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Abstract
How to deploy and flexibly manage complex composite applications across
heterogeneous cloud platforms is one of the main concerns in enterprise IT.
Vendor-agnostic models to specify the structure and management of com-
posite cloud applications, as well as techniques for the analysis of specified
applications, would permit verifying the accuracy of the design of such
applications. Furthermore, the availability of techniques for reusing com-
posite cloud applications would free developers from the need of designing
and developing multiple times recurring application components.

The objective of this thesis is to propose a suitable representation for
composite cloud applications, and to develop analysis and reuse techniques
based upon, but not limited to, such representation. By relying on TOSCA
(Topology and Orchestration Specification for Cloud Applications) as the refer-
ence language for syntactically describing composite cloud applications,
we propose a simple modelling that permits specifying the behaviour of
the management operations of an application’s components. We show how
their management behaviour can be modelled by management protocols, spe-
cified as finite state machines whose states and transitions are associated
with conditions constraining the consistency of states and the executability
of operations. We illustrate how to derive the management behaviour of a
composite cloud application by composing the protocols of its components,
and how this permits automating various analyses concerning the manage-
ment of a cloud application. Last, but not least, we show how management
protocols can be easily extended to take also into account the potential oc-
currence of faults while managing composite cloud applications.

Additionally, to enact the reuse of existing solutions, we illustrate how
to syntactically matchmake (fragments of) TOSCA-based applications with
respect to desired components, and how to adapt matching applications to
concretely implement such components. We define two different notions of
simulation between management protocols, and we exploit such notions to
extend the proposed matchmaking and adaptation approaches by includ-
ing the behaviour information in management protocols.
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Chapter 1

Introduction

Cloud computing has revolutionised IT, by offering a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of con-
figurable resources that can be rapidly provisioned and released with min-
imal management effort [6, 86]. Applications and resources have no more
to be bought and managed on premise, but they can be simply requested
(and paid) when the corresponding functionality is actually needed.

Capitalising all the benefits of cloud computing is however not that
easy. Cloud applications are typically composite [55], i.e. they integrate
various and heterogeneous components. The deployment, configuration,
enactment, and termination of the components building up an application
must hence be suitably coordinated, by also taking into account all the de-
pendencies occurring among the application components. As the num-
ber of components grows, or the need to reconfigure becomes more fre-
quent, application management becomes more and more time-consuming
and error-prone, even if programmed by scripts or workflows [18].

Additionally, current cloud technologies suffer from a lack of standard-
isation, with different providers offering similar resources in a different
manner [103]. As a result, to deploy and manage the same application on
different cloud platforms (by fulfilling its individual requirements), appli-
cation operators are often asked to design and configure most of the mid-
dleware and infrastructure layers from scratch. This requires deep technical
expertise, and it results in error-prone development processes which sig-
nificantly increase the costs for operating and maintaining composite cloud
applications (in terms of both money and time).

How to deploy and flexibly manage complex composite applications
over heterogeneous cloud platforms is hence a serious challenge in to-
day’s enterprise IT [82].

This thesis aims at contributing to solve this challenge by focussing on two
major issues (which have also been identified by Binz et al. [18] and by Di
Cosmo et al. [47]):

(I1) Automate the deployment and management of composite cloud applications.
Composite cloud applications integrate various and heterogeneous
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components, whose deployment, configuration, enactment, and ter-
mination must be suitably coordinated. Such coordination should
be automated, as the efficient use of cloud computing peculiarities
strictly depends on the degree of automation of the management of
applications [82].

(I2) Support a vendor-agnostic design of composite cloud applications. To achie-
ve I1, there is a need for vendor-agnostic, component-based models
that are expressive enough to capture all the features that are typical
of composite cloud applications. Such models should permit speci-
fying the structure of a composite application by describing the com-
ponents building up such application (e.g., a web-based frontend, a
server, a backend database, a database management system), and the
dependencies occurring among them (e.g., the frontend is deployed
on the server and connected to the database, which is in turn managed
by the databased management system). It is also important to capture
the stateful management behaviour1 of the components forming an
application, especially to permit coordinating their management.

1.1 Research objectives

To (I1) automate the deployment and management of composite cloud ap-
plications, by also (I2) supporting their vendor-agnostic design, this thesis
aims at advancing the state-of-the-art on:

(o1) Modelling composite cloud applications. To contribute to both I1 and I2,
there is a need for vendor-agnostic, component-based models that en-
ables the specification of both the structure and the management of
composite cloud applications.

By relying on topology graphs [20] for describing the structure
of composite cloud applications, we propose a compositional mo-
delling that permits specifying the management behaviour of appli-
cation components, by also taking into account that faults eventually
occur while managing complex applications [43].

(o2) Analysing composite cloud applications. The availability of techniques
for the analysis of composite cloud applications is also crucial to I2,
as they can permit determining whether composite cloud applications
are accurately designed (e.g., checking whether the requirements of

1The components forming cloud applications typically have non-trivial protocols for
managing them, making their contextual requirements (such as the dependencies on other
components) vary over time, e.g. it may be enough to install a given component to be able
to install another one, but the requirements to activate them may be different [47].
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an application component are properly satisfied, or whether a work-
flow orchestrating the deployment of an application is valid and effec-
tively results in deploying the application). Techniques for analysing
composite cloud applications can also contribute to I1, as they can
permit automatically determining the management tasks to perform
to change the actual configuration of an application (e.g., to restore
the desired application configuration if a fault has happened).

In this thesis we define techniques for checking and planning the
management of a composite cloud application.

(o3) Reusing composite cloud applications. Cloud applications can share so-
me management infrastructure. A concrete example is given by web
applications, which can share the underlying web server needed to
run them. If such server is already somehow available, it can be in-
cluded in the specification of a new web application, and then suit-
ably adapted and configured to meet its needs. Developers could in-
deed (I2) describe only the application components that are specific to
their solutions (e.g., those they implemented) along with their func-
tional and non-functional requirements. Reuse techniques could then
be exploited to concretise the management infrastructure needed to
run them, which could then be automatically managed without any
further intervention of the developer (I1).

In this thesis we define techniques for matching and adapting ex-
isting applications, with the long-term objective of permitting to reuse
them to concretely implement components of new applications.

1.2 Research contributions

We hereby list the research contributions we are going to present in this
thesis. The contributions are presented under two different perspectives, by
first mentioning those concerning the research objectives o1 and o2 (i.e., mo-
delling and analysing composite cloud applications), and then those con-
certning o3 (i.e., fostering the reuse of composite cloud applications).

Modelling and analysing composite cloud applications

A convenient way to represent complex composite applications (such as
those deployed in cloud platforms) is a topology graph [20], whose nodes
represent the application components, and whose arcs represent the depen-
dencies among such components. More precisely, each topology node can
be associated with the requirements of a component, the operations to man-
age it, and the capabilities it features. Inter-node dependencies associate the
requirements of a node with capabilities featured by other nodes.
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The Topology and Orchestration Specification for Cloud Applications (TO-
SCA [94]) meets this intuition, by providing a standardised modelling lan-
guage for representing the topology of a cloud application. It also permits
coordinating the application management, by defining (workflow) plans
orchestrating the management operations offered by each component.

Unfortunately, in its current version, TOSCA does not permit specify-
ing the behaviour of a cloud application’s management operations. More
precisely, it is not possible to describe the order in which the operations of
a component must be invoked, nor how those operations depend on the re-
quirements or how they affect the capabilities of that component (and hence
the requirements of other components they are connected to). This implies
that the verification of whether a management plan is valid can only be
performed manually, with a time-consuming and error-prone process.

In this thesis we propose a extension of TOSCA that permits specifying
the behaviour of the management operations of the components forming
an application. We indeed show how their management behaviour can be
modelled by management protocols, specified as finite state machines whose
states and transitions are associated with conditions defining the consis-
tency of the states of a component and constraining the executability of its
management operations. Such conditions are defined on the requirements
of a component, and each requirement of a component has to be fulfilled
by a capability of another component. We also illustrate how to derive the
management behaviour of a cloud application by composing the protocols
of its components, and how this permits automating various analyses con-
cerning the management of a cloud application, like determining whether
management are valid, which are their effects, or which plans permit reach-
ing certain application configurations.

To deal with the potential occurrence of faults (which have to be con-
sidered when managing complex cloud applications [43]), we then further
extend management protocols. We indeed propose fault-aware management
protocols, which permit modelling how nodes behave when faults occur,
and we illustrate how to analyse and automate the management of com-
posite cloud applications in a fault-resilient manner.

Notice that, even if the components of an application are described
by fault-aware management protocols, the actual behaviour of such com-
ponents may differ from their described behaviour (e.g., because of non-
deterministic bugs [64]). We show how unexpected behaviour can be natu-
rally modelled by automatically completing fault-aware management pro-
tocols, and how this permits analysing the (worst-possible) effects of mis-
behaving components on the rest of a cloud application. We also propose a
way to recover composite cloud applications that are stuck because a fault
was not properly handled, or because of a misbehaving component.
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Fostering the reuse of composite cloud applications

To ease the design of a cloud application (e.g., a web application), we may
wish to implement some of its parts by reusing already existing, validated
solutions (e.g., the server stack needed to run a web application). More
generally, the reuse of (fragments of) existing cloud applications can ease
and speed-up the development of new applications.

In this thesis we illustrate how to reuse existing, TOSCA-based cloud
applications. We first formally define how to exact match an application
with respect to a desired application component, so as to reuse the whole
application to implement such component. We then define three other
types of matching (plug-in, renaming-based, and white-box), each permitting
to identify larger sets of applications that can be adapted so as to exactly
match a desired component. We also illustrate how matched applications
can be adapted to exactly match a target component.

Notice that, by reusing a cloud application in its entirety, we might de-
ploy unnecessary software (i.e., software that is not needed to concretely
implement the desired application component). To tackle this issue, we
further extend our matchmaking and adaptation approach by introducing
and assessing TOSCAMART (TOSCA-based Method for Adapting and Reusing
application Topologies). TOSCAMART is a method that permits reusing only
the fragment of an application topology that is necessary for implementing
a desired application component.

Notice that all notions of matching mentioned above are purely syntac-
tic and do not take into account the behaviour of management operations
(i.e., they do not check whether the behaviour of the operations of an avail-
able application is compatible with that of the operations of a desired appli-
cation component). To overcome this limitation, we exploit the behaviour
information in management protocols. Namely, we define when a desired
management protocol can be simulated [107] by an available one, and we
exploit such notion of simulation to extend the conditions constraining ex-
act and plug-in matching. We then relax the notion of simulation into that
of f -simulation (which permits simulating a desired operation with a a se-
quence of available operations), and we exploit f -simulation to further re-
lax plug-in matching. We also describe a coinductive procedure to compute
the function f determining an f -simulation among two management pro-
tocols (if any), and how matched applications can be adapted so as to be
employed in place of desired components.

1.3 Thesis structure

The thesis is organised as illustrated in Fig. 1.1, which connects the chap-
ters of the thesis with arrows showing which chapters directly exploit the
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results presented in a chapter (e.g., the management protocols introduced in
Chapter 5 are exploited to define the behaviour-aware matching of cloud ap-
plications in Chapter 6, and extended into fault-aware management protocols
in Chapter 7). The figure also shows how chapters from 3 to 7 contribute

FIGURE 1.1: Workflow of the thesis.

to o1 and o2 (i.e., modelling and analysing cloud applications) and to o3

(i.e., fostering the reuse of cloud applications). Further information about
each chapter is given below:

In Chapter 2 we provide a nutshell overview of TOSCA (Topology and Or-
chestration Specification for Cloud Applications [94]), by illustrating how
to model complex cloud applications as service templates which or-
chestrate typed nodes. We also describe how TOSCA permits pack-
aging and processing application specifications.

The nutshell introduction to TOSCA provided in Chapter 2 was published

in [33], which was presented at the “3rd European Conference on Service-Oriented

and Cloud Computing” (ESOCC 2014).

In Chapter 3 we illustrate how to reuse TOSCA-based cloud applications.
More precisely, after formalising four notions of (syntactic) matching
between service templates and node types, we explain how matched
service templates can be adapted to exactly match a target node type.
We also illustrate the feasibility of our approach by means of a proof-
of-concept implementation.

All notions of matching, as well as the proof-of-concept implementation and the

methodology for adapting matched service templates, were published in [32], which

appeared in the journal “Science of Computer Programming”.

In Chapter 4 we introduce TOSCAMART (TOSCA-based Method for Adapt-
ing and Reusing application Topologies), which permits reusing only the
fragment of a service template that is necessary for implementing a
desired node type. We also discuss the termination, soundness, and
time complexity of TOSCAMART, and we illustrate its feasibility by
means of a proof-of-concept implementation.
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The results presented in Chapter 4 were published in [109], which appeared in

the “Journal of Systems and Software”.

In Chapter 5 we propose management protocols, which permit modelling the
management behaviour of an application and of its components. We
then illustrate how such modelling permits automating various ana-
lyses of the management of complex cloud applications. We also pro-
pose an alternative, Petri-net based semantics of management pro-
tocols, and we show how various of the presented analyses can be
reduced to well-known problems in the Petri nets context. Finally, to
illustrate the feasibilty of our approach, we present BARREL, a web-
based application that permits editing and analysing the management
protocols in a TOSCA-based cloud application.

The results presented Chapter 5 were partly published in [26], which was pre-

sented at the “4th European Conference on Service-Oriented and Cloud Comput-

ing” (ESOCC 2015), and partly published in [28], which appeared in the journal

“Transactions on Petri-nets and other models of Concurrency”.

In Chapter 6 we extend the syntactic matching in Chapter 3, by exploit-
ing the behaviour information in management protocols. More pre-
cisely, we formally define the notions of simulation and f -simulation
of management protocols, we exploit such notions to extend the con-
ditions constraining exact and plug-in matching, and we illustrate
how to adapt matched service templates to exactly match desired
node types. We also describe a coinductive [71] procedure to compute
the function f determining an f -simulation among two management
protocols, and we formally assess its soundness and completeness.

The results in Chapter 6 were published in [21], which was presented at the

“10th International Symposium on Theoretical Aspects of Software Engineering”

(TASE 2016).

In Chapter 7 we propose a fault-aware extension of management protocols, to
permit modelling how nodes behave when faults occur, and we il-
lustrate how to analyse and automate the management of compos-
ite cloud applications in a fault-resilient manner. We also show how
fault-aware management protocols can be exploited to model and
analyse the management of applications whose components are be-
having unexpectedly. Finally, we present a new version of BARREL

that permits editing and analysing the fault-aware management pro-
tocols in a TOSCA-based cloud application.

The results in Chapter 7 were published in [25], which was awarded as best

paper at the “5th European Conference on Service-Oriented and Cloud Computing”

(ESOCC 2016).



8 Chapter 1. Introduction

In Chapter 8 we discuss related work, by separately treating existing so-
lutions (i) for syntactically matching cloud applications, (ii) for mod-
elling their management behaviour, and (iii) for matching cloud ap-
plications by taking into account their management behaviour.

In Chapter 9 we summarise the research contributions in this thesis. We
also discuss how they can contribute solving the issues I1 and I2, and
we give perspectives for future work.



9

Chapter 2

TOSCA in a nutshell

TOSCA (Topology and Orchestration Specification for Cloud Applications [94]) is
an OASIS standard whose main goal is to enable the creation of portable
cloud applications and the automation of their deployment and manage-
ment. In order to achieve this goal, TOSCA focuses on the following three
sub-goals:

(A) Automated application deployment and management. TOSCA aims at pro-
viding a language to express how to automatically deploy and man-
age complex cloud applications [18].

This objective is achieved by requiring developers to define an ab-
stract topology of a complex application, and to create plans describ-
ing its deployment and management [113].

(B) Portability of application descriptions and their management. TOSCA aims
at addressing the portability of application descriptions and their ma-
nagement [18] (but not the actual portability of the applications them-
selves).

To this end, TOSCA provides a standardised way to describe the
topology of multi-component applications. It also addresses manage-
ment portability by relying on the portability of workflow languages
used to describe deployment and management plans [19].

(C) Interoperability and reusability of components. TOSCA aims at describ-
ing the components of complex cloud applications in an interoperable
and reusable way [18].

Interoperability is the capability for multiple components “to inter-
act using well-defined messages and protocols" [94] so that they can be
combined independently of the vendor(s) supplying them. TOSCA
abstracts from messages and protocols details, and it permits to de-
scribe the dependencies between application components.

Furthermore, TOSCA enables defining, assembling, and packaging
the building blocks of an application in a completely self-contained
manner (see Sect. 2.2), thus providing a standardised way to reuse
them in different applications.
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Fig. 2.1 tries to position TOSCA with respect to some other standards
and specifications targeting cloud interoperability1. More precisely, the
figure positions TOSCA with respect to OASIS CAMP (Cloud Application
Management for Platforms [92]), CIMI (Cloud Infrastructure Management Inter-
face [49]), EMML (Enterprise Mashup Markup Language [98]), OCCI (Open
Cloud Computing Interface [97]), Open-CSA (Open Composite Services Architec-
ture [93]), OVF (Open Virtualisation Format [50]), SOA-ML (Service-Oriented
Architecture Modelling Language [96]), and USDL (Universal Service Descrip-
tion Language [111]). The three sections of the pie represent the aforemen-

FIGURE 2.1: Positioning TOSCA with respect to other proposals of standards for
cloud interoperability.

tioned three main goals of TOSCA, and the position of each label is in-
tended to summarise “how much” the goals of an initiative overlap with
the goals of TOSCA2. More precisely, to indicate that a standard is targeting
one of the goals, its label covers the corresponding section of the pie. For
instance, CAMP aims at addressing both B and C. Furthermore, if a label
is not completely contained in the pie, this means that the corresponding
standard only partially addresses the covered goals. Consider for instance
OCCI. It provides an standardised IaaS interface which can be employed
to automatise application deployment and management. Nevertheless, au-
tomation is not its real goal and thus OCCI is represented as partially cov-
ering section A and partially out of the pie.

2.1 TOSCA modelling language

To achieve the aforementioned goals, TOSCA provides an XML-based mod-
elling language, whose purpose is to allow formalising the structure of each
cloud application as a typed topology graph, and the management tasks as
plans [18].

1A more thorough discussion on the relations between TOSCA and other cloud interop-
erability initiatives is provided by Pahl et al. [102].

2Notice that all mentioned initiatives target cloud interoperability, while only some of
them also target the interoperability of application components (viz., C).
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FIGURE 2.2: TOSCA service template.

An application is represented as a service template (Fig. 2.2), which is in
turn composed by a topology template and (optionally) by some manage-
ment plans. Generic type and type implementation definitions (which will
be discussed later) are also contained in the XML document defining the
service template as they are referred to by the templates appearing in the
topology [95].

In the following we illustrate the TOSCA modelling language with ref-
erence to the SugarCRM application example (whose complete description
can be found in the TOSCA primer [95]), which exemplifies a complex
cloud application designed for enabling businesses to manage the relation-
ships with their customer.

2.1.1 Topology of an application

The topology of a multi-component application is represented by means of
a topology template. A topology template is essentially a typed graph whose
nodes are the application components, and whose edges are the relations
between such application components. Strictly speaking, the application
components and their relations are represented by means of typed node
templates and relationship templates, respectively. A concrete example of
an application topology is shown in Fig. 2.3, which illustrates the node tem-
plates and relationship templates composing the topology of the SugarCRM
application. Fig. 2.3 also indicates the corresponding node types and rela-
tionship types between parentheses.

2.1.2 Application components

As shown in Figs. 2.2 and 2.3, each application component appears in the
topology as a node template, and each node template is in turn typed. This is
because the purpose of node templates is to define the application-specific
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FIGURE 2.3: Example of topology template.

features of components (e.g., actual property values, QoS, etc.), while the
purpose of the corresponding types is to describe the structure of the fea-
tures to be specified.

The structure of the features exposed by an application component is
defined by means of node types [18]. More precisely, a node type specifies
the structure of the observable properties of an application component, the
management operations it offers, the possible states of its instances, the re-
quirements needed to properly operate it, and the capabilities it offers to
satisfy other components requirements. Strictly speaking, properties are
described with property definitions, operations with interface and operation
elements, requirements with requirement definitions (of certain requirement
types), and capabilities with capability definitions (of certain capability types).
An example of a node type is shown in Fig. 2.4, which illustrates the struc-

FIGURE 2.4: Example of node type.

ture of the properties, requirements and interfaces exposed by the Sugar-
CRMApp component (which is of type SugarCRMApplication — see Fig. 2.3).

Note that node types do not specify which are the artefacts required to
instantiate and operate application components, since that is the purpose of
node type implementations. Each node type implementation refers to the node
type whose implementation is under definition, and specifies its deployment
and implementation artefacts. The former are the contents (viz., artefact types
and artefact templates) needed to materialise instances of application compo-
nents, while the latter are those which implement management operations
offered by application components [19].
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2.1.3 Relations between application components

Complex multi-service applications require not only to model their com-
ponents, but also the relations between them [95]. As for components, re-
lations can be modelled by means of relationship types, relationship type
implementations, and relationship templates.

A relationship type defines the structure of a generic relationship between
a valid source (i.e., a node type or a requirement type) and a valid target (i.e.,
a node type or a capability type). It also allows to describe the operations
which can be performed on the source and on the target of the relation-
ship (via source interfaces and target interfaces, respectively), its observable
properties, and the possible states of its instances. For instance, Fig. 2.5

FIGURE 2.5: Example of relationship type.

illustrates the DependsOn relationship type, whose valid source is a Feature-
Requirement exposed by an application component, and whose valid target
is a FeatureCapability offered by another application component. Such a re-
lationship type is only one of those modelling the relations between the
component of the SugarCRM application example.

Each relationship type requires to be connected with the artefacts im-
plementing the operations it offers. This is the purpose of relationship type
implementations, each of which refers to a relationship type and specifies its
implementation artefacts. More precisely, a relationship type implementa-
tion links each operation offered by a relationship type with the artefact
types and artefact templates implementing it.

As for nodes, relationship types and type implementations only de-
scribe relations in a generic way [95]. Once placed in the topological de-
scription of a certain application, they become application-specific and thus
require to be described by means of relationship templates (to describe appli-
cation-specific features).

2.1.4 Artefacts

An artefact represents the content needed to realise the deployment or a
management operation of an application component [95]. TOSCA allows
artefacts to represent contents of any type (e.g., scripts, executable pro-
grams, installable images, configuration files, libraries, etc.). This permits
describing artefacts along with the metadata needed to properly process
them. The structure of such metadata is described by means of artefact types,
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while links to concrete artefacts (and values of invariant metadata) can be
specified by employing artefact templates.

2.1.5 Management plans

Plans enable the description of deployment and management aspects of an
application [77]. Each plan is a workflow combining the management oper-
ations offered by the nodes in the application topology. TOSCA prescribes
to use workflows to describe plans (so as to leverage of their suitability
to handle errors, exceptions and human interactions [19]), but it does not
mandate the use of a specific workflow language [18]. Furthermore, plans
are distinguished on the basis of their type. There are only two predefined
types of plans: The build plan type models plans which initially create a
new instance of a service template, while the termination plan type is for
plans used to terminate the existence of a service template instance.

FIGURE 2.6: Example of plan.

A concrete example of a TOSCA plan is shown in Fig. 2.6, which illus-
trates a possible (BPMN) build plan for the SugarCRM application example.

2.1.6 Application “boundaries"

A service template can also describe the functional and non-functional fea-
tures it exposes externally. The (optional) boundary definitions permit spe-
cifying the properties, capabilities, requirements and operations of internal
components which are externally visible. It also allows to expose manage-
ment plans as operations and to describe the non-functional properties of
the complex application.

2.1.7 Non-functional features of an application (component)

TOSCA employs policies to describe non-functional behaviour, or the QoS
(Quality-of-Service) that an application and its components can declare to
expose [18]. Similar to the other entities in the TOSCA standard, a policy
has an abstract policy type definition and is instantiated by defining a policy
template. While the policy type describes the structure and required pa-
rameters of a policy, the policy template is used to define a specific policy
instance.
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Service templates (via boundary definitions), node templates, and rela-
tionship templates can then declare their non-functional features by refer-
ring the policy types or policy templates describing them [112].

2.2 Packaging TOSCA application specifications

TOSCA prescribes the format to archive application specifications along
with the installable and executable files needed to properly instantiate the
specified applications. This is because the modelling language illustrated
in the previous section only allows developers to specify the application
topology and its management in a .tosca document. Such document must
be packaged together with the artefacts implementing its components so as
to make them available to the execution environment.

The TOSCA specification defines an archive format called CSAR (Cloud
Serivce ARchive) to package application specification together with concrete
implementation and deployment artifacts. A CSAR is a (compressed) zip
file containing at least the definitions and TOSCA metadata directories.

The definitions directory contains one or more *.tosca documents. These
documents contain the TOSCA definitions describing the cloud application.
More precisely, exactly one of them must contain the service template defin-
ing the structure and behaviour of the whole cloud application, while the
others can be devoted to supporting definitions (so as to modularise the
application specification). Additionally, CSARs can also be devoted to con-
tain TOSCA definitions to be reused in other contexts. For instance, a CSAR
might be used to provide a set of node types (with their corresponding im-
plementations) to be employed as building blocks while specifying new
cloud applications.

A TOSCA metadata directory contains the TOSCA.meta file. Its purpose
is to describe metadata about the other files in the CSAR by means of blocks,
which in turn consist of a set of name-value pairs. The first block of the
TOSCA.meta file provides metadata about the CSAR itself (e.g., version, cre-
ator, etc.), while each other block points to a file in the CSAR and describes
its metadata.

2.3 Processing TOSCA application packages

As we just explained, an application specification is packaged (along with
the concrete artefacts implementing its components) in a CSAR archive
with the purpose of deploying it on cloud platforms. Subsequently, a cloud
platform is TOSCA-compliant if it offers a TOSCA container (e.g., Open-
TOSCA [15]) which is an engine able to process CSAR archives, and thus to
deploy and operate the applications they contain.
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TOSCA containers can deploy applications by processing the CSAR ar-
chives in two different ways [95]. On one hand, imperative processing takes
the CSAR and deploys the application according to the workflow defined
as a build plan in the corresponding service template (e.g., the build plan
shown in Fig. 2.6). On the other hand, declarative processing deploys the
application by trying to automatically excerpt a deployment plan from its
topology template. In the latter case, the CSAR engine (a) first deploys the
nodes of an application without requirements on other nodes, and then (b)
until all nodes have been deployed, it searches the nodes whose require-
ments are satisfied (by the capabilities of the already deployed nodes) and
deploys them. For instance, if we consider the topology in Fig. 2.3, the
declarative processing works as follows. First, it deploys the node tem-
plates ApacheVM and MySqlVM since they have no dependencies on other
nodes. Second, it deploys ApacheOS and MySqlOS since the node templates
they depend on have been deployed. Then, it proceeds in repeating steps
analogous to the second one until all the node templates in the topology
have been deployed.

TOSCA containers not only have to support application at deployment
time, but also at run time. They are indeed in charge of ensuring that
the implementation artefacts (corresponding to management operations)
are available [77]. They should also be able to properly operate such arte-
facts as well as the management plans provided by the application specifi-
cation [18].
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Chapter 3

Reusing cloud applications

According to the TOSCA primer [95], a node type can be made concrete
by substituting it by a service template, provided that the latter exposes
the same features as the former on its boundaries. While such matching is
mentioned in the primer with reference to an example, no formal definition
of matching is given either in TOSCA or in the primer.

In Sect. 3.1 we first formalise the notion of exact matching (≡) between
service templates and node types mentioned in the TOSCA primer [95].
We then define the notion of plug-in matching ('), which relaxes the exact
one and identifies larger sets of service templates that can be adapted so as
to (exactly) match a node type. We also illustrate the feasibility of the pro-
posed notions of matching by means of a proof-of-concept implementation.

In Sect. 3.2 we define two other types of matching, called renaming-
based matching (∼) and white-box matching (�), each permitting to ignore
larger sets of naming differences when matching service templates with re-
spect to node types. While exact and plug-in matching are purely syntac-
tic, both renaming-based and white-box matching require a notion of se-
mantic equivalence to permit ignoring naming differences. To avoid all
semantics-related issues (e.g., employing ontology-based descriptions of
cloud services, and cross-ontology matchmaking [75, 85]), in Sect. 3.2 we
also propose a methodology to manually adapt renaming-based and white-
box matching service templates. More precisely, we show how to exactly
match a target node type by non-intrusively adapting a renaming-based
matched service template, or by intrusively adapting a white-box matched
service template.

3.1 Matching cloud applications

In this section we first formally define when a service template can exactly
match (≡) a node type. Then, we formally define the plug-in matching ('),
which relaxes the exact one (viz., ≡⊂') in order to identify larger sets of
service templates that can be adapted so as to (exactly) match a node type.
Finally, we show a proof-of-concept implementation of the introduced no-
tions of matching.
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3.1.1 Exact matching

We hereby formalise the definition of exact matching between a service tem-
plate S and a node type N , which mirrors the informal definition of match-
ing mentioned in the TOSCA primer [95]. The following definition specifies
when S exactly matches N in terms of the requirements (Reqs), capabilities
(Caps), policies (Pols), properties (Props) and interfaces (Ints) of S and N1.

Definition 3.1 (Exact matching). Let N be a node type and let S be a service
template. S exactly matches N (S ≡ N ) iff:

(1) Reqs(S) ≡R Reqs(N) and
(2) Caps(S) ≡C Caps(N) and
(3) Pols(S) ≡PO Pols(N) and
(4) Props(S) ≡PR Props(N) and
(5) Ints(S) ≡I Ints(N).

Before digging into the details of conditions (1—5), we introduce some
shorthand notations to retrieve names and types of TOSCA elements.

Notation 3.1. Let N be a node type and let S be a service template. Then:

• name(x) denotes the name of x, where x can be a requirement, capability,
property, interface, operation, or parameter of N or S.

• type(x) denotes the type of x, where x can be a requirement, capability,
policy, property, or parameter of N or S.

• XMLtype(x) denotes the XML type of x, where x can be a property (or a set
of properties) of N or S.

We now define the exact matching of requirements. Essentially, they must
have the same name and type, and they must be in a one-to-one correspon-
dence. The same holds for capabilities.

Definition 3.2 (Exact matching of requirements and capabilities). Let N be
a node type and let S be a service template. Then:

Reqs(S) ≡R Reqs(N) iff
∀rS ∈ Reqs(S) ∃!rN ∈ Reqs(N) : name(rS) = name(rN ) ∧

type(rS) = type(rN )

and
∀rN ∈ Reqs(N) ∃!rS ∈ Reqs(S) : name(rN ) = name(rS) ∧

type(rN ) = type(rS).

Caps(S) ≡C Caps(N) iff

1 Strictly speaking, the definition relates the requirements exposed by S with the require-
ment definitions ofN , the capabilities exposed by S with the capability definitions ofN , the
policies exposed by S with the policy types applicable to N , and the properties exposed by
S with the properties definition declared by N .



3.1. Matching cloud applications 19

∀cS ∈ Caps(S) ∃!cN ∈ Caps(N) : name(cS) = name(cN ) ∧
type(cS) = type(cN )

and
∀cN ∈ Caps(N) ∃!cS ∈ Caps(S) : name(cN ) = name(cS) ∧

type(cN ) = type(cS).

According to the TOSCA specification [94], a policy type can be asso-
ciated with a set of node types to which it is applicable2. To ensure exact
matching, the type of each policy of S must therefore be one of the policy
types applicable to N .

Definition 3.3 (Exact matching of policies). Let N be a node type and let S be
a service template. Then:

Pols(S) ≡PO Pols(N) iff ∀polS ∈ Pols(S) : type(polS) ∈ Pols(N).

Furthermore, since a node type only specifies the XML schema of its ob-
servable properties (while service templates specify actual values of prop-
erties), property matching reduces to comparing XML types.

Definition 3.4 (Exact matching of properties). Let N be a node type and let S
be a service template. Then:

Props(S) ≡PR Props(N) iff XMLtype(Props(S)) = XMLtype(Props(N)).

Finally, interfaces must have the same name and must be in a one-to-one
correspondence. The same holds for interface operations and for operation
parameters. Operation parameters must also have the same type.

Definition 3.5 (Exact matching of interfaces). Let N be a node type and let S
be a service template. Then:

Ints(S) ≡I Ints(N) iff
∀iS ∈ Ints(S) ∃!iN ∈ Ints(N) : name(iS) = name(iN ) ∧

∀oS ∈ Ops(iS) ∃!oN ∈ Ops(iN ) : oS ≡o oN
and
∀iN ∈ Ints(N) ∃!iS ∈ Ints(S) : name(iN ) = name(iS) ∧

∀oN ∈ Ops(iN ) ∃!oS ∈ Ops(iS) : oN ≡o oS
where Ops(.) denotes the set of operations of an interface and where
ox ≡o oy iff

name(ox) = name(oy) and
|I(ox)| = |I(oy)| and
|O(ox)| = |O(oy)| and
∀a ∈ I(ox),∃!b ∈ I(oy) : name(a) = name(b) ∧ type(a) = type(b), and
∀a ∈ O(ox), ∃!b ∈ O(oy) : name(a) = name(b) ∧ type(a) = type(b), and

where I(o) and O(o) denote the input and output parameters of operation o.
2We assume that a policy type is applicable to all node types if not specified otherwise.
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It is easy to observe that the notion of exact matching is quite strict, as
illustrated by the following example.

Example 3.1. Consider the node types N1 and N2 and the service template S of
Fig. 3.1, where C and Csup denote sets of capabilities, R and Rsub denote sets of re-
quirements, pj denotes a property, ij denotes an interface, oj denotes an operation,
and where policies and operation parameters are omitted for readability. Suppose

FIGURE 3.1: Exact matching examples.

that S exactly matches N1 (viz., S ≡ N1 ) and that N2 differs from N1 since it
exposes “more" requirements than N1 and “less” capabilities, properties and op-
erations than N1 . While, according to Defs. 3.1—3.5, S does not exactly match N2

(viz., S 6≡ N2 ), a less strict definition of matching should allow S to match also N2

(as we will discuss in the next section).

3.1.2 Plug-in matching

Intuitively speaking, a service template plug-in matches a node type if the
former “requires less” and “offers more” than the latter. Analogously to
Def. 3.1, the following definition specifies when a service template S can
plug-in match a node type N in terms of the requirements, capabilities,
policies, properties and interfaces of S andN . As node types do not specify
concrete policies (just applicable policies), the matching of policies (≡PO) is
unchanged.

Definition 3.6 (Plug-in matching). A service template S plug-in matches a
NodeType N (S ' N ) iff:

(1) Reqs(S) 'R Reqs(N) and
(2) Caps(S) 'C Caps(N) and

(3) Pols(S) ≡PO Pols(N) and

(4) Props(S) 'PR Props(N) and

(5) Ints(S) 'I Ints(N).

Intuitively speaking, a service template has to expose “less” require-
ments than a node type. According to TOSCA [94], names of requirements
cannot be different, but types do not need to strictly coincide (viz., the type
of each requirement of the node type can be a subtype of the type of the
homonym requirement in the service template).

Notation 3.2. We write t′ ≥ t when type t′ extends3 or is equal to type t.
3More precisely, if t and t′ are TOSCA elements then t′ extends t if t′ is (directly or

undirectly) derived from t. If t and t′ are instead XML types then the standard notion of XML
extension applies.
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Definition 3.7 (Plug-in matching of requirements). Let N be a node type and
let S be a service template. Then:

Reqs(S) 'R Reqs(N) iff
∀rS ∈ Reqs(S) ∃rN ∈ Reqs(N) : name(rN ) = name(rS)∧

type(rN ) ≥ type(rS).

Dually, a service template must expose “more” capabilities and proper-
ties of a node type. According to the TOSCA specification [94], names of
capabilities cannot be different, but types do not need to strictly coincide
(viz., the type of each capability of the service template can be a subtype of
the type of the homonym capability in the node type).

Definition 3.8 (Plug-in matching of capabilities and properties). Let N be a
node type and let S be a service template. Then:

Caps(S) 'C Caps(N) iff
∀cN ∈ Caps(N) ∃cS ∈ Caps(S) : name(cS) = name(cN )∧

type(cS) ≥ type(cN ).
Props(S) 'PR Props(N) iff

XMLtype(Props(S)) ≥ XMLtype(Props(N)).

Finally, a service template must expose all the operations exposed by a
node type. The matching can focus on operations and abstract from (names
of) interfaces.

Definition 3.9 (Plug-in matching of interfaces). Let N be a node type and let
S be a service template. Then:

Ints(S) 'I Ints(N) iff
∀iN ∈ Ints(N), oN ∈ Ops(iN ) : ∃iS ∈ Ints(S), oS ∈ Ops(iS) : oS ≡o oN .

It is worth noting that when a service template S plug-in matches a
node type then S can be easily adapted into a new service template S′ that
exactly matches that node type. Such S′ is built by creating a new service
template having S as its only node, and by simply exposing (via the bound-
ary definitions of S′) the capabilities, policies, properties, and interfaces of
the node type to be matched. If requirements plug-in match (but do not ex-
actly match) then a dummy NoBe node template is introduced to artificially
extend the set of requirements of S so as to expose the same requirements
of the node type to be matched.

Example 3.2. Example 3.1 illustrated a service template S that does not exactly
match a node type N2 since the latter exposes “more” requirements and “less” ca-
pabilities, properties and operations than the former. Since S exposes one property
(p2 ) and one operation (o4 ) more than N2 , we have that Props(S ) 'PR Props(N2 )

and Ints(S ) 'PR Ints(N2 ) by Defs. 3.8 and 3.9, respectively. Therefore, if R 'R Rsub
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(a)

(b)

FIGURE 3.2: Plug-in matching examples.

and C 'R Csup hold too, then S plug-in matches N2 (S ' N2 ). Fig. 3.2.(a) illus-
trates how S can be adapted to exactly match N2 .

Consider now the node type N3 in Fig. 3.2.(b), which differs from N2 only since
it exposes property pA instead of property p1 . According to Def. 3.8, S does not
plug-in match N3 (S 6' N3 ). However, if p1 and pA were (syntactically) different
names for the same property and if the type of p1 were compatible with the type
of pA (i.e., type(p1 ) ≥ type(pA)), then a less strict definition of matching should
allow S to match also N3 .

3.1.3 Implementation

The definitions of matching presented in Sects. 3.1.1 and 3.1.2 can be fruit-
fully integrated in the OpenTOSCA open source environment [15], as well
as in other TOSCA implementations currently under development, in order
to enhance their type-checking capabilities. Since OpenTOSCA is written
in Java, we shall now describe a proof-of-concept Java implementation4 of
both exact and plug-in matchings.

High-level modelling of TOSCA

The OpenTOSCA environment directly exploits TOSCA XSD5 to automat-
ically generate the Java representation of TOSCA files. The obtained rep-
resentation is quite low-level and it does not ease the development of in-
tegrated plug-ins. For example, consider the management of the relation-
ships between capabilities, capability types and capability definitions. In

4The source code is publicly available on GitHub at https://github.com/
jacopogiallo/Finding-available-services-in-TOSCA-compliant-clouds.

5http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/schemas/
TOSCA-v1.0.xsd.

https://github.com/jacopogiallo/Finding-available-services-in-TOSCA-compliant-clouds
https://github.com/jacopogiallo/Finding-available-services-in-TOSCA-compliant-clouds
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/schemas/TOSCA-v1.0.xsd
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/schemas/TOSCA-v1.0.xsd
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FIGURE 3.3: High-level management of TOSCA capabilities.

TOSCA both capabilities and capability definitions can reference capabil-
ity types by means of qualified names. To avoid that the automated XSD-
based conversion of TOSCA capabilities and capability definitions looses
such references, ad-hoc mechanisms must be developed to generate an ex-
plicit representation of such references that associates qualified names with
the corresponding Java classes.

Since OpenTOSCA and Winery do not provide a high-level API to man-
age TOSCA elements [13], we will employ a higher level Java represen-
tation of TOSCA elements, which is still a hierarchy of classes that corre-
sponds to the hierarchy of elements defined in the TOSCA XSD. For in-
stance, the management of capabilities, capability types and capability de-
finitions is performed by directly referencing the corresponding Java objects
(Fig. 3.3). Thanks to its schema definition orientedness, such higher level
representation can be easily mapped on the lower level representations cur-
rently employed by the available TOSCA implementations6.

Implementation of the matchmakers

Since plug-in matching generalises exact matching (viz., ≡⊂'), we imple-
mented the two matchings as a class hierarchy. The top element of such
hierarchy is the abstract Matchmaker class. It groups the fields and methods
common to both the exact and the plug-in matchmakers. More precisely, it
declares the service template s and the node type n to be matched, and the
sets of unmatched elements (e.g., unmatchedCapabilities). It also provides
the constructor method, as well as the abstract methods to check whether
s matches n and to access the above mentioned sets of unmatched elements
(e.g., getUnmatchedCapabilities).

The abstract Matchmaker class is then extended to provide the implementa-
tion of the exact matchmaker. The resulting ExactMatchmaker suitably stores
the exactly matched TOSCA elements (e.g., exactlyMatchedCapabilities) and

6The documentation of the higher level API is available at http://jacopogiallo.
github.io/Finding-available-services-in-TOSCA-compliant-clouds/.

http://jacopogiallo.github.io/Finding-available-services-in-TOSCA-compliant-clouds/
http://jacopogiallo.github.io/Finding-available-services-in-TOSCA-compliant-clouds/
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1 public boolean match ( ) {
2 matchCapabi l i t i es ( ) ;
3 matchRequirements ( ) ;
4 matchPol i c ies ( ) ;
5 matchPropert ies ( ) ;
6 matchInter faces ( ) ;
7 return ( areCapabi l i t iesMatched && areRequirementsMatched &&
8 arePol ic iesMatched && arePropert iesMatched && areInter facesMatched ) ;
9 }

FIGURE 3.4: ExactMatchmaker.match() method.

1 protected void matchCapabi l i t i e s ( ) {
2 exac t lyMatchedCapabi l i t i e s = new ArrayList <Capabi l i ty > ( ) ;
3 areCapabi l i t iesMatched = f a l s e ;
4 unmatchedCapabil i t ies = n . g e t C a p a b i l i t y D e f i n i t i o n s ( ) . g e t L i s t ( ) ;
5 L i s t <Capabi l i ty > sCaps =
6 s . getBoundaryDefini t ions ( ) . g e t C a p a b i l i t i e s ( ) . g e t L i s t ( ) ;
7 L i s t < C a p a b i l i t y D e f i n i t i o n > newUnmatchedCapabilities =
8 new ArrayList < C a p a b i l i t y D e f i n i t i o n > ( ) ;
9 boolean matched ;

10 for ( C a p a b i l i t y D e f i n i t i o n cDef : unmatchedCapabil i t ies ) {
11 matched = f a l s e ;
12 for ( C a pa b i l i t y c : sCaps ) {
13 matched = match ( cDef , c ) ;
14 i f ( matched ) {
15 exac t lyMatchedCapabi l i t i e s . add ( c ) ;
16 break ;
17 }
18 }
19 i f ( ! matched ) newUnmatchedCapabilities . add ( cDef ) ;
20 }
21 unmatchedCapabil i t ies = newUnmatchedCapabilities ;
22 i f ( n . g e t C a p a b i l i t y D e f i n i t i o n s ( ) . g e t L i s t ( ) . s i z e ( ) != sCaps . s i z e ( ) )
23 return ;
24 i f ( unmatchedCapabil i t ies . isEmpty ( ) )
25 areCapabi l i t iesMatched = t rue ;
26 }
27
28 protected boolean match ( C a p a b i l i t y D e f i n i t i o n cDef , Ca p ab i l i ty c ) {
29 return ( cDef . getName ( ) . equals ( c . getName ( ) ) &&
30 cDef . getCapabi l i tyType ( ) . getName ( ) . equals ( c . getType ( ) . getName ( ) ) ) ;
31 }

FIGURE 3.5: ExactMatchmaker.matchCapabilities() method.

provides access to them (e.g., getExactlyMatchedCapabilities). It also imple-
ments the match method, which checks whether a service template s exactly
matches a node type n (Fig. 3.4). The matching is performed in a step-wise
way, to keep it aligned with Def. 3.1 (lines 2-6). Each kind of element is
matched with a separate method (e.g., matchCapabilities) which properly in-
stantiates the corresponding boolean variable (e.g., areCapabilitiesMatched).
The result of the whole matchmaking is given by the logical and among all
sub-results (lines 7-8).

Consider, for instance, the matchmaking of capabilities7 (Fig. 3.5). After
initialization (lines 2-9), the method checks whether all the capabilities de-
fined by the node type n are present on the boundaries of s. More precisely,
for each capability definition in n (line 10) it checks whether there exists a

7The (exact) matchmaking of the other TOSCA elements is analogous.
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1 public boolean match ( ) {
2 super . matchCapabi l i t i es ( ) ;
3 super . matchRequirements ( ) ;
4 super . matchPol i c ies ( ) ;
5 super . matchPropert ies ( ) ;
6 super . matchInter faces ( ) ;
7 i f ( areCapabi l i t iesMatched && areRequirementsMatched &&
8 arePol ic iesMatched && arePropert iesMatched && areInter facesMatched )
9 return true ;

10
11 i f ( ! areCapabi l i t iesMatched ) matchCapabi l i t i es ( ) ;
12 i f ( ! areRequirementsMatched ) matchRequirements ( ) ;
13 i f ( ! arePropert iesMatched ) matchPropert ies ( ) ;
14 i f ( ! areInter facesMatched ) matchInter faces ( ) ;
15 return ( areCapabi l i t iesMatched && areRequirementsMatched &&
16 arePol ic iesMatched && arePropert iesMatched && areInter facesMatched ) ;
17 }

FIGURE 3.6: PlugInMatchmaker.match() method.

capability on the boundaries of s such that they exactly match (lines 11-18).
The comparison is performed by the match method which checks whether
a capability definition and a capability have same name and type (lines 28-
31). If no capability matches the capability definition under consideration,
then the latter is added to a new set of unmatched capability definitions
(line 19). After the end of the loop, the set of unmatchedCapabilities is up-
dated (line 21). Then, to ensure the one-to-one correspondence needed by
Def. 3.2, the method checks whether both n and s expose the same number
of capabilities (lines 22-23). If so, and if there are no unmatched capabil-
ity definitions, then the areCapabilitiesMatched variable is set to true (lines
24-25). Otherwise, the method ends (by leaving it set to false).

The ExactMatchmaker is in turn extended by the PlugInMatchmaker. The lat-
ter stores and provides access to the plug-in matched TOSCA elements (e.g.,
via the field plugInMatchedCapabilities and through the method getPlugIn-
MatchedCapabilities) and overrides the match method by making it check
whether a node type n plug-in matches a service template s (Fig. 3.6). The
method starts by checking whether the two elements exactly match (lines
2-9). If this is not the case, the plug-in matching of (unmatched) TOSCA
elements is performed separately (lines 11-14). Finally, the whole match-
making result is computed with the logical and among all partial results
(lines 15-16).

Consider, for instance, the matchmaking of capabilities8 (Fig. 3.7). Since
it is performed after the exact matching, the set up of the environment is
lighter than that of Fig. 3.5 (lines 2-7). The method then proceeds by check-
ing whether all the capabilities defined by n are compatible with those on
the boundaries of s. More precisely, for each capability definition in n (that
has not yet been matched — line 8), it checks whether there exists a capa-
bility on the boundaries of s such that they plug-in match (lines 9-16). The

8The plug-in matchmaking of the other TOSCA elements is analogous.
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1 protected void matchCapabi l i t i e s ( ) {
2 pluginMatchedCapabi l i t ies = new ArrayList <Capabi l i ty > ( ) ;
3 L i s t <Capabi l i ty > sCaps =
4 s . getBoundaryDefini t ions ( ) . g e t C a p a b i l i t i e s ( ) . g e t L i s t ( ) ;
5 L i s t < C a p a b i l i t y D e f i n i t i o n > newUnmatchedCapabilities =
6 new ArrayList < C a p a b i l i t y D e f i n i t i o n > ( ) ;
7 boolean matched ;
8 for ( C a p a b i l i t y D e f i n i t i o n cDef : unmatchedCapabil i t ies ) {
9 matched = f a l s e ;

10 for ( C a pa b i l i t y c : sCaps ) {
11 matched = match ( cDef , c ) ;
12 i f ( matched ) {
13 pluginMatchedCapabi l i t ies . add ( c ) ;
14 break ;
15 }
16 }
17 i f ( ! matched ) newUnmatchedCapabilities . add ( cDef ) ;
18 }
19 unmatchedCapabil i t ies = newUnmatchedCapabilities ;
20 i f ( unmatchedCapabil i t ies . isEmpty ( ) )
21 areCapabi l i t iesMatched = t rue ;
22 }
23
24 protected boolean match ( C a p a b i l i t y D e f i n i t i o n cDef , Ca p ab i l i ty c ) {
25 i f ( ! cDef . getName ( ) . equals ( c . getName ( ) ) )
26 return f a l s e ;
27 Capabil i tyType cType = c . getType ( ) ;
28 while ( cType != null ) {
29 i f ( cDef . getCapabi l i tyType ( ) . getName ( ) . equals ( cType . getName ( ) ) )
30 return true ;
31 cType = cType . derivedFrom ( ) ;
32 }
33 return f a l s e ;
34 }

FIGURE 3.7: PlugInMatchmaker.matchCapabilities() method.

comparison is performed by the match method (lines 24-34) which checks
whether a capability c has the same name as capability definition cDef (lines
25-26) and whether c either has the same type of or a type derived from that
of cDef (lines 27-32). If no capability matches the capability definition under
consideration, then the latter is added to the (new) set of unmatched capa-
bility definitions (line 17). After the loop, the set of unmatchedCapabilities
is properly updated (line 19). If the latter is empty (i.e., if there are no un-
matched capability definitions), then the areCapabilitiesMatched variable is
set to true (lines 20-21). Otherwise, the method terminates (by leaving it set
to false).

Example 3.3. We now use a (toy) example to illustrate the behaviour of our proof-
of-concept implementation. Consider the node type Server and the service tem-
plates9 ApacheServer, PaaSServer, and PaaSServer2 in Fig. 3.8. Suppose that the
capability WSRuntime of Server and ApacheServer is of WSRuntimeCapabilityType,
while those of PaaSServer and PaaSServer2 are of WebAppCapabilityType (which is
a sub-type of WSRuntimeCapabilityType). Suppose also that the type of all require-
ments is SWContainerRequirementType, the type of all properties is String, and all
service templates expose a HighAvailabilityPolicy which is applicable to Server.

9For the sake of readability, in Fig. 3.8 we abstract from the internal topology of the
service templates.
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FIGURE 3.8: An example of node type (Server), and three examples of service tem-
plates (ApacheServer, PaaSServer, PaaSServer2).

Please note that the example is built in such a way that, according to Defs. 3.1
and 3.6, all possible situations are covered:

ApacheServer ≡ Server ∧ PaaSServer 6≡ Server ∧

PaaSServer ' Server ∧ PaaSServer2 6' Server.

We can easily develop a unit-test class10 which let us obtain the above mentioned
results (Fig. 3.9) by employing the ExactMatchmaker and PlugInMatchmaker previ-
ously introduced.

FIGURE 3.9: Snapshot of the matchmaking results.

Further remarks

Thanks to the way in which the match() methods were implemented (Figs.
3.4 and 3.6), the PlugInMatchmaker can be directly exploited to determine
whether a service template exactly or plug-in matches a node type. Suppose
for instance that areCapabilitiesMatched is true. If plugInMatchedCapabilities
is empty, then capabilities were exactly matched. Otherwise, they were
plug-in matched. The same holds for requirements, policies, properties,
and interface operations.

Additionally, the information in the fields of PlugInMatchmaker can also
be employed to automate the adaptation of a matched service template.
Fig. 3.10 shows the pseudo-code of a method to be included in the PlugIn-
Matchmaker class in order to automatically adapt a service template s that
plug-in matches a node type n.

10The source code of the example is available at https://github.com/
jacopogiallo/Finding-available-services-in-TOSCA-compliant-clouds/
blob/master/src/di/unipi/example/Example.java.

https://github.com/jacopogiallo/Finding-available-services-in-TOSCA-compliant-clouds/blob/master/src/di/unipi/example/Example.java
https://github.com/jacopogiallo/Finding-available-services-in-TOSCA-compliant-clouds/blob/master/src/di/unipi/example/Example.java
https://github.com/jacopogiallo/Finding-available-services-in-TOSCA-compliant-clouds/blob/master/src/di/unipi/example/Example.java
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1 ServiceTemplate getAdaptation ( ) {
2 / / C r e a t i o n o f t h e a d a p t e d S e r v i c e T e m p l a t e
3 ServiceTemplate adapted = new ServiceTemplate ( ) ;
4 adapted . topology . addNode ( s ) ;
5
6 / / A d a p t a t i o n o f c a p a b i l i t i e s
7 matchedCapabi l i t ies = exactMatchedCapabi l i t i es U plugInMatchedCapabi l i t ies ;
8 for cap in matchedCapabi l i t ies { adapted . boundaries . expose ( cap ) ; }
9

10 / / A d a p t a t i o n o f r e q u i r e m e n t s
11 i f plugInMatchedRequirements . isEmpty ( ) {
12 for req in exactMatchedRequirements { adapted . boundaries . expose ( req ) ; }
13 }
14 e lse {
15 NodeTemplate echo = new NodeTemplate ( ) ;
16 adapted . topology . addNode ( echo ) ;
17 adapted . topology . addRelationshipFromTo ( s , echo ) ;
18 for req in n . getRequirements ( ) {
19 echo . addRequirement ( req ) ;
20 adapted . boundaries . expose ( req ) ;
21 }
22 }
23
24 / / A d a p t a t i o n o f p o l i c i e s
25 for pol in exactMatchedPol ic ies { adapted . boundaries . expose ( pol ) }
26
27 / / A d a p t a t i o n o f p r o p e r t i e s
28 matchedProperties = exactMatchedPropert ies U plugInMatchedProperties ;
29 for prop in matchedProperties { adapted . boundaries . expose ( prop ) }
30
31 / / A d a p t a t i o n o f i n t e r f a c e s
32 matchedInter faces = exactMatchedInter faces U plugInMatchedInterfaces ;
33 for i n t f in matchedInter faces { adapted . boundaries . expose ( i n t f ) }
34
35 return adapted ;
36 }

FIGURE 3.10: Pseudo-code of the adaptation of plug-in matched services.

The proposed implementation can be fruitfully employed by the user
also in case of no matching. Since the matchmaking is performed in a
“verbose” way (i.e., instead of halting when a condition is not satisfied,
it always checks all conditions and properly instantiates the correspond-
ing fields), the collected information can be fruitfully exploited to manu-
ally adapt an available service template. In this respect, a methodology to
manually adapt plug-in unmatched services (if possible) is described in the
following section.

3.2 Overcoming naming differences

Example 3.2 illustrated that a service template S may fail to plug-in match
a node type N only because of syntactically different names for compatible
features, while a less strict definition of matching should allow S to match
also N . We now define two other types of matching (renaming-based and
white-box), each permitting to ignore larger sets of naming differences when
type-checking service templates with respect to node types. Finally, we
show how to avoid the usage of ontologies by providing a methodology



3.2. Overcoming naming differences 29

for adapting plug-in unmatched service templates which is based upon the
notions of renaming-based and white-box matching.

3.2.1 Renaming-based matching

We now further extend the definition of matching of a service template with
a node type in order to ignore naming differences (i.e., by permitting to
match features whose names are syntactically different, but semantically
equivalent). Since the semantics of policies depends only on types, we ex-
tend plug-in matching (Def. 3.6) only on capabilities, requirements, proper-
ties and interfaces.

Definition 3.10 (Renaming-based matching). A service template S renaming-
based matches a node type N (S ∼ N ) iff:

(1) Reqs(S) ∼R Reqs(N) and
(2) Caps(S) ∼C Caps(N) and

(3) Pols(S) ≡PO Pols(N) and

(4) Props(S) ∼PR Props(N) and

(5) Ints(S) ∼I Ints(N).

Intuitively speaking, a service template has to expose “less” require-
ments than a node type. Names of requirements can be semantically equiv-
alent, and types of requirements do not need to strictly coincide.

Notation 3.3. Let n1 and n2 be the names of two TOSCA definitions. We will
write n1 on n2 to denote that names n1 and n2 are semantically equivalent11.

Definition 3.11 (Renaming-based matching of requirements). Let N be a
node type and let S be a service template. Then:

Reqs(S) ∼R Reqs(N) iff
∀rS ∈ Reqs(S) ∃rN ∈ Reqs(N) : name(rN ) on name(rS)∧

type(rN ) ≥ type(rS).

A service template must expose all capabilities of a node type. Names
of capabilities can be semantically equivalent, and types of capabilities do
not need to stricly coincide. The same holds for properties.

Definition 3.12 (Renaming-based matching of capabilities and properties).
Let N be a node type and S a service template. Then:

11The semantical equivalence of syntactically different names may be implemented by
employing ontology-based descriptions of cloud service functionalities (e.g., as proposed by
O’Sullivan and Lewis [99]). Namely, TOSCA node types and service templates may include
ontology-based annotations associated with the names of their capabilities, requirements,
properties and operations. Instead of assuming that all TOSCA-based cloud application
specifications are ontology-annotated, we will describe an ontology-free methodology for
adapting a service template S that renaming-based or white-box matches a desired node
type N so as to exactly match N (see Sect. 3.2).



30 Chapter 3. Reusing cloud applications

Caps(S) ∼C Caps(N) iff
∀cN ∈ Caps(N) ∃cS ∈ Caps(S) : name(cS) on name(cN )∧

type(cS) ≥ type(cN ).

Props(S) ∼PR Props(N) iff
∀pN ∈ Props(N) ∃pS ∈ Props(S) : name(pS) on name(pN )∧

type(pS) ≥ type(pN ).

A service template must also expose all the operations exposed by a
node type. Names of operations can be ignored, while names of operation
parameters can be semantically equivalent and their types do not need to
strictly coincide.

Definition 3.13 (Renaming-based matching of interfaces). Let N be a node
type and let S be a service template. Then:

Ints(S) 'I Ints(N) iff
∀iN ∈ Ints(N), oN ∈ Ops(iN ) : ∃iS ∈ Ints(S), oS ∈ Ops(iS) : oS ∼o oN .

where ox ∼o oy iff
|I(ox)| = |I(oy)| and
|O(ox)| = |O(oy)| and
∀a ∈ I(ox), ∃!b ∈ I(oy) : name(a) on name(b) ∧ type(b) ≥ type(a) and
∀a ∈ O(ox), ∃!b ∈ O(oy) : name(a) on name(b) ∧ type(a) ≥ type(b).

where I(o) and O(o) denote the input and output parameters of operation o.

In Sect. 3.1.2 we have illustrated how a service template S that plug-
in matches a node type can be easily adapted so as to exactly match that
node type. The same holds for renaming-based matching: A service tem-
plate S that renaming-based matches a node type can be easily adapted
into a new service template S′ that exactly matches that node type. As
for the case of plug-in matching, S′ is built by creating a new service tem-
plate having S as its only node, and by simply exposing (via the boundary
definitions) the capabilities, policies, properties, and interfaces of the node
type to be matched. If requirements renaming-based match (but do not ex-
actly match) then a dummy NoBe node is introduced to artificially extend
the set of requirements of S so as to expose the same requirements of the
node type to be matched. Moreover, differently from plug-in adaptation,
renaming-based adaptation may rename properties, interfaces, operations,
and operation parameters.

Example 3.4. Example 3.2 illustrated a service template S that does not plug-in
match a node type N3 since S exposes a property p1 different from the property
pA exposed by N3 . It is easy to see that Def. 3.12 permits S to renaming-based
match N3 (viz., S ∼ N3 ) if the type of p1 extends or is equal to the type of pA and
if p1 and pA —even if syntactically different— refer to the same property (viz.,
name(p1 ) on name(pA)). Fig. 3.11 illustrates how S can be adapted so as to exactly



3.2. Overcoming naming differences 31

FIGURE 3.11: Renaming-based matching example.

match N3 , by letting the new service template S ′ expose also the renamed property
pA.

Example 3.5. Suppose that a cloud application developer needs to employ a node
type OS (Fig. 3.12), whose interface M exposes the following operations

Start : {} → {}, InstallPkg : {name} → {succeded}, and Shutdown : {} → {}.

Suppose also that a service template UbuntuOS is available, and that it exhibits a
management interface U featuring the following operations:

Start : {} → {}, Shutdown : {} → {}, Retrieve : {pkgName} → {url},
Download : {url} → {sourcePath}, and Install : {sourcePath} → {installed},

with name on pkgName and succeded on installed . For the sake of simplicity we also
assume that name(x) on name(y) implies type(x) = type(y).

FIGURE 3.12: A service template that does not renaming-based match a node type.

It is easy to see that while UbuntuOS capabilities exactly match OS capabil-
ties, UbuntuOS properties and interfaces do not renaming-based match OS ’s ones.
This is because OS is exposing a property (DiskSpace) that UbuntuOS is not fea-
turing, and because UbuntuOS does not offer the operation InstallPkg exposed by
OS . Still, one may observe that property DiskSpace may correspond to one of the
properties of an internal node of UbuntuOS (i.e., to VMWare’s property DiskSize)
and that operation InstallPkg might be offered by UbuntuOS by suitably combin-
ing some of its operations. This suggests that a “white-box” definition of matching
could allow the service template UbuntuOS to match the desired node type OS (as
we will discuss in the next section).
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3.2.2 White-box matching

A service template S that does not renaming-based match a node type be-
cause of some missing requirement, capability, property, or operation, may
actually include such missing elements internally, without exposing them
on its boundaries.

As for the previous definitions of matching, the following definition
specifies when a service template S white-box matches a node type N in
terms of the requirements, capabilities, policies, properties and interfaces
of S and N . As we already observed in Sect. 3.2.1, intuitively speaking, a
node type N must expose (at least) a set of requirements which are seman-
tically equivalent to (all) those of the service template S. Moreover, node
types do not specify concrete policies. For these reasons, the following def-
inition extends Def. 3.10 only on capabilities, properties and interfaces.

Definition 3.14 (White-box matching). A service template S white-box mat-
ches a node type N (S�N ) iff:

(1) Reqs(S) ∼R Reqs(N) and
(2) Caps(S) �C Caps(N) and

(3) Pols(S) ≡PO Pols(N) and

(4) Props(S) �PR Props(N) and

(5) Ints(S) �I Ints(N).

The following definition extends the matching of capabilities and prop-
erties (Def. 3.12) to consider also the internals of a service template (viz., the
node templates and relationship templates in its topology).

Notation 3.4. Let S be a service template, and let E be a node template or a
relationship template. We denote by S → E the fact that E is an element of the
(internal) topology of S.

Definition 3.15 (White-box matching of capabilities and properties). Let N
be a node type and let S be a service template. Then:

Caps(S) �C Caps(N) iff
∀cN ∈ Caps(N) ∃cS : (cS ∈ Caps(S) ∨ (∃E : S → E ∧ cS ∈ Caps(E)))∧

(name(cS) on name(cN ) ∧ type(cS) ≥ type(cN )).

Props(S) �PR Props(N) iff
∀pN ∈ Props(N) ∃pS : (pS ∈ Props(S) ∨ (∃E : S → E ∧ pS ∈ Props(E)))∧

(name(pS) on name(pN ) ∧ type(pS) ≥ type(pN )).

The following definition extends the matching of operations (Def. 3.13)
to consider also operations that a service template can feature by combining
its operations in a suitable plan.
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Definition 3.16 (White-box matching of interfaces). Let N be a node type, let
S be a service template, and let Π(S) the set of all possible plans combining the
operations of S. Then:

Ints(S) �I Ints(N) iff
∀iN ∈ Ints(N), oN ∈ Ops(iN ) : (∃iS ∈ Ints(S), oS ∈ Ops(iS) : oS ∼o oN )∨

(∃p : p ∈ Π(S) ∧ [p] ∼o oN )

where [p] denotes an operation whose input and output parameters model the over-
all input-output behaviour of the plan p.

The existence of a plan that suitably combines a set of available opera-
tions to obtain an input-output behaviour equivalent to a desired operation
can be determined by adapting the (ontology-aware) discovery function
proposed by Brogi et al. [30].

1: function FINDOPERATIONS(available, t, selected)
2: requiredPars← O(t) ∪ {p | p ∈ I(o) ∧ o ∈ selected}
3: availablePars← O(t) ∪ {p | p ∈ O(o) ∧ o ∈ selected}
4: missingPars← {p | p ∈ inputs ∧ 6 ∃p′ ∈ outputs : p′ . p}
5: if missingPars = ∅ then return { selected }
6: else
7: p← choose(missingPars)
8: candidates← {o ∈ available | ∃p′ ∈ O(o) : p′ . p}
9: res← ∅

10: for all o ∈ candidates do
11: selected′ ← selected ∪ {o}
12: if minimal(selected, op) then
13: res← res ∪ FINDOPERATIONS(available, t, selected′)
14: return res
(where p′ . p stands for name(p′) on name(p) and type(p′) ≥ type(p))

FIGURE 3.13: Function to discover sets of available operations that can be com-
posed into plans featuring the input-output behaviour of a target operation.

The FINDOPERATIONS function (Fig. 3.13), given a set of operations, re-
turns all subsets of such operations that can be composed into a plan featur-
ing the input-output behaviour of a target operation. The function inputs
a set of available operations, the target operation t to be simulated, and a
(initially empty) set of selected operations. First, the function computes the
set requiredPars of required parameters (viz., the output parameters of the
target operation t, as well as the parameters required as inputs by the cur-
rently selected operations — line 2), and the set availablePars of available
parameters (viz., the input parameters of the target operation t, as well as
the outputs of the currently selected operations — line 3). It then computes
the setmissingPars of parameters that are required but not yet available as
follows: A required parameter p is included in missingPars only if there is
no parameter p′ in availablePars such that p′ is “equal to or more general
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than” p (line 4). If there are no missing parameters to be generated the cur-
rent set of selected operations is returned (line 5). Otherwise, a missing out-
put p is non-deterministically chosen (line 7). The function then computes
the set candidates of available operations that produce an output equal to
or more general than p (line 8), and creates an initially empty variable res
where to accumulate the results (line 9). For each operation o in candidates,
a new set selected′ of operations is computed (by adding o to the current set
of selected operations — line 11). If selected′ is minimal12, then the function
recurs on it, and updates the set res of computed results by adding the re-
sult of the recursion (line 13). Finally, the function returns the computed
results (line 14)13.

Finally, it is worth highlighting that when a service template S white-
box matches a node type N then S can be adapted into a new service tem-
plate S′ that exactly matches that node type. Differently from the cases of
plug-in and renaming-based matching, the boundary definitions of S are
first extended in order to expose the capabilities, properties or plans in-
ternal to S that were detected by the white-box matching. The obtained
service template Stmp renaming-based matches node type N , and the adap-
tation described in Sect. 3.2.1 can be now applied to build a service template
S′ having Stmp as its only node, and by simply exposing (via the boundary
definitions) the capabilities, policies, properties, and interfaces of the node
type N to be matched. If requirements plug-in match (but do not exactly
match) then a dummy node is introduced to artificially extend the set of
requirements of S so as to expose the same requirements of the node type
to be matched.

Example 3.6. Example 3.5 illustrated a service template (viz., UbuntuOS ) that can-
not renaming-based match a node type (viz., OS ) since the latter exposes one
property more than the former (i.e., DiskSpace), and since UbuntuOS does not of-
fer the operation InstallPkg . Def. 3.14 permits UbuntuOS to white-box match OS

(viz., UbuntuOS�OS ) if, for instance, property DiskSize of node VMWare of Ubun-
tuOS is semantically equivalent to property DiskSpace of OS , and if there exists
a plan P combining some UbuntuOS ’s operations, whose input-output behaviour
simulates that of the operation InstallPkg (viz., [P ] ∼o InstallPkg). It is easy to
observe that function FINDOPERATIONS returns a minimal set of operations of
UbuntuOS that can simulate InstallPkg , namely {Retrieve ,Download ,Install }. Such
set can then be used to build a plan P simulating the input-output behaviour of
the desired operation InstallPkg :

P = Retrieve ·Download · Install
12We do not include here the definition of the minimal function, which can be found in

Brogi et al. [30]. Intuitively speaking, a set O of operations can simulate the input-output
behaviour of an operation o iff

(1) ∀x ∈ O(o) ∃y ∈
⋃

o′∈O O(o′) : y . x, and
(2) ∀y ∈

⋃
o′∈O I(o′) ∃x ∈ (

⋃
o′∈O O(o′) ∪ I(o)) : x . y.

The set O is also minimal with respect to o iff @O′ ⊂ O that can simulate o.
13The function can be proved to be terminating, sound, and complete [108].
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FIGURE 3.14: White-box adaptation of a ServiceTemplate.

Fig. 3.12 illustrates the adaptation of UbuntuOS . Its boundary definitions are
first extended to expose property DiskSize of node VMWare as property Disk -
Space, and to expose the plan P as operation InstallPkg . Then, the resulting ser-
vice template is encapsulated into a new service template so as to expose only the
capabilities, properties, and interfaces of the node type OS to be matched.

3.2.3 Adaptation of matched cloud applications

The renaming-based and white-box matching defined in Sects. 3.2.1 and 3.2.2
may be implemented by employing ontology-based descriptions of cloud
services [99]. To avoid ontology-related problems (e.g., cross-ontology match-
making [75, 85]), in this section we propose a methodology to manually
adapt plug-in unmatched service templates so as to exactly match a target
node type. Namely, we show how to exactly match target node types by
non-intrusively adapting renaming-based matched service templates, and
by intrusively adapting white-box matched service templates.

FIGURE 3.15: Available service template WebAppEnvironment.

In doing so, we also provide some examples showing how to adapt the
service template WebAppEnviroment (Fig. 3.15) to exactly match different
node types. For the sake of simplicity, we will assume that each capabil-
ity or requirement is of an homonym capability type or requirement type



36 Chapter 3. Reusing cloud applications

(e.g., the capability WebAppRTE is of WebAppRTE capability type, the re-
quirement SWContainer is of SWContainer requirement type, etc.). We will
also assume that all properties are strings, and that all operations have no
input parameters and return a boolean parameter witnessing whether they
successfully completed (e.g., the TomcatServer’s operation Start, as well as
the operation StartServer on the boundaries, return a parameter Tomcat-
ServerStarted, which is true if the TomcatServer has correctly started, and
false otherwise). Finally, we will abstract from policies, as they just require
to check whether they are applicable to a node type.

Adapting renaming-based matched service templates

As we illustrated in Sect. 3.2.1, a service template S renaming-based matches
a target node type N when the plug-in matching fails only because of nam-
ing differences. If S renaming-based matches N , then the former can be
adapted into a new service template which exactly matches N . The adap-
tation consists in building a new service template which contains the avail-
able one as a node template and whose boundaries are built by declaring
the same features ofN and by mapping each of them to the matched feature
of S. This can be done automatically if we employ ontologies, otherwise we
need the manual intervention of the application designer.

We now illustrate how the application designer may non-intrusively
adapt a service template S which does not plug-in match a node type N
into a new service template S′ which exactly matches N . Fig. 3.16 describes
how such an adaptation can be successfully performed when S exposes all
capabilities, properties, interface operations and requirements as N , but in
a syntactically different way.

The adaptation described in Fig. 3.16 implements the relaxed matching
conditions of Def. 3.10 (in terms of ontology-based name equivalences). It
is worth noting that, according to the definition of renaming-based match-
ing, the adaptation process cannot succeed if capability, property, operation
or requirement mismatches are not just syntactic (i.e., if they are not only
due to names which are syntactically different but semantically equivalent).
More precisely, the adaptation described in Fig. 3.16 will fail if one of the
steps cannot be performed, while it succeed if all the steps are performed.

Example 3.7. Consider the target node type WebEnv in Fig. 3.17, where the capa-
bilities WebAppRuntime and MySQLRuntime are respectively of type WebAppRTE
and MySQLRTE, and where both requirements are of type OSContainer. All oper-
ations are without input parameters, and return a boolean parameter witnessing
whether they successfully completed (e.g., the operation StartWebAppRuntime re-
turns a parameter WebAppRuntimeStarted, which is true if the WebAppRuntime ca-
pability is concretely provided, and false otherwise). We observe that, according to
Def. 3.10, the available service template WebAppEnvironment (Fig. 3.15) renaming-
based matches the target node type WebEnv.
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(1) Create the adapted service template S′ which initially contains S as the only node
template in its topology.

(2) For each capability (property) exposed by N

(a) define a capability (property) with the same name and type on the boundaries
of S′, and

(b) map the defined capability (property) onto the corresponding one of S.

(3) For each interface exposed by N , define an interface with the same name on the
boundaries of S′. Then, for each operation o exposed by (an interface of) N

(a) define an operation with the same name and parameters in the corresponding
interface exposed by S′, and

(b) map o onto an operation of S which is semantically equivalent to o.

(4) Add a dummy node template NoBe (whose capabilities satisfy the requirements of
S and whose requirements are the same of N ) to the topology of S′. Then, for each
requirement exposed by N

(a) define a requirement with the same name and type on the boundaries of S′,
and

(b) map the defined requirement to the corresponding one of NoBe.

(where mapping f onto f ′ simply means that f is a reference to f ′)

FIGURE 3.16: A methodology for adapting renaming-based matched service tem-
plates.

FIGURE 3.17: Target node type WebEnv.

Figs. 3.18, 3.19 and 3.20 illustrate how WebAppEnvironment can be adapted so
as to exactly match WebEnv. First, (1) we create a new service template which
contains WebAppEnvironment as the only node template (Fig. 3.18).

Since WebAppRTE and WebAppRuntime, as well as MySQLRTE and MySQL-
Runtime, are of the same capability type, (2) we adapt the capabilities by adding
WebAppRuntime and MySQLRuntime to the boundaries of the adapted service tem-
plate and by mapping them to the corresponding capabilities of the available ser-
vice template (i.e., WebAppEnvironment and MySQLRuntime). Analogously, (3) we
adapt the operations StartMySQLRuntime, StartWebAppRuntime, StopMySQLRun-
time, and StopWebAppRuntime, by mapping them to the corresponding operations
of WebAppEnvironment (i.e., StartDBMS, StartServer, StopDBMS, and StopServer —
Fig. 3.19).

Finally, (4) we artificially extend the requirements of the available service tem-
plate (i.e., WebAppEnvironment) to exactly match those of target node type (i.e., We-
bEnv). Namely, we add a dummy node template NoBe (whose capabilities satisfy
the requirements of WebAppEnvironment and whose requirements are the same of
WebEnv) to the topology of the adapted service template, we define the same re-
quirements of the target node type on the boundaries of the adapted service tem-
plate, and we map each of them to the corresponding one of NoBe (Fig. 3.20).
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FIGURE 3.18: An example on how to apply the step 1 of the (non-intrusive) adap-
tation methodology.

FIGURE 3.19: An example on how to apply the steps 2 and 3 of the (non-intrusive)
adaptation methodology.

FIGURE 3.20: An example on how to apply step 4 of the (non-intrusive) adaptation
methodology.
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The obtained service template (Fig. 3.20) exposes all the features exhibited by
the target node type WebEnv. This implies that they exactly match, and subse-
quently that the adapted service template can be employed to instantiate the node
type WebEnv.

Adapting white-box matched service templates

White-box matching relaxes renaming-based matching by extending the
feature research to the internal elements of a service template, and by al-
lowing to combine internal operations in order to obtain plans which are se-
mantically equivalent to missing operations (see Sect. 3.2.2). Furthermore,
if S white-box matches N , then the former can be adapted into a new ser-
vice template which exactly matchesN . The adaptation consists of building
a new service template which contains the available one as a node template,
and whose boundaries are built by declaring the same features of N and by
mapping each one of them to the matched feature of S. This can be done
automatically if we employ ontologies, otherwise the application designer
needs to manually adapt S.

We hereby illustrate how an application designer may intrusively adapt
a service template S which does not renaming-based match a node type N
into a new service template S′ which exactly matches N . Fig. 3.21 describes
how such an adaptation can be successfully performed when (i) S exposes
all capabilities, properties, and requirements as N , but internally and/or in
a syntactically different way, and (ii) whenN features one or more interface
operation which is not matched by any operation featured by S, while it can
be matched by some composition of the internal operations of S.

According to the definition of white-box matching, the adaptation pro-
cess cannot succeed if missing capabilities and properties cannot be match-
ed internally as well as if operation mismatches cannot be solved by com-
posing internal operations. Namely, the adaptation described in Fig. 3.21
will fail if one of the steps cannot be performed, while it succeed if all the
steps are performed.

Example 3.8. Consider the target node type IntegratedWebEnv in Fig. 3.22, where
the capabilities WebAppRuntime and MySQLRuntime are respectively of type Web-
AppRTE and MySQLRTE, and where both requirements are of type OSContainer.
Both operations are without input parameters, and return two boolean parameters
witnessing whether they successfully completed (e.g., the operation Start returns
two parameters WebAppRuntimeStarted and MySQLRuntimeStarted, each of which
is true if the corresponding capability is concretely provided, and false otherwise).
We observe that, according to Def. 3.14, the available service template WebApp-
Environment (Fig. 3.15) white-box matches the target node type IntegratedWebEnv.

Fig. 3.23 illustrates the service template obtained by applying the adaptation
process discussed above to the service template WebAppEnvironment (to exactly
match the target node type IntegratedWebEnvironment). Namely, we first create a
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(1) Create the adapted service template S′ which initially contains S as the only node
template in its topology.

(2) For each capability (property) c exposed by N

(a) define a capability (property) with the same name and type on the boundaries
of S′,

(b) if c does not correspond to any capability (property) exposed by S, search in-
side of the topology of S a capability (property) corresponding to c and expose
it on the boundaries of S, and

(c) map such capability (property) to the corresponding one exposed by S.

(3) For each interface exposed by N , define an interface with the same name on the
boundaries of S′. Then, for each operation o exposed by N ,

(a) define an operation with the same name and parameters in the corresponding
interface exposed by S′, and

(b) map the defined operation to

• an operation of S which is semantically equivalent to o, or
• a (new) operation oex of S which is suitably extracted from its internal

definitions. With “suitably extracted" we mean that (i) a new interface
has been defined on the boundaries of S, and (ii) oex has been added to
its operations, and (iii) oex has been mapped either to an internal oper-
ation of S which is considered semantically equivalent to o, or to a plan
which combines the internal operations of S to obtain an operation which
is semantically equivalent to o.

(4) Add a dummy node template NoBe (whose capabilities satisfy the requirements of
S and whose requirements are the same of N ) to the topology of S′. Then, for each
requirement exposed by N

(a) define a requirement with the same name and type on the boundaries of S′,
and

(b) map the defined requirement to the corresponding one of NoBe.

(where mapping f onto f ′ simply means that f is a reference to f ′)

FIGURE 3.21: A methodology for adapting white-box matched service templates.

new service template which contains WebAppEnvironment as the only node tem-
plate in its topology. Capabilities and requirements are adapted as shown in Ex-
ample 3.7. The HostName property is extracted from WebAppEnvironment’s inter-
nal topology and then mapped on the boundaries of the adapted service template.
The operation Start requires to generate a plan PStart combining the Start opera-
tions of TomcatServer and MySQLDBMS, to expose such plan as an operation of
WebAppEnvironment, and then to expose such operation also on the boundaries of
the adapted service template. The adaptation to obtain Stop is analogous.

The obtained service template exposes all the features exhibited by the target
node type IntegrateWebEnvironment. This implies that they exactly match and sub-
sequently that the adapted service template can be employed to instantiate the
node type IntegratedWebEnvironment.
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FIGURE 3.22: Target node type IntegratedWebEnv.

FIGURE 3.23: Example of (intrusive) adaptation of a white-box matched service
template.

Remarks

It is important to observe that the adaptation of a TOSCA service template
S to (exactly) match a node type N does suffice to reuse any actual service
modelled by S to deploy cloud applications that rely on N . This is thanks
to the powerful way in which TOSCA supports the deployment of cloud
applications. TOSCA permits to pack in a CSAR (Cloud Service ARchive)
file an application specification together with the actual executable files to
be deployed on a cloud platform. When a CSAR file is given in input to
a TOSCA container, the latter takes care of deploying and executing the
application specification contained in the CSAR file [33, 95]. Therefore, in
order to adapt an actual service modelled by a service template S to deploy
an application that relies on a node type N , it suffices to adapt S into a
new service template S′ that matches N — without having to generate an
implementation of the adaptation specified by S.

Note that the adaptation works also in the case in which the CSAR of S
should not be available, for instance when S is a proprietary service offered
by a third party. In such cases it suffices to develop a simple proxy of the
remote service modelled by S, and to pack it in a new CSAR file together
with the application specification containing S′ (and the executable files
associated with such specification).
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Finally, it is also worth highlighting that, thanks to the features of TOS-
CA, the simple adaptation methodology described in this chapter consider-
ably reduces the work needed to reuse cloud services if compared with the
alternative of explicitly devising adapters as in traditional software adap-
tation approaches (e.g., the adaptation approaches by Bracciali et al. [23],
Guillén et al. [66], Kongdenfha et al. [76]).
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Chapter 4

Reusing fragments of
application topologies

All notions of matching presented in the previous chapter permit reusing
cloud applications only in their entirety. This would potentially result in re-
quiring to waste resources to deploy unnecessary software. In this chapter,
we show how to overcome this issue by introducing and assessing TOSCA-
MART (TOSCA-based Method for Adapting and Reusing application Topologies),
a method that permits reusing only the fragment of an application topology
that is necessary for implementing a desired node.

More precisely, after discussing a running example (also motivating
the need for reusing fragments of cloud applications — in Sect. 4.1), in
Sect. 4.2 we present the TOSCAMART approach. We then discuss termina-
tion, soundness, and time complexity of TOSCAMART in Sect. 4.3. Finally, in
Sect. 4.4 we illustrate the feasibility of TOSCAMART by means of a proof-of-
concept implementation, and we comparatively assess TOSCAMART with
respect to the matching presented in the previous chapter.

4.1 A running example

Suppose that a Web application developer needs to host a PHP application
on a cloud environment, along with a MySQL database containing appli-
cation data. So far, she is required to select the appropriate cloud provider
and to explicitly describe the provisioning of her PHP application on this
provider. Furthermore, in case she decides to move her application to an-
other provider, this may require to re-describe (and re-implement) the de-
ployment and management of her solution (even from scratch). It would
be much better to abstractly describe the desired hosting environment and
to provide such description as input to a tool which automatically derives
a topology implementing the environment needed to deploy and manage
the PHP application.

In TOSCA, this can be done as shown in Fig. 4.1. The environment
required to host the PHP and MySQL modules is represented by a node
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FIGURE 4.1: Motivating scenario.

whose type is DesiredEnvironment. This node is used by the application de-
veloper to describe the capabilities needed to host her application, to spec-
ify that the desired environment must provide an operation for deploying
PHP applications, and to instruct that the application host ID must be avail-
able as a property. Based on this simple node type, TOSCAMART can derive
its implementation by searching among existing cloud applications (as we
will see in the next section).

4.2 TOSCAMART

In this section, we illustrate TOSCAMART as a possible solution to derive
possible implementations of desired node types by reusing fragments of
existing cloud application topologies. We first overview the method as a
whole, and then illustrate its steps separately.

4.2.1 Overview

Our goal is to derive an implementation for a target node type N by match-
making and adapting fragments of existing application topologies, taken
from a repository Repo of cloud applications. Hence, N1 and Repo must be
input of the TOSCAMART method illustrated in Fig. 4.2.

Once N and Repo are available, each application topology Ti ∈ Repo is
compared with N by employing the MATCHMAKE procedure. As a partial
result, we obtain the set CandidatesTi , whose elements are

〈Ti, C, {m1,m2, ...,mn}〉

where C is a candidate fragment of the topology Ti (i.e., a fragment of Ti
whose elements offers all the features declared by N ) and mi is a potential

1In the following, we assume that N is defined in such a way that needed features are
not redundant (e.g., it is not possible to match more than one capability of N with one of
the available capabilities).
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FIGURE 4.2: The TOSCAMART matchmaking and adaptation method.

mapping2 between the features in N and those in C. Then, all the Candida-
tesTi are unified to obtain the set Candidates, containing all the candidate
topology fragments.

Due to the potentially huge number of already available topologies and
to the possibility of having multiple candidate fragments for each of these
topologies, the set Candidates may become huge. Thus, providing the user
with all these candidates is not appropriate. We reduce the number of avail-
able candidates by employing three subsequent steps:

(i) RATE computes a score for each candidate using a rating function r.
As a result, the set Candidates is transformed in the set RatedCandi-
dates, whose elements are 〈Ti, C, score, {m1,m2, ...,mn}〉.

(ii) FILTER reduces the number of RatedCandidates by removing dupli-
cates3 (i.e., candidates that have the same topology fragment C, the
same score and the same sets of potential mappings, independently
from the topology Ti they come from).

(iii) CUT reduces the number of candidates according to a threshold Θ.
More precisely, the set FilteredCandidates is reduced to the set Elec-
tedCandidates, which contains only the “best” Θ candidates (i.e., those
having the highest score, according to the rating function r).

Each of the ElectedCandidates has to be adapted to properly implement
the target N . First, in order to avoid the user to select mappings on her
own, we need to select the most proper mapping among the available ones.
This is the purpose of the MAPPINGSELECTION step, which can be imple-
mented in various ways (e.g., ontologies, heuristics, compliance rules, etc.).

2Notice that a feature of N may be matched by more than one feature of C, e.g., a ca-
pability of the desired node N may be matched by different capabilities of different nodes
in the topology fragment C. This is why we may have more than one mapping for each
candidate topology fragment C.

3Duplicates are maintained because they do not significantly impact on the complexity
of our approach and they allow the definition of smarter rating functions (e.g., by enabling
to count how many times a topology fragment is recurring).
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Once the mappings are selected, each of the ElectedCandidates is adapted
by resolving the unsatisfied dependencies of the selected components, and
by enclosing the candidate fragments into standalone application specifi-
cations which implement the target node type N . All these specifications
compose the setReusableImplementations, which is the output of the TOS-
CAMART method. Finally, an optional MANUALREFINEMENT step may be
performed to allow developers to manually modify the output node type
implementations, if they are not designed as desired.

4.2.2 Repository of application topologies

The repository Repo of application topologies is the knowledge base from
which the TOSCAMART method extracts the implementations for the tar-
get node type N . Thus, a prerequisite for the applicability of this method
is to have a large set of diverse topologies to be included in Repo. We in-
clude application models, which describe components, structure and config-
uration of applications. TOSCA application models can be retrieved from
modelling environments (e.g, Winery [78]), as well as from configuration
management systems. For instance, Wettinger et al. [114] show how de-
scriptions used by configuration management systems, such as Chef, can
be wrapped into TOSCA application models. We can also include applica-
tions already operated in organizations (i.e., application instances). Despite
such instances are usually not available as topology models, we can cope
with them by employing Enterprise Topology Graphs (ETG) [20]. An ETG
is a technically-detailed instance model that represents a snapshot of one
or multiple applications, including all components, configuration and their
relations. Binz et al. [16] shows how to semi-automatically create complete
and technically detailed ETGs from existing enterprise applications. These
ETGs can then be transformed into TOSCA topologies (as shown by Binz et
al. [17]) so as to include them into Repo.

For instance, the repository Repo can be populated with the concrete
application topologies illustrated in Fig. 4.3, namely with three instantiable
topologies implementing (a) a Moodle application, (b) a Wiki application,
and (c) a SendSMS web service. In the following, we will show how the
TOSCAMART method exploits this repository of instantiable topologies to
derive an implementation for the DesiredEnvironment in Fig. 4.1. It is easy to
see that the former two topologies are offering the desired features (i.e., the
Moodle application offers all the features via the ApachePHPModule, Apache-
WebServer and MySQLDBMS components, while the Wiki application offers
them in a more integrated fashion via the XAMPP server). Thus, TOSCA-
MART has to detect that both can be reused to implement the desired node,
and (by supposing Θ = 1) it also has to return only the adaptation of that
having the highest rating. On the other hand, the topology implementing
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(a) (b)

(c)

FIGURE 4.3: Three examples of application topologies that can be included in
Repo.

the SendSMS web service is offering only one of the desired features (i.e., the
ApplicationHostID property via the GlassfishServer). Thus, TOSCAMART has
to discard it during the matchmaking phase (since it cannot be reused to
implement the DesiredEnvironment).

4.2.3 Finding the candidate topology fragments

To determine the fragments that can be reused to implement a desired node
type, we apply the function MATCHMAKE to each topology Ti ∈ Repo, as
shown in Fig. 4.2. This allows us to detect the sets CandidatesTi , which
are then unified by CANDIDATESUNION to obtain Candidates, the set of all
candidate topology fragments.

The pseudocode of the MATCHMAKE function is listed in Fig. 4.4. Given
a node type N and a topology T , it employs the function MATCHCAPS

to check whether all the capabilities declared by N (viz., Caps(N)) can be
matched by those offered by the components of T (viz., Caps(T )), accord-
ing to the matchmaking operator MC (e.g., MC may be ≡C or 'C — see
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1: function MATCHMAKE(N,T,MC ,MR,MP ,MO)
2: mCaps = MATCHCAPS(MC , {},Caps(N),Caps(T ), {})
3: if Caps(N) 6= {} ∧mCaps = {} then return {}
4: mReqs = MATCHREQS(MR, {},Reqs(N),Reqs(T ), {})
5: if Reqs(N) 6= {} ∧mReqs = {} then return {}
6: mProps = MATCHPROPS(MP , {},Props(N),Props(T ), {})
7: if Props(N) 6= {} ∧mProps = {} then return {}
8: mOps = MATCHOPS(MO, {},Ops(N),Ops(T ), {})
9: if Ops(N) 6= {} ∧mOps = {} then return {}

10: candidates = {}
11: mappings = mCaps×mReqs×mProps×mOps
12: for all m ∈ mappings do
13: C = COLOUR(T,m)
14: if ∃〈T,C ′,mappingsC′〉 ∈ candidates : C = C ′ then
15: mappingsC′ = mappingsC′ ∪ {m}
16: else
17: candidates = candidates ∪ {〈T,C, {m}〉}
18: return candidates

FIGURE 4.4: MATCHMAKE function.

Sect. 3.1). The detected capability mappings are stored in mCaps (line 2).
Afterwards, MATCHMAKE checks whether all the required capabilities have
been matched. If not, it ends by returning the empty set, which means that
no fragments of T can match the target N (line 3). Analogously, the func-
tions MATCHREQS, MATCHPROPS, and MATCHOPS are employed to deter-
mine mReqs, mProps, and mOps, respectively (lines 4-9). Once the sets of
potential mappings are available, MATCHMAKE starts computing the set of
candidate topology fragments (line 10). First, all the possible combinations
of mappings are created (line 11). Then, for each mapping m, COLOUR4 de-
termines the fragment C of T which exposes the features referred in m, and
the candidate 〈T,C, .〉 is added or updated in the set of candidates (lines
12-17). Finally, the set of candidates is returned (line 18).

As illustrated above, the MATCHMAKE function employs the MATCH-
CAPS, MATCHREQS, MATCHPROPS, and MATCHOPS to detect the subsets
of available capabilities, requirements, properties and operations which
match the set of desired ones. MATCHCAPS (Fig. 4.5) is a recursive func-
tion which inputs the parameters M , matched, needed, and available. M is
the matchmaking operator to be employed when comparing available ca-
pabilities with respect to the needed ones (e.g., ≡C , 'C in Sect. 3.1), while
matched, needed, available, and solutions are the parameters used to main-
tain the state of the recursive computation (namely, matched contains the
set of matchings detected by the current instance of MATCHCAPS, needed is

4Due to its straightforward behaviour, we omit the presentation of COLOUR. Essentially,
it “colours” the elements of the topology which offer the matched features, and returns the
set of coloured elements.
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1: function MATCHCAPS(M,matched, needed, available)
2: if ∀cN ∈ needed, required(cN ) = 0 then return {matched}
3: if available = {} then return {}
4: select cA from available
5: available′ = available− {cA}
6: solutions = MATCHCAPS(M,matched, needed, available′)
7: if ∃ cN ∈ needed : (cAMcN ∧ required(cN ) > 0) then
8: needed′ = needed− {cN}
9: cN

′ = cN
10: required(cN

′) = required(cN )− 1
11: if required(cN

′) > 0 then
12: needed′ = needed′ ∪ {cN ′}
13: matched′ = matched ∪ {(cN , cA)}
14: solutions′ = MATCHCAPS(M,matched′, needed′, available′)
15: solutions = solutions ∪ solutions′
16: return solutions

FIGURE 4.5: MATCHCAPS function.

the set of capability definitions which still need to be matched, and available
is the set of available capabilities). MATCHCAPS starts by checking whether
there are no more required5 capabilities in needed. If so, it returns matched
since it contains a potential mapping between available and desired capa-
bilities (line 2). It then checks whether there are no more available capabili-
ties, which means that no mapping can be detected (line 3). If not, a capabil-
ity cA is removed from available (line 4-5), and the solutions without map-
pings to cA are computed (line 6). Then, if cA matches a needed capability
cN , a new instance of MATCHCAPS (with the setsmatched and needed prop-
erly updated) is started so as to determine the solutions which comprise the
mapping between cN and cA (lines 7-14). The computed solutions′ are then
incorporated in the set solutions determined by the current instance (line
15). Finally, the set of computed solutions is returned (line 16). The func-
tions MATCHREQS, MATCHPROPS, and MATCHOPS are analogous.

We are now able to matchmake N with respect to a single topology T of
our repository Repo. In order to matchmake N with the entire repository,
we just have to iteratively apply MATCHMAKE to all the topologies Ti ∈
Repo and to unify the discovered candidates (Fig. 4.6).

For instance, by iterating the MATCHMAKE algorithm over the reposi-
tory of applications in Fig. 4.3, we end up with the candidates illustrated
in Fig. 4.7. The candidate (a) is composed by the software components of
the Moodle application that offer the desired features, namely ApachePHP-
Module, ApacheWebServer and MySQLDBMS, while (b) is composed only
by the XAMPP server belonging to the Wiki application, since it offers all

5required is defined as follows: If not explicitly assigned (as in line 10), required(x)
returns a default value. Such value is x.lowerBound when x is a capabililty/requirement
definition. Otherwise, it is 1.
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1: function CANDIDATESUNION(N,Repo,MC ,MR,MP ,MO)
2: candidates = {}
3: for all Ti ∈ Repo do
4: newCandidates = MATCHMAKE(N,T,MC ,MR,MP ,MO)
5: candidates = candidates ∪ newCandidates
6: return candidates

FIGURE 4.6: CANDIDATESUNION function.

the desired features in a more integrated fashion. On the other hand, the
topology implementing the SendSMS web service is removed from consid-
eration, since MATCHMAKE fails at the very beginning (because none of the
nodes appearing in the topology of the SendSMS application is offering the
required capabilities).

(a) (b)

FIGURE 4.7: Candidates determined for the example topologies in Fig. 4.3.

4.2.4 Election of the “best” candidate(s)

The number of detected candidates may be huge, and providing the user
with all these candidates is not appropriate. As shown in Fig. 4.2, we reduce
them by employing the steps RATE, FILTER and CUT, which are presented
in this section.

RATE (Fig. 4.8) inputs a set of candidates and a rating function r. It then
constructs and outputs the set of ratedCandidates by applying r to each
of the candidate topology fragments (lines 2-6). Please note that we do not
prescribe which rating function r to employ, since this depends on what the
user wants to privilege. For instance, in our reference example we may look
for the most integrated solutions, i.e. we may try to minimise the amount

1: function RATE(candidates, r)
2: ratedCandidates = {}
3: for all 〈T,C,mappingsC〉 ∈ candidates do
4: rC = r(C,mappingsC , candidates)
5: ratedCandidates = ratedCandidates ∪ {〈T,C, rC ,mappingsC〉}
6: return ratedCandidates

FIGURE 4.8: RATE function.
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of components appearing in a candidate:

r(C) = 1/|C|

(where C is a candidate, and |C| is the number of components it contains)6.
The candidates (a) and (b) in Fig. 4.7 will then be rated 1

3 and 1, respectively.
TOSCAMART will thus privilege (b) with respect to (a).

Once the ratings are available, we can remove the “duplicates”, namely
the candidates having the same topology fragment C, the same rating rC ,
and the same set of possible mappingsmappingsC , independently from the
topology T they come from. Please note, that both rC and mappingsC de-
pend on the candidate topology fragment elems, since the former is a func-
tion of C, and the latter is the set of possible mappings between the features
ofN and those of the elements inC. Thus, we can consider duplicates those
candidates having the same topology fragmentC. This means that, in order
to remove the duplicates from the output of RATE (by also optimising the
performances of the method), we can merge RATE and FILTER into RATE-
ANDFILTER (Fig. 4.9), so as to add candidates to the output only if they are
not already there (lines 4-6). The function is also modified so that its output
is a list (instead of a set — line 2), whose elements are descendingly sorted
according to rC (line 5).

1: function RATEANDFILTER(candidates, r)
2: ratedCandidates = [ ]
3: for all 〈T,C,mappingsC〉 ∈ candidates do
4: if 6 ∃〈T ′, C ′, rC′ ,mappingsC′〉 ∈ ratedCandidates : C = C ′) then
5: rC = r(C,mappingsC , candidates)
6: addsorted 〈T,C, rC ,mappingsC〉 to ratedCandidates
7: return ratedCandidates

FIGURE 4.9: RATEANDFILTER function.

Finally, CUT is implemented by cutting the list ratedCandidates so as
to maintain only the first Θ elements (Fig. 4.10). The value of Θ depends
on the usage context. For a fully-automated approach, Θ = 1 instructs
TOSCAMART to proceed with the highest rated candidate. For instance,
with Θ = 1, our reference example (Fig. 4.7) proceeds by electing (b) as the
candidate to be adapted (since its rating is 1, while (a) has a rating of 1

3 ).

6 There are many other possible rating functions. For instance, r could privilege not only
the fragments having fewest components, but also the most frequent ones (by exploiting the
amount of duplicates a candidate has).

r(C, candidates) = 1/|C|+ duplicates(C,candidates)
|candidates| ,

where duplicates(C, candidates) computes the number of duplicates of C among all candi-
date topology fragments in candidates.
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1: function CUT(ratedCandidates,Θ)
2: for i = |ratedCandidates| to Θ + 1 do
3: remove ratedCandidates[i] from ratedCandidates

4: return ratedCandidates

FIGURE 4.10: CUT function.

4.2.5 Adaptation of the elected candidate(s)

The topology fragments stored in ElectedCandidates (i.e., those returned
by the CUT function) have to be adapted so as to become concrete imple-
mentations of the target node type N . This is the purpose of the MAP-
PINGSELECTION and ADAPTATION steps.

For each candidate 〈T,C, rC ,mappingsC〉 in ElectedCandidates, MAP-
PINGSELECTION determines the mappingmC ∈ mappingsC , that makes the
candidate work as implementation of N . Despite there is no chance to en-
sure that the selected mapping is the one the user desires, we can approach
the problem in a heuristic way, by selecting the mapping mC which maps
each feature to the “uppermost” available and compatible one. As a result,
each candidate 〈T,C, rC ,mappingsC〉 in ElectedCandidates is transformed
into 〈T,C, rC ,mC〉, where mC is the selected mapping to be employed.

The selected mapping is then employed by the ADAPTATION function
to transform each of the available topology fragments in a standalone im-
plementation of N . First, the unsatisfied dependencies of the application
components in the candidate fragment C are resolved. This is done by ap-
plying the following rules until C is no more modified by their operation:

A1) For each application component in C, its outgoing relationships must
be added toC, if not already present. This rule does not affect the out-
going relationships whose sources are requirements that have been
matched with those of the target node N .

A2) For each relationship in C, the components representing its source
and target must be added to C, if not already present.

Once all (unsatisfied) dependencies have been processed, the actual adap-
tation can take place. The adaptation is analogous to the one we proposed
in Sects. 3.1 and 3.2. Namely, (i) we create a new service template newS
which contains the application components and relationships stored in the
topology fragment C, (ii) we define the boundary definitions of newS by
exposing only the features declared by N , and (iii) we employ mC to map
these features to the corresponding ones exhibited by the elements in the
topology fragment. In this way, (from the topology fragment C), we build
a new service template newS that exactly matches the desired node type N
(i.e., newS ≡ N ), and that can thus be employed to concretely implement
and substitute N .
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In our reference example, TOSCAMART follows this approach to adapt
the candidate fragment in Fig. 4.7(b). Namely, MAPPINGSELECTION selects
the only available mapping and ADAPTATION starts extending the frag-
ment according to A1 and A2. First, A1 causes the introduction of the
XAMPP node’s outgoing relationships. Then, A2 causes the introduction
the DebianOS operating system component. Similarly, ADAPTATION intro-
duces the relationship starting from DebianOS, as well as the AmazonEC2
virtual machine, and this makes the candidate fragment be no more mod-
ifiable by A1 and A2. ADAPTATION then employs this fragment as the
topology of a new service template, say DesiredEnvironmentImplementation.
It then defines the boundaries of the new service template according to the
selected mapping (Fig. 4.11). As a result, DesiredEnvironmentImplementation
exactly matches the DesiredEnvironment target node type (Fig. 4.1), thus be-
ing a valid implementation for such a node type [33].

FIGURE 4.11: Implementation derived by TOSCAMART.

4.2.6 Orchestrating TOSCAMART

All the aforementioned functions must be orchestrated so as to operate
the TOSCAMART method illustrated in Fig. 4.2. This can be easily done
by implementing the function in Fig. 4.12. First, we invoke CANDIDATES-
UNION to derive all the candidateswhich can be excerpted from the topolo-
gies in Repo (line 2). These candidates are rated and filtered by employ-
ing the RATEANDFILTER function (line 3). The filteredCandidates are then
reduced by CUT to the “best” Θ ones (line 4), whose mapping is subse-
quently determined by MAPPINGSELECTION (line 5). Finally, the resulting
mappedCandidates are given to ADAPTATION so as to generate the reusable-
Implementations to be returned by TOSCAMART (lines 6-7).

4.3 Properties of TOSCAMART

In this section we discuss the termination, soundness, and time complexity
of TOSCAMART. We do not discuss completeness, because it cannot be en-
sured on premise (as it depends on the function for rating candidates and
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1: function TOSCAMART(N,T, r,Θ,MC ,MR,MP ,MO)
2: candidates = CANDIDATESUNION(N,T,MC ,MR,MP ,MO)
3: filteredCandidates = RATEANDFILTER(candidates, r)
4: electedCandidates = CUT(filteredCandidates,Θ)
5: mappedCandidates = MAPPINGSELECTION(electedCandidates)
6: reusableImplementations = ADAPTATION(mappedCandidates)
7: return reusableImplementations

FIGURE 4.12: TOSCAMART function.

on the heuristics for selecting a mapping for each candidate). In the follow-
ing, please remember that the definitions of the topologies Ti ∈ Repo, as
well as that of the target node type N , are necessarily finite.

Termination

Proposition 4.1 (Termination of TOSCAMART). The TOSCAMART procedure
always terminates.

Proof. According to Fig. 4.12, the termination of TOSCAMART directly fol-
lows from that of its steps. First, we need to ensure that MATCHMAKE

(Fig. 4.4) eventually terminates. Consider MATCHCAPS (Fig. 4.5), which
recurs on the set of available capabilities until it becomes empty. Each re-
cursive invocation is performed after the removal of a capability from the
set available. Thus, since available is initially finite, it eventually becomes
empty, causing the termination of MATCHCAPS (which returns a finite set
of solutions). Since the same holds for MATCHREQS, MATCHPROPS, and
MATCHOPS, to prove the termination of MATCHMAKE, we just need to en-
sure that lines 10-17 eventually terminate. The set mappings is computed
as the product of finite sets, and thus both its computation and cardinality
are finite. This, along with the fact that COLOUR can at most “colour” the
whole finite topology, implies that the loop at lines 12-17 eventually termi-
nates. Thus, MATCHMAKE eventually terminates.

The termination of CANDIDATESUNION, RATEANDFILTER, and CUT

(Figs. 4.6, 4.9, and 4.10) obviously follows from the fact that MATCHMAKE

produces a finite set of Candidates. Thus, we only have to prove the termi-
nation of MAPPINGSELECTION and ADAPTATION. MAPPINGSELECTION

selects one of the potential mappings, for each of the candidates. Since
the set of candidates and those containing their mappings are finite, we
can conclude that MAPPINGSELECTION eventually terminates. This (along
with the fact that the generation of the adapted service templates obviously
terminates) implies that to prove the termination of ADAPTATION we just
need to ensure that A1 and A2 eventually become no more applicable. This
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can happen only if the size of the fragment can eventually be no more in-
creased by their operation, which is true because the fragment is upper-
bounded by the (finite) topology it comes from. It follows the termination
of ADAPTATION, and thus that of the whole TOSCAMART approach.

Soundness

We want to ensure that TOSCAMART returns (at most) Θ standalone service
templates, which exactly match the target node type N (see Sect. 3.1), by
properly adapting the Θ candidate fragments having the highest ratings.

Proposition 4.2 (Soundness of TOSCAMART). TOSCAMART is sound, i.e., it
always returns (at most) Θ standalone service templates that exactly match the
target node type N .

Proof. First, we have to ensure that CANDIDATESUNION (Fig. 4.6) computes
all possible candidate fragments (with all possible mappings) which can be
excerpted from the cloud application topologies in Repo. This directly fol-
lows from the fact that MATCHMAKE computes all the possible mappings
(and thus all the possible candidates) which can be derived from a sin-
gle topology. Suppose (by contradiction) that MATCHMAKE misses one of
these mappings. This can happen only if (at least) one among the proce-
dures MATCHCAPS, MATCHREQS, MATCHPROPS, and MATCHOPS misses
a mapping between a needed and an available feature. Suppose (without
loss of generality) that MATCHCAPS misses a mapping between a needed
capability definition cN and a matching available capability cA. This can
happen only if the pair (cA, cN ) is never added to a matched set, which in
turns requires cA to be never analysed (otherwise, since cA matches cN , line
13 would add (cA, cN ) to a set of matched pairs). Nevertheless, according
to the recursive definition of MATCHCAPS (Fig. 4.5), cA is eventually anal-
ysed, and thus we come to a contradiction which allows us to deduce what
we wanted to prove.

Then, we have to ensure that RATEANDFILTER and CUT remove the
duplicates and reduce the set of available candidates to the Θ highest rated
ones. This can be easily deduced from their definition (Figs. 4.9 and 4.10).
RATEANDFILTER avoids the insertion of duplicate candidates through the
check at line 4 and outputs the list of ratedCandidates sorted in descending
order, according to r. Afterwards, CUT removes all the candidates whose
index is higher than Θ, thus maintaining only the Θ candidates having the
highest ratings.

For each of the Θ candidates, MAPPINGSELECTION selects one of the
available mappings. This step thus provides ADAPTATION with the Θ can-
didates with the highest value of r, each containing only one mapping.
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Finally, ADAPTATION has to ensure that each of the Θ candidates is
transformed into a service template which (a1) is standalone and (a2) ex-
actly matches N . (a1) means that all the dependencies of the elements com-
posing a candidate are satisfied, which can be easily proven by relying on
the eventual non-applicability of the rules A1 and A2. (a2) is ensured since
the boundaries of each returned service template are built by including all
the features declared byN (and by employing the selected mapping to map
such features onto the internal ones which have been matched). Since the
output of ADAPTATION coincides with that of TOSCAMART, it follows what
we wanted to prove.

Time complexity

Proposition 4.3 (Worst-case time complexity of TOSCAMART). Let r be the
amount of application topologies available in the repositoryRepo, and let t be max-
imum amount of features that are exposed by an application topology in the repos-
itory Repo. The worst-case time complexity of TOSCAMART is:

T (TOSCAMART) = O(r2t).

Proof. Since TOSCAMART is a sequence of steps (Fig. 4.12), its (worst case)
time complexity is given by the maximum among the (worst case) complex-
ities of its steps.

Consider MATCHCAPS, and let a = |available| and n = |needed|. In the
base case, MATCHCAPS goes through the set of needed features, and thus
its complexity can be approximated with O(n). Otherwise, its complexity
is dominated by the two recursive calls (whose a is decreased by 1) and by
the union of the disjoint sets solutions and solutions′. This, along with the
fact that the size of solutions and solutions′ can be upper-bounded by the
size 2an of the power set of the cartesian product available×needed, allows
us to derive the following recurrence relation7:

T (a) =

{
O(n) if a = 0

2T (a− 1) +O(an) if a > 0

By induction on a, it is possible to prove that the solution of the above
relation is T (a) = O(2an). This, along with the fact that initially a =

maxT∈Repo |Caps(T )| and n = Caps(N), allows us to conclude that

T (MATCHCAPS) = O(2Caps(T )Caps(N)).

7According to Galil and Italiano [61], the union of two disjoint sets having size 2s leads
to a worst case complexity of O(s).
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Furthermore, since each recursive invocation having the set available = {}
can at most generate one mapping, we deduce that the maximum number
of mappings can be 2Caps(T) (each of which contains

∑
x∈Caps(N) required(x)

mappings). Similarly:

T (MATCHREQS) = O(2Reqs(T )Reqs(N)),

T (MATCHPROPS) = O(2Props(T )Props(N)),

T (MATCHOPS) = O(2Ops(T )Ops(N)),

and the produced mappings can be upper-bounded with 2Reqs(T), 2Props(T),
and 2Ops(T), respectively.

Consider now MATCHMAKE, which is dominated either by the match-
ing procedures (lines 1-4) or by the generation of the candidates (lines 9-14).
By properly combining the above computed quantities of mappings, we
can conclude that the set mappings can contain (at most) 2t mappings, each
consisting of m pairs, where:

t = |Caps(T )|+ |Reqs(T )|+ |Props(T )|+ |Ops(T )|

m = Σx∈Caps(N)∪Reqs(N)∪Props(N)∪Ops(N)required(x)

Thus, candidates can be generated with a time complexity ofO(2tm), which
is higher than those of the matchmaking procedures. It follows that

T (MATCHMAKE) = O(2tm).

However, in practice we have m � t, i.e., the amount m of features re-
quired by the target node typeN is negligible with respect to the maximum
amount t of features available in an application topology in the repository
Repo. This allows us to approximate T (MATCHMAKE) as follows.

T (MATCHMAKE) = O(2t).

From T (MATCHMAKE), we can deduce the complexity of CANDIDATES-
UNION. Since the latter performs the union of disjoint sets, we can approx-
imate the complexity of CANDIDATESUNION as that which comes out by
operating MATCHMAKE against each topology in Repo, namely

T (CANDIDATESUNION) = O(r2t).

where r = |Repo|. Furthermore, since all the remaining activities are domi-
nated by set operations performed against candidates (which can be viewed
as a different representation of the above counted mappings), the steps
from RATEANDFILTER afterwards can lead to a complexity which is at most
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O(r2t). Thus, the worst-case complexity of TOSCAMART is

T (TOSCAMART) = O(r2t).

4.4 Implementation

To illustrate the feasibility of TOSCAMART, we implemented a Java proto-
type8 integrated into the open source OpenTOSCA ecosystem [15, 24, 78].
As shown in Fig. 4.13, our prototype processes TOSCA specifications taken

FIGURE 4.13: TOSCAMART in the OpenTOSCA ecosystem.

from a shared TOSCA Repository. It then produces new specifications which
can then be imported into Winery [78], the graphical TOSCA modelling tool
of the aforementioned open source ecosystem. Notice that the creation of
new application specifications does suffice to enact the actual reuse of the
matched fragments. Indeed, by employing Winery to replace the available
specifications with the adapted ones, the existing TOSCA application pack-
ages (i.e., Cloud Service ARchives) can be processed as if they were only im-
plementing the to-be-reused fragment. This is because each CSAR is pro-
cessed by TOSCA containers (like OpenTOSCA [15]) according to the cloud
application specification it contains [33, 95]. From the above, it follows that
the adapted CSARs can also be provided to users through the Vinothek
self-service portal [24].

We comparatively assessed the TOSCAMART prototype with respect to the
matchmaking and adaptation approach we presented in Chapter 3. Notice
that the latter is designed to match (and adapt) one available service tem-
plate with one desired node type, and this is why we implemented a GREE-
DY prototype9 of such approach that randomly access the shared repository

8The source code of the TOSCAMART prototype is publicly available on GitHub at
https://github.com/jacopogiallo/TOSCA-MART/tree/master/TOSCA-MART.

9The source code of the GREEDY implementation is publicly available on
GitHub at https://github.com/jacopogiallo/TOSCA-MART/tree/master/
GreedyMatching.

https://github.com/jacopogiallo/TOSCA-MART/tree/master/TOSCA-MART
https://github.com/jacopogiallo/TOSCA-MART/tree/master/GreedyMatching
https://github.com/jacopogiallo/TOSCA-MART/tree/master/GreedyMatching
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FIGURE 4.14: Time performances.

and returns (the adaptation of) the first10 service template whose bound-
aries plug-in match the desired node type (see Sect. 3.1.2).

We then employed both prototypes to automatically generate an im-
plementation of DesiredEnvironment (see Sect. 4.1) by relying on a plastic
repository containing 279 validated TOSCA application topologies. Among
them, 135 applications can offer the desired features, and only 27 can gain
the highest rating.

We evaluated the time performances11 of TOSCAMART and GREEDY with
respect to the size r of the available repository, the maximum amount t of
features available in a topology, and the amount m of features described in
the desired node type (i.e., DesiredEnvironment). In order to test the proto-
types under the same input conditions, we varied r by repeating multiple
times the applications appearing in the repository, and t by making each
application composed by multiple copies of its starting topology.

10We chose a GREEDY implementation for efficiency reasons (i.e., since the approach in
Sects. 3.1 and 3.2 does not provide any way to rate matched service templates or to select
the “best” ones, there is no reason to spend time in looking for all possible matches, but
rather we can return the — adaptation of the — first match).

11All tests were repeated 300 times on a Windows 8.1 machine having an AMD A6-5400K
APU (3.60GHz) and 4 GBs of RAM.
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As expected, the completion time of TOSCAMART grew linearly with
respect to growth of r (Fig. 4.14.(a)). The expectations were respected also
when varying m, since the completion time was independent from m it-
self (Fig. 4.14.(b)). This is because we had m � t, and this allows us to
approximate T (TOSCAMART) with O(r2t), which is independent from m

(see Sect. 4.3). On the other hand, when we increased t, the completion
time was not growing exponentially as expected. It instead grew linearly
(Fig. 4.14.(c)). This is because, by properly implementing the matchmaking
operators, the situations in which MATCHCAPS, MATCHREQS, MATCH-
PROPS, and MATCHOPS performed two recursive calls became negligible
with respect to those in which they performed one recursive call. It fol-
lows that their complexity, as well as the number of detected mappings, can
be approximated with O(t), which in turn implies that T (TOSCAMART) =

O(rt). From the above, it follows that when (i) m � t and (ii) the repos-
itory and matchmaking operators are such that the amount of matchings
is negligible with respect to that of non-matchings, we have that the time
complexity of TOSCAMART can be approximated with

T (TOSCAMART) = O(rt).

Please note that, in practice, these conditions are most probably true: (i) the
features declared on a component are much fewer than those available in
complex applications, and (ii) each complex application is composed by
heterogeneous components offering different features, thus causing a neg-
ligible amount of matches among the performed checks — if the employed
matchmaking operators are not dummy.

As shown in Fig. 4.14, we also compared the time performances of TOS-
CAMART with respect to those registered by the GREEDY (in the lucki-
est case of having all applications exposing all available features on their
boundaries). As expected, TOSCAMART always required a completion time
much higher than that of GREEDY, since the former always analyse all avail-
able applications, while the latter returns the first match. This is the price
for providing the user with the topology fragments that best match the de-
sired nodes, instead of providing the first match as a whole. However, it
is worth noting that the development of complex application topologies is
a process requiring days to be performed. Despite our solution requires a
few seconds to complete, it allows cloud application developers to drasti-
cally reduce the time and effort they currently devote to the implementation
of their cloud solutions.
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Chapter 5

Modelling and analysing cloud
application management

TOSCA provides a modelling language to describe, in a vendor-agnostic
way, composite cloud applications and their management. Unfortunately,
in its current version, TOSCA does not permit specifying the behaviour of
the management operations of the components in a cloud application. More
precisely, it is not possible to describe the order in which the operations of
a component must be invoked, nor how those operations depend on the
requirements or how they affect the capabilities of that component (and
hence the requirements of other components they are connected to). This
implies that the verification of whether a management plan is valid can only
be performed manually, with a time-consuming and error-prone process.

In this chapter, after further motivating the need for a description of the
behaviour of application components (see Sect. 5.1), we propose a simple
extension of TOSCA that permits specifying the behaviour of management
operations and their relations with states, requirements, and capabilities.
More precisely, we define how to describe the management protocols of
application components by means of finite state machines whose states and
transitions are associated with conditions on the requirements and capabil-
ities of components. Intuitively speaking, the objective of those conditions
is to define the consistency of the states of a component, and to constrain
the executability of the operations of a component to the satisfaction of its
requirements (see Sect. 5.2).

We then show how the proposed extension permits automating various
analyses of the management of complex cloud applications, like determin-
ing whether management plans are valid, which are their effects, or which
plans permit reaching certain application configurations (see Sect. 5.3).

To illustrate the feasibilty of our approach, in Sect. 5.4 we describe a
proof-of-concept, web-based application that permits editing the manage-
ment protocols of TOSCA application components, and analysing plans
that describe the management of a whole application. In Sect. 5.5 we also
show how to exploit our approach to validate and automate the manage-
ment of a concrete case study.
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In Sect. 5.6 we also propose an alternative, Petri-net based semantics of
management protocols, and we show how some of the analyses presented in
Sect. 5.3 can be reduced to well-known problems in the Petri nets context.

5.1 Motivating scenario

Consider two utility web services, Translator and Convertor, and suppose
that we want to manage them on a TOSCA-compliant cloud platform. Af-
ter describing the services in TOSCA, we have to specify the third-party ap-
plication components needed to properly host them. For instance, we may
indicate that they have to run on an Apache server installed on a Debian op-
erating system, which in turn runs on an VMWare virtual machine. Fig. 5.1
illustrates the resulting application topology. For the sake of readability, we
focus only on the lifecycle interfaces [33] of each node in the topology (i.e.,
the interfaces containing the operations to install, configure, start, stop, and
uninstall a component).

Suppose now that we want to specify the deployment of the Translator
and Convertor services by writing a (workflow) plan. It is worth noting that,
since TOSCA does not include any representation of the management pro-
tocols of (third-party) nodes, one may produce invalid plans. For instance,
while Fig. 5.2 illustrates three seemingly valid BPMN plans, only (c) is a
valid plan. Plan (a) is not valid since Apache’s Configure operation cannot
be executed before Apache itself is running, while plan (b) is not valid since
Apache cannot be installed if the Debian operating system is not running.

While the validity of management plans can be manually verified, this
is a time-consuming and error-prone process. In order to enable the auto-
mated verification of the validity of plans, TOSCA needs to be extended
with an explicit, machine-readable representation of the management pro-
tocols of the nodes in an application topology.

FIGURE 5.1: Motivating scenario.
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(a)

(b)

(c)

FIGURE 5.2: Examples of deployment plans.

5.2 Management protocols for cloud applications

TOSCA node types can be described by means of their states, requirements,
capabilities, and management operations, but there is currently no way to
specify how management operations affect states, how operations or states
depend on requirements, or which capabilities are concretely provided in a
certain state.

We hereby propose an extension of TOSCA that permits specifying the
behaviour of management operations and their relations with states re-
quirement and capabilities.

5.2.1 Definition of management protocols

Let N be a TOSCA node type, and let us denote its states, requirements,
capabilities, and management operations with SN , RN , CN , and ON , re-
spectively.

We want to describe whether and how the management operations ofN
depend on (i) other operations of the same node and/or on (ii) operations
of other nodes providing the capabilities that satisfy the requirements of N .

(i) The first kind of dependencies can be easily described by specify-
ing the relationship between states and management operations of
N . More precisely, to describe the order with which the operations
of N can be executed, we introduce a transition relation τ specifying
whether an operation o can be executed in a state s, and which state is
reached by executing o in s.
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(ii) The second kind of dependencies can be described by associating tran-
sitions and states with (possibly empty) sets of requirements to indi-
cate that the corresponding capabilities are assumed to be provided.
More precisely, the requirements associated with a transition t specify
which are the capabilities that must be offered to allow the execution
of t. The requirements associated with a state of a node typeN specify
which are the capabilities that must (continue to) be offered by other
nodes in order for N to (continue to) work properly.

To complete the description1, we also permit associating each state s of a
node type N with the capabilities provided byN in s, and to explictly spec-
ify which capabilities are maintained during a transition2.

Definition 5.1 (Management protocol). Let N = 〈SN , RN , CN , ON ,MN 〉 be
a node type, where SN , RN , CN , and ON are the finite sets of its states, require-
ments, capabilities, and management operations. MN = 〈sN , ρN , χN , τN 〉 is the
management protocol of N , where

• sN ∈ SN is the initial state,

• ρN is a function indicating, for each state s ∈ SN , which conditions on
requirements must hold (i.e., ρN (s) ⊆ RN ),

• χN is a function indicating which capabilities of N are concretely offered in
a state s ∈ SN (i.e., χN (s) ⊆ CN ), and

• τN ⊆ SN × 2RN × 2CN × ON × SN is a set of quintuples modelling the
transition relation (i.e., 〈s, P,X, o, s′〉 ∈ τN denotes that in state s, and if
condition P holds, o is executable and leads to state s′ — by maintaining the
capability in X during the transition).

Example 5.1. The management protocols of the node types in our motivating sce-
nario (see Sect. 5.1) are shown in Fig. 5.3, where MWS is the management pro-
tocol for WebServices, MS is that for Server, MOS is the management protocol for
OperatingSystem, andMVM is the management protocol for VirtualMachine.

Consider for instance the management protocol MS of the Server node type,
typing a Tomcat server. Its states SS are Unavailable (initial), Stopped, and Working,
the only requirement in RS is ServerContainer, the only capability in CS is WebApp-
Runtime, its management operations OS are Setup, Uninstall, Run, Stop, and Con-
figure. States Unavailable and Stopped are not associated with any requirement or
capability. State Working instead specifies that the capability corresponding to the
ServerContainer requirement must be provided in order for Server to (continue to)
work properly. State Working also specifies that Server provides the WebAppRunti-
me capability when in such state. Finally, all transitions bind their executability to

1A proposal of syntax for management protocols can be found in Brogi et al. [27].
2In this chapter we present a proper extension of our initial definition of management

protocols [26, 28, 29], where we were assuming that all capabilities were maintained during
a transition. The extension will be further justified by Def. 6.5 (Chapter 6), which shows
why transitions need to predicate on capabilities.
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MWS MOS

MS MVM

FIGURE 5.3: Management protocols of the node types in our motivating scenario.

the availability of the capability that satisfies the ServerContainer requirement. The
transition involving Configure also specifies that it maintains the availability of the
WebAppRuntime capability while being executed.

5.2.2 Characterising management protocols

Management protocols (as per Def. 5.1) allow operations to have non-deter-
ministic effects (e.g., a state may have two outgoing transitions correspond-
ing to the same operation and leading to different states3). This form of non-
determinism is not acceptable when managing TOSCA applications [33].
We will thus focus on deterministic management protocols (i.e., protocols
ensuring deterministic effects when performing an operation in a state).

Definition 5.2 (Deterministic management protocols). Let N = 〈SN , RN ,
CN , ON ,MN 〉 be a node type, whose management protocol is MN = 〈sN , ρN ,
χN , τN 〉.MN is deterministic if and only if

∀〈s1, P1, X1, o1, s
′
1〉, 〈s2, P2, X2, o2, s

′
2〉 ∈ τN : (s1 = s2 ∧ o1 = o2)⇒ s′1 = s′2

Furthermore, for each transition, the conditions on requirements should
be coherent with the starting and target states. More precisely, the require-
ments assumed to hold in the starting state, as well as those assumed to
hold in the target state, should also be assumed to hold during the tran-
sition, to avoid inconsistencies. Analogously, the capabilities that can be

3Note that the conditions of the two transitions may both hold even if the sets of re-
quirements they refer to are disjoint. Hence the state obtained by performing the operation
would be non-deterministic.
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maintained during a transition are (at most) those offered by both its start-
ing and target states.

Definition 5.3 (Well-formed management protocols). Let N = 〈SN , RN ,
CN , ON ,MN 〉 be a node type, whose management protocol is MN = 〈sN , ρN ,
χN , τN 〉.MN is well-formed iff

∀〈s, P,X, o, s′〉 ∈ τN : ρN (s) ∪ ρN (s′) ⊆ P ∧ X ⊆ χN (s) ∩ χN (s′).

It is easy to check that all management protocols in Fig. 5.3 are deter-
ministic and well-formed.

Example 5.2. An example of management protocols that is both non-deterministic
and not well-formed is given in Fig. 5.4. Such protocol is non-deterministic since

FIGURE 5.4: An example of management protocol that is non-deterministic and
not well-formed.

S1 has two outgoing transition corresponding to operation Op and leading to two
different states. It is also not well-formed since all transitions have conditions on
requirements and capabilities that are not coherent with their source and target
states. More precisely, both transitions do not assume the requirement assumed to
hold in their target state, and they also maintain a capability which is not available
in their source state.

5.3 Analysis of management protocols

In this section, after describing how to infer the management behaviour of
an application by composing the management protocols of its components,
we describe different analyses that can be performed on such behaviour,
such as checking the validity of a plan, determining its effects, or discover-
ing plans that allow to reach certain application configurations.

5.3.1 Management behaviour of a composite application

We can now define the management behaviour of a composite cloud appli-
cation by suitably composing the management protocols of the components
that form such application.

Before digging into the details about the semantics of the management
protocols in a composite cloud application, we introduce some shorthand



5.3. Analysis of management protocols 67

notation to denote generic composite applications, the nodes in their topol-
ogy, and the connection among the requirements and capabilities of such
nodes (e.g., to denote Container as the capability connected to the OSContai-
ner requirement in our motivating scenario — Fig. 5.1).

Notation 5.1. We denote with A = 〈T, b〉 a generic composite application, where
T is the finite set of nodes in the application topology4, and where the connection
between nodes is described by a (total) binding function

b :
⋃
N∈T

RN →
⋃
N∈T

CN

associating each node’s requirement with the capability satisfying it.

Formally, the semantics of the management protocols in a composite
application A = 〈T, b〉 can be defined by a labelled transition system5 over
configurations that denote the states of the nodes in T . Intuitively,

G
o−→A G

′

is a transition denoting that operation o can be executed (on a node) in A

when the “global” state ofA isG, makingA evolve into the new global state
G′. Hence, we first need to first formally define the notion of global state for
a composite application.

Definition 5.4 (Global state of a composite application). Let A = 〈T, b〉 be a
composite application, and let N = 〈SN , RN , CN , ON ,MN 〉. A global state G
of A is a set of states such that:

G ⊆
⋃
N∈T

SN ∧ ∀N ∈ T : ∃!s ∈ G ∩ SN

We denote byG the initial global stateA, where each node in T is in its initial state
(viz., G =

⋃
N∈T sN ).

We can now formally define the semantics of the management protocols
in a composite application A = 〈T, b〉 (i.e., the management behaviour of A).
Intuitively, a management operation o can be executed on a node N ∈ T

only if all the requirements needed by N to perform o are satisfied by the
capabilities provided by (other) nodes in T .

Notation 5.2. Let A = 〈T, b〉 be a composite application, and let N = 〈SN , RN ,
CN , ON ,MN 〉 ∈ T . To simplify notation, we shall denote with ρ(G) the set of
requirements that are assumed to hold by the nodes in T when A is in G, with

4For simplicity, and without loss of generality, we assume that, given two nodes in a
topology, the names of states, requirements, capabilities, and operations are all disjoint.

5An alternative, Petri net-based semantics of the management protocols in a composite
application is presented in Sect. 5.6.
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χ(G) the set of capabilities that are provided by such nodes in G, and with b(R)

the set of capabilities bound to the requirements in R. Formally:

• ρ(G) =
⋃
N∈T {ρN (s) | s ∈ G ∧ s ∈ SN},

• χ(G) =
⋃
N∈T {χN (s) | s ∈ G ∧ s ∈ SN}, and

• b(R) =
⋃
r∈R{b(r)}.

Definition 5.5 (Management behaviour of a composite application). Let
A = 〈T, b〉 be a composite application, and let N = 〈SN , RN , CN , ON ,MN 〉
with MN = 〈sN , ρN , χN , τN 〉. The management behaviour of A is modelled
by a labelled transition system whose configurations are the global states of A, and
where the transition relation is defined by the following inference rule:

s ∈ G 〈s, P,X, o, s′〉 ∈ τN b(P ) ⊆ χ(G)

G
o−→A (G− {s}) ∪ {s′}

Def. 5.5 permits modelling the evolution of a composite application A

when a sequence of management operations is executed:

G0
o1−→A G1

o2−→A · · ·
oh−→A Gh.

5.3.2 Analysing the management of a composite application

While Def. 5.5 checks that the requirements needed by a node N to per-
form an operation o are satisfied by the capabilities provided by the (other)
nodes in the topology of A, it does not check whether after performing o

the requirements assumed by (the states of) all node templates continue
to be satisfied (i.e., whether the capabilities satisfying them continue to be
provided). We hence introduce the notion of consistent global state for a
composite application.

Definition 5.6 (Consistency of a global state). Let A = 〈T, b〉 be a composite
application, and let G be one of its global states. G is consistent if and only if

b(ρ(G)) ⊆ χ(G).

Defs. 5.5 and 5.6 allow us to formally characterise the validity of a se-
quence of management operations.

Definition 5.7 (Valid sequence of operations). Let A = 〈T, b〉 be a compos-
ite application. A sequence o1o2 . . . on of management operations is valid from a
global state G0 of A if and only if:

G0
o1−→A G1

o2−→A · · ·
on−→A Gn

and each Gi is a consistent global state.
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The validity of a plan (i.e., a workflow orchestrating the management
operations of the nodes in a composite application) descends immediately
from Def. 5.7.

Definition 5.8 (Valid plan). Let A = 〈T, b〉 be a composite application, and let
G be one of its global states. A plan P for A is valid from G if and only if all its
sequential traces are valid in G.

Example 5.3. It is easy to see now that the deployment plan (c) of Fig. 5.2 is
valid since, by starting from the initial global state, all its sequential traces are
valid. Conversely, plans (a) and (b) in Fig. 5.2 are not valid as their traces are not
valid. More precisely, plan (a) is not valid since all its sequential traces produce
the derivation shown in Fig. 5.5, and Apache:Configure cannot be executed in the

FIGURE 5.5: Initial evolution according to plan (a) in Fig. 5.2.

reached global state (because it requires Apache to be in state Working, instead of
Stopped).

On the other hand, plan (b) is not valid since all its traces start as shown in
Fig. 5.6, and Apache:Setup cannot be executed in the reached global state. It indeed
requires the capability satisfying Apache’s ServerContainer to be provided, but that
capability is not provided when Debian is not in state Running.

FIGURE 5.6: Initial evolution according to plan (b) in Fig. 5.2.

The introduced modelling can be exploited for various other purposes
besides checking plans validity. For instance, validity of plans may not be
enough, as their sequential traces may reach different global states. It is
thus interesting to characterise deterministic plans.
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Definition 5.9 (Deterministic plan). Let A = 〈T, b〉 be a composite application,
and let G be one of its global states. A valid plan P for A is deterministic from G

if and only if all its sequential traces reach the same global state G′.

Remark 5.1. The way to check whether a given plan is valid or deterministic
is obviously a visit of the graph associated with the transition system denot-
ing the management behaviour of an application (Def. 5.5). Thanks to the
constraints on management protocols and to the way they are combined,
such a graph is finite and thus its visit is guaranteed to terminate.

It is also interesting to compute the effects of a valid/deterministic plan
P on the states of the components forming a composite application, as
well as on the requirements that are satisfied and the capabilities that are
available. Such effects can be directly determined from the global state(s)
reached by performing the sequential traces of P . Moreover, the problem
of finding whether there is a deployment plan which starts from the initial
global state G and achieves a specific goal (e.g., bringing some components
of an application to specific states or making some capabilities available)
can be solved with a breadth-first search of the reachable global states.
The same approach also works in the case of generic management plans
(i.e., plans starting from a generic global state G), and it permits to find
the sequential plans (if any) allowing to reach a certain goal from what-
ever starting G. It also allows to characterise an interesting property that
a composite application may exhibit: If it is possible to reach the initial
global state G from any G that is reachable from G itself, then it is always
possible to generate a management plan for any (reachable) goal from any
(reachable) global state. This ensures reversibility of actions, meaning that
whateverGwe reach from the initial global stateG, we can always get back
to G, thus always permitting a (soft) reset of the application.

Definition 5.10 (Soft-resettability). Let A be a composite application, and let G
be its initial global state. We say that A is softly resettable if and only if for each
global state G reached by executing a valid sequence of operations from G, there
exists a valid sequence of operations from G whose execution leads back to G.

The above is a very convenient property, because it guarantees that it
is always possible to generate a management plan for any reachable goal
from any application state.

5.4 Implementation

We now illustrate the feasibility of our approach by introducing BARREL,
a web-based application6 that permits editing and analysing management

6The application can be accessed at http://ranma42.github.io/MProt/ with any
modern web-browser, like Google Chrome or Mozilla Firefox. The source code is publicly
available on GitHub at https://github.com/ranma42/MProt.

http://ranma42.github.io/MProt/
https://github.com/ranma42/MProt
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protocols in TOSCA applications. BARREL’s interface is written in HTML5,
while its back-end is written in TypeScript and JavaScript. In the following,
we shall not deepen into implementation details, but rather focus on how
BARREL can be used to edit and analyse existing TOSCA applications.

(a)

(b)

FIGURE 5.7: Screenshots of BARREL: (a) Editing mode, and (b) analysis mode.

The very first step is to import a CSAR package (see Sect. 2.2) contain-
ing a service template, as well as the node types instantiated in its topology.
Once the CSAR is loaded, the names of the node types appear in the left
hand pane of the interface of BARREL (Available NodeTypes), and by selecting
one of them the user can start editing its management protocol (Fig. 5.7.(a)).
The management protocol is visualised in the central pane, by displaying
the states of the selected node type and the transitions among these states
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(if any). By clicking on a state s, a dedicated TOOLBOX opens in the right
pane. This TOOLBOX permits editing the current values of ρ(s), χ(s), and
τ(s), by allowing the user to update the set of requirements on which the
selected state s relies, the set of capabilities it offers, and its outgoing tran-
sitions. Such updates can also be viewed directly in the XML source of the
current node type, by clicking on the Show XML button in the left pane.
Once the management protocols of all node types have been edited, the up-
dated CSAR can be downloaded through the EXPORT CSAR functionality.

Users can also analyse the behaviour of the management operations ap-
pearing in the imported service template by selecting the ANALYZE option
in the top menu. As a result, BARREL pops out a window showing the cur-
rent global state of the application (Fig. 5.7.(b)). More precisely, the window
lists all the node templates in the application topology, each associated with
its current state, the requirements it relies on, the capabilities it offers and
the operations actually available. Each operation is highlighted in green if
all the capabilities connected to the requirements needed to execute it are
currently available, otherwise it is highlighted in yellow. By clicking on a
(green) operation users can simulate its execution, thus updating the cur-
rent global state and then the ANALYZER window. If the reached state is
inconsistent, a warning banner is displayed.

With the simple, interactive ANALYZER of BARREL, users can perform
the analyses described in Sect. 5.3. For instance, to check whether a plan
is valid, they just need to simulate its sequential traces and check that no
inconsistent state is traversed. They can also compute the effects of a valid
plan on states, capabilities and requirements by looking at the initial and
final configurations displayed by the ANALYZER window. In this first ver-
sion of BARREL, developers can only perform these analyses interactively,
by manually clicking on the (green) operations and by looking at how they
affect the global state.

It is worth noting that BARREL is already compatible with the Open-
TOSCA open source ecosystem [15, 78]. BARREL is indeed able to pro-
cess CSARs developed with the visual editor Winery [78], and it produces
CSARs that can be imported both in Winery [78] and in OpenTOSCA [15].
Of course, while both Winery [78] and OpenTOSCA [15] import the CSARs
generated by BARREL, they do not properly process the information con-
cerning management protocols (since the extension to TOSCA we propose
is not yet part of the TOSCA standard, and hence not yet supported in the
OpenTOSCA open source environment).
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5.5 Case study: Thinking

We hereby illustrate how management protocols (as well as BARREL) can
be fruitfully exploited to analyse and orchestrate the management of a con-
crete case study7.

5.5.1 The Thinking application

Thinking is an open-source web application that we implemented to permit
end-users sharing what they are thinking about, so that all other users can
read it. A snapshot of a running instance of the application is shown in
Fig. 5.8.

FIGURE 5.8: A snapshot of Thinking.

Thinking is composed by three main components: (i) an instance of Mon-
goDB8 that is exploited to permanently store the collection of thoughts
shared by end-users, (ii) ThoughtsApi9, which is a Dropwizard-based REST
API that permits remotely accessing the collection of shared thoughts, and
(iii) ThoughtsGui10, which is a web-based graphical user interface that in-
teracts with ThoughtsApi to permit retrieving and adding thoughts to the
shared collection. The MongoDB instance is obtained by instantiating a
Mongo Docker container, while ThoughtsApi and ThoughtsGui are made con-
crete by hosting them on a Maven Docker container and on a Node Docker

7The case study has been run on an Ubuntu 16.04 LTS virtual machine, with 32 GB of
storage and 8 GB of memory.

8https://www.mongodb.com/.
9The source code of ThoughtsApi is publicly available on GitHub at https://github.

com/jacopogiallo/thoughts-api.
10The source code of ThoughtsGui is publicly available on GitHub at https://github.

com/jacopogiallo/thoughts-gui.

https://www.mongodb.com/
https://github.com/jacopogiallo/thoughts-api
https://github.com/jacopogiallo/thoughts-api
https://github.com/jacopogiallo/thoughts-gui
https://github.com/jacopogiallo/thoughts-gui
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container, respectively11. The resulting application topology of Thinking is
depicted in Fig. 5.9.

FIGURE 5.9: Topology of the application Thinking.

Mongo

Mongo offers a MongoEndpoint capability (that is used to satisfy the corre-
sponding requirement of ThoughtsApi), and a property that permits spec-
ifying how to map the ports of the container onto the ports of the host
(e.g., MongoDB is offering its functionalities on the port 27017 of the con-
tainer, and to make such functionalities available outside of the container
we may map such port to the same port on the host). It is also offering the
operations to Run, Start, Stop, and Delete the container12.

FIGURE 5.10: Management protocol for Mongo’s node type.

The management protocol of Mongo is shown in Fig. 5.10. Its initial state
is Unavailable, where Mongo is not providing any capability, and where it
can perform Run to become Running. In the Running state Mongo continues
to provide its MongoEndpoint capability, thus satisfying the requirements
connected to it. It also permits executing the Stop operation, which makes

11Further information about Docker and its fundamentals (e.g., port mappings, volumes)
can be found at https://www.docker.com/ or in the Docker user guide [51].

12The implementation of the management operations of Mongo is as follows. Run
is implemented by the command line instruction “docker run -name mongo -p
27017:27107 -d mongo”, Start by “docker start mongo”, Stop by “docker stop
mongo”, and Delete by “docker rm mongo”.

https://www.docker.com/
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Mongo transit to the Stopped state, where it stops providing the MongoEnd-
point capability. From the Stopped state, Mongo can return to be Running or
Unavailable, respectively by executing the operations Start or Delete.

Maven and Node

Maven and Node are both of type Docker, and their structure is similar to
that of Mongo: They offer a capability to satisfy the requirements of other
components, a property for specifying the port mappings, and the opera-
tions to Run, Start, Stop, and Delete them13. It also provides a property for
specifying the volumes to mount (e.g., Maven may mount a “/thoughts-api/”
volume where to place all the sources of ThoughtsApi, and Node may mount
a “/thoughts-gui/” volume where to place all the sources of ThoughtsGui).

As illustrated by Fig. 5.11, the management protocol of Maven and Node
is also analogous to that of Mongo, with the only difference that Maven and
Node continue to provide the Container capability in their Running state (in-
stead of the MongoEndpoint capability offered by Mongo).

FIGURE 5.11: Management protocol for nodes of type Docker.

ThoughtsApi

ThoughtsApi is a Dropwizard application, which offers a REST API as a re-
source on a given port. Such information can be specified with dedicated
properties. ThoughtsApi also offers an APIEndpoint capability (that is used
to satisfy the corresponding requirement of ThoughtsGui), and the set of
management operations implementing its lifecycle14. It also requires a Ma-
venContainer where to be installed, and a MongoEndpoint where to connect.

The management behaviour of ThoughtsApi is displayed in Fig. 5.12.
Its states are Uninstalled (initial), Installed, Configured, and Working. States

13The implementation of the management operations of Maven and Node is anal-
ogous to that of Mongo, with only some differences concerning the implementation
of Run. Further details on how to implement Run can be found at https://
github.com/jacopogiallo/thoughts-api (for Maven) and at https://github.
com/jacopogiallo/thoughts-gui (for Node).

14The bash scripts implementing the operations to Setup, Start, Configure, Stop, and
Uninstall ThoughtsApi are publicly available on GitHub at https://github.com/
jacopogiallo/thoughts-api/tree/master/scripts.

https://github.com/jacopogiallo/thoughts-api
https://github.com/jacopogiallo/thoughts-api
https://github.com/jacopogiallo/thoughts-gui
https://github.com/jacopogiallo/thoughts-gui
https://github.com/jacopogiallo/thoughts-api/tree/master/scripts
https://github.com/jacopogiallo/thoughts-api/tree/master/scripts
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FIGURE 5.12: Management protocol for ThoughtsApi’s node type.

Uninstalled and Installed are not associated with any requirement or capa-
bility, while states Configured and Working specify that the capability corre-
sponding to the MongoEndpoint requirement must continue to be provided
in order for ThoughtsApi to continue to work properly. State Working also
specifies that the capability corresponding to the MavenContainer require-
ment must continue to be provided, and that ThoughtsApi continues to pro-
vide the APIEndpoint capability when in such state. Finally, all transitions
bind their executability to the availability of the capability that satisfies the
MavenContainer requirement. Configure, Run, and Stop bind their executabil-
ity also to the availability of the capability that satisfies MongoEndpoint re-
quirement.

ThoughtsGui

ThoughtsGui is a web-application offering a web-based GUI for connecting
to the Thinking application. ThoughtsGui can be reached at a given port,
which can be specified through the dedicated property, and it offers the
operations to manage its lifecycle15. To effectively run, it also require a con-
tainer where to be installed and the endpoint of the API where to connect to
(through its requirements NodeJSContainer and APIEndpoint, respectively).

The management protocol of ThoughtsGui is illustrated in Fig. 5.13. Its
states are Uninstalled (initial), Installed, Configured, Running, and Working.
States Uninstalled and Installed are not associated with any requirement or
capability, while states Running, Configured, and Working specify that the
capabilities corresponding to the indicated requirements must continue to
be provided in order for ThoughtsGui to continue to work properly. All
transitions bind their executability to the availability of the capability that
satisfies the NodeJSContainer requirement. The transition targeting or out-
going from Working bind their executability also to the availability of the
capability that satisfies APIEndpoint requirement.

15The bash scripts implementing the operations to Setup, Start, Configure, Stop, and
Uninstall of ThoughtsGui are publicly available on GitHub at https://github.com/
jacopogiallo/thoughts-gui/tree/master/scripts.

https://github.com/jacopogiallo/thoughts-gui/tree/master/scripts
https://github.com/jacopogiallo/thoughts-gui/tree/master/scripts
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FIGURE 5.13: Management protocol for ThoughtsGui’s node type.

5.5.2 Analysing Thinking’s deployment plans

We hereby show how the analyses we described in Sect. 5.3 (as well as the
BARREL tool — Sect. 5.4) can be exploited to validate deployment plans for
Thinking. We also show how the execution of valid plan results in effectively
deploying the Thinking application, and how the same does not hold for
non-valid plans16.

Consider the deployment plans in Fig. 5.14, which differ only for the or-
der with which the Start and Configure operations of both ThoughtsApi and
ThoughtsGui are invoked. Plan (a) is valid in the initial global state, since we

(a)

(b)

FIGURE 5.14: Two deployment plans for Thinking.

can easily verify that all its sequential traces are valid operation sequences
in the initial global state. By executing any of such sequential traces, we
end up with a “fresh” instance of Thinking, such as that in Fig. 5.15.

On the other hand, we can easily verify that plan (b) cannot be consid-
ered valid, since the management protocol of ThoughtsApi (Fig. 5.12) does

16Plans have been manually executed in a 64-bit Ubuntu 16.04 LTS virtual machine, with
32 GB of storage, and 8 GB of memory.
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FIGURE 5.15: A “fresh” instance of Thinking.

not permit executing Start before Configure. The latter is because Thoughts-
Api can be started only after having set the active endpoint of the MongoDB
storing the collection of thoughts. The execution of Start before Configure in-
deed results in raising the exception in Fig. 5.16, which in turns means that
ThoughtsApi is not able to effectively serve its clients.

FIGURE 5.16: Exception raised by ThoughtsApi when started without being config-
ured to connect to the endpoint of a MongoDB instance.

Consider now the plan in Fig. 5.17. It cannot be considered valid in
the initial global state, since its sequential traces are not valid in the initial
global state. For instance, some of such sequences try to configure Tho-
ughtsApi before Mongo is up and running (i.e., they execute ThoughtsApi’s
Configure before Mongo’s Run). Despite this may not cause real issues when
trying to deploy Thinking on a local host (where endpoints can be decided
statically), the same does not hold in environments where endpoints are
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FIGURE 5.17: A deployment plan for Thinking.

assigned on-demand dynamically, such as the cloud. In a cloud-based de-
ployment (e.g., Docker cloud17) we may not know which URL will be as-
signed to Mongo until the latter has been started, and this means that if
we try to execute ThoughtsApi’s Configure before Mongo’s Run we may miss
some configuration parameters.

5.5.3 Planning the undeployment of Thinking’s GUI and API

Consider the running instance of Thinking displayed in Fig. 5.15, and sup-
pose that we wish to undeploy its components ThoughtsGui and Thoughts-
Api (i.e., that we wish to come back to the global state where Mongo is the
only component installed and running).

As we discussed in Sect. 5.3, the problem of finding whether there is a
plan starting from a global state and reaching another global state can be
solved with a breadth-first search of the reachable global states. If we apply
this approach to our situation, we discover that one of the shortest, valid
sequences of operations that permit undeploying the components Though-
tsGui and ThoughtsApi from a running instance of Thinking is that displayed
in Fig. 5.18. By executing such sequence of operations, we effectively come
back to the situation where no container but that of Mongo is installed and
running (Fig. 5.19).

FIGURE 5.18: An undeployment plan for Thinking.

FIGURE 5.19: Snapshot displaying the effective undeployment of the components
ThoughtsGui and ThoughtsApi from a running instance of Thinking.

17https://cloud.docker.com.

https://cloud.docker.com
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5.6 Petri net-based analysis of management protocols

We hereby show how management protocols can be naturally modelled,
in a compositional way, by means of open Petri nets. The proposed mod-
elling permits automating various different analyses (such as determining
whether a deployment plan is valid, which are its effects, or which plans al-
low to reach certain application configurations) in an alternative way with
respect to that presented in Sect. 5.3.

5.6.1 Background: (Open) Petri nets

Before providing a formal definition of open Petri nets (Def. 5.12), we recall
the definition of Petri nets just to introduce the employed notation. We
instead omit to recall other very basic notions about Petri nets (e.g., marking
of a net, firing of transitions, etc.) as they are well-know and easy to find in
literature (e.g., in the work by Murata [89]).

Definition 5.11 (Petri net). A Petri net is a tuple P = 〈P, T, •·, ·•,M0〉 where
P is a set of places, T is a set of transitions (with P ∩ T = ∅), •·, ·• : T → 2P are
functions assigning to each transition its input and output places, and M0 : P →
N is the initial marking of P .

According to Baldan et al. [9], an open Petri net is an ordinary Petri
net with a distinguished set of (open) places that are intended to represent
the interface of the net towards the external environment, meaning that the
environment can put or remove tokens from those places. In this chapter,
we shall employ a subset of open Petri nets, where transitions consume
at most one token from each place, and where the environment can both
add/remove tokens to/from all open places.

Definition 5.12 (Open Petri net). An open Petri net is a pair Z = 〈P, I〉,
where P = 〈P, T, •·, ·•, M0〉 is an ordinary Petri net, and I ⊆ P is the set of
open places. The places in P \ I will be referred to as internal places.

5.6.2 Encoding management protocols in Petri nets

A (deterministic) management protocolMN = 〈sN , ρN , χN , τN 〉 of a node
type N can be easily encoded by an open Petri net. Each state of MN is
mapped to an internal place of the Petri net, and each capability and re-
quirement of N is mapped to an open place of the same net. Furthermore,
each transition 〈s, P,X, o, s′〉 ofMN is mapped into a Petri net transition t
with the following inputs and outputs:

(i) The input places of t are the places denoting s, the requirements that
are needed but not already available in s (i.e., (ρN (s′)∪P )−ρN (s)), and
the capabilities that are provided in s but not in s′ (i.e., χN (s)−χN (s′)).
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(ii) The output places of t are the places denoting s′, the requirements
that were needed but are no more assumed to hold in s′ (i.e., (ρN (s) ∪
P ) − ρN (s′)), and the capabilities that are provided in s′ but not in s

(i.e., χN (s′)− χN (s)).

The initial marking of the obtained net prescribes that the only place ini-
tially containing a token is that corresponding to the initial state s ofMN .

Definition 5.13 (Encoding of management protocols). Let N = 〈SN , RN ,
CN , ON ,MN 〉 be a node, with MN = 〈sN , ρN , χN , τN 〉. The management
protocolMN is encoded into an open Petri net ZN = 〈PN , IN 〉, with PN =

〈PN , TN , •·, ·•,M0〉 and IN ⊆ PN , as follows.

• PN = SN ∪RN ∪ CN , i.e. the set PN of places contains a separate place for
each state in SN , for each requirement in RN , and for each capability in CN .

• IN = RN ∪ CN , i.e. the set IN ⊂ PN of open places contains the places
denoting the requirements in RN and the capabilities in CN .

• TN = τN (i.e., the set TN contains a net transition t for each transition
〈s, P,X, o, s′〉 ∈ τN ), and ∀t = 〈s, P,X, o, s′〉 ∈ TN :

(i) •t = {s}∪((ρN (s′)∪P )−ρN (s))∪(χN (s)−χN (s′)), i.e. the set •t of
input places contains the place s, the places denoting the requirements
in (ρN (s′)∪P )−ρN (s), and those denoting the capabilities in χN (s)−
χN (s′).

(ii) t• = {s′}∪ ((ρN (s)∪P )−ρN (s′))∪ (χN (s′)−χN (s)), i.e. the set t•
of output places contains the place s′, the places denoting the require-
ments in (ρN (s) ∪ P )− ρN (s′), and those denoting the capabilities in
χN (s′)− χN (s).

• The initial marking M0 of ZN is defined as follows:

∀p ∈ PN .M0(p) =

1 if p denotes sN

0 otherwise

The above definition ensures that the Petri net encoding of a management
protocol satisfies the following properties:

• There is a one-to-one correspondence between the marking of the in-
ternal places of the Petri net and the states of a management protocol.
Namely, there is exactly one token in the internal place denoting the
current state, and no tokens in the other internal places.

• Each operation can be performed if and only if all the necessary re-
quirements are available in the source state, and no capability re-
quired by any connected component is disabled in the target state.
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Example 5.4. Consider for instance the management protocolMS (Fig. 5.3), whose
corresponding Petri net is shown in Fig. 5.20. Each state inMS is translated into

FIGURE 5.20: Example of Petri net translation.

an internal place (represented as a circle), while the ServerContainer requirement
and the WebAppRuntime capability are translated into open places (represented
as dashed circles). Additionally, protocol transitions are translated into net tran-
sitions. For example, the transition 〈Stopped, {ServerContainer},Run,Working〉 is
translated into a Petri net transition, whose inputs places are Stopped and Server-
Container, and whose outputs places are Working and WebAppRuntime.

5.6.3 Modelling the management of a cloud application

We now show how the Petri net modelling the management protocol of a
whole application can be obtained, in a compositional way, from the Petri
nets modelling the management protocols of the nodes in its topology.

We first need to model (by open Petri nets working as a capability con-
trollers) the relationships that define in a topology the association between
the requirements of a node and the capabilities of other nodes. To do that,
we first define an utility binding function that returns the set of requirements
with which a capability is associated.

Definition 5.14 (Binding). Let A = 〈T, b〉 be a composite application, and let c
be a capability offered by a node in T . Let also Let N = 〈SN , RN , CN , ON ,MN 〉.
We define binding(c, A) as follows:

binding(c, A) =
⋃
N∈T
{r ∈ RN | b(r) = c}.

We now exploit function binding to define capability controllers. On the
one hand, the controller must ensure that once a capability c is available, the
nodes exposing the connected requirements r1, . . . , rn are able to simultane-
ously exploit it. This is obtained by adding a transition c↑ able to propagate
the token from place c to places r1, . . . , rn (i.e., the input place of c↑ is c, and
its output places are r1, . . . , rn). On the other hand, the controller has also
to ensure that the capability is not removed while at least another node is
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actively assuming its availability (with a condition on a connected require-
ment). Thus, we introduce a transition c↓ whose input places are r1, . . . , rn

and whose output place is c.

Definition 5.15 (Controller). Let A = 〈T, b〉 be a composite application, and let
c be a capability offered by a node in T . Let r1, . . . , rn be the requirements exposed
by the nodes in T such that binding(c, A) = {r1, . . . , rn}. The controller of c is
an open Petri net Zc = 〈Pc, Ic〉, with Pc = 〈Pc, Tc, •·, ·•,M0〉, defined as follows.

• The set Pc of places contains a separate place for the capability c and for
each requirement r1, . . . , rn. It also contains a place rc that witnesses the
availability of the capability c.

• The set Ic coincides with Pc.

• The set Tc contains only two Petri net transitions c↑ and c↓.

– The input place of c↑ is c (i.e., •c↑ = {c}). The output places of c↑ are
r1, . . . , rn and rc (i.e., c↑• = {r1, . . . , rn} ∪ {rc}).

– The input places of c↓ are r1, . . . , rn and rc (i.e., •c↑ = {r1, . . . , rn} ∪
{rc}). The output place of c↓ is c (i.e., c↑• = {c}).

• The initial markingM0 of Zc is emtpy (i.e., ∀p ∈ Pc.M0(p) = 0) if the capa-
bility c is not offered in the initial state of the corresponding node. Otherwise,
it contains exactly one token in rc and in all places ri denoting a requirement
that is not assumed in the initial state of the corresponding node.

Example 5.5. An example of controller (for a capability c connected to two require-
ments r1 and r2) is illustrated in Fig. 5.21.

FIGURE 5.21: Example of capability controller.

We can now compose the nets modelling the management protocols of
the nodes in the topology of a composite application by interconnecting
them with the above introduced controllers. The composition is quite sim-
ple: We just collapse the open places corresponding to the same require-
ments and capabilities.

Definition 5.16 (Encoding of composite applications). Let A = 〈T, b〉 be a
composite application. We encode A with an open Petri net ZA = 〈PA, IA〉, where
PA = 〈PA, TA, •·, ·•, M0〉, as follows.

• For each nodeN ∈ T , we encode its management protocol with an open Petri
net ZN obtained as shown in Def. 5.13.
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FIGURE 5.22: Petri net encoding for the motivating scenario in Sect. 5.1.

• For each capability c exposed by a node N ∈ T , we create an open Petri net
Zc (acting as its controller) as shown in Def. 5.15.

• We then compose the above mentioned nets by taking their disjoint union
and merging the places denoting the same requirement r or capability c.

• The initial marking M0 is the union of the markings of the collapsed nets.

Example 5.6. For example, Fig. 5.22 shows the net obtained for the motivating
scenario described in Sect. 5.1. For the sake of readability, in the figure we omit,
for each capability c, the place rc of its controller.

A very convenient property of the obtained encoding is that it is safe
(i.e., the number of tokens in each place does not exceed one, for any mark-
ing M that is reachable from the initial marking M0 [89]). To prove it, we
need to further characterise the Petri net encoding we provided through
Defs. 5.13, 5.15 and 5.16.
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Property 5.1. Let A = 〈T, b〉 be a composite application, and let ZA be its Petri
net encoding.

ZA is safe.

Proof. The property follows from the properties (i), (ii), and (iii) ensured
by Lemma 5.1. More precisely, (i) proves that the internal places denoting
node states can contain at most one token, (ii) proves that each open place
denoting a capability c (as well as the corresponding place rc) can contain
at most one token, and (iii) proves that each open place denoting a require-
ment can contain at most one token. Therefore, all places in ZA can contain
at most one token (in any reachable marking), thus making the whole net
safe [89].

Lemma 5.1. Let A = 〈T, b〉 be a composite application, and let ZA = 〈PA, IA〉
be the Petri net encoding of A, with PA = 〈PA, TA, •·, ·•,M0〉. Let also M be
a marking reachable from the initial marking M0 of ZA. For each node Ni =

〈SNi , RNi , CNi , ONi ,MNi〉 (withMNi = 〈sNi , ρNi , χNi , τNi〉) in T , the follow-
ing properties hold:

(i) ∃s′ ∈ SNi .M(s′) = 1 ∧ ∀s ∈ SNi .s 6= s′ ⇒M(s) = 0 or, equivalently:

Σs∈SNi
M(s) = 1

(ii) Let s be the current state of a node Ni (i.e. s ∈ SNi ∧M(s) = 1). For any
capability c ∈ CNi , the number of tokens in the open places rc and c is:

c /∈ χ(s)⇔M(c) +M(rc) = 0

c ∈ χ(s)⇔M(c) +M(rc) = 1

(iii) Let s be the current state of a node Ni (i.e. s ∈ SNi ∧M(s) = 1). For any
requirement r ∈ RNi bound to a capability c (i.e., r ∈ binding(c, A)), the
number of tokens in the open places r and rc is:

r /∈ ρNi(s)⇔ (M(r) = M(rc) = 0) ∨ (M(r) = M(rc) = 1)

r ∈ ρNi(s)⇔M(r) = 0 ∧M(rc) = 1

Proof. The proofs for (i), (ii), and (iii) are listed below.

(i) For each node Ni, the places denoting its states are internal to ZA.
Hence, their input and output transitions are not changed by the mer-
ging process, which in turn means that only the net transitions (en-
coding the protocol transitions) of the same node Ni can add/remove
tokens to/from them.

By construction, the above mentioned transitions always input ex-
actly one token from an internal place and output exactly one token
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to an internal place (potentially the same). This guarantees that the
total number of tokens in the internal places of a single node cannot
change:

Σs∈SNi
M(s) = Σs∈SNi

M ′(s),

where M ′ is a marking reached by firing a transition in M .
The above, along with the fact that the initial marking M0 of ZA

includes a token only in the places denoting the initial states of the
nodes in T (i.e., for each node Ni ∈ T , Σs∈SNi

M0(s) = 1), implies that
any sequence of firings starting from the initial marking will preserve
exactly one token in the internal places denoting the states of each
node.

(ii) In the initial marking M0 of ZA the property trivially descends from
Defs. 5.13, 5.15, and 5.16.

Since the property holds for the initial marking, we can prove that it
holds for every reachable marking, by showing that no transition can
invalidate the property. We will thus consider it as invariant.

Consider the capability c of a node Ni ∈ T . The places mentioned in
the property (i.e., c and rc) are connected to the c↑ and c↓ transitions,
and to the transitions ofNi that input/output a token to/from c. These
are the only transitions that might affect the invariant, since the tran-
sitions connected to the requirements managed by the controller of c
cannot change the marking of c nor that of rc.

The c↑ and c↓ transitions cannot affect the invariant, since they do
not change the total number of tokens in c and rc. This is because,
whenever c↑ fires, it removes one token from c, but it also adds one
token to rc (and to all of the other ri places). Symmetrically, whenever
c↓ fires, it removes one token from rc (and from each of the other ri
places), but it also adds one token to c.

Thus, the only transitions that might invalidate the invariant are
the transitions of the node Ni that input/output one token to/from c.
Since all these transitions move a token from a state s to a state s′, they
can be classified as follows:

(a) c is either provided in both s and s′ or in neither of them (i.e., c ∈
χNi(s) ∩ χNi(s

′) ∨ c /∈ χNi(s) ∪ χNi(s
′));

(b) c is provided in s′, but it is not provided in s (i.e., c ∈ χNi(s
′) −

χNi(s));

(c) c is provided in s, but it is not provided in s′ (i.e., c ∈ χNi(s) −
χNi(s

′)).

Each of these cases is consistent with the property that we want to
prove.
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(a) In the first case, transitions do not affect c at all, as (by construc-
tion) they are not even connected to c. They thus preserve the
sum M(c) +M(rc), as well as the truth value of c ∈ χNi(·).

(b) In the second case, transitions lead to a state s′ such that c ∈
χNi(s

′), but they also add a token to c. If the invariant held before
the transition (i.e.,M(c)+M(rc) = 0 withM(s) = 1∧c /∈ χNi(s)),
it also holds after the transition, because the sum becomesM(c)+

M(rc) = 1 with M(s′) = 1 ∧ c ∈ χNi(s).

(c) The third case is precisely the opposite of the second one, since
transitions lead to a state s′ such that c /∈ χNi(s

′) and they re-
move a token from c. If the invariant held before the transition
(i.e., M(c) + M(rc) = 1 with M(s) = 1 ∧ c ∈ χNi(s)), then it
also holds after the transition. The sum indeed becomes M(c) +

M(rc) = 1 with M(s′) = 1 ∧ c /∈ χNi(s).

In conclusion, since the invariant holds for M0 and none of the tran-
sitions can invalidate it, by induction (over the length of a firing se-
quence) it holds for any reachable marking.

(iii) The proof of the property follows the same line as the one for (ii).
Namely, the property can be proved to hold for any reachable marking
by induction over the length of a firing sequence, by showing that it
holds for the initial marking M0, and that none of the transitions can
invalidate such property.

5.6.4 Analysing the management of a cloud application

The Petri net encoding of the management of a composite application A

permits us defining what is a valid plan according to such management. Es-
sentially, thanks to the encoding of capability controllers and to the way
we compose these controllers with management protocol encodings, the
obtained net ensures that no requirement can be assumed to hold if the
corresponding capability is not provided, and that no capability can be re-
moved if at least one of the corresponding requirements is assumed to hold.
This permits to consider a sequence of operations as valid if and only if it
corresponds to a firing sequence in the net encoding of A.

Definition 5.17 (Valid sequence of operations). Let A = 〈T, b〉 be a composite
application, and let ZA = 〈PA, IA〉 be the Petri net encoding of A, with PA =

〈PA, TA, •·, ·•,M0〉. A sequence o1o2...om of management operations is valid for
A if and only if there is a firing sequence t1t2 . . . tn (with ti ∈ TA) from the initial
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marking M0 such that

o1 · o2 · . . . · om = λ(t1) · λ(t2) · . . . · λ(tn),

where · indicates the concatenation operator18 and:

λ(t) =

ε if t denotes a c↑ or c↓transition

o if t denotes a management protocol transition 〈s, P, o, s′〉

We can easily extend the definition of validity from operation sequences
to (workflow) plans, by constraining all their sequential traces to be valid.

Definition 5.18 (Valid plan). Let A = 〈T, b〉 be a composite application, and let
ZA be its Petri net encoding. A plan P is valid forA if and only if all its sequential
traces are valid sequences of operations for A (see Def.5.17).

Example 5.7. Consider the deployment plans for the motivating scenario that we
discussed in Sect. 5.1 (and displayed in Fig. 5.2). It is easy to see that plan (c) of is
valid since all its sequential traces do have a corresponding firing sequence in the
Petri net in Fig. 5.22. For instance,

VMWare:Start Container↑ Debian:Install Debian:Start SoftwareContainer↑
Apache:Setup Apache:Run Apache:Configure WebAppRuntime↑ Convertor:Deploy
Convertor:Start Translator:Deploy Translator:Start

is a firing sequence corresponding to one of the sequential traces of plan (c).
Conversely, plans (a) and (b) in Fig. 5.2 are not valid as there are no corre-

sponding firing sequences. Plan (a) is not valid since after firing

VMWare:Start Container↑ Debian:Install Debian:Start SoftwareContainer↑
Apache:Setup

transition Apache:Configure cannot be fired. It indeed requires a token in the place
modelling the Working state of Apache, but that place is empty and it is not possible
to add tokens to it without firing Apache:Run.

On the other hand, plan (b) is not valid since after firing

VMWare:Start Container↑ Debian:Install

transition Apache:Setup cannot fire. It requires a token in the place denoting the
ServerContainer requirement, but that place is empty and it is not possible to add
tokens to it without firing SoftwareContainer↑, which in turn cannot fire as it misses
a token in the place denoting the SoftwareContainer capability of Debian (and no
token can be added to such place without firing Debian:Start).

However, the above Def. 5.18 does not ensure that all traces end up in
the same setting of a composite application. Two different traces can reach
two different markings with a different token assignment for the internal

18The empty string ε is the neutral element of ·, hence all transitions in controller nets are
ignored (as λ(t) = ε when t denotes a c↑ or c↓ transition).
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places. This would mean that, by differently inter-leaving the activities in
a plan, the nodes in a composite application can end up in different states
(thus potentially activating different capabilities and assuming different re-
quirements). This is not acceptable in the management of composite ap-
plications [33], as we would expect a plan to have deterministic effects (in-
dependently of the inter-leaving of the activities that compose such plan).
We thus define the notion of deterministic plans, after introducing that of
internally equivalent markings.

Definition 5.19 (Equivalence of markings). Let Z = 〈P, I〉, with P = 〈P, T,
•·, ·•,M0〉 be an open Petri net. Two markings M1,M2 : P → N are internally
equivalent (M1 ≡M M2) if and only if

∀p ∈ P \ I.M1(p) = M2(p)

Definition 5.20 (Deterministic plan). LetA = 〈T, b〉 be a composite application,
and let ZA = 〈PA, IA〉 be the Petri net encoding of A, with PA = 〈PA, TA, •·, ·•,
M0〉. Let also P be a valid plan forA. P is also deterministic if and only if for each
pair M1,M2 of markings reached by executing two finite, complete19 sequential
traces of P

M1 ≡M M2.

The effects of a plan on the states of the components forming a compos-
ite application, as well as on the requirements that are satisfied and the ca-
pabilities that are available, can then be directly determined from the mark-
ing that is reached performing the corresponding firing sequence. We thus
first characterise the states, requirements, and capabilities that are active in
a marking (Def. 5.21), and we then employ such characterization to list the
effects of a deterministic plan (Remark 5.2).

Definition 5.21 (States, requirements, and capabilities active in a marking).
Let A = 〈T, b〉 be a composite application, and let ZA = 〈PA, IA〉 be the Petri net
encoding of A, with PA = 〈PA, TA, •·, ·•,M0〉. Let also Ni = 〈SNi , RNi , CNi ,

ONi ,MNi〉, withMNi = 〈sNi , ρNi , χNi , τNi〉, be a node in T . Finally, let M be a
marking.

• The active states in M are

AMS = {s | s ∈ PA \ IA ∧M(s) = 1}.

• The assumed requirements in M are

AMR = {r |M(r) = 0 ∧ r ∈ b(c, A) ∧M(rc) = 1}.
19A sequential trace for a plan P is complete if and only if its first and last operation corre-

spond to an initial and to a final activity of P .
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• The offered capabilities in M are

AMC = {c |M(c) = 1 ∨M(rc) = 1}.

Remark 5.2. Let A be a composite application, and let ZA be its Petri net
encoding. Let also P be a deterministic Plan, and letM0 andM be the initial
marking and a marking equivalent to the markings reached by performing
the (complete) sequential traces of P in M0.

• The requirements that are assumed after P are AMR (where the newly
assumed ones are AMR \ A

M0
R ), while those that are no more assumed

are AM0
R \AMR .

• The capabilities that are offered after P are AMC (where the newly
added ones are AMC \ A

M0
C ), while those that are no more offered are

AM0
C \AMC .

Please note that it is possible to consider as initial marking any other
(reachable) marking so as to analyse maintenance plans (starting from non-
initial states) besides deployment plans. Obviously, the very same proper-
ties and techniques also apply in this case.

Additionally, various classical notions in the Petri net context assume
a specific meaning in the context of managing composite applications. For
example, the problem of finding whether there is a management plan which
achieves a specific goal (e.g., bringing some components of an application
to specific states or making some capabilities available) can be reduced in
a straightforward way to the coverability problem [89] on the associated
Petri net. To show it, we first define the notion of goal, that is a marking
putting exactly one token in the places denoting the states and capabilities
that have to be active.

Definition 5.22 (Goal). Let A = 〈T, b〉 be a composite application, and let Ni =

〈SNi , RNi , CNi , ONi ,MNi〉 (withMNi = 〈sNi , ρNi , χNi , τNi〉) be a node in T . A
goal for planning in ZA is a pair Γ = 〈SΓ, CΓ〉 such that

(a) SΓ ⊆
⋃
i SNi is the set of states to be reached, and

(b) CΓ ⊆
⋃
iCNi is the set of capabilities to be offered.

A valid sequential plan P for A reaches the goal Γ = 〈SΓ, CΓ〉 if and only if

(a) ∀s ∈ SΓ.s ∈ SNi ⇒ s is the current state of Ni, and

(b) ∀c ∈ CΓ.c ∈ CNi ∧ s is the current state of Ni ⇒ c ∈ χ(s).
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Proposition 5.1. Let A be a composite application, and let ZA be the Petri net en-
coding ofA. Finding a valid sequential plan forA that reaches a goal Γ corresponds
to solving a coverability problem in ZA.

Proof. Let Γ = 〈SΓ, CΓ〉. We can easily build a marking MΓ : PA → {0, 1} as
follows:

∀p ∈ PA.MΓ(p) =


1 if p ∈ SΓ

1 if p = rc ∧ c ∈ CΓ

0 otherwise

It follows that finding a sequential plan that reaches the goal Γ corresponds
to solving the coverability problem for the marking MΓ.

Proposition 5.2. Let A be a composite application, and let Γ be a goal. Finding
a valid sequence of operations for A that reaches Γ can be solved with polynomial
space.

Proof. The proof directly follows from the following facts: (i) The Petri net
encoding ZA of A is safe, (ii) finding a sequential plan in ZA that reaches Γ

corresponds to solving a coverability problem, and (iii) coverability in safe
Petri nets is PSPACE-complete [41].

Another classical notion in the Petri net context that assumes a specific
meaning is that of reversibility [89]: The Petri net encoding of a composite
applicationA is reversible if and only if it is always possible to softly reset the
application, i.e. if whatever (valid) sequence of operations we perform, we
can always get back to the initial state of A by performing another (valid)
sequence of operations (see Def. 5.10).

Proposition 5.3. Let A be a composite application, and let ZA be the Petri net
encoding of A.

A is softly resettable⇔ ZA is reversible.

Proof. The condition given by Def. 5.10 can be rewritten as follows: A is
softly resettable if and only if for each valid sequence o1o2...on, we can al-
ways determine a longer valid sequence o1o2...omom+1...om+n such that by
firing it in the initial global state G we end up in the same configuration G.

Notice that G corresponds to the initial marking of the Petri net encod-
ing ZA, and that a valid sequence of operations corresponds to a firing se-
quence in ZA. Thus, the condition for soft resettability corresponds to say-
ing that whatever firing sequence we can perform in the initial marking, we
can always find a longer firing sequence that (starts and) ends up in the ini-
tial marking. This in turn corresponds to saying that ZA is reversible (since
whatever marking we can reach with a sequence of firings, we can always
come back to the initial marking).
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5.6.5 Remarks

In this section we have presented an alternative semantics for management
protocols (Def. 5.1). It is easy to prove that, for a composite application A,
the set of plans that are considered valid for A by both the semantics we
presented here and that presented in Sect. 5.3 is the same.

Proposition 5.4 (Equivalence of semantics). Let A = 〈T, b〉 be a composite ap-
plication, and letG be its initial global state. The valid plans forA inG determined
according to Def. 5.8 are the same as those determined according to Def. 5.18.

Proof. Both Def. 5.8 and Def. 5.18 say that a plan is valid if and only if all its
sequential traces are valid (by referring to Def. 5.7 and to Def. 5.17, respec-
tively). Hence, to prove that the sets of valid plans determined according
to Def. 5.8 and according to Def. 5.18 are equal, we just need to prove the
following lemma.

Lemma 5.2. Let A = 〈T, b〉 be a composite application, and let G be its initial
global state. The valid sequences of operations for S in G determined according to
Def. 5.7 are the same as those determined according to Def. 5.17.

Proof (sketch). The thesis can be proved by inductively constructing the sets
V1 and V2 (containing the valid sequences of operations determined accord-
ing to Def. 5.7 and to Def. 5.17, respectively), and by showing that V1 = V2.

[V 0
1 = V 0

2 ] LetZA be the Petri net encoding ofA. One can readily check that,
by construction of ZA, (a) the initial marking M0 of ZA denotes the initial
global state G of A, and (b) if we can fire a transition in ZA, this means that
by performing the corresponding operation we preserve the consistency of
the global state, and vice versa20. From (a) and (b), it follows that the set V 0

1

and V 0
2 containing the operations that can be fired in the initial global state

of A (according to Def. 5.7 and to Def. 5.17, respectively) are equal.

[V n
1 = V n

2 ⇒ V n+1
1 = V n+1

2 ] Suppose now that the sets V n
1 and V n

2 (contain-
ing the valid sequences of — at most n — operations determined according
to Def. 5.7 and according to Def. 5.17) are equal, i.e. V n

1 = V n
2 . Consider a

sequence of operations o1..om ∈ V n
1 (with m ≤ n), and suppose that Mm

and Gm are the marking of ZA and the global state of A reached by per-
forming the sequence of operations in o1..om. One can readily check that
the Mm denotes the Gm, since the components in A will reach the same
internal states by performing the same sequence of operations o1..om (in-
dependently of the employed semantics). This means that, if the transition
denoting an operation om+1 can be fired in Mm (maybe after performing

20This follows from the facts that the transitions in ZA are built in such a way that a ca-
pability cannot be removed if a corresponding requirement is assumed, and that the global
state becomes inconsistent after firing if transition that removes a capability connected to an
assumed requirement.
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some transitions in the capability controllers), then om+1 can be performed
also in Gm, and vice versa. Hence:

o1..omom+1 can be added to V n+1
1 ⇔ o1..omom+1 can be added to V n+1

2 .

As the above property obviously holds for any sequence of operation in V n
1

and for each operation available in A, it follows that the sets containing the
valid sequences of at most n + 1 operations determined according to both
considered semantics are equal, i.e. V n+1

1 = V n+1
2 .

We have also discussed how, by encoding management protocols into
open Petri nets, we can exploit existing results to accomplish some of the
analyses we want to carry out. For instance, the problem of finding whether
there is a plan which achieves a specific goal can be reduced to the cover-
ability problem, or the problem of determining whether a composite appli-
cation is softly resettable can be solved by checking whether its encoding in
open Petri nets is reversible.

On the other hand, the proposed Petri net encoding is built in such a
way that it does not permit performing an operation if it can cause a viola-
tion of the consistency among requirements and capabilities. For instance,
it is not possible to simulate the execution of an operation that removes a
capability from a node while at least another node is relying on such capa-
bility, simply because the place denoting the capability to be removed is an
input place for the corresponding transition and it is missing a token. As
a consequence, it is not possible to determine the effects of removing such
capability. The same does not hold for the labelled transition system-based
semantics we presented in Sect. 5.3.

The above, along with the fact that having a “direct semantics” would
avoid to recompute the Petri net encoding of an application whenever a
node is added or removed from such application, makes the semantics we
presented in Sect. 5.3 a better candidate for being extended to model and
analyse faults (as we show in Chapter 7). This is why, in the following, we
will focus on the labelled transition system-based semantics.
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Chapter 6

Behaviour-aware matching of
cloud applications

The exact and plug-in matching presented in Chapter 3 permit reusing avail-
able service templates to concretely implement desired node types (by che-
cking that all features of the latter are provided by the former). Such tech-
niques however do not take into account the behaviour of management
operations, i.e. they do not check whether the behaviour of an available
service template is compatible with the behaviour of the desired node type.

We hereby exploit the behaviour information in management protocols
to extend such notions1. More precisely, after introducing a shorthand no-
tation for management protocols (see Sect. 6.1), we define when a desired
management protocol can be “simulated” [107] by another available pro-
tocol, and we exploit such notion of simulation to extend the conditions
constraining exact and plug-in matching (see Sect. 6.2).

We then relax the notion of simulation into that of f -simulation, where
f is a function associating each transition in the desired management pro-
tocol with a sequence of transitions in the available protocol. This permits
further relaxing the notion of plug-in matching, by allowing to match the
management operations of a desired node type with sequences of opera-
tions of an available service template. We also describe flexibly plug-in
matched service templates can be suitably adapted so as to be employed in
place of desired node types (see Sect. 6.3).

Finally, we introduce a coinductive [71] procedure that permits comput-
ing the function f determining an f -simulation among two management
protocols. We also assess such procedure, by proving that it is sound and
complete (see Sect. 6.4).

1Analogous extensions can be defined for renaming-based and white-box matching. Due to
reasons of readability, and since their extensions are very similar to that of plug-in matching,
we hereby focus on extending exact and plug-in matching.
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6.1 A shortand notation for management protocols

To simplify notation throughout this chapter, we define an intensional oper-
ational semantics of the management protocol of a single component (viz., a
TOSCA node type). The intensional semantics models all possible sequen-
ces of management operations that could be performed on a component if
the conditions on the needed requirements are satisfied by the environment.
Formally, the intensional semantics of the management protocol of a node
type N can be defined by a labelled transition system over configurations
that are the states of N .

Definition 6.1 (Intensional semantics of management protocols). Let N =

〈SN , RN , CN , ON ,MN 〉 be a node type, with MN = 〈sN , ρN , χN , τN 〉. The
intensional semantics of the management protocolMN of N is modelled by a la-
belled transition system whose set of configurations is SN and where the transition
relation is defined by the following inference rule:

N = 〈SN , RN , CN , ON ,MN 〉
MN = 〈sN , ρN , χN , τN 〉 〈s, P,X, o, s′〉 ∈ τN

s
〈P,X,o〉−−−−→N s′

Intuitively, a transition s
〈P,X,o〉−−−−→N s′ denotes that operation o can be

executed on N when N is in state s, and under the hypothesis that the
requirements in P are satisfied, making N evolve into state s′. During the
transition, it is guaranteed that N continues to offer the capabilities in X .

6.2 Simulation-based matching

Consider a node type N = 〈SN , RN , CN , ON ,MN 〉, where SN , RN , CN ,
andON are respectively the sets of its states, requirements, capabilities, and
management operations, and whereMN = 〈sN , ρN , χN , τN 〉 is the manage-
ment protocol of N . Consider also a service template S = 〈SS , RS , CS , OS ,
MS〉, with MS = 〈sS , ρS , χS , τS〉. In order to extend the notions of exact
and plug-in matching (Defs. 3.1 and 3.6), we formally define when the man-
agement protocol MS of S can simulate [107] (the behaviour defined by)
the management protocolMN of N .

6.2.1 Simulation of management protocols

Intuitively speaking,MN is simulated byMS if and only if the initial state
ofMN is simulated by the initial state ofMS . A state sN ∈ SN is simulated
by a state sS ∈ SS if and only if (a) the requirements needed by sN include
all those needed by sS , (b) the capabilities offered by sN are included in
those offered by sS , and (c) for each transition from sN to s′N , there is a
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“compatible” transition starting from sS (i.e., a transition performing the
same operation o, not needing additional requirements, providing at least
the same capabilities, and leading to a state s′S that simulates s′N ).

Definition 6.2 (Simulation of management protocols). Let N = 〈SN , RN ,
CN , ON ,MN 〉 be a node type, with MN = 〈sN , ρN , χN , τN 〉. Let also S =

〈SS , RS , CS , OS ,MS〉 be a service template, withMS = 〈sS , ρS , χS , τS〉.

A state sN ∈ SN is simulated by sS ∈ SS (sN v sS) iff

(a) ρN (sN ) ⊇ ρS(sS),

(b) χN (sN ) ⊆ χS(sS), and

(c) sN
〈PN ,XN ,o〉−−−−−−−→N s′N

implies

∃sS
〈PS ,XS ,o〉−−−−−−→S s

′
S : PN ⊇ PS ∧XN ⊆ XS ∧ s′N v s′S .

A management protocolMN is simulated by another management protocolMS

(viz.,MN vMS) iff sN v sS .

6.2.2 Behaviour-aware exact and plug-in matching

The notion of simulation permits extending those of exact and plug-in mat-
ching introduced in Chapter 3.

To check whether a service template S exactly matches a node type N ,
we now check whether S syntactically exactly matchesN (see Def. 3.1), and
whether the management protocol of S simulates that of N .

Definition 6.3 (Behaviour-aware exact matching). Let N = 〈SN , RN , CN ,
ON ,MN 〉 be a node type, and let S = 〈SS , RS , CS , OS ,MS〉 be a service tem-
plate. S exactly matches N (S ≡b N ) iff

S ≡ N ∧ MN vMS .

Analogously, to check whether a service template S plug-in matches
a node type N , we check whether S syntactically plug-in matches N (see
Def. 3.6), and whether the management protocol of S simulates that of N .

Definition 6.4 (Behaviour-aware plug-in matching). Let N = 〈SN , RN , CN ,
ON ,MN 〉 be a node type, and let S = 〈SS , RS , CS , OS ,MS〉 be a service tem-
plate. S plug-in matches N (S 'b N ) iff

S ' N ∧ MN vMS .

Example 6.1. Consider the Server node type and the Tomcat service template in
Fig. 6.1. Tomcat syntactically plug-in matches Server2 (viz., Server ' Tomcat).

2For simplicity, please assume that same-named requirements, capabilities, and opera-
tions satisfy the syntactical plug-in matching conditions given in Chapter 3.
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FIGURE 6.1: Examples of node type and service template.

Tomcat can thus be adapted to exactly match Server (see Sect. 3.1.2). We build a
new service template having Tomcat as its only node, and exposing (via its bound-
ary definitions) the same requirement, capability, and operations as the target Ser-
ver node type. The resulting service template is shown in Fig. 6.2.

FIGURE 6.2: Example of adaptation of a syntactically plug-in matched service tem-
plate.

Consider now the management protocols in Fig. 6.3, whereMSer is the man-
agement protocol for Server, whileMTom andM′

Tom are two (alternative) manage-
ment protocols for Tomcat.

It is easy to see thatMSer v MTom since Unavailable v NotInstalled. It follows
that (withMTom) Tomcat plug-in matches Server (viz., Tomcat 'b Server), and that
Tomcat can still be adapted as shown in Fig. 6.2 to exactly match Server. The adap-
tation now also ensures that the management operations of the adapted service
template have the same behaviour as those of the desired node type.

The same does not hold if the management protocol of Tomcat is M′
Tom. For

instance, by performing Install in their initial states,M′
Tom andMSer respectively

reach the states Installed and Stopped, and Installed 6v Stopped. This is because there
is no transition starting from Installed that corresponds to the operation Start of
Server. Instead, by making the Install operation of Server correspond to the se-
quencing of the operations Install and Configure of Tomcat, the aforementioned
problem would not be raised, since in Configured state it is possible to fire Start.
This means that a less strict definition of (operation) matching should allow Tom-
cat to match Server (withM′

Tom as management protocol).

6.3 Flexible simulation-based matching

We now further extend the definition of matching in order to identify larger
sets of service templates that can be adapted to exactly match a desired
node typeN = 〈SN , RN , CN , ON ,MN 〉. More precisely, we relax the defini-
tion of plug-in matching so that, given a service template S = 〈SS , RS , CS ,
OS ,MS〉, we permit matching (and substituting) the operations inON with
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MSer

MTom

M′Tom

FIGURE 6.3: Example of management protocols.

sequences of operations in OS , based upon their effects on states, require-
ments and capabilities.

6.3.1 Flexible-simulation of management protocols

We first relax the notion of management protocol simulation (Def. 6.2) by
allowing to simulate each transition of the target management protocolMN

with sequences of transitions of the available management protocolMS . To
do so, we first extend the intensional semantics ofMS , by adding the tran-
sitions which permit remaining in the same state by performing an empty
sequence ε of operations (without changing the conditions on requirements
and capabilities), and which permit moving from a state to another by per-
forming non-empty sequences of operations. While for singleton sequences
the rule is trivial, for sequences of at least two operations we need the fol-
lowing rule: If w1 permits transiting from state s to state s′′ by assuming
the requirements in H1 and by maintaining the capabilities in G1, and if w2

permits transiting from state s′′ to state s′ by assuming the requirements in
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H2 and by maintaining the capabilities in G2, then w1w2 permits transiting
from s to s′ by assuming H1 ∪H2 and by maintaining G1 ∩G2.

Definition 6.5 (n-step intensional semantics). Let S = 〈SS , RS , CS , OS ,MS〉
be a service template. The n-step intensional semantics of the management proto-
colMS of S is modelled by a labelled transition system whose set of configurations
is SS and whose transition relation is defined by the following inference rules:

−

s
〈ρS(s),χS(s),ε〉
=========⇒S s

s
〈P,X,o〉−−−−→S s

′

s
〈P,X,o〉
====⇒S s

′

s
〈P1,X1,w1〉
======⇒S s

′′ ∧ s′′
〈P2,X2,w2〉
======⇒S s

′

s
〈P1∪P2,X1∩X2,w1w2〉
=============⇒S s

′

Remark 6.1. The transition system⇒S from Def. 6.5 actually defines the re-
flexive and transitive closure of the transition system→S . One can readily
check that whenever →S is well-formed also ⇒S is well-formed. This en-
sures that all the intermediates states that are reached during the execution
of a transition

s
〈P,X,w〉
====⇒S s

′

offer at least capabilities X and require at most requirements P . This meets
the intuition behind the label X introduced in Sect. 5.2: X are all the capa-
bilities that are maintained available during a transition.

According to Def. 6.5, the transition system⇒S generates infinite bran-
ching whenever the corresponding protocol features some loops. In order
to obtain a finitary description of it, we restrict to consider only minimal
sequences of operations.

Definition 6.6 (Minimal n-step intensional semantics). Let S = 〈SS , RS , CS ,
OS ,MS〉 be a service template. The minimal n-step intensional semantics of
the management protocol MS of S is modelled by a labelled transition system
whose set of configurations is SS and whose transition relation is defined by the
following inference rule:

s
〈P,X,w〉
====⇒S s

′ ∧ @P1 ⊆ P,X1 ⊇ X,w1w2 = w : s
〈P1,X1,w1〉
======⇒S s

′

s •〈P,X,w〉====⇒S s
′

We now relax the notion of simulation (Def. 6.2) into that of f -simula-
tion, where f : SN ×SS×ON → O∗S is a function associating each transition
in the target management protocolMN with a (possibly empty) sequence
of transitions in the available management protocolMS .

Intuitively speaking,MN can be f -simulated byMS if and only if the
initial state of MN can be f -simulated by the initial state of MS . A state
sN ∈ SN is in turn f -simulated by a state sS ∈ SS if and only if (a) the
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requirements needed by sN contain all those needed by sS , (b) the capa-
bilities offered by sN are contained in those offered by sS , and (c) for each
transition starting from sN , there is a transition in •⇒S starting from sS , not
needing additional requirements, providing at least the same capabilities,
and leading to a state s′S that in turn f -simulates s′N .

Definition 6.7 (f -simulation of management protocols). Let N = 〈SN , RN ,
CN , ON ,MN 〉 be a node type, with MN = 〈sN , ρN , χN , τN 〉. Let also S =

〈SS , RS , CS , OS ,MS〉 be a service template, withMS = 〈sS , ρS , χS , τS〉.

A state sN ∈ SN is f -simulated by a state sS ∈ SS (sN vf sS) iff the following
conditions hold.

(a) ρN (sN ) ⊇ ρS(sS),

(b) χN (sN ) ⊆ χS(sS), and

(c) sN
〈PN ,XN ,o〉−−−−−−−→N s′N

implies

∃sS •
〈PS ,XS ,f(sN ,sS ,o)〉
============⇒S s

′
S : PN ⊇ PS ∧XN ⊆ XS ∧ s′N vf s′S .

A management protocol MN is f -simulated by a management protocol MS

(MN vf MS) iff sN vf sS .

Remark 6.2. A similar notion could be defined by replacing •⇒S with⇒S

(Def. 6.5). This would put weaker constraints on f , as the transition system
⇒S is much larger than •⇒S . Nonetheless any f satisfying the weaker sim-
ulation constraints would have an associated f ′ fulfilling the stricter ones.

We have selected •⇒S to have a decidable f -simulation, since •⇒S can
be proved to be finite and computable.

6.3.2 Flexible plug-in matching

It is easy to see that the notion of f -simulation (Def. 6.7) supports a more
flexible form of matching than simulation (Def. 6.2), by permitting to match
an operation with (different) sequences of operations.

Definition 6.8 (Flexible plug-in matching). LetN = 〈SN , RN , CN , ON ,MN 〉
be a node type, and let S = 〈SS , RS , CS , OS ,MS〉 be a service template. S flexi-
bly plug-in matches N (S .b N ) iff conditions 1—4 in Def. 3.6 hold, and

MN vf MS .

Remark 6.3. If an available service template S plug-in matches a node type
N , then S also flexibly plug-in matches N , i.e.

S 'b N ⇒ S .b N
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This is because both plug-in and flexible plug-in constrain the same condi-
tions on requirements and capabilities, and because management protocol
simulation corresponds to f -simulation when f is the identity function.

It is worth noting that, while the adaptation technique for (syntacti-
cally) plug-in matched service templates presented in Chapter 3 can be
directly applied to requirements and capabilities, management operations
need now to be adapted by taking into account sequences. We hence map
the operations exposed on the boundaries of the adapted service template
onto plans composing the operation of the flexibly plug-in matched service
template. More precisely, since each operation to be matched can be associ-
ated with a different sequence according to f (and depending on the states
of the target node type and matched service template), each operation ex-
posed by the adapted service template is now associated with a conditional
workflow encoding all the mappings given by f .

Example 6.2. Consider again the Server NodeType and the Tomcat ServiceTempla-
te in Fig. 6.1. It is now easy to see that Tomcat flexibly plug-in matches Server
(i.e., Server .b Tomcat), even if we consider the management protocols MSer and
M′

Tom in Fig. 6.3. This is because MSer is f -simulated by MTom, where f is the
identity function, except that for mapping the Install operation of Server with the
sequencing of the operations Install and Configure of Tomcat.

It follows that we can adapt Tomcat as shown in Fig. 6.4. Namely, we cre-

FIGURE 6.4: Example of adaptation of a flexibly plug-in matched service template.

ate a new service template containing Tomcat as its only node, and exposing on
its boundary definitions the features of the Server node type to be matched. We
then map requirements and capabilities as shown in Sect. 3.1.2. Finally, we im-
plement each operation exposed by the adapted service template with workflow
plans built according to the mappings given by f . Namely, the Install operation
is implemented by a sequential plan which invokes the Tomcat’s operations Install
and Configure. Each other operation is implemented by plans containing a single
invocation to the homonym Tomcat’s operation (e.g., Start is implemented by a plan
which only invokes the Start operation of Tomcat).

It is worth noting that Example 6.2 shows a static translation: Each op-
eration exposed on the boundaries of the adapted service template is imple-
mented by a plan that is independent from the current states of the target
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node type and of the matched service template. According to the definition
of f -simulation (Def. 6.7) this is not always the case, since f may depend on
the current states of the target node type and of the available service tem-
plate. In the next section we present an algorithm which computes all the
possible f , from which it is trivial to extract a static translation (if it exists).
If no such translation exists, the adapter would need some additional logic,
namely it should include some conditional statements to track the state of
the target node type and/or of the reused service template.

6.4 Computing a flexible simulation

Consider a service template S = 〈SS , RS , CS , OS , MS〉 and a node type
N = 〈SN , RN , CN , ON ,MS〉, where MS = 〈sS , ρS , χS , τS〉 and MN =

〈sN , ρN , χN , τN 〉 are the corresponding management protocols. According
to Def. 6.8, to check whether S flexibly plug-in matchesN we need to check
whether MS f -simulates MN (i.e., MS vf MN ). We hereby illustrate a
coinductive [71] procedure that permits computing all functions f such that
MS f -simulatesMN (if any).

6.4.1 A coinductive approach to compute f -simulations

Let us denote with WS ⊆ O∗S set of all minimal operation sequences inMS

(Def. 6.6). We now sketch a coinductive algorithm capable of finding all
functions

f : SN × SS ×ON →WS

such thatMS vf MN . Intuitively speaking, the algorithm starts by permit-
ting to map each operation in ON with any sequence of operations in WS ,
and iteratively refines the mapping by removing the mappings leading to
states that do not f -simulate (for any f ). This process continues until the
mapping cannot be refined any more.

More precisely, the algorithm employs a l × m × n matrix F , where l
is the number of states in SN (i.e., l = |SN |), m is the number of states
in SS (i.e., m = |SS |), and n is the number of operations in ON (i.e., n =

|ON |). Each entry F [i, j, o] stores the set of all words w ∈ WS such that, for
some f , mapping (i, j, o) into w would potentially allow j to f -simulate i
(i.e., i vf j). Intuitively, the matrix F represents an element in the lattice of
all functions SN ×SS ×ON → 2WS , and the algorithm consists of a greatest
fixpoint computation on such lattice (i.e., F starts from the top of the lattice,
and each refinement makes it become a lower element — until it cannot be
lowered any more).

Initially, there is no information about f -simulation, and the algorithm
can only check whether two states i ∈ SN and j ∈ SS are compatible
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in terms of requirements and capabilities (i.e., whether ρN (i) ⊇ ρS(j) ∧
χN (i) ⊆ χS(j)). If this is the case, then j is a candidate to simulate i, and
the algorithm maps each operation o ∈ ON with any operation sequence
in WS (i.e., F0[i, j, o] = WS). Otherwise, there is no way to simulate i with
j, and thus there is no way to map the operations in ON onto sequences in
WS .

F0[i, j, o] =

{
WS if ρN (i) ⊇ ρS(j) ∧ χN (i) ⊆ χS(j)

∅ otherwise

At each step k + 1, Fk is refined by removing all the mappings that lead to
states that do not f -simulate. More precisely, given i ∈ SN , j ∈ SS , and
o ∈ ON , Fk+1[i, j, o] is obtained by restricting Fk[i, j, o] to those w such that
if i can go in i′ with o, then j can go in j′ with w, and j′ is a candidate to
simulate i′ (i.e., ∀o′ ∈ ON .Fk[i′, j′, o′] 6= ∅).

Fk+1[i, j, o] = {w ∈ Fk[i,j, o] | ∀i
〈PN ,XN ,o〉−−−−−−−→N i′.∃j •〈PS ,XS ,w〉

======⇒S j
′ :

PN ⊇ PS ∧XN ⊆ XS ∧ ∀o′ ∈ ON .Fk[i′, j′, o′] 6= ∅}

This iterative process stops when the matrix F cannot be refined any more,
i.e. when Fk+1 = Fk. By definition, when Fk+1 = Fk, we reached the
maximum fixpoint F .

• If there is at least one operation in ON that cannot be mapped in the
starting states (i.e., ∃o ∈ ON .F [sN , sS , o] = ∅), then there is no func-
tion f such that the starting states f -simulate (i.e., sS 6vf sN ). This in
turn implies thatMS does not f -simulateMN (i.e.,MS 6vf MN ).

• Otherwise, we can extract one of the functions f (such that MS vf
MN ) by simply selecting one of the possible mappings for each oper-
ation o ∈ ON and for each pair of states (i, j) ∈ SN × SS .

6.4.2 Properties of the approach

We hereby prove (by means of coinduction [71]) that the algorithm comput-
ing a f -simulation (see Sect. 6.4.1) is terminating, sound and complete.

Termination

The termination of the algorithm to compute a f-simulation follows trivially
from its rules for initialising and refining the matrix F .

Proposition 6.1. The algorithm presented in Sect. 6.4.1 always terminates.

Proof. The algorithm consists in an iterative refinement process, which sto-
ps whenever the matrix F cannot be refined any more, i.e. Fk+1 = Fk. This
is guaranteed to happen, because of the following facts:
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• All entries of the matrix F0 are initialised with finite sets (viz., either
they contain the set WS of all minimal operation sequences, or they
contain the empty set).

• At every step, each entry Fk[i, j, o] either shrinks or stays the same,
and Fk[i, j, o] is lower-bounded by ∅.

Soundness and completeness

Consider a service template S = 〈SS , RS , CS , OS ,MS〉 and a node type
N = 〈SN , RN , CN , ON ,MN 〉, whose management protocols are MS =

〈sS , ρS , χS , τS〉 and MN = 〈sN , ρN , χN , τN 〉, respectively. f -simulation is
defined (in Def. 6.7) as a relation such that, for all pairs (sN , sS) ∈ SN × SS ,
satisfies the following constraint:

sN vf sS :=ρN (sN ) ⊇ ρS(sS) ∧

χN (sN ) ⊆ χS(sS) ∧

(∀sN
〈PN ,XN ,o〉−−−−−−−→N s′N ,∃s′S .sS •

〈PS ,XS ,f(sN ,sS ,o)〉
============⇒S s

′
S ∧

PN ⊇ PS ∧

XN ⊆ XS ∧

s′N v s′S)

The same relation can be defined as a post-fixpoint of the operator Ψf ,
which is defined as follows.

Definition 6.9 (Operator Ψf ). Let S = 〈SS , RS , CS , OS ,MS〉 be a service tem-
plate (withMS = 〈sS , ρS , χS , τS〉), and let N = 〈SN , RN , CN , ON ,MN 〉 be a
node type (withMN = 〈sN , ρN , χN , τN 〉). The operator Ψf is defined as follows:

Ψf (R) := {(sN , sS) ∈R | ρN (sN ) ⊇ ρS(sS) ∧

χN (sN ) ⊆ χS(sS) ∧

(∀sN
〈PN ,XN ,o〉−−−−−−−→N s′N , ∃s′S .sS •

〈PS ,XS ,f(sN ,sS ,o)〉
============⇒S s

′
S ∧

PN ⊇ PS ∧

XN ⊆ XS ∧

(s′N , s
′
S) ∈ R)}

Lemma 6.1. The relation of f -simulation (viz., vf ) is a post-fixpoint of the oper-
ator Ψf . Namely:

vf= Ψf (vf ).
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Proof. The thesis follows trivially from the definitions of vf (Def. 6.7) and
of Ψf (Def. 6.9).

In Sect. 6.4.1, we mentioned that the algorithm essentially consists of
a greatest fixpoint computation on the lattices of functions F : SN × SS ×
ON → 2WS . The following definition makes formal this intuition by intro-
ducing a monotone endomap Φ on the lattice F .

Definition 6.10 (Endomap Φ). Let S = 〈SS , RS , CS , OS ,MS〉 be a service
template (withMS = 〈sS , ρS , χS , τS〉), and let N = 〈SN , RN , CN , ON ,MN 〉 be
a node type (withMN = 〈sN , ρN , χN , τN 〉). Let also WS ⊆ O∗S be the set of all
minimal operation sequences inMS (Def. 6.6). We define the endomap Φ on the
lattice of functions F : SN × SS ×ON → 2WS as follows:

Φ(F )(sN , sS , o) := {w ∈F (sN , sS , o) |

ρN (sN ) ⊇ ρS(sS) ∧

χN (sN ) ⊆ χS(sS) ∧

(∀sN
〈PN ,XN ,o〉−−−−−−−→N s′N ,∃s′S .sS •

〈PS ,XS ,w〉
======⇒S s

′
S ∧

PN ⊇ PS ∧

XN ⊆ XS ∧

∀o′, F (s′N , s
′
S , o
′) 6= ∅)}

Lemma 6.2. The algorithm presented in Sect. 6.4.1 consists in computing of the
greatest fixpoint of the endomap Φ.

Proof. Consider the rules given in Sect. 6.4.1 for computing F0 and Fk+1. By
definition of Φ:

• F0 is just Φ(>), where > is the greatest element of the lattice of func-
tions F : SN × SS ×ON → 2WS (i.e., a function assigning to any triple
i, j, o the whole set Ws), and

• Fn+1 is just Φ(Fn).

We now have all the elements needed to prove by means of coinduction
that the algorithm to compute a f-simulation (see Sect. 6.4.1) is sound and
complete.

Proposition 6.2. The algorithm presented in Sect. 6.4.1 is sound and complete.

Proof. We know that:

• The relation vf is a post-fixpoint of the operator Ψf (by Lemma 6.1).
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• The algorithm presented in Sect. 6.4.1 consists in computing of the
greatest fixpoint of the endomap Φ (by Lemma 6.2).

Given the above, to prove soundness and completeness of the algorithm
presented in Sect. 6.4.1 we can focus on Φ and Ψf , by showing how they
are related. More precisely, we need to exploit Ψf to show that:

(a) If there is an f for which the states of a node type N are f -simulated by
those of a service template S, then there is a non-empty fixpoint for the
endomap Φ built on the corresponding lattice, and

(b) if Φ has a non-empty fixpoint, then it is always possible to extract from
it a function f such that the states of N are f -simulated by those of S.

The above listed conditions (a) and (b) are proved by the following Lem-
mas 6.3 and 6.4, respectively.

Lemma 6.3. Let S = 〈SS , RS , CS , OS ,MS〉, and let N = 〈SN , RN , CN , ON ,
MN 〉. Let also WS ⊆ O∗S be the set of all minimal operation sequences in MS

(Def. 6.6), and Φ be an endomap on the lattice of functions F : SN × SS ×ON →
2WS built as shown in Def. 6.10.

Consider a state sS ∈ SS and a state sN ∈ SN . If there exists a function f for
which sN vf sS , then there is a non-empty fixpoint for the endomap Φ on F . In
formulas, ∀sN ∈ SN , sS ∈ SS , o ∈ ON

Φ(Ff )(sN , sS , o) = Ff (sN , sS , o)

where Ff (sN , sS , o) = {f(sN , sS , o) | sN vf sS}.

Proof. The definition of Ff (sN , sS , o) naturally partitions the proof in two
cases, i.e. (a) Ff (sN , sS , o) = ∅, and (b) Ff (sN , sS , o) = {f(sN , sS , o)} 6= ∅.

(a) Assume that Ff (sN , sS , o) = ∅. By definition of Φ

Φ(Ff )(sN , sS , o) ⊆ Ff (sN , sS , o).

Since Ff (sN , sS , o) = ∅

Φ(Ff )(sN , sS , o) ⊆ ∅,

which trivially implies that

Φ(Ff )(sN , sS , o) = ∅.

From the above, and since Ff (sN , sS , o) = ∅, we have that ∀o ∈ ON

Φ(Ff )(sN , sS , o) = Ff (sN , sS , o).
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(b) On the other hand, if Ff (sN , sS , o) = {f(sN , sS , o)} 6= ∅, then the defi-
nition of Ff ensures that

sN vf sS .

By expanding the definition of vf we have that

ρN (sN ) ⊇ ρS(sS) ∧

χN (sN ) ⊆ χS(sS) ∧

(∀sN
〈PN ,XN ,o〉−−−−−−−→N s′N , ∃s′S .sS •

〈PS ,XS ,f(sN ,sS ,o)〉
============⇒S s

′
S ∧

PN ⊇ PS ∧

XN ⊆ XS ∧

s′N vf s′S .

Since s′N vf s′S ⇒ ∀o′, Ff (p′, q′, o′) = {f(p′, q′, o′)} 6= ∅, the above can
be rewritten as follows:

ρN (sN ) ⊇ ρS(sS) ∧

χN (sN ) ⊆ χS(sS) ∧

(∀sN
〈PN ,XN ,o〉−−−−−−−→N s′N , ∃s′S .sS •

〈PS ,XS ,f(sN ,sS ,o)〉
============⇒S s

′
S ∧

PN ⊇ PS ∧

XN ⊆ XS ∧

∀o′ ∈ ON , Ff (s′N , s
′
S , o
′) 6= ∅.

The above predicate is proved to be true, and this means that we can
write the following equivalence (for every o ∈ ON ):

{f(sN , sS , o)} = {f(sN , sS , o) |

ρN (sN ) ⊇ ρS(sS) ∧

χN (sN ) ⊆ χS(sS) ∧

(∀sN
〈PN ,XN ,o〉−−−−−−−→N s′N , ∃s′S .sS •

〈PS ,XS ,f(sN ,sS ,o)〉
============⇒S s

′
S ∧

PN ⊇ PS ∧

XN ⊆ XS ∧

∀o′, Ff (p′, q′, o′) 6= ∅},

which by definition of Φ (Def. 6.10) means that (for every o ∈ ON )

{f(sN , sS , o)} = Φ(Ff )(sN , sS , o)
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Finally, since Ff = {f(sN , sS , o)}, we obtain that (for every o ∈ ON )

Ff = Φ(Ff )(sN , sS , o)

Lemma 6.4. Let S = 〈SS , RS , CS , OS ,MS〉, and let N = 〈SN , RN , CN , ON ,
MN 〉. Let also Ψf be the operator defined in Def. 6.9, WS ⊆ O∗S be the set of all
minimal operation sequences inMS (Def. 6.6), and Φ be an endomap on the lattice
of functions F : SN × SS ×ON → 2WS built as shown in Def. 6.10.

If Φ has a non-empty fixpoint, then it is possible to extract from it a function f
for which sN vf sS (with sN ∈ SN and sS ∈ SS). Formally, assuming that

(i) ∀sN ∈ SN , sS ∈ SS , o ∈ ON .Φ(F )(sN , sS , o) = F (sN , sS , o), and

(ii) fF : SN × SS ×ON → O∗S
such that
∀sN ∈ SN , sS ∈ SS .(∀o ∈ ON .F (sN , sS , o) = ∅) ⇒ f(sN , sS , o) ∈
F (sN , sS , o),

we have that
vF⊆ ΨfF (vF )

where sN vF sS := ∀o ∈ ON , F (sN , sS , o) 6= ∅.

Proof. Consider a state sN ∈ SN and a state sS ∈ SS , and suppose that

sN vF sS .

By definition of vF , we have that

∀o ∈ ON .F (sN , sS , o) 6= ∅.

The above, along with the hypoteses on f , implies that

∀o ∈ ON .f(sN , sS , o) ∈ F (sN , sS , o) ⊆ Φ(F )(sN , sS , o).

By definition of Φ, the above can be rewritten as follows

∀o ∈ ON .ρN (sN ) ⊇ ρS(sS) ∧

χN (sN ) ⊆ χS(sS) ∧

(∀sN
〈PN ,XN ,o〉−−−−−−−→N s′N ,∃s′S ∈ SS .sS •

〈PS ,XS ,f(sN ,sS ,o)〉
============⇒S s

′
S ∧

PN ⊇ PS ∧

XN ⊆ XS ∧

∀o′, F (s′N , s
′
S , o
′) 6= ∅),
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which, by definition of vF , can be in turn rewritten as follows

∀o ∈ ON .ρN (sN ) ⊇ ρS(sS) ∧

χN (sN ) ⊆ χS(sS) ∧

(∀sN
〈PN ,XN ,o〉−−−−−−−→N s′N , ∃s′S ∈ SS .sS •

〈PS ,XS ,f(sN ,sS ,o)〉
============⇒S s

′
S ∧

PN ⊇ PS ∧

XN ⊆ XS ∧

s′N vF s′S).

From the above, and because of the definition of ΨfF , we have that

(sN , sS) ∈ ΨfF (vF ),

from which it follows the thesis we wanted to prove.
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Chapter 7

Fault-aware modelling and
analysis of application
management

In Chapter 5 we have shown how the management behaviour of topology
nodes can be modelled by management protocols, specified as finite state ma-
chines whose states and transitions are associated with conditions defining
the consistency of the states of a node and constraining the executability of
management operations. Such conditions are defined on the requirements
of a node, and each requirement of a node has to be fulfilled by a capa-
bility of another node. As a consequence, the management behaviour of a
composite application can be easily derived by composing the management
protocols of its nodes according to the dependencies defined in its topology.

The above does not deal with the potential occurrence of faults, which
however must be considered when managing complex composite appli-
cations [43]. Indeed, an application component may be affected by faults
caused by other components on which it relies (e.g., a component is shut-
down or uninstalled while another component is relying on its capabilities).

In Sect. 7.2 we propose a fault-aware extension of management protocols,
to permit modelling how nodes behave when faults occur. We also illustrate
how to analyse and automate the management of composite applications
in a fault-resilient manner. Namely, we show how the fault-aware manage-
ment behaviour of a composite application can be determined by compos-
ing the protocols of its nodes according to the application’s topology. We
then describe how to determine whether a plan orchestrating the manage-
ment of an application is valid, which are its effects (e.g., which capabilities
are available after executing it, or whether it may generate faults while be-
ing executed), and how this also permits finding management plans from
given application configurations to achieve specific goals.

Notice that, even if the components of an application are described by
fault-aware management protocols, the actual behaviour of such compo-
nents may differ from the described one (e.g., because of a non-deterministic
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bug [64]). In Sect. 7.4 we show how the unexpected behaviour of a compo-
nent can be modelled by automatically completing its management proto-
cols, and how this permits analysing the (worst possible) effects of a misbe-
having component on the rest of the application. We also illustrate a way
to hard recover applications that are stuck because a fault was not properly
handled, or because of a misbehaving component (see Sect. 7.5).

Finally, to illustrate the feasibilty of our approach, in Sect. 7.6 we de-
scribe a proof-of-concept, web-based application that permits editing fault-
aware management protocols in TOSCA applications, and which permits
analysing the management of such applications. In Sect. 7.7 we also show
how to exploit our proof-of-concept implementation to validate and auto-
mate the fault-aware management of the Thinking case study (previously
discussed in Sect. 5.5).

7.1 Motivating scenario

Consider a toy application composed by a web-based Frontend and a Back-
end, both deployed on an Apache server, which in turn is installed on a De-
bian operating system. Fig. 7.1 illustrates the topology of such application,
according to the TOSCA graphical notation introduced by Winery [78].

FIGURE 7.1: Motivating example.

Each inter-node dependency is explicitly represented by a relationship
connecting a node’s requirement with another node’s capability (e.g., the
Server requirements of Frontend and Backend are connected with the Ap-
pRTE capability of Apache). A relationship can represent a “vertical” con-
tainment dependency, specifying that a component is contained in another
(e.g., Apache is installed on Debian), or an “horizontal” dependency, specify-
ing that a component just requires another (without stating that the former
is contained in the latter — e.g., Frontend must connect to Backend’s Endpoint
to work properly).



7.2. Fault-aware application management protocols 113

Suppose for instance that all nodes have been deployed, started, and
properly connected each other (i.e., all components are in their running
state). What happens if the Stop operation of Backend is executed? The
Backend application component is stopped, and this generates a fault in the
Frontend, which becomes unable to serve requests to its clients, simply be-
cause the connection with Backend is not working any more. Furthermore,
even if Backend is re-started, the Frontend has to re-connect to the Backend.

Even worse is the case when a node presents an unexpected behaviour.
Suppose again that the application is up and running, and that the Apache
server unexpectedly crashes. Such a crash results in faulting also the nodes
contained in Apache (viz., Frontend and Backend), which are suddenly killed,
and potentially enter in an inconsistent state that makes them unusable
from there onwards.

Both the above mentioned cases fail because a node stops providing
its capabilities while other nodes are relying on them to continue to work.
In the first case this happens because of the invocation of a management
operation that stops a node while other nodes are depending on it. In the
second case a node unpredictably fails1.

7.2 Fault-aware application management protocols

7.2.1 Definition of fault-aware management protocols

We hereby define a fault-aware extension of management protocols (which
have been first introduced in Chapter 5), to permit describing how N re-
acts when it is in a state assuming some requirements to be satisfied, and
some other node(s) stop(s) providing the capabilities satisfying such re-
quirements. We introduce a new transition relation ϕ to model the explicit
fault handling of N , i.e. how N changes its state from s to s′ when some of
the requirements it assumes in s stop being satisfied.

Definition 7.1 (Fault-aware management protocol). Let N = 〈SN , RN , CN ,
ON ,MN 〉 be a node, where SN , RN , CN , and ON are the finite sets of its states,
requirements, capabilities, and management operations. MN = 〈sN , ρN , χN ,
τN , ϕN 〉 is a finite state machine defining the fault-aware management protocol
of N , where:

• sN ∈ SN is the initial state,

• ρN : SN → 2RN is a function indicating which requirements must hold in
each state s ∈ SN ,

1Misbehaving components can be detected via monitoring (e.g., by exploiting watchdogs
or heartbeat services). We shall not deepen into details, as component monitoring is outside
of the scope of this thesis.
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• χN : SN → 2CN is a function indicating which capabilities of N are offered
in a state s ∈ SN ,

• τN ⊆ SN × 2RN × 2CN × ON × SN is a set of quintuples modelling the
transition relation (i.e., 〈s, P,X, o, s′〉 ∈ τN denotes that in state s, and if
condition P holds, o is executable and leads to state s′ — by maintaining the
capability in X during the transition), and

• ϕN ⊆ SN×2RN ×SN is a set of triples modelling the explicit fault handling
for a node (i.e., 〈s,H, s′〉 ∈ ϕN denotes that the node will change its state
from s to s′ if the requirements in H stop being satisfied).

Example 7.1. Fig. 7.2 shows the fault-aware management protocols of the nodes
composing our motivating scenario (where thicker arrows represent τ , and lighter
arrows represent ϕ).

Consider for instance the fault-aware management protocolMApache, which de-
scribes the behaviour of the Apache node. In its initial state (NotInstalled) Apache
does not require nor provide anything. In the Installed and Started states it instead
assumes the OS requirement to (continue to) be satisfied. If the OS requirement is
faulted, then Apache returns to its initial state (thus requiring to be installed and
started again). The Started state is the only one where Apache concretely provides
its AppRTE capability. Finally, the protocol specifies that all Apache’s operations
can be performed only if the OS requirement is satisfied.

Consider now the fault-aware management protocolMBackend, which describes
the behaviour of the Backend node. The description is “incomplete”: When Backend
is Installed or Running, it assumes the capability satisfying its Server requirement
to (continue to) be provided. It however does not describe what happens if such
capability stops being provided. A way to automatically complete fault-aware
management protocols (by adding transitions for all unhandled faults) is provided
in Sect. 7.2.3.

7.2.2 Characterising fault-aware management protocols

We now show how to formally define the constraints to ensure determinism
and well-formedness of fault-aware management protocols. To do it, we
shall extend the analogous constraints we discussed in Sect. 5.2.2.

A management protocol is deterministic if (i) management operations
have deterministic effects when applied in a state (viz., it is not possible
to have a state with two outgoing transitions corresponding to the same
operation and leading to different states). Additionally, (ii) fault handling
transitions have to be uniquely determined by the sets of requirements that
are no more satisfied.

Definition 7.2 (Determinism of fault-aware management protocols). Let
N = 〈SN , RN , CN , ON ,MN 〉 be a node, and letMN = 〈sN , ρN , χN , τN , ϕN 〉
be its management protocol.MN is deterministic iff
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MFrontend

MBackend

MApache

MDebian

FIGURE 7.2: Examples of fault-aware management protocols.
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(i) ∀〈s1, P1, X1, o1, s
′
1〉, 〈s2, P2, X2, o2, s

′
2〉 ∈ τN :

(s1 = s2 ∧ o1 = o2)⇒ s′1 = s′2.

(ii) ∀〈s1, H1, s
′
1〉, 〈s2, H2, s

′
2〉 ∈ ϕN :(

s1 = s2 ∧H1 = H2

)
⇒ s′1 = s′2.

It can be trivially verified that all protocols in Fig. 7.2 are deterministic since
there is no pair of transitions which start from the same source state and
leading to different states by (i) applying the same operation or (ii) handling
the same faulted requirements.

A management protocol is also well-formed if the conditions on require-
ments of each transition t are consistent with the source and target states.
This means that (i) the requirements assumed to hold in the source state of
t, as well as those assumed to hold in its target state, must be assumed to
hold also during the transition, to avoid inconsistencies. (ii) Faults can only
affect requirements that are assumed in a state, and such faults should lead
to states where faulted requirements are no more assumed and where no
additional capabilities are provided.

Definition 7.3 (Well-formedness of fault-aware management protocols). Let
N = 〈SN , RN , CN , ON ,MN 〉 be a node, and letMN = 〈sN , ρN , χN , τN , ϕN 〉
be its management protocol.MN is well-formed iff

(i) ∀〈s, P,X, o, s′〉 ∈ τN :

ρN (s) ∪ ρN (s′) ⊆ P ∧ X ⊆ χN (s) ∩ χN (s′), and

(ii) ∀〈s,H, s′〉 ∈ ϕN :

∅ 6= H ⊆ ρN (s) ∧ ρN (s′) ⊆ ρN (s)−H ∧ χN (s′) ⊆ χN (s)

It can be trivially verified that all protocols in Fig. 7.2 are well-formed, since
(i) whatever transition t ∈ τ∗ we consider, the set of requirements needed
to fire t is the union of the requirements assumed in the source and target
states of t, and since (ii) whatever transition f ∈ ϕ∗ we take, the faulted
requirements it handles are a subset of the requirements in the source state
of f and its target state assumes a set of requirements which is exactly given
by removing the faulted requirements handled by f from the requirements
assumed in its source state.

Finally, as we will see in Sect. 7.3, faults are not going to be propagated
synchronously, i.e. when a capability is removed, the nodes assuming the
requirements satisfied by such capability eventually detect the removal, but
in the meanwhile other capabilities might disappear (thus making other re-
quirements unsatisfied). For this reason, (the fault handling in) manage-
ment protocols should be race-free, which means that the simultaneous re-
moval of multiple requirements should have the same effect on a node as
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any sequential removal of the same requirements, if no operations are exe-
cuted on the node in the meantime. More precisely, (i) if ϕ permits transit-
ing from state s to state s′, then there must be a ϕ transition which handles
all removed requirements, (ii) if a set of removed requirements is handled
in a state, then all its subsets have also to be handled in the same state, (iii)
if the removal of two sets of requirements is handled in a state, then the re-
moval of their union has to be handled in the same state, (iv) the ϕ relation
has to be transitive, and (v) if a fault can be handled in a state s, then the
same fault has to be handled in all states that can be reached from s and
that have not yet handled it.

Definition 7.4 (Race-freedom of fault-aware management protocols). Let
N = 〈SN , RN , CN , ON ,MN 〉 be a node, and letMN = 〈sN , ρN , χN , τN , ϕN 〉
be its management protocol.MN is race-free iff

(i) ∀〈s,H, s′〉 ∈ ϕN : 〈s, ρ(s)− ρ(s′), s′〉 ∈ ϕN .

(ii) ∀〈s,H, s′〉 ∈ ϕN : ∀∅ 6= R ⊂ H ⇒ ∃〈s,R, s′′〉 ∈ ϕN .

(iii) ∀〈s,H ′, s′〉, 〈s,H ′′, s′′〉 ∈ ϕN : ∃〈s,H ′ ∪H ′′, s′′′〉 ∈ ϕN .

(iv) ∀〈s,H ′, s′〉, 〈s′, H ′′, s′′〉 ∈ ϕN : 〈s,H ′ ∪H ′′, s′′〉 ∈ ϕN .

(v) ∀〈s,H ′, s′〉, 〈s,H ′′, s′′〉 ∈ ϕN : H ′′ ⊆ ρ(s′)⇒ ∃〈s′, H ′′, s′′′〉 ∈ ϕN

It is easy to check that all protocols in Fig. 7.2 are race-free.
In the following we assume fault-aware management protocols to be

well-formed, deterministic, and race-free. Notice that partially specified ϕ

relations can be automatically completed by applying the rules in Def. 7.4,
therefore assuming fault-aware management protocols to be race-free does
not require additional effort when modelling management protocols.

7.2.3 Completing fault-aware management protocols

As illustrated by Example 7.1, the management protocol of a node may
leave unspecified how the component will behave in case some require-
ments stop being fulfilled in some states. To explicitly model that, manage-
ment protocols can be completed by adding transitions for all unhandled
faults, all leading to a “sink” state s (that requires and provides nothing)2.

Definition 7.5 (Completing fault-aware management protocols). Let N =

〈SN , RN , CN , ON ,MN 〉 be a node, where MN = 〈sN , ρN , χN , τN , ϕN 〉 is its
fault-aware management protocol. The management protocol MN can be com-
pleted by replacing SN and ϕN with:

• S′N = SN ∪ {s }, with s 6∈ SN and ρ(s ) = χ(s ) = ∅, and
2It is easy to prove that the proposed completion preserves the determinism, well-

formedness, and race-freedom of a fault-aware management protocol.
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• ϕ′N = ϕN ∪ {〈s,H, s 〉 | s ∈ SN ∧∅ 6= H ⊆ ρ(s) ∧ @〈s,H, s′〉 ∈ ϕN}.

In the following we will assume fault-aware management protocols to
be automatically completed as defined above. Intuitively speaking, this
will ensure that composite applications will always be able to propagate
whatever fault of their nodes, as from each state of a node N it will always
be possible to react to the removal of any of its requirements (through one
of the transitions in the original ϕN , or through those introduced in ϕ′N ).

Example 7.2. The completion of the management protocol MBackend (Fig. 7.2) is
shown in Fig. 7.3: We add a “sink state” Backend , and two transitions reacting
to the unsatisfaction of the Server requirement when Backend is in its Installed or
Running states.

FIGURE 7.3: Example of completed management protocol.

The extension of the other management protocols in Fig. 7.2 is even simpler:
Since they handle all potential faults, their extension only consists in adding a sink
state to each of them (i.e., Frontend is added to the Frontend’s states, while Apache 
and Debian are added to those of Apache and Debian, respectively).

7.3 Analysis of fault-aware management protocols

In this section we generalise the analyses presented in Sect. 5.3 so as to take
into account the potential occurrence of faults. Namely, we first show how
to infer the fault-aware management behaviour of an application by com-
posing the fault-aware management protocols of its components, and then
we describe different analyses that can be performed on such behaviour
(e.g., checking the validity of a plan, determining its effects or whether
it generates faults while being executed, or discovering plans that permit
reaching certain system configurations).

In doing so, we exploit the same shorthand notation as in Sect. 5.3. For
the convenience of readers, we recall such notation below.
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Notation 7.1. We denote with A = 〈T, b〉 a generic composite application, where
T is the finite set of nodes in the application topology3, and where the connection
among nodes is described by a (total) binding function

b :
⋃
N∈T

RN →
⋃
N∈T

CN

associating each node’s requirement with the capability satisfying it.

Let G be a global state of A (see Def. 5.4). We denote with ρ(G) the set of
requirements that are assumed to hold by the nodes in T when A is in G, with
χ(G) the set of capabilities that are provided by such nodes in G, and with b(R)

the set of capabilities bound to the requirements in R. Formally:

• ρ(G) =
⋃
N∈T {ρN (s) | s ∈ G ∧ s ∈ SN},

• χ(G) =
⋃
N∈T {χN (s) | s ∈ G ∧ s ∈ SN}, and

• b(R) =
⋃
r∈R{b(r)}.

7.3.1 Fault-aware management behaviour

SinceA defines a composition of the nodes in T that coordinate through the
binding b among requirements and capabilities, we model the behaviour of
A by simply composing the management protocols of the nodes in T .

First, we generalise the notion of global state of A by introducing pend-
ing faults. According to Def. 5.4, the global state of an application A is a set
G containing the current state of each of its nodes. We define a function F to
denote the set of pending faults in G, which are the requirements assumed
in G while the corresponding capabilities are not provided4.

Definition 7.6 (Pending faults). Let A = 〈T, b〉 be a composite application, and
let N = 〈SN , RN , CN , ON ,MN 〉. Let also G be a global state of A (Def. 5.4), i.e.
G is a set of states such that:

G ⊆
⋃
N∈T SN ∧ ∀N ∈ T : ∃!s ∈ G ∩ SN .

The set F (G) of pending faults in G is defined as follows:

F (G) = {r ∈ ρ(G) | b(r) 6∈ χ(G)}.

The management behaviour of a composite application A is defined by
a labelled transition system over its global states (Def. 5.5). We hereby gen-
eralise such labelled transition system, by defining two simple inference
rules, (op) for operation execution and (fault) for fault propagation.

3For simplicity, and without loss of generality, we assume that, given two nodes in a
topology, the names of states, requirements, capabilities, and operations are disjoint.

4Such faults are considered to be “pending”, as the transitions handling them have not
been fired yet.
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Definition 7.7 (Fault-aware management behaviour of a composite appli-
cation). Let A = 〈T, b〉 be a composite application, and let N = 〈SN , RN ,
CN , ON ,MN 〉 with MN = 〈sN , ρN , χN , τN , ϕN 〉. The fault-aware manage-
ment behaviour of A is modelled by a labelled transition system whose configu-
rations are the global states of A, and whose transition relation is defined by the
following inference rules:

s ∈ G 〈s, P,X, o, s′〉 ∈ τN F (G) = ∅ b(P ) ⊆ χ(G)

G
o−→ (G− {s}) ∪ {s′}

(op)

s ∈ G 〈s,H, s′〉 ∈ ϕN H ⊆ F (G)

G
⊥−→ (G− {s}) ∪ {s′}

(fault)

The (op) rule5 defines how the global state of A is updated when a node
N performs a transition 〈s, P,X, o, s′〉 ∈ τN . Such transition can be per-
formed when there are no pending faults (viz., F (G) = ∅), and the re-
quirements needed to perform the transition are satisfied in G (viz., b(P ) ⊆
χ(G)). As a result, the global state G is updated with the new state of N
(viz., G′ = (G − {s}) ∪ {s′}), potentially triggering faults to be handled (if
F (G′) 6= ∅).

The (fault) rule instead models fault propagation. Such rule defines how
the global state G of an application A is updated when executing a fault
handling transition 〈s,H, s′〉 of a node N . Such transition can be executed
if the faults it handles are pending in G (viz., H ⊆ F (G)), and its effects
on the whole application A are the following: The state of N is updated
(viz., G′ = (G− {s}) ∪ {s′}), novel faults may be triggered, while the faults
in H are not pending any more6.

7.3.2 Fault-aware analysis of application management

The management behaviour defined in Def. 7.7 permits analysing and au-
tomating the management of a composite application. For instance, we can
easily generalise the notion of validity for sequences of management opera-
tions (Def. 5.7) and for management plans (Def. 5.8) as follows.

Definition 7.8 (Valid plan). Let A = 〈T, b〉 be a composite application. The
sequence o1o2...on of management operations in A is valid in a global state G0 of
A iff

∃G1, G2, ...Gn : G0
o17−→ G1

o27−→ G2
o37−→ . . .

on7−→ Gn

5It is easy to see that the (op) is a generalisation of the rule in Def. 5.5, whose only addi-
tional constraint is the absence of pending faults.

6The faults inH are not pending any more since ρN (s′) ⊆ ρN (s)−H by well-formedness
of management protocols (Def. 7.3).
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where

G
o−→ G′

G
o7−→ G′

G
o7−→ G′ G′

⊥−→ G′′

G
o7−→ G′′

A plan P orchestrating the management operations in A is valid in G0 iff all
its sequential traces are valid in G0.

Example 7.3. Consider the workflow in Fig. 7.4, which permits restarting the Back-
end and Frontend components of our motivating application (Figs. 7.1 and 7.2).
Suppose also that the application is in the following global state: Debian is Run-
ning, Apache is Started, Backend is Running, and Frontend is Connected. It is easy to
check that the plan is valid in the considered global state since both its sequential
traces are valid in such global state.

FIGURE 7.4: Example of valid plan.

Consider, for instance, the sequential trace performing Backend’s Stop before
Frontend’s Stop. Fig. 7.5.(b) shows the validity of such a sequential trace by illus-
trating the evolution of the application’s global state.

FIGURE 7.5: Example of valid sequence of operations.

Notice that Def. 7.8 generalises the notion of valid plan given in Def. 5.8
by permitting faults to happen within a valid plan. In case we do not want
faults to happen within a plan, we should require such plan to be fault-free.

Definition 7.9 (Fault-free plan). Let A be a composite application, and let G be
a global state. Let also P be a valid plan for A in G. P is also fault-free if no
⊥-transition is performed in any of its sequential traces.
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Remark 7.1. It can be trivially checked that the notion of fault-freeness for
fault-aware management protocols (Def. 7.9) is analogous to that of validity
for “plain” management protocols (see Def. 5.8 in Chapter 5).

The modelling introduced above can be exploited for various other pur-
poses besides checking whether a plan is valid or fault-free. For instance,
we may be interested in checking whether a plan is determinstic, which
are the effects of a plan, whether there exists a plan that permit reaching
a desired application configuration, or whether an application is softly re-
settable. By exploiting the updated notion of validity (Def. 7.8), we can
perform all such analyses as illustrated in Sect. 5.3.

7.4 Modelling and analysing “the unexpected”

The analysis described in Sect. 7.3 assumes that each application compo-
nent behaves accordingly to its specified management protocol, thus not
taking into account components that behave unexpectedly because of mis-
matches between their modelled and actual behaviour (e.g., because of a
bug). We hereby illustrate a way to deal with such a kind of situations.

The unexpected behaviour of a component can be modelled by auto-
matically completing its management protocol by adding a “crash” opera-
tion  that leads the node to the sink state s .

Definition 7.10 (Fault-aware management protocols with unexpected be-
haviour). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node, where MN = 〈sN ,
ρN , χN , τN , ϕN 〉 is its fault-aware management protocol. The fault-aware man-
agement protocol of N can be extended to include unexpected behaviour by re-
placing ON and τN with:

• O′N = ON ∪ { }, and

• τ ′N = τN ∪ {〈s, ρ(s), , s 〉 | s ∈ SN}7.

The  operation, combined with the analyses presented in Sect. 7.3.2,
permits analysing the management behaviour of a composite application
also in presence of misbehaving components: Indeed, the possible unex-
pected behaviour of a node is modelled by  transitions which lead the
nodes to their sink state s , where we (pessimistically) assume that the
node is not offering any capability any more. This permits us to analyse
the (worst possible) effects of a misbehaving node on the rest of the appli-
cation by simply observing how the global state of the application changes.

7 transitions can be fired only if the requirements in ρ(s) are satisfied so as to ensure
the well-formedness of fault-aware management protocols (Def. 7.3). Notice that this is not
a restriction since such requirements are satisfied in s (by Defs. 7.1 and 7.5).
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Example 7.4. Consider the management protocol of Backend (Fig. 7.2), extended by
adding Backend as illustrated in Example 7.2. The extension described in Def. 7.5
simply consists in adding “crash” transitions starting from NotInstalled, Installed,
and Running, and leading to Backend (Fig. 7.6). The management protocols of
Frontend, Apache and Debian can be extended analogously.

FIGURE 7.6: Example of a management protocol including unexpected behaviour.

FIGURE 7.7: Example of fault injection and subsequent global state update.

The above extension permits, for instance, determining the effects of a “crash-
ing” Backend when the whole application is up and running. As illustrated by
Fig. 7.7, by invoking the  operation of Backend, the global state is changed by up-
dating the state of Backend, and by filling the set of pending faults with the Backend
requirement of Frontend (since it is assumed and connected to the Endpoint capa-
bility of Backend, which is no more provided). The pending fault is then consumed
by a ⊥-transition, which updates the state of Frontend.

More interestingly, we may wish to recover an application having a
component that is behaving unexpectedly. More precisely, from the global
state reached after injecting a failure (by invoking the “crash” operation  ),
we may wish to find a “recovery” plan whose execution permits reaching a
given recovery goal (e.g., the global state in which the failure was injected).
Notice that, such a recovery plan cannot be determined by simply visiting
of the graph associated with the labelled transition system modelling the
management behaviour of an application, as the faulted node is stuck in its
sink state (since no transition outgoes from such state).
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7.5 Hard recovery

Recovery plans can be generated automatically, and the underlying idea is
quite simple. When a node N is stuck8 in state s , it can be “hard reset”
by the node N ′ in which it is contained (i.e., by the node in which it is
installed or deployed). More precisely, by resetting the container node N ′,
all nodes it contains (among which we have the stuck node N ) are forcibly
reset to their initial state and can be re-installed and started to return up
and running.

We hereby show how to automatically extend the modelling of an appli-
cation so that hard recovery plans can be naturally determined with a visit
of the graph associated with the transition system defined by the (extended)
management behaviour of the application.

7.5.1 Enabling hard recovery

Consider a generic composite application A = 〈T, b〉, where T is the finite
set of nodes in the application topology, and where b is the total function
associating each node’s requirement with the capability satisfying it. Our
objective is to enforce the hard reset of a node N ∈ T stuck in its sink
state s , by restarting the node in which N is contained. This can be natu-
rally modelled with fault-aware management protocols, provided that the
topology is extended by (i) explictly representing node containment, and
(ii) updating management protocols to permit forcibly resetting container
nodes whenever needed.

Notation 7.2. To simplify notation, we denote with container(N) the node in
which N is contained9 (e.g., in our motivating example, container(Frontend) =

Apache). If N is not contained in any other node, then container(N) is not defined
(e.g., in our motivating example, container(Debian) = ⊥).

To explicitly represent node containment, we adapt the application A

into an application A′ = 〈T ′, b′〉, where T ′ and b′ are built as follows:

• Each node N in the topology T is equipped with a capability alivecN
whose purpose is to allow N to witness that it continues to be avail-
able to the nodes it contains. If N is contained in another node N ′,
then N is also equipped with a requirement aliverN whose purpose is
to permit checking whether its container N ′ continues to be available.
Formally:

T ′ = {〈SN , R′N , C ′N , ON ,MN 〉 | 〈SN , RN , CN , ON ,MN 〉 ∈ T}
8In general, hard recovery can be exploited for recovering a desired global state when-

ever a node is stuck in its sink state (e.g., because a fault is handled by a transition that leads
to the node’s sink state, or because the node is behaving unexpectedly and the  transition
has been fired).

9We assume that each node N ∈ T can be contained in at most another node.
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where

R′N =

RN ∪ {aliverN} if container(N) 6= ⊥

RN otherwise

and
C ′N = CN ∪ {alivecN}.

• The function b is updated by adding the bindings among the newly in-
troduced requirements and capabilities (viz., each requirement aliverN
is bound to the capability alivecN ′ , where N ′ is the node containing N ).
Formally:

b′(r) =

alivecN ′ if r = aliverN and container(N) = N ′

b(r) otherwise

Example 7.5. In our motivating scenario (Fig. 7.1) the above construction results
in updating the application topology as illustrated in Fig. 7.8. All nodes (but De-

FIGURE 7.8: Motivating scenario: updated topology.

bian) are equipped with alive requirements and capabilities. Debian is only pro-
vided with an alive capability. Then, since Frontend and Backend are contained in
Apache, the alive requirements of Frontend and Backend are connected with the alive
capability of Apache. Additionally, since Apache is contained in Debian, the alive
requirement of Apache is connected to the alive capability of Debian.

The updated topology permits to container nodes to witness whether
they continue to be available (by providing the alivec capability), and to con-
tained nodes to check whether their containers continue to be available (by
assuming the aliver requirement). This requires to update the management
protocolMN = 〈sN , ρN , χN , τN , ϕN 〉 of each node N ∈ T by substituting it
withM′N = 〈sN , ρ′N , χ′N , τ ′N , ϕ′N 〉, which is built as follows:

• All states in SN (but the initial one) can be reached by N only if the
container of N continues to be available. Hence, the function ρN is
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updated by making all states (but the initial one) assuming the re-
quirement aliverN , in addition to the requirements they already as-
sume. Formally:

ρ′N (s) =

ρN (s) ∪ {aliverN} if s 6= sN and container(N) 6= ⊥

ρN (s) otherwise

• Whenever N is not in its initial state, it can be considered as alive (as
it is ensured that it has performed some operation to get there). To
witness this fact, the function χN is updated by making all states (but
the initial one) providing the alivecN capability in addition to those
they already provide. Formally:

χ′N (s) =

χN (s) ∪ {alivecN} if s 6= sN

χN (s) otherwise

• Each transition in τN requires the container of N (if any) to be alive,
and this means that each transition in τN has to constrain its exe-
cutability to the satisfaction of the aliverN requirement. Additionally,
since all transitions (but those whose source/target is the initial state)
connect two states offering the alivecN capability, they can also main-
tain such capability while being executed. Formally:

τ ′N = {〈s1, P
′, X ′, o, s2〉 | 〈s1, P,X, o, s2〉 ∈ τN}

where

P ′ =

P ∪ {aliverN} if container(N) 6= ⊥

P otherwise

and

X ′ =

X ∪ {alivecN} if s1, s2 6= sN

X otherwise

• Finally, the fault handling relation ϕN has to be extended to handle
the potential fault of the aliverN requirement (if any). If such require-
ment stops being satisfied, this means that the node in which N is
contained has been hard reset, which in turns means that also N has
been hard reset. Hence, ϕN has to be extended by adding all tran-
sitions handling the fault of the aliverN requirement by making N go
back to its initial state sN . Formally:

ϕ′N = ϕN ∪ {〈s,H, sN 〉 | s ∈ SN − {sN} ∧ aliverN ∈ H ⊆ ρ′N (s)}
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Example 7.6. The fault-aware management protocols in our motivating scenario
can be updated as shown in Fig. 7.9, which illustrates the updated protocols of
Apache and Backend10. In each state (other than the initial one), Apache and Backend

MApache MBackend

FIGURE 7.9: Example of management protocols with aliver requirements and alivec

capabilities.

assume their aliver requirement, i.e. they assume their containers to continue to be
available. They are also providing their alivec capability in such states, to witness to
the nodes they contains (i.e., Apache contains Frontend and Backend, while Backend
is not containing any node) that they continue to be there.

Notice that, whenever the aliver requirement of Apache or Backend is faulted, the
corresponding node returns to its initial state. This models the fact that, whenever
a container is uninstalled, the nodes it contains are uninstalled along with it.

The above construction is recapped by the following definition.

Definition 7.11 (Enabling hard recovery). Let A = 〈T, b〉 be a composite ap-
plication, and let N = 〈SN , RN , CN , ON ,MN 〉 withMN = 〈sN , ρN , χN , τN ,
ϕN 〉. To enable hard recovery, A is adapted into a new composite application
A′ = 〈T ′, b′〉, which is built according to the following construction rules:

T ′ = {〈SN , R′N , C ′N , ON ,M′N 〉 | 〈SN , RN , CN , ON ,MN 〉 ∈ T}

where

• R′N =

RN ∪ {aliverN} if container(N) 6= ⊥

RN otherwise

• C ′N = CN ∪ {alivecN}, and

• M′N = 〈sN , ρ′N , χ′N , τ ′N , ϕ′N 〉, with

10We omit the updated protocols of Frontend and Debian since their update is similar to
that of Apache and Backend.
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– ρ′N (s) =

ρN (s) ∪ {aliverN} if s 6= sN and container(N) 6= ⊥

ρN (s) otherwise

– χ′N (s) =

χN (s) ∪ {alivecN} if s 6= sN

χN (s) otherwise

– τ ′N = {〈s1, P
′, X ′, o, s2〉 | 〈s1, P,X, o, s2〉 ∈ τN}, where

∗ P ′ =

P ∪ {aliverN} if container(N) 6= ⊥

P otherwise

∗ X ′ =

X ∪ {alivecN} if s1, s2 6= sN

X otherwise

– ϕ′N = ϕN ∪ {〈s,H, sN 〉 | s ∈ SN − {sN} ∧ aliverN ∈ H ⊆ ρ′N (s)}.

and

b′(r) =

alivecN ′ if r = aliverN and container(N) = N ′

b(r) otherwise

7.5.2 Planning hard recovery

The construction rules enabling hard recovery (Def. 7.11), combined with
the analyses presented in Sect. 7.3.2, permits analysing the management
behaviour of a composite application by also considering the possibility of
hard resetting a node N , to unlock the nodes contained in N and that are
stuck in their sink states. For instance, the notion of validity (Def. 7.8) can
be reused to check whether a hard recovery plan is valid, and it is also
possible to analyse the effects of a hard recovery plan. More interestingly,
we can automatically determine a plan recovering the desired global state
of an application by simply visiting the graph associated with the labelled
transition system modelling the application’s management behaviour.

Example 7.7. Consider again our motivating scenario (Fig. 7.1), and suppose that
the application is stuck in the global state reached in Fig. 7.7. By updating the
modelling of the application as illustrated in Examples 7.5 and 7.6, it is possible to
plan the (hard) recovery of the application from such “stuck” global state.

Essentially, Backend is stuck in Backend , and the only way to get out of it is
to remove its alive requirement, which in turn means to Shutdown and Uninstall
Apache (to make it stop providing its alive capability). This results in resetting also
the Frontend, which goes back to its initial state. Afterwards, we can re-Install and
Start the Apache server, Setup and Run both the Backend and the Frontend, and Con-
nect the Frontend (to the Backend).

The above listed operations build up the hard recovery plan in Fig. 7.10. It
can be trivially verified that such plan is valid in the “stuck” global state reached
in Fig. 7.7, and that it permits hard recovering the application by making all its
nodes be up and running again. As we already mentioned, the above recovery plan
can simply be determined with a visit of the graph associated with the transition
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FIGURE 7.10: Example of hard recovery plan.

system defined by management behaviour of the application (whose modelling
has been automatically updated according to the construction rules in Def. 7.11 —
see Examples 7.5 and 7.6).

7.6 Implementation

To illustrate the feasibility of our approach, we developed a new version11

of BARREL (see Sect. 5.4), which permits editing and analysing fault-aware
management protocols in TOSCA applications. The graphical user interface
of BARREL 2.0 is written HTML5, while its back-end is written in TypeScript
and JavaScript. In the following, we shall not deepen into implementation
details, but rather we focus on how BARREL 2.0 can be used to edit and
analyse existing TOSCA applications.

Setting the stage

The very first step is to import a valid CSAR package12 (see Sect. 2.2) con-
taining a TOSCA service template, along with all definitions of node types
that are instantiated in its topology. Once the CSAR is loaded, the Visualise,
Edit, and Analyse panes become selectable in the navigation bar (and the
Visualise pane is selected by default).

Visualising applications

The Visualise pane graphically displays the application modelled in the im-
ported CSAR (Fig. 7.11).

The name of the application is placed in the top-left corner of the Visu-
alise pane. The application topology is visualised in the left-hand side of the
pane, by drawing all nodes composing such topology, their requirements
and capabilities (at the top and at the bottom of each node, respectively),
and all relationships binding a requirements of a node with a capability of
another node. Further information about each node (such as the node type

11The application can be accessed at http://di-unipi-socc.github.io/barrel/
with any modern web browser, like Microsoft Edge, Google Chrome or Mozilla Firefox. The
source code is publicly available on GitHub at https://github.com/di-unipi-socc/
barrel.

12CSAR packages can be imported by clicking on the CSAR option in the navigation bar
of BARREL 2.0. A sample CSAR can be downloaded by clicking on About.

http://di-unipi-socc.github.io/barrel/
https://github.com/di-unipi-socc/barrel
https://github.com/di-unipi-socc/barrel
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FIGURE 7.11: BARREL 2.0: Visualise pane.

or the management operations it offers) is listed in the table placed in the
right-hand side of the Visualise pane.

Editing the fault-aware management protocols in an application

The Edit pane (Fig. 7.12) permits editing the fault-aware management pro-
tocols of the node types instantiated in the application topology.

The Management protocol editor permits selecting the node type to edit
through a dedicated drop-down menu. Once a node type is selected, its
fault-aware management protocol is displayed and can be modified by ex-
ploiting the tools right below it. The initial state can be selected through
a dedicated drop-down menu, and the current values of ρ and χ (for all
states) can be edited by clicking on the corresponding Edit button. Transi-
tions can be added and removed from τ by clicking on the Add and Remove
buttons, respectively. Similarly, fault-handling transitions can be added and
removed from ϕ by clicking on the dedicated buttons. Finally, it is possible
to automatically complete the displayed protocol: By clicking on the Fault
button, all unhandled faults are default handled as discussed in Def. 7.5.
By clicking on Crashes, instead, the protocol is updated by adding the crash
operation  and all corresponding transitions (to permit analysing the man-
agement of the corresponding nodes, also if they are behaving unexpect-
edly — see Def. 7.10).

The updates applied to the management protocol of the currently se-
lected node type can also be viewed in the XML source of such node type,
by clicking on the Show XML button appearing in the top-right corner of
the Edit pane. Once the fault-aware management protocols of all node types
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FIGURE 7.12: BARREL 2.0: Edit pane.

have been edited, the updated CSAR can be downloaded through the CSAR
Export functionality (in the navigation bar).

Analysing the fault-aware management of an application

The Analyse pane (Fig. 7.13) permits interactively analysing the fault-aware
management behaviour of the imported service template. It offers a Simu-
lator for simulating the behaviour of the service template, and a Planner for
automatically determining valid plans. Both simulation and planning can
be carried out with hard recovery either enabled or disabled (by setting the
corresponding option in the Options section).

The Simulator permits simulating sequences of operations and deter-
mining their effects on the whole application. More precisely, the table of
the Simulator lists all the node templates in the application topology, each
associated with its current state, the requirements it currently relies on, the
capabilities it offers, and the operations actually available. Each operation is
rendered as a green button if all the capabilities connected to requirements
needed to execute it are currently available, otherwise it is rendered as a
yellow (disabled) button. By clicking on an available operation, users can
simulate its execution, and subsequently update the global state displayed
by the simulator table. The update can result in faulting some requirements,
which are then displayed as red buttons. If the fault of a requirement can
be handled, the corresponding button is clickable, otherwise it is disabled.
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FIGURE 7.13: BARREL 2.0: Analyse pane.
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By clicking on the button corresponding to a requirement, users can sim-
ulate the handling of such requirement, hence updating the global state
displayed by the Simulator. An update can also result in permitting to hard
recover a node that is stuck in its Crashed state. If this is the case, a red but-
ton Hard recover appears next to the node’s state, and by clicking on such
button the global state of the application is updated by resetting the node
to its initial state. The simulation can be reset at any time, by clicking on
Reset simulator.

With the Simulator, users can already perform many of the analyses de-
scribed in this chapter. For instance, to check whether a plan is valid (see
Def. 7.8), they just need to simulate its sequential traces and check that such
traces can be executed in their entirety. To check whether a plan is fault-free
(see Def. 7.9), they just need to check that no fault is generated by simulat-
ing any of its sequential traces. They can also compute the effects of a plan
on states, capabilities and requirements by looking at the initial and final
configurations displayed by the Simulator table.

The Planner automatically determines the sequence of operations and
fault-handlers to be invoked to reach the Target global state from the Starting
global state. Both global states can be set by associating each node with one
of its states through a dedicated drop-down menu. To improve user expe-
rience, whenever the state of a node is changed, the plan is recomputed13.

Concluding remarks

It is worth noting that BARREL 2.0 is already compatible with the Open-
TOSCA open source ecosystem [15, 78]. BARREL 2.0 is indeed able to pro-
cess CSARs developed with the visual editor Winery [78], and it produces
CSARs that can be imported both in Winery [78] and in OpenTOSCA [15].
Of course, while both Winery [78] and OpenTOSCA [15] import the CSARs
generated by BARREL 2.0, they do not properly process the information con-
cerning fault-aware management protocols (since the extension to TOSCA
we propose is not yet part of the TOSCA standard, and hence not yet sup-
ported in the OpenTOSCA open source environment).

13BARREL 2.0 enables this by maintaining a matrix whose (i, j)-th element is the next step
on the shortest path from the reachable global state i to the reachable global state j, and by
exploiting this matrix to reconstruct the shortest path from the starting global state to the
target global state. The matrix, as well as the shortest path from a global state to another,
are created and maintained by implementing the Floyd-Warshall algorithm [58].



134 Chapter 7. Fault-aware modelling and analysis of appl. management

7.7 Case study: Thinking

We hereby illustrate how fault-aware management protocols (as well as
BARREL 2.0) can be fruitfully exploited to analyse and orchestrate the man-
agement of the Thinking application14 (see Sect. 5.5).

7.7.1 Enabling fault handling and hard recovery

First, the modelling of Thinking is automatically extended to enable fault
handling, and to permit hard recovering components that are stuck in their
sink state. The latter requires to slightly modify the application topology
as indicated by Def. 7.11. More precisely, the topology of Thinking (Fig. 5.9)
is extended by adding an alive requirement to ThoughtsGui and Thoughts-
Api, by adding an alive capability to all nodes, and by adding two relation-
ships connecting the alive requirement of ThoughtsGui to the alive capability
of Node and the alive requirement of ThoughtsApi to the alive capability of
Maven. The resulting application topology is depicted in Fig. 7.14.

FIGURE 7.14: Adaptation of Thinking’s topology enabling hard recovery.

The management protocols of all nodes in Thinking are also automati-
cally extended, by implementing the construction rules given by Defs. 7.5,
7.10, and 7.11. Fig. 7.15 shows the fault-aware management protocols (a)
for Mongo and (b) for Maven and Node. Such protocols extend the man-
agement protocols displayed in Figs. 5.10 and 5.11, by including the addi-
tional “sink” states DockerMongo and Docker (Def. 7.5), by including the  
transitions that permit analysing what would happen to the other nodes in
Thinking if Mongo, Maven, or Node behave unexpectedly (Def. 7.10), and by
providing the alive capability in all their states but the initial one (Def. 7.11).
Notice that there is no fault handling transition, as there is no requirement
assumption that can be faulted in any state.

Fig. 7.16 illustrates the fault-aware management protocol of Thoughts-
Api. It extends the original management protocol of ThoughtsApi (Fig. 7.16)

14The case study has been run on an Ubuntu 16.04 LTS virtual machine, with 32 GB of
storage and 8 GB of memory.
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(a) (b)

FIGURE 7.15: Fault-aware management protocols for the nodes (a) of type Docker-
Mongo and (b) of type Docker.

FIGURE 7.16: Fault-aware management protocol for ThoughtsApi’s node type.
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FIGURE 7.17: Fault-aware management protocol for ThoughtsGui’s node type.

by including an additional state Dropwizard acting as a “sink” for all un-
handled faults of requirements (Def. 7.5), by including the  transitions that
permit analysing the worst-possible effects on Thinking of a misbehaving
ThoughtsApi (Def. 7.10), and by handling the fault of the alive requirement
by making the ThoughtsApi go back to its initial state (Def. 7.11).

Finally, Fig. 7.17 shows15 the fault-aware management protocol of Tho-
ughtsGui, which extends the management protocol in Fig. 5.13. We add the
state ThoughtsGui , the  transitions leading to such state from any other
state, and the fault handling transitions. The latter are similar to those
displayed in Fig. 7.16: All transitions handling faults including the alive
requirement target the initial state Uninstalled, the transition handling the
fault of the solely APIEndpoint requirement in the Working state targets the
state Configured, and all other fault-handling transitions target the “sink”
state ThoughtsGui .

7.7.2 Planning the undeployment of Thinking’s GUI and API

Consider a running instance of Thinking, which can be obtained by execut-
ing the valid deployment plan illustrated in Sect. 5.5.2. Suppose also that
we wish to undeploy its components ThoughtsGui and ThoughtsApi (i.e., that
we wish to come back to the global state where Mongo is the only compo-
nent installed and running).

15For reasons of readability, we omit to display the transitions corresponding to the exe-
cution of available management operations. They can be found in Fig. 5.13.
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The problem of finding a plan that starts from a global state and reaches
another global state can be solved with a breadth-first search of the graph
associated with the transition system of an application’s management be-
haviour (see Sect. 5.3). By applying this approach to our situation, we dis-
cover that one of the shortest, valid sequences of operations that permit un-
deploying the components components ThoughtsGui and ThoughtsApi from
a running instance of Thinking is that displayed in Fig. 7.18. If we exe-
cute such sequence of operations, we effectively come back to the situation
where no container but that of Mongo is installed and running (Fig. 7.19).

FIGURE 7.18: An undeployment plan for Thinking.

FIGURE 7.19: Snapshot displaying the effective undeployment of the components
ThoughtsGui and ThoughtsApi from a running instance of Thinking.

It is worth noting that the plan discovered in this section is much sim-
pler than that discovered in Sect. 5.5.3. This is because, with fault-aware
management protocols, a node can remove one of its capabilities even if
other nodes are relying on it, since such nodes can handle the correspond-
ing fault with a dedicated transition. The same is not true for the analyses
based on “plain” management protocols (Chapter 5), where nodes cannot
remove their capabilities while other nodes are actually relying on them.

7.7.3 Analysing the effects of a misbehaving component

Consider another instance of Thinking (such as that in Fig. 7.20), and sup-
pose that its ThoughtsApi component unexpectedly16 crashes. Which are the
effects on the rest of the application?

As we discussed in Sect. 7.4, we can determine the worst-possible effects
on the other components of Thinking by invoking the “crash” operation  of
ThoughtsApi, and by looking at the subsequent evolution of the global state.
Such evolution is displayed in Fig. 7.21. Notice that the reached global state
effectively models reality: After the crash of ThoughtsApi, bothThoughtsGui
and Mongo are still running, but ThoughtsGui is not capable to effectively
serve its client because it cannot connect to ThoughtsApi. Indeed, if we try to
connect to ThoughtsGui, no thought is displayed in it (since the GET request
sent to ThoughtsApi does not receive any answer — Fig. 7.22).

16To simulate the unexpected crash of ThoughtsApi we actually killed the corresponding
process in the Maven container.
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FIGURE 7.20: A running instance of Thinking.

FIGURE 7.21: Evolution of the global state of Thinking after injecting the “crash” of
ThoughtsApi.

FIGURE 7.22: Snapshot displaying the effects on ThoughtsGui of a crashing Though-
tsApi.

To automatically recover the considered instance of Thinking, we need
to determine a hard recovery plan (since ThoughtsApi is stuck in its sink
state Dropwizard ). Please recall that the modelling of Thinking has al-
ready been extended to support hard recovery (Figs. 7.14, 7.15, 7.16, and
7.17). This means that the hard recovery plan can be determined by simply
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performing a breadth-first search of the graph associated with the labelled
transition system modelling the management behaviour of Thinking. With
this approach, we discover that one of the shortest, valid sequences of op-
erations that permit hard recovering a running instance of Thinking is that
displayed in Fig. 7.23 (which also illustrates the corresponding evolution of
the global state of the considered instance of Thinking). By executing such
sequence of operations, we effectively recover our instance of Thinking (as
illustrated by Fig. 7.24).
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(a)

(b)

FIGURE 7.23: (a) Hard recovery plan, and (b) corresponding evolution of the
global state of Thinking.

FIGURE 7.24: Snapshot displaying the effective recovery of Thinking.
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Chapter 8

Related work

We hereafter discuss related work, by separately treating existing solutions
for syntactically matching cloud applications (Sect. 8.1), for modelling their
management behaviour (Sect. 8.2), and for matching cloud applications by
taking into account their management behaviour (Sect. 8.3).

8.1 Syntactic matching of cloud applications

Our work started from the observation that while the matching between
service templates and node types is indicated in the TOSCA primer [95] as
a way to instantiate abstract node types, no formal definition of matching
is given either in the TOSCA specification [94] or in the TOSCA primer.
A first concrete definition of matching for TOSCA has been proposed by
Binz et al. [14] to define a way to merge TOSCA applications by match-
ing entire portions of their topologies. The definition of matching of sin-
gle service components employed by Binz et al. is however very strict, as
two application components are considered to match only if they expose
the same qualified name. We aim at contributing to the TOSCA specifica-
tion by formalising less strict notions of syntactic matching between service
templates and node types, and by illustrating how to adapt matched (frag-
ments of) service templates to reuse them to concretely implement desired
node types.

In the following we will position our approaches for syntactically match-
ing and adapting cloud applications (presented in Chapters 3 and 4) with
respect to other solutions for the matching and adapting available services
or cloud applications.

Matching and adapting (Web) services

The problem of how to match (Web) services has been extensively stud-
ied in recent years. Many approaches are ontology-aware [99], like for in-
stance the ontology-aware matchmaker for OWL-S services described by
Klusch et al. [75]. Other approaches are behaviour-aware, like the trace-
based matching of YAWL services defined by Brogi and Popescu [31], the
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behavioural congruence for OWL-S services defined by Bonchi et al. [22],
or the graph transformation based matching defined by Corrales et al. [44]
and the heuristic black-box matching for WS-BPEL processes described by
Eshuis and Grefen [54]. The main difference between the aforementioned
approaches and ours is the type of information considered when matching
single nodes. For instance, the matching levels considered by Klusch et al.,
as well as those considered by Eshuis and Grefen, are all defined in terms
of input and output data, while we consider also technology requirements
and capabilities, properties and policies.

On the other hand, many proposals of QoS-aware service matching are
available, like for instance the approaches by Mahdikhani et al. [84] or by
Mokhtar et al. [87]. Generally speaking, our approach for syntactically
matching cloud applications differs from most QoS-aware matching ap-
proaches since it compares types rather than actual values of features.

A type-based definition of matching has been defined by Eliassen and
Mehus [53] to type check “stream flows” for interactive distributed multi-
media applications. While the context of stream flows is different from ours,
two of the matching conditions considered by Eliassen and Mehus resem-
ble our notions of exact and plug-in matching, even if for simpler service
abstractions.

Summing up, to the best of our knowledge, our definition of matching
is the first definition of (TOSCA) node matching that takes into account
both functional and non-functional features, by relying both on types and
on ontologies to overcome non-relevant syntactic differences.

It is also worth highlighting that our notions of plug-in, renaming-based and
white-box matching share the basic objectives with alternating refinement
relations [3] (and more in general with the notion of simulation [107]). In-
deed, they all check whether an available component is capable of offering
all the features/options of a desired component (without imposing addi-
tional requirements). However, while alternating refinement and simula-
tion rely on both the signature and behaviour of components, our notions
of matching only rely on the signature of components, as this is what can
be described in TOSCA.

It is hence interesting to extend TOSCA by permitting to describe the be-
haviour of a component, and to extend our notions of matching to take into
account such behaviour information. Such extensions have been presented
in Chapters 5 and 6, respectively.

Matching and adapting cloud applications

The development of systematic approaches to adapt and reuse existing soft-
ware is widely recognised as one of the crucial problems in software engi-
neering [59, 115]. In spite of the increasing availability of cloud solutions,
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currently platform-specific code often needs to be manually modified to
reuse existing solutions in cloud-based applications. This is obviously an
expensive and error-prone activity, as pointed out by Tran et al. [110], both
for the learning curve and for the testing phases needed.

Various efforts have been recently oriented to try devising systematic
approaches to reuse cloud applications. For instance, Di Martino et al. [48]
and Hamdaqa et al. [68] propose two solutions to transform platform-ag-
nostic source code of applications into platform-specific applications, pro-
vided that they developed according to model-driven methodologies. In
contrast, our approach is not restricted to applications developed with a
specific methodology, nor it requires the availability of the source code of
applications, and it is hence applicable also to third-party services.

Guillén et al. [66] propose a framework which allows developers to de-
velop cloud-based services as if they were “in-house” applications. Cloud
deployment information must be provided in a separate file, and a mid-
dleware layer employs source and deployment information to generate the
artifacts to be deployed on cloud platforms. We believe that our approach
improves that of Guillén et al. in two ways. First, with the approach by
Guillén et al., the reuse of an application requires invoking the middleware
layer, while with our approach the adaptation is performed only once. Sec-
ond, Guillén et al. always require to write source code, while our approach
only requires to edit the application specification.

In general, most existing approaches to the reuse of cloud services sup-
port a from-scratch development of cloud-agnostic applications, and do not
account for the possibility of adapting existing (third-party) cloud-based
services. In contrast, our approach proposes a way to adapt existing cloud
applications, by relying on TOSCA as the standard for cloud interoperabil-
ity, and to support an easy reuse of third-party services.

Other approaches worth mentioning are those proposed by Arnold et al. [7,
8], by Andrikopoulos et al. [4], by Hirmer et al. [69], and by Di Cosmo et
al. [46]. Arnold et al. [7, 8] provide a method to deploy and provision SOA
solution, in which patterns are used to structure and constraint composite
applications, without binding to specific resources, and without specify-
ing provisioning actions. Andrikopoulos et al. [4] propose a way to detect
the optimal deployment for a cloud-based solution, by employing a highly
abstracted topology. Nevertheless, these approaches require an applica-
tion developer to structure the topology of the IT solution to provision, and
based on this structure the provisioning can be detected. In contrast, our ap-
proach gives developers all the freedom in choosing whether to structure
the whole topology, or to abstract all the needed components as a single
(and standalone) module. The latter solution obviously eases the devel-
opment of cloud applications, thus flatting the learning curve needed to
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provision them. Furthermore, both Arnold et al. and Andrikopoulos et al.
focus only on the provisioning of cloud application, while our approach
gives developers the means to also describe the configuration operations
needed to manage their applications.

Hirmer et al. [69] permit developers to describe only the components
that are specific of a composite application, whose topology is then auto-
matically completed based upon the components’ requirements. However,
Hirmer et al. do not permit developers to specify what they expect from
the nodes and relationships inserted to complete a topology. In contrast,
our approach permits them to abstractly describe any component in an ap-
plication topology (as well as the features it has to provide). Furthermore,
our approach implements such components by reusing (fragments of) ex-
isting applications, while Hirmer et al. build the completion from scratch
(by inserting single nodes and relationships). Thus, while a solution ob-
tained with our approach is expected to be already configured, a solution
returned with the approach proposed by Hirmer et al. may require to be
manually configured.

Di Cosmo et al. [46] present a toolchain that permits automating the
assembly and deployment of composite cloud applications. The toolchain
takes as input a description of the components forming an application, of
their requirements, and of the available cloud resources, and it automat-
ically determines an optimal deployment plan for such application. The
deployment plan assigns application components to cloud resources by
minimising resource consumption, it specifies how to interconnect compo-
nents to satisfy their requirements, and it describes how to configure each
resource to effectively run the components to be deployed on it (e.g., which
software packages to install in a virtual machine). Hence, the approach by
Di Cosmo et al. differs from our approach mainly because of the targeted
problem: Di Cosmo et al. focus on determining the optimal deployment
of the components forming a composite application, while we focus on al-
lowing developers to abstractly describe the components forming their ap-
plications and on reusing (fragments of) other applications to concretely
implement such components.

Finally, it is worth noting that the novelty of the proposed approaches does
not reside in the type of adaptation techniques applied to service templates.
Indeed, our method exploits well-known existing patterns of adaptation
(e.g., Gamma et al. [62], Becker et al. [10]) to adapt TOSCA templates. The
novelty of our approaches is rather that, in contrast with traditional adap-
tation approaches (e.g., Bracciali et al. [23], Kongdenfha et al. [76]), no ad-
ditional code must be developed to reuse existing cloud-based services. We
exploit the possibilities provided by TOSCA of mapping exposed features
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onto internal ones, and of entirely delegating the management of such map-
pings to TOSCA containers [95].

8.2 Modelling the behaviour of cloud applications

The problem of automating application management is well-known in com-
puter science. After the cloud revolution, it has become even more promi-
nent because of the complexity of both applications and platforms [36]. This
is witnessed by the proliferation of so-called “configuration management
systems", such as Chef [39] or Puppet [104]. These management systems
provide domain-specific languages to model the desired configuration for
a software solution, and employ a client-server model to ensure that such
configuration is met. However, the lack of a machine-readable representa-
tion of how to effectively manage application components inhibits the pos-
sibility of performing automated analyses on components’ configurations
and dependencies.

A first attempt to model and automate the management of composite
cloud applications was the Aeolus component model [47]. Aelous shares
the same underlying idea of (fault-aware) management protocols: Devel-
opers describe the behaviour of their components through finite-state ma-
chines, which are then composed to model the management behaviour of
composite applications, and to automate their management. Engage [57]
and Juju [73] are two other approaches for processing application descrip-
tions to automatically deploy composite applications. Fault-aware man-
agement protocols however differ from Aelous, Engage, and Juju because
they permit explicitly modelling faults and injecting failures in application
components, analysing the effects of faults, and reacting to faults to restore
a desired application state.

The rigorous engineering of fault-tolerant systems is a well-known problem
in computer science [35], with many existing approaches targeting the de-
sign and analysis of such systems. For instance, Johnsen et al. [72] propose a
way to design object-oriented systems by starting from fault-free systems,
and by subsequently refining such design by handling different types of
faults. Qiang et al. [105] and Betin Can et al. [12] instead focus on fault-
localisation, with the final objective of permitting to redesign a system to
avoid the occurrence of such a fault. These approaches differ from ours be-
cause they aim at obtaining applications that “never fail”, since all potential
faults have to be identified at design/development time and properly han-
dled. Our approach is instead more recovery-oriented [37], since we focus
on applications where faults possibly occur, and we permit designing ap-
plications capable of being recovered.
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Similar considerations apply to Grunske et al. [65], Kaiser et al. [74], and
Alhosban et al. [2], which however share with our approach the basic idea
of modelling faults in single components and of composing the obtained
models according to the dependencies between such components (i.e., ac-
cording to the application topology).

Friedrich et al. [60] proposes an approach to handle faults in service-
based processes which is very close in the spirit to ours. As we do for com-
posite applications, service-based processes are described with a model-
based approach, and the description of a process includes the possible re-
pair actions for each of its activities. This permits checking recoverability
of actions at design time, and generating recovery plans whenever a fault is
detected (by an external monitoring tool). The approach by Friedrich et al.
however differs from our approach mainly because of the application do-
main, which permits them exploiting different techniques (such as heuris-
tics based on branching probabilities) to carry out their analyses, and since
they assume faults to happen one at a time. Their approach also differs
from ours because they do not cope with services whose actual behaviour
is different from that modelled in the process.

Durán and Salaün [52] propose a decentralised approach to deploy and
reconfigure cloud applications in presence of failures. They model a com-
posite applications as a set of interconnected virtual machines, each equip-
ped with a configurator managing its instantiation and destruction. The de-
ployment and reconfiguration of the whole application is then orchestrated
by a manager interacting with virtual machine configurators. The approach
by Durán and Salaün shares with our approach the objective of providing
a decentralised and fault-aware management of a composite application,
by specifying the management of each component separately. However, it
differs from our approach since it permits specifying inter-component de-
pendencies, but it is not possible to describe whether they are “horizontal”
(i.e., a component requires another to be up and running) or “vertical” de-
pendencies (i.e., a component is installed/deployed on another). Addition-
ally, it focuses on recovering virtual machines that have been terminated
because of environmental faults, while we also permit describing how com-
ponents react to application-specific faults.

Liggesmeyer and Rothfelder [83] propose an approach to identify fail-
ures in a system whose components’ behaviour is described by finite state
machines. Even though the analyses are quite different, the modelling pro-
posed by Liggesmeyer and Rothfelder is quite similar to ours. It indeed
relies on a sort of requirements and capabilities to model the interaction
among components, and it permits “implicitly” modelling how compo-
nents behave in presence of single/multiple faults. Our modelling is a strict
generalisation of that by Liggesmeyer and Rothfelder, since the state of a
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component can change not only because of requirement unsatisfaction but
also because of invoked operations, and since it permits “explicitly” han-
dling faults (viz., fault handling transitions are distinct from those mod-
elling the normal behaviour of a component). Similar considerations apply
to the approach proposed by Chen et al. [40], whose modelling is also based
on finite state machines with input and output channels (which permit fault
communication and propagation by components).

UFIT [67] is a tool for verifying fault-tolerance of systems. It permits
modelling the behaviour of systems with timed automata, some of whose
transitions explicitly represent how the system reacts to the occurrence of
faults. Even if it models fault transitions in a way similar to ours, UFIT
differs from our approach since it targets standalone systems and does not
provide any mechanism to easily compose the automata modelling the be-
haviour of multiple systems.

Other approaches worth mentioning are those by de Lemos and Fi-
adeiro [81], and by Nagatou and Watanabe [90]. The way in which our
approach models fault-awareness by relying on the interactions between
components, as well as the idea of analysing/recovering faults through se-
quences of atomic transactions (until a desired state is reached), are indeed
inspired by de Lemos and Fiadeiro. Instead, the idea of relying on fault
injection to determine the effects of unpredictable faults is inspired by Na-
gatou and Watanabe.

In summary, to the best of our knowledge, the approach we proposed in
this thesis is the first that permits automatically orchestrating the manage-
ment of composite applications under the assumption that faults possibly
occur during such management, thus requiring to explicitly model how an
application reacts to their occurrence. It does so by following the common
idea of modelling each component separately, and of deriving the man-
agement behaviour of a composite application by properly combining the
behaviour of its components.

Finally, it is worth highlighting that we have investigated the possibility
of employing composition-oriented automata (like interface automata [1]) to
model valid plans directly as the language accepted by the automaton ob-
tained by composing the automata modelling the management protocols
of the components of an application. The main drawbacks of such an ap-
proach are the size of the obtained automaton (which grows exponentially
with the number of application components and hence makes the automa-
ton scarcely readable even for simple applications), and the need of recom-
puting the automaton whenever a new component is added or its manage-
ment protocol is modified.



148 Chapter 8. Related work

8.3 Behaviour-aware matching of cloud applications

The problem of how to match existing software components (by also taking
into account their behaviour) has been extensively studied in recent years.
Cavallaro et al. [38] propose an approach to automatically replace services
based upon their functional interface and behaviour models. Cavallaro et
al. [38] focus on many-to-many mappings among service operations, since
such mappings have to hold in whatever state of the service. Our approach
is more flexible in the sense that it is capable of mapping a single operation
to different operation sequences depending on the state in which such op-
eration is invoked. Furthermore, Cavallaro et al. [38] generate an adapter
script that has to be passed to a proxy any time the corresponding opera-
tion is invoked. Our approach instead adapts the service once for all (by
translating the function f into a set of TOSCA plans).

Reussner et al. [106] describe how to adapt components based on para-
metric contracts, which permit modifying their interfaces depending on
context properties in a way potentially more expressive than ours. Like-
wise us, Reussner et al. [106] exploit finite state machines to model interac-
tion protocols. However, the solution by Reussner et al. [106] differs from
our approach since it does not make explicit the relation between context
properties and protocols, thus loosing information on what it is concretely
reachable in a composite environment.

Closely related approaches are also those by Motahari Nezhad et al. [88],
Inverardi and Tivoli [70], and Bennaceur and Issarny [11], even if they pro-
pose approaches to synthesize mediators among service and service clients,
while we focus on matching. Our work shares with Motahari Nezhad et
al. [88] (and previous papers by the same authors) the idea of exploiting, at
the same time, functional interfaces and behaviour models to match an op-
eration of a service with multiple operations of another service. Our func-
tion f (Def. 6.7) is indeed pretty similar to the interface mapping proposed
by Motahari Nezhad et al. [88]. However, our approach is fully automated
while that employed by Motahari Nezhad et al. [88] is semi-automated.

The approach by Inverardi and Tivoli [70] shares its baselines with that
by Motahari Nezhad et al. [88], and synthesises adapters in the form of in-
teraction protocols. Bennaceur and Issarny [11] instead exploit ontologies
and constraint programming to infer one-to-one, one-to-many, and many-
to-many correspondences between interfaces of components, and synthe-
sise adapters in the form of labelled transition systems. Our approach syn-
thesises adapters that are considerably simpler than those produced by In-
verardi and Tivoli [70] or by Bennaceur and Issarny [11], as the adapters
we synthesise just consist in the determined f functions (Def. 6.7). Fur-
thermore, our notion of f -simulation extends the notion of one-to-many
operation mapping introduced by Bennaceur and Issarny [11].
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Summing up, to the best of our knowledge, ours is the first fully auto-
mated approach for reusing TOSCA application components, which takes
into account both functional and extra-functional features of TOSCA ap-
plication components, and which relies on the widely accepted idea of ex-
ploiting behaviour models to match operations, and on behaviour simula-
tion [107] to go beyond non-relevant operation mismatches.

Last, but not least, it is worth discussing how our notion of (protocol) sim-
ulation relates with existing notions. Stuttering [34] and branching [45, 63]
bisimulations are the closest to our f -simulation. Stuttering bisimulation [34]
is defined on Kripke structures [79], where labels appear on states but not
on transitions, and therefore there is no need for a function for translat-
ing transition labels. Branching bisimulation [45, 63] is instead defined on
labelled transition systems, and permits matching a transition only with
another transition having the same label, followed by a sequence of silent
steps. Hence, it does not requires any translation function which behaves as
f , i.e. which maps a (desired) labelled transition to sequences of (available)
labelled transitions. Furthermore, in both stuttering [34] and branching [45,
63] bisimulations, the intermediate states occurring in a sequence of tran-
sitions should satisfy some equivalence constraints, while in f -simulation
these states are completely hidden behind the definition of the transition
system ⇒ (Def. 6.5). This abstraction is safe in our context, since the in-
teractions among components relies just on requirements and capabilities,
which are annotated in the transitions and checked by the definition of f -
simulation (see Remark 6.1). Moreover, since we consider a preorder rather
than an equivalence, the additional transitions of intermediate states do not
play any role.

Somehow, our notion of f -simulation is closer in the spirit to stuttering
as intended by Lamport [80]. We indeed consider a phenomenon recurring
in various aspects of computer science (e.g., compilers), namely the simu-
lation of a high-level operation by a sequence of lower-level steps.
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Chapter 9

Conclusions

How to deploy and flexibly manage complex composite applications over
heterogeneous cloud platforms is a serious challenge in enterprise IT [82].
This thesis aims to contribute solving this challenge by focussing on two
major issues, namely (I1) automating the deployment and management of
composite cloud applications, and (I2) supporting a vendor-agnostic de-
sign of composite cloud applications.

In this chapter we summarise the research contributions contained in
this thesis (see Sect. 9.1), and we discuss how such contributions can con-
tribute solving issues I1 and I2 (see Sect. 9.2). We also give some perspec-
tives for future work (see Sect. 9.3).

9.1 Summary of contributions

To (I1) automate the deployment and management of composite cloud ap-
plications, by also (I2) supporting their vendor-agnostic design, this thesis
aims at advancing the state-of-the-art for (o1) modelling and (o2) analysing
composite cloud applications, and for (o3) reusing them (see Sect. 1.1).

We now summarise the research contributions presented in this thesis.
The summary follows the workflow in Fig. 1.1, which distinguishes the con-
tributions concerning o1 and o2 from those concerning o3, and which shows
which chapters directly exploit the results presented in another chapter.

Modelling and analysing composite cloud applications

By relying on topology graphs [20] for describing the structure of composite
cloud applications, and on TOSCA [94] as the reference language for rep-
resenting them, we have proposed a compositional modelling that permits
specifying the management behaviour of an application’s components, by
also taking into account the fact that faults eventually occur while manag-
ing complex applications [42, 43].

In Chapter 5 we have illustrated how the management behaviour of an
application component can be modelled by management protocols, specified
as finite state machines whose states and transitions are associated with
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conditions defining the consistency of the states of a component and con-
straining the executability of its management operations. Such conditions
are defined on the requirements of a component, and each requirement of
a component has to be fulfilled by a capability of another component. We
have also illustrated how to compose the protocols of the components form-
ing a composite cloud application to derive its management behaviour, and
how this permits automating various analyses concerning its management
(e.g., determining whether management plans are valid, which are their ef-
fects, or which plans permit reaching certain application configurations).

In Chapter 7 we have extended management protocols to permit mod-
elling and analysing composite cloud applications in presence of faults.
More precisely, we have proposed fault-aware management protocols, which
permit modelling how components behave when faults occur. We have
then illustrated how to compose the protocols of the components form-
ing a composite cloud application to derive its fault-aware management
behaviour, and how to analyse and automate the management of compos-
ite cloud applications in a fault-resilient manner. Furthermore, after notic-
ing that the actual behaviour of application components may differ from
their described behaviour (e.g., because of non-deterministic bugs [64]), we
have shown how the unexpected behaviour of components can be natu-
rally modelled by automatically completing their fault-aware management
protocols, and how this permits analysing the effects of a misbehaving com-
ponent on the rest of a cloud application (in the worst case). We have also
proposed a way to hard recover composite cloud applications that are stuck
because a fault was not properly handled, or because of a misbehaving
component.

Fostering the reuse of composite cloud applications

To foster the reuse of composite cloud applications, in Chapter 3 we have
formalised four notions of syntactic matching between an available appli-
cation and a desired component. We have also explained how a matched
application can be adapted to exactly match the target component, and
hence be reused to concretely implement it. To illustrate the feasibility of
the proposed approaches, we have implemented and tested them on a plas-
tic repository of validated TOSCA applications.

The aforementioned notions of matching permit reusing an application
only in its entirety. Hence, to concretely implement a desired component
one could end up deploying unnecessary software (i.e., portions of the
reused application that are not needed to concretely implement the desired
application component). To tackle this issue, in Chapter 4 we have further
extended our approach for reusing composite cloud applications by intro-
ducing TOSCAMART, a method that permits reusing only the fragment of
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an application topology that is actually necessary for implementing a de-
sired application component.

Finally, in Chapter 6, we have extended the aforementioned notions of
syntactic matching to include the behaviour information in management
protocols. More precisely, we have defined a notion of simulation [107]
between management protocols, and we have exploited such notion to ex-
tend the conditions constraining exact and plug-in matching. We have then
relaxed the notion of simulation into that of f -simulation (which permits
simulating a desired operation with a a sequence of available operations),
and we have exploited f -simulation to further relax plug-in matching. We
have also described a coinductive [71] procedure to compute the function
f determining an f -simulation between two management protocols, which
has been proved to be sound and complete.

9.2 Assessment of contributions

As we discussed in Sect. 1.1, this thesis aims at advancing the state-of-the-
art for (o1) modelling and (o2) analysing composite cloud applications, and
for (o3) reusing them. We hereby assess the research contributions in this
thesis first with respect to o1 and o2, and then with respect to o3.

Modelling and analysing composite cloud applications

Fault-aware management protocols can play a foundational role for mod-
elling and analysing the management of composite cloud applications. In-
deed, to the best of our knowledge, they constitute the first compositional
approach that permits modelling and analysing the stateful management
behaviour of the components forming an application, by also taking into
account that faults possibly occur while managing complex composite ap-
plications over heterogeneous clouds (see Sect. 8.2).

The feasibility of approaches based on fault-aware management proto-
cols has been illustrated with the BARREL 2.0 prototype (see Sect. 7.6), while
their potential has been highlighted by exploiting them to automate the de-
ployment and management of the Thinking case study (see Sects. 5.5 and
7.7). The Thinking case study has highlighted that the modelling and analy-
sis techniques based on fault-aware management protocols can be fruitfully
exploited not only at design time (to validate management plans, and to de-
termine their effects), but also at run time (to automatically determine the
management plans that permit reaching a desired application configura-
tion, or which restore such configuration after the actual configuration has
changed — e.g., because of faults or misbehaving components).

On the other hand, a full-fledged approach for modelling and analysing
composite cloud applications requires to solve also other problems that
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have not been tackled in this thesis. Below we discuss three of them, namely
faults that might be generated during management protocols transitions,
applications whose topology is dynamic, and including cost and QoS in the
modelling of applications.

Faults generated during transitions. It is important to mention that (as per
Defs. 7.6 and 7.7) we have focussed on the consistency of states, by consid-
ering as faults only the requirements that are assumed in a global state and
whose corresponding capability is not provided in the same global state.

However, there might be cases where a requirement is assumed by a
component, and another component performs a transition during which
the capability satisfying such requirement is not maintained (even if it is
available in the source and target states). It would be worthy investigating
whether this might generate problems in real-world scenarios, and (if this
is the case) how to properly adapt the composition rules defining the fault-
aware management behaviour of a composite application.

Dynamic topologies. Fault-aware management protocols can be easily adap-
ted to cope with applications whose topology is dynamic. Indeed, to deal
with applications whose components may dynamically (dis)appear, such
components should be added to the application topology, and the binding
function relating requirements and capabilities should be updated accord-
ingly. This would be useful, for instance, to cope with the horizontal scal-
ing of an application’s components, as it would permit adding or removing
replicas of a component to the application topology whenever such compo-
nent has to be scaled out or scaled in.

Adapting our modelling and analysis techniques to cope with dynamic
topologies would also be beneficial for exploiting them to manage other
kinds of applications, which are characterised by a high churn of nodes
(e.g., microservices-based applications, or fog applications).

Modelling cost and QoS. Fault-aware management protocols do not take into
account costs nor QoS, since the focus of the thesis is on automatically co-
ordinating the management of the components forming a composite cloud
application (by also taking into account that faults potentially occur while
managing complex applications). Cost and QoS are however important
factors for cloud applications [6], and fault-aware management protocols
should hence be extended to take into account also such factors. For in-
stance, we should permit modelling how much does it cost (in terms of
money or time) to reside in a certain state or to perform a certain opera-
tion. This would permit devising analysis techniques to determine the cost
(in terms of money or time) to maintain/drive an application in/to a given
configuration, or to determine the cheapest or fastest management plans
that permit changing the actual configuration of an application.
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Fostering the reuse of composite cloud applications

The matching techniques presented in this thesis can constitute a fruitful
support to foster the reuse of composite cloud applications, and to speed-
up their design and development. Developers can indeed describe only
the application components that are specific to their solutions (e.g., those
they implemented), along with abstract descriptions of the management
infrastructures such components need to run. Such abstract descriptions
could then be concretely implemented by matching, adapting, and reusing
(fragments of) already existing solutions.

The feasibility and potential of our notions of matching have been test-
ed by running a proof-of-concept implementation of the syntactic matching
over a plastic repository of TOSCA applications. The effectiveness has also
been discussed by formally proving termination and soundness of TOSCA-
MART, and by assessing the behaviour-aware matching (by formally prov-
ing termination, soundness, and completeness of the coinductive algorithm
determining a f -simulation between two protocols).

It is worth noting that, in general, most existing approaches to the reuse
of cloud applications support a development from-scratch of applications,
and do not account for the possibility of adapting existing third-party ap-
plications. To the best of our knowledge, the syntactic matching approaches
presented in Chapters 3 and 4 advance the state-of-the-art as they are the
first approaches that permit reusing (fragments of) existing cloud applica-
tions, by relying on TOSCA as the reference standard for cloud interoper-
ability, and to support an easy reuse of third-party services (see Sect. 8.1).
The behaviour-aware matching discussed in Chapter 6 is also advancing
the state-of-the-art on the reuse of composite cloud applications. Indeed, it
constitutes the first approach for reusing composite applications that takes
into account both functional and extra-functional features of their compo-
nents, and which relies on the widely accepted idea of exploiting behaviour
models to match operations and on behaviour simulation to abstract from
non-relevant operation mismatches (see Sect. 8.3).

On the other hand, in order to select (fragments of) composite cloud appli-
cations that can be effectively reused to implement abstractly specified com-
ponents, some problems have still to be investigated and addressed. Below
we discuss three of them, namely the full integration of the proposed tech-
niques, the assessment of the substitutability assumption made by TOSCA,
and the inclusion of cost and QoS in our matching approaches.

Full integration of the proposed techniques. The behaviour-aware matching
proposed in Chapter 6 permits reusing applications only in their entirety.
To permit reusing only the fragments of such applications that are actually
necessary to implement a desired component, the current implementation
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of TOSCAMART should be integrated with the behaviour-aware matching
that we presented in Chapter 6.

Furthermore, the behaviour-aware matching proposed in Chapter 6 do-
es not take into account faults, since the notions of simulation are defined
on “plain” management protocols (as per Chapter 5). The notions of simu-
lation and of behaviour-aware matching should be extended to permit com-
paring the fault-aware management protocol of (a fragment of) an available
application with that of a desired component.

Substitutability assumption. All the notions of matching we presented in this
thesis are based on the substitutability assumption made by TOSCA, which
states that a component can be made concrete by substituting it with a com-
posite application, provided that the latter exposes the same features as
the former on its boundaries [95]. The truthfulness of such an assumption
should be tested on repositories of real-word TOSCA applications, which
unfortunately are not available at the moment.

Cost-aware and QoS-aware matching. All notions of matching contained in
this thesis do not take into account costs nor QoS. This is because the focus
of the thesis is on enacting the reuse of composite cloud applications by
matching their syntactic signature and their management behaviour with
respect to those of a desired component.

Cost and QoS are however important factors for cloud applications [6].
The notions of matching should hence be extended to take into account
also the cost or QoS of composite cloud applications, as this would permit
selecting, among the matched applications, those leading to lower costs or
to better time performances, for instance.

9.3 Possible directions for future work

Fault-aware management protocols can play a foundational role for mod-
elling and analysing the management of composite cloud applications. The
feasibility of approaches based on fault-aware management protocols has
been illustrated with BARREL (see Sect. 7.6), while their potential has been
shown by exploiting them to automate the deployment and management
of the Thinking case study (see Sects. 5.5 and 7.7).

The next step is the development of an orchestrator for composite cloud
applications based upon fault-aware management protocols. The orches-
trator should input a composite application and its desired configuration,
and it should ensure that such application configuration is reached and
maintained. The orchestrator should indeed exploit management protocols
to determine the managemen plan leading the application to the desired
configuration (from the initial situation where no application component is
installed), and it should execute such management plan. Then, whenever



9.3. Possible directions for future work 157

a fault occurs and changes the actual application configuration (or when-
ever the desired configuration is changed), the orchestrator should auto-
matically determine a management plan to restore the desired application
configuration. The development of such orchestrator is left for future work.

The reuse techniques presented in this thesis can also contribute to sup-
port a vendor-agnostic design of composite cloud applications, and to au-
tomate the deployment and management of composite applications. The
feasibility and potential of our notions of matching have been tested, and
their effectiveness has been formally assessed.

On the other hand, a full-fledged support for modelling, analysing, and re-
using composite cloud applications requires also solutions to problems that
have not been tackled in this thesis. Some of them were listed in Sect. 9.2,
and the corresponding directions for future work are listed below.

Faults generated during transitions. There might be cases where a require-
ment is assumed by a component, and another component performs a tran-
sition during which the capability satisfying such requirement is not main-
tained (even if it is available in the starting and target states). We plan to
investigate whether this might generate problems in real-world scenarios,
and (if so) to properly adapt the composition rules defining the fault-aware
management behaviour of a composite application.

Dynamic topologies. To deal with applications whose components may dy-
namically (dis)appear, it should be enough to add such components to the
application topology, and to update the binding function relating require-
ments and capabilities. A formalisation of this is in the scope of our imme-
diate future work.

Modelling cost and QoS. The modelling and analyses techniques based upon
fault-aware management protocols do not take into account costs and QoS.
The extension of such techniques to include cost and QoS properties is in
the scope of our future work.

Full integration of the proposed techniques. Our behaviour-aware matching
approach (see Chapter 6) does not take into account faults, and it permits
reusing applications only in their entirety. We plan to extend our behaviour-
aware matching approach to permit comparing the fault-aware manage-
ment protocols (hence including faults in the comparison), and to integrate
it with TOSCAMART (to permit reusing only the fragments of application
that are actually necessary for implementing a desired component).

Substitutability assumption. The truthfulness of the substitutability assump-
tion made by TOSCA (which states that a component can be made con-
crete by substituting it with a composite application, provided that the lat-
ter exposes the same features as the former on its boundaries [95]) should
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be tested on repositories of real-word TOSCA applications, which unfortu-
nately are not available at the moment. The assessment of such an assump-
tion is hence left for future work.

Cost-aware and QoS-aware matching. All notions of matching contained in
this thesis do not take into account costs or QoS. The extension of such no-
tions to include QoS and costs in the selection of to-be-reused components
are in the scope of our future work.
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