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Abstract

Privacy in Big Data analytics is one of the most important issues that analysts and
businesses face when managing personal data. In a privacy preserving analysis process,
the privacy risk on the individuals represented in the data is firstly evaluated, then the
data is appropriately modified in order to preserve privacy while at the same time main-
taining a certain level of data quality. In this thesis we focus on privacy risk assessment,
proposing new models and algorithms to deal with this fundamental part of privacy aware
systems. We propose some extensions to an existing state-of-the-art privacy risk assess-
ment framework, to improve on existing literature. Then, we propose a classification
based methodology to predict privacy risk. We validate our proposal on three different
types of real world data: human mobility, retail and social network data. Finally we
propose a new model for the behavior of an adversary in human mobility data, leveraging
the natural structure and constraints of this kind of data.
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Chapter 1

Introduction

In recent years, the so called “Big Data” have become the most sought after commodity by
businesses and enterprises alike. It has been estimated that people generate 2.5 quintillion
bytes of data every day.1 This enormous quantity of data is today at the forefront of
innovation and research, as they allow us to study the behavior of people on a new,
much bigger scale and from different perspectives. Some examples of big data include
data about purchases made by customers of business activities, data about the movement
of individuals in urban areas, data about social networks etc. Big Data are generally
collected automatically through various means: these can range from mobile devices,
increasingly more present in our lives today, or through the recording of transactions, or
simply by monitoring the behavior of an individual in his interactions with online services
or applications. To deal with this huge amount of data, many techniques have been
developed to extract useful information from the data itself. These techniques are used
to find patterns, models and rules inside the data, in order to make predictions about the
studied phenomena [108]. Data mining and machine learning are today at the pinnacle
of scientific research and to keep on improving in these fields, huge amounts of data is
required to train and validate machine learning models. However, it is almost always
the case that data contains very personal information about the individuals represented.
There exist a serious risk of privacy violations for the people involved: highly sensitive
and personal information about individuals can be extracted from the data, leading to
dangerous privacy leaks and with the seamless usage of mobile devices and online services,
people might share private information even without realizing it. Basic data protection
measures like de-identification are not enough to guarantee the privacy of individuals in
some particular contexts. By linking data from different sources it is indeed possible to
re-identify an individual in multiple datasets. One such event was the case of the linking
of two public datasets: Internet Movie Database and the the Netflix Prize Dataset [101].
Therefore, Privacy has become an integral component of the design of business practices
and analytical processes. Many privacy preserving solutions modify or transform the
original data in order to mask individuals and protect them, thus distorting the original
characteristics of the data in some way. The challenge in designing privacy protection
methods is therefore to achieve privacy for as many individuals as possible while preserving

1http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-
daily/
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the quality of the data, allowing meaningful analyses. This has been the focus of privacy
related literature for the latest years: most of the frameworks proposed for data protection
stemmed from the widely accepted paradigm of Privacy By Design, postulated by Ann
Cavoukian in [29], and are mostly centralized frameworks where some condition is applied
to the data in order to achieve privacy. Most privacy preserving techniques heavily modify
the data in order to achieve privacy, thus greatly undermining subsequent analyses. To
understand whether and which privacy preserving technique has to be applied on the data,
tools have been developed to quantitatively analyze the risk of privacy violations for the
individuals represented in the data. This privacy risk assessment techniques however,
are mostly based on the assumption that an adversary, who wants to extract sensitive
information about an individual in a dataset, has access to all the pre-existing knowledge, a
worst-case scenario assumption, necessary to conduct the most damaging attack possible.
This simple assumption usually leads to great overestimation of privacy risk with respect
to real world data. In [18], the authors describe this situation from the perspective
of businesses and enterprises: either for the fear of disclosing sensitive information, or
because of the lack of mutual trust, we run the risk of misjudging privacy risk (either
overestimating the risk of underestimating it) and make an improper use of the data. It is
therefore necessary to design better privacy preserving processes, that strive for a balance
between the protection of the privacy of individual and the utility of the data for analyses.
One of the fundamental steps in any privacy preserving process is privacy risk assessment,
that is the process by which we try to understand which individuals represented in the
data are at risk of a privacy violation and how much this risk is, if quantifiable. Recently,
the General Data Protection Regulation in Europe [1] has bestowed the on data holders
the responsibility to handle data in a privacy preserving way. It is therefore fundamental,
for data holders, to evaluate quantitatively the privacy risk in the data they are managing,
as to better understand which privacy preserving process they can enact to protect the
privacy of individuals. Many methodologies have been proposed to evaluate the privacy
risk of individuals in any kind of data [35, 148, 107, 72, 91]. Our aim, in this thesis,
is to provide an improvement in privacy risk assessment, by proposing new models and
algorithms to efficiently assess privacy risk. We move our research on different parallel
directions described in the following.

First We present the state-of-the-art privacy risk assessment framework PRUDEnce.
We present the mathematical formulation for a set of privacy attacks on three types
of data (i.e., mobility, retail and social network data) showing how PRUDEnce can be
instantiated in three different contexts by defining and analysing the threats that may
harm the privacy of individuals. We show how risk is computed and how it is distributed
in our experimental data.

Second we propose two extensions to the PRUDEnce framework: the first one is a
methodology to evaluate the risk of individual patterns, focusing on purchasing patterns
in retail data. This particular kind of analyses is one of the most common practice in
mining retail data [10]. Our aim is to provide a methodology based on distance based
record linkage to evaluate how much the purchasing patterns can be linked to the original
data from which they where extracted. The second one is an extension that aims at
incorporating into PRUDEnce a new methodology to assess the quality of data. While
PRUDEnce provides a way to evaluate data quality based on the quantity of data that
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is put at risk by an attack, we propose an alternative based on the quality of metrics
calculated on the data itself. We show how the trend of these metrics changes depending
on the level of privacy protection that we impose, by using the distance between the
original distribution of the metric and the distribution on non-risky data. We test our
methods on three different kinds of experimental data: mobility, retail and social network
data.

Third Facing the issue of a daunting computational complexity for directly computing
privacy risk, we then move our focus to possible methodologies to predict privacy risk
using data mining techniques. We focus on a classification approach that is able to
predict privacy risk based on individual metrics, i.e., on metrics calculated on the data of
single individuals. Our approach has the objective of being simple and quick, usable by
any data holder wanting an efficient way of finding out how many and which individuals
are at risk in the data. We show how this approach can be applied to different data types.

Fourth Finally, we explore possible alternative models for adversarial behavior against
mobility data privacy. In particular, we focus on the fact that existing privacy frameworks
work on a worst-case scenario approach: they calculate risk on an individual basis, as-
suming that, for each individual, there can be a specific worst adversary able to produce
the maximum privacy risk for that individual. These frameworks are based on adver-
sarial models that does not consider the process of gathering the information about the
individuals. Looking at mobility data, we propose to model the adversary as a mobile
agent that collects information about the individuals in the data by moving in the same
geographical space and respecting the spatio-temporal constraints. Then, we define a
privacy risk assessment approach based on this adversarial model while maximizing the
overall privacy risk of individuals in a dataset.

1.1 Organization and Contributions

This thesis is organized as follows: in Chapter 2 we give an overview of the literature
relevant to the different topics that we address in this thesis. In Chapter 3 we give the
mathematical modeling for the data that we use in our work: mobility, retail and social
network data. In particular, after introducing for each data type a possible mathematical
formulation of their structures, we introduce the metrics most commonly used in analyz-
ing these kinds of data. We also present the characteristics of the experimental datasets
used in the validation of our methods. This chapter works as a foundation for the under-
standing of the three different kinds of data, their nature, limitations and possibilities. In
Chapter 4 we introduce the PRUDEnce privacy risk assessment framework. We provide
the mathematical formulation for several attacks and show how we can compute privacy
risk for the three different kinds of data. We then propose our extensions to the PRU-
DEnce framework and test them on the various experimental data. This part is mainly
based on the following publications:

- Roberto Pellungrini, Luca Pappalardo, Francesca Pratesi, and Anna Monreale. An-
alyzing privacy risk in human mobility data. In Software Technologies: Applications

8



and Foundations - STAF 2018 Collocated Workshops, Toulouse, France, June 25-
29, 2018, Revised Selected Papers, pages 114–129, 2018

- Roberto Pellungrini, Luca Pappalardo, Francesca Pratesi, and Anna Monreale. Fast
estimation of privacy risk in human mobility data. In SAFECOMP Workshops, vol-
ume 10489 of Lecture Notes in Computer Science, pages 415–426. Springer, 2017

- Roberto Pellungrini, Anna Monreale, and Riccardo Guidotti. Privacy risk for indi-
vidual basket patterns. In ECML PKDD 2018 Workshops - MIDAS 2018 and PAP
2018, Dublin, Ireland, September 10-14, 2018, Proceedings, pages 141–155, 2018

- Luca Pappalardo, Filippo Simini, Gianni Barlacchi, and Roberto Pellungrini. scikit-
mobility: a python library for the analysis, generation and risk assessment of mobility
data. arxiv:1907.07062, 2019

- Luca Pappalardo, Gianni Barlacchi, Roberto Pellungrini, and Filippo Simini. Hu-
man mobility from theory to practice: Data, models and applications. In WWW
(Companion Volume), pages 1311–1312. ACM, 2019

In Chapter 5 we propose our data mining approach to predict privacy risk in personal
data with classification methods. We discuss thoroughly our approach by testing it on
different data with different risk profiles and characteristics, and we show the improve-
ments we make with respect to direct computation. This part of the thesis is based on
the publication:

- Roberto Pellungrini, Luca Pappalardo, Francesca Pratesi, and Anna Monreale. A
data mining approach to assess privacy risk in human mobility data. ACM TIST,
9(3):31:1–31:27, 2018

In Chapter 6 we propose a new, alternative way of modeling adversary behavior in mobil-
ity data, by modeling the actual process with which the adversary gathers the information
she uses. We show how this alternative approach works, and evaluate its benefits. This
part of the thesis is based on:

- Roberto Pellungrini, Filippo Simini, Luca Pappalardo, and Anna Monreale. Mod-
eling adversarial behavior against mobility data privacy. Submitted to IEEE Trans-
actions on Intelligent Transportation Systems, 2019

Finally Chapter 7 concludes the thesis with our final remarks about the work we have
done and a discussion on the possible future developments.
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Chapter 2

Related Works

In this chapter we provide an overview of the existing literature regarding privacy pre-
serving techniques and privacy risk analysis approaches. We start discussing important
aspects of the European legal framework and then, we present the scientific literature
addressing the problem of privacy in personal data.

2.1 European Legislation

A comprehensive legal approach to the data privacy problem has been given by the Euro-
pean Union in the Data Protection Directive redacted in 1995 [2]. This directive foresees
rules for the handling of personal data and it includes a number of rights for data subjects.
We can summarize the principles of the directive as:

• Notice Data subjects should be noticed whenever data about them is being collected.

• Purpose Data should be used only for the purpose stated by the collector.

• Consent The data subject must give his consent for the data to be disclosed.

• Security Data collected should be kept safe from abuses of any kind.

• Disclosure Data subjects should be informed regarding who is collecting their data.

• Access Data subjects should be allowed to access their data and to modify them to
correct any mistakes.

• Accountability Data subjects should have ways to hold data collector accountable for
the disregard of any of the previous principles.

More recently, in 2012 the European Union has proposed a reform to the data pro-
tection rules in Europe. On 4 May 2014, an official text was published for both the new
Regulation and the new Directives [1]. The General Data Protection Regulation was
adopted on 14 April 2016, and became enforceable beginning 25 May 2018. This reform
aims to address a number of issues with the previous directives:
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• Eliminating discrepancies with national or regional laws.

• Enriching privacy measures and safeness for the individuals

• Updating the laws to address contemporary issues like those posed by social media,
drones, big data etc.

• Reducing bureaucratic and economic cost for companies dealing with data protection
authorities and laws.

Some of the most important points worth nothing are:

• Stricter conditions for consent, defined as “freely given specific, informed and explicit
indication of his or her wishes by which the data subject, either by a statement or by
a clear affirmative action, signifies agreement to personal data relating to them being
processed”.

• The addition of biometric and genetic data to the set of sensitive data as indicated in
Article 9.

• The right to be forgotten and erased as outlined in Article 17.

• Where a type of processing in particular using new technologies is likely to result in
a high risk to the rights and freedoms of persons, Data Controllers shall, prior to the
processing, carry out an assessment of the impact of the envisaged processing operations
on the protection of personal data.

• Data Controllers have to put in place appropriate technical and organisational measures
to implement the data protection principles and safeguard individual rights applying
the privacy by design and by default principle.

The principles of Privacy by Design, adopted by the GDPR, was theorized in the
nineties by Ann Cavoukian. These principles provide a proactive approach to privacy
related issues when dealing with personal data of any kind. The basic concept of Privacy
by Design is that privacy must be embedded into networked data systems and technologies
by default becoming an integral part in the design, development and organization of
business and analytical processes.[29] While general in its formulation, and not addressing
specific methodologies for the actual compliance to the principles, in the past years Privacy
by Design has been at the center of studies both from regulators and technical developers.
Cavoukian herself gave a partial interpretation in [28] to better explain how to integrate
Privacy by Design in a justice system.

2.1.1 Privacy Actors

First of all it is important to know who are the actors in a privacy aware environment.
There are indeed different subjects whose privacy may be important in any analytical
or business process. This issue was discussed first in [38], where three main actors are
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identified, each one with different related privacy issues: data respondent, data holder
and user.

Data respondent is the subject that generates the data in the first place. Data respon-
dent are considered passive in the privacy process, in the sense that they do not take any
direct action towards the prevention of their privacy. The main objective in protecting
the privacy of a data respondent is to avoid the disclosure of her sensitive data. For
example, the customers of an insurance company, that gathers information about their
driving habits, are data respondents, and their interest is that the insurance company
does not reveal sensitive information about them while managing their mobility data,.

Data holder is the subject, organization or individual, that gathers and maintains the
data. The name “data owner” is often used in place of data holder in the literature [38, 55],
and therefore these terms are considered equivalents. According to the GDPR [1], data
holders are responsible for the implementations of privacy measures in order to guarantee
the privacy protection of individuals involved in the data they gather, that means ensuring
no relevant information contained in the database is disclosed. For example, a supermarket
that shares the data of its customers with an analyst does not want the analyst to disclose
sensitive information as this could violate the privacy of the database.

User is a subject that generates data through the use of a specific service and that
has a direct participation in the protection of his own privacy. The main objective in
protecting a user’s privacy is to assure her privacy when accessing and using a specific
service or system. In such a process, the user takes an active role.

There is also a fourth actor, which is the malicious third party which tries to attack
one of the aforementioned actors. An Adversary is a subject whose interest is to disclose
some information about a respondent, holder or user. In [8] the term adversary is used
equivalently to the term “attacker”, and the attack that this subject conducts is usually
referred to as adversarial attack or privacy attack.

2.2 Privacy preserving methodologies

Several methodologies have been developed in order to preserve the privacy of individuals.
The interest in these methodologies grew thanks to the increasing capability of storing
and processing large amounts of data. In this section we provide a brief overview.

2.2.1 Randomization based methods

One of the earliest methods used to assure privacy protection is to perturb the data with
some random noise [11]. The perturbed data can still be used to extract patterns or
machine learning models. In additive random perturbation some noise is drawn from a
distribution and added to each record of a dataset. The original record values can not
be easily guessed from the distorted data while the distribution of the dataset can be
easily recovered by using one of the methods discussed in [11, 9]. So, original records are
not available, while it is possible to obtain distribution only along individual dimensions
describing the behavior of the original dataset. This technique however modifies the
statistics required for some commonly data mining models, thus requiring specific data
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mining approaches to be tackled properly. For Bayesian classifiers, the authors of [171]
propose a method to build a Naive Bayesian Classifier over perturbed data. For association
rule mining, [170] use a similar methodology to mitigate the effect of perturbation.

In 2006, Dwork et al. introduced Differential Privacy model [41] that is based on
randomization approach. The fundamental idea at the base of Differential Privacy is that
an algorithm applied to two dataset that differ only on the data of a single individual
should yield almost the same result. This means that the individual can confidently
submit her record to the dataset because nothing, or almost nothing, can be discovered
from the database with her information that could not have been discovered without her
information. More formally a randomized algorithm A is ε-differentially private if for all
datasets D and D′ differing only on a single record, and for all S ⊆ range(A) the property
Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] holds. A relaxed version of differential privacy was
proposed in [17] in which the author claim that the same level of privacy protection can be
achieved even when admitting a small amount of privacy loss. Formally, the differential
privacy property changes then to Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] + δ. Note that, with
δ = 0 we have the original definition of differential privacy. Differential privacy is generally
achieved by adding noise the the results of the algorithm to be computed, e.g. drawing
from the Laplace distribution [42]. There are however cases in which adding noise through
the Laplace distribution may not be feasible. For the analysis whose outputs are not real or
make no sense after adding noise, the authors of [90] propose an exponential mechanism,
selecting an output from the output domain, r ∈ R, by taking into consideration its
score of a given utility function q. In [43] authors give estimates for the ε parameter,
stating how it can still produce meaningful results when assuming values larger than 1.
Further work has been done in researching possible relaxation of the differential privacy
property in Since its inception many differentially private algorithms and methods have
been proposed. A thorough discussion can be found in [44]. In recent years there have
been many works that utilized differential privacy in various contexts, for example, [97] for
movement data, or [151] for network data. Much attention has been put on classification
methods under the differential privacy paradigm. A survey on decision tree classification
methods with differential privacy can be found in [49].

2.2.2 Differential Privacy for sequential data

Differential privacy has been used in mobility data to various degrees of success: one of
the first works for differentially private trajectory publishing can be found in [31]. How-
ever, the simple application of noise based methodologies to ensure differential privacy on
mobility data may lead to unnatural trajectories, with “zig zags” and crossings. Works
like [136] have used a modified methodology, combining differential privacy with sampling
of the trajectory points to protect trajectories of vessels while still maintaining a natural
shape of the trajectories, while the authors in [65] propose a partition based algorithm for
trajectory publishing via differential privacy, leveraging an exponential mechanism to di-
vide the trajectories for protection. For social network data, some of the earliest practical
approaches to ensure differential privacy can be found in [152], where the authors discuss
differentially private algorithms to tackle some widely used analyses on social networks
such as triangles analysis of clustering coefficient distribution analysis. Since the noise
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injection required for guaranteeing certain privacy levels under differential privacy are pro-
portional to the size of the network, and since many social network have an enormous size,
the authors in [52] propose a definition of group-based local differential privacy, based on
splitting the original network into subgraphs to then apply Hierarchical Random Graph
models for the extraction of features [163]. In general, the Differential Privacy model has
been proven to be an effective methodology to protect data from privacy attacks, but
drawbacks to this methodology still remain across all fields of applications: the effective-
ness of differential privacy, being based on some sort of randomization of the original data,
always depends on the kind of analyses that is performed on the data, i.e., on the sensitiv-
ity of the function to be applied, and on the privacy budget allowed. Differential privacy
in essence is designed for low sensitivity queries on the data, and even more refined models
such as, for example, classification may require high privacy budget to work properly: for
example, in [64] the authors perform nearest neighbor classification with privacy budgets
as high as 2.0. Another problem is given by the modifications made to the data. Pratesi
et al. in [? ] propose a novel privacy risk mitigation methodology based on PRUDENnce
and compare it with an approach based on differential privacy: their findings show that
differential privacy affects both similarity to the original data and utility with respect to
data mining applications in a significant way. Many of the more interesting analyses that
can be done on sequential data, such as mobility or retail data, relies on the analyses on
consecutive records, i.e., where someone has been before and where that someone is going
or what someone has bought before and what will that someone buy in the future. This
may lead to heavy losses in utility when applying differential privacy to these kinds of
data. Moreover, differential privacy looses power with consecutive queries and analyses:
performing queries consecutively, an adversary may be able to exhaust the privacy guar-
antee, thus differential privacy relies on constant monitoring on the actual use of the data
by third parties or customers to reliably work on the long run. Therefore, differential
privacy remains an open field of research where improvements are made constantly.

2.2.3 Anonymity based methods

One of the most commonly used methods to achieve anonymity is the k-anonymity frame-
work. Introduced in [147], in k-anonymity the attributes of a record are divided into
sensitive attributes and quasi-identifiers. The sensitive attributes are the attributes that
need to be protected. Quasi-identifiers are attributes that may be linked to external in-
formation retrieved by an adversary in a linking attack. If the adversary is able to do
so it can get access to the identity of the individual and its sensitive attributes. There-
fore, a dataset satisfies the property of k-anonymity if each released record has at least
(k− 1) other records also visible in the release whose values are indistinct over the quasi-
identifiers. K-anonymity is a boolean condition for privacy: a dataset either has the k-
anonymity property of doesn’t. There are mainly three ways of of achieving k-anonymity:
generalization [71], i.e. reducing the granularity of the representation of quasi-identifiers,
suppression [146], i.e. replacing the value of highly sensitive attribute with a special value,
and microaggregation[39], a perturbative data protection method where the data is divided
into small clusters and values of sensitive attribute are substituted with the values of the
centroid of the clusters. The problem of achieving optimal k-anonymity has been proven
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to be NP-Hard in [93]. Several heuristics have been proposed in the literature to achieve
k-anonymity: a greedy partition-based algorithm algorithm was proposed in [81] while a
cluster-based approach for achieving k-anonymity in mobility data was proposed in [5].
K-anonymity has some vulnerabilities: if the individuals in the anonymity set present the
same value for some sensitive attribute, an adversary can easily infer the value of such
attribute for the subject of his attack, especially if the adversary uses some background
knowledge about the subject allowing him to reduce the number of individuals withing
the k-anonymity set of the subject. To tackle these problems [88] proposes the l-diversity
model, with the objective of maintaining a degree of diversity in the sensitive attributes of
an anonymity set. If however the overall distribution of the sensitive attribute is skewed,
further measures have to be taken. T-closeness [85] imposes that the distance between the
distribution of the attribute in any equivalence class and the distribution of the attribute
in the overall dataset has to be bounded by a threshold t, thus preventing this issue.

2.2.4 Distributed privacy protecting methods

In modern business model, data is often spread over multiples sources. In such distributed
environment, different subjects would share data to compute collective data mining mod-
els, integrate information and produce better analyses. However, the different participants
often cannot trust each other thus requiring privacy preserving measures specific for the
distributed environment. There are several studies that show privacy vulnerabilities in
distributed contexts. For example [58] and [26] discuss important privacy fallacies in
cloud computing. [168] gives a survey on different distributed data mining techniques
categorizing them into three groups such as secure multi-party computation, perturbation
and restricted query. In general, the methods developed in this context allow to com-
pute functions over inputs provided by multiple parties without sharing the inputs. [36]
acknowledged the privacy risks related to data mining on cloud system and presented a
distributed framework to remove such risks. The proposed approach involved classifica-
tion, disintegration, and distribution. Although suitable against mining attacks, it added
a performance overhead as client accessed the data frequently. For preserving privacy
in association rules mining, the authors of [161] proposed an algorithm called PPFDM
and related computation technique based on the Frequent Data Mining (FDM) to pre-
serve privacy. The process involved the computation of total support count along with
the privacy-preserved technique while ensuring the local large item-set and local support
count source is covered. Thus, the time needed for the communication is saved and the
distributed data privacy at each site is secured. For clustering, [116] proposed an oper-
ative algorithm to protect the secrecy distributed over K-Means cluster using Shamir’s
secret sharing model. The proposed approach computes the cluster mean collaboratively
and prevented the role of trusted third party. Upon comparison, it is observed that the
proposed framework is orders of magnitude faster as compared to oblivious polynomial
evaluation [99] and homomorphic encryption techniques [12] in terms of computation cost
and more reliable for huge databases.
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2.3 Risk analysis techniques

Analyzing privacy risk is a fundamental part of any privacy preserving process. Since the
ultimate goal is to strike the right balance between reasonable protection of the individual
privacy and quality of the data, measuring the risk of the individuals is fundamental. In
the following, we present the main techniques for the assessment of different types of
privacy risk.

2.3.1 Risk of re-identification

The authors of [27] advocate for the importance of the assessment of the risk of re-
identification. In literature, this is also referred to as identity disclosure risk. A re-
identification occurs when some adversary is able to link the de-identified or otherwise
protected data of an individual with some information available to her, be it public or
otherwise obtained. A great overview on both the terminology and the methodologies
related to risk of re-identification an its measurement can be found in [156]. In the
literature, there are two main ways to measure the risk of re-identification:

• Dataset-level risk measure: risk is defined as the proportion of records that an adversary
can re-identify out of the whole set of records he has. This approach dates back to
[109]. Formally, if we denote with A a protected dataset, B a dataset in the hands of
an adversary (representing its knowledge), t : B → A a function that for each b ∈ B
gives the correct record a ∈ A, r : B → A a method of re-identification used by the
adversary to associate a record b ∈ B to a record a ∈ A and c(t(b), r(b)) a function
that returns 1 if t(b) = r(b) and 0 otherwise, then the portion of records correctly

re-identified by an adversary is: Reid(B,A) =
∑

b∈B c(t(b),r(b))

|B| .

• Individual risk measures : risk is defined as the probability that a particular sample
record of the adversary is recognized as corresponding to a particular individual in the
dataset. This comes from the intuition that risk is non homogeneous in a dataset, and
that rare combinations of sensitive attribute may lead to the re-identification of individ-
uals [46]. Following the definition given in [50], if there are K possible combinations of
key attributes, these induce a partition both in the population and in the information
of an adversary. If the frequency of the k-th combination in the population was known
to be Fk, then the individual disclosure risk of a record in the sample with the k-th
combination of key attributes would be 1

Fk
.

For both measures, the main technique used by an adversary is Data Matching. Data
matching focuses on establishing relationships between the records with the goal of iden-
tifying the records that belong to the same individual but that are in different databases.
[32] gives a detailed description of the different phases of such technique. They are:

• Data preprocessing. In this step data files are transformed so that all attributes have
the same structure and the data have the same format. In data fusion, this is said to
make data commensurate. That is, data should refer to the same point in time and refer
to the same position in space. The same should be done here to make data comparable.
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Major steps in data preprocessing are: (i) remove unwanted characters and words (stop
words), (ii) expand abbreviations and correct misspellings, (iii) segment attributes into
well defined and consistent output attributes, (iv) verify correctness of attributes values
(e.g., that ages are always positive).

• Indexing. In most data matching problems it is unfeasible to compare all pairs of records
in order to know which pairs correspond to the same individual. Note that the number
of comparisons is the product of the number of records in the two databases. In order
to reduce the number of comparisons, only some pairs are compared. Indexing is about
the determination of which are the pairs interesting to be compared.

• Record pair comparison. This consists in the calculation of a value for each pair of
records of interest. The comparison can be either a vector of Boolean values (stating
whether each pair of attributes coincide or not) or a vector of similarities (stating in a
quantitative way how similar are the values of the corresponding attributes).

• Classification. Using the comparison we need to establish whether the two records in
the pair correspond to the same object or they correspond to different objects.

• Evaluation step. The result of the data matching system is analyzed and evaluated to
know its performance.

Methods for record pair comparison and classification generally are of two types: dis-
tance based record linkage methods where record pairing is evaluated based on some dis-
tance measure, for example Euclidean distance, and probabilistic record linkage where
record pairing is based on some probabilistic model [157].

2.3.2 Risk of attribute disclosure and inference

Attribute disclosure happens when intruders can increase the accuracy of their information
with respect to the value of an attribute for a particular individual. This means that
attribute disclosure can take place as a side effect of re-identification or may even take
place without re-identification. Approaches measuring attribute disclosure vary depending
on the type of the attribute. For numerical attributes, values are ranked and a rank
interval is defined around such values for each record. The ranks of values within the
interval for an attribute around a record r should differ less than p percent of the total
number of records and the rank in the center of the interval should correspond to the
value of the attribute in record r. Then, the proportion of original values that fall into
the interval centered around their corresponding protected value is a measure of disclosure
risk. A 100% proportion means that an attacker is completely sure that the original value
lies in the interval around the protected value.

For categorical data a suitable method is defined in [104]. This method computes
attribute disclosure risk for a given attribute in terms of a particular model or classifier
for this attribute constructed from the released data. The percentage of correct predictions
given by the classifier is a measure of the risk.
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2.3.3 Risk analysis frameworks

One of the most important work about privacy risk assessment is the Linddun methodol-
ogy [35], a privacy-aware threat analysis framework based on Microsoft’s Stride method-
ology [148], useful for modeling privacy threats in software-based systems. However, Lind-
dun methodology lacks a quantitative approach for privacy evaluation. In the last years,
different techniques for risk management have been proposed, such as the OWASP’s Risk
Rating Methodology [107], NIST’s Special Publication 800-30 [105], SEI’s OCTAVE [72]
and Microsoft’s DREAD [91]. Unfortunately, many of these works do not consider privacy
risk assessment and simply include privacy considerations when assessing the impact of
threats. In [158], authors elaborate an entropy-based method to evaluate the disclosure
risk of personal data, trying to manage quantitatively privacy risks. The unicity mea-
sure proposed in [140, 6] evaluates the privacy risk as the number of records/trajectories
which are uniquely identified. The authors of [20] propose an empirical risk model for
the estimation of privacy risk for trajectory data and a framework to improve privacy
risk estimation for mobility data, evaluating their model using k-anonymized data. [16]
proposes a risk-aware framework for information disclosure which supports runtime risk
assessment. In this framework access-control decisions are based on the disclosure-risk as-
sociated with a data access request and adaptive anonymization is used as risk-mitigation
method. This framework is designed to work on relational datasets, as it needs to dis-
criminate between quasi-identifiers and sensitive attributes: for sequential datasets, e.g.
mobility data, quasi-identifiers and sensitive attributes are generally not easy to specify,
thus requiring specific approaches. Other works in literature study the re-identification
risk as privacy measure in the context of network and social media data [100, 129] or
combine network data and mobile phone data to re-identify people [30].

2.4 Privacy In Complex Data

Privacy preserving methodologies and risk assessment methodologies often depend heavily
on the nature of the data that they operate on. In the following, we discuss the literature
regarding privacy issues in non-tabular data focusing the discussion on the type of data
that we take into consideration in this thesis.

Mobility Data An overview on the problems, techniques and methodologies related to
urban mobility data and urban computing can be found in [173]. Human mobility data
contains personal sensitive information and can reveal many facets of the private life of
individuals, leading to the possibility of a serious privacy violation. Nevertheless, in the
last years many techniques for privacy-preserving analysis on human mobility data have
been proposed in literature [54] showing that it is possible to design analytical mobility
services where the quality of results coexists with the protection of personal data. [4]
proposes the (k, δ)-anonymity model, which takes advantage of the inherent uncertainty
of the moving object’s whereabouts, where δ represents the location precision. Assuming
that different adversaries own disjoint parts of an individual’s trajectory, Terrovitis and
Mamoulis [153] reduce privacy risk by relying on the suppression of the dangerous ob-
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servations from each individual’s trajectory. In [166], authors propose the attack-graphs
method to defend against attacks, based on k-anonymity. Monreale et al. [96] illustrate a
generalized approach to achieve k-anonymity. Other works like [79] propose a methodol-
ogy for matching trajectories in large scale datasets: the proposed methodology is based
on the cooccurence of activities between the individuals in the two dataset, i. e., on
matching individuals that repeatedly find themselves in the same place at the same time
as each other. Other works are based on the differential privacy model [42]. As an ex-
ample, [97] proposes the application of a ε-differential privacy model for guaranteeing the
privacy protection in a distributed aggregation framework for movement data. Cormode
et al. [33] propose to publish a contingency table of trajectory data, where each cell in the
table contains the number of individuals commuting from the given source location to the
given destination location. [135] proposes a mobility model called Mobility Markov Chain
built upon mobility traces to re-identify an individual, while [74] defines several similarity
metrics which can be combined in a unified framework to provide de-anonymization of
mobility data and social network data.

Retail Data Privacy for retail data has been discussed from a multiplicity of angles.
The authors in [76] first proposed the Platform for Enterprise Privacy Practices which
defines technology for privacy-enabled management and exchange of customer data. The
methodology proposed in this article is a general framework directed to enterprises for
managing the data of their customers in a privacy enabled way. Most works concentrate
on on-line shopping with the aim of guaranteeing privacy in on-line purchasing trans-
actions. One of the first studies in this field was done in [47] where the authors tackle
the problem of preserving the privacy of customers of internet retailers by preventing
the vendor from directly linking information gathered about the customer with identify-
ing information usually contained in the customer’s order. Other works concentrate on
privacy enabling user interfaces [80], while others focus on improving the privacy trade-
off for e-shopping transactions [37]. Our focus in this thesis will be on customer retail
data, i.e., on data regarding the purchases made by customers of general goods retailers.
Several works in this context focus on Radio Frequency Identification (RFID) [83, 141],
i.e., technologies for tracking customer’s purchasing behaviour in retailers. The impact of
such technology for the privacy of individuals has been well investigated in several works
such as [83, 141, 155]. The authors in [144] focus in particular on the privacy challenge
for stationary retailers that choose to adopt RFID for their businesses. In the context
of data mining, the most common analysis made on retail data is association rule min-
ing. Sevel methods have been proposed to carry out privacy preserving association rule
mining [130, 134, 48]. Some recent work focused on solving this problem from different
perspectives: [167] tackles the problem of association rule mining in cloud computing, by
outsourcing the association rule mining process to“semi-honest” servers that collaborate
to perform the analysis on encrypted data. In [84] the authors perform association rule
mining on vertically partitioned databases, using homomorphic encryption. A survey on
privacy preserving association rule mining methodologies can be found in [102].
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Network Data Privacy for social media networks is a high interest topic, as shown in
works such as [98], where the authors highlight how privacy awareness changes the per-
spectives and motivations of users of a social media. As noted by [126], privacy preserving
solutions for social networks are mostly ad-hoc solutions that differ wildly depending on
the problem tackled, which may range from privacy in publishing social network data
for the use of third-party consumers, to the privacy of users in the leakage of individ-
uals’ information to unexpected people in their social circle. In the context of privacy
for online social networks Liu and Terzi [87] propose a framework for computing privacy
scores for each user in the network. Such scores indicate the potential risk caused by
their participation in the network. In [22] Becker and Chen propose a framework called
PrivAware, a tool to detect and report unintended information loss in online social net-
works. In [14] Ananthula et al. discuss a “Privacy Index” (PIDX) used to measure a
user’s privacy exposure in a social network. They have also described and calculated the
“Privacy Quotient” (PQ), i.e. a metric to measure the privacy of the user’s profile using
a naive approach. Pensa and Blasi in [125] have proposed a supervised learning approach
to calculate a privacy score of an individual in social network data based on the actual
people allowed to access the profile of the individual. The authors in [131] survey the
works regarding privacy issues in decentralized social networks. Several work explore the
design of possible privacy attacks for social network data: [149] proposes a privacy attack
based on the friends of an individual in the social network, i.e., on the nodes directly con-
nected to the node of the victim. In [145] the authors introduce an attack that leverages
mutual friendship relationships between the neighbors of a victim node.
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Chapter 3

Data Modeling

In this chapter we present the mathematical modeling for the different kinds of data
that we consider in this thesis and for each data type we also describe the experimental
datasets used to validate our frameworks. The chapter is divided into four main sections.
The first three sections are dedicated to the modeling of the three data types that we will
use throughout the thesis: mobility data, retail data and social network data. For the
three data types we also introduce a set of metrics that we will exploit in several of our
approaches. While the last section is dedicated to experimental data description.

3.1 Mobility Data modeling

A trajectory is a sequence of records that identifies the movements of an individual during
a period of observation [174, 172]. Each record contains the following information: the
identifier of the individual; the visited location expressed in coordinates (typically, latitude
and longitude); a timestamp that indicates when the individual stopped in or went through
that location.

Definition 1. Trajectory. The trajectory Tu of an individual u is a temporally ordered
sequence of tuples Tu = 〈(x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn)〉, where xi and yi are the
coordinates of a geographic location and ti is the corresponding timestamp, with ti < tj if
i < j ∀i, j ≤ n, with n = |Tu|.

Definition 2. Mobility Dataset. A mobility dataset is a set of Trajectories D =
{T1, T2, . . . , Tm}, where Tu (1 ≤ u ≤ m) is the trajectory of individual u.

In practice, trajectories may have different resolutions depending on how the mobility
data are collected. For our purposes, we refer to trajectories where the coordinates of
each point represent the centroid of a larger geographical area comprising the original
point. Specifically, in this thesis with the term point or visit we refer to a single element
of a trajectory, while with the term location we refer to the point’s spatial information.
For brevity we will also denote with li = (xi, yi) the geographical information of a point.
We denote by Uset = {u1, . . . , un} the set of the distinct individuals represented in the
mobility dataset D and by Lset = {l1 = (x1, y1), . . . , lw = (xw, yw)} the set of distinct
locations in D.
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Depending on the specific application, a raw trajectory can be aggregated into different
mobility data structures. These structure will be useful when defining some metrics or
privacy attacks for mobility data:

Definition 3. Frequency vector. The frequency vector Wu of an individual u is a
sequence of tuples Wu = 〈(l1, w1), (l2, w2), . . . , (ln, wn)〉 where li = (xi, yi) is a location, wi
is the frequency of the location, i.e., how many times location li appears in the individual’s
trajectory Tu, and wi > wj if i < j. A frequency vector Wu is hence an aggregation of a
trajectory Tu.

Definition 4. Probability vector. The probability vector Pu of an individual u is a
sequence of tuples Pu = 〈(l1, p1), (l2, p2), . . . , (ln, pn)〉, where li = (xi, yi) is a location, pi
is the probability that location li appears in Wu, i.e., pi = wi∑

li∈Wu
wi

, and pi > pj if i < j.

A probability vector Pu is hence an aggregation of a frequency vector Tu.

3.1.1 Mobility Data Metrics

The mobility dynamics of an individual can be described by a set of metrics widely used
in literature. Some of these metrics describe specific aspects of an individual’s mobility;
other describe an individual’s mobility in relation to collective mobility.

A subset of these measures can be simply obtained as aggregation of an individual’s
trajectory or frequency vector. The number of visits Vnum of an individual is the length
of her trajectory, i.e., the sum of all the visits she did in any location during the period
of observation [56, 115]. By dividing this quantity by the number of days in the period
of observation we obtain the average number of daily visits Vnum, which is a measure of
the erratic behavior of an individual during the day. Locs indicates the number of unique
locations visited by the individual during the period of observation [56, 137]. Dividing
Locs by the number of available locations on the considered territory we obtain Locsratio,
which indicates the fraction of territory exploited by an individual in her mobility behav-
ior. The maximum distance Dmax traveled by an individual is defined as the length of the
longest trip of the individual during the period of observation [162], while Dtrip

max is defined
as the ratio between Dmax and the maximum possible distance between the locations in
the area of observation. The sum of all the trip lengths traveled by the individual during
the period of observation is defined as Dsum [162]. It can be also averaged over the days
in the period of observation obtaining Dsum.

Besides these simple quantities, more complex metrics can be computed based on
an individual’s mobility data, such as the radius of gyration [56, 111] and the mobility
entropy [45]. The radius of gyration rg is the characteristic distance traveled by an
individual during the period of observation, formally defined as [56, 111, 115]:

rg =

√
1

V

∑
i∈L

wi(ri − rcm)2,

where wi is the individual’s visitation frequency of location i, V is the total number of visits
of the individual, ri is a bi-dimensional vector describing the geographical coordinates of
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location i, and rcm = 1
V

∑
i∈L ri is the center of mass of the individual [56, 111], and finally

L represents here the set of all unique locations for that individual.The mobility entropy
E is a measure of the predictability of an individual’s trajectory. Formally, it is defined
as the Shannon entropy of an individual’s movements [45] [139] :

E = −
∑
i∈L

pi log2 pi,

where pi is the probability of location i in an individual’s probability vector. Also, for each
individual we keep track of the characteristics of three different locations: the most visited
location, the second most visited location and the least visited location. The frequency
wi of a location i is the number of times an individual visited location i during the period
of observation, while the average frequency wi is the daily average frequency of location
i. We also define wpopi as the frequency of a location divided by the popularity of that
location in the whole dataset. The quantity U ratio

i is the number of distinct individuals
that visited a location i divided by the total number |Uset| of individuals in the dataset,
while Ui is the number of distinct individuals that visited location i during the period of
observation. Finally, the location entropy Ei is the predictability of location i, defined as:

Ei = −
∑
u∈Ui

pu log2 pu,

where pu is the probability that individual u visits location i. All these mobility features
can be computed in linear time with respect to the size of the corresponding data structure.
Some preprocessing is usually performed on mobility data so that it can be analyzed
properly. These preprocessing steps are highlighted in section 3.4, and are linear with
respect to the number of points of each trajectory.

Table 3.1 summarizes the metrics that we used in our work.

symbol name symbol name

Vnum number of points Rg radius of gyration

Vnum daily visits E mobility entropy

Dmax max distance Ei location entropy

Dsum sum distances Ui individuals per location

Dsum Dsum per day U ratio
i Ui over individuals

Dtrip
max Dmax over area wi location frequency

Locs distinct locations wpopi wi over overall frequency

Locsratio Locs over area wi daily location frequency

Table 3.1: The individual mobility metrics used in our work.

3.2 Retail Data modeling

Retail data is generally collected through membership programs: customers who wish
to do so, voluntarily agree to such programs in order to receive some benefits through
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the use of a specific membership card, the data about their purchases is subsequently
collected. The raw data of each individual is represented by baskets. A basket is a set of
items purchased by the individual during a shopping session. We consider baskets with no
repetitions, i.e., proper sets where items can appear only once. Therefore, an individual
may have multiple baskets associated to her.

Definition 5. Basket. We define a basket (or transactions) ba as a subset of items such
that ∅ ⊂ bai ⊆ IT where IT = {it1, . . . , itn} is the set of all items.

Definition 6. Basket History. We define the basket history Hsu = 〈ba1, . . . , ban〉 as
the temporally ordered sequence of n baskets (or transactions) belonging to individual u.

Definition 7. Retail Dataset. A retail dataset is a set of Basket Histories D =
{Hs1, Hs2, . . . , Hsn}, where Hsu (1 ≤ u ≤ n) is the basket history of individual u.

Again, we refer to Uset = {u1, . . . , un} the set of the distinct individuals represented
in the retail dataset D. When we refer to a dataset D, whether it is a mobility or retail
dataset it will be either clear from the context or non relevant.

3.2.1 Retail Data Metrics

Given a retail dataset we can extract different metrics able to describe the purchasing be-
haviour of people and their habits. Table 3.2 contains the description of all the metrics we
defined for retail data. Let I be the total number of items purchased by a customer during
the period of observation. It comprises all the shopping sessions of the customer. Conse-
quentially we indicate with Iunique the number of unique items bought by an individual in
the period of observation. We averaged the total number of items bought by a customer
with the period of observation, expressed in days. Therefore, Iavg = I

time
, in which time

represents the period of observation expressed in days. Another metric we define is the
Idmax: it is the maximum number of items purchased by an individual during a shopping
session, e.g. in a basket. Formally, Idmax = maxlen(ba), ba ∈ Hsu. We define Idavg as the
average number of items bought in a shopping session: Idavg = avglen(b), b ∈ Bu. Another
interesting measure is the product entropy, defined applying Shannon’s formula [139].

E = −
∑
i∈L

pi log2 pi (3.1)

in which pi is the probability associated to the item i. Another set of metrics defined for
retail data is the product-metric. They are metrics based on the customer under analysis,
but they also involve the characteristics of a product the individual bought during the
period of observation. We evaluate each of these measures over three products for each
customer: the top product, i.e. the product that was bought more times, the second top
product, that is the second product that was bought with more frequency and also the least
product, that is the product the individual purchased fewest times. For each customer
and each of these three products, we define the following metrics: the product entropy
using the Shannon formula:

E = −
∑
u∈Uset

pu log2 pu (3.2)
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In this case, the probability pu indicates the likelihood of the item to be bought by
the individuals u in the dataset. We also define wi as the frequency of the item i from the
customer under analysis. In practice, it is a count of the number of times the item under
analysis has been purchased by the costumer. Note that the computation of this measure
requires a scan of the whole dataset and not only of the data of the customer under
analysis. Moreover, we define wavg as the measure of the number of times the item under
analysis has been bought divided by the number of days in the period of observation.
Technically, it corresponds to wavg = w

time
, where time represents the number of days of

the period of observation. We also define Uij as the number of users who bought the item
ij under analysis at least once. We then average this value dividing it by the total number
of users in the dataset, obtaining Uavg

ij
. Technically, Uavg = U

users
, where users represents

the total number of users in the dataset.

symbol name symbol name

I Total number of items I
daily
max Maximum number of prod-

ucts in a day divided by the
total products

Iunique Total number of unique
items

I
daily
avg Average number of prod-

ucts in a day divided by the
total products

Iavg Total number of items av-
eraged over time

Eij Product entropy

Idmax Maximum number of items
bought in a day

wij Frequency of the product

Idavg Average number of items
bought per day

wavgij
Average frequency of the
product

E Purchasing entropy Uij Number of users who
bought the product

Locs Distinct locations Uavg
ij

Average number of users
who bought the product

Iavgunique Total number of unique
items averaged over time

Table 3.2: The individual retail data metrics used in our work.

3.3 Social Network Data modeling

Networks have traditionally been modeled as graphs:

Definition 8. Social Network. We model a social network as a simple graph G =
(V,E, L,Γ), where V is the set of vertices representing individuals, E ⊆ V ×V is the set
of edges representing the relationships between individuals, L is a set of labels, and Γ is a
labeling function that maps each vertex to a subset of labels in L.

We assume that edges do not have any labels. In a social network, the direction of
an edge indicates the relationship between vertices and can be used to distinguish the
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type of relationship: single-sided or mutual. For our purpose, we will assume that all
relationships are mutual.

Starting from the social network data represented as a graph it is possible to derive
other data structures representing aggregated information of the original graph. The
scope of these data structures is to expose less information than the original one while
enabling the computation of standard network metrics. Clearly, this data transformation
helps privacy preserving analyses and the respect of data minimization principle required
by the GDPR [1]. Here, we define some of these structures:

Definition 9. Friendship Vector. The friendship vector Fv of an individual v ∈ V is
a set of vertices Fv = 〈v1, v2 . . . , vn〉 representing individuals connected to v in the social
network graph.

The friendship vector of a node v essentially represents the neighborhood of the indi-
vidual v at distance 1.

Definition 10. Label vector. The label vector of an individual v is a set of labels Lav
= 〈la1, la2, . . . , lam〉. Each laj = (f, l) (with j ∈ {1, 2, . . . , |La|}) is a pair composed of a
feature name f and the associated label value l. The label vector of an individual can be
empty.

Each label describes a profile feature of an individual, for example gender : ‘female’
or ‘male’, educational information: ‘Pisa University’ or ‘Stanford University’, etc.

Definition 11. Degree Vector. The degree vector of an individual v, denoted by Dgv =
〈dgv1 , dgv2 , . . . , dgvn〉, represents the number of friends of each friend of v. Thus, each
element dgvi is equal to the length of the friendship vector of the individual vi in the social
network graph, i.e., dgvi = len(Fvi).

Definition 12. Mutual Friendship Vector. The mutual friendship vector of an indi-
vidual v, denoted by Mfv = 〈mf1, . . . ,mfn〉, represents the number of common friends of
v with each one of its friends vi. Thus, each element mfi is equal to the cardinality of the
intersection between the friendship vector of v and the one of vi, i.e., mfi =| Fv ∩ Fvi | .

In the above definition, the cardinality of an intersection can be empty when the
individual and her friend do not share any friend in the social network.

Taking in consideration all of the structures defined above we can define a Social
Network Dataset as follows:

Definition 13. Social Network Dataset. A social network dataset is a set of indi-
vidual social network structures D = {S1, S2, . . . , Sk} where Sv (1 ≤ v ≤ k) is the social
network data structure of an individual v.

Again, when with D we indicate a dataset, whether it is a social network, mobility
or retail dataset, it will be either clear from the context or non relevant. Clearly, given
the definition of the different individual social network structures, we can have different
types of social network datasets. Thus, a social network dataset can be a set of friendship
vectors {F1,F2,...,Fk}, a set of label vectors {LA1,LA2,...,LAk}, a set of degree vectors
{Dg1,Dg2,...,Dgk} or a set of mutual friendship vectors {MF1,MF2,...,MFk}. Note that,
the four sets have the same size |V | = k.
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3.3.1 Social Network Data Metrics

Numerous metrics have been introduced to characterize and analyze networks. Graph
metrics can be broadly classified in two categories: global measures refer to global prop-
erties of a graph and, therefore, consists of a single value for each graph; meanwhile nodal
measures refer to properties of the nodes of a graph and, therefore, consists of a vector of
numbers — one for each node of the graph [67]. Our focus will be on node level metrics as
they give information about the single nodes in the graph. The most simple metric is the
degree of a node that we denote with dgv. This is simply the number of other nodes con-
nected to v. The degree centrality is used for finding very connected individuals, popular
individuals or individuals who can quickly connect with the wider network [51]. Degree
Centrality is computed dividing the degree of a node by the total number of nodes minus
one: Cd(v) = dgv/(|V |−1). Betweenness centrality measures the number of times a node
lies on the shortest path between other nodes. This shows us which nodes act as “bridge”
between nodes in a network. It is computed by identifying all the shortest paths and then
counting how many times each node falls onto one. Given two nodes v1 and v2:

Cb(v) =
∑

v1 6=v 6=v2∈V

σv1,v2(v)σv1,v2

where σv1,v2 is total number of shortest paths from node v1 to node v2, σv1,v2(v) is
the number of those paths that pass through v. Closeness centrality scores each node
based on their “closeness” to all other nodes within the network. This metrics calculates
the shortest paths between all nodes, then assigns to each node a score based on the
sum of shortest paths [51]. In a connected graph, the normalized closeness centrality (or
closeness) of a node is the average length of the shortest path between the node and all
other nodes in the graph. Thus the more central a node is, the closer it is to all other nodes
[106]: C(v) = (|V | − 1)/

∑
v2∈V d(v, v2). Another metric commonly used in graph theory

is the clustering coefficient [57], a measure of the degree to which nodes in the graph tend
to cluster together. It also indicates the portion of neighbors of a node that are connected.
We denote it as: Cc(v) = 2Nv

dgv(dgv−1) . Eigenvector Centrality (also called eigen centrality)
is another measure of the influence of a node in a network. Relative scores are assigned
to all nodes based on the concept that connections to high-scoring nodes contribute more
to the score of the node in question than equal connections to low-scoring nodes. A high
eigenvector score means that a node is connected to many nodes who themselves have
high scores [103]: Let A be the adjacency matrix, i.e. av,v2 = 1∀a ∈ A if the node v is
connected to node v2, and av,v2 = 0 otherwise. The relative centrality score of a node v
can be defined as:

xv =
1

λ

∑
v2∈F (v)

xv2 =
1

λ

∑
v2∈G

av,v2xv2

where F (v) is a set of the neighbors of v and λ is a constant. With a small rearrange-
ment this can be rewritten in vector notation as the eigenvector equation Ax = λx. We
also use the core number of a node as a metric: a k-core is a maximal subgraph that
contains nodes of degree k or more. A sub graph H = (S,E|S) induced by the set S is a
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k-core or a core of order k ⇐⇒ ∀s ∈ S : degH(v) ≥ k ∧ S is a maximum sub graph with
this property. The core of maximum order is also called the main core. The core number
of node v is the highest order of a core that contains this node. The algorithm can be
found in [21]. The eccentricity of a node v is the maximum distance between a node v and
all other nodes in the graph. Eccentricity of a node can be found by looking all shortest
path with all other nodes and taking the maximum one. Finally we use PageRank (PR)
as a metrics: page rank is an algorithm used by Google Search to rank websites in their
search engine results. It is also used to compute a ranking of the nodes in the graph based
on the structure of the incoming links. PageRank can be expressed as follows:

xv = α
∑
v

av,v2fracxv2dgv2 +
1− α
|V |

where α is the damping factor and a be the adjacency matrix, i.e. av,v2 = 1 if node
v is connected to node v2, and 0 otherwise. The differences of eigenvector centrality
and PageRank are the scaling factor of dgv2 and the PageRank vector is a left hand
eigenvector. PageRank algorithm gives each page a rating of its importance, which is a
recursively defined measure whereby a page becomes important if important pages link
to it. This definition is recursive because the importance of a page refers back to the
importance of other pages that link to it. Table 3.3 summarizes the network data metrics
that we use in our work.

symbol name symbol name

dg Degree of node v Ec Eccentricity

Cd Degree centrality Ax Eigenvector central-
ity

Cb Betweenness central-
ity

Pg Pagerank

C Closeness centrality max(dgH) Core number

Cc Clustering coefficient

Table 3.3: The individual social network data metrics used in our work.

3.4 Experimental Datasets

For each type of data model, presented above, in this thesis we use real-world experimental
data to validate our approaches and frameworks. In the rest of the thesis we will refer to
this section when discussing experiments on real-world data.

3.4.1 Experimental Mobility Dataset

For experiments on mobility data we use data provided by Octo Telematics1 storing the
GPS tracks of private vehicles traveling in the Italian region of Tuscany. We selected

1https://www.octotelematics.com/
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different urban areas and/or trajectories from the data depending on the analysis that
we want to perform. We use a cut of our experimental mobility dataset storing the GPS
tracks of private vehicles traveling in Florence and Pisa, from 1st May to 31st May 2011,
corresponding to 9,715 and 3,281 vehicles respectively. The GPS device embedded in a
vehicle automatically turns on when the vehicle starts, and the sequence of GPS points
that the device produces every 30 seconds forms the global GPS track of a vehicle. When
the vehicle stops no points are logged nor sent. We exploit these stops to split the global
GPS track of a vehicle into several sub-tracks, corresponding to the trips performed by
the vehicle. To ignore small stops like traffic lights and gas stations, we follow the strategy
commonly used in literature [111, 115] and choose a stop duration threshold of at least 20
minutes: if the time interval between two consecutive GPS points of the vehicle is larger
than 20 minutes, the first point is considered as the end of a trip and the second one as
the start of another trip.2 We assign each origin and destination point of the obtained
sub-tracks to the corresponding census cell according to the information provided by the
Italian National Statistics Bureau (ISTAT), in order to assign every origin and destination
point to a location [115]. These steps are performed in linear time with respect to the
number of points in each trajectory ISTAT census cells have a variable size, depending
mostly on the population density of the tessellated area, and are periodically updated
by ISTAT itself in collaboration with local authorities. More information can be found
at: https://www.istat.it/it/files//2019/10/IWP_9-2019.pdf . This allows us to
describe the mobility of every vehicle in the Florence or the Pisa datasets in terms of a
trajectory, in compliance with the definitions introduced in Section 3.1.

3.4.2 Experimental Retail Dataset

We use a retail dataset provided by Unicoop3 storing the purchases of individuals in
shopping centers of the coast of the region of Tuscany, in Italy, focusing on the purchases
of 1000 individuals in the city of Leghorn during 2013, corresponding to 659,761 items
and 61,325 baskets. Shopping data is usually collected through membership programs:
customers join the program by using a membership card identification, thus providing
their shopping data while receiving, in exchange, special discounts, promotions of gifts.
We consider each item in the shopping sessions of individuals at the category level, rep-
resenting a more general description of a specific item, e.g., “Coop-brand Vanilla Yogurt”
belongs to category “Yogurt”, ”Corn Bread” belongs to category ”Bread” and so on.

3.4.3 Experimental Network Dataset

We use the Facebook dataset provided by Stanford University’s ”Stanford Large Network
Dataset Collection” [82]. This dataset includes node features (profiles), circles and ego
networks. Nodes have been anonymized by replacing the Facebook-internal id’s for each
user with a new value. Feature vectors from this dataset have also been provided while

2We also performed the extraction of the trips by using different stop duration thresholds (5, 10, 15,
20, 30, 40 minutes), without finding significant differences in the sample of short trips and in the analyses
we present in this thesis.

3https://www.unicooptirreno.it/
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the interpretation of those features has been anonymized. After aggregating all data, we
obtain a social network graph of 4039 nodes and 88,234 edges. Almost half of the all
individuals have 30 friends/neighbors or less.
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Chapter 4

Privacy Risk & Data Quality
Assessment

In this chapter we present PRUDEnce, the privacy framework proposed in [128] and our
extension that enables a systematic evaluation of data quality in terms of impact of non-
risky individuals on the data analytical results. Moreover, we show how to instantiate this
general framework in three scenarios (mobility, retail and social network data) defining for
each one a set of adversary attacks, quantifying both the empirical privacy risk produced
by each attack and the data quality preserved by the non-risky individuals. Note that, the
assessment of privacy risk for any attack will be the preliminary step of our methodology
of privacy risk prediction presented in Chapter 5. We will also propose an extension to
PRUDEnce to provide a database level evaluation of privacy risk instead of an individual
evaluation. This extension is tailor made for retail data, specifically to tackle the problem
of assessing the inherent privacy risk in user purchasing profiles extracted from retail
data. The results presented in this chapter have been partially published in [121], [119]
and [123].

4.1 PRUDEnce Privacy Risk Assessment Framework

Several methodologies have been proposed in literature for privacy risk assessment. In
this thesis we focused on the privacy framework PRUDEnce [128], which allows for the
systematic data-driven assessment of the privacy risk for any type of data. The framework
considers a scenario where a Data Analyst requests a Data Provider some data in order
to develop an analytical service. For its part, the Data Provider has to guarantee the
right to privacy of the individuals whose data are recorded. As a first step, the Data
Analyst communicates to the Data Provider the data requirements for the analytical
service. Assuming that the Data Provider stores a database D, it aggregates, selects and
filters the dataset D to meet the requirements by the Data Analyst and produces a set
of datasets {D1, . . . , Dn} each with a different data structure and/or aggregation of the
data. The Data Provider then reiterates a four-step procedure until it considers the data
delivery safe:

(1) Identification of Attacks : identify a set of possible attacks that a malicious adversary
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might conduct in order to re-identify the individuals in the datasets {D1, . . . , Dn};

(2) Privacy Risk Computation: simulate the attacks and compute the set of privacy
risk values for every individual in the datasets {D1, . . . , Dn};

(3) Dataset Selection: select a dataset D ∈ {D1, . . . , Dn} with the best trade-off be-
tween the privacy risks of the individuals and the quality of the data, given a certain
level of tolerated privacy risk and the data requirements by the Data Analyst;

(4) Risk Mitigation and Data delivery : apply a privacy-preserving transformation (e.g.,
generalization, randomization, etc.) on the chosen dataset D to eliminate the resid-
ual privacy risk, producing a filtered dataset Dfilt. Deliver the dataset Dfilt to the
Data Analyst when the Dfilt is adequately safe.

The framework is summarized in Figure 4.1.

Figure 4.1: The general schema of the PRUDEnce privacy framework

Privacy Risk Computation. The privacy risk of an individual is related to her
probability of re-identification in a dataset with respect to a set of re-identification at-
tacks. A re-identification attack assumes that an adversary gains access to a dataset.
On the basis of some background knowledge about an individual, i.e., the knowledge of
a subset of her own data, the adversary tries to identify all the records in the dataset
regarding the individual under attack. In our work we use the definition of privacy risk
(or re-identification risk) introduced in [133, 132, 147] and widely used in the literature.
There can be many background knowledge categories, every category may have several
background knowledge configurations, every configurations have many instances.

A background knowledge category is a kind of information known by the adversary
about a specific set of dimensions of an individual’s data. Typical dimensions in mobility
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data are space, time, frequency of visiting a location and probability of visiting a location.
In retail data possible dimensions could be the products, or the time of a shopping ses-
sion. In network data these could be the number of neighbors of a node or the degree of
neighbors, for example. The number k of the elements of a category known by the adver-
sary is called background knowledge configuration. An example of background knowledge
configuration is the knowledge by the adversary of k = 3 points in the trajectory of an
individual, or k = 4 friends of a certain individual in a network. Essentially the back-
ground knowledge configuration represents the “quantity” of knowledge that an adversary
may have. Finally, an instance of background knowledge is the specific information known
by the adversary, such as a visit in a specific location, or a specific product bought in a
shopping session. We formalize these concepts as follows:

Definition 14. Background Knowledge Category, Configuration and Instance
Given a background knowledge category B, we denote with Bk ∈ B = {B1, B2, . . . , Bn} a
specific background knowledge configuration, where k represents the number of elements
in B known by the adversary. We define an element b ∈ Bk as an instance of background
knowledge configuration.

Example 1. Suppose a trajectory Tu = 〈(l1, t1), (l2, t2), (l3, t3), (l4, t4)〉 of an individual u
is present in the Data Provider’s dataset D, where (li) is a location (xi, yi) and ti the time
when u visited that location, with i = 1, . . . , 4 and ti < tj if i < j. Based on Tu the Data
Provider can generate all the possible instances of a background knowledge configuration
that an adversary might use to re-identify the whole trajectory Tu. Considering the knowl-
edge by the adversary of ordered subsequences of locations and k = 2, we obtain the back-
ground knowledge configuration. B2 = {((l1, t1), (l2, t2)), ((l1, t1), (l3, t3)), ((l1, t1), (l4, t4)),
((l2, t2), (l3, t3)), ((l2, t2), (l4, t4)), ((l3, t3), (l4, t4))}. The adversary for example might know
instance b = ((l1, t1), (l4, t4)) ∈ B2 and aims at detecting all the records in D regarding
individual u, in order to reconstruct the whole trajectory Tu.

Example 2. Suppose a basket history Hsu = 〈ba1, ba2, ba3〉 of an individual u is present in
the Data Provider’s dataset D, where bai = {it1, . . . , itn} is a basket of items itj, with i =
1, . . . , 3. Based on Hsu the Data Provider can generate all the possible instances of a back-
ground knowledge configuration that an adversary might use to re-identify the whole basket
history Hsu. Considering the knowledge by the adversary of the full baskets with k = 2,
we obtain the background knowledge configuration B2 = {(ba1, ba2), (ba1, ba3), (ba2, ba3)}.
The adversary for example might know instance b = (ba1, ba3) ∈ B2 and aims at detecting
all the records in D regarding individual u, in order to reconstruct the whole basket history
Hsu.

Let D be a database, D a dataset extracted from D as an aggregation of the data
on specific dimensions (e.g., an aggregated data structure and/or a filtering on some
dimension), and Du the set of records representing individual u in D, we define the
probability of re-identification as follows:

Definition 15. Probability of re-identification. Given an attack, a function match-
ing(d, b) indicating whether or not a record d ∈ D matches the instance of background
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knowledge configuration b ∈ Bk, and a function M(D, b) = {d∈D|matching(d, b) =
True}, we define the probability of re-identification of an individual u in dataset D as:

PRD(d = u|b) =
1

|M(D, b)|

that is the probability to associate a record d ∈ D to an individual u, given instance b ∈ Bk.

Therefore the probability of re-identification of an individual u in a dataset D depends
on two quantities: (i) M(d, b), the record d ∈ D compatible with the instance b; (ii)
M(D, b), the records in D compatible with the instance b. For our purposes we will assume
that each individual is represented by a single data structure in any dataset D where she
is represented in. The compatibility is expressed by a function matching(d, b) which
indicates whether or not a record d ∈ D matches the instance b. The matching function
depends on the background knowledge used during the attack. Note that PRD(d=u|b) = 0
if the individual u is not represented in D. Since each instance b ∈ Bk has its own
probability of re-identification, we define the risk of re-identification of an individual as
the maximum probability of re-identification over the set of instances of a background
knowledge configuration:

Definition 16. Risk of re-identification or Privacy risk. The risk of re-identification
(or privacy risk) of an individual u given a background knowledge configuration Bk is her
maximum probability of re-identification Risk(u,D) = maxPRD(d = u|b) for b ∈ Bk.

The risk of re-identification has the lower bound |Du|
|D| (a random choice in D), and

Risk(u,D) = 0 if u /∈ D.

We now want to summarize and clarify the functioning of the framework described:
the PRUDEnce framework does not focus on the privacy risk evaluation with respect to
a “specific adversary knowledge” but exploits a data-driven mechanism that allows the
generation of all possible types of knowledge that one could extract and derive from the
data. The assumption is that possible background knowledge known by an adversary on
the user u is a subset of the entry data associated to u in the data to be shared. As stated
in “Data Privacy: Foundations, New Developments and the Big Data Challenge”[156] the
worst-case scenario considers an adversary knowing the same data of the shared table. In
order to evaluate the trend of the risk changing the quantity of background knowledge
possessed by the adversary, PRUDEnce generates for each user all the possible levels
of external knowledge starting from the minimum knowledge (e.g., only one location in
the example of the paper) to the maximum one (e.g., the whole set of user’s locations).
This assumption is due to the fact that for re-identifying a person in the dataset, the
adversary needs to know a subset of the user data record or some other information that
leads to the knowledge of that subset of user data. PRUDEnce to this end needs two
specifications: i) the “nature” of the assumed background knowledge of the adversary.
We called this “background knowledge category”. This represents the dimensions of the
of data that the adversary knows; ii) the quantity of information that we assume the
adversary will use in its attack. We called this “background knowledge configuration”.
This represents the number of records that the adversary may know about the attacked
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individual. Given these two types of information, PRUDEnce generates all the possible
“background knowledge instances” in a systematic way, considering all the possible k-
combinations of records/points belonging to an individual. These are the actual points
that an adversary may use when conducting an attack. Only defining different levels
of possible external knowledge, it is possible to provide organizations the possibility to
reason in a systematic way on the balancing between privacy risks and data utility, for
helping them in making responsible and aware decisions about the best trade-off.

In order to clarify the concepts of probability of re-identification and privacy risk we
provide the following example that, given a mobility dataset D of trajectories, shows how
we can compute the two matching components for a specific attack. In our example we
will use timestamps with daily precision and for simplicity, we substitute x, y coordinates
with names of places so that it is simpler to follow the example.

Example 3. Let us consider a set of individuals Uset={u1, u2, u3, u4, u5, u6} and the cor-
responding dataset D of trajectories:

D = {
Tu1

= 〈(Lucca, 2011/02/03), (Leghorn, 2011/02/03), (Pisa, 2011/02/03), (Florence, 2011/02/04)〉
Tu2

= 〈(Lucca, 2011/02/03), (Pisa, 2011/02/03), (Lucca, 2011/02/04), (Leghorn, 2011/02/04)〉
Tu3 = 〈(Leghorn, 2011/02/03), (Pisa, 2011/02/03), (Lucca, 2011/02/04), (Florence, 2011/02/04)〉
Tu4 = 〈(Pisa, 2011/02/04), (Leghorn, 2011/02/04), (Florence, 2011/02/04)〉
Tu5

= 〈(Pisa, 2011/02/04), (Florence, 2011/02/04), (Lucca, 2011/02/05)〉
Tu6

= 〈(Lucca, 2011/02/04), (Leghorn, 2011/02/04)〉
}

Let us assume an adversary wants to perform an attack on individual u1 knowing only the
locations she visited (without any information about the time), with background knowledge
configuration B2, i.e., the adversary knows two of the locations visited by individual u1.
We compute the risk of re-identification of individual u1, given the dataset D of trajecto-
ries and the knowledge of the adversary, in two steps:

1. We compute the probability of re-identification for every b∈B2. Instance b={ Lucca,
Leghorn} has probability of re-identification PRD(d=u1|{Lucca, Leghorn})=1

4
, be-

cause the pair {Lucca, Leghorn} appears in trajectories Tu1, Tu2, Tu3 and Tu6,
i.e., in a total of four trajectories. Instance {Lucca, P isa} has probability of re-
identification PRD(d=u1| {Lucca, P isa})=1

4
because the pair appears in four tra-

jectories Tu1, Tu2, Tu3 and Tu5. Instance {Lucca, F lorence} has probability of re-
identification PRD(d=u1 | { Lucca, F lorence })=1

3
because the pair appears in

three trajectories Tu1, Tu3 and Tu5. Analogously we compute the probability of re-
identification for the other three possible instances: PRD(d=u1| {Leghorn, P isa})=1

4
,

PRD(d=u1| {Leghorn, F lorence})=1
3
, PRD(d=u1| {Pisa, F lorence})=1

4
;

2. We compute the risk of re-identification of individual u1 as the maximum of the
probabilities of re-identification among all instances in B2: Risk(u1)=max(1

4
, 1
4
,

1
3
, 1
4
, 1
3
, 1
4
) = 1

3
.
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We remark that the Data Provider does not know in advance the instance associated to
the highest probability of re-identification of individual u1, i.e., the “best” combination of
points from the perspective of the malicious adversary. The Data Provider can use the
computation above in a preventive manner to identify the instance yielding the highest
probability of re-identification which is, for individual u1, instance {Leghorn, F lorence}.
Due to the definition of risk, which depends on both an attacked individual’s structure and
the structures of all the other individuals in the dataset, identifying a priori an attack
where the adversary has access to the best k-combination of points is difficult for the Data
Provider. A particular case where the Data Provider can immediately recognize the best
k-combination of points is a scenario where the adversary knows a location visited only
by the individual under attack. Since the Data Provider has a view of the entire dataset,
she can simulate such an attack by selecting the locations visited by just an individual,
i.e., with number of visits equal to 1. In such a case, computing the privacy risk for
the individuals visiting those locations does not require any combinatorial computation,
because the privacy risk is 1 for any value of k.

An individual is hence associated to several privacy risks, each for every background
knowledge configuration of an attack. Every privacy risk of an individual can be computed
using the following procedure:

1. given an individual, define an attack based on a specific background knowledge
category;

2. consider a set of m background knowledge configurations {B1, . . . , Bm};

3. for every configuration Bk ∈ {B1, . . . , Bm} compute all the possible instances b ∈ Bk

and the corresponding probability of re-identification;

4. select the privacy risk of the individual for a configuration Bk as the maximum
probability of re-identification across all the instances b ∈ Bk.

Data Quality Evaluation. The Dataset selection of PRUDEnce process (STEP 3) is
based on the evaluation of both privacy risk and data quality given a specific tolerated
privacy risk threshold. PRUDEnce provides a method for measuring the data quality in
terms of portion of data covered by individuals having at most a specific tolerated privacy
risk. In [128] authors define the RACD curve as the function that for each risk value r,
quantifies the percentage of records in D that are covered by individual having at most
the risk r. In other words, given Ur = {u ∈ U |Risk(u,D) ≤ r} and let DUr be the set of
data covered by individuals in Ur this function is defines as RACD(r,D) = |DUr|/|D|.

4.1.1 PRUDEnce Extension

Privacy Risk for Individual Patterns One of the most common analyses on per-
sonal data is customer profiling. Customer profiling is a process widely used in economy
for direct marketing, service development, site selection, and customer relationship man-
agement. The process of construction and extraction of a personal data model formed
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by personal patterns is generally referred to as user profiling. A user profile contains the
systematic behaviors expressing the repetition of habitual actions, i.e., personal patterns.
These patterns can be expressed as simple or complex indexes [60], behavioral rules [63],
set of events [61], typical actions [159], etc. Profiles can be classified as individual or
collective according to the subject they refer to [69, 59]. An individual profile is built
considering the data of a single person. This kind of profiling is used to discover the
particular characteristics of a certain individual, to enable unique identification for the
provision of personalized services. We talk about collective data models when personal
data or individual models generated by individual profiling are aggregated without distin-
guishing the individuals. By knowing the profile of each customer, a company can treat a
customer according to her individual needs and increase the lifetime value of the customer
[15]. Furthermore, customer profiling is a key element which impacts into the decisions
in product life cycle cost [40].

We want to extend the PRUDEnce framework with a methodology to estimate the
privacy risk of individual patterns with respect to the data from which they where ex-
tracted. To do so, we rely on a well tested methodology to evaluate privacy risk: distance
based record linkage [68]. In distance based record linkage it is assumed that an adversary
possesses a database with records belonging to the same individuals in the data that she
wants to attack. We can apply the same idea, assuming that a malicious adversary gets
access to the individual patterns extracted from a retail dataset and uses these patterns
as her own database to perform the attack. Formally, we assume that the background
knowledge of the malicious adversary is a dataset P = {Pa1, . . . , Pan} where Pau is a set
of patterns representing individual u, extracted from the respective raw data. With this
information the adversary tries to match the original records in dataset D with the corre-
sponding patterns. To do so, the adversary can compute a distance between each of the
patterns in her knowledge and the records in D, and then assign to each record the set of
patterns with the smallest distance. For this approach, privacy risk cannot be expressed
as an individual measure, i.e., from the perspective of the individuals in the data. An
adversary either correctly matches the record and the patterns of the same individual or
doesn’t: if the distance between the records of the individual and the corresponding pat-
terns is smaller than the distance between those same patterns and any other individual
records, then the matching is successful. Therefore, following the traditional approach
for distance based records linkage, risk is evaluated for the entire dataset, based on the
number of individuals for which the adversary correctly guesses the matching of Basket
History and set of patterns. Formally:

Definition 17. Dataset Risk Given a distance function dist, let Uset be the set of
all individuals of retail dataset D and M ⊆ Uset be the set of individuals for whom
dist(Pau, Hsu) has the minimum value ∀Pai ∈ P. Then, we define the privacy of the

dataset D as: Risk = |M |
|Uset| .

This approach dates back to [142, 73]. Dataset Risk ranges between 0 to 1 and
quantifies the level of success that an adversary would have when using P as background
knowledge. In our work we focus on patterns obtained through transactional clustering,
performed with the algorithm TX-Means [61]. TX-Means is a parameter-free clustering
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method that follows a clustering strategy similar to X-Means [118] designed for finding
clusters in the specific context of transactional data. TX-Means automatically estimates
the number of clusters and it also provides the representative basket of each cluster, which
summarizes the pattern captured by that cluster. The representative baskets correspond
to the centroids of the sub-clusters and are calculated adopting the procedure described
in [53]. Another example of pattern can represent the top-k frequent items, where each
individual is simply represented by the items that she bought with more frequency. In
any case, for retail data, a pattern may be modeled similarly to a set of baskets.

Definition 18. Retail Patterns. We define as Pau = {pa1, pa2, . . . , pam} the sets of
patterns of the individual u, where each pai ⊆ IT and IT is the set of all items.

To perform distance based record linkage with individual purchasing patterns, we have
to define a distance function between basket histories and sets of patterns. Since both
single baskets and single retail patterns are sets of items, we propose the use of a modified
version of the Jaccard distance.

Definition 19 (Jaccard Distance). Let A and B be two sets. The Jaccard distance is

defined as: J(A,B) = |A∩B|
|A∪B| .

Both individual baskets and individual patterns are sets of items. We therefore need
to extend the basic definition of the jaccard distance to operate on sets of sets.

Definition 20 (Minimum Jaccard). Let a and Y = 〈b1, b2, . . . , bm〉 be a set and
a set of sets respectively. The Minimum Jaccard distance is defined as: MJ(a, Y ) =
mini=1,2,...,m(J(a, bi))

Definition 21 (Best Jaccard). Let X = 〈a1, a2, . . . , an〉 and Y = 〈b1, b2, . . . , bm〉 be
two set of sets, with n ≤ m. The Best Jaccard distance is defined as: BJ(A, Y ) =∑n

i=1MJ(ai, Y )

So in our context an adversary can apply the Best Jaccard distance to determine the
distance between a set of individual patterns in Pa ∈ P and a basket history Hsu ∈ D.
To summarize the risk assessment process for this approach is composed of the following
steps: (i) we assume that an adversary gets access to a dataset of individual patterns P
extracted from a retail dataset D We will show how this methodology can be applied to
purchasing patterns in retail data, in section 4.2.7.

Data Quality Extension Although quality measurement in PRUDENnce is impor-
tant for understanding the amount of information preserved considering only non-risky
individuals, we think that data quality cannot be evaluated in a vacuum, but needs to
be contextualized with respect to the purpose for which the data will be used. This is
important to move the evaluation towards a service quality assessment. The (big) data
analytics literature provides some insights and guidelines on what kind of aggregation
or metrics are useful for describing and understanding individuals habits and developing
data-driven services. Indeed, as we presented in Chapter 3, there exist some data specific
analytical metrics that are commonly used for (big) data analytics.
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Based on this discussion, in this thesis we propose an extension of PRUDEnce that
enables the assessment of the data quality in terms of quality of the analytical measures
that we are able to preserve given a specific tolerated privacy risk threshold. In other
words, our idea is to evaluate how much high risk individuals contribute to the distri-
bution of such metrics, by systematically removing individuals with certain levels of risk
from the data, and then computing the distribution of the metrics with the different
data. Doing so, we obtain a set of distributions, one for each metric, level of risk and at-
tack, highlighting the impact of high risk individuals on metrics. Visually analyzing how
these distributions change with respect to the original one can give us only a qualitatively
overview of the impact of high risk individuals. To quantitatively assess the difference
between the metric distributions on the original data and the derived ones, we compute
a distance between such distributions. To this end, we use the Kolmogorov-Smirnov dis-
tance. The Kolmogorov-Smirnov test is a parameter-free test of the equality of continuous
one-dimensional probability distributions normally used to refuse the null hypothesis for
two distributions, i.e., the hypothesis that some sample distributions belong to different
original distributions. The Kolmogorov-Smirnov distance measures the largest absolute
difference between two empirical cumulative distribution functions evaluated at any point.
This suites our distributions of privacy risk quite well and allows us to perform an analysis
of how much each metric is influenced by a specific attack. For our purposes we define
a view on the original dataset that contains only the individuals under a certain level of
risk:

Definition 22. Risk-r Dataset Given a set of possible privacy attacks A, we define as
Dr the view on dataset D containing only individual with privacy risk equal to or less than
r under an attack a ∈ A: Dr = {u ∈ D|Riska(u,D) <= r}.

Moreover we
Formally, given a set of privacy attacks A and a set of metrics M , ∀m ∈M we define

as mr the distribution of metric m on a Risk-r Dataset Dr. We denote with KS(mr,mr′)
the Kolmogorov-Smirnov distance between distributions mr and mr′ . With this setup we
define the Metric Utility Curve as follows.

Definition 23. Metric Utility Curve. The Metric Utility Curve MUC(m, r,D) is the
function that for each risk value r, computes the Kolmogorov-Smirnov distance between
the distribution of m on D and the distribution mr on Dr:

MUC(r,D) = KS(m,mr)

The metric utility curve allows us to quantify, depending on the kind of attack, back-
ground knowledge and level of risk, the changes in the distributions of our target metrics.

4.2 Evaluating Risk & Data Quality

As discussed above, PRUDEnce allows us to evaluate privacy risk and data quality in a
systematic way and can be instantiated in different contexts. For instantiating PRUDEnce
and correctly assessing privacy risk, we need to design privacy attacks specifically suited
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for the kind of data under study. In this section, for each type of data we will provide
the definition of a set of attacks. Moreover, we will analyze and discuss the resulting
distributions of privacy risk produced by each attack. For each attack we will describe the
background knowledge and define the matching function (Definition 15) used to find those
individuals that match the background knowledge. Essentially, it is the mathematical
formulation of how to check if a record of an individual contains a background knowledge
instance for that type of attack. Most of the attacks we propose are well known in the
literature. While the basic definition of Background Knowledge remains the same for
all attacks, it assumes slightly different meaning depending on the actual attack. For
example, an attack might consider the combinations of pure locations, another one also
the timestamps, one attack may consider the neighbors of a node, etc.

Distribution of privacy risk is presented as a cumulative distribution function that,
for every value of privacy risk, indicates the percentage of individuals that have up to the
corresponding privacy risk value. Generally, a lower curve represents more individuals
with risk towards 1.0, i.e., maximum risk. Once assessing how the privacy risk distributes
over the population under observation, we will provide the evaluation of data quality
varying the tolerated privacy risk thresholds. For testing our proposal, we use a subset
of the data specific metrics introduced in Chapter 3. For all datasets and for all possible
attacks we selected four thresholds of risk, then, we systematically eliminated from the
original dataset those users who showed a risk beyond the thresholds, obtaining four
different derived datasets : the original dataset D1 and D0.5, D0.33, D0.25 obtained removing
individuals with risk greater than 0.5, 0.33 and 0.25 respectively. For visualizing our
results we realize 3D plots: on x and y axes we can observe the different metrics m and
levels of risk r. On the z axis we can see the Kolmogorov-Smirnov distance between the
distribution of mr and the original distribution m. The original distribution is omitted
as, clearly, the distance would have been 0. With the intent of improving readability, the
data is arranged in descending order of distance, so that it is easier to understand how
the distributions evolve.

4.2.1 Privacy Attacks on Mobility data

Location Attack

In a Location attack the adversary knows a certain number of locations visited by the
individual but she does not know the temporal order of the visits. Since an individual
might visit the same location multiple times in a trajectory, the adversary’s knowledge
is a multiset that may contain more occurrences of the same location. This is similar
to considering the locations as items of transactions. Similar attacks on transactional
databases are used in [154], [164] and [165] with the difference that a transaction is a set
of items and not a multiset. We denote with Lset(Tu) the set of locations li ∈ Tu , i.e.
coordinates, visited by u. The background knowledge category of a Location attack is
defined as follows:

Definition 24. Location background knowledge. Let k be the number of locations li
of an individual u known by the adversary. The Location background knowledge is a set of
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configurations based on k locations, defined as Bk = Lset(Tu)
[k]. Here Lset(Tu)

[k] denotes
the set of all the possible k-combinations of the elements in set L(Tu).

Since each instance b ∈ Bk is a subset of locations Xu ⊆ Lset(Tu) of length k, given a
record d ∈ D belonging to a generic individual u, we define the matching function as:

matching(d, b) =

{
true b ⊆ d

false otherwise
(4.1)

The matching of the geographical coordinates of the locations can be relaxed. A
variation of this attack can be put into place where a sufficient condition for matching is
that an adversary knows a point in a radius δ of the point of an individual. The matching
function then becomes:

matching(d, b) =

true ∀(xi, yi) ∈ b∃(xdi , ydi ) ∈ d|xdi − δ ≤ xi ≤ xdi + δ
∧ ydi − δ ≤ yi ≤ ydi + δ

false otherwise

(4.2)

Because PRUDEnce generates the background knowledge instances for each attack from
the original data, this is not needed, and we can use our original definition.

Location Sequence Attack

In a Location Sequence attack, introduced in [95], the adversary knows a subset of the
locations visited by the individual and the temporal ordering of the visits. Given an
individual u, we denote by Lseq(Tu) the sequence of locations li ∈ Tu visited by u. The
background knowledge category of a Location Sequence attack is defined as follows:

Definition 25. Location Sequence background knowledge. Let k be the number of
locations li of a individual u known by the adversary. The Location Sequence background
knowledge is a set of configurations based on k locations, defined as Bk = Lseq(Tu)

[k],
where L(Tu)

[k] denotes the set of all the possible k-subsequences of the elements in set
Lseq(Tu).

We indicate with a � b that a is a subsequence of b. Each instance b ∈ Bk is a
subsequence of location Xu � Lseq(Tu) of length k. Given a record d ∈ D belonging to a
generic individual u, we define the matching function as:

matching(d, b) =

{
true b � d

false otherwise
(4.3)

Location Time Attack

In a Location Time attack, introduced in [4, 166, 34], an adversary knows a subset of
the locations visited by the individual and the time the individual visited these locations.
The background knowledge category of a Location Time attack is defined as:
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Definition 26. Location Time background knowledge. Let k be the number of
points (li, ti) of a individual s known by the adversary. The Location Time background

knowledge is a set of configurations based on k points, defined as Bk = T
[k]
u where T

[k]
u

denotes the set of all the possible k-subsequences of the points in trajectory Tu.

Each instance b ∈ Bk is a spatio-temporal subsequence Xu of length k. The subse-
quence Xu has a positive match with a specific trajectory if the latter supports b in terms
of both spatial and temporal dimensions. Thus, given a record d ∈ D, we define the
matching function as:

matching(d, b) =

{
true ∀(li, ti) ∈ b,∃(ldi , tdi ) ∈ d | li = ldi ∧ ti = tdi
false otherwise

(4.4)

Unique Locations Attack

In the Unique Locations attack the adversary knows a number of unique locations vis-
ited by an individual. This is similar to the Location attack with the difference that in
frequency vectors a location can appear only once. As a consequence, this attack follows
the same principle of [154, 164, 165], and the matching function is entirely similar

Frequency Attack

We introduce an attack where an adversary knows the locations visited by the individual,
their reciprocal ordering of frequency, and the minimum number of visits of the individual
in the locations. This means that, when searching for specific subsequences, the adversary
must consider also subsequences containing the known locations with a greater frequency.
We recall that in the case of frequency vectors we denote with visit v ∈ W the pair
composed by the frequent location and its frequency. We also recall that we denote
with Wu the frequency vector of individual s. The background knowledge category of a
Frequency attack is defined as follows:

Definition 27. Frequency background knowledge. Let k be the number of elements
of the frequency vector of individual u known by the adversary. The Frequency background
knowledge is a set of configurations based on k elements, defined as Bk = W

[k]
u where W

[k]
u

denotes the set of all possible k-combinations of frequency vector Wu.

Each instance b ∈ Bk is a frequency vector and given a record d ∈ D, we define the
matching function as:

matching(d, b) =

{
true ∀(li, wi) ∈ b,∃(ldi , wdi ) ∈ W | li = ldi ∧ wi ≤ wdi
false otherwise

(4.5)

Home And Work Attack

In the Home and Work attack introduced in [169] the adversary knows the two most
frequent locations of an individual and their frequencies. It essentially assumes the same
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background knowledge of Frequency attack but related only to two locations. This is the
only attack where the background knowledge configuration is composed of just a single
2-combination for each individual. Mechanically, the matching function for this type of
attack is identical to the matching function of the Frequency attack.

Proportion Attack

We introduce an attack assuming that an adversary knows a subset of locations visited
by an individual and also the relative proportion between the number of visits to these
locations. In particular, the adversary knows the proportion between the frequency of
the most frequent known location and the frequency of the other known locations. This
means that the candidate set of possible matches consists of all the set of locations with
similar proportions. Given a set of visits X ⊂ W we denote with l1 the most frequent
location of X and with w1 its frequency. We also denote with prpi the proportion between
wi and w1 for each (li, wi) 6= (l1, w1) ∈ X. We then denote with LR a set of frequent
locations li with their respective prpi. The background knowledge category for this attack
is defined as follows:

Definition 28. Proportion background knowledge. Let k be the number of locations
li of an individual u known by the adversary. The Proportion background knowledge is a
set of configurations based on k elements, defined as Bk = LR

[k]
u where LR

[k]
u denotes the

set of all possible k-combinations of the frequent locations li with associated proportion
prpi.

Each adversary’s knowledge b ∈ Bk is a LR structure as previously defined. Given a
record d ∈ D, we define the matching function as:

matching(d, b) =

true ∀(li, prpi) ∈ b,∃(ldi , prpdi ) ∈ LRd | li = ldi ∧ prpi ∈
[prpdi − δ, prpdi + δ]

false otherwise

(4.6)

In the equation, δ is a tolerance factor for the matching of proportions. In our exper-
iments, δ = 0.1

Probability Attack

In a Probability attack an adversary knows the locations visited by an individual and
the probability for that individual to visit each location. This attack is similar to the
one introduced by [160] where the goal is to match m users with m public statistics,
like empirical frequencies. However, there are some differences between the two attacks:
the attack proposed in [160] works on two sets of data, called strings. One of the sets
represents the published aggregated data of individuals, the other represents the auxiliary
information known by the adversary about the individuals in the data. The two sets are
equal in size and also all the strings in the two sets have the same length. Given these
assumptions, [160] proposes an attack based on the minimum weight bipartite matching.
Conversely, in our Probability attack we try to match a single background knowledge
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instance with the set of probability vectors. Therefore, we can not rely on matching
algorithms on bipartite graph, because we can not make assumptions regarding the length
of the sets or the length of the data: in general the length of the probability vectors is
not the same among the individuals and is greater than the length of the background
knowledge configuration instances.

We recall that in the case of probability vectors we denote with (li, pi) ∈ Pr the pair
composed by the frequent location and its probability. We also recall that we denote with
Pru the probability vector of individual u. The background knowledge category for this
attack is defined as follows:

Definition 29 (Probability background knowledge). Let k be the number of elements
of the probability vector of individual u known by the adversary. The Probability based
background knowledge is a set of configurations based on k elements, defined as Bk = P

[k]
u

where P
[k]
u denotes the set of all possible k-combinations of probability vector Pu.

Each adversary’s knowledge b ∈ Bk is a probability vector and given a record d ∈ D, we
define the matching function as:

matching(d, b) =

{
true ∀(li, pi) ∈ b,∃(ldi , pdi ) ∈ d | li = ldi ∧ pi ∈ [pdi − δ, pdi + δ]

false otherwise
(4.7)

In the equation, δ is a tolerance factor for the matching of probabilities. In our
experiments, δ = 0.1

Discussion The set of attacks introduced in this section covers most of the dimensions
that is possible to consider for human mobility data. The Location Attack, Location
Sequence Attack and Location Time Attack can be performed directly on trajectories,
while the other attacks require an aggregation of the original trajectory, i.e., a count of
the frequency of visits of the different locations. The Location Time Attack is especially
of interest: if we assume that an adversary may acquire the background knowledge from
direct observation, it is reasonable then to assume that the adversary will store both
geographical and temporal whereabouts of the individuals under observation. In this
sense, the Location Attack and Location Sequence attack can be seen as relaxations of
the Location Time Attack. For the attacks on aggregated structure, such as the Location
Frequency Attack for example, we can envision a scenario where an adversary acquires the
background knowledge through a source other than direct observation, such as photos,
previously released aggregated data or stationary monitoring. One interesting possibility
is a combined attack, where an adversary may use multiple background knowledge to
conduct an attack. However, as we will show in our experimental results, privacy risk
computed through single background knowledge attacks is already considerably high,
therefore we think that such a possibility can be further investigated in the future.

4.2.2 Mobility privacy risk assessment in scikit-mobility

In the context of privacy risk assessment with PRUDEnce on mobility data, we developed
the privacy module of the Scikit-Mobility python library [114] [110]. Scikit-mobility is
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an open python library that provides a comprehensive set of methods and functions to
manage and analyze mobility data. It extends the well known Pandas DataFrame library,
providing a special Trajectory Dataframe to handle mobility data. In the privacy module
of scikit-mobility we provide the implementation of the attack models defined for mobility
data in section 4.2.1, each implemented as a python class. For example the location attack
model, implemented in the LocationAttack class, implements the Location Attack that
we defined in section 4.2.1. Attacks can be instantiated by providing the background
knowledge length:

Python> import skmob

Python> from skmob.privacy import attacks

Python> at = attacks.LocationAttack(knowledge_length=2)

To assess the re-identification risk associated with a mobility data set, we specify it as
input to the assess risk function of an attack model. This will generate the background
knowledge instances of length k and evaluate privacy risk with a worst case approach:

Python> tdf = TrajDataFrame.from_file(filename="privacy_sample.csv")

Python> tdf_risk = at.assess_risk(tdf)

Python> print(tdf_risk.head())

uid risk

0 1 0.333333

1 2 0.500000

2 3 0.333333

3 4 0.333333

4 5 0.250000

Since risk assessment may be time-consuming for more massive datasets, scikit-mobility
provides the option to focus only on a subset of the objects with the argument targets :

Python> tdf_risk = at.assess_risk(tdf, targets=[1,2])

Python> print(tdf_risk)

uid risk

0 1 0.333333

1 2 0.500000

During the computation, not necessarily all instances of background knowledge are
evaluated when assessing the re-identification risk of an invididual: when the combination
with maximum re-identification risk (e.g., risk 1) is found for a moving object, all the
other combinations are not computed, so as to make the computation faster. However,
if the user wants all combinations to be computed anyway, they can set the argument
force instances :

Python> tdf_risk = at.assess_risk(tdf, targets=[2], force_instances=True)

Python> print(tdf_risk)
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lat lon datetime uid instance instance_elem risk

0 43.843014 10.507994 2011-02-03 08:34:04 1 1 1 0.333333

1 43.544270 10.326150 2011-02-03 09:34:04 1 1 2 0.333333

2 43.843014 10.507994 2011-02-03 08:34:04 1 2 1 0.250000

3 43.544270 10.326150 2011-02-03 09:34:04 1 2 2 0.250000

4 43.779250 11.246260 2011-02-04 10:34:04 1 3 1 0.250000

5 43.708530 10.403600 2011-02-03 10:34:04 1 3 2 0.250000

The result is a
textbfemphDataFrame that contains a reference number of each combination under the
attribute instance and, for each instance, the risk and each of the locations compris-
ing that instance indicated by the attribute instance elem . Scikit-mobility is still in
development, and more functionalities will be added in the future.

4.2.3 Risk Distributions on Mobility data

We simulated attacks using k = 2, 3, 4, 5 on our mobility experimental data introduced in
Section 3.4.1: the cumulative distribution functions for the mobility attacks are depicted
in Figure 4.2 and Figure 4.3, where we can see that the privacy risk increases not only with
increasing the amount of knowledge, but also with increasing k. Since the Home&Work
attack only considers the two most frequent locations, there is only a single distribution
for it. It is interesting to note the evident gap between Location attack, from k = 2 snd
k = 3, suggesting that, for attacks with a less dimensions in the background knowledge,
increasing the size of the configuration has a greater impact than for attacks with more
dimensions. For the Location Time attack, since here the background knowledge is already
detailed, we can see that the increasing of k does not change so much the levels of privacy
risk. The number of individuals with maximum risk of re-identification ranges from 60%
for the Location attack to more that 80% for the Location Time attack, while we do
have an increase in the number of individuals with risk of re-identification of 50% (or
less) across the board. The cumulative distribution function of risk is quite stable for
the other types of attack, varying k and the background knowledge category. This can
probably be due to the fact that, with vectors, we are dealing with distinct locations for
each individual, thus, since many individuals have few distinct locations, the risk remains
very similar.

4.2.4 Mobility Data Quality Experiments

In order to analyse the data quality on our mobility datasets, we select attacks based on
the background knowledge configuration with k = 2. In Figures 4.4 and 4.5, for a subset
of metrics, we can visually analyze how their distributions change varying the different
levels of risk.
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(a) Location (b) Location Sequence (c) Location Time (day)

(d) Unique Locations (e) Frequency (f) Probability

(g) Proportion (h) Home&Work

Figure 4.2: Cumulative distributions of privacy risk for Florence dataset.
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(a) Location (b) Location Sequence (c) Location Time (day)

(d) Unique Locations (e) Frequency (f) Probability

(g) Proportion (h) Home&Work

Figure 4.3: Cumulative distributions of privacy risk for Pisa dataset.
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Figure 4.4: Some examples of distributions of mobility metrics on the city of Florence for
the Location Sequence attack.
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Figure 4.5: Some examples of distributions of mobility metrics on the city of Pisa for the
Location Sequence attack.

We observe for example how entropy changes drastically with the deletion of high risk
individuals, as it assumes value 1 for almost all remaining individuals. Radius of gyration
distribution instead, remains similar in shape, while loosing some range. For the Sum
of Distances we tend to loose individuals traveling a long distance. We can quantify the
changes using our methodology. Figures 4.6 and 4.7 depict the results for two of the
attacks defined above: Location Time attack and Location Frequency.
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(a) MUC for Florence Location Time Attack (b) MUC for Pisa Location Time Attack

Figure 4.6: Examples of MUC for location time attack (daily precision) with k=2 on
mobility data, considering five different metrics and three levels of risk .

(a) MUC for Florence Locaiton Frequency Attack (b) MUC for Pisa Location Frequency Attack

Figure 4.7: Examples of MUC for location frequency attack with k=2 on mobility data,
considering five different metrics and three levels of risk .

It interesting to note that, the second most “affected” distribution is different for
Florence (entropy) and Pisa (the sum of distances). This can also be seen in the actual
distributions. We observe that generally the two mobility datasets present a similar
evolution in terms of distributions: radius of gyration is consistently the metric that
is least influence by the removal of high risk individuals, and the Kolmogorov-Smirnov
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distance overall is pretty similar in scale regardless of the type of attack. A complete
report describing the distances for all attacks with background knowledge configuration
k = 2 and for each metric is presented in Tables 4.1 and 4.2.

Type of Attack Points Radius Of
Gyration

Entropy Max Dis-
tance

Sum Dis-
tances

D0.50 0.359677 0.167552 0.415215 0.218442 0.391691
Location D0.33 0.395061 0.200264 0.449218 0.258189 0.433416

D0.25 0.411943 0.216435 0.473944 0.274133 0.461593

D0.50 0.442170 0.147981 0.469349 0.211341 0.455297
Location Sequence D0.33 0.500618 0.150159 0.538881 0.212397 0.493271

D0.25 0.541979 0.150611 0.593628 0.214139 0.519339

D0.50 0.844666 0.062926 0.737904 0.169192 0.586111
Location Time D0.33 0.872643 0.072453 0.738757 0.157109 0.585210

D0.25 0.877650 0.081967 0.738512 0.163196 0.586076

D0.50 0.394806 0.139379 0.451632 0.190086 0.414871
Frequency D0.33 0.440141 0.148917 0.530524 0.203873 0.458763

D0.25 0.462248 0.155649 0.579349 0.208444 0.480384

D0.50 0.439574 0.150832 0.523422 0.199738 0.458949
Unique Locations D0.33 0.474875 0.155903 0.596760 0.209309 0.490806

D0.25 0.498499 0.155710 0.641595 0.212690 0.508671

D0.50 0.439574 0.150832 0.523422 0.199738 0.458949
Probability D0.33 0.474875 0.155903 0.596760 0.209309 0.490806

D0.25 0.498499 0.155710 0.641595 0.212690 0.508671

D0.50 0.394806 0.139379 0.451632 0.190086 0.414871
Proportion D0.33 0.440141 0.148917 0.530524 0.203873 0.458763

D0.25 0.462248 0.155649 0.579349 0.208444 0.480384

D0.50 0.166596 0.044827 0.074761 0.032288 0.118579
Home&Work D0.33 0.219245 0.043172 0.098187 0.053131 0.164503

D0.25 0.240914 0.053229 0.110219 0.058030 0.180603

Table 4.1: Numerical values of MUC for mobility data of Florence. Each cell shows the
Kolmogorov-Smirnov distance between the distribution of the metric, computed at that risk
level for that particular attack, and the original distribution of that metric. The table only
shows a subset of metrics to accommodate for space.
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Type of Attack Points Radius Of
Gyration

Entropy Max Dis-
tance

Sum Dis-
tances

D0.50 0.298162 0.431417 0.427972 0.515758 0.506594
Location D0.33 0.351322 0.448418 0.492403 0.551679 0.568636

D0.25 0.387730 0.452953 0.524274 0.565963 0.602633

D0.50 0.366946 0.432377 0.488653 0.540113 0.579720
Location Sequence D0.33 0.432894 0.430649 0.557397 0.545854 0.616439

D0.25 0.468165 0.430749 0.604883 0.550325 0.650423

D0.50 0.852873 0.417968 0.740254 0.553219 0.759847
Location Time D0.33 0.884619 0.410767 0.740254 0.541821 0.768367

D0.25 0.884619 0.412732 0.740254 0.559902 0.775720

D0.50 0.316738 0.425556 0.447410 0.508401 0.518250
Frequency D0.33 0.370089 0.434557 0.518652 0.532268 0.582983

D0.25 0.404861 0.430955 0.586334 0.535159 0.612783

D0.50 0.367679 0.434430 0.502292 0.525753 0.573248
Unique Locations D0.33 0.408506 0.435005 0.596708 0.534746 0.615600

D0.25 0.427473 0.430248 0.645288 0.539718 0.625272

D0.50 0.367679 0.434430 0.502292 0.525753 0.573248
Probability D0.33 0.408506 0.435005 0.596708 0.534746 0.615600

D0.25 0.427473 0.430248 0.645288 0.539718 0.625272

D0.50 0.316738 0.425556 0.447410 0.508401 0.518250
Proportion D0.33 0.370089 0.434557 0.518652 0.532268 0.582983

D0.25 0.404861 0.430955 0.586334 0.535159 0.612783

D0.50 0.219668 0.387994 0.213467 0.435054 0.351008
Home&Work D0.33 0.275876 0.393288 0.239865 0.447088 0.395238

D0.25 0.338158 0.387944 0.253886 0.443319 0.416260

Table 4.2: Numerical values of MUC for mobility data of Pisa. Each cell shows the Kolmogorov-
Smirnov distance between the distribution of the metric, computed at that risk level for that
particular attack, and the original distribution of that metric. The table only shows a subset of
metrics to accommodate for space.

4.2.5 Privacy Attacks on Retail data

Intra-Basket Attack

In a Intra-Basket attack we assume that the adversary has as background knowledge a
subset of products bought by her target in a certain shopping session. For example, the
adversary once saw the subject at the workplace with some highly perishable food, that
are likely bought together. Thus, each b ∈ Bk is a subset of items. In the following, we
denote with Iset(bai) the set of products belonging to the basket bai. The background
knowledge category of a Intra-Basket attack is defined as follows:

Definition 30. Intra-Basket Background Knowledge. Let k be the number of items
bought by an individual u and known by the adversary. The Intra-Basket background
knowledge is a set of configurations based on k items, defined as Bk =

⋃
bai∈Hsu Iset(bai)

[k].

Here, Iset(bai)
[k] denotes the set of all the possible k-combinations of items in Iset(bai).
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Since each instance b ∈ Bk is composed of a subset of purchased products Xu ⊆
Iset(bai) of length k, given a record d = Hsu ∈ D belonging to a generic individual u, we
define the matching function as:

matching(d, b) =

{
true ∃ baj ∈ d | b ⊆ baj

false otherwise
(4.8)

Full Basket Attack

In a full basket attack we assume that the adversary knows the contents of a shopping
basket of her target. For example, the adversary once gained access to a shopping receipt
of her target. Note that in this case it is not necessary to establish k, i.e., the background
knowledge configuration has a fixed length, given by the number of items of a specific
shopping basket.

Definition 31. Full Basket Background Knowledge. A Full Basket background
knowledge instance b is an entire basket bai of individual u. The Full Basket background
knowledge configuration is defined as B = Hsu.

Since each instance b = bai ∈ B is composed of a shopping basket bai, given a record
d = Hsu ∈ D belonging to an individual u, we define the matching function as:

matching(d, b) =

{
true ∃ baj ∈ d | b = baj

false otherwise
(4.9)

Discussion Attacks on retail data are based on the assumption that the adversary can
somehow recover the information of what an individual has bought. The Intra-Basket
attack can represent the case where, for example, an adversary gets to directly see some
of the products bought by a customer during a shopping session. The Full Basket attack
instead, covers a scenario where an adversary acquires a shopping bill belonging to a
customer, thus knowing all the products bought during the shopping session. Clearly, the
Full Basket attack represents an extreme case of Intra-Basket attack, where the knowledge
is of an entire basket, regardless of the size of such basket. The information about what
products a person has bought in the past may be a very sensitive one, because for example
certain particular diets may indicate diseases or religious beliefs.

4.2.6 Risk Distributions on Retail data

We simulated the two attacks on our retail experimental dataset (Section 3.4.2). For the
Intra-basket attack we consider two sets of background knowledge configuration Bk with
k = 2, 3, while for the Full Basket attack we have just one possible background knowledge
configuration, where the adversary knows an entire basket of an individual.

We show in Figure 4.8 the cumulative distributions of privacy risks. For the Intra-
basket attack, with k = 2 we have almost 75% of customers for which privacy risk is
to equal 1. Switching to k = 3 causes a sharp increase in the overall risk: more than
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Figure 4.8: Cumulative distributions of privacy risk for retail data.

98% of individuals have maximum privacy risk (i.e., 1). The difference between the two
configurations is remarkable, showing how effective an attack could be with just 3 items.
We also performed a simulation with higher k obtaining risk 1 for almost all individuals;
we do not show this result as it is uninformative. Stressing this fact, the Full Basket
attack behaves similarly: out of 1000 individuals, only five show risk less than 1. Since
most of customers are already re-identified, further increasing the quantity of knowledge
(e.g., exploiting higher k or the Full Basket attack) does not offer additional gain. Similar
results were obtained for movie rating dataset in [101].

4.2.7 Individual Patterns Risk Experiments

In order to extract meaningful patterns from retail data, we use a slightly different dataset
than the one defined in 3.4.2: We analyzed a dataset of 2,021,414 shopping sessions, i.e.,
baskets, performed by 8564 individuals between the 2010 and 2012 in Leghorn province.
These customers are “loyal customers”, i.e., customers active in at least ten months every
year. For each customer we have on average 240 baskets, containing 100 different items,
and the average basket length is 8 items. For each customer we extracted her typical
patterns using two approaches: first, we built simple baseline patterns made by selecting
the top k most frequently bought items for each individual. Using this baseline approach
for the patterns extraction, we obtained patterns considering the k-most frequent items
for each person, with k ranging from 1 to 5. Then we extracted frequent purchasing
patterns using Tx-means algorithms. Applying TX-Means we extracted a total of 38,068
patterns, more than 4 patterns per individual on average.

Simple Patterns Against Baskets The first experiment is based on the simulation of
a patterns against baskets attack using simple patterns. We recall that for this attack risk
is evaluated globally for the entire data-set and not individually. We performed distance
based record linkage with simple patterns of 2, 4 and 5 items. For simple patterns of
length 2 we have only 27 correct matches out of the total population of 8,564 customers.
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This yields a risk of 0.003. For simple patterns of length 4 we have 298 correct matches,
yielding a risk of 0.034. For patterns of length 5 we have 388 correct matches, yielding
a risk of 0.045. These low values are mainly due to the fact that simple patterns are not
particularly representative of the individual’s baskets, as they capture only the overall
frequency of the most bought items, disregarding periodicity of purchases or sequences
of purchases. Also, each pattern at length k contains in a sense the patterns with length
≤ k and this diminishes the information used for the linkage. Because of how we compute
distance, this implies that such distance fall in the range 0 to 1. This leads to a high
number of individuals with minimum distance, i.e. 0, therefore impeding a univocal
matching. We can conclude that simple patterns pose a relatively low threat when used
to attack the raw data.

Length of Pattern Matched indi-
viduals

Privacy Risk

k = 2 27 0.003

k = 4 298 0.034

k = 5 388 0.045

Table 4.3: Results of an attack with simple baskets against retail data

TX-means Patterns Against Baskets The second experiment is based on the simu-
lation of a patterns against baskets attack using the patterns extracted with the TX-means
clustering algorithm. As for the previous case, the risk is calculated for the entire data-set.
With the TX-means patterns we have that 5,781 individuals out of the total population of
8,564 customers are correctly matched, i.e., the distance between the TX-means patterns
of those individuals and their basket data is minimal. This yields a risk of 0.675. We
can now characterize the individuals correctly matched, by looking at their patterns and
baskets.

Patterns:
std length

Patterns:
mean length

Num
patterns

Num
baskets

Baskets:
std length

Baskets:
mean length

mean 4.811004 13.049558 4.820446 244.230064 6.002396 10.897940
std 3.996948 7.899513 3.453788 201.790281 2.873166 5.264362
min 0.000000 2.200000 1.000000 10.000000 0.708363 1.744063
max 26.051631 71.000000 25.000000 1646.000000 26.411782 43.282051

Table 4.4: Characterization of matched individuals in the TX-means patterns against
baskets attack

In Table 4.4 and Table 4.5 we gathered some statistics for the individuals correctly
matched and those who were not matched. For each individual, we gathered the mean
length of her patterns and her baskets as well as the standard deviation for such lengths
and the number of patterns and baskets. In the tables we show mean, standard deviation,
min value and max value for the aforementioned measures. If we compare the statistics
in the two table we can see that there are not many differences. However, we observe
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Patterns:
std length

Patterns:
mean length

Num
patterns

Num
baskets

Baskets:
std length

Baskets:
mean length

mean 2.884773 10.653819 3.665469 219.015451 4.884745 8.000338
std 3.385043 7.122223 3.735964 220.721776 2.372840 3.951333
min 0.000000 1.000000 1.000000 10.000000 0.535428 1.221429
max 25.500000 53.000000 26.000000 2025.000000 16.146130 31.976744

Table 4.5: Characterization of non matched individuals in the TX-means patterns against
baskets attack

that, for the individuals that were not re-identified by the attack, we have fewer, shorter
patterns and baskets on average. This suggests us that lengthier shopping sessions or

4.2.8 Retail Data Quality Experiments

In order to analyse the data quality on our retail dataset, we considered both the attacks
that we introduced above, using two different configurations (k = 2 and k = 3) for the
Intra-Basket attack. We use only two configurations because, as shown in experimental
results, for k > 3 privacy risk equals 1 for almost 98% of the population.

In Figures 4.9 and 4.10 we can visually analyze how distributions of a subset of metrics
change varying the different levels of risk. In particular, Figure 4.9 showes the results for
the Full Basket attack while Figure 4.10 depicts the results for the Intra-Basket attack
with k = 3. Looking at the distributions we notice how, understandably, more knowledge
leads to higher risk and hence higher risk leads to heavier distortions in the distributions.
Moreover, beyond individuals with risk less than 0.5, we delete very few other individuals,
and distributions stay consistent after the first round of data suppression. We can quantify
the metric distribution changes using our methodology. A visualization of some of the
results is shown in Figure 4.11.
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Figure 4.9: Some Distributions of retail metrics for the Full Basket attack.
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Figure 4.10: Some distributions of retail metrics for the Intra Basket attack (k=3).
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(a) MUC for Intra Basket Attack k=2 (b) MUC for Intra Basket Attack k=3

(c) MUC for Full Basket Attack

Figure 4.11: Examples of MUC for various attacks with different configurations on retail
data considering four different metrics and three levels of risk .

While the absolute distance assumes different values depending on the kind of attack,
we can see that the overall shape of the MUC for each metric is very similar regardless
of the kind of attack. The difference lies in the actual magnitude of the distance, which
we can see on the z axis: distance is much higher for the Full Basket attack, as expected.
This may suggest that increasing the dimension or the kind of attack has a greater impact
on metrics than increasing the size of the configuration. A complete report on all the
distances for all attacks and for individual measures can be seen in Table 4.6.

60



Type of Attack Items Unique
Items

Entropy Max
Items
Daily

D0.5 0.365551 0.383618 0.351062 0.280305
Intra Basket k=2 D0.33 0.432584 0.452118 0.413392 0.336022

D0.25 0.470682 0.492387 0.452525 0.367345

D05 0.708717 0.719115 0.680781 0.603564
Intra Basket k=3 D0.33 0.738407 0.746670 0.709889 0.634754

D0.25 0.756853 0.761828 0.726682 0.645237

D05 0.893437 0.906917 0.887077 0.843385
Full Basket D0.33 0.895240 0.925351 0.912300 0.850966

D0.25 0.912196 0.927664 0.921149 0.877686

Table 4.6: Numerical values of MUC for retail data. Each cell shows the Kolmogorov-Smirnov
distance between the distribution of the metric, computed at that risk level for that particular
attack, and the original distribution of that metric.

4.2.9 Privacy Attacks on Network data

Neighborhood Attack

In a neighborhood attack we assume that the adversary only knows a certain number of
friends/neighbors of an individual. More technically, the adversary has information about
the nodes which are connected to the victim node in the social network graph. This type
of attack was introduced in [175]. Background knowledge instances for this kind of attack
are portions of the friendship vector Fv of an individual.

Definition 32 (Neighborhood Background Knowledge). Let k be the number of elements
of the friendship vector of individual v known by the adversary. The neighborhood based
background knowledge is a set of configurations based on k neighbors/friends, defined as

Bk = F
[k]
v where F

[k]
v denotes the set of all possible k-combinations of friendship vector

Fv.

Given b ∈ Bk, an adversary neighborhood knowledge and the corresponding individual
v ∈ V , we define the matching function of the neighborhood attack as follows:

Matching(b, Fv) =

{
true b ⊆ Fv

false otherwise
(4.10)

Label Pair Attack

In a label pair attack we assume that the adversary knows a certain number of pairs
of labels with their values of an individual. The set of labels of a node may include
the individual’s demographics information (age, location, gender, occupation), interests
(hobbies,movies, books, music), etc. Each label pair in key-value format lai = (f, l) is
distinct in a label vector of an individual. Similar type attack has been defined in [86] by
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using the label pair knowledge on two connected nodes. Background knowledge instances
for this kind of attack are portions of the label pair vector Lav of an individual.

Definition 33 (Label Pair Background Knowledge). Let k be the number of elements of
the label vector of individual v known by the adversary. The label pair based background
knowledge is a set of configurations based on k labels, defined as Bk = La

[k]
v where La

[k]
v

denotes the set of all possible k-combinations of label vector Lav.

Given b ∈ Bk, an adversary label pair knowledge and the corresponding individual
v ∈ V , we define the matching function of the label pair attack as follows:

Matching(b, Lav) =

{
true b ⊆ Lav

false otherwise
(4.11)

Neighborhood and Label Pair Attack

Mixing the previous two attacks, we define a new and stronger attack that we call neigh-
borhood and label pair attack. In this case, we consider an adversary knowing a certain
number of friends/neighbors and a certain number of feature labels of an individual at the
same time. In other words, it combines the background knowledge of the two previous
attacks. Therefore, a background knowledge instance for this kind of attack is b = (b′, b′′),
i.e., it is composed by b′ that is a portion of the friendship vector Fv as well as b′′ that is
a portion of the label vector Lav of an individual.

Given a neighborhood and label pair knowledge b = (b′, b′′) and the corresponding
individual v ∈ V , we define the matching function of the neighborhood and label pair
attack as follows:

Matching(b, Fv, Lav) =

{
true b′ ⊆ Fv ∧ b′′ ⊆ Lav

false otherwise
(4.12)

Friendship Degree Attack

In a friendship degree attack, the adversary knows the degree of a number of friends of
the victim as well as the degree of the victim. This type of attack was introduced in [149].
A background knowledge instance for this kind of attack will be a portion of the degree
vector Dgv of an individual.

Definition 34 (Friendship Degree Background Knowledge). Let k be the number of ele-
ments of the degree vector of individual v known by the adversary. The friendship degree
pair based background knowledge is a set of configurations based on k degrees, defined as
Bk = Dg

[k]
v where Dg

[k]
v denotes the set of all possible k-combinations of degree vector

Dgv.

Given b ∈ Bk, an adversary friendship degree knowledge and the corresponding indi-
vidual v ∈ V , we define the matching function of the friendship degree attack as follows:

Matching(b,Dgv) =

{
true d1 = len(Dgv) ∧ d2 ∈ Dgv∀d2 ∈ b
false otherwise

(4.13)
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Mutual Friend Attack

In a mutual friend attack, the adversary knows the number of mutual friends of the victim
and some of its neighbors. This type of attack was introduced in [145]. A background
knowledge instance for this kind of attack will be a portion of the mutual friendship vector
Mfv of an individual.

Definition 35 (Mutual Friend Background Knowledge). Let k be the number of elements
of the mutual friendship vector of individual v known by the adversary. The mutual friend
based background knowledge is a set of configurations based on k mutual friends, defined
as Bk = Mf

[k]
v where Mf

[k]
v denotes the set of all possible k-combinations of mutual

friendship vector Mfv.

Given b ∈ Bk, an adversary mutual friend knowledge and the corresponding individual
v ∈ V , we define the matching function of the mutual friend attack as follows:

Matching(b,Mfv) =

{
true b ⊆Mfv

false otherwise
(4.14)

Neighborhood Pair Attack

In a neighborhood pair attack, the adversary knows subset of the friends of the victim
who are friends with each other, that is a subset of Fv in which vi and vj are connected
to each other vi ∈ Fvj , vj ∈ Fvi and vi, vj ∈ Fv. For brevity, we will denote such subset
as Fvpair Similar type of attack was defined in [3]. With respect to the original definition,
in our work, we reduce the knowledge of the adversary by eliminating the degree of the
victim. A background knowledge instance will contain pairs of connected neighbors.

Definition 36 (Neighborhood Pair Background Knowledge). Let k be the number of
elements in the subset of interconnected friends of the friendship vector of individual v
known by the adversary. The neighborhood pair based background knowledge is a set of
configurations based on k connected friends, defined as Bk = F

[k]
vpair where F

[k]
vpair denotes

the set of all possible k-combinations of the subset of friendship vector F
[k]
vpair .

Given b ∈ Bk, an adversary neighborhood pair knowledge and the corresponding
individual v ∈ V , we define the matching function of the neighborhood pair attack as
follows:

Matching(b, Fv) =

{
true vi ∈ Fvj ∧ vj ∈ Fvi ∧ vi, vj ∈ Fv∀(vi, vj) ∈ b
false otherwise

(4.15)

Discussion Attacks on social network data exploits most of the basic topological char-
acteristics of a network. Information such as friendships or social ties are difficult to
obtain through direct observation, but are easier to obtain online. We can envision a
scenario where, for example, an adversary gathers the information about the particular
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connections of an individual, possibly crawling her profiles, and then uses this information
to retrieve all of his friends in the network (Friendship Attack). Social networks, especially
nowadays, can be easily targeted by acquiring knowledge from other social networks: one
case could be, for example, retrieving some labels from one social network and then using
those labels to attack the individual in another social network.

4.2.10 Risk Distributions on Network data

We simulated attacks using k = 1, 2, 3, 4 on our network experimental dataset (Section
3.4.3).
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(a) Friendship Degree (b) Label Pair

(c) Mutual Friend (d) Neighborhood

(e) Neighborhood Label Pair (f) Neighborhood Pair

Figure 4.12: Cumulative distributions of privacy risk for social network data.
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Figure 4.12 shows as privacy risk for the attacks on network data varies significantly.
The most interesting results can be seen for the neighborhood label pair attack: with
respect to the simple label attack or neighborhood attack, the mixed one leads to an
increase of the number of high risk individuals by a great margin. The mutual friend attack
is weaker with respect to all the others. Indeed, in each setup of the background knowledge
configuration value k, many individuals belong to the privacy risk level (0.0, 0.1]. This is
not surprising since the Mutual Firend attacks uses the number of mutual friends of one
node, which has a pretty even distribution over the entire network.

4.2.11 Social Network Data Quality Experiments

In order to analyse the data quality on our network dataset, we select attacks based
on the background knowledge configuration with k = 3. In Figures 4.14 and 4.13, for
a subset of metrics, we can visually analyze how their distributions change varying the
different levels of privacy. We can immediately notice that, for this kind of data, distortion
related to individual deletion is less severe. We can also appreciate the stark difference
between a more powerful attack (Neighborhood Pair attack) and a much less powerful
one (Neighborhood attack). We can quantify the changes using our methodology. A
visualization of some of the results is shown in Figure 4.15. It is very clear that the
Neighborhood attack has a very low impact on the metrics we evaluated. Also, the scale
of the z axis is worth noting: the distance between the derived distributions and the
original ones is quite low, indicating a fairly high similarity. A complete report on all the
distances for all attacks and for individual measures can be seen in Table 4.7.
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(a) Betweenness Centrality (b) Clustering Coefficient (c) Degree

(d) Closeness Centrality (e) Degree Centrality

Figure 4.13: Some examples of distributions of network metrics for the Neighborhood
Pair attack.
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(a) Betweenness Centrality (b) Clustering Coefficient (c) Degree

(d) Closeness Centrality (e) Degree Centrality

Figure 4.14: Distributions of network metrics for the Neighborhood attack.
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(a) MUC for NeighborhoodAttack (b) MUC for Friendship Attack k=3

(c) MUC for Neighborhood and Label Pair At-
tack

(d) MUC for Label Pair Attack

Figure 4.15: Examples of MUC for various attacks with k=2 on social network data
considering five different metrics and three levels of risk .
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Type of Attack Degree Degree
Centrality

Between-
ness
Central-
ity

Closeness
Centrality

Clustering
Coeffi-
cient

D0.5 0.005774 0.005774 0.021048 0.011433 0.018403
Neighborhood D0.33 0.144560 0.144560 0.283381 0.150492 0.373095

D0.25 0.166272 0.166272 0.333358 0.175079 0.439989

D0.5 0.093174 0.093174 0.095032 0.087124 0.052200
Label Pair D0.33 0.098663 0.098663 0.091606 0.092628 0.045214

D0.25 0.101080 0.101080 0.089844 0.101058 0.040794

D0.5 0.143704 0.143704 0.137463 0.164402 0.066747
Neigh. Label Pair D0.33 0.137706 0.137706 0.127882 0.162972 0.076225

D0.25 0.132540 0.132540 0.133198 0.152827 0.075803

D0.5 0.530342 0.530342 0.667854 0.320770 0.487309
Friendship Degree D0.33 0.593839 0.593839 0.721575 0.333070 0.388792

D0.25 0.658972 0.658972 0.766883 0.377360 0.540885

D0.5 0.005669 0.005669 0.004003 0.002495 0.002201
Mutual Friend D0.33 0.009708 0.009708 0.006684 0.003848 0.002127

D0.25 0.016338 0.016338 0.010580 0.006465 0.003587

D0.5 0.133107 0.133107 0.063939 0.035011 0.057220
Neighborhood Pair D0.33 0.133107 0.133107 0.063939 0.035011 0.057220

D0.25 0.406072 0.406072 0.331757 0.203764 0.262311

Table 4.7: Numerical values of MUC for social network data. Each cell shows the Kolmogorov-
Smirnov distance between the distribution of the metric, computed at that risk level for that
particular attack, and the original distribution of that metric. The table only shows a subset of
metrics to accommodate for space.

4.2.12 Discussion

As the experimental evidence shows, privacy risk assessment with PRUDEnce can be done
in systematic way by exploring all possible types of attack: PRUDEnce gives to a data
provider the possibility to select which are the attacks that need to consider for a specific
privacy preserving process. For each of the attacks that we defined, the experimental
results show that even with relatively short background knowledge configurations, i.e.,
assuming that the adversary knows few information, privacy risk may be quite high for
a large portion of individuals. The different types of data share high distribution of
risk, especially for attacks exploiting the knowledge of more than one data dimension
(e.g., the Location Time attack for mobility data and the Neighborhood and Label Pair
attack for network data). Given how much the risk distribution may vary depending
on the kind of attack, exploring the data quality subjected to the deletion of high risk
individuals becomes even more important. Overall, the most interesting aspect of our
methodology for evaluating data quality is how it can be used to thoroughly explore how
each metric behaves varying both the background knowledge and the desired level of risk.
The intended usage of our methodology is, for a data provider, that wants to analyze
the metrics, requested by a third party, under different attacks and different levels of
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risk, to better understand which individuals can be safely deleted without impacting
on the quality of the requested metric or, to understand which attacks imply higher
distortion to ensure privacy protection. We have seen in the experiments that, depending
on the type of the data and on the background knowledge, the effects on the metrics
may vary significantly. Evaluating the distance of the distribution of each metric from
the original one, a data provider can devise specific protection measures to ensure that
certain characteristics in the data are maintained while others are masked or deleted to
ensure higher privacy. One possible interesting future development of this methodology
would be to broaden the set of distances used to evaluate the changes in the distributions
of the metrics, possibly finding distances specifically suited for each separate metric.
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Chapter 5

Privacy Risk Prediction

As shows in Chapter 4, analyzing privacy risk may be a daunting task. Since risk can
be empirically evaluated only by assuming the actual composition of the background
knowledge, it is required to first define the attacks that can be conducted on a certain
kind of data, and then we need to systematically simulate all the possible background
knowledge instances in order to provide a worst-case scenario evaluation of privacy risk,
i.e., the worst possible attack to which any single individual can be subjected to. This may
be unfeasible in terms of computational resources or time available. We therefore devise
a data mining approach that allow us to predict individual privacy risk based upon the
specific metrics of individuals represented in the data. We initially designed this approach
specifically for mobility data and we published it in [122].

5.1 Computational Complexity of PRUDEnce

The procedure of privacy risk computation introduced in Section 4.1 has a high compu-
tational complexity. We assume that the adversary uses all the information available to
her when conducting a re-identification attack on an individual. Since it is unlikely that
an adversary knows the complete history of an individual (i.e., all the points or all the
friends or all the purchased items), we introduced the concept of background knowledge
configuration Bk, which indicates the length of the portion of data k known by the adver-
sary when performing an attack on an individual. The higher the k the more abundant is
the personal data known by the adversary about the individual. The maximum possible
value of k is len, the length of the data structure of an individual, be it a trajectory
or a basket history etc. k-combination have been proven to be in direct relation with
computational anonymity: in [143] the authors provide algorithms for achieving a relax-
ation of k-anonymity, whose performance is closely linked to the number of k-combination
considered.

The best k-combination for the adversary is the one leading to the highest probability
of re-identification of the individual under attack. However, we do not know such best
combination in advance. For this reason, given k, when we simulate an attack we com-
pute all the possible k-combinations an adversary could know. Given a combination of k
elements of the data structure representing an individual, we assume that the adversary

72



uses all these k points to conduct the attack. This leads to a high overall computational
complexity O(

(
len
k

)
×N), since the framework generates

(
len
k

)
background knowledge con-

figuration instances and, for each instance, it executes N matching operations by applying
function matching. In the extreme case where the adversary knows the complete data
of an individual (i.e., she knows all the points of a trajectory, or all the elements of a
degree vector) we have k = len and the computational complexity is O(N). In general,
in the range k ∈ [1, len

2
] the computational complexity of the attack simulation increases

with k, while for k ∈ [ len
2
, n] the computational complexity decreases with k. While all

the
(
len
k

)
possible instances must be necessarily considered since, as already stated, we

cannot exclude any of them a priori, we can reduce the number N of matching operations
between a single instance and the data structures in the dataset by eliminating unneces-
sary comparisons. This kind of optimization depends mostly on the kind of attack, and
cannot be generalized. Although the overall worst-case complexity of the attack remains(
len
k

)
, in practice optimization speeds up the execution skipping unnecessary comparisons

during the matching between an instance and a data structure. However, as we will show
in Section 5.3, in practice the matching optimizations do not eliminate the computational
problem and the simulation of the attacks can take up to 2 weeks to compute the privacy
risks of individuals in our datasets.

Example 4. Let us consider the following scenario where an adversary attacks a mobility
dataset knowing 5 locations of an individual with a trajectory of length len = 50. Comput-
ing the privacy risk of an individual with respect to the background knowledge configuration
B5 requires the generation of the

(
50
5

)
= 2, 118, 760 background knowledge instances. In

a dataset of N = 100, 000 individuals, each with len = 50, the overall simulation of the
attack would take around 210 billions of matching operations.

5.2 A Data Mining approach for Privacy Risk As-

sessment

Given its computational complexity, the procedure for Privacy Risk Computation (Sec-
tion 4.1) becomes unfeasible as the size of the dataset increases, since it requires enormous
time and computational costs. This drawback is even more serious if we consider that
the privacy risks must be necessarily re-computed every time the dataset is updated with
new data records and for every selection of individuals and specific data dimensions. In
order to overcome these problems, we propose a fast and flexible data mining approach.
The idea is to train a predictive model to predict the privacy risk of an individual based
solely on her individual patterns and metrics that we can extract from data. The pre-
dictive model can be either a regression model, if we want to predict the actual value
of privacy risk, or a classification model if we want to predict the level of privacy risk.
For our context we will focus on classification: our aim is to provide a methodology that
would allow a data provider to quickly understand at a glance how much at risk individ-
uals are in the data. The training of the predictive model is made by using a training
dataset where every example refers to a single individual and consists of (i) a vector of
the individual’s features and (ii) the privacy risk level of the individual. We define a
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classification training dataset as a tuple TC = (F,C) where C is the vector of the in-
dividuals’ privacy risk level (e.g., from level 0.0 indicating no risk to level 1 indicating
maximum privacy risk). Given a data type, we define a possible set of features F based
on the data specific metrics defined in Chapter 3. We use the repertoire of data specific
attacks, introduced in Chapter 4, to assess privacy risk for each kind of data and describe
how to construct the classification training dataset in Section 5.2.1. In Section 5.2.2 we
describe how a Data Provider can use our approach in practice to determine the privacy
risk of individuals in her database. We make our approach parametric with respect to
the predictive algorithm: in our experiments we use a Random Forest classifier, but every
algorithm available in literature can be used for the predictive tasks. A Random Forest is
a meta estimator that fits a number of decision tree classifiers on various sub-samples of
the dataset and uses averaging to improve the predictive accuracy and control over-fitting
[70]. We chose random forest for its particular balance of performance and intepretability:
as an ensemble methods, random forest performs boosts the performance of traditional
classification trees, thanks to its randomized structure and bootstrap aggregating [25]. At
the same time, random forest allows us to interpret the prediction through the analysis
of feature importance, which is one of the techniques used in explainability of machine
learning models [7]. By looking at which features are used by the random forest for the
prediction of privacy risk for each attack, we can get a basic explanation of the individual
behaviors that can lead to higher privacy risk. More over, random forest helps us tackle
outliers in our data. Outliers, that is individuals with data far outside the average present
in the dataset, can be easily identified with our privacy risk assessment framework. For
example, an individual buying a product that is very rarely bought by the collectivity
will be easily re-identified. The same applies to individuals that have in their trajectories
places very rarely visited by others, or that travel a lot more than other individuals in
the data. Outliers have therefore a high privacy risk under our assessment framework and
may be difficult to properly classify. However, in our predictive approach we compensate
for outliers in the following way: we use a variety of heterogeneous features for the pre-
dictive task: for example, for retail data we use both the number of total products and
the name of the most frequently bought product, the entropy and the average number of
bought products over time. This helps with outlier detection especially because of the
predictive model that we chose: random forests. Random forests, and tree-based methods
in general, are inherently robust to outliers because of their structure: since the split of
the various nodes is based on residual sum of squares, outliers usually do not impact
the decision on the split in a significant way (when in reasonable quantity). Moreover,
random forests randomly select a subset of the features at each split and use bagging for
the overall prediction, thus reducing even further the impact of outliers.

5.2.1 Construction of training dataset

Given an attack a based on a specific background knowledge configuration Ba
j , the clas-

sification training dataset TCa
j can be constructed by the following three-step procedure:

1. Given a dataset D, for every individual u we compute the set of individual features
using some data specific metrics (Sections 4.2.1, 3.2.1 and 3.3.1) based on the data
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of that individual. Every individual u is hence described by a feature vector fu. All
the individuals’ feature vectors compose the feature matrix F=(f 1, . . . , fn), where
n is the number of individuals in D;

2. For every individual we simulate the attack with background knowledge configura-
tion Ba

j on D, in order to compute a privacy risk value for every individual. We
obtain a privacy risk vector Ra

j = (r1, . . . , rn).

3. Construct the classification training set TCa
j by discretizing vector Ra

j on the inter-
vals [0.0], (0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.5], (0.5, 1.0]. We obtain in this way a
privacy risk level vector Ca

j = (c1, . . . , cn). The classification training set is hence
TCa

j = (F,Ca
j ).

Every classification training dataset TCa
j is used to train a predictive model Ma

j .
The predictive model will be used by the Data Provider to immediately estimate the
privacy risk value or the privacy risk level of previously unseen individuals, whose data
were not used in the learning process, with respect to attack a, background knowledge
configuration Ba

j and dataset D. We remark that For our particular prediction task,
we obtain the ground truth directly through computation, i.e., using the PRUDEnce
framework to directly compute the risk. The idea is that, once computed for a particular
set of individuals, risk can be used to train the predictive model which can then be used
to predict risk for other individuals instead of recomputing it again. We discretize the
risk into intervals, with the aim of providing a tool for quick risk estimation, e.g., high
risk vs low risk. We chose intervals [0.0], (0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.5], (0.5, 1.0]
because they make sense for the particular definition of risk in PRUDEnce: indeed, risk
is defined as a quantity in the form 1/n where n is number of individuals that match a
particular background knowledge. Thus, risk takes the values: 1, 0.5, 0.33, 0.25, . . .. This
is why we chose our intervals. Let us see an example.

Example 5. Let us consider a mobility dataset of trajectories D={Tu1 , Tu2 , Tu3 , Tu4 , Tu5}
corresponding to five individuals u1, u2, u3, u4 and u5. Given an attack a, a background
knowledge configuration Ba

j and dataset D, we construct the classification training set
TCa

j as follows:

1. For every individual ui we compute the 16 individual mobility measures based on her
trajectory Tui. Every individual ui is hence described by a mobility feature vector of

length 16 mui = (m
(ui)
1 , . . . ,m

(ui)
16 ). All the mobility feature vectors compose mobility

matrix F=(mu1 ,mu2 ,mu3 ,mu4 ,mu5);

2. We simulate the attack with configuration Ba
j on dataset D and obtain a vector of

five privacy risk values Ra
j = (ru1 , ru2 , ru3 , ru4 , ru5), each for every individual;

3. Let us suppose that the actual privacy risks resulting from simulation are Ra
j=(1.0,

0.5, 1.0, 0.25, 0.03). We discretize the values of the privacy risk vector Ri
j on the

intervals [0.0], [0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.5], (0.5, 1.0]. We hence obtain a
privacy risk level vector Ci

j = ((0.5, 1.0], (0.3, 0.5], (0.5, 1.0], (0.2, 0.3], [0, 0.1]) and the
classification training dataset TCa

j = (F,Ca
j ).
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5.2.2 Usage of the data mining approach

The Data Provider can use a classifier Ma
j to determine the level of privacy risk with

respect to an attack a and background knowledge configuration Ba
j for: (i) previously

unseen individuals, whose data were not used in the learning process; (ii) a selection of
individuals in the database already used in the learning process. It is worth noting that
with existing methods the privacy risk of individuals in scenario (ii) must be recomputed
by simulating attack a from scratch. In contrast, the usage of classifier Ma

j allows for
obtaining the privacy risk of the selected individuals immediately. The computation of
the mobility measures and the classification of privacy risk level can be done in polynomial
time as a one-off procedure. To clarify this point, let us consider the following scenario. A
Data Analyst requests the Data Provider for updated data about a new set of individuals
with the purpose of studying some of their specific characteristic. Before releasing the
data, however, the Data Provider wants to determine the level of privacy risk of the
individuals with respect to some attack attack (a) and several background knowledge
configurations Ba

j . The Data Provider uses classifier Ma
j previously trained to obtain the

privacy risk level of the individuals. On the basis of privacy risks obtained from Ma
j ,

the Data Provider can immediately identify risky individuals, i.e., individuals with a high
level of privacy risk. She then can decide to either filter out the risky individuals or
to select suitable privacy-preserving techniques (e.g., k-anonymity or differential privacy)
and transform their data in such a way that their privacy is preserved. In the next sections
we present an extensive evaluation of our methodology on the experimental datasets we
introduced in Chapter 3.

5.3 Privacy Risk Prediction Experiments

Since our purpose is to provide a tool to immediately discriminate between individuals
with low risk and individuals with high risk, we will focus more on the the results of
classification experiments. For our models, we use the implementation provided by the
scikit-learn package in Python [117]. We evaluate the overall performance of a classifier

by two metrics [150]: (i) the accuracy of classification ACC = |f̂(xi)=f(xi)|
n

, where f(xi)

is the actual label of individual i, f̂(xi) is the predicted label, and n is the number
of individuals in the training dataset; (ii) the weighted average F-measure, defined as

F =
∑

c∈C |c|
2TP

2TP+FP+FN , where TP, FP, FN stand for the numbers of true positives,
false positives and false negatives resulting from classification, C is the set of labels and
|c| is the support of a label. All the experiments are performed using a k-fold cross
validation procedure with k=10. We construct a classification training dataset TCa

j for
every distinct background knowledge configuration Ba

j of the attacks described in Chapter
4. Every classification dataset TCa

j is used to train a classifier Ma
j using Random Forest

[66]. We compare the performance of each classifier Ma
j with the performance of a baseline

classifier which generates predictions based solely on the distribution of privacy risk labels
in Ca

j . For each classifier we will also show the feature importance of the features we
used. We quantify the importance of every feature in a classifier Ma

j by taking its average
importance in the decision trees of the resulting random forest. The importance of a
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feature in a decision tree is computed as the (normalized) total reduction of classification
entropy brought by that feature in the tree [66]. It is important to note that classifying
a high risk individual as a low risk individual can be a major issue. For our application
the recall is important to evaluate the performance of a classifier: a high recall on the
highest risk class (0.5, 1.0] indicates that a very low number of high risk individuals are
misclassified as low risk individuals. To be usable in practice classifiers need to have a
high recall on the highest risk class. We will therefore show how these values behave for
our classifiers. Finally, we will also provide an evaluation on the improvement in terms of
execution times that we obtain with our approach with respect to the direct computation
of privacy risk in PRUDEnce. The execution time of a single classification task is the
sum of three subtasks: (i) the execution time of training the classifier on the training set;
(ii) the execution time of using the trained classifier to predict the classes on the test set;
(iii) the execution time of evaluating the performance of classification (i.e., computing
accuracy and F-measure). The prediction approach we present was initially developed for
mobility data but, as we will show, it is sufficiently general in its definition that it can
be applied also to other kinds of data. We will show how different data produce different
results for this methodology and compare our results.

5.3.1 Privacy Risk Prediction for Mobility Data

For all the attacks defined except the Home and Work attack we consider four background
knowledge configurations Bk with k = 2, 3, 4, 5, where configuration Bk corresponds to
an attack where the adversary knows k points of the trajectory of the individual. For
the Home and Work attack we have just one possible background knowledge configura-
tion, where the adversary knows the most frequent location and the second most frequent
location of an individual. We use the mobility attacks defined in Section 4.2.1 for risk
computation. Table 5.1 (columns Florence and Pisa) summarizes the results of classifica-
tion tasks for both the Florence dataset and the Pisa dataset. In Table 5.1 we observe a
significant gain in both accuracy and F-measure of the classifiers over the baseline. For
example, in predicting the Probability privacy risk levels the classifier reaches maximum
performance values of ACC = 0.95 and F-measure = 0.95 (configuration k=4, Florence),
a significant improvement with respect to the baseline model. The Home and Work vari-
able has the weakest relation with the individual mobility features, reaching the lowest
performance values. The classification results for Florence and Pisa are comparable, with
slightly better performances for the Florence dataset. It is worth noting that, for some
attacks such as the Location Time attack, we have very similar performances in terms
of both accuracy and F-measure for any k. This is due to the fact that the privacy risk
distributions resulting from simulating the attack are similar for any k ≥ 2. In contrast,
for the Location Sequence attack we observe that the distribution of privacy risk for k=2
differs from the distributions of privacy risk for k ≥ 3 (Section 4.2.3). Since the classi-
fiers are accurate especially for the class of maximum risk (0.5, 1], and since for k ≥ 3
the number of individuals with maximum privacy risk increases, as a consequence the
performance of classifiers improve.

Figure 5.1a-b show a matrix representing the classification error for every label of
background knowledge configuration k = 4 of the Probability attack, for Florence (a) and
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Pisa (b). An element i, j in the matrix indicates the fraction of instances for which the
actual label j is classified as label i by the classifier. The diagonal of the matrix, hence,
indicates the classifier’s recall for every label. We observe that the recall of the highest risk
class (0.5, 1.0] is 99% for Florence and 98% for Pisa. In particular we observe that all the
misclassifications of the classifiers for the highest risk class are made predicting class (0.3,
0.5], i.e., the second highest class of risk. So there is a zero probability of misclassifying
high risk individuals as low risk individuals (i.e., classes [0.0] and (0.0, 0.1]). Similarly, in
Figure 5.1c-d, an element i, j in the matrix indicates the fraction of instances for which the
predicted label j is actually label i in the dataset. The diagonal matrix indicates in this
case the classifier’s precision for every label. We observe that the classifier is very precise
for the two lowest (risk ∈ [0.0] and risk ∈ (0.0, 0.1]) and the highest (risk ∈ (0.5, 1.0])
privacy risk labels: both the recall and the precision of these labels are close to 1. Even
on the labels where recall and precision are lower, i.e., (0.1, 0.2], (0.2, 0.3], (0.3, 0.5], the
classifier is more prone to predict a higher level of risk than a lower level of risk. These
conservative choices allow the Data Provider to limit the privacy violation of individuals:
it is hence unlikely that a classifier assigns to an individual a privacy risk label that is
lower than her actual privacy risk label. We have very similar results across all types of
attack.
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Figure 5.1: Classification error per class for classifier MP
4 (Probability attack P and

background knowledge configuration BP
4 ), for Florence (a, c) and Pisa (b, d). An element

i, j in the matrices (a) and (b), indicates the fraction of instances for which the actual
class j is classified as class i. The diagonal of the matrices (a) and (b), hence, indicate the
classifier’s recall for every class. An element i, j in the matrices (c) and (d) indicates the
fraction of instances for which the predicted class j is actually class i in the dataset. The
diagonal of matrices (c) and (d) indicate in this case the classifier’s precision for every
class.

In Table 5.1 (columns FI → PI and PI → FI) we also show the results of other
classification experiments where we train a classifier on the Florence dataset and use it
to classify the privacy risk label of vehicles in the Pisa dataset, and vice versa. Even if
the two datasets cover disjoint sets of vehicles we observe good predictive performance,
comparable to the performance of classifiers where the training set and the test set belong
to the same original dataset.
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configuration Florence Pisa FI → PI PI → FI
ACC F ACC F ACC F ACC F

L
o
ca

ti
on

T
im

e k = 2 0.94 0.94 0.93 0.93 0.93 0.92 0.93 0.93
k = 3 0.94 0.94 0.93 0.93 0.93 0.93 0.93 0.93
k = 4 0.94 0.94 0.93 0.93 0.93 0.93 0.92 0.92

locations with
timestamps

k = 5 0.94 0.94 0.92 0.92 0.93 0.93 0.91 0.92
avg baseline 0.82 0.81 0.81 0.80

F
re

q
u

en
cy k = 2 0.90 0.89 0.83 0.82 0.79 0.79 0.76 0.70

k = 3 0.94 0.93 0.89 0.89 0.84 0.86 0.83 0.79
k = 4 0.92 0.93 0.89 0.89 0.85 0.86 0.85 0.85

locations
with frequencies

k = 5 0.93 0.93 0.89 0.89 0.71 0.73 0.85 0.82
avg baseline 0.53 0.53 0.41 0.41

H
W two most

frequent locations
0.62 0.59 0.57 0.54 0.57 0.55 0.51 0.49

avg baseline 0.37 0.37 0.28 0.29

L
o
ca

ti
on

s k = 2 0.93 0.92 0.86 0.86 0.87 0.87 0.85 0.81
k = 3 0.95 0.95 0.91 0.91 0.87 0.87 0.87 0.82
k = 4 0.95 0.95 0.91 0.91 0.89 0.89 0.89 0.86

locations without
sequence

k = 5 0.95 0.95 0.91 0.91 0.89 0.90 0.87 0.85
avg baseline 0.57 0.56 0.44 0.44

U
n

iq
u

e
L

o
ca

ti
on

s k = 2 0.81 0.79 0.71 0.69 0.73 0.74 0.65 0.62
k = 3 0.86 0.85 0.8 0.78 0.81 0.81 0.75 0.72
k = 4 0.87 0.86 0.81 0.79 0.83 0.83 0.79 0.75

locations without
sequence

k = 5 0.87 0.87 0.81 0.8 0.82 0.83 0.78 0.75
avg baseline 0.65 0.65 0.56 0.55

P
ro

b
ab

il
it

y k = 2 0.93 0.92 0.86 0.86 0.86 0.85 0.82 0.80
k = 3 0.95 0.95 0.92 0.92 0.89 0.89 0.86 0.83
k = 4 0.95 0.95 0.91 0.91 0.91 0.90 0.85 0.81

locations
with probability

k = 5 0.95 0.95 0.92 0.92 0.92 0.92 0.87 0.83
avg baseline 0.56 0.56 0.45 0.44

P
ro

p
or

ti
on k = 2 0.90 0.89 0.83 0.81 0.79 0.79 0.79 0.76

k = 3 0.94 0.93 0.89 0.89 0.89 0.89 0.83 0.78
k = 4 0.93 0.93 0.89 0.89 0.85 0.86 0.84 0.81

locations
with proportion

k = 5 0.93 0.93 0.89 0.89 0.83 0.84 0.83 0.77
avg baseline 0.54 0.54 0.42 0.40

L
o
ca

ti
o
n

S
eq

u
en

ce

k = 2 0.88 0.86 0.79 0.77 0.83 0.82 0.78 0.74
k = 3 0.92 0.92 0.87 0.86 0.88 0.88 0.86 0.83
k = 4 0.92 0.92 0.88 0.87 0.88 0.88 0.87 0.85

locations with
sequence

k = 5 0.93 0.93 0.88 0.87 0.91 0.90 0.87 0.84
avg baseline 0.64 0.64 0.55 0.54

Table 5.1: Results of the classification experiments for the Florence and the Pisa datasets.
The classification performance is evaluated by the overall accuracy (ACC) and the weighted
F-measure (F) by using a k-fold cross validation with k=10. In columns FI → PI and PI → FI,
where FI indicates Florence and PI indicates Pisa, we show the results of classification where
we train the classifiers on the first urban area and try to predict the privacy risks of individuals
in the second urban area.
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Importance of mobility features Figure 5.2 shows a heatmap representing the av-
erage importance of every mobility feature to the various classifiers in Florence, where
every column corresponds to a classifier and every row corresponds to a mobility feature.
First, while classifiers corresponding to different configurations of the attack show sim-
ilar distributions of importances, classifiers corresponding to configurations of different
attacks produce different distributions. For example, in the classifiers corresponding to
the four configurations of the Location Time attack the average number of points V is,
not surprisingly, the most important mobility feature (Figure 5.2). In contrast, in the
classifiers corresponding to the four configurations of the Proportion attack, V has a low
importance while Dsum, E and Locsratio have the highest importance. Table 5.2 shows a
ranking of the average importance the mobility features have in the classifiers, for Florence
and Pisa. Here we observe that individual measures (e.g., E, V , V ) tend to be the most
important ones, while location-based features (e.g., Wi, Ei) tend to be less important.

F
r 

Lo
c 

S
eq

2
F

r 
Lo

c 
S

eq
3

F
r 

Lo
c 

S
eq

4
F

r 
Lo

c 
S

eq
5

F
r 

Lo
c2

F
r 

Lo
c3

F
r 

Lo
c4

F
r 

Lo
c5

F
re

q2
F

re
q3

F
re

q4
F

re
q5

H
 W

Lo
c 

S
eq

2
Lo

c 
S

eq
3

Lo
c 

S
eq

4
Lo

c 
S

eq
5

Lo
c2

Lo
c3

Lo
c4

Lo
c5

P
ro

b2
P

ro
b3

P
ro

b4
P

ro
b5

P
ro

p2
P

ro
p3

P
ro

p4
P

ro
p5

V
is

it2
V

is
it3

V
is

it4
V

is
it5

Dsum

Dsum

D trip
max

Dmax

E

rg

En

U ratio
n

Un

wpop
n

wn

wn

E2

U ratio
2

U2

wpop
2

w2

w2

E1

U ratio
1

U1

wpop
1

w1

w1

Locsratio

Locs
V

V

0.00

0.04

0.08

0.12

0.16

0.20

(a)

Figure 5.2: The distribution of average importance of the mobility features for all the
classifiers (Florence dataset).
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Florence Pisa Florence Pisa

measure impo. measure impo. measure impo. measure impo.

1 V 3.66 Locsratio 3.24 15 U ratio
2 0.96 U ratio

2 0.92

2 E 2.92 Dsum 3.22 16 Un 0.88 Un 0.88

3 Dsum 2.75 V 2.87 17 wpopn 0.83 rg 0.87

4 Locsratio 2.51 E 2.62 18 En 0.79 En 0.79

5 V 1.91 V 1.69 19 E2 0.74 E2 0.75

6 wpop1 1.77 Locs 1.66 20 Dmax 0.68 wpopn 0.73

7 Locs 1.67 wpop1 1.62 21 Dtrip
max 0.63 Dtrip

max 0.67

8 U1 1.44 U1 1.46 22 rg 0.61 Dmax 0.58

9 U ratio
1 1.32 U ratio

1 1.40 23 w1 0.42 w1 0.48

10 Dsum 1.19 U2 1.16 24 w2 0.40 w1 0.44

11 U2 1.12 U ratio
n 1.09 25 w1 0.36 w2 0.36

12 wpop2 1.07 wpop2 1.07 26 wn 0.13 wn 0.15

13 E1 1.05 E1 1.06 27 wn 0.12 w2 0.13

14 U ratio
n 0.99 Dsum 0.98 28 w2 0.10 wn 0.13

Table 5.2: The average importance of every mobility feature computed over all the classifiers
for Florence and Pisa.

Execution times We show the computational improvement of our approach in terms
of execution time by comparing in Table 5.3 the execution times of the attack simulations
and the execution times of the classification tasks.1 The classification tasks have constant
execution times of around 10s for Pisa and 22s for Florence. Our approach can compute
the risk levels for all the attacks in both Florence and Pisa in 250 seconds (less than 5
minutes), while the attack simulations require more than two weeks of computation.

Attack (
∑5

2 k)
Florence Pisa

simulation classifier simulation classifier

Home and Work 149s (2.5m) 7s 5s 3s

Frequency 645s (10m) 22s 20s 10s

Proportion 900s (15m) 24s 30s 10s

Unique Locations 997s (10m) 22s 30s 10s

Probability 1,165s (20m) 22s 37s 10s

Location Time 2,274s (38m) 16s 95s (1.5m) 9s

Location Sequence > 168h (1week) 22s > 168h (1week) 10s

Location > 168h (1week) 22s > 168h (1week) 10s

total > 2weeks 172s > 2weeks 79s

Table 5.3: Comparison of execution times of attack simulations and classification tasks
on Florence and Pisa.

1For a given type of attack we report the sum of the execution times of the attacks for configurations
k = 2, 3, 4, 5.
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5.3.2 Privacy Risk Prediction for Retail Data

We used a different setting for the two attacks defined on retails data: for the Intra-Basket
attack we considered background knowledge configurations with k = 2, 3, while for the
Full Basket attack we have only one configuration, where the adversary knows an entire
basket of an individual. We perform the risk computation on our retail dataset for the
retail attacks defined in Section 4.2.5.

Table 5.4 summarizes the results of classification tasks for the retail dataset. We
observe a good gain in both accuracy and F-measure of the classifiers over the baseline
for the Intra-Basket attack, while for the Full Basket attack the classifier fails to meet
expected performances. This is probably due to the extremely imbalanced data: almost
98% of individuals have risk 1 with this particular attack. It is also interesting to note
that our classifier performs better for the Intra-Basket attack for k = 3 than for k = 2.

Figure 5.3a-b show a matrix representing the classification error for every label of
background knowledge configuration for the Full Basket and for k = 3 of the Intra-Basket
attack respectively. An element i, j in the matrix indicates the fraction of instances for
which the actual label j is classified as label i by the classifier. The diagonal of the matrix,
hence, indicates the classifier’s recall for every label. We observe that the recall of the
highest risk class (0.5, 1.0] is 99% like for mobility data. However, recall for other classes
is quite low. This indicates that our classifier may be overly conservative, classifying
even low risk individuals as high risk. In our context however it is acceptable as it
guarantees higher protection for individuals. Similarly, in Figure 5.3c-d, an element i, j
in the matrix indicates the fraction of instances for which the predicted label j is actually
label i in the dataset. The diagonal matrix indicates in this case the classifier’s precision
for every label. Again we see that most of the time the classifier cannot properly classify
individuals with lower levels of risk, while for high risk individuals in the class (0.5, 1.0] we
have high precision. This is due to the highly imbalanced classes, suggesting that tailor
made classification methods are needed.
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Figure 5.3: Classification error per class for classifier MFB (Full Basket attack FB which
has only one configuration) (a, c) and M IB

2 (Intra-Basket attack IB with background
knowledge configuration BP

2 ) (b, d). An element i, j in the matrices (a) and (b), indicates
the fraction of instances for which the actual class j is classified as class i. The diagonal of
the matrices (a) and (b), hence, indicate the classifier’s recall for every class. An element
i, j in the matrices (c) and (d) indicates the fraction of instances for which the predicted
class j is actually class i in the dataset. The diagonal of matrices (c) and (d) indicate in
this case the classifier’s precision for every class.
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configuration Metrics
ACC F

In
tr

a
B

as
ke

t k = 2 0.71 0.64Items within
baskets k = 3 0.94 0.92

avg baseline 0.68 0.64

F
u

ll
B

as
ke

t Entire
basket history

0.62 0.50

avg baseline 0.97 0.97

Table 5.4: Results of the classification experiments for the retail dataset. The classification
performance is evaluated by the overall accuracy (ACC) and the weighted F-measure (F) by
using a k-fold cross validation with k=10.

To improve the performance of the classifier for Full basket attack we can change the
weight given by the classifier to the minority class, so to drive the prediction towards
it. Using a balanced weighting strategy, we give to the minority class, i.e., the class of
individuals with risk less than 1, a weight inversely proportional to the class frequency.
With this strategy we are able to improve the performance for the Full Basket attack as
shown in Table 5.5. This indicates that for high impact attacks that produce high level
of risk, the classification method needs to be tailored as to compensate for the imbalance
in the data.

configuration Metrics

F
u

ll
B

as
ke

t Entire
basket history

0.98 0.97

avg baseline 0.97 0.97

Table 5.5: Results of the classification experiments for the retail with rebalancing of the classes.
The classification performance is evaluated by the overall accuracy (ACC) and the weighted F-
measure (F) by using a k-fold cross validation with k=10.

Importance of retail features Figure 5.4 shows a heatmap representing the average
importance of every retail feature to our classifiers, where every column corresponds to
a classifier and every row corresponds to a retail feature. With respect to feature impor-
tance for mobility features we can clearly see that we have, on average, lower values of
importance for retail features. We can also clearly see that some of the retail features
that we selected are almost completely ignored by the classifier (the frequencies of second
most bought item and least bought item wi2 and win), thus suggesting that those features
are not correlate with privacy risk. The most important feature for our classifiers is un-

equivocally Idailymax which indicates the maximum number of items bought by an individual,
averaged over the number of days in the period of observation. The Intra Basket attack,
for which this feature is the very important in classifying individuals, is based on the
knowledge of a subset of items of a basket. In all the data we have, no individual has
more than one basket per day of analysis. Therefore, the average number of products
bought may be a very strong indicator of risk, since it is essentially showing a mean of
the number of items over the baskets. We see also that for the Full Basket attack, the
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average number of individuals who bought the most popular item in the individual basket
(Uavg

ij
) is of great importance. Clearly, since when using an entire basket as knowledge the

adversary will inevitably know the most bought item of an individual, the average pur-
chasing frequency of that item over the collectivity may influence risk, hiding somewhat
in the crowd some purchases of the individual. We also see that, although less crucial,
Entropy still has a good importance similarly to what we observed for the mobility data
classifiers. Table 5.6 shows a ranking of the average importance the retail features have
in the classifiers. Here we can clearly see that retail features have a lower importance on
average than mobility features for predicting risk.

Intra Basket k=2 Intra Basket k=3 Full Basket
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Iavg

Id
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Figure 5.4: The distribution of average importance of the retail features for all the clas-
sifiers.
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Retail Data Retail Data

measure impo. measure impo.

1 Idailymax 0.32 13 Idavg 0.12

2 Ei2 0.18 14 Ein 0.12

3 Uavg
i1

0.18 15 Idmax 0.12

4 Uavg
i2

0.18 16 Uavg
in

0.11

5 Ui2 0.18 17 Uin 0.11

6 E 0.16 18 Idailyavg 0.11

7 Ei1 0.16 19 Iunique 0.11

8 Ui1 0.15 20 wavgin
0.10

9 wavgi1
0.14 21 wi1 0.05

10 items 0.13 22 Iavgunique 0.01

11 Iavg 0.13 23 win 0.00

12 wavgi2
0.12 24 wi2 0.00

Table 5.6: The average importance of every retail feature computed over all the classifiers.

Execution times We show the computational improvement of our approach in terms
of execution time by comparing in Table 5.7 the execution times of the attack simulations
and the execution times of the classification tasks.2. The classification tasks have constant
execution times of around 430s in total, a little over 7 minutes, while the attack simulations
require more than one day of computation. Execution times are in general longer for this
kind of data, probably due to the fact that we have a lot of individual data

Attack (
∑3

2 k)
Retail Data

simulation classifier

Intra-Basket >24h (1 day) 308s (5 minutes)

Full Basket >12h 122s (2 minutes)

total > 1.5 days 430s

Table 5.7: Comparison of execution times of attack simulations and classification tasks
on retail data.

5.3.3 Privacy Risk Prediction for Social Network Data

For all the social network attacks we consider four background knowledge configurations
Bk with k = 1, 2, 3, 4, where configuration.We use the social network attacks defined in
Section 4.2.9 for risk computation. Table 5.8 summarizes the results of classification tasks
for the social network dataset.

2For Intra-Basket attack we report the sum of the execution times of the attacks for configurations
k = 2, 3
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We observe a good gain in both accuracy and F-measure of the classifiers over the
baseline across all kinds of attack and configuration. The only notable exception seems to
be the Label Pair attack: our classifier still outperforms the baseline, but both accuracy
and F-measure are lower than other kinds of attack.

Figure 5.5a-b show a matrix representing the classification error for every label of
background knowledge configuration for the Friendship Degree attack and the Label Pair
attack respectively, both with k = 3. An element i, j in the matrix indicates the fraction
of instances for which the actual label j is classified as label i by the classifier. The
diagonal of the matrix, hence, indicates the classifier’s recall for every label. We can
appreciate a stark difference in the performances: for the Friendship Degree attack the
recall has similar characteristics to the mobility attacks, i.e., risk is correctly predicted in
a conservative way, favoring high risk classes. For the Label Par attack instead, we see
that the classifier performs poorly in terms of recall. Similar results can be seen for Figure
5.5c-d, where an element i, j in the matrix indicates the fraction of instances for which
the predicted label j is actually label i in the dataset. The diagonal matrix indicates in
this case the classifier’s precision for every label. Again we see the difference between
the two attacks. Results are, in general, good in terms of accuracy, F-measure, precision
and recall for most of the attacks. The exceptions are the Label Pair Attacks and some
configurations of the Neighborhood and Label Pair attack.
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Figure 5.5: Classification error per class for classifier MFD
3 (Friendship Degree attack FD

and background knowledge configuration BFD
2 ) (a, c) and MLP

3 (Label Pair attack LP
and background knowledge configuration BLP

2 ) (b, d). An element i, j in the matrices
(a) and (b), indicates the fraction of instances for which the actual class j is classified as
class i. The diagonal of the matrices (a) and (b), hence, indicate the classifier’s recall for
every class. An element i, j in the matrices (c) and (d) indicates the fraction of instances
for which the predicted class j is actually class i in the dataset. The diagonal of matrices
(c) and (d) indicate in this case the classifier’s precision for every class.
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configuration Network Data
ACC F

N
ei

gh
b

o
rh

o
o
d k = 1 0.74 0.73

k = 2 0.80 0.78
k = 3 0.79 0.79

friends of victim

k = 4 0.88 0.87
avg baseline 0.48 0.48

L
a
b

el
P

ai
r

k = 1 0.51 0.42
k = 2 0.58 0.48
k = 3 0.68 0.56

label values

k = 4 0.68 0.58
avg baseline 0.44 0.44

N
ei

gh
b

or
h

o
o
d

A
n

d
L

ab
el

P
a
ir

k = 1 0.79 0.70
k = 2 0.83 0.76
k = 3 0.82 0.74

label values and friends

k = 4 0.76 0.66
avg baseline 0.66 0.66

F
ri

en
d

sh
ip

D
eg

re
e

k = 1 0.61 0.60
k = 2 0.95 0.95
k = 3 0.99 0.99

degree of friends

k = 4 0.99 0.99
avg baseline 0.72 0.72

M
u

tu
al

F
ri

en
d k = 1 0.99 0.99

k = 2 0.98 0.98
k = 3 0.96 0.96

interconnected friends

k = 4 0.99 0.99
avg baseline 0.77 0.79

N
ei

gh
b

or
h

o
o
d

P
ai

r

k = 1 0.88 0.88
k = 2 0.89 0.89
k = 3 0.93 0.92

pairs of friends

k = 4 0.93 0.92
avg baseline 0.53 0.53

Table 5.8: Results of the classification experiments for the social network dataset. The classi-
fication performance is evaluated by the overall accuracy (ACC) and the weighted F-measure
(F) by using a k-fold cross validation with k=10.

Importance of retail features Figure 5.6 shows a heatmap representing the average
importance of every social network feature to our classifiers, where every row corresponds
to a retail feature. We see that the Label Pair and Neighborhood and Label Pair attacks
present a more evenly distributed importance among the features, while other attacks
show one distinct feature that strongly discriminates their classes. We can also clearly
see that eccentricity Ec is feature with the lowest importance for classifying risk. One
of the most interesting feature is degree centrality Cd: it is important for the Mutual
Friend and Friendship Degree attacks. This is not surprising, since degree centrality is a
measure of how connected an individual is in the network: highly connected individual
tend to have more friends with high degree and more friends mutually connected.Table
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5.9 shows a ranking of the average importance the social network features have in the
classifiers. We see here that, even though we use fewer features for social networks, they
have on average a good feature importance.
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Figure 5.6: The distribution of average importance of the social network features for all
the classifiers.

Network Data

measure impo.

1 Cd 4.50

2 Pgr 4.08

3 Cc 3.75

4 dg 3.14

5 max(dg H) 2.77

6 C 2.21

7 Cb 1.69

8 Ax 1.59

9 Ec 0.28

Table 5.9: The average importance of every social network feature computed over all the
classifiers.
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Execution times We show the computational improvement of our approach in terms
of execution time by comparing in Table 5.10 the execution times of the attack simula-
tions and the execution times of the classification tasks.3. The classification tasks have
constant execution times of around 430s int total, a little over 7 minutes, while the at-
tack simulations require more than a day of computation. Execution times are in general
longer for this kind of data, probably due to the fact that we have a lot of individual data

Attack (
∑4

1 k)
Network Data

simulation classifier

Friendship Degree 190s 53s

Label Pair 48min 70s

Mutual Friend >5h 51s

Neighborhood >7h 64s

Neighborhood Pair >15h 56s

Neighborhood and Label Pair 240s 67s

total >28h 364s

Table 5.10: Comparison of execution times of attack simulations and classification tasks
on social network data.

5.4 Discussion

We proposed a fast and flexible data mining approach for estimating the privacy risk in
personal data, which overcomes the computational issues of existing privacy risk assess-
ment frameworks. We validated our approach on three types of real-world GPS data,
showing that we can achieve accurate estimations of privacy risks. In particular, the re-
sults showed that: (i) the classifiers are accurate especially on the highest privacy risk
class, which is important in order to guarantee the safeness of individuals; (ii) the classi-
fiers have a conservative behavior, i.e., misclassified individuals are assigned more likely
to classes of higher risk than to classes of lower risk with respect to the actual class of
privacy risk; (iii) the importance of the features used to train the classifier can be used
for understanding the causes of privacy risk: by looking at which feature discriminates an
attack we can have an idea of the individual behavior that causes a certain attack to be
successful or not.

3For all attacks we report the sum of the execution times of the attacks for configurations k = 1, 2, 3, 4
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Chapter 6

Modeling Adversarial Behavior
Against Mobility Data Privacy

We have seen in Chapter 4 how risk can be computed by mathematically generating
the background knowledge that an adversary may use to conduct an attack. As we
showed, the simulation of an attack always considers the worst-case scenario: amongst
all possible background knowledge instance that an adversary can use to re-identify an
individual, PRUDEnce selects the worst. This is a conservative approach commonly used
in privacy literature [89]. Here we propose an alternative approach, tailored for mobility
data: instead of evaluating risk from the individual point of view, we evaluate what
damage a single adversary can produce, in terms of privacy risk, for a mobility dataset,
i.e., we compute the average privacy risk of individuals in the data fixing a particular
background knowledge of an adversary, based on the adversary movement. We propose
a data-driven approach to realistically simulate the behavior of a malicious adversary
and evaluate the privacy risk on mobility data from the perspective of an adversarial
attack. First of all, we assume that the malicious adversary collects information about
the attacked individuals during their movements on territory and following the natural
spatio-temporal constraints of human mobility [54, 19]. Then, we present three possible
alternatives: the adversary is one of the real individuals in the dataset (real adversary);
the adversary is a synthetic individual that moves realistically (synthetic adversary); the
adversary moves peculiarly in such a way to produce the most damage to the privacy
of individuals in the dataset (simulated adversary). We implement the third alternative
by designing a Simulated Privacy Annealing algorithm (SPA), based on an optimization
meta-heuristic that generates movements of the adversary that maximize the average
privacy risk of the individuals in the dataset.

6.1 Trajectory Modeling: variation

As already stated in Section 3.1, trajectories can be aggregated in various data structure
that simplify the information that they present. While some structure, like for example
the Frequency Vector, completely discard the temporal information about the points in a
trajectory, other approaches can be selected in order to simplify the temporal information.
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We briefly recall definition 1 of a trajectory:

Definition 37. Trajectory. The trajectory Tu of an individual u is a temporally ordered
sequence of tuples Tu = 〈(x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn)〉, where xi and yi are the
coordinates of a geographic location and ti is the corresponding timestamp, with ti < tj if
i < j ∀i, j ≤ n, with n = |Tu|.

The period of observation of a trajectory can be discretized into time slots of a fixed
length, e.g., one hour. Given a timestamp, we can map it onto a corresponding discrete
time slot, for example by rounding the timestamp to the nearest hour.

Definition 38. Time slot. Given a certain precision p, the time slot tsi correspond-
ing to timestamp ti is obtained by rounding t to precision p. We denote with Tsset =
{ts1, . . . , tsn} the set of all different time slots in a dataset D.

For example, timestamp 12/10/2010-23:39:46 is assigned to time slot 12/10/2010-
24:00:00 if rounding to the nearest hour, or it is assigned to time slot 12/10/2010-23:30:00
if rounding to the nearest half-hour. Note that since two different timestamps ti and tj
belonging to the same trajectory Tu may be mapped to the same time slot ts, two different
locations in the trajectory, li = (xi, yi) and lj = (xj, yj) may be associated with the same
time slot ts. In such a case, typically the location with longest staying period in the time
slot is selected as the location associated with that time slot [113]. When using timeslots,
the discretization allows us to represent a mobility dataset D as a matrix:

Definition 39. Mobility Dataset Matrix. A mobility dataset matrix M is a three-
dimensional binary matrix |Lset|×|Tsset|×|Uset| where each element mijz is 1 if individual
z was at location i during timeslot j, 0 otherwise.

A mobility dataset matrix allows us to better visualize which individuals stayed
roughly in the same place, at the same time. In the light of this definition we need
to slightly modify our definitions of background knowledge and privacy risk of Section
4.1:

Definition 40. Background knowledge. A background knowledge B represents the
set of spatio-temporal points known by the malicious adversary about a set of individuals.
Formally, we represent it as a |Lset| × |Tsset| matrix where bkij = 1 if the adversary
knows that at least one individual was at the location i during the timeslot j, and bkij = 0
otherwise.

In other words, a background knowledge BK can be considered as a trajectory.

Definition 41. Instance of background knowledge. An instance bu of background
knowledge is a specific set of spatio-temporal points known by the adversary about an
individual u. Formally, we can represent it as a mobility matrix B where ∀(i, j)biju = 1 if
the adversary knows that the specific individual u was at the location i during the timeslot
j.
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We indicate with bu the matrix derived by BK fixing u.
As stated in Chapter 4, a re-identification attack can be expressed mathematically as

a matching function. In the following we will use a matching function matching(Tw, bu),
which indicates whether or not a trajectory Tw ∈ D matches the instance of background
knowledge bu We assume that, in this attack, the adversary uses both the spatial and
temporal components of each point, similarly to the Location Time attack in definition
4.2.1.

matching(Tw, bu) =


true ∀(i, j) ∈ bu,∃(i, j) ∈ Tw|

mijw = biju = 1

false otherwise

The matching function returns true if the trajectory Tw contains all the points in the
background knowledge instance bu, and false otherwise.

Definition 42. Privacy Risk. The privacy risk of an individual is measured as the
probability to re-identify them given a background knowledge instance bu. We can apply the
matching function to the whole dataset M and count the matching records: Fmatch(M, bu) =
Tw ∈ M |matching(Tw, bu) = True}. The probability of re-identification of an individual
u in dataset D is defined as

Risk(u, bu,M) = PRM(Tw = u|bu) =
1

|Fmatch(M, bu)|

that is the probability to associate a trajectory Tw ∈M to an individual u, given instance
bu.

Note that, if for every (i, j) ∈ bu, an individual z 6= u has mijz = 1 in the dataset M ,
then that individual shares all the points of u in the background knowledge instance of
the adversary.

Given a mobility dataset and the privacy risk of each individual in the data, we can
define the average risk produced by an adversary as follows.

Definition 43. Average Adversary Risk. Given the set of individuals Uset in the
mobility dataset M , and the risk Risk(u, bu,M) posed by an adversary to each individual
u using the background knowledge instance bu, the Average Adversary Risk (AAR) is the

average risk produced by the adversary: AAR(u, bu,M) =
∑

u∈Uset
Risk(u,bu,M)

|Uset| .

6.2 Problem Statement

In the literature, risk assessment methodologies aim at evaluating the privacy risk of each
individual in the dataset simulating attacks that try to maximize the individual privacy
risk. These methodologies assume that: (i) The malicious adversary gathers an arbitrary
quantity of information, called background knowledge, about an individual they want
to attack; (ii) the malicious adversary uses the background knowledge to re-identify the
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attacked individual in an anonymized dataset. In the case of human mobility data, re-
identification means that the malicious adversary can reconstruct the entire trajectory
Tu of the attacked individual. Typically, existing privacy risk assessment frameworks
(e.g., [128]) generate all the possible background knowledge that a malicious adversary
may gather about an individual. For each background knowledge, they compute a re-
identification probability. Finally, they define the re-identification risk for that individual
as the maximum re-identification probability.

We claim that the existing frameworks do not model the process of gathering the back-
ground knowledge realistically because, for any individual, they derive the background
knowledge that maximizes their risk from the available dataset. This approach is the
same as considering an attacker tailored for every single individual in the data. Our claim
relies on the fact that an adversary can gather background knowledge about a moving
individual by knowing where she is at which time; this implies a co-location between them.
Thus, the gathering of the background knowledge needs some real movements by the ma-
licious adversary, which implies that the spatio-temporal constraints of human mobility
must be taken into account during the process of background knowledge construction,e.g.,
the adversary cannot stay at two different locations in the same time and, cannot move
at an unreasonable speed and cannot cover much distance in a single timeslot.

In this paper, we explore possible realistic ways to model the acquisition of the back-
ground knowledge by an adversary, taking into account the spatio-temporal constraints of
human mobility. The main idea is to define an approach to privacy risk assessment based
on an adversary that realistically gathers a background knowledge while maximizing the
privacy risk of the individuals in the data.

We model the behavior of a malicious adversary as an adversary trajectory. We hence
assume that a malicious adversary is an object that moves on the same geographic area
and during the same period as the attacked individuals. While moving, the malicious
adversary gathers information about the individuals they co-locate with. The malicious
adversary uses the gathered background knowledge to re-identify those individuals in the
mobility dataset. The adversary trajectory can refer to movements by the malicious ad-
versary itself, or it can refer to movements by a mobile camera, such as a drone with a
programmed movement that surveils an area for a specified period. Modeling the behavior
of a malicious adversary as an adversary trajectory is an approach that completely departs
from the literature. In traditional risk assessment methodologies, the background knowl-
edge is built abstractly, i.e., generated by looking at the data of any single individual.
In our framework, the adversary’s behavior is confined within realistic spatio-temporal
constraints (e.g., an adversary cannot be in two different places at the same time). The
underlying assumption of our methodology is that the adversary operates on his own. In
a real-world scenario, adversary may collaborate and share information. Our contribu-
tion focuses mainly on providing a different way of modeling the gathering process of the
background knowledge of an adversary. We shift the perspective from a mathematically
generated (or sampled) background knowledge to a background knowledge that may be
acquired within the bounds of a realistic effort from the adversary. So we focused our
attention on a methodology that was effective most of all in generating a trajectory that
could maximize risk for the individuals in the data. Simulating multiple, collaborating
adversaries is a problem that involves a number of different considerations to be made:
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adversaries may cooperate in covering different regions of the map, or may collaborate in
moving during different time-frames alternatively, or could use some stationary observa-
tion point to enhance their knowledge. All these scenarios are worth considering and can
be very interesting future developments for our research. To formalize how the adversary
gathers information through the trajectory, we use the concept of colocation:

Definition 44. Colocation Let (x, y, t) and (x′, y′, t′) be two points of two trajectories Tu1
and Tu2 respectively. The two points are considered a colocation if (x = x′∧y = y′∧t = t′).
We denote by Cu1,u2 the set of all colocations between trajectories Tu1 and Tu2.

Intuitively, a colocation indicates that whenever two trajectories intersect in a specific
location during the same time slot, two individuals are at the same place at the same
time.

Whenever the adversary trajectory colocates with the trajectory of an individual u,
the adversary’s background knowledge instance bu expands, including the points and the
time slot of the colocation. In other words, given that adversary trajectory BK and
the individual trajectory Tu, the background knowledge instance bu can be computed as
bu = BK ∩ Tu.

Based on acquired background knowledge BK, we then simulate a re-identification
attack in which the malicious adversary tries to match the points gathered about any
individual in the mobility dataset.

To clarify the process of construction of the background knowledge, let us consider the
following toy example, in which letters and integers substitute the geographic coordinates
and time slots:

Example 6. Let us consider a set of individuals Uset={u1, u2, u3, u4} and the correspond-
ing mobility dataset D:

D = {
Tu1 = 〈(A, 1), (C, 2), (A, 3), (G, 4)〉
Tu2

= 〈(G, 1), (C, 2), (A, 3), (D, 4)〉
Tu3

= 〈(C, 1), (G, 2), (D, 3)〉
Tu4

= 〈(C, 1), (G, 2), (A, 3)〉
}

Let us assume that the adversary trajectory is Ta = 〈(A, 1), (G, 2), (C, 3), (D, 4)〉. The
adversary trajectory colocates with individual u1 on Ca,u1 = {(A, 1)}, with individual u2
on Ca,u2 = {(D, 4)}, with individual u3 on Ca,u3 = {(G, 2)} and in with individual u4
in point Ca,u4 = {(G, 2)}. Therefore, the background knowledge of the adversary a is:
B = (u1, {(A, 1)}), (u2, {(D, 4)}), (u3, {(G, 2)}), (u4, {(G, 2)}).

Based on the background knowledge B, we evaluate the privacy risk produced by a using
a matching function and counting, for each individual, how many other individuals match
the points in B (see Section 6.1). For example, for individual u1 point (A, 1) is unique,
generating a privacy risk of 1. For individual u2, point (D, 4) is unique too, generating a
privacy risk of 1. For individual u3, since point (G, 2) is present in Tu4 too, the privacy
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risk is equal to 1
2
. Similarly, for individual u4, since point (G, 2) is also present in Tu3,

the privacy risk is equal to 1
2
.

6.3 Construction of the Adversary Trajectory

We can construct an adversary trajectory in several ways. In this paper, we consider
three possibilities: using the trajectory of a real individual, generating a realistic synthetic
trajectory, or constructing a principled adversary trajectory.

6.3.1 Real Adversary Trajectory

The most straightforward approach to construct an adversary trajectory is assuming that
the malicious adversary is one of the individuals represented in the mobility dataset. In
this scenario, the adversary trajectory is a real individual’s trajectory, that we call Real
Adversary Trajectory. The privacy risk assessment based on this model identifies in the
dataset M the adversary trajectory leading to the maximum privacy risk for individuals
represented in M . To this end, for each real individual in the dataset M we use the
following approach: (i) we consider their trajectory as a background knowledge of a
malicious adversary; (ii) we compute the privacy risk of each individual in M against
that adversary; (iii) we compute the privacy risk for D as average over the individual
privacy risks, i.e., AAR (Definition 43). Finally, we return the privacy risk evaluation
corresponding to the real adversary trajectory leading to the highest AAR.

The individual privacy risk computation at step (ii) works as follows. Consider a
candidate real adversary trajectory a with background knowledge BK and an individual
u in M . First, the approach constructs the adversary’s background knowledge instance
bu, composed of the colocations between BK and the trajectory of the individual u; and
then, it computes the privacy risk of u applying the Risk(u, bu,M) function (Definition
42).

6.3.2 Synthetic Adversary Trajectory

An alternative approach is to generate the adversary trajectory using generative algo-
rithms, i.e., algorithms that generate synthetic trajectories that are realistic in reproduc-
ing the fundamental patterns of human mobility [75, 113]. We call Synthetic Adversary
Trajectory an adversary trajectory generated in this way. In this scenario, the privacy risk
assessment process generates a candidate set of adversary trajectories using a generative
algorithm. This algorithm generates a population of synthetic agents moving in the same
geographic area and period as the individuals in the mobility dataset. Then, the privacy
risk assessment process identifies in the synthetic dataset the adversary trajectory leading
to the maximum privacy risk for individuals in M . To this end, for each individual in
the synthetic dataset, we use the following approach: (i) we consider their trajectory as a
background knowledge of a malicious adversary; (ii) we compute the privacy risk of each
individual in M ; (iii) we compute the privacy risk for M as average over the individual
privacy risks, i.e., AAR (Definition 43). Finally, we return the privacy risk evaluation
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corresponding to the synthetic adversary trajectory leading to the highest average pri-
vacy risk. The individual privacy risk computation at step (ii) works as in the previous
scenario.

6.3.3 Simulated Adversary Trajectory

The previous two approaches model the adversary as an individual whose movement is
not focused on the maximization of the privacy risk of the other individuals. It represents
a mobility behavior typical for common drivers.

An interesting research question is how to simulate the trajectory of an adversary that
moves over the geographic area with the only goal to maximize the attack success against
the set of individuals represented in the mobility dataset. Technically speaking, this is
an optimization problem with a search space of exponential size. To clarify this point,
let us assume that each trajectory consists of a number |Tsset| of points, one point per
time slot. For each point, the number of possible locations is the set |Lset| of locations
on the geographic area of reference. Assuming that the adversary moves fast enough to
reach every point of the geographical area (a reasonable assumption for small to medium-
size urban areas), the number of all possible adversary trajectories is |Lset||Tsset|. As a
real-world example, let us consider a medium/small size city like Pisa (Italy), and let us
assume that it is split into 600 geographical square cells. If the period of observation
is one month, we have 720 time slots, resulting in 600720 ≈ 1.85737791 × 102000 distinct
possible trajectories. For such an ample search space, a brute force approach computing
all possible adversary trajectories is computationally unfeasible.

We overcome this computational problem by proposing an algorithm called Simulated
Privacy Annealing (SPA). Simulated Privacy Annealing is a method based on simulated
annealing, a metaheuristic used for the approximation of global optimum in optimization
problems. It is used for problems with very large search spaces. Simulated annealing is an
adaptation of the Metropolis Hastings algorithm [92], which is a Monte Carlo algorithm
used for the generation of sample states of a thermodynamic systems, such as, for example,
[77]. Simulated Annealing has been applied to problems related to human mobility before,
for example in [13] where the algorithm is used to tackle the problem of traffic jams
by dynamically calculating optimal traffic routes. Simulated annealing requires several
parameters to function properly, like for example the cooling schedule. Such parameters
are largely application specific. However, general guidelines exist to guide in the selection
process such as [78] for the cooling schedule, or [23] which gives a general procedure to
compute the initial temperature of the simulated annealing.

Intuitively, simulated annealing starts from a solution to the problem and then explores
the search space by randomly modifying the solution at each iteration. A “temperature”
parameter controls the exploration of the solutions. Initially, the temperature is high,
and the algorithm considers even solutions that do not improve on the objective function.
At every successive iteration, the temperature lowers, and the algorithm is less likely to
explore less optimal solutions. This exploration mechanism allows simulated annealing to
avoid local minimums and to converge to near optimality, given that it explores enough
solutions [94].
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Algorithm 1: Simulated Annealing

input : Initial temperature Tempinit, initial solution S0

output: Final state S
1 Temp ← Tempinit;
2 S ← S0;
3 Sbest ← S0;
4 while stopping criteria() is false do
5 Temp ← cooling schedule(Temp);
6 Snew ← neighbor(S);
7 if P (E(S), E(Snew), T emp) ≥ random(0, 1) then
8 S ← Snew;

9 if E(S) > E(Sbest) then
10 Sbest ← S;

11 return Sbest

Algorithm 1 shows the pseudocode of the simulated annealing metaheuristic. It starts
with an initial solution S and an initial temperature Tempinit. The algorithm then iterates
until it meets a stopping criterion (line 3 in Algorithm 1). At each iteration, the algorithm
decreases the temperature according to a cooling schedule (line 4). In line 5, the algorithm
generates a neighboring solution Snew by modifying the previous solution S. Then, the
algorithm computes E(S) and E(Snew), i.e., the value of the function to optimize for
both the previous solution S and the neighboring solution Snew, respectively. E(S) and
E(Snew) are used alongside the current temperature Temp to determine whether or not
Snew can be accepted as the current solution. This task is done through the acceptance
function P (E(S), E(Snew), T emp), defined as:

P (E(S), E(Snew), T emp) = e

(
−E(Snew)−E(S)

Temp

)
.

If the value of the acceptance function is greater than a number generated uniformly at
random in the range [0, 1], the neighboring solution Snew becomes the new solution S;
otherwise the current solution S remains unchanged. Intuitively, the acceptance function
checks whether the neighboring solution Snew provides a significant improvement in the
objective function: the more the neighboring solution improves the current one, the more
likely it is to be accepted as the new solution.

We adapt simulated annealing to our problem by defining what a solution S and the
objective function E(S) are. Moreover, we need to implement the internal functions in
Algorithm 1, i.e., stopping criteria, cooling schedule and neighbor.

For our problem, the solution S, S0, Snew and Sbest represent an adversary trajectory,
while the objective function E(S) must be a function that quantifies the privacy risk
generated by the adversary trajectory. We use the AAR metric defined in Definition 43
as an objective function.

Simulated annealing is a minimization metaheuristic. So, to correctly model our prob-
lem, E(S) will actually be 1−AAR since mean risk has an upper bound of 1. We denote
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with FAAR(T,M) the function that, given the adversary trajectory T and a Mobility Ma-
trix M computes 1−AAR over the individuals in M . So our objective function becomes
simply: FAAR(T,M). We generate the initial adversary trajectory S by creating a ran-
dom stationary trajectory: we select one location at random from the geographic area
of reference and make the individual stay in that location for all the time slots. The
generation of the neighboring adversary trajectory Snew (i.e., the implementation of the
neighbor function) is done by selecting at random one time slot in the current adver-
sary trajectory, and by substituting the associated location with a new location chosen
at random from the set of all locations that are within a certain distance radius from
the point changed. This distance parameter is needed to guarantee that the sequence of
locations composing the adversary trajectory is realistic, in the sense that the adversary
cannot move to seemingly unreachable locations in the span of a single time slot. To
implement the cooling schedule function we use the exponential cooling scheme [78]: the
temperature at step k+1 is equal to the temperature at the previous step multiplied by a
constant α between 0 and 1: Tempk+1 = αTempk. This cooling schedule, though simple,
has been proved to be effective and time efficient [127]. While in the literature the value
of α is generally set somewhere between 0.95 and 0.99, in our experiments described in
Section 6.4 we explore a wider range of values.

The initial temperature is usually selected in a way that the initial acceptance prob-
ability is close to a certain initial value, traditionally 80%. Ben-Ameur et al. in [24]
propose a simple procedure to calculate the initial temperature. For our purposes, having
a very large space of solutions we decided to select an initial temperature such that the
initial acceptance probability would be 90%. This is done by simply running the annealing
procedure for a small number of iterations, adjusting the temperature in the process.

Regarding the stopping criteria, two typical solutions are adopted in the literature:
either simulated annealing is run on a fixed number of steps or the algorithm stops when
no significant improvements are made to the solutions for a certain number of steps. We
use instead the following approach: we run the algorithms at intervals of fixed number
of steps. We choose to compute this number from the actual size of the area we are
simulating on, i.e., as a fraction of the number of possible locations times the number of
time slots. After running the algorithm for this number of steps, we evaluate the changes
made to the objective function. If new solutions are accepted, temperature is still high.
Moreover, if new ”best solutions” are found, the function is still improving. In these two
cases, we keep on running the algorithm, for the same number of steps. Instead, if no
new solutions are accepted and the value of the objective function is not improving, the
algorithm has sufficiently explored the space of solutions. In such a way, we make sure
that every check for the stopping criteria is done after a substantial number of steps and
that the possible solutions are explored thoroughly.

In summary, our Simulated Privacy Annealing works as follows:

1. Set initial parameters: we set the initial temperature and the initial solution.

2. Generate a neighboring solution: we generate a neighboring solution by chang-
ing one of the locations in the trajectory with another one at a distance no greater
than a fixed limit.
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3. Evaluate current and neighboring solution: we compute the colocations and
AAR.

4. Acceptance probability: we either accept or reject the neighboring solution based
both on the evaluation and on current temperature.

5. Lower the temperature: we lower the temperature according to our cooling
schedule.

6. Check for stoppage: if a certain number of steps have been completed, check if
states have been accepted or if sensible improvement has been done to the objective
function.

We remark that the resulting trajectory is not chosen among the available real or
synthetic trajectories in the data, but is generated modifying a random trajectory in
such a way to maximize the average privacy risk for the individuals in the real data.
The function that expresses privacy risk is itself dependent on the actual movement in
the various cells in the time-frame of analysis. Thus, the trajectory generated does not
belong to the original data but still belongs to the same geographical area and time-frame
of the real trajectories. Privacy risk for the single individual, however, may depend not
so much on the popularity of a particular trajectory, but rather on how the combination
of points traversed by the adversary match with the trajectories of the real individuals.

Algorithm 2 shows the psuedocode of Simulated Privacy Annealing. We show in
Algorithms 3, 4 and 5 how we implemented the cooling schedule, stopping criteria, and
neighboring function respectively.

Algorithm 2: Simulated Privacy Annealing

input : Initial temperature Tempinit, initial adversary trajectory T0, mobility
matrix M , cooling rate α, distance limit lm

output: Final state Tbest
1 Temp ← Tempinit;
2 T ← T0;
3 Tbest ← T0;
4 steps ← 0;
5 while stopping criteria(T, Tbest, steps,M) is false do
6 Temp ← cooling schedule(Temp, α);
7 Tnew ← neighbor(T, lm);
8 if P (AAR(T,M), AAR(Tnew,M), T emp) ≥ random(0, 1) then
9 T ← Tnew;

10 if FAAR(T,M) > FAAR(Tbest,M) then
11 Tbest ← T ;

12 steps ← steps+ 1;

13 return Tbest
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Algorithm 3: stopping criteria

input : Current adversary trajectory T , best adversary trajectory Tbest, number
of steps steps, mobility matrix M

output: Stopping value bool
1 bool ← False;
2 constant ← 10;
3 stepsn ← |M |/constant; if steps % stepsn == 0 then
4 if (T changed ∨ Tbest changed)) then
5 bool ← True;

6 return bool

Algorithm 4: cooling schedule

input : Current temperature Temp
output: New temperature Tempnew

1 Tempnew ← αTemp;
2 return Tempnew

Algorithm 5: neighbor

input : Current adversary trajectory T , distance limit lm
output: Neighboring trajectory Tnew

1 point ← random choice(T );
2 new point ← neighbor point(lm);
3 Tnew ← (T );
4 Tnew(point) ← new point;
5 return Tnew
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6.4 Experiments

6.4.1 Dataset of real trajectories

We use a slight variation our mobility dataset introduced in Section 3.4.1 splitting the
GPS tracks into more urban areas, each pertaining to cities in Tuscany, spanning from
small/medium size cities to large urban areas. We thus obtained five datasets corre-
sponding to the cities of Florence, Pisa, Livorno, Siena and the urban area comprising
Pistoia and Prato. For each of the five datasets we perform two further preprocessing
steps. First, we assign each stop of each trajectory to the coordinates of the nearest
geographical census cell according to the Italian Bureau of Statistics (ISTAT). Second,
we discretize the temporal information of the trajectories obtaining the Mobility Dataset
Matrix introduced in Section 6.1. Table 6.1 summarizes the characteristics of the five
created datasets.

City Trajectories Total stops Mean stops per Individual
Pisa 3281 54295 16.548308
Siena 3463 90850 26.234479
Prato Pistoia 8651 275729 31.872500
Livorno 2068 28507 13.784816
Florence 9296 143040 15.387263

Table 6.1: Summary of five datasets characteristics

In the following we show results only for the cities of Florence and Pisa, as results for
the other three cities are very similar.

6.4.2 Generation of synthetic trajectories

Generative models of individual mobility aim at generating synthetic individual trajecto-
ries. One of the most widely accepted individual generative models is the Exploration and
Preferential Return (EPR) model [138]. This model is based on the probability that, at
any given time, an individual can either explore a new location or return to a previously
visited location. While the model is accurate in reproducing basic spatial statistics, it is
not able to capture in a realistic way the temporal regularities of human mobility. Sev-
eral improvements have been proposed on the EPR model, such as d-EPR [112], which
modifies the spatial selection of EPR using the collective Gravity model to instruct the
generative mechanism on the choice of locations. In our paper, we use DITRAS [113, 114]
a modelling framework for generating synthetic mobility trajectories. DITRAS separates
the generative procedure in two parts: first, a Markov-chain to generate the temporal
component of a trajectory, then the d-EPR model for the spatial component. DITRAS
has been proved to be able to capture a large portion of the characteristics of human
mobility. We use DITRAS to generate the synthetic trajectories needed for the analysis
of the risk produced by a synthetic adversary. To run the generative model, we use the
spatial tessellation of Tuscany according to ISTAT cells and its origin-destination ma-
trix. Having roughly 50,000 trajectories in the original data, we simulate the trajectories
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(a) Florence (b) Pisa

Figure 6.1: Distribution of Average Adversary Risk for real and synthetic adversaries in
Pisa and Florence compared to the Average Adversary Risk of a simulated adversary. In
blue we see the AAR for real adversaries, in orange we see the same value for synthetic
adversaries and in green we see the AAR for randomly generated adversaries. The vertical
red line indicates the AAR for the simulated adversary.

of 50,000 agents for one month, using a time slot duration of one hour. Then, we cut
the synthetic trajectories obtained to fit them in the five urban areas we use for our
experiments.

6.4.3 Experimental Results

For two of the three scenarios that we propose, the real adversary trajectory and the
synthetic adversary trajectory, we select the adversary with the highest AAR from a pop-
ulation of possible adversaries. In both cases we have a number of possible adversaries
equal to the number of real trajectories. Therefore, to understand how Simulated Privacy
Annealing performs with respect to the other two scenarios, we first look at the distri-
bution of the AAR for all possible real and synthetic adversaries, comparing it with the
AAR achieved by the simulated approach. As a baseline control we use a set of randomly
generated adversaries: random adversary trajectories are generated by selecting, for each
timestamp, a random location. We generate a number of random adversary trajectories
equal to the number of real and synthetic adversary trajectories.

Figure 6.1 shows that the AAR generated by the simulated adversary is considerably
higher than the AAR generated by real, synthetic and random adversaries. These results
are consistent across the five urban areas and demonstrate that an adversary that moves
similarly to real individuals does not raise particular privacy concerns. On the contrary,
an adversary that moves by optimizing the probability of co-location with real individuals
yields a significantly higher privacy risk. We can also see how real adversaries, on average,
have a slightly lower AAR than synthetic adversaries and both have a much lower AAR
than random adversaries. This result suggests that, in order to gather a truly damaging
background knowledge, a malicious adversary would need to move in a way that is much
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(a) Florence (b) Pisa

Figure 6.2: Cumulative distribution of Privacy Risk for individuals attacked by the best
adversary for the three movement scenarios: real, synthetic and simulated. In blue we
see the cumulative distribution of privacy risk for the best real adversary, in orange we
see the same value for the best synthetic adversary and in green we see the cumulative
distribution of privacy risk for the best randomly generated adversaries.

different than real individuals or likely individuals, like the ones generated synthetically.
Another interesting observation is that the difference between the AAR of the simulated
adversary and the AAR of the real, synthetic and random adversaries decreases as the
size of the data set increases (Florence is a bigger than Pisa). This difference will be also
highlighted in successive experiments.

We then look at how privacy risk distributes for individuals under attack. To do this,
we select the best adversary trajectory for each of the three scenarios that we introduced
in section 6.2. For real and synthetic adversary trajectories, we take the best performing
trajectories out of the possible population of adversaries (Treal and Tsynth). For the simu-
lated adversary trajectory we consider the result of our direct simulation (Tsim) using the
simulated privacy annealing procedure as explained in Section 6.3.3.

Figure 6.2 shows the cumulative distribution of privacy risk for the individuals in the
real data subjected to the attack of the best adversary trajectories for our scenarios. We
recall that privacy risk ranges in the interval [0, 1] and that it is essentially the reciprocal
of integers (1/2, 1/3, ...). The cumulative distribution of risk can be read as the portion
of individuals under a certain level of risk: the lower a curve, the higher the privacy
risk overall, as more individuals have higher privacy risk. We see that Treal does not
re-identify completely any individual: values beyond certain levels of risk are completely
lacking. Again, we observe that the simulated adversary Tsim presents a lower cumulative
distribution of privacy risk with respect to Treal, Tsynth and the random baseline. Again,
the difference in overall risk decreases as the dimension of the data set increases. These
results clearly show that Simulated Privacy Annealing allows us to generate an adversary
trajectory with an AAR higher than any other possible adversary, be it real, synthetic,
or random. Moreover, for bigger data sets, we have overall lower levels of privacy risk
because trajectories move over a more sparse and large territory. This suggests us that
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(a) Florence (b) Pisa

Figure 6.3: Variation of Average Adversary Risk in time for the most effective attackers of
each scenario. The risk is calculated as time passes and the trajectory of the corresponding
adversary grows in terms of stops and, therefore, background knowledge elements. In blue
we see the average produced risk for the most effective real adversary, in orange for the
most effective synthetic adversary, in red for the simulated adversary and in green for an
adversary generated with a completely random movement. Standard error is also shown
for each adversary every 50 timeslots.

the bigger the territory the harder it is for a malicious adversary to pose a threat to the
privacy of individuals represented in the mobility data set.

6.4.4 Simulated Annealing Analysis

The simulated adversary, though unrealistic in their movement, serves as a baseline for our
experiments. We find that the simulated adversary produces an AAR higher than the real
and synthetic adversaries, throughout all time slots and regardless the observation period
(Figure 6.3). The simulated adversary is hence an upper bound for AAR, meaning that
it is the worst possible single adversary for a mobility dataset. Moreover, we generated a
completely random trajectory and confronted the resulting AAR with the one produced
by a simulated adversary. We find that, while significantly higher than real or synthetic
adversaries, a completely random trajectory does not yield the same risk as a simulated
trajectory specifically obtained with the objective of maximizing average risk.

As Tables 6.2 and 6.3 show, the best simulated adversary’s trajectory (Tsim) has a
peculiar structure that significantly differs from the structure of real (Treal) and synthetic
(Tsynth) adversary’s trajectories. In particular, in Tsim, the mover changes the location at
every time slot and visits a large number of locations, as witnessed by the value of the
mobility entropy, which is much higher than the values of Treal and Tsynth. In other words,
the simulated approach, while it is more realistic than the worst-case scenario approach
traditionally employed by privacy risk assessment frameworks, and while producing the
highest AAR, generates an adversary trajectory that is inconsistent with real human mo-
bility trajectories. As Figure 6.3 shows, although the trajectory obtained with simulated
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Pisa real synthetic simulated
number of trips 113.000000 100.000000 744.000000
mean distance 4.693582 2.209392 3.733869
unique locs 49.000000 41.000000 426.000000
entropy 4.157489 3.101694 8.560665
radius 3.758526 2.035889 3.069468

Table 6.2: Mobility analysis of the most efficient adversaries, real and synthetic, in com-
parison with the simulated adversary, for the Pisa dataset.

Florence real synthetic simulated
number of trips 96.000000 109.000000 744.000000
mean distance 3.528668 1.646238 4.537649
unique locs 24.000000 34.000000 590.000000
entropy 2.191098 3.714275 9.102039
radius 2.764602 1.806907 3.757542

Table 6.3: Mobility analysis of the most efficient adversaries, real and synthetic, in com-
parison with the simulated adversary, for the Florence dataset.

annealing may seem random, we show that randomly generated trajectories do not pro-
duce the same risk as a simulated one. A visualization of the different best adversary
trajectories can be seen in Figure 6.4.

6.4.5 Performance analysis of Simulated Annealing

We find that the simulated annealing approach is robust with respect to both the limits
we impose on the movements of the adversary and the cooling rate used to decrease the
temperature (Figure 6.5(a) and Figure 6.5(b)).

Regarding the cooling rate, we test values ranging from 0.90 to 0.98. This relatively
low decreasing rate allow us for a broad exploration of the space of solutions. For both the
urban areas considered and varying the cooling rate, the risk produced by the simulated
adversary remains stable.

Regarding the distance limit, we test values ranging from 0.5 kilometers to 5 kilo-
meters. These are relatively strict limits, considering that in an urban area and 1 hour,
an agent can potentially cover a larger distance. We find that the risk produced by the
simulated adversary is stable. Again, for both urban areas and varying the distance limit,
the risk produced by the simulated adversary remains stable.

In Figure 6.6(a) and Figure 6.6(b), we investigate the evolution of the risk produced
by the simulated adversary’s trajectory as time goes by. To be completed, the annealing
process requires roughly 26 minutes for the smaller data set (Pisa), and more than 2 and
a half hours for the larger data set (Florence). Interestingly, for the larger data set, the
improvement emerges early in the annealing process. Conversely, for the smaller data set,
the improvements are evenly spread during the running time of the procedure. This useful
information can be exploited by an analyst to understand when the annealing process can
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(a) Florence real trajectory (b) Pisa real trajectory

(c) Florence synthetic trajectory (d) Pisa synthetic trajectory

(e) Florence simulated trajectory (f) Pisa simulated trajectory

Figure 6.4: Visualization of the worst adversary trajectories for the three scenarios. In
blue real trajectories, in orange synthetic trajectories, in red simulated trajectories.
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(a) Distance limit (b) Cooling rate

Figure 6.5: Variation of Average Adversary Risk by distance limit and exponential cooling
rate, for the cities of Florence and Pisa. Both parameters do not have a high impact on
the final result of the annealing procedure.

be stopped and to adjust the stopping criteria if time is a constraint in risk analysis.

6.4.6 Discussion

Our experiments show how it is possible to understand what damage a single malicious
adversary could do to a mobility data set. To provide a different perspective with re-
spect to existing and worst-cast privacy frameworks, we simulate the actual movement
of a potential adversary in several different ways, thus generating a more realistic back-
ground knowledge. From our experiments, we conclude that Simulated Privacy Annealing
provides a robust evaluation to the privacy risk that a malicious adversary can produce:
the AAR obtained with Simulated Privacy Annealing is much higher than the one ob-
tained with real or synthetic trajectories. In real-world scenarios, in which an adversary
moves similarly to a real individual, the people’s privacy risk would be lower than the risk
estimated by traditional frameworks.

Although Simulated Privacy Annealing complies with the natural spatio-temporal
constraints of human mobility, the simulated adversary trajectory vastly differs from the
realistic and the synthetic adversary trajectories. This difference emerges from both a
visual inspection of the trajectories and the analysis of their mobility patterns (Figure
6.4(f)). Simulated Privacy Annealing is stable concerning the input parameters: both the
distance limit and the cooling rate do not impact significantly on the final performance
of the simulated annealing. The main drawback of our approach is the high cost in terms
of execution times. While the Simulated Privacy Annealing procedure may take several
hours to complete, our findings seem to indicate that, for bigger data sets, convergence is
reached quicker with a reasonably efficient solution.

In summary, our aim was to tackle the issue of the generation of an adversary’s back-
ground knowledge in privacy risk assessment process by proposing a more realistic ap-
proach, tailored for human mobility data. Our proposal was to represent the behavior
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(a) Florence (b) Pisa

Figure 6.6: Variation of the Average Adversary Risk of the current solution and the best
solution in time for the cities of Florence and Pisa.

of an adversary as a trajectory, and we envisioned three possible scenarios with three
different methods for generating such trajectory: a scenario where such trajectory is a
real one, a scenario where such trajectory is generated with a generative model and one
scenario where such trajectory is built with the Simulated Privacy Annealing algorithm,
with the specific objective of maximizing average risk.

The drawbacks of our method can be traced to how time-consuming the simulated
annealing procedure can be depending on the size of the data set. While simulated
annealing gives us the advantage of proven optimality and, therefore, gives us an upper
bound to the privacy risk produced for individuals, our experiments also show that a
random trajectory may produce acceptable results in far less time. This may suggests
that further improvements could be done with our method, speeding up the computation
time by further tuning the algorithm.

Another possible improvement may come from different functions to evaluate privacy
risk: we chose the average adversary risk as it represents a fair way to synthesize the risk
for all the individuals involved, but other functions may be tested in order to evaluate risk
under different perspectives. Finally, our approach is tailored for human mobility data:
it would be interesting to develop a realistic approach for the generation of background
knowledge also to other kinds of data such as retail or network data.
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Chapter 7

Conclusions and Future Works

The privacy of personal data is currently one of the most discussed topics in data analyt-
ics. Some analysts have gone as far as calling data ”the new oil” 1. This valuable resource
attracts many interests and because of that the risk of a privacy violation for the people
represented in the data is growing day by day. At the same time, the interest of compa-
nies, enterprises and analysts is completely justified as data allow them to discover more
about human dynamics, and thus our society. Business decisions, new discoveries, and im-
provement to social well being are all important objectives that can be achieved through
the proper analysis of big data. It is therefore in the interest of all parties involved to
find suitable methodologies to protect individual privacy while at the same time allowing
for meaningful analyses of personal data. We think that privacy risk assessment is one of
the fundamental steps in building a privacy aware ecosystem. Through the use of privacy
risk assessment techniques, data holders can quantitatively evaluate privacy risk for the
data that they are managing and understand which individuals are at risk of a privacy
violation. Traditional privacy framework evaluate privacy risk on a worst-case scenario,
i.e., assuming that an adversary knows everything that he possibly can to re-identify an
individual. The more recent state-of-the-art PRUDEnce framework moves forward in an
interesting direction, allowing for the systematic evaluation of privacy risk, mathemati-
cally generating background knowledge and therefore allowing data holders and providers
to analyse privacy risk with different levels of background knowledge. While this is a
considerable step in the right direction, our aim with this thesis was to address some
of the drawbacks of PRUDEnce and other existing privacy risk assessment frameworks,
by proposing new models and algorithms for privacy risk evaluation. We showed how
PRUDEnce can be used in practice to assess privacy risk, by providing the mathematical
models for a number of privacy attacks on three different kinds of data. We introduced
two extension to the PRUDEnce framework. The first to integrate distance based record
linkage for retail data in prudence. The second to expand the data quality assessment
of PRUDEnce, by evaluating the changes in the distribution of data specific metrics in a
quantitative way. We then focused on one of the most important drawback for privacy
risk assessment: assessment time. Computational complexity of PRUDEnce is one of the
drawbacks of this framework. To tackle this shortcoming, we proposed a data mining

1https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-
oil-but-data
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approach for the prediction of privacy risk based on data specific individual features and
validated our approach on three different kinds of data, achieving good results in terms of
prediction performances and execution time. Finally, we departed from the PRUDEnce
framework, with the aim of proposing a different approach to privacy risk evaluation for
mobility data. Our goal was to provide a methodology to simulate the process with which
a malicious adversary gathers the information she will use to conduct a privacy attack.
We devise our model on mobility data, leveraging the natural spatio-temporal constraints
of this kind of data.

Our work can be extended in several interesting directions. For data quality assessment
we proposed a solution that at its core is flexible and applicable with different distance
evaluation functions. An interesting development could be a study of different functions
to compute the change in the distributions of data metrics with respect to the original
data under different privacy protection methods. For the prediction of privacy risk, we
adopted an approach based on individual features extracted from the data. Domain
knowledge is therefore paramount to correctly select the right features for the task, but
a domain expert may not be always available when evaluating privacy risk. Therefore,
a possible direction in which to extend our research is to devise a featureless approach,
that would enable data holders to predict privacy risk directly from raw data without
having to select and compute data specific features. The featureless approach should also
provide an explanation to the predicted risk, exploiting modern explanation techniques
for black box algorithms [62]. This goes in the direction of evolving privacy-by-design in
ethics-by-design. To fully comply with the current state of legislation (GDPR [1], data
analysis processes will have to be verified for compliance with a broad set of ethical values,
including privacy, unfairness, bias and discrimination detection. The hope is to use the
result of the assessment not only as awareness tool for users but also for guiding the
ethical design of the analysis process. The methods to describe and assess ethical values
can exploit both the formal specification of ethical values and the additional knowledge
derived by the ethicality assessment. These steps are of fundamental importance, as
we proceed into a future where data analysis and AI design will drive innovation and
social progress. Finally, for closing the gap between thorough privacy risk assessment and
realistic privacy attack simulation, our work on the modeling of adversarial behavior in
mobility data can be further improved, by looking at alternative ways to compute privacy
risk. Our model, which searches for the most efficient behaviour that a malicious adversary
could maintain to maximize risk with respect to a dataset, can be easily extended with
different risk functions to be optimized. Further development of this model could help a
data holder build a plethora of tools to quickly and efficiently assess privacy risk under
different assumption.

To conclude, we have proposed a set of models and algorithms to tackle the problem
of privacy risk assessment and improve on existing frameworks. We show that efficient
and quick privacy risk assessment is possible and can be conducted in a data driven way,
by considering the features and natural constraints of the data.
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[10] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. In Acm sigmod record, volume 22, pages
207–216. ACM, 1993.

[11] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. ACM
SIGMOD Record, 29(2):439–450, June 2000.

[12] Abdulatif Alabdulatif, Ibrahim Khalil, Mark Reynolds, Heshan Kumarage, and Xun
Yi. Privacy-preserving data clustering in cloud computing based on fully homomor-
phic encryption. In PACIS, page 289, 2017.

[13] Hayder Amer, Naveed Salman, Matthew Hawes, Moumena Chaqfeh, Lyudmila Mi-
haylova, and Martin Mayfield. An improved simulated annealing technique for
enhanced mobility in smart cities. Sensors, 16:1013, 06 2016.

[14] Swathi Ananthula, Omar Abuzaghleh, Navya Bharathi Alla, Swetha Prabha Cha-
ganti, Pragna chowdary kaja, and Deepthi Mogilineedi. Measuring Privacy in Online
Social Networks. International Journal of Security, Privacy and Trust Management,
4(2):01–09, May 2015.

[15] Henrik Andersen, MD Andreasen, and PØ Jacobsen. The crm handbook: From
group to multi-individual. Norhaven: PricewaterhouseCoopers, 1999.

[16] Alessandro Armando, Michele Bezzi, Nadia Metoui, and Antonino Sabetta. Risk-
based privacy-aware information disclosure. Int. J. Secur. Softw. Eng., 6(2):70–89.

[17] Michael Backes and Sebastian Meiser. Differentially private smart metering with
battery recharging. In DPM/SETOP, volume 8247 of Lecture Notes in Computer
Science, pages 194–212. Springer, 2013.

[18] Jane R. Bambauer. Tragedy of the data commons. 25, 03 2011.

[19] Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R. James, Maxime
Lenormand, Thomas Louail, Ronaldo Menezes, José J. Ramasco, Filippo Simini,
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Publishing trajectory with differential privacy: A priori vs. a posteriori sampling
mechanisms. In Hendrik Decker, Lenka Lhotská, Sebastian Link, Josef Basl, and
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