and compensation will be reviewed.

2.3 Stiction Modeling

Stiction models can be classified into two major categories: first-principle and data-driven mod-
els [47]. It is important to note that all stiction models are a trade off between accuracy and
simplicity.

First-principle stiction models describe accurately the physics of phenomenon and fall ba-
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sically into two classes: static and dynamic friction models. Newton’s second law of motion and
classical balance of forces on the valve are used. The static models describe the friction force
using time-invariant (static) functions of the valve stem velocity. Conversely, in the dynamic
models time-varying parameters are employed. Two well-known examples of first-principle
stiction models are introduced in pioneering works by Karnopp [88] and Canudas de Wit et al.
[42] (known as LuGre model).

However, two are the main disadvantages of first-principle models. Firstly, several param-
eters, such as the diaphragm area, the air pressure, the spring constant and the stem mass, that
are actually difficult to estimate, must be known. Secondly, computational times may be too
long for practical purposes because cumbersome numerical integrations are necessary. There-
fore, first-principle models are usually of scarce practical use for loop monitoring purpose and
industrial applications.

On the opposite, data-driven (empirical) modeling approaches can get over the previous
two drawbacks, by limiting the number of parameters and the computational burden. How-
ever, such empirical models also present some disadvantages. In fact, they cannot fully capture
the dynamics of the valve, since - for example - not all the proposed models passed the specific
tests applied by following the standards of International Society of Automation (ISA) [64]. An
exhaustive review of first-principle stiction models can be found in [39].

Only data-driven models will be discussed in the sequel of this section, being this type
largely studied in the last decade, and considered that the scope of Chapter 4 is to make use
of practical stiction models in order to compare different quantification techniques based on
them.

Nowadays, widely adopted data-driven models are Stenman’s, Choudhury’s, Kano’s, and
He’s models.

The first model, proposed by Stenman et al. [149], reproduces the jump of the valve stem
after the stickband through the use of a single parameter (d). However, this very simple model
was proved to be quite inaccurate. In particular, it cannot predict the observed behaviors in
the case of a sticky valve excited with a sinusoidal input [47], and it also fails to pass many ISA
tests [64].

Therefore, in order to improve the description of stiction phenomenon, a different model
was introduced by Choudhury et al. [47], by having the Karnopp’s model [88] as reference
base. Two parameters are now introduced: the amplitude of deadband plus stickband (S), and
the amplitude of the slip-jump (J).

In parallel, a similar stiction model was introduced by Kano et al. [87]. Unlike Choudhury’s
model, which proves to cope accurately only with deterministic signals, this model handles
also stochastic inputs. In this case, S and J coincide with the sum and the difference of static
and dynamic friction, respectively. Note that these parameters are quantitatively equivalent
to those of Choudhury’s model, but, for a given input signal OP, the two models can produce
different MV signals with the same values of parameters.

An alternative model was introduced by He et al. [76] in order to reduce the complexity
of the two previous formulations. The use of a temporary variable, that represents the ac-
cumulated static force, allows one to implement a more straightforward logic and to handle
stochastic signals. Two different parameters are used: static fs and dynamic fd friction, which
make the model closer to the first-principle-based description.

Ideally, these three two-parameters models describe the behavior of a sticky valve on the
MV(OP) diagram through a sequence of three components (see Figure 2.4):

1. Deadband + stickband. When the valve stem arrives to a rest position or changes the
direction, the valve sticks (point A). While it does not overcome the frictional forces, the
valve maintains the position (AC) resulting in deadband (AB) and stickband (BC).
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2. Slip-jump. After overcoming the static friction, the valve converts the potential energy
stored in the actuator into kinetic energy, jumping in an abrupt way to a new position
(from C to D).

3. Moving phase. Once the stem jumps, it continues to move until it eventually sticks again
because of a stop or inversion of the direction of the movement (between G and H). Dur-
ing the moving phase, the stem may have a reduced velocity. This condition may stick the
valve again while it keeps its traveling direction; in this case, only stickband is present
(between E and F).

The parameters of He’s model have their equivalent in Kano’s and Choudhury’s models,
according to simple equations: S = fs + fd ; J = fs − fd (Figure 2.4). However, due to different
logics, He’s stiction model can generate a very different MV sequence for a given OP signal and
with equivalent stiction parameters.

Figure 2.4: MV(OP) Diagram: Modeling a sticky valve with a standard two-parameters model.

Choudhury’s and Kano’s models were subsequently compared in [85] (Chap. 2): both
proved to predict satisfactorily the stiction effects. It is worth underlining that these two mod-
els assume that the valve moves slowly and stops only when the control signal changes its
direction or the same signal is applied for two consecutive sampling intervals. Conversely,
He’s model specifically assumes that the static friction is associated with all valve movement,
that is, the valve is sufficiently fast - and not sluggish as in the other two models - to stop at the
end of each sampling interval. In practice, the moving (slipping) phase is actually absent in
He’s stiction model.

Following this line, He and Wang [74] have then proposed a semi-physical model which
can better reproduce the behavior of the first-principle (Classical) model. Three parameters are
now used: K , the overshoot observed in the physical model, which is proved to be substantially
constant (K = 1.99), fs, the static friction force, and fd , the dynamic friction force.

On the opposite, Chen et al. [43] modified the first He’s model [76] by introducing a two-
layer binary tree logic. Although two extra variables are added, the approach generalized static
and dynamic friction, improving the inclusion of various types of stiction patterns. The com-
parison performed by [43] confirms that the path shown in Figure 2.4 on MV(OP) diagram can
be actually obtained only using Choudhury’s or Kano’s model. Conversely, He’s model produce
a staircase-shaped path along the moving phase of the valve. Note that, since the valve has two
states (stick and slip), there are four possible state transitions: stick to slip, keep sticking, slip
to stick, and keep slipping [43]. He’s model only covers the first two possible state transitions,
that is it assumed that the static friction affects every valve movement. Therefore, the moving
phase of He’s model can be only “jumpy”.
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Other data-based models have also been presented in the literature. Ivan and Lakshmi-
narayanan [82] simplified the first He’s model proposing a one-parameter model (f ), specifi-
cally oriented to stiction quantification and compensation. This model can simulate only the
case of pure stick-slip, in which the valve, after overcoming the stiction band, immediately
jumps to the desired position as specified by controller output.

An improved version of Choudhury’s model, termed as the XCH model, has been proposed
by Xie et al. [166]. This model passed all the ISA standard tests providing a more accurate
simulation of a real industrial valve affected by stiction.

Karthiga and Kalaivani [91] proposed a novel model considering three parameters: the
deadband (d), the maximum pressure required to move the stem (umax), and the stick-slip
magnitude (f ). However, explanations provided appear incomplete, thus this model seem to
be not applicable for purposes of stiction detection and estimation.

Li et al. [100] revised and refined the previous model of Chen et al. [43] to overcome its
limitations in handling instantaneous input commands on reverse motion. The accuracy of the
revised model is validated using the full set of ISA standard tests.

Very recently, Tang et al. [152] have proposed a new semiphysical model for sticky pneu-
matic control valves, based on the study of signal conversion processes among basic compo-
nents. This semi-physical model contains some major differences and some appealing features
with respect to the other data-driven models. Specific experimental tests seems to demonstrate
the effectiveness and superiority of the method.

Note that all the previous data-driven stiction models imply uniform parameters for the
whole valve span. Conversely, stiction could be inhomogeneous, having various amounts for
different operating conditions - that is, different OP values - and then producing complicated
signatures on MV(OP) diagram.

In order to overcome these limitations, Wang and Zhang [163] proposed two point-slope
models to describe the ascending and descending paths of valve stem, so that asymmetric stic-
tion can be captured. An even more flexible model has been recently introduced by Fang and
Wang [59]. This new type of model (Preisach-type), can deal with complicated patterns of
sticky control valves and encloses the classical data-driven stiction models as special cases, at
the expense of a very complex and non-parametric modeling.

An alternative approach for stiction modeling consists in a pure black-box strategy based
on artificial Neural Networks (NNs). Firstly, Zabiri et al. [175] have tested two different types
of Neural Networks, by comparing and validating their performance with Choudhury’s model.
Only the recurrent NN with Nonlinear Autoregressive structure with eXogenus inputs and
with Series Parallel architecture (NARXSP) is proved to sufficiently predict the valve behavior
in all different stiction situations. Afterwards, Zabiri and Mazuki [172] have extended this
approach by testing six other types of NNs. The NARXSP Neural Network is confirmed to
be the only structure which can track accurately the sticky valve behavior. A fair robustness
of NARXSP-based stiction model is also shown against uncertainty in stiction parameters and
situations.

However, it is important to note that these specific good results are obtained, since NARXSP-
NN is the only case in which the real output (MV) is fed back to the network feature along with
the input (OP) during the training phase. That is, MV signal is predicted only one step ahead
in the future. Therefore, such NN cannot be used in a pure modeling mode, to generate the en-
tire valve output from the input. Alternatively, a trained NARXSP network can be used in the
parallel (feedback) architecture, where the predicted output from the network is being delayed
and fed back along with the input to the network. In this framework, an accurate multi-steps
ahead prediction seems to be achieved. Anyway, the actual MV signal has to be known at least
in the training phase.
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Recently, Daneshwar and Noh [55] developed a model for the whole process with sticky
valve, which can be used in controller design to mitigate stiction-induced oscillations. A
dynamic fuzzy model of Takagi–Sugeno-type is derived through an iterative well-developed
fuzzy clustering algorithm; model parameters are then estimated through least-squares re-
gression.

In Table 2.1, all stiction models reviewed in this survey are synthetically compared, show-
ing their more appealing features and possible weak points.

Table 2.1: Synthesis of data-driven stiction models.

Model
Features

Stiction Auxiliary Application on
Pros Cons

Parameters Variables Industrial Data

Stenman et al. [149] 1 (d) - 3 simple inaccurate
Choudhury et al. [47] 2 (S, J) I , xss 3 established no stochastic signals
Kano et al. [87] 2 (S, J) stp, d, us 3 accurate -
He et al. [76] 2 (fs, fd) - 3 accurate -
He and Wang [74] 3 (fs, fd , K) - 3 accurate recently stated
Chen et al. [43] 2 (fs, fd) stop, cumu 3 accurate -
Ivan and Lakshminarayanan [82] 1 (f ) - 3 simple partially accurate
Xie et al. [166] 2 (S, J) I , xss 7 accurate recently stated
Karthiga and Kalaivani [91] 3 (d, umax, f ) - 7 accurate recently stated
Li et al. [100] 2 (fs, fd) stop, cumu 7 accurate recently stated
Tang et al. [152] 7 (fs, fd , ...) several 7 accurate recently stated
Wang and Zhang [163] many - 3 flexible recently stated
Fang and Wang [59] many - 3 flexible very complex
Zabiri et al. [175, 172] - - 7 flexible black-box
Daneshwar and Noh [55] many - 3 flexible very complex

Symbols: “7”, no; “3”, yes

Observing Table 2.1, it is clear that first stiction models (e.g., [47, 149]) are more established
in the literature, but, at the same time, they show some basic inaccuracies. Conversely, more
recent models potentially allow better performance but should be further applied to industrial
data for a complete validation.

Nine of the previous data-driven stiction models are further compared by using some sim-
ulation examples. The following models are considered: Stenaman [149], Choudhury [47],
Kano [87], classical He [76], semi-physical He [74], Chen [43], XCH [166], Li [100], and Ivan &
Lakshminarayanan [82].

Test #1 Figure 2.5 shows a comparison of the results of the models obtained in open-loop
(OL), for the same OP signal which consists in a simple sinusoidal input. The stiction parame-
ters are equivalent between all models: fs = 5; fd = 3; S = 8; J = 2; d = 6; f = 3.

In the top panel, MV signals obtained with Choudhury’s model [47], Kano’s model [87],
Chen’s model [43], XCH model [166], and Li’s model [100] are reported.

To better visualize the similarities and differences, the last four MV signals are shifted
down by 3, 6, 9 and 12%, respectively. Note that all of these four models produce exactly the
same MV signal, while Choudhury’s model gives the same stationary oscillation, but a slightly
different dynamics for the transitory phase. This peculiar behavior is proved to be incorrect if
compared with the MV obtained with physical models [64, 74].

In bottom panel of Figure 2.5, the results of Stenman’s model [149], classical He’s model
[76], semi-physical He’s model [74], and Ivan & Lakshminarayanan model [82] are shown. The
MV signals are not shifted, since each stiction model generates a very distinctive waveform.
Note also the “jump” feature of the wave obtained with Stenman’s model and with the two He’s
models.
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Figure 2.5: Test #1: MV signals for 9 different data-driven stiction models for the same sinusoidal
input.

Test #2 In Figure 2.6, to further compare the same nine data-driven stiction models, the
closed-loop (CL) behavior of a simulated control loop, with a PI controller C(s), a process
model G(s) under a step change of the reference r(s) is then reported. The parameters are fixed
in all cases: C(s) = 0.1(s + 0.5)/s, G(s) = 3e−5s/(5s + 1), and r(s) = 1/s; the same white noise with
zero-mean and variance σn = 0.01 is added. The stiction parameters are equivalent between all
models: fs = 0.35; fd = 0.15; S = 0.5; J = 0.2; d = 0.30; f = 0.15. SP and PV, OP, and MV signals
are plotted in the first, second and third column respectively.

The results of Stenman’s and Choudhury models are reported along the first row of Fig-
ure 2.6. Stenman’s model generates peculiar wave shapes with respect to the other models.
Choudhury’s model gives oscillations with higher frequency and amplitude. The results of the
classical and semiphysical He’s models, and of the model of Ivan and Lakshminarayanan [82]
are shown along the second row of Figure 2.6. In this case, the two He’s models produce a per-
fect square wave on MV. Classical He’s model gives PV and MV signals of lower amplitude and
frequency. Finally, the other four models are given along the third row of Figure 2.6. To better
visualize them, the signals of the last three models are shifted down by 1, 2, 3%, respectively.
Note that all of these three produce exactly the same signals (PV, OP, MV) for each sample.
Kano’s model produces similar stationary oscillations, but due to its different dynamics along
the transitory samples, it results slightly out of phase with respect to the other three cases.

Test #3 The results of another example of CL simulation are reported in Figure 2.7. The
following parameters are now changed: r(s) = 2/s, σn = 0.05. The new stiction parameters -
equivalent between all models - are: fs = 5; fd = 3; S = 8; J = 2; d = 6; f = 3. Here follow some
observations: the waves obtained with Choudhury’s model become much asymmetric and less
accurate; the model of [82] gives oscillations of excessive amplitude and frequency; the phase
shift between the signals obtained with Kano’s model and the other three models of the last
group appears now much more evident.

Even though these three cases represent specific numerical examples, they are already suf-
ficient to confirm that different data-driven stiction models, even with analogous parameters,
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Figure 2.6: Test #2: MV signals for different data-driven stiction models for the same control loop.

may produce very different outputs, both in OL and in CL operation. Only the models of
Chen, XCH, and Li appear totally equivalent in these practical situations. To conclude, it is
worth noting that:

• the simple Stenman’s model reproduces reasonable time trends under CL condition, as
confirmed and validated also in the studies of Srinivasan R. et al. [148, 143];

• Kano’s model and the most recent models of Chen, XCH and Li seem to give the most
accurate and robust description of a real sticky valve.

Anyway, as pointed by He and Wang [75], since the actual valve position is not usually mea-
surable in industrial plants, there is no definitive conclusion on which model signature is ab-
solutely correct.

2.4 Stiction Detection

Many techniques for stiction detection have been proposed in the literature. Following Jelali
and Huang [85], they can be broadly classified into four main categories: cross-correlation
function-based [77], limit cycle patterns-based (e.g., [87, 168, 124]), nonlinearity detection
based (e.g., [46, 154]), and waveform shape-based (e.g., [76, 146, 119]). Note that techniques
which simultaneously identify a process dynamics and estimate the stiction amount are else-
where classified as model-based detection techniques [54, 39]. In this survey, this type of tech-
niques are revised in Section 2.5, which specifically concerns stiction quantification methods.

In a typical stiction detection technique, specific indices are computed using recorded time
trends of OP and PV; thresholds values are then established after simulations and applications
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Figure 2.7: Test #3: MV signals for different data-driven stiction models for the same control loop.

on industrial data. Most of these methods, by assuming the presence of a significant oscillation
in the control loop, have the main objective of operating a distinction between external distur-
bance and valve stiction. Reliability is usually reduced in the case of contemporary presence
of stiction and disturbances.

Table 2.2 briefly lists all stiction detection techniques reviewed in this section, reporting
the category which they belong to or the specific type of algorithm which is used, and also the
field of application.

Historically, the first technique to diagnose oscillations can be considered the method of
Horch [77], based on the cross-correlation between OP and PV signals. This method is very
simple and accessible, but is applicable only to non integrating processes controlled by pro-
portional - integral (PI) controllers, and, in addition, good performance can be achieved only
for very periodical oscillations.

Afterwards, Horch [79] has proposed a method specific for integrating processes. The prob-
ability density function (PDF - approximated with the normalized raw histogram) of the second
derivative of the process output (PV) is used. In the theoretical case of stiction, PDF is close to
Gaussian, otherwise it shows two peaks. Stiction presence is assessed on the basis of the best
fitting of measured PV. Similarly, PDF of the first derivative of the error signal can be also used
for self-regulating processes.

From Table 2.2, it is clear that detection techniques based on typical patterns on MV(OP)
diagram are suited only for flow rate control loops (FC).

Kano et al. [87] firstly proposed two methods based on the relationship between the valve
input OP and the valve output MV. As shown in Figure 2.4, the MV(OP) diagram produces a
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Table 2.2: Synthesis of stiction detection methods.

Method
Features

Type
Loop
Applicability

Horch [77] cross-correlation no LC
Horch [79] statistics all type
Kano et al. [87] MV(OP) patterns all (better FC)
Yamashita [168] MV(OP) patterns only FC
Scali and Ghelardoni [124] MV(OP) patterns only FC
Daneshwar and Noh [56] MV(OP) patterns only FC
Yamashita [169] statistics only LC
Farenzena and Trierweiler [62] waveform shape only LC
Brásio et al. [41] limit cycle patterns only LC
Choudhury et al. [46] NL detection all
Thornhill [154] NL detection all
Rengaswamy et al. [116] waveform shape all
Srinivasan R. et al. [146] waveform shape all
Rossi & Scali [119] waveform shape all
He et al. [76] waveform shape all
Singhal and Salsbury [132] waveform shape no LC
Hägglund [72] waveform shape all
Zabiri and Ramasamy [173] waveform shape - NL detection all
Ahmed et al. [13] waveform shape all
Stockmann et al. [150] waveform shape no LC
Ahammad and Choudhury [12] harmonics based all
Xu et al. [167] wavelet technology all
Zakharov et al. [177] algorithms combination all
Pozo Garcia et al. [114] algorithms combination all

parallelogram-shaped limit cycle in case of a sticky valve, while it would be linear without stic-
tion. However, since MV is frequently unmeasured, this signal is substituted by the controlled
variable PV. This approximation can be considered reasonable for the case of fast dynamics (FC
loops), whereas it may yields large errors in the case of loops with slower dynamics (level con-
trol LC, temperature control TC), for which PV(OP) diagram shows cycles with elliptic shapes.

Another detection method focused on patterns of the MV(OP) plot was developed by Ya-
mashita [168]. The valve movements are distinguished between I (increasing), D (decreasing),
and S (steady). The stiction patterns are assessed for specific sequences of these letters. Three
weighted indices are computed on the basis of number of periods of sticky movements. Stic-
tion is detected if these indices, which vary between 0 and 1, overcome the threshold value of
0.25, typical of a random signal.

Scali and Ghelardoni [124] investigated the performance of Yamashita’s method using a
large number of industrial flow rate control loops and concluded that the method correctly
identifies the presence of stiction in 50% of the cases. The authors improved also the origi-
nal method introducing additional MV(OP) reference patterns and computing corresponding
detection indices.

Very recently, Daneshwar and Noh [56] presented a stiction detection technique for FC
loops based on a well-developed fuzzy clustering approach, by using typical sticky patterns
on MV(OP). Observing a dramatic change of the slope of the lines obtained from successive
cluster centers in the presence of stiction, a performance index to distinguish different causes
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of oscillation is proposed.

From Table 2.2, three other techniques are specifically addressed to stiction detection in
level control loops (LC) [169, 62, 41]. Yamashita [169] developed a statistical analysis based on
a simple index that evaluates the excess kurtosis on PV signal. A level control loop affected by
stiction presents a two-peak distribution of the first derivative of PV, which means a negative
large value of excess kurtosis.

Farenzena and Trierweiler [62] used the PV patterns of a valve affected by backlash or
stiction to detect and even distinguish these two phenomena. An index is computed on the
first-order derivatives, but the diagnosis seems to be disrupted by the sampling time and the
tuning of the controller.

Recently, Brásio et al. [41], proposed a detection technique exploiting the direct propor-
tionality between valve position (MV) and the first derivative of the level (PV) in LC loops. The
traditional patterns of the first technique of Yamashita [168] can be then fitted using the OP
signal and the first derivative of PV.

Since valve stiction is a highly nonlinear phenomena, the presence of nonlinearity in the
signals can mean that stiction is the possible source of loop oscillation [46, 154]. Choudhury
et al. [46] proposed a method based on higher-order statistical techniques, as cumulants, bis-
pectrum, and bicoherence of the control error signal in order to infer two metrics: the non-
Gaussianity index (NGI) and the nonlinearity index (NLI).

Thornhill [154] developed a method to compare predictability of the original signal and its
surrogates using a specific index, based on the fact that a nonlinear signal is more predictable
than its surrogates. In particular, a nonlinearity is inferred when the prediction error for the
original signal is smaller than the mean of the reference distribution of its surrogates by more
than three standard deviations.

According to Table 2.2, ten different stiction detection techniques are based on the compar-
ison between measured signals and reference waveform shapes. The first technique based on
the analysis of qualitative waveforms was presented by Rengaswamy et al. [116]. Seven types
of primitives and a complex neural network were used to detect and diagnose different kinds
of oscillations.

Srinivasan R. et al. [146] have then proposed a pattern recognition approach using the
dynamic time warping technique. An optimal fitting between measured data and a stiction
template pattern for each oscillating cycle and a global pattern for the whole dataset is per-
formed. The method was tested on datasets of varying complexity as non constant behavior,
intermittent stiction, and external disturbances.

The Relay technique, developed by Rossi and Scali [119], is based on the fitting of signifi-
cant half cycles of the oscillation by means of three different models: a sine wave, a triangular
wave and the output response of a first order plus time delay under relay control. The last one
is specifically suitable to approximate square waves shapes generated by stiction and modified
by the process dynamics. Once fittings have been performed, a Stiction Identification Index
(SI) is defined.

This technique presents analogies with the Curve Fitting method proposed by He et al. [76]
in which, assuming that stiction is associated to a square wave in MV, a triangular wave is
looked for as the distinctive feature of stiction after the first integrator element of the loop.
This means in the OP signal (for self regulating processes) or in the PV signal (for integrating
processes). On the opposite, the Relay method [119] always analyses the PV signal and uses
the relay shape as an additional primitive.

Another approach, based on the ratio (R) between areas before and after the peak of an
oscillating signal has been presented by Singhal and Salsbury [132]. The decision rule is sum-
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marized as: if R > 1, the valve is sticky, but if R ≈ 1, the controller is aggressive. The method is
very simple, but is not applicable to integrating processes (LC loops) and, in addition, shows
high sensitivity to noise and different sampling times.

In the shape-based detection method of Hägglund [72], the final decision relies on the aver-
aged value of a normalized index, which involves the fitting of the control error signal between
two consecutive zero crossings. If the fitting corresponds best to a sine wave, no stiction is
assessed; otherwise, if a square wave is best fitted, stiction is detected.

The approach of Zabiri and Ramasamy [173] involves an index based on nonlinear principal
components analysis (NLPCA). Distinctive shapes of the signals caused by stiction and other
sources are used. Along with its coefficient of determination, the index quantifies the degree
of nonlinearity thus determining the presence of stiction.

Ahmed et al. [13] also presented a stiction detection technique based on waveform shapes.
Data compression is used to compare patterns of a sinusoidal or exponential signal with a
triangular signal. The basic idea is that triangular signals can be better compressed, since they
can be approximated by a combination of straight line segments. A relative compressibility
index is specifically defined so that a positive value is an indicator of integrating process with
stiction and a negative value means self-regulating process with stiction; a close-to-zero value
indicates no stiction.

Finally, Stockmann et al. [150] have developed a method of pattern recognition by using
principal component analysis (PCA). PCA allows a clustering procedure which classifies be-
tween the typical stiction oscillation and the sinusoidal shape for non integrating processes.
Main disadvantages of this method is that many reference simulations with great data variance
have to be done once, and then merged in a reference matrix. Anyway, if the matrix has been
created successfully, it could be used for all future analysis of industrial datasets.

An alternative method based on harmonics analysis was developed by Ahammad and Choud-
hury [12]. The control error signal is decomposed using Fourier series. Amplitude, frequency
and phases of each term of Fourier series expansion are estimated using least-squares regres-
sion technique. Then, the harmonic relationship among the frequencies is examined: odd
harmonics indicate the presence of stiction.

Xu et al. [167] presented an approach by using wavelet technology. The key idea is to
analyze the signal at various resolution scales to achieve different levels of localization, so
that noise and disturbances can be effectively separated from real valve stiction patterns. PV
jumps are detected by estimating the Lipschitz regularity of the signal using the discrete
dyadic wavelet transform (DDWT) coefficients at multiple resolution scales. Then, an adaptive
wavelet denoising method is also applied to the data, preserving stiction patterns while remov-
ing the noise. Sticky features are then extracted from the denoised data, and three indexes are
calculated. Finally, an overall stiction probability is determined based on these indexes.

Zakharov et al. [177] proposed a stiction detection system that selects four detection algo-
rithms based on characterizations of the data. Five novel indices are proposed: the presence
of oscillations, data-sampling resolution, mean nonstationarity, noise and nonlinearities are
quantified. The selection is then performed according to the conditions on the index values in
which each method can be applied successfully. Finally, the stiction detection decision is given
by combining the detection decisions made by the selected methods. The whole algorithm is
validated with benchmark industrial data of [85]. In parallel, Pozo Garcia et al. [114] have
developed a similar system which combines four stiction detection methods and computes a
reliability index for each diagnosis. Each detection method and the whole integrating system
are applied to industrial data of a paperboard machine.

Finally, note that all the previously reviewed methods employ only measurements available
in process plants. It is important to recall that, once stiction is detected, it is common practice
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to confirm stiction by means of specific tests on the field. Among others well-established meth-
ods, Choudhury et al. [45] have proposed a controller gain change method. This technique
employs the peculiar variation of the frequency of oscillation due to changes in the controller
gain when valve stiction is the cause malfunction. Different behaviors are registered for the
case of aggressive tuning of the controller and external periodical disturbances. A full indus-
trial application has been used to show how the proposed method can identify the root cause
of plant-wide oscillations.

Later, Yu et al. [73] showed that the previous method of [45] may give incorrect or inconclu-
sive confirmations in the case of interacting multi-input multi-output systems. In particular,
the oscillation frequency seems to change even when the controller gain of a loop not con-
taining a sticky valve is changed. A strategy based on the magnitude of relative change in
oscillation frequency due to changes in controller gain is proposed to overcome previous limi-
tations. Nevertheless, only simulation examples are shown.

In conclusion, stiction detection can be considered an established research area, even though
different diagnosis techniques may not give the same verdict once applied on industrial data.
Examples of inconsistent assessments are widely illustrated in Chap. 13 of [85]. Therefore,
knowing the strengths and the weaknesses of different methods, it is possible to obtain a more
reliable final detection decision by combining and weighting verdicts of different techniques.

2.5 Stiction Quantification

The ability of providing an estimate of stiction amount is a crucial step before scheduling valve
maintenance or performing on-line compensation. While stiction modeling and detection can
be considered relatively mature topics, stiction quantification should be regarded still an open
issue [85] and, consequently, a fervent research area.

Some techniques perform detection and quantification of stiction in a single stage, while
other methods can be applied only once stiction is clearly detected. Table 2.3 summarizes
the main features of the quantification techniques reviewed in this survey in terms of kind of
approach, type of model (linear and nonlinear part) used to describe the control loop with the
sticky valve, and application on industrial data.

The first contributions about stiction quantification have proposed simple metrics to infer
the amount of stiction basing on the PV(OP) plot and without requiring the use of specific
models of valve stiction and process dynamics. Firstly, Choudhury et al. [49] quantified stiction
by fitting an ellipse on the PV(OP) diagram and computing the maximum width of this ellipse.
The authors also proposed two other simple algorithms, c-means and fuzzy c-means clustering,
to estimate the degree of stiction on PV(OP) plot.

Afterwards, following this line, Cuadros et al. [51] presented an improved algorithm which
fits an ellipse just using the most significant points of OP and PV signals, that is, the datasets
characterized by large PV variations in response to small OP changes. The method is applicable
only to flow stream control loops (FC), where the PV(OP) plot is similar to a parallelogram. For
these cases, the procedure seems to have more precision than the previous approaches of [49].

Also Yamashita [170], by extending his first diagnostic method [168], has evaluated the
amount of stiction simply basing on the width of the sticky pattern on PV(OP) diagram. To
emphasize, these three techniques give a relative estimate of stiction, termed as apparent stic-
tion, which represents only an indication of its severity. Indeed, this value is influenced by all
other loop parameters, such as controller and process gain. As they may change in time, these
techniques cannot be considered completely reliable for stiction quantification.

Techniques which estimate the parameters of a data-driven stiction model and predict the
(unmeasured) MV signal, from OP and PV, are much more effective. Significant developments
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Table 2.3: Synthesis of stiction quantification methods.

Method
Features

Type
Blocks Application on

NL Model LIN Model Industrial Data

Choudhury et al. [49] PV(OP) fitting - - 3

Cuadros et al. [51] PV(OP) fitting - - 7

Yamashita [170] PV(OP) fitting - - 7

Stenman et al. [149] Hammerstein Id. Stenman ARX 7

Srinivasan R. et al. [146] Hammerstein Id. Stenman ARMAX 3

Lee et al. [95] Hammerstein Id. He ARX 3

Choudhury et al. [50] Hammerstein Id. Choudhury ARX 3

Jelali [84] Hammerstein Id. Kano ARMAX 3

Farenzena and Trierweiler [61] Hammerstein Id. Kano ARMAX 3

Ivan and Lakshminarayanan [82] Hammerstein Id. He (modified) ARMAX 3

Karra and Karim [90] Hammerstein Id. Kano EARMAX 3

Sivagamasundari and Sivakumar [133, 134] Hammerstein Id. He ARX 3*
Shang et al. [129] Hammerstein Id. Chen ARX 3*
Brásio et al. [40] Hammerstein Id. Chen ARX 7

Srinivasan B. et al. [138, 137] Hammerstein Id. Stenman ARMAX 3

Bacci di Capaci and Scali [25] Hammerstein Id. Kano ARX 3

Bacci di Capaci et al. [29] Hammerstein Id. Kano/He 5 types 3*
Li et al. [98] Hammerstein Id. Choudhury ARX 7

Wang and Zhang [163] Hammerstein Id. Asymmetric ARX 3

Fang and Wang [59] Hammerstein Id. Preisach ARX 3

Wang and Wang [160] Hamm.-Wiener Chen Wiener 7

Romano and Garcia [118] Hamm.-Wiener Kano Wiener 3

Ulaganathan and Rengaswamy [159] Volterra model-based Stenman Volterra 3

Nallasivam et al. [109] Volterra model-based Stenman Volterra 3

Chitralekha et al. [44] unknown input observer (Choudhury) - 3

Zabiri et al. [171] Neural Network Choudhury - 7

Araujo et al. [16] Describing Function DF ARX 3

He and Wang [75] Semiphysical stiction mod. He (3 par.) - 3

Symbols: “7”, no; “3”, yes; “3*”, on pilot plant data

were achieved by means of system identification using a Hammerstein model, composed of a
nonlinear block in series with a linear dynamic block. The nonlinear element models the sticky
valve, while the linear part describes the process dynamics. From Table 2.3, it can be observed
that the Hammerstein system identification is definitely the most common type of approach
(19 different methods), and maybe also the most robust and effective.

The first example of Hammerstein system identification is the method of Stenman et al.
[149], where Stenman’s stiction model and an ARX process model are used. Stiction is quan-
tified through a segmentation-based method inspired by multi model mode estimation tech-
niques. Also Srinivasan R. et al. [148] fitted OP and PV signals using Stenman’s model [149],
but - in this case - plus a linear ARMAX model. A grid search algorithm is exploited to estimate
the single parameter of the stiction model, while the process parameters are identified through
separable least-squares method.

Afterwards, several variants of Hammerstein approach have been proposed. Lee et al. [95]
used the ordinary least-squares method to identify the entire model. He’s model was chosen
as stiction model and the process was assumed having fixed structure: first or second order
plus time delay models. In addition, a bounded search region for the stiction parameters was
defined and a constrained optimization problem was formulated.

Choudhury et al. [50] improved the approach of [148] by using their two-parameter stiction
model [47], which proved to capture more accurately the real stiction behavior. Therefore, both
the stiction and the process model parameters were estimated using a two-dimensional (S and
J) grid search method.

The method of Jelali [84] used a global optimization by means of genetic and path search
algorithms. This approach proved to be robust, but high computational times are required. The
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technique of Farenzena and Trierweiler [61] is considered to be an improvement over Jelali’s
method. A one-stage identification is performed by means of a deterministic algorithm of
global optimization that is no longer dependent on the initial guess.

An alternative method was proposed by Ivan and Lakshminarayanan [82] with the objective
of an unified approach for stiction quantification and compensation. A modified version of
He’s stiction model, a refined ARMAX model for the linear part, and some algorithms of data
preprocessing, such as data isolation and denoising, are used.

A nonstationary disturbance term in the structure of the process model is the peculiarity
of the technique presented by Karra and Karim [90]. This E(xtended)-ARMAX linear model
allows one also to detect external disturbances, even when acting simultaneously with valve
stiction. A new grid search algorithm is used to determine all the system parameters: Kano’s
stiction model plus the extended linear model.

Sivagamasundari and Sivakumar [133] presented a method for stiction quantification based
on particle swarm optimization. PV and OP data are used to estimate the parameters of the
Hammerstein system, consisting of He’s stiction model and ARX linear model. Afterwards,
these two authors proposed a hybrid procedure combining the fundamental elements of stan-
dard genetic algorithms with Nelder-Mead simplex algorithm [134]. These two methods have
been also compared and validated on a laboratory control facility.

Particle swarm optimization was also applied by Shang et al. [129]. In this case, Chen’s
stiction model [43] and an ARX model form the two parts of Hammerstein configuration to be
estimated. Brásio et al. [40] also introduced a one-stage optimization technique, by identifying
a Hammerstein model composed by Chen’s model and a first-order linear model. In order to
simplify the identification procedure, the discontinuity of the stiction model is smoothed by
means of a continuous function.

Srinivasan B. et al. [137] presented a methodology which combines a Hammerstein model
and a Hilbert-Huang Transform with the purpose of root cause analysis. Detection and esti-
mation of stiction are performed using the method developed by Srinivasan R. et al. [148],
while oscillations distinction - that is, stiction from aggressively tuned controller and external
disturbances - is possible through the nonparametric transform.

Recently, Srinivasan B. et al. [141] improved their previous technique developing an inte-
grated framework for a comprehensive diagnosis of single and multiple causes of oscillation.
The problem is addressed integrating a multiple oscillation detection algorithm [136], a model
based stiction estimation [148], and additional information obtained by analyzing the data-
driven model obtained from Hammerstein method.

Bacci di Capaci and Scali [25], based on Kano’s stiction model and an ARX linear model,
proposed a filtering methodology which detects and estimates stiction discarding outliers and
restricting application to appropriate cases. Recently, Bacci di Capaci et al. [29] have presented
a comparison of different combinations of linear and nonlinear models to perform stiction
quantification also in the presence of external disturbances.

Within the framework of identification of Hammerstein system, Li et al. [98] have consid-
ered a method based on criteria in both the time domain and in the frequency domain in order
to improve accuracy and reliability of parameters estimates.

Wang and Zhang [163] introduced a Hammerstein identification algorithm applied to their
new asymmetric stiction model and to an ARX model for the process dynamics. More recently,
Fang and Wang [59] have developed an identification method based on their flexible Preisach
model that can capture complicated patterns of a sticky valve. An iterative methodology es-
timates the parameter vectors in two iterative linear steps. Parallel to the advantages of this
method, a limitation involves stiction quantification: being nonparametric, the Preisach model
does not have an index to directly establish the stiction amount.

From Table 2.3, it is clear that while there are a lot of studies modeling processes as linear,
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nonlinear processes have not received the same attention, despite many potential benefits.
Some of the few approaches to handle nonlinearity are based on the Wiener model, which is
composed of a linear dynamic block connected to a nonlinear static part. Overall, the control
loop is described by a Hammerstein-Wiener model, which accounts for the valve stiction and the
nonlinear process dynamics; in some cases, they can also address external disturbances. Next
four contributions belong to this class.

The method of Wang and Wang [160], considered an extension of Jelali’s technique, used
Chen’s stiction model and a non linear process model in a Wiener-type structure. A new global
search grid identification algorithm is then used.

Afterwards, Romano and Garcia [118] described stiction with Kano’s model, the linear pro-
cess with an ARMAX model, and also external disturbances with transfer models of nth order.
Piecewise polynomials of the third degree are employed to model the nonlinear block, in the
case of unknown nonlinear process dynamics. The optimal couple of stiction parameters is
obtained through the Nelder-Mead Simplex algorithm. Despite reasonable results, the proce-
dure seems too complex to be suitable for on-line industrial applications; the large number of
parameters to be estimated also may restrict the method utility.

Finally, the nonlinearity of the process was also addressed by Ulaganathan and Rengaswamy
[159]. Stenman’s stiction model is followed by a nonlinear process composed by a second-order
Volterra model. A moving average model for the external disturbance is considered. A solution
approach is proposed in the case of known model dynamics.

Later, Nallasivam et al. [109] extended a very similar approach to the case of unknown
model dynamics. The parameters of process model and disturbance model are identified, and
the single stiction model parameter [149] is identified.

Other stiction estimation approaches have been developed in the literature, few of them are
briefly reviewed in the sequel. Chitralekha et al. [44] applied the method of unknown input
estimation using a Kalman filter type recursive estimator. After the estimation of MV signal, a
trapezoid is fitted on MV(OP) plot. A constrained optimization problem to find the four corner
points of the polygon is solved. Note that no specific stiction model is directly assumed in the
identification stage; Choudhury’s model is only used for the final validation of the technique.

A technique based on six different types of neural networks was introduced by Zabiri et
al. [171]. Valve stiction is described by Choudhury’s model, while the most suitable neural
network algorithm is assessed. Being a black-box approach, this method is applicable to all
types of processes, but no deterministic process model is identified.

Araujo et al. [16] developed a technique for stiction quantification based on the harmonic
balance method and the describing function (DF) of the stiction nonlinearity. The DF method, a
well-established approach to predict the period and amplitude of limit cycles in control loops,
shows good performance also in the presence of model uncertainty and for processes with
unknown models.

He and Wang [75] have presented an alternative stiction estimation technique which is
based on their new semiphysical stiction model [74]. Linear and nonlinear least-squares meth-
ods and simplifying assumption on the oscillations of OP and PV signals are exploited.

More recently, in order to make the diagnosis more reliable, some authors have suggested an
evaluation of the uncertainty associated with the stiction parameters estimate. Qi and Huang
[115] introduced a bootstrap based approach to establish the statistical distribution of stiction
estimations. For example, if the 95% confidence intervals of stiction parameters include 0, it is
possible that there is no stiction. Once again, a Hammerstein model identification and a grid
search algorithm are used.
Afterwards, Srinivasan B. et al. [140, 141] have proposed an algorithm to measure the reli-
ability of the results provided by any Hammerstein-based stiction detection and estimation
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method. This measure, using the frequency domain analysis of closed-loop systems, is ap-
plicable only to linear process dynamics. Basically, it is showed that if the controller cutoff
frequency is much smaller than that of the process, and this latter is also much greater than
the loop oscillation frequency, then stiction is likely to be correctly identified, if present. On
the opposite, if the process cutoff frequency is not much greater than the oscillation frequency,
the presence of stiction is much less likely to be correctly detected. The method addresses also
the problem of determining a reliable search space for the linear model components of any
Hammerstein system.

To conclude, as for stiction detection, in order to get a more reliable final estimation, com-
bining and weighting the verdicts of different types of techniques - even the simplest ones -
can be suggested as the best solution.

In Chapter 3 a first method for stiction quantification is proposed; while in Chapter 4 and
then in Appendix C, some well-established methods for stiction quantification are compared
by applications to large industrial datasets.

2.6 Stiction Compensation

Repair and maintenance are the definitive solutions to fix a sticky valve. However, these ac-
tions may not be practicable between two consecutive plant shutdowns; therefore, as matter of
principle, stiction compensation can be a valid option to relieve negative effects of stiction on
loop performance.

A first classification of stiction compensators, derived from mechanical and robotics engi-
neering, divided them into model-based and non-model-based.

Although a stiction model is not directly employed by non-model-based compensators, it
may be anyway needed to predict operating point stability, limit cycle stability, or to ana-
lyze performance [39]. In order to delete the stiction force, many feedforward and feedback
strategies based on stiction models were proposed. However, in general, these models are very
complex, which restricts significantly the possibility of industrial applications. For example,
the well-established method of Kayihan and Doyle [92] uses a first-principle stiction model
(the Classical model) to describe stiction and estimates the immeasurable states providing a
robust control action. All valve parameters are to be available, but such detailed information
is hardly possible in practice. A detailed review of model-based compensation methods can be
found in [39].

On the opposite, most recent stiction compensation techniques, specifically oriented to con-
trol loop monitoring and assessment, follow data-driven approaches and thus result much
more simple and accessible. Only these methods will be discussed in the sequel of this section.

Six different categories can be established [131, 39]: compensation through controller re-
tuning (e.g., [65]), knocker method (e.g., [69]), constant reinforcement (CR) [82], alternate
knocker method [142], two- or three-move compensators (e.g., [145, 52]), and optimization
approaches [145].

Two other basic approaches, namely dithering and impulsive control, have been reported in
the literature for stiction compensation in electro-mechanical systems. Unfortunately, pneu-
matic valves, that constitute about 90% of actuators used in control loops, filter such high
frequency dither signals, making dithering techniques ineffective. A similar problem exists
with impulsive control technique [52].

Table 2.4 summarizes the features of the reviewed compensation methods, in terms of re-
duction of PV oscillation, reduction of valve movement, and no a priori process knowledge
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requirement - except for routinely available operating data, and set point tracking and distur-
bance rejection.

Table 2.4: Synthesis of stiction compensation methods.

Method Type

Features

Reduction Reduction no a-Priori Set Point
of of Process Tracking and
PV Valve Knowledge Disturbance

Oscillation Movement Requirement Rejection

Gerry and Ruel [65] Retuning 3 3 3 7

Mohammad and Huang [15] Retuning 3 3 3 7

Hägglund [69] Knocker 3 777 3 3

Srinivasan R. and Rengaswamy [143, 144] Knocker 3 77 3 3

Cuadros et al. [53] Knocker 3 7 3 3

Arumugam et al. [20] Knocker 3 77 3 3

Ivan and Lakshminarayanan [82] Constant Reinf. (CR) 3 77 3 3

Hägglund [71] Constant Reinf. (CR) 3 77 3 3

Srinivasan R. and Rengaswamy [142] Alternate Knocker 3 7 3 7

Srinivasan R. and Rengaswamy [145] 2-Moves 3 3 7 77

Farenzena and Trierweiler [60] 2-Moves 3 3 7 7

Cuadros et al. [52]
2-Moves (i) 3 3 7 7

2-Moves (ii) 3 3 7 3

Wang [161] 2-Moves 3 3 7 3

Karthiga and Kalaivani [91] 3-Moves 3 3 7 3

Wang et al. [164] 2-Moves 3 3 3 77

Tang and Wang [153] 2-Moves 3 3 3 77

Srinivasan R. and Rengaswamy [145] Optimization 3 3 3 3

Sivagamasundari and Sivakumar [135] Mixed 3 3 3 3

Mishra et al. [106, 107] Advanced Controller 3 3 3 3

Arifin et al. [17] Mixed 3 3 3 3

Symbols: “7”, no/low; “77”, bad; “777”, very bad; “3”, yes/good

From Table 2.4, it is worth noting that all methods exhibit good capacity in reducing PV
oscillation, but most of them also shows some drawbacks regarding other issues. For example,
knocker approaches tend to produce a too fast motion of the valve, while two-moves techniques
usually require a priori process knowledge and may not achieve good set point tracking and
disturbance rejection. Each compensation method is briefly reviewed below.

Simple and practical techniques for facing stiction on-line were firstly proposed by Gerry
and Ruel [65]. Basically, a set of retuning rules for the controller are introduced to decrease
the impact of the stiction-induced oscillations at the expense of a slower response (detuning)
or steady-state control errors (switching from PI to P action).

Afterwards, Mohammad and Huang [15] suggested a stiction compensation framework
based on the oscillation condition proposed in their previous work [14], which is also suited
for systems with multiple sticky valves. By using frequency analysis and harmonic balance,
and by following some guidelines of controllers retuning, the occurrence and the amplitude of
oscillations can be predicted and then stiction can be reduced or eliminated for different pro-
cess and controller dynamics. For example, for a PI controller and a first-order process with
time delay, integral time Ti must be greater than the sum of the process time constant τ and its
time delay θ to avoid oscillations.

Very recently, Li et al. [97] analyzed stiction induced oscillation in cascade control loops
by using frequency analysis. A set of practical techniques of oscillation compensation through
outer and inner controller tuning, and through changes of control strategies were proposed.
Theoretical results are then validated through experiments on a pilot scale flow-level cascade
control.

The knocker approach consists of adding a predefined signal to the control signal (OP) be-
fore entering the valve in order to prevent oscillations in the process output (PV). These meth-
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ods, producing a faster motion of the valve, however, can cause mechanical problems even
worse than the normal operating. Therefore, they should be considered just short-term solu-
tions. The first knocker developed by Hägglund [69], specifically targeting stiction in control
valves, produces short pulses with constant amplitude, width, and duration. PV oscillations
are removed at the expense of a faster and wider motion of the valve stem, which involves a
much higher wear rate (compare Table 2.4).

To overcome these disadvantages, some guidelines for the automated choice of the compen-
sation parameters of the knocker were suggested by Srinivasan R. and Rengaswamy [143, 144].
This revised knocker approach, which integrates two stiction detection techniques, shape-
based [146] and model-based [148], proved to reduce PV variability ensuring less aggressive
valve movements compared to Hägglund’s formulation.

Another method based on the knocker approach was presented by Cuadros et al. [53].
A supervision layer analyzes the control error and interacts with the proportional-integral-
derivative (PID) controller. This integrated strategy shows a lower integral absolute error and
even a reduced number of valve movements (compare Table 2.4).

Finally, the most recent technique inspired by the knocker method has been proposed by
[20]. Instead of a pulse signal, a pure sine wave is added to the controller output. Amplitude
and frequency of the compensating signal are tuned on the basis of uncompensated control
variable. PV oscillations are reduced and MV movements are limited. The additional signal
does not contain harmonics which cause sudden changes in valve input and increase variabil-
ity of the valve output. The technique seems to overcome results of standard knocker; anyway,
only few simulation examples are shown, while no practical application is provided.

An alternative compensation approach was suggested by Ivan and Lakshminarayanan [82].
The compensating signal is now a constant reinforcement, added to the valve input only when
the OP signal varies, whose value is related to the estimated amount of the single stiction
parameter (f ). The method appears very useful to reduce variability of PV, but does not signif-
icantly decrease the valve aggressiveness.

This method is actually similar to the one proposed by Hägglund [71] for backlash com-
pensation. Note that the term “backlash” in the context of linear motion control valves has to
be interpreted as the deadband, which is a special case of stiction, that is when J = 0. In [71],
the compensating signal, to be added to OP, is the product of estimated amount of backlash
and the variation of the control error.

The alternate knocker method of Srinivasan R. and Rengaswamy [142] includes the addi-
tion of a special block to the nominal PID algorithm. However, since the nominal controller
is unaware of this adaptation of control signal, its performance may be negatively affected.
Moreover, instability and/or additional wear of the valve may even occur.

The two-moves compensation method aims to keep the valve at its steady-state position,
by performing at least two stem moves in opposite directions. In this approach, first proposed
by Srinivasan R. and Rengaswamy [145], the magnitude of the compensating signal should be
large enough to exceed stiction and move the valve, but not too large to saturate it. Consid-
erable limitations arise in the case of set point tracking and disturbance rejection, hindering
on-line implementation of the method. Also the use of the one-parameter stiction model [145]
reduces accuracy. In addition, this method [145] relies on the assumption that the measure-
ments are represented by deviation variables and the steady-state value of MV is known, which
is rarely feasible, mainly because the loop to be compensated is under oscillatory behavior [52].

Afterwards, another two-moves method was presented by Farenzena and Trierweiler [60].
Instead of using an additional compensator block, the traditional PI controller block is mod-
ified. The technique can achieve closed-loop performance faster than open-loop and efficient
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rejection of load disturbances. Unlike the previous method of Srinivasan R. and Rengaswamy
[145], a fair set point tracking, with a small offset is possible, and a significant reduction of
valve travel is showed.

Two improved versions of the two-moves compensation method were then developed by
Cuadros et al. [52], in order to overcome the drawbacks concerning the set point tracking. An
exact knowledge of the plant model is not required and set point changes can be tackled by
detecting increases in the control error. However, the first method, consisting of four move-
ments, is sensitive to load disturbances. On the opposite, the second method, based on two
movements and four states, and especially suited to tackle disturbances, proves more robust.
Anyway, the requirement of having similar control valve and process dynamics is a limitation
of this second approach.

Also Wang proposed a compensation method based on two movements [161]. A short-time
rectangular wave is added to the set point in two distinct movements and the valve is moved to
the desired position, avoiding high variability. Robustness against modeling errors and against
measurement noise seems to be the main advantages of this method; also the fact that two-
movements are applied in closed-loop is an appealing feature.

A alternative method that involved not two but three movements was presented Karthiga
and Kalaivani [91]. This approach, exhibiting a lower overshoot and settling time than the
previous ones, seems to impose a smoother valve operation, which results in a longer valve life.

Very recently, Wang et al. [164] have presented a new implementation of the open-loop
two-moves compensation method, which performs actually six movements. The period of os-
cillation of the controller output before compensation and the estimated amount of stiction
are employed to assess the value of OP associated with the desired valve position. Therefore,
no a priori assumption of the valve position in oscillation is required, as in the case of stan-
dard two-movement method [145]. This implementation outperforms the standard two-moves
method in terms of velocity and lower amplitude of the response. However, set point tracking
and disturbance rejection are still poor.

Following this line, Tang and Wang [153] have proposed an improved version of the two-
moves method, which uses really only two movements in open-loop mode. A revised approach
is presented to estimate the value of OP associated with the desired valve position to be applied
at steady-state. A simplified method to estimate amount of valve stiction is also given, and the
time of implementation seems shorter than the technique of [164].

An optimization-based approach was also developed by Srinivasan R. and Rengaswamy
[145], with the idea of balancing between less-aggressive valve movements, reduced PV vari-
ability, and less energy in the signal added to OP. An objective function is minimized using
the compensator moves as optimization variables. Compared to the classical approaches, sig-
nificant improvements are obtained, but the need for analyzing the model mismatch effect,
the incorrect stiction measurement, and the real-time issues before on-line implementation
are pointed out. In addition, the method is computationally expensive and, since the objective
function is not smooth, a local minimum might be attained and an offset between PV and SP
may arise.

Based on previous knocker techniques, Sivagamasundari and Sivakumar [135] introduced a
model-based compensation approach. He’s model is employed to estimate the stiction amount,
and, subsequently, few rules to build the waveform of the compensating signal are suggested.
This mixed approach seems to give a non oscillatory PV without involving faster and wider
moves of the valve. Moreover, no information of process or controller is required, and good
tracking of the set point changes is achieved.

Among other approaches of compensation, a model predictive control formulation, based
on mixed-integer quadratic programming (MIQP), was developed by Zabiri and Samyudia
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[174]. Since valve stiction is taken into account explicitly in the optimization problem, closed-
loop performance are proved to be significantly improved. However, a priori knowledge of the
stiction parameters is required. In addition, due to the high computational burden and the re-
sulting feedback latency, this formulation may not perform well in the case of highly nonlinear
or highly dimensional systems.

Recently, Mishra et al. [106] introduced a stiction combating intelligent controller (SCIC)
based on fuzzy logic. No additional compensator is required, since the SCIC is a fuzzy PI
controller with variable integral gain, making use of Takagi-Sugeno scheme. The instantaneous
integral gain depends upon the value and upon the rate of change of the control error. This
novel approach, being also independent of the stiction band value, seems to outperform a
traditional PI controller, yielding less variability in PV and less aggressiveness in the valve
input, both in the case of set point tracking and disturbance rejection.

Afterwards, the same authors [107] have proposed another compensation solution, by us-
ing a nonlinear PI controller (NPIC), which is tuned on-line through a Differential Evolution
algorithm for ITAE as a cost function to be minimized. Again, a nonlinear control law is em-
ployed to vary the PI integral gain, based on the error and its rate of change. Similarly to [107],
pilot plant experiments reveal good performance for the NPIC with respect to all features of
Table 2.4.

In parallel, a model free approach for stiction compensation was developed by Arifin et
al. [17]. Also this scheme proves to attain all the characteristics listed in Table 2.4. In partic-
ular, both oscillation amplitude and frequency are reduced, and good set point tracking and
disturbance rejection are obtained. No precise knowledge of process model, but only minimal
information about stiction-induced oscillation is required. Also simplicity in on-line imple-
mentation is shown by applications on a pilot plant.

A comprehensive comparative study of different stiction compensation methods was pre-
sented by Silva and Garcia [131]. The performance were evaluated using some metrics: the
integral absolute error, a factor related to the stem position variation, the valve actuator pres-
sure variation, and the rising time. The methods were tested in the case of set point tracking
and through various regulatory experiments, by using a flow rate control loop in a pilot plant.
The best solutions proved to be the knocker method [69] and the two constant reinforcement
methods of [82] and [71], applied along with a slightly modified version of the method of
Cuadros et al. [53] based on the monitoring of control error (called as control freezing).

In this section, a brief comparison of five different stiction compensation techniques is now
presented (see Figure 2.8). The following methods are compared: the retuning method of
Mohammad and Huang [15], the knocker of Srinivasan R. and Rengaswamy [143], the constant
reinforcement (CR) of Ivan and Lakshminarayanan [82], the CR of Hägglund [71], and the two-
movements method of Wang et al. [164].

The methods are applied to the same control loop, with a PI controller and a process model
G(s), under two step changes of the reference (at time tsp = 4000, and 6000), and a load dis-
turbance (at time td = 8000). Before the onset of the compensators (at time ton = 2000), the
parameters are fixed in all cases: C(s) = 0.1(s + 0.1)/s, G(s) = 3e−5s/(10s + 1); the same white
noise with zero-mean and variance σn = 0.005 is added. Stiction is simulated by Chen’s model
[43], with the following parameters: fs = 0.2; fd = 0.1. SP, PV, and OP, MV signals are plotted
in the first and second column, respectively.

In particular, by using the method of [15], the controller is retuned following some basic
rules: the proportional gain is reduced (here by a factor of 4), and the integral time is increased
(here to Ti = 60) to be greater than the sum of the process time constant (τ = 10) and its time
delay (θ = 5). The parameters of the Knocker pulses are set according to the suggestions given
in [143]: amplitude ak = (fs + fd)/2, width τk = 2Tc, and duration hk = 5Tc, where Tc = 1 is
the time sampling. For both CR methods, the amplitude of the compensating signal is set to

36



CHAPTER 2. LOOP MONITORING AND VALVE STICTION

a = (fs + fd)/2, as suggested in [82]. Finally, the parameters of the two-moves compensator of
Wang et al. are set to their default values [164].

Figure 2.8: Time trends for different stiction compensation methods for the same control loop.

The features of performance of different compensation methods, previously reported in Ta-
ble 2.4, are now confirmed in Figure 2.8. All methods allow a reduction of PV oscillation in the
case of constant set point, that is until tsp = 4000. In particular, the retuning (detuning) method
of [15] shows poor closed-loop performance, typical of a sluggish controller. The knocker and
the two CR methods involve also a significant increase of OP variability, which causes a higher
MV variability and a faster valve wear. The two-moves method of [164] leads the PV signal
close to its reference, by also reducing the OP variability; however, being a fully open-loop
method, it does not guarantee any set point tracking and disturbance rejection.

Table 2.5 compares these five methods, by using simple indices computed before and after
the onset of compensation, similarly to what extensively presented by [131].

These performance indices are the reduction ratio of the integral absolute error, the re-
duction ratio of OP variability, and the reduction ratio of MV variability, defined respectively
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Table 2.5: Performance Indices for different compensation method.

Method IAErr ∆OPrr ∆MVrr

Mohammad and Huang [15] 0.828 4.674 4.166
Srinivasan R. and Rengaswamy [143] 3.855 0.036 0.065
Ivan and Lakshminarayanan [82] 5.489 0.012 0.014
Hägglund [71] 5.258 0.012 0.015
Wang et al. [164] 0.285 6.941 7.882

From Table 2.5, it can be observed that the knocker and the two CR methods yield a signifi-
cant reduction of the integral absolute error at the expense of a high increased variability in OP
and MV. The opposite happens for the retuning method and the 2-moves technique. To con-
clude, also by basing on the proposed simple simulation example, it is confirmed that different
compensation methods have good compensation capacity; however, they all present some spe-
cific drawbacks. Therefore, the choice of the best technique is due to a trade off between all the
analyzed issues.

In Chapter 5 a new method for stiction compensation is illustrated.

2.7 Smart Diagnosis

It is important to note that all techniques described in previous sections have been developed
for traditional control plant design, with ordinary valves and communication systems with
analog signals in 4 − 20 mA. Being the manipulated variable (valve stem position - MV) not
known, stiction must be detected and quantified on the basis of available measurements of the
controlled variable (PV) and controller output (OP).

However, in newly designed plants, the adoption of intelligent instrumentation, valve po-
sitioner and field bus communication systems increases the number of variables that can be
acquired and analyzed by the monitoring system. This fact enlarges the potentialities of per-
forming a more precise diagnosis of actuator problems which are not only limited to the pres-
ence of valve stiction (and related problems, as deadband, hysteresis, backlash), but can also
include other causes (changes in spring elasticity, dynamic friction (jamming), membrane wear
or rupture, leakage in the air supply system). The positioner itself can also be the source of
other specific faults that can upset loop performance. All these malfunctions require specific
actions to be counteracted by operators and, once more, it is very important to be able to diag-
nose different sources.

Diagnosis of smart actuators has been recently addressed in literature, but it can be ob-
served that comprehensive connection with the traditional research on control loop assessment
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and valve diagnosis is still lacking; some of the few works about smart diagnosis are briefly re-
viewed in the sequel.

Koj [93] firstly distinguished 19 different faults in a smart industrial actuator composed by
control valve, pneumatic servo-motor, and positioner. Then, Bartyś and Kościelny [34] applied
four different fuzzy logic methods to diagnose and isolate some of these faults. A minimum, a
multiplicative, an additive, and a mixed approach were developed and specifically applied to
monitor the smart actuator studied in [93]. Also Ould Bouamama et al. [111] dealt with fault
detection and isolation (FDI) of smart actuators. They combined bond graphs and external
models to assess different faults. An external model is a generic method which can be used to
verify the functional specifications of a smart equipment. This technique has been applied to
monitor the same valve with positioner of [93].

Bartyś et al. [35] provided the description and presentation of the actuator benchmark used
in fault diagnosis studies within the Development and Application of Methods for Actuator Di-
agnosis in Industrial Control System (DAMADICS) European Research Training Network. This
system is openly available, is FDI method-independent, and based on an accurate study of the
phenomena that can lead to likely faults in valve actuator systems. The industrial application
is focused on the sugar factory Cukrownia Lublin SA, Poland. This actuator benchmark can be
used either for testing, evaluation, or ranking of different FDI methods.

Mendonça et al. [104] also proposed a FDI method based on fuzzy logic approach. Non-
linear models for the process running in normal condition and for each fault were derived.
When a fault occurs, fault detection and isolation is performed using the model residuals. This
method, applied to the actuator benchmark [35], was able to detect and isolate 10 abrupt and
incipient faults.

In parallel, Huang and Yu [81] presented a simple method specifically addressed to de-
tection of stick-slip fault. This approach requires only valve position set OP and actual valve
position signal MV; specific indices are defined, and an on-line sliding window algorithm is
developed. Huang et al. [80] also proposed a series of methods based on trend analysis to de-
tect different faults. Stick-slip fault, constant bias fault, change of valve gain, serious hysteresis,
and stuck condition can be inferred by using OP, MV and PV signals. Industrial data sets from
a power plant were used to test the methods’ efficiency.

Recently, Subbaraj and Kannapiran [151] proposed an Adaptive Neuro-Fuzzy Inference
System to detect and diagnose the occurrence of various faults in a smart pneumatic valve of a
cooler water spray system in cement industry. The training and testing data required for model
development were generated at normal and faulty conditions in a laboratory setup.

Other interesting results about smart actuators were presented by Scali et al. [126]. In the
framework of a cooperation with ENEL (major Italian electricity producer company), a pilot
plant scale apparatus is appropriately equipped to reproduce different types of malfunctions
for a pneumatic valve. The availability of MV allows one to compute TD (Travel Deviation),
defined as the difference between real and desired valve position (TD =MV –OP ). On the basis
of different patterns and range of values of TD, stiction can be clearly detected and also other
causes of malfunctions affecting the valve can be distinguished (see Chapter 6). An example is
reported in Figure 2.9.

As final result, by defining few Key Performance Indices (as simple metrics of TD), and
fixing low and high thresholds for them, it is possible to assess valve status as Good, Alert,
Bad, thus giving very specific indications to the operator about troubles affecting the valve and
actions to perform. The same logics has been exported and validated on industrial processes
(power plants), after a field calibration of some KPIs, by Bacci di Capaci et al. [31].

Referring to Figure 2.9, it is worth putting into evidence that typical waveforms and dis-
tinctive limit cycles on PV(OP) and MV(OP) diagrams generated by a traditional sticky valve
(cfr. Figure 2.4) are no more observed in the case of a sticky valve augmented by smart in-
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Figure 2.9: TD time trends for nominal case and different malfunctions: jamming, air leakage, I/P
malfunction, stiction and disturbance.

strumentation. The positioner, performing an additional control action as an internal cascade
controller, can significantly alter frequencies and amplitudes of oscillation, even though, con-
trary to popular belief, it does not allow elimination of oscillations.

2.8 Software Packages

Many software packages, addressing the issue of control loop performance assessment (CLPA),
have been proposed in recent years by major companies. Among the few surveys including
software packages, papers by Shardt et al. [130] and Brásio et al. [39] should be mentioned.
Historically developed for controller re-tuning, nowadays these tools not only detect loops
needing attention and/or maintenance but also include different features for a more general
diagnosis of loop status.

Detailed illustrations of these systems can be found on the appropriate company web sites.
Unfortunately, in most cases the available documentation is oriented towards a commercial
approach rather than a scientific one. It is possible to find an indication of the main features
and tackled issues, lists of successful implementations, benefits in terms of Return On Invest-
ment and enthusiastic comments by users. It is very unusual to have a complete explanation
that includes theoretical issues (the problem, basic techniques and performance indicators)
and practical issues to focus on for the success of the implementation (system architecture, key
parameter calibration, field validation).

For this reason, a detailed analysis of all software packages for CLPA not being possible,
basic features of 15 different systems today present in the market are reported following the
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approach of our review in Table 2.6 that highlights various options of stiction analysis: model-
ing, detection, quantification, compensation, and smart diagnosis.

From Table 2.6, it can be seen that stiction detection is a feature common to almost all
packages (11/15), thus confirming to be now a mature subject; in general, no information
about the adopted technique is available: about this point, the PCU software makes use of
multiple techniques to get a more reliable final verdict in terms of oscillation detection and
stiction diagnosis. Very few packages perform quantification (4/15), to indicate that there is
still research to be carried out. Only 2/15 deal with modeling and only one with compensation:
in our experience, this fact confirms the scarce interest of industry about these two subjects. On
the contrary, it is a bit surprising that only one package (the PCU software [31]) includes smart
diagnosis, taking into consideration the proved advantages by its adoption: this is probably
due to the relatively few plants fulfilled with advanced instrumentation, but this feature will
certainly find a place in future packages.

In Chapters 6 and 7 two examples of software packages for monitoring and assessment of
control loops are illustrated.

Table 2.6: Synthesis of Performance Assessment Software.

Software Organization
Features of Stiction Analysis

Modeling Detection Quantification Compensation
Smart

Detection

Control Performance
Assessment [121]

Petroleum Uni-
versity of Tech-
nology, Iran

7 3 7 7 7

Plant Check–Up (PCU)
[31, 123, 23]

University of
Pisa, Italy

3 3 3 7 3

Process Assessment
Technologies and
Solutions [96]

University of Al-
berta, Canada

3 3 3 3 7

Aspen Watch Perfor-
mance Monitor [1]

AspenTech 7 3 7 7 7

Automatic Control
Loop Monitoring and
Diagnostics [10]

PAPRICAN 7 7 7 7 7

Condition Data Point
Monitoring [7]

Flowserve 7 3 7 7 7

Control Monitor [3] Control Arts, Inc. 7 3 7 7 7

Control Performance
Monitor (Process
Doctor) [9]

Matrikon–
Honeywell

7 3 3 7 7

Control Loop Optimi-
sation [11]

PAS 7 7 7 7 7

EnTech Toolkit (DeltaV
Inspect) [5]

Emerson Process
Management

7 7 7 7 7

INTUNE [4] ControlSoft 7 7 7 7 7

Loop Scout [8] Honeywell 7 3 7 7 7

LPM, Loop Perfor-
mance Manager [37]

ABB 7 3 7 7 7

Plantstreamer Portal
[2]

Ciengis 7 3 3 7 7

Plant Triage [6] Expertune 7 3 7 7 7

Symbols: “7”, no; “3”, yes

2.9 Conclusions

A review of research works on valve stiction is indeed a heavy burden to carry out, owing to
very large efforts devoted to this phenomenon in the last years. This is certainly an indication
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of its relevance as issue affecting loop performance and then the global efficiency of the plant.
In this first part of the study, we tried to give a general overview starting from basic aspects

of the problem, analyzing different techniques, and ending with possibilities open by smart
instrumentation. We can now make some final considerations, based on personal experience
as researchers and, more, on familiarity with end-user expectations: therefore, more attention
is paid to the perspective of their impact in industrial applications.

Characterization of the phenomenon and its modeling has certainly reached an almost com-
plete stage. While from the academic side many issues can still attract interest (for instance
basic principle models), the adoption of data-driven model can be considered fully satisfactory
for the evaluation of stiction effects.

Stiction detection techniques, based on available measurements in old-design plants (SP,
PV, OP), can also be considered a mature research topic, even though a combined application
of more than one technique is recommended to reduce possible errors in distinguishing stiction
from similar causes of oscillations.

Stiction compensation techniques are certainly a valid help to mitigate the problem when a
direct action is not possible; despite their potentiality, in our experience, very seldom are they
implemented in the plant.

Smart instrumentation creates the opportunity for a very innovative scenario in the diagno-
sis of different problems which may affect the valve and their distinction from other troubles.
While all other diagnosis approaches remain valid for classical plants, techniques which make
use of additional measurements will be used more and more in the next few years.

About closed-loop performance systems, understandably, techniques included in commer-
cial packages are not illustrated with all details: it seems that they follow with some time delay
the advances in research. At the moment, very few of them feature approaches that include
benefits deriving from the availability of smart instrumentation.

Being able to quantify the amount of stiction is very important in order to follow its evolu-
tion in time and to predict the moment of valve maintenance; this is a field where all previous
aspects play a role and where there is still research to do in order to improve reliability of
estimations.

To the comparison results of emerging quantification techniques on industrial data is de-
voted the second part of this review.
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Chapter 3

Stiction Quantification - part I

Abstract 1

Valve stiction is one of the most common causes of poor performance in control loops. This
chapter presents a first procedure which allows stiction quantification. The method describes
the control loop by means of a Hammerstein model: a non-linear block for valve stiction fol-
lowed by a linear block for process dynamic. A two-parameters empirical model is used to
reproduce accurately the valve behavior and a linear least square identification is performed.
A grid search method allows one to estimate process and stiction parameters. This technique
permits one to predict the unknown real stem position (MV), and moreover, it does not need
any process knowledge and requires only the data normally registered in industrial plants. It
is pointed out that the real problem consists of the lack of knowledge about the true value of
stiction.

In addition, quantification of valve stiction can be heavily affected by the presence of un-
avoidable perturbations in loop variables, such as set point variations, controller tuning and
external disturbances, which could affect the stiction estimation obtained by this inherently
robust technique. A general filtering procedure is proposed to discard data for which quan-
tification is very likely to give wrong indications and to restrict its application to appropriate
cases.

Simulations show that several sources of perturbations can be eliminated, thus improving
the reliability of stiction evaluation. Results are confirmed by application to industrial data:
a significant number of valves are analyzed for repeated acquisitions before and after plant
shutdown. The proposed procedure seems to be a valid methodology to monitor valve stiction
and to schedule and check valve maintenance.

The last part of this chapter presents main features of the new version of PCU software, a
performance monitoring system which allows stiction quantification. This system implements
the whole methodology previously presented: the estimation algorithm and the corresponding
filtering procedure.

1This chapter is based on three different papers: [22], [25], [23].
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3.1 Introduction

Performance monitoring plays an important role in process industries because poor perfor-
mance considerably reduces their profitability and competitiveness. A control loop perfor-
mance monitoring system detects poor performance loops, indicates different sources of mal-
function and suggests appropriate ways of correction. Control valves are said to be the cause
of oscillations and poor performance in control loops for a significant number of cases (about
30%, according to [85]). In particular, the most common problem is stiction (static–friction).
An accurate characterization of this phenomenon was performed by Choudhury et al. [47],
and since then research on this topic has found new emphasis. The research on valve stiction
can be broadly categorized into the following four topics: modeling, detection or confirmation,
quantification, and compensation. In this Section, the existing research on stiction modeling,
detection, and quantification is briefly reviewed to illustrate the motivations and scope of this
chapter.

Basically, two types of models are used to describe stiction: models derived from physical
principles and models derived from process data. Physical models (e.g., Karnopp [88]) are
certainly more accurate, but owing to the large number of unknown parameters, they are not
considered convenient for the purpose of stiction detection and quantification. Simplicity in
the structure is the main reason why data-driven models are preferred (Choudhury et al. [47],
Kano et al. [87], He et al. [76]). More details will be given in Section 3.2 when presenting the
proposed methodology.

Many stiction detection techniques have been proposed in the literature. These techniques
distinguish two common causes of oscillation: external disturbance and valve stiction. They
can be broadly classified into four categories: cross-correlation function-based (Horch [77]),
waveform shape-based (Kano et al. [87], Srinivasan et al. [146], Singhal and Salsbury [132],
Rossi and Scali [119], Yamashita [168], and He et al. [76]), nonlinearity detection-based (Choud-
hury et al. [46]), and model-based algorithms (Karra and Karim [90]). A performance compari-
son of the most recent techniques on a large benchmark (93 loops) of industrial data is reported
in Jelali and Huang [85]. In conclusion, these problems can be considered almost solved, even
though different stiction models and diagnosis techniques cannot always give the same results
once they are applied on industrial data. Therefore, it is important to know the strengths and
the weaknesses of different models and methods.

On the contrary, stiction quantification should be considered an open issue [85]. Knowing
the value of stiction is very important in order to follow its evolution in time, to compare it
with acceptable thresholds, and to be able to schedule valve maintenance.

Both stiction detection and quantification techniques do not require invasive procedures
for the plant. They only require algorithms based on data usually recorded for control and
monitoring purposes, that is Set-Point (SP), Controlled Variable (PV), and Controller Output
(OP). The measure of the stem position (MV) is not generally available, and it must be esti-
mated from the other available measurements. Once MV is recorded, owing to the availability
of smart equipment (valve positioners) and advanced communication systems (Field Bus), the
task is quite easier. Not only can stiction be detected and quantified directly on an MV(OP)
diagram, but also other causes of malfunction can be indicated (for instance, air leakage, I/P
converter troubles, etc.). Details can be found in Scali et al. [126] and Bacci di Capaci et al.
[31].

In one of the first significant papers on stiction quantification, Choudhury et al. [49] pro-
posed fitting the limit cycle on PV(OP) with a geometrical ellipse in a least-squares sense. A
stiction index is evaluated as the ellipse width in the OP direction. This technique gives a
relative estimate of stiction, called apparent, which represents only an indication of stiction
severity. Indeed, this value is influenced by all other loop parameters (starting from controller
and process gain). As they may change in time, this technique cannot be considered completely
reliable for stiction quantification. Techniques which estimate the parameters of a data-driven
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stiction model and predict the MV signal are much more effective. In stiction quantification,
the objective function does not generally have a concave shape but shows many flat regions
where the gradient is zero or close to zero. A global search algorithm for the minimum is nec-
essary; a gradient method would be too influenced by the initial guess and would stop in a
local minimum. In many techniques, the control loop is modeled by a Hammerstein system:
a nonlinear block for valve stiction, followed by a linear block for the process. Some of these
techniques are briefly reviewed in the sequel.

First, Srinivasan et al. [148] used a one-parameter stiction model, and the linear dynamics
was identified using an ARMAX (AutoRegressive Moving Average with eXternal input) model.
Choudhury et al. [50] performed a grid search of the two stiction parameters of Choudhury’s
model. The stiction parameters combination and the corresponding process parameters vector
which minimize mean squared error on PV are evaluated. Jelali [84] used a stochastic opti-
mization approach for the nonlinear part. A two-stage quantification is performed: stiction
parameters are obtained with genetic algorithms or pattern search methods, then the linear
part is identified using ARX or ARMAX models and a time delay estimation algorithm. The
method of Farenzena and Trierweiler [61] is said to be an improvement over Jelali’s method.
It performs a one-stage identification of stiction and process parameters by means of a deter-
ministic algorithm of global optimization which is no longer dependent on the initial guess.
Lee et al. [95] described valve stiction with the He et al.[76] model and identified a linear
process model of first or second order plus time delay. A triangular search grid is a remark-
able improvement because it constrains the search space of stiction parameters and fastens
the method. Romano and Garcia [118] modeled the control loop with a Hammerstein-Wiener
structure: the valve nonlinear block precedes the process represented by a linear block and
a nonlinear static block. Process identification is performed with ARMA or ARMAX mod-
els for the linear part and third grade spline functions for the nonlinear part. This approach
avoids a possible process nonlinearity to be wrongly included in the stiction model. Karra and
Karim [90] described the control loop with Kano’s stiction model and a specific linear model
(E(xtended)-ARMAX type), which also accounts for nonstationary disturbances entering the
process.

Regarding quantification, the main difficulty to put into evidence is that the true value of
stiction is not known in industrial data (rather, it may be known in ad hoc experiments or in
simulations). Therefore, the validation of a proposed technique on a single set of industrial
data can be incomplete, apart from the mathematical elegance of the solution. This is con-
firmed by the fact that different quantification techniques can strongly disagree when applied
on the same benchmark of industrial data (Chapter 13 in [85]). Recently, methods to evaluate
the reliability of stiction detection and quantification techniques have been presented. Qi and
Huang [115] have proposed a bootstrap method to obtain the statistical distribution of stiction
estimation. They defined a region for stiction parameters with 95% confidence. Srinivasan et
al. [140] have performed a frequency domain analysis of loop oscillation and determined a
confidence function for the estimated stiction parameters.

Finally, as previously seen in Section 2.8, it is worth to notice that possibility of diagnos-
ing stiction is included in several systems of closed loop performance monitoring (CLPM),
proposed nowadays by major software houses. On the opposite, to the best of the author’s
knowledge, no commercial tool performs stiction quantification or estimation.

Following these considerations, the objective of this chapter is three-fold:

(i) to overcome the problem that the true value of stiction is not known, the proposed
methodology will be performed on many applications available for long periods of time
(before and after plant shutdown) and for a significant number of valves;

(ii) to show how the most common causes of loop perturbation may influence stiction esti-
mation, a robust methodology is proposed, including a filtering procedure able to discard
data for which stiction quantification is very likely to fail.

45



3.2. THE FIRST PROPOSED METHOD

(iii) to propose a tool which performs stiction quantification and process identification.
This chapter is organized as follows: in Section 3.2, the proposed method for stiction quan-

tification is illustrated; Section 3.3 presents the results in simulation; in Section 3.4, the tech-
nique is analyzed on a large number of industrial data; Section 3.5 illustrates the new tool of
performance monitoring and stiction quantification; and in Section 3.6, conclusions are drawn.

3.2 The First Proposed Method

The first proposed stiction quantification technique is based on a grid search, a method which
is simple and mathematically sound but may require quite a long computational time. The
choice of a grid technique is on purpose, to show that even in this case, unreliable estimates
may be caused by the presence of perturbations in the data. Long computational times do
not represent a disadvantage for three reasons: the technique is oriented toward an off-line
application which requires data registered for hours (versus minutes of computational time),
the wear phenomena in valves occur slowly (weeks or months), and valve maintenance usually
occurs periodically every few years on occasion of a plant shutdown.

3.2.1 The Hammerstein system

The control loop is modeled by a Hammerstein system (Figure 3.1a). Kano’s stiction model
describes the nonlinear valve dynamics, and an ARX (Auto Regressive model with eXternal
input) model describes the linear valve and the process dynamics. More details about the
model are added here to better understand the algorithm.

(a) Hammerstein system:
control loop with valve stiction. (b) Grid search of stiction parameters.

The relation between the controller output (desired valve position) OP and the real valve
position MV is described in three phases (Figure 3.2a):

1. Sticking: MV is steady and the valve does not move, owing to the static friction force
(deadband + stickband, S).

2. Jump: MV changes abruptly because the active force unblocks the valve, J .

3. Motion: MV changes gradually, and only the dynamic friction force can possibly oppose
the active force acting on the valve diaphragm (the valve stops again when the force
generated by the control action decreases under the stiction force).

Valve stiction produces an offset between control variable PV and Set Point SP, and this causes
loop oscillation because the valve is stuck even though the integral action of the controller acts
and increases the pressure on the valve diaphragm. The MV(OP) diagram shows a parallelogram–
shaped limit cycle, while MV(OP) would be perfectly linear without valve stiction. Figure 3.2b
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represents the PV(OP) plot for a case of flow control loop, for which the fast dynamics allows
one to approximate MV(OP) with PV(OP), since MV is usually not measured.

It should be recalled that also in the case of stiction, loops with slow dynamics (PC, LC, TC)
show PV(OP) diagrams having elliptic shapes. Similar paths on PV(OP) are obtained for other
types of oscillating loops (external stationary disturbance or aggressive controller tuning), and
this creates some problems in assigning causes. It is worth saying that the value of J is critical
to inducing limit cycles (Choudhury et al. [50]). However, while S is easy recognizable, J is
hardly detectable in industrial data, owing to its small value and the presence of field noise
(see Figure 3.2b).

(a) Valve stiction modeling: MV(OP) diagram. (b) Industrial PV(OP) diagram.

Figure 3.2: Typical limit cycles.

The ARX model used has the following structure in discrete time form:

yk =
n∑
j=1

−aj · yk−j +
m∑
j=1

bj ·uk−j−L + ek (3.1)

where yk denotes the measured value of controlled variable PV at time k-th, uk is the value of
manipulated variable MV at time k-th, aj are the coefficients of the vector for PV, bj are the
coefficients of the vector for MV, and ek is the error committed in the prediction. The (n,m)
pair is the order of the model, and L represents the time-delay units of the process.

The proposed method goes as follows: A grid of the two stiction parameters S/J is built
(Figure 3.1b), and for each possible combination, the MV signal is generated from the mea-
sured OP signal using Kano’s stiction model. Another grid of possible process time delay L is
performed: L is taken as a multiple of the sampling time. For every triad S/J/L, the overall
vector θ of the coefficients of the ARX model is identified in a linear least-squares sense based
on MV and measured PV. The range of the grid, as well as the order of the ARX model, are
discussed afterward.

The following maximization problem is stated:

(S,J,θ,L, ) = max
S,J,θ

(max
L

(F2))

F2 = 100 ·
(
1− ‖P̂ V − P V ‖

2

‖P V − P Vm‖2

) (3.2)

F2 is a fitting index related to the mean squared error between measured (PV) and predicted
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(P̂ V ) control variables; P Vm is the mean value of PV. F2 is equal to 1 in the case of perfect
estimation and tends to −∞ for large errors.

The stiction parameter grid has a triangular shape to restrict the search space. Overshoot
stiction cases (J > S) are excluded because the waveforms generated for these combinations are
rarely observed in practice. The largest value of S (and J) is the OP oscillation span. There-
fore, under boundary conditions (when S = J and S = OP span), the valve jumps between two
extreme positions, generating an exactly squared wave for MV.

To avoid different estimations depending on the examined time window, data are divided
into two sets, and the method is applied separately. Two stiction models (S1/J1; S2/J2) and two
linear ARX models (θ1/L1; θ2/L2) are identified; consequently, two fitting indices are calculated
(F2,1; F2,2).

Then, a comparison of the two data windows is performed using the two specific indices
defined below:

MDNL = 1−
‖MV OL1 −MV OL2 ‖2

‖MV OL1,2 ‖2

MDLIN = 1−
‖P V sr1 − P V

sr
2 ‖2

‖P V sr1,2‖2

(3.3)

MDNL is a deviation index between nonlinear models. MV OL1 and MV OL2 are respectively the
output signals of the first and the second estimated stiction model in response to a specific
sinusoidal OP input signal. MV OL1,2 is the mean signal of these two. MDLIN is a deviation index
between linear models. The output signals of the first (P V sr1 ) and the second (P V sr2 ) linear
model in response to a unitary step are compared; P V sr1,2 is the mean signal of these two.

MDNL and MDLIN are equal to 1 when the two responses are exactly the same, that is,
when the two couples of stiction parameters and the two linear models perfectly correspond;
MDNL and MDLIN tend to −∞ when differences become significant. The identified stiction
and linear model parameters are related to the best data set, that is, the one with the highest
F2 index (between F2,1 and F2,2). In the calibration step, it was found that, to obtain reliable
results from the algorithm, the three following conditions have to be satisfied:

MDNL > 0.95 MDLIN > 0.80 min{F2,1,F2,2} > 0.80 (3.4)

Concerning the choice of model type, Srinivasan et al. [148] have shown that the accuracy of
identification of the nonlinear part is not affected by the complexity of the linear model struc-
ture. This statement justifies the use of a simple model to describe linear dynamics. The adop-
tion of an ARX model gives an exact solution for the least-squares problem and, differently
from an ARMAX, implies only an iterative estimation of nonlinear parameters. Concerning
model order, intensive simulations have shown that an ARX(2,2) model is suitable to quantify
stiction with good precision even for complex process dynamics, with acceptable computa-
tional times.

The step size of stiction parameters (S,J) plays a key role: small values allow one to increase
accuracy, avoiding the effect of local minima, at the expense of longer computational times. By
assuming as acceptable an error on the estimation of S and J equal to 0.1 (which is 1/1000
of stroke of valve stem, 0-100%), according to simulation results, a step size equal to 0.05
can be considered adequate. The technique also shows robustness to noise; the errors become
significant only in case of a Signal to Noise Ratio (SNR) equal to or smaller than 2.

These considerations concern the mathematical statement and the solution of the problem.
In the perspective of application on industrial data, there are some practical issues which might
affect the accuracy of stiction quantification. They are mainly correlated to the presence of
different sources of oscillation (with or without valve stiction): irregular oscillations, periodic
external disturbances, variable set point loops, and incorrect controller tuning can be seen as
unavoidable phenomena in industrial situations.
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3.2.2 The filtering procedure

To reduce the impact of these practical issues on the reliability of stiction estimation, a sys-
tematic procedure is proposed as described in the sequel (compare Figure 3.3). First, two ap-

Figure 3.3: Flow diagram of the proposed technique:
oscillation detection, stiction detection, data division, and stiction quantification.

propriate techniques to detect significant loop oscillations are applied. Loop oscillation is, in
fact, the main reason for stiction detection. The regularity factor r (Thornhill et al., [157]) and
decay ratio Racf (Miao and Seborg, [105]) of the autocorrelation function (ACF) of control error
(e = P V − SP ) are calculated. If these two indices exceed threshold values, set respectively to
1 and 0.5, as suggested by the authors, the control loop is considered to oscillate significantly
(that is, regularly and steadily), and the quantification continues; otherwise the analysis should
be stopped, because it is assumed that non-substantial stiction is present.

Second, a stiction diagnostic technique is applied to avoid the application of the algorithm
when a periodic disturbance is the unique source of oscillation. Among several available tech-
niques (see the list reported in the Introduction 3.1), for the first two papers [22, 25] compos-
ing this chapter, the relay-based technique developed in our laboratory a few years ago was
adopted [119]. Afterwards in [23], in the perspective of industrial applications, the suggestion
is to adopt more different techniques of only when stiction is clearly detected. More details
about this point are given in Section 3.5 where the monitoring system PCU is described. Any-
way, when stiction is not clearly detected, the procedure should be stopped, since the estimated
values can be unreliable.
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Subsequently, when stiction is detected, data are divided into two sets; stiction quantifica-
tion is applied separately, and results are compared in terms of the indices previously defined.
It is worth saying that the appropriate number of data samples and data sets depends on the
whole data length. Usually, a number of data samples which includes at least 4-5 periods of
oscillation is needed to have a significant data window; therefore the number of data windows
can be just one, two, or even more. In the last case, the proposed procedure compares the two
best windows in terms of fitting indices F2. The next Section 3.3 illustrates the effectiveness of
the proposed procedure on simulation results and Section 3.4 on industrial data.

3.3 Simulation Results

Two different examples of simulations are here reported. In Section 3.3.1 the proposed quan-
tification algorithm is tested for different sources of loop perturbations. Then, in Section 3.3.2
the focus is on the additional presence of external disturbances.

3.3.1 Applications for different sources of oscillation

As first illustrative example, a control loop is simulated, where the process P is described by
a First Order Plus Time Delay (FOPTD) transfer function and the controller C has PI tuned
by the Continuous Cycling method of Ziegler-Nichols[22, 25]. Valve stiction is described with
Kano’s model. Sampling time is set to 1 s. This loop is a specific case study, but the results have
general validity, as verified by other extensive simulations; other types of process models were
used and different values for stiction parameters were adopted.

P (s) =
1

15s+ 1
e−5s C(s) = 2.44

(
1 +

1
14.9s

)
(3.5)

The methodology is applied to different sources of oscillation, as described above. In detail,
10 different cases have been examined (see Table 3.1). In cases 1 and 2, the stiction is the only
source of oscillation; different amounts of stiction in the valve have been simulated. In case 3,
the loop oscillates due to set point sinusoidal variation, and the valve has no stiction. Case 4 is
equal to case 3, but the valve has low stiction. In case 5, the loop oscillates due to aggressive
controller tuning (Kc = 4.15), which causes a marginal stability condition (no stiction). In
case 6, an aggressive tuning (Kc = 3.66) acts together with high valve stiction. In case 7, an
external sinusoidal disturbance is the unique cause of loop oscillation. In cases 8 and 9, an
external sinusoidal disturbance acts respectively with low and high valve stiction. In case 10,
an irregular disturbance acts with low valve stiction.

Results are reported in Table 3.1. In columns from left to right are given the simulated stic-
tion parameters (So, Jo), regularity and decay ratio factors (r, Racf ), diagnosis verdicts issued
by the relay technique [119], estimated stiction parameters (S, J), models’ deviation indices
(MDNL, MDLIN ), and the F2 index.

It can be seen that the oscillation is regular and steady for all cases (except for case 10),
as indicated by values of r and Racf above thresholds. In cases from 1 to 6, the procedure
perfectly succeeds and gives good stiction estimations, both in the presence of stiction and
not. In the case of pure disturbance (7), stiction quantification might fail (nonzero S and J
estimation), but the relay technique indicates disturbance (not stiction), so these data should
not be examined by the stiction estimation algorithm. In cases of simultaneous stiction and
disturbance (8 and 9), the relay technique correctly indicates stiction but the estimated stiction
parameters are always wrong. In case 8, the low value of MDLIN (< 0.80) gives an indication
of scarce accuracy, while in case 9, both indices are above thresholds, but a wrong stiction
estimation is obtained. In case 10, stiction and disturbance act simultaneously, producing an
irregular oscillation; therefore the procedure is stopped.

50



CHAPTER 3. STICTION QUANTIFICATION - PART I

Table 3.1: Simulation Examples: Different Sources of Loop Oscillation.

case So Jo r Racf verdict S J MDNL MDLIN F2

1 low stiction 0.5 0.5 9.8 0.98 stiction 0.5 0.46 0.99 0.83 0.97
2 high stiction 4 1 2.32 0.96 stiction 4.02 1.08 0.98 0.89 0.96
3 SP variation 0 0 21.4 0.97 no stiction 0 0 0.99 0.82 0.95
4 SP variation + low stiction 0.5 0.5 21.2 0.97 stiction 0.46 0.42 0.99 0.83 0.95
5 aggressive tuning (marginal stability) 0 0 12.1 0.99 no stiction 0.04 0.04 0.99 0.84 0.97
6 aggressive tuning + high stiction 4 1 14.4 0.97 stiction 3.84 0.88 0.99 0.89 0.97
7 sinusoidal disturbance 0 0 8.6 0.99 no stiction 0.36 0.14 0.99 0.87 0.97
8 disturbance + low stiction 0.5 0.5 6.92 0.93 stiction 0 0 0.99 0.46 0.94
9 disturbance + high stiction 6 4 12.9 0.98 stiction 4.98 4.98 0.97 0.91 0.95
10 irregular disturbance + low stiction 0.5 0.5 0.47 0.35 - - - - - -

The first conclusions after these simulations are as follows:
(i) It is confirmed that the proposed methodology is able to give a correct stiction estimation

when stiction is the only source of oscillation.

(ii) The procedure continues to be correct even in case of oscillations caused by set point
variations and incorrect tuning, with or without the presence of stiction.

(iii) On the contrary, in the presence of external sinusoidal disturbances, the methodology
may give wrong stiction estimations. The screening by means of relay diagnosis tech-
nique and checks on the deviation indices of models in the data windows are not enough
to eliminate the problem completely, but they can reduce the number of wrong evalua-
tions, sometimes allowing one to reject the (wrong) estimated stiction parameters.

(iv) In the presence of irregular or nonsteady oscillation, the procedure is stopped because
both stiction diagnosis technique and stem position estimation give unreliable results.
Stiction detection and quantification are postponed to a later data registration with sig-
nificant oscillation.

3.3.2 Applications in the presence of disturbances

As second illustrative example, a control loop is simulated: the process P is described by a First
Order Plus Time Delay (FOPTD) transfer function and the controller C has PI algorithm with
Closed Loop Ziegler-Nichols tuning [23]. Sampling time is set to 1 second. Valve stiction is
described with Kano model.

P (s) =
1

10s+ 1
e−5s C(s) = 1.73

(
1 +

1
14.25s

)
S = 4; J = 1 (3.6)

This loop is a specific case study, but the results have absolutely general validity: other process
models were used and different values for stiction and disturbance parameters were applied;
they are not reported for sake of brevity.

Three simple cases study of simulation are illustrated below:
• In case 1 valve stiction is the only source of oscillation.

• In case 2 the same valve stiction acts with external disturbance: a sinusoidal input with
a frequency of 0.2 rad/s and amplitude of 1.

• In case 3 the same valve stiction acts with a higher disturbance: a sinusoidal input with a
frequency of 0.05 rad/s and amplitude of 5.

In case 1, the proposed method perfectly succeeds: it gives a good stiction estimation (S = 4.01;
J = 0.85) and an accurate MV prediction (compare Figure 3.4). In case 2, the amplitude and
frequency of the disturbance do not alter too much stiction quantification (S = 3.95; J = 1.47)
and the estimation of MV is still effective (Figure 3.5a). On the contrary, in case 3 the external
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disturbance significantly degrades stiction estimation (S = 0.56; J = 0.05) and prediction of MV
is really inaccurate (Figure 3.5b).

Figure 3.4: Case 1. Only valve stiction: good prediction of MV.

(a) Case 2. Good prediction of MV. (b) Case 3. Inaccurate prediction of MV.

Figure 3.5: Sticky valve + external disturbance.

Therefore, this second example of simulation confirms that the proposed stiction quantifi-
cation methodology is able to give a correct stiction estimation when valve stiction is the only
source of oscillation. On the contrary, in the presence of external disturbances, the methodol-
ogy may give wrong stiction estimations.

In the next section, the proposed methodology has been checked on a large number of
industrial loops with sticky valves.

3.4 Application to Industrial Data

As stated in the Introduction 3.1, the main problem with stiction detection and quantification
is that, in industrial data, the true position of the valve stem (MV) and the true value of stiction
are not known. Therefore, stiction quantification of an industrial valve based on a single set
of data can be insufficient, as one single result can be inaccurate and meaningless. On the
contrary, the analysis of a large number of valves, under repeated acquisitions, before and after
plant shutdown, can be suggested as a sound procedure to validate the proposed technique.

In fact, before valve maintenance, constant or increasing trends of stiction parameters are
expected and after maintenance, negligible oscillations and low stiction values are recorded.
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Repeating the procedure for different acquisitions allows one to follow the evolution of stiction
values in time and to disregard anomalous cases, which appear as outliers with respect to the
main trend.

The effectiveness of the proposed stiction quantification technique has been checked by its
application on a wide set of acquisitions before and after plant shutdown for periodic mainte-
nance. The availability of industrial data is made possible by referring to the archives of the
performance monitoring system (PCU, [123]) implemented on refinery units for continuous
loop assessment.

In this section, two first examples of industrial loops are presented to show the details of the
proposed deviation indices between models [22]. Afterwards, as further examples of successful
application of the whole methodology, four other control loops are analyzed [25]. The results
can be considered representatives of many practical situations.

3.4.1 Loop #1 & #2

Two different flow rate control loops are here considered [22]. Figure 3.6 shows the results for
Loop #1, a clear case of success of the procedure. On the opposite, Figure 3.7 shows the results
for Loop #2, a case of failure. On the left of these two Figures, time trends of SP, PV, PVest,
and OP, MV, MVest are reported, while on the right the step responses of the two linear models
identified are reported.

For the Loop #1, the deviation indices between models are both very high: MDNL = 0.99
and MDLIN = 0.95; also the fitting index is above its threshold: F2 = 0.90. The two step re-
sponses of Figure 3.6b are pretty similar, and this explains the high value of MDLIN index.

For the Loop #2, the nonlinear part index and the fitting index are high: MDNL = 0.95, and
F2 = 0.85. Nevertheless, the index for the linear dynamics is far below the threshold: MDLIN =
−0.45. As shown by 3.7b, the two step responses are very different and this explains the low
value of MDLIN index. This industrial case might correspond to the simulation typology 8:
a situation of valve stiction and external disturbance, which can be anyway filtered by the
proposed methodology.

(a) Time trends: two similar windows. (b) Step responses for MDlin: successful.

Figure 3.6: Loop #1: a successful application.

3.4.2 Loop #3

This case refers to a pressure loop where the presence of stiction is also evident from visual
inspections; two different registrations of data are available before valve maintenance (MTA)
and one after MTA. The controller has a PI algorithm with parameters set to Kc = 1 and Ti = 0.4.

53



3.4. APPLICATION TO INDUSTRIAL DATA

(a) Time trends: two different windows. (b) Step responses for MDlin: unsuccessful.

Figure 3.7: Loop #2: an unsuccessful (filtered) application.

The first two registrations show oscillations with wide amplitudes, regular (r > 1) and
steady (Racf > 0.5). Large values of stiction parameters are estimated. The procedure gives
reliable results because uniform values of the S parameter are quantified (see Table 3.2).

After valve maintenance, no significant oscillation is detected (r < 1 and Racf < 0.5), and no
stiction estimation is performed: the valve operates correctly.

Table 3.2: Loop #3: Valve Stiction Estimation.

time run # r Racf verdict S J MDNL MDLIN F2

before MTA i 6.35 0.93 stiction 27.8 4.3 0.98 0.83 0.98
before MTA ii 5.96 0.94 stiction 25.9 0.9 0.99 0.97 0.97
after MTA iii 0.43 0.11 - - - - - -

The removal of the stiction problem is also confirmed by the comparison of time regis-
trations of SP, PV, OP, and estimated values of PV and MV (P Vest, MVest) for one set of data
collected before and the one collected after valve maintenance, as shown in Figure 3.8.

(a) Run i (before MTA):
wide oscillations due to valve stiction.

(b) Run iii (after MTA):
no significant oscillation.

Figure 3.8: Trends for Loop #3.
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3.4.3 Loop #4

For this level loop, four different registrations of data are available before valve maintenance
and four after (see Table 3.3). The controller has a PI algorithm with parameters always set to
Kc = 4 and Ti = 400.

The first four registrations show oscillations with wide amplitudes, regular (r > 1) and
steady (Racf > 0.5), and the stiction diagnosis is always positive. Therefore, the proposed
methodology can always be applied, and it estimates large values of stiction. In particular,
an increasing trend of the S parameter is quantified. Note that the methodology is performed
on a unique data window because only a few peaks are available due to the long period of
oscillation compared to the whole data length available. Therefore, the two deviation indices
between models (Eq. 3.4) are not calculated. It is worth noticing that these four data registra-
tions are close in time (4 months); the set point is constant (always SPm = 40%), and the valve
works around 15% of its span. Therefore, the stiction estimations are particularly reliable: the
phenomenon is rapidly increasing in time.

The data collected after valve maintenance are completely different. The methodology does
not detect any significant oscillation, and no stiction estimation is performed. The loop is no
longer oscillating because the valve now operates correctly (due to effective valve maintenance).

Table 3.3: Loop #4: Valve Stiction Estimation.

time run # SPm OPm r Racf verdict S J F2

before MTA i 40 13.0 2.97 0.78 stiction 7.0 5.0 0.98
before MTA ii 40 11.5 1.55 0.56 stiction 7.4 7.4 0.98
before MTA iii 40 11.8 2.94 0.89 stiction 9.0 1.1 0.99
before MTA iv 40 17.1 1.44 0.80 stiction 13.1 8.5 0.98
after MTA v 50 19.3 0.42 0.25 - - - -
after MTA vi 50 19.1 0.83 0.31 - - - -
after MTA vii 55 18.5 0.37 0.36 - - - -
after MTA viii 50 15.8 0.70 0.47 - - - -

The removal of stiction is also confirmed by the comparison of time registrations of SP, PV,
OP, and estimated values of PV and MV (P Vest, MVest), and PV(OP) diagrams for a set of data
collected before and a set collected after valve maintenance (see Figure 3.9).

3.4.4 Loop #5

For this pressure loop, seven different registrations of data are available before valve main-
tenance and four after. The controller has a PI algorithm with parameters set to Kc = 1 and
Ti = 24, apart from acquisition number vii: Kc = 1.2 and Ti = 36. In this case, the loop operates
under MPC control; therefore, the set point oscillates (low frequency).

Before valve maintenance, significant oscillation is detected in five data sets: regular, r > 1,
and steady, Racf > 0.5, excluding run numbers ii and vi. Significant values of stiction pa-
rameters are estimated in four cases; MDLIN is under its threshold (0.80) only for acquisition
number v, and this result must be rejected (see Table 3.4). The procedure gives overall reli-
able results because uniform values of the S parameter are quantified, with the mean value
equal to 4.9 and a little deviation of 0.6. As illustrated in previous simulations, the causes of
these three unreliable results might be seen in the presence of perturbations and stiction acting
simultaneously.

After valve maintenance, the loop shows good performance and the error signal is close to
zero. The procedure detects no significant oscillation.
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(a) Run iv (before MTA):
wide oscillations due to valve stiction.

(b) Run iv (before MTA):
large PV(OP) ellipse-shaped diagram.

(c) Run v (after MTA): no significant oscillation. (d) Run v (after MTA): no limit cycle.

Figure 3.9: Trends for Loop #4.

The removal of the stiction problem is also confirmed by the comparison of time registra-
tions for a set of data collected before and a set collected after valve maintenance, as shown in
Figure 3.10.

3.4.5 Loop #6

For this pressure loop, ten different registrations are available before valve maintenance and
three after (see Table 3.5). The controller has a PI algorithm with parameters always set to
Kc = 1 and Ti = 21.

Before valve maintenance, regular and steady oscillation is detected in eight data sets, ex-
cept run numbers iii and ix. For acquisitions numbers v and viii,MDLIN is under its threshold,
and these results must be rejected. Stiction parameters are accepted in the other six cases, but
uniform values of parameter S are quantified only in five registrations. Number vi seems to be
a case of unreliable results, because its value differs a lot from the general stiction trend (mean
value of 15 with deviation of 1). The proposed filtering methodology allows one to discard only
registration numbers v and viii but would accept results for number vi. Also for this loop, the
causes of unreliable results might be seen in the presence of perturbations and stiction acting
simultaneously.

Unlike the previous three loops, this loop still shows significant oscillation in all three ac-
quisitions after valve maintenance and uniform values (9-10%) of stiction are now quantified.
A possible explanation could be unresolved stiction despite valve maintenance or a recurrence
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Table 3.4: Loop #5: Valve Stiction Estimation.

time run # r Racf verdict S J MDNL MDLIN F2

before MTA i 2.1 0.62 stiction 5.5 2.6 0.98 0.88 0.93
before MTA ii 0.61 0.56 - - - - - -
before MTA iii 4.56 0.71 stiction 5.3 0.8 0.99 0.97 0.93
before MTA iv 3.0 0.50 stiction 4.3 0.05 0.98 0.91 0.93
before MTA v 4.52 0.61 stiction (3.8) (0.05) 0.99 0.62 0.93
before MTA vi 1.15 0.40 - - - - - -
before MTA vii 1.75 0.55 stiction 4.4 0.3 0.99 0.86 0.91
after MTA viii 1.27 0.47 - - - - - -
after MTA ix 0.49 0.24 - - - - - -
after MTA x 0.47 0.45 - - - - - -
after MTA xi 0.62 0.67 - - - - - -

(a) Run iv (before MTA):
wide oscillations due to valve stiction.

(b) Run ix (after MTA):
no significant oscillation.

Figure 3.10: Trends for Loop #5.

of stiction. It is worth noticing that, in this case, after plant shutdown, the loop starts to operate
under MPC control, and this explains why set point oscillates (low frequency). The presence
of stiction, both before and after valve maintenance, is confirmed by the comparison of time
registrations, as shown in Figure 3.11.

3.4.6 General Discussion

Results for the last four (#3 - #6) control loops illustrated above are synthesized in Figure 3.12,
where values of the stiction parameter S are reported for different time acquisitions. Before
valve maintenance (MTA), loops #3, #5, and #6 have almost constant values of stiction, while
loop #4 shows an increasing trend.

Trends are drawn only on the basis of values considered reliable; disregarded cases and
motivations are repeated here: runs ii and vi for loop #5 and runs iii and ix for loop #6 (irreg-
ular oscillations); run v for loop #5 and runs v and viii for loop #6 (different results in the two
windows of data); run vi for loop #6 (outlier with respect to the main trend).

After maintenance, no significant oscillation is detected for loops #3, #4, and #5, and neg-
ligible values of stiction are estimated; on the contrary, significant values of stiction are still
quantified for loop #6.

As stated before, the significance of the proposed filtering procedure in the analysis of in-
dustrial data has been checked by application on a wide number of valves. Data consist in
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Table 3.5: Loop #6: Valve Stiction Estimation.

time run # r Racf verdict S J MDNL MDLIN F2

before MTA i 1.09 0.56 stiction 15.3 7.1 0.99 0.88 0.85
before MTA ii 1.11 0.66 stiction 16.5 11.0 0.93 0.84 0.87
before MTA iii 1.41 0.38 - - - - - -
before MTA iv 1.02 0.56 stiction 15.2 2.59 0.99 0.89 0.92
before MTA v 3.36 0.61 stiction (13.3) (0.2) 0.96 0.01 0.87
before MTA vi 1.38 0.57 stiction [6.3] [0.1] 0.99 0.90 0.84
before MTA vii 2.24 0.63 stiction 14.0 7.0 0.99 0.82 0.95
before MTA viii 1.36 0.62 stiction (13.4) (3.2) 0.94 -0.26 0.87
before MTA ix 0.47 0.25 - - - - - -
before MTA x 0.95 0.68 stiction 14.2 1.26 0.97 0.87 0.85
after MTA xi 19.4 0.88 stiction 10.6 2.2 0.99 0.86 0.96
after MTA xii 0.79 0.57 stiction 9.1 1.0 0.98 0.96 0.94
after MTA xiii 4.28 0.61 stiction 9.3 4.5 0.99 0.94 0.95

(a) Run x (before MTA):
wide oscillations due to valve stiction

(b) Run xi (after MTA): still significant oscillation
– again valve stiction.

Figure 3.11: Trends for Loop #6.

about 800 acquisitions before and after plant shutdown for periodic maintenance. The relia-
bility criterion was the repeatability and homogeneity of stiction values estimation in different
acquisitions for the same valve.

As global considerations, the proposed procedure has allowed one to issue results which
are considered reliable for 43 out of 62 industrial loops examined. The other 19 loops are
cases of unreliable results probably due to the presence of perturbations and stiction acting
simultaneously. This result can be considered encouraging, taking into account that different
perturbations may be present in an industrial environment.

3.5 The Updated Performance Monitoring Tool

Afterwards, the proposed stiction quantification methodology has been included in the new
architecture of the control loop performance monitoring system PCU (Plant Check Up) [23].
Figure 3.13 shows the architecture of the system, while the new structure of the module de-
voted to analysis of stiction (diagnosis + quantification) is reported in Figure 3.14.

A full description of the previous version of PCU is reported in Scali and Farnesi [123]; a
synthesis is reported below.

The Initialization Module imports parameter values from DCS and performs a first check on
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Figure 3.12: Trends of stiction parameter S before and after valve maintenance.

loop status; if the quality of the data is not good, or a change of configuration is detected, or the
valve is operating manually, the analysis stops. In these cases, the loop receives a (definitive)
label (NA: Not Analyzed) and the analysis is stopped. Otherwise, all recorded data are imported
and performance analysis begins.

The Anomaly Identification Module performs a first assignment of performance with ver-
dicts: such as G (Good), NG (Not Good). Loops subject to excessive set point changes (ampli-
tude or frequency) are temporarily labeled as NC (Not Classified) and sent to the identification
module (I&R). For loops not in saturation, after a data pre-treatment, tests to detect oscillating
or sluggish loops are executed; these tests refer to the Hägglund’s approach ([67, 68]), with
suitable modifications of internal parameters, based on field calibration [125]. In the case of
both tests resulting negative, the loop is classified as well-performing and a definitive label G
is assigned. Slow loops can only be caused by the controller: therefore they receive a NG label
and are sent to the Identification and Retuning Module (I&R). Oscillating loops can be caused
by aggressive tuning, external disturbance or valve stiction: for this reason, they are primarily
sent to FAM, for a frequency analysis.

The Identification & Retuning Module accomplishes process identification and, if successful,
controller retuning and evaluation of performance improvements. It receives from the AIM
module loops with constant SP labeled as NG (Not Good) caused by improper tuning and loops
labelled as NC (Not Classified) with variable SP. The two possibilities of constant and variable
Set Point are treated differently, the second case being typical of secondary loops under cascade
control.

The Frequency Analysis Module has the scope of separating irregular oscillations from reg-
ular ones on the basis of a power spectrum which computes dominant frequencies; irregular
loops are labeled NG, without any further inquiry about causes. Regular loops with deteriorat-
ing oscillations are sent to the I&R Module, otherwise - in the case of loops showing permanent
oscillations - to the SAM for stiction/disturbance detection.

The Stiction Analysis Module analyses data of NG oscillating loops and performs different
tests to detect the presence of valve stiction and to quantify its amount. Following previous
results and considerations about the effect of external disturbances, this module has been sig-
nificantly changed (Figure 3.14). Two techniques to detect significant loop oscillations are
firstly applied. Regularity factor r (Thornhill et al. [157]) and decay ratio Racf (Miao and Se-
borg [105]) of autocorrelation function (ACF) of the control error are calculated. If the control
loop is considered to not oscillate regularly and non-substantial stiction is present.

About stiction detection, tests consist in the application of four techniques: the relay-based
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Figure 3.13: Schematic representation of the new PCU system.

fitting of values of the controlled variable (PV) (Rossi and Scali [119]), the improved qualita-
tive shape analysis (Scali and Ghelardoni, [124]), the Cross-Correlation (Horch, [77]), which
is the simplest (and probably most widely used) test, and the Bicoherence (Choudhury et al.,
[46]), which allows to put into evidence non-linear characteristics of loop data. The appropri-
ate technique is automatically selected by the system, as well as the “weight” to be assigned to
the different techniques, depending on the type of loop. Final verdict takes into account indi-
cations coming from different techniques and from other auxiliary indices: the cause Stiction
or Disturbance is assigned to the exit loop in cases of strong evidence; otherwise the cause is
Uncertain.

The stiction quantification procedure (Section 3.2) is applied only to loops clearly indicated
as affected. To increase the reliability of stiction estimations, data can be divided into sets and
the method can be applied separately. The appropriate number of data sections depends on
the whole data length; in general, at least 4-5 periods of oscillation are needed. For each
data window, a stiction model and a linear model are identified. Then, a comparison of the
data windows is performed using two specific indices, which separately evaluate deviations
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Figure 3.14: Flow diagram of the Stiction Analysis Module.

between non-linear and linear models [25].
Note that the screening by means of diagnosis techniques and the check on the indices

of models deviation are not sufficient to assure always an exact diagnosis and an accurate
estimation of stiction, but the number of wrong evaluations can be significantly reduced, as
reported in the next section.

Many other industrial loops have been analyzed by means of the new version of the moni-
toring system PCU . No additional result is here presented for the sake of brevity.

3.6 Conclusions

Stiction quantification is certainly important for valve monitoring and maintenance schedul-
ing. In the perspective of application on industrial data, the first problem consists of the lack
of knowledge about the true valve stem position (MV) and the true stiction values. In addition,
the presence of irregular perturbations and of different sources of oscillation acting simultane-
ously might affect the accuracy of any estimation technique.

The proposed technique models the control loop as a Hammerstein system and it is based
on a grid search and a systematic filtering procedure, which permits one to discard data for
which stiction quantification is very likely to fail. The methodology allows reliable quantifi-
cation when stiction is the only cause of oscillation and even in the case of stiction together
with incorrect tuning and set point variation. However, the technique may fail in the case of
simultaneous presence of disturbances and stiction. Therefore, even though not sufficient to
eliminate the problem completely, the methodology is able to reduce the number of wrong
evaluations.

Repeating the procedure for different acquisitions for the same valve allows one to follow
the evolution of stiction values in time and to disregard anomalous cases (outliers). Successful
applications and reliable results for 43 out of 62 industrial loops demonstrate the effectiveness
of the proposed method.

The procedure for stiction quantification, and its implementation in the performance moni-
toring system (PCU), is indeed a valid tool to check valve stiction and to schedule valve mainte-
nance. The possible drawback seems to be a preliminary assessment of the presence of stiction
by means of diagnosis techniques, because the simultaneous presence of external disturbances
may alter results. This is a common feature for the majority of stiction quantification tech-
niques and further activity has been devoted to overcome this problem.
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Chapter 4

Stiction Quantification - part II

Abstract 1

This chapter presents a comparative study of different models and identification techniques
applied to the quantification of valve stiction in industrial control loops, with the specific ob-
jective of taking into account for the presence of external disturbances.

As in Chapter 3, a Hammerstein system is used to model the controlled process (linear
block) and the sticky valve (nonlinear block). Nevertheless in this case, five different candidates
for the linear block and two different candidates for the nonlinear block are evaluated and
compared in terms of achievable performance. In particular, the capability to cope with the
presence of nonstationary disturbances is analyzed.

Two of the five linear models include a nonstationary disturbance term that is estimated
along with the input-to-output model, and these extended models are meant to cope with
situations in which significant nonzero mean disturbances affect the collected data. The com-
parison of the different models and identification methods is carried out thoroughly in three
steps: simulation, application to pilot plant data and application to industrial loops.

In the first two cases (simulation and pilot plant) the specific source of fault (stiction
with/without external disturbances) is known and hence a validation of each candidate can
be carried out more easily. Nonetheless, each fault case considered in the previous two steps
has been found in the application to a large number of datasets collected from industrial loops,
and hence the merits and limitations of each candidate have been confirmed.

As a result of this study, extended models are proved to be effective when large, time vary-
ing disturbances affect the system, whereas conventional (stationary) noise models are more
effective elsewhere.

1This chapter is based on two different papers: [29], [30].

63



4.1. INTRODUCTION

4.1 Introduction

Oscillations in control loops cause many issues which can disrupt the normal plant operation.
Typically fluctuations increase variability in product quality, accelerate equipment wear, move
operating conditions away from optimality, and generally they cause excessive or unnecessary
energy and raw materials consumption.

The common sources for oscillatory control loops can be found in poor design of the process
and of the control system, e.g. choice and pairing of controlled and manipulated variables,
from one hand. From another hand, poor controller tuning, oscillatory external disturbances,
and control valve nonlinearities such as stiction, backlash and saturation, are frequent causes
of excessive loop oscillations. Therefore, control loop monitoring and assessment methods
are recognized as important means to improve profitability of industrial plants. An effective
monitoring system should, first of all, detect loops with poor performance. Then, for each
faulty loop, it should indicate the sources of malfunction (among possible causes) and suggest
the most appropriate way of correction.

Among actuator problems, valve stiction is said to be the most common cause of perfor-
mance degradation in industrial loops [85]. An extensive characterization of this phenomenon
was firstly given in [47]. Two kinds of models are commonly used to describe stiction: models
derived from physical principles and models derived from process data. Physical models are
more accurate, but owing to the large number of unknown parameters, they may not be con-
venient for practical purposes [88, 42]. This is the main reason why data-driven models are
typically preferred [47, 149, 87, 76, 43].

A review of a significant number of stiction detection techniques recently presented in the
literature is reported in [85]; among them: cross-correlation function-based [77], waveform
shape-based [87, 146, 132, 119, 168, 76, 124], nonlinearity detection-based [46], and model-
based algorithms [90]. In [85] a comparison of performance is also presented by applications
on a large benchmark (93 loops) of industrial data.

Following their conclusions, research on stiction modeling and detection (i.e. confirmation
of its presence) has to be considered a mature topic, even if it may happen that different results
are obtained once applied on the same industrial dataset, owing to complexity and superposi-
tion of different phenomena. Stiction quantification instead has to be regarded as an area where
research contributions are still needed. As seen in Chapter 3, the main difficulty in quantifying
the amount of stiction arises from the fact that the valve stem position (MV) is not measured
and recorded in many (old designed) industrial control systems [25], and then it must be re-
constructed from available measurements (controlled variable, PV, and controller output, OP)
by using a data driven stiction model.

In stiction quantification techniques, the control loop is often modeled by a Hammerstein
system: a nonlinear block for valve stiction, followed by a linear block for the process. This
approach was firstly used in [148] along with a one parameter stiction model given in [149].
However this method may not capture the true stiction behavior since the nonlinear model is
not always very accurate. Subsequently, other techniques have been proposed [50, 84, 95, 61].
A specific linear model was used in [90], which also accounts for nonstationary disturbances
entering the process. The control loop was modeled as a Hammerstein-Wiener structure also in
[118]. More recently, a technique based on harmonic balance method and describing function
identification was proposed in [16]. A simplified method based on a new semi-physical valve
stiction model was illustrated in [75].

Chapter 3 pointed out that, while simulation is the first necessary step to check mathemat-
ical consistency of a proposed identification technique, its validation on a single set of indus-
trial data can be pointless due to the superposition of unknown effects, such as nonstationary
disturbances [25]. As a confirmation, results obtained by different quantification techniques
can be very inconsistent once applied on the same set of industrial data (as it happened in
benchmark presented by [85], Chp. 13). To overcome this problem, it has been suggested to
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repeat stiction estimation for different data acquisitions for the same valve, in order to fol-
low the time evolution of the phenomenon and to disregard anomalous cases (outliers) [25].
The comparison of reasonable values of stiction with predefined acceptable thresholds allows
one to schedule valve maintenance in a reliable way; on-line stiction compensation is also an
alternative, though not very popular in industry (compare Chapter 5).

Following the above considerations, this chapter represents a continuation of the work re-
ported in Chapter 3. The new objectives to be addressed are:

i) comparing some different identification techniques (of the linear model in the Hammer-
stein system) when applied on the same dataset;

ii) showing how external nonstationary disturbances can influence stiction estimation and
system identification. Both aspects were not considered in the methodology presented in
[22, 25] where a single (ARX) model structure and a single identification technique were
developed, and nonstationary disturbances were not modeled.

Note that this chapter collects the results of [29] and [30], here merged in an application-
oriented direction. Simulation examples and datasets of pilot plant presented in both papers
are here illustrated. Mostly, results obtained from several registrations of industrial control
loops are shown. 2

The remainder of this chapter is organized as follows. In Section 4.2, five different models
and identification methods of the linear block (in the Hammerstein system) and two models
for the stiction nonlinear are illustrated. The merits of each model and identification method
are firstly assessed in simulation in Section 4.3, and then validated in a pilot plant in Sec-
tion 4.4. Section 4.5 is dedicated to applying and evaluating the different techniques to several
industrial data sets. Finally, conclusions are drawn in Section 4.6.

4.2 Hammerstein System: Models and Identification Methods

As in Chapter 3, the control loop is here modeled by a Hammerstein system as depicted in
Figure 4.1. In details, v and y are the linear process input and output (that is, MV and PV
respectively), u is the controller output (that is, OP), r is the loop set point, e is a Gaussian
white noise, and η is a time varying bias representing the additive nonstationary external dis-
turbance.

Figure 4.1: Hammerstein system representing the (sticky) control valve followed by the linear process,
inserted into the closed-loop system.

Two well-established stiction models are used to describe the nonlinear valve dynamics:
Kano’s [87], and He’s [76] model.

Five different models describe the linear process dynamics:
• ARX (Auto Regressive model with eXternal input),

• ARMAX (Auto Regressive Moving Average with eXternal input),

• SS (State Space model),

2Preliminary results of the study of [30] have been previously presented in [29].
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• EARX (Extended Auto Regressive model with eXternal input),

• EARMAX (Extended Auto Regressive Moving Average with eXternal input, [89]).

4.2.1 Nonlinear stiction models

In Kano’s stiction model [87], the relation between the controller output (the desired valve
position) OP and the actual valve position MV is described in three phases (Figure 4.2):

I. Sticking: MV is steady (A-B) and the valve does not move, due to static friction force
(dead-band + stick-band, S).

II. Jump: MV changes abruptly (B-C) because the active force unblocks the valve, which
jumps of an amount J.

III. Motion: MV changes gradually, and only the dynamic friction force can possibly oppose
the active force; the valve stops again (D-E) when the force generated by the control action
decreases under the stiction force.

In He’s stiction model the relation between OP and MV is slightly different and simpler [76].
The model uses static fS and dynamic fD friction parameters and is closer to the first-principle-
based formulation. It uses a temporary variable that represents the accumulated static force.
Note that parameters of He’s model have their equivalent in Kano’s model and vice versa,
according to the following equations (cfr. also Figure 4.2):

S = fs + fd
J = fs − fd

or


fs =

S + J
2

fd =
S − J

2

(4.1)

However, due to different logics, the two stiction models can generate different MV sequences
for a given OP and with equivalent parameters. Note also that Kano’s and He’s models are quite
simple, since they imply uniform stiction parameters for the whole valve span. Stiction could
be really inhomogeneous, having various amounts for different operating conditions (that is
different OP values) and then producing complicated signatures on MV(OP) diagram. In order
to overcome these limitations, recent works which implement flexible stiction models have
been proposed [163, 59].

Figure 4.2: Valve stiction: theoretical behavior of MV vs. OP, and graphical representation of Kano’s
and He’s model parameters.

Valve stiction produces an offset between controlled variable PV and Set Point SP, and this
causes loop oscillations because the valve is stuck even though the integral action of the con-
troller increases (or decreases) OP. The MV(OP) diagram shows a parallelogram-shaped limit

66



CHAPTER 4. STICTION QUANTIFICATION - PART II

Figure 4.3: Valve stiction: typical industrial behavior of PV vs. OP.

cycle, while MV(OP) would be perfectly linear without valve stiction. Figure 4.3 represents the
PV(OP) plot for a case of flow rate control loop, for which the fast linear dynamics allows one
to approximate MV(OP) with PV(OP), since MV is usually not measured. Figure 4.3 shows also
the signature obtained with Kano’s stiction model by fitting the industrial data.

It should be recalled that also in the case of stiction, loops with slower dynamics (level
control, temperature control) usually show PV(OP) diagrams having elliptic shapes. Similar
PV(OP) diagrams are obtained for other types of oscillating loops (external stationary distur-
bance or aggressive controller tuning), and therefore assigning causes is not straightforward.

It is also worth saying that the value of J is critical to induce limit cycles [50, 84]. In addi-
tion, while S can be often easily recognized on PV(OP) diagram, since limit cycles show clear
horizontal paths, on the opposite, the process dynamics or the presence of high level noise
make PV trend deviate significantly from MV trend, and make J almost hidden [85] (see Fig-
ure 4.3).

Finally, note that S ' 1% is considered enough amount of stiction to cause performance
problems [85]. Increasing the amount of stiction (associated to the ratio S/J), the amplitude
and the period of oscillation of OP and PV signals increase significantly, thus leading to partic-
ularly poor performance. For these reasons, being able to quantify and predict the evolution of
stiction in time is important in order to schedule maintenance action on more critical valves.

4.2.2 Linear process models

The linear part of the Hammerstein system has one of the following structures, in discrete-time
form.

• ARX:
A(q−1)yk = B(q−1)vk−td + ek (4.2)

where vk and yk are the linear process input and output; A(q−1) and B(q−1) are polynomi-
als in time shift operator q (i.e. such that qvk = vk+1), and given as:

A(q−1) = 1 + a1q
−1 + a2q

−2 + ...+ anq
−n

B(q−1) = b1q
−1 + b2q

−2 + ...+ bmq
−m (4.3)
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where ek is white noise, td is the time delay of the process, (n,m) are the orders on the
auto-regressive and exogenous terms, respectively.

• ARMAX:
A(q−1)yk = B(q−1)vk−td +C(q−1)ek (4.4)

where A(q−1) and B(q−1) are defined in (4.3), whereas:

C(q−1) = 1 + c1q
−1 + c2q

−2 + ...+ cpq
−p (4.5)

in which p is the order of the moving average term.

• SS:

xk+1 = Axk + Bvk + Kek
yk = Cxk + ek

(4.6)

where A ∈Rn×n, B ∈Rn×1, C ∈R1×n, K ∈Rn×1, and n is the model order.

• EARX:
A(q−1)yk = B(q−1)vk−td + ek + ηk (4.7)

where ηk is the time varying bias representing the additive nonstationary external distur-
bance, to be estimated along with the polynomials A(q) and B(q) (see Figure 4.1).

• EARMAX:
A(q−1)yk = B(q−1)vk−td +C(q−1)ek + ηk (4.8)

4.2.3 Hammerstein system identification

The proposed stiction quantification techniques are based on a grid search over the space of
the nonlinear model parameters. The computational time of the methodology may be long,
but it does not represent a disadvantage for three main reasons: the procedure is oriented
toward an off-line application which requires data registered for hours, the wear phenomena
in valves occur slowly (weeks or months), and valve maintenance usually occurs periodically
on the occasion of a plant shutdown.

In details, the system identification is carried out according to the following procedure.
(i) A 2-D grid of stiction parameters (S,J) is built; for each possible combination of (S,J),

MV signal is generated from (measured) OP using Kano’s model. For He’s model, MV is
generated using the corresponding parameters (fs, fd) according to (4.1).

(ii) Coefficients of the linear models are identified using different techniques on the basis of
(generated) MV and (measured) PV sequences.

The overall model fit is quantified by FP V :

FP V = 100 ·
(
1− ‖P Vest − P V ‖

2

‖P V − P Vm‖2

)
(4.9)

where P V , P Vm and P Vest are vectors containing values of the measured output, measured
output average and estimated output sequences, respectively. The symbol ‖ · ‖ denotes the
Euclidean norm. Thus, for each considered linear model, the optimal combination of (S,J) is
computed as the one that maximizes the fitting index FP V .

Note that the stiction parameters grid has a triangular shape, since fs ≥ fd ≥ 0 (or S ≥ J).
Thus, overshoot stiction cases (J > S) are excluded; actually waveforms generated for these
combinations are rarely observed in practice. The largest value of S (and J) is the OP oscillation
span. Therefore, under boundary conditions, when S = J = ∆OP (the span of OP), the valve
jumps between two extreme positions, generating an exactly squared MV signal.
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4.2.4 Identification algorithms

The five linear process models are identified by means of different algorithms.
ARX model coefficients are estimated by least-squares regression. SS model coefficients are

identified using a subspace identification method, the PARSIM-K technique [112]. ARMAX,
EARX and EARMAX models are estimated using the recursive least-squares (RLS) identifica-
tion algorithm proposed (for EARMAX model) by [89].

For EARX and EARMAX, a decoupled parameter covariance update procedure with vari-
able forgetting factors is developed to identify the process parameters and the bias term [89].
To the best of the author’s knowledge, this is the first time that a SS model and an EARX model
are used for Hammerstein system identification applied to valve stiction estimation.

The proposed RLS identification algorithm is based on the one of [89], and can be summa-
rized as follows.

Model Order: Choose a model order (e.g., (n,m,p) for EARMAX) from the model order li-
brary and estimate the model parameters using the following algorithm.

Initiation: The recursive estimator is initiated with the following covariance and parameter
estimates.

Pθ(0) = βInt×nt , Pη(0) = β; β = 104,

θ̂(0) = 0̄nt×1, η̂(0) = 0,

λθ(0) = 1, λη(0) = 0.84,

{ε(t)} = 0̄.

(4.10)

where nt is the total number of model parameters to be estimated inclusive of both LTI and
time varying parameter η.

Propagation: Steps i to vi are to be performed for t = 1, ...,N .

• Step i. Formulate the regressor vector.

EARMAX:

ϕ(t) = [−ŷ(t − 1), ...,−ŷ(t −n), u(t − td), ...,u(t − td −m+ 1), ε(t − 1), ..., ε(t −nh)] (4.11)

EARX:
ϕ(t) = [−ŷ(t − 1), ...,−ŷ(t −n), u(t − td), ...,u(t − td −m+ 1)] (4.12)

• Step ii. Gain update,

Kθ(t) = Pθ(t − 1)ϕ(t)(λθ(t − 1) +ϕT (t)Pθϕ(t))−1

Kη(t) = Pη(t − 1)(λ(t − 1) + Pη(t − 1))−1 (4.13)

• Step iii. Parameter update,[
θ̂(t)
η̂(t)

]
=

[
In−1 Kθ(t)

Kη(t)ϕT (t) 1

]−1

×
[
θ̂(t − 1) +Kθ(t)(y(t)−ϕT θ̂(t − 1))
η̂(t − 1) +Kη(t)(y(t)− η̂(t − 1))

]
(4.14)

• Step iv. A posteriori prediction error,

ε(t) = y(t)−ϕT θ̂(t) (4.15)

• Step v. Parameter estimate covariance update,

Pθ(t) =
1

λθ(t − 1)
(I −Kθ(t)ϕT (t))Pθ(t − 1),

Pη(t) =
1

λη(t − 1)
(I −Kη(t))Pη(t − 1),

(4.16)
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• Step vi. Forgetting factor update,

λθ(t) = 1,

λη(t) = 1−
(y(t − 1)−ϕT (t − 1)θ̂(t − 1)− η̂(t − 2))2

(1 + Pη(t − 1))σe
;0.72 ≤ λeta(t) ≤ 0.9

(4.17)

If the objective is to obtain the non-stationary additive disturbance, the recursive identification
algorithm may be carried in two or more iterations, where the initial parameter estimates for
jth iteration are chosen as the parameter estimates obtained at the end of (j − 1)th iteration.

4.2.5 Specific issues in identification of the stiction plus process system

It is worth to underline that the exact stiction estimates depend on several issues. In addi-
tion to some general aspects (e.g., the dataset used in identification, choice of loss function,
identification algorithm), in the case of Hammerstein system identification with grid search
algorithm, also the following issues are important: type, order, and time delay of the linear
(process) model; type of the nonlinear (stiction) model; step size of the grid. Only some of
these aspects will be analyzed hereinafter in the text.

Moreover, the way in which the stiction model is initialized must be attended. This issue
could seem a negligible aspect, but in reality, as it has been verified by a large number of
simulations and applications, it is an important point, as discussed next and in the application
results. In particular, the identification results can be sensitive to the initialization of the Kano’s
model. On the opposite, the He’s model does not present these problematics.

Given an OP sequence and fixed (S,J) parameters, different MV sequences can be produced,
simply by changing the initial values of the auxiliary parameters of the Kano’s model: us,stp,d
[87]. Figure 4.4 shows that, for the same triangular OP wave, given a combination of stiction
parameters (S = 1, J = 0.5), four different MV sequences can be generated using different values
of stp and d. Only after several samples, all MV sequences coincide perfectly with each other.

This stationary time depends on the specific OP sequence and the (S,J) combination. There-
fore, during the identification procedure, three choices are possible for the initialization of
Kano’s model states:

In.1 The auxiliary variables are initialized arbitrarily, the same for each combination;

In.2 A threshold stationary time is fixed a priori and an average MV sequence is considered
after this time;

In.3 The stationary time is computed for each (S,J) combination and only the steady sequence
of MV is considered.

According to the results of extensive simulations that have been carried out, the third (or at
least the second) choice should be preferred.

4.3 Simulation Study

The objective of this section is to investigate the impact of different factors on the effectiveness
of the methods to yield accurate estimation. To this aim, simulation results are provided to
describe the capabilities of the compared algorithms for Hammerstein system identification.
The systems are simulated in closed-loop operation, which is known to be a difficult task as
compared to open-loop identification, because of the correlation between process noise and
input sequences. OP and PV sequences are used without any filtering in the identification
methodologies, which fall under the class of direct identification techniques.
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Figure 4.4: Ambiguity in the nonlinear model initialization (data of CHEM 10, benchmark of [85]).

4.3.1 Effect of stiction amount and disturbance presence

Firstly, the impact of stiction amount and of external disturbance presence is investigated. Two
different simulation examples are here considered: the first one previously presented in [29],
the second one in [30].

Example #1

As first example, the following ARMAX process, with (n,m,p) = (2,2,2) and subject to an ex-
ternal disturbance, is considered in discrete-time form [90, 29]:

yk = 0.7358yk−1 − 0.1353yk−2 + 0.2642uk−1

+0.1353uk−2 + ek + 0.7ek−1 − 1.3ek−2 + ηk
(4.18)

where:
ηk = a

(
sin(0.02 k) + 0.5sin(0.05 k)

)
(4.19)

with a ≥ 0. Stiction parameters are varied to cover a wide range of phenomena (S ∈ [2, 12],
J ∈ [1, 4]) using Kano’s model. The stationary disturbance {ek} is a normally distributed white
noise signal with standard deviation σe = 0.1. The process is in closed-loop with a proportional-
integral (PI) controller having proportional gain KC = 0.4, and integral gain KI = 0.3 (values
which allow stable response with acceptable performance).

The system is excited by introducing a random-walk signal, as controller set-point, which
varies as follows:

SPk =

SPk−1 + 2(R2k − 0.5) if R1k > 1− δsw
SPk−1 otherwise

(4.20)

where δsw is the average switch probability and R1k , R2k are two random numbers drawn, at
time k, from a uniform distribution in [0,1]. This type of set-point is thought to reproduce
an industrial scenario of a control loop with variable reference commanded by a higher level
Model Predictive Controller.

One hundred Monte-Carlo simulations are carried out, using different realizations of white
noise {ek}, for each set of stiction parameters and disturbance amplitude. The linear process
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model orders and the time delay are fixed a-priori in performing identification steps, namely
td = 0, (n,m) = (2,2) for ARX and EARX, (n,m,p) = (2,2,2) for ARMAX and EARMAX, n = 2 for
SS. No structural error is present in the nonlinear part: Kano’s model is also used to generate
MV sequences.

Note that data of PV and OP are divided into two sets. The first two-thirds of data are
used as identification data set; the last third of data is used as validation set in order to test the
models previously identified. As in (4.9), a fitting index for the estimation data set, F(id)

P V , and

for the validation data set, F(val)
P V , can be defined. The linear model fit is quantified by the scalar

EG given as:

EG = 100 ·
(
1− ‖Gest(z)−G(z)‖∞

‖G(z)‖∞

)
(4.21)

where G(z) and Gest(z) are the true process and the identified model discrete-time transfer
functions, respectively, and ‖g(z)‖∞ = maxω∈[0,2π] |g(eiω)|. The nonlinear model fit is quantified
by FMV :

FMV = 100 ·
(
1− ‖MVest −MV ‖

2

‖MV −MVm‖2

)
(4.22)

where MV , MVm and MVest are vectors containing values of the actual valve position, average
actual valve position and the estimated valve position.

Figure 4.5 shows a summary of the results for the case of a = 0 in (4.19), that is when valve
stiction is the only source of oscillation. Top panels show the various simulated stiction cases
(S,J) and the corresponding estimated parameters (Sid , Jid). Bottom panels show the values of

the fitting indices EG and F(val)
P V using the different proposed techniques.

Figure 4.6 shows a summary of the results for the case of a = 0.25 in (4.19), that is when an
external disturbance acts simultaneously with stiction.

Figure 4.5: Simulation example #1: identification results for a = 0: top panels, left: Sid vs S, right: Jid
vs J ; bottom, left EG vs. S, right F(val)

P V vs. S.

It can be clearly seen that, in the case of pure stiction oscillation, ARX, ARMAX and SS
models ensure a more accurate stiction estimation and, mostly, perform a better linear model
identification: EG values are higher, especially for ARMAX and SS. On the other hand, in the
presence of external disturbance, the stiction parameters and the linear model identified using
EARMAX and EARX are of higher accuracy as compared to the other identification techniques:

EG and F(val)
P V values are higher.

72



CHAPTER 4. STICTION QUANTIFICATION - PART II

Figure 4.6: Simulation example #1: identification results for a = 0.25: top panels, left: Sid vs S, right:

Jid vs J ; bottom, left EG vs. S, right F(val)
P V vs. S.

Example #2

As second example, the following ARMAX process, with (n,m,p) = (3,3,3) and subject to an
external disturbance, is considered in discrete-time form [30]:

yk = 0.5215yk−1 − 0.0590yk−2 + 0.0009yk−3

+ 0.2836uk−1 + 0.2442uk−2 + 0.0088uk−3

+ ek + 0.5ek−1 + 1.0ek−2 − 1.0ek−3 + ηk (4.23)

where ηk is the external (unmeasured) disturbance given by:

ηk = a
(
sin(0.03 k) + 0.5sin(0.07 k)

)
(4.24)

with a ≥ 0. Stiction parameters are varied to cover a wide range of phenomena (S ∈ [1, 12],
J ∈ [0.5, 4]) using Kano’s model. The stationary disturbance {ek} is a normally distributed white
noise signal with standard deviation σe = 0.1. The process is in closed-loop with a Proportional-
Integral (PI) controller having the following transfer function CP I (q) = Kc + KI

1−q−1 , with pro-
portional gain KC = 0.5 and integral gain KI = 0.5 (values which allow stable response with
acceptable performance).

The system is excited by introducing a random-walk signal, as controller set-point, which
varies as in (4.20).

As in example #1, one hundred Monte-Carlo simulations are carried out, using different
realizations of white noise {ek}, for each set of stiction parameters and disturbance amplitude.
The orders and the time delay of the linear process models are fixed a-priori in performing
identification steps, namely td = 0, (n,m) = (2,2) for ARX and EARX, (n,m,p) = (2,2,2) for
ARMAX and EARMAX, n = 2 for SS. Therefore, in this second example, a little mismatch in the
orders of the linear part is present. Conversely, no structural error is present in the nonlinear
part: Kano’s model is also used to generate MV sequences.

The first two-thirds of data are used as identification data set; the last third of data is used
as validation set in order to test the models previously identified. As in (4.9), a fitting index for

the estimation data set, F(id)
P V , and for the validation data set, F(val)

P V , can be defined.
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The linear model fit is quantified by the scalar EG, as given in (4.21); while the nonlinear
model fit is quantified by FMV , as given in (4.22).

Figure 4.7 shows a summary of the results for the case of a = 0 in (4.24), that is when
valve stiction is the only source of loop oscillation. Top panels show the various simulated
stiction cases (S,J) and the corresponding estimated parameters (Sid , Jid). Bottom panels show

the values of the fitting indices EG and F(val)
P V using the different proposed techniques.

Figure 4.8 shows a summary of the results for the case of a = 0.25 in (4.24), that is when an
external disturbance acts simultaneously with valve stiction.

Figure 4.7: Simulation example #2: identification results in absence of the external disturbance (a = 0).

Top panel, left: Sid vs S, right: Jid vs J ; bottom panel, left EG vs. S, right F(val)
P V vs. S.

As seen for the example #1, it can be now clearly seen that, in the case of pure stiction os-
cillation ARX, ARMAX and SS models ensure a more accurate stiction estimation and, mostly,
perform a better linear model identification: EG values are higher. On the other hand, in the
presence of external disturbance, the stiction parameters and the linear model identified using
EARMAX and EARX are of higher accuracy as compared to the other identification techniques:

EG and F(val)
P V values are higher. Moreover, the little mismatch in the orders of the linear model

does not sensibly affect the results.
Note also that, both in the case of only stiction and in the case of additive disturbance, a

worse model identification arise because J is not perfectly estimated, whereas S is always well

estimated. Higher values of F(val)
P V are obtained for higher values of S. When the amount of

stiction increases (that is the ratio S/J), the amplitude of oscillation increases. Therefore, since
the stationary disturbance {ek} has the same standard deviation for each simulation, the higher
is stiction, the lower is the noise-to-signal ratio. Anyway, noise-to-signal ratio is significant for
all the considered simulations, by ranging in the following interval: NSR ∈ [5, 25%].

4.3.2 Effect of controller tuning

In the case of direct identification methods, as the ones presented in this thesis, the impact of
controller tuning parameters on the estimation results is proved to be not particularly signifi-
cant. In general, an aggressive controller tuning makes the input signal (OP) more oscillating
and then more persistently exciting for the process to be identified. Whereas, a sluggish tun-
ing produces a slowly-varying input, which is less exciting for the process, and possibly less
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Figure 4.8: Simulation example #2: identification results in the presence of external disturbance

(a = 0.25). Top panel, left: Sid vs S, right: Jid vs J ; bottom panel, left EG vs. S, right F(val)
P V vs. S.

informative for any identification procedure.

The impact of controller tuning has already been studied by [89], for the identification of a
pure linear dynamics without considering the problem of valve stiction. In addition, the same
authors ([90], and Chp. 12 in [85]), in the framework of a Hammerstein system, considered the
case of double source of loop oscillation (aggressive tuning and valve stiction), by showing that
the estimates of stiction parameters are still accurate.

In the present study, good performances are possible for reasonably large ranges of con-
troller parameters around nominal values, both for nonextended and extended process mod-
els. The effect of poor controller tuning has been analyzed, by using extensive simulation data.
Also pilot plant data have been evaluated (see Appendix A, Section A.6).

Here below only the same linear process of example #2 of Section 4.3.1 is presented. A
case of pure valve stiction, described by Kano’s model with S = 9 and J = 3, is studied; no
external disturbance (η) is present. Firstly, the controller parameters are set to Kc = 1.2 and
Ki = 1.2, which represent an aggressive tuning. Then, the parameters are changed to Kc = 0.2
and Ki = 0.2, which compose a sluggish tuning. Note that an appropriate tuning should be
Kc = 0.5 and Ki = 0.5. For both tuning settings, one hundred Monte-Carlo (MC) simulations
are carried out, by using different realizations of white noise {ek}.

Figure 4.9a shows the results of one identification in the case of aggressive tuning, by using
Kano stiction model and ARX linear model. Figure 4.9b reports results of one identification
in the case of sluggish tuning, by using Kano stiction model and EARX linear model. In both
cases, PV and MV signals are well estimated. Similar results have been obtained for the other
linear process models. Indeed, Table 4.1 and 4.2 show the overall results obtained for the two
different tuning settings. Average estimates of stiction parameters (S̄, J̄) with corresponding

standard deviations (σS , σJ ) are reported. Also average indices of fitting are evaluated: F̄(id)
P V ,

F̄
(val)
P V . Therefore, good performance and robustness of the approaches with respect to very

different controller tuning parameters are demonstrated.
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(a) Aggressive tuning. (b) sluggish tuning.

Figure 4.9: Simulation data with poor controller tuning.

Table 4.1: Results for MC simulations with
aggressive tuning.

LIN model S̄ σS J̄ σJ F̄
(id)
P V F̄

(val)
P V

ARX 9.00 0.00 2.97 0.05 99.73 98.71
ARMAX 9.00 0.00 2.90 0.06 98.77 98.75
SS 9.00 0.00 2.88 0.06 98.78 98.76
EARX 9.00 0.00 2.89 0.07 98.98 98.59
EARMAX 9.00 0.00 2.84 0.09 99.01 98.99

Table 4.2: Results for MC simulations with
sluggish tuning.

LIN model S̄ σS J̄ σJ F̄
(id)
P V F̄

(val)
P V

ARX 8.99 0.01 2.98 0.15 98.60 98.61
ARMAX 8.99 0.03 2.95 0.15 98.65 98.65
SS 8.99 0.03 2.93 0.16 98.67 98.66
EARX 8.99 0.01 2.90 0.27 98.77 98.40
EARMAX 9.00 0.00 2.88 0.23 98.88 98.90

4.3.3 Discussion of results

Main aspects and basic results of the simulation study are discussed below. Firstly, it is worth
noting that computational times are different for each technique. The ARX model, with a sim-
ple algorithm of LLS identification, requires much shorter times compared to ARMAX, EARX,
EARMAX and SS models. There is approximately one order of magnitude: some seconds vs.
some minutes.

Note also that through the standard approach, for the sake of simplicity, time delay of the
linear process models is never estimated. In particular, time delay is assumed known for the
simulation results, and then it is fixed a priori for the pilot plant data and the industrial data.

The impact of time delay could be evaluated by considering another grid of possible time
delay L, where L = Ts td , is taken as a multiple of the sampling time (Ts). For every triple
(S,J, td), the coefficients of the linear model could be then identified. This approach is robust,
but obviously heavy in terms of computational load. Among other standard solutions to es-
timate the time delay, [95] and [89] have proposed a cross correlation analysis between the
input (MV) and the output (PV) sequence. Additional simulations with process time delay
have showed that td has no significant impact on the identification methods. An example of
this study is reported in Appendix A, Section A.5.

In addition, it has to be recalled that the main focus of this chapter is the identification and
quantification of a control loop with valve stiction, possibly with the additional presence of
external disturbances. So the cases of loop oscillation not due to stiction, that is, only due to
aggressive controller or external disturbances or due to both of these sources, are by purpose
not considered in Chapter 4, neither in the simulation section nor for real data sets.

Note also that in the industrial practice the proposed identification methods, as almost
any stiction quantification method, should be applied only on data where valve stiction has
been reliably detected by specific diagnosis techniques. Nevertheless, cases of pure external
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disturbance and pure aggressive tuning can be used as negative tests in order to estimate close-
to-zero stiction parameters, as it has been verified in additional simulation studies. An example
of this analysis is reported in Section A.1.

Finally, as general results from simulation study, nonextended models prove to be better
in the case of only valve stiction, while extended models outperform simpler models in the
presence of additional nonstationary disturbance. These same outcomes have been obtained
using different process dynamics (also with time delay), other disturbance amplitudes and
frequencies, other types of slowly-varying nonstationary disturbance (as drift), different types
of SP signal (also constant), and with He’s stiction model in place of Kano’s model. Some details
are reported in Appendix A.

Anyway, similar results are to be obtained on real industrial data. Note that, in general, to
be able to obtain good model parameter estimates, these data have to be rich enough. Normal
operating data may not be persistently exciting, especially if the set point is constant for long
periods of time.

4.4 Application to Pilot Plant

In this section, the performance of the considered methods are tested on IdroLab, a pilot plant
located in Livorno (Italy), and owned by ENEL, the largest Italian power company. A diagram
of the pilot plant used in the experiments is shown in Figure 4.10a. Water circulates between
drums D1 and D2, and a pneumatic actuator is coupled to a spherical valve (V2) which controls
the flow rate. Further details on the experimental apparatus can be found in [31]. The control
valve, its stem and the packing are shown in Figure 4.10b.

(a) the process diagram. (b) the actuator and the sticky valve.

Figure 4.10: Pilot plant:

Friction is “introduced” into the valve by tightening the packing nut by means of a special
device. The valve is equipped with a positioner, but the position control loop is open: in this
way the actual valve stem position (MV) is measured but the positioner does not perform any
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control action. The PV is the flow rate through the valve and the OP is the output signal from
a PI controller. The opening of the valve V3 (installed downstream the sticky valve V2) is
changed by imposing, as command (OP), a near sinusoidal profile in order to “generate” the
external disturbance.

Four different sets of data are collected with a sampling time of 1 s.

I. A low amount of valve stiction is the only source of oscillation [30].

II. A high amount of stiction is introduced around the valve stem [29, 30].

III. An external disturbance is introduced and acts simultaneously with stiction of low amount
[30].

IV. A different external disturbance is introduced and acts simultaneously with stiction of
high amount [29].

Figure 4.11a shows the MV(OP) diagram of the valve obtained imposing triangular waves
on OP, oscillating from 0 to 100% of the valve span, when a low amount of stiction is applied to
the stem. In Figure 4.11b the corresponding diagram is shown, when a high amount of stiction
is applied.

(a) in the case of low stiction. (b) in the case of high stiction.

Figure 4.11: Pilot plant: experimental behavior MV vs. OP

The valve shows an asymmetric behavior: S (dead-band + stick-band) is bigger in the clos-
ing direction and smaller in the opening direction, while the slip jump J is always really small.
The stiction parameters obtained from these off-line (manual) tests on the valve are approxi-
mately known: S ∈ [13, 15], J ∈ [0.1, 0.2] in the case of low stiction, and S ∈ [22, 29], J ∈ [0.2, 1]
in the case of high stiction.

Kano’s model and He’s model are used to fit the measured MV signals of the four sets of data
collected in closed loop. The best combinations of parameters are, in the case of low stiction,
S = (fs + fd) = 12.1, J = (fs − fd) = 0.1 (both for Kano’s and He’s model), with a fitting index
FMV = 71.75%. In the case of high stiction, actual stiction parameters are S = 22.1, J = 0.2
(for Kano’s), with a fitting of 76.28%, and S = 22.0, J = 0.1 (for He’s), with a fitting of 76.27%.
Therefore, both nonlinear models appear sufficiently adequate.

The five linear process models with the two stiction models are then applied to detect and
quantify the amount of stiction without the knowledge of the MV signal. The time delay and
the orders of the linear process models are fixed a priori, namely td = 5, (n,m) = (2,2) for ARX
and EARX, (n,m,p) = (2,2,2) for ARMAX and EARMAX, n = 2 for SS.

Table 4.3, 4.4, 4.5, and Table 4.6 show respectively the results of the comparison for the
first, the second, the third and the fourth experimental set.
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Test 1 In Table 4.3, identification results obtained with all ten combinations of models are
reported. In all cases good estimates of the nonlinearity are established: FMV ∈ [60%, 70%],
and (S,J) are close to their actual values. EARMAX and EARX models perform also a better PV
fitting.

Figure 4.12 shows the registered time trends of SP, PV, OP, MV and the estimated values
of PV and MV (P Vest, MVest) of the first experiment when Kano’s model for the sticky valve
and EARX model for the linear dynamics are used. Both the PV fitting indices are sufficiently

high (cfr. Table 4.3): F(id)
P V = 88.31% for the identification dataset and F(val)

P V = 82.95% for the
validation dataset. Also the estimation of the valve stem position is quite accurate: FMV =
69.35%. In this first experiment, with only valve stiction, both nonextended (ARX, ARMAX,
SS) and extended models (EARX, EARMAX) are appropriate to the purpose.

Table 4.3: Pilot plant first experiment: low amount of valve stiction.

LIN model NL model S J F
(id)
P V F

(val)
P V FMV

ARX Kano 11.9 0.2 86.03 84.70 69.35
He 11.8 0.1 86.01 84.63 69.25

ARMAX Kano 11.9 0.2 86.08 84.72 67.54
He 11.8 0.2 86.07 84.56 69.05

SS Kano 12.5 0.1 85.88 84.77 69.09
He 12.9 1.0 85.88 84.29 60.46

EARX Kano 11.9 0.2 88.31 82.95 69.35
He 11.4 0.4 88.49 82.65 60.77

EARMAX Kano 11.9 0.2 88.52 84.03 69.35
He 11.4 0.4 88.57 83.74 60.77

Figure 4.12: Pilot plant first experiment: registered time trends.

Test 2 Table 4.4 shows that good estimation results are obtained again with nonextended
(ARX, ARMAX and SS) models. They guarantee a better identification of the nonlinearity:
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FMV values are higher. EARMAX and EARX models perform a slightly higher PV fitting but,
in this case, produce a significantly worse MV estimation: FMV ∈ [25%, 42%]. Since these two
models have one more degree of freedom, they tend to generate a bias term (η) even though
the external disturbance is not present in order to improve the PV fitting, but this alters the
stiction quantification.

Figure 4.13 shows the corresponding registered time trends and estimated signals of the
second experiment when He’s model and the SS model are used. Both the PV fitting indices are

high (cfr. Table 4.4): F(id)
P V = 85.77% for the identification dataset and F(val)

P V = 83.68% for the
validation dataset. The estimation of the valve stem position is rather accurate: FMV = 71.82%.
Non extended models prove themselves most appropriate when only valve stiction is present
in the control loop.

Table 4.4: Pilot plant second experiment: high amount of valve stiction.

LIN model NL model S J F
(id)
P V F

(val)
P V FMV

ARX Kano 25.2 4.3 85.53 83.57 62.61
He 23.6 1.5 85.59 83.99 63.44

ARMAX Kano 24.5 3.5 85.62 84.27 71.85
He 22.7 2.0 85.77 83.79 71.82

SS Kano 24.5 3.5 85.67 84.26 71.85
He 22.7 2.0 85.77 83.68 71.82

EARX Kano 26.6 0.7 87.07 83.65 28.93
He 25.0 1.6 87.25 83.63 41.39

EARMAX Kano 26.8 3.3 87.37 82.22 25.33
He 25.0 1.6 87.34 83.70 41.39

Figure 4.13: Pilot plant second experiment: registered time trends.

Test 3 The results of the third experiment are basically opposite to those of the second ex-
periment (cfr. Table 4.5). EARMAX and EARX models ensure both a better PV fitting and a
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higher MV estimation. On the contrary, nonextended models perform a lower identification of
the global dynamics and a wrong estimation of the nonlinearity. For the validation dataset, SS

model produces instable trends in P Vest and F(val)
P V indices tend to minus infinite. The presence

of a large external disturbance can alter significantly stiction estimation when a nonextended
model is used to identify the linear dynamics.

Table 4.5: Pilot plant third experiment: low amount of valve stiction and external disturbance.

LIN model NL model S J F
(id)
P V F

(val)
P V FMV

ARX Kano 23.7 3.1 84.91 85.19 49.28
He 22.0 4.4 85.38 83.94 46.86

ARMAX Kano 23.7 0.7 85.21 84.65 47.37
He 22.0 4.4 85.46 84.04 46.86

SS Kano 17.1 2.9 85.50 −∞ 69.66
He 17.0 2.2 85.50 −∞ 67.82

EARX Kano 14.7 0.2 86.12 83.62 74.25
He 15.2 2.1 86.38 83.80 73.25

EARMAX Kano 14.8 2.0 86.24 82.93 73.81
He 12.4 4.3 86.50 83.54 72.10

Figure 4.14: Pilot plant third experiment: registered time trends.

Figure 4.14 shows the signals of the third experiment when He’s model and the EARMAX
model are used. In the bottom panel the stem position of valve V3 is reported; this signal is
proportional to the disturbance entering the process. The extended model gives an accurate PV

fitting (cfr. Table 4.5), F(id)
P V = 86.50%, F(val)

P V = 83.54%, and a good MV fitting FMV = 72.10%,
much higher compared to values obtained with ARX, ARMAX and SS models. The estimated
stiction values obtained with EARX and EARMAX are close to the real parameters (S ' 13.1; J '
0.5) unlike those obtained with nonextended models. Therefore, the additional presence of
an external disturbance can be well managed when an extended model is used for stiction
estimation.

81



4.4. APPLICATION TO PILOT PLANT

Test 4 The results of this last experiment are similar to the ones of Test 3 (cfr. Table 4.6).
EARMAX and EARX models grant both a better PV fitting and a higher MV estimation. On the
opposite, ARX, ARMAX and SS perform a worse identification of the linear dynamics and a
completely wrong estimation of the nonlinearity. The presence of the external disturbance can
alter stiction estimation when a nonextended model is used to identify the linear dynamics.

Table 4.6: Pilot plant fourth experiment: valve stiction and external disturbance.

LIN technique NL model S J FP V F
(id)
P V F

(val)
P V FMV

ARX Kano 13.8 2.7 78.26 78.27 78.20 -131.27
He 13.1 1.3 78.37 78.22 78.54 -116.95

ARMAX Kano 12.2 2.7 78.75 78.62 78.88 -163.99
He 10.2 4.8 78.94 78.97 78.86 -189.26

SS Kano 10.2 2.7 78.88 78.73 79.03 -203.10
He 10.4 2.8 79.14 78.85 79.50 -181.10

EARX Kano 20.6 0.9 78.61 79.81 76.95 39.21
He 20.2 0.5 78.66 79.83 77.04 38.55

EARMAX Kano 20.2 0.5 78.79 80.01 77.11 36.71
He 20.3 2.8 78.74 80.06 76.93 24.89

Figure 4.15 shows the corresponding registered time trends and estimated signals of the
second experiment when Kano’s model and the EARMAX model are used. In the bottom panel
the stem position of valve V3 is reported; this signal is proportional to the disturbance en-
tering the process. The extended model gives an accurate overall PV fitting (cfr. Table 4.6)
FP V = 78.79% and a reasonable MV fitting FMV = 36.71% (especially compared to values ob-
tained with ARX, ARMAX and SS models). The estimated stiction values obtained with EARX
and EARMAX are fairly close to the real parameters unlike those obtained with nonextended
models (ARX, ARMAX and SS). The presence of the external disturbance does not affect signif-
icantly stiction estimation when an extended model is used.

Figure 4.15: Pilot plant fourth experiment: registered time trends.

As general conclusion, the results obtained with pilot plant data have basically confirmed
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the ones achieved with simulation data.

4.5 Application to Industrial Data

In this section, the performance of the proposed methods are further compared on some dif-
ferent industrial datasets.

4.5.1 Data from benchmark [85]

Three loops of the dataset of the book of [85], illustrated as a benchmark for stiction detec-
tion methods, are firstly used. These three loops are clearly indicated as suffering from valve
stiction by several detection methods [85]. The five proposed linear process models are tested,
while only Kano’s model is used to describe the sticky valve dynamics.

Unless otherwise specified, datasets are used in full: the first two-thirds of data are used
as identification set and the last-third is used as validation set. The time delay and the linear
models orders are fixed: td = 1, (n,m) = (2,2) for ARX and EARX, (n,m,p) = (2,2,2) for AR-
MAX and EARMAX, n = 2 for SS. These data are also used purposely to show the effect of the
initialization of Kano’s model on stiction estimates (see Section 4.2.5).

The results are then compared with the estimates given by some well-established literature
procedures: (i) Karra and Karim [90], (ii) Jelali [84], (iii) Lee at. al [95], (iv) Romano and Garcia
[118].

CHEM 25 The data of this pressure control loop were obtained from a refinery. Karra and
Karim used the following parameters for their EARMAX model: td = 1 and (n,m,p) = (2,2,2).
Jelali tested the loop twice using an ARMAX model with: (i) td = 2, (n,m,p) = (3,2,2) and (ii)
td = 1, (n,m,p) = (2,2,1). Romano and Garcia used a Hammerstein-Wiener structure on 272
non specified samples without reporting the exact model parameters. Lee et al. used a second
order linear model, that is an ARX with (n,m) = (2,1), and He’s stiction model on a specific data
window (100 - 350 samples).

Table 4.7 summarizes the estimates obtained using the proposed models and the results
available in the literature. The estimates of (S,J) with all methods are really close. Only Lee et
al. obtain a higher value of J , probably due to the use of He’s model. The proposed EARMAX
model (case a) gives exactly the same stiction estimate of Karra and Karim once that Kano’s
model is initialized as in the literature work. Using In.2 initialization discussed in Section 4.2.5,
slightly different values of S and J are obtained (case b). It should be also noted that the
proposed EARX and EARMAX models produce the highest values of PV fitting.

CHEM 10 These data come from a pressure control loop in a chemical process industry. Karra
and Karim used the following parameters for their EARMAX model: td = 1 and (n,m,p) =
(2,2,2) [85, Chp. 12]. Lee et al. used an ARX(2,1) and He’s stiction model.

Table 4.8 summarizes all the results. The estimates of S are very close in all the five pro-
posed methods, while the estimates of J are bit more variable. These results are obtained with
In.2 initialization of Section 4.2.5 setting the stationary time of MV at the first tenth of the data
length. Also Lee et al. obtained similar values of S and J , while Karra and Karim obtained a
similar value of S but a smaller value of slip-jump (J = 0.05). In particular, for this dataset,
as showed for EARMAX model, different stiction estimates are possible using four different
Kano’s model initializations of type In.1 (cfr. Figure 4.4). Note that values close to zero of
stiction are incorrectly obtained with a specific initialization: stp = 0;d = −1.

POW 4 These data are from a level control loop in a power plant. Karra and Karim used
an EARMAX model with unspecified parameters applied on an initial data window (1 - 1000
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Table 4.7: CHEM 25: comparison of results.

LIN model NL model S J F
(id)
P V F

(val)
P V

ARX Kano 1.8 0.3 74.14 72.96
ARMAX Kano 1.8 0.2 74.45 73.79
SS Kano 2.0 0.2 73.88 73.55
EARX Kano 1.8 0.3 78.67 73.92
EARMAX (a) Kano 1.8 0.3 78.83 73.95
EARMAX (b) Kano 1.6 0.0 79.32 74.09

Karra & Karim [90] Kano 1.8 0.3 - -
Jelali (i) [84] Kano 1.80 0.59 - -
Jelali (ii) [84] Kano 1.87 0.60 - -
Romano & Garcia [118] Kano 1.60 0.44 68.70 -
Lee et al. [85, Chp. 13] He 1.62 1.62 - -

Table 4.8: CHEM 10: comparison of results.

LIN model NL model S J F
(id)
P V F

(val)
P V

ARX Kano 1.85 1.70 93.21 92.86
ARMAX Kano 1.85 1.50 93.50 92.92
SS Kano 1.85 1.70 93.63 92.87
EARX Kano 1.90 1.45 93.79 91.33
EARMAX Kano 1.85 1.35 93.85 92.55
EARMAX (stp = 1;d = 1) Kano 1.85 1.80 93.83 92.55
EARMAX (stp = 1;d = −1) Kano 1.90 1.75 94.10 91.16
EARMAX (stp = 0;d = 1) Kano 1.85 1.65 93.60 92.28
EARMAX (stp = 0;d = −1) Kano 0.20 0.10 93.34 91.63

Karra & Karim [85, Chp. 12] Kano 1.85 0.05 - -
Lee et al. [85, Chp. 13] He 1.77 1.73 - -

samples). Jelali tested the loop using an ARMAX model of unspecified orders, probably on the
first 700 samples. Lee et al. used an ARX(2,1) and He’s stiction model applied on all available
data. The proposed identification methods are executed on the first 1000 samples, with In.2
initialization of Section 4.2.5 and setting the stationary time of MV at the first tenth of the data
length.

Table 4.9 summarizes all the results. For this loop, the estimates of stiction parameters are
different with the five proposed methods. ARX, ARMAX and SS models agree and estimate
low values of stiction: S ∈ [0.8, 0.9], J = 0. Conversely, EARX and EARMAX models yield larger
amounts: S = 4.1, J ∈ [0.4, 0.7]. Also Lee et al. obtained low values, while Karra and Karim
estimated a much more significant amount of stiction and they also assessed the presence of
an external disturbance. For this case, it can be observed that techniques which implement an
extended process model yield higher stiction values than techniques which use a nonextended
model. The first ones also identify a significant additional disturbance, which alters numerical
estimates of stiction. Note that Jelali obtained the largest stiction amount, since his final value
of S falls close to the initial guess obtained with ellipse-fitting method (S0 = 4.80).

As overall considerations, since there is no information about the real values of S and J , it is
not possible to say exactly which are the best estimates. However, for the first two applications
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Table 4.9: POW 4: comparison of results.

LIN model NL model S J F
(id)
P V F

(val)
P V

ARX Kano 0.9 0.0 84.82 84.29
ARMAX Kano 0.9 0.0 84.80 84.33
SS Kano 0.8 0.0 85.19 84.78
EARX Kano 4.1 0.7 85.95 82.37
EARMAX Kano 4.1 0.4 86.13 82.70

Karra & Karim [85, Chp. 13] Kano 3.6 1.2 - -
Jelali [84] Kano 4.49 2.49 - -
Lee et al. [85, Chp. 13] He 0.58 0.39 - -

(CHEM 25 and CHEM 10), as the stiction estimates in all proposed methods are close and next
to the values reported in some well-established literature works, it is possible to conclude that
all the techniques give acceptable results. In particular, the estimates of S are very close and
therefore really reliable. The estimates of J are more variable and therefore, as expected and
previously discussed, more difficult. Moreover, the initialization of Kano’s model is proved to
be a factor which can alter stiction estimates.

The third application (POW 4) clearly confirms that different techniques can also strongly
disagree when applied on the same industrial data [85, Chp. 13]. Some other examples of com-
parison of selected stiction quantification techniques applied on benchmark data are reported
in ...

4.5.2 Data from other industrial loops

The proposed identification techniques are then applied to three datasets obtained during mul-
tiannual application of the performance monitoring software (PCU) [123] in Italian refinery
and petrochemical industries. Data refer to repeated registrations (of PV, OP, SP) for the same
loops [30]. The source of malfunction is known to be stiction, but the actual MV signals are
not available. Trends of values of parameter S are reported for each combination of nonlinear
and linear model. Values of J are not reported since their estimate, as shown previously, is less
significant and reliable.

Loop I These data has been previously presented in Chapter 3, as application of the original
grid search technique and the first identification method (ARX model) [25]. For this pressure
control loop, six different registrations, collected during a month, are available just before the
valve maintenance. Four detection techniques ([77, 119, 124, 46]) indicate this loop as always
affected by stiction in these acquisitions. Therefore, rather constant stiction values, though
unknown, are expected.

In Figure 4.16 pretty uniform values of stiction (S ∈ [4, 5.6]) are obtained for each com-
bination of nonlinear and linear models. Low variability in estimated values of S is given by
all linear models plus Kano’s model. SS model plus Kano’s model gives the lowest variability
(σS = 0.23) with a mean value (Ŝ = 5.36) higher than other techniques. Slightly higher variabil-
ity is obtained with He’s model, especially with SS model. Figure 4.17 shows time trends of
SP, PV, OP and estimated values of PV and MV (P Vest, MVest) of registration # 3 when Kano’s
model and EARMAX model are used.

The results of this industrial application reproduces the outcome of the first experimental
set in the pilot plant (cfr. Table 4.3), where all the linear models are equally valid. In this
application, all the identification techniques prove to be sufficiently reliable: constant stiction
trends are always estimated.
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Note that slightly decreasing trends of stiction are anyway admissible. Here the SP is vari-
able (Figure 4.17), therefore stiction could be not exactly the same for different operating con-
ditions along the same registration or - more likely - along different acquisitions, while Kano’s
and He’s models imply uniform parameters for the whole valve span.

Figure 4.16: Industrial Loop I: Trends of the identified stiction parameter S using different linear
models: top, Kano’s model; bottom, He’s model.

Figure 4.17: Industrial Loop I: time trends for registration # 3.
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Loop II These data are from a flow rate control loop with PI-algorithm controller and variable
set point. The presence of stiction is clearly recognizable by the PV and OP shapes being close
to squared and triangular waves, respectively (Figure 4.18). Moreover, the plot of PV(OP)
shows evident stiction characteristics (Figure 4.19), since in FC loops PV is proportional to
MV. The same four detection techniques ([77, 119, 124, 46]) indicate this loop as affected by
stiction in 11 acquisitions registered along two consecutive days. Therefore, nearly constant
stiction values, though unknown, are expected.

From Figure 4.20, rather uniform values of stiction (S ∈ [1.8, 2.5]) are quantified with
nonextended models. The lowest variability in estimated values of S is given by ARMAX and
SS models plus Kano’s or He’s model (σS ∈ [0.13, 0.14]) with a mean value Ŝ ∈ [2.26, 2.30]. Con-
versely, an excessively high variability is obtained using extended models: EARX and EAR-
MAX.

Figure 4.18: Industrial Loop II: time trends for registration # 9.

The results of this industrial application are rather similar to the outcome of the second
experimental set in the pilot plant (cfr. Table 4.4), where the nonextended models are more
appropriate for the case of only valve stiction. Extended models prove to be not sufficiently
reliable: high variable stiction trends are estimated. Sometimes even zero values are obtained:
loop oscillation is not associated with valve stiction but wrongly with a significant bias term of
external disturbance.

Loop III These data are from a flow rate control loop, the controller has a PID algorithm, and
the SP is variable since the loop is the inner part of a cascade control. The same four detection
techniques ([77, 119, 124, 46]) indicate stiction in 6 acquisitions registered along four months.
Therefore, a constant or increasing trend of stiction is expected.

Once again the presence of stiction is clearly recognizable by the shapes of PV and OP
signals, being close to squared and triangular waves, respectively (Figure 4.21). Now, for this
loop, the two extended models (EARX and EARMAX) give rather uniform values of stiction (S ∈
[2.1, 3.1]). Conversely, for registration # 4, using ARX and ARMAX models, and for # 5, using
all three nonextended models, very low (S ' 0) or low values are estimated (see Figure 4.22).
These estimates appear incorrect since they result as outliers with respect to the main stiction
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Figure 4.19: Industrial Loop II: experimental behavior MV vs. OP obtained in registration # 9.

Figure 4.20: Industrial Loop II: Trends of the identified stiction parameter S using different linear
models: top, Kano’s model; bottom, He’s model.

trend. In these two registrations, PV signal does not clearly show a singular frequency of
oscillation (cfr. Figure 4.23). An external disturbance might act simultaneously with valve
stiction.

The results of this last industrial application are rather similar to the outcomes of Test 3
and 4 in the pilot plant (cfr. Table 4.5 and 4.6), where extended models are to be preferred for
the case of simultaneous valve stiction and external disturbance. Non extended models are not
sufficiently reliable: inconsistent values of stiction can be estimated. The loop oscillation is not
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Figure 4.21: Industrial Loop III: time trends for registration # 2.

Figure 4.22: Industrial loop III: Trends of the identified stiction parameter S using different linear
models: top, Kano’s model; bottom, He’s model.

due to a singular frequency and external disturbance can alter stiction estimation.

As a general conclusion, the results obtained with industrial data confirm those achieved
with pilot plant data. Nonextended models are the best choice when valve stiction is the only
source of loop oscillation; extended models are better for the case of simultaneous presence of
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Figure 4.23: Industrial Loop III: time trends for registration # 4.

external disturbances. It is worth noting that for industrial data the presence (or the absence)
of non stationary disturbances is not known a priori. Nevertheless, repeated data acquisitions
for the same valve can help since they allow one to perform comparable estimates, that is, time
evolution of stiction can be followed and eventual anomalous cases can be assessed.

For example, outliers can be ascribed to the presence of disturbances whether non extended
models are used, or, on the opposite, the absence of disturbances can be inferred whether
inconsistent estimates are obtained when extended models are tested. Anyway, this criterion
could be not reasonable when only few acquisitions, or even just one, are available. In such
cases a conservative approach should be to test all different models and then emit an average
verdict.

Thus, a reliable detection of additional external disturbances seems the definitive solution
to this problem. Recent techniques [108, 66] allow one to detect multiple oscillation. Therefore,
they could be used as a preliminary step in stiction estimation in order to assess the simulta-
neous presence of different sources of oscillation (stiction and disturbance) and to direct the
choice between simpler and extended process models.

4.6 Conclusions

In this chapter the effect of nonstationary disturbances on estimated amount of stiction has
been investigated. For this reason, two different stiction models and five linear models are
proposed and compared in order to identify the Hammerstein system of the sticky valve and
the process. The identification methods have been validated, firstly, by using closed-loop sim-
ulation data in the presence of different faults (low/high stiction, with/without external non-
stationary disturbances). Then, practical applicability and significance has been demonstrated
through the application of the considered identification methods to data obtained from a pilot
plant data and to a large number of industrial data sets.

For the nonlinear part, both Kano’s and He’s models confirm to be appropriate to model
the sticky valve. Simpler models (ARX, ARMAX and SS) appear to be the best choice for linear
process dynamics when stiction is the only source of loop oscillation. Extended models (EARX
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and EARMAX), incorporating the time varying additive nonstationary disturbance, have one
more degree of freedom, i.e. the bias term which is estimated recursively along with the process
and stationary noise parameters. When the external disturbance is actually present, extended
models prove to be very effective and generate consistent stiction model parameters. As a
matter of fact, as verified by different types of industrial data, the extended models ensure a
better process identification and a more accurate stiction estimation in the case of significant
disturbances acting simultaneously with valve stiction.

Future research directions may include the application of recent techniques aimed at de-
tecting the presence of large external disturbances in order to choose between extended and
nonextended models. Furthermore, more complex and flexible stiction models could be used
to describe non uniform friction dynamics in order to obtain more consistent estimates when
repeated data registrations are analyzed.
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Chapter 5

Stiction Compensation

Abstract 1

A well-established compensation technique to remove oscillations caused by control valve
stiction is the two-moves method. However, the actual versions of this technique present major
drawbacks, as the long time for implementation and, mostly, some strong assumptions on the
valve position in oscillation. A recent version of two-moves compensation has proven to reduce
the time of execution. Nevertheless, this method does not allow the control loop to handle set
point tracking and disturbance rejection.

The present chapter proposes a revised version of two-moves stiction compensation method,
which overcomes previous limitations. This new approach is based on the estimation of con-
troller output associated with the desired valve position at the steady-state, by using the ampli-
tude of oscillation before compensation and through the estimate of valve stiction, obtainable
with specific techniques. In this case, fast responses are possible as well as a complete removal
of the oscillation. In addition, set point tracking and disturbance rejection are guaranteed,
by monitoring the control error and by switching temporarily to a standard PI(D) controller.
Simulation examples and applications to a pilot plant show the effectiveness of the proposed
method. The effectiveness of the proposed method has been demonstrated through several
examples of simulation and subsequently validated by some applications on a pilot plant. In
particular, all this study has been conducted during the months of abroad research stay, and
the activities of experimentation have been carried out in Laboratory of Process Control at Uni-
versity of Alberta, by Prof. Biao Huang of Department of Chemical and Materials Engineering.

1This chapter is based on: [28]: A Revised Technique of Stiction Compensation for Control Valves.
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5.1 Introduction

Problems in control valve are widely recognized as one of main causes of low performance of
base control loops in industrial plants. Well established works [58, 38, 113] indicate that up to
30% of total loops may show persistent oscillation, due to valve problems. The major issues are
backlash, hysteresis, dead band, static and dynamic friction, but also variation in the elasticity
of the spring, wear or rupture of the membrane, leakage in the air supply system can occur
[31].

Among all, static friction (stiction) is considered the most common source of sustained os-
cillations in control loops. Therefore, a major interest has been devoted to its characterization
and its diagnosis from routinely acquired data, by means of automatic techniques [85]. Also
valve positioners can be the source of other specific causes. For example, in the presence of
stiction, too much air is pushed into the actuator causing overshoot that leads to oscillations
[145]. Anyway, smart or intelligent positioners can monitor and diagnose valve status and
indicate performance deterioration [31].

Repair and maintenance must be considered the only definitive solutions to fix a sticky
valve. However, this fact implies to stop the operation of the entire control loop, which is
usually practicable only during a plant shutdown. Since the production stops occur generally
between every six months and three years, compensation can be a valid alternative to mitigate
negative effects of stiction on loop performance.

This chapter is organized as follows. Different stiction compensation methods are briefly
revised in Section 5.2. Existing two-moves compensation methods are analyzed and the pro-
posed method is introduced in Section 5.3. Extensive simulation examples are also provided
in this section. Section 5.4 illustrates some applications on pilot plant. Finally, conclusions are
drawn in Section 5.5.

5.2 Compensation Methods

The most recent stiction compensation methods appeared in the literature are typically data-
driven techniques. Firstly, note that two basic approaches - dithering and impulsive control
[18] - well-established for stiction compensation in electro-mechanical systems, are not prac-
tical in the case of pneumatic valves. This last type of valves, by far the most spread in the
process industry, filter such high frequency compensating signals [145]. Afterwards, [92], by
using a first-principle stiction model for the valve, estimated the immeasurable states provid-
ing a robust control action. However, all parameters of the valve must be known, which is
hardly possible in practice.

The knocker compensator proved the first simple viable approach [69]. A predefined signal
is added to the controller output (OP) before entering the valve. The knocker produces short
pulses with constant amplitude, width, and duration, in the direction of the rate of change of
OP. Oscillations on the control variable (PV) are removed at the expense of faster and wider
movements of the valve stem, which involve a much higher wear rate. To overcome this disad-
vantage, [143] suggested some guidelines for the automated choice of the compensation param-
eters of the knocker. This revised approach, which integrates two stiction detection techniques,
proved to reduce PV variability ensuring less aggressive valve movements.

Later, [53] presented a revised knocker compensator based on a supervision layer which
analyzes the control error and interacts with the standard PI(D) controller. This integrated
strategy shows a lower integral absolute error and even a reduced number of valve movements.
Two other simple techniques are the constant reinforcement of [82] and the second method of
[71], which is specifically oriented to compensation of backlash (that is, dead band). Both
methods prove proficient in removing PV oscillation, but do not yet reduce aggressiveness on
the valve.
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The controller detuning is another common compensation approach for valve stiction. [15]
presented comprehensive rules to detune PI(D) parameters for different process dynamics, by
using frequency analysis and harmonic balance. [145] developed also an optimization-based
method, which, compared to other approaches, allows significant improvements. However,
the need for an exact model of the process, a precise estimate of stiction parameters, and high
computational times may limit practical applications. Recently, a model free approach was
developed by [17]. This scheme shows to attain both oscillation reduction, and good set point
(SP) tracking and disturbance rejection.

The last well-established approach is the so-called two-moves method, which ought to re-
move oscillations and keep the valve stem (MV) at its steady-state position, by performing at
least two moves in opposite directions. The magnitude of the compensating signal should be
large enough to exceed stiction and move the valve, but not too large to saturate it.

The aim of this chapter is to introduce a revised version of two-moves method for stiction
compensation, which can overcome many limitations of the previous implementations.

5.3 Two-moves Compensation Methods

The existing two-moves methods will be briefly introduced below, in order to highlight their
characteristics and to present the features of the proposed method.

5.3.1 The existing methods

The two-moves compensator was introduced by [145]. This first implementation does not need
the controller parameters and, most importantly, does not increase the wear rate of the control
valve, as the knocker does, since the stem is not constantly forced to move.

The compensating signal (fk) is added to the output controller (uc), as in Figure 5.1. The
added signal can assume only two values by imposing two consecutive movements to the valve.
The first signal moves the stem from its stuck position, according to:

fk(t) = |uc(t)|+α · d (5.1)

and setting:

u(t) = uc(t) + sign
(
duc(t)
dt

)
· fk(t) (5.2)

where d is the stick band and α is a real number greater than 1. Then, the second signal ought
to bring the stem position (uv) to its steady-state value in order to eliminate the error, by:

fk(t + 1) = −uc(t + 1) (5.3)

Note that after this second movement, the stem cannot move from the steady-state position
since the controller output is canceled by (5.3). The input signal to the valve (u) is thus constant
(zero), that is, the controller operates as in open-loop mode.

Anyway, this first version of two-moves method presents several drawbacks, which heavily
hinder its on-line implementation. Firstly, accuracy is reduced by assuming the one-parameter
(d) model of [149] to predict the valve behavior. Moreover, the steady-state value of valve
position (MVss) is assumed to be known, while MV is not usually measurable in the process
plants.

In particular, the method relies on the strong assumption that all measurements are repre-
sented by deviation variables and their respective steady-state values are zero [52]. Thus, for
the second movement (5.3), it is assumed that MV = 0 will make P V = SP .

Figure 5.2a verifies this assumption for a generic simulation case. The method proves in-
deed to be effective only in the case of deviation variables. Just by setting the reference to
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Figure 5.1: Structure of the two-moves compensator [145].

(a) effective for SP = 0; (b) poor for SP , 0.
Figure 5.2: Results for the “standard” two-moves compensator.

SP = 2, a large steady-state error is obtained (Figure 5.2b). Finally, it is to be noted that, acting
partially as in open-loop mode, the method cannot tackle set point changes or disturbances.

Another two-moves method was introduced by [60]. Instead of using an additional com-
pensator block as in Figure 5.1, the traditional PI controller block is modified. This technique
seems to achieve faster closed-loop performance and efficient rejection of load disturbances.
A fair set point tracking, with a small offset, would be also possible, and a reduction of valve
travel is shown.

To overcome previous limitations, [53] revisited the “standard” two-moves approach. Au-
thors showed that assumptions on the knowledge of MVss that assures P V = SP could be not
easily achievable in practice. Significant experimental results on a flow rate control loop of a
pilot plant are thus provided. The steady-state value of valve input (OPss) would be obtained
only experimentally and additionally it could be not unique.

Two improved compensation methods are then proposed: the first, consisting of four move-
ments, is sensitive to load disturbances. The second, based on two movements and four states,
and especially suited to tackle disturbances, proves more robust. Exact knowledge of the plant
model is not required, and loop perturbations (SP changes and disturbances) are handled by
monitoring the increase of the control error and by switching back and forth to a standard
PI(D) controller. Anyway, both methods can be applied only to self-regulating processes, and
the second approach requires similar dynamics between valve and process.

Afterwards, [161] proposed a closed-loop compensation method with the control loop fully
operating at the auto mode. A short-time rectangular wave is added to the reference in order
to impose two movements to the valve, which so arrives at the desired position. A systematic
way to design the parameters of this short-time rectangular wave was also developed.

Very recently, [164] have presented another solution. Three consecutive implementations
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of the “standard” two-moves of [145] are used. This technique allows one to estimate on-
line the steady-state value of valve input (OPss). Therefore, no a priori assumption on MV is
required. However, this approach could take a very long time in real applications, since two
extra open-loop step responses must be awaited to compute the desired input OPss.

Simultaneously, the same authors have proposed another implementation which outper-
forms the three-times two-moves method in terms of velocity and lower amplitude of the re-
sponse. A practical estimate of the desired valve position MVss is introduced, thus the value of
OPss to impose to get the steady-state can be computed faster.

In details, the amplitude of oscillation of the controller output before compensation is mea-
sured: OPmin andOPmax are the minimum and maximum value, respectively. Then, the amount
of valve stiction is somehow estimated in advance. The objective is to ensure a case that the
valve position is bound to stick only at two places. The input OP is changed to guarantee the
valve is being moved, but not too large.

In total, the method of [164] imposes six open-loop movements to the valve:

OP (kTs) =



OPmax if kTs < T0

OPmin if T0 ≤ kTs < T0 + T1

OPmax if T0 + T1 ≤ kTs < T0 + T1 + T2

OPmin if T0 + T1 + T2 ≤ kTs < T0 + T1 + T2 + Tsw
OPsw if T0 + T1 + T2 + Tsw ≤ kTs < T0 + T1 + T2 + Tsw + Th
OPss otherwise

(5.4)

where T0 = t0 + θ0, and Ts is the sampling time (see Figure 5.3). When OP is increasing, close
to its peak, the controller is switched into open-loop mode at time t0, and OP is set to OPmax to
make the valve move away from the current sticky position. Then, after time interval θ0, OP
is enforced in the opposite direction to OPmin. Afterwards, OP switches once again between
these two extreme values, for times T1 and T2.

Note that T1 corresponds to the time interval between the second-last peak and the valley,
and T2 corresponds to the time interval between the valley and the last peak, both measured
on the oscillation of OP before the compensation starts. Then, after time interval Tsw, OP is
switched to:

OPsw =OPss − βsw(OPmax −OPmin) (5.5)

where Tsw does not have to be specific, but only to ensure that PV has changed direction.
Likewise, βsw is a coefficient (≥ 1) that enables the valve to overcome the stiction band.

Finally, after time interval Th, OP is held to a value so that PV is expected to approach SP
at the steady-state. The desired steady-state valve position is estimated, according to:

MVss =
OPminT1 +OPmaxT2

T1 + T2
+ fd

T1 − T2

T1 + T2
(5.6)

If OP is increased first and decreased afterwards, its steady-state value can be computed, by
making use of He’s stiction model [76], as following:

OPss =MVss + fd (5.7)

where fd is the dynamic friction in the valve. In reverse, if the method is implemented in
opposite direction, i.e., OP is decreased first and increased afterwards:

OPss =MVss − fd (5.8)

The interval Th should be as small as possible, to avoid that PV deviates much from SP value. As
seen in Figure 5.3, the method is indeed able to bring the PV close to its reference. However,
being a fully open-loop approach, set point tracking and disturbance rejection are still not
ensured, as in the case of the “standard” version of [145].
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Figure 5.3: Results for the compensator of [164].

5.3.2 The proposed method

The proposed compensation method is based on the approach of [164], by developing some
practical simplifications. Only four open-loop movements are now required:

OP (kTs) =


OPmax if kTs < T0

OPmin if T0 ≤ kTs < T0 + Tsw
OPsw if T0 + Tsw ≤ kTs < T0 + Tsw + Th
OPss otherwise

(5.9)

where T0 = t0 + θ0, and Ts is the sampling time (see Figure 5.4). The first two moves are as in
(5.4). When OP is increasing, close to its peak, the controller is switched into open-loop mode
at time t0, and OP is set to OPmax. Then, after time interval θ0, OP is enforced to OPmin. Now
it comes to the difference. Note that, if one chooses to impose symmetrical movements to OP,
that is T1 = T2, (5.6) can be simplified, resulting:

MVss =
OPmin +OPmax

2
(5.10)

Therefore, the steady-state valve position is now estimated according to (5.10). This relation
is consistent with the fact that, when a “standard” data-driven stiction model is used (e.g.,
[76, 43]), the valve position typically oscillates between the two extremes of the input signal
OP. Then, equations (5.5) and (5.7 or 5.8) are still employed to directly compute OPsw and
OPss, which requires an estimate of stiction parameter fd . Note also that the time interval Tsw
does not need to be specific. A safe choice is Tsw ≈ Top, where Top is the average half-period of
oscillation of OP. In this case too Th should be as short as possible.

The results of Figures 5.3 and 5.4 have been obtained in simulation by using the same
parameters [164], so as to allow a direct comparison between different methods. The process
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model is a first order plus time delay (FOPTD):

P (s) =
3.8163

156.46 s+ 1
e−2.5s (5.11)

The PI controller is:

C(s) = 0.25
(
1 +

1
50 s

)
(5.12)

Valve stiction is described by Chen’s model [43], which is an extension of He’s model, setting
the following parameters: fs = 8.4, fd = 3.5243. A white noise with zero-mean and standard
deviation σ = 0.01 is added. For both compensators, the following parameters are used: Ts =
0.5, θ0 = 40, Tsw = 200 and Th = 10 seconds, and βsw = 1.

Note that the compensator of [164] starts at t0 = 5165 and sets the steady-state at time
tss = 6278, by imposing OPss = 5.668, which moves the valve to MVss = 9.192 (see Figure 5.3).
The mean steady-state error results: ess = SP − P Vss = −0.157. The two time intervals last
T1 = 420 and T2 = 434 seconds, respectively.

On the contrary, the proposed compensator starts at time t0 = 5132 and stops already at
time tss = 5382, for a duration of only 250 seconds with a saving of around 850 (see Figure 5.4).
The steady-state valve input and output are OPss = 5.665 and MVss = 9.189, respectively. The
mean steady-state error results ess = −0.023. Note also that Tsw ' Top/2 ' 430/2 seconds.

Overall, by using the proposed method, two valve movements can be avoided, and a sig-
nificant time (equal to T1 + T2) can be saved. Therefore, the whole compensation procedure
proves to be much simpler and faster than the one of [164]. Note that the previous one is just a
numerical example. However, the same general result can be obtained by using different values
of process, controller, and stiction parameters.

Figure 5.4: Results for the proposed compensator.

Another improvement of the proposed compensator with respect to the implementation
of [164] is the ability to address loop perturbations. In particular, SP changes and load distur-
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bances can be tackled by monitoring the control error (e = SP −P V ), similarly to what proposed
by [52].

The compensating signal (uk) is not added to the controller output (uc), but the valve input
(u) is switched between these two signals (see Figure 5.5). When sustained oscillations are
detected, the compensator is activated by using the moves in (5.9). Once the steady-state is
reached, if somehow PV diverges and the error passes a predetermined threshold (elim), or if a
SP change is detected, the loop is switched back to the standard PI(D) controller. Then, once
the oscillation has returned stable, a certain number of periods are counted before reactivating
the compensator. Note that when the compensator takes control, PI(D) controller tracks the
valve input, in order to avoid abrupt changes in OP and PV once the control is switched again.

Figure 5.5: Structure of the proposed compensator.

Figure 5.6 shows the behavior of the proposed compensator in the presence of such pertur-
bations. All the parameters are set as in the case of Figure 5.4, except for the stiction parame-
ters: fs = 5, fd = 2. The compensation is activated in four different occasions (marked as black
spots in Figure 5.6), at the time instants ton = 5714, 14220, 24220, and 34290. Two set point
changes occur at the time instants 10000 and 20000. A step disturbance of amplitude −0.05
affects the output at time 30000. The error threshold is set to elim = 1.5AP V , where AP V is the
average amplitude of oscillation of PV before the start of compensation.

The extremes of oscillation of OP are recomputed each time to get the desired steady-state
valve position MVss by using (5.10). As a set point change is detected or the threshold is
violated, the PI controller is resumed. Then, compensation is renewed and removes again the
oscillation. In this case, 10 half-periods of sustained oscillation are awaited every time before
the compensation restarts.

Therefore, the proposed implementation outperforms previous two-moves methods in the
presence of loop perturbations. Note also that it requires only easily-tunable parameters, un-
like other anyway appealing solutions [52, 17].

5.3.3 Sensitivity analysis

For a more complete evaluation of performance achievable by the proposed compensator, a
sensitivity analysis has been carried out. Some results are briefly reported below.

Different process and controller parameters. A different control loop is simulated: the pro-
cess model is a FOPTD with P (s) = 2

100 s+1e
−5s, while the controller is now a PI with C(s) =

0.75
(
1 + 1

25 s

)
. The stiction parameters of Chen’s model are fs = 5, fd = 2. As can be seen from

(5.7), (5.8), and (5.10), the design of the proposed four moves (5.9) does not depend on the
process and controller parameters, therefore they cannot influence the compensation results.

Figure 5.7 shows that the compensator is indeed able to bring PV close to the reference and
move the stem to its correct steady-state value (MVss = 12.54). The mean steady-state error
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Figure 5.6: Stiction compensation in the case of perturbations.

is ess = −0.062. Thus the compensation is not affected by the specific process and controller
parameters.

Figure 5.7: Results with different process and controller parameters.

Note that the compensator has good performance also for other types of controllers and
self-regulating processes. However, it does not work for the case of pure integral processes, as
level control loops, since no open-loop steady-state value for PV is permissible.

To this aim, the case of control loop formed by a process with IPTD model P (s) = 1
50 se

−5s,
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and a PI controller with C(s) = 0.25
(
1 + 1

50 s

)
is considered. The stiction parameters of Chen’s

model are fs = 5, fd = 2. Figure 5.8 shows that after the compensator is activated and once that
OP is fixed and MV is steady, PV keeps on increasing, that is, the level is out of control.

Figure 5.8: Ineffective results for a pure integral process.

Uncertainty in stiction value fd . On the opposite, it is important to state that the proposed
method, as the one introduced by [164], is strictly dependent on the estimate of stiction pa-
rameter fd , as seen in (5.7) and (5.8). Note that stiction parameters can be obtained in advance
through quantification methods, as the ones presented in Chapter 4. In addition, an accu-
rate stiction detection is assumed a priori in this approach, since the compensation procedure
should not start in the case that oscillations are not due exclusively to stiction. Anyway, it is
important to stress that the proposed method is not based on the knowledge of MV.

Here the effect of an incorrect stiction estimate on the compensator performance is analyzed
(see Figure 5.9). Valve is simulated using a dynamic friction of fd = 2, while the estimated
value for designing the steady-state input (OPss) is f̂d = 1, that is, a 50% mismatch. The other
parameters are set as in the previous simulation case (of FOPTD type). The compensator cannot
bring the PV to the reference, and the mean steady-state error is quite high: ess = −1.919.
Note that the desired steady-state valve position, estimated from (5.10), is anyway accurate:
MVss = 12.48. Nevertheless, due to the wrong estimate of fd , the steady-state valve input is
OPss = 11.48 and the actual final position is higher: MVss = 13.48. The correct input value
(' 10.5) should have moved the valve to MVss ' 12.5, as shown in Figure 5.7.

Effect of the noise level. The magnitude of the noise added to the control feedback is also
studied. The same system of Figure 5.7 is considered, and 100 Monte Carlo simulations have
been performed for six different levels of white noise. The average absolute value of the control
error obtained at steady-state (|e|ss) is computed for each noise level. Table 5.1 summarizes the
complete results. It can be observed that an acceptable stiction compensation is still possible
for a significant level of noise.

It is also worth noticing that the estimate of the extremes of oscillation of OP, computed
before the onset of compensation, can be a key factor for a good performance, as seen in (5.10).
Extensive simulations have shown that the best outcomes are possible by considering the mean
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Figure 5.9: Results with 50% mismatch in stiction parameter fd .

values of the extremes (OPmax, OPmin). However, only the last two extremes of OP could be
considered in the case of low level noise. Table 5.1 shows the results obtained with these two
different approaches. Figure 5.10 shows the results for one of these MC simulations for a case
of σ = 0.05.

Table 5.1: Impact of noise on stiction compensation.

Noise Level (σ ) Average steady-state error (|e|ss)
mean extremes of OP last 2 extremes of OP

0 0.001 0.027
0.01 0.035 0.097
0.02 0.066 0.199
0.05 0.160 0.471
0.1 0.331 0.946
0.2 0.584 1.882

Possible limitations. Other possible limitations of the proposed method are listed below.
Poor performance could be obtained for the hard case of inhomogeneous stiction. However,
when stiction-induced limit cycles arise, the valve operates generally in a small range. There-
fore, under closed loop conditions, stiction can reasonably be assumed to be independent of
the stem position. Note also that, after the valve is brought to its steady-state position, the min-
imum time needed for the PV to reach the reference is equal to the settling time of the process,
which could be also very long (temperature control loops). Nevertheless, these two issues are
common to other open-loop methods [145, 164].

Finally, the proposed method might show poor performance in the cases where perturba-
tions change continuously, e.g. control loops in cascade configuration or in the presence of
non-stationary disturbances, and also when perturbations arise exactly during the execution
of the compensating moves (5.9).
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Figure 5.10: Results for a noisy control loop.

5.4 Application to Pilot Plant

The proposed compensation method is then implemented in Laboratory of Process Control at
University of Alberta, by Prof. Biao Huang of Department of Chemical and Materials Engi-
neering. Figure 5.11 shows a picture and a schematic of the laboratory facility. The flow rate
control loop for Tank1 is studied with a sampling time Ts = 1 second.

As shown in Figure 5.12, the compensator is inserted into a MATLAB-Simulink interface
between the OPC server and the pilot plant. Valve stiction is introduced by passing the output
of a PI controller through the Chen’s model before driving the control valve.

(a) The facility (b) The process schematic

Figure 5.11: The pilot plant (called Hybrid Tank).

Numerous experiments have been run in order to test the proposed compensation algo-
rithm. Here below only two examples of application are presented. In both cases, controller
parameters are set to C(s) = 9

(
1 + 1

1.8 s

)
, and stiction parameters are fs = 7, fd = 3.
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Figure 5.12: The Simulink control loop of Tank1.

Test #1: with no additional perturbations. In this first case, no set point and no external
disturbance enters the control loop. As shown in Figure 5.13, clear waves of triangular shape
are registered on OP, waves of rectangular shape appear on MV and PV. The compensator is
activated at time 250 seconds, and the oscillation on PV is removed in about 45 seconds by
means of four precise movements. After 300 seconds, the valve input is set to OPss = 45% and
the valve is kept to its steady position (MVss = 48%); in the meanwhile, the flow rate reaches in
open-loop its reference (SP = 4 l/min). Note that Figure 5.13 shows also the time trend of uc,
the output signal of PI controller.

Figure 5.13: Test #1: stiction compensation in the pilot plant.
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Test #2: with additional perturbations. In this second example, two set point changes occur
at time instants 600 and 1200 seconds. A step disturbance of amplitude −1 l/min affects the
output at time 1800. Figure 5.14 shows the behavior the proposed algorithm. The compen-
sator is activated in four different occasions, and brings each time the flow rate to the correct
reference. When perturbations occur the PI controller is resumed by means of the bumpless
control switch, as seen in Figures 5.5 and 5.12. The error threshold is set to elim = 3AP V , and
a time equal to 20 half-periods of sustained oscillation is awaited before each compensation
restarts.

Thus, good performances first obtained in simulation has been confirmed on pilot plant
data. Further results are omitted for the sake of space limits.

Figure 5.14: Test #2: stiction compensation in the pilot plant.

5.5 Conclusions

In this chapter, a new compensation method for oscillations caused by stiction in control valve
is proposed. The technique is based on an improved version of the two-moves method, which
is proved to overcome many previous limitations. Four movements in open-loop operation
are employed, by causing faster responses as well as complete removal of the oscillation. The
control error is monitored to switch to standard PI(D) controller in the case of set point change
and in order to reject external disturbances.

The proposed method can be applied in practice without specific assumptions on the valve
position and without particular tuning parameters. Anyway, a reliable detection and a solid
estimation of stiction are important prerequisites. Numerous simulation examples and pilot
plant applications are used to demonstrate the effectiveness of the new method. Our future
work might concern implementation of the compensation algorithm on several industrial con-
trol loops, and efforts to overcome residual limitations.
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Chapter 6

Smart Diagnosis

Abstract 1

This chapter presents main features of the advanced PCU, a performance monitoring sys-
tem, which, in addition to variables normally registered in industrial plants - controller out-
put (OP), controlled variable (PV) and set-point (SP) - makes use of additional variables made
available by intelligent instrumentations and field bus communication systems.

Experimental runs on a pilot plant scale have been carried out in order to introduce dif-
ferent types of valve malfunctions and to define suitable indices (KPI) able to diagnose them.
Subsequently, threshold values for the indices have been calibrated and a logic has been de-
veloped to assign different performance grades. It is shown how the Travel Deviation allows
specific evaluation of valve status and to detect different causes of malfunctioning.

The same logic is implemented in an advanced release of an existing performance monitor-
ing system and advantages in the accuracy of diagnosis are shown. Finally the system has been
successfully validated by on line implementation for control loops assessment of an industrial
power plant.

1This chapter is based on: [31]: Advanced Diagnosis of Control Loops: Experimentation on Pilot Plant and Validation
on Industrial Scale.
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6.1 Introduction

Control loop diagnostics is widely recognized as an important aspect to face in order to improve
plant efficiency and then competitiveness; in recent years quite a significant research effort has
been devoted to this topics. Usually, control loops assessment and diagnosis is performed
by means of the 3 variables which are more commonly acquired in industrial plants, that is:
Set Point (SP), Controlled Variable (PV) and Controller Output (OP). The objective is to have
a prompt diagnosis of the onset of low performance condition and to be able to distinguish
among different causes. Main distinction is among external perturbations, controller tuning
and valve problems: for this reason techniques able to characterize different sources have been
proposed.

The significance of loop oscillations can be evaluated by means of the technique proposed
by Hägglund (known as ODT) [67], by using zero crossings of the error signal (e = P V − SP )
and calculating the integrated absolute error (IAE) between successive zero crossings. A first
characterization of oscillations can be performed by means of Auto Correlation Function (ACF)
of Thornhill et al. [157]. Advances and new directions in oscillation detection and diagnosis
has been widely reviewed in Thornhill and Horch [156]. Once tuning is detected as cause of
low performance in the loop, model free retuning techniques are quite appealing: see for in-
stance Shamsuzzoha and Skogestad [128]. Recently Marchetti et al. [102] proposed a retuning
technique for cascade loops based on oscillation trends, which does not require any additional
information on the process.

The state of the art and advanced methods for the diagnosis of valve stiction (static-friction)
has recently found a comprehensive compendium in the book edited by Jelali and Huang [85],
where eight different techniques are illustrated and compared on a benchmark of industrial
data. The possibility of diagnosing stiction is included in several closed loop performance
monitoring (CLPM) systems, proposed nowadays by major software houses.

Being the valve position (MV) usually not available, a still open problem is the quantifica-
tion of stiction, by predicting MV from PV and OP values. Quite a lot of techniques appear in
literature in the last years: Choudhury et al. [50], Jelali [84], Karra and Karim [90], Farenzena
and Trierweiler [61]. The reliability of these techniques is still under exploration, as showed
by Qi and Huang [115], Bacci di Capaci and Scali [22].

In new design plants, the adoption of intelligent instrumentation, valve positioner and
field bus communication systems increases the number of variables which can be acquired
and analyzed by the monitoring system. This fact enlarges the potentialities of performing
a more precise diagnosis of valve problems. Causes of malfunctioning in pneumatic valves
(see Figure 2.3a), by far the most used in process control, are not only limited to the presence
of stiction (and related problems, as deadband, hysteresis, backslash), but can also include
other causes (changes in spring elasticity, membrane wear or rupture, leakage in the air supply
system).

The positioner itself can also be the source of other specific faults which can upset loop
performance. All these malfunctions require specific actions to be counteracted by operators.
Therefore it is very important to be able to diagnose and separate different sources. Surprising
enough, this topic has not yet been largely addressed in literature; one of the few works is given
by Huang and Yu [81]. Other references can be found in Section 2.7.

In the last years, ENEL (the largest Italian Electric company) started a project of advanced
diagnostics, in order to enhance the possibility of accurate diagnosis of these sources of per-
turbations. The starting point was the performance monitoring system, already developed at
CPCLab of the University of Pisa, based on the 3 classical variables (SP, PV, OP) and denomi-
nated PCU (Plant Check Up, [123]).

The first step of this project was devoted to an experimental characterization of anomalies
in control valves and was oriented to a fine diagnosis based on additional variables available by
intelligent instrumentation. First results are reported in [126]. This chapter includes the con-
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tinuation of this activity, which after experimentation and check, has lead to a new architecture
of the performance monitoring system, based on 4 or 6 available measurements.

This chapter has the following structure: Section 6.2 describes the experimental plant (pilot
scale), its instrumentation and types of reproduced anomalies; Section 6.3 presents the defi-
nition of performance indices and the calibration of threshold values; Section 6.4 illustrates
the logics of the diagnosis system and a comparison of verdicts based on different variables;
Section 6.5 presents results for industrial loops (power plant); conclusions and next steps are
reported in Section 6.6.

6.2 The Experimental Pilot Scale Plant

The Idrolab plant is a pilot scale experimental facility having the general scope of testing new
technology to improve efficiency and environmental compatibility of thermoelectric power
plants. The specific project regards the development of a new architecture of the automatic
system for loops performance monitoring and fault diagnosis (PCU). Experiments were car-
ried out on the hydraulic module (M1) of the plant, which allows water recirculation between
two drums [126] (see Figure 6.1).

Figure 6.1: The pilot plant Idrolab.

The presence of bypass lines equipped with control valves and the possibility of acting on
pressure and level of the higher drum, allows one to carry out experiments in a wide range
of operating conditions. By Fieldbus Foundation communication protocol, the control system
can collect data from many “intelligent” instruments installed, among which the two pneu-
matic actuators under test: Fisher Rosemount - DVC5020F type and ABB - TZID type (see
Figure 6.2a). The pneumatic actuators are coupled to spherical valves which control the water
flow rate in recirculation lines.

The positioner of the pneumatic valve acts as an inner control loop on the valve position
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(a) Actuator, valve and positioner (b) Modified actuator

Figure 6.2: Pictures of the control valve (DVC5020F type).

and allows one to speed up the response of the valve. A schematic representation of a Flow
Control (FC) loop with positioner is reported in Figure 6.3.

In addition to SP, OP and PV, commonly available in an industrial FC loop (Ce), DS, P, MV
represent the variables made available by the positioner (for a total of 6 variables). The Drive
Signal (DS), is the electric signal generated by the inner controller (Ci) which, through the i/p
converter, generates the pressure signal (P ) acting on valve membrane (Pi), thus determining
the position of the valve stem (MV, also called Valve Travel); Pe indicates the process relating
MV with PV.

Figure 6.3: Block diagram of a FC loop with positioner.

Different problems have been reproduced in experimental valves by means of a modular
item mounted on top of them, as shown in Figure 6.2b. This equipment has allowed one
to reproduce common anomalies: static and dynamic friction, air leakage and i/p converter
malfunction. Further details about description of valve problems and the ways these anomalies
were reproduced are reported in [126].

In this second stage of the project, attention was focused on common sources of oscillation
in control loops and on common causes of anomaly in industrial valves. The basic idea is
to develop the enhanced system by taking into account indications coming from additional
variables made available by intelligent instrumentation, thus originating the improved PCU N,
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with up to N = 6 variables.
Many experiments were performed in the allowed operating range of the valves and of

perturbations. Experimental runs were carried out with the valve operating in Travel Mode
and in Flow Control Mode [126]. In Flow Control Mode, the FC loop acts directly on the valve
or the Level Control loop acts as primary loop on FC. Runs were carried out by introducing
valve anomalies or loop perturbations in the system operating at steady state (no Set Point
changes) and repeated applying step SP changes of the flow rate.

Table 6.1 reports 6 typologies of experiments. They can be considered representative of
general behavior of the system, thus allowing to draw general conclusions. The nominal case N
does not present any valve malfunction or loop perturbation. In case D there is an external loop
disturbance. In the other cases, malfunctions related to stiction, dynamic friction (jamming),
air leakage and i/p converter clogging have been reproduced in the actuator.

Table 6.1: List of the cases of study.

Case Description

N nominal no valve anomalies or external disturbance
D disturbance external perturbation and no valve anomalies
J jamming internal dynamics slowed down
S stiction valve static friction
L leakage imposed on the air circuit tools
M i/p converter malfunction nozzle clogging

Different responses in terms of loop and actuator variables (OP, PV, MV, DS, P) to SP change
were characterized for the nominal cases and for the faulty conditions [126]. The availability of
MV allows one to introduce a key variable: Travel Deviation, which is defined as the difference
between real and desired stem position (TD = MV −OP ). TD is the most immediate variable
for a first distinction between different phenomena. Typical trends of TD in the nominal case
and in the presence of different types of malfunction are shown in Figure 6.4.

The following preliminary qualitative observations can be formulated.

• In the nominal case TD has a mean value close to zero and has only low peaks in corre-
spondence with SP variations. An acceptability band for nominal conditions can be easily
set: TDlim (in red in Figure 6.4).

• Dynamic friction (jamming) shows to be very similar to nominal case and seems difficult
to detect.

• Air leakage determines a clear downward shift of the mean value of TD, which lays for a
long time outside its acceptability band.

• Malfunction (clogging) of i/p converter shows a quite similar behavior to air leakage.

• Stiction produces persistent oscillations in TD, even when the SP is constant; TDlim is
often trespassed.

• TD oscillations may also be caused by the presence of periodic disturbances (or aggressive
tuning controller), but in this case, amplitude peaks are quite small because MV follows
OP: this allows one to exclude the presence of stiction.

It is worth to say that these observations are fairly general because they involve malfunction-
ing of single components of the control loop (in particular valves and pneumatic actuators)
and therefore their appearance do not depend on the different characteristics of the process
(chemical or physical nature).
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Figure 6.4: TD time trends for nominal case and different malfunctions.

6.3 KPI Definition and Calibration

Data trends have been analyzed with the scope of performing a complete automatic analysis
of the actuator using Travel Deviation. The methodology has been overall validated on more
than 50 different data sets. Six Key Performance Indices, based on simple metrics of TD, are
adopted:

• I 1, Significant Oscillation Index: number of times TDlim is exceeded (normalized to 1
hour).

• I 2, Percent Time Out: Time percentage of TD out of its acceptability band.

• I 3, Mean Travel Deviation: Mean value of TD.

• I 4, Integral Travel Deviation: Integral of TD (normalized to 1 hour).

• I 5, Absolute Integral Travel Deviation: Integral of TD absolute value (normalized to 1
hour).

• I 6, Blockage Index: Numbers of valve stick-slip movements excluding peaks due to SP
changes (normalized to 1 hour).

These indices allows a quantitative assessment of the different behaviors between nominal
cases and faulty ones. Indices I 3, I 4 and I 5 are defined independently of any other pa-
rameters. On the contrary, I 1 and I 2 are based on TDlim, the acceptability band of oscillation
of TD. Also I 6 values depend on two secondary parameters which allow one to exclude TD
peaks caused by set point changes.

Calibration of the threshold values for the actuator KPI and for the additional parameters
was performed afterwards. The threshold calibration allows one to characterize the nominal
behavior and to recognize different malfunctions. Range of variation of the different parame-
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ters have been tested and consequently the values assumed by the KPI for the cases listed in
Table 6.1 have been evaluated. For brevity sake, these results are not reported in this chapter.

For example, high changes in the values of I 6 were observed, and I 1 was always close
to zero in nominal cases. Among additional parameters, acceptability band for TD was set to
TDlim = ±2. Obviously, calibration values may depend on the specific equipment and loop;
in particular they depend on control operators sensitivity and their level of acceptable perfor-
mance. Therefore, calibration thresholds can vary for different applications, but qualitative
trends, shown in Figure 6.4, remain; illustration of case studies and all details can be found in
[125].

Table 6.2 shows the calibrated values of thresholds for actuator indices. Each actuator index
is also associated to one or more valve malfunctions: the symbol “&” means anomalies which
affect indiscriminately the index, while “OR” indicates anomalies which are discernible one
from the other.

Table 6.2: Actuator indices: threshold values and malfunctions.

Index I i − low I i − high Detectable Malfunction

I 1 5 10 Stiction & Leakage & i/p Malfunction
I 2 3 6 Stiction OR (Leakage & i/p Malfunction)
I 3 ± 1 ± 2 Leakage & i/p Malfunction OR Stiction
I 4 ± 3000 ± 6000 Leakage & i/p Malfunction
I 5 3000 6000 Leakage & i/p Malfunction
I 6 5 12 Stiction

The following quantitative observations can be done:
• Stiction is promptly detectable. On the basis of index I 6 and, in addition, by indices I 1

and I 2.

• Air leakage and i/p malfunction are not clearly separable. They act on the same indices,
producing, in particular, the same effects on the indices from 1 to 5. Both cause a loss of
pressure – directly due to loss of air or due to the difficult opening of the relay – with the
consequent move of the valve stem.

• Jamming (dynamic friction) affects mainly index I 1, but this index is sensitive to all
other failures. For this reason, this anomaly does not seem detectable by TD.

• Further experimentations based on DS and P could allow to separate air leakage and i/p
malfunction.

• This approach ignores simultaneous type of failures which may happen in practice; this
scenario is still object of research and experimentation.

The logic for assignment of verdicts does not require any calibration, once threshold values
have been set. Obviously, validations and confirmations by plant operators are necessary to
check the reliability of the diagnosis [125].

6.4 Actuator State and New Diagnostic System

The logic of the new PCU, which performs actuator analysis, will be presented. Even with the
limitations highlighted before, it was possible to set a new logic which allows one to:

• assess the operating condition of actuators with three performance grades:

1. Good (no problems);
2. Alert (incipient deterioration);
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3. Bad (poor performance).

• indicate the cause when performance is not acceptable (level 2 or 3).
With reference to Table 6.2, two threshold values (I i − low and I i − high) were established:

• below I i − low value, the performance is considered similar to the nominal case (good);

• above I i − high value, the performance is poor;

• between the two values, I i − low ÷ I i − high, there is the area of incipient deterioration.
The verdict of actuator state is based on actuator indices compared with their threshold values.
The logic follows the combination of the indications reported in Table 6.3.

Table 6.3: Verdict of actuator state.

Actuator State Conditions on Actuator Indices

GOOD All the actuator indices good I i < I i − low for i = 1, ...,6

ALERT
Almost one index overcomes the low threshold & I i > I i − low &
No indices overcome the high threshold I i < I i − high for i = 1, ...,6

BAD Almost one index overcomes the high threshold ∃ i : I i > I i − high

Therefore it is possible to diagnose three causes of valve malfunction:
1. Stiction: it can be diagnosed without any doubt.

2. Air leakage or i/p malfunction: they can be diagnosed only together.

3. Generic Malfunction: includes all causes not directly recognizable but responsible for
actuator fault.

The synthesis of the logic about actuator status is reported in Table 6.4 and illustrated below
in the flowchart of Figure 6.5. All indices contribute to define the actuator state, but only I 3
and I 6 determine the cause of failure.

Table 6.4: Conditions for the emission of actuator verdict.

Condition Source of actuator anomaly

Actuator State GOOD –
I 3 BAD Air leakage or i/p malfunction

I 6 BAD
Stiction

I 3 GOOD or ALERT

Actuator State ALERT or BAD Generic Malfunction

The proposed logic has been included in the new (advanced) performance monitoring sys-
tem (PCU 4). Figure 6.6 shows the architecture of the system.

The availability of the MV/TD allows one to evaluate the specific KPI indices and to acti-
vate a new analysis path oriented to actuator diagnostics (module Act AIM). Module Act AIM
issues verdicts of state and causes of anomalies of the actuator: Stiction, Air leakage or i/p
malfunction and Generic Malfunction. These verdicts are definitive and affect subsequent
analyses.

In previous PCU (PCU 3) the only possible path of analysis was oriented to loop diagnostics
(now indicated as Loop AIM) to detect presence of external disturbances or controller tuning
problems. As main difference, valve anomalies are detected only indirectly and always classi-
fied as stiction. More details about different PCU 3 modules can be found in Chapters 3 and 7
(see also [123]). In PCU 4, the loop path is activated subsequently to actuator path and some
more accurate tests in Frequency Analysis Module (FAM) and Stiction Analysis Module (SAM)
are performed.
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Figure 6.5: Logic for the emission of actuator verdict.

Table 6.5 shows a comparison of the results between the two releases of PCU system, based
on 3 and 4 variables, applied to the typologies listed in Table 1. Some observations follow.

• In all cases (except D) the PCU 3 is not able to recognize any type of malfunction. No
significant oscillation is detected because loop oscillation is considered acceptable on the
basis of the threshold value assumed for the Hägglund technique [67].

• On the contrary PCU 4 is able to diagnose malfunctions in the actuator (not yet visible
in the loop) and issues correct verdicts (S, L, M). Therefore indices I 1− I 6 and the logic
of verdict emission are properly set.

• Both PCU releases recognize the nominal case (N).

• In case D a disturbance is actually present. The verdict is confirmed by PCU 4, for which
the actuator is good and the disturbance is properly indicated in the loop.

• Dynamic friction (case J) is not correctly detected based on previous considerations.

• For cases L and M, PCU 4 detects properly an actuator fault, but it is unable to distinguish
between air leakage and i/p converter malfunction. These two causes are detected only
together and the loop state is good.

• Case S is emblematic: PCU 4 correctly detects valve stiction, while PCU 3 wrongly emits
a verdict of good performance.

It is evident that MV (and then TD) allows a successful diagnosis of malfunctions that
are not detectable simply by using OP and PV; that is, the actuator analysis implemented in
PCU 4 allows one to recognize serious malfunctions which otherwise would be hidden by loop
dynamics. Analogously, the availability of MV would make stiction quantification an easier
problem.
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Figure 6.6: Schematic representation of the PCU 4 (MV and TD available).

Table 6.5: Comparison of results on Idrolab data: PCU 3 vs PCU 4.

Case
PCU 3 PCU 4

Loop Status Actuator Status Loop Status

N GOOD GOOD GOOD
D BAD [Disturbance] GOOD BAD [Disturbance]
J GOOD GOOD GOOD
S GOOD BAD [Stiction] GOOD
L GOOD BAD [Air leakage or i/p malfunction] GOOD
M GOOD BAD [Air leakage or i/p malfunction] GOOD
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6.5 Validation on Industrial Data

The ENEL - La Casella (Piacenza), a combined cycle power plant (4 groups), was chosen as first
site for PCU 4 validation. Each independent unit is composed of a gas turbine, a heat recovery
exchanger for steam generation and a steam turbine. Control loop regulation is performed by
pneumatic valves with positioners.

The whole monitoring and assessment system has been implemented on-line (PCU 4 GUI).
As shown by Figure 6.7, the system performs scheduling of operations, data acquisition directly
from DCS via OPC servers, data analysis and display of results on an user-friendly interface.

The system employs a standard database, which is also used for configuration of loops and
servers. The analysis are executed through the MATLAB Runtime which acquires data and
parameters of monitored loops in the form of Excel input files. The verdicts of performance
and diagnosis are emitted in the form of text files, easily accessible for the users. Figure 6.8
presents a typical page of the interface which plant operators can visualize in control room.

Figure 6.7: Structure, modules e logic of the on-line PCU 4.

Currently, 28 (7 · 4) critical loops have been configured in the system and analyzed for
months. As results, during the year 2013, the system has allowed to assess:

• 21 loops with good performance;

• 7 loops with bad performance (2 affected by external disturbances; 5 with controller
tuning problems);

• 19 valves with good performance;

• 9 valves affected by stiction.
For example, the 4 actuators used for the level control of the high pressure (HP) cylindri-

cal bodies have been constantly diagnosed in stiction. These problems have been confirmed
directly by plant operators, who observed heavy wear on valve stems during the plant shut-
downs. Figure 6.9 shows time trends for two different loops: a level control (LC) loop for HP
cylindrical body and a temperature control (TC) loop for methane preheating.

The LC loop has a valve clearly affected by friction. The TD is particularly oscillating and
often trespasses the band of acceptability (TDlim = ±2). Note that also PV is oscillating. The
MV is characterized by continuous stick and slip movements. The values of the actuator indices
are respectively: I 1 = 46, I 2 = 5.6, I 3 = −0.47, I 4 = −1691, I 5 = 2413, I 6 = 120; note that
I 6 is ten times bigger than its high-level threshold value (compare Table 6.2). Therefore, the
verdict on the actuator is stiction. On the contrary, the TC loop has no significant oscillation
and shows good performance both in the loop and in the actuator.
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Figure 6.8: Viewer of the on-line PCU 4.

6.6 Conclusions

The adoption of additional variables, made available by intelligent instrumentation, allows a
more efficient control loops assessment and a more accurate diagnosis of causes. In particular
the Travel Deviation, by means of suitable performance indices, is able to detect different types
of malfunctioning in pneumatic valves.

Performance indices and the logic of assigning performance grades, defined and calibrated
on the pilot plant, has been implemented and successfully validated on a power plant owned
by ENEL. Further results of application are reported in technical reports prepared for plant
operators, during the periods of testing and validation of the system implemented on-line.
Overall, the software PCU can be considered reliable in monitoring performance and diagnos-
ing malfunctions.

Further improvements are possible by using additional variables, available only from some
types of valve positioners, as the Drive Signal of the positioner and the output Pressure of the
i/p converter; future activity will be devoted to their analysis.

118



CHAPTER 6. SMART DIAGNOSIS

Figure 6.9: Time trends for: top) LC loop with valve stiction; bottom) TC loop with good performance.
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Chapter 7

Examples of Applications to Industrial
Plants

Abstract 1

This chapter presents main features of PCU CLUI, a dedicated version of the system PCU
for monitoring and assessment of control loops. This version has been specifically developed
for CLUI-EXERA, an association of industrial users of control systems, and it has been deliv-
ered to different companies with the objective of analyzing the most critical control loops of
their industrial plants.

The system analyses data recorded by DCS during routine operations and issues automatic
verdicts about the performance of basic control loops. Indications of causes of low performance
(controller tuning, valves, disturbances) and different strategies to adopt (retuning, valve main-
tenance, upstream actions) are also given.

This chapter illustrates overall system architecture, with characteristics of the modules
which accomplish different tasks of performance analysis, verdicts emission and operator sup-
port. A synthesis of the main techniques and algorithms adopted in the system is also given,
together with differences among different versions of the system, according to available infor-
mation on the plant.

In particular, as examples of application of PCU CLUI, this chapter focuses on assessment
of numerous control loops of two plants of ENI-Versalis, as a partner of CLUI-EXERA. Exam-
ples of results are presented, with illustration of loops performance assessment, and actions
suggested by the monitoring system.

1This chapter is based on: [31]: A System for Advanced Performance Monitoring: Application to Complex Plants of
the Chemical Industry.
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7.1 Introduction

Control loop performance assessment (CLPA) has been recognized as an important factor to im-
prove profitability of industrial plants. In the last years many techniques have been proposed
to allow performance evaluation from routine recorded data and several software packages
appeared on the market and are now used as monitoring tools. A control loop performance
monitoring system should be able to detect poor performing loops and to indicate different
causes, then suggesting appropriate moves to apply on the plant. Main sources of malfunction
are external perturbations, poor controller tuning and valve problems.

In Figure 7.1a, the 3 main variables of a control loop are indicated: Set Point (SP), Con-
trolled Variable (PV) and Controller Output (OP). The valve position (MV) is not available in
general and malfunctions have to be diagnosed by referring only to these three signals trans-
mitted in 4− 20 mA current. This constitutes the so-called “standard” diagnostics.

In new design plants, the adoption of intelligent instrumentation, valve positioners and
field bus communication systems increases the number of variables which can be acquired
and analyzed by a monitoring system (Figure 7.1b). The positioner acts as an inner control
loop on the valve position and allows one to speed up the valve response. In addition to SP,
OP and PV, DS, P, MV represent the variables typically made available by the positioner (for a
maximum of 6 variables). The Drive Signal (DS), is the electric signal generated by the internal
controller (Ci) which, through the I/P converter, generates the pressure signal (P ) acting on
valve membrane, thus determining the position of the stem.

The knowledge of MV allows a more precise diagnosis of loop and valve problems, espe-
cially stiction (static-friction), which is known to be the most common cause of performance
degradation [85]. Cause of malfunctioning in valves are not only limited to the presence of
stiction (and related problems, as deadband, hysteresis, backslash), but can also include other
causes: changes in spring elasticity, membrane wear or rupture, leakage in the air supply sys-
tem, I/P malfunction; details have been reported in Chapter 6 ([126] and [31]).

(a) with standard equipment. (b) with advanced devices.

Figure 7.1: Reference scheme for different types of control loop.

The research group of the Chemical Process Control Laboratory (CPCLab) of the University
of Pisa is active in control loop monitoring systems since many years. The PCU (Plant Check
Up) is the name of the performance monitoring system now installed on several industrial
plants. Different versions of the system are available, depending on the equipment and the
measurements available in the plants; periodically new versions of the system are released.
The basic version of PCU is now supervising more than 1200 loops of refinery plants.

The system analyses data recorded by the DCS during routine operations and indicates
causes of low performance and strategies to adopt using the three “standard” variables. More
recently, an advanced version of the diagnostic system has been developed. This version of
PCU uses 4 variables (SP, PV, OP and also MV) and grant a more precise - “advanced” - diag-
nostics. As explained in Chapter 6, this system has been firstly tested on a pilot plant and later
implemented in an industrial power plant [31].

This chapter has the following structure: Section 7.2 describes the two main versions of the
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performance monitoring system (PCU), giving some details on the whole architecture and the
specific modules with the main techniques and algorithms implemented; in Section 7.3 a com-
parison between the standard and the advanced version of the system is presented; Section 7.4
and 7.5 illustrate problems and results of the off-line application of the system to chemical
industrial plants; conclusions and next steps are reported in Section 7.6.

7.2 The System Architecture

A schematic representation of the last version of the “standard” PCU is reported in Figure 7.2a.
A full description of the version implemented on-line in a refinery plant is reported in [123]; a
synthesis of the latest version is reported below.

The Initialization Module (IM) imports parameter values and performs a first check on loop
status; if the quality of the data is not good, or a change of configuration is detected, or the valve
is operating manually, the analysis is stopped. In these cases, the loop receives a (definitive)
label of NA: Not Analyzed.

The Anomaly Identification Module (AIM) performs a first assignment of performance with
verdicts: such as G (Good), NG (Not Good). Loops subject to excessive set point changes (am-
plitude or frequency) are temporarily labeled as NC (Not Classified) and sent to the Identifica-
tion and Retuning Module (I&R). For loops not in saturation, after a data pre-treatment, tests to
detect oscillating or sluggish loops are executed; these tests refer to the Hägglund’s approach
([67, 68]), with suitable modifications of internal parameters, based on field calibration [125].

According to Hägglund’s criterion [67] an oscillation is considered relevant if its Integral
of Absolute Error overcomes an assumed value (IAE > IAElim), for a certain number of times
(Nlim), in the supervision time window Tsup. IAE and IAElim are defined as:

IAE =
∫ ti+1

ti

|e(t)|dt IAElim =
(2a ·RangeP V )

ωu
(7.1)

where e is the error (e = P V − SP ), ti and ti+1 are two zero crossing times. IAElim depends on
the range of the controlled variable PV, the amplitude a, and the loop critical frequency ωu =
2π/Pu (if not known, it can be estimated from the value of the integral time constant (τi) of the
controller, in the hypothesis of a Ziegler & Nichols tuning: τi = Pu/1.2). The technique allows
one to detect oscillations in the frequency range of interest (low-middle) and to disregard high
frequency oscillations, associated with instrumentation noise.

In the case of both Hägglund’s tests resulting negative, the loop is classified as acceptable
and a definitive label G is assigned. Slow loops can only be caused by the controller: therefore
they receive a NG label and are sent to I&R Module. Oscillating loops can be caused by aggres-
sive tuning, external disturbance or valve stiction: for this reason, they are primarily sent to
FAM, for a frequency analysis.

The Frequency Analysis Module (FAM) has the scope of separating irregular oscillations from
regular ones on the basis of a power spectrum which computes dominant frequencies; irregular
loops are labeled NG, without any further inquiry about causes. Regular loops with deteriorat-
ing oscillations are sent to the I&R Module, otherwise, in the case of loops showing permanent
oscillations, to the SAM for stiction/disturbance detection.

The Identification & Retuning Module (I&R) accomplishes process identification and, if suc-
cessful, controller retuning and evaluation of performance improvements. It receives from the
AIM module loops with constant SP labeled as NG (Not Good) caused by improper tuning and
loops labeled as NC (Not Classified) with variable SP. Identification in the case of constant SP
is performed using a Simplex based search technique. In the case of variable SP, being typical
of secondary loops under cascade control, an ARX process model is identified.

When model identification is successful, new tuning parameters are then calculated. The
achievable performance improvement is evaluated by means of suitable upgrading indices and
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(a) Standard PCU. (b) Advanced PCU.

Figure 7.2: Schematic representations of different PCU versions.

new controller settings are proposed. Otherwise, in the case of impossible identification, the
previous assigned verdict is confirmed, without any additional suggestion. The nominal per-
formance improvement, predicted on the basis of the identified model, is evaluated by means
of the upgrading index φ:

φ =
IAEAct − IAEBest
IAEAct − IAEMin

(7.2)

where IAE is the Integral of Absolute Error of the step response for the actual regulator (Act),
for the best controller having PI/PID structure (Best), and for the optimal regulator (Min).
For φ→ 1, the proposed (Best) controller is closed to the optimal one; for any φ > 0 there are
improvements, but a threshold has been assumed to implement the new tuning: φ = 0.40, fixed
after field validation [123].

The Stiction Analysis Module (SAM) analyses data of NG oscillating loops and performs dif-
ferent tests to detect the presence of valve stiction and to quantify its amount. This module has
been recently improved, as seen in Section 3.5 [23]. About stiction detection, four techniques
are applied: the Relay based fitting of values of PV [119], the improved qualitative shape anal-
ysis [124], the Cross-Correlation [77] and the Bicoherence [46].

Stiction quantification is performed only on loops clearly indicated as affected. A grid
search algorithm with a Hammerstein system identification (a nonlinear stiction model plus
a linear ARX model) allows one to estimate the unknown MV signal [22]. To increase the re-
liability of stiction estimations, data can be divided in sets and the method can be applied
separately [23]. As seen in Section 2.8, the possibility of diagnosing, quantifying and compen-
sating stiction is nowadays included in some CLPA systems, proposed by software houses or
published in the specific literature [39].

A schematic representation of the “advanced” PCU is reported in Figure 7.2b. A new anal-
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ysis path oriented to actuator diagnostics (module Act AIM) is activated by the availability of
MV and TD (Travel Deviation), defined as the difference between real and desired valve po-
sition TD = MV −OP . Six specific KPI indices and a specific logic of assigning performance
grades are implemented. Module Act AIM issues verdicts of state and causes of anomalies of
the actuator: Stiction, Air leakage or I/P malfunction and Generic Malfunction can be diag-
nosed. These verdicts are definitive and affect the other analyses: the loop path is activated
subsequently to actuator path and some more accurate tests in FAM and SAM are performed.

7.3 Comparison of PCU Versions

The knowledge of MV and TD permits a successful diagnosis of malfunctions that are not de-
tectable simply by using OP and PV; that is, the actuator analysis implemented in advanced
PCU recognize malfunctions which otherwise would be hidden by loop dynamics. In Sec-
tion 6.4, a detailed comparison of the results between the two releases of PCU system, based
on 3 and 4 variables, applied to the same data, has been presented.

Here, in Table 7.1, only some results are briefly reported. For example, advanced PCU is
able to diagnose malfunctions in the actuator (not yet visible in the loop) and issues correct
verdicts (Stiction, Leakage, I/P Malfunction), while standard PCU wrongly emits a verdict of
good performance.

Table 7.1: Comparison of results on pilot plant data: Standard PCU vs Advanced PCU.

Case Good Disturbance Stiction Leakage I/P malfunction

Standard PCU Loop Status Good Disturbance Good Good Good

Advanced PCU
Loop Status Good Disturbance Good Good Good
Actuator Status Good Good Stiction Leakage I/P malfunction

7.4 Application on Industrial Data

CLUI-EXERA is the name of an association of industrial users of control systems, for which a
dedicated version of the system PCU has been specifically developed. The whole monitoring
and assessment system has been delivered to different companies in the form of a lighter ver-
sion with respect to the one developed for ENEL (see Section 6.5). This specific version, called
PCU CLUI, can be easily implemented on-line by plant operators.

As shown by Figure 7.3, the system, similarly to the one of Figure 6.7, performs scheduling
of operations, data acquisition directly from DCS via OPC servers, data analysis and display of
results via an user-friendly program. Specifically in this version, the software employs a light
database, and the analysis are executed through the MATLAB Runtime which acquires data
and parameters of monitored loops in the form of Excel input files. Other Excel input files are
also used for configuration of loops and servers. The verdicts of performance and diagnosis are
emitted in the form of text files, easily accessible for the users. Figure 7.4 presents examples of
typical pages of the program, which plant operators can examine in control room.

In the context of these activities, the PCU CLUI system has been applied off-line to data
obtained from numerous control loops of two petrochemical plants of ENI-Versalis: ethylene
plant of Porto Marghera and butadiene plant of Ravenna (Italy). The results of this application
are briefly illustrated below.

Ethylene is produced by steam cracking from virgin naphtha. The mixture of gas and liquid
olefins, obtained in two gas burners, is separated at low temperature and high pressure through
a series of columns and reactors: demethanizer, deethanizer, catalytic hydrogenation reactor,
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Figure 7.3: Structure, modules e logic of the on-line PCU CLUI.

Figure 7.4: Viewer of the on-line PCU CLUI.

ethylene–ethane splitter and then depropanizer, propylene–propane splitter and debutanizer
(see Figure 7.5).

Whereas, butadiene is obtained from crude butane. The plant is composed of a extractive
distillation with a specific solvent of a raffinate product, a degassing for the recovery of the
solvent and a two-stage distillation to get high purity 1,3-butadiene and other co-products (see
Figure 7.6).

Control loop regulation is performed by pneumatic valves with standard equipment, there-
fore only SP, PV and OP data are available. No valve positioners are used, so the standard ver-
sion of PCU has been applied (Figure 7.2a). 83 loops of the ethylene plant and 15 loops of the
butadiene plant have been assessed respectively. Repeated acquisitions for the same 98 loops
have been collected, for a total of 1180 data sets.

On the basis of the more frequent verdict, the system has allowed one to assess:
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Figure 7.5: A basic flow sheet of the ethylene plant.

Figure 7.6: A basic flow sheet of the butadiene plant.

• 16 control loops operating in manual (NA);

• 36 loops with good performance (G);

• 26 loops Not Good (NG) with controller tuning problems (5 too aggressive and 21 too
sluggish);

• 15 loops NG with valve stiction;

• 3 loops NG affected by external disturbances;

• 2 loops with low performance (NG) but unclear source of malfunction.
A good matching between the verdicts issued by the PCU system and the indications of control
operators has been achieved. The system has assessed overall 46 loops with low performance.
Only 15 valves are indicated with problems and this will give an economic saving since un-
necessary maintenance of the other valves – which does not improve performance – can be
avoided.

In addition, 26 loops are reported with controller problems; in 8 cases the retuning is sug-
gested. This allows operators to save time during campaign of retuning since they have precise
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suggestions for critical loops.
Therefore, useful indications have been obtained with the standard PCU; a more precise

assessment would be possible with the advanced version of the system.

7.5 Example of Results

Three illustrative examples are shown in the sequel as representative of a category of loops.

Loop FC1 This flow rate control loop, obtained from butadiene plant, has PI controller and
constant SP. The loop represent a case of initial mismatch between PCU and operator verdicts,
for which a recalibration of Hägglund’s criterion on oscillating loops is needed. Default values
for the parameters are: 2a = 0.02,Nlim = 10, Tsup = 50Pu . With a value of 2a = 0.02, the verdicts
from AIM and SAM modules are always NG, indicating disturbance as cause of malfunction in
11 out of 12 acquisitions.

On a practical level, indeed, these oscillations – due to their small amplitude (compare
Figure 7.7a) – are considered acceptable and the PCU verdicts seem too severe, as a sort of False
Alarms (Figure 7.7b). The results obtained with an increased value of Hägglund’s parameter
(2a = 0.06) are completely different (12 cases of G) and perfectly aligned to operator indications
(Figure 7.7c).

(a) Time trends

(b) Hägglund’s test: NG with 2a = 0.02 (c) Hägglund’s test: G with 2a = 0.06

Figure 7.7: Results for Loop FC1.

Loop FC2 Also this flow rate control loop, obtained from ethylene plant, has PI controller
and variable SP. This loop is a clear case of incorrect tuning. The verdicts from AIM and
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I&R modules are NG, for 10 out of 12 acquisitions, indicating as cause: sluggish controller
(Figure 7.8a). The identification is always successful and the old settings (Kc = 0.4, τi = 150),
should be changed to new ones: Kc = 2.2 − 2.9, τi = 30 − 45. An increase of integral action is
then suggested; the upgrade index based on the model (see Section 7.2) is always very high: φ =
0.78−0.99 (Figure 7.8b). Future acquisitions will permit to check the predicted improvements
obtained with the suggested retuning.

(a) Time trends (b) Step responses for computation of φ

Figure 7.8: Results for Loop FC2.

Loop FC3 This third flow rate control loop, from ethylene plant, has PI controller and vari-
able SP. It is a typical case of valve malfunction. Indeed, this loop has been indicated as affected
by stiction in 11 out 12 acquisitions. The presence of stiction is clearly recognizable by the PV
and OP shapes (close to square waves and triangles, respectively in Figure 7.9a). Moreover, the
plot of PV(OP) diagram shows evident stiction characteristics (Figure 7.9b) since in FC loops
PV is proportional to MV.

About stiction quantification, the S parameter is rather constant for the 11 NG acquisitions
(see Table 7.2). Note that 1% of stiction is enough to cause performance problems [85]. A good
valve maintenance will surely bring to an improvement of performance with an elimination of
stiction.

(a) Time trends (b) PV(OP) with the typical shape of a sticky valve

Figure 7.9: Results for Loop FC3.
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Table 7.2: Loop FC3. Results of stiction quantification, parameter S for different acquisitions.

Acquisition 1 2 3 4 5 6 7 8 9 10 11 mean std deviation

Stiction S [%] 2.4 2.0 1.8 2.5 2.2 2.4 2.2 2.3 2.0 2.5 1.8 2.2 0.26

7.6 Conclusions

A well-established performance monitoring system (PCU) has been described with details
about its different versions. As an example, the application of standard version of the system
to data obtained from control loops of complex chemical plants have been presented. A good
matching between the verdicts issued and the indications of the operators has been achieved.
Significant benefits can be obtained: saving costs of unnecessary maintenance (good valves)
and saving time following suggestions about retuning of low performing controllers.

Further results have been reported in technical reports prepared for plant operators, during
the periods of testing and validation of the system. More precise indications, that is, further
distinction of causes and corrections, would be possible with the advanced PCU.
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Chapter 8

Conclusions

8.1 Activities and Main Results

Many different activities have been carried out in this PhD thesis; synthetically they include:
development of new techniques, their implementations in the monitoring system PCU, appli-
cation on pilot and industrial plants.

Details, improvements with respect to existing methods and future work are reported be-
low, as comments to different chapters.

In Chapter 2, an overall review of recent international researches concerning the topic of
friction in control valves has been conducted. The phenomenon has been studied in all its
different aspects: modeling, classic detection, advanced (smart) diagnosis, quantification, com-
pensation and implementation in control loop monitoring software. This activity has collected,
compared and analyzed pros and cons of a large number of techniques which have recently ap-
peared in the literature.

For what concerns the first line of research – the “standard” diagnosis of control loops – in
Chapter 3, a first automatic procedure which allows modeling and quantification of friction in
control valves has been developed. This technique employs only data normally stored in DCS
of process industry - control action (OP) and process variable (PV) - and allows one to estimate
the unknown valve position (MV). The control loop is described as a Hammerstein system: a
nonlinear block for valve friction and a linear block (ARX model) for process dynamics. An
empirical model based on two simple parameters is used to accurately reproduce the behavior
of a sticky valve, while process is identified with the least squares method. A grid method
allows one to estimate stiction parameters and, consequently, process parameters.

It has been verified that this estimate of friction can be negatively affected by the inevitable
presence of further perturbations on process variables such as set point variations, incorrect
tuning of controllers and external disturbances. Therefore, a first methodology has been pro-
posed in order to discard data for which is very likely to get incorrect estimates and in order to
limit application to appropriate cases. Simulations indicate that some sources of perturbation
can be managed, thus improving the reliability of stiction estimation.

In the perspective of practical implications, estimation and quantification of friction prove
to be critical to schedule and check control valves maintenance. To this end, numerous in-
dustrial data, which consist in repeated data acquisitions of the same sticky valves, have been
analyzed. This allows one to develop a historical trend of valve friction in the same loop, which
permits one not only to check, but also to schedule the maintenance of the valve.

In addition, the first algorithm of stiction quantification has been implemented into a new
specific analysis module. This module has been included in the latest version of PCU, the soft-
ware for analysis and monitoring of control loops, and a large set of industrial data has been
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analyzed.

In Chapter 4, research activities related to stiction quantification have been further de-
veloped. In particular, performance of different techniques have been evaluated in terms of
accuracy of the estimates in situations of valve friction and simultaneous presence of exter-
nal disturbances on process variables. The control loop has been identified with Hammer-
stein models of different types: the linear part as ARX, ARMAX, State Space, Extended-ARX
or Extended-ARMAX, and the non-linear part with two well-established data-driven stiction
models. Advantages and disadvantages of different techniques have been highlighted, basing
on data collected in simulation and on data obtained from a pilot plant.

For this purpose, dedicated experimentation campaigns have been run on the plant facility
of IdroLab, owned by ENEL, located in Livorno (Italy). Static friction is introduced into a
pneumatic valve by tightening the stem in its seat; the valve stem position is measured in
order to directly check the identification of process dynamics and the prediction of unknown
MV signal. As a result, extended linear models allow a better identification of process dynamics
and a more reliable stiction estimation in the presence of external disturbance superimposed
to valve friction. By contrast, simpler linear models are preferable in situations where valve
friction is the only source of oscillation.

Later, a further research effort has been done to extend the comparison between techniques
of stiction identification and quantification basing on larger sets of data, in particular on a
benchmark data set and numerous data obtained from industrial plants. In addition, Ap-
pendix C proposes a new comparison of stiction quantification techniques – from literature
and personally developed – on another set of industrial data.

In Chapter 5, the issue of stiction compensation has been studied with more attention. In
particular, a technique has been developed from a consolidated approach of the literature,
called “2-movements”. This study was motivated by the fact that current versions of this ap-
proach have, indeed, some drawbacks, such as long times of implementation and, most of all,
some important assumptions on valve position in oscillation. As a result, the proposed ap-
proach improves previous implementations, by overcoming their main limitations.

In detail, using the amplitude of oscillations before the start of the compensation and the
estimate of valve friction – obtainable with already developed quantification techniques – it
is possible to compute the value of valve input signal to obtain the desired valve position at
steady state. This approach, by performing in open loop four precise movements of different
amplitude and duration, allows a complete removal of oscillations on the control variable, in
shorter time than previous implementations. In addition, reference variations can be tracked
and external disturbance can be rejected by monitoring the control error and by switching ap-
propriately back and forth from the friction compensator to the standard PID controller. The
effectiveness of this method has been demonstrated through several examples of simulation
and subsequently validated by some applications on a pilot plant. In particular, this study has
been conducted during the months of abroad research stay, and the activities of experimenta-
tion have been carried out in Laboratory of Process Control at University of Alberta.

For what concerns the second line of research – dedicated to the “advanced” diagnosis of
control loops – as shown in Chapter 6, numerous experimental tests have been carried out
within the pilot plant facility (IdroLab) owned by ENEL. In order to reproduce some typical
malfunctions of actuators, specific performance indices able to diagnose such malfunctions
have been defined. Subsequently, threshold values for performance indices have been cali-
brated and a logic of assignment of different degrees of performance has been developed. In
particular, it has been verified that valve position error permits a specific assessment of the
actuator state and allows one to identify various causes of malfunction.
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Later, this diagnostic logic has been implemented in the new system of performance mon-
itoring. Evident advantages in accuracy of diagnosis than previous versions of the program
have emerged. For example, at the actuator level, one can separate static friction and dynamic
friction from air leakage. Finally, this new version of PCU system (PCU 4) was implemented
and then successfully validated on the combined cycle energy plant of La Casella - Piacenza,
owned by ENEL. An on-line version, which interfaces with the DCS, is currently used to mon-
itor several process control loops.

Finally, as reported in Chapter 7, emphasis on the benefits obtained in loops monitoring
from the application of PCU system is illustrated. As example and as part of the collaboration
with CLUI-EXERA, a large set of data from control loops of two chemical plants owned by
ENI-Versalis – ethylene of Porto Marghera and butadiene of Ravenna – has been analyzed.
These data revealed some interesting issues and typical malfunctions were assessed: valves
with friction, incorrect tuning of controllers, external perturbations.

8.2 Open Issues & Future Developments

Some research issues are still open and possible directions of future works are briefly pre-
sented.

Within the new partnership with ENEL Engineering & Research, a new study specifically
oriented to the analysis of the performance of control loops during the transient phases (start up
procedures, load variations, and stop procedures) of electrical units of combined cycle power
plants was launched. This need arises from the fact that these energy plants are currently
operating in a discontinuous manner with highly variable set points due to the high variability
which they are subjected in terms of electrical power to be delivered in the network.

This activity is based on the analysis of data recorded by the advanced monitoring system
PCU implemented in the plant of La Casella, owned by ENEL, and based on data obtained
from the pilot plant IdroLab through new test campaigns specially dedicated. Unfortunately,
contingent problems of various kinds, as the scarce availability of new industrial data and the
shut-down of the pilot plant, have considerably slowed down this study. The future goal, also
during months after the end of this PhD, is to complete such collaborative activities.

At the same time, the possibility of reaching valid results of common interest in completion
of the international collaboration undertaken will be tested. In particularly, activities started
during the period of visit in Canada by Prof. Huang and concerning Expectation Maximiza-
tion algorithms applied to valve stiction estimation will be completed with the aim of eventual
publication of significant results.

Other future activities could address various issues concerning control loops monitoring
and assessment (CLPM/CLPA), and they would be specifically oriented to the development of
new algorithms to include in PCU software. Among other topics, interesting aspects, at the
moment only partially analyzed, may be:

• a new data-driven model of valve friction which could overcome some limitations of
models presented so far in the literature;

• revisiting the issue of friction estimation by integrating analysis in frequency and in time
domain, and through the use of the descriptive function;

• implementation of new techniques of literature for the detection of significant oscilla-
tions (even multiple) to integrate the basic technique of Hägglund [67], the only one
currently implemented in PCU software.
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Appendix A

Stiction Quantification - Additional
Issues

Abstract

In this appendix some additional aspects related to issues faced in Chapter 4, but not re-
ported in the corresponding papers [29] and [30], are briefly described.
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A.1 Other Sources of Loops Oscillation

In real data, some of the oscillatory behaviors of control loops come from external disturbances
and poor controller tuning. The main focus of Chapter 3 and 4 is the identification and quan-
tification of a control loop with valve stiction, possibly with the additional presence of external
disturbances, which makes the task much more difficult. Thus, the cases of loop oscillation not
due to stiction, that is, only due to aggressive controller or external disturbances or due to both
of these sources, have not been extensively considered, neither in the simulation section nor
for real data sets.

It is worth to notice that in the industrial practice the proposed identification methods, as
almost any stiction quantification method, should be applied only on data where valve stiction
has been reliably detected by specific diagnosis techniques. Nevertheless, cases of pure exter-
nal disturbance and pure aggressive tuning could be used as negative tests, in order to estimate
close-to-zero stiction parameters.

Here below two simulation examples are briefly illustrated as negative tests.

A.1.1 Pure external disturbance

A case of pure external disturbance is analyzed first. Valve stiction is not present (MV = OP ;
so that S = 0, J = 0), while the linear process is the one of Eq.4.23, as well as the external
disturbance: ηk = 0.25

(
sin(0.03 k) + 0.5sin(0.07 k)

)
.

Figure A.1 shows the time trends and the estimated signals obtained with EARMAX linear
model and Kano’s stiction model [87]. Note that PV and MV signals are both well estimated; in
particular, MVpre =OP =MV , that is, stiction parameters are quantified exactly equal to zero.
Also the external nonstationary disturbance is evaluated with good accuracy (ηp ≈ η).

Figure A.1: Simulation data with only external disturbance (no valve stiction).

In addition, note that the Monte-Carlo simulation analysis performed in Section 4.3.1 could
be extended, by considering the case of no valve stiction (S = 0, J = 0). Therefore, x-axis of

Figures 4.7 and 4.8 could be enlarged accordingly, and values of fitting indices (EG and F(val)
P V )

could be extrapolated from the visible points.
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Note that these values would be particular small, since the lower is stiction, the higher
is the noise-to-signal ratio. This is due to the fact that standard deviation of the stationary
disturbance {ek} has been fixed for each simulation, while the amplitude of oscillation (PV)
decreases as the amount of stiction, that is, the ratio S/J , decreases. Therefore, a case of no
stiction would mean a maximum level of noise-to-signal ratio.

A.1.2 Pure aggressive controller tuning

Then, the same simulation example (Eq.4.23) has been studied in the case of another source
of oscillatory behavior, that is, aggressive controller tuning. Valve stiction and external distur-
bance are not present: S = 0, J = 0, and ηk = 0 ∀ k. The controller parameters are set to Kc = 2
and Ki = 1.75, which represent a very aggressive tuning.

Figure A.2 shows the time trends and the estimated signals obtained with ARMAX lin-
ear model and Kano’s stiction model. Note that PV and MV signals are both well estimated;
in particular, MVpre = MV , that is, stiction parameters are quantified exactly equal to zero.
Therefore, the identification approach passes the negative test also in the case of aggressive
tuning.

Figure A.2: Simulation data with aggressive controller tuning
(no valve stiction and no external disturbance).

A.2 Effect of White Noise Level

It is worth noticing that, in simulation data presented in Section 4.3.1, a white noise with a
standard deviation equal to σ = 0.1 is not actually small if compared with the variance of
noise-free P V signal. The noise-to-signal ratio (NSR) is indeed quite large for all the consid-
ered simulations, ranging in the following interval: NSR ∈ [5%, 25%]. As said before, when
the amount of stiction (that is, the ratio S/J) increases, the amplitude of oscillation also in-
creases. Therefore, since the standard deviation of the stationary disturbance {ek} is fixed for
each simulation, the higher is stiction, the lower is the noise-to-signal ratio.

As an example, Figure A.3 shows the time trends for a case of simulation with valve stiction
(Kano’s model, with S = 5, J = 2) and an external nonstationary disturbance: ηk = a

(
sin(0.03k)+
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0.5sin(0.07 k)
)
. The noise-to-signal ratio on PV is equal to 9.8% in this case.

Figure A.3: Simulation data of SP and PV with a significant level of white noise (σ = 0.1).

A.3 Disturbances with More Complex Behaviors

Here below the effect of disturbances with more complex behaviors (e.g. drift and colored
noise) is analyzed. The same linear process of Eq.4.23 is studied, and valve stiction is described
by Kano’s model.

A.3.1 Drift

Figure A.4 shows the time trends for a case of simulation with S = 10, J = 4, and an external
drift disturbance, which increases linearly with time: ηk = a k. Identification is performed by
using Kano’s stiction model and EARMAX linear model. Note that PV and MV signals are both
well estimated. The estimates of stiction parameters are close to real values: Ŝ = 10, Ĵ = 3.8.

Also the external nonstationary disturbance is evaluated with good accuracy; the estimated
bias term (ηp) clearly shows an increasing trend, with a fair fitting error. Therefore, good
performance is also possible in the cases of such drift disturbances, provided that an extended
linear model (EARMAX or EARX) is used in the identification.

A.3.2 Colored noise

Here the case of colored noise is evaluated. Note that, if assumed as colored noise, the external
disturbance (η) is nor slowly-varying neither nonstationary, as in the case of a sum of two
sinusoidal waves (as in Eq. 4.19 and 4.24) or a drift signal. On the opposite, as stated by [101],
the average output signal of a colored noise is actually stationary, and equal to zero when
modeled as the output of a stable filter in response to a white noise.

Therefore, none of the proposed linear structures (extended and not) can properly identify
this specific disturbance dynamics. In the case of colored noise, the most appropriate class
of linear models would describe the equation error not as a moving average, but as an addi-
tional autoregression. Examples are an ARARX model or an ARARMAX model, if an ARMA
description of the error is also present.
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Figure A.4: Simulation data with a drift disturbance.

Figure A.5 shows the time trends for the same case of simulation (Eq.4.23) with S = 10,
J = 4, and an external disturbance (η) which is a colored noise with the following expression:
ηk = −a1ηk−1 − a2ηk−2 + b0vk + b1vk−1, with a1 = 0.1, a2 = 0.8, b0 = 1, b1 = −0.2, where {vk} is a
white noise with variance σ = 0.02.

The identification is performed by using Kano’s stiction model and EARMAX linear model.
Note that an important structural mismatch is now present in the linear part of the model;
while the most appropriate model would be an ARARMAX model.

Anyway, PV and MV signals are well estimated also in this case. In addition, stiction pa-
rameters estimates are close to real values: Ŝ = 10, Ĵ = 3.6. However, the external nonstationary
disturbance is evaluated with very low accuracy. Indeed, the estimated bias term (ηp) shows a
slower time trend, with a significant fitting error, because of the linear model mismatch.

To conclude, it has to be recalled that in the proposed methodologies only the process is
modeled using cause and effect relationship, and the external disturbance is described as a
bias on the output. In particular, (η) is assumed to be a slowly-drifting parameter, not a term
varying in time with high frequency, as in the case of colored noise [89]. Therefore, in the pres-
ence of valve stiction, very good identifications are possible only when the external disturbance
varies slower than the oscillation induced by stiction.

A.4 Different Models for the Hammerstein System

In Chapter 3 and 4, only different types of linear plant have been evaluated and the stiction
nonlinear behavior has been modeled by the same model used for prediction. It would be nice
to use nonlinear plants and more sophisticated stiction models.

First of all, it has to be said that more sophisticated approaches are not new in the liter-
ature. For example, a nonlinear process model has been used by [118], who have performed
valve stiction estimation in the framework of a Hammerstein-Wiener system. In addition, a
non-deterministic stiction model (Preisach type) has been recently proposed by [59]. The idea
of combining a nonlinear process model and a more sophisticated stiction model is very inter-
esting, but it is far beyond the scope of this thesis.

This approach could interest the future research as stated in Section 4.6: “Furthermore,
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Figure A.5: Simulation data with a colored noise.

more complex and flexible stiction models could be used to describe non uniform friction
dynamics in order to obtain more consistent estimates when repeated data registrations are
analyzed.” In addition, note that this approach tends to be really complex, and might be also
impractical for on-line and even off-line industrial applications.

Anyway, it has to be recalled that for the pilot plant experiments presented in Chapter 4,
no stiction model is used to generate the data. Conversely, static friction is introduced on
purpose in the control valve by tightening the stem in its seat. Therefore, a structural error
in the nonlinear part of the Hammerstein model is present, which makes the identification
procedure more challenging than in the simulation cases.

A.5 Impact of Process Time Delay

In general, estimation of time delay is an important issue in identification problems. In Chap-
ter 4, for the sake of simplicity, time delay of the linear process models is never estimated in
the analysis showed. In particular, time delay is assumed known for the simulation results,
and it is fixed a priori for the pilot plant data and the industrial data.

The impact of time delay could be evaluated by considering another grid of possible time
delay L, where L = Ts td is taken as a multiple of the sampling time (Ts). For every triple
(S,J, td), the coefficients of the linear model could be then identified. This approach is robust,
but obviously heavy in terms of computational load.

Among other standard solutions to estimate the time delay, [95] and [89] have proposed
a cross correlation analysis between the input (MV) and the output (PV) sequence. Anyway,
this analysis should be repeated for every point of the stiction parameters grid, that is, every
candidate sequence of MV.

Here below the impact of time delay is studied by using the same linear process of Eq.4.23,
but with a time delay equal to td = 2:

yk = 0.5215yk−1 − 0.0590yk−2 + 0.0009yk−3 + 0.2836uk−1−td + 0.2442uk−2−td
+ 0.0088uk−3−td + ek + 0.5ek−1 + 1.0ek−2 − 1.0ek−3 + ηk (A.1)
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where (η) is the external disturbance, ηk = a
(
sin(0.03 k) + 0.5sin(0.07 k)

)
, with a = 0 for the case

of pure valve stiction, and a = 0.25 for the case of stiction and disturbance.
One hundred Monte-Carlo (MC) simulations are carried out, by using different realizations

of white noise {ek}, with Kano’s stiction model for both disturbance amplitudes. Note that an
appropriate tuning for the process is now Kc = 0.35 and Ki = 0.15. The time delay presence is
taken into account by building a grid of possible delays: td ∈ [0, tdmax = 5].

Figure A.6a shows the results of one identification in the case of pure valve stiction (with
S = 5 and J = 2) by using ARX linear model. Figure A.6b reports the results of one identification
in the case of same valve stiction plus external disturbance, by using EARMAX linear model.
Note that Kano’s model is also used in both the identification steps.

(a) Pure valve stiction, with ARX model. (b) Stiction and disturbance, with EARMAX.

Figure A.6: Simulation trends for process with time delay.

Table A.1 shows the overall results for these two different linear process models. Note that
similar results can be obtained with the other three models: ARMAX, SS, and EARX. Average
estimates of stiction parameters (S̄, J̄) and time delay (t̄d), with corresponding standard devi-

ations (σS , σJ , σtd ) are reported. Also average indices of fitting are evaluated: F̄(id)
P V , F̄(val)

P V . On
the whole, it is possible to assess that time delay has no significant impact on the identification
methods.

Table A.1: Effect of time delay for the MC simulations.

LIN model η S̄ σS J̄ σJ t̄d σtd F̄
(id)
P V F̄

(val)
P V

ARX no 5.00 0.00 1.97 0.54 1.99 0.10 97.67 97.64
ARX yes 4.99 0.01 2.26 0.57 1.82 0.39 95.97 95.94
EARMAX no 4.99 0.04 1.14 0.26 2.01 0.17 98.30 98.25
EARMAX yes 4.99 0.07 1.82 0.31 1.91 0.29 97.89 97.55

Indeed, the performance of the considered methods are comparable with the ones already
presented in Chapter 4 in terms of estimations of stiction parameters and indices of fitting. Av-
erage estimated values are close to actual parameters, especially for S parameter. Identification
of J is subject to lower accuracy and precision, in particular when a inappropriate linear pro-
cess model is used, that is, ARX (non extended) model in the case of stiction plus disturbance,
and EARMAX (extended) model in the case of pure valve stiction.

Note that this particular effect is not due to the presence of process time delay, but it is
due to the structural difficulty lying in the identification problem: Hammerstein system with
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internal unknown variable (MV). Note also that time delay is correctly estimated, with small
variance, that is, only few cases of error.

A.6 Impact of Controller Tuning Parameters

As stated in Chapter 4, in the case of direct identification methods, as the ones presented in
this thesis, the impact of controller tuning parameters on the estimation results is proved to
be not particularly significant. Good performances are possible for reasonably large ranges
of controller parameters around nominal values, both for nonextended and extended process
models. The effect of poor controller tuning has been analyzed by using simulation data in
Section 4.3.2. Here below the same analysis is repeated for data obtained from a flow rate
control loop installed in a pilot plant.

This plant is different from the facility described in Chapter 4, and belongs to the control
laboratory of the University of Alberta (see Figure 5.11). Stiction cannot be introduced by
tightening the stem in its seat, but it is simply inserted by passing the output (OP) of the
controller through a data-driven stiction model (here, Chen’s model [43]), in order to get MV
signal.

A case of pure valve stiction, with S = fs+fd = 10, and J = fs−fd = 4, is considered; no exter-
nal disturbance (η) is present. In a first experiment, the controller (PI-type) parameters are set
to Kc = 18 and Ki = 10, which represent an aggressive tuning. Then, in a second experiment,
the parameters are changed to Kc = 6 and Ki = 3, which compose a sluggish tuning. Note that
an appropriate tuning for this process should be Kc = 9 and Ki = 5.

Figure A.7a shows the results of identification for the case of aggressive tuning, by using
Kano stiction model and ARMAX linear model. Figure A.7b reports results for the case of
sluggish tuning, by using Kano stiction model and EARMAX linear model. In both cases, PV
and MV signals are well estimated.

(a) Aggressive tuning. (b) sluggish tuning.

Figure A.7: Pilot plant data with different controller parameters.

Similar results have been obtained for the other linear process models, as showed in Ta-
bles A.2 and A.3. Therefore, good performance and robustness of the approaches obtained in
simulation are confirmed by using pilot plant data.

Note that, as expected, the results for the sluggish tuning are a bit inferior to the ones for
the aggressive tuning. Fewer periods of oscillation are registered in the same time interval
(' 500 s), and then data are less exciting for the process and less informative, especially for
extended linear models. Note also that identification of J parameter is confirmed to be more
critical. On the whole, good performance and robustness of the approaches with respect to
very different controller tuning parameters have been verified.
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Table A.2: Results for data with aggressive tuning.

LIN model NL model S J F
(id)
P V F

(val)
P V FMV

ARX Kano 10.0 3.7 93.73 93.85 94.95
ARMAX Kano 10.0 3.7 93.75 93.91 94.95
SS Kano 10.0 3.7 93.76 93.90 94.95
EARX Kano 10.0 3.7 94.25 93.63 94.95
EARMAX Kano 10.0 3.8 94.33 93.77 96.63

Table A.3: Results for data with sluggish tuning.

LIN model NL model S J F
(id)
P V F

(val)
P V FMV

ARX Kano 10.0 3.5 93.46 - 88.80
ARMAX Kano 10.0 3.6 93.50 - 91.04
SS Kano 10.0 3.6 93.50 - 91.04
EARX Kano 10.0 5.0 90.86 - 77.61
EARMAX Kano 10.0 5.0 91.68 - 77.61

A.7 Impact of Stiction Grid Dimension

Some details about the grid dimension have been already given in Section 4.2.3. The stiction
parameters grid has a triangular shape, since fs ≥ 0, fd ≥ 0 (or S ≥ J). Thus, overshoot stiction
cases (J > S) are excluded; actually waveforms generated for these combinations are rarely
observed in practice. The largest value of S (and J) is the OP oscillation span. Therefore,
under boundary conditions, when S = J = ∆OP (the span of OP), the valve jumps between two
extreme positions, generating an exactly squared MV signal.

In addition, the step size of stiction parameters plays an obvious key role: small values
allow one to increase accuracy, avoiding the effect of local minima, at the expense of higher
computational times. A rigorous proof of this statement has been given in [90].

According to the experience and extensive simulation results, by assuming as acceptable
an error on the estimation of S and J equal to 0.1 (which is 1/1000 of stroke of valve stem,
0-100%) a step size equal to 0.05 can be considered adequate. For example, for the simulation
results of Chapter 4 (Figures 4.5, 4.6, 4.7, 4.8), a grid with a step size equal to 0.1 has been
considered. No extra simulation, varying the step size of the grid, is here presented.
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Appendix B

Stiction Quantification - Another
Approach

Abstract

In this appendix, another possible approach for valve stiction quantification is briefly illus-
trated. This study has been conducted during the months of abroad research stay at University
of Alberta, by Prof. Biao Huang of Department of Chemical and Materials Engineering.

In details, parameters of control loop with sticky valve are identified and estimated by
implementing a specific Expectation Maximization (EM) algorithm. The system, previously
described in Chapters 3 and 4 with several types of Hammerstein model – a nonlinear block
for the sticky valve and linear block for the process dynamics – is now reformulated so that the
friction nonlinearity becomes a set of simple linear and parallel relations, thus constituting a
sort of “multi-mode” model to be integrated with the linear dynamics of the process, to form
an extended model.

Such unknowns parameters are estimated by EM algorithm that employs, among other
algorithms, techniques for filtering and smoothing (of Kalman style), and which, starting from
known external variables of input and output, simultaneously identifies all system parameters:
valve and process. This activity must be considered additional to previous works, in particular
to [25] and [30], but it is still at a draft level.
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B.1 Introduction

Generally speaking, the expectation maximization (EM) algorithm computes maximum likeli-
hood (ML) estimates of unknown parameters θ in probabilistic models involving latent vari-
ables Z 1. The EM algorithm can be thought as a systematic way of separating one hard prob-
lem into two new closely linked problems, each of which is hopefully more tractable than the
original problem [127].

This problem separation forms the very heart of the EM algorithm. More pragmatically
speaking, the EM algorithm is an iterative method that alternates between computing a con-
ditional expectation and solving a maximization problem, hence the name expectation maxi-
mization.

To thoroughly appreciate the EM algorithm, it is important to understand why the above
mentioned problem separation indeed results in an ML estimate. It is also worth to notice that
EM algorithms can be effectively used for estimating models of dynamic systems, i.e., system
identification. In particular, EM algorithms can be used for identification of system parameters
even in the case of missing variables.

Therefore, EM can be applied in the specific situation extensively faced in this thesis, that is,
the case of model-based valve stiction detection and estimation, since the actual valve position
(MV) is a variable not typically available. In Chapters 3 and 4, the control loop has been
modeled by means of several types of Hammerstein system, that is, a nonlinear block for the
sticky valve and a linear block for the process dynamics. In this appendix, the idea is to apply
EM algorithm in the framework of such a type of Hammerstein system.

Before giving the problem formulation, the specific literature concerning EM algorithms
applied to system identification has been revised. First of all, it is worth to notice that numer-
ous are the papers for linear systems identification using the EM algorithms, and there are also
quite a few approaches for nonlinear systems. Nevertheless, very few are the methods specifi-
cally oriented for Hammerstein systems. A brief introduction to some of these works is given
below.

[165] develops and illustrates a maximum-likelihood based method for the identification
of Hammerstein–Wiener model structures, by using a specific EM algorithm. A very general
situation is considered wherein multi-variable data, non-invertible Hammerstein and Wiener
nonlinearities, and colored stochastic disturbances both before and after the Wiener nonlin-
earity are all catered for. Anyway, the nonlinearity (or nonlinearities, in the case of MIMO
systems) must be memoryless, such as saturation, deadzone, polynomial, and piecewise linear
functions. In the method of [117], a pure Hammerstein model is identified with EM algorithm,
along with a kernel-based identification approach for the linear part. Anyway, the nonlinear
part is still a standard function, that is, a static nonlinearity.

Therefore, these two approaches cannot be directly or indirectly applied in the case of valve
stiction nonlinearity, which is non-static and has strong features of memory.

Indeed, this issue seems to have been already tackled in [163]: “Hammerstein systems are
usually composed of static (memoryless) nonlinearities and linear dynamic components. How-
ever, in order to detect the control valve stiction, Hammerstein systems needs to be extended:
the input nonlinearity has a hysteretic behavior, instead of being memoryless. Such systems are
referred to as extended Hammerstein systems. It is worthy to point out that some recent articles
[among others, [162]] studied the identification of Hammerstein systems with non-static input
nonlinearities. However, these studies are not designed for describing control valve stiction
based on oscillatory signals, and consequently are hardly applicable in this case [...]”.

1The term latent variable is adopted from statistics and refers to a variable that is not directly observed. Hence,
a latent variable has to be inferred (through a mathematical model) from other variables that are directly observed,
i.e., measured. Latent variables are sometimes also referred to as hidden variables or unobserved variables and,
within the EM literature, they are sometimes called the missing data or the incomplete data.
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An useful toolbox is freely available with the objective, among others, of using EM algo-
rithm to identify dynamic systems; the latest version can be found in [110]. Indeed, this toolbox
can perform system identification for different types of models (linear, as transfer function or
State Space; nonlinear, as Hammerstein–Wiener transfer function, bilinear State Space, general
State Space; frequency domain data) by using different techniques (gradient based search, EM
algorithm, subspace methods). Nevertheless, the specific combination, that is, Hammerstein
system and EM algorithm, which is being sought in this appendix is not directly supported in
the toolbox.

This appendix has the following structure: in Section B.2, in order to derive the EM al-
gorithm, the ML problem is clearly defined. Section B.3 gives a basic introduction to the EM
algorithm within the setting of dynamic systems. Section B.4 states the problem formulation.
Conclusion and future developments are given in Section B.5

B.2 Maximum Likelihood Estimation

The maximum likelihood method is based on the rather natural idea that the unknown pa-
rameters should be chosen in such a way that the observed measurements becomes as likely as
possible. More specifically, the ML estimate is computed according to:

θ̂ML = argmax
θ
pθ(y1, ..., yN ) (B.1)

where yt denotes the measurement at time t. Furthermore, subindex θ indicates that the corre-
sponding probability density function pθ(y1, ..., yN ) is parameterized by the (unknown) param-
eter θ. The joint density of the observations pθ(y1, ..., yN ) can, using the definition of conditional
probabilities, be written as:

pθ(y1, ..., yN ) = pθ(y1)
N∏
t=2

pθ(yt |Yt−1) (B.2)

where Yt−1 := {y1, ..., yt−1}. It is often convenient to consider the so called log-likelihood func-
tion:

Lθ(Y ) = logpθ(y1, ..., yN ) =
N∑
t=2

logpθ(yt |Yt−1) + logpθ(y1) (B.3)

rather than the likelihood function. In the interest of a more compactness, the notation Y =
{y1, ..., yN } is introduced. The logarithm is a strictly increasing function, implying that the
following problem is equivalent to (B.1):

θ̂ML = argmax
θ

N∑
t=2

logpθ(yt |Yt−1) + logpθ(y1) (B.4)

This problem can of course be solved using standard methods such as Newton’s method or
one of its related variants. However, the ML problem can also be solved using the expectation
maximization algorithm, an approach that has steadily gained in popularity since its formal
birth in 1977 [57].

B.3 Expectation Maximization

The strategy underlying the EM algorithm is to separate the original ML problem (B.4) into
two linked problems, each of which is hopefully easier to solve than the original problem.
Abstractly speaking this separation is accomplished by exploiting the structure inherent in the
probabilistic model.
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The key idea is to consider the joint log-likelihood function of both the observed variables
Y and the latent variables Z:

Lθ(Z,Y ) = logpθ(Z,Y ) (B.5)

and then to assume that the latent variables Z are available. Using the definition of conditional
probability:

pθ(Z |Y ) :=
pθ(Z,Y )
pθ(Y )

(B.6)

the following connection between (B.3) and (B.5) can be established:

logpθ(Y ) = logpθ(Z,Y )− logpθ(Z |Y ) (B.7)

Let θk denote the estimate of the parameter θ from the kth iteration of the algorithm. The prob-
lem separation mentioned above is now obtained by integrating (B.7) w.r.t. pθk (Z |Y ), resulting
in:

logpθ(Y ) =
∫

logpθ(Z,Y )pθk (Z |Y )dZ −
∫

logpθ(Z |Y )pθk (Z |Y )dZ

= Eθk {logpθ(Z,Y )|Y }︸                  ︷︷                  ︸
:=Q(θ,θk)

−Eθk {logpθ(Z |Y )|Y }︸                 ︷︷                 ︸
:=V (θ,θk)

(B.8)

In the above equation we have used the fact that∫
logpθk (Z |Y )dZ = logpθk (Y ) (B.9)

It is worth noticing that the latent variables are here assumed to be continuous. However, there
is nothing that prevents one from deriving the EM algorithm for discrete latent variables, the
only difference is that the integrals in (B.8) is replaced by summations.

Studying the difference between the log-likelihood function Lθ(Y ) evaluated at two differ-
ent values θ and θk ,

Lθ(Y )−Lθk (Y ) = (Q(θ,θk)−Q(θk ,θk)) + (V (θk ,θk)−V (θ,θk)) (B.10)

where the definitions in (B.8) have been used. It is now interesting to consider (V (θk ,θk) −
V (θ,θk)) in more detail. Straightforward application of the definition of V (θ,θk) provided in
(B.8) results in:

V (θk ,θk)−V (θ,θk) =
∫

log
(
pθk (Z |Y )

pθ(Z |Y )

)
pθk (Z |Y )dZ

= Eθk

{
− log

(
pθ(Z |Y )
pθk (Z |Y )

)
|Y

}
(B.11)

Note that this means that V (θk ,θk)−V (θ,θk) is the Kullback-Leibler information distance [94] be-
tween pθk (Z |Y ) and pθ(Z |Y ). Furthermore, the negative logarithm is a convex function, which
implies that Jensen’s inequality2 can be used to establish

Eθk

{
− log

(
pθ(Z |Y )
pθk (Z |Y )

)
|Y

}
≥ − logEθk

{
pθ(Z |Y )
pθk (Z |Y )

|Y
}

= − log
∫
pθ(Z |Y )dZ = 0 (B.13)

2Jensen’s inequality states that if f is a convex function then

E{f (x)} ≥ f (E{x}), (B.12)

provided that both expectations exist.
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which effectively proves that
V (θk ,θk)−V (θ,θk) ≥ 0. (B.14)

Hence, if one makes use of this fact in (B.10) and chooses a new parameter θ such thatQ(θ,θk) ≥
Q(θk ,θk), the likelihood is in fact also increased, or at least is left unchanged:

Q(θ,θk) ≥Q(θk ,θk) =⇒ Lθ(Y ) ≥ Lθk (Y ) (B.15)

The EM algorithm now suggests itself that if one starts by computing Q(θ,θk) according to its
definition in (B.8), this function can then be maximized with respect to θ in order to obtain
a new estimate θk+1. According to the above analysis, this new estimate will indeed produce
a higher or at least the same likelihood as the previous estimate θk . This procedure is then
repeated until convergence, which is summarized in the algorithm below. It is very important
to note that the convergence is only guaranteed to be to a local minima.

Expectation Maximization Algorithm

1. Set k = 0 and initialize θ0 such that Lθ0
(Y ) is finite.

2. Expectation (E) step: Compute

Q(θ,θk) = Eθk logpθ(Z,Y )|Y =
∫

logpθ(Z,Y )pθk (Z |Y )dZ (B.16)

3. Maximization (M) step: Compute

θk+1 = argmax
θ
Q(θ,θk). (B.17)

4. If not converged, update k := k + 1 and return to step 2.

The resulting function Q(θ,θk) acts as a local (about θk) approximation of Lθ(Y ). The EM
algorithm seeks a maximizer of Lθ(Y ) by computing and seeking maximizers of Q(θ,θk). The
evaluation of Q(θ,θk) can be thought of as a smoothing step since it involves computing an
expectation conditional on the whole observations sequence Y .

There are several ways in which the convergence check in step 4 of the above algorithm can
be performed. One common way is to simply monitor the value of the log-likelihood and say
that the algorithm has converged whenever the increase falls below a certain threshold εL > 0
(a typical default value is εL = 10−6):

|Lθk+1(Y ) −Lθk(Y )| ≤ εL (B.18)

Another way to check for convergence is to monitor the change in the parameter value
between two consecutive iterations and state that the algorithm has converged when

‖θk+1 −θk‖2 ≤ εP (B.19)

where εP > 0 is some suitably chosen threshold.
The choice of the incomplete data Z is a key design variable in the implementation of the

EM-algorithm. In [127] EM algorithm is introduced as a tutorial, and a simple example is
provided to show how the EM algorithm can be used to solve the identification problem of
a linear state-space model. In this case, the states X := {x1, ...,xN+1} plays the role of latent
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variables, due to the fact that if the states were known one could find the parameters simply
by solving a linear regression problem.

The aim of this appendix is to suggest an algorithm that finds the θMLN that maximizes (B.4)
for each N . As a result it cannot be guaranteed that θMLN is actually found. This is basically the
same situation as when (B.4) can be explicitly maximized by gradient methods, and one cannot
guarantee that solution ends up in a local maximum.

B.4 Problem Formulation

In this section the problem formulation is briefly introduced. In this section the problem for-
mulation is briefly introduced. The control loop is modeled by a Hammerstein system as de-
picted in Figure B.1. In details, x and y are the linear process input and output (that is, MV
and PV respectively), u is the controller output (that is, OP), r is the loop set point, w and v are
sequences of Gaussian white noise.

Figure B.1: Hammerstein system representing the (sticky) control valve followed by the linear process,
inserted into the closed-loop system.

First of all, an easy method which employ EM algorithm in the problem of valve stiction
estimation inside the framework of Hammerstein model is briefly described below. The usual
grid of search for the stiction parameters is built up, and an EM algorithm is employed for
each grid combination. Only the identification of the linear part of the system is performed,
by using process output y and the candidate valve output x. A common data-driven stiction
model (e.g., [87, 76]), and a standard linear process model could be used (e.g., ARX, ARMAX,
State Space).

To be honest, this approach seems just another interpretation of the typical – almost abused
– approach to tackle the problem of valve stiction estimation. It is surely a first solid step to
introduce EM algorithms in this context, but it does not seem to be able to produce signifi-
cant advantages in terms of accuracy, precision and computational times with respect to basic
methods, as least squares method with ARX linear model. Moreover, this approach does not
exploit the peculiarity of EM algorithm in managing missing variables, that is, in this case, the
unmeasurable signal of valve position (x, that is, MV).

Therefore, a full EM-based method has to be introduced. A draft of approach is here pro-
posed.

The following extended Hammerstein system is considered. Valve stiction is described with
He’s model [76], and the linear process dynamics with a simple ARX model.

A flowchart of the data-driven model of He is given in Figure B.2.
The sticky valve has a nonlinear dynamics expressed by the following two simple relations:

xk =

xk−1 + [ek − sign(ek) · fd] if |ek | > fs
xk−1 if |ek | ≤ fs

(B.20)
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Figure B.2: Flowchart of He’s stiction model (redrawn from [74]).

where x is the stem position (valve output), u is the actuator air pressure, that is, the controller
output (valve input). Two parameters are involved: fs the static friction force, and fd the dy-
namic friction force. Note that ek is a sort of valve position error: ek = uk −xk−1. By substituting
ek , one gets:

xk =

uk − [sign(uk − xk−1)fd] if |uk − xk−1| > fs
xk−1 if |uk − xk−1| ≤ fs

(B.21)

and then, by separating the nonlinear sign function, three different input-output relations for
the sticky valve are possible:

xk =


uk − fd if |uk − xk−1| > fs & uk − xk−1 > 0

uk + fd if |uk − xk−1| > fs & uk − xk−1 < 0

xk−1 if |uk − xk−1| ≤ fs

(B.22)

The linear part is a standard ARX model:

yk =
n∑
j=1

−aj · yk−j +
m∑
j=1

bj · xk−j−L + vk

= θyϕy +θxϕx + vk

(B.23)

where aj and bj are the coefficients for the autoregressive and exogenous part, respectively.
Linear parameters can also be expressed by vectors θy , θx, with ϕy = [yk−1, ..., yk−n]T and ϕx =
[xk−1, ...,xk−m]T . For simplicity, the orders (n,m) and the time-delay units L are assumed known.

The Hammerstein system (see Figure B.1) is now reformulated so that the friction nonlin-
earity becomes a set of simple linear and parallel relations (B.22), thus constituting a switching
“multi-mode” model to be integrated with the linear dynamics of the process, to form an ex-
tended model.

Therefore, a switching state variable I has to be introduced. This variable can assume
only three natural values for all time samples: Ik = 1,2,3∀k. The valve dynamics can be then
summarized as:

xik = Aixik−1 +Biuk +Fid +wk with i = 1,2,3 (B.24)
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where A = [0,0,1], B = [1,1,0], and Fd = [−fd , fd ,0].
The problem to be solved has the following features:
• Cobs := {U,Y }: the observed variables are the sequence of valve input U := {u1, ...,uN },

and the sequence of process output Y := {y1, ..., yN }, where N is the total number of time
samples.

• Cmis := {X,I}: the missing variables are the sequence of valve output X := {x1, ...,xN }, and
the sequence of state variable I := {I1, ..., IN }.

• θ := {fd , fs,θlin,σ2
v ,σ

2
w}: the set of parameters to be identified, where θlin = [θy ,θx] is the

set of parameters for the linear part of the system, and σ2
v , σ2

w are the variances of the two
Gaussian noises.

The Q function can be written as:

Q(θ,θk) = Eθk logpθ(Cmis,Cobs)|Cobs =
∫

logpθ(Cmis,Cobs) · pθk (Cmis|Cobs)dCmis (B.25)

By substituting corresponding variables in (B.25), the joint probability logpθ(I,X,Y ,U ) is:

logpθ (IN ,xN , yN ,uN |I1:N−1,X1:N−1,Y1:N−1,U1:N−1) · p(I1:N−1,X1:N−1,Y1:N−1,U1:N−1) (B.26)

By applying the chain rule, one gets:

log
N∏
k=1

pθ (Ik ,xk , yk ,uk |I1:k−1,X1:k−1,Y1:k−1,U1:k−1) (B.27)

By looking at graph for the system of Figure B.3, the generic kth term of (B.27) can be written
as the product of three probabilities:

pθ(yk |xk , yk−1:k−n) · pθ(xk |Ik = i,uk ,xk−1) · pθ(Ik |uk ,xk−1) (B.28)

The first term of (B.28), with respect to process output y, has a Gaussian (normal) distribution

Figure B.3: Graph of the system.

with zero-mean and variance σ2
v :

yk −θyϕy −θxϕx := Fy = vk ∼N (0,σ2
v ) (B.29)
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p(Fy) =
1

σv
√

2π
exp

−
(
Fy − 0

)2

2σ2
v

 (B.30)

Also the second term, with respect to the valve output x, has a Gaussian (normal) distribution
with zero-mean and variance σ2

w:

xik = Aixik−1 −B
iuk −Fid := Fix = wk ∼N (0,σ2

w) (B.31)

p(Fix) =
1

σw
√

2π
exp

−
(
Fix − 0

)2

2σ2
w

 (B.32)

The third term, with respect to the switching variable state I , is a discrete probability with two
different switching terms:

P (Ik = 1,2) = P (|uk − xk−1| > fs) = P (ek < −fs ∨ ek > fs)
P (Ik = 3) = P (|uk − xk−1| ≤ fs) = P (−fs ≤ ek ≤ fs)

(B.33)

so that
∑3
i=1 P (Ik = i) = 1.

These probabilities can be expressed by means of the cumulative distribution function
(CDF). Figure B.4 shows a probability density function (PDF) and a CDF for a Gaussian with
mean µ = 0.2, variance σ = 1, and static friction fs = 1.5. Since in general P (ek ≤ Ea) = CDF(Ea)
and P (Ea ≤ ek ≤ Eb) = CDF(Eb)−CDF(Ea), one gets:

P (ek < −fs ∨ ek > fs) = P (ek < −fs) + P (ek > fs) = CDF(−fs) + (1−CDF(fs))

P (−fs ≤ ek ≤ fs) = P (ek ≤ fs)− P (ek ≤ −fs) = CDF(fs)−CDF(−fs)
(B.34)

Indeed, the two switching probabilities sum to 1.

(a) Probability Density function. (b) Cumulative Density Function.

Figure B.4: Probability plots.

The CDF for the Gaussian distribution of ek has the following expression:

CDF(ek) =
1
2

[
1 + erf

(
ek −µ
σ
√

2

)]
(B.35)

with zk = ek−µ
σ
√

2
and erf(zk) = 2√

π

∫ zk
0 exp(−t2)dt. Thus, numerical values of probability can be

computed.
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B.5 Conclusions and Future Developments

This appendix has presented a draft of method which applies Expectation Maximization al-
gorithm to the problem of valve stiction estimation in control loops. A introduction to EM
algorithms and maximum likelihood (ML) problems has been given within the setting of dy-
namic systems. The specific formulation of problem has been stated, but the procedure has
not been yet fully derived. Future activity will imply a complete derivation of the algorithm,
and then applications to simulation examples and real data from pilot facilities and industrial
plants.
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Appendix C

Stiction Quantification - Further
Applications

Abstract 1

This appendix completes the study of scientific approaches and related techniques regard-
ing estimation of valve stiction. Chapter 2 was mainly devoted to an overview of features of
different techniques proposed for modeling, detection, quantification, and compensation of
friction in control valves.

In this appendix, in the perspective of a very practical approach, performance of some
well-established methods for stiction quantification are compared by application on the same
industrial datasets of different origin, in order to show how discrepancies may arise and possi-
ble causes of error, thus giving indications of next research work to carry out.

1This appendix is based on [26]: Comparison of Techniques for Valve Stiction Quantification.
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C.1 Introduction

Chapter 2 has reviewed existing literature and techniques appeared in recent years about dif-
ferent issues of valve stiction. It was put into evidence that, while several aspects can be con-
sidered to have reached a mature level of knowledge, stiction quantification should deserve
further research efforts. This happens because the knowledge of stiction amount is a very
important issue in order to follow stiction evolution in time and to be able to predict valve
maintenance. Techniques presented up to date usually have been validated on few industrial
data and therefore, according to the author’s opinion, there is room for improvements in order
to obtain larger reliability of predictions.

In this appendix, performance of some well-established methods for stiction quantification
are compared by application on different industrial datasets. The text is organized as indicated
in the sequel. In section C.2, some recent techniques, selected on the basis of their charac-
teristics, are illustrated with some more details. Afterwards, they are compared on industrial
datasets, having different origin. A first dataset, analyzed in section C.3, derives from a bench-
mark made available in [85], while a second dataset, presented in section C.4, has been created
during a multiannual plant implementation of a performance monitoring and valve diagnos-
tic system developed by the authors [123]. This opportunity is to be considered a distinctive
aspect of this study, as it allows one to put into evidence the real practical significance of differ-
ent techniques, very often presented and tested only in simulation or on a limited number of
industrial data. Finally, overall conclusions and future trends of research activity are reported
in section C.5.

C.2 Stiction Quantification Techniques

As discussed in Chapter 4, the main difficulty in stiction detection and quantification is that the
actual valve stem position (MV) is not available in the most of industrial plants [25]. Further-
more, the true value of valve stiction is not known a priori and cannot be measured through
specific invasive tests. Therefore, the validation of a proposed technique on a single set of
industrial data can be useless. This is confirmed by the fact that different detection and quan-
tification techniques can strongly disagree when applied on the same data.

In [85] different techniques for stiction detection and quantification can yield different and
inconsistent results when applied on the benchmark data used as bed of comparison. In Chap-
ter 4 it was also underlined that stiction estimation may fail in the case of simultaneous pres-
ence of external process disturbances. Repeating system identification and stiction estimation
for different acquisitions for the same valve allows one to follow the evolution of stiction val-
ues in time and to disregard anomalous cases, which result as outliers with respect to the main
trend [25]. Afterwards, control operators, by comparing stiction with acceptable thresholds,
may be able to schedule valve maintenance or, if the case, to perform on-line stiction compen-
sation.

In this appendix, the focus is on stiction detection and estimation. A large number of
industrial data is used to compare several different stiction quantification techniques in order
to establish their strengths and weaknesses.

Firstly, 8 quantification methods are compared on a large set of the benchmark data avail-
able in [85]. Then, 4 of these techniques are selected to be further applied on a industrial data
set obtained from Italian refinery plants, which consists of different acquisitions for the same
valves for long times.

The stiction quantification methods here compared are:

• the original method of Chapter 3 ([22, 25]), based on grid search and Hammerstein sys-
tem identification (Kano’s stiction [87] model plus ARX linear model), here called HAM1;
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• the method of Chapter 4 ([29, 30]) based on grid search and Hammerstein identification
(Kano’s stiction model plus State Space model), here called HAM2;

• the method of Chapter 4 ([29, 30]) based on grid search and Hammerstein identification
(He’s stiction model [76] plus E(xtended)-ARX model), here called HAM3;

• the original technique of He and Wang [75], based on their semiphysical stiction model
[74] and simplifying assumptions on signal oscillations, here called He; 2

• the Hammerstein system identification method proposed by Karra and Karim [90], here
called K&K;

• the method of Lee et al. [95], based on constrained optimization and contour map, here
called Lee;

• the method of Jelali [85], based on global search algorithms, here called Jelali;

• the Hammerstein-Wiener identification approach of Romano and Garcia [118], here called
R&G.

These quantification techniques have been chosen for different reasons: Jelali, K&K and Lee
methods are now considered well-established techniques of the literature, and their results
are easily accessible. R&G is an interesting example of Hammerstein-Wiener identification,
which models the process as nonlinear. He method is a novel simplified approach which has
shown recent appealing results. The other three Hammerstein methods have been developed
in Chapter 3 and 4, and can now be considered robust methodologies validated on a large set
of data obtained from pilot and industrial plants.

C.3 Benchmark Data

In [86] an exhaustive comparative study of 11 methods for detecting stiction in control valves
was presented. This study involved 93 different data sets from different process industries,
including power plants (POW), chemical plants (CHEM), pulp and paper mills (PAP), com-
mercial buildings (BAS), mining (MIN) and metal processing (MET).

This dataset is now a well-known benchmark useful for validation of novel techniques con-
cerning control loop performance assessment. In the same [86], a brief comparison of the
results of three stiction quantification techniques were also presented: Karra and Karim [90],
Lee et al. [95], and Jelali [84] methods were compared on some of these industrial loops.

In [75] the authors compared their stiction quantification method with other 4 published
methods using 20 industrial loops. In the present appendix, an even more comprehensive
comparison of an higher number (8) of stiction quantification methods is shown. A thorough
discussion of the results is then provided, explaining the (possible) reasons of success and
failure of the methods in different cases.

Table C.1 provides stiction quantification results on 29 industrial loops of the benchmark
[86]. The real root causes of malfunction for these loops are known. The estimated values of
the two stiction parameters are reported in different columns: S (dead band + stick band), and
J (slip-jump).

The results of the first three Hammerstein methods (HAM1, HAM2, HAM3) are obtained
by using fixed parameters: the time-delay and the orders of the linear process models are, re-
spectively, td = 0, and (n;m) = (2;2) for HAM1 (ARX) and HAM3 (EARX), n = 2 for HAM2 (State
Space). The step size of 2-D grid of stiction parameters is hS = hJ = 0.1 (compare Chapter 4).

Results of the He method are obtained using the codes provided by the authors with default
values of parameters. Note that this method naturally estimates dynamic friction fd by simply
using the span of oscillation of controller output signal (OP) and information of the true time

2Acknowledgment: the author thank Dr. He providing his MATLAB codes used in this study.
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delay θ. This methods requires also information of the process gain Kp to estimate values of
static friction fs. Here, in the sake of simplicity, for all the loops, the model time delay is fixed
to θ = 0, and, in Table C.1, the results of He method are reported only in the form of parameter
S. Nevertheless, fd(≈ S/2) can provide by itself a good picture of the stiction severity, and fs
could be assumed slightly greater than fd .

The results of the other four methods (K&K, Lee, Jelali, and R&G) are taken directly from
the literature. The cells filled with a short dash (-) indicate that the loop was not analyzed in
the original publication.

It worth to recall that S, which is equal to fs + fd , or approximately to 2fd , is more easy to
be identified and usually provide a significant measure of stiction. On the opposite, J , equal to
fs − fd , or approximately to 2(fs − fd), is much more difficult to be estimated since it is usually
very small and hidden by field noise in industrial data [29, 50].

Table C.1: Benchmark data: comparison of stiction quantification techniques.

loop stic ?
HAM1 HAM2 HAM3 He K&K Lee Jelali R&G

S J S J S J S S J S J S J S J

CHEM 1 yes 0.7 0.5 0.7 0.4 0.9 0.0 0.82 0.5a 0.5a 0.39 0.04 - - - -
CHEM 2 yes 3.3 0.1 3.6 0.0 0.4 0.0 8.35 4.0 0.0 2.52 0.65 - - - -
CHEM 3 no 0.1 0.0 0.0 0.0 0.1 0.0 1.52 0.0a 0.0a 0.0b 0.0b - - - -
CHEM 4 no 7.9 7.4 4.7 1.5 7.5 3.4 13.4 3.5 2.5 0.03 0.02 - - - -
CHEM 5 yes 0.4 0.0 0.3 0.1 0.4 0.0 0.39 0.4 0.0 0.26 0.09 - - - -
CHEM 6 yes 0.0 0.0 0.0 0.0 0.0 0.0 0.31 0.2 0.2 0.01 0.01 - - - -
CHEM10 yes 1.8 1.7 1.8 1.7 1.7 0.9 1.93 1.85 0.05 1.77 1.73 - - - -
CHEM 11 yes 0.0 0.0 0.1 0.0 0.0 0.0 1.76 0.48 0.06 0.24 0.06 - - - -
CHEM 12 yes 1.6 0.6 1.5 0.3 1.8 0.0 1.89 0.5 0.5 1.42 0.14 - - - -
CHEM 13 no 0.5 0.0 0.6 0.0 0.4 0.0 2.11 2.0 2.0 0.04c 0.04c - - - -
CHEM 14 no 1.5 0.0 1.8 0.3 1.7 0.2 2.57 1.6 0.0 0.76c 0.28c - - - -
CHEM 15 no (?) 0.0 0.0 1.7 1.0 0.0 0.0 2.41 0.5 0.2 0.18d 0.11d - - - -
CHEM 16 no (?) 0.1 0.1 0.1 0.1 0.5 0.4 2.97 0.0 0.0 0.10d 0.10d - - - -
CHEM 23 yes 0.2 0.1 0.4 0.0 24.8 0.1 27.8 9.0 9.0 21.57 0.28 - - - -
CHEM 24 yes 8.1 0.0 0.9 0.7 16.0 0.0 19.3 23.0 1.0 20.64e 1.07e 22.9 0.81 - -
CHEM 25 yes 2.0 0.2 1.4 0.2 1.8 0.3 1.92 1.8 0.3 1.62f 1.62f 1.8 0.59 1.59 0.44
CHEM 26 yes (?) 0.1 0.0 0.7 0.1 0.1 0.1 5.16 0.6 0.6 4.11 1.59 - - - -
CHEM 28 yes (?) 0.9 0.1 0.7 0.3 6.0 0.0 4.76 1.4 0.4 1.63 0.35 - - 1.59 0.87
CHEM 29 yes 3.4 0.0 3.4 0.0 3.5 0.0 11.25 3.2a 0.2a 5.35g 0.51g - - 9.2 0.0
CHEM 32 yes 7.4 1.5 6.5 0.2 13.0 0.0 22.1 15.0h 4.0h 12.28 0.08 - - - -
PAP 2 yes 2.6 0.0 2.6 0.0 2.7 0.0 3.49 2.6 1.8 2.52i 2.52i 3.0 0.84 0.42 0.0
PAP 4 no 2.3 0.3 2.4 0.0 17.3 0.0 15.0 1.0 0.3 4.27 0.12 - - - -
PAP 5 yes 0.0 0.0 0.0 0.0 0.4 0.0 0.41 0.0 0.0 0.01j 0.01j - - 0.07 0.0
PAP 7 no 0.0 0.0 0.0 0.0 0.1 0.0 0.21 0.0k 0.0k 0.07 0.07 - - - -
PAP 9 no 0.0 0.0 0.1 0.1 3.9 0.1 3.81 2.0h 2.0h 0.0 0.0 - - - -
MIN 1 yes 1.0 0.0 1.1 0.1 1.7 0.0 1.63 1.2k 1.2k 1.16 1.16 1.02 0.96 1.0* 1.0*
BAS 7 yes 1.2 0.0 1.2 0.0 1.4 0.0 1.67 1.6 0.1 0.61 0.53 - - - -
POW 2 yes 8.4 0.4 8.4 0.4 9.9 0.4 9.88 12.0a 12.0a 1.15 0.87 11.47 1.10 5.08 0.01
POW 4 yes 0.9 0.0 1.0 0.3 1.4 0.0 3.73 3.6a 1.2a 0.58 0.39 4.49 2.49 -

a: applied on the first 1000 samples; b: on the data window 100-900 samples; c: on the data window 100-700 samples;

d: on the data window 800-1200 samples; e: on the data window 100-800 samples; f : on the data window 100-350 samples;

g: on the data window 2000-2500 samples; h: on the data window 1-600 samples; i: on the first 450 samples; j: on the first 3000 samples;

k: on the first 2000 samples; *: results from Choudhury et al. [50]

In general, as it results from Table C.1, different methods can deliver very different values
for the stiction parameter estimates. Note that the exact stiction estimates are clearly depen-
dent on several issues. In addition to some general aspects (e.g., the dataset used in identifica-
tion, choice of objective function, identification algorithm), in the case of Hammerstein system
identification with grid search algorithm, also the following issues are important: type, order,
and time-delay of the process linear model; type of the stiction model; step size of the search
grid. Furthermore, the identification results can be sensitive to the initialization of the Kano’s
stiction model. This issue could seem a negligible aspect, but in reality, it has been verified to
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play an important role [30].
It should be also noted that, except for HAM3 and K&K methods, which use extended pro-

cess linear models, the other techniques do not differentiate other causes from stiction. In other
words, the estimation could be misleading for the case of oscillation not caused by stiction, or
for the case of simultaneous presence of stiction and external disturbance. Therefore, it is not
only preferable, but also necessary to confirm stiction by detection methods before quantify-
ing its amount. Detailed comments about the results of Table C.1 are reported in the next
subsection.

C.3.1 Results on benchmark data

As stated before, it is clear that different methods can yield different values for the stiction
parameter estimates. However, little discrepancies in the numerical values are to be tolerated
in order to regard as consistent the results of all the selected methods. In this view, according
to the homogeneity of the estimates, the benchmark data can be divided in three categories:

• Inconsistent Loops: data with very inhomogeneous results (e.g., some values close to zero
vs. some significant values of stiction, or very different non zero values);

• Partially Consistent Loops: data with only 1 or 2 inconsistent estimates which appear as
wrong values with respect to the average amount (outliers);

• Consistent Loops: data with (very) homogeneous results among all the selected methods.
This classification is based on basic statistics according to the following procedure. For each

benchmark loop, mean values (S̄, J̄) and standard deviations (σS , σJ ) are computed between all
the available estimates of stiction parameters. Two regularity factors are then computed:

RS = f
(
S̄
σS

)
=

1
3
· S̄
σS

RJ = f
(
J̄
σJ

)
=

1
3
· J̄
σJ

(C.1)

These two indices give a simple measure of the homogeneity of the estimates, in analogy
to what presented by [157] for the regularity index of oscillation period in time trends. The
threshold value for both R factors is fixed as unitary, according to what suggested in [157].
Afterwards, for the sets of values with RS < 1, the number of inconsistent estimates (outliers) is
assessed.

An estimate (Si) is here considered an outlier with respect to the whole set if its distance
from the mean value is bigger than the standard deviation of the set:

|Si − S̄ | > σS (C.2)

Now, mean values (S̄II ) and standard deviations (σ IIS ) are recomputed without the outliers
only for the estimates of S. Finally, a second regularity factor can be defined:

RIIS =
1
3
· S̄

II

σ IIS
(C.3)

Also the threshold value for RIIS factor is fixed to unitary. The whole classification criterion
is schematically reported in Table C.2. It worth to notice that RJ factor is not considered in the
classification, since the estimation of J parameter is a more difficult task. As a matter of fact,
the sets of J estimates result typically much more variable than sets of S: RJ < RS .

Note also that the proposed regularity factors prove to be very low as the average value of
estimates approaches zero (S̄II → 0); that is, when a negligible amount of stiction is quanti-
fied. Therefore, the previous criterion has to be relaxed for these low-stiction cases in order
to properly assess which set of estimates are fairly consistent. As a consequence, a low-level
threshold for the second mean value of S is fixed (S̄IItr = 0.5) and a corrected regularity factor is
computed: RIISco = 1/3 · (S̄IItr /σ IIS ).
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Table C.2: Criterion for the classification of benchmark data.

Category Regularity factor N° of outliers
Regularity factor
without outliers

Consistent Loops (C) RS > 1 - -
Partially Consistent Loops (P-C) RS < 1 1 or 2 RIIS > 1 or RIISco > 1
Inconsistent Loops (I) RS < 1 2 or more RIIS < 1 & RIISco < 1

Applying the previous criterion of Table C.2 to the benchmark data, the following result is
obtained:

• 11 (out of 29) are considered as Inconsistent Loops: CHEM 4, CHEM 11, CHEM 13, CHEM
15, CHEM 16, CHEM 23, CHEM 26, CHEM 32, PAP 4, PAP 9, and POW 4.

• 12 are the Partially Consistent Loops: CHEM 2, CHEM 3, CHEM 6, CHEM 12, CHEM 14,
CHEM 24, CHEM 28, CHEM 29, PAP 2, PAP 5, PAP 7, and POW 2.

• 6 are the Consistent Loops: CHEM 1, CHEM 5, CHEM 10, CHEM 25, MIN 1, and BAS 7.
Overall results are reported in Table C.3, while details for each loop are given in the following
subsections.

Table C.3: Classification results.

loop stic ?
# of With all methods # of Without outliers

Category
Methods S̄ σS J̄ σJ RS RJ Outliers S̄II σ IIS RIIS RIISco

CHEM 1 yes 6 0.67 0.19 0.29 0.25 1.16 0.39 - - - - - C
CHEM 2 yes 6 3.70 2.61 0.15 0.28 0.47 0.18 2 3.36 0.63 1.79 - P-C
CHEM 3 no 6 0.29 0.61 0.00 0.00 0.16 - 1 0.04 0.05 0.24 3.04 P-C
CHEM 4 no 6 6.17 4.56 2.96 2.78 0.45 0.36 2 5.90 2.14 0.92 - I
CHEM 5 yes 6 0.36 0.06 0.04 0.05 1.92 0.24 - - - - - C
CHEM 6 yes 6 0.09 0.14 0.04 0.09 0.21 0.16 2 0.003 0.01 0.17 33.33 P-C
CHEM10 yes 6 1.81 0.08 1.22 0.74 7.80 0.55 - - - - - C
CHEM 11 yes 6 0.43 0.68 0.02 0.03 0.21 0.24 1 0.16 0.20 0.27 0.82 I
CHEM 12 yes 6 1.45 0.50 0.31 0.25 0.97 0.41 1 1.64 0.20 2.76 - P-C
CHEM 13 no 6 0.94 0.88 0.41 0.89 0.36 0.15 2 0.39 0.24 0.53 0.68 I
CHEM 14 no 6 1.66 0.58 0.16 0.15 0.95 0.35 2 1.67 0.15 3.64 - P-C
CHEM 15 no (?) 6 0.80 1.02 0.26 0.42 0.26 0.21 1 0.48 0.71 0.22 0.23 I
CHEM 16 no (?) 6 0.63 1.16 0.14 0.15 0.18 0.31 1 0.16 0.19 0.27 0.85 I
CHEM 23 yes 6 13.96 12.37 1.90 3.97 0.38 0.16 3 18.46 8.35 0.74 - I
CHEM 24 yes 7 15.83 8.36 0.60 0.49 0.63 0.40 1 18.32 5.64 1.08 - P-C
CHEM 25 yes 8 1.74 0.19 0.52 0.50 2.99 0.34 - - - - - C
CHEM 26 yes (?) 6 1.80 2.24 0.48 0.66 0.27 0.24 2 0.38 0.32 0.39 0.52 I
CHEM 28 yes (?) 7 2.43 2.08 0.34 0.30 0.39 0.37 2 1.24 0.42 0.99 - P-C*
CHEM 29 yes 7 5.61 3.29 0.12 0.21 0.57 0.19 2 3.77 0.89 1.41 - P-C
CHEM 32 yes 6 12.71 5.66 1.16 1.70 0.75 0.23 2 11.92 6.07 0.65 - I
PAP 2 yes 8 2.49 0.90 0.74 1.04 0.93 0.24 2 2.67 0.17 5.19 - P-C
PAP 4 no 6 7.05 7.17 0.14 0.15 0.33 0.32 2 2.49 1.35 0.62 - I
PAP 5 yes 7 0.13 0.19 0.00 0.00 0.22 0.14 2 0.02 0.03 0.17 5.47 P-C
PAP 7 no 6 0.06 0.08 0.01 0.03 0.25 0.15 1 0.03 0.05 0.24 3.49 P-C
PAP 9 no 6 1.64 1.88 0.44 0.87 0.29 0.17 2 0.53 0.98 0.18 - I
MIN 1 yes 8 1.23 0.28 0.63 0.57 1.45 0.37 - - - - - C
BAS 7 yes 6 1.28 0.38 0.13 0.23 1.12 0.18 - - - - - C
POW 2* yes 8 8.29 3.59 2.17 4.35 0.77 0.17 2� 8.86 2.17 1.36 - P-C
POW 4 yes 7 2.24 1.63 0.73 0.93 0.46 0.26 2 2.52 1.59 0.53 - I

*: basically on the threshold value. �: outliers are assessed by using distance from real values - here known - of stiction.

C.3.2 Loops with Inconsistent results

The level control (LC) loop CHEM 4 is known to suffer from controller tight tuning and to have
no stiction problems. It shows clear sinusoidal trends in the controlled variable signal (PV),
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and in the controller output signal (OP) (Figure C.1a), and an elliptical limit cycle on PV(OP)
diagram (Figure C.1b). The level set point (SP) is actually constant. Lee method correctly
detects no stiction (S = 0.03, J = 0.02); on the contrary, all the other methods (K&K, HAM1,
HAM2, HAM3, and He) indicate the presence of significant stiction (S ≥ 3.5; J ≥ 2.5), which
results as false alerts.

(a) time trends - PV and MV estimated with HAM1
method. (b) elliptic-shaped limit cycle on PV(OP) plot.

Figure C.1: Results for loop CHEM 4.

For the flow control (FC) loop CHEM 11, which suffers from stiction, K&K and Lee methods
estimate a little amount of stiction (S < 0.5; J < 0.5). On the contrary, the other three Hammer-
stein models give zero values of stiction; while He method yields a higher amount (S = 1.76).

The CHEM 13 is an analyzer control (AC) loop with a faulty steam sensor and no stiction
problems. Lee method gives the most appropriate estimate (S = 0.04, J = 0.04); while the other
three Hammerstein methods (HAM1, HAM2, HAM3) yield low amount of stiction (S ≈ 0.5).
K&K and He methods give significant values: S = 2.0, J = 2.0, and S = 2.11, respectively.

The pressure control (PC) loop CHEM 15 (likely) suffers from oscillation induced by other
loops and has no stiction problems. HAM1 and HAM3 methods agree and estimate zero values
of stiction; Lee and K&K yield very low values (S < 0.5; J < 0.2); while HAM2 and He methods
estimate significant amounts of stiction: S = 1.7, J = 1.0, and S = 2.41, respectively.

Also the PC loop CHEM 16 (likely) suffers from interaction and has no stiction problems.
Here 6 methods yield negligible amount of stiction (S < 0.1, J < 0.1). HAM3 gives a slightly
higher amount of stiction (S = 0.5, J = 0.4); while He method wrongly gives a significant
amount of stiction (S = 2.97).

The FC loop CHEM 23 is an example of evident stiction visible in the measured signals
(Figure C.2a): triangular shapes in OP trend and rectangular shapes in PV signal, to be consid-
ered proportional to MV signal. Also the PV(OP) plot has the very typical pattern of loops
with sticky valve (Figure C.2b). However, this loop generates very inconsistent outcomes.
HAM1 and HAM2 methods agree and wrongly estimate very low values of stiction (S ≤ 0.4;
J ≤ 0.1). On the contrary, HAM3, Lee and He methods yield very large amount of stiction:
S ∈ [21.57;27.8], J ∈ [0.1;0.28]; while K&K technique gives a lower amount of stiction (S = 9.0,
J = 9.0).

For the LC loop CHEM 26, which (likely) suffers from stiction, only Lee and He methods
give a significant amount of stiction, respectively: S = 4.11, J = 1.59, and S = 5.16. Conversely,
HAM2 and K&K methods yield very low values (S ∈ [0.6;0.7], J ∈ [0.1;0.6]); while HAM1 and
HAM3 methods estimate close to zero values.

The FC loop CHEM 32 suffers from valve stiction. All the methods give significant amount
of stiction, but the specific values are different. HAM3, K&K (applied on the first 600 samples),
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(a) time trends - PV and MV estimated with HAM3
method.

(b) parallelogram-shaped limit cycle on PV(OP)
plot.

Figure C.2: Results for loop CHEM 23.

and Lee methods yield very close values: S ∈ [12.28;15.0], J ∈ [0.0;4.0]. HAM1, HAM2 give
lower values: S ∈ [6.5;7.4], J ∈ [0.2;1.5]; while He method estimates the highest amount (S =
22.1).

The PAP 4 is a concentration control (CC) loop which is said to be affected by dead zone and
tight tuning, and not by stiction. Triangular shapes in OP and PV trends are registered; a nar-
row elliptic-shaped PV(OP) plot is obtained (Figure C.3). However, 3 out of 6 stiction detection
techniques indicate stiction as the source of oscillation [85]. Similarly, all the quantification
methods yield significant amounts of stiction. Different numerical values are obtained: HAM3
and He methods give the highest value (S = 17.3, J = 0.0, and S = 15.0, respectively); Lee esti-
mates a stiction of medium amount (S = 4.27, J = 0.12), while HAM1 and HAM2 yield similar
lower values: S ∈ [2.3;2.4], J ∈ [0.0;0.3]. Finally, K&K obtains the lowest amount: S = 1.0,
J = 0.3.

(a) time trends - PV and MV estimated with HAM2
method. (b) elliptical limit cycle on PV(OP) plot.

Figure C.3: Results for loop PAP 4.

For the temperature control (TC) loop PAP 9 the oscillation is not induced by stiction and
a typical sinusoidal trend is registered in OP signal (Figure C.4). HAM1, HAM2, and Lee
methods correctly estimate negligible values of stiction. Conversely, HAM3 method and K&K
technique (basing only on the first 600 samples) yield significant amounts of stiction: S ∈
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[2.0;3.9], J ∈ [0.1;2.0]. This loop seems a case where the specific use of an extended linear
model alters stiction estimation. Also He method wrongly gives significant amount of stiction
(S = 3.81).

(a) time trends - PV and MV estimated with HAM2
method. (b) narrow elliptical limit cycle on PV(OP) plot.

Figure C.4: Results for loop PAP 9.

Also for the LC loop POW 4, which is known to suffer from valve problems, different
amounts of stiction are estimated. HAM1, HAM2, HAM3, and Lee methods estimate medium
amount of stiction: S ∈ [0.58;1.4], J ∈ [0.0;0.58]; while K&K method (basing on the fist 1000
samples) and Jelali technique give higher values: S = 3.6, J = 1.2, and S = 4.49, J = 2.49, re-
spectively. Also He method gives a significant amount of stiction (S = 3.73).

C.3.3 Loops with Partially Consistent results

The FC loop CHEM 2 presents only two cycles of oscillation induced by stiction. All the se-
lected methods estimate stiction, but the numerical values are quite different. Four techniques
agree and estimate stiction of medium amount: S ∈ [2.5;4.0], J ∈ [0;0.65]. Two methods seem
to give outliers: HAM3 method, which yields a much lower amount of stiction (S = 0.4, J = 0),
and He method, which yields an higher value (S = 8.35).

For the FC loop CHEM 3, quantization is the known problem and no valve stiction is
present. Six techniques agree and properly estimate negligible amounts of stiction (S ≈ 0,
J ≈ 0). Only He method gives an evident outlier: a significant amount of stiction (S = 1.52).

Also the FC loop CHEM 6 is known to suffer from stiction. Here, all the six techniques
agree, but they all estimate stiction of very low amount (S ≈ 0, J ≈ 0). He method yields the
highest amount: S = 0.31.

The FC loop CHEM 12 is clearly affected by stiction: triangular shapes in OP trend and
rectangular shapes in PV signal are registered (Figure C.5a). Also the PV(OP) plot has the
typical parallelogram shape of a sticky valve (Figure C.5b). HAM1, HAM2, HAM3, and Lee
methods estimate consistent values of stiction: S ∈ [1.42;1.8], J ∈ [0;0.6]; also He technique
gives a similar amount (S = 1.89). Only K&K method yields an evident outlier by estimating
lower values of stiction: S = 0.5, J = 0.5.

The FC loop CHEM 14 is said to suffer from faulty steam sensor and not from stiction. How-
ever, 5 stiction detection techniques indicate stiction as the source of oscillation [85]. Similarly,
all the compared quantification methods yield significant values of stiction. Furthermore, five
methods obtain very close values: S ∈ [1.6;1.8], J ∈ [0;0.3]. Two estimates result as outliers:
Lee method, yielding a lower amount of stiction (S = 0.76, J = 0.28) basing on a specific data
window (100 - 700 samples), and He method, by giving the highest amount (S = 2.57).
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(a) time trends - PV and MV estimated with
HAM1 method. (b) limit cycle on PV(OP) plot.

Figure C.5: Results for loop CHEM 12.

The FC loop CHEM 24 suffers from valve stiction and shows significant set point oscilla-
tions. Lee, K&K, He, and Jelali methods yield very similar values for the stiction estimates:
S ∈ [19.3;23.0], J ∈ [0.81;1.07]. Conversely, HAM1 e HAM3 methods give lower values: S ∈
[8.1,16], J = 0. HAM2 method yield a clear outlier, by estimating near to zero values of stic-
tion.

The TC loop CHEM 28 is (likely) affected by stiction. The estimates of 5 out of 7 methods
are rather close and show a middle amount of stiction: S ∈ [0.7;1.63], J ∈ [0.1;0.87]. On the
contrary, two seem the outliers: HAM3 and He methods, which yield a higher amount: S = 6.0,
J = 0, and S = 5.7, respectively.

The FC loop CHEM 29 suffers from stiction. All the methods give significant amount of
stiction, but the specific numerical values are quite different. HAM1, HAM2, HAM3, and K&K
methods give very similar values: S ∈ [3.2;3.5], J ∈ [0.0;0.2]. Lee method, applied on a specific
data window (2000 - 2500 samples), gives slightly higher values: S = 5.35, J = 0.51. Two
estimates result as outliers. R&G and He methods, which give higher parameters: S = 9.2,
J = 0.0, and S = 11.2, respectively.

For the FC loop PAP 2, which is affected by stiction, the estimates with 4 out of 8 methods
(HAM1, HAM2, HAM3, Jelali) are really close: S ∈ [2.52;3.0], J ∈ [0.0;0.84]. K&K method and
Lee technique (basing only on the first 450 samples) yield similar estimates of S (2.6; 2.52) and
higher values of J . Also He method gives quite a similar amount of stiction (S = 3.49). For this
loop, only R&G method estimates a lower amount (S = 0.41, J = 0.0), which proves to be a clear
outlier.

The CC loop PAP 5 is said to suffer from stiction and that is confirmed by 5 out of 6 de-
tection techniques [85]. Four methods seem to give wrong - but consistent - estimation, since
they obtain close to zero or very low amounts of stiction (S < 0.01, J = 0.0). However, this
might simply due to the fact that the span of oscillation of OP signal is actually very small:
∆OP = 0.8. He and HAM3 methods give higher values of stiction: S = 0.41, and S = 0.40,
J = 0.0, respectively, which result as outlier according to Eq. C.2.

The FC loop PAP 7 has oscillation induced by an external disturbance. In this case, all the
methods correctly estimate negligible amounts of stiction (S < 0.07, J < 0.07). Once again He
method gives a (small) outlier: S = 0.21.

For the LC loop POW 2, which is clearly affected by stiction, all the methods estimate
significant amount of stiction, but the specific values of S and J are quite different (Figure C.6).
Since MV data are available for this loop [50], giving S ≈ 11.25 and J ≈ 1, it can be concluded
that Jelali method delivers the most accurate values (S = 11.47, J = 1.1). Note that K&K method
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also yields a good estimate of deadband plus stickband (S = 12), but not of the slip-jump
(J = 12). The estimate of He method seems acceptable (S = 9.88); also HAM1, HAM2, HAM3
methods obtain good stiction estimations: S ∈ [8.4;9.9], J = 0.4. On the opposite, Lee and R&G
techniques give two outliers: very low amount of stiction: S = 1.15, and S = 5.08, respectively.

(a) time trends - PV and MV estimated with HAM3
method; (b) elliptical limit cycle on PV(OP) plot.

Figure C.6: Results for loop POW 2.

C.3.4 Loops with Consistent results

The two FC loops CHEM 1 and CHEM 5 are known to suffer from valve stiction. All the
techniques agree and estimate stiction of low amount. Overall results for S parameter are:
S̄ = 0.67, σS = 0.19, with a regularity factor of RS = 1.16, for CHEM 1, and S̄ = 0.36, σS = 0.06,
with RS = 1.92, for CHEM 5.

The PC loop CHEM 10 (Figure C.7a) is a typical case of stiction: OP shows ideally trian-
gular pattern, PV trend is of the saw-tooth type, and PV(OP) plot has a clearly elliptical shape
(Figure C.7b). Indeed, an ellipse can be fitted to this plot, giving a middle amount of apparent
stiction: S ≈ 1.78 [85]. Here all the selected techniques are in very good agreement: S̄ = 1.81
with σS = 0.08, and RS = 7.80. The estimates are very close for HAM1, HAM2, and HAM3
methods: S ∈ [1.7;1.9], J ∈ [0.9;1.7]. Also Lee obtains very similar values of S and J , while K&K
yields a similar value of S, but a smaller value of slip-jump (J = 0.05). Also He method gives a
similar amount of stiction (S = 1.93).

For the PC loop CHEM 25, which (very likely) suffers from stiction, the estimates with all
8 methods are close: S ∈ [1.4;2.0], J ∈ [0.2;0.59], with RS = 2.99. Only Lee method, applied on
a specific data window (100 - 350 samples), gives a higher value of slip-jump (J = 1.62).

For the TC loop MIN 1, which is clearly affected by stiction, the results of all 8 methods are
in good agreement: S ∈ [1.0;1.7] and J ∈ [0.0;1.2], with RS = 1.45. Values of S are really very
close; while more variability lies in J values. Here K&K method has been applied on the first
2000 samples. The couple (S = 1, J = 1), reported in Table C.1 under R&G, has been actually
obtained by [50]. Also He method is very aligned to the others (S = 1.63).

Also for the TC loop BAS 7, which suffers from stiction, the results of 6 methods are in good
agreement: S ∈ 1.2;1.6] and J ∈ [0.0;0.3], with RS = 1.12. Also He method is really consistent
(S = 1.67). Lee method yields slightly different parameters: a lower value of stick band + dead
band (S = 0.61) and a higher slip-jump (J = 0.53). Triangular shapes in OP trend are registered,
and an elliptic-shaped PV(OP) plot is obtained (Figure C.8).
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(a) time trends - PV and MV estimated with
HAM1 method; (b) pattern on PV(OP) plot.

Figure C.7: Results for loop CHEM 10.

(a) time trends - PV and MV estimated with HAM2
method; (b) pattern on PV(OP) plot.

Figure C.8: Results for loop BAS 7.

C.3.5 Overall considerations on results on benchmark data

An overall comparison of the eight stiction quantification techniques is shown in Table C.4. The
number of applications (stiction and no stiction cases), the number of false negatives and false
positives, the number of highest and lowest estimates, and the number of outliers according to
Eq. C.2 are reported in different rows. Note that a false positive is assessed when an estimate
S > 0.5 arises for a case of no stiction; while a false negative when an estimate S < 0.5 arises for
a case of stiction. Here the verdicts reported in [86] are assumed as true situations.

Specific comments are needed about He method. This technique can be considered the
simplest solution, since it does not perform any system identification, but it gives partially
consistent results in the overall comparison. The advantages of its simplicity apply only to
cases where stiction is known to be the root cause of oscillation (e.g., CHEM 10, 12, 25, MIN
1, BAS 7), where the estimated values of S are in good agreement with the other methods.
However, it should be noticed that this method tends typically to give the highest amounts of
stiction with respect to other estimates (e.g., CHEM 2, 28, 29, and 32), which then prove to be
outliers (19 times).

In addition, for cases of no stiction caused oscillations, this method yields misleading re-
sults – with non zero, or even significant, values of stiction – which result as false positives in 8
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Table C.4: Comparison of overall performance of different techniques.

Method HAM1 HAM2 HAM3 He K&K Lee Jelali R&G Total

Tests
Total 29 29 29 29 29 29 6 7 187
Stiction 20 20 20 20 20 20 6 7 133
No stiction 9 9 9 9 9 9 0 0 54

False Negatives 6 5 6 3 2 5 0 0 27
False Positives 3 5 4 8 5 2 0 0 27
Highest estimates (S) 2 0 6 19 4 0 0 0 31*
Lowest estimates (S) 9 9 5 0 7 10 0 2 42�

Outliers 1 3 5 19 3 5 0 2 38

*: 1 case of triple parity. �: 5 cases of double parity (2 for S , 0, 3 for S = 0), and 4 cases of triple parity (S = 0)

times out of 9 (e.g., CHEM 3, 4, 3, 14, 15, 16, PAP 4, 9). Therefore, this method must be neces-
sarily applied only once that stiction is clearly detected as the main source of loop oscillation.
All the other techniques show comparable results in terms of false positives, false negatives,
and outliers. Finally, note that Hammerstein methods which use a simple linear model for
the process (HAM1, HAM2, and Lee) tend to obtain lower stiction values with respect to tech-
niques which implement an extended model (HAM3, K&K).

At the end of this extended comparison it is confirmed that different stiction quantifica-
tion techniques can strongly disagree: inconsistent verdicts or different estimations can be
obtained, even when stiction is clearly detected. Therefore, a more reliable stiction assessment
should be based on a weighted combination of selected methods.

C.4 Industrial Data

In this section, other industrial examples are used to further compare performance of the se-
lected methods. As already pointed out, repeating system identification and stiction quan-
tification for different acquisitions for the same valve allows one to obtain a more reliable
assessment of the stiction amount. Following the evolution of stiction values in time, and
disregarding - if the case - anomalous cases (outliers) are useful practices to obtain effective
scheduling and checking of valves maintenance.

Four of the previous selected stiction quantification techniques are now applied to three
datasets obtained from Italian process industries [123, 23]. Data refer to repeated registrations
(of PV, OP, SP) for the same loops. The source of malfunction is known to be stiction, but
the actual MV signals are not available. Trends of values of parameter S are reported for each
method: HAM1, HAM2, HAM3, and He (Figure C.9). Values of J are not reported since their
estimate, as said earlier, is less significant and reliable.

C.4.1 Industrial Loop I

These data are from a pressure control loop installed in a refinery plant. The controller has
PI algorithm and the SP is variable. Six different registrations, collected during a month, are
available just before the valve maintenance. Four well-established detection techniques [77, 46,
119, 124] always indicate the loop as affected by stiction. Therefore, rather constant stiction
values, though unknown, are expected. In Figure C.9, pretty uniform values of stiction are
actually obtained for each method; therefore all techniques prove to be sufficiently reliable.
In details, HAM1 and HAM3 methods give very similar values: S ∈ [4;4.9]; also HAM2 and
He methods obtain constant stiction trends, but with higher average amounts: S̄ = 5.36, and
S̄ = 5.95, respectively. Figure C.10 shows registered time trends of SP, PV, OP and the estimated
values of PV and MV (PVest, MVest) for two different acquisitions.
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Figure C.9: Trends of stiction parameter S using different methods. Top panel) industrial Loop I;
central) Loop II; bottom) Loop III.

(a) registration # 1 - PV and MV are estimated
with HAM3.

(b) registration # 4, estimation performed with
HAM2.

Figure C.10: Results for Loop I.

C.4.2 Industrial Loop II

These data are from a flow control loop installed in an ethylene plant. The controller has PI
algorithm and the SP is variable. The presence of stiction is clearly recognizable by the PV and
OP shapes being close to square and triangular waves, respectively (Figure C.11a). Moreover,
the PV(OP) diagram shows evident stiction characteristics (Figure C.11b), since in FC loops
PV is proportional to MV. The same four detection techniques [77, 46, 119, 124] indicate this
loop as affected by stiction in 11 acquisitions registered along two consecutive days. Therefore,
nearly constant stiction values, though unknown, are expected. From Figure C.9, rather uni-
form values of stiction (S ∈ [1.8;2.5]) are quantified by HAM1 and HAM2, methods which use
a non-extended linear process model. Also He method yields very uniform amounts of stiction.
The lowest variability is given by HAM2 (σS = 0.14) with a mean value S̄ = 2.26. Conversely,
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an excessively high variability is obtained using HAM3, which implements an extended linear
process model (EARX). Therefore, HAM3 method proves to be not sufficiently reliable for this
application: a really inconsistent trend is estimated and sometimes even zero values of stic-
tion are obtained, since loop oscillation is not associated with valve stiction but wrongly with
a significant external disturbance.

(a) time trends - PV and MV estimated with HAM1. (b) limit cycle on PV(OP) diagram.

Figure C.11: Results for Loop II, registration # 8.

C.4.3 Industrial Loop III

These data are from a flow control loop installed in a refinery plant. The controller has a PID
algorithm and the SP is variable since the loop is the inner part of a cascade control. The same
four detection techniques [77, 46, 119, 124] indicate the presence of stiction in 6 registrations
collected along four months. Therefore, a nice trend of stiction - constant or increasing - is
expected. Once again stiction is clearly recognizable by the shapes of PV and OP signals,
being close to square and triangular waves, respectively (Figure C.12a). For this loop, HAM3
estimates a consistent trend of stiction: S̄ = 2.62 with σS = 0.33. Also He method yields quite
uniform values: S̄ = 3.42 with σS = 0.55.

Conversely, for registration # 4, using HAM1, and for # 5, using both HAM1 and HAM2,
very low (S ≈ 0) or low values of stiction are estimated. These estimates appear incorrect since
they result as outliers with respect to the main trend (Figure C.9). In these two registrations,
an external disturbance might act simultaneously with valve stiction. The PV signal does not
clearly show a singular frequency of oscillation (Figure C.12b) and the external disturbance can
alter stiction estimation. Therefore, for this third industrial application, HAM3 with EARX
linear process model, is to be preferred since it is able to manage the cases of simultaneous
presence of valve stiction and external disturbance. Methods with non-extended linear process
models are not sufficiently reliable as they can estimate inconsistent values of stiction.

This second comparison, about stiction quantification techniques on repeated acquisitions
for the same valves, should be considered a more reliable test about efficiency of different
techniques.

As first, He method gives accurate results being all three cases affected by large stiction
amounts (as pointed out above, it may give wrong results in cases of absent or negligible stic-
tion).

About the other three Hammerstein-based techniques, the comparison indicates that sim-
pler linear process models (ARX in HAM1, and SS in HAM2 method) can be the best choice
for stiction quantification, when stiction is the only source of loop oscillation. Conversely, an
extended model (as EARX in HAM3 method), which incorporate an additive time-varying non-
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(a) registration # 1. (b) registration # 4.

Figure C.12: Results for Loop III. In both cases PV and MV are estimated with HAM3 method.

stationary disturbance, confirm to yield a more accurate stiction estimation in the case of dis-
turbance acting simultaneously with stiction, while can give wrong indications (false negative)
when disturbance are not actually present. This conclusion is an extension and a confirmation
of previous results reported in Chapter 4.

C.5 Conclusions

This comprehensive study has compared several emerging techniques of stiction quantifica-
tion. Once more we underline that application of a technique on a single data set is not a
guarantee of its efficiency and reliability in the light of valve maintenance prediction, ultimate
interest of the industrial user.

The comparison on the same dataset confirmed discrepancies on stiction values computed
by means of different techniques, already pointed out in other research works. This fact can be
imputed to different causes, as the use of different stiction and process models, simultaneous
presence of external nonstationary disturbances, and inhomogeneous amounts of stiction along
the valve stroke. Stiction quantification is certainly the stage where all mathematical compli-
cations and error sources related to modeling and detection sum up with possible unreliable
predictions.

For this reason, the comparison of identification techniques with/without disturbance mod-
els is appropriate and shows that the added complexity of extended models can be rewarded
by better results in cases of simultaneous presence of disturbances and stiction, while it is not
worth when stiction is the only source of oscillation.

Therefore, a future research trend can be indicated in the development of techniques to
assess the presence of simultaneous disturbances; another point to be proposed can be the
adoption of flexible nonparametric stiction models. In perspective of improving the reliability
of stiction quantification techniques proposed up to date, analogously to the problem of stic-
tion detection, a practical solution to recommend is to combine and weight verdicts obtained
by different methods.
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[68] T. Hägglund. Automatic detection of sluggish control loops. Control Engineering Practice,
7:1505–1511, 1999.
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