
Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis

Improving the Efficiency and
Effectiveness of Document

Understanding in Web Search

Salvatore Trani

Supervisor
Raffaele Perego

Referee
Srinivasan Parthasarathy

Referee
Jimmy Lin

”A true scientist must never be satisfied
there is always scope for improvement”

— Srinivasan Parthasarathy

Acknowledgements

I would like to express my deep gratitude to all the people who, consciously
and unconsciously, contributed in shaping this thesis during the years of
my PhD. Undertaking this PhD has been a truly life-changing experience
for me and it would not have been possible to achieve without their support
and guidance.

First of all, I would like to express my sincere gratitude to my advisor
Raffaele Perego, for his valuable guidance, strong support and consistent
encouragement I received during these years. Raffaele gave me the op-
portunity to undertake my Ph.D. research within the HPC lab of ISTI,
CNR and the freedom to choose the topic I liked most. The independence,
he granted me, helped me to grow both as a researcher and as a person.
His guidance helped me constantly during the time spent in research and
writing this thesis. I could not have imagined having a better advisor and
mentor for my Ph.D study.

Besides my advisor, I would also like to special thanks to Claudio Lucchese,
Diego Ceccarelli and Fabrizio Silvestri, also (present or past) members
of HPC lab. Claudio is a very strong researcher. I had many fruitful
academic discussions with him and several ideas in this work raised from
these discussions. He has been also a great travel mate, and a important
guide in my growth as a researcher. With Diego I share the passion for
the Semantic Web. It is easy to say that without his strong enthusiasm for
the topic, I probably would have taken a different research direction. Last
but not least, I would probably not have studied Information Retrieval
and Web Mining if it wasn’t for Fabrizio. He is genuinely passionate about
research, and one of the brightest minds I encountered during my life. His
support and suggestions have been invaluable to my scientific growth. I
wish to all of them a fruitful and prosperous career.

To my HPC lab mates, thanks for the fun and support. The last four
years were anything but simple, but sharing deadlines, hard work, events

and travels with such special people made this achievement less hard to
be earned. In particular I would like to individually thank Franco, Cris,
Daniele and Matteo for their precious help and encouragement. More than
colleagues, they are good friends. Thanks also to the Brazilian guys with
whom I shared the office for almost one year, Vinicius, Livia and Regis: if
I’m able to understand (despite only partially) Brazilian spoken language
is up to them!

Moreover, thanks to the external reviewers, Jimmy Lin and Srinivasan
Parthasarathy, for taking the effort to contribute to this work by reviewing
it: I am really honored of having their endorsement. I am also grateful to
my committee members Rossano Venturini and Roberto Grossi for serving
as my committee members even at hardship. They gave me priceless
comments and suggestions to enhance the presentation and quality of my
Ph.D. thesis.

I am also really grateful to all my friends for the time we spent together
and for being the surrogate family during the many years of my stay far
away from my parents. Only by learning to detach from the thoughts that
run through your mind is lasting happiness found.

Finally, I sincerely and wholeheartedly express my gratitude to all my
family for their love and support. In particular, I would like to express
appreciation to my beloved wife Federica who spent sleepless nights with
me and was always supporting me in the moments when there was no one
to answer my queries. And to my little daughter Martina, for the beauty
and the sweet she brought into my life.

Abstract

Web Search Engines (WSEs) are probably nowadays the most complex
information systems since they need to handle an ever-increasing amount
of web pages and match them with the information needs expressed in
short and often ambiguous queries by a multitude of heterogeneous users.
In addressing this challenging task they have to deal at an unprecedented
scale with two classic and contrasting IR problems: the satisfaction of
effectiveness requirements and efficiency constraints. While the former
refers to the user-perceived quality of query results, the latter regards the
time spent by the system in retrieving and presenting them to the user.

Due to the importance of text data in the Web, natural language un-
derstanding techniques acquired popularity in the latest years and are
profitably exploited by WSEs to overcome ambiguities in natural language
queries given for example by polysemy and synonymy. A promising ap-
proach in this direction is represented by the so-called Web of Data, a
paradigm shift which originates from the Semantic Web and promotes the
enrichment of Web documents with the semantic concepts they refer to.
Enriching unstructured text with an entity-based representation of docu-
ments - where entities can precisely identify persons, companies, locations,
etc. - allows in fact, a remarkable improvement of retrieval effectiveness
to be achieved.

In this thesis, we argue that it is possible to improve both efficiency
and effectiveness of document understanding in Web search by exploiting
learning-to-rank, i.e., a supervised technique aimed at learning effective
ranking functions from training data. Indeed, on one hand, enriching docu-
ments with machine-learnt semantic annotations leads to an improvement
of WSE effectiveness, since the retrieval of relevant documents can exploit
a finer comprehension of the documents. On the other hand, by enhancing
the efficiency of learning to rank techniques we can improve both WSE
efficiency and effectiveness, since a faster ranking technique can reduce

query processing time or, alternatively, allow a more complex and accurate
ranking model to be deployed.

The contribution of this thesis are manifold: i) we discuss a novel machine-
learnt measure for estimating the relatedness among entities mentioned
in a document, thus enhancing the accuracy of text disambiguation tech-
niques for document understanding; ii) we propose novel machine-learnt
technique to label the mentioned entities according to a notion of saliency,
where the most salient entities are those that have the highest utility
in understanding the topics discussed; iii) we enhance state-of-the-art
ensemble-based ranking models by means of a general learning-to-rank
framework that is able to iteratively prune the less useful part of the
ensemble and re-weight the remaining part accordingly to the loss function
adopted. Finally, we share with the research community working in this
area several open source tools to promote collaborative developments and
favoring the reproducibility of research results.

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Thesis Statement . 5
1.2 Thesis Contributions . 5
1.3 Thesis Outline . 7

2 Background 9
2.1 Web of Data . 9

2.1.1 Principles of Linked Data . 10
2.1.2 Topology of the Web of Data 11
2.1.3 Semantic Search . 14
2.1.4 Semantic Enrichment . 15

2.2 Ranking . 17
2.2.1 Conventional Ranking Models 17

2.2.1.1 Query-dependent models 17
2.2.1.2 Query-independent models 19

2.2.2 Learning to Rank . 21
2.2.2.1 Approaches to LtR 23
2.2.2.2 Benchmark Datasets for LtR 26

2.3 Retrieval Evaluation . 28
2.3.1 Evaluation Methodologies . 29
2.3.2 Evaluation Metrics . 30

vii

3 Learning Relatedness Measures for Entity Linking 33
3.1 Introduction . 33
3.2 Entity Relatedness Discovery . 35
3.3 Related Work . 40
3.4 Entity relatedness evaluation . 43

3.4.1 Building a benchmark dataset 43
3.4.2 Features . 45
3.4.3 Quality of entity relatedness 47

3.5 Impact on Entity Linking . 51
3.6 Dexter - Entity Linking Framework 54
3.7 Conclusions . 58

4 SEL: A Unified Algorithm for Entity Linking and Saliency Detection 59
4.1 Introduction . 60
4.2 Related Work . 62
4.3 The Salient Entity Linking Algorithm 64

4.3.1 Supervised Candidate Pruning 66
4.3.2 Supervised Saliency Linking 69
4.3.3 Features . 70

4.4 Experiments . 73
4.4.1 Datasets . 73
4.4.2 Candidate Pruning Step . 76
4.4.3 Saliency Linking Step . 79

4.5 Summarization . 82
4.5.1 Summarization Approach . 84
4.5.2 Summarization Experiments 86
4.5.3 Results . 88

4.6 Elianto - Entity Linking Annotation Tool 91
4.7 Conclusions . 94

5 Embedding Tree Pruning and Re-Weighting in Learning to Rank 97
5.1 Introduction . 97
5.2 Related Work . 101
5.3 Growing and Pruning Tree Ensembles 103

5.3.1 X-CLEaVER Algorithm . 105
5.3.2 Pruning Phase . 106
5.3.3 Re-weighting phase . 108

5.4 Experimental Evaluation . 110
5.4.1 Effectiveness of pruning strategies 111
5.4.2 Qualitative analysis of pruning strategies 114
5.4.3 X-CLEaVER analysis . 116
5.4.4 Training behavior . 120
5.4.5 Training cost analysis . 123

5.5 QuickRank - Learning to Rank Framework 125
5.6 Conclusion . 125

6 Conclusions and Future Work 127
6.1 Thesis Contributions and Future Work 128
6.2 Research Limitations . 132
6.3 List of Publications . 134

Bibliography 137

List of Figures

1.1 Web of Data usage from Google . 4

2.1 Topology of the Linked Data cloud diagram 12
2.2 Typical flow of a discriminative learning system 22
2.3 SVM light format of the LETOR datasets 28

3.1 Entity relationships for spotting and disambiguation. 36
3.2 Multidimensional mapping of feature similarity 50
3.3 Incremental performance of ρλMART. 51
3.4 Dexter Architecture . 56

4.1 Incremental performance on step 1 using top k features. 78
4.2 Incremental performance on step 2 using top k features. 81
4.3 Elianto step 1: Mention detection and Linking 93
4.4 Elianto step 2: Rank Entities by Saliency 94

5.1 Average rank correlation (Kendall τ) between the ranked lists produced
by consecutive trees of an ensemble. 99

5.2 Line Search visual interpretation . 109
5.3 Distributions of removed trees for each pruning strategy. 115
5.4 Average per-bucket weights of the optimized model. 116
5.5 Comparison of X-CLEaVER and λ-MART effectiveness. 120
5.6 Training behavior of X-CLEaVER across multiple iterations. 122
5.7 X-CLEaVER computational cost breakdown. 124

xi

List of Tables

3.1 Features for entity relatedness learning. 46
3.2 Entity ranking performance of machine-learnt relatedness functions. . 48
3.3 Entity ranking performance with a single feature 49
3.4 Entity Linking performance . 55

4.1 Spotting performance by varying fixed cut-off thresholds 68
4.2 ight Features for Supervised Candidate Pruning 71
4.3 Heavy features for Supervised Saliency Linking 73
4.4 Dataset agreement between groups of Expert or Crowdflower annotators. 75
4.5 Datasets description and spotting results. 76
4.6 Recall-oriented spotting performance. 77
4.7 Entity linking performance. 80
4.8 Saliency prediction performance on Wikinews. 82
4.9 Summarization collections used in our experiments 87
4.10 Test results for Single-Document Summarization. 89
4.11 Test results for Multi-Document Summarization 90

5.1 Properties of the MSLR-WEB30K-F1 and Istella-S datasets. 110
5.2 Distribution of positive labels in the datasets. 111
5.3 Ranking effectiveness of λ-MART and X-CLEaVER obtained at

various pruning levels with the different pruning strategies. 113
5.4 Ranking effectiveness of λ-MART and X-CLEaVER by adopting

different model hyper-parameters. 118
5.5 Per document scoring time of λ-MART and X-CLEaVER. 121

xiii

Chapter 1

Introduction

Before the invention of the Web, the vast majority of human knowledge was authored
by trustworthy people and printed on books collected in libraries. This situation
dramatically changed in the last two decades, with the rapid adoption of Web-based
forms of communication that have quickly surpassed any previously known medium.
At an accelerating pace, people are producing huge amount of digital information and
share it through email messages, web pages, news articles, social networks, blogs.

The net result of this on-going revolution is that we are today overwhelmed with
data: data about our daily life, worldwide news, characteristics of products, targeted
advertisments, government documents, food recipes, etc. It was observed that there
are today about 47 billion pages on the Web [56], and 30 trillion unique URLs [53],
30 times more than the figures observed only in 2008 [5]. This phenomena, known
as Data Deluge [11], makes it almost impossible for a user to find the information
she is searching for by simply browsing the Web. Hence, there is an urgent need for
powerful tools to help searching and make use of all information, since the achievable
knowledge that can be extracted from data is playing an increasing role in our daily
life.

Web Search Engines (WSEs) such as Google, Bing or Yahoo, are by far the most
complex and useful tools to combat information overload. They rely on advanced
Information Retrieval (IR) techniques designed to help users to find the information
satisfying their needs in Web pages. In a broad sense, IR can be described as
the activity that deals with the representation, storage, organization and access to
information items [10]. However, IR is not limited only to indexing and searching
but it concerns also other tasks related to exploit information in general, such as text
categorization, clustering and summarization, question answering and information
filtering.

1

1. Introduction

Given a text query expressing the information need of the user, a WSE has to
retrieve a small set of Web documents relevant to the query and rank them according
to some notion of relevance. To this end, the retrieval process has to interpret both
the query and the documents in order to perform the matching, and ranking has
to provide the user with a Search Engine Results Page (SERP) in which 10 blue
links - the first 2-3 to an extreme - are the most important elements according to the
subjective quality she perceives [10].

In order to satisfy user requests, WSEs have to deal with two classic IR challenges:
effectiveness requirements and efficiency constraints. The former regards improving
the quality of search results by adopting sophisticated matching and ranking models as
well as smart relevance signals. The latter consists in reducing as much as possible the
response time related to the presentation of the SERP to the user. This is achieved by
optimizing all the phases of query processing. In this respect, researchers from Google
have shown that when a WSE is even slightly slower than normal to return search
results, the delay leads to significant decrease in user engagement [20]. To address
these two challenges, large-scale WSEs adopt a multi-stage architecture: i) a large
set of documents is retrieved by the first stage using a fast base ranker designed to
optimize the recall, and ii) these documents are re-ranked by the second stage using
complex ranking functions as well as a larger number of relevance signals [26]. The
second stage, which usually makes use of sophisticated learning to rank (LtR) models,
is possibly split in a ranker pipeline as well in order to take query processing latency
under control.

One traditional problem WSEs have to face derives from characteristics of the
language which compose both the queries and the documents. Indeed the natural
language is not easy to handle due, for example, to polysemy and synonymy, i.e., words
with several meanings and words with the same meaning, respectively. Moreover,
queries are typically short [80] (31% are composed by a single term, 62% by two terms
or less) and often carry some degree of ambiguity. Indeed, 16% are ambiguous, many
of the remaining ones can still be too broad to have a single, specific meaning [155].

Several approaches have been proposed to mitigate the effects of ambiguities in
the natural language. At the query level, a trivial solution is to completely ignore
the problem or to provide results satisfying the most plausible meaning (e.g., the
most popular). Smarter solutions can be based on asking the user for a feedback
on what she actually mean [9], or on applying a diversification strategy in order to
maximize the probability for a user to fulfill her information need with the results
in the SERP [45]. Overall, none of these techniques resolve the problem. Indeed,

2

1. Introduction

WSEs generally adopt a bag of words model for documents retrieval (first stage of
the WSE pipeline), failing consequently to focus on the exact information need of
the user. A promising solution that is starting to be used nowadays by several WSEs
to overcome this issue, is to semantically enrich queries and documents [127, 178].
This approach falls into the so-called Web of Data [15], originating from the Semantic
Web [14]. The Web of Data constitutes a first attempt to make a paradigm shift,
moving from unstructured to semi-structured data by enriching web documents with
semantic tags. By enabling seamless connection between datasets, this approach
presents a revolutionary opportunity for deriving insight and value from the data [74].

Figure 1.1 shows a typical usage of the Web of Data from a WSE. By searching
with the query ”tim berners lee”, the scientist behind the original idea of the Semantic
Web, Google automatically shows on the right side of the SERP a box with the major
information about the scientist: some photos, a short description as well as some
structured metadata (birth date and place, nationality, education, etc), some popular
quotes from him as well as social profiles and links to related people. This information
is mainly extracted from Wikipedia or FreeBase, but other trusted sources may
contribute to this enrichment, e.g., social media for connections, vertical authoritative
websites for specific topic, like IMDB for movies or Google Play Music for lyrics.

The enabling technology allowing similar info boxes to be automatically built
leverages techniques to enrich a text with entities and semantic concepts it refers to.
By identifying entities mentioned in queries and documents we can easily manage the
ambiguity of natural language and exploit the relations among entities to give more
precise answers to users. A possible solution to achieve the above enrichemnt is Named
Entity Recognition and Disambiguation (NERD). This approach originates from the
Natural Language Processing (NLP) area and adopts a pipeline approach: named
entities, i.e., fragments of text possibly referring to the names of people, organizations,
locations, are first recognized in the text by means of Named Entity Recognition
(NER) algorithms performing a syntactical analysis of the text. Then, these named
entities are linked to entities in a given Knowledge Base (e.g., Wikipedia), thus solving
named entity ambiguity, i.e., multiple entities with the same name. Alternatively, an
increasingly popular solution is represented by Entity Linking (EL), which adopts an
orthogonal approach aimed at directly identifying the fragments of text referring to
an entity listed in a given knowledge base, without pursuing an intermediate goal by
performing syntactic analysis.

The popularity of EL solutions increased a lot in the latest years. Semantic WSEs
started to appear that try to go beyond the standard bag of words model in the

3

1. Introduction

Figure 1.1: Web of Data usage from Google

direction of the bag of concepts model (e.g., Sindice [124]). However, such a paradigm
shift is still far from being mature and a lot of research and engineering work has to be
done. In this thesis, we go some steps ahead in this direction by introducing efficient
and effective techniques based on machine learnt models. Specifically, we contribute to
state-of-the-art solutions for document understanding by proposing a entity similarity
measure that improve entity disambiguation and by exploiting saliency in the EL
process. In addition, we introduce a novel LtR strategy that remarkably improve
efficiency and effectiveness of ranking. Finally, we share with the research community
open source frameworks with the hope that they can facilitate and boost the advance
of research in this field.

4

1. Introduction

1.1 Thesis Statement

The statement of this thesis is that a semantically enriched learning-to-rank strategy
can simultaneously improve both efficiency and effectiveness of document understanding
and retrieval tasks.

Indeed ranking plays a central role in many IR problems, and many tasks are
by nature ranking problems. Among them, web search is probably only the most
famous. Learning to rank strategies raised as the de-facto choice when dealing with
such ranking problems and labeled data are available for training a ranking model
in a supervised manner. The results discussed in this thesis focus on improving the
effectiveness of the semantic enrichment with a two-fold contribution: i) a very effective
machine-learnt relatedness measure; ii) a proposal to rank the entities mentioned in a
text by their relevance and utility in understanding the topics being discussed. The
former contribution is based on the assumption that the relatedness measure is the
building block of most state-of-the-art Entity Linking algorithms and is responsible
for the correct disambiguation of the entities even in other applications. Entity
ranking is instead crucial to obtain a fine-grained document understanding, thus
permitting to distinguish between main and satellite concepts discussed. We believe
that advancements in the two aforementioned tasks can remarkably improve the
annotation process and the use of the knowledge acquired. Improving efficiency is, on
the other hand, important in every step of the long chain involving the exploitation of
web data to satisfy user needs. An key factor of this chain is ranking efficiency that is
achievable by using more efficient learning to rank models. To this end, we propose a
novel LtR framework targeting models based on ensemble of decision trees. It allows to
enhance the learning phase by pruning part of the trees and re-weighting the remaining
ones accordingly to the loss function adopted (e.g., NDCG). The relevant result of
our iterative cut&re-weight process is a ranking model that is more efficient and/or
effective of the one trained on the same data and the same algorithm without using
our technique. Finally, we claim the importance of having open source frameworks for
the research community, both for reproducing research results and for allowing other
researchers to go beyond current solutions without having to start from scratch.

1.2 Thesis Contributions

The key contributions of this thesis can be summarized as follows:

5

1. Introduction

1. We propose a novel entity relatedness measure by formalizing entity-relatedness
as a learning-to-rank problem and by devising a effective solution to learn from
data high-quality relatedness functions. Entity Linking algorithms adopt several
signals and features to drive the annotation process. Entity relatedness is the
most important of such features, and is the main responsible for a correct
disambiguation process. Most state-of-the-art Entity Linking algorithms adopt a
Wikipedia-based relatedness function proposed by Milne and Witten [117, 116].
In this thesis we show that our machine-learnt relatedness measure is much
more effective and, more importantly, improves the overall performance of EL
algorithms. The work discussing our proposal previously appeared in a CIKM
2013 paper [37].

2. We introduce a novel algorithm comprehensively addressing both Entity Linking
and Saliency detection. The Salient Entity discovery problem has been initially
proposed in literature by Paranjipe [128] and Gamon et al. [68]. The task
aims at labelling the entities mentioned in the document according to a notion
of saliency, where the most relevant entities are those that have the highest
utility in understanding the topics discussed. This problem is of fundamental
importance for document understanding and impacts on a variety of IR tasks.
We model the problem as a supervised two-steps algorithm, where the first step
is devoted at identifying a small set of candidate entities, while the second,
besides detecting the entities that actually occur in the document, also predicts
their saliency. This work appeared in ACM DocEng 2016 [165] and was awarded
with the Best Student Paper. An extended version of this paper, experimentally
assessing the impact of saliency detection on text summarization, is currently
under review for publication in an international journal [166].

3. We present X-CLEaVER, a novel meta-learning algorithm aimed at improving
both efficiency and effectiveness of ensemble-based models trained with state-
of-the-art LtR algorithms. The proposed solution entails two major steps: i) a
pruning strategy that delete the redundant trees from the ensemble aimed at
making the ensemble more efficient without hindering effectiveness; ii) a greedy
optimization responsible for fine tuning the weights of the trees to maximize
effectiveness according to the loss function adopted. We investigate several
pruning strategies for selecting the less relevant trees to be removed, and exploit
a line search algorithm to optimize non-derivable ranking loss function (i.e.,
NDCG). The above two steps are integrated in our X-CLEaVER meta-learning

6

1. Introduction

algorithm that interleaves the learning of a set of trees with the pruning and
re-weighting of some of them. A preliminary version of this work appeared in a
ACM SIGIR 2016 short paper [98] while the extended version presented in this
thesis is currently under review for publication in a top-tier journal [100].

[salvo: Togliere l’elemento sottostante dalla bullet list e metterlo come subsection
dal nome ”minor contributions” o ”Indirect Contributions” ?]

4. We made publicly available several open source frameworks, mainly developed
for validating the proposed solutions. The first framework is Dexter and
it address the Entity Linking problem. It provides out-of-the-box efficient
implementations of some popular EL algorithms, while its modularity makes
easy to integrate and test other solutions. It was presented in a CIKM 2013
workshop (ESAIR 2013) [36] and then extended as described in a demo paper
presented at ISWC 2014 [38]. The second is Elianto that was introduced
in a demo paper at ACM CIKM 2014 [164]. It aims at crowd-sourcing the
production of manually annotated datasets for Entity Linking and Saliency
Detection. The third framework is QuickRank, a modular and extensible LtR
framework designed with efficiency in mind. QuickRank provides efficient
solutions for both the learning and the scoring processes. This framework was
independently introduced in [30], while, in the scope of this thesis, it was extended
to incorporate the work presented in a ACM SIGIR 2016 short paper [98], and
the final solution presented in this thesis which is currently under review for
publication in a top-tier journal [100].

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 discusses background information about the main topics involved in
this work. We start by introducing the Web of Data, an approach for semantically
connecting data in a single, massive graph, such that computers can conceptually
understand documents and perform complex operations on them such as inferring
meanings or answer questions. Then we introduce the ranking problem with
a specific focus on the learning-to-rank approach, a machine-learnt technique
that is pervasively used in a variety of IR tasks: from document retrieval (e.g.,
web search) to sentiment analysis, document summarization and information
filtering. The chapter ends with a discussion about retrieval evaluation in IR

7

1. Introduction

and the metrics adopted for a proper evaluation of the experiments conducted
in this thesis.

• Chapter 3 proposes a new entity relatedness measure for Entity Linking. The
problem has been formalized as a learning to rank problem, and the resulting
measure has been compared with state-of-the-art solutions when used in an
original algorithm and incorporated in other state-of-the-art EL algorithms.

• Chapter 4 starts by discussing the importance of the Salient Entity discovery
problem for the semantic enrichment of text. Then it introdices the formalization
of the problem by proposing a novel algorithm for both Entity Linking and
Salient Entity detection. The solution proposed adopts two different machine-
learnt models motivated in a two-steps process motivated by efficiency and
effectiveness reasons.

• Chapter 5 proposes a novel meta-learning algorithm that encompasses the
benefits of existing state-of-the-art LtR models based on additive ensemble of
small regression trees with. Our solution aims at reducing the similarity between
the trees and consequently at improving both efficiency and effectiveness of the
resulting model.

• Chapter 6 closes this thesis by providing a summary of the contributions, as
well as presenting some possible future research directions exploiting our results.

8

Chapter 2

Background

Web Search Engines are probably the most popular IR systems nowadays. Their
goal is to present to the users Search Engine Result Pages (SERPs) containing links
to documents relevant to the user’s query. In doing this, they need to satisfy two
important requirements: i) a strict constraint on the response time, since a small
delay in answering a query negatively affects user engagement [20]; ii) a high quality
of search results, since users expect to find what they are searching for. The former
requirement is addressed by the adoption of efficient IR models, and in this regards
ranking technologies play a central role. The latter requirement, on the other hand, is
more difficult to achieve and requires to address effectively multiple search sub-tasks
(e.g., improving the candidate retrieval process or the final ranking, understanding the
exact meaning of both the queries and the documents, etc). To this end, learning to
rank technologies and semantic enrichment of text are providing an important boost
to efficiency and effectiveness of Web search.

With this in mind, Section 2.1 introduce the Web of Data and discuss its challenges
as well as the benefits provided. Moreover, it explains how to enrich unstructured
documents with structured information. Section 2.2 describes the importance of
ranking in IR, with an overview on conventional ranking models and a specific focus
on learning to rank methodologies. Lastly, Section 2.3 discusses the main evaluation
methodologies and IR metrics, adopted for assessing the solutions proposed in this
thesis.

2.1 Web of Data

The World Wide Web has been conceived as a global space where to share knowledge
by simplifying the creation and the publishing of Web documents. One of the main
reasons it became so popular is related to the simple format used to describe the Web

9

2. Background

pages, the Hyper Text Markup Language (HTML), and in particular to the hyper
links linking to other Web pages. These links on the one side allow users to traverse
the Web, on the other are exploited by modern Web Search Engine to crawl the
Web discovering new content and infer relevance of a page by analyzing the network
structure of the Web (e.g., PageRank [125] and HITS [88, 70]).

While HTML simplicity favored an unconstrained growth of the Web, it represented
also a limit. Indeed HTML was designed to give structure to textual documents,
without considering the data perspective. To this regard, it is commonly accepted that
we are surrounded by data: data in HTML tables, spreadsheets, linked files (CSV,
JSON, XML), textual statements, etc. However, we are not able to use this huge
amount of data because it is presented in an unstructured way, i.e., it is difficult to
automatically extract and process without introducing noise and errors. Moreover,
the way hyper links are described limits the expressiveness of the connections, since
it is not possible to state which kind of relation exists between two concepts in the
source and target Web pages.

The Web of Data has been specifically proposed to go beyond the traditional
Web of Documents model, by placing data at the heart. This model shares the
same rules that made popular the traditional Web (i.e., anyone can publish any
kind of data, not limiting to a specific vocabularies; it is highly suggested to create
connections between entities in order to favor the browsing and the discover of new
things; there is not a central authority which control what to publish and what to
discard, etc.). However, it has been conceived considering the properties of the data
and favoring its re-usability. To this end, the Web of Data encourage the sharing of
structured information, hyper linked by typed relationship between entities described
in vocabularies. These vocabularies are not strictly fixed, and could belong to different
data sources, thus favoring the existence cross links between the datasets. The main
rationale behind promoting the usage of the Web of Data is to allow a machine
to consume data, infer new things, and in general automatize some tedious tasks
previously hand made by humans.

2.1.1 Principles of Linked Data

The principle behind the Web of Data has been initially proposed in 2001 by Berners-
Lee with the Semantic Web [14], and then refined and formalized in 2006 with the
Linked Data design issues [13], where the same author stated a set of 4 rules for
publishing data in such a way that the published data will become part of a single,
global data space of structured data:

10

2. Background

1. use URIs as names for things

2. use HTTP URIs, so that things are dereferenceable

3. provide useful information when a URI is looked up, using standard technologies
(e.g., RDF, SPARQL)

4. include links to other URIs, so that to promote the discovery of new things

The linked data principles are based on the assumption that the Web of Data
has to extend the traditional Web of Documents, and not revolution it. Indeed, it
adopts the same decentralized architecture [79] and the same technologies: URIs as
a global unique resource identifier [106], the HTTP protocol to access resources [62]
and the HTML to describe documents. The hyper links between documents are
extended with respect to the original hyper links, so that to include the typology
of the relation in the link description. This is put in place by using the Resource
Description Framework (RDF) [89], a model that encodes data in a triple composed
by the subject, the predicate and the object. Both the subject and the object are
URIs to entities/concepts belonging to a given vocabulary, while the predicate is a
URI as well, but describing the king of relation that exists between the subject and
the object (e.g., belongs to, is member of, is made by).

The four principles stated above claims that everything should be identified by a
URI (not only Web pages but also abstract concepts or concrete entities) and that by
looking up that URI using the HTTP protocol, a description of the concept has to
be returned to the user using standard technologies (RDF among others). Moreover,
hyper links to other resources (in the form of RDFs as well) have to be proposed to
the user, including the typology of relationship that exists between the two concepts.

Web of Data and Linked Data are two closely related concepts. Indeed, while the
Web of Data state the vision (putting data on the Web in such a way that machines
are able to directly or indirectly process it), Linked Data state the principles and the
means to reach that goal.

2.1.2 Topology of the Web of Data

The formal definition of the Linked Data principles [13] was given by Berners-Lee
in 2006. A year later the W3C started the so called Linking Open Data (LOD)
project1, an attempt to bootstrap the Web of Data with the help of researchers of

1http://linkeddata.org

11

http://linkeddata.org

2. Background

Linked Datasets as of August 2014

Linguistics

Social Networking

Life Sciences

Cross-Domain

Government

User-Generated Content

Publications

Geographic

Media

Figure 2.1: Topology of the Linked Data cloud diagram, with connections between
different resource datasets

the semantic community. The project grew up quite fast. An overall picture of the
datasets composing the Web of Data, as of April 2014, can be observed in Figure 2.1.

There are plenty of data resources (1041) subdivided in 8 major topical domains,
ranging from (in order of datasets number) Government, Publications, Life Sciences,
User-Generated Content, Cross-Domain, Media, Geographic and Social Web. The
Cross-domain data resources are those not focused on a specific topic but linking
together concepts from different areas, helping consequently to avoid the dispersion
and the isolation.

The biggest resource in the Web of Data is represented by DBPedia [8], a cross-
domain encyclopedia derived from Wikipedia2. Wikipedia is a the biggest encyclopedia
ever conceived as well as one of the 10 most visited Website worldwide. The project is
based on the concept of collaborative encyclopedia, where every user can submit new
content or a modification to an existing page. To date, there are about 75.000 active
contributors working on more than 41M articles in 295 languages3. Every Wikipedia
page can be considered like the textual description of a concept/entity. Most of the

2https://www.wikipedia.org/
3http://reportcard.wmflabs.org/

12

https://www.wikipedia.org/
http://reportcard.wmflabs.org/

2. Background

content is unstructured but structured information are present as well in the so-called
infobox (vertical box that appear on the top-right part of the page, with a tabular
presentation of some data, e.g., geographic coordinates of a place, location and birth
date of a person, population and area of a country, and so on), in categories, in links
to outside Webpages, etc. The DBPedia project aims at automatically extracting all
the structured information from Wikipedia such as to build a structured knowledge
base to export using RDF triples. Entities in DBPedia are connected also to other
data resources in order to fill the gap between different topics.

Another popular cross-domain data resource is FreeBase [17], a project that shares
most of the DBPedia features: open domain, collaborative environment, structured
information exported using RDF triples. The project has been acquired by Google in
2010, but in 2015 it has been dismissed and all the data migrated to the corresponding
Wikidata [175] project. A further popular cross-domain datasets is YAGO [159],
which similarly to DBPedia tries to automatically link structured information from
Wikipedia with concepts from WordNet.

In this regard, WordNet [115] is a popular linguistic dataset, providing semantic
lexicon for the English language. It provides for each word a list of the actual senses of
the word. Different words with the same meaning (synonyms) are called synset, while
a single word with different meaning (ambiguous) belong to different synset. WordNet
provides also the semantic relationship between the synset, such as hyponymy and
hypernymy (i.e., sub-name and a super-name), holonymy/meronymy (i.e., whole-name
and part-name), antonymy (i.e., opposite-name) and others.

Despite data resources are abundant both in number and size, the vast majority of
semantic resources shared in traditional Web sites is enriched with semantic concepts
through microformats [86], RDFa or Microdata4 annotations. The most popular
semantic vocabulary adopted is the one encouraged by Google, Yahoo, Microsoft
and Yandex, namely Schema.org5. This is the product of a joint effort to promote
the adoption of schemas for exposing structured data on Web pages. There are
many important Websites using semantic annotations, like the popular Internet Movie
Database (IMDb) Website6, which exports for each movie the title, the actors, the
average rating, the number of voters as well lot of other information, AllRecipes.com7

4http://www.w3.org/TR/microdata/
5http://schema.org/
6http://www.imdb.com/
7http://allrecipes.com/

13

http://www.w3.org/TR/microdata/
http://schema.org/
http://www.imdb.com/
http://allrecipes.com/

2. Background

which exports for each recipe the list of ingredients, the cooking time and the nutritional
facts or Facebook8. which exports details about events or profile information.

2.1.3 Semantic Search

Among different linked data applications, Semantic Search is probably the most
interesting one. It provides the user with the capability to express its information need
without having to take care of the problems deriving from the natural language, such
as ambiguity and synonymy. Moreover, the search engines adopting this paradigm
exploit the structure of the information to provide a powerful interaction to the user.

Several semantic search engine has been proposed in literature. Probably the
most populars are Falcon [41] and Sig.ma [167]. Both of them crawl the Web of Data
and index the structured information found in such a way to allow a powerful search
experience. The Web interface is still keyword-based, like in popular WSEs. However,
the main difference with them is in the exploitation of the underlying structure of
the data to offer to the user a better user experience. For example, users can filter
the result list by type on Falcon (e.g., selecting only persons or films) or filter out
results from unwanted sources on Sig.ma (e.g., low quality sources). In both the cases,
the search engine provide richer details about each result of the result list (metadata,
links, relations, etc).

Despite the approach to propose semantic search engines for the Web of Data has
been profitably investigated, it is clear that applying the same semantic approach
to the traditional Web of Documents would be of great interest. To this regard,
there is the need to fulfill the gap between textual Web documents and semantic
concepts. A twofold problem arises: i) support the semantic retrieval of the documents,
i.e., go beyond the standard bag-of-words model using a concept-based document
representation, namely a bag-of-concepts model [107, 158, 177]; ii) enrich keyword
queries with concepts, solving the difficulty of having short (or null) contextual text
useful for disambiguation [109, 110, 113]. A panoramic view on semantic search is
provided by Mangold [104], while an investigation of specific problems related to the
semantic annotation, indexing, and retrieval can be found in [87]. This dissertation
however is not about the specific problems above mentioned, but on general strategies
able to close the gap between textual and conceptual representation.

8https://www.facebook.com/

14

2. Background

2.1.4 Semantic Enrichment

Understanding the meaning of textual documents is one of the main goals in the field
of Artificial Intelligence and it is a crucial activity for Web search and IR in general.
Indeed, the vast majority of Web documents have a textual representation without
any semantic information. Thus the related document understanding problem has
attracted the interest of many researchers [171, 3, 161], and also a conference has been
dedicated to this task [120] (the Document Understanding Conference, DUC, which
from 2008 became part of the Text Analysis Conference, TAC).

One way to go beyond the standard textual representation of the documents is to
enrich them with concepts. This process can be done in two ways: i) by asking users
to manually annotate the documents or to add some semantic tags (e.g., by means of
microformats [86]); ii) by building tools which are able to understand a document and
automatically enrich it with links to unambiguous concepts. While the first solution
is clearly the most accurate, it does not scale, mostly when compared with the size of
the Web. Consequently a new research direction, which investigate solutions to enrich
raw text with semantic concepts, acquired popularity in the last decade.

This semantic enrichment task is known in Literature with several names: Named
Entity Recognition and Disambiguation), NERD (Named Entity Disambiguation),
NEL (Named Entity Linking), Wikification or simply EL (Entity Linking). In the
following of this dissertation we will refer to this task with the last acronym. EL has
been introduced in 2007 by Mihalcea and Csomai [112], and consists in finding small
fragments of text (hereinafter named spots or mentions) referring to an entity that is
listed in a given knowledge base, e.g., Wikipedia. Natural language ambiguity makes
this task non trivial. Indeed, the same entity may be mentioned with different text
fragments, and the same mention may refer to one of several entities.

As an example, consider the annotations performed by an EL algorithm that uses
Wikipedia on the following text:

Maradona (→Diego Maradona) played his first World Cup tourna-
ment (→FIFA World Cup) in 1982, when Argentina (→Argentina -
national football team) played Belgium (→Belgium national football -
team) in the opening game of the 1982 Cup (→1982 FIFA World Cup)
in Barcelona (→Barcelona).

An algorithm performs Entity Linking task by first spotting the fragments of
text that are likely to refer to some entity, e.g., spots Maradona or Belgium. For
each spot, a list of candidate entities is generated. Then, the algorithm proceeds by

15

https://en.wikipedia.org/wiki/Diego_Maradona
https://en.wikipedia.org/wiki/FIFA_World_Cup
https://en.wikipedia.org/wiki/Argentina_national_football_team
https://en.wikipedia.org/wiki/Argentina_national_football_team
https://en.wikipedia.org/wiki/Belgium_national_football_team
https://en.wikipedia.org/wiki/Belgium_national_football_team
https://en.wikipedia.org/wiki/1982_FIFA_World_Cup
https://en.wikipedia.org/wiki/Barcelona

2. Background

trying to link each spot to the correct entity, e.g., links the spot Maradona to the
corresponding Wikipedia page9. Due to the presence of multiple candidates for each
spot and to the inherent ambiguity of natural language, the disambiguation phase of
the Entity Linking process is not trivial, e.g., the mention Belgium does not refer to
its most common sense, i.e., the country, but rather to its national football team10. A
final stage of pruning discards annotations that are considered not correct or consistent
with the overall interpretation of the document.

The spotting phase is usually performed by exploiting a catalog of named entities,
or some knowledge base, to devise the possible mentions of entities occurring in the
text. A popular solution is to resort to Wikipedia [73, 117]: each Wikipedia page is
treated as an entity, and the anchor texts of the links pointing to each article, as well
the title of the article, are considered a source of possible mentions to the entity. The
spotter can thus process the input text looking for any fragment of text matching
any of the Wikipedia mentions, and therefore potentially referring to an entity. This
phase is of fundamental importance for the whole Entity Linking process, since the
coverage of the source knowledge base and the accuracy of the spotter have a strong
impact on the recall of the entity linking system [39].

The disambiguation phase exploits several signals and features to select the best
entity for each spot11. The most important of such features is a coherence12 function
measuring the similarity between two entities. The typical approach to disambiguate
is thus to maximize the coherence among the selected entities in the document.

Several Entity Linking approaches have been proposed in literature. For a thorough
overview and analysis of the main approaches and their evaluation refer to the survey
by Shen et al. [152]. However, Sections 3.3 and 4.2 provides a short description of the
most popular Entity Linking systems [117, 73, 61, 180, 52, 58, 111, 42, 138, 78, 129].

Entity Linking can be considered as an extension of the Named Entity Recognition
(NER) [118, 114, 137], where the objective is to identify fragments of text referring to a
named entity, i.e., classification of the fragment in a small set of pre-defined categories
such as people, organization, events, locations, etc. NER can also be executed as a
preliminary task to Entity Linking: in this case, the candidate list of potential entities
of each fragment has to take into consideration the class assigned by the NER tool to

9https://en.wikipedia.org/wiki/Diego_Maradona
10https://en.wikipedia.org/wiki/Belgium_national_football_team
11There exists a variant of the traditional Entity Linking process that links also unlinkable mentions,

i.e., mentions without a corresponding record in the knowledge base. This specific problem, known
in literature as the NIL problem [93], is out of the scope of this thesis.

12What is the coherence and how it is approximated is the topic of Chapter 3

16

https://en.wikipedia.org/wiki/Diego_Maradona
https://en.wikipedia.org/wiki/Belgium_national_football_team

2. Background

the fragment, i.e., producing only entities related to persons if the class assigned is
person.

2.2 Ranking

Ranking plays a central role in many information retrieval tasks. Indeed, many IR
tasks, although not being by nature ranking problems, can be solved by applying a
ranking strategy. Consider for instance Web spam [48], Opinion Mining and Sentiment
Analysis [126], Question Answering [173], Recommender systems [25], Clustering [160].
In the context of Web Search, “ranking is the hardest and most important function
search engines have to execute” [10]. Indeed, traditional Web search engines adopt a
multi-stage architecture, where the first stage aims at retrieving a small subset - which
run into thousands - of relevant documents, maximizing the recall and using fast base
rankers, while subsequents stages are devoted to re-rank these documents by means of
more complex ranking models using a larger number of features. A ranking function
can be defined as a function f(q, d) that takes in input a query q and a document d,
taken from a collection D, and produces in output a list Rq of documents, according
to their degree of relevance to the user query.

Over the past years, a multitude of IR ranking models have been proposed in
literature for the document retrieval problem. In Section 2.2.1 we introduce common
conventional ranking models. These models, although being very simple, are still
used nowadays as features for more complex models trained using learning to rank
approaches, as described in Section 2.2.2.

2.2.1 Conventional Ranking Models

Conventional ranking models can be roughly split in two different categories, depending
on the evidence it leverages from the query q. On the one side we have query-dependent
models, which rank the documents according to their relevance to the query, and on
the other side query-independent models, that rank the documents according to their
own importance, independently from the query but pertaining a global state.

2.2.1.1 Query-dependent models

One of the earlier model to be used in IR for document retrieval, belonging to the
former category, is the Boolean model[10], described as a pure retrieval model, based
on the set theory and boolean algebra. It consider whether the query terms are
presents or not in each document, thus predicting if a document is relevant for a given

17

2. Background

query, expressed using terms and basic boolean operators. Despite the simplicity of
the model, one of the major drawbacks is that it is not properly a ranking model since
it returns flat sets of documents, thus leading difficulties in the presentation of the
results to the user (i.e., how many relevant documents to retrieve and which ones to
select, among the relevant ones).

To this end, a substantial improvement is carried by the so-called term-weighting
strategy. The rationale behind this model is that the terms are not equally important
in describing the content of a document, e.g., consider the information carried by a
very common word compared to a rare word. Consequently, to each term is associated
a weight, and both documents and queries are represented as vectors in a Euclidean
space [148]:

~dj = (w1,j, w2,j, ..., wt,j)
~q = (w1,q, w2,q, ..., wt,q)

where w1,q is the weight associated with the term-query (or term-document) pair, and
t represents the number of terms in the collection. Given the two vectors, computing
the similarity is simply achievable for instance by the cosine angle between them:

cosine(dj, q) =
~dj · ~q

||~dj || × ||~q ||
=

∑t
i=1wi,j · wi,q√∑t

i=1w
2
i,j

√∑t
i=1w

2
i,q

The most popular weighting strategy is TF-IDF, where the term TF stands for
Term Frequency and describe the frequency of a term in a document [102], while the
term IDF stands for Inverse Document Frequency and describe the rarity of a term ti

considering the full collection of documents [156, 140]:

TF (ti, dj) = fi,j and IDF (ti) = log
N

n(ti)
where fi,j is the frequency of occurrence of a term ti in a document dj, N is the

number of documents in the collection and n(ti) is the number of documents containing
the term ti. IDF is called inverse document frequency because n(ti)

N
represents the

relative document frequency of term ti in the collection. The logarithm in the IDF
formulation is motivated by the power-law modelization of the Zipf’s law [183], which
states that the relative document frequency of the words can be approximated by a
power law probability distribution. Thus, the TD-IDF is simply described as:

TF -IDF (ti, dj) = TF (ti, dj) · IDF (ti)

18

2. Background

Many variants of the TF-IDF model have been proposed, as well as many improve-
ments to the original formulation (i.e., considering the document length normalization).
Interested readers can refer to the work by Baeza-Yates and Ribeiro-Neto [10], which
provides a comprehensive and exhaustive panoramic of IR models.

The vector model used in conjunction with the TF-IDF weighting schema gathered
lot of attentions in the latest years and is still used nowadays in many areas due to its
simplicity. It is based on the assumption that the terms are mutually independent
each other. A different approach is represented by the probabilistic models [143], where
the relevance of a document to a query follows the Probability Ranking Principle
(PRP) stated by Robertson [142]:

“If a reference retrieval system’s response to each request is a ranking
of the documents in the collections in order of decreasing probability of
usefulness to the user who submitted the request, where the probabilities are
estimated as accurately as possible on the basis of whatever data has been
made available to the system for this purpose, then the overall effectiveness
of the system will be the best that is obtainable on the basis of that data.”

Many probabilistic models have been proposed in literature. Probably the most
popular used in IR is represented by BM25 [141], which is the latest version of several
best-matching (BM) probabilistic models proposed by Robertson [144, 145]. This
model is described as follows:

BM25(dj, q) =
∑
ti∈q

IDF (ti) · TF (ti, dj) · (k1 + 1)
TF (ti, dj) + k1 · (1− b+ b · len(dj)

avg-len)

where ti is a term appearing in the query q, TF and IDF are defined as described
above, len(dj) characterize the length of the document dj, avg-len is the average
document length on a collection basis, k1 and b are two empirical constants whose
values can be fine tuned for particular collections (common values for this constants
are k1 = 1 and b = 0.75).

2.2.1.2 Query-independent models

The common characteristic of the models introduced to this point is that all of them
are query-dependent, i.e., they model the relationship between the documents and
the query and accordingly produce a ranked list of documents. To the contrary, in
literature various query-independent models have been proposed for the document
retrieval problem. Although taking into consideration the query is fundamental to

19

2. Background

maximize the relevance of the retrieved documents, it is not sufficient to produce a
good ranking. Indeed, many documents could have similar scores, thus being ranked
near each other or worse, resulting almost in a random sorting. Moreover, no one
of the query-dependent models consider the authoritativeness, the reliability or the
trustworthiness of the documents, a signal that could be exploits to distinguish between
high and low quality documents.

To this end, several models have been proposed to rank document according to
their own importance. Some of them approach the problem of devising an effective
function rel(dj) (based solely on the document) by analyzing the readability of the
documents [12, 181], by trying to detect spamming techniques adopted by malicious
users [123] or by using implicit feedbacks from the users (e.g., analyzing click-through
data [83, 136] or the time spent by a user on a given page, after having clicked on
the link in the result list [94, 2]). Others, instead, analyze the hyperlink structure of
the Web for estimating the importance of a page. The idea behind these models is
not completely new, since it derives from a well studied problem aimed at analyzing
the scientific literature to exploit the importance of a scientific paper by analyzing its
citations. Several models of page importance were proposed, starting from the simple
link-counting [91] that quickly become evident to be easily manipulable by malicious
users, to something more complex like the WebQuery approach [32], that re-rank a
set of Web pages according to a notion of node connectivity.

A more sophisticated solution is the one proposed by Kleinberg [88] in 1999, namely
Hypertext Induced Topic Search (HITS). The author proposed to separate the Web
pages into two distinct sets: i) hubs, pages not actually authoritative but containing
many outgoing links to authoritative pages; authorities, pages authoritative regarding
a specific topic, having many ingoing links from hubs pages. The algorithm operates
over a small set S of pages, obtained by retrieving with a query-dependent model a
subset R of Web pages and then expanding this subset with pages pointed by or that
points to a page in R. Then the algorithm assigns both an authority score and a hub
score to each Web page belonging S by following an iterative process described as
follows:

H(p) =
∑

u∈S:(p,u)∈E
A(u) and A(p) =

∑
v∈S | (v,p)∈E

H(u)

where A(p) and H(p) are respectively the authority score and the hub score for
the page p, and E is the set of edges connecting the nodes S. This model proved to be
effective, although the size of the set R of root relevant pages has to be limited to avoid

20

2. Background

an explosion in the size of S, and consequently an explosion in the computational cost
of the iterative algorithm (since the number of the edges are potentially quadratic in
the number of nodes).

An alternative approach is represented by the PageRank model [125] proposed in
the same year by Google creators Page and Brin. This algorithm simulates a user
navigating the Web starting from a page p: with a given probability 1− α, the user
follows one of the outlinks of p, otherwise, with a probability α, he jumps to a random
Web page. While the first part simulate the typical user behavior of following link
present in a Web page, the second part is useful for avoiding dangling nodes (i.e.,
nodes without outgoing links) and self links (i.e., links pointing to the same page),
as well as to simulate the intention of the user to start a new session from scratch.
This navigational process is repeated several times. At the end, the probability an
user visited each page is called PageRank and represent a property of the graph. The
PageRank can thus be defined as follows:

PR(p) = α
1
T

+ (1− α)
n∑
i=1

PR(pi)
L(pi)

where T is the total number of pages in the Web graph, L(pi) is the number of
outgoing links of page pi and α is a free parameter, namely damping factor, commonly
set to α = 0.15.

2.2.2 Learning to Rank

In the previous section we described some ranking and retrieval models commonly
adopted in IR in general and in Web Search in particular. These models work in an
unsupervised manner, thus their parameters, if exists, are usually empirically tuned.
It is clear, however, than combining together many of the aforementioned models,
allow to create a single, more powerful model that can lead to important improvement
in terms of effectiveness. Indeed, each model captures single facets related to the
relevance of the documents with respect to the queries, an aspect of fundamental
importance given the heterogeneity and complexity of web documents.

Combining together different models, however, is not straightforward. To this end,
in recent years many Machine Learning techniques have been devoted to automatically
learning an effective model from training data. These techniques are supervised
learning methods, since they are designed to automatically learn a generic function
using supervised data, i.e., data with relevance judgments. When the task is to train
a ranking function, we refer to this techniques as learning to rank models.

21

2. Background

Figure 2.2: Typical flow of a discriminative learning system

Learning to rank models captured much attention in the latest years due to
their simplicity and effectiveness in training a ranking function from labeled dataset.
The learning process of these methods can be described in terms of the general
discriminative learning framework [95], composed by four key elements: the input
space X , the output space Y, the hypothesis space H and the loss function L. The
final goal of such methods is to train a ranking function fLTR described as follows:

fLTR(d, q) : X → Y

The input space X contains the evidences of the objects under investigation,
described in terms of feature vector x. To this end, it is common to design a function
Φ, namely a feature extractor, that takes in input a query q and a document d and
provides in output the feature vector x = Φ(d, q). The output space Y contains
the target variable to learn. Depending from the ML task, the output space could
be the space of real numbers R (e.g., for regression) or a set K of discrete values
{0, 1, ..., K − 1} (e.g., for classification). The hypothesis space H denotes the class of
functions that map the input space X to the output space Y . Lastly, the loss function
L represent probably one of the most important aspect in training a machine-learnt
model, since it provides the information about how good is the predicted score with
respect to the labeled instance in the ground truth. Widely adopted loss functions are
the logistic loss, the exponential loss or the hinge loss.

The typical flow of a discriminative learning system is depicted in Figure 2.2. The
supervised nature of the learning process requires a training corpus, composed by a

22

2. Background

set of |Q| queries {q1, ..., q|Q|} and |D| documents {d1, ..., d|D|}, where each training
instance is represented by a query-document pair, i.e., (qi, dj) ∈ Q×D. This training
instance is represented by the feature vector x(i)

j , extracted with the help of the feature
extractor Φ, and is labeled with a ground truth label by expert annotators that provide
the relevance judgment indicating the relationship between qi and dj. The features
extraction and the relevance judgment tasks are usually done once and then saved on
file, thus allowing the reproducibility of the experiments and the possibility to share
the training dataset with other researchers. The learning algorithm then, is responsible
to learn the ranking function f , according to the training corpus, trying to predict as
accurately as possible the ground truth label, according to the loss function L. Finally,
the evaluation of a machine-learnt model follow the same schema: a different set of
queries, sharing the same feature space with the training corpus, is used to test the
ranking predicted by f with the ranking provided by the test corpus, according to the
labeled relevance of its samples. Several metrics are used to this end, as we will see in
Section 2.3.2.

2.2.2.1 Approaches to LtR

Most of the work done in LtR stems from machine learning area. The seminal work
from which this area has stemmed is the research by Herbrich et al. [76] where authors
present a new formulation of a problem consisting in learning a ranking model by
minimizing a loss function that is acting on pairs of elements rather than single labeled
training instances as it is common in regression and classification tasks. Since that
seminal work has been published there has been a huge amount of works published
with the goal of improving the quality of the generated models. An excellent survey
on models and techniques specifically tailored on Information Retrieval (and Search
in particular) is that of Tie-Yan Liu [95]. In that survey, most of the most important
results aimed at improving the results of a search system using machine learning
techniques has been summarized and organized. In particular, depending from their
choice to adopt a particular instantiation of the four pillar of the discriminative
learning, we can categorize these algorithms in three main classes: Pointwise, Pairwise
and Listwise algorithms.

Pointwise approach. This is probably the simplest approach tackling the learning
to rank problem, and the idea is to re-use existing machine learning methods by
predicting the exact relevance score of each training sample, although this may not be
necessary to reproduce the ranked list of documents according to the training corpus.
Thus, the input space consists of the feature vector of each query-document pair, the

23

2. Background

output space of its relevance score, the hypothesis space contains functions that maps
these feature vectors in input to the relevance scores in output, and the loss functions
measure how accurate is the prediction of each training sample, independently from
others samples related to the the same query (i.e., this approach does not consider
the ranked list as a whole but only the predicted score of the single training samples).
The final ranking is achieved by simply sorting the documents by predicted scores.

Since the simplicity of this approach, all the standard regression and classification
algorithms can be used for pointwise learning to rank [65, 18, 90, 50]. However, this
approach is suboptimal because it does not consider the relative order between the
documents, thus being unable to accurately learn the relative ranking, and for the
loss function adopted, which have the visibility only of the single training sample and
not of the full list of documents, on a query-basis.

Pairwise approach. This approach tries to go beyond one of the main limitations of
the pointwise approach, represented by the relative ordering between the documents.
Indeed, it focus on correctly classifying the relative order between a pair of documents,
i.e., on predicting whether the first document is more relevant than the second or not.
Thus, the goal is to minimize the number of miss-classified document pairs.

In such a situation, the input space consists of the feature vectors of the two
documents in the pair, the output space by their relative ordering, assuming values in
{−1, 1}, the hypothesis space contains bivariate functions mapping the two document
vectors in input to their relative order in output, and the loss function is represented
by the classification loss. For simplicity, the hypothesis h can be defined with a scoring
function f such that h(xi, xj) = 2 · I{f(xi)>f(xj)} − 1, where I{A} assume a value of 1 if
A holds, 0 otherwise.

Several algorithms follow the pairwise approach [22, 27, 150, 63]. However, still
exists the limitation about the total ordering of the ranked list, i.e., being able to
accurately rank two documents does not mean the model is able to reproduce properly
the full ranked list.

Listwise approach. To overcome this limitation, the listwise approach is designed
to work on the full list of documents at once. Thus, the input space consists of the
full set of candidate documents, represented by their feature vectors. The output
space consists either of the relevance scores of the documents or the ranked list of
documents (i.e., a permutation). The hypothesis space contains functions mapping
the feature vectors in input to their relevance degrees or their permutation in output.
Depending from the choice of the output space, we have two loss function: i) when

24

2. Background

the output space is a permutation, it measures the difference between the predicted
ranked list and the ground truth ranked list; ii) when the output space is given by the
relevance scores, it adopts one of the widely used IR metrics.

Popular listwise algorithms are described in [28, 162, 168, 179].

Since the seminal work by Herbrich et al. [76] presenting a new formulation for learning
a ranking model based on ordinal regression, another pillar in the field is represented
by RankBoost [63], the first learning algorithms for ranking which is based on the
boosting principles introduced several years before with AdaBoost [64]. Boosting
algorithms are currently among the most popular and most successful algorithms for
supervised learning to rank tasks. They adopt an iterative technique designed to
construct a ”strong” learner using only a training set and a ”weak” learning algorithm.
Each ”weak” learner is intended to perform only slightly better than a random learner,
while the ”strong” learner has much lower probability of error. Hence, these algorithms
“boost” the weak learning algorithm to achieve a stronger learner. To each training
instance is assigned a weight, representing its relative importance. Training examples
that were miss-predicted by the ”weak” learner at the current iteration will be boosted
(i.e., they will receive an higher weight) at the following iteration. The end result is a
final ”strong” learner that linearly combine together a set of ”weak” rankers. In this
dissertation we focus on ensemble-based ranking models where the weak learners are
decision trees.

Differently from the approaches using ensemble of weak learners, many other
solutions were proposed for learning a ranking model. Burges et al. proposed
RankNet [22], a neural network designed to model ranking function, trained using
gradient descent method. This work is particularly important for two main reasons:
i) authors formalized the usage of a probabilistic cost function, based on pairs of
training instances, to use as a loss in place of the standard ranking function, with the
former being differentiable (ranking is not) and thus prone to be used with gradient
descent methods; ii) RankNet evolved in λ-Rank [24] by introducing the concept of
the lambda-scores (an approximation of the gradient local to two training instances)
and finally in λ-MART [23], by combining together a gradient boosting regression
tree (MART) model with the lambda-scores. Despite λ-MART has been presented
in 2010, it is still one of the state-of-the-art list-wise LtR algorithm. Argawal et al.
[1] proposed a method for learning a ranking function from data represented in the
form of a (similarity) graph. Also Dekel et al. [57] proposed a similar approach, but
differently from the previous work, an arc from A to B means that A is to be ranked

25

2. Background

higher than B (pairwise relative ordering). Radlinski and Joachims [135] presented an
algorithm for learning the ranking of web search results by exploiting click-through
data. Finally, several works addressed the problem of focusing mostly on top-rated
documents [49, 90, 147].

2.2.2.2 Benchmark Datasets for LtR

The rapid expansion in popularity of learning to rank techniques for IR highlighted
the need for large corpora of annotated datasets specifically designed for the task.
Indeed, while the application of LtR techniques involves the creation of ad-hoc datasets
with task-specific features, the proposal of new LtR models demands for a shared
experimental platform to make meaningful comparison among different solutions in
terms of common evaluation methodologies (e.g., fixed metrics). The main ingredients
of such experimental platform are reliable corpora of documents, selected queries for
training and test, human assessed relevance labels, and feature vectors extracted for
each query/document pair.

In 2007 Microsoft tackled the problem, building a popular benchmark collection
for LEarning TO Rank (LETOR)13. This collection is based on multiple, widely
adopted, data corpora and query sets. The documents were sampled, feature vectors
for query-documents pairs were extracted, and finally the dataset split in 5 folds
according to standard IR techniques. The performances of popular LtR algorithms
were also provided, in order to facilitate the comparison with state-of-the-art techniques.
The framework has been actively maintained and updated several times, providing
additional material for the research community in such a way to help researcher go
beyond state-of-the-art LtR methods.

The latest LETOR update is dated 2010 and currently the collection is made up
of the following datasets:

• Two Microsoft datasets, namely MSLR-WEB30k and MSLR-WEB10k, composed
respectively by 30k and 10k queries, with the second that represents a random
sampling of the first. Each document-query pair is represented with a 136-
dimensional feature vector. These datasets have an average number of documents
per query of ≈ 120, and were released on June 16, 2010.

• Two datasets, namely Set 1 and Set 2, released by Yahoo! Labs in the context
of the Learning to Rank challenge they organized in March 2010. The Set 1

13http://research.microsoft.com/en-us/um/beijing/projects/letor/

26

http://research.microsoft.com/en-us/um/beijing/projects/letor/

2. Background

dataset, which is also the biggest one, contains about 30k queries and 710k query-
documents pairs (on average ≈ 24 documents per query), and the documents
are described by 519 features. The Set 2 dataset contains ≈ 6k queries and
173k query-document pairs (≈ 27 document per query on average), with 596
features per document.

• Eight datasets released as part of the LETOR 4.0 version, release in June
2009 and covering different methodology of the learning to rank problem (i.e.,
supervised ranking, semi-supervised ranking, rank aggregation and listwise
ranking). These datasets are built using the Gov2 web page collection (25M
pages) and two query set, namely MQ2007 and MWQ2008, released by the
Million Query (1MQ) Track in 2007 and 2008. The first query set contains 1700
queries, with the second 800.

• Several datasets, released as part of the LETOR 3.0 version, which in turn
represent updated versions of the 1.0 and 2.0 versions. This version is based on
the Gov web page collection (1M pages) and on the OHSUMED corpus [132],
using respectively query sets from the TREC Web Track [51, 44] and from
OHSUMED itself. These datasets are quite small (less than 1k queries) and are
rarely used for LtR techniques, in favor of bigger datasets.

In 2016, the Tiscali Istella WSE released an additional learning to rank dataset to
the public14. To date, this is the largest public LETOR dataset available, particularly
useful for large-scale experiments on the efficiency and scalability of LETOR solutions.
This dataset have been released in two different versions: i) a bigger version, namely
Istella LETOR [55], composed of 33k queries and 220 features for each of the 20M
query-document pairs, thus having 316 documents per query on average; ii) a smaller
one, namely Istella-S LETOR [98], which represents a sampling of the irrelevant pairs
with respect to the previous version, so as to reach an average of 103 documents per
query on average. The number of queries and features of the second version are thus
the same of the full dataset.

The relevance judgments of all the datasets except LETOR 3.0 range between
0 (irrelevant) to 4 (perfectly relevant), thus allowing the training of a fine grained
ranking function. These datasets are usually exported in the SVM light format, as
shown in Figure 2.3, a matrix style where each row is a query-document pair, the
first column identify the relevance judgment, the second the query-id and the others
describe the features.

14http://blog.istella.it/istella-learning-to-rank-dataset/

27

http://blog.istella.it/istella-learning-to-rank-dataset/

2. Background

Figure 2.3: SVM light format of the LETOR datasets

2.3 Retrieval Evaluation

Evaluate an Information Retrieval system means measuring its performance in answer-
ing user information needs. This represent a crucial activity, since we need objective
evaluation prior to put a new IR system online. Performance can be measured both
in terms of effectiveness, i.e., relevance of the retrieved documents in answering the
user information need, and in terms of efficiency, i.e., speed and resource usage of the
system in producing the results. While the latter is simpler to measure (e.g., average
time spent on answering queries, memory required to execute the candidate retrieval
and the ranking phases, etc.), the former is quite subtle. Indeed, user information
need is an abstract concept, which is translated into something more concrete by
the user writing the query. Moreover, the relevance of a document to a query is a
subjective judgment, i.e., distinct users could consider the same result differently, either
in terms of document relevance or ranking. However, this aspect can be mitigated
by computing average metrics above a collections of queries and interpreting the
result as a correlation with the preferences of a population of users. In the remainder
of this Section, we will describe the typical evaluation process of an IR system. In
Section 2.3.1 we present the methodologies adopted to evaluate such a system, while
Section 2.3.2 describe the most popular metrics adopted to objectively measure IR
effectiveness.

28

2. Background

2.3.1 Evaluation Methodologies

One of the most critical aspect in performing the evaluation of an IR system is in the
choice of the reference collection to use for measuring the metrics. Such a reference
collection can be defined as the collection composed by a set of documents D, a set of
queries Q, and a binary or multi-graded relevance score associated with each pair (di,
qj), where di ∈ D and qj ∈ Q. The relevance score is positive for documents relevant
with respect to the query, 0 otherwise. Such collections are of fundamental importance,
since they allow a clear comparison among different IR solutions. Moreover, evaluations
can be done quickly and the results achieved are reproducible.

Several relevance assignment (i.e., the task of assigning a relevance score to each pair
document-query) solutions have been proposed in literature [149]. The most popular
is the one that follow the Cranfield paradigm proposed in the 1967 by Cleverdon [46],
where expert judges are asked to provide relevance assessment to each document-query
pairs. This approach is somehow infeasible for large collections, since it would be
impossible to evaluate all the documents for each query (the number of documents
could be millions or even worse billions). However, it has been profitably adopted by
the Text REtrieval Conference (TREC) [174, 172, 122], one of the major conference
in information retrieval, designed to encourage reproducible research on large text
collections. TREC adopts the so called pooling method [157, 84] to mitigate the
above mentioned problem: in place of evaluating all the documents for each query,
they assume that most of the relevant documents can be found in the top-ranked
k documents from each of n independent retrieval systems. With n and k large
enough, the set of judged document can be assumed to be representative of the full
documents collection. The pooling method is based on the assumption that an IR
system rank documents according to their expected probability of relevance, following
the probability ranking principle [142].

An alternative solution to the relevance assignment problem is represented by the
usage of a crowd-sourcing platform to gather relevance scores at a larger scale [4]. This
solution scales better than the Cranfield-derived paradigm, because of the potentially
large number of “workers” that perform the annotations, and is usually cheaper, since
it involves normal people in place of expert judges (which need also to be trained
for the task). However, several considerations arise[33]: i) the design of the question
to present to the user is of fundamental importance; ii) the interface plays a central
role; iii) workers are not IR expert. Consequently the quality of the results has to
be controlled by using some quality checking technique, i.e., by occasionally using

29

2. Background

questions previously assessed by expert annotators checking whether the users answer
them accordingly.

A completely different evaluation methodology, not based on relevance assignment,
is the one exploiting users feedback on the relevance of the documents ranked in answer
to a query. It relies on the implicit feedback provided by the user when interacting
with the IR system. In this category falls the evaluations done using click-through
data [83, 136] (i.e., how many clicks a document collects when it is returned by the
IR system) or the time spent by a user on a given page, after having clicked on the
link in the result list (dwell time) [94, 2].

2.3.2 Evaluation Metrics

Several metrics have been proposed to evaluate the effectiveness of an IR system over
a benchmark test collection [149]. Probably the most adopted ones are precision and
recall [85], described for the first time together by Kent et al. back in 1955. In order
to give a formal definition of these and other metrics, let us introduce some formalism.
Consider a query q ∈ Q, with Q the query set of the test collection, a set Relq of
relevant documents for q, and a set Retq of documents retrieved by an IR system S in
answer to the query q. Let Ret(k)

q be the set of top k documents retrieved, according
to the ranking produced by S and to the cut off k.

Then, precision is defined as the fraction of retrieved documents that are relevant,
while recall is defined as the the fraction of relevant documents retrieved. Such
definitions assume that all the documents retrieved by the IR system are examined
by the user. However, only top k documents are usually seen by user, since the
presentation of the retrieved documents is split in several pages, according to the
ranking provided the the system S. Accordingly, revised definitions of precision and
recall that take into accounts only top k retrieved documents are defined as follows:

P@k(q) =
|Ret(k)

q ∩Relq|
|Ret(k)

q |
and R@k(q) =

|Ret(k)
q ∩Relq|
|Relq|

Since a benchmark test collection is usually composed by several distinct queries,
and the definition of precision and recall is for single queries, arise the need to aggregate
these values among all the test collection. The commonly adopted aggregation approach
is to average precision and recall for all the queries in Q:

P@k =
∑
q∈Q

P@k(q)
|Q|

and R@k =
∑
q∈Q

R@k(q)
|Q|

30

2. Background

Precision and recall have often an inverse relationship [75, 47], and it is common
the need to find a good trade-off between the two values [21, 71] (i.e., one can select
100% of relevant documents, with a recall value of 1, at the cost of a very low precision,
or the converse, improve the precision lowering the recall). This trade-off can usually
be plotted in the so called precision-recall curve. Sometimes, however, does not make
as much sense to find this trade-off, e.g., consider the first phase of a Web search
engine, where the goal is to identify as many as possible of the relevant documents,
thus maximizing recall.

When a single value which summarize both precision and recall is needed, it is
usually adopted the so called F-measure, a variant of the E-measure proposed by Van
Rijsgerben [169], where F = 1− E. The F-measure is defined as follows:

Fα@k = 1
α 1
P@k + (1− α) 1

R@k

where α is a factor to weight differently precision and recall. Equally weighting
the two terms is quite common and is obtained with a value of α = 0.5. The resulting
F-measure simplifies to:

F1@k = 2 · P@k ·R@k
P@k +R@k

which represents the harmonic mean of precision and recall, and is named F1.
The evaluation of an IR system using set-based metrics (like precision, recall and

F-measure) is limiting, since these metrics do not take into account the ranking of
the documents above the cut off k. Consider for example two systems retrieving the
same amount of relevant documents in the top k results, but one placing the relevant
documents at the top and the other at the bottom of this list. Their precision and
recall values will be exactly the same, disregarding to where the relevant documents
are placed.

Thus, one of the first metrics proposed to consider the order in which the returned
documents are presented is the Mean Average Precision (MAP) [182], defined as
follows:

AP@k(q) =
∑k
i=1 P@k(q) · relq(i)

|Relq|
and MAP@k =

∑
q∈Q

AP@k(q)
|Q|

where relq(i) denotes whether or not the i-th document in the ranking is relevant
for the query q. Another popular metrics is the Mean Reciprocal Rank (MRR) [173],
which is based on the assumption that for some tasks (e.g., question answering)

31

2. Background

more than the full ranking it is important the position of the first relevant document
returned. To this end, MRR is defined as follows:

MRR =
∑
q∈Q

1
rankq

where rankq is defined as the rank position of the first relevant document for the
query q.

While binary assessed datasets are popular in IR, and the above presented metrics
work well with these datasets, in some cases the relevance of a document to a query
is not either positive or negative but range in different level of usefulness. Consider
for instance the Web search engine scenario, where the documents are not of equal
relevance to the query of the user. In such situations, it is fundamental to rank
documents by their relevance, i.e., placing at the top of the result list highly relevant
documents, before mildly and partially relevant ones. Accordingly, arise the need to
develop novel metrics based on graded relevance judgments. To this end, Järvelin and
Kekäläinen [81] proposed the Discounted Cumulative Gain (DCG) metrics, and its
normalized version NDCG. These metrics adopt a log-based discount factor which
progressively reduces the document contribution as its rank increase. The overall idea
behind these metric is that the greater the ranked position of a relevant document, the
less valuable it is for the user, since the probability that the user will never examine
the document increase. The metrics are defined as follows:

DCG(q, k) =
k∑
i=1

2reli − 1
log2(i+ 1) and NDCG(q, k) = DCG(q, k)

IDCG(q, k)

where i denotes the position of the document in the ranked list, reli the graded
relevance of the document for query q, and IDCG the ideal DCG obtained on the
sorted list of documents by relevance. As usual, the NDCG for an entire test collection
is obtained by averaging the NDCG of all the queries q in Q.

32

Chapter 3

Learning Relatedness Measures for
Entity Linking

Entity Linking is the task of detecting, in text documents, relevant mentions to entities
of a given knowledge base. To this end, entity-linking algorithms use several signals
and features extracted from the input text or from the knowledge base. The most
important of such features is entity relatedness. Indeed, we argue that these algorithms
benefit from maximizing the relatedness among the relevant entities selected for
annotation, since this minimizes errors in disambiguating entity-linking.

The definition of an effective relatedness function is thus a crucial point in any entity-
linking algorithm. In this chapter we address the problem of learning high-quality entity
relatedness functions. First, we formalize the problem of learning entity relatedness as
a learning-to-rank problem. We propose a methodology to create reference datasets
on the basis of manually annotated data. We then show that our machine-learnt
entity relatedness function performs better than other relatedness functions previously
proposed, and, more importantly, improves the overall performance of different state-
of-the-art entity-linking algorithms. Finally, we present Dexter, an open-source
Entity Linking framework implementing various entity linking strategies and developed
as a product of the research activity for supporting the claim of this chapter.

3.1 Introduction

A typical entity linking system, as introduced in Section 2.1.4, performs the semantic
enrichment of the text in three main steps: spotting, disambiguation and filtering.
The spotting process identifies a set of candidate spots in the input document, and
produces a list of candidate entities for each spot. The disambiguation process selects,
for each spot, the most likely entity among the candidate list. The filtering process

33

3. Learning Relatedness Measures for Entity Linking

discards annotations that are considered not correct or consistent with the overall
interpretation of the document.

Let us introduce a simple example to describe how the entity linking process works:

On July 20, 1969, the Apollo 11 astronauts - Neil Armstrong, Michael
Collins, and Edwin “Buzz” Aldrin Jr. - realized President Kennedy’s
dream.

The text “President Kennedy” can be easily spotted and linked to John F. Kennedy,
since in Wikipedia there are 98 anchors exactly matching such fragment of text and
linking to the U.S. president page. In addition, the text “Apollo 11” may refer to
two distinct candidates: the famous spaceflight mission, or the 1996 film directed
by Norberto Barba. Similarly, the text “Michael Collins” may refer to either the
well known astronaut, or to the Irish leader and president of the Irish provisional
government in 1922. Indeed, mentions to the latter (408) are much more frequent
than those to the former (141)1.

The above spots and the relative candidate entities are further processed during the
disambiguation step. The goal of disambiguation is to select the best candidate entity
for each spot. This is usually done by considering the context of close mentions and by
maximizing some measure of relatedness among the linked entities [52, 61, 77, 117, 153].
In our example, the astronaut “Michael Collins” and the “Apollo 11” spaceflight mission
entities are preferred since they are clearly strongly related to each other and to the
other entities found in the document, i.e., Buzz Aldrin and John F. Kennedy.

Lastly, the already disambiguated spot (i.e., each spot is associated with a single
specific meaning) are processed during the filtering step, that is responsible for
selecting only relevant annotations. For instance, the word “the” may refer to the
entity associated with the definite article, but this linking might be relevant only for
documents discussing the English grammar.

The effectiveness of the entity relatedness function adopted is thus a key-point for
the accuracy of any entity-linking algorithm. In this chapter we propose a machine
learning approach to devise a high-quality entity relatedness function. The main
contributions can be summarized as follows:

• a formalization of the problem of devising entity relatedness functions as a
learning-to-rank problem;

1Throughout this work, we used the 04/03/2013 dump, available at http://dumps.wikimedia.
org/enwiki/20130403/enwiki-20130403-pages-articles.xml.bz2

34

http://dumps.wikimedia.org/enwiki/20130403/enwiki-20130403-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiki/20130403/enwiki-20130403-pages-articles.xml.bz2

3. Learning Relatedness Measures for Entity Linking

• a novel technique to build benchmark datasets for learning and testing entity
relatedness functions;

• an extensive experimentation showing that our automatically machine-learnt
function outperforms state-of-the-art relatedness functions. More importantly,
our approach can improve the performance of a whole class of entity-linking
algorithms;

• an open source publicly available framework for addressing the entity linking
problem and evaluating new algorithms in a fair test environment.

This chapter is organized as follows. In Section 3.2 we formalize the problem of
learning automatically a entity relatedness function. In Section 3.3 we discuss related
works, and how entity relatedness functions are used in these works. In Section 3.4 we
evaluate some machine machine-learnt entity relatedness functions, and in Section 3.5
we evaluate their impact on entity linking algorithms. In Section 3.6 we describe
Dexter, an Entity Linking framework providing the implementation of some popular
Entity Linking algorithms as well as the tools needed to develop new annotation
techniques. Finally, Section 3.7 provide a summary of the chapter.

3.2 Entity Relatedness Discovery

Given a set of known entities E from a knowledge base KB, and an unstructured text
document D, entity linking aims at identifying all the relevant mentions in D to the
entities of E . The entity linking process involves three steps that we are going to
detail in the following.

Spotting and Candidate Selection. Spotting aims at identifying spots, i.e., con-
tiguous sequences of n terms (n-grams) occurring in D that might mention some
entity e ∈ E . A common method to identify the spots SD = {s1, s2, . . .} is to exploit
a controlled vocabulary of spots L, and to search the input document for the n-grams
that exactly match an entry of this vocabulary.

When Wikipedia is used as KB, each Wikipedia article identifies an entity, and
the vocabulary L can be easily built by considering the article titles along with the
anchor texts of all internal Wikipedia hyperlinks.

Each spot si ∈ SD is then associated with a set of candidate entities C(si) ⊆ E .
This is done by considering all the entities of E that are referred to in KB by using spot
si as an anchor text. Unfortunately the same spot si can occur in different places of

35

3. Learning Relatedness Measures for Entity Linking

Figure 3.1: Entity relationships for spotting and disambiguation. Three spots extracted
from the above example are underlined: s1 = “Apollo 11”, s2 = “President Kennedy”,
and s3 = “Michael Collins”. The graph shows relatedness edges connecting candi-
dates entities. For simplicity of representation the candidates for spot s2 are omitted.
Rectangles are used to indicate correctly disambiguated entities, while ellipses refer to
other candidate entities.

KB (and even of D!) and refer to distinct entities. Finally, we denote by ε(si) ∈ C(si)
the entity that is actually mentioned by si in D.

Figure 3.1 illustrates the three spots {s1, s2, s3} (among others) detected in our
text example. For each si, the outgoing dashed directed edges identify the set of
candidate entities C(si), where ε(si) ∈ C(si), i.e., the entity that is actually mentioned
by si, is represented as a rectangle.

To limit the set of spots and candidate entities to the most meaningful ones,
link probability and commonness properties can be usefully exploited [112]. The link
probability for a spot si is defined as the number of times si occurs as a mention in
KB, divided by its total number of occurrences. This permits to discard spots that
are rarely used as a mention to a relevant entity. For example the spot “July 20”,
introduced in the example of Section 3.1, occurs hundreds of times in Wikipedia, and,
even if it is the title of an article, only in a few cases it used as anchor text.

The commonness of a candidate c ∈ C(si) for spot si is instead defined as the
fraction between the number of occurrences of si in KB actually referring to c, and
the total number of occurrences of si in KB as a mention to an entity. For example,
the spot “Michael Collins” may refer to more than 20 different entities, but the Irish
revolutionary leader (421 mentions, commonness 0.5), the film about his life (126
mentions, commonness 0.15) and the astronaut (132 mentions, commonness 0.15) are
largely the most common.

36

3. Learning Relatedness Measures for Entity Linking

Setting a threshold on minimum linking probability and minimum commonness
has been proven to be a simple and effective strategy to limit the number of spots and
associated candidates, without harming the recall of the entity linking process [117].

Disambiguation and Linking. Since in many cases we have several candidates
for a single spot si (i.e., |C(si)| > 1), the spot has to be disambiguated by choosing
the right entity ε(si) among the candidates C(si). For each spot, a disambiguation
algorithm outputs the selected entity and a confidence score.

In order to choose the best entity for a spot, disambiguation may exploit different
signals and features. These include commonness and linking probability, and many
others features considering the text surrounding the spot, and the other spots of the
document. The most important of such features is entity relatedness, usually defined
as a real function ρ : E × E → [0, 1], where 0 and 1 are the minimum and maximum
relatedness measure, respectively. To guarantee the accuracy of entity linking, the
entities selected by the disambiguation process to be linked to the detected spots have
in fact to be strongly related to each other.

Figure 3.1 shows the relatedness graph referred to our example. The selection of
the best entities is often implemented on top of this relatedness graph, where edges
are weighted by some entity relatedness function. Therefore, the role of such entity
relatedness function is crucial for the accuracy of the disambiguation process.

Even if the definition of a entity relatedness function is not a trivial task, several
works agree on the effectiveness of the Wikipedia-based relatedness function proposed
by Milne and Witten [117, 116]. The relatedness between two entities a and b is in
this case computed by exploiting the graph structure of Wikipedia:

ρMW(a,b) = 1− log(max(|in(a)|,|in(b)|))−log(|in(a)∩in(b)|)
log(|W |)− log(min(|in(a)|,|in(b)|))

where W is the set of all Wikipedia entities, while in(a) and in(b) are the sets of
Wikipedia articles linking to a and b, respectively. When |in(a) ∩ in(b)| = 0, we have
ρMW(a,b) = 0. In addition, ρMW is maximum (equal to 1) when in(a)∩ in(b) = in(a) =
in(b), and thus all the articles that cite a also cite b, and vice versa.

The ρMW function, promoting entities that are co-cited by the same Wikipedia
articles, is considered the state-of-the-art relatedness measure, adopted also in [61,
73, 78]. On the other hand, there is no guarantee that ρMW would produce a proper
scoring of the candidate entities.

Example 3.2.1 Given the entities a=“Andronicus of Rhodes”, b=“Chondrichthyes”,
and c=“Aristotle” occurring in a document, we have that ρMW(a, b) = 0.54 and

37

3. Learning Relatedness Measures for Entity Linking

ρMW(a, c) = 0.562. The connection between entities a and c is very strong since
Andronicus of Rhodes is credited with the production of the first reliable edition of
Aristotle’s works. The (unexpected) high relatedness score between entities a and b

is instead due to a single co-citing Wikipedia article (which is c) that reports about
Aristotle’s studies of a group of fishes he named selachians, a.k.a. chondrichthyes.
Therefore, in this case a single co-citation is enough to produce an unexpected high
value ρMW(a, b), which is similar to the expected large value of ρMW(a, c).

Another interesting observation is that ρMW is symmetric: Andronicus of Rhodes is
relevant to Aristotle, to the same degree Aristotle is relevant to Andronicus of Rhodes.

Filtering. Among all the annotated spots identified by the previous two steps, an
Entity Linking system has to selects only those relevant for the document, i.e., that
provides important facets or in general improve the comprehension of the document.
A common approach to filter irrelevant entities is to resort to the confidence score
produced by the disambiguation step. Indeed, this confidence score summarize the
relatedness between each entity and all the others, thus allowing its usage to select
the most likely matching entities, and to trade precision with recall. state-of-the-art
Entity Linking systems adopts a mixing approach, where a threshold is set on the
confidence score, the commonness and the link probability. The rationale behind this
approach is to avoid annotating rarely linked entities or highly improbable meanings.
Being dependent from the confidence score, also the filtering step is affected by the
entity relatedness function.

Our claim is that a good entity relatedness function ρ can improve the performance
of a large class of entity linking algorithms. In Section 3.3 we will discuss related
works and show the crucial role of entity relatedness functions in many proposals.
Here, we propose a set of properties that an optimal entity relatedness measure should
satisfy, and we formalize the problem of discovering a good entity relatedness function
into a learning-to-rank problem.

Relatedness as a Ranking Function. Suppose that an entity linking algorithm
identifies only two spots sh and si for a document D, and for these spots it generates
the two sets of candidate entities C(sh) and C(si) respectively. Most disambiguation
algorithms assume that if one of the candidate entities in C(sh) is highly related to
another entity in C(si), then it is very likely that they are the entities ε(sh) and ε(si)
actually mentioned by the two spots.

2The values to compute the two ρMW measures are: |in(a)| = 24, |in(b)| = 261, |in(c)| = 3502,
|in(a) ∩ in(b)| = 1, |in(a) ∩ in(c)| = 17, and |W | = 4, 255, 306.

38

3. Learning Relatedness Measures for Entity Linking

We claim that a good entity relatedness function ρ should promote the relatedness
of correct entities: given entity ε(sh), its relatedness with ε(si) should be larger then
that with any other candidate in C(si). This should hold for every spot si 6= sh.

Proposition 3.2.1 Given D, SD = {s1, s2, . . .}, and, for each spot si, C(si) and ε(si),
a relatedness function ρ improves entity-linking accuracy if the following constraint
holds:

∀sh ∈ SD, ∀si ∈ SD \ {sh}, ∀c ∈ C(si) \ {ε(si)} :

ρ(ε(sh), ε(si)) > ρ(ε(sh), c). (3.1)

Indeed, the constraint in Eq. 3.1 nicely fits into a learning-to-rank based formula-
tion [82]. The relatedness function ρ can be in fact modeled as a ranking function,
with entity ε(sh) used as a query. According to the above Proposition, function ρ

should score all the entities actually mentioned in the document, i.e. ε(si) for all
si 6= sh, higher than any other false-positive candidate, i.e. c ∈ C(si) \ {ε(si)}) for all
si 6= sh.

Given document D and spots SD = {s1, s2, . . . , sh, . . .}, we denote by Rh
D =

∪i 6=hC(si) the set of candidates to be ranked for query ε(sh), and by EhD = ∪i 6=hε(si)
the set of relevant entities for the query, where EhD ⊆ Rh

D. From an information
retrieval perspective, items in Rh

D are relevant for query ε(sh) if and only if they
belongs to EhD. Note that we are considering the spots of D altogether, and therefore
there are potentially many related entities to the query ε(sh) that should be ranked
high. Let us denote with πhρ the score descending ordering of Rh

D induced by our
ranking relatedness function ρ for query ε(sh). According to Proposition 3.2.1, a scored
list πhρ is effective when entities in EhD are in the top positions of the list. We can
thus measure the effectiveness of our ranking relatedness function by using common
information retrieval quality metrics such as NDCG [81]. In our context we define
DCG(πhρ) as:

DCG(πhρ) =
|πhρ |∑
j=1

Jπhρ [j] ∈ EhDK
log(j + 1)

where πhρ [j] denotes the j-th item of the scored list, and JxK equals 1 if x is true and 0
otherwise. NDCG is defined as the usual normalized version of DCG.

We can now introduce the Entity Relatedness Discovery problem.

39

3. Learning Relatedness Measures for Entity Linking

Problem 3.2.1 (Entity Relatedness Discovery)
Let D be a collection of entity-linked documents, where for each document D ∈ D
and every relevant spot si of SD we know ε(si). Given the entity ε(sh) and the set
Rh
D, a ranking relatedness function ρ induces an ordering πhρ of Rh

D.
The Entity Relatedness Discovery Problem requires to find the function ρ that
maximizes the ranking quality:

1
|D|

∑
D∈D

1
|SD|

∑
sh∈SD

NDCG(πhρ)

In our experiments, we chose to optimize NDCG to find a good entity relatedness
function, but we used several other ranking quality functions to assess the goodness
of results.

Unlike previous approaches, we do not suggest a specific novel entity relatedness
function. Rather, we define a learning-to-rank framework to discover the optimal
entity relatedness function.

3.3 Related Work

In the following we discuss how the notion of entity relatedness is exploited by state-
of-the-art entity linking algorithms. Emphasis is given to the solutions proposed in
[117] and [73] and [61] which are the most relevant proposals in the field, and they are
all adopting ρMW as entity relatedness function. We show that the entity relatedness
function defined in Proposition 3.2.1 can replace ρMW since it fits better the framework
and the objectives of the above algorithms.

WikiMiner [117]. Given a document D, let us consider its spots SD and for
each spot si the associated set of candidates C(si). Let us suppose that a subset of
the spots are associated with only a single entity. We denote with U ⊆ E the context:
the set of unambiguous entities linked to spots in SD, i.e., U = ⋃

|C(si)|=1 ε(si). The
WikiMiner algorithm exploits the entities in U as safe reference points to help the
disambiguation of the other ambiguous spots for which |C(si)| > 1 holds. The idea
is to select for every ambiguous spot of SD the entity which is, on average, the most
related with the “safe” entities in U . The relatedness function adopted is ρMW. It is
worth noting that not all the entities in U have the same impact: an entity u ∈ U is
in fact considered of high quality if it is strongly related to the other entities in U ,
and if the link probability of the corresponding spot is high. These two criteria allow a
weight wu, 0 ≤ wu ≤ 1 to be assigned to each entity u in U . Note that the main aim
of this weight is to reduce the impact of low-quality entities occurring in U . When

40

3. Learning Relatedness Measures for Entity Linking

applied to our simple example, the low resulting weight would demote the importance
of the safe entity “July 20”.

Every candidate c in C(si) is scored according to the following function:

score(c | U) = 1∑
uwu

∑
u∈U

wu · ρMW(u, c). (3.2)

It is easy to show that the accuracy of the disambiguation would improve if we
adopted, instead of ρMW, a relatedness function ρ that satisfies our Proposition 3.2.1.

Given an entity u ∈ U , we can rewrite Eq. 3.1 and derive as follows:

ρ(u, ε(si)) > ρ(u, c) ⇒
1∑
uwu

∑
u∈U

wu · ρ(u, ε(si)) >
1∑
uwu

∑
u∈U

wu · ρ(u, c) ⇒

score(ε(si) | U) > score(c | U)

Therefore, a relatedness function satisfying Proposition 3.2.1 would always correctly
rank entity ε(si) higher than any other candidate for the corresponding spot si even
when integrated in the WikiMiner framework.

Interestingly, the authors of [117] use machine learning to combine the above
relatedness score with other two features: commonness and context quality (measured
as ∑

wu). They experiment with a training set built from 500 Wikipedia articles.
However, machine learning is not exploited to improve the relatedness function as in
our proposal.

Referent Graph [73]. Referent Graph, a graph-based method still exploiting the
relatedness function ρMW, is proposed in [73]. Let RG(V,E) be a weighted directed
graph where the nodes includes all the spots si of SD and candidates C(si). RG has
a directed edge from si to every c ∈ C(si), and reciprocal edges connecting every
pair of candidate entities a and b, a ∈ C(si), b ∈ C(sh), i 6= h. Spot-candidate edges
(si, c) are weighted according to the cosine similarity between the Wikipedia article
corresponding to entity c and a local context window of 50 words around the spot
si. The candidate-candidate edges (a, b) are weighted by using ρMW. Finally, weights
are normalized so that weights on outgoing edges from a given node always sum up
to 1. The graph shown in Figure 3.1 is a toy referent graph, where relatedness edges
connecting candidates entities for the spot s1 with candidates entities for the spot s3

are omitted for clarity.
The score of a candidate entity for a given spot is given by the steady state

distribution of a random walk with restarts [125] in RG, where candidate nodes have

41

3. Learning Relatedness Measures for Entity Linking

restart probability 0, and spot nodes have a restart probability proportional to their
inverse document frequency score in the Wikipedia corpus. Also in this case, assigning
a different restart probability to spot nodes, and weighting as above explained spot-
candidate edges is aimed to limit the impact of non relevant or incorrectly matched
mentions.

The rationale of the random walk approach is to evaluate the relationships among
the whole set of candidates simultaneously, in contrast to previous methods where
the scores of candidate entities are assigned independently of each other. Also in this
algorithm the choice of the entity relatedness function ρ has a strong impact on the
performance since it drives the random walk process. A set of entities being very
related to each other is likely to produce a reinforcement loop, and eventually include
the most probable states of the random walk.

Even if we do not provide a formal proof as for WikiMiner, it is clear that a good
relatedness function should promote the reciprocal relatedness among the right entities
in the graph, thus helping the random walk to converge to the correct ranking of
candidates.

A similar approach is used in [180], where a slightly differently weighted referent
graph is pruned progressively by removing iteratively the node with the lowest weighted
degree (sum of the weights of incoming edges). Even in this case, the weights of
candidate-candidate edges are computed with the ρMW relatedness function. The
paper do not compare performances with those of [117], [73], or other algorithms, and
it is thus difficult to estimate the impact of this proposal.

TAGME [61]. TAGME is an annotation framework focussing on efficiency that
exploits two main features: commonness and the ρMW relatedness. First, candidate
entities for a spot si are ranked according to their average relatedness with other
candidate entities for spots sj 6= si, weighted by their commonness. Then, from the
top 30% candidates of the resulting ranked list, the entity with the largest commonness
is finally selected.

Also this algorithm would benefit by a relatedness function satisfying Proposi-
tion 3.2.1, since it would help to boost the score of the actual entities mentioned in
the document. However, the benefit is limited, since the relatedness function impacts
more on the pruning irrelevant candidates, while the final choice of the best entity is
mainly driven by the commonness feature.

Other approaches. Relatedness function ρMW is partially inspired by the so-
called Normalized Google Distance (NGD) [43], which borrows from Kolmogorov
complexity and information distance concepts. While NDG is tailored to measure

42

3. Learning Relatedness Measures for Entity Linking

similarity between words or phrases, ρMW measure is specifically tailored to entities
represented in a graph structure such as the one of Wikipedia. In [67] another
Wikipedia-based relatedness measure, named ESA, is proposed. A word is represented
in a high dimensional space by considering for each Wikipedia article the relevances of
the word in the article, and by summing such score vectors for longer text fragments.
Also [77] investigates new text-based relatedness measures that try to go beyond
link-based similarities. The study conducted in [116] shows however that ESA has
a performance similar to that of ρMilne, with the latter being much cheaper to be
computed since it does not require to index the whole Wikipedia textual content. In
[153], the authors improve only slightly the solution proposed in [52], but they do not
provide any comparison with [117, 73].

The authors of [170] propose a machine learning approach to rank entity-based
facets related to a given Web search query. Since the paper focuses on a special
set of entities, such as monument and celebrities, the presented technique exploits
information coming from image search queries and Flickr image tags. The goal of
[170] is not to discover the degree of relatedness between entities, but rather to suggest
entities that are most likely to generate a large click through.

Finally, several works [58, 61, 117] exploit machine learning techniques for entity
linking, but in this chapter we use learning to rank for improving the relatedness
function, which is important for improving quality of entity linking task as well in
other tasks, such as entity ranking [19] or entity suggestion [35].

3.4 Entity relatedness evaluation

In the following we describe the methodology adopted to build a reference dataset for
the learning process, the feature used to describe entities, and finally the performance
of two automatically machine-learnt relatedness functions.

3.4.1 Building a benchmark dataset

In order to evaluate the impact of different relatedness functions, we built a benchmark
dataset for Problem 3.2.1. This dataset, used to train and test our relatedness function,
contains a set of tuples in the form 〈ε,Rε, Eε〉, where ε is an entity occurring in a
document D, Rε is a set of candidate entities possibly occurring in D, and Eε ⊆ Rε

are the relevant entities occurring in D besides ε.
In order to build these tuples, we need both positive and negative examples, i.e.,

positive ones from Eε and negative ones fromRε\Eε. In most entity-annotated datasets,

43

3. Learning Relatedness Measures for Entity Linking

each document is annotated by one or more human assessors, who manually performed
some kind of spotting and entity disambiguation tasks. Therefore, for each document
D we only have positive examples, i.e. the set AD of entities actually occurring in D.
In addition, we do not know the spot in D that actually mentions each entity in AD.

Hence, to generate our dataset for training our relatedness function, we have to
devise a sort of reverse annotation process, aimed at discovering the spots associated
with the known entities, and the potential candidates of such spots. In this way, we
identify also the negative examples to build the tuples 〈ε,Rε, Eε〉. In more detail, we
generate our benchmark dataset as described below:

1. we set up a knowledge base KB of entities based on Wikipedia. This contains
entities, their mentions, i.e, anchor text of incoming links and page title, and the
hyper-link structure; we created a vocabulary of entity mentions L containing
only spots with link probability larger than 2%. Finally, for each spot we
disregarded entities with commonness smaller than 3%;

2. we generate all n-grams of every given document D, with n ≤ 6, and we match
them against L to devise the spots SD;

3. for each spot si in SD, we retrieve the candidate entities C(si) as the set of
entities linked in Wikipedia by the same n-gram;

4. we finally consider the set of relevant entities AD of D, as annotated by the
human assessors. Since we do not know the real association between each spot
si and the human annotated entities in AD, for each spot si we look for the
actual entity ε(si) in the set C(si) ∩ AD. If C(si) ∩ AD = ∅, we assume that
ε(si) is not known, and thus discard si. If |C(si)∩AD| > 13, we also throw away
si, since we are not able to disambiguate. Finally, if |C(si) ∩ AD| = 1, then
ε(si) ∈ C(si) ∩ AD is the actual entity to link to si.

At the end of the process, for each document D we have: a set of spots SD and,
for each spot si, a set of candidate entities C(si) and also the mentioned entity ε(si).

Thus, for every spot sh of every document D, we can generate a tuple 〈ε,Rε, Eε〉
for the benchmark dataset that contains: (i) the actually mentioned entity ε(si), (ii)
the set of candidate entities for every other spot in the document, and (iii) the set of
correctly linked, and thus related, entities in the document. By assuming that close
spots are more likely to be related, we did not consider in this tuple generation step
those spots occurring at a distance larger than ω = 150 characters from the current
spot associated with entity ε.

3In our datasets, this happens in only 2% of the cases.

44

3. Learning Relatedness Measures for Entity Linking

In our experiments we used a subset of the CoNLL 2003 entity recognition [78]
task dataset, which includes annotated news stories of the Reuters Corpus V1. The
dataset contains 1494 documents with an average length of 187 terms. Each document
contains on average 11.7 entities.

We processed the corpus as explained above, and we thus built a dataset for
evaluating the relatedness containing over 1.6 million tuples. We split the tuples
in training, validation, and test set, respectively containing 977, 514, 369, 798 and
302, 529 records. Please observe that we take care of producing each dataset from a
disjoint subset of documents in the collection, so that the tuples in the training and
test sets were actually generated from a different subset of documents.

3.4.2 Features

A pair of entities a and b, for which the relatedness ρ(a, b) has to be estimated, is
represented by a set of 27 features shown in Table 3.1. The choice of such features is
driven by the following considerations. First, we want to maximize their applicability
by using publicly available data, and by using measures that can be easily applied
to other entity knowledge bases, e.g., FreeBase.4 For this reason we do not use
click-through, access log, or query log based data, which are very difficult to obtain.
We use instead several features related to the link structure of our knowledge base,
such as the number of in-links in(e) and out-links out(e) of an entity e.

Second, there are applications of the entity relatedness function where the concept of
spot is not applicable. Consider, for instance, the case of related entity recommendation
where the query is a entity that is not associated with any spot. Therefore, we do not
include features such as link probability and commonness.

Finally, we do not include text-based similarity measures, such as cosine similarity
between Wikipedia articles pages, because this kind of approaches have been proven to
perform similarly to the ρMW measure, but are much more computationally expensive
[116].

Note that, by using the proposed machine learning approach, the feature set we
adopt can be easily enriched with any additional feature, or by analyzing any other
different knowledge base.

We categorize the features listed in Table 3.1 in three categories: singleton, asym-
metric and symmetric.

4http://www.freebase.com/

45

http://www.freebase.com/

3. Learning Relatedness Measures for Entity Linking

Singleton Features

P(a) probability of a mention to entity a:
P (a) = ‖in(a)|/|W |.

H(a) entropy of a:
H(a) = −P (a) log(P (a))− (1− P (a)) log(1− P (a)).

Asymmetric Features

P(a—b) conditional probability of the entity a given b:
P (a|b) = |in(a) ∩ in(b)| / |in(b)|.

Link(a→b) equals 1 if a links to b, and 0 otherwise.

P (a→b) probability that a links to b:
equals 1/|out(a)| if a links to b, and 0 otherwise.

Friend(a, b) equals 1 if a links to b,
and |out(a) ∩ in(b)|/|out(a)| otherwise.

KL(a‖b) Kullback-Leibler divergence:
KL(a‖b) = log P (a)

P (b)P (a) + log 1−P (a)
1−P (b) (1− P (a)).

Symmetric Features
ρMW (a, b) co-citatation based similarity [117].
J(a, b) Jaccard similarity: J(a, b) = in(a)∩in(b)

in(a)∪in(b) .

P (a, b) joint probability of entities a and b:
P (a, b) = P (a|b) · P (b) = P (b|a) · P (a).

Link(a↔b) equals 1 if a links to b and vice versa, 0 otherwise.
AvgFr(a, b) average friendship: (Friend(a, b) + Friend(b, a))/2.
ρMW

out (a, b) ρMW considering outgoing links.
ρMW

in-out(a, b) ρMW considering the union of the incoming and outgoing links.
Jout(a, b) Jaccard similarity considering the outgoing links.

Jin-out(a, b)
Jaccard similarity considering the union of the incoming and outgoing
links.

χ2(a, b)

χ2 statistic:
χ2(a, b) =(|in(b) ∩ in(a)| · (|W | − |in(b) ∪ in(a)|)+

−|in(b) \ in(a)| · |in(a) \ in(b)|)2·
· |W |
|in(a)|·|in(b)|(|W |−|in(a)|)(|W |−|in(b)|)

χ2
out(a, b) χ2 statistic considering the outgoing links.
χ2

in-out(a, b) χ2 statistic considering the union of the incoming and outgoing links.

PMI(a, b) point-wise mutual information:
log P (b|a)

P (b) = log P (a|b)
P (a) = log |in(b)∩in(a)||W |

|in(b)||in(a)|

Table 3.1: Features for entity relatedness learning.

Singleton features regard a single entity. They include only frequency and entropy,
computed on the basis of the frequency of Wikipedia links to the entity article page.
These features are computed for both entities of a given pair (a, b), resulting in four
scores.

46

3. Learning Relatedness Measures for Entity Linking

We claim that a relatedness function should not be symmetric. Consider for example
the entities Neil Armstrong and United States of America: it seems reasonable that
the relatedness of United States of America given Neil Armstrong is greater than the
relatedness of Neil Armstrong given the United States of America. For this reason we
included five asymmetric features, which are computed in both directions of the pair,
resulting in ten scores.

Last, we considered 13 symmetric features, such as ρMW. Some of these features
derive from asymmetric ones, and others are variations computed by considering
outgoing links of an entity instead of incoming ones.

All the above features are computed on the basis of the same Wikipedia dump
mentioned in the Section 3.1. Therefore, features are not extracted on the training or
test dataset.

3.4.3 Quality of entity relatedness

To solve the Entity Relatedness Discovery problem, we used an existing tool for
learning ranking functions, named RankLib.5 This includes the implementation of
several effective algorithms. We report the results of the two most effective: Gradient-
Boosted Regression Trees [66] and LambdaMart [179]. We denote the models built
with those algorithm ρGDBT and ρλMART.

Note that the two models differ significantly in the objective function being
optimized. The ρλMART model was built by a list-wise algorithm and minimizing
NDCG@10. This is indeed in perfect agreement with our definition of entity relatedness
problem, and with the benchmark created. On the other hand, the ρGDBT model
optimizes the error in predicting the class label (i.e., relevant vs. not relevant) of a
given instance. Therefore, the prediction can be used to produce a ranking, but the
model does not optimize the ranking directly.

In Table 3.2 we report the performance of the two relatedness functions ρGDBT

and ρλMART, and compare it against ρMW. The improvement of using a machine-
learnt function that exploits 27 features is apparent with every ranking quality
measure adopted. If we consider NDCG@10, ρλMART improves over ρMW by a factor
of 25%. The two machine-learnt functions have very similar performance, with
no significant difference. Recalling to the Example 3.2.1, ρGDBT(a,b) = 0.0015 while
ρGDBT(a,c) = 0.66: the value of ρGDBT (a,b) (Andronicus of Rhodes and Chondrichthyes)
is low as we expected.

5http://people.cs.umass.edu/˜vdang/ranklib.html

47

http://people.cs.umass.edu/~vdang/ranklib.html

3. Learning Relatedness Measures for Entity Linking

Features NDCG@5 NDCG@10 P@1 P@5 P@10 MRR

ρMW 0.59 0.63 0.62 0.42 0.31 0.72
ρλMART 0.75 0.79 0.80 0.51 0.36 0.87
ρGDBT 0.75 0.78 0.80 0.51 0.35 0.86

Table 3.2: Entity ranking performance of machine-learnt relatedness functions.

In order to gain some insight on the machine-learnt functions, and on the role of
the different features, we run a study based on a näıve feature selection algorithm [69].
This algorithm ranks features by leveraging their similarity and the score of single-
features models. It promotes effective features and demotes features similar to any
other already selected one. Our objective here is not to find the best performing
subset of features, but rather to investigate the importance of ρMW compared with
other features not considered by state-of-the-art algorithm.

We measured the performance of the models built by means of LambdaMart
algorithm when exploiting a single feature. In Table 3.3 we reported for each feature
the score it can achieve. Recall that the relatedness function is required to learn a
score of a candidate entity w.r.t. to a correct entity, which in the table are denoted
with c and e respectively. Therefore, P (c|e) is the conditional probability of finding the
candidate entity c given our actually mentioned entity e, while P (e|c) is the converse.

Results are very similar for every quality measure. Let’s consider NDCG @10.
The function ρMW is the fourth most effective feature with a score slightly below
that of Jaccard and Friend functions. The most effective feature is P (c|e), that is
the conditional probability of the finding a mention to entity c given a Wikipedia
page that mentions the entity e. Note that this quite intuitive feature behaves largely
better than ρMW with a score of .72, but it is however far from the score achievable
with the full set of features. Also, note that statistic P (c|e) comes from a collection
being completely different from the test set, since it was computed on the Wikipedia
corpus and not on the train collection. A third interesting property is the asymmetry
of this feature.

The second column of Table 3.3 reports the rank assigned by feature selection
algorithm. While P (c|e) is ranked first being the most effective features, ρMW is ranked
only 19-th. This is due to the heuristic strategy of the algorithm, which demotes
features if they are similar to previously selected ones.

Figure 3.2 shows the result of a multidimensional scaling mapping of the 27
features into a 2-dimensional space, thus approximately preserving feature similarity.
We measured the similarity between a feature pair according to the Kendall’s τ

48

3. Learning Relatedness Measures for Entity Linking

Features Rank NDCG@5 NDCG@10 P@5 P@10 MRR

P(c—e) 1 0.68 0.72 0.47 0.33 0.80
J(e, c) 2 0.62 0.66 0.44 0.31 0.75
Friend(e,c) 24 0.59 0.64 0.42 0.31 0.71
ρMW (e, c) 19 0.59 0.63 0.42 0.31 0.72
Jin−out(e, c) 26 0.60 0.63 0.42 0.30 0.74
AvgFr(e, c) 3 0.57 0.62 0.40 0.30 0.69
P(e,c) 27 0.56 0.60 0.39 0.28 0.70
ρMW

in-out(a, b) 9 0.56 0.60 0.40 0.29 0.71
Jin−out(e, c) 4 0.54 0.58 0.39 0.28 0.67
ρMW

out (a, b) 17 0.52 0.55 0.37 0.27 0.65
χ2(e, c) 25 0.51 0.55 0.37 0.27 0.64
P(e|c) 22 0.48 0.54 0.36 0.28 0.60
H(c) 5 0.48 0.51 0.30 0.20 0.68
χ2

out(e, c) 16 0.47 0.50 0.34 0.24 0.61
AvgFr(c, e) 21 0.44 0.49 0.33 0.25 0.56
P(c) 13 0.47 0.49 0.29 0.19 0.66
PMI(e, c) 23 0.42 0.48 0.32 0.25 0.53
χ2

in−out(e, c) 11 0.44 0.46 0.33 0.23 0.58
P (e→c) 18 0.37 0.38 0.24 0.15 0.55
Link(e→c) 20 0.37 0.38 0.24 0.15 0.55
P (c→e) 12 0.35 0.36 0.22 0.14 0.52
Link(c→e) 15 0.31 0.33 0.21 0.14 0.46
KL(c‖e) 10 0.32 0.32 0.19 0.12 0.51
Link(c↔e) 14 0.28 0.29 0.17 0.11 0.45
KL(e‖c) 8 0.26 0.28 0.17 0.11 0.44
P(e) 6 0.08 0.11 0.06 0.06 0.17
H(e) 7 0.08 0.11 0.06 0.06 0.17

Table 3.3: Entity ranking performance with a single feature. Features are sorted by
NDCG@10.

coefficient. We can identify two interesting clusters. The first contains ρMW together
with Jin-out and χ2, and, indeed, the first two have identical performance. The second
cluster includes the two best performing features P (c|e), P (e, c) and also Jaccard
similarity. Even if the features in those clusters are similar w.r.t. the Kendall’s τ
coefficient, the score of the corresponding single feature model is very different, in
particular for the best scoring P (c|e). This suggest that the Kendall’s τ coefficient
may not be the best indicator in this context, and the feature selection may not be
trivial.

Finally, in Figure 3.3 we measured the relative improvement provided by each

49

3. Learning Relatedness Measures for Entity Linking

Figure 3.2: Multidimensional mapping of feature similarity computed using Kendall’s
τ coefficient. The size of each circle is proportional to the single-feature model score.

50

3. Learning Relatedness Measures for Entity Linking

0 5 10 15 20 25

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Feature ID

N
D
C
G

@
k

k = 5
k = 10

Figure 3.3: Incremental performance of ρλMART.

feature. Features are sorted according to the ranking given by the feature selection
algorithm mentioned above, and we measured the performance of the model by adding
features incrementally. The model achieves almost optimal performance with the
first 5 features. Optimal performance are achieved after 9 features are introduced in
to the model. This shows that not all the features are necessary, and that a wisely
chosen subset of features can provide optimal performance, or help in trading accuracy
with efficiency. Several existing feature selection techniques can be used to this end.
However, this is outside the scope of this work.

3.5 Impact on Entity Linking

We run a set of experiments to show how the automatically machine-learnt relatedness
function can be profitably exploited by a class of entity disambiguation algorithms.
We plugged the machine-learnt function into several annotation methods, which can
be considered the state-of-the-art ones:

WikiMiner. The method proposed by Milne and Witten that exploits the relatedness
function to identify a subset of not ambiguous entities called context. Given an
ambiguous spot, the relatedness function is employed again to select the entity
that is more coherent with the context;

51

3. Learning Relatedness Measures for Entity Linking

Referent Graph. This method takes into account all the possible entities associated
with the set of detected spots. The disambiguation is performed by modeling
the entities as nodes of a complete graph, where the weight of each edge is the
relatedness between the connected nodes;

TAGME. This annotator computes the weighted average relatedness between an
entity and all the other possible entities associated with the spots. It disam-
biguates the entity by selecting the most common entities in the subset of the
possible meanings with the highest average relatedness with the others.

With the exception of WikiMiner, the source code of the frameworks proposed
is not publicly available. Furthermore the code released is not easy to extend for
implementing other annotators. Annotation depends on several subtasks, i.e., (i)
process Wikipedia (parse the dump, generate the possible spots, filter stop-words, etc.);
(ii) perform the spotting (relying on a dictionary or using a name entity recognition
framework, like the Stanford Named Entity Recognizer6); (iii) disambiguate the
ambiguous spots, and (iv) rank entity candidates.

It is worth to observe that a good performance obtained in the first tasks may
heavily impact on the performance of the whole system, as well as using a different
dump of Wikipedia (i.e., old dumps contain less entities, but also have less ambiguity
for each spot), or a different commonness or link probability thresholds. For these
reasons, we strongly believe that for this kind of research it is important to share a
unique framework where these tasks are well separated and easy to isolate in order
to study their performance. This would also allow us to experiment hybrid solutions
combining subtask solutions of different methods (e.g., the TAGME spotter with the
WikiMiner disambiguation algorithm).

Due to the aforementioned reasons, we developed Dexter [36, 38], an entity linking
framework, containing several utilities to manage the Wikipedia dump, a spotter
based on the anchors and titles extracted from the dump, and data structures for
retrieving all the features used by the annotators. Unlike WikiMiner, our framework
does not rely on an external database to store the labels. In addition, during the
execution it can maintain the model either on the disk or in main memory to improve
performance. The framework runs also on normal hardware, since we exploit efficient
data structures in order to maintain compressed data in main memory. The dataset
we used, the source code and additional details about the framework can be found at

6http://www-nlp.stanford.edu/software/CRF-NER.shtml

52

http://www-nlp.stanford.edu/software/CRF-NER.shtml

3. Learning Relatedness Measures for Entity Linking

this address: http://dexter.isti.cnr.it/. For a detailed description of Dexter
refers to Section 3.6.

We implemented WikiMiner, Referent Graph and TAGME in our framework, in
order to verify if our relatedness function is able to improve the annotator perfor-
mance. During the implementation, we slightly modified WikiMiner and TAGME: in
WikiMiner we decided to rank the entities using a linear combination of commonness,
link probability, and average relatedness with the context (the authors employed a
classifier trained with several features that were heavy to retrieve); in TAGME we
relied on our spotter that returns all the possible spots detected in the text, while
in the original version the authors employ a specific policy for deleting spots in case
of overlaps (we remove overlapping annotations at the end of the process, relying on
the final ranking of the entities). We set the commonness threshold to 0.03 and we
discard spots with link probability lower than 0.02.

Note that we are not interested in the absolute entity-linking performance of
WikiMiner, TAGME, and Referent Graph, but rather on how the relatedness function
impacts on the disambiguation process. For this reason, we implemented all the three
algorithms within the same framework, and thus providing them with the output of
the same spotter. For the same reason, the results of the Web services implementation
of WikiMiner and TAGME are not reported. Those services use a different dump
of Wikipedia, which is processed in a different way (e.g., tokenization, etc.), and
they exploit a slightly different spotting algorithm, and this makes such results non
significant within the scope of this work. However, it is important to report that we
observed that our implementation always improves over the WikiMiner online service,
and that it behaves only slightly worse then TAGME after the top 5 results, probably
due to a different processing of Wikipedia.

We compared the results obtained by embedding different implementations of ρ:
ρMW, ρλMART, and ρGDBT. Note that by embedding ρMW we are replicating the original
algorithms that we consider as baselines to evaluate our proposed relatedness function.

The quality of the resulting algorithms is evaluated with the usual Precision@k
(k = 1, 5, 10), Recall, and NDCG measures. We also report the interpolated precision
at a certain recall cutoff r, iPr with r = 0.1 and r = 0.5, the Mean Reciprocal Rank
MRR and the Precision after R documents have been retrieved, where R is the total
number of relevant entities for the document (RPrec).

We remind that in this evaluation we want to evaluate the number of correctly
annotated entities for a given document; the evaluation is not spot-based, but we are

53

http://dexter.isti.cnr.it/

3. Learning Relatedness Measures for Entity Linking

rather considering the entity linking process as a whole, and its goodness on the full
document.

The test dataset adopted is the same as the one of previous experiment, meaning
that there is no overlap among the documents used for training the function ρ, and
the documents used to evaluate its impact on the entity annotation process.

Table 3.4 reports the performance of the three annotators: for each annotator we
show the performance using the original ρMW relatedness function, and then the effects
of replacing the relatedness function with our machine-learnt relatedness ρλMART and
ρGDBT. The performance improvement given by the trained functions is significant:

Referent Graph. The proposed functions improve the ranking of results, in par-
ticular if we annotate only one entity per document using the ρMW relatedness
only the 59% is correctly annotated, while with ρGDBT the percentage of correct
documents is 74%. The relatedness function also reinforces the correct entities,
improving the final ranking on the top entities as showed by the NDCG measure
which exhibits from a 14% up to a 25% of performance gain;

WikiMiner. ρGDBT improves both recall and NDCG, with gains superior to 10%.
In both ρGDBT and ρλMART the entity annotated with the largest confidence is
correct in more than the 80% of the documents, with a improvement of 6%
(ρGDBT) and of 10% (ρλMART) with respect to ρMW;

TAGME. Recall, NDCG, and precision exhibit a positive improvement (from 1% up
to 4%). The reader will note that ρGDBT and ρλMART does not improve TAGME
in the same measure as the other annotators: this is not surprising because the
TAGME annotator is designed to manage short texts, and relies less on the
relatedness and more on the commonness.

In general, the best result quality was obtained using the ρGDBT function.

3.6 Dexter - Entity Linking Framework

Several approaches have been recently proposed in literature to address the Entity
Linking problem, but unfortunately only a few authors have released the source
code or the APIs to test their system. Thus performing a fair comparison among
different Entity Linking techniques is very hard. Moreover, Hackey et al. [72]
propose a framework (not published) for entity linking in which they implemented
and compared three methods in the state-of-the-art. In their experiments they found

54

3. Learning Relatedness Measures for Entity Linking

Referent Graph TAGME WikiMiner

ρMW ρλMART ρGDBT ρMW ρλMART ρGDBT ρMW ρλMART ρGDBT

P@1 0.59 0.68+15% 0.74+25% 0.78 0.81 +4% 0.80 +3% 0.78 0.86+10% 0.83 +6%
P@5 0.51 0.62+22% 0.61+20% 0.65 0.66 +2% 0.66 +2% 0.64 0.68 +6% 0.69 +8%
P@10 0.44 0.50+14% 0.51+16% 0.50 0.50 +0% 0.51 +2% 0.50 0.51 +2% 0.53 +6%
iPr=0.10 0.76 0.84+11% 0.87+14% 0.87 0.89 +2% 0.89 +2% 0.88 0.92 +5% 0.91 +3%
iPr=0.50 0.55 0.69+25% 0.70+27% 0.67 0.68 +1% 0.69 +3% 0.66 0.73+11% 0.77+17%
NDCG 0.64 0.70 +9% 0.72+13% 0.68 0.69 +1% 0.69 +1% 0.66 0.72 +9% 0.75+14%
MRR 0.73 0.81+11% 0.84+15% 0.87 0.89 +2% 0.89 +2% 0.87 0.92 +6% 0.90 +3%
NDCG@5 0.55 0.67+22% 0.68+24% 0.72 0.74 +3% 0.73 +1% 0.71 0.76 +7% 0.77 +8%
NDCG@10 0.57 0.68+19% 0.70+23% 0.70 0.70 +0% 0.71 +1% 0.69 0.73 +6% 0.75 +9%
Recall 0.76 0.77 +1% 0.77 +1% 0.68 0.69 +1% 0.69 +1% 0.64 0.70 +9% 0.75+17%
Rprec 0.46 0.58+26% 0.60+30% 0.56 0.58 +4% 0.58 +4% 0.56 0.60 +7% 0.64+14%

Table 3.4: Entity Linking performance

that spotting is more important than disambiguation and that mixing the spotting
and the disambiguation strategies of different methods can lead to interesting results.

A good performance obtained in spotting may heavily impact on the performance
of the whole system, as well as using a different dump of Wikipedia (i.e., old dumps
contain less entities, but also have less ambiguity for each spot), or pruning all the
candidate entities of a spot which have commonness below a given threshold, or spots
with a low link probability (probability to be a link, estimated as the occurrences of
the text as anchor divided the occurrences as pure text). Moreover, efficiency of the
proposed methods is in many cases ignored even if, depending on the use case, it could
be of paramount importance (e.g., for annotating a huge repository of web pages or
for enriching queries on a search engine).

For these reasons, we strongly believe that for this kind of research it is important
to share a unique framework where spotting, disambiguation and ranking are well
separated and easy to isolate in order to study their performance. Our proposal goes
in the direction of developing an open and flexible framework for implementing various
entity linking strategies. The framework, called Dexter7, provides several facilities
for implementing annotation strategies. Differently from other approaches which
require high-performance hardware or to install additional software (e.g., databases),
Dexter is a standalone program, written in Java, designed to easily work with a
small effort from the user and to run on commodity hardware. It is organized in
several Maven8 modules as shown in Figure 3.4:

Json-Wikipedia9 This module converts the Wikipedia XML Dump in a JSON
Dump, where each line is a JSON record representing an article. The parser

7The project page is http://dexter.isti.cnr.it
8http://maven.apache.org/
9json-wikipedia is available at https://github.com/diegoceccarelli/json-wikipedia

55

http://dexter.isti.cnr.it
http://maven.apache.org/
https://github.com/diegoceccarelli/json-wikipedia

3. Learning Relatedness Measures for Entity Linking

Spot Repository

Shingle
Extractor

Articles Index

Entity Link Graph

Shingles

Spot Match List

Entity Match List

JSON Wikipedia

Dexter-Core

D
ex

te
r

C
om

m
on

Dexter-Webapp

Web
App

REST
API

Dexter
Client

Entity
Ranker

Spot
Filter

Spotter

Disambiguator

Relatedness

Figure 3.4: Dexter Architecture

is based on the MediaWiki markup parser UKP10. DBPedia only contains
semistructured data extracted from the dump (mainly from the infoboxes) in
RDF format, while JSON-Wikipedia contains other fields, e.g., the section
headers, the text (divided in paragraphs), the templates with their schema,
emphasized and so on. These fields are not properly attributes of an entity but
they can be useful for performing the annotation or a posteriori, for presenting
an annotated entity. Another main difference is that in Dexter dump all the
articles are converted to JSON records, so we have also Disambiguation records,
Redirect records, Category records etc. (the type of the record is encoded in
a type field). The module is designed to manage different languages. Given a
locale file describing how disambiguations, categories, redirects, etc are denoted
in a given language, Dexter parses the XML dump in the specified language
and produces the JSON dump. All the languages will share the same JSON
schema. This should simplify the development of techniques combining different
languages. Moreover, JSON is easy to parse and to be used in scalable Map
Reduce frameworks like Hadoop, Pig or Cascading. In the future, we plan to

10http://www.ukp.tu-darmstadt.de/software/jwpl/

56

http://www.ukp.tu-darmstadt.de/software/jwpl/

3. Learning Relatedness Measures for Entity Linking

improve the creation of entity linking models to be used in map reduce jobs.

Dexter-Core The core contains all the code to manipulate the JSON dump in order
to generate: the spot repository, the article index, and the entity graph. The
spot repository contains all the anchors used in Wikipedia for intra-linking the
articles. For each spot, the spot index contains the link probability and the list
of entities that could be represented by the spot (i.e, all the articles targeted by
that particular spot). The article index is a multi-field index of the article, built
by using Lucene. The entity graph stores the connections among the entities.
The Shingle Extractor produces a list of possible spots from a given document.
At the time of writing, the extractor produces all the possible n-grams of terms,
where n ranges from one to six. The Spotter then associates with each fragment
a list of entity candidates (if any) using the spot repository. Finally the Tagger
takes in input the list of spot matches produced by the spotter and selects
the best entity for each spot, performing the disambiguation if the spot has
more than one candidate. Disambiguation can be performed using the features
provided by the spot repository, the article index, and the entity graph. The
Tagger outputs an entity match list, with the position in the original text of
each annotated entity and a confidence score.

Dexter-Common This module contains the domain objects, shared among all the
modules of Dexter.

Dexter-Webapp This module exposes a REST API for performing the annotations.
It also implements a simple web interface for performing a demo. The current
version of the REST API is briefly described in Table 1, and it is organized in 4
logical categories: the Annotate API, used for annotating a document, the Spot
API that allows to retrieve the candidate spots in a document and to visualize
their features, the Graph API and the Category API that allow to browse
respectively the Wikipedia article’s link graph and the category graph. The
current API is available and testable. We provide a well written documentation
for each method, in a web page that also allows the user to test the service.

Dexter-Client A simple client to perform EL from a client machine, implicitly
calling the REST API.

Dexter come out of the box with the implementation of three Entity Linking
algorithms described in literature: TAGME [61], the collective linking approach [73]

57

3. Learning Relatedness Measures for Entity Linking

and WikiMiner [117]. It allows to replace and combine different implementation of
each module (the spotter, the disambiguator, the relatedness function etc.). An EL
annotation can then be performed providing to the linker the symbolic names of the
components that the developer wants to use (the spotter x, the disambiguator y . . .),
allowing to make use of different EL techniques at run-time.

Another interesting feature is the possibility to annotate semi-structured documents,
in contrast to traditional EL frameworks that annotate only flat text, i.e., a plain
string. Hence documents can be composed by several fields (e.g., title, headlines,
paragraphs), and new spotter/disambiguator strategies could exploit the information
about the structure of a document. It is worth to highlight the system offers a wide set
of REST API methods, to facilitate the interaction with the system and the evaluation
of single module only.

3.7 Conclusions

In this chapter, we have proposed a machine learning based approach aimed at
discovering the entity relatedness function that can better support the entity linking
task. We illustrated some of the properties that such function should preserve, and we
presented a simple method to generate a training set form a collection of document
human assessed entity linked documents. We casted the problem of discovering a
suitable entity relatedness function into a learning to rank formulation. Our proposed
approach is thus able to learn how to wisely blend the available features to generate a
good entity relatedness function. We demonstrated that by exploiting our framework
it is possible to better estimate the relatedness of two entities, and to compare and
improve the performance of different state-of-the-art entity linking algorithms.

58

Chapter 4

SEL: A Unified Algorithm for
Entity Linking and Saliency
Detection

The Entity Linking task consists in automatically identifying and linking the entities
mentioned in a text to their URIs in a given Knowledge Base, e.g., Wikipedia. However,
not all the entities mentioned in a document have the same relevance and utility in
understanding the topics being discussed. Thus, the related problem of identifying
the most relevant entities present in a document, also known as Salient Entities, is
attracting increasing interest.

In this chapter we propose SEL, a novel supervised two-step algorithm comprehen-
sively addressing both entity linking and saliency detection. The first step is based
on a classifier aimed at identifying a set of candidate entities that are likely to be
mentioned in the document, thus maximizing the precision of the method without
hindering its recall. The second step is still based on machine learning, and aims
at choosing from the previous set the entities that actually occur in the document.
Indeed, we tested two different versions of the second step, one aimed at solving only
the entity linking task, and the other that, besides detecting linked entities, also scores
them according to their saliency. Experiments conducted on two different datasets
show that the proposed algorithm outperforms state-of-the-art competitors, and is
able to detect salient entities with high accuracy.

Furthermore, we employed SEL for Extractive Text Summarization. We found that
entity saliency can be incorporated into text summarizers to extract salient sentences
from text. The resulting summarizers outperform well-known summarization systems,
proving the importance of using the Salient Entities information.

59

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

4.1 Introduction

Lately, much research has been spent to devise effective solutions to Entity Linking
(EL). The task, as introduced in Section 2.1.4 and formalized in Section 3.2, consists in
finding small fragments of text referring to an entity that is listed in a given knowledge
base, e.g., Wikipedia. Natural language ambiguity makes this task non trivial. Indeed,
the same entity may be mentioned with different text fragments, and the same mention
may refer to one of several entities.

EL is strictly correlated with another task, referred to as document aboutness
problem [128] or Salient Entities (SE) discovery problem [68], which goal is labeling
the entities mentioned in the document according to a notion of saliency, where the
most relevant entities are those that have the highest utility in understanding the
topics discussed.

This task can be combined with EL. The easiest integration is to perform the SE
discovery as a subsequent step to EL, by finally choosing the most relevant entities
that have high utility in understanding the topics being discussed among the set of
entities returned by the EL algorithm. However, we claim this pipeline approach is
somehow limiting since the disambiguation could benefit from the saliency signal.

Consider for instance the following example, where the most relevant entities are
probably the ones referred by mentions Maradona and 1982 Cup:

Maradona (→Diego Maradona) played his first World Cup tourna-
ment (→FIFA World Cup) in 1982, when Argentina (→Argentina -
national football team) played Belgium (→Belgium national football -
team) in the opening game of the 1982 Cup (→1982 FIFA World Cup)
in Barcelona (→Barcelona).

Entity saliency impacts on information extraction from text in a broader sense.
Consider for example a semantic clustering approach where linked entities are exploited
to provide a high-level summary of each document. In this application scenario the
capability of weighting entities on the basis of their saliency is crucial. In addition, the
knowledge about the saliency of entities recognized by an EL algorithm in a document
should also impact on the evaluation of the effectiveness of the EL algorithm itself. Let
us come back to the previous example where the entity 1982 Cup provides much more
information about the document than the entity Barcelona. Thus, an EL algorithm
that links only the mention 1982 Cup should be preferred in terms of effectiveness
to another algorithm that only links the spot Barcelona.

60

https://en.wikipedia.org/wiki/Diego_Maradona
https://en.wikipedia.org/wiki/FIFA_World_Cup
https://en.wikipedia.org/wiki/Argentina_national_football_team
https://en.wikipedia.org/wiki/Argentina_national_football_team
https://en.wikipedia.org/wiki/Belgium_national_football_team
https://en.wikipedia.org/wiki/Belgium_national_football_team
https://en.wikipedia.org/wiki/1982_FIFA_World_Cup
https://en.wikipedia.org/wiki/Barcelona

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

In this chapter we propose a novel supervised Salient Entity Linking (SEL) algo-
rithm to comprehensively address EL and SE detection. The SEL algorithm entails
two steps: Candidate Pruning and Saliency Linking. During the Candidate Pruning
step, a classifier is used to prune the large set of candidate entities generated by the
spotting phase. The aim is to detect a relatively small collection of candidates that
encompasses all the entities actually mentioned in the document. Thus the emphasis
is on training a classifier able to achieve a good precision without hindering recall. The
proposed approach has proved to outperform heuristic methods that prune unlikely
candidates on the basis of simple likelihood measures such as commonness or link
probability [112, 117]. The Saliency Linking step also exploits machine learning, and,
in addition to addressing EL, it is able to predict the saliency of the entities that
survived the Candidate Pruning step. Thanks to the Candidate Pruning step, the
candidate set processed during the Saliency Linking step is less noisy and smaller in
size, which allows to use more complex and powerful graph-based entity correlation
features.

The experiments conducted on two different datasets show that SEL outperforms
state-of-the-art competitors in the EL task. In addition, it is able to detect salient
entities with high accuracy. Since both steps of the algorithm are based on machine
learning, we also analyzed in depth feature importance, and we took into consideration
feature extraction costs. We show that an efficient and effective classifier for the first
step can be trained on the basis of a small and easily computable set of features. This
is particularly important since the classifier must be applied to a very large set of
initial candidates. On the other hand, in the second step we have a reduced number
of survived candidates and we benefit from the exploitation of further graph-based
features, which are more expensive to compute, but which are proved to be very
effective for improving the quality of entity linking and saliency detection.

Furthermore, we report on the exploitation of our entity saliency detection tech-
nology to feed novel text summarization techniques. SEL allows the entities that
have high utility in understanding the topics of a document to be identified. The
knowledge of such entities can be used to design novel extractive summarizers boosting
the sentences mentioning the most salient entities in the document. We evaluated
these new text summarizers on well-known single-document and multi-document
summarization datasets, providing an empirical evidence of the positive effect of the
salient-derived features.

In summary, the main contributions of this chapter are the following:

61

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

• a novel Salient Entity Linking (SEL) algorithm, that accurately estimates entity
saliency and outperforms state-of-the-art EL techniques by providing a comprehen-
sive solution to the EL and the SE detection problems.

• an evaluation of a wide set of heterogeneous features, including novel features, used
to represent entities within the machine learning algorithms adopted.

• a novel framework, namely Elianto, for manually annotating text with both
entities and saliency scores, thus allowing the creation of golden annotation datasets.

• a novel dataset of news manually annotated with entities and their saliency, here-
inafter publicly available to the research community.

• novel single-document and multi-document summarizers that employ features based
on entity-saliency to extract central sentences from documents.

4.2 Related Work

Entity Linking. Entity Linking algorithms usually work by following a well defined
schema, that could be roughly summarized in three steps: spotting, disambiguation
and pruning. Spotting detects potential mentions in a text and, for each mention,
produces a list of candidate entities. Disambiguation aims at selecting a single entity
for each mention produced in the previous step, by trying to maximize some coherence
measure among the selected entities in the document. Pruning detects and removes
non-relevant annotations in order to improve the precision of the system. In performing
the three steps, EL algorithms rely on three effective signals: (i) the probability for
a mention to be a link to an entity (link probability); (ii) the prior probability for
a mention to refer to a specific entity (commonness); (iii) the coherence among the
entities in a document, e.g., estimated by the Milne-Witten relatedness [117]. In
addition to annotate mentions to the entities, EL algorithms usually assign to each
annotation a confidence score, roughly estimating the correctness of the annotation.

Several EL approaches have been proposed following the problem formalization
given by Mihalcea and Csomai with Wikify [112]. A substantial improvement has
been the WikiMiner approach proposed by Milne and Witten [117]. It works by first
identifying a set of non-ambiguous mentions and then using this set to disambiguate
the ambiguous ones. Ferragina and Scaiella proposed an improved approach called
Tagme [61], which tries to find a collective agreement for the best candidates using a
voting scheme based on the the Milne-Witten relatedness. Candidate entities with
a coherence below a given threshold are discarded, and for each mention the one
with the largest commonness is selected. In Spotlight [111], Mendes et al. represent

62

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

each entity with a context vector containing the terms from the paragraphs where
the entity is mentioned; they also exploit NLP methods, removing all the spots
that are only composed of verbs, adjectives, and prepositions. In Wikifier 2.0 [42]
(which is an extension of [138]), Cheng and Roth use a machine learning based hybrid
strategy to combine local features, such as commonness and TF-IDF between mentions
and Wikipedia pages, with global coherence features based on Wikipedia links and
relational inference. This system combines Wikipedia pages, gazetteers, and Wordnet.
In AIDA [78], Hoffart et al. proposed a weighted mention-entity graph for collective
disambiguation. This model combines three features into a graph model: entity
popularity, textual similarity (keyphrase-based and syntax-based) as well as coherence
between mapping entities. The authors also published a manually annotated dataset
for EL, named AIDA-CoNLL 2003. In WAT [129] authors extended Tagme with
a new spotting module (using gazetteers, named-entity recognition analysis and a
binary classifier for tuning performance), voting-based and graph-based disambiguation
approaches as well as a pruning pipeline. Note that neither the source code nor a remote
annotation service of WAT is publicly available. One of the main conclusions from
their experiments was that while many systems focused on improving disambiguation,
the spotter and the pruner are actually responsible for introducing many of the false
positives in the EL process. A thorough overview and analysis of the main approaches
to EL and their evaluation is presented by Shen et al. [152].

Entity Saliency. The problem of understanding the main topics of a document
has been the goal of many IR tasks, including latent semantic topics and text sum-
marization. In this work we tackle the related task of finding the most important
entities mentioned in a given document. This task has previously been referred to as
document aboutness [68] or salient entity discovery [146] problem.

Gamon et al. [68] studied the aboutness problem referred to the named entities
occurring in Web pages. The approach used is partially inspired by [128], where
click-through data are exploited to rank named entities mentioned in queries. The
authors estimate the entity saliency for a Web page by exploiting the click-through
recorded in a query log. Roughly, a document is considered to be relevant for a given
entity when it is returned by a Web search engine and clicked by multiple users in
answer to queries mentioning the entity. A number of text-based features are proposed
in the paper, most of them applicable only to a Web scenario, e.g., url depth. In such
work entities are just pieces of text (and not entities listed in a given knowledge base)
and the disambiguation problem is not tackled at all.

63

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

When entities in a knowledge base such as Wikipedia are considered, rich contextual
information coming from its graph structure can be fruitfully exploited. Given the set
of entities occurring in a document, an entity graph can be built by projecting the
subgraph of the knowledge base graph including all the entities possibly mentioned
in the document. Entities can finally be ranked according to some measure of their
importance in such a graph.

Dunietz and Gillick [59] proposed a method for classifying salient entities mentioned
in news by exploiting graph-based measures. They show that the eigenvector centrality
computed on the mentioned entities can slightly improve the performance of a binary
classifier aimed at discriminating salient entities with respect to a classifier machine-
learnt with text-based features only. The same task is addressed in [146], where
text-based features are fruitfully complemented with graph-based ones to improve
accuracy. The work by Dunietz and Gillick is closely related to ours but, in order
to automatically generate the ground truth, they consider as salient entities those
mentioned in the abstract of the news. Thus, the authors cannot use features related
to the position of the mention for predicting the saliency, and how the graph-based and
other features contribute to improve the classification accuracy. We instead exploited
a manually assessed dataset that allows us to perform this analysis. Moreover, their
paper assumes to know in advance the correct entities mentioned in the document,
and addresses only the problem of ranking them by saliency. Instead we addressed
comprehensively the EL and SE problems, and studied the importance of different
features for identifying the correct entities mentioned as well as their saliency.

4.3 The Salient Entity Linking Algorithm

Let KB be a knowledge base with a set of entities E. The EL problem is to identify
the entities ED ⊆ E mentioned by the spots SD of a given document D. As in state-of-
the-art approaches, Wikipedia is used as knowledge base and every Wikipedia article
is considered as an entity. Entities that are not in Wikipedia are not linked (i.e., we
do not take into account the NIL problem).

In this work the saliency σ(e|D) of the entities e mentioned in a document D is
also considered. Without loss of generality, we define the domain of function σ as the
set {0, 1, 2, 3}, with the following meaning:

• 3 - Top Relevant: the entity describes the main topics or the leading characters
of a document;

64

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

• 2 - Highly Relevant: these are satellite entities that are not necessary for
understanding the document, but they provide important facets;

• 1 - Partially Relevant: entities that provide background information about
the content of the document, but disregarding them would not affect negatively
the comprehension of the document;

• 0 - Not Relevant/Not Mentioned: any other entity in E that is not relevant
or not mentioned in D.

The SE detection problem is to predict the saliency σ(e|D) for each e ∈ E. Note
that the EL and SE problems are correlated and they almost coincide when a binary
saliency function returning the relevance of an entity for D is adopted, i.e., σ(e|D) = 1
if e ∈ ED and 0 otherwise.

The proposed SEL algorithm is able to discover ED, and in addition solves the SE
problem, thus predicting σ(e|D) for each e ∈ ED. The first step of SEL performs a
spotting process, which detects potential entity mentions in the text. The hyperlink
information of Wikipedia is exploited for this purpose. If the given document D
contains a fragment of text s that is used as anchor text in Wikipedia to link to
an entity e, then e is considered a candidate entity for the spot s. Since the same
anchor text can be used in Wikipedia to reference any of several entities, a spot s
might be associated with several candidate entities. The set of candidate entities
can be very large, which makes it difficult to select the single correct entity for each
spot, i.e., to disambiguate spots. However not all the possible entities are equally
probable for a given spot, and candidate entities can be pruned to make the subsequent
disambiguation step easier.

The first novelty in the proposed SEL algorithm is the usage of a machine-learnt
classifier with a set of easy-to-compute features to prune the candidate entities before
disambiguation takes place. The goal of such classifier is to improve the precision of
the state-of-the-art unsupervised techniques, without hindering recall: the classifier
aims at filtering a small set of candidates without pruning any entity in ED. To train
the classifier we investigated a novel and rich set of features, from which we selected
only 8 light features.

The second step implements spot disambiguation. We devise two different solutions:
the former aimed at solving the EL problem only, and the latter that, besides linking
spots to correct entities, also scores them according to their saliency, thus combining
the EL and SE discovery tasks. Also this step is based on machine-learning, this time

65

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

using a regressor which is well suited for both the binary EL task (with a machine-learnt
threshold value), or the multiclass SE problem.

The second novelty in the SEL algorithm is the blending of disambiguation and
saliency prediction in a single step. We claim that this blending makes it possible
to improve the accuracy of disambiguation for those spots/entities that are likely to
be salient. The reason is that an EL task should not link everything, but just the
relevant concepts, i.e., the salient ones (thus excluding not relevant concepts, with a
saliency score of 0). To learn an effective regressor for disambiguation, we analyzed a
feature set wider than in the first step. By focusing on the relatively small number
of candidate entities coming from the first step, it is possible to exploit complex and
computationally heavy features, like those considering the entity relatedness graph.

4.3.1 Supervised Candidate Pruning

Potential entity mentions in a text are detected by exploiting the KB: all the possible
spots occurring in a given document D are matched against all the anchor texts and
page titles in Wikipedia, and in case of an exact match (without any normalization
on the text), a relationship is created between a spot s and the entities referred by s
in Wikipedia.

Due to language ambiguity, the number of entities for each spot can be large.
Formally, let SD = {s1, s2, . . .} be the set of spots detected in D and CD = {c1, c2, . . .},
CD ⊆ E, the set of candidate entities, each of which is associated with some spot
si. Indeed, the output of the spotting phase is a directed bipartite graph GD =
(SD, CD, ED), where ED are the edges of the graph such that (si, cj) ∈ ED if si is a
text fragment used in Wikipedia for referring to entity cj ∈ E.

The goal of Candidate Pruning is to devise an effective entity pruning function
φ: given a set of candidate entities CD of the bipartite graph GD identified by the
spotting phase, φ finally produces a new set C ′D = φ(CD), such that |C ′D| is minimized
and |C ′D ∩ ED| is maximized.

State-of-the-art algorithms perform a Heuristic Pruning (HP) of candidate entities
CD, by exploiting two measures, namely commonness and link probability, that can be
precomputed as follows:

• The commonness of a candidate cj ∈ CD for spot si ∈ SD is defined as the prior
probability that an occurrence of an anchor si links to cj . The commonness is a
property of the edges of our bipartite graph. Given a spot si ∈ SD, it is possible
rank the outgoing edges and remove edges with low commonness.

66

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

• The link probability for a spot si ∈ SD is defined as the number of occurrences
of si being a link to an entity in KB, divided by its total number of occurrences
in KB. Therefore a spot with low link probability is rarely used as a mention to
a relevant entity, and can be pruned from graph GD.

Let τc and τlp be the minimum commonness and the minimum link probability
(heuristic thresholds), it is possible to discard those graph edges with commonness
lower than τc, and those spots with link probability lower than τlp. Note that when a
spot si is pruned, also its outgoing edges are removed. After pruning the graph GD

on the basis of τc and τlp, some candidate entities in CD may result disconnected from
any spot, and they can thus be removed as well.

Setting a minimum threshold on commonness and link probability has been proven
to be a simple and effective strategy, although heuristic, to limit the number of
spots and associated candidate entities, without harming the recall of the EL process.
Table 4.1 reports the performance of such heuristic pruning (HP) method over the
well-known AIDA-CoNLL 2003 dataset released by [78] and over a novel manually
annotated dataset named Wikinews (see Section 4.4.1 for a description of the two
datasets), for different values of τc and τlp. The metrics adopted are precision (i.e.,
ratio of positive entities retained to the whole set of entities retained) and recall (i.e.,
ratio of positive entities retained to the whole set of positive entities). It is worth
noting that commonly adopted thresholds ensure a good recall at the cost of a very
low precision. The same table also reports the performance of the proposed solution,
which is described below.

For τc = 2% the HP obtains up to 2% of improvement in recall with respect to the
proposed method. On the other hand, with this setting the HP obtains a maximum
precision of only 0.074, while the supervised solution achieves a precision of 0.367,
i.e., 500% of improvement. Further experimental analysis is discussed in Section 4.2.
Note that both Wikiminer [117] and Tagme [61] use τc = 2%, with the former using
τlp = 6.5% and the latter exploiting a more complex usage of the link probability
value. In the following, we refer to the heuristic pruning strategy of Wikiminer as
HPW . This strategy is highlighted in Table 4.1 with a light gray background.

The Candidate Pruning method improves on the previous heuristic strategies by
using a supervised technique. A binary classifier is machine-learnt to distinguish
between relevant and irrelevant entities. Note that saliency has not taken into account
in this step: a candidate entity cj is considered relevant iff it is mentioned by the
given document D. The training set is built from the ground truth on the basis of the

67

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.1: Spotting performance for different values of τc and τlp on AIDA-CoNLL 2003
and Wikinews datasets. The heuristic pruning strategy of Wikiminer is highlighted
with a light gray background.

CoNLL Wikinews
Commonness Link-Probability Precision Recall Precision Recall

0.005 0.02 0.022 0.907 0.016 0.925
0.005 0.03 0.025 0.900 0.020 0.922
0.005 0.04 0.029 0.893 0.024 0.919
0.005 0.05 0.036 0.893 0.027 0.915
0.005 0.065 0.044 0.892 0.033 0.909
0.01 0.02 0.032 0.891 0.026 0.921
0.01 0.03 0.038 0.884 0.031 0.917
0.01 0.04 0.043 0.877 0.036 0.915
0.01 0.05 0.052 0.877 0.041 0.911
0.01 0.065 0.063 0.876 0.050 0.905
0.02 0.02 0.048 0.864 0.040 0.915
0.02 0.03 0.056 0.856 0.048 0.911
0.02 0.04 0.063 0.850 0.056 0.909
0.02 0.05 0.074 0.850 0.062 0.906
0.02 0.065 0.089 0.849 0.074 0.900
0.04 0.02 0.072 0.839 0.060 0.908
0.04 0.03 0.082 0.831 0.072 0.904
0.04 0.04 0.092 0.826 0.083 0.901
0.04 0.05 0.103 0.826 0.092 0.898
0.04 0.065 0.121 0.826 0.109 0.893

Proposed Candidate Pruning 0.367 0.848 0.361 0.867

bipartite graph GD = (SD, CD, ED) generated by the spotting phase. A positive label
is associated with cj ∈ CD if cj ∈ ED, and a negative label otherwise. Each entity
cj ∈ CD is represented with a large set of features extracted from the document, from
the bipartite graph GD and from the knowledge base KB. These features are deeply
discussed in Section 4.3.3. Eventually, only the candidate entities that are predicted
to be relevant by the classifier are saved for the subsequent Saliency Linking step.

There are a couple of aspects relative to the ground truth that is worth discussing.
First, class imbalance characterizes the training dataset, since on average we have that
|ED ∩ CD| � |CD|. Unfortunately a classifier machine-learnt from a training set with
a strongly skewed class distribution may lead to poor performance. This is because
most algorithms minimize the misclassification rate on the training set, hence favoring

68

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

most frequent class, which in the specific case is the negative one. In order to deal
with this issue, a cost model is introduced. Therefore, the classifier incurs a higher
penalization when misclassifying an instance in a rare class. Another key property
which deserves attention concerns the choice of the feature space used to represent
instances. Indeed, we distinguish between light and heavy features, i.e., either cheap or
expensive to compute. We show that a small subset of these light features is able to
generate a good classifier for the Candidate Pruning. The resulting classifier improves
state-of-the-art heuristic techniques in terms of precision without hindering the recall,
thus retaining most of the positive entities for the Saliency Linking step.

4.3.2 Supervised Saliency Linking

The spotting step in EL algorithms is always followed by a disambiguation phase:
among the several candidates for a given spot, only one entity can be selected. The
proposed SEL algorithm distinguish the following two tasks:

i) disambiguating spots also using contextual features, thus addressing the EL
problem;

ii) predicting a saliency score for the relevant entities, thus addressing the EL and
SE problem at the same time.

Both tasks are solved by learning a predictor of entity saliency. In the former case,
an entity is considered relevant or irrelevant, i.e., σ(e|D) ∈ {0, 1}, while, in the latter,
we have several degrees of relevance, i.e., σ(e|D) ∈ {0, 1, 2, 3}. The training dataset is
built from the ground truth by considering only the candidate entities filtered by the
Candidate Pruning step, and each entity cj is labeled according to σ(cj|D). Note that
all candidate entities ck not mentioned in the document are labeled with σ(ck|D) = 0.

This training dataset has two interesting properties. First, thanks to the Candidate
Pruning step, the number of irrelevant entities is significantly reduced, and therefore
the predictor is able to train on a quite balanced dataset with less noise. Second, by
having a smaller number of candidate entities to deal with, it is possible to exploit
more complex and powerful features able to better capture entity correlations. Indeed,
besides the set of light features used in the Candidate Pruning step, an additional set
of heavy features is added. These are mainly computed on the graphs induced by the
Wikipedia hyperlinks, thus modeling the relationships among the candidate entities.
It is worth remarking that this expensive feature extraction becomes feasible because

69

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

the first step is able to strongly prune the original candidate set CD. This new set of
features is discussed in Section 4.3.3.

We remark that the Saliency Linking step implements disambiguation and saliency
prediction at the same time. Disambiguation occurs implicitly as an incorrect entity ck
for a spot is predicted to have no saliency, i.e., σ(ck|D) = 0. By tackling disambiguation
and saliency prediction at the same time SEL achieves the goal of being accurate in
linking the most relevant entities.

Note that during the Saliency Linking step the graph GD is not considered, except
via the features computed. When predicting the saliency of an entity, no information
about the predicted saliency of other entities is exploited. Therefore, it is possible
to have spots without any predicted relevant entity, and spots with more than one
relevant entity. If needed, this can be easily fixed with a post-processing step not
implemented in this work for the following reasons. First, it is much easier and clearer
to consider the output of the Saliency Linking step as a flat set of entities, thus making
it possible to easily adopt standard information retrieval measures, such as precision
and recall. Second, it might be interesting in some application scenarios to have more
than one annotation per spot, especially when more than one facet is relevant.

4.3.3 Features

Given the candidate entities devised by the spotting phase in document D, the SEL
algorithm represents with a vector of numerical features each candidate entity cj ∈ CD
in the bipartite graph GD = (SD, CD, ED). Specifically, we distinguish between light
features (i.e., cheap to be computed) which are generated for all cj ∈ CD, and heavy
features (i.e., computationally expensive) which are computed only for the filtered
candidate entities C ′D = φ(CD) ⊆ CD, where |C ′D| � |CD|.

Light features. Light features, illustrated in Table 4.2, are mainly derived from
attributes associated with the mentions in SD, which are then aggregated to build
features for the mentioned entities. Some of them are computed on the basis of the
occurrences of spots si ∈ SD within document D. For example, the positions of spots
(1–3), their count (4), some typesetting features (5–7), their length (8). Features
9–10,12,18, rely instead on Wikipedia, but they are precomputed and stored in the
dictionary used for spotting. We included features related to spots ambiguity, see
16–17. Finally, we included two novel features, 19 and 21, trying to blend together
commonness, link probability and ambiguity signals.

70

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.2: Light Features for Supervised Candidate Pruning: features are relative to a
candidate entity cj

1. positions first, last, average, and standard deviation of the normalized
positions of the spots referring to cj

2. first field positions document D is subdivided in 4 fields: the title, the first three
sentences, the last three sentences, and the middle sentences; the
normalized position of the first spot referring to cj is computed
for each field

3. average position in sen-
tences

the average position of spots referring to cj across the sentences
of the document (salient entities are usually mentioned early)

4. field frequency number of spots referring to cj computed for each field of the
document

5. capitalization True iff at least one mention of cj is capitalized
6. uppercase ratio maximum fraction of uppercase letters among the spots referring

to cj

7. highlighting True iff at least one mention of cj is highlighted in bold or italic
8. average lengths average term- and character-based length of spots referring to cj

9. idf maximum Wikipedia inverse document frequency among the spots
referring to cj

10. tf-idf maximum document spot frequency multiplied by idf among the
spots referring to cj

11. is title True iff at least one mention of cj is present in the document title
12. link probabilities maximum and average link probabilities of the spots referring to

cj

13. is name/person True iff at least one mention of cj is a common/person name
(based on Yago – http://goo.gl/glfBYN)

14. entity frequency total number of spots referring to cj

15. distinct mentions number of distinct mentions referring to cj

16. not ambiguity True iff at least one mention of cj for which cj is the only candidate
entity

17. ambiguity minimum, maximum and average ambiguity of the spots referring
to cj ; spot ambiguity is defined as 1 minus the reciprocal of the
number of candidate entities for the spot

18. commonness maximum and average commonness of the spots referring to cj

19. max commonness ×
max link probability

maximum commonness multiplied by the maximum link probability
among the spots referring to cj

20. entity degree in-degree, out-degree and (undirected) degree of cj in the
Wikipedia citation graph

21. entity degree ×
max commonness

maximum commonness among the spots of cj multiplied by the
degree of cj

22. document length number of characters in D

Note that some of the features (2–4) explicitly refer to a semi-structure present

71

http://goo.gl/glfBYN

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

in the dataset, with separate fields for different sections of each document. We
exploited this semi-structure by distinguishing among spots occurring in the title of
the document, in the first/last three sentences, and in the middle sentences. These
features are aimed at exploiting information provided by the document structure.

Heavy features. These features are extracted for each candidate entity cj ∈
C ′D = φ(CD) to model the relationships among cj and all the other entities in C ′D. To
compute these features, specific subgraphs of Wikipedia graph are considered. Let
WGD = (VD, AD) be one of such subgraphs, where both the set of vertices VD and
the set of arcs AD can be defined in different ways:

Vertices VD: the entities, i.e., Wikipedia nodes, identified by C ′D are extended with
their neighborhoods in the Wikipedia graph. Two sets of vertices are exploited,
denoted by V 0

D and V 1
D: i) V 0

D is simply equal to C ′D, as identified by our filtering
step; ii) V 1

D contains the vertices in V 0
D extended with the entities associated

with the Wikipedia pages that link to or are linked by entities in V 0
D.

Arcs AD: three types of directed arcs are investigated: i) all the hyperlinks in
Wikipedia between entities in VD, considered as directed unweighted arcs. There-
fore, we have two different sets of arcs, A0

D ⊂ A1
D, one for each set of vertex sets

V 0
D ⊂ V 1

D; ii) the arcs derived from the Wikipedia hyperlinks, weighted by the
Milne and Witten relatedness function [117], by pruning arcs whose relatedness
is zero; iii) a weighted and undirected clique graph (i.e., each node is connected
to each other), where edges are weighted by the Milne and Witten relatedness
function. Also in this case, there are two sets of arcs A0

D ⊂ A1
D. Finally, arcs

with a weight below the median are discarded in order to preserve only the most
important ones.

Heavy features, listed in Table 4.3, are computed on the 6 graphs resulting by
the combination of the two vertex sets on the three edge sets described above. In
total, each candidate entity is represented by a vector of 39 light features and 99 heavy
features (16 features WGD dependent times the 6 graphs, 2 from the TAGME-like
scores and 1 the confidence score of the candidate pruning classifier at step 1).

It is worth remarking that the sets of vertices of WGD (V 0
D or V 1

D) are small
enough to make the computation of these graph features feasible. This is due to the
pruning capability of our first pruning step, which greatly reduces the size of the set
of candidate entities.

72

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.3: Heavy features for Supervised Saliency Linking: most features are global
and depend on the structure of the graph WGD, others are specific for an entity

1. graph size number of entities in WGD

2. graph diameter the diameter of WGD

3. node degree degree of given entity e in the undirected version of graph WGD

4. node average/median
in-degree

average and median node in-degree of WGD

5. node average/median
out-degree

average and median node out-degree of WGD

6. node average/median
in-out-degree

average and median node degree in the undirected version of graph
WGD

7. farness the sum of the shortest paths lengths between entity e and all the
other nodes in WGD

8. closeness the inverse of farness

9. eigenvector centrality a measure of influence of a node in a network ([60])

10. random walk the probability for a random walker to be at node e while visiting
WGD

11. personalized random
walk

same as random walk, with a preference vector given by the entity
frequencies in D

12. graph cliques number of cliques in WGD

13. cross-cliques centrality a measure of connectivity of a node e in WGD

14. TAGME-like voting
schema

for each e ∈ VD, we propose two normalizations of the TAGME-
like voting schema:

∑
e′∈VD\{e}

Max comm(e′)·rel(e,e′)
Max ambig(e′)∑

e′∈VD\{e}
Max comm(e′)·rel(e,e′)

|VD|

where rel(e, e′) is the Milne and Witten relatedness function,
whereas Max ambig(e′) and Max comm(e′) are defined in Ta-
ble 4.2 (sections 16-17). Feature not dependent from WGD.

4.4 Experiments

4.4.1 Datasets

For the evaluation of EL performance we used the Test B part of the AIDA-CoNLL
2003 dataset [78]. This dataset contains a subset of news from Reuters Corpus V1
which were manually linked to Wikipedia entities starting from candidates generated
by the spotter of Aida [78]. The CoNLL dataset is composed of 231 documents with
an average of 10.94 entities per document, hence resulting in ≈ 2, 500 mention to

73

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

entities. Note that entities are not annotated with a saliency score. There exist other
similar datasets such as the Knowledge Base Population track held by NIST Text
Analysis Conference. However, the task is quite different as it requires annotating a
given single mention in contrast to linking the full document, and it is released only
with paid membership (free for the track participants).

In order to evaluate SE prediction performance, a human-assessed dataset of
news was created and made publicly available, by relying on the Wikinews project1.
Wikinews promotes the idea of participatory journalism, and provides a user-contributed
repository of news. We chose this source for two main reasons: first, it is open do-
main, thus allowing us to redistribute the annotated dataset without the copyright
constraints that affects similar datasets; second, because the news in Wikinews are
already manually linked to entities of Wikipedia, thus making the dataset independent
from the specific EL system used to detect entities. Due to some subjectivity in
the assignment of a saliency score, each document (and thus also its entities) was
annotated by multiple annotators, averaging the saliency scores.

An English dump of Wikinews containing news published from November 2004 to
June 2014 was used, and the news that users linked to less than 10 or to more than
25 entities were filtered out. In addition, special news pages (e.g., News Briefs, or
Wikinews shorts) were removed, as well as news longer than 2500 characters. The
resulting dataset contains 604 news articles, uniform in text length and number of
linked entities, each one with title and body fields.

Crowdflower2, a crowd-sourcing platform, was then exploited for annotating linked
entities with saliency scores. In order to get reliable human annotations, a golden
dataset was created by asking to 4 expert annotators to provide entity saliency
scores in a specific subset of 62 documents. These annotations were collected using
Elianto [164], an ad-hoc solution developed explicitly for accounting this problem
and facilitating the creation of human assessed datasets with both entities and saliency.
A detailed description of this framework can be found in Section 4.6. Then, the
Crowdflower quality control mechanisms allowed to use the golden dataset produced
by the expert annotators to detect and ban malicious annotators. With a reward of
0.35$ per document, 400 documents (including the golden subset) were annotated by
at least 3 different Crowdflower annotators in one week. Finally, documents where
the annotators exhibited a low agreement were removed, obtaining the final Wikinews

1http://en.wikinews.org
2http://www.crowdflower.com

74

http://en.wikinews.org
http://www.crowdflower.com

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.4: Agreement between groups of Expert (Exp) or Crowdflower (CF) annotators.

Annotators Docs Kendall’s τ Fleiss’ κ Kendall’s τ Fleiss’ κ
binary binary

CF vs CF 329 0.54±.03 0.33±.03 0.68±.08 0.49±.10

Exp vs Exp 62 0.67±.11 0.44±.14 0.72±.03 0.66±.04

CF vs Exp 62 0.40±.06 0.19±.03 0.48±.09 0.40±.08

dataset, consisting of 365 annotated documents having an average of 12.02 entities
per document, hence resulting in ≈ 4, 400 mentions to entities.

To evaluate the quality of the annotations we measured the Crowdflower annotators
agreement with Fleiss’ κ and Kendall’s τ coefficients. The latter was measured by
considering the ranked lists obtained by sorting the entities by the saliency label
provided by the users. As reported in Table 4.4, we have κ = 0.33±.03 and τ = 0.54±.03

among CrowdFlower users. The Fleiss’ κ value suggests a fair agreement. This is due
to the highly subjectivity of the task: different users may give different rates based on
their experience, culture, etc. Our agreement results are however consistent with those
reported in similar works [16]. Nevertheless, the Kendall’s τ coefficient suggests a good
ranking agreement. We also investigated agreement by collapsing Highly Relevant and
Partially Relevant thus achieving a binary labeling. The agreement on such binary
formulation is consistently higher, with κ = 0.68±.08 and τ = 0.49±.10. This suggests
that users agree in identifying Top Relevant entities, and they have slightly less
agreement in discriminating between different degrees of relevance. Good agreement
values were achieved also when comparing Crowdflower users with expert users.

Finally, the different saliency labels provided by annotators were aggregated in
order to have one unique saliency label per entity. The aggregation was achieved
by averaging the annotators labels and by rounding the average value when a sharp
classification is needed. The Wikinews dataset is publicly available and can be
downloaded at the address http://dexter.isti.cnr.it/. Comparing with other
datasets, we believe the annotations it provide are of high quality since it is not biased
by users’ queries to a search engine as in [128], and it does not rely on the näıve
assumption, as in [59], that entities occurring in news abstract are salient while others
are not salient.

Table 4.5 reports some statistics about the two dataset used in our experiments.
Note that only 10% of the entities annotated in the Wikinews dataset are considered
as Top Relevant. This suggests the importance of being able to detect the most

75

http://dexter.isti.cnr.it/

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.5: Datasets description and spotting results.

CoNLL Wikinews
Documents 231 365
avg. |ED| 10.94 12.02
Top Relevant — 436 (10%)
Highly Relevant — 1685 (38%)
Partially Relevant — 2261 (52%)

avg. |CD| 549.54 790.05
avg. Max Rec = |CD∩ED|

|ED|
0.907 0.925

salient entities in a document. We also report some statistics about the results of
the Wikipedia-based spotter. The average number of candidate entities generated
per document ranges between 500 and 800, corresponding to an average number of
per-entity candidates of about 50 and 66 for the CoNLL and Wikinews datasets,
respectively. These figures give a rough idea of the complexity of the disambiguation
step. Altough the two datasets contain collectively ≈ 600 documents, they also contain
a large number of mentions to entities, ≈ 6,900, which are essential in the creation
and evaluation of the model, since the two phases are done on a per-entity basis.

The evaluation of the two steps of the SEL algorithms were carried out using 5-fold
cross-validation and averaging the results.

4.4.2 Candidate Pruning Step

For each document D, a set of candidate entities CD was generated with a dictionary
based spotter, which exploits the Wikipedia anchors’ text and article titles. This
preliminary step generates an average of 549.54 and 790.05 candidate entities CD for
the CoNLL and Wikinews datasets respectively, as illustrated in Table 4.5.

To prepare the training set for a classifier used to prune CD, a positive class label
was associated to entities in CD ∪ ED, and a negative one to entities in CD \ ED. It
is worth remarking the highly skewed class imbalance. Indeed only 2% of |CD| are
positive on CoNLL and 1.5% on Wikinews (see the corresponding sizes of ED in
Table 4.5).

An interesting information reported in Table 4.5 is the maximal recall achievable
for the EL task, averaged over the set of documents in the given collection. This is
smaller than 100% because a few positive entities in ED were not detected by the
spotter, that is ED ∩CD 6= ED. This depends on the human annotation: in these cases

76

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.6: Recall-oriented spotting performance.

CoNLL Wikinews
Rec Prec |C ′D| Rec Prec |C ′D|

GBDT-Fl 0.63 0.76 8.9 0.66 0.76 11.6
GBDTω-Fl 0.85 0.39 27.1 0.87 0.37 31.9
GBDTω-Sl 0.85 0.37 28.2 0.87 0.36 33.1

HPW 0.85 0.09 124.1 0.90 0.08 169.5

annotators were able to recognize an entity in KB even if its mention in D is different
from all the ones used in the KB and stored in our dictionary.

Table 4.6 shows the performance of the various pruning methods producing C ′D =
φ(CD). Note the column |C ′D|, which reports the average number of entities obtained
after the pruning step, and compares its size with the original size |CD|, reported
in Table 4.5. The table also shows the Recall/Precision of the various methods in
detecting the positive instances, i.e., the entities of CD that are in ED.

In particular, Table 4.6 compares the heuristic pruning strategy HPW with the
proposed supervised method. Indeed, the Candidate Pruning step adopts a state-of-
the-art classification algorithm, the Gradient Boosting Decision Tree (GBDT) provided
by the scikit-learn python library for machine learning. GBDT is trained on the
light set of features Fl. We denote this classifier by GBDT-Fl.

Unfortunately, due to the severe class imbalance in the training set, the recall of
GBDT-Fl is significantly worse than the baseline HPW . This means that the classifier
prunes too many positive entities. As expected, the precision of GBDT-Fl is better
than the one obtained by HPW , but its global performance is not satisfying. It is
worth remarking that different settings of HP, not reported here, did not exhibit better
performance in terms of precision.

We mitigated the issue of class imbalance by a re-balancing weight strategy, which
re-weights the samples in the empirical objective function being optimized by the
classifier. The weight given to each sample is inversely proportional to the frequency
of its class in the training set. We denote by GBDTω-Fl this new trained classifier,
whose performance is very good. Its recall is similar to the one obtained by HPW , but
its precision is remarkably higher. By comparing the number of pruned candidate
entities (column |C ′D|) with the non-pruned ones (|CD—), the superior pruning power
of the proposed method over HPW becomes apparent. Our supervised method is in

77

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

0.15
0.20
0.25
0.30
0.35
0.40

CoNLL

Precision @ CoNLL

max
 co

mm * m
ax

 lp

max
 co

mm * e
nt.

 fre
q

up
pe

rca
se

rat
io

max
 co

mmon
ne

ss
max

 lp

en
tity

 in
-lin

k

en
tity

 ou
t-li

nk

men
tio

n i
df

0.830
0.835
0.840
0.845
0.850
0.855
0.860

Recall @ CoNLL

0.30

0.32

0.34

0.36

Wikinews

Precision @ Wikinews

max
 co

mm * m
ax

 lp

max
 co

mm * e
nt.

 fre
q

up
pe

rca
se

rat
io

max
 co

mmon
ne

ss
max

 lp

en
tity

 in
-lin

k

en
tity

 ou
t-li

nk

men
tio

n i
df

0.850

0.855

0.860

0.865

0.870

Recall @ Wikinews

Figure 4.1: Incremental performance on step 1 using top k features.

fact able to prune ≈ 95% of the initial set of candidates CD, without hindering the
recall.

The adopted GBDT implementation provides a standard measure of features’
importance according to their contribution in optimizing the decision tree accuracy. We
thus performed feature selection by considering the features sorted by importance, and
trained a different classifier with the top-k features. Figure 4.1 shows the performance
on the CoNLL dataset obtained by varying k up to the best 8 features. We denote
this small set of top-8 features by Sl. Note that the most important features are
combinations of link probability, commonness, and entity frequency in Wikipedia.
The performance of the classifier improves when we add further features. In fact, the
performance of our GBDTω-Sl classifier which employs the top-8 features, turned out
to be very similar to the one of the classifier that employs the full set Fl (dashed
line). This can also be observed by considering Table 4.6, where the performance of
GBDTω-Sl is reported for both CoNLL and Wikinews.

We conclude that the GBDTω-Sl classifier provides the best performance on average
for the two datasets, and that the light feature set Fl provides sufficient quality. Indeed,
a smaller set of eight light features Sl suffices to train an effective classifier GBDTω-Sl,
which is able to strongly prune the set of candidate entities, thus making feasible the
subsequent step which needs to extract expensive graph-based features for each of
these candidate entities.

78

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

4.4.3 Saliency Linking Step

In the second step, disambiguation and saliency prediction were performed by training
a new model on the filtered set of candidates C ′D. In this case, the full feature set F
was considered, including also an additional feature given by the confidence score of
the candidate pruning classifier at step 1. The graph-based features are expensive to
compute, but given the reduced number of entities per document, the computation is
affordable.

In order to use the same model for both EL and SE tasks, we adopted a state-of-
the-art regression algorithm, the Gradient Boosting Regression Tree (GBRT), again
provided by the scikit-learn library, trained on the full set of features F. The
resulting model is denoted by GBRT-F. A threshold was learnt on the training set
by optimizing the F1 measure, and then used to filter out not relevant entities, i.e.,
having a score smaller than the learnt threshold. The same linear search process was
used for learning a filtering threshold on the confidence score for the competitors
algorithms simply solving the EL problem.

To prove the benefits of the proposed two-steps algorithm, a regressor model
trained on the original set of candidate entities CD to predict the entity saliency
(namely 1-Step GBRT-Fl) was trained. This model exploited the light features Fl only,
due to the high number of candidate entities, for which it was impossible to compute
the heavy features.

The accuracy of the EL task was first analyzed by measuring precision, recall and
F1 score on the set of returned entities. The precision was also measured considering
only the top-3 entities returned by the model, sorted by the annotation confidence
for state-of-the-art algorithms or by the predicted score for our regression models.
Note that, given the nature of the EL task, we are only interested in predicting
relevant vs. irrelevant entities, resulting in the training of a binary model. Regarding
the multi-class Wikinews dataset, all the positive scores were collapsed into a single
relevant score. The distribution of positive and negative classes in C ′D = φ(CD) became
much more balanced after the pruning phase compared to the previous step (with a
proportion of 35% / 65% respectively). Table 4.7 reports the EL performance for the
various methods. In particular, state-of-the-art algorithms were compared with the
proposed supervised method. The publicly available annotation service was used for
each competitor algorithm except Wikifier, for which its available source code was
used, with the best performing settings reported in the paper by the authors. The
first two rows report the performance of the unbalanced model vs. the balanced one:
since the dataset is only slightly unbalanced, they perform very similarly.

79

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.7: Entity linking performance.

CoNLL Wikinews
Rec Prec F1 P@3 Rec Prec F1 P@3

GBRT-F 0.76 0.71 0.72 0.82 0.75 0.72 0.72 0.87
GBRTω-F 0.73 0.74 0.72 0.81 0.75 0.72 0.72 0.87

GBRT-Su 0.71 0.71 0.69 0.80 0.76 0.70 0.71 0.86
GBRTω-Su 0.70 0.72 0.69 0.80 0.73 0.74 0.71 0.86

Aida 0.76 0.72 0.73 0.82 0.66 0.73 0.68 0.80
Tagme 0.68 0.59 0.61 0.74 0.77 0.67 0.70 0.85
Wikiminer 0.55 0.43 0.46 0.65 0.78 0.53 0.62 0.87
Wikifier 0.52 0.33 0.36 0.43 0.41 0.34 0.36 0.35
Spotlight 0.48 0.30 0.32 0.46 0.56 0.31 0.38 0.54

1-Step GBRT-Fl 0.69 0.69 0.67 0.81 0.70 0.73 0.69 0.86

Also for this study, a subset of the top-10 most important features, denote as
Su, was selected. The models trained using only this subset of features are GBRT-Su
and GBRTω-Su, with the latter denoting the model that adopts the class imbalance
solution. The two models perform very similarly each other, and only slightly worse
(-4% on F1 on CoNLL and -1% on Wikinews) than the models that uses all the
features. Figure 4.2 reports the incremental F1 scores obtained by using this subset
of features over the two datasets. It is worth noting that the top-2 features of this
subset suffice to obtain performance higher then most state-of-the-art solutions. The
most important features belong to different families of categories. We have some
mention-based features (e.g., uppercase ratio or position first mention), some graph
related features (e.g., eigenvector and Tagme-like) as well as features coming from
the Wikipedia graph (e.g., entity degree) and the confidence score of the Candidate
Pruning binary classifier.

The performance of the proposed solution were compared against state-of-the-art
methods Aida, Spotight, Tagme, Wikiminer and Wikifier 2.0. The proposed full
machine-learnt model obtained similar or even better performance when compared to
the best performing algorithm on CoNLL (Aida) and Wikinews (Tagme), with an F1
of 0.72 on both the datasets. Indeed on Wikinews SEL exhibits +3% improvement
on F1 compared to Tagme and +6% compared to Aida, while on CoNLL it performs
only slightly worse than Aida (−1%) but it outperforms Tagme (+18%). It is worth
noting that CoNLL dataset was created by using the Aida spotter, thus giving Aida

80

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

Entity Linking

F1 @ CoNLL
0.65

0.70

0.75

0.80

Saliency Prediction

NDCG @ Wikinews

po
s fi

rst
 m

en
tio

n

con
f. s

cor
e s

tep
1

up
pe

rca
se

rat
io

tag
me s

cor
e

eig
en

ve
cor

 ce
nt.

men
tio

n t
f-id

f

com
m * l

p

av
g c

om
mon

ne
ss

clo
sen

ess
 gr

ap
h e

xp
.

en
tity

 in
-ou

t-li
nk

0.45
0.50
0.55
0.60
0.65
0.70
0.75

F1 @ Wikinews

po
s fi

rst
 m

en
tio

n

con
f. s

cor
e s

tep
1

up
pe

rca
se

rat
io

tag
me s

cor
e

eig
en

ve
cor

 ce
nt.

men
tio

n t
f-id

f

com
m * l

p

av
g c

om
mon

ne
ss

clo
sen

ess
 gr

ap
h e

xp
.

en
tity

 in
-ou

t-li
nk

0.30
0.35
0.40
0.45
0.50
0.55

F1 top relevant @ Wikinews

Figure 4.2: Incremental performance on step 2 using top k features.

an implicit advantage. Another interesting result is that it exhibits well balanced
precision and recall values on both the datasets, while state-of-the-art competitors
do not show a similar positive behaviour. Indeed, the proposed method shows the
best performance on average across the two datasets for every measure adopted when
using the full set of features, and it notably provides the best P@3 on average when
using the feature set Su only. Finally, some considerations about the 1-Step algorithm:
despite its good performance, the method always performs worse than GBRT-F and
GBRT-Su. It is worth noting that this single step algorithm provides EL annotations
comparable or even better than most state-of-the-art algorithms. This confirms that
entity saliency plays an important role as it also boosts entity linking methods. It is
apparent that annotation confidence cannot approximate saliency.

Table 4.8 shows the saliency performance of the trained models. In this case the
regressor makes use of all the saliency labels. For this experiment we used only the
Wikinews dataset, since CoNLL is not annotated with the saliency. The performance
on predicting the saliency was evaluated by using: i) the NDCG considering the entities
sorted by saliency, in order to know how good is the function in ranking the entities
by saliency, ii) Precision, Recall and F1, considering only the most important entities,
in order to know how good is our machine-learnt model in identifying the set of the
Top Relevant entities (denoted as P top, Rtop and F top

1). NDCG was measured on the
set of entities selected by optimizing F1 (as above), sorted by saliency/confidence
score, whereas F top

1 is measured after optimizing a filtering threshold on the training
data. To this purpose, the 61 documents without any Top Relevant entities has been

81

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.8: Saliency prediction performance on Wikinews.

NDCG Rectop Prectop F1top

GBRT-F 0.82 0.50 0.46 0.43
GBRTω-F 0.81 0.56 0.50 0.49

GBRTω-Su 0.81 0.61 0.50 0.52

Aida 0.58 0.71 0.12 0.19
Tagme 0.65 0.54 0.16 0.22
Wikiminer 0.64 0.37 0.14 0.19
Wikifier 0.32 0.66 0.06 0.11
Spotlight 0.47 0.40 0.08 0.12

1-Step GBRT-Fl 0.73 0.56 0.36 0.41

discarded by the evaluation, so as to avoid misleading results. It is worth recalling that
state-of-the-art algorithms do not provide saliency scores, so we used the confidence
scores as an indicator of how related are the entities to the document.

We observe that in this setting, the weighted model performs better than the
unweighted one, since the distribution of the positive labels is not uniform. Moreover,
the model that makes use of only the subset Su of features has similar or even
better performance with respect to the model with all the features. As reported,
SEL significantly outperforms the best performing state-of-the-art algorithm (Tagme)
both in terms of NDCG and F top

1 with a relative improvement of +25% and +137%
respectively. Furthermore, Figure 4.2 reports the incremental F top

1 and NDCG scores
obtained by using the subset Su of features over the Wikinews dataset. It is worth
noting that the model trained using only the top-7 features obtains performance
similar to that of the full feature set F, and by using all the top-10 features the model
performs even better, with a +6% improvement in terms of F top

1 .
We conclude that the recall-oriented pruning of the spotting results, along with

the additional features extracted in the second step, provide a significant improvement
over the 1-Step approach, with a substantial performance gap between the two models.

4.5 Summarization

Automatic Text Summarization is a powerful Text Mining technology that can rapidly
digest and skim textual contents. Automatic summarizers are nowadays indispensable

82

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

for dealing with increasing online data in a wide range of application domains [105].
For instance, in web search, summaries –called snippets– are automatically built and
attached to search engine hits. Automatic summarizers are also employed prominently
for creating summaries of news stories, medical texts or biographical articles, just to
name a few.

Extractive summarizers apply different methods to select salient parts of the source
text. For example, cue words, position within the text, or centrality (estimated as
the similarity to the centroid of the text) have been exploited for detecting salient
extracts. Sentence-based summarizers identify the most important sentences in the
source text and arrange them in some effective way. This involves three steps, namely:
feature-based representation of sentences, sentence scoring, and summary creation by
selecting sentences [121]. The first step often resorts to simplified representations of
the sentences (e.g. bag of words and frequency-based weighting mechanisms), and
content-based scores that estimate how central the sentence’s words are. Other typical
shallow features are location-based features. For instance, salient sentences tend to
occur in certain specifiable positions within the text.

The saliency detection algorithm, which was described in the previous sections of
this paper, is an effective solution for ranking the entities mentioned in a given text.
This entity-based feature can be incorporated into text summarizers and exploited
to extract salient sentences from text. This section is a report on our endeavors and
experiments related to injecting entity-based features into standard text summarizers.
Entities are core components of texts and they provide a great deal of information about
the topics of the source texts. The most informative sentences might exhibit singular
patterns of usage of entities and it might be the case that standard summarization
features are unable to identify such patterns. In this section we try to shed light on
these issues. More specifically, we define here new entity-based sentence features for
extractive summarization. These features are computed with SEL and then combined
with standard sentence summarization features (position, centroid and length). This
leads to a sentence scoring method that aggregates multiple types of evidence. Next,
we proceed to inject this sentence scoring method into a well-known summarization
system that creates non-redundant summaries of the desired size. We perform single-
document and multi-document summarization experiments and we analyze the effects
of the newly-derived features.

83

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

4.5.1 Summarization Approach

We estimate sentence importance by combining multiple types of evidence. For each
candidate sentence, standard features, such as the position of the sentence in the
source text, or the content-based similarity between the sentence and the document’s
centroid, are combined with entity-based features. First, we briefly describe some
standard sentence features and the main components of the summarization system.
Next, we present the new entity-based sentence features.

In many summarization cases, the sentences appearing at the beginning of a
document provide much information about the topics of the document. Therefore,
standard summarizers often weight the leading sentences more heavily. Centroid
similarity is another standard feature commonly employed in summarization. This
works as follows. Using standard statistics, a centroid is computed for each document
to be summarized (e.g., a vector of tf-idf weights). This centroid tries to capture
which words are central in the document. Following a similar approach, we obtain a
weight-based representation for each candidate sentence. Finally, a similarity score
(e.g. cosine similarity) between the weighted representation of the centroid and the
weighted representation of the sentence is computed. This content-based matching
approach favors sentences whose overall resemblance to the whole document is high.

MEAD [134] is a popular system that supports a variety of summarization strategies.
It provides the implementation of effective baseline summarizers and, additionally, it
has a flexible and modular architecture that permits to incorporate your own sentence
features. MEAD supports single-document summarization (the input is a single
document) and multi-document summarization (the input is a cluster of documents).
The following built-in features are automatically computed by MEAD and associated
with each sentence of the document or cluster to be summarized3: Position, Centroid
and Length. Position represents the position of the sentence in the document(s)4.
Centroid is computed as the cosine overlap of the sentence with the centroid of the
document (or cluster). Length is regarded as a cutoff feature: sentences whose length
is below a given threshold are discarded. MEAD’s aggregation module is based on
linearly combining all feature weights and building a ranking of sentences by decreasing
aggregated scores. This is an example of MEAD’s sentence scoring approach for a
summarizer that incorporates the three standard features:

3All features range from 0 to 1.
4The first sentence gets a weight equal to 1 and the remaining sentences are assigned linearly

decreasing weights.

84

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

score(sen) =
{
wcen · cen(sen) + wpos · pos(sen) if len(sen) ≥ thrlen
0 otherwise (4.1)

cen(sen), pos(sen) and len(sen) are the values of Centroid, Position and Length
for the sentence sen to be scored; wcen and wpos are the weights of the summarizer for
Centroid and Position, and thrlen is the threshold for Length.

All sentences in the document (or cluster) are scored using this formula and a
ranking by decreasing score(sen) is built. Next, this initial ranking of sentences is
re-ranked by a redundancy removal module. This module downgrades sentences that
are too similar to sentences ranked above. In MEAD, the redundancy removal re-
ranker offers a more diverse collection of sentences by implementing Maximal Marginal
Relevance (MMR). A full description of MMR can be found in [31]. Finally, the
resulting ranking of sentences is employed to produce a summary of the desired size.

The standard sentence-based features described above have been enriched with
several entity-based features, as to exploit the benefits of incorporating entity-derived
information into text summarizers. We obtained these features by annotating each
document independently from the others5, and using the models trained on Wikinews
for predicting the saliency of the linked entity. For single-document summarization
we incorporated the following entity-based features:

• SumSalMaxNorm: sum of the predicted saliency of the entities annotated in
each sentence. This sum was normalized into [0, 1] by dividing by the maximum
sum (computed across all sentences in the document).

• SumSalLenNorm: same as SumSalMaxNorm, but before normalizing by the
maximum sentence score, a prior normalization is done by sentence length (so
as to mitigate the advantage of long sentences above shorter ones).

For multi-document summarization we incorporated the following entity-based
features:

• SumAggSalMaxNorm: the saliency score of each entity among the different
documents is summed. This aggregation of scores leads to an overall estimation of
entity saliency. This aggregated score is then used for summing the contribution
of each entity to the sentence score, as described for the single-document feature
SumSalMaxNorm. Finally, the sentence scores are normalized by their maximum
score.

5This also holds for multi-document summarization.

85

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

• SumAggSalLenNorm: same as SumAggSalMaxNorm, but adopting the prior
normalization approach as described in SumSalLenNorm (i.e., by sentence
length).

• MaxAggSalLenNorm: same as SumAggSalMaxNorm, but aggregating
the entity saliency as the max of their predicted saliency.

• TopSalientRelScoresMaxNorm: using the top 3 salient entities of each
document in the cluster, identify a subset of entities acting like a centroid. Then,
sum the contribution of each entity to the sentences where it appears in as the
average relatedness between this entity and all the entities in the centroid set.
The measure adopted for computing this similarity is the Milne and Witten
relatedness [117]. Finally, normalize the sentence scores by their maximum.

• TopSalientRelScoresLenNorm: As TopSalientRelScoresMaxNorm, but adopt-
ing the prior normalization approach as described in SumSalLenNorm (i.e., by
sentence length).

We proposed also a slight variant of most of these features, identified by the postfix
‘ s2’, where the contribution given by each entity is computed as the square of its
predicted saliency. The main idea behind this variant is to give a boost to sentences
containing top salient entities.

4.5.2 Summarization Experiments

We worked with several collections created under the Document Understanding
Conference (DUC)6. We performed the following generic summarization tasks: i)
single-document summarization (automatic summarization of a single news article),
and ii) multi-document summarization (fully automatic summarization of multiple
news articles on a single topic). Table 4.9 reports the main statistics of the collections
and how we used them for training and testing. All documents are news articles
obtained from the Text Retrieval Conference (TREC) and the average number of
sentences per document is about 27.

The training step consisted only of learning the weights assigned to the new
sentence features. We did not adapt the entity-based saliency estimation to the
characteristics of these collections (we simply used the configuration learned from
Wikinews).

6 http://duc.nist.gov.

86

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.9: Summarization collections used in our experiments

Single-document summarization
DUC2001T DUC2001 DUC2002

documents 298 308 534
required summarization length 100 words 100 words 100 words
train/test train test test

Multi-document summarization
DUC2001MT DUC2001M DUC2002M

clusters 30 29 116
avg # documents per cluster 9.97 10.17 9.59
required summarization length 100 words 100 words 100 words
train/test train test test

Following existing practice, we evaluated the summarizers using ROUGE measures
[92]. This is a class of measures that automatically determine the quality of an
automatic summary by comparing it to summaries created by humans (the DUC
collections provide us with manual summaries for all documents and clusters). ROUGE
measures count the number of overlapping units (e.g., n-grams) between the automatic
summary and the manual summary. ROUGE-2 and ROUGE-SU4 are two widely
adopted ROUGE measures. ROUGE-2 is focused on counting bigram overlapping.
ROUGE-SU4 counts overlapping of unigrams and skip-bigrams (bigram overlapping
allowing for gaps with maximum length of 4).

We experimented with the following summarization methods:

• standard MEAD. This is the default MEAD configuration based on centroid,
position and length. The default feature weights are 1, 1, and 9, respectively
(meaning that sentences with less than 9 words are discarded and the remaining
sentences are assigned an aggregated score equal to the sum of the centroid and
position scores).

• lead-based MEAD. This configuration of MEAD simply extracts the initial
sentences of the document or cluster to build the summary.

• random. This is a näıve summarizer that randomly extracts sentences from
the document or cluster.

87

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

• MEAD + fe (where fe is one of the entity-based features described above).
This strategy consists of incorporating the feature fe into standard MEAD. The
weights and length threshold of the standard features are fixed to the default
values (1, 1, and 9, respectively) and the weight of the new feature (e) is learnt
by grid search on the training collection (the weights tested range from −1 to 1
in steps of 0.1). We optimized ROUGE-2. More sophisticated ways to optimize
the weights can be implemented (e.g., Particle Swarm Optimisation, which was
applied in [96] for creating summarizers that work with dozens of features).
However, we work here with a reduced set of features and focus on individually
incorporating (and testing) each entity-based features. We leave sophisticated
combinations and optimizations as future work.

4.5.3 Results

The experimental results obtained for the test collections are reported in Table 4.10
(single-document summarization) and Table 4.11 (multi-document summarization).
The random summarizer performs poorly for both tasks. This is as expected, given
its lack of sophistication.

Let us first focus on the results of single-document summarization. The inclusion of
entity-based features on the top of standard MEAD led to improved summarizers. As
a matter of fact, MEAD + fe performs better than standard MEAD (for all fe and for
both performance measures). This suggests that the standard summarizer is unable to
select sentences with prominent entities, and injecting entity-based features into this
standard summarizer helps to create summaries with more salient entities (and more
overlapping with gold summaries). For instance, SumSalLenNorm s2, which is the best
performing entity feature for single-document summarization, had assigned a weight
of 1 during the training stage (the maximum in the range of our tuning grid: [−1, 1]).
This means that the resulting summarizer (MEAD + SumSalLenNorm s2) gives extra
weight to sentences with salient entities (on the top of their Centroid or Position
scores). The improvements of SumSalLenNorm s2 over the other entity-based features
give also credit to the way in which SumSalLenNorm s2 mitigates the advantage
of long sentences above shorter ones. Still, the overall results of single-document
summarization do not give much support to entity-based features. The main reason
is that a simple summarizer based on selecting the leading sentences leads to the
highest ROUGE-2. Furthermore, the ROUGE-SU4 of MEAD + SumSalLenNorm s2
is greater than the ROUGE-SU4 of lead-based MEAD but the improvement is tiny
and statistically insignificant. The lead-based summarizer is a competitive solution

88

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.10: Test results (Single-Document Summarization). The performance scores
are reported together with 95% confidence intervals (in brackets). For each metric
and collection the highest score is shown in boldface.

ROUGE-2 ROUGE-SU4
DUC2001
standard MEAD .1793 (.1660, .1941) .1813 (.1698, .1926)
random .1277 (.1167, .1401) .1420 (.1336, .1517)
lead-based MEAD .1931 (.1796, .2071) .1825 (.1726, .1934)
MEAD + SumSalLenNorm .1871 (.1735, .2016) .1842 (.1729, .1955)
MEAD + SumSalLenNorm s2 .1927 (.1789, .2068) .1902 (.1790, .2019)
MEAD + SumSalMaxNorm .1852 (.1710, .2007) .1839 (.1723, .1957)
MEAD + SumSalMaxNorm s2 .1860 (.1719, .2016) .1852 (.1737, .1971)
DUC2002
standard MEAD .1995 (.1912, .2080) .1928 (.1855, .2000)
random .1437 (.1357, .1520) .1506 (.1441, .1573)
lead-based MEAD .2067 (.1986, .2154) .1928 (.1862, .2000)
MEAD + SumSalLenNorm .2039 (.1953, .2122) .1976 (.1908, .2049)
MEAD + SumSalLenNorm s2 .2046 (.1962, .2129) .1984 (.1915, .2056)
MEAD + SumSalMaxNorm .2013 (.1929, .2096) .1937 (.1866, .2004)
MEAD + SumSalMaxNorm s2 .2035 (.1950, .2117) .1965 (.1896, .2033)

for single-document summarization but it is the worst performing approach for multi-
document summarization. When summarizing a single news article we can benefit from
the style of writing of typical journalists, who express the main ideas first. However,
summarizing a cluster of documents is a more difficult task where choosing the leading
sentences from the clustered documents is ineffective.

Let us now discuss the results obtained for the multi-document summarization
task. Standard MEAD is here the best performing baseline summarizer. It per-
forms subsantially better than both the random summarizer and lead-based MEAD.
Again, many entity-based features lead to improvements over standard MEAD; but
SumAggSalMaxNorm and SumAggSalMaxNorm s2 are the most promising features.
SumAggSalMaxNorm features score the salient entities within the cluster of documents
in an aggregated form. Each entity weight is based on aggregating how salient the
entity is in every document of the cluster. This promotes entities that are central
to the cluster. The results show that these features produce better multi-document
summaries.

Another interesting insight from our experiments is that all s2 variants are better

89

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Table 4.11: Test results (Multi-Document Summarization). The performance scores
are reported together with 95% confidence intervals (in brackets). For each metric
and collection the highest score is shown in boldface.

ROUGE-2 ROUGE-SU4
DUC2001M
standard MEAD .0510 (.0374, .0646) .0828 (.0682, .0986)
random .0310 (.0213, .0424) .0645 (.0544, .0747)
lead-based MEAD .0303 (.0213, .0400) .0639 (.0548, .0744)
MEAD + SumAggSalLenNorm .0527 (.0378, .0697) .0859 (.0714, .1022)
MEAD + SumAggSalLenNorm s2 .0540 (.0408, .0681) .0828 (.0683, .0989)
MEAD + SumAggSalMaxNorm .0604 (.0445, .0775) .0901 (.0762, .1055)
MEAD + SumAggSalMaxNorm s2 .0655 (.0483, .0841) .0925 (.0765, .1085)
MEAD + MaxAggSalLenNorm .0466 (.0327, .0634) .0790 (.0650, .0955)
MEAD + MaxAggSalLenNorm s2 .0534 (.0405, .0680) .0854 (.0715, .1009)
MEAD + TopSalientRelScoresLenNorm .0510 (.0374, .0646) .0828 (.0682, .0986)
MEAD + TopSalientRelScoresMaxNorm .0587 (.0433, .0753) .0873 (.0737, .1025)
DUC2002M
standard MEAD .0684 (.0610, .0769) .0950 (.0870, .1032)
random .0355 (.0301, .0413) .0710 (.0659, .0764)
lead-based MEAD .0433 (.0369, .0504) .0659 (.0601, .0716)
MEAD + SumAggSalLenNorm .0627 (.0554, .0704) .0940 (.0870, .1012)
MEAD + SumAggSalLenNorm s2 .0678 (.0596, .0762) .0965 (.0893, .1037)
MEAD + SumAggSalMaxNorm .0708 (.0640, .0784) .0970 (.0901, .1041)
MEAD + SumAggSalMaxNorm s2 .0708 (.0639, .0780) .0980 (.0914, .1050)
MEAD + MaxAggSalLenNorm .0545 (.0483, .0607) .0854 (.0792, .0920)
MEAD + MaxAggSalLenNorm s2 .0607 (.0536, .0681) .0892 (.0827, .0957)
MEAD + TopSalientRelScoresLenNorm .0685 (.0610, .0769) .0953 (.0873, .1035)
MEAD + TopSalientRelScoresMaxNorm .0679 (.0605, .0753) .0958 (.0890, .1034)

than their respective counterparts. This suggests that summarizers must focus on the
top salient entities (rather than on marginally salient entities).

Attacking Text Summarization with entity-based features is a novel and interdis-
ciplinary way of approaching the problem. We have provided preliminary empirical
evidence on the effect of these features. Overall, our experiments suggest that entity-
based features are meaningful and worth to be considered for Text Summarization.
The improvements are modest but we think there is room for further enhancement.
Observe that we did not adapt the saliency models to these DUC collections (we
simply used the models learned on Wikinews) but, still, the results suggest that SEL
can lead to improved summarizers (particularly for multi-document summarization).

90

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

For single-document summarization, we only found modest improvements on ROUGE-
SU4. In the future, we will further experiment with single-document summarization
collections and we will try to confirm the effectiveness (or lack of) of entity-based
features under different circumstances.

Observe also that this was a preliminary series of experiments and the aim of
this evaluation was not to design a state-of-the-art summarizer. This would require
combining evidence and features from multiple studies and summarization approaches.
Instead, we focused on a well-known summarization system whose modular architecture
permits to incorporate new features. These experiments allowed us to draw some
initial conclusions about entity-based features in combination with some standard
summarization features. But, of course, the role of entity-based features in enhancing
state-of-the-art extractive summarizers requires further investigation.

4.6 Elianto - Entity Linking Annotation Tool

Knowing the set of entities mentioned in a document is often not enough for a plethora
of Information Extraction tasks. When the linked entities are used to provide some
high-level representation of a document, e.g., for clustering purposes, being able to
promote salient entities is crucial. Also the evaluation of Entity Linking algorithms
should takes into account the importance of the entities in evaluating the performance
of the system (e.g., an algorithm that fails to annotate a very important entities should
be penalized more than an algorithm that fails to annotate a side entity).

Unfortunately, publicly available benchmark datasets that contain accurate super-
vised knowledge about mentioned entities and their saliency ranking are currently very
poor, both in number and quality. The importance of such data is two-fold. On the
one hand, as discussed above, they are necessary for a sound comparison of different
EL techniques. On the other hand, these datasets can also be used to train machine
learning models, in turn used to automatically link and rank entities, as proposed in
this Chapter.

For these reasons, we propose Elianto7 (Entity Linking Annotation Tool), an
open-source Web framework that crowd-sources the production of publicly available
rank-enriched datasets for Entity Linking and Salient Entities tasks with the goal of
involving the research community in producing such datasets.

The framework allows to annotate collections of documents and provides tools
for driving multiple users annotations (e.g., minimum number of annotators per

7The source code is available at https://github.com/dexter/elianto

91

https://github.com/dexter/elianto

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

document), for inspecting user annotations and for analyzing collection status. Its
back-end allows the ingestion of documents collection trough a command line program,
supports semi-structured documents and gives the possibility to specify an HTML
template describing how documents must be displayed.

In order to simplify the linking task and improve the response time of the tool,
Elianto pre-compute candidate spots and entities for each document. Dexter could
be used for this task, but it could be replaced with other EL system if needed. The
framework offers a Web interface for annotator users. When annotator logs in to the
system, an introduction to the Entity Linking task and a guideline explaining how to
annotate documents are presented. Thanks to the login mechanism, we can monitor
users activity as well as analyzing participation and annotation quality on a per user
basis. The annotation of a document is organized in a guided two-step process, as
described in the following. Note that, such two-step process implicitly forces the user
to evaluate twice the entities she annotated, and correct them if needed.

Step 1: Mention detection and linking

In the first step (Figure 4.3), the document is presented to the annotator on the left
side of the page: if the system has candidate mentions for the document, these are
displayed in red. If the annotator clicks on a mention the list of the candidates entities
is displayed on the right side of the page. The annotator can decide to: i) select one
entity from the list ii) add an other candidate entity inserting its Wikipedia url in a
form iii) delete the mention if it is wrong or not relevant.

The annotator can also decide to create a new mention just highlighting a piece of
text and selecting the option Create Spot from the contextual menu. If the annotator
generates a new mention the system can automatically provide a list of candidates
entities: this is performed calling a REST service that given a mention returns a list of
candidate entities. The mentions that the annotator links to entities are highlighted in
green, while the currently selected mention is highlighted in yellow. In the contextual
menu we provide an option that allows the annotator to extend an annotation to all
the occurrences of the same mention in the document. The interface requires to the
annotator to annotate (or delete) all the mentions before moving to the step 2. It is
worth to note that we also added the possibility to skip a document if the user thinks
that it is not worth to annotate e.g., a web document containing only noisy text, or a
tweet with no linkable entities.

92

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Figure 4.3: Elianto step 1: Mention detection and Linking

Step 2: Rank entities by aboutness

In the second step (Figure 4.4), the system still presents the document on the left, and
on the right the list of the distinct entities associated to the mentions in the previous
step. The annotator is asked to rate the entities that she selected in the previous step,
according to how much they are central to the document story. We defined 4 different
ratings:

Top Relevant (3 Stars) if the entity tells you what a document is about, i.e., the
main topics or the leading characters. We suggested the user to annotate about
3 entities per document in this category;

Highly Relevant (2 Stars) we named them satellite entities: they are not essential
for understanding the document but provide important facets;

Partially Relevant (1 Star) entities that provide background information about
the content of the document;

Not Relevant (0 Star) mentions that the annotator linked to an entity but they
are not saying anything about the document.

The system architecture is mainly composed of three layers:

93

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

Figure 4.4: Elianto step 2: Rank Entities by Saliency

• The Data Access Object: allows to store and retrieve the collections and the
user annotations, and provides all the object abstractions;

• The Core: implements the logic of the application;

• The Interfaces: a REST API that allows external applications to retrieve the
documents and to submit the user annotations. Some command line programs
to perform the indexing and dump the annotations.

We implemented a web interface using the Angular 8 and Bootstrap 9 frameworks,
all the actions are performed calling the REST API provided by the Elianto server.
We also provide a dashboard interface for the user that allows to see the previously
annotated documents and to edit them if needed. It is possible to define admin users
that can visualize analytics over all the dataset and the user annotations.

4.7 Conclusions

In this chapter we proposed a novel supervised Salient Entity Linking (SEL) algorithm
that comprehensively addresses Entity Linking and Salient Entities detection problems.
Besides improving Entity Linking performance with respect to state-of-the-art com-
petitors, SEL predicts also the saliency of the linked entities. The algorithm exploits

8https://angularjs.org
9http://getbootstrap.com

94

https://angularjs.org
http://getbootstrap.com

4. SEL: A Unified Algorithm for Entity Linking and Saliency Detection

a two-step machine-learnt process: first a Candidate Pruning step aimed at filtering
out irrelevant candidate entities is performed, thus obtaining good precision figures
without hindering recall; then, a Saliency Linking step effectively chooses the entities
that are likely to be actually mentioned in the document and predicts their saliency.

The experiments conducted on two different datasets confirmed that the proposed
solution outperforms state-of-the-art competitor algorithms in the Entity Linking task.
In particular improvements in terms of F1 of 6% w.r.t. Aida and 18% w.r.t. Tagme
were measured. Moreover, SEL significantly outperforms the same competitors in the
Salient Entities detection task of up to 18% and 139% in terms of NDCG and F top

1 ,
respectively. The latter analysis has been made possible thanks to the creation of a
novel dataset of news manually annotated with entities and their saliency, hereinafter
publicly available to the research community.

We believe that our comprehensive Entity Linking and Salient Entities detection
approach constitutes a remarkable contribution to the field, since entity saliency
detection is an important aspect of the whole document annotation pipeline and
impacts on information extraction from text in a broader sense.

To experimentally assess this impact on a real use case, we investigated the usage
of SEL to feed novel text summarization techniques. We thus exploited the entity
saliency score predicted by SEL to design novel extractive summarizers boosting
document sentences mentioning the most salient entities. The experiments conducted
on several well-known summarization datasets provided the empirical evidence of the
positive effect of including saliency-derived features in the summarization process. In
particular we observed improvements in terms of ROUGE-SU4 of up to 5% on single-
document datasets and up to 12% on multi-document datasets w.r.t. the Standard
MEAD summarizer do not using saliency information. Overall, our results open a
plenty of possibilities for solving many information extraction tasks making use of
entity and saliency based information.

95

Chapter 5

Embedding Tree Pruning and
Re-Weighting in Learning to Rank

Learning-to-Rank (LtR) solutions are commonly used in large-scale information re-
trieval systems such as Web search engines where high quality documents needs to
be returned in response to a user query within a fraction of a second. The most
effective LtR algorithms, e.g., λ-MART, adopt a gradient boosting approach to build
an additive ensemble of weighted regression trees. Since the required ranking effective-
ness is achieved with very large ensembles, the impact on response time and query
throughput of these solutions is not negligible.

In this chapter we propose X-CLEaVER, an iterative meta-algorithm able to
build more efficient and effective ranking ensembles. X-CLEaVER interleaves the
iterations of a given ensemble learning algorithm with pruning and re-weighting phases.
First, redundant trees are removed from the ensemble generated, then the weights of
the remaining trees are fine-tuned by optimizing the desired ranking loss function. We
propose and analyse several pruning strategies and assess their benefits showing that
interleaving pruning and re-weighting phases during learning is more effective than
applying a single post-learning optimization step. Experiments conducted using two
publicly available LtR datasets show that X-CLEaVER is very effective in optimizing
λ-MART models both in terms of effectiveness and efficiency.

5.1 Introduction

The problem of ranking items in response to a given query is of general interest and
it is of paramount importance for most information retrieval systems. A challenging
example of that regards answering queries submitted to a Web Search Engine (WSE),
where a small and relevant set of documents must be retrieved in fractions of a second

97

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

from a huge collection. The state of the art in ranking exploits supervised machine
learning techniques based on Learning-to-Rank (LtR) algorithms [95]. Ranking models
are in this case learnt from ground truth datasets composed of labeled training examples.
The ranking function obtained allows to measure the relevance of each candidate
document with respect to the user query.

While effectiveness of LtR methods has been always considered of primary impor-
tance, the efficiency requirements concerning the application of the learnt models in
real production environments, characterized by strict time constraints, attracted the
interest of the scientific community only recently [26, 30, 101, 7, 6, 176]. Ranking
models deployed in large-scale information systems must instead feature very low
latency as well as high throughput, due to the high rate of incoming user queries.

In this work we tackle the problem of improving efficiency and effectiveness of
LtR models based on forests of additive regression trees, such as the ones learnt by
the state-of-the-art λ-MART algorithm [179]. We move from the simple observation
that the cost of applying such models is linear in the number of their trees, and that
large ensembles composed of thousands of trees, despite being more accurate, are very
expensive when exploited for ranking large sets of candidate documents [103]. We thus
propose a meta-algorithm, named X-CLEaVER, which interleaves two novel steps of
tree pruning and re-weighting within the usual iterative ensemble learning process:
the pruning step aims at reducing the number of trees in the ensemble to improve
its efficiency at scoring time, while tree re-weighting is an optimization process that
aims to maximize the ranking quality of the pruned ensemble by tuning the weights
associated with each tree. Our approach is totally agnostic with respect to a specific
ensemble learning algorithm: it can exploit any given boosting algorithm as a black
box as long as it produces a weighted ensemble of predictors.

X-CLEaVER stems from the CLEaVER algorithm [99], which applies similar
optimizations after the completion of the learning phase to reduce the size of a given
ensemble without affecting its quality. X-CLEaVER improves some of the strategies
proposed in [99] and, more importantly, it shows that embedding such optimizations
steps within the boosting LtR algorithm is a profitable strategy to achieve more
compact and effective ranking models. It is worth remarking that other approaches
were proposed to produce simpler and faster tree-based ensembles [6, 176]. However,
these proposals aimed at finding a trade-off between efficiency and effectiveness during
the learning phase, while X-CLEaVER aims at improving ranking quality and
decreasing scoring cost at the same time. This twofold opportunity is justified by two
observations that we illustrate below.

98

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

0 200 400 600 800 1000
Ensemble

0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
a
n
k

C
o
rr

e
la

ti
o
n

Rank Correlation

Kendall's Tau Rank Correlation

Figure 5.1: Average rank correlation (Kendall τ) between the ranked lists produced
by consecutive trees of an ensemble.

The first observation is that tree forests generated by state-of-the-art LtR algorithms
encompass a high level of redundancy. To support this claim, we trained by using
optimal training parameters [30] a λ-MART forest of 1, 000 trees on a publicly
available dataset1. We estimate the redundancy in the ensemble by measuring the
similarity among the rankings generated by its trees. For every query in the test set,
we thus computed the document ranking induced by each tree in isolation. Then, we
use the Kendall’s τ rank correlation coefficient2 to estimate the similarity between
the rankings obtained by each pair of consecutive trees. Figure 5.1 plots τ coefficient
averaged over all the queries in the test set. As it can be seen, the correlation is
particularly high for the first trees in the forest, while it tends to be positive but
very irregular for the other trees. This high correlation suggests that some trees are
redundant, and they can possibly be removed to make the model smaller and faster.

Pruning the ensemble obviously affects the accuracy of predicted scores. We thus
propose to optimize the accuracy of the trees survived to the pruning step by fine-
tuning their weights with an optimization heuristic driven by a ranking quality metrics.
A second observation makes this weight optimization step particularly interesting.

1Dataset MSLR-WEB30K-F1, detailed in Section 5.4.
2We chose this metric because we are interested to the ranking problem, but a similar behavior

can be observed by considering other correlation measures.

99

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

λ-MART, the state-of-the-art algorithm used in this work as base LtR solution is a
list-wise algorithm aimed at minimizing a rank-based loss function. It is well-known
that most rank-based measures are non-differentiable functions, and therefore simple
techniques such as gradient descent cannot be applied [40]. The λ-MART algorithm
thus casts the ranking problem into a regression problem solved through gradient
boosting and by using the λ ranks as proxies of the gradient of the rank-based loss
function [179]. This can result in sub-optimal choices performed during the learning
process. Thus, our weight optimization step fulfills two objectives: on the one hand
it counterbalances the effects of pruning, and, on the other hand, it guarantees the
optimization of the actual measure of ranking quality considered, e.g., Normalized
Discounted Cumulative Gain (NDCG).

By pushing the pruning and tree re-weighting phases within the learning process
of λ-MART, X-CLEaVER builds smaller models outperforming λ-MART both
in terms of efficiency and effectiveness due to the explicit optimization of the actual
quality metrics.

In summary, the main contributions of this work are the following:
• we propose X-CLEaVER, a novel LtR meta-algorithm aimed at optimizing

state-of-the-art LtR algorithms generating forests of weighted regression trees by
interleaving tree pruning and re-weighting within the iterative learning process;

• we propose several tree pruning strategies aimed at obtaining a faster ranking
model and a heuristic optimization for tuning tree weights. Experiments show
that the proposed strategies allow the pruning of up to 80% of trees in a λ-MART
ensemble without impacting its performance;

• we conduct a comprehensive evaluation of X-CLEaVER on two publicly avail-
able datasets. Experiments show that our technique remarkably outperforms, in
both ranking quality and scoring efficiency, the reference λ-MART algorithm.

The paper is organized as follows. In Section 5.2 we discuss the research works
that are related to LtR models optimization. In Section 5.3 we detail the proposed
LtR algorithm showing the proposed pruning strategies and the greedy optimization
process used to re-weight the trees in the ensamble. In Section 5.4 we first separately
investigate the impact of the pruning and optimization processes, then we assess the
performance of the novel X-CLEaVER algorithm as a whole. Finally, in Section 5.6
we draw the final conclusions and show some ideas we plan to investigate in the future.

100

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

5.2 Related Work

Ranging from large scale search systems to company-wide search systems using open-
source solutions, LtR is one of the main tools used to improve the quality of the results
delivered to search users. Many LtR strategies have been proposed in literature to
learn ranking models. One pillar in the field has been the work by Herbrichet al. [76],
where authors proposed to learn such models by adopting a pair-wise approach in place
of a point-wise. Since that work, there has been a huge amount of works published
with the goal of improving the quality of the generated models. Chapter 2.2.2 provides
an in-depth overview about LtR.

Efficiency, which is the primary goal of the research presented in this chapter,
has been widely addressed in the past in the machine learning community by works
dealing with model pruning and feature selection.

Research in tree pruning dates back to 80’s [133] and most of the recent works focus
on pruning trees in an embedding. One of the most influential work in this area is that
of Mehta et al. [108] where minimum description length principle is used to devise
a novel strategy that instead of minimizing the length of the class sequence in the
training sample together with the length of the decision tree it introduces a new length
criterion to capture the intuitive idea of reducing the rate of misclassifications. One of
the most recent works on pruning a random forest of decision trees is that of Ren et al.
[139]. In their work authors propose two techniques that exploits the global knowledge
derived by having the whole model already trained and available. Global refinement
jointly relearns the leaf nodes of all trees under a global objective function so that the
complementary information between multiple trees is well exploited. Global pruning
has the double goal of reducing the model size and at the same time they aim at
reducing the overfitting risk. Experiments they performed on real-world data show
that the model obtained by the pruning method has a smaller footprint and higher
effectiveness. The main difference between this work and ours is that the main task
with which they deal is regression and classification and not LtR. In particular, our
main goal is to improve NDCG which is considerably different from minimizing other
metrics such as those used in regression and classification. Another recent development
in ensembles pruning is the work of Qian et al. [131] where authors, differently from
previous papers, try to solve the trade-off between effectiveness (maximizing the
generalization performance) and efficiency (minimizing the number of weak learners)
at the same time using a bi-objective problem formulation whose solution is found
through an evolutionary Pareto optimization method combined with a local search

101

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

step. Empirical results show that this method is very effective in reducing the size of
the ensemble while at the same time increasing the effectiveness of the method. The
goal of our method is different in that we aim at reducing the size of the ensemble up
to an apriori fixed number of weak learners while keeping the same quality level. In
addition, our method is specifically tailored to LtR methods. From the same group of
researchers, a Pareto optimization method is also used but with a different goal, i.e.,
reducing the number of features used while keeping the quality as high as possible
[130]. Again, as in the case of ensemble of trees, the goal is reached through optimizing
two objectives at the same time. Empirical results show that the feature selection
method developed in their research is very effective when compared against seven
state of the art feature selection methods. Feature selection is a very related method
to what we do in our research. In fact, it is a technique that is orthogonal to ensemble
pruning as it can be used in addition to it to reduce the number of features used by
the model. Another recent result on pruning an ensemble model is that of Nan et
al. [119] where they propose pruning of a random forest as an 0-1 integer program
with linear constraints that encourages feature re-use. They aim at reducing the size
of a random forest while trying also to reduce the number of variables used in the
ensemble. It can be considered as a sort of pruning and feature selection mechanism.
The method is empirically tested and provides very good performance improvements
with respect to the state of the art. The main differences between this work and ours
is, again, that the method is not explicitly targeting ranking problems and it is not
clear if it can be extended straightforwardly to other ensemble methods like λ-MART
or MART.

The research presented in this chapter is mostly concerned with how efficiently
an already built LtR model can be deployed in a production system. Efficiency in
LtR has been investigated in the past by following, mainly, two different research
directions. The first direction includes proposals of solutions that trade efficiency
off for effectiveness during the model building phase. Asadi and Lin observe that
compact, shallow, and balanced trees often yield to produce predictions quicker [6].
The technique they propose to build ensembles of decision trees incorporate a notion
of execution cost that penalizes the generation of trees that will result in low scoring
performance. Authors propose two strategies for accomplishing this: i) by directly
modifying the node splitting criterion during tree induction, and ii) by stage-wise tree
pruning. Experiments on a standard LtR datasets show that the pruning approach
is the best. Comparing to our work, we also exploit a pruning strategy but our goal
is not to affect the shape of the trees but rather to eliminate from the ensembles

102

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

trees who do not effectively contribute to the final rankings. Wang et al. present a
unified framework for jointly optimizing effectiveness and efficiency [176]. Authors
propose new metrics that capture the trade-off between these two competing forces
and devise a strategy for automatically learning models that directly optimize the
trade-off metrics. Experiments show that models learnt by directly optimizing the
effectiveness efficiency trade-off produce, in fact, ranking systems able to retrieve high
quality results at a considerable reduced inference cost. Authors also show that their
approach naturally leads to a reduction in the variance of query execution times, which
is an important aspect leading to a better exploitation of the search infrastructure,
load balancing and user satisfaction.

The second research line considers low-level optimizations to the inference phase by
speeding-up the traversal of a given tree ensemble. Asadi et al. [7] propose to rearrange
the code visiting the ensemble by transforming control hazards into less expensive data
hazards, i.e., data dependencies introduced when one instruction requires the result of
another. Moreover, to reduce data hazards the same work proposes to vectorize the
scoring algorithm by interweaving the evaluation of a small set of candidate documents.
Lucchese et al. [101, 55] propose QuickScorer a scoring algorithm, which adopts a new
representation of the tree ensemble based on bit-vectors. The tree traversal, aimed to
detect the leaves contributing to the final scoring of a document, is performed feature
by feature, over the whole tree ensemble, through efficient logical bitwise operations.
In addition, the traversal is not performed one tree after another, as one would expect,
but it is interleaved, feature by feature, over the whole tree ensemble. The two research
directions above are orthogonal to ours as we aim at producing a faster model that
does not lose its effectiveness and that can by integrated in any scoring algorithm.
Moreover, our methodology is totally agnostic with respect to both the LtR algorithm.
It can be applied to all LtR algorithms producing ensemble models.

5.3 Growing and Pruning Tree Ensembles

Gradient boosting is an iterative technique used for regression or classification problems
that learns from a training set an additive ensemble E of weighted weak learners
minimizing a given loss function L(E). In this work we focus on ensemble-based ranking
models where the weak learners are decision trees. Large ensembles encompassing
thousands of trees are usually required to achieve the high ranking quality required by
WSEs [30]. Since the cost of evaluating an ensemble E is linear in its size |E|, the ability
of learning compact ensembles without compromising accuracy is a very desirable

103

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

property. Reducing document scoring time allows in fact to cope with time budget
constraints and improves the overall throughput of large search infrastructures [54, 26].

Let E = {(t1, w1), . . . , (t|E|, w|E|)} be an additive ensemble of decision trees, where
each tree ti is weighted by wi, wi ∈ R. Given a query q and a document d, the
document relevance score predicted by each tree ti is denoted by si(q, d), and the
global ensemble prediction S(q, d) is computed as:

S(q, d) =
|E|∑
i=1

wi · si(q, d) (5.1)

Gradient boosting algorithms learn trees and weights iteratively, so that each pair
(ti, wi) is generated at iteration i to improve the predictions of the ensemble built so
far. Indeed, each tree ti approximates the gradient of a loss function L with respect
to the model parameters.

Model E is learnt from a ground truth dataset containing query-document pairs
(q, d) labeled with multi-graded relevance levels (usually ranging in {0, 1, 2, 3, 4}). The
goal of the LtR algorithm is learning a model that can produce a document ranking
agreeing with the relevance ordering of the ground truth. Indeed, ensemble predictions
S(q, d) are aimed at establishing the correct ranking of the list of candidate documents,
rather than to predict their exact relevance labels. The quality of a ranking model
is in fact measured by means of rank-based metrics such as Normalize Discounted
Cumulative Gain (NDCG) or Expected Reciprocal Rank (ERR), which consider both
the relevance and the position of each document in the ranked list. Unfortunately, loss
functions based on such rank-based measures are not differentiable. Therefore LtR
algorithms cannot apply directly gradient boosting to optimize these loss functions.
To overcome this issue λ-MART, the state-of-the-art list-wise LtR algorithm, tries to
optimize rank-based metrics by using an approximation of loss function’s gradient,
named λ-ranks. At each iteration i, λ-MART trains a tree ti so as to minimize the
squared loss with respect to such λ-ranks. Thus, λ-MART employs a proxy loss
function instead of the target rank-based metric. This may generate sub-optimal
ranking choices.

In this work we propose X-CLEaVER, a novel LtR meta-algorithm that runs on
top of a base ensemble learning algorithm. It is able to learn ensembles of additive
regression trees that are more compact and effective than the ones created by the given
base algorithm. Moreover, our technique provides a direct optimization of rank-based

104

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

Algorithm 1 X-CLEaVER.
1: function X-CLEaVER(N, n, p,A, L)

input:
2: N : ensemble size
3: n : number of regression trees trained per iteration
4: p : ratio of pruned trees per iteration
5: A : base learning algorithm
6: L : loss function

output:
7: E : trained ensemble
8: E ← ∅ . the current ensemble model
9: while |E| < N do

10: Ê ← A.GrowModel(E , n) . build delta model
11: ÊP ← Prune(Ê , L, p)
12: ÊW ← ReWeight(ÊP , L)
13: if L(E ∪ ÊW) ≥ L(E) then . no gain condition
14: break
15: E ← E ∪ ÊW
16: return E

metrics within the iterations of existing ensemble-learning algorithms. X-CLEaVER
interleaves three phases during the learning:

i) a growing phase, during which the base algorithm is used to learn a set of
additional trees, named delta model;

ii) a pruning phase, which removes the less relevant decision trees from the delta
model, thus improving the model efficiency;

iii) a re-weighting phase, during which the weights associated with the remaining
trees of the delta model are fine-tuned, by directly optimizing a loss function based
on a rank-based evaluation measure, thus improving the model effectiveness.

These three phases are iterated until the desired ensemble size is achieved.

5.3.1 X-CLEaVER Algorithm

The pseudocode of X-CLEaVER is illustrated in Algorithm 1. During its first phase,
X-CLEaVER exploits the base algorithm A to grow E , the (initially empty) current
model (line 10)3. At each iteration the ensemble learning algorithm A is used to train,
on the basis of the current model E , a new set of n weak learners, denoted with Ê .

3In this work we focus on the state-of-the-art λ-MART as base ensemble learning algorithm but,
in general, X-CLEaVER can exploit any other ensemble learning technique.

105

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

Before adding Ê to the current model E , X-CLEaVER applies the pruning and
re-weighting phases. During the pruning phase (line 11), a fraction p of rankers
belonging to Ê is removed. Pruning is naturally used to reduce the scoring time by
limiting the ensemble size. It exploits the fact that some weak rankers are highly
correlated (see Figure 5.1), and therefore can be removed from the model without
impacting significantly the model accuracy. In Section 5.3.2 we explore different
pruning strategies aimed at identifying the set of rankers that less impact the overall
model prediction power. We denote by ÊP the set of weak learners in Ê that survive
after the application of the pruning strategy.

As the pruning phase may affect the quality of the model, X-CLEaVER applies a
re-weighting to the non-pruned trees ÊP (line 12). To this end, X-CLEaVER exploits
a local optimization strategy based on line search. As discussed in Section 5.3.3, the
weights associated with the weak learners of ÊP are fine-tuned by directly optimizing
the given loss function L. This allow us to embed into the learning process the direct
optimization of a non differentiable loss function L, although the base LtR algorithm
A can only optimize a proxy of L. The final pruned and re-weighted delta model is
denoted by ÊW

If ÊW does not help in improving the quality of the current model E according
to the loss function L, then X-CLEaVER terminates (line 13). Otherwise, ÊW is
added to E and the above three phases are iterated until the desired ensemble size N
is achieved.

5.3.2 Pruning Phase

The pruning phase of X-CLEaVER identifies a fraction p of trees to be removed
from delta model Ê . In the following we review the different pruning strategies we
propose to identify these trees.

• Last: this strategy prunes the last fraction p of trees in the ensemble Ê . The
motivation is that trees are progressively built and added to the ensemble to
refine the quality of the overall extracted model. The last trees are thus expected
to provide a smaller contribution.

• Random: This technique prunes uniformly at random a fraction p of trees from
Ê . The best result out of r pruning rounds is selected, where quality is measured
according to the given rank-based loss function L. The main difference between
this strategy and a standard random approach, i.e., with a single pruning round,
is that we exploit L in choosing the best random-generated subset. In our tests,

106

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

we performed r = 100 random pruning rounds before selecting the best pruned
ensemble.

• Skip: this strategy removes trees that are uniformly scattered along the sequence
of trees in Ê . One tree every 1/p is removed, i.e., trees at position di/pe with
i = 1, . . . , dnpe. The rationale is that trees learnt in close iterations are similar,
and potentially redundant.

• Low-Weights: this strategy removes from Ê the fraction p of trees with the
lowest weights wi. The assumption here is that they are less relevant for the
final document scoring. For those learning algorithms A that associate uniform
weights with all the trees, a preliminary re-weigthing phase is applied to Ê (see
Sec. 5.3.3) in order to obtain the weights to which this pruning strategy is in
turn applied.

• Quality-Loss: this strategy considers the actual impact of a tree in Ê to
the optimization of the loss function L. The impact of a tree is measured as
the loss variation caused by its removal. The tree with the smalled impact
is removed, and the impact of the remaining trees in the pruned ensemble is
recomputed before pruning the next tree. The procedure is repeated until a
fraction p of trees is removed from Ê . Although the greedy choice of which tree
to prune is locally optimal, there is no guarantee about the global optimality of
the pruned ensemble ÊP . A simplified version of the same strategy, presented
in [99], measures the trees’ impact only once, and then selects the trees to discard
according to this impact-based ranking. Despite being less demanding in terms
of computational complexity, it does not take into account trees’ dependencies,
i.e., two highly redundant trees risk to be removed both.

• Score-Loss: this strategy considers the normalized contribution provided by
each tree to the final score S(q, d). The contribution is measured as

wi · si(q, d)
S(q, d)

and it is averaged over all query-document pairs of the training dataset. Then,
the fraction p of trees in Ê with the lowest average contribution is pruned.

Eventually, the pruning phase produces the pruned ensemble ÊP ⊆ Ê (line 11).

107

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

5.3.3 Re-weighting phase

The re-weighting phase of X-CLEaVER fine-tunes the pruned model ÊP in order to
create a new ensemble ÊW having the same trees of ÊP and a new set of weights such
that the loss L(E ∪ ÊW) is minimized.

Let Γ = {γ1, γ2, . . . , γ|ÊW |} be the weights vector of the ensemble ÊW , our goal is
to solve the following optimization problem:

Γ = arg min
Γ∈R|ÊW |

L(E ∪ ÊW).

Finding the optimal Γ is not feasible. Firstly because the most common loss/gain
functions used in ranking problems are not differentiable, and secondly because Γ can
have a high number of dimensions. Therefore, standard techniques, such as gradient
descent, cannot be exploited.

We address the optimization problem through a local-search heuristic that directly
minimizes the given loss function L. Analogously to [163], X-CLEaVER exploits an
iterative two-step procedure based on line search.

Let Γk be the vector of weights found at iteration k of our line search procedure.
During the first step, a descent direction originating in Γk is identified. Then, in the
second step, a new weight vector Γk+1 that improves the loss function L is searched
along such direction. Starting from Γ0 being the weights of ÊP , the two steps detailed
below are iterated until L, measured on a separate validation set, does not change for
a fixed number of iterations:

1. Given the solution Γk at iteration k, a line search along each axis of the weight
vector is performed independently. For each dimension, the weight γi is replaced
with a candidate weight computed by testing σ equi-spaced samples in the
interval [γi − ω, γi + ω], while keeping all other γj fixed. The parameters
σ and ω affect the granularity of the local search4. The best among the σ

samples, denoted by di, is selected by evaluating L(E ∪ ÊW) with the modified
set of weights. Eventually, the independent line searches lead to a new point
D = {d1, d2, . . . , d|ÊW |}. Fig. 5.2 exemplifies the line search algorithm on a
two-dimensional search space: along each axis, σ = 9 samples (horizontal and
vertical red dots) are evaluated independently in order to choose the best weight
updates (circled in blue) along the directions γ0 and γ1.

4The value of ω is reduced by a shrinking factor η at each iteration to favor a fine-grained
optimization when the algorithm approaches a local minimum.

108

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

0 1 2 3 4
0

1

2

3

4

γ1

γ2

0.0

0.2

0.4

0.6

0.8

1.0

L(E ∪ ÊW)

Γk d1
(best along γ1)

d2
(best along γ2)

Γk+1

D

Figure 5.2: Line Search visual interpretation

2. An additional line search is conducted along the promising descent direction
identified at the previous step, i.e., along the segment connecting Γk to D. Again
σ equi-spaced samples are evaluated and the best is chosen so as to minimize
L(E ∪ ÊW). The best weight vector found, denoted by Γk+1, is used as the
starting point for the next iteration. In Fig. 5.2, the best among the σ samples
is exactly point D.

In order to reduce the overall computational cost of the above search process, we
exploit the following optimizations. First, thread-level parallelism is used in order to
explore the different search directions during the first step, i.e., to find the various di,
and to evaluate the σ samples during the second step. Finally, we avoid visiting the
whole tree ensemble for scoring documents after each weight update. The ensemble
of trees is in fact visited only once and tree predictions si(q, d) for all the documents
of the training dataset are stored in memory, thus allowing a fast access to these
predictions when the single weight γi is updated.

109

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

Table 5.1: Properties of the MSLR-WEB30K-F1 and Istella-S datasets.

Dataset MSLR-WEB30K-F1 Istella-S
queries 31,351 33,018
query-doc pairs 3,771,125 3,408,630
features 136 220
avg. # docs/query 120 103
pos. query-doc pairs 1,830,173 (48.53%) 388,224 (11.39%)
neg. query-doc pairs 1,940,952 (51.47%) 3,020,406 (88.61%)

5.4 Experimental Evaluation

We conduct experiments by employing two public LtR datasets: i) the MSLR-WEB30K-
F15 (Fold 1) dataset and ii) the Istella-S6 dataset [99]. The MSLR-WEB30K-F1 dataset
contains 3,771,125 query-document pairs referred to 31,351 queries, while the Istella-S
dataset includes 33,018 queries and 3,408,630 query-document pairs. Query-document
pairs are represented in the two datasets with 136 and 220 features, respectively. The
characteristics of the datasets are listed in Table 5.1.

The query-document pairs in both datasets are labeled by relevance judgments
that are natural numbers ranging from 0 (irrelevant) to 4 (perfectly relevant). While
the size of the two datasets is comparable, they show a different proportion between
positive and negative examples. Indeed, the Istella-S dataset contains a lower number
of positive query-doc pairs than MSLR-WEB30K-F1 (11.39% versus 48.53% of the
examples). Moreover, as reported in Table 5.2, the distributions of positive labels in
the two datasets are different with MSLR-WEB30K-F1 showing a skewed distribution
that is not observable in Istella-S. MSLR-WEB30K-F1 comes with a number of low
relevance labels of 66.98% of the total set of positive examples. In the Istella-S dataset
the low relevance class accounts instead for only 21.42%, while the medium and the
high relevance classes account for 35.03% and 24.20%, respectively. MSLR-WEB30K-F1
shows a small number of perfectly relevant query-document pairs (i.e., 1.66% of the
total), while in the Istella-S dataset the same class accounts for 19.35%.

We split each dataset in train, validation and test sets according to a 60%-20%-20%
schema. Then, we use training and validation datasets to train a reference model with
λ-MART, a list-wise LtR algorithm using NDCG in its loss function [179]. To this end,
we exploit the open-source implementation of λ-MART provided by [29]. We fine-tune
the hyper parameters of the algorithm by sweeping them to maximize NDCG@10.

5http://research.microsoft.com/en-us/projects/mslr/
6http://blog.istella.it/istella-learning-to-rank-dataset/

110

http://research.microsoft.com/en-us/projects/mslr/
http://blog.istella.it/istella-learning-to-rank-dataset/

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

Table 5.2: Distribution of positive labels in the MSLR-WEB30K-F1 and Istella-S
datasets.

pos. query-doc pairs per label MSLR-WEB30K-F1 Istella-S
1s (low relevance) 1,225,770 (66.98%) 83,167 (21.42%)
2s (medium relevance) 504,958 (27.59%) 135,989 (35.03%)
3s (high relevance) 69,010 (3.77%) 93,957 (24.20%)
4s (perfect relevance) 30,435 (1.66%) 75,111 (19.35%)
Total # pos. examples 1,830,173 388,224

Different cut-off values do not exhibit appreciable differences. We vary the maximum
number of leaves in each tree in the set {5, 10, 25, 50}, while the learning rate in
{0.05, 0.1, 0.5, 1.0}. To avoid overfitting, we allow the algorithm to train up to 1,500
trees unless there is no improvement in NDCG@10 on the validation set during the
last 100 iterations. We obtain the best results in terms of NDCG@10 for both datasets
using trees with 50 leaves at maximum, and a learning rate equal to 0.05 (the same
settings are reported as optimal in [30]). The resulting forests are composed of 1,199
and 1,497 trees for MSLR-WEB30K-F1 and Istella-S, respectively. It is worth noting
that the experiments discussed here were conducted also using Gradient Boosting
Regression Trees (MART) a different LtR algorithm [65]7. However, the performance
of MART resulted to be worse than those of λ-MART in all the tests conducted.
Therefore, in the following we employ λ-MART as reference learning algorithm for
X-CLEaVER.

The tests presented in this chapter are performed on a machine equipped with a
dual CPU AMD Opteron 6276, a 16 cores NUMA processor clocked at 2.30GHz, with
16 MB of cache L3 and 32GB of DDR3 RAM. To facilitate the reproducibility of the
results, we release our implementation of X-CLEaVER as part of the QuickRank
C++ library for Learning to Rank [29]8.

5.4.1 Effectiveness of pruning strategies

We first investigate the effectiveness of X-CLEaVER pruning strategies when applied
to ranking models of varying sizes previously trained with λ-MART. This corresponds
to run a single iteration of our X-CLEaVER meta-algorithm. A similar analysis is
reported in [99]. However, the experiments discussed here are novel as two pruning

7MART is a point-wise algorithm that uses the root mean squared error as loss function, resulting
in a predictor of relevance labels.

8The source code of QuickRank can be downloaded from: http://quickrank.isti.cnr.it

111

http://quickrank.isti.cnr.it

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

strategies (Random and Quality-Loss) have been improved, while the QuickRank
library was further optimized for both effectiveness and efficiency.

Table 5.3 reports the values of NDCG@10 measured on the test sets for the
original λ-MART models and the ones obtained by applying a single iteration of
X-CLEaVER. Specifically, the three tables reports the results obtained on both
datasets starting from models consisting of 100, 500, and 1,000 trees, respectively. The
cell reporting the NDCG@10 achieved by the reference λ-MART model is highlighted
in each table using a dark-gray background. In the same row of each table we report
the performance of the intermediate λ-MART models (trained by the same learning
process) having a number of trees ranging from 90% to 10% of the reference one.
Exactly below the dark-gray cell, in the first column of the row referred to strategy
Last, we report the performance of the ensemble obtained from the reference model
without performing any pruning but only tree re-weighting with our line search
procedure.

We are interested here in comparing the performance of the reference λ-MART
models with those obtained with X-CLEaVER for different pruning levels. In
particular we want to assess if our pruning and optimization strategies together are
able to produce ranking models that are smaller and at least as effective as the
reference model. As an example, the λ-MART reference model of 100 trees reaches
on MSLR-WEB30K-F1 a NDCG@10 of 0.4540. The intermediate λ-MART model with
50 trees scores only 0.4333. The X-CLEaVER model of 50 trees, obtained from
the MSLR-WEB30K-F1 100-tree model using the Quality-Loss strategy, achieves
instead a NDCG@10 of 0.4643.

For each pruning strategy assessed in a different row of the tables, light-gray cells
highlight where we achieved performances greater than or equals to those obtained
using the reference λ-MART model. The values in bold highlight instead the most
aggressive pruning rate preserving the ranking quality of the reference model. Moreover,
values labeled with ∗ identify the performance of the smallest models which proved to
be statistically equivalent to the reference λ-MART model. Randomization test with
10,000 permutations and p − value ≤ 0.05 is performed to assess if the NDCG@10
differences between the reference and the pruned models are statistically significant or
not [154].

The reported results confirm the validity of the proposed strategies. The first
table, referred to ensembles generated from a reference model of 100 trees, shows that
X-CLEaVER is able to improve the reference model by using any pruning strategies.
For the least aggressive pruning rates, we can observe also remarkable gains in terms

112

5.
E

m
bedding

T
ree

P
runing

and
R

e-W
eighting

in
L

earning
to

R
ank

Table 5.3: Values of NDCG@10 measured for λ-MART reference models of different size and X-CLEaVER ones obtained
at various pruning levels with the different pruning strategies. The ∗ symbol labels the most aggressive pruning rate for each
strategy resulting in a model statistically equivalent to the reference one.

100 trees
MSLR-WEB30K-F1 Istella-S
Pruned Model Size Pruned Model Size

Strategy 100 90 80 70 60 50 40 30 20 10 100 90 80 70 60 50 40 30 20 10
λ-MART .4540 .4507 .4477 .4432 .4386 .4333 .4260 .4179 .4085 .3983 .6988 .6946 .6897 .6835 .6766 .6671 .6571 .6441 .6266 .6137

Last .4648 .4620 .4605 .4573∗ .4516 .4482 .4407 .4300 .4107 .4003 .7121 .7094 .7052 .7001∗ .6906 .6833 .6727 .6629 .6454 .6201
Random - .4644 .4635 .4629 .4624 .4606 .4602 .4599 .4553∗ .4455 - .7131 .7129 .7118 .7086 .7122 .7089 .7053 .7015∗ .6893

Skip - .4645 .4646 .4630 .4632 .4611 .4597 .4596 .4523∗ .4465 - .7124 .7117 .7111 .7104 .7086 .7076 .7041 .7012∗ .6906
Low-Weights - .4646 .4647 .4653 .4633 .4622 .4544∗ .4411 .4188 .3888 - .7122 .7120 .7115 .7104 .7054∗ .6919 .6674 .6404 .6204
Quality-Loss - .4646 .4651 .4648 .4644 .4643 .4641 .4630 .4580∗ .4486 - .7128 .7127 .7126 .7127 .7130 .7132 .7116 .7098 .6979∗
Score-Loss - .4645 .4630 .4627 .4616 .4609 .4586 .4554∗ .4472 .4330 - .7104 .7091 .7108 .7110 .7068 .7052 .6937 .7003∗ .6852

500 trees
MSLR-WEB30K-F1 Istella-S
Pruned Model Size Pruned Model Size

Strategy 500 450 400 250 300 250 200 150 100 50 500 450 400 250 300 250 200 150 100 50
λ-MART .4766 .4758 .4752 .4752 .4745 .4722 .4694 .4644 .4540 .4333 .7433 .7419 .7397 .7379 .7343 .7302 .7239 .7146 .6988 .6671

Last .4782 .4780 .4776 .4765 .4765∗ .4751 .4730 .4708 .4648 .4482 .7473 .7460 .7455 .7439∗ .7414 .7379 .7344 .7247 .7121 .6833
Random - .4772 .4760∗ .4744 .4748 .4743 .4741 .4698 .4679 .4615 - .7469 .7468 .7459 .7459 .7450 .7420∗ .7374 .7348 .7249

Skip - .4773 .4759 .4769 .4758∗ .4746 .4741 .4724 .4698 .4622 - .7463 .7473 .7459 .7452 .7448 .7430∗ .7396 .7367 .7255
Low-Weights - .4759 .4754∗ .4367 .4281 .4129 .4065 .3981 .3923 .3554 - .7470 .7438∗ .7390 .7147 .7022 .5963 .5789 .5551 .4969
Quality-Loss - .4781 .4781 .4777 .4780 .4787 .4760 .4774∗ .4740 .4686 - .7475 .7470 .7464 .7457 .7449 .7447 .7433∗ .7390 .7309
Score-Loss - .4753 .4758 .4753 .4750 .4753∗ .4734 .4736 .4696 .4546 - .7461 .7458 .7455 .7435 .7423∗ .7376 .7320 .7248 .6999

1000 trees
MSLR-WEB30K-F1 Istella-S
Pruned Model Size Pruned Model Size

Strategy 1000 900 800 700 600 500 400 300 200 100 1000 900 800 700 600 500 400 300 200 100
λ-MART .4789 .4785 .4784 .4779 .4774 .4766 .4752 .4745 .4694 .4540 .7495 .7491 .7478 .7467 .7451 .7433 .7397 .7343 .7239 .6988

Last .4789 .4785 .4776 .4790 .4789 .4783∗ .4776 .4765 .4730 .4646 .7509 .7510 .7499 .7498 .7485∗ .7473 .7454 .7417 .7342 .7121
Random - .4788 .4764 .4783∗ .4754 .4768 .4720 .4721 .4670 .4580 - .7505 .7502 .7506 .7490∗ .7464 .7446 .7430 .7387 .7297

Skip - .4784 .4778 .4782∗ .4771 .4771 .4754 .4734 .4700 .4620 - .7506 .7495 .7500 .7485 .7493∗ .7459 .7422 .7384 .7259
Low-Weights - .4788 .4780 .4788 .4788 .4783∗ .4738 .4605 .4337 .4304 - .7489∗ .7359 .6507 .6362 .6222 .5995 .5831 .5452 .5031
Quality-Loss - .4793 .4797 .4798 .4797 .4795 .4804 .4783∗ .4758 .4722 - .7514 .7509 .7514 .7519 .7507 .7488∗ .7462 .7431 .7371
Score-Loss - .4768 .4761 .4751 .4709 .4760 .4765 .4753 .4732 .4688 - .7509 .7493 .7498 .7486∗ .7479 .7460 .7453 .7365 .7196

113

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

of NDCG@10. On the MSLR-WEB30K-F1 dataset, Random and Quality-Loss
perform the best in granting equivalent ranking quality with very aggressive pruning
rate. In these cases X-CLEaVER is able to prune up to 80% of the original ensemble
without loosing quality. On the Istella-S dataset, Random, Skip, Quality-Loss,
and Score Loss strategies can prune up to 80% of the trees and obtain NDCG@10
figures greater or equal to that of the reference 100-tree model.

When the size of the reference λ-MART model is increased to 500 trees, the
best performing pruning strategy results to be Quality-Loss. This strategy is able
to prune up to 70% of the trees and provide models with accuracy equivalent or
higher than the reference ensemble. The superiority of Quality-Loss in pruning
the ensemble is even more evident when models of 1, 000 trees are considered. Here,
Quality-Loss is the only pruning strategy allowing to improve the performance of the
reference λ-MART ensemble with pruning rates of up to 60% on MSLR-WEB30K-F1
and to 50% on Istella-S.

From the three tables we can observe that the number of light-gray cells decreases as
the size of the reference model increases. The possible explanation of this phenomenon
is twofold. First, large models are more effective than small ones and the space left
for improvements is thus very little. Second, our line search optimization process is
not particularly effective on ensembles having a large number of trees since it is more
likely to converge to a local optimum. We lean towards this second hypothesis that
will be supported by some of the experiments discussed in the following.

We conclude that Quality-Loss is the best performing pruning strategy among
the proposed ones, as it provides the smallest models in all experiments conducted.
Indeed, it is the only strategy that exploits the ranking metric being optimized. The
overall benefit of our proposal is remarkable since on both the datasets X-CLEaVER
can exploit Quality-Loss to remove from 50% to 90% of the trees in the reference
ensemble without hindering ranking quality.

5.4.2 Qualitative analysis of pruning strategies

We analyze here the behavior of the pruning strategies embedded in X-CLEaVER
by evaluating the distribution of the trees removed from the ensemble. The analysis
is conducted by applying a pruning rate p = 50% to a λ-MART model with 1, 000
trees trained on the Istella-S dataset.

The histograms reported in Figure 5.3 show the percentage of pruned trees across
buckets of 100 consecutive trees of the input ensemble. As an example, the Last
strategy (Fig. 5.3 upper-right) straightforwardly remove all the trees in the last five

114

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

0 200 400 600 800 1000
0

20

40

60

80

100

T
re

e
s

p
e
r

b
u
ck

e
t

RANDOM

0 200 400 600 800 1000
0

20

40

60

80

100
LAST

0 200 400 600 800 1000
0

20

40

60

80

100
SKIP

Uniform pruning

Pruned Trees

0 200 400 600 800 1000

Ensemble

0

20

40

60

80

100

T
re

e
s

p
e
r

b
u
ck

e
t

LOW WEIGHTS

0 200 400 600 800 1000

Ensemble

0

20

40

60

80

100
QUALITY LOSS

0 200 400 600 800 1000

Ensemble

0

20

40

60

80

100
SCORE LOSS

Distribution of Trees pruned by each pruning strategy

Figure 5.3: Distributions of removed trees for each pruning strategy (with p = 50%)
applied to a λ-MART model with 1,000 trees trained on Istella-S. Values are averaged
over buckets of 100 consecutive trees.

buckets, for a total of 500 trees out of 1, 000. Not surprisingly, strategy Skip performs
a uniform pruning as it removes equidistant trees from the input forest, and Random
behaves similarly, despite in this case the pruning is not perfectly uniform due to the
smart selection of the best performing pruned ensemble subset.

Interestingly, strategy Low-Weights removes most of the trees from the first
buckets of the ensemble. A possible explanation is that initial trees are the most
redundant, while the last ones try to fine-tune document scores. Strategy Score-Loss,
which considers the relative contribution of each tree to document score, behaves
symmetrically to Low-Weights and tends to prune trees from the last buckets of
the ensemble. Boosting learning algorithms in fact assigns larger scores to the leaves
of the initial trees which accounts for the largest part of the final score, and smaller
scores to the last trees which are responsible for fine-tuning.

Quality-Loss, the best performing strategy shows a smoother pruning behavior.
Pruned trees are distributed almost uniformly, except for those in the range 100 to 500
where the pruning is more aggressive. This suggests that evaluating the contribution
of each tree to the given metric function (as opposed to the final document score)
leads to a more balanced pruning, which in turn results in a more accurate model.

Finally, we analyze how tree weights are modified by our ReWeight procedure
aimed at optimizing the NDCG score. To this end we measure the variations to
per-bucket average weights after the Quality-Loss pruning strategy halved the size
of a λ-MART model of 1,000 trees trained on Istella-S. Figure 5.4 shows the results
of this analysis where the dashed horizontal line represents the uniform weights of the
reference model, rescaled to the unit. Interestingly, the average weights in the first

115

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

0 200 400 600 800 1000

Ensemble

0.0

0.5

1.0

1.5

2.0
W

e
ig

h
ts

48% 54% 57% 59% 56% 47% 43% 45% 45% 46%

Weights optimization

Original Weights

Optimized Weights

Figure 5.4: Average per-bucket weights of the optimized model. The dashed line
corresponds to the uniform weight used in the reference model. The value reported
inside each bar measures the percentage of pruned trees in the bucket.

two buckets result to be lower than in the original model, while the weights in the
last buckets are boosted. Moreover, the weights increase monotonically, suggesting
that the last trees of the ensemble are very important, and that the original learning
algorithm tends to underestimate their importance. The analysis reveals that, while
the pruning step removes redundancy, the line search algorithm fine-tunes the weights
by giving more importance to the last part of the forest.

5.4.3 X-CLEaVER analysis

In this section we discuss the experiments aimed at assessing if X-CLEaVER can
train smaller and more accurate models than the reference LtR algorithm. We use as
a reference the models trained with λ-MART by using the best training parameters
discussed before (50 leaves and a learning rate equal to 0.05). The resulting ensembles
have 1,199 and 1,497 trees for MSLR-WEB30K-F1 and Istella-S, respectively. Given
the previous experimental results and to make the discussion clearer, we limit the
analysis to the best performing pruning strategy Quality-Loss.

As shown in Table 5.4, the reference λ-MART models achieve 0.4791 and 0.7530
in terms of NDCG@10 on MSLR-WEB30K-F1 and Istella-S, respectively. To provide a
consistent baseline for each pruned X-CLEaVER model, we also report NDCG@10
values of the incremental λ-MART models generated every 100 iterations. As in the

116

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

previous table, light-gray cells highlight performance greater or equals than the ones of
the reference λ-MART model, while bold results evidence the best performing model
for each ensemble size. Finally, values labeled with symbol ∗ identify the performance
of the smallest models which proved to be statistically equivalent to the reference one.

To first investigate the contribution of line search, we apply the re-weighting
strategy to the incremental λ-MART models produced during the learning of the
reference model (see line λ-MART + LineSearch). On both datasets, the larger
benefit is achieved on small models. On the MSLR-WEB30K-F1 dataset line search
boosts the 600-trees model to the same performance of the 1,000-trees λ-MART.
Similarly, on Istella-S, the 700-trees models after line search provides a better NDCG
than the original 1,000-trees λ-MART. With larger models, line search results to
be less beneficial. For example on the tests conducted with the MSLR-WEB30K-F1
dataset it does not provide any improvement from models with 800 and more trees.

To show that, even when applied only once, our optimization strategies still works
well, we run a single iteration of the X-CLEaVER algorithm and report the results
of the tests conducted in the row labeled X-CLEaVERiter=1. In this case we set
X-CLEaVER to apply a p = 50% pruning rate to a λ-MART model being double
in size than the final one. We first observe that X-CLEaVERiter=1 always achieves
better results than line search only, for every model size tested. Second, we highlight
that X-CLEaVERiter=1 is able to generate models statistically equivalent to the
reference λ-MART one, having a much smaller number of trees: 300 trees (-75%) for
MSLR-WEB30K-F1 and 800 trees (-47%) for Istella-S. This means that learning a larger
number of trees and then pruning them with our Quality-Loss strategy provide the
subsequent line search procedure with a set of effective trees to be optimized. Pruning
and re-weighting are thus able to boost each other in building compact and effective
ranking models.

Finally, we address the main research question of this work, i.e., whether it is
effective to embed pruning and re-weighting strategies within an ensemble learning
algorithm. To answer this question we measure the performance of different X-
CLEaVER models obtained by varying its hyper-parameters, i.e., the step size n,
ranging in {200, 400}, and the pruning rate, ranging in {50%, 75%}. To provide some
additional insights, we also evaluate X-CLEaVER with n = 100 and no pruning.

When no pruning is performed and line search applied after the generation of every
bunch of 100 trees, no significant improvement is observed. In particular, for larger
models, it is better to learn a λ-MART model and eventually apply line search just
once. This again confirms the benefit of blending pruning and re-weighting altogether.

117

5.
E

m
bedding

T
ree

P
runing

and
R

e-W
eighting

in
L

earning
to

R
ank

Table 5.4: Comparison in terms of NDCG@10 among λ-MART and the different X-CLEaVER models, by varying p, n and N .
Values in bold highlight the best performing model for each ensemble size, while light-gray cells highlight models performing
equivalently or better than the reference λ-MART model. The ∗ symbol labels the smallest model for each X-CLEaVER
setting resulting to be statistically equivalent to the reference one.

MSLR-WEB30K-F1
Pruned Model Size (N)Strategy Trees per

Iter (n)
Pruning
rate (p) 100 200 300 400 500 600 700 800 900 1000 1199

Training
Time

λ-MART - - .4540 .4694 .4745 .4752 .4766 .4774 .4779 .4784 .4785 .4789 .4791 18h 12m
λ-MART + LineSearch - - .4646 .4730 .4765 .4776 .4783∗ .4789 .4790 .4776 .4785 .4789 -

X-CLEaVERiter=1 2N 50% .4733 .4767 .4792∗ .4786 .4795 .4798 - - - - -

X-CLEaVER

100 0% .4643 .4734 .4750 .4770 .4775 .4777∗ .4782 .4784 .4785 .4785 - 17h 42m
200 50% .4741 .4783∗ .4797 .4801 .4807 .4803 .4807 .4810 .4809 .4810 - 34h 45m
200 75% .4762 .4781∗ .4799 .4808 .4815 .4825 .4829 .4828 .4830 .4830 - 66h 57m
400 50% - .4770 - .4809 - .4818 - .4822 - .4828 - 31h 01m
400 75% .4745 .4790∗ .4809 .4810 .4822 .4823 .4828 .4831 .4834 .4841 - 62h 23m

X-CLEaVERG 400 75% .4745 .4773 .4798∗ .4799 .4804 .4801 .4811 .4818 .4829 .4816 - 69h 55m

Istella-S
Pruned Model Size (N)Strategy Trees per

Iter (n)
Pruning
rate (p) 100 200 300 400 500 600 700 800 900 1000 1497

Training
Time

λ-MART - - .6988 .7239 .7343 .7397 .7433 .7451 .7467 .7478 .7491 .7495 .7530 8h 21m
λ-MART + LineSearch - - .7121 .7342 .7417 .7454 .7473 .7485 .7498 .7499 .7510 .7509 -

X-CLEaVERiter=1 2N 50% .7332 .7439 .7469 .7480 .7507 .7514 .7515 .7533∗ - - -

X-CLEaVER

100 0% .7123 .7371 .7403 .7464 .7463 .7474 .7479 .7491 .7491 .7493 - 8h 47m
200 50% .7340 .7418 .7493 .7512 .7523∗ .7545 .7545 .7551 .7550 .7551 - 16h 06m
200 75% .7375 .7464 .7513 .7542∗ .7553 .7549 .7544 .7550 .7552 .7551 - 37h 10m
400 50% - .7438 - .7504 - .7545 - .7556 - .7575 - 13h 20m
400 75% .7399 .7469 .7497 .7514 .7530∗ .7541 .7546 .7557 .7566 .7577 - 26h 11m

X-CLEaVERG 400 75% .7399 .7455 .7480 .7504 .7527∗ .7545 .7548 .7563 - - - 31h 26m

118

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

When pruning is applied with a larger step size, results improve dramatically. X-
CLEaVER always outperforms λ-MART models of the same size, even after line
search, and it is able to provide better models than the reference λ-MART model
for several pruning rates highlighted in the table by light-gray cells. In particular,
X-CLEaVER achieves a NDCG@10 of 0.4790 on MSLR-WEB30K-F1 with only 200
trees, 83% less than the full reference model, and of 0.7542 on Istella-S with 400 trees,
73% less then the reference model. The best performing models are usually obtained
with a pruning rate p = 75%. This is in accordance with the experiments shown
in Section 5.4.1, where Quality-Loss is able to prune up to 70% of the original
ensemble made up of 500 trees without loosing effectiveness. Using this pruning rate,
the X-CLEaVER best models outperform the λ-MART ones with a NDCG@10 of
0.4841 (compared to 0.4791) on MSLR-WEB30K-F1 and 0.07577 (compared to 0.7530)
on Istella-S.

Finally, we also test a variant of X-CLEaVER, employing the weight optimization
step in a global fashion. We call it X-CLEaVERG. Unlike the original X-CLEaVER,
which applies line search and pruning only to the new trees trained at each iteration,
X-CLEaVERG works by pruning and re-weighting the entire model at each iteration.
Results show that this strategy achieve worse results than X-CLEaVER on both
MSLR-WEB30K-F1 and Istella-S, proving the benefits of the local optimization strategy
over a global one.

In summary, Figure 5.5 reports the NDCG@10 performance of the best performing
X-CLEaVER model on the Istella-S dataset (i.e., N = 1000, p = 75% and n = 400),
compared to that of the reference λ-MART model. The NDCG@10 values achieved by
the two models is measured at every 100 trees. X-CLEaVER outperforms λ-MART
for every ensemble size and the results indicate that the gap between the two models is
considerable. Despite providing an increased effectiveness with respect to the reference
model, the efficiency is as well increased, since X-CLEaVER is able to achieve the
same performance of λ-MART with a reduced number of trees.

To conclude, Table 5.5 compares the actual per-document scoring time of different
X-CLEaVER and λ-MART models. The scoring time is measured by exploiting
QuickScorer which is the state-of-the-art algorithm for the evaluation of regression
tree forests [101, 55]. As expected, the speed-up provided by X-CLEaVER compact
models is proportional to the reduction in their size. On the MSLR-WEB30K-F1
dataset, the reference λ-MART models has 1, 199 trees and requires about 22.33 µs
to score a document, while X-CLEaVER can produce a model of only 200 trees
with the same effectiveness but being four times faster at scoring time. Similar results

119

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

0 200 400 600 800 1000 1200 1400
Ensemble

0.720

0.725

0.730

0.735

0.740

0.745

0.750

0.755

0.760
N

D
C

G
@

1
0

Testing Performance

X-CLEaVER
λ-MART

Figure 5.5: Comparison of X-CLEaVER and λ-MART effectiveness in terms of
NDCG@10 on the Istella-S dataset. The hyper-parameters adopted are p = 75% and
n = 400 .

are achieved on the Istella-S dataset with a 3.1 speed-up. When considering the
X-CLEaVER model of 1, 000 trees, despite showing a higher effectiveness in terms
of NDCG with respect to the reference model, it proves to be also more efficient by a
speed-up factor of 1.1 and 1.5 on MSLR-WEB30K-F1 and Istella-S, respectively.

5.4.4 Training behavior

We further analyze the training behavior of X-CLEaVER across multiple iterations
thus investigating the impact of the pruning and re-weighting strategies. In Figure 5.6
we report the NDCG@10 achieved by X-CLEaVER on the training set as a function
of the number of trees generated. In detail, the solid lines show the performance of
λ-MART in performing the GrowModel phase devoted at learning a delta model
Ê , composed of n weak rankers. This phase ends at circle blue points, when the
learning of a given delta model Ê ends, annotated by blue numbers that identify the
X-CLEaVER iteration number. Then, X-CLEaVER executes the Prune and
ReWeight phases, which lead to a model ÊW , corresponding to square red points
labeled with the same iteration number. For instance, during the first iteration, X-
CLEaVER uses λ-MART to train 400 trees from scratch, and achieves a NDCG@10

120

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

Table 5.5: Per document scoring time of λ-MART and X-CLEaVER (n = 400,p =
75%) models.

MSLR-WEB30K-F1
Algorithm # Trees NDCG@10 Time (µs.) Speed-up
λ-MART 1,199 0.4791 22.33 –

X-CLEaVER 1,000 0.4841 20.35 1.1x
200 0.4790 4.92 4.1x

Istella-S
Algorithm # Trees NDCG@10 Time (µs.) Speed-up
λ-MART 1,497 0.7530 48.33 –

X-CLEaVER 1,000 0.7577 31.87 1.5x
500 0.7530 15.64 3.1x

of 0.7724. This point is identified by the blue number 1. Then, the pruning strategy
discards 300 out of the 400 trees, and line search re-weights the remaining ones,
leading to a NDCG@10 of 0.7821 identified by the red number 1. The gaps between
the corresponding blue and red numbers (0.0097 in this example) highlights the ability
of X-CLEaVER to remove the less relevant trees and optimize the metric measure
NDCG@10. Red numbers identify the performance of the X-CLEaVER model at
the end of every iteration, thus describing the performance of the intermediate models.
Each subsequent iteration starts from the pruned and re-weighted model obtained
at the end of the previous iteration, i.e., E = E ∪ ÊW , shown as a new solid line of a
different color.

Lastly, the dashed black line identifies the performance achieved by the reference
λ-MART algorithm. Since both X-CLEaVER and λ-MART start from scratch at
the beginning, they initially train the same 400 trees. The horizontal dashed black
line, instead, represents the performance of the reference λ-MART model on the
training set.

An interesting effect deserving attention is the performance of the λ-MART
algorithm when it restarts the training of a previously optimized model to produce a
new delta model Ê . Indeed, the first trees of the delta model, added to the optimized
model E learnt so far, cause a significant drop of the performance on the training set.
This is reflected by the descending direction of the training curve, at the beginning of
each iteration (except the first one). The reason of this unexpected behavior can be
explained by one of the motivation behind this work, i.e., λ-MART does not directly

121

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

0 200 400 600 800 1000 1200 1400
Ensemble

0.74

0.76

0.78

0.80

0.82

N
D

C
G

@
1

0

1

1

2

2

3

3

4

4

5

5

6

6
7

7
8

8 9
9 10

10

Training Behavior X-CLEaVER

λ-MART

1st Iter

2nd Iter

3rd Iter

4th Iter

5th Iter

6th Iter

7th Iter

8th Iter

9th Iter

10th Iter

Figure 5.6: Values of NDCG@10 measured on the training dataset (Istella-S) across
multiple iterations of X-CLEaVER. The hyper-parameters adopted are p = 75% and
n = 400.

optimize the given ranking measure, e.g., NDCG , but can only indirectly optimize
it by using the proxy λ-ranks. Apparently, the models produced at the end of each
X-CLEaVER iteration contrast with the learning direction of λ-MART.

However, the performance drop never falls under the training performance of
the previous X-CLEaVER iteration when considering same-sized models. In fact,
each X-CLEaVER iteration brings significant improvements both before and after
the local optimizations. This behavior deserves future investigations as it may shed
light on novel optimization strategies for rank-based loss functions. As preliminary
conclusion, we believe that the X-CLEaVER local optimizations have the effect of
“teleporting” λ-MART on a different regions of the gradient boosting search space
that would not be explored otherwise. This allows to generate novel trees, some
of them apparently introducing a performance drop and some of them providing a
significant improvement with respect to the reference λ-MART. Eventually, the local
optimizations of X-CLEaVER select the most relevant trees and re-weight them
properly. We thus believe that X-CLEaVER benefits from a wider exploration of
the search space.

122

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

5.4.5 Training cost analysis

The last column of Table 5.4 reports the training times of the various strategies,
referred to the largest model trained. We recall that the training time is an off-line
cost: it is worthwhile to pay an extra cost at training time if better or more efficient
models can be exploited at prediction time. Overall, the best performing model of X-
CLEaVER shows a training time up to 3.5 times slower than the reference λ-MART
model, i.e., 62 hours against 18 for MSLR-WEB30K-F1, and 26 hours against 8 for
Istella-S. The X-CLEaVER cost is mainly due to the larger number of trees trained:
in order to build a model of N = 1, 000 trees with a pruning rate of p = 75%, the
number of trees that we have to actually generate is 4,000. However, X-CLEaVER
rewards this additional training cost with more accurate ranking predictions and more
faster models.

We further investigate the training time of X-CLEaVER by considering the four
main phases of the algorithm: i) training a new delta model Ê of n weak rankers using
the λ-MART model; ii) computing score predictions si(q, d) for every document in
the training dataset and for every weak ranker in Ê , thus allowing a more efficient
implementation of the pruning and re-weighting processes; iii) pruning a fraction p of
weak rankers according to the Quality-Loss strategy; iv) re-weighting the remaining
trees via line search. We measure the fraction time spent by X-CLEaVER across
those phases in order to train the best performing model on the Istella-S dataset (i.e.,
N = 1, 000, p = 75%, and n = 400).

As shown in Figure 5.7, the λ-MART training accounts for about 2/3 of the total
time. Learning the weak learners is the most demanding phase. Recall that in order
to train 1,000 trees, a total of 4,000 trees are generated across the 10 iterations of
the algorithm. The scoring phase has a non-trivial cost of about 15%. This is due
to the large number of documents and trees generated during each iteration. Note
that X-CLEaVER exploits λ-MART as a black box algorithm, and therefore every
generated tree is re-evaluated. Otherwise, the process could be optimized by storing
the tree predictions as they are learnt. Pruning has a similar cost of about 13%. Note
that Quality-Loss is the most expensive pruning strategy proposed. Nevertheless,
the overall cost is relatively small and well balances the higher quality provided in
comparison to the other pruning strategies. Finally, the cost of line search optimization
is limited to about 8%. Such limited cost is achieved thanks to several optimizations,
including multi-threading exploitation.

123

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

λ - M A R T

64%

Re-Weighting

8%

Pruning

13%

Scoring

15%

Training Time per Process

λ-MART

Re-Weighting

Pruning

Scoring

Figure 5.7: X-CLEaVER computational cost breakdown. The hyper-parameters
adopted are p = 75% and n = 400 on the Istella-S dataset.

The additional cost introduced by X-CLEaVER is not small. The local optimiza-
tions cover 1/3 of the total cost, and a much larger number of trees is generated to
build the final model.

However, if we focus on models with similar ranking quality, we observe that
the total training time of X-CLEaVER is comparable to that of λ-MART. When
considering the X-CLEaVER algorithm with parameters p = 75% and n = 400, it is
sufficient to train 200 trees on MSLR-WEB30K-F1 to achieve similar performance to
the reference λ-MART model with 1,199 trees, and 500 trees are sufficient on Istella-S
to equal the reference λ-MART model with 1,497 trees. In these cases, the training
times of X-CLEaVER are of about 11 hours on both datasets, while λ-MART
requires 18 hours on MSLR-WEB30K-F1 and 8 on Istella-S.

We thus conclude that X-CLEaVER has a training cost comparable with the
state-of-the-art λ-MART algorithm. In addition, it is able to i) create much more
compact models providing the same ranking quality, and ii) learn models with better
ranking quality at the cost of some additional computation at training time.

124

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

5.5 QuickRank - Learning to Rank Framework

In the latest years a number of machine learning algorithms have been proposed to
automatically learn high-quality ranking functions from labeled training sets. This
task is particularly challenging for large-scale Web collections, since it requires to
meet strict requirements both in terms of effectiveness and efficiency. The former
requirement is valued in terms of ranking quality, while the latter is somehow more
complex. Indeed traditional Web Search Engine (WSE) update their index very often,
in order to include fresh and novel documents. Consequently the training time of
an LtR model is an important factor to consider. On the other hand scoring time
(i.e., the time for producing a prediction) is as much as important, since thousand of
documents need to be scored in sub-second time when a SE has to produce the result
page for a user query.

For these reasons, we propose QuickRank9, a modular and extensible LtR frame-
work addressing both the learning and the scoring processes. The framework is
written in C++ (using C++11) and it exploits OpenMP to provide multithreaded
implementation of several state-of-the-art LtR algorithms: GBRT (also known as
MART) [65], λ-MART [179], and O-λ-MART [151], as well as the Line-Search [163]
gready optimization process (for the tree weights), CLEaVER [98] and X-CLEaVER.
QuickRank takes the dataset in the SVM-light format, and save the machine-learnt
ranking model in a XML file. Regarding the scoring process, the framework supports
various strategies. The first is named If-Then-Else, and aims at translate each
decision tree in a sequence of C++ if-then-else blocks, trying to take advantage of
compiler optimization strategies. The second implements the Vpred [7] strategy, and
aims at reducing the control hazards of the previous approach caused by the large
number of conditional branches. This strategy translate the ranking model in the
format required by the Vpred implementation. The third strategy applies only to
O-λ-MART, and exploit the property of these trees to be balanced to use a bitmask
for the comparison.

5.6 Conclusion

In this chapter, we proposed X-CLEaVER, a novel meta-learning algorithm that em-
bed pruning and weight optimization strategies within an ensemble learning algorithm
providing compact models with higher quality than state-of-the-art solutions. We

9The source code is available at https://github.com/hpclab/quickrank

125

https://github.com/hpclab/quickrank

5. Embedding Tree Pruning and Re-Weighting in Learning to Rank

proposed several pruning strategies to identify the less relevant trees to remove at each
iteration, and we formalized a greedy optimization process devoted at maximizing
a given ranking loss function such as NDCG , for which it is not possible to adopt
the classical gradient descent strategy since it is not derivable. The experiments
conducted on two public LtR dataset confirmed the validity of the pruning and weights
optimization strategies, at first when tested in isolation, and then when nested in
the proposed iterative X-CLEaVER meta-algorithm. The resulting model exhibits
improvements in terms of both efficiency and effectiveness. Indeed, compared to the
reference λ-MART model, it allowed the training of smaller models showing similar
effectiveness or more effective models fixing the ensemble size. We believe this is
due to the somehow heuristic nature of learning algorithms such as λ-MART. As
ranking measure cannot be optimized directly, proxy measures are used (e.g., lambda
gradients). X-CLEaVER allows i) to select a subset of relevant tree from a large
candidate set (pruning) and ii) to fine-tune theirs weights (re-weighting), with both
steps being driven by the optimization of the target ranking function. At each iteration,
X-CLEaVER provides a solid set of ranker from which the λ-MART algorithm can
continue its optimization.

126

Chapter 6

Conclusions and Future Work

Web search represents the most advanced Information Retrieval application to date.
Besides the efficiency challenges, caused by the need to manage the exponential growth
in the number of web pages and the huge, ever increasing, number of users, WSEs
are expected to return precise and accurate results for any query to provide a very
high quality of experience to their users. To this end, one of the biggest problem they
need to face derives from the ambiguity of queries due, for example to polysemy and
synonymy. Indeed, both documents and queries are expressed natural language, with
the former written by a multitude of heterogeneous users with different writing styles
and cultures, and the latter being inherently ambiguous due to their short length.

Several document and query understanding techniques have been thus developed
to achieve a finer comprehension of the main topics and the leading characters covered.
The most promising of such techniques is represented by Entity Linking, a task aimed
at identifying the short fragments of text referring to an entity that is listed in a given
knowledge base. The annotation process leads to a richer representation of both queries
and documents, which are enriched with links to the semantic concepts they refer
to. The net result is a paradigm shift, moving from unstructured to semi-structured
queries and documents, that simplifies understanding and query-document matching,
thus enabling the possibility of deriving insights from the data.

The statement of this thesis is that ”a semantically enriched learning-to-rank
strategy can simultaneously improve both efficiency and effectiveness of document
understanding and retrieval tasks”. To this end, in Chapter 3 we proposed a novel entity
relatedness measure by formalizing entity-relatedness as a learning-to-rank problem.
In Chapter 4 we formalized a novel algorithm comprehensively addressing both Entity
Linking and Saliency detection. The two works together enhanced the effectiveness
of document understanding with respect to state-of-the-art annotation systems. The
improvements were achieved with the usage of supervised machine learning techniques

127

6. Conclusions and Future Work

that produce additive ensembles of decision trees. These techniques received a lot
of attention by the IR community in the latest years due to the high quality of the
ranking models ensemble-based LtR techniques allow to learn from labeled datasets.
Thus, Chapter 5 focuses on ensemble-based models and proposes a novel meta-learning
LtR algorithm that embeds tree pruning and re-weighting in order to obtain more
efficient and effective ranking models.

The remainder of this chapter is organized as follows. In Section 6.1 we summarize
the main contributions of this thesis, while in Section 6.2 we critical discuss several
limitations of this dissertation, explaining how important each of these limitation is,
justifying the choices made during the research progress and possibly suggesting how
to overcome such limitations in future. Finally, in Section 6.3 we present the list of
publications produced during this PhD programme.

6.1 Thesis Contributions and Future Work

In the following we summarize the main contributions of this thesis and discuss possible
directions for future research.

Learning Relatedness Measures for Entity Linking In Chapter 3 we investigated
entity relatedness, a measure aimed at providing the degree of similarity between two
entities belonging to a given Knowledge Base. This measure is probably the most
important feature adopted by state-of-the-art Entity Linking systems in performing
the disambiguation, i.e., in selecting among all the candidate entities identified by the
spotting for a given fragment of text, the most relevant one. To this end, a common
approach is to adopt a global optimization strategy, i.e., to maximize the coherence
among the selected entities. The definition of an effective relatedness function is thus
a crucial point in any entity-linking algorithm. We addressed the problem proposing
a machine learning approach aimed at discovering the entity relatedness function. In
Section 3.2 we formalized the problem of learning entity relatedness as a learning-to-
rank problem. We then proposed in Section 3.4 a methodology to create reference
datasets on the basis of manually annotated data and discussed the features adopted.
The experiments showed that our machine-learnt entity relatedness function performs
better than other relatedness functions previously proposed. Finally, in Section 3.5
we proved that we can remarkably improve the overall performance of state-of-the-art
Entity Linking algorithms by sinlpy embedding the proposed relatedness measure
within them. The proposed solution opens up a wide spectrum of improvement
opportunities. In particular, it could be interesting to investigate the trade-off between

128

6. Conclusions and Future Work

feature computational cost and benefit provided, and the introduction of novel and
more powerful features (e.g., entity popularity, categories, similarity between the
description of the two entities, i.e., the text of their Wikipedia pages. Moreover, it
could be worth investigating the usage of popular word embedding techniques, trained
on the Wikipedia corpus in such a way to consider not only the text but also the
existing links between the entities. This technique could be adopted in place of our
proposed relatedness measure, or as a feature.

SEL: A Unified Algorithm for Entity Linking and Saliency Detection. In
Chapter 4 we suggested to go beyond the traditional definition of Entity Linking.
Indeed, it is straightforward that not all the entities mentioned in a document have
the same relevance and utility in understanding the topics being discussed. Thus, the
related problem of identifying the most relevant entities present in a document, also
known as Salient Entities, is of fundamental importance for a fine-grained document
understanding. To this purpose, in Section 4.3 we gave a formal definition of the
Salient Entity Linking problem and we proposed SEL, a novel supervised two-step
algorithm comprehensively addressing both entity linking and saliency detection. The
first step is based on a classifier aimed at identifying a set of candidate entities that
are likely to be mentioned in the document, thus maximizing the precision of the
method without hindering its recall. The second step is still based on machine learning,
and aims at choosing from the previous set the entities that actually occur in the
document. Indeed, we tested two different versions of the second step, one aimed
at solving only the entity linking task, and the other that, besides detecting linked
entities, also scores them according to their saliency. In Section 4.4, we presented the
methodology for creating a novel dataset of news manually annotated with entities
and their saliency. Experiments conducted on two different datasets show that the
proposed algorithm outperforms state-of-the-art competitors, and is able to detect
salient entities with high accuracy. Furthermore, we investigated the usage of Entity
Saliency for the document summarization problem, where exploiting the saliency of the
entities is crucial for providing a high-level summary of the document. The resulting
summarizers outperform well-known summarization systems, proving the importance
of using the Salient Entities information.

To the best of our knowledge, this is the first work addressing the Salient Entity
detection problem in conjunction with the Entity Linking. For this reason, several
research directions remain open. One of this future directions is to exploits the
information about the saliency of the entity in evaluating the effectiveness of an
Entity Linking system. The idea is that a system that fails to annotate one of the

129

6. Conclusions and Future Work

most salient entities should score lower that a system that fails to annotate satellite
concepts. Alternative directions include studying how Entity Saliency impacts on
several information extraction tasks, i.e., text summarization or document clustering.
In these application scenario, the capability of weighting entities on the basis of their
saliency is crucial, as empirically proved by our preliminary experiments on the former
task. To this end, further investigation is required to study the role of entity-based
features in enhancing state-of-the-art extractive summarizers.

Embedding Tree Pruning and Re-Weighting in Learning to Rank. In Chap-
ter 5 we approached the problem of improving efficiency and effectivess of ensemble-
based LtR models. These models are trained using a boosting strategy, i.e., an iterative
approach that combines many weighted weak tree-based rankers into a single model.
At each iteration the tree that minimizes a given loss function is added to the ensemble.
By analyzing the models generated by such state-of-the-art algorithms, we observed
some degree of similarity between the trees, i.e., consecutive trees tend to provide
similar predictions. We thus proposed several pruning strategies that, starting from a
given ensemble model, remove the less relevant trees with the goal of minimizing the
effectiveness drop but increasing the model efficiency. The efficiency of ensemble-based
models, indeed, is proportional to the number of trees in the ensemble, thus reducing
their number results in a lower scoring time. While pruning the ensemble provide
evident benefits in terms of efficiency, on the other hand optimizing tree weights leads
to improve the effectiveness. Indeed, state-of-the-art algorithms do not consider this
aspect and use a uniform weighting schema. We instead proposed a greedy optimiza-
tion algorithm aimed at finding the best weights assignment as to maximize a given
loss function, i.e., NDCG . Finally, we combined the pruning and weight optimization
strategies in a single meta-algorithm, named X-CLEaVER, which is able to iteratively
prune the less useful part of the ensemble and re-weight the remaining part accordingly
to the loss function adopted, in such a way to optimize both efficiency and effectiveness
with respect to the original model. The experiments conducted on two public LtR
datasets confirmed that the pruning and weights optimization strategies in isolation
were responsible for producing more compact models than state-of-the-art method,
although exhibiting a similar ranking quality. Further experiments executed on the
iterative meta-algorithm proved the validity of the interleaved approach, resulting in
the training of more efficient and more effective models.

To the best of our knowledge, this is the first work addressing the learning of ranking
models from both the perspectives at the same time: efficiency and effectiveness. To
this regards, several research directions remains to investigate. On the one side, the

130

6. Conclusions and Future Work

usage of different LtR algorithms, other than λ-MART, within the proposed approach.
Indeed, X-CLEaVER is designed to work in principle with every LtR algorithm, since
the training algorithm is used as a black box. For instance, it could be interesting
to adopts a MART model, i.e., a point-wise regression algorithm quite popular in
the LtR field, and study the joint effects of minimizing the Root Mean Squared Error
(RMSE) (MART) and the NDCG on the full list (the X-CLEaVER optimization
strategies). On the other side, it could be interesting to investigate the application
of the proposed methodology to tasks different from the ranking, like regression and
classification. Indeed, several state-of-the-art regression and classification algorithms
adopts the same ensemble-based models, built in an additive way. To this regards,
optimizing a loss function different from the ranking loss (e.g., the regression loss
or the classification loss) could lead to interesting results, since these functions are
usually derivable unlike NDCG . Lastly, it could be interesting to adopt the weight
optimization process on a per tree basis, differently from the X-CLEaVER approach
where the greedy optimization is done on a set of trees (thus increasing the difficulty of
the local search, due to an higher number of parameters, but on the contrary allowing
more space for improvements, since the local search can explore a bigger space).

Open-Source Frameworks developed as product of the research activity. In
this section we list several open source frameworks, mainly developed for validating
the novel solutions proposed in this thesis and then made publicly available to the
research community. In Section 3.6 we presented Dexter, a framework addressing
the Entity Linking problem and providing out of the box the implementation of
several state-of-the-art algorithms. It has been designed optimizing the modularity
of its components (e.g., single modules for spotting, disambiguation and filtering)
and the resource requirements, such that it can run also on commodity hardware.
Dexter constituted the building block of all the experiments presented in this thesis,
and has been actively used also in other research activities (e.g., European and
national projects). In Section 4.6 we presented Elianto, a framework aimed at
crowd-sourcing the production of manually annotated datasets for the Entity Linking
and Saliency Detection tasks. Elianto has been mainly developed for creating
the dataset for the Entity Saliency work, since the missing of public datasets with
saliency annotations. As Dexter, also this framework has been extensively used in
parallel research activities. Lastly, Section 5.5 introduce QuickRank, a framework
designed for efficiently addressing the learning to rank task as well as the scoring
process, using a modular and extensible architecture. Despite the framework has
been originally developed by other researchers, in the scope of this thesis it has been

131

6. Conclusions and Future Work

extensively expanded and reshaped for incorporating new ideas and optimizations.
The X-CLEaVER approach is now completely integrated within QuickRank.

6.2 Research Limitations

Various limitations may exist in this study. The first aspect we want to discuss is
the lack of an empirical demonstration that improving the effectiveness of document
understanding will lead to an improvement of the retrieval quality in Web search.
Several works in literature treated about semantic search, approaching the problem
from a twofold angles: supporting the semantic retrieval of documents and enriching
web queries with concepts of a Knowledge Base (KB). Section 2.1.3 provides some
details on this argument as well as references to various interesting works the reader
might follow up. Researchers often face a barrier when working on this topic due to
the lack of a standard large-scale benchmark collection of annotated documents to
use for testing the effectiveness of the proposed solutions. Indeed, most past studies
use small datasets and small corpus and thus it is unclear whether similar conclusions
would be reached using a full-stack architecture. Interestingly, researchers from Yahoo
observed, on their commercial web search engine using a full-web corpus, a significant
boost to the relevance of search results by enriching queries with concepts [97]. Due
to the aforementioned considerations, we state that such a demonstration is hard to
reach without a direct connection with a commercial web search engine and thus it is
beyond the scope of this thesis.

A second aspect to discuss is the lack of evidence that the solution proposed in
this dissertation for improving the document understanding task are not only effective
but also efficient. To this regard, it is useful to recall that each one of these solutions,
despite adopting traditional state-of-the-art learning model, have also been analyzed
with regard to the feature space. Indeed, a feature selection study has been done
to find the best trade-off between efficiency and effectiveness of the resulting model.
Moreover, the learning to rank model proposed in Chapter 5, which is designed to
learn a much more compact ensemble-based forest of decision trees with respect to
state-of-the-art model, is applicable also to the solutions above mentioned. Thus to
summarize, the net result is that we attacked the efficiency problem by considering
both the feature space and the compactness of the model, with the latter that linearly
affect the scoring time of such ensemble-based models.

Several other aspects are worth to be considered, despite being less important.
Some of them are strictly related to the Entity Linking task. One aspect for example

132

6. Conclusions and Future Work

is the NIL problem, i.e., the ability of the Entity Linking systems to recognize
fragments of text referring to concepts that are not in the KB. This problem is
of paramount importance when dealing with fresh documents like news, due to an
increased probability of dealing with entities not yet in the KB. KB freshness, i.e.,
the capability of staying as much as possible in sync with the KB, is another problem
particular important in this context. Indeed, the intermediate data structures (e.g.,
indexes) used by the Entity Linking systems need to be updated usually by a batch
process that is time and memory consuming. Due to the effort needed for the update,
these systems adopt often information from KB old several months and sometimes even
years. Neither the NIL problem nor KB Freshness have been tackled in this dissertation,
but could significantly enhance the effectiveness of the document understanding task.

Another aspect do not considered in this dissertation is the multi-language depen-
dency, and in particular the ability for the Entity Linking system to adopts on the fly
the joint information obtained by exploiting the interconnections between datasets pro-
vided in different languages. Indeed Wikipedia and others KB have different editions
for each language, but they also provide with the connections between related pages
in the distinct languages, thus creating a global KB that can be fruitfully exploited
for improving the knowledge about the entities. Furthermore, this dissertation focus
on using the Wikipedia KB, but it could be interesting to study the effect of adopting
different KB with regard to the topic of the documents to annotate. For example,
the following research question rise: i) is Wikipedia the best general purpose KB ?
ii) when dealing with document of a specific topic, is still Wikipedia good enough or
using different KB could lead to significant improvements to the annotation quality ?
iii) how difficult is to joint together two or more KB in order to create a unique, huge
collection of entities ? These questions are known to the researchers working on this
topic and several attempts has been done to provide at least partially answer to them.
In particular with regard to the second RQ, we tried a first, rudimentary approach to
study the effect of using a subset of the original KB to enrich documents of a very
specific topic, i.e., philosophical documents [34]. This preliminary work highlighted
than the proposed solution provides higher effectiveness with respect to the usage
of the full KB. However the experiments where done on a small dataset manually
annotated by some experts, thus it is difficult to generalize the outcome of this work.

133

6. Conclusions and Future Work

6.3 List of Publications

In this section we lists all the references to papers – published or still under revision –
produced in the course of this PhD programme. The list of the papers is organized
accordingly to the chapters of this thesis, in order to reflect the contributions presented
on a topic basis. Moreover, an additional paper is included in the list, covering a
preliminary work aimed at studying the effectiveness of an Entity Linking system in
enriching topic-based documents, i.e., philosophical texts. In this work, the focused
on restricting the original Knowledge Base (Wikipedia) in such a way to include only
topic-related entities, using different strategies. The experiments performed on a
small set of manually assessed documents proved the benefits of this approach, thus
confirming that a general purpose Knowledge Base is problematic when the task is to
annotate topic-specific texts.

Chapter 3 - Learning relatedness measures for entity linking

Learning relatedness measures for entity linking Diego Ceccarelli, Claudio
Lucchese, Salvatore Orlando, Raffaele Perego, and Salvatore Trani. In Proceed-
ings of the 22nd ACM international conference on Information & Knowledge
Management, pp. 139-148. (ACM CIKM), Burlingame, CA, USA October 27th
- November 1st, 2013.

Chapter 4 - SEL: A Unified Algorithm for Entity Linking and
Saliency Detection

SEL: A Unified Algorithm for Entity Linking and Saliency Detection1 Sal-
vatore Trani, Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, and Raffaele
Perego. In Proceedings of the 2016 ACM Symposium on Document Engineering,
pp. 85-94. (ACM DocEng) Vienna, Austria September 13 - September 16, 2016.

SEL: A Unified Algorithm for Entity Linking and Saliency Detection Salva-
tore Trani, Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, and Raffaele
Perego. Submitted for review to an International Journal;

1Awarded with the ACM DocEng best student paper.

134

6. Conclusions and Future Work

Chapter 5 - Embedding Tree Pruning and Re-Weighting in
Learning to Rank

Improve Ranking Efficiency by Optimizing Tree Ensembles Claudio Lucch-
ese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri,
and Salvatore Trani. Extended abstract in 7th Italian Information Retrieval
Workshop (IIR) Venice, Italy May 20 - May 31, 2016.

Post-learning optimization of tree ensembles for efficient ranking Claudio
Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Fabrizio
Silvestri, and Salvatore Trani. In Proceedings of the 39th International ACM
conference on Research and Development in Information Retrieval, pp. 949-952.
(ACM SIGIR) Pisa, Italy July 17 - July 21, 2016.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning
Trees Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, Fabrizio Silvestri, and Salvatore Trani. Submitted for review to a top
tier International Journal;

Frameworks

Dexter: an open source framework for entity linking Diego Ceccarelli, Clau-
dio Lucchese, Salvatore Orlando, Raffaele Perego and Salvatore Trani. In
Proceedings of the 6th International Workshop on Exploiting Semantic Annota-
tions in Information Retrieval, pp. 17-20. (ESAIR) San Francisco, CA, USA
October 28, 2013.

Dexter 2.0: an open source tool for semantically enriching data Salvatore
Trani, Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, and Raffaele
Perego. In Proceedings of the 13th International Semantic Web Conference
Posters & Demonstrations Track, p. 417-420. (ISWC-PD) Riva del Garda, Italy
October 19 - October 23, 2014.

Manual annotation of semi-structured documents for entity-linking Salva-
tore Trani, Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, and Raffaele
Perego In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, pp. 2075-2077. (ACM CIKM)
Shanghai, China November 03 - November 7, 2014.

135

6. Conclusions and Future Work

Other Publications

Entity Linking on Philosophical Documents Diego Ceccarelli, Alberto De
Francesco, Raffaele Perego, Marco Segala, Nicola Tonellotto and Salvatore Trani
6th Italian Information Retrieval Workshop (IIR) Cagliari, Italy May 25 - May
26, 2015.

136

Bibliography

[1] Shivani Agarwal. Ranking on graph data. In Proceedings of the 23rd international
conference on Machine learning, pages 25–32. ACM, 2006. 25

[2] Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web search ranking
by incorporating user behavior information. In Proceedings of the 29th annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 19–26. ACM, 2006. 20, 30

[3] Marco Aiello, Christof Monz, Leon Todoran, and Marcel Worring. Document un-
derstanding for a broad class of documents. International Journal on Document
Analysis and Recognition, 5(1):1–16, 2002. 15

[4] Omar Alonso, Daniel E Rose, and Benjamin Stewart. Crowdsourcing for relevance
evaluation. In ACM SigIR Forum, volume 42, pages 9–15. ACM, 2008. 29

[5] Jesse Alpert and Nissan Hajaj. We knew the web was big. The official Google
blog, 25, 2008. 1

[6] Nima Asadi and Jimmy Lin. Training efficient tree-based models for document
ranking. In Advances in Information Retrieval, pages 146–157. Springer, 2013.
98, 102

[7] Nima Asadi, Jimmy Lin, and Arjen P. de Vries. Runtime optimizations for
tree-based machine learning models. IEEE Trans. Knowl. Data Eng., 26(9):2281–
2292, 2014. 98, 103, 125

[8] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic
web, pages 722–735. Springer, 2007. 12

[9] Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo Mendoza. Query recom-
mendation using query logs in search engines. In International Conference on
Extending Database Technology, pages 588–596. Springer, 2004. 2

137

Bibliography

[10] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval,
volume 463. ACM press New York, 1999. 1, 2, 17, 19

[11] Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science,
323(5919):1297–1298, 2009. 1

[12] Michael Bendersky, W Bruce Croft, and Yanlei Diao. Quality-biased ranking of
web documents. In Proceedings of the fourth ACM international conference on
Web search and data mining, pages 95–104. ACM, 2011. 20

[13] Tim Berners-Lee. Linked data-design issues (2006). URL http://www. w3.
org/DesignIssues/LinkedData. html, 2011. 10, 11

[14] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
american, 284(5):28–37, 2001. 3, 10

[15] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far.
Semantic Services, Interoperability and Web Applications: Emerging Concepts,
pages 205–227, 2009. 3

[16] Roi Blanco, Harry Halpin, Daniel M Herzig, Peter Mika, Jeffrey Pound, Henry S
Thompson, and Thanh Tran Duc. Repeatable and reliable search system
evaluation using crowdsourcing. In Proceedings of SIGIR, pages 923–932. ACM,
2011. 75

[17] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, pages 1247–1250. ACM, 2008. 13

[18] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Clas-
sification and regression trees. CRC press, 1984. 24

[19] Marc Bron, Krisztian Balog, and Maarten de Rijke. Ranking related entities:
components and analyses. In Proceedings of the 19th ACM Conference on Infor-
mation and Knowledge Management, CIKM 2010, Toronto, Ontario, Canada,
October 26-30, 2010, pages 1079–1088, 2010. 43

[20] Jake Brutlag. Speed matters for google web search. Google. June, 2009. 2, 9

138

Bibliography

[21] Michael Buckland and Fredric Gey. The relationship between recall and precision.
Journal of the American society for information science, 45(1):12, 1994. 31

[22] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Greg Hullender. Learning to rank using gradient descent. In
Proceedings of the 22nd international conference on Machine learning, pages
89–96. ACM, 2005. 24, 25

[23] Christopher JC Burges. From ranknet to lambdarank to lambdamart: An
overview. Learning, 11:23–581, 2010. 25

[24] Christopher JC Burges, Robert Ragno, and Quoc Viet Le. Learning to rank
with nonsmooth cost functions. In NIPS, volume 6, pages 193–200, 2006. 25

[25] Robin Burke. Hybrid recommender systems: Survey and experiments. User
modeling and user-adapted interaction, 12(4):331–370, 2002. 17

[26] Berkant Barla Cambazoglu and Ricardo A. Baeza-Yates. Scalability Challenges
in Web Search Engines. Synthesis Lectures on Information Concepts, Retrieval,
and Services. Morgan & Claypool Publishers, 2015. 2, 98, 104

[27] Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-Wuen
Hon. Adapting ranking svm to document retrieval. In Proceedings of the 29th
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 186–193. ACM, 2006. 24

[28] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to
rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning, pages 129–136. ACM, 2007. 25

[29] Gabriele Capannini, Domenico Dato, Claudio Lucchese, Monica Mori,
Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, and Nicola
Tonellotto. QuickRank: a C++ suite of learning to rank algorithms
(http://quickrank.isti.cnr.it/). IIR ’15: 6th Italian Information Retrieval Work-
shop, 2015. 110, 111

[30] Gabriele Capannini, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,
Raffaele Perego, and Nicola Tonellotto. Quality versus efficiency in document
scoring with learning-to-rank models. Information Processing & Management,
2016. 7, 98, 99, 103, 111

139

Bibliography

[31] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking
for reordering documents and producing summaries. In Proceedings of the 21st
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’98, pages 335–336, New York, NY, USA, 1998.
ACM. 85

[32] S Jeromy Carrière and Rick Kazman. Webquery: Searching and visualizing the
web through connectivity. Computer Networks and ISDN Systems, 29(8):1257–
1267, 1997. 20

[33] Vitor R Carvalho, Matthew Lease, and Emine Yilmaz. Crowdsourcing for search
evaluation. In ACM Sigir forum, volume 44, pages 17–22. ACM, 2011. 29

[34] Diego Ceccarelli, Alberto De Francesco, Raffaele Perego, Marco Segala, Nicola
Tonellotto, and Salvatore Trani. Entity linking on philosophical documents. In
IIR, 2015. 133

[35] Diego Ceccarelli, Sergiu Gordea, Claudio Lucchese, Franco Maria Nardini, and
Raffale Perego. When entities meet query recommender systems: semantic
search shortcuts. In Proceedings of SAC, 2013. 43

[36] Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and
Salvatore Trani. Dexter: an open source framework for entity linking. In
ESAIR’13, Proceedings of the Sixth International Workshop on Exploiting Se-
mantic Annotations in Information Retrieval, co-located with CIKM 2013, San
Francisco, CA, USA, October 28, 2013, pages 17–20, 2013. 7, 52

[37] Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and
Salvatore Trani. Learning relatedness measures for entity linking. In Proceed-
ings of the 22nd ACM international conference on Information & Knowledge
Management, pages 139–148. ACM, 2013. 6

[38] Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and
Salvatore Trani. Dexter 2.0 - an open source tool for semantically enriching data.
In Proceedings of the 13th International Semantic Web Conference, Posters &
Demonstrations Track (ISWC-PD), pages 417–420, 2014. 7, 52

[39] Soumen Chakrabarti, Sasidhar Kasturi, Bharath Balakrishnan, Ganesh Ramakr-
ishnan, and Rohit Saraf. Compressed data structures for annotated web search.
In Proceedings of WWW, 2012. 16

140

Bibliography

[40] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma, and Hang Li. Ranking
measures and loss functions in learning to rank. In Proceedings of the 22Nd
International Conference on Neural Information Processing Systems, NIPS’09,
pages 315–323, 2009. 100

[41] Gong Cheng and Yuzhong Qu. Searching linked objects with falcons: Approach,
implementation and evaluation. International Journal on Semantic Web and
Information Systems (IJSWIS), 5(3):49–70, 2009. 14

[42] Xiao Cheng and Dan Roth. Relational inference for wikification. Urbana,
51:61801, 2013. 16, 63

[43] Rudi Cilibrasi and Paul M. B. Vitányi. The google similarity distance. IEEE
Trans. Knowl. Data Eng., 19(3):370–383, 2007. 42

[44] Charles LA Clarke, Nick Craswell, and Ian Soboroff. Overview of the trec 2004
terabyte track. In TREC, volume 4, page 74, 2004. 27

[45] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova,
Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and diversity in
information retrieval evaluation. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 659–666. ACM, 2008. 2

[46] Cyril Cleverdon. The cranfield tests on index language devices. In Aslib
proceedings, volume 19, pages 173–194. MCB UP Ltd, 1967. 29

[47] Cyril Cleverdon. On the inverse relationship of recall and precision. Journal of
documentation, 28(3):195–201, 1972. 31

[48] Gordon V. Cormack, Mark D. Smucker, and Charles L. A. Clarke. Efficient
and effective spam filtering and re-ranking for large web datasets. Information
Retrieval, 14(5):441–465, 2011. 17

[49] David Cossock and Tong Zhang. Statistical analysis of bayes optimal subset
ranking. IEEE Transactions on Information Theory, 54(11):5140–5154, 2008. 26

[50] Koby Crammer, Yoram Singer, et al. Pranking with ranking. In Nips, volume 1,
pages 641–647, 2001. 24

141

Bibliography

[51] Nick Craswell, David Hawking, Ross Wilkinson, and Mingfang Wu. Overview of
the trec 2003 web track. In TREC, volume 3, page 12th, 2003. 27

[52] Silviu Cucerzan. Large-scale named entity disambiguation based on wikipedia
data. In EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, June 28-30, 2007, Prague, Czech Republic, pages 708–716,
2007. 16, 34, 43

[53] Matt Cutts. Spotlight keynote. Proceedings of Search Engine Strategies, 2012. 1

[54] Van Dang, Michael Bendersky, and W Bruce Croft. Two-stage learning to rank
for information retrieval. In Advances in Information Retrieval, pages 423–434.
Springer, 2013. 104

[55] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,
Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. Fast ranking with
additive ensembles of oblivious and non-oblivious regression trees. ACM Trans-
actions on Information Systems, 2016. 27, 103, 119

[56] Maurice de Kunder. Worldwidewebsize.com - the size of the world wide web
(the internet), 2015. 1

[57] Ofer Dekel, Christopher D Manning, and Yoram Singer. Log-linear models for
label ranking. In NIPS, volume 16, 2003. 25

[58] Mark Dredze, Paul McNamee, Delip Rao, Adam Gerber, and Tim Finin. Entity
disambiguation for knowledge base population. In Proceedings of COLING, 2010.
16, 43

[59] Jesse Dunietz and Dan Gillick. A new entity salience task with millions of
training examples. EACL 2014, page 205, 2014. 64, 75

[60] Günes Erkan and Dragomir R Radev. Lexrank: Graph-based lexical centrality
as salience in text summarization. J. Artif. Intell. Res.(JAIR), 22(1):457–479,
2004. 73

[61] Paolo Ferragina and Ugo Scaiella. TAGME: on-the-fly annotation of short text
fragments (by wikipedia entities). In Proceedings of the 19th ACM Conference
on Information and Knowledge Management, CIKM 2010, Toronto, Ontario,

142

Bibliography

Canada, October 26-30, 2010, pages 1625–1628, 2010. 16, 34, 37, 40, 42, 43, 57,
62, 67

[62] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. Hypertext transfer protocol–http/1.1. Technical
report, 1999. 11

[63] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient
boosting algorithm for combining preferences. Journal of machine learning
research, 4(Nov):933–969, 2003. 24, 25

[64] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of
on-line learning and an application to boosting. In European conference on
computational learning theory, pages 23–37. Springer, 1995. 25

[65] Jerome Friedman. Greedy function approximation: a gradient boosting machine.
Annals of Statistics, pages 1189–1232, 2001. 24, 111, 125

[66] Jerome Friedman. Greedy function approximation: a gradient boosting machine.
Annals of Statistics, 2001. 47

[67] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness
using wikipedia-based explicit semantic analysis. In Proceedings of IJCAI, 2007.
43

[68] Michael Gamon, Tae Yano, Xinying Song, Johnson Apacible, and Patrick Pantel.
Identifying salient entities in web pages. In Proceedings of CIKM, pages 2375–
2380. ACM, 2013. 6, 60, 63

[69] Xiubo Geng, Tie-Yan Liu, Tao Qin, and Hang Li. Feature selection for ranking.
In Proceedings of SIGIR 2007, 2007. 48

[70] David Gibson, Jon Kleinberg, and Prabhakar Raghavan. Inferring web communi-
ties from link topology. In Proceedings of the ninth ACM conference on Hypertext
and hypermedia: links, objects, time and space—structure in hypermedia systems:
links, objects, time and space—structure in hypermedia systems, pages 225–234.
ACM, 1998. 10

[71] Michael Gordon and Manfred Kochen. Recall-precision trade-off: A derivation.
Journal of the American Society for Information Science, 40(3):145, 1989. 31

143

Bibliography

[72] Ben Hachey, Will Radford, Joel Nothman, Matthew Honnibal, and James R
Curran. Evaluating entity linking with wikipedia. Artificial intelligence, 2013.
54

[73] Xianpei Han, Le Sun, and Jun Zhao. Collective entity linking in web text: a
graph-based method. In Proceedings of SIGIR, 2011. 16, 37, 40, 41, 42, 43, 57

[74] Tom Heath and Christian Bizer. Linked data: Evolving the web into a global
data space. Synthesis lectures on the semantic web: theory and technology,
1(1):1–136, 2011. 3

[75] MH Heine. Inverse relationship of precision and recall in terms of swets model,
1973. 31

[76] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank
boundaries for ordinal regression. Advances in neural information processing
systems, pages 115–132, 1999. 23, 25, 101

[77] Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen, Martin Theobald, and
Gerhard Weikum. Kore: keyphrase overlap relatedness for entity disambiguation.
In Proceedings of CIKM, 2012. 34, 43

[78] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau,
Manfred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. Robust disambiguation of named entities in text. In Proceedings of
the 2011 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh,
UK, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 782–792,
2011. 16, 37, 45, 63, 67, 73

[79] Ian Jacobs and Norman Walsh. Architecture of the world wide web. 2004. 11

[80] Bernard J Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic. Real
life information retrieval: A study of user queries on the web. In ACM SIGIR
Forum, volume 32, pages 5–17. ACM, 1998. 2

[81] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir
techniques. ACM Trans. Inf. Syst., 2002. 32, 39

[82] Thorsten Joachims. Optimizing search engines using clickthrough data. In
Proceedings of KDD, 2002. 39

144

Bibliography

[83] Thorsten Joachims et al. Evaluating retrieval performance using clickthrough
data., 2003. 20, 30

[84] Sparck Jones. Report on the need for and provision of an” ideal” information
retrieval test collection. 1975. 29

[85] Allen Kent, Madeline M Berry, Fred U Luehrs, and James W Perry. Machine
literature searching viii. operational criteria for designing information retrieval
systems. American documentation, 6(2):93–101, 1955. 30

[86] Rohit Khare and Tantek Çelik. Microformats: a pragmatic path to the semantic
web. In Proceedings of the 15th international conference on World Wide Web,
pages 865–866. ACM, 2006. 13, 15

[87] Atanas Kiryakov, Borislav Popov, Ivan Terziev, Dimitar Manov, and Damyan
Ognyanoff. Semantic annotation, indexing, and retrieval. Web Semantics:
Science, Services and Agents on the World Wide Web, 2(1):49–79, 2004. 14

[88] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM (JACM), 46(5):604–632, 1999. 10, 20

[89] Graham Klyne and Jeremy J Carroll. Resource description framework (rdf):
Concepts and abstract syntax. 2006. 11

[90] Ping Li, Qiang Wu, and Christopher J Burges. Mcrank: Learning to rank using
multiple classification and gradient boosting. In Advances in neural information
processing systems, pages 897–904, 2007. 24, 26

[91] Yanhong Li. Toward a qualitative search engine. IEEE Internet Computing,
2(4):24, 1998. 20

[92] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In
Stan Szpakowicz Marie-Francine Moens, editor, Text Summarization Branches
Out: Proceedings of the ACL-04 Workshop, pages 74–81, Barcelona, Spain, July
2004. Association for Computational Linguistics. 87

[93] Thomas Lin, Oren Etzioni, et al. No noun phrase left behind: detecting and
typing unlinkable entities. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 893–903. Association for Computational Linguistics,
2012. 16

145

Bibliography

[94] Chao Liu, Ryen W White, and Susan Dumais. Understanding web browsing
behaviors through weibull analysis of dwell time. In Proceedings of the 33rd in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 379–386. ACM, 2010. 20, 30

[95] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends
in Information Retrieval, 3(3):225–331, 2009. 22, 23, 98

[96] David E. Losada and Javier Parapar. Injecting multiple psychological features
into standard text summarisers. In Proceedings of the 4th Spanish Conference
on Information Retrieval, CERI ’16, pages 3:1–3:8, New York, NY, USA, 2016.
ACM. 88

[97] Yumao Lu, Fuchun Peng, Gilad Mishne, Xing Wei, and Benoit Dumoulin.
Improving web search relevance with semantic features. In Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing: Volume
2-Volume 2, pages 648–657. Association for Computational Linguistics, 2009.
132

[98] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,
Fabrizio Silvestri, and Salvatore Trani. Post-learning optimization of tree
ensembles for efficient ranking. In Proceedings of the 39th International ACM
SIGIR conference on Research and Development in Information Retrieval, SIGIR
2016, Pisa, Italy, July 17-21, 2016, pages 949–952, 2016. 7, 27, 125

[99] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,
Fabrizio Silvestri, and Salvatore Trani. Post-learning optimization of tree
ensembles for efficient ranking. In Proceedings of the 39th International ACM
SIGIR conference on Research and Development in Information Retrieval, pages
949–952. ACM, 2016. 98, 107, 110, 111

[100] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,
Fabrizio Silvestri, and Salvatore Trani. X-cleaver: a new learning to rank
algorithm for efficient ranking. Manuscript submitted for review to a Top Tier
Journal, 2017. 7

[101] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,
Nicola Tonellotto, and Rossano Venturini. Quickscorer: A fast algorithm to
rank documents with additive ensembles of regression trees. In Proceedings of

146

Bibliography

the 38th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), pages 73–82. ACM, 2015. 98, 103, 119

[102] Hans Peter Luhn. A statistical approach to mechanized encoding and searching
of literary information. IBM Journal of research and development, 1(4):309–317,
1957. 18

[103] Craig Macdonald, Rodrygo LT Santos, and Iadh Ounis. The whens and hows of
learning to rank for web search. Information Retrieval, 16(5):584–628, 2013. 98

[104] Christoph Mangold. A survey and classification of semantic search approaches.
International Journal of Metadata, Semantics and Ontologies, 2(1):23–34, 2007.
14

[105] Inderjeet Mani. Automatic Summarization. John Benjamins Publishing Company,
2001. 83

[106] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. Uniform resource
identifier (uri): Generic syntax. 2005. 11

[107] Olena Medelyan, Ian H Witten, and David Milne. Topic indexing with wikipedia.
In Proceedings of the AAAI WikiAI workshop, volume 1, pages 19–24, 2008. 14

[108] Manish Mehta, Jorma Rissanen, and Rakesh Agrawal. Mdl-based decision tree
pruning. In Proceedings of the First International Conference on Knowledge
Discovery and Data Mining, KDD’95, pages 216–221. AAAI Press, 1995. 101

[109] Edgar Meij, Marc Bron, Laura Hollink, Bouke Huurnink, and Maarten De Rijke.
Learning semantic query suggestions. In International Semantic Web Conference,
pages 424–440. Springer, 2009. 14

[110] Edgar Meij, Marc Bron, Laura Hollink, Bouke Huurnink, and Maarten de Rijke.
Mapping queries to the linking open data cloud: A case study using dbpedia. Web
Semantics: Science, Services and Agents on the World Wide Web, 9(4):418–433,
2011. 14

[111] Pablo N Mendes, Max Jakob, Andrés Garćıa-Silva, and Christian Bizer. Dbpedia
spotlight: shedding light on the web of documents. In Proceedings of the 7th
international conference on semantic systems, pages 1–8. ACM, 2011. 16, 62

147

Bibliography

[112] Rada Mihalcea and Andras Csomai. Wikify!: linking documents to encyclopedic
knowledge. In Proceedings of the Sixteenth ACM Conference on Information
and Knowledge Management, CIKM 2007, Lisbon, Portugal, November 6-10,
2007, pages 233–242, 2007. 15, 36, 61, 62

[113] Peter Mika, Edgar Meij, and Hugo Zaragoza. Investigating the semantic gap
through query log analysis. In International Semantic Web Conference, pages
441–455. Springer, 2009. 14

[114] Andrei Mikheev, Marc Moens, and Claire Grover. Named entity recognition
without gazetteers. In Proceedings of the ninth conference on European chapter
of the Association for Computational Linguistics, pages 1–8. Association for
Computational Linguistics, 1999. 16

[115] George A Miller. Wordnet: a lexical database for english. Communications of
the ACM, 38(11):39–41, 1995. 13

[116] David Milne and Ian H. Witten. An effective, low-cost measure of semantic
relatedness obtained from wikipedia links. In In Proceedings of AAAI, 2008. 6,
37, 43, 45

[117] David Milne and Ian H. Witten. Learning to link with wikipedia. In Proceedings
of CIKM, 2008. 6, 16, 34, 37, 40, 41, 42, 43, 46, 58, 61, 62, 67, 72, 86

[118] David Nadeau and Satoshi Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26, 2007. 16

[119] Feng Nan, Joseph Wang, and Venkatesh Saligrama. Pruning random forests
for prediction on a budget. Advances in neural information processing systems,
2016. 102

[120] Ani Nenkova. Automatic text summarization of newswire: Lessons learned from
the document understanding conference. In AAAI, volume 5, pages 1436–1441,
2005. 15

[121] Ani Nenkova and Kathleen McKeown. A survey of text summarization techniques.
In Charu C. Aggarwal and ChengXiang Zhai, editors, Mining Text Data, pages
43–76. Springer, 2012. 83

[122] NIST. The trec nist website. URL http://trec.nist.gov. 29

148

Bibliography

[123] Alexandros Ntoulas, Marc Najork, Mark Manasse, and Dennis Fetterly. Detecting
spam web pages through content analysis. In Proceedings of the 15th international
conference on World Wide Web, pages 83–92. ACM, 2006. 20

[124] Eyal Oren, Renaud Delbru, Michele Catasta, Richard Cyganiak, Holger Sten-
zhorn, and Giovanni Tummarello. Sindice. com: a document-oriented lookup
index for open linked data. International Journal of Metadata, Semantics and
Ontologies, 3(1):37–52, 2008. 4

[125] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: bringing order to the web. 1999. 10, 21, 41

[126] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations
and trends in information retrieval, 2(1-2):1–135, 2008. 17

[127] Patrick Pantel and Ariel Fuxman. Jigs and lures: Associating web queries
with structured entities. In The 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, Proceedings of the
Conference, 19-24 June, 2011, Portland, Oregon, USA, pages 83–92, 2011. 3

[128] Deepa Paranjpe. Learning document aboutness from implicit user feedback and
document structure. In Proceedings of CIKM, 2009. 6, 60, 63, 75

[129] Francesco Piccinno and Paolo Ferragina. From tagme to wat: a new entity
annotator. In Proceedings of the first international workshop on Entity recognition
& disambiguation, pages 55–62. ACM, 2014. 16, 63

[130] Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, and Zhi-Hua Zhou. Parallel
pareto optimization for subset selection. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New York,
USA, pages 1939–1945, 2016. 102

[131] Chao Qian, Yang Yu, and Zhi-Hua Zhou. Pareto ensemble pruning. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
pages 2935–2941. AAAI Press, 2015. 101

[132] Tao Qin, Xu-Dong Zhang, De-Sheng Wang, Tie-Yan Liu, Wei Lai, and Hang
Li. Ranking with multiple hyperplanes. In Proceedings of the 30th annual inter-
national ACM SIGIR conference on Research and development in information
retrieval, pages 279–286. ACM, 2007. 27

149

Bibliography

[133] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, March
1986. 101

[134] Dragomir Radev, Timothy Allison, Sasha Blair-Goldensohn, John Blitzer, Arda
Çelebi, Stanko Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam, Danyu Liu, Jahna
Otterbacher, Hong Qi, Horacio Saggion, Simone Teufel, Michael Topper, Adam
Winkel, and Zhu Zhang. MEAD – A platform for multidocument multilingual
text summarization. In Conference on Language Resources and Evaluation
(LREC), Lisbon, Portugal, 2004. 84

[135] Filip Radlinski and Thorsten Joachims. Query chains: learning to rank from
implicit feedback. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, pages 239–248. ACM, 2005.
26

[136] Filip Radlinski, Madhu Kurup, and Thorsten Joachims. How does clickthrough
data reflect retrieval quality? In Proceedings of the 17th ACM conference on
Information and knowledge management, pages 43–52. ACM, 2008. 20, 30

[137] Lev Ratinov and Dan Roth. Design challenges and misconceptions in named
entity recognition. In Proceedings of the Thirteenth Conference on Computational
Natural Language Learning, pages 147–155. Association for Computational
Linguistics, 2009. 16

[138] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global
algorithms for disambiguation to wikipedia. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 1375–1384. Association for Computational Lin-
guistics, 2011. 16, 63

[139] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun. Global refinement
of random forest. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015. 101

[140] Stephen Robertson. Understanding inverse document frequency: on theoretical
arguments for idf. Journal of documentation, 60(5):503–520, 2004. 18

[141] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple bm25 extension
to multiple weighted fields. In Proceedings of the thirteenth ACM international

150

Bibliography

conference on Information and knowledge management, pages 42–49. ACM, 2004.
19

[142] Stephen E Robertson. The probability ranking principle in ir. Journal of
documentation, 33(4):294–304, 1977. 19, 29

[143] Stephen E Robertson and K Sparck Jones. Relevance weighting of search terms.
Journal of the American Society for Information science, 27(3):129–146, 1976.
19

[144] Stephen E Robertson, Steve Walker, Micheline Hancock-Beaulieu, Aarron Gull,
and Marianna Lau. Okapi at trec. In Text retrieval conference, pages 21–30,
1993. 19

[145] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,
Mike Gatford, et al. Okapi at trec-3. NIST SPECIAL PUBLICATION SP,
109:109, 1995. 19

[146] Henning Rode, Pavel Serdyukov, Djoerd Hiemstra, and Hugo Zaragoza. Entity
ranking on graphs: Studies on expert finding. 2007. 63, 64

[147] Cynthia Rudin. Ranking with a p-norm push. In International Conference on
Computational Learning Theory, pages 589–604. Springer, 2006. 26

[148] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for
automatic indexing. Communications of the ACM, 18(11):613–620, 1975. 18

[149] Mark Sanderson. Test collection based evaluation of information retrieval systems.
Now Publishers Inc, 2010. 29, 30

[150] William W Cohen Robert E Schapire and Yoram Singer. Learning to order
things. Advances in Neural Information Processing Systems, 10:451, 1998. 24

[151] Ilya Segalovich. Machine learning in search quality at yandex. Invited Talk,
SIGIR, 2010. 125

[152] Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowledge
base: Issues, techniques, and solutions. Knowledge and Data Engineering, IEEE
Transactions on, 27(2):443–460, 2015. 16, 63

151

Bibliography

[153] Wei Shen, Jianyong Wang, Ping Luo, and Min Wang. Linden: linking named
entities with knowledge base via semantic knowledge. In Proceedings of WWW,
2012. 34, 43

[154] Mark D. Smucker, James Allan, and Ben Carterette. A comparison of statistical
significance tests for information retrieval evaluation. In Proc. CIKM ’07. ACM,
2007. 112

[155] Ruihua Song, Zhenxiao Luo, Ji-Rong Wen, Yong Yu, and Hsiao-Wuen Hon. Iden-
tifying ambiguous queries in web search. In Proceedings of the 16th international
conference on World Wide Web, pages 1169–1170. ACM, 2007. 2

[156] Karen Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation, 28(1):11–21, 1972. 18

[157] Karen Sparck Jones and Cornelis Joost van Rijsbergen. Information retrieval
test collections. Journal of documentation, 32(1):59–75, 1976. 29

[158] Wolfgang G Stock. Concepts and semantic relations in information science. Jour-
nal of the American Society for Information Science and Technology, 61(10):1951–
1969, 2010. 14

[159] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on
World Wide Web, pages 697–706. ACM, 2007. 13

[160] Yizhou Sun, Yintao Yu, and Jiawei Han. Ranking-based clustering of heteroge-
neous information networks with star network schema. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 797–806. ACM, 2009. 17

[161] Yuan Yan Tang, Seong-Whan Lee, and Ching Y. Suen. Automatic document
processing: A survey. Pattern Recognition, 29(12):1931–1952, 1996. 15

[162] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank:
optimizing non-smooth rank metrics. In Proceedings of the 2008 International
Conference on Web Search and Data Mining, pages 77–86. ACM, 2008. 25

[163] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris
Burges. Optimisation methods for ranking functions with multiple parameters.

152

Bibliography

In Proceedings of the 15th ACM international conference on Information and
knowledge management, pages 585–593. ACM, 2006. 108, 125

[164] Salvatore Trani, Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, and
Raffaele Perego. Manual annotation of semi-structured documents for entity-
linking. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, pages 2075–2077. ACM, 2014. 7,
74

[165] Salvatore Trani, Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, and
Raffaele Perego. Sel: A unified algorithm for entity linking and saliency detection.
In Proceedings of the 2016 ACM Symposium on Document Engineering, pages
85–94. ACM, 2016. 6

[166] Salvatore Trani, Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, and
Raffaele Perego. Sel: A unified algorithm for entity linking and saliency detection.
Manuscript submitted for review to a Top Tier Journal, 2017. 6

[167] Giovanni Tummarello, Richard Cyganiak, Michele Catasta, Szymon Danielczyk,
Renaud Delbru, and Stefan Decker. Sig. ma: Live views on the web of data. Web
Semantics: Science, Services and Agents on the World Wide Web, 8(4):355–364,
2010. 14

[168] Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang Mao. Learning to
rank by optimizing ndcg measure. In Advances in neural information processing
systems, pages 1883–1891, 2009. 25

[169] Cornelis Joost van Rijsbergen. Information retrieval. The Information Retrieval
Group,¡ http://dsc. glasgow. ac. uk/preface. html, 1979. 31

[170] Roelof van Zwol, Lluis Garcia Pueyo, Mridul Muralidharan, and Börkur Sig-
urbjörnsson. Ranking entity facets based on user click feedback. In Proceedings
of the 4th IEEE International Conference on Semantic Computing (ICSC 2010),
September 22-24, 2010, Carnegie Mellon University, Pittsburgh, PA, USA, pages
192–199, 2010. 43

[171] Luc Vincent. Google book search: Document understanding on a massive scale.
In icdar, pages 819–823, 2007. 15

153

Bibliography

[172] Ellen M Voorhees. Trec: Continuing information retrieval’s tradition of experi-
mentation. Communications of the ACM, 50(11):51–54, 2007. 29

[173] Ellen M Voorhees et al. The trec-8 question answering track report. In Trec,
volume 99, pages 77–82, 1999. 17, 31

[174] Ellen M Voorhees, Donna K Harman, et al. TREC: Experiment and evaluation
in information retrieval, volume 1. MIT press Cambridge, 2005. 29

[175] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowl-
edgebase. Communications of the ACM, 57(10):78–85, 2014. 13

[176] Lidan Wang, Jimmy Lin, and Donald Metzler. Learning to efficiently rank. In
Proceedings of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’10, pages 138–145, New York,
NY, USA, 2010. ACM. 98, 103

[177] Pu Wang, Jian Hu, Hua-Jun Zeng, and Zheng Chen. Using wikipedia knowledge
to improve text classification. Knowledge and Information Systems, 19(3):265–
281, 2009. 14

[178] Gerhard Weikum and Martin Theobald. From information to knowledge: har-
vesting entities and relationships from web sources. In Proceedings of the
Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA,
pages 65–76, 2010. 3

[179] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao. Adapting
boosting for information retrieval measures. Information Retrieval, 13(3):254–
270, 2010. 25, 47, 98, 100, 110, 125

[180] Mohamed Amir Yosef, Johannes Hoffart, Ilaria Bordino, Marc Spaniol, and
Gerhard Weikum. AIDA: an online tool for accurate disambiguation of named
entities in text and tables. PVLDB, 4(12):1450–1453, 2011. 16, 42

[181] Yun Zhou and W Bruce Croft. Document quality models for web ad hoc retrieval.
In Proceedings of the 14th ACM international conference on Information and
knowledge management, pages 331–332. ACM, 2005. 20

[182] Mu Zhu. Recall, precision and average precision. Department of Statistics and
Actuarial Science, University of Waterloo, Waterloo, 2, 2004. 31

154

Bibliography

[183] George Kingsley Zipf. Selected studies of the principle of relative frequency in
language. 1932. 18

155

	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Thesis Contributions
	Thesis Outline

	Background
	Web of Data
	Principles of Linked Data
	Topology of the Web of Data
	Semantic Search
	Semantic Enrichment

	Ranking
	Conventional Ranking Models
	Query-dependent models
	Query-independent models

	Learning to Rank
	Approaches to LtR
	Benchmark Datasets for LtR

	Retrieval Evaluation
	Evaluation Methodologies
	Evaluation Metrics

	Learning Relatedness Measures for Entity Linking
	Introduction
	Entity Relatedness Discovery
	Related Work
	Entity relatedness evaluation
	Building a benchmark dataset
	Features
	Quality of entity relatedness

	Impact on Entity Linking
	Dexter - Entity Linking Framework
	Conclusions

	SEL: A Unified Algorithm for Entity Linking and Saliency Detection
	Introduction
	Related Work
	The Salient Entity Linking Algorithm
	Supervised Candidate Pruning
	Supervised Saliency Linking
	Features

	Experiments
	Datasets
	Candidate Pruning Step
	Saliency Linking Step

	Summarization
	Summarization Approach
	Summarization Experiments
	Results

	Elianto - Entity Linking Annotation Tool
	Conclusions

	Embedding Tree Pruning and Re-Weighting in Learning to Rank
	Introduction
	Related Work
	Growing and Pruning Tree Ensembles
	X-CLEaVER Algorithm
	Pruning Phase
	Re-weighting phase

	Experimental Evaluation
	Effectiveness of pruning strategies
	Qualitative analysis of pruning strategies
	X-CLEaVER analysis
	Training behavior
	Training cost analysis

	QuickRank - Learning to Rank Framework
	Conclusion

	Conclusions and Future Work
	Thesis Contributions and Future Work
	Research Limitations
	List of Publications

	Bibliography

