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Abstract

In this thesis we propose a novel class of deep Recurrent Neural Networks (RNNs)
explicitly extending the Reservoir Computing framework to the Deep Learning
paradigm. Thereby, we introduce the Deep Echo State Network (DeepESN) model
characterized by a hierarchy of randomized recurrent layers.

The introduction of randomized deep RNNs has provided tools to analyze deep
recurrent models separately from learning algorithms aspects.

The analysis and the experimental assessments conducted on DeepESNs highlighted
that layering in deep RNNs is intrinsically able to develop hierarchical, distributed
temporal features.

We evaluated our approach on controlled scenarios and challenging real-world tasks.
Overall, DeepESN models allowed us to design extremely efficient deep RNNs that

obtained performance competing with state-of-the-art approaches.
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Introduction

1.1 Motivations

In the last years, the design of novel architectures of neural networks aroused a
great interest in the machine learning research community. The aim of designing
neural network architectures is to provide rich and proper inner representations
of the input information in order to deal with tasks for which the information
is characterized by a compositional nature or by complex relationships between
entities. Since many real-world tasks are characterized by such complexity, the aim
of a proper design is relevant to improve the performance of the models.

In this thesis, we are interested in sequential domain applications. Such tasks
consist in processing data composed by sets of sequences. A sequence is a collection
of entities and an entity is represented by a feature vector. Moreover, the entities
that belong to a sequence have a relationship of serial order. In particular, if the
relationships represent temporal dependencies then the sequence is called time
series.

Among neural networks, Recurrent Neural Networks (RNNs) [108, 42, 41] rep-
resent a widely known class of neural networks suitable for learning in sequential
domains. In addition to feed-forward connections, such architectures are char-
acterized by feedback connections between neurons (i.e., recurrent connections).
Through the recurrent connections, they implement a dynamical system with a state
that represents the memory of the past input collected by the network. Recently,
RNNs obtained excellent performance in many application fields such as, time-
series prediction [23, 129], computer vision [74, 75|, language modelling [132, 183],
machine translation |29, 185] and speech recognition |73, 159] providing extremely
flexible solutions in processing different kind of complex sequences. Such models are
typically trained by gradient descent algorithms. Typical approaches in designing

RNNSs are focused on modelling long short-term temporal dependencies by proposing
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training solutions to improve gradient descent algorithms (by addressing vanishing
and exploding gradient issues [15, 146]) or by designing architectures able to learn
how much past information preserve inside the network (i.e., gated RNNs |88, 29,
31]).

An efficient class of RNN within Reservoir Computing (RC) framework is rep-
resented by Echo State Networks (ESNs). ESNs are composed by a non-linear
recurrent layer called reservoir and a linear output layer called readout. The ESNs
are randomized RNNs in which the recurrent layer is randomly initialized in order
to satisfy a stability condition on the dynamical system [191, 99, 213, 52|, while
the readout is trained by using direct methods. Since in ESN architectures the
output layer is the only trained part of the network, the learning algorithm results
much more efficient than typical RNN approaches in which all weights are trained.
The success of ESNs obtained in benchmark applications [98, 99| contributed to
arouse the interest of neural networks’ community (see [200, 121] for reviews). As
for general RNNs; also in RC field the analysis of long short-term dependencies
and memory capacity are relevant and studied for instance through the use of
leaky integrators [100, 96|, learning algorithms [44, 45| and minimum complexity
architectures [154, 155].

In the field of time-series processing, the temporal data is typically characterized
by different time scales. In this case, a time series can be seen as a composition of
signals characterized by different frequency components. Therefore, the quality of
the model’s performance is related to the capacity in representing multiple time-
scales dynamics. Accordingly, within RC literature, some works propose recurrent
architectures designed to model multiple time-scales dynamics [206, 211, 168, 89,
109, 139, 151, 17].

Despite the good results obtained on artificial tasks in RC field, the design of
ESNs for practical real-world applications can be difficult [150]. In particular,
the study of RC solutions for more complex tasks is an open research issue [194,
164]. Moreover, there is the need for more investigations in challenging tasks
characterized by high dimensional sequences and multiple time-scales dynamics
such as text processing [184] and polyphonic music [23].

Concerning the design of novel architectures aimed at enriching the inner represen-
tation of the input information, in the last decade, the study of deep neural networks
has stimulated the interest of the research community. Based on a hierarchy of
multiple layers, such models provide a distributed, hierarchical and compositional

representation of the input information allowing to address challenging real-world
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problems |73, 134, 185, 110, 72]. In particular, studies on deep RNNs opened a
way to develop novel models able to learn hierarchical temporal representations
from signals characterized by multiple time-scales dynamics [167, 83, 95, 82]. Some
works in literature aimed at obtaining multiple time-scales dynamics in layered
RNNs by forcing different time delays [83, 30] or subsampling between layers [74].
Previous works on hierarchical organizations in the Reservoir Computing (RC) area
[121, 200] are based on gradient descent approaches [95] or pipeline of progressively
trained ESN modules [193].

Although deep RNNs obtained good results in some applications area (see above),
there are still fundamental open issues about the architectural aspects that deserve
further investigations. Specifically, as a general issue underlying this work, there is
the need to understand whether and to what extent layering in recurrent architecture
deserves to be used. This can be investigated by studying and analysing the intrinsic
role of layering in RNNs. We can hence summarize the main open issues in deep

RNNs in the following points:

e The observation that stacking layers of recurrent units inherently creates
different time-scales dynamics at different layers [82, 144], and therefore a
hierarchical representation of the temporal information per se, deserves to be
investigated and analyzed. The same can be said about the impact of layering

on the model’s performance.

e Quantitative and qualitative measures are needed to study the intrinsic

characterization of layering in deep RNNs.

e The training of deep architecture and recurrent neural networks can be very
difficult. Indeed, deep RNNs implements few layers (< 10) in state-of-the-art

applications.

e The training of all recurrent weights in a deep recurrent architecture can be

Very expensive.

e Currently, the number of layers in deep recurrent architectures is determined
by trial and error approaches resulting in expensive procedures. Can the

analysis help us to find better design solutions?

e Concerning hierarchies of recurrent layers in RC computing, the study on the

effect of different parameters of RC models on the dynamical behavior and
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the performance of deep RNNs, without the supervised training of hidden

layers, is missing in literature.

Given such considerations, it emerges that the combination of RNN models, RC
paradigm and Deep Learning approaches, can provide a novel class of deep recurrent
architectures to address open issues related to characterization, efficiency and design

of deep RNNs. Overall, these aspects constitute the subject of the thesis.

1.2 Objectives of the Thesis

The main objective of the thesis is to introduce a novel class of deep RNNs within
the RC paradigm for the analysis and the developing of efficient deep recurrent
architectures able to process signals characterized by multiple time-scales dynamics.
The first aim is to analyze the role of layering in deep RNNs by studying how
the hyper parameters and the architecture topologies affect the intrinsic ability of
a multi-layered architecture in developing distributed and hierarchical temporal
features. In order to analyze and study such architectures, we intend to define
quantitative and qualitative measures based on temporal differentiation, entropy,
memory capacity and frequency analysis tools. After that, we aim to define an
automatic design algorithm to determine the number of layers of a deep RNN based
on frequency analysis tools.

A secondary objective is to provide efficient solutions for deep RNNs based
on hierarchical reservoir organization able to compete with the state-of-the-art
approaches in challenging real-world tasks characterized by multiple time-scales

dynamics.

1.3 Contributions of the Thesis

The main contributions of the thesis are summarized in the following.

Deep Reservoir Computing

We explicitly extended the RC framework to Deep Learning paradigm introducing
a novel class of randomized deep RNN architectures. Thereby, we investigated how
the RC parameters and the architecture topology influence the model performance
and the temporal features developed by recurrent architectures. First, we introduced

the DeepESN model characterized by a hierarchy of randomized recurrent layers.
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After that, for the analysis purpose, we compared DeepESN with standard ESN
(the shallow counterpart) and other architectural variants, namely DeepESN Input
to All (DeepESN-IA) and Grouped ESN. Our analysis highlighted that hierarchical
layering intrinsically improves the temporal representation in terms of multiple

time-scales differentiation, memory capacity and quantity of entropy in deep RNNs.

Analysis of deep RNNs through Deep Echo State Networks

The main model introduced in this thesis (i.e., DeepESN) is composed by a
hierarchy of non-linear recurrent layers and a linear output layer. The recurrent
layers are randomly initialized and left untrained, while the output layer is trained
by direct approaches. The output is computed through a weighted sum of the
states coming from all recurrent layers in the architecture. In such a way, the
training phase allows the model to weights the contributions of the multiple time-
scales dynamics involved in the architecture. Moreover, we introduced a pre-
training phase for deep RNNs based on Intrinsic Plasticity (IP) algorithm. Through
DeepESN approaches, we defined qualitatively and quantitatively measures to
analyze the intrinsic characterizations of layering in deep RNNs. The analysis showed
that layering is intrinsically able to develop a multiple time-scales differentiation
among the architecture without training recurrent weights and even with fixed RC
parameters. Moreover, it is possible to enhance the time-scales differentiation, the
memory capacity and the quantity of entropy by varying RC parameters over the

layers or by applying the IP for deep RNNs.

Analysis of deep RNNs through Linear Deep Echo State Networks

The Linear Deep Echo State Network (L-DeepESN) model is a DeepESN archi-
tecture that implements linear activation functions. Therefore, it is composed by
a hierarchy of linear recurrent layers. The learning is performed as in DeepESN.
Through L-DeepESN architecture, we performed frequency analysis on the network’s
states to study the structure of the temporal features that naturally emerges in
layered RNNs. The use of linear activations clarifies the analysis avoiding harmonic
distortion in the frequency spectrum. Moreover, linear recurrent layers allowed us
to find an algebraic characterization of the filtering effect progressively performed
by layered RNNs. The L-DeepESN approach outperforms the shallow counterpart
(i.e., an L-DeepESN with one layer) on recent challenging versions of time-series

prediction tasks characterized by multiple superimposed sinusoids. Overall, the
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spectral analysis revealed that the higher frequency components are progressively
filtered in the higher levels of the network. Thereby, the deep recurrent architecture
develops a multiple frequency representation of the input signal ordered along the
layered recurrent architecture. Therefore, it turns out that layering in deep RNNs
enables to intrinsically develop hierarchical and distributed temporal features even

without learning and also without the use of non-linear projections.

Design of deep RNNs through Deep Echo State Networks

We proposed a novel approach to analyze and design efficient deep RNNs through
signal processing tools. In particular, we defined an automatic design algorithm to
determine the number of layers of a DeepESN avoiding to perform an expensive
trial and error procedure. The proposed algorithm also provides an efficient tool to
analyze the kind of filtering effect progressively performed in the depth of a layered
recurrent architecture over the input signals. In addition to the typical low-pass
filtering effect, our empirical analysis showed that it is also possible to produce an
high-pass filtering effect by using the IP algorithm. Our design approach allowed
for the first time in literature to obtain competitive results with the state of the
art in challenging real-world tasks using deep RNN composed by tens of recurrent

layers (> 30).

Deep Echo State Networks for Real-world applications

First, we developed an original medical system for human balance assessment for
RC paradigm, comparing the ESN approach with basic neural networks and with the
DeepESN model. Then, we developed another medical application for the diagnosis
of Parkinson’s diseases comparing DeepESN with the shallow counterpart. Finally,
we evaluated DeepESN on challenging high-dimensional time-series tasks. The
DeepESN is evaluated in all considered tasks for different purposes. In general, the
DeepESN is compared to the shallow counterpart in order to assess the advantage of
layering in terms of performance. In speech recognition task, DeepESN is compared
with other RC approaches. Whereas, on polyphonic music tasks the DeepESN
is compared with fully trained RNNs typically used in DL community. In the
considered tasks, the DeepESN model always outperformed the other considered
RC approaches. Moreover, in most cases, DeepESN outperformed fully trained and
gated RNNs on time-series prediction tasks based on polyphonic music datasets

obtaining better training time performances. Overall, the proposed approaches
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allowed us to design efficient deep RNN models competitive with the state of the

art on challenging real-world tasks.

1.4 Plan of the Thesis

This thesis is organized in 6 Chapters.

In Chapter 1, we introduce the most relevant aspects of the thesis concerning

motivations, objectives, contributions, plan and origins of chapters.

In Chapter 2, we present the basic research aspects from RNN and RC background
which are of specific interest for this thesis. In Section 2.1, we briefly describe
the main aspects regarding machine learning and neural networks approaches. In
Section 2.2, we present feed forward neural networks for flat domains. In Section 2.3,
we introduce the typical RNN approaches for sequence processing. In Section 2.4,
we introduce the randomized RNNs with a particular interests to ESN model within
the RC framework. Finally in Sections 2.5, 2.6 and 2.6.6, we present the recent
studied aspects of Deep Learning paradigm with a particular focus on deep RNN
models and then we discuss the open issues about the design and the analysis of

deep recurrent architectures.

In Chapter 3, we introduce a novel class of deep RNNs that we called Deep
Reservoir Computing defining and analysing randomized deep RNNs characterized
by many recurrent layers connected to each other and implemented within the RC
paradigm. In particular, in Section 3.2, we introduce the DeepESN model. In Sec-
tion 3.2.1, we define the baselines (i.e., DeepESN-IA and GroupedESN models) in
order to analyze and compare different kind of randomized deep RNN architectures.
Accordingly, in Section 3.3, we study the intrinsic temporal characterization of deep
RNNs using deep RC models. Moreover, in Section 3.4, we define the L-DeepESN
model for the analysis and the study of the characterization of the temporal features

in layered recurrent architectures.

In Chapter 4, we introduce a design approach to buid up efficient deep recurrent
architectures and to analyze the depth of deep RNNs. In Section 4.2, we define
the proposed design algorithm, and then we evaluate it on a controlled scenario.

For the sake of the organization of this thesis, the evaluation of such approach on
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real-world applications is described in Chapter 5.

In Chapter 5, we introduce a series of tasks based on RC paradigm and DeepESN
model. First, in Section 5.1 we develop a medical system for clinical analysis of
human balance assessment based on RC models, comparing the ESN model with
basic neural networks approaches. Then, in Section 5.1.4 we compare the ESN
approach with the DeepESN model on the baseline exercise of balance assessment
task. In Section 5.2, we present a method for the diagnosis of Parkinson’s dis-
ease based on DeepESN. In Section 5.3 we assessed and analyzed the DeepESN
model on challenging real-world tasks characterized by high-dimensional time series
concerning speech recognition and polyphonic music tasks. On such tasks, we
evaluated and analyzed the design approaches for DeepESNs defined in Section 4.
In particular, we compare the DeepESN model with other RC approaches on
the speech recognition task in Section 5.3.2. Finally, we compare the DeepESN
approach with typical fully trained RNNs on 4 polyphonic music tasks in Section 5.4.

Finally, Chapter 6 draws the conclusions of the thesis.

1.5 Origin of the Chapters

Most research studies introduced in this thesis are already published on conference

proceedings and as journal papers:

e the DeepESN, DeepESN-TA and GroupedESN models are introduced in the
journal paper [61], which extends the preliminary work published in [54]. In
particular, the Chapter 3 is based on works presented in [61, 63];

e the L-DeepESN model presented in Section 3.4.1 is published in [63];
e Chapter 4 is based on the journal paper presented in [62];

e the application concerning the diagnosis of Parkinson’s presented in Section 5.2
is published in [60];

e the system for the automatic berg balance scale estimation presented in
Section 5.1 is published in [6, 64, 65];
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e the experimental assessments on speech recognition and polyphonic music
tasks described in Section 5.3.1 are published in [62, 59].
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Deep Learning Background

In this Chapter we review the main aspects concerning the Recurrent Neural
Networks field with a particular interest in Reservoir Computing paradigm and
Deep Learning background. In Sections 2.1 and 2.2 we briefly introduce the Machine
Learning field and Neural Networks for flat data processing. In Section 2.3, we review
typical Recurrent Neural Network models for sequence processing. In Section 2.4,
we introduce randomized Recurrent Neural Networks with a particular interest in
Echo State Network models within Reservoir Computing paradigm. In Section 2.5,
we summarize the main aspects of Deep Learning models. Finally, in Sections 2.6
and 2.6.6, we describe the principal open issues in Deep Learning with a particular

focus on deep recurrent architectures.

2.1 Machine Learning and Neural Networks

Machine Learning (ML) is a sub field of Artificial Intelligence and it deals with
the implementation of systems and algorithms that are based on observations. ML
concerns the analysis and development of algorithms that can learn from data in
order to estimate and make predictions [130]|. Learning can take place by capturing
features of interest from examples, data structures or sensors, to analyze and evalu-
ate the relationships between the observed variables. ML models are developed in

order to fit the data and to generalize instead of following static program instructions.

In ML, the data is typically composed by observations, in which each observation
is a fixed sized vector of variables. The typology of data can be divided into
unstructured and structured. An unstructured domain is characterized by flat
collections composed by a set of observations without dependencies between them,
while structured domain is characterized by collections of observations that have

relationships between them such as sequences, trees and graphs.
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Typically, a model can be learned in unsupervised or in supervised way. In
unsupervised learning, the model is trained in order to discover how data is orga-
nized. Some instances of unsupervised learning tasks are clustering, dimensionality
reduction and data visualization. In the case of supervised learning, the model is
trained to infer a function from a training set. The training set is a labeled data

collection that represents the input-output relations to be learned for the model.

In supervised learning there are two common tasks, classification and regression.
In classification tasks, the target output is a vector that represents the class to
which the input belongs, while in regression tasks, the target output is a vector
of real values of an unknown continuous function of the related input. Let U be
the input space and Y the output space. The supervised learning task consists in
finding the best approximation of the unknown function f : 44 — Y, on the basis of
a training set Tyaim = {(u(4), y(i))}%, where Ny is the number of available training
examples, u() is the i-th input pattern and y (i) = f(u(7)) is the i-th target pattern.
Supervised learning often consists in finding the free parameters w of hypothesis
function h,, : Y — Y which approximates the function f. The hypothesis space
of the learning model is H = {hy : U — Y|w € W}, where W is the parameters
space. The computed function from the learning machine is y = hyw(u). The loss
function L : U xU — R is used to measure the distance between actual and desired

value of the computed function. The learning goal consists in minimizing the risk

functional
Mw:/ﬂmmeRﬂmm (2.1)

where P, ,(u,y) is the joint cumulative distribution function for u and y. Typically,
the distribution of P, y(u,y) is unknown, therefore, minimizing directly R(w) could
be not possible. Since only the training set Ti,.;, is known, a very common method,
based on the principle of empirical risk minimization, is minimizing the loss function
L on the training set examples. Thus, the learning algorithm of the model consists
in minimizing the empirical risk Remp(W) which is an approximation of the risk

functional in Equation 2.1:

Ranp(W) = - 3 L0y, (i), (2.2)

The relationship between R(w) and Remp(W) is studied by the Statistical Learning
Theory [199, 198].
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The class of ML that we mainly take into account in this thesis is artificial
Neural Networks (NNs). Artificial NNs are a family of learning models inspired by
biological NNs [79]. NNs can be defined by a directed graph, where the vertices
represent the neurons and the edges represent the connections between them. Each
neuron is associated with an activation function and each connection has a weight
value. Omitting the bias terms in the following formulas for the ease of notation,

the output value y € R of a neuron is computed by the following equation:

y=f(wha) = f(z w (i) u(i)), (2.3)

where f is the activation function of the neuron joined with Ny incoming edges,
RMv is the input space, u € RM is the input vector and w € R is the weight
vector of the incoming edges. Figure 2.1 shows a typical architecture of an artificial

neuron connected to an input layer. The neuron is fed from a pool of input neurons.

Neuron

(Y

Input Neurons

Figure 2.1: A typical architecture of a neuron in artificial NNs class.

Thereby, the output computation is divided in two steps, the former is a linear
combination between the vector of weights w and the input vector u and the latter
is an activation function that typically computes a non-linear transformation. A
pool of Ny neurons is called layer. Figure 2.2 shows the architecture of a layer.

The computation of the output vector y € RYY is performed as follows:

Output Vector
Layer’s Weights

Input Neurons

Figure 2.2: A typical architecture of a layer in artificial NNs class.
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FOZ W (Ld) (i)
y = f(Wu) = : : (2.4)
FOZL W(Ny, i) u(i))

where f is the activation function, u € R is the input vector and W € RN *Mv
is the matrix of weight values that represents the incoming connections of the layer.
The layer is called hidden layer if it is positioned between other two other layers. If
the layer computes the output of the network, it is called output layer. A neural

network architecture can be composed by many layers connected between them.

2.2 Feed-forward Neural Networks

Feed-forward Neural Networks (FFNNs) are a class of NNs in which the informa-
tion is propagated from the input layers towards the output layer without feedback
connections. They are able to process flat data such as fixed sized vectors of
variables. Multi-layer Perceptrons (MLPs) [79] are a typical class of FFNNs. They
are composed by a stack of non-linear hidden layers which are fully connected by
feed-forward connections.

Figure 2.3 shows the architecture of an MLP with a single non-linear hidden

layer. Omitting the bias terms for the ease of notation, the output of the network

-

Figure 2.3: Architecture of MLPs with a single non-linear hidden layer.
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is computed as follows:
Y = Wout f(Whiddent), (2.5)

where f is the activation function (typically sigmoidal functions), u € R is the
input pattern, y € RM is the output pattern, Wiiggen € RV2*Nv is the hidden
weight matrix (where N is the number of hidden units) and W, € RV *Ne ig the
output weight matrix. MLPs are typically trained with gradient-based techniques
such as BackPropagation (BP) and Stochastic Gradient Descent (SGD) [158, 22,
21, 107]. An MLP with at least one non-linear hidden layer is featured by universal
approximation capabilities [37, 91]. Although MLPs can approximate a wide variety
of continuous functions, these theoretical results does not provide a procedure to

learn the parameters of the model.

2.3 Recurrent Neural Networks

In this Chapter we introduce typical Recurrent Neural Network models for
sequence processing. In Section 2.3.1, we describe the causal and stationary
transductions on sequence domains that characterize the computation process
of Recurrent Neural Networks. Then, in Section 2.3.2 we introduce the simple
Recurrent Neural Network model. Finally, in Section 2.3.3 we review the most

important characteristics of gated Recurrent Neural Networks.

2.3.1 Causal Transactions for Sequence Processing

Here we introduce a typical sequence processing approach implemented by causal
and stationary transductions on sequence domains. In the following, we denote as
s(n) = [s(1),...,s(n)] € U* a sequence of length n > 1, where U is the input label
space. The element s(1) represents the oldest entry and s(n) is the most recent one.

A transduction on sequence domains T : U* — Y* can be computed by recursively
applying encoding transduction 7Ty : U* — X* and output transduction 7oy : X —
Y where X and ) are state and output label spaces. In particular, the encoding
transduction is implemented through the local transition function 7 .U X X — X

defined for ¢t =1, ..., n as follows:
x(t) = T(u(t),x(t — 1)), (2.6)

where an initial state x(0) € X is defined. Now we can define the global state
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transition function 7 : U* x X — X as the reflexive and transitive closure of 7.
Function 7 corresponds to the extension of 7 to paths in finite automata [90].

Accordingly, function 7 is defined as:

x(0), if s(u) = ]
r(u(n), 7([u(l),...,u(n — 1)],x(0))) if s(u) = [u(l),...,u(n)],
(2.7)
where 7(s(u), x(0)) is obtained by recursively applying the state transition 7 to input
sequence s(u). Thereby, given an initial state x(0) € X, Tene(s(u)) = 7(s(u), x(0)).
Then, the output transition 7,y is computed by locally applying the output function
Jous : X = V-
Y(t) = Gour(x(1)), (2.8)

where y(t) € Y is the t-th element of the output sequence y(s) € V*. Equation 2.8
is used in the case of sequence-to-sequence transductions. In the case of sequence-
to-element transductions the output sequences degenerate into a single element
y(s) € Y. This can be obtained defining a state mapping function y : X* — X. A
typical approach is referred as root state mapping and it consists in selecting the
last element of the state s(x) = [x(1),...,x(n)] € X*:

x(s(x)) = x(n). (2.9)

Another state mapping function that we consider in the following is called mean
state mapping. It is obtained by computing over the length n of the state s(x) =
[x(1),...,x(n)] € X*:

(st = 2= X0, 210

2.3.2 Simple Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [108, 42, 41| are a class of NNs which
implement feedback connections between neurons. They are an extension of NNs
for sequence processing. In particular, they are suitable to process sequences of
observations such as time series. RNNs can compute causal (the calculation depends
only on the past), stationary (the system does not change over time) and adaptive
(all weights are learned) transductions on sequence domains. Recurrent connections
allow the neurons to store memory by means of a temporal context that represents

the encoding of the input history. This provides a system that potentially can keep
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the entire information of an arbitrary period instead of having a fixed time length.
Figure 2.4 shows the architecture of a simple RNN (SRN).

Input Layer Recurrent Layer Output Layer

Figure 2.4: Architecture of SRN model.

Omitting the bias terms for the ease of notation, the state of the network

x(t) € RV at time ¢ > 0 is computed as follows:
x(t) = T(u(t),x(t — 1)) = f(Wiu(t) + Wx(t — 1)), (2.11)

where u(t) € RM is the input pattern at time ¢, f is usually a non-linear activation
function of sigmoidal type, Wi, € RV=*M ig the matrix of the input weights,
W € RVNr*Nr ig the matrix of recurrent weights and RV is the state space. The
initial state x(0) € RV% is typically defined as the null vector 0. The output of the

network at time-step t is computed as follows:

Y(t) = four(Woux(t)), (2.12)

where R™ is the output space, y(t) € R™ is the output pattern at time-step t,
Wt the matrix of output weights and f,.¢ can be a linear or non-linear activation
function. Training is performed using standard algorithms in the field of RNNs
[196] [79], such as BackPropagation through time (BPTT) [203].

2.3.3 Gated Recurrent Neural Networks

RNNs can have problems to manage long term dependencies because the gradients
propagated over many time-steps tend to vanish or explode [146]. A way to manage
long term dependencies is to introduce in the models leaky integrator units [100,
209|. Indeed, the leaky parameter can control the contribution of the past input
in the state dynamic. However, the leaky parameter is fixed and it is not learned
by data. A solution in which the integrator is not fixed consists in using trainable

weights in a gated self-loop. A class of NNs that implements a sort of adaptive
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integrator units (i.e., gates) is called Long Short-Term Memory (LSTM) [88]. Figure
2.5 shows the architecture of an LSTM cell.

u(t) x(t—1) u(t) x(t—1)
ANV \
Input Gate ("jor Output Gate (g

u(t) \ Cell State
—o—{c(t)—(/ )—x(t)

fo Forget Gate
/ N\
u(t) x(t—1)

Figure 2.5: A typical architecture of LSTM cell.

In the following equations, we omit the bias terms for the ease of notation. The
LSTM cell is composed by an input gate ig(t), a forget gate fg(t), an output gate
og(t), the state of the cell c(t) and the output of the cell x(¢)'. Overall, the LSTM
architecture implements two state variables, c(f) and x(¢). In particular, since
x(t) is passed to the output layer or more generally to the next layer, it can be
considered the state of the LSTM layer, while, the cell state c(t) is visible only
between the cells of the layer. In formulas the LSTM cell is defined by the following

equations:
) ig(t) = o(We,u(t) + Wex(t — 1)), (2.13)
fg(t) = o (W u(t) + Wex(t — 1)), (2.14)
c(t) = fg(t) © c(t — 1) +ig(t) © tanh(Wiu(t) + Wx(t — 1)), (2.15)
og(t) = o(W,u(t) + WoBx(t — 1)), (2.16)
x(t) = tanh(c(t)) ® og(t), (2.17)

where ©® is the multiplication operation between vectors. The matrices Wj, and
W represent the input and the recurrent weights of the network. Moreover, the

matrices W8, W and W°8 represent the input weights of input, forget and output

"'We used different variable names with respect the typical LSTM notation to keep the same
notation used in this thesis for RNNs in Section 2.3.2.
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gate, respectively. Finally, the matrices Wie , Wie and Wes represent the recurrent

weights of input, forget and output gate, respectively.

The input gate ig(¢) and the forget gate fg(t) regulate the contribution of the
current input and the past of the cell state. While, the output gate og(t) adjusts
the passage of information between the cell state and the cell output. From
Equations 2.15 and 2.17 we can see that the update of the state variables, c(t)
and x(t) follows the state-transition mechanism (i.e., the new state depends on the

previous state and the new input).

The training in LSTMs is performed as in standard RNNs through BPTT
algorithms, however, the gated self-loop of LSTM cells allow to attenuate the
vanishing gradient problem [88, 15|. Literature studies showed LSTMs learning
long-term dependencies more easily than SRNs first on artificial tasks [15, 88, 87|

and then also on challenging sequence processing tasks [73, 185].

The downside of LSTMs is that they have a big number of parameters, since they
implement input and recurrent weights for each gate. In order to simplify gated
architectures without losing the ability to learn long-term dependencies, further
works introduced Gated Recurrent Units (GRUs) |29, 31|. Figure 2.6 shows the
architecture of a GRU cell.

In particular, they reduce the number of state variables (from 2 to 1) and the
number of gates (from 3 to 2). Thereby, the GRU architecture implement an update

gate z and a reset gate r defined respectively as:

z(t) = o(Wiu(t) + Wax(t — 1)), (2.18)

u(t) x(t—-1)
N/
Reset Gate @ Cell State

x(t — 1)—»&)——»@—»

u(t)”

Update Gate

/\

u(t) x(t—-1)

Figure 2.6: A typical architecture of LSTM cell.
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r(t) = o(Whu(t) + Wx(t — 1)). (2.19)

Moreover, the computation of the state x(t) at time-step ¢ is performed as follows:
x(t) = (1 —z(t) ©x(t — 1) + z(t) © o(Wiu(t) + W(r(t) © x(t — 1))).  (2.20)

Similarly to leaky integrator units (see parameter a in Equation 2.21), the update
gate z controls the velocity of the dynamics of the state. Moreover, the reset state

r determines the quantity of the past state to discard.

2.4 Randomized Recurrent Neural Networks

Randomized NNs are characterized by the use of random methods applied to NNs
in which only some parts of the architecture are trained [50, 163, 68|. Typically,
they are composed by untrained hidden layers randomly initialized and used to
project the input patterns into a high dimensional feature space in a non-linear way.
The training is performed on the output layer (i.e., readout) exploiting the hidden
layers’ representation. Pioneering works on Perceptrons [18, 157, 156] explore
architectures composed by layers with random weights. In particular, in some
versions of Perceptron, the connections between retina sensory units (input layer)
and associator units (hidden layer) are randomly initialized while the last layer
is iteratively adapted with the Perceptron learning rule. The use of randomized
connections between layers in NNs is exploited on a number of early works [48,
169, 1]. In particular in [169], it is investigated the performance of an MLP with
one hidden layer in which the values of the weights are selected randomly from a
uniform distribution in the range [—1,+1] and the output layer is trained using
direct methods. This work shows that it is possible to achieve good classification
results without training all the network’s weights. Another method that uses a
randomization approach is called random-vector functional-link Net [142]. In this
model, the representation developed by the hidden layer is formed by concatenating
the output of the random projection with the input vector. Thereby, the readout
can also directly exploit the input information. Other architectures that exploit
non-linear random projections and direct learning methods in different forms of
FFNNs are Radial Basis Functions with random centers [24]|, Extreme Learning
Machines [92], the No-Prop algorithm [205] and Stochastic Configuration Networks
[202].

In randomized RNNs; the paradigm is extended to sequence processing [68].
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In this case, recurrent layers are left untrained and randomly initialized. The
recurrent part of the network encodes the input in a state-based memory exploited
by the readout to compute the output. In the case of discrete-time, the encoding
process performed by a recurrent layer can be seen as a non-autonomous dynamical
system described by means of iterated functions. One of the fundamental issues
in randomized RNNs is to ensure the stability of the encoding process. This can
be obtained by imposing contractive properties in the initialization of recurrent
layers. A well known research field that studies these aspects regards randomized
RNNs implemented within Reservoir Computing (RC) [200, 121] paradigm. In the
following, we focus on RC framework with a particular interest to the Echo State
Network (ESN) [99] model.

2.4.1 Reservoir Computing and Echo State Networks

RC |200, 121] is an efficient paradigm for the design and implementation of
RNNs. The model is composed by two components, a dynamic layer with recurrent
connections called reservoir and a linear output layer called readout. Usually, the
reservoir contains a large number of recurrent units, connected to each other in a
sparse manner. The recurrent weights of the reservoirs are randomly initialized
according to specific criteria and then left untrained [98]. In particular, small
weights initializations characterize a contractive dynamics of the network state |77,
189, 191, 192]. The readout is composed by linear units and it is trained by direct
methods [200, 121]. In these models, the computation is characterized by causal,
stationary and partially adaptive (not all weights are learned) transductions in
which the encoding function is realized by a fixed recurrent layer (the reservoir) and
the output function is realized by a linear output layer (the readout). The key idea
of RC paradigm is to exploit simple properties of dynamical systems allowing the
reservoir to discriminate among different input histories even without the training
of recurrent weights [52]. Thereby, only the non-recurrent part (the readout) is
trained. Overall, the RC framework provides theoretical and empirical background
to analyze recurrent architectures and at the same time to design efficient RNN
models. The RC paradigm includes several RNNs classes, such as Echo State
Networks (ESNs) 98, 99, 100], Prediction Fractal Machines (PFMs) [190, 191],
Liquid State Machines (LSMs) [125], BackPropagation Decorrelation [177, 179] and
Evolino [168]. In this thesis, we focus on the ESN model.
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Echo State Networks

The ESN model is an efficient implementation of the RNN approach within the
RC framework. The architecture is composed by two parts, a non-linear recurrent
layer called reservoir and a linear output layer (the readout). The reservoir is
randomly initialized and left untrained, while, the readout computes the output of
the network exploiting the temporal state representation developed by the reservoir

part. Figure 2.7 shows the ESN architecture.

Randomly Initialized Trained

Ny
Input Layer Reservoir Readout

Figure 2.7: The ESN architecture.

In this thesis, we consider a variant of ESN called Leaky Integrator ESN (LI-ESN)
[100] in which the resevoir contains leaky integrator units. Omitting the bias terms

in the following formulas for the ease of notation, the state transition function of
LI-ESN is defined as follows:

x(t) = T(u(t),x(t — 1)) = (1 — a)x(t — 1) + a tanh(Wi,u(t) + Wx(t — 1)), (2.21)

where u(t) € R and x(t) € RM® are respectively the input and the reservoir
state at time ¢, Wy, € RV=*M ig the matrix of the input weights, W € RNr*Nr
is the matrix of the recurrent weights, a € [0, 1] is the leaky parameter and tanh
represents the element-wise application of the hyperbolic tangent activation function.
In the following, we also use the term shallowESN to refer to LI-ESN model.

Echo State Property

The reservoir parameters are initialized to satisfy the Echo State Property (ESP)

[99, 213, 52]. This initialization determines asymptotic properties in the state
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dynamics encoded from input sequences. It is defined as follows:

Vs, (u) = [u(1),...,u(n)] € (RY)" vx,x' € RN~ . (2.22)
|17 (sp(u),x) — 7(sp(u),x")|| = 0 with n —o0,

where s,,(u) = [u(1),...,u(n)] is an input sequence of length n and 7 is the global
state function defined in 2.7. Equation 2.22 means that at the increasing of the
sequence length, the norm of the difference between the two states, i.e. their
distance, encoded starting from two different initial states tends to 0. Thereby,
the state dynamics progressively lose the information regarding the initial states
of the network focusing the encoding process on the input information. The ESP
is also related to the contractivity of the state dynamics that allows the ESN
to be an universal approximator of finite memory machines [192, 52|. Moreover,
the contractivity bounds the dynamics of the ESN in a region of the state space
characterized by Markovian properties providing an intrinsic suffix-based clustering
of sequences [192, 51, 52|. A necessary condition for the asymptotic stability of the
null state with zero input and a sufficient condition for the ESP are presented in
[98]. The former condition consists in setting the spectral radius (i.e., the maximum

absolute eigenvalue) of W less than 1:
p(W) < 1, (2.23)

while the sufficient condition for ESP states that the largest singular value of W
must be less than 1:
o(W) < 1. (2.24)

The largest singular value is the euclidean norm of W then the sufficient condition
2.24 is equivalent to |[W|, < 1. In practical applications the condition on the
spectral radius 2.23 is preferred, since the sufficient condition is considered too
restrictive [98]. A more recent work provides a less restrictive sufficient condition

for ESP in terms of diagonal Schur stability [213].

In the case of LI-ESN the values in matrix W are randomly selected from a

uniform distribution over [—1, 1], and then rescaled to satisfy the following condition:
p ((1 —a)I+ aW) <1 (2.25)

The values in matrix Wj, are randomly selected from a uniform distribution over

[—scaleyy,, scaley,|, where scaley, is the input scaling parameter.
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In experimental assessments, for each reservoir hyper-parameterization a number
of different (independently initialized) instances are considered, all with the same
reservoir hyper parameters, but generated using different random seeds. In the

following, we refer to such instances as reservoir guesses.

Output Computation and Training of ESNs

The output of the network at time ¢ is computed through a linear combination

between the readout and reservoir states, as follows:
y(t) = Woux(1). (2.26)

Readout training consists in finding the values of W, such that the norm

[WoutX — Yiarget||3 is minimized, which is equivalent to solving the linear system:
WoutX - Ytarget> (227)

where X = [x(1), ..., x(N7)] € RV=*N7 is computed by state trasition function 2.21,
Yiarger = [¥(1), ..., y(Nr)] € RM*NT i5 the matrix of target values of the training
set and Np is the number of samples of the training set. Typically, the training
is performed using pseudo-inversion or ridge regression methods [121] computed
through singular value decomposition (SVD) and normal equations approaches. In
the case of pseudo-inversion through normal equation the output weight matrix

Wt is computed in the following way:
Wout - YtargetXT (XXT + )\’I’I)_ly (228)

where A\, > 0 € R is the Tikhonov regularization term.

Computational Cost of ESNs

Since in ESN architectures only the output layer is trained, they are considered
very efficient models. The cost of computing the state matrix X from an input

sequence of length Nr is the following:

Cencoding = O(N]%LNT) (229)
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Moreover, typical pseudo-inverse approaches used for the training of readout require:
Coiny = O(min(NpN7, NaN7)). (2.30)

Therefore, considering the case in which Ng < Np, the cost of training can be
rewritten as follows:
Creadout = O(NENT). (2.31)

Overall, the cost of training ESNs is:
Cesn = Lencoding + Creadout = O(N]%NT) (232)

For the learning of fully trained RNNs the network’s state is calculated for each
number of epochs Ng. Moreover, in this case, the learning algorithm computes also
the delta rule for each time-step of the input sequence. Then, the total cost results

as in the following:
CruiyrnN = NEND Cencoding = O(NzpNrNpNp), (2.33)

where Np is the cost of delta rule computation.

Overall comparing Equation 2.33 with Equation 2.32 we can note that ESNs are
extremely more efficient than fully training RNNs;, since in learning algorithms of
typical RNNs the cost of the state computation in Equation 2.29 is also multiplied
by the cost of the delta rule and by the number of epochs (typically in the order of

thousands).

Intrinsic Plasticity Pre training in ESNs

In the context of RC, a well known unsupervised approach for reservoir adaptation
is called Intrinsic Plasticity (IP) [171, 178, 195, 121|. This approach is based on
maximizing the entropy of the output distribution of the reservoir units. Specifically,
IP aims at adjusting the parameters of the activation function (e.g., gain and bias
values) in a way that the activation function distribution fits the maximum entropy
distribution of the reservoir units. As explained in [171], since reservoir units have
a distribution with support [—o0, +00], the distribution with maximum entropy is
the Gaussian. The adaptation of the parameters is obtained through an iterative
algorithm that minimizes the Kullback-Leibler divergence between the activation

function distribution and the target distribution. In our context, the application of
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the reservoir activation function for a generic reservoir unit v can be expressed as
f(v) = tanh(gv + b), where g and b are respectively gain and bias vectors of the

activation function f. Therefore, Equation 2.21 is rewritten as:

x(t) = 1(u(t),x(t — 1)) = (1 —a)x(t — 1) + atanh(g Wi, u(t) + Wx(t — 1)+ b).

(2.34)
The IP training procedure is performed on each reservoir unit on the basis of the
IP rule [171] defined as:

Ab = —np(—(pp/0fp) + (f(v)/otp) (201 + 1 — f(v)* + pe f(v))),

(2.35)
Ag = T]Ip/g+AbU,

where pp and opp are the mean and the standard deviation of the Gaussian
distribution (that is the target of the adaptation process), mp is the learning rate,
Ag and Ab respectively denote the update values for gain and bias of the IP

iterative learning algorithm.

Applications of ESNs

The success of ESNs obtained in artificial tasks [98, 99, 200, 52| characterized by
chaotic time-series prediction and signal classification has contributed to stimulate
the interest of neural networks’ community:.

For what regards real-world applications, ESNs obtained good results on tasks
characterized by noisy, continuous and heterogeneous signals. Examples of these
kind of tasks are represented by Human Activity Recognition [141, 131, 140] and
Health Informatics [65, 64, 149, 113].

A relevant application field for ESN models concerns time-series prediction.
Applications for the prediction of Market prices are presented in [119, 38, 35].
Forecasting systems for the prediction of person movements are introduced in [81,
7]. Other works explore spatio-temporal forecasting for meteorological prediction
[128, 210].

Moreover, the ESN models are widely used to develop different Control System
applications 28] such as, robotic arm control [197], pneumatic muscle control [208],
oil well control [103] and motor control [160].

The ESN model is also implemented in many robotic applications such as robot
modelling [148], navigation [78|, localization [40] and soft robotic arm controller
[112].
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The applications described above are characterized by small /medium datasets.
Some works attempted to address applications characterized by a medium /big
quantity of data. Relevant results are obtained by ESN architectures in continuous
speech recognition task [194, 193]. Other works propose the use of RC approaches
in computer vision tasks [207, 101, 164]. A difficulty of ESN architectures on
tasks characterized by medium /big datasets is that they needs a bigger number
of recurrent units than other RNN approaches. In particular, in large reservoir
the issues are represented by the computational time needed for the initialization
procedure and by the quantity of memory required for the state computation of

the network.

2.4.2 Architectural Design in RC paradigm.

Depending on the task, architectural factors in RC paradigm are crucial to achieve
rich dynamics of the global transition function corresponding to good predictive
performance [52]. Most works are focused on the study of the recurrent part of RC
models. In particular, different configurations of recurrent connections can affect
the memory capacity of the model and the ability to represent temporal inputs
characterized by multiple time-scales dynamics. The study of recurrent connections
is typically performed analyzing architectural topologies and considering different
algebraic characterizations of recurrent matrices.

Studies presented in [206, 211] propose solutions to overcome difficulties encoun-
tered by standard ESNs in representing signals characterized by multiple time-scales
dynamics. Some aspects of these studies are related to the kind of interconnec-
tion between neurons. In order to decouple the dynamics of the neurons, and
then to enhance the multi-scales processing, some works explored neuroevolution
approaches that coevolves separate sub-populations of neurons [206, 168]. Other
methods proposed ESN architectures composed by many decoupled sub-reservoirs
in which every sub-reservoir can have its own state dynamic [211, 151, 17]. Recently,
hierarchical composition of ad hoc modules of ESNs shows promising results in
time-series tasks [95, 194, 193]. In particular, in [95] the multi-scales processing
is obtained through a gradient descent approach applied to a hierarchy of ESNs.
Whereas, in [194, 193] a hierarchy of ESNs is progressively trained through direct
methods in which each level is individually trained on the output data of previous

level.

Other studies analyze how the properties of recurrent matrices can determine
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the performance of the network. Indeed, the structure of recurrent matrices affects
the way in which neurons are connected determining the dynamics involving in the
reservoir. An approach consists in the study of orthogonal recurrent matrices [204,
76]. A simple strategy proposed in [76] is generating reservoir connections through
random permutation matrices. The benefit achieved by permutation matrices is
also studied in terms of memory capacity and predictive capability [20]. In general,
the use of orthogonalization approaches for recurrent matrices considerably increase
the memory capacity of the network [44, 45].

Another approach consists in introducing a notion of time-scale in the dynamics
of the network state by using integrator units [100, 88|. In particular, the parameter
of leaky integrator units allows the reservoir to control the speed of the state’s
dynamic. In general, recurrent layers can be studied from the filtering point of
view [120, 89, 209, 170]. In particular, in [209] it is proposed a band-pass filter
integrator designed to handle specific frequency bands while in [170] the dynamic
of the reservoir’s state is controlled by three integrators applied in three different
ways, before, over and after the activation function.

A recent aspect studied in literature regards the design of architectures charac-
terized by low complexity [154, 155]. The aim is to find simple reservoir topologies
able to simplify the encoding process and to obtain good performance. These works
show that good results can be achieved with simple architectures such as linear,

circular, delay lines and deterministic reservoirs |27, 154, 155, 181, 4].

2.5 Deep Learning Paradigm

Deep Learning (DL) 72, 116, 165] is a ML paradigm that deals with the study of
NNs characterized by layered architectures. These architectures are composed by
multiple processing layers with linear and non-linear transformations. Each layer
can be trained in supervised or unsupervised way. In the last years, DL approaches
[72]| achieved impressive results in many fields such as speech recognition |73, 134,
193], machine translation [185], image classification [110] and mastering the game of
Go [187, 175]. The characteristic of the DL paradigm is to provide compositionality
of internal representations in the architecture. Higher layers features are derived
from lower layers features in order to form a hierarchical structure in which each
level represents a different data abstraction. Furthermore, a stack of layers enables
to make a complex representation based on a hierarchy of simpler concepts. The

abstraction of data representations of a given layer increases with the increasing of
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the distance between that layer and the input layer.

A major issue addressed by DL paradigm is the supervised training of layered
neural networks. It is well known that training deep models by using gradient
descent approaches is difficult |72, 85, 14]. In particular, gradient descent approaches
tend to fall in local minimum solutions contributing to increase the computational
cost of the training procedure [70]. Moreover, gradient descent approaches can
suffer from vanishing and exploding gradients [15]. Relevant solutions to address the
difficulty of training NNs are proposed in [15, 70, 146]. In this regard, most works
propose learning approaches such as gradient norm clipping and soft constraints
[146] or architectural solutions [88, 31, 80].

Other solutions to address the difficulty of training are explored in studies such
as, approximation algorithms for training [84], pre training [43|, rectified units [71],
dropout [86] and SGD [158, 22, 21, 107]. A major solution that contributed to
achieve an impressive speedup of training efficiency consists in Graphics Processing
Unit (GPU) parallelization [218, 3].

Overall, the use of solutions proposed in these studies, the hardware improvements
and the possibility to easy parallelize the computation of NNs models through GPUs
allowed DL models to obtain impressive results in real-world applications and to

progressively popularize DL paradigm outside the Machine Learning communities.

2.5.1 Deep Neural Networks

In this thesis we deal with deep NNs. A deep NN architecture is a deep model
characterized by a stack of layers composed by (typically non-linear) neurons |73,
134, 185, 110, 72].

An interesting debate in DL community concerns the characterization between
deep and shallow (i.e., non-deep) models. Figure 2.8 shows the comparison between
a deep and a shallow architecture. While shallow NNs typically refers to those
models composed by a single hidden layer, deep NNs are characterized by a stack
of non-linear transformations represented by a hierarchy of multiple hidden layers.
Both kinds of models are universal approximators of continuous functions. However,
empirical and theoretical results on specific scenarios [118, 124, 136] suggest that
deep models have better abilities than shallow NNs in providing a distributed,
hierarchical and compositional representation of the input information exploited in
application tasks to improve performance.

A major class of deep NNs is composed by Convolutional Neural Networks (CNNs)
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Figure 2.8: Comparison between deep and shallow models.

[36, 115, 117]. They are a class of hierarchical NNs characterized by convolutional
layers able to process 2-dimensional inputs suitable for computer vision. In recent
works, the combined use of CNNs with the DL paradigm has obtained results that
improve the state of the art in application areas such as image recognition and
text classification [110, 187, 33, 80|, computer vision [105] and automatic playing
[133, 174, 175]. The weights of the convolutional layers are composed by a set
of trainable filters. Each filter of a convolutional layer is connected with a small
receptive field (a sort of input window) and it is applied through all input sequence.
The computation of a filter consists in a convolution operation and forms a feature

map. The value of the feature map F(i, j) is computed as follows:
F(i,j) =Y > I(i+tj+s)W(ts), (2.36)
t s

where T € R™" is a 2-dimensional input (e.g., an image) and W € R is a filter
connected to a receptive field of width ¢ and height s. The units of a feature map
share the same weights. This approach, called weight sharing, allows the features
to be detected independently from their position in the input, thus providing the

property of translation invariance [115].

Another interesting aspect of CNNs is the use of pooling layers after the convolu-
tional layers. A pooling layer subdivides a feature map in many non-overlapping
areas and for each area it computes an aggregation function such as maximum or
average pool. This regularization method reduces the dimensionality of data repre-
sentations and consequently causes a reduction of the model complexity allowing

the NN architecture to address overfitting issues.
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The CNNs are trained using the typical learning approaches of MLPs such as
BP and SGD [158, 115, 117, 22].

2.6 Deep Recurrent Neural Networks

Here, we present an overview of literature approaches for deep RNNs. In Sec-
tion 2.6.1, we introduce deep RNNs characterized by hierarchies of recurrent layers.
In Section 2.6.2, we present a definition of depth in deep recurrent architecture. In
Section 2.6.3, we present ad-hoc approaches to force multiple time-scales dynamics
among the layers. In Section 2.6.4, we describe deep transition approaches to add
depth in recurrent architectures. Finally in Section 2.6.5, we describe early works

based on hierarchies of ESN modules.

2.6.1 Hierarchies of Recurrent Layers

Deep RNNs are typically characterized by hierarchies of recurrent layers [167,
83, 82| in which lower layers are connected to higher layers. Figure 2.9 shows the

architecture of a deep RNNs composed by a stack of recurrent layers. In general, the

Input Layer 1st layer Ni-th layer Output Layer

Figure 2.9: A deep RNN architecture with multiple recurrent layers.

use of a stack of recurrent layers enables to operate at different time scales [167, 83,
95, 82, 193, 30, 3]. This characteristic allows the deep RNN to learn a rich temporal
representation from input signals characterized by multiple time-scales dynamics.
Indeed, empirical experiments showed that deep ESNs outperform shallow RNNs
on real-world applications [82, 73| characterized by multiple time-scales dynamics.
In particular, the studies conducted on language modeling tasks in [82] show that
stacked RNNs can learn a hierarchy of time-scales dynamics over the layers. Thereby,

higher recurrent layers have progressively long memory of input perturbations.
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2.6.2 Depth of Deep Recurrent Architectures

As described in Section 2.5.1, empirical and theoretical results show that depth
in deep NNs leads to more expressive models [136]. However, while in feed-forward
NNs the depth is given by the number of non-linear hidden layers, in the case of
recurrent architectures the definition of depth is not trivial [144].

The feedback connections implemented in a recurrent layer causes a loop over
time in the computation of the network’s state. A way to represent this computation
is to consider an unfolded recurrent architecture over the time-steps of an input
sequence. The Figure 2.10 shows the unfolded structures of a 1-layered (i.e., an
SRN) and a 3-layered RNN (i.e., a deep RNN with a stack of 3 recurrent layers) over

time. The resulting unfolded architectures are feed-forward NNs which are "deep"
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Figure 2.10: Comparison between unfolded shallow and deep RNNs. Circles represent
unfolded recurrent layers and triangles represent inputs and outputs over
time.

over time. However, if we consider a single time-step ¢ we can note that, in the

1-layered architecture, the computation flows through a single hidden layer between

input and output layers. While in the 3-layered architecture the computation
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flows through 3 hidden layers. Therefore, the 1-layered and 3-layered RNNs have
respectively depth = 1 and depth = 3. Typically, an RNN with depth = 1 is
considered "shallow", while, a recurrent architecture with depth > 1 is considered
"deep". Therefore, 1-layered and 3-layered RNNs are "shallow" and "deep" [121,
144, 82, 219], respectively.

A detailed study on complexity measures regarding depth in deep recurrent

architectures is presented in [219].

2.6.3 Forcing Multiple Time scales Over Layers

Some works in literature aimed at obtaining multiple time-scales dynamics in
layered RNNs by forcing the process at different frequencies over the layers [83, 30,
193].

In particular, [83] introduced hierarchical RNNs (HRNNs) characterized by
hierarchies of recurrent layers with different time-delays in which each of them
“works” at different time scales. Figure 2.11 shows an example of an unfolded HRNN.

In this example, the first recurrent layer processes the input at each time-steps.

output layer

3th recurrent layer

HRNNs

2nd recurrent layer

1st recurrent layer

input layer

Figure 2.11: Example of an HRNN architecture. In particular, in this example, the
first layer implements a 1-step time-delay, the second layer implements
a 2-step time-delay and the third layer implements a 3-step time-delay.
Circles represent unfolded recurrent layers and triangles represent inputs
and outputs over time.

Moreover, the second recurrent layer, that is fed by the output of the first layer,
processes the data every 2 time-steps. Finally, the third layer processes the data

every 3 time-steps. In this way, we impose a progressively slower speed of layer
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dynamics at higher levels in the architecture. This allows the architecture to develop
a hierarchy of temporal features.

Empirical experiments on controlled scenarios show that HRNN outperforms
shallow RNN in memory tasks. Moreover, it is shown that HRNN performs
progressively better adding more recurrent layers with different time-delays.

A model based on the use of a hierarchy of RNN modules that operate at different
velocities of processing is presented in [193] (see Section 2.6.5 for details regarding

this architecture).

2.6.4 Deep Transitions

A further study on architectural design aspects proposes the use of deep transitions
among architectural parts [144]. Differently to stack multiple recurrent layers, this
approach consists in adding multiple feed-forward layers in recurrent and output

parts of the network. Figure 2.12 shows an example of recurrent architectures with
deep transitions so called Deep Output Transition RNN (DOT-RNN) [144]. In

y(t—1) MO y(t+1)
v v v output layer
:] :] :]
multiple layers multiple layers multiple layers

Deep Transition aH —>@——H —»@——H —»@—» recurrent layer

A A input layer

u(t — u(t) u(t+1)

Figure 2.12: An example of an unfolded recurrent architecture that implements deep
transitions in recurrent and output layers so called DOT-RNNs [144].
Circles represent unfolded recurrent layers, triangles represent inputs and
outputs over time and rectangles are multiple non-linear layers.

particular, DOT-RNN implements two kind of non-linear transformation called Deep
Transitions and Output Transitions. A Deep Transition is an MLP that implements
the state transition function of the network, while, an Output Transition is an
MLP that implements the output computation of the network. Interestingly, we

can note from Figure 2.12 that for both Transitions we obtain an architecture with
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a depth > 1 if we consider MLPs with at least 2 hidden layers. The experimental
results highlighted that DOT-RNN outperforms shallow RNN on real-world tasks
[144].

2.6.5 Early works on modular ESNs

Early works based on hierarchical networks are mainly focused on ad hoc modular
organizations of Echo State Networks [121, 95, 194, 193, 101]. In particular, [95]
introduces a stack of ESNs in which each ESN constitutes a layer of the hierarchy.
The higher layers generate an output that serves as a voting vector for the lower
ones. Each layer of the hierarchical architecture is trained by a gradient descent
approach. The downside of such model is that, as fully trained RNNs, it suffers
from a similar problem of vanishing gradients. Another work proposes the use of
a cascade of ESNs each individually trained on the output of the previous one
[193]. Thereby, the higher layers can correct the errors made by the preceding
layers. Figure 2.13 shows an example of a cascade of ESNs. Moreover, the approach
considers different RC parameters in the higher modules in order to impose different

velocities of processing among the hierarchy. Such model obtains promising results

Randomly Initialized  Trained Randomly Initialized Trained Randomly Initialized Trained

Input layer 1st reservoir 1st readout 2nd reservoir 2nd readout 3th reservoir 3nd readout

Figure 2.13: An example of a cascade of ESNs.

in acoustic modeling on a challenging continuous speech recognition task so called
TIMIT [194, 193].

Although these models propose hierarchical RC architectures, the developing
of temporal features characterized by different multiple time-scales dynamics is
based on the learning of all layers of the hierarchy. Contrariwise, in this thesis (see
Chapter 3) we introduce a novel kind of architecture composed by a hierarchy of
recurrent layers randomly initialized and left untrained able to intrinsically develop

hierarchical temporal features even without the learning of recurrent weights.
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2.6.6 Open Issues

The design of models according to DL paradigm enables to exploit the expressive-
ness provided by a stack of non-linear transformations [136]. Moreover, experimental
analysis show that deep models provide a distributed, hierarchical and compositional
representation of the input information [216]. In particular, [216] presents a method
to analyze the features developed by a CNN starting from an image. This analysis
shows that first layers direct their attention towards specific details such as borders
and shapes. Instead, central layers are focused on patterns such as eyes and noses
and successive higher layers are focused on more abstract concepts such as faces
or poses of objects. The experiments conducted in [216] highlighted that these

representations affect the performance achieved by the model.

In this thesis, we deal with the analysis and the design of deep recurrent ar-
chitectures suitable to process time series characterized by multiple time-scales
dynamics. Although results reported in literature works reported that deep RNNs
obtain better results than shallow RNNs (as described in Section 2.6), there are
still fundamental issues to be investigated |3, 72]. Experimental analysis shows that
deep RNNs create different time-scales dynamics at different layers [82, 144|, and
therefore a hierarchical representation of the temporal information. However, these
results are typically obtained through the learning of all recurrent layers or with
the use of different time-delays. Therefore, the study of the merits of layering and
its inherent impact on temporal features provided by the network deserves to be
investigated. Another related aspect to be investigated is the impact of temporal
representation developed by layering on the performance achieved by the model in

tasks characterized by multiple time-scales dynamics.

Other open issues regard the training of deep recurrent architecture. Indeed, the
application of gradient descent algorithms to deep and recurrent architectures are
well-known issues |72, 85, 14, 146]. Typically, deep RNNs implement few layers (<
10) in state-of-the-art applications. Moreover, the training of all recurrent layers is
very difficult.

For what regards the design of deep RNNs, the typical approach is to perform
an expensive trial and error approach based on model performance. In order to
determine the number of layer of the deep architecture, we need to evaluate all
possible configurations.

In this thesis, we aim to address these issues by resorting to RC paradigm

(described in Section 2.4.1) that represents an extremely efficient solution for RNN
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modelling. Contrariwise to modular RC architectures described in Section 2.6.5, we
propose a novel class of deep RNN models (that we introduce in the next Chapter)
based on a stack of randomly initialized and untrained recurrent layers. This
allows us to study the effect of different parameters of RC models on the dynamical
behavior of deep RNNs and to investigate the architectural factors of deep recurrent
models in a decoupled fashion with respect to the learning aspects of the dynamical
part of the networks. Finally, we aim to define quantitatively and qualitatively

measures based on frequency analysis for the design of deep RNNs (see Chapter 4).
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Deep Reservoir Computing

The content presented in this Chapter is based on works published in [61, 63, 54|

(see Section 1.5 for details).

In this Chapter we introduce Deep Reservoir Computing as a novel class of
randomized deep RNNs. In Section 3.1, we describe the aspects that motivate the
developing and the analysis of deep RC architectures. Moreover, in Section 3.2
we introduce the Deep Echo State Network (DeepESN) model characterized by a
hierarchy of randomized recurrent layers. In Section 3.3, we study and analyze
the intrinsic temporal characterizations of deep RNNs by using DeepESN models.
In Section 3.4, we introduce the Linear DeepESN (L-DeepESN) to study the
intrinsic role of layering by means of frequency analysis. In Section 3.5, we discuss
the outcomes of this Chapter, and then, we describe related works subsequently

published in this area. Finally, conclusions are drawn in Section 3.6.

3.1 Introduction

Recent studies on deep RNNs have stimulated a growing interest under both
theoretical and applicative points of view [219, 166, 144, 82], especially in regard to
the possibility of developing a hierarchical processing of temporal data. Indeed, the
ability to represent dynamical features at multiple levels of abstraction allows to
capture more naturally the temporal structure of the data whenever it is intrinsically
characterized by a multiple time-scales organization. Among the others, language
[144], speech 73] and text processing [82| represent notable examples of application
areas involving time-series data with this type of characterization. Besides, the
capability of modeling multiple time scales in recurrent networks dynamics has
proved effective also as a mean to deal with long-term dependencies, as evidenced
e.g. in [137, 83| and, more recently, in [72, 146].
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Some works in literature aimed at obtaining multiple time-scales dynamics in a
layered RNN architecture. One approach consists in progressively subsampling the
input to the higher layers [83], forcing the different layers to operate at different
frequencies [193]. Another approach consists in learning all the weights in the stack
of recurrent layers, which is a difficult and extremely time consuming process even
using GPUs and can require ad hoc incremental training strategies in order to be
effective [82].

As described in Section 2.6.6, the state of the art in this respect is still in its
infancy with many open challenges [3, 72|, and some intuitions present in literature
deserve further research and critical assessments. In particular, the observation that
stacking layers of recurrent units inherently creates different time-scales dynamics at
different layers [82, 144], and therefore a hierarchical representation of the temporal

information per se, deserves to be investigated and analyzed.

A starting point for our analysis in this regard is represented by the observation
that stacking recurrent layers can be actually interpreted as the application of a set
of constraints to the architecture of a fully connected RNN (with the same number
of units). Such constraints involve the pattern of connectivity among the recurrent
units (i.e. avoiding connections from higher layers to lower layers), which affects the
flow of information and the dynamics of sub-parts of the network state. Moreover,
the architectural restrictions also concern the connectivity with the input layer
(i.e. allowing only to the units in the first layer to be fed directly by the input),
influencing the way in which the external input information is seen by recurrent
units progressively more distant from the input layer (such architectural aspects

are discussed in Section 3.2.1 and illustrated in Figure 3.3).

This motivates us to a critical assessment of the possible and effective merits of a
layered structure for recurrent architectures and to propose different approaches to

achieve a hierarchy in temporal representation by efficient deep recurrent models.

To this aim, the modeling proposal is based on RC paradigm (described in
Section 2.4.1), which represents a state-of-the-art approach for extremely efficient
RNN modeling. Moreover, and more importantly for the analysis purposes, the
RC approach yields the possibility to investigate the architectural factors of deep
models in a decoupled fashion with respect to the learning aspects of the dynamical
part of the networks. This type of analysis on the one hand can provide insights
on the true merits of learning of deep RNN dynamics, and on the other hand it
allows to propose efficiently trained models for multiple time-scales processing of

temporal data.
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Previous works on hierarchical organizations of RC networks mainly focused on
ad hoc modular organizations of Echo State Networks [121, 95, 193], but still lack
of a general view over the effective potentiality and emerging properties of deep
architectures of layered reservoirs. In particular, since different parameters of RC
models strongly affect their dynamical behavior and performance, their relationships
with layering deserve a systematic investigation, still missing in literature. Such
investigation allows us to study proposals on what aspects ruling the dynamics of
reservoir models can amplify the potential benefits of a deep architecture (and vice
versa), in particular for the timescale dynamics differentiation, as well as for the
effect of known RC techniques, such as IP pre training (described in Section 2.4.1),
to enhance the richness of state dynamics (measured as the entropy of reservoir
states).

Overall, in this Chapter we show how to obtain, enhance, and quantify the
occurrence of different time scales (or amplify the richness of the state dynamics)
in deep recurrent architectures in order to address the main open issues described
in Section 2.6.6 regarding the deep RNN field: (i) Why introduce layering into
recurrent architectures? (ii) What is the intrinsic (independent from learning)
architectural effect of layering on the hierarchical temporal dynamics developed by
a deep RNN7 (iii) Is it possible to keep the advantage of deep learning for RNN
(e.g. in terms of multiple time-scales representation of temporal data) by using an
efficient approach such is RC? (iv) What is the role of the hyper parameters that

rule RC network dynamics within a layered organization of the reservoir?

3.2 Deep Echo State Networks

Here we introduce the main model that we take into consideration, called Deep
Echo State Network (DeepESN).

Architecture

The architecture of a DeepESN is characterized by a stacked hierarchy of reservoirs,
as shown in Figure 3.1. At each time-step ¢, the first recurrent layer is fed by the
external input u(t), while each successive layer is fed by the output of the previous
one in the stack. Although the pipelined architectural organization of the reservoir
in DeepESN allows a general flexibility in the size of each layer, for the sake of

simplicity here we consider a hierarchical reservoir setup with Ny recurrent layers
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each of which contains the same number of units Ng. Furthermore, in our notation,

we use x(t) € RM& to denote the state of layer [ at time t.

A

N;th reservoir layer W (

ﬁx@) (t)

W(z) ﬁx(l) (t)

Readout

u(t) [ Input Layer

Figure 3.1: Architecture of a DeepESN.

State Computation

Omitting the bias terms for the ease of notation, the state transition function of

the first layer is defined as follows:
xD (1) = (1 — aMxO(t = 1) + aVE(Wiu(t) + WWxD (@ = 1)), (3.1
while for every layer [ > 1 it is described by:
x(t)=(1—-a")x(t—-1)+a X\ t—l—Al)x(l)t—l 3.2
Oy = (1 — aMxO(t — 1) + aPFWOxED (1) + W' 7
where Wy, € RV2*M s the input weight matrix, W(l) € RVeXNr g the matrix

of the recurrent weights for layer I, W e RNrXNe i the matrix relative to the
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inter-layer connection weights from layer [ — 1 to layer I, a¥) is the leaky parameter
at layer [ and f represents the element-wise application of the activation function

(in our case the hyperbolic tangent).

Weight Initialization

As in the standard ESN approach, the reservoir component of a DeepESN is
left untrained after initialization subject to stability constraints. In the case of
DeepESN, such constraints are expressed by the conditions for the ESP of deep RC
net(v;zorks, given in [55]. Accordingly, the weight values in the recurrent matrices
W !

in [—1, 1], and then are rescaled to satisfy the necessary condition for the ESP of

,forl =1,..., N, are randomly initialized from a uniform distribution, e.g.

the DeepESN dynamics around the zero state [55]:

< (1
Jax p ((1 — a1 + W' )> = Dax P <1, (3.3)
in which we used the notation p¥) to denote the effective spectral radius of the
reservoir system in the [-th layer. As regards input and inter-layer matrices, the
values in Wy, and {WWIL are randomly initialized from a uniform distribution
and then rescaled in the [—scaley,, scaley,| range. Another initialization approach
that we consider in the following consists in rescaling Wj, and {W(Z) fV:LQ such
that |Wi|| = o and [[W®|| = 6, respectively. As in the case of standard RC, in
experimental assessments of DeepESNs, for each reservoir hyper-parameterization a
number of different (independently initialized) instances are considered, all with the
same reservoir hyper parameters, but generated using different random seeds. In the
following, we refer to such instances as reservoir guesses. The performance of each
hyper-parameterization is then obtained by averaging the performance achieved by

the corresponding reservoir guesses.

Output Computation

As pertains to the output computation, although different patterns of state-output
connectivity have been explored in recent literature in the case of deep recurrent
models [82, 144], in this thesis we focus on the case represented in Figure 3.1, in

which the states of all the reservoir layers are used to feed the readout. Specifically,
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the output of DeepESN network at time ¢, i.e. y(t) € RM | is computed as follows:

x(t) = (xV(t),...,x" (1)) € RV,

3.4
y(t) = Woutx<t>7 ( )

where x(t) = (x(V(¢),...,xN)(¢)) € RNVx s the global state of the DeepESN
as the composition of the states in the different layers and Wy, € RN *NiNr
denotes the matrix of the output weights. Note that in the case of DeepESN, the
readout formulation given in Equation 3.4 expresses a linear combination between
the global reservoir state of the network x(¢) and the readout weight matrix Wy,
i.e. a weighted sum of the states coming from all the reservoir layers in the
architecture. In the training phase, this directly enables the model to differently
weight the contribution of the multiple time-scales dynamics developed through
the layers of the deep recurrent architecture, thus enhancing the quality of the
temporal representation and the ability to approach temporal tasks for which such

differentiation in dealing with the different time scales is important.

Training Algorithm

As regards the training algorithm, the output layer is trained by using direct
methods as for RC paradigm (see Section 2.4.1). However, in DeepESN case, the
state matrix X is computed by considering the state of all recurrent layers in the
hierarchy (as we can note from Equation 3.4). Therefore, the resulting state matrix
computed by Equation 3.4 is X = [x(1),...,x(Nr)] € RN:NrXN7 in which the rows

represent the neurons’ states from all layers and the columns represent time-steps.

Finally, we compute the trained weights of Wy, € RM*NLNr considering the
following squared norm:

||WoutX - Ytarget”%a (35)

where Yiarget = [Y(1), ..., ¥(Nr)] € RV XN ig the matrix of target values. Thereby,
we compute the solution (the values of Wy,;) that minimizes the norm defined in

Equation 3.5 through normal equations approach:

Wout = YtargetXT (XXT + )\rI)_la (36)

where A\, > 0 € R is the Tikhonov regularization term.
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Computational Cost of DeepESNs

Since the DeepESN architecture can be seen as a constrained version of the
1-layered ESN (see considerations described in Section 3.2.1), DeepESN presents
a considerable lower number of recurrent weights than shallowESN architecture.
Considering a total number of recurrent units Ny Ng, the cost of computing the

state matrix X in shallowESN architecture is the following:
Cshallow_encoding = O(NE,N]%NT) (37)

Therefore, the encoding cost of shallowESN increases quadratically with the in-
creasing of the total number of recurrent units. In the case of DeepESN the cost is

reduced thanks to the sparsity of the connectivity due to layering constraints:
Cdeepiencoding = O(NLN}%NT) (38)

Note that, if we consider a constant number of units Ny per reservoir, the encoding
cost of DeepESN increases linearly with the increasing of the number of layers Np.

Asymptotically, the costs of training shallowESN and the DeepESN are equivalent:

2 n72
CshallowESN = Cshallowiencoding + Creadout = O(NLNRNT)7

o (3.9)
CDeepESN = Cdeepiencoding + Creadout = O(NLNRNT)

This is due to the dominant term Cieagout in Equations 3.9 (reported in Equa-
tion 2.31). However, in practical applications the difference between the encoding
costs desctibed in Equations 3.7 and 3.8 can be very relevant, especially if we
consider deep recurrent architectures with a low value of Ng. In this thesis, we
exploited this efficient approach fixing low values of N < 200 for the considered

DeepESN architectures evaluated on real-world applications (see Chapter 5).

Intrinsic Plasticity Pre training in DeepESNs

Here, we introduce a novel pre-training approach for deep RNNs based on
the IP algorithm. The idea is to perform progressively the IP pre training (see
Equation 2.35) through the layers. The Algorithm 1 show the pre-training procedure
to apply the IP learning on deep recurrent architectures.

For each layer [, the Algorithm 1 computes the IP learning as in the following:

e For the first layer, we compute the state starting from the input sequence.
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Algorithm 1 IP pre training for DeepESNs (DeeplP)

1: procedure DEEPIP (input _sequence)

2 forl in 1, ..., Ny do

3 x = computeState(l, input _sequence) > state on layer [
4: g, b =1P(x®) > [P learning Equation 2.35
5: setGainBias(/,g,b) > set gain and bias on layer [
6 input _sequence = computeState(l, input sequence)

e For the layers with [ > 1, we compute the state of layer [ starting the input

sequence computed at pass [ — 1.

e Given the state x) calculated in one of the two previous points depending on
the value [, we compute gain g and bias b vectors performing the IP training
on x¥. Then, we set g and b vectors on the activation function of layer I
(see Equation 2.34). Finally we re-compute the state of layer [ exploiting the
new bias and gain values. The new state computed is used as input sequence

for the next layer.

In the following, we apply always the Algorithm 1 when we perform IP training
for DeepESNs.

3.2.1 Architectural Baselines

In this Chapter, the importance of layering in deep RNNs with respect to
the construction of a progressively more abstract encoding of the input history,
and the relevance of layering per se, are studied through a comparison between
different recurrent architectures. Thereby, we introduce two baseline models for
the comparison with DeepESN, namely DeepESN Input to All (DeepESN-IA) and
Grouped ESN. DeepESN-TA is a DeepESN in which the external input is provided
to every layer, while, GroupedESN is characterized by sub-reservoirs fed only by
the external input and without a stack organization. Figure 3.2 illustrates the
topologies of such architectures.

We define the general state transition function for randomized deep RNNs as

following:
xD(8) = (1 — aMxO(t — 1) + a® tanh (WO (1) + WOt — 1)), (3.10)
where W = W, and i?(¢) is the input of layer [ for [ = 1,..., N;. Thereby, the

state transition function of DeepESN introduced in Equations 3.1 and 3.2 can be

26



]

a: DeepESN b: DeepESN-IA C: GroupedESN

Baseline Architectures

Figure 3.2: Deep RC architectures: (a) DeepESN, (b) DeepESN-IA, (¢) GroupedESN.
Aspects related to input bias and mathematical notation are not reported
here for the ease of graphical representation (see text for details).

expressed by Equation 3.10 in which

u(t) if 1=1
i (t) = (3.11)
xD() af 1> 1.

Similarly to the case of DeepESN, the state transition function of DeepEESN-IA can
be expressed by Equation 3.10 in which the input for each layer 1 > 1 at step t is
the concatenation of the external input and the state of the previous layer in the

stack:
u(t) if =1
i0(t) = (3.12)
[u(t) xED))]" if 1> 1.

Accordingly, in a DeepESN-IA for [ > 1 we have that W € RVNex(Nat+Nv) - Note
that while higher layers in a DeepESN are at increasing distances from the (external)
input, in a DeepESN-IA the distance from the input is the same for every layer.
The relevance of layering in DeepESN, with respect to the interplay among
the reservoir dynamics at the different levels in the hierarchy, is investigated

by considering GroupedESN in which the sub-reservoir are not organized in a
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stack. In this case, denoting by [ the [-th sub-reservoir, the state transition
function of a GroupedESN is defined by setting i) (¢) = u(t) in Equation 3.10
where Wfrll) € RV=XNu for every [, and it can be noticed that the dynamics of
sub-reservoirs evolve independently of each other.

As a further architectural baseline, in the following we also take into consider-
ation the case of a standard (shallow) fully connected ESN (whose dynamics are

described by Equation 2.21), with the same number of reservoir units as in the

whole architecture of a deep RC counterpart.

Note that, critically, a deep layered recurrent network adds architectural con-
straints to the recurrent connections of a fully connected RNN. A layered RNN can
be re-interpreted as a fully connected RNN (with the same number of units) where
some connections between groups of neurons are removed. In particular, a layered

RNN architecture (see Figure 3.3):

e does not present connections from higher layers to lower layers;

e does not present connections from the input layer to layers at a level greater

than one;

e does not present skip connections between layers (each layer is connected only

with the successive layer in the pipeline).

Given such considerations, we can consider a layered RNN architecture a constrained
version of a fully connected RNN. However, differently by the shallow RNN, the
layered RNN does not present time-delays in the flow of the information between
consecutive layers. The study of the effects of the aforementioned constraints in the
development of the hierarchical temporal dynamics is one of the main subject of
this Chapter. Moreover, again under a critical perspective, it is worth to note that
an ESN with a shallow reservoir (i.e. without an explicit ordered layered structure)
contains already by construction a rich pool of state dynamics (due to the random
weight initialization). Hence, the same subject is studied in the following also with
respect to the parameters that rule the ESN behavior, in order to investigate the
possible enhancement due to a layered structure on their effect and on the state

dynamics and temporal representation variety.
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Figure 3.3: The architectural perspective of a deep RNN architecture seen as a con-
strained RNN.

3.3 Intrinsic Temporal Characterizations of Deep

RNNs

In the following we investigate possible strategies aimed at driving the emergence
of different time-scales dynamics through the different layers of a deep recurrent

architecture.

Our first proposal consists in imposing by design a state dynamics differentiation
among the layers, by setting different values of leaky parameter o) and spectral
radius p at different layer [ (or sub-reservoirs in GroupedESNs). Using different
values of a¥ implies a differentiation among the speed of state dynamics for the
different layers of the deep architecture. Indeed, the use of leaky units results in
the application of a running average on the state values |72], with the value of the
leaky parameter at each layer determining the extent of the persistence of past
information in the state dynamics at that layer (in our case, values of a¥) closer to
1 imply that past information is more quickly discarded). In this regard, it is worth
to observe that the advantage of having RNN units with different leaky parameters
in order to achieve multiple time-scales dynamics has already been discussed in
pioneering works already in the 1980s [180, 2|. Varying the values of p) implies a
variation of contractivity [52, 192] and memory length among the state dynamics of
different layers. Moreover, as highlighted by Equation 2.25, we rescale the effective
spectral radius of the dynamical system in order to control the degree of stability
of the state computation [100]. Therefore, the variation of both p and ¥ values

involves the spectral radius of W. Our second proposal consists in using an efficient
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unsupervised layer-wise adaptation of reservoir units by means of IP training.

In our experiments, the setting used for the IP training is inline with the literature
assessments [195, 178, 171|. In particular, the IP parameters pu, o and n (see
Equation 2.35), are chosen to guarantee the fast convergence, and accordingly, a
good stability of the IP algorithm. Moreover, for all the reservoir units we used the
same values of the IP parameters and we assessed the influence of layering also in
terms of IP effect enhancement.

In this section we present and discuss the results obtained by experimental
analysis, on the intrinsic temporal characterization of deep RNNs, conducted by
means of numerical simulations on deep RC networks, assessing the effectiveness of
the methodologies introduced in Section 3.2.

Specifically, in Section 3.3.1 we investigate the effect of architectural factors
on temporal features. In particular, in Section 3.3.1.1 we define qualitative and
quantitative measures used for experimental evaluations. In Section 3.3.1.2 we
analyze the intrinsic effect of temporal differentiation among layers with the same
RC hyper parameters. In Sections 3.3.1.3 we study the differentiation of time scales
among the layers caused by the variation of RC hyper parameters. In Sections 3.3.1.4
evaluate the impact of IP on the differentiation of time scales among the dynamics of
different layers. In Section 3.3.2, we analyse the distribution of the state developed
by the IP algorithm. Moreover, in Section 3.3.3 we further inquire into the impact
of IP on the richness of reservoir dynamics in deep RC architectures, and in
Section 3.3.4 we evaluate the efficacy of the proposed approaches on the short-term

memory capacity of the resulting models.

3.3.1 Multiple Time-scales Differentiation

In order to assess the extent of the time-scales differentiation among the layers in
the considered recurrent architectures, similarly to [82] we took into consideration
an experimental setting comprising two input sequences, S7 and S5, both of length
5000 and identical to each other except for a typo (a perturbation) that is inserted
in Sy at time-step 100. We ran the same RC network on both the unperturbed
and the perturbed input sequences and collected the correspondingly obtained
reservoir states, evaluating how long the effect of the input perturbation affects the
dynamics of each layer by computing the distance between the states corresponding
to S7 and Sy as a function of time. Specifically, a qualitative analysis is provided

by plotting the Euclidean distance between the states of corresponding layers in
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the unperturbed and perturbed cases. In this concern, note that as S; and Sy are
identical until the typo at step ¢ = 100, for all the layers the distances among
the states are always zero by construction for all the time-steps ¢ < 100, and are
therefore left out from the plots. Moreover, to complete the qualitative results
provided by the plots described above, we also adopt quantitative measures of
time-scales diversification. This is done by assessing the quality of the ordering
among the time scales in the different layers by resorting to known distances between
rankings [111], i.e. the Kendall’s tau (KT) and the Spearman’s footrule (SF), and
by introducing an index of time-scales separation (IS). Smaller values of KT and
SF indicate a better ordering of time scales across the layers, while higher values of
IS denote a greater spacing among the duration of the perturbation effect across
the layers. Details on these qualitative and quantitative means of investigation
(including definitions of KT, SF and IS) are reported in Section 3.3.1.1.

We instantiated this experimental approach by considering two datasets. The first
dataset is an Artificial time-scales dataset, designed to avoid biases towards specific
applications, in which each input element is drawn from a uniform distribution
from an alphabet of 10 elements. The second dataset comes from an excerpt of the
Wikipedia text corpus [184], used in [82] and adopted here to evaluate our results
also for the case of a realistic task. Elements in the Wikipedia dataset represent
characters, where in our setup we considered an alphabet comprising the 95 most
common ones (the printable ASCII characters) and an unknown character (used
to represent all the others), as in [82], for a total number of 96 characters. For
both the datasets, we represented the input elements by using a one-hot encoding
approach, thereby resulting in a one-of-10 encoding for the Artificial dataset and in

a one-of-96 encoding for the Wikipedia dataset.

In our experiments, for the only scope of analysis and for the sake of its uniformity
and simplicity, we considered DeepESN (and DeepESN-IA) stacked architectures
with 10 layers of 10 fully connected units each with input scaling scale;,, = 1.
Analogously, for GroupedESN, we used networks with 10 sub-reservoirs of 10 units.
Moreover, for baseline comparison with the standard RC case, we also considered
ESNs with 100 fully connected units, i.e. the total number of reservoir units used
for the deep RC setup. The models implement 1010 and 9696 free parameters for
Artificial and Wikipedia datasets, respectively. For what regards the number of non-
trainable weights used in the Artificial dataset, DeepESN and GroupedESN have
2100 parameters, DeepESN-TA has 3090 parameters, while, shallowESN implements

11100 parameters. Concerning the non-trainable weights used in the Wikipedia
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dataset, DeepESN has 3046 parameters, DeepESN-IA has 12550 parameters and
GroupedESN has 11560 parameters, while, shallow ESN implement 19700 parameters.
As expected DeepESN, DeepESN-TA and GroupedESN have a fewer number of non-
trainable weights than shallowESN model since they are a constrained version of the
fully-connected recurrent architecture. This confirms the sparser characterization of
the DeepESN architecture w.r.t. shallow counterpart as described in Section 3.2.1.
We independently generated 10 guesses for each network hyper-parametrization,
and averaged the results over such guesses.

In the following, we present the results of qualitative and quantitative analysis
on the Artificial dataset. Moreover, we reported also the quantitative results,
i.e. values of KT, SF on the Wikipedia dataset. In the plots presented in the
following, the curves for each layer (or sub-reservoir) are averaged over the 10
network guesses considered (in order to avoid influences of single instances on our
analysis). Analogously, the values of KT, SF and IS were evaluated on the 10

guesses, reporting min-max ranges for KT and SF, and mean values for IS.

3.3.1.1 Qualitative and Quantitative Measures

Here, we provide details on the measures used in the following to evaluate the
goodness of time-scales differentiation among the layers of a stacked RC architecture.
Taking into consideration a DeepESN with N layers and 2 sequences, the unper-
turbed one S; and perturbed one S, (in which a typo is inserted with respect to Sy
at step t = 100), here we denote by xV (t) and X](;,l) (t) the state of layer [ at step t
for the unperturbed and the perturbed sequence, respectively. For each layer [, we
evaluated the Euclidean distance between corresponding states x. (t) and x\) (t) as
a function of time, i.e. DO(t) = ||x1(f) (t) — Xé”(t)”g. Then we plotted the distances
DW(t) for t > 100 and for all the layers, in order to graphically investigate how long
the effect of the input perturbation at step 100 affects the state dynamics of each
layer, providing a qualitative analysis of the time-scales differentiation emerging in
the architecture. Analogous plots can of course be obtained also for the cases of
deepESN-TA and GroupedESN.

The qualitative investigation described above is completed by adopting quantita-
tive measures of time-scales diversification. To this aim, the maximum duration of
the perturbation effect on layer I can be expressed as P) = max,(D"(¢) > 0). By
ordering the set of values {P" f\; ", we can define a ranking on the layers based on
the duration of the perturbation effect, denoted by {O(Z)}f\i %, and which represents
a permutation of {1,2,..., Np}. Specifically, if O®) = n it means that the layer [ is
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the n-th one in terms of duration of the input perturbation effect. In this sense, the
ideal case is represented by the identity permutation ranking 1,2, ..., Nz, i.e. O' =1
for every = 1,..., N, corresponding to an increasing duration of the perturbation
effect for higher layers. Based on these definitions, we can quantify the quality
of the ordering among the time scales in the network’s layers by measuring the
distance between the ranking {0} and the identity permutation ranking. To
do so, we adopt two known distances between rankings [111], i.e. the Kendall’s tau
and the Spearman’s footrule distances, respectively denoted by KT and SF', and

computed according to:

KT = |{(l1,ls) : (1 <1y <ly < Np) A (OH) > Ol))},
(3.13)
SF =Y 5 |1 -0,

where, with respect to the identity permutation, KT sums the number of required
pairwise swaps, while SF sums the total amount of displacement of the elements in
the ranking. Accordingly, smaller values of KT and SF denote better orderings of
the times-scales.

Moreover, we can quantify the extent of time-scales separation by measuring the
distances between the duration of the perturbation in consecutive layers, introducing

an index of separation, denoted by IS, and computed as:
Np,
1S=> PO —pt, (3.14)
1=2

where higher values of IS correspond to a greater spacing among the duration of

the perturbation effect in the different layers.

3.3.1.2 Intrinsic Architectural Differentiation

Our experimental analysis on the multiple time-scales differentiation is conducted
by firstly considering fixed values of the leaky parameter a = 0.55 and of the spectral
radius p = 0.9 in which a = ¢ and p = p) for each layer (or sub-reservoirs) I.
Note that p and a values are intentionally not optimized, as the purpose is not to
achieve the best results, but to show the differences occurring among the different
architectures under the same conditions. Figure 3.4 graphically shows the results
achieved on the Artificial dataset with DeepESN, DeepESN-TA and GroupedESN.

Continuous blue lines refer to the different layers of the deep architecture (different
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sub-reservoirs for GroupedESN), with darker colors corresponding to higher layers.
For the sake of comparison, the red dashed line refers to the shallowESN baseline
with a = 0.55 and p = 0.9, as in every layer of the deep networks. Table 3.1 reports
the values of KT, SF and IS achieved by DeepESN, DeepESN-TA and GroupedESN
on both the Artificial and the Wikipedia datasets.
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Figure 3.4: Distance between perturbed and unperturbed states on the Artificial dataset
for the considered RC architectures with a = 0.55 and p = 0.9 for every
layer (or sub-reservoir). Continuous blue lines correspond to layers in deep
RC networks (sub-reservoirs in GroupedESN), dashed red lines correspond
to the shallowESN with the same number of total reservoir units and hyper-
parametrization. a: DeepESN, b: DeepESN-IA, ¢: Grouped ESN.

The intrinsic differentiation among the time-scales dynamics at the different
layers of a DeepESN is qualitatively analyzed through the plot shown in Figure 3.4a,
from which it is possible to observe that the effects of the input perturbation last
longer for higher layers in the stack. Such differentiation is indeed related to the
layered deep architecture, as it is strongly attenuated when the external input is
provided to each layer, as in the case of DeepESN-IA (see Figure 3.4b) or when
layering is removed from the architectural design, as in the case of GroupedESN (see

Figure 3.4¢). These insights are quantitatively confirmed by the results in Table 3.1,
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showing that DeepESN provides a preferable differentiation of time scales at the
different layers, in this regard generally presenting a more ordered organization of
time scales, i.e. smaller values of KT and SF, and better separability, i.e. larger

values of IS.

In particular, a comparison between the behaviors of DeepESN and DeepESN-TA
points out the relevance of having higher layers at increasing distances from the
external input as a key architectural factor for time-scales separation. Note that
DeepESN and DeepESN-TA show a similar hierarchical organization of time scales
(similar values of KT and SF) and in both cases the higher layers of the architecture
present longer time scales than the corresponding standard ESN (as can be seen
in the plots of Figures 3.4a and 3.4b). However DeepESN-IA shows a reduced
separation of time scales with respect to DeepESN, as can be seen graphically
through a comparison of Figure 3.4a and Figure 3.4b, and also numerically in
Table 3.1, with DeepESN-IA leading to smaller IS values than DeepESN. From a
theoretical point of view, the time-scales ordering with progressively slower dynamics
highlighted in Figure 3.4a is due to the progressive decreasing of the contractivity

in higher layers dynamics [55].

The case of GroupedESN, illustrated in Figure 3.4c¢, shows the intrinsic variability
that can be already present in (sub-)reservoirs with the same hyper-parametrization
when they are not organized in a stack. As can be seen, in this case the dynamics
of all the sub-reservoirs do not present a particular ordering and have a similar
behavior to the one of the shallowESN with corresponding total number of units
and values of the hyper parameters. Quantitatively, a comparison between the
results of DeepESN and GroupedESN in Table 3.1, shows the inherent impact in
terms of ordering and separability among the time-scales dynamics (smaller values
for KT and SF, larger values of IS) that are due to the hierarchical organization
of the reservoir layers in DeepESN. Notice that in this setting, in which there are
no hierarchies among the sub-reservoirs of a GroupedESN (they all have the same
hyper-parametrization), the use of different grades of colors in Figure 3.4c and the
values of KT, SF and IS reported in Table 3.1 for GroupedESN assume a different
meaning than in the case of layered architectures. The results of GroupedESN in this
case is indeed representative of a completely un-ordered sub-reservoir organization

and are therefore reported for the sake of completeness and scale comparison.
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Model | KT (min-max) [ SF (min-max) | IS (mean)
Artificial

DeepESN a = 0.55 0-2 0-2 203.90 (£83.39)

DeepESN-IA ¢ =0.55 | 0-2 0-2 134.10 (£37.68)

GroupedESN a = 0.55 | 8 - 10 26 - 42 18.70 (£56.56)
Wikipedia

DeepESN a = 0.55 0-2 0-2 175.70 (£98.48)

DeepESN-IA ¢ =0.55 | 0-4 0-4 123.90 (£22.48)

GroupedESN a = 0.55 | 7 - 10 22 - 44 -22.40 (£58.16)

Table 3.1: Values of Kendall’s tau (KT), Spearman’s footrule (SF) and index of separation
(IS) achieved on the Artificial dataset and on the Wikipedia dataset by
DeepESN, DeepESN-IA and GroupedESN with with @ = 0.55 and p = 0.9 for
every layer (or sub-reservoir). For KT and SF smaller values are better, for
IS higher values are better.

3.3.1.3 Differentiation by Variation of RC Hyper parameters

In light of the results shown in Section 3.3.1.2, we can observe that the inherent
diversification among the layers dynamics in a DeepESN is quite narrow (Fig-
ure 3.4a), with the range of emerging time scales presenting a limited extent. Such
differentiation can be emphasized within the efficient RC approach by resorting to

the strategies described at the beginning of Section 3.3.

Variation of leaky parameter

We first take into consideration the effect due to a diversification of the value
of the leaky parameter among the layers. Figure 3.5 shows the results achieved
by DeepESN, DeepESN-TA and GroupedESN using a fixed value of p = 0.9 and
decreasing values of the leaky parameter a for increasing layer depth, from 1 to 0.1,
thus imposing a progressively slower speed of reservoir dynamics at higher layers in
the architecture. Table 3.2 reports the KT, SF' and IS values obtained by DeepESN,
DeepESN-IA and GroupedESN in the same conditions.

For the sake of comparison, in each plot of Figure 3.5 it is reported also the result
obtained by standard shallowESN with values of p = 0.9, as in every layer of the
deep RC networks, and a = 0.55, i.e. the average value among the layers of the
deep architectures. Such result is reported here (and also in the following analysis)
as a summary for the values and comparisons already discussed with regard to
Figure 3.4, as indeed the aim is to assess the extent of the differentiation among
the behaviors shown by the different layers, also in comparison to the average case.

As can be seen in Figure 3.5a, the variability of the leaky parameter has a great
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Figure 3.5: Distance between perturbed and unperturbed states on the Artificial dataset
for the considered RC architectures with p = 0.9 for every layer (or sub-
reservoir) and a varying from 1 to 0.1 among the layers (or sub-reservoirs).
Continuous blue lines correspond to layers in deep RC networks (sub-
reservoirs in GroupedESN), dashed red lines correspond to the shallowESN
(for graphical reference with respect to Figure 3.4, see text). a: DeepESN,
b: DeepESN-IA, ¢: GroupedESN.

impact on the differentiation among the emerging time-scales dynamics, showing a
much wider extent of the ordered diversification than DeepESN with fixed values
of a (Figure 3.4a). As can be seen by comparing Tables 3.2 and 3.1, varying the
value of the leaky parameter across the layers of a DeepESN results in generally

lower values of KT and SF and higher values of IS.

This characterization is a result of the interplay between layering and leaky
integration variability, and also in this case it is strongly reduced when all the layers
are at the same distance from the input, i.e. for DeepESN-IA, or when non-stacked
architectures are considered, i.e. for GroupedESN. Specifically, also in this case,
DeepESN-IA leads to a reduced separation of time scales across the layers, while
GroupedESN in addition to the reduced separation also results in a worse ordering

with respect to the duration of the perturbation effect, which is graphically pointed
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out by the overlapping among the curves in Figure 3.5¢ (highlighted in the zoom),
and by the results in Table 3.2.

Model | KT (min-max) [ SF (min-max) | IS (mean)
Artificial

DeepESN 0-0 0-0 367.80 (£76.25)

DeepESN-IA | 0 -2 0-2 294.30 (£44.51)

GroupedESN | 2 -9 4-18 285.00 (£50.07)
Wikipedia

DeepESN 0-2 0-2 335.50 (£92.69)

DeepESN-IA | 0 -2 0-2 295.00 (£42.54)

GroupedESN | 4 -9 4-18 298.10 (+48.86)

Table 3.2: Values of Kendall’s tau (KT), Spearman’s footrule (SF) and index of separation
(IS) achieved on the Artificial dataset and on the Wikipedia dataset by
DeepESN, DeepESN-TA and GroupedESN with with p = 0.9 for every layer
(or sub-reservoir) and a varying from 1 to 0.1 among the layers (or sub-
reservoirs). For KT and SF smaller values are better, for IS higher values are
better.

Variation of spectral radius

Here we provide the results on time-scales differentiation due to the variability
of the spectral radius p among the layers of a stacked RC network. Figure 3.6
shows the results achieved by DeepESN, DeepESN-TA and GroupedESN using a
fixed value of a = 0.55 and increasing values of the spectral radius p for increasing
layer depth, from 0.1 to 0.9', resulting in increasing memory length for higher
layers. In Figure 3.6 we also show the result of standard shallowESN with a and
p equal to the corresponding averages among the layers of the deep architectures.
Table 3.3 reports the KT, SF and IS values obtained by DeepESN, DeepESN-IA
and GroupedESN in the same conditions. For the sake of reference comparison,
Figure 3.6 and Table 3.3 also report the results obtained by DeepESN with constant
value of p = 0.5, i.e. the average among the p values in the considered range of
variability.

The effect of the spectral radius variation can be appreciated by comparing
the results obtained for the cases of DeepESN with constant p for every layer
(Figure 3.6a) and of DeepESN with p varying among the layers (Figure 3.6b). As
can be seen, varying the value of p leads to an improvement of the hierarchical time-

scales differentiation, as also reflected by the values in Table 3.3, with DeepESN

IThe p values relative to the layers are 10 evenly spaced points between 0.1 and 0.9.
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Figure 3.6: Distance between perturbed and unperturbed states on the Artificial dataset
for the considered RC architectures with a = 0.55 for every layer (or

sub-reservoir) and p varying from 0.1 to 0.9 among the layers (or sub-
reservoirs). Continuous blue lines correspond to layers in deep RC networks
(sub-reservoirs in GroupedESN), dashed red lines correspond to the shal-
lowESN (for graphical reference with respect to Figure 3.4, see text). For
the sake of reference the results corresponding to DeepESN with constant
p = 0.5 for all the layers is reported as well. a: DeepESN with constant p,
b: DeepESN, c: DeepESN-IA, d: GroupedESN.

using different values of p achieving better results than DeepESN with constant p
in terms of KT, SF and IS values.

Comparing the results showed in Tables 3.3 and 3.2, we can note that in the
case of variable p the effect of time-scales differentiation is less significant for all
architectures. In particular, the DeepESN with variable p obtained a high standard
deviation of IS value on the Artificial dataset. This can compromise the improving
of the IS value in this particular case. Anyway, DeepESN obtained good (low)
KT and SF values on the Artificial dataset (see Table 3.3). This means that the
quality of the time-scales ordering among the layers is empirically preserved also

for eventual non-optimal IS values.
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Model | KT (min-max) | SF (min-max) | IS (mean)
Artificial

DeepESN p = 0.5 0-3 0-4 68.20 (£21.16)

DeepESN var. p | 0-2 0-2 161.90 (£129.19)

DeepESN-IA var. p | 0 -4 0-4 95.20 (£24.02)

GroupedESN var. p | 0-6 0-6 95.40 (£22.57)
Wikipedia

DeepESN p = 0.5 0-6 0-6 54.90 (£17.43)

DeepESN var. p 0-2 0-2 168.00 (£69.95)

DeepESN-IA var. p | 0- 2 0-2 92.80 (£18.75)

GroupedESN var. p | 0-4 0-6 100.70 (439.86)

Table 3.3: Values of Kendall’s tau (KT), Spearman’s footrule (SF) and index of separation
(IS) achieved on the Artificial and on the Wikipedia datasets by DeepESN,
DeepESN-IA and GroupedESN with a = 0.55 for every layer (or sub-reservoir)
and p varying from 0.1 to 0.9 among the layers (or sub-reservoirs). For the
sake of reference comparison the results achieved for the case of DeepESN
with constant p = 0.5 for all the layers is reported as well. For KT and SF
smaller values are better, for IS higher values are better.

3.3.1.4 Differentiation by IP Training

The impact on the development of multiple time scales due to the unsupervised
IP training is shown in Figure 3.7 and Table 3.4, considering the cases of DeepESN;,
DeepESN-IA and GroupedESN with constant values of a = 0.55 and p = 0.9
for all the layers (or sub-reservoirs), and using IP learning. In our experimental
setting, we used values of =0, 0 = 0.1 and n = 0.00001 for the IP parameters in
Equation 2.35. For comparison, in the plots of Figure 3.7 we also show the result
obtained by the corresponding standard shallowESN architecture using IP with

and the same hyper-parametrization.

The remarkable effect of IP on the time-scales differentiation in a layered archi-
tecture is pointed out by a comparison between the results of DeepESN under the
same settings of a and p, with IP learning (Figure 3.7a) and without IP learning
(Figure 3.4a). It can be observed that after IP training the higher layers in the
DeepESN architecture tend to forget more slowly the past input history, and the
effect of the typo perturbation has a much longer duration. Results in Table 3.4
show that DeepESN with IP achieves better results in terms of time-scales ordering
and separation among the layers, outperforming the results of the base DeepESN

case with corresponding settings (in Table 3.1).

In addition to the amplifying effect of IP on the time-scales differentiation observed

on DeepESN, it is also possible to notice the enhancement effect of layering on the
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Figure 3.7: Distance between perturbed and unperturbed states on the Artificial dataset
for the considered RC architectures, with a = 0.55 and p = 0.9 for every layer
(or sub-reservoir) and using IP learning. Continuous blue lines correspond to
layers in deep RC networks (sub-reservoirs in GroupedESN), dashed red lines
correspond to the shallowESN with the same number of total reservoir units
and hyper-parametrization. a: DeepESN, b: DeepESN-IA, ¢: GroupedESN.

IP efficacy. Indeed the hierarchical organization of reservoir layers in DeepESN,
with higher layers at increasing distance from the input, allows to trigger a process
of increasing effectiveness of IP among the layers, as can be seen also by the fact
that the curves representing the dynamics of the first DeepESN layer and of the
shallowESN almost overlap in the plot in Figure 3.7a. On the other hand, when
the DeepESN architectural characterizations are lost, layer dynamics are made
more uniform by IP learning, as can be seen for DeepESN-IA (Figure 3.7b) and
GroupedESN (Figure 3.7b).

The strong effect of IP on the emerging of multiple time-scales differentiation in
DeepESN can be explained in terms of a diversification of the memory length in the
different layers, similarly to the effect of the variation of the spectral radius. Indeed,
by changing the gains of the reservoir units’ activation functions, IP potentially act

on the real value of the spectral radius at the different layers, as noticed also in
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Model | KT (min-max) [ SF (min-max) | IS (mean)
Artificial

DeepESN [ 0- 2 0-2 785.10 (£243.97)

DeepESN-IA | 0-7 0-14 24.00 (£8.99)

GroupedESN | 6 - 10 20 - 44 -0.40 (£3.23)
Wikipedia

DeepESN 0-0 0-0 644.40 (+183.61)

DeepESN-IA | 2 -8 2-14 20.90 (£4.66)

GroupedESN | 6 - 10 10 - 44 11.80 (£6.84)

Table 3.4: Values of Kendall’s tau (KT), Spearman’s footrule (SF) and index of separation
(IS) achieved on the Artificial dataset and on the Wikipedia dataset by
DeepESN, DeepESN-TA and GroupedESN, with with a = 0.55 and p = 0.9 for
every layer (or sub-reservoir) and using IP learning. For KT and SF smaller
values are better, for IS higher values are better.

[178] for standard RC networks.

Although the effect of IP deserves a separate theoretical analysis, we can provide
an insight about theoretical motivations on the effect illustrated in Figure 3.7a). In
particular, the IP algorithm modifies the gains of the layers progressively moving the
effective spectral radius of the recurrent weights close to the edge of stability [171].
Therefore, the contractivity of the transition function is progressively decreased

determining higher layers with higher memory.

3.3.2 Effects of IP in the distribution of DeepESN dynamics

Here, we qualitatively analyze the effects of the IP training on the distribution
of the state signals developed by layers in deep recurrent architectures. Similarly
to the study of distributions in shallow reservoirs presented in [178], for each layer
we plotted the histogram of a neuron signal in order to highlight the distribution
through the layers. For these experiments, we considered a DeepESN architecture
with the same configurations used in the previous Section 3.3.1.4.

Figure 3.8 shows the distribution developed through the layers states by DeepESN
with and without IP. As we expected, the IP algorithm allows the layered architecture
to progressively produce state signals with distributions that match the target
Gaussian ones all centered on zero as illustrated in Figure 3.8 by red bins. Instead, in
the case of state signals developed without IP, each layer has a different distribution
(represented by azure bins in Figure 3.8). Moreover, in higher layers (layer 4 and
layer 7) the values of the azure distributions are focused far from zero on a few

points. This indicates that without IP training the state signal can saturate with
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Figure 3.8: Distribution of the state signals developed progressively in higher layers of
DeepESN with (red bins) and without (azure bins) IP, Top Left: layer 1,
Top Right: layer 4, Bottom Left: layer 7, Bottom Right: layer 10.

the risk of producing poor temporal representations. Overall, our results indicate
the practical beneficial effects of IP training, which allows the DeepESN architecture
to enrich the temporal representation maximizing the entropy (i.e., having Gaussion
distributions), and at the same time avoiding the saturation of temporal features.

In the next section, we measure the richness of the temporal features developed

by a DeepESN with IP training in terms of Shannon’s differential entropy.

3.3.3 Richness of Reservoir Dynamics: IP Training and

Layering

The role of IP learning in relation to layering then deserves to be further in-
vestigated in the context in which it has been introduced, i.e. the information
maximization of reservoir state dynamics [171, 178, 195]. To this aim, we evaluated
the entropy of reservoir units activations over time, as a measure of the richness

of state dynamics, assessing the effect of IP in conjunction with layering. We
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approximated the entropy of the output distribution of each reservoir unit 7, by

computing the integral estimate [12| H;:

H; = —/pdfi(x) log pdf,(z)dx (3.15)

where pdf, is the estimate of the probability density function of the i-th reservoir unit
output distribution over time, computed by means of kernel density estimation, and
the integral in Equation 3.15 is computed by numerical integration®. Algorithm 2

describe the computation of the state entropy used in the following experiments.

Algorithm 2 Entropy Computation

1: procedure ENTROPY (x(!), 1)

2: p = fitdist(x®¥(i,:), kernel’) > pdf, by MATLAB function fitdist
3: £f = @x) p.pdf(x(i,:)).*xlog(p.pdf(xV(i,:)))

4: H = -integral(f,-10,10) > compute Equation 3.15
5 return H

The layer-wise effect of IP on the entropy of reservoir units activations is graphi-
cally shown in Figure 3.9 for both the Artificial (Figure 3.9a) and the Wikipedia
(Figure 3.9b) datasets. The plots show the values of the entropy averaged on the
units of each layer (or sub-reservoir) for DeepESN, DeepESN-IA and GroupedESN,
using the same experimental setting considered with regard to Figure 3.7 and
Table 3.4 (i.e. a =0.55, p=10.9, x = 0 and o = 0.1). For the sake of comparison,
Figure 3.9 also shows the entropy achieved by a shallowESN (with the same total
number of reservoir units) under the same conditions. It can be seen that for both
the datasets, the entropy of DeepESN states clearly increases with increasing layer
depth, showing the same incremental IP effect already observed in Figure 3.7a. On
the other hand, in the cases of DeepESN-TA and GroupedESN, the entropy remains
almost constant among the layers (or sub-reservoirs), and very close to the values
corresponding to a standard shallowESN.

The values of the state entropy averaged over all the reservoir units in DeepESN,
DeepESN-IA,| GroupedESN and ESN in the same experimental settings are reported
in Table 3.5. From such results it is possible to appreciate the overall strong impact
of IP on the hierarchical architecture of DeepESN, resulting in an average entropy
improvement of ~ 27% with respect to the shallowESN for both the datasets,
whereas DeepESN-TA and GroupedESN obtained results very close to those of

2Note that the H; values computed by means of Equation 3.15 result in approximations of the
Shannon’s differential entropy, which can also assume negative values.
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Figure 3.9: Layer-wise averaged entropy of reservoir states on the Artificial dataset (a)
and on the Wikipedia dataset (b), computed for DeepESN, GroupedESN
and DeepESN-IA, with a = 0.55 and p = 0.9 for every layer (or sub-reservoir)
and IP learning. For GroupedESN the results refer to sub-reservoirs. The
average entropy of the shallowESN counterpart is reported as a continuous
red line across each plot.

shallowESN. Results in Table 3.5 confirm that in this experimental setting the
effectiveness of IP is enhanced only by using a hierarchical reservoir organization
with layers at increasing distance from the input. When IP is applied to layers of
reservoir units at the same distance from the input, or to non-stacked sub-groups
of reservoir units, analogous results to the application of IP to a shallowESN are

achieved.
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’ Model \ Entropy ‘

Artificial
DeepESN -1.066 £+ 0.021
DeepESN-IA | -1.410 + 0.007
GroupedESN | -1.425 4+ 0.005
shallowESN | -1.451 4+ 0.003

Wikipedia
DeepESN -1.071 + 0.019
DeepESN-IA | -1.431 + 0.006
GroupedESN | -1.449 + 0.004
shallowESN | -1.469 + 0.005

Table 3.5: Average entropy of reservoir states on the Artificial and on the Wikipedia
datasets (higher values are better), obtained by DeepESN, GroupedESN and
DeepESN-IA jwith a = 0.55 and p = 0.9 for every layer (or sub-reservoir) and
IP learning. The average Entropy of corresponding shallowESN is reported
as well for the sake of reference comparison.

3.3.4 Short-term Memory Capacity

A last set of experiments has been considered to assess the effectiveness of the
proposed approaches on the MC task [97]. This task provides a measure of short-
term memory capacity of RC networks, by evaluating how well it is possible to
recall delayed versions of the input based on reservoir activations. Input consists
of a temporal signal whose elements u(t) are drawn from a uniform distribution
over [—0.8,0.8]. The task requires to reconstruct the input stream with increasing
delays, i.e. for each time-step ¢ we consider target values yx(t) = u(t — k), for
k =0,...,00. The overall MC is defined as:

MC = "r?(ult — k), ys(t)), (3.16)

where r2(u(t — k), yx(t)) is the squared correlation coefficient between the input
with delay k& and the corresponding re-constructed value y(t). The estimation
of the MC value in Equation 3.16 can be numerically unstable. In the case of
linear architectures, it is possible to theoretically estimate the MC value with a
high degree of precision [154], while, the estimation is more difficult in the general
case with non-linear architectures. However in the practice, due to theoretical
results on RC networks [97], the MC can be computed by considering only a finite
number of delayed signals. Here, we set up an MC task similarly to [171], by

considering a number of delays equal to 200 (i.e. twice the number of total reservoir
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units considered). The input signal contained 6000 steps, 5000 of which used
for training and the remaining 1000 for test. For this task we adopted similar
settings to those already used for previous experiments. In particular, we considered
DeepESN architectures with 10 reservoir layers of 10 fully connected units and
input scaling scale;, = 0.1°, instantiating the networks with constant values of
the leaky parameter a € {0.1,0.55, 1} and of the spectral radius p € {0.1,0.5,0.9}
among the layers. Moreover we considered DeepESN settings in which the value of
a varies from 1 to 0.1 among the layers, with constant values for p € {0.1,0.5,0.9},
and in which the value of p varies among the layers from 0.1 to 0.9, with constant
values of a € {0.1,0.55,1}. We also ran experiments using IP learning, which has
a known improvement effect on the MC task [171], using values of n = 0.00001,
p =0 and o € {0.1.0.01} for all the RC settings mentioned above. Analogous
experiments were conducted for DeepESN-IA and GroupedESN, as well as for
standard ESN (for the sole scope of baseline reference and assessment). For each
network hyper-parametrization, we independently generated 10 guesses, averaging
the results over such guesses. In all the considered cases, the values of a, p and o
were chosen by model selection on a validation set (comprising 20% of the data in
the training set).

The MC values on the test set achieved by DeepESN, DeepESN-IA, GroupedESN
and shallowESN are reported in Table 3.6. Results show that DeepESN obtained
the best MC both without IP and with IP, improving the results obtained by
shallowESNs (which are in line with literature results [171]). In particular, without
IP, DeepESN obtained an MC value of 42.45 that represents an improvement
of &~ 54% with respect to the value achieved by shallowESN. The hierarchical
organization of DeepESN architecture also allowed to exalt the known effect of
IP on the MC, leading to a value of 54.49, which improves the result achieved by
shallowESN with IP by &~ 47%. In both the cases, without and with IP, the selected
values of spectral radius and leaky parameter for DeepEESSN were a = 1 and p = 0.9,
while varying the values of these two parameters among the layers led to slightly
lower MC results. Moreover, notice that DeepESN-IA and GroupedESN achieved
MC values very close to the one of shallowESN, both with and without IP.

A further comparison between the MC of DeepESN and shallowESN is presented
in Figure 3.10, which shows the results achieved in correspondence of different

values of the leaky parameter a and of the spectral radius p (constant for all the

3Some works show that lower values of scaley, can obtain better MC results [44, 45], however,
since we are interested to the study of the effect of layering on MC, we focus on a single scale;,
value.
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Model Memory Capacity ‘
DeepESN 42.45 + 3.11
DeepESN + var. a 37.15 £ 2.48
DeepESN + var. p 30.79 &+ 1.15
DeepESN-TA 28.05 + 1.87
GroupedESN 28.02 £ 1.77
shallowESN 27.50 £+ 1.34
DeepESN + IP 54.49 + 3.82
DeepESN + var. a + IP | 52.03 £+ 5.43
DeepESN + var. p + IP | 48.01 + 3.36
DeepESN-IA + IP 36.78 + 2.69
GroupedESN + TP 39.02 £+ 2.25
shallowESN + IP 37.06 + 1.48

Table 3.6: Memory Capacity results (higher is better) achieved by DeepESN, DeepESN-
TA and GroupedESN and shallowESN. Results for DeepESN are reported
also for the cases of layers with decreasing values of a (var. a) and increasing
values of p (var. p) among the layers. The first group of results refers to RC
models without the use of IP, the second group refers to the corresponding
models with IP (denoted by +IP).

layers) while the values of the other parameters were selected on the validation set,
without using IP (Figures 3.10a and 3.10b) and using IP (Figures 3.10c and 3.10d).
Results clearly show that DeepESN improves the short-term MC of shallowESN in
all the cases.

Overall, as highlighted by the experiments reported in Section 3.3.1.2, the
DeepESN is able to develop a hierarchical multiple time-scales representation of
the driving input ordered among the layers. This leads to increasing the memory
capacity of the higher layers. Therefore, higher architectures can globally exploit a

better memory capacity regardless of the temporal structure of the input sequence.

3.4 Hierarchical and Distributed Temporal
Representation in DeepRNNs

In the previous section 3.3 we highlighted the role of layering in deep RNNs in
developing progressively different temporal dynamics among the layers. In this
section, we take a step forward in the study of the structure of the temporal
features naturally emerging in layered RNNs. To this aim, we resort to classical
tools in the area of signal processing to analyze the differentiation among the

state representations developed by the different levels of a DeepESN on signals
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Figure 3.10: MC results of DeepESN and shallowESN for different values of the spectral
radius p and of the leaky parameter a. (a): different values of a, without
IP, (b): different values of p, without IP, (c): different values of a, with
IP, (d): different values of p, with IP. For DeepESN each reservoir layer
has the same hyper-parametrization.

characterized by multiple time-scales dynamics. In particular, we simplify the
DeepESN design by implementing recurrent units with linear activation function,
i.e. we introduce linear DeepESN (L-DeepESN). In the analysis of the frequency
spectrum of network’s states, this approach brings the major advantage of avoiding
the effects of harmonic distortion due to non-linear activation functions. To provide a
quantitative support to our analysis, we experimentally assess the L-DeepESN model
on a variety of progressively more involving versions of the Multiple Superimposed
Oscillator (MSO) task [206, 211]. Note that the class of MSO tasks is of particular
interest for the aims of this study, especially in light of previous literature results
that pointed out the relevant need for multiple time-scales processing ability [100,
168, 211] as well as the potentiality of linear models in achieving excellent predictive
results in base settings of the problem [27].

As a further contribution, our work would offer interesting insights on the nature
of compositionality in Deep Learning architectures. Typically, deep neural networks

consist in a hierarchy of many non-linear hidden layers that enable a distributed
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information representation (through learning) where higher layers specialize to
progressively more abstract concepts. Removing the characteristic of nonlinearity,
and focusing on the ability to develop a hierarchical diversification of temporal
features (prior to learning), our analysis sheds new light into the true essence of
layering in deep RNN even with [inear recurrent units.

First, in the next Section 3.4.1 we introduce the L-DeepESN model. Then, in
Section 3.4.2 we define the experimental setting. Finally, in Sections 3.4.3 and
3.4.4 we analyze the hierarchical nature of temporal representations in L-DeepESN;,
presenting the outcomes of the signal processing analysis of the developed system

dynamics and the experimental results on the MSO tasks.

3.4.1 Linear Deep Echo State Networks

We define the L-DeepESN architecture as a DeepESN with linear activation
functions. Thereby, the state transition function is obtained from Equations 3.1
and 3.2 (In Section 3.2) using the identity function id as activation function. By
referring to the case of leaky integrator reservoir units [100], and omitting the bias
terms for the ease of notation, the state transition function of the first layer is given

by the following equation:
xW(t) = (1 = aM)xW(t — 1) + aM (Wiu(t) + W(I)X(l)(t - 1)), (3.17)
whereas the state transition of layer ¢« > 1 is ruled by the equation:
xD(t) = (1 — a®)x(t — 1) + D WOxED () + WxO( — 1)), (3.18)

where a(¥ € [0,1] is the leaking rate parameter at layer i, Wy, € RV&xMu jg
the input weight matrix, W& e RVNa*Nr jg the weight matrix of the inter-layer
connections from layer ¢ — 1 to layer 4, VAV(O € RVaxNr g the matrix of recurrent
weights of layer ¢, and f denotes the element-wise application of the activation
function of the recurrent units. A null initial state is considered for the reservoirs
in all the layers, i.e. x”(0) =0 foralli=1,...,Ny.

The initialization, the training and the output computation of the network are
per&f;)rmed as in DeepESN (see Section 3.2). In particular, the values of matrices
W

in DeepESN, the only learned parameters of the network are those pertaining to

, Wi, and {W® N2 are randomly initialized and left untrained. Moreover, as

the readout layer.
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In this context it also interesting to observe that the use of linearities allows
us to express the evolution of the whole system by means of an algebraic ex-
pression that describes the dynamics of an equivalent single-layer recurrent sys-
tem with the same total number of recurrent units. Specifically, given x(t) =
(xM(t),x@(t),...,xNe)(t)) € RVeNr the global state of the network, the depen-

dence of x(t) from x(t — 1) can be expressed as:
x(t) = Vx(t — 1) + Viu(t), (3.19)

where both V € RVeNexNLNr and Vi, € RNeNexNu can be viewed as block matrices,
with block elements denoted respectively by V;; € RVEXNr and V,,; € RVr*Nv

ie.:
Vl,l e Vl,NL Vin71

x(t) = | : S x(t—1)+ | : u(t). (3.20)
VNL,I VNL,NL Vin,NL

Noticeably, the layered organization imposes a lower triangular block matrix struc-

ture to V such that in the linear case its blocks can be computed as:

0 ifi < j
Vij=4 (1—a?I+aOW" if i = j (3.21)
(T sy a®W®) (1 — )T + dAOW) i > g

Moreover, as concerns the input matrix, we have:

a(l)Win ife=1
ini = (3.22)

(I a®WEaOWy,  if i > 1.

The mathematical description provided here for the L-DeepESN case is particu-
larly helpful in order to highlight the characterization resulting from the layered
composition of recurrent units. Indeed, as described in Section 3.2.1 from an
architectural perspective, a deep RNN can be seen as obtained by imposing a set of
constraints to the architecture of a single-layer fully connected RNN with the same
total number of recurrent units (see Figure 3.3). In this respect, the use of linear
activation functions has the effect of enhancing the emergence of such constrained
characterization and making it visible through the peculiar algebraic organization
of the state update as described by Equations 3.20, 3.21 and 3.22. Indeed, the

constrained structure given by the layering factor is reflected in the (lower triangular
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block) structure of the matrix V that rules the recurrence of the whole network dy-
namics in Equation 3.20. In particular, the last line of Equation 3.21 highlights the
progressive filtering effect on the state information propagated towards the higher
levels in the network, modulated by the leaking rates and through the magnitude
of the inter-layer weights values. Similarly, the last line of Equation 3.22 shows the
analogous progressive filtering effect operated on the external input information for
increasing level’s depth.

Thereby, although from the system dynamics viewpoint it is possible to find
a shallow recurrent network that is equivalent to an L-DeepESN, the resulting
form of the matrices that rules the state evolution, i.e. V and Vj,, has a distinct
characterization that is due to the layered construction. Moreover, note that the
probability of obtaining such matrices V and V;, by means of standard random
reservoir initialization is negligible. Noteworthy, the aforementioned architectural
constraints imposed by the hierarchical construction are reflected also in the ordered
structure of the temporal features represented in higher levels of the recurrent
architecture, as investigated for linear reservoirs in Section 3.4.3, and as observed,
under a different perspective and using different mathematical tools, in the non-

linear case in 3.3.1.

3.4.2 Multiple Superimposed Oscillators Tasks

Here we present the class of MSO tasks used for the experimental assessment of
L-DeepESN.

An MSO task consists in a next-step prediction on a 1-dimensional time series,
i.e. for each time-step t the target output is given by Yiarget(t) = u(t + 1), where

Ny = Ny = 1. The considered time series is given by a sum of sinusoidal functions:
u(t) = sin(pit), (3.23)
i=1

where n denotes the number of sinusoidal functions, ¢; determines the frequency of
the i-th sinusoidal function and ¢ is the index of the time-step. In the following,
we use the notation MSOn to specify the number n of sinusoidal functions that
are accounted in the task definition. The ¢; coefficients in Equation 3.23 are set
as in [139, 109], i.e. p; = 0.2,y = 0.331,p3 = 0.42, 04 = 0.51, 5 = 0.63, pg =
0.74, 07 = 0.85,08 = 0.97, 09 = 1.08, 019 = 1.19,01; = 1.27,015 = 1.32. In

particular, in our experiments we focus on versions of the MSO task with a number
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of sine waves n ranging from 5 to 12. This allows us to exercise the ability of the
RC models to develop a hierarchy of temporal representations in challenging cases
where the input signal is enriched by the presence of many different time-scales
dynamics. Besides, note that summing an increasing number of sine waves with
frequencies that are not integer multiples of each other makes the prediction task
harder due to the increasing signal period. An example of the input signal for the
MSO12 task is given in Figure 3.11. For all the considered settings of the MSO task,

:
5o
-5 ‘
100 200 300 400 500
Time-steps

Figure 3.11: A 400 time-steps long excerpt of the input sequence for the MSO12 task.

the first 400 steps are used for training (with a washout of length 100), time-steps
from 401 to 700 are used for validation and the remaining steps from 701 to 1000
are used for test.

In our experiments, we used L-DeepESN with N, levels, each consisting in a
fully connected reservoir with Nz units. We assumed that Wy, and {W"}N2 are
initialized with the same scaling parameter scale;,, and we used the same value of
the spectral radius and of the leaking rate in every level, i.e. p@ = p and ' = a
for every i. For readout training we used ridge regression. Table 3.7 reports the

range of values considered for every hyper-parameter considered in our experiments.

’ Hyper-parameter \ Values considered for model selection ‘
number of levels Ny, 10
reservoir size Np 100
input scaling scale;, 0.01, 0.1, 1
leaking rate a 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
spectral radius p 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
ridge regression regularization A, | 1071,1071°, .. 10°

Table 3.7: Hyper-parameters values considered for model selection on the MSO tasks.

In order to evaluate the predictive performance on the MSO tasks, we used the
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normalized root mean square error (NRMSE), calculated as follows:

NRMSE = | (3" (rarger(t) = ¥(£)))/(To?__ ). (3.24)

t=1

where T' denotes the sequence length, yiareet(t) and y(t) are the target and the

networ utpu im nd o 1 varian tareet. FOT reservoir
etwork’s output at time ¢, and zt )sthe ariance of Yiarget. For each reservo

arget (t
hyper-parametrization, we indepen(gie(ntly generated 10 reservoir guesses, the pre-
dictive performance in the different cases has been averaged over such guesses and
then the model’s hyper-parameterization has been selected on the validation set.
In the following Sections 3.4.3 and 3.4.4 we respectively evaluate our approach
from a qualitative perspective, by analyzing the frequencies of the state activations
developed in the different reservoir levels, and from a quantitative point of view,

comparing the predictive performance of L-DeepESN with related literature models.

3.4.3 Multiple Frequency Differentiation

In this section, we investigate the temporal representation developed by the
reservoirs levels in an L-DeepESN, using as input signal the sequence considered
for the MSO12 task, featured by rich dynamics with known multiple time-scales
characterization (see Equation 3.23). We performed the analysis on the selected
model according to the experimental settings defined in the previous Section 3.4.2.
Thereby, we considered a L-DeepESN with Ng = 100, N, = 10, scaley, = 1, a = 0.9
and p = 0.7, averaging the results over 100 reservoir guesses. In our analysis,
we first computed the states obtained by running the L-DeepESN on the input
sequence. Then, we performed the Fast Fourier Transform (FFT) [47] algorithm on
the states of all the recurrent units over the time, normalizing the obtained values
in order to enable a qualitative comparison. Finally, we averaged the FFT values
on a layer-by-layer basis.

Figures 3.12a), 3.12b), 3.12¢) and 3.12d) show FFT values obtained for progres-
sively higher levels of L-DeepESN which respectively focus on levels 1, 4, 7 and
10. These figures represent the state signal in the frequency domain, where it is
possible to see 12 spikes corresponding to the 12 sine waves components of the
input?. Looking at the magnitude of the FFT components, i.e. at the height of
the spikes in plots, we can have an indication of how the signals are elaborated

by the individual recurrent levels. We can see that the state of the reservoir at

4Note that radians per second ¢; in Equation 3.23 are equivalent to i Hz (see Figures 3.12).
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Figure 3.12: FFT components of reservoir states in progressively higher levels of L-
DeepESN; a) level 1, b) level 4, c) level 7, d) level 10.

level 1 shows FFT components all with approximately the same magnitude. The
FFT components of reservoir states at levels 4, 7 and 10, instead, show diversified
magnitudes. Specifically, we can see that in higher levels of the network higher fre-
quency components are progressively filtered, and lower frequency components tend
to have relative higher magnitudes. This confirms the insights on the progressive
filtering effect discussed in Section 3.4.1 in terms of mathematical characterization

of the system.

Results in Figure 3.12 show that the hierarchical construction of recurrent models
leads, even in the linear case, to a representation of the temporal signal that is
sparsely distributed across the network, where different levels tend to focus on
different magnitudes of frequency components. Moreover, the higher is the level,
the stronger is the focus on lower frequencies, hence the state signals emerging in
higher levels are naturally featured by coarser time scales and slower dynamics.
Thereby, the layered organization of the recurrent units determines a temporal
representation that has an intrinsic hierarchical structure. According to this, the
multiple time scales in the network dynamics are ordered depending to the depth of
reservoirs’ levels. In the next Session 3.4.4, we evaluate the performance obtained
by L-DeepESN trained on the MSO tasks exploiting the inherent hierarchical

distributed temporal representation developed among the layers as described above.
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3.4.4 Predictive Performance

In this section, we compare the quantitative results obtained by the L-DeepESN
model with the performance reported in literature on recent (more complex and
richer) variants of the MSO task, with a number of sine waves n varying from 5 to
12. Table 3.8 provides a comparison among the NRMSE achieved on the test set by
L-DeepESN, neuro-evolution [139], balanced ESN [109], ESN with infinite impulse
response units (IIR ESN) [89] and Evolino [168] on the considered MSO tasks.
Furthermore, in the same table, we report the performance achieved by linear ESN
built with a single fully connected reservoir (L-ESN), considering the same range of

hyper parameters and total number of recurrent units as in the L-DeepESN case.

Task [ L-DeepESN | L-ESN [ n.-evolution [139] [ balanced ESN [109] | IIR ESN [39] [ Evolino [168] |

MSO5 | 6.75-10" [ 7.14-10"10 4.16-10710 1.06 - 1076 8.107° 1.66 - 1071
MSO6 | 1.68-10"2 | 5.40-107° 9.12-107° 8.43-107° - -
MSO7 | 5.90-10"2 | 5.60-10~% 2.39-10°% 1.01-107* -

MSO8 | 1.07-10""" | 2.08-1077 6.14-10°% 2.73-107* -

MSO9 | 5.34-1071' | 4.00- 1077 1.11-1077 - -

MSO10 | 8.22-1071 | 8.21-1077 1.12-1077 - -

MSO11 | 4.45-1071° | 1.55.10° 1.22-1077 - -

MSO12 | 5.40-1071° | 1.70-10°° 1.73-1077 - -

Table 3.8: Test NRMSE obtained by L-DeepESN, L-ESN, neuro-evolution (n.-evolution),
balanced ESN, IIR ESN and Evolino on the MSO5-12 tasks.

Noteworthy, the proposed L-DeepESN model outperformed the best literature
results of about 3 or 4 orders of magnitude on all the MSO settings. Furthermore, test
errors obtained by L-ESN are always within one order of magnitude of difference with
respect to the best state-of-the-art results. These aspects confirms the effectiveness of
the linear activation function on this task, as also testified by our preliminary results
that showed poorer performance for RC networks with tanh units, unless forcing
the operation of the activation function in the linear region (i.e., considering small
inputs weights). Therefore, these results suggest that L-DeepESN can outperforms
other non-linear deep architectures such as DeepESN on tasks characterized by
linearity (i.e., linear compositions of non-linear functions as in MSO) or on tasks in
which the memory capacity is particularly relevant [45].

Moreover, L-DeepESN always performed better then L-ESN. On the basis of the
known characterization of the MSO task, our results confirm the quality of the
hierarchical structure of recurrent reservoirs in representing multiple time-scales
dynamics with respect to its shallow counterpart.

For the sake of completeness, we performed a further comparison considering

L-DeepESNs with the same number of total recurrent units used by the other ESN

86



models taken into account from literature. In particular, balanced ESN used a
maximum number of 250 units for model selection on the MSO5, MSO6, MSO7
and MSOS tasks, while IIR ESN implemented 100 units on the MSO5 task (see
results in Table 3.8). L-DeepESN with N = 10 and Nr = 25 (i.e. a total of 250
recurrent units) performed better than balanced ESN, obtaining a test NRMSE of
1.20-1071, 8.73-107, 2.42- 1071 and 9.06 - 1071, on the MSO5, MSO6, MSO7
and MSOS tasks, respectively. Moreover, even L-DeepESN with N, = 10 and
Ng =10 (i.e. a total of 100 recurrent units) obtained a better performance than
IIR ESN, achieving a test error of 7.41 - 107! on the MSO5 task.

3.5 Discussion

In this Chapter, we proposed the study of deep RC architectures to analyze the
inherent characteristics of deep RNNs. In particular, quantitative and qualitative
studies, performed on DeepESN model and architectural baselines (described in
Section 3.2.1), highlighted a number of major advantages in the use of layering in
deep RNN architecture.

The hierarchical organization of the reservoir in successive layers is naturally
reflected into the structure of the developed system dynamics. Specifically, it has
been experimentally observed in Section 3.3 that the global state of a DeepESN tends
to develop a multiple time-scales representation of the input history, hierarchically
ordered along the layers of the recurrent architecture. In particular, higher layers
showed progressively slower dynamics in the conditions, setup and tasks analyzed
in Section 3.3. In this regard, an interesting observation is that the hierarchical
structure of DeepESN state representations can be achieved even in the case in which
all the reservoir layers share the same values for the hyper parameters. Another
relevant outcome of Section 3.3 is that IP adaptation applied in conjunction with
a layered recurrent organization is able to further enhance the effect of temporal
scales differentiation across the layers.

A hierarchical construction of the reservoir is also beneficial in terms of increasing
the richness of the developed state dynamics. This has been experimentally observed
in Section 3.3.3, by measuring the averaged entropy of DeepESN states, using the 1P
rule for unsupervised adaptation and in comparison to the shallow case. Moreover,
experimental evidences reported Section 3.3.4 showed that DeepESNs are able to
considerably and consistently outperform corresponding shallowESN settings (with

the same total number of recurrent units) in terms of MC.
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The multiplicity of temporal representations developed by the global internal
state of a DeepESN has been also analyzed in Section 3.4 in terms of the frequency
spectrum of state components. In particular, considering a deep recurrent architec-
ture with linear activation functions, we defined the mathematical characterization
of a dynamical system for describing the progressive filtering computed by a deep
RNN on the states of higher layers. Thereby, DeepESN states produce a multiple
frequency representation of the input information, distributed through layers, where

higher layers tended to focus on lower frequencies as illustrated in Section 3.4.3.

3.5.1 Subsequent studies on deep randomized RNNs

Recent works related to the aspects treated in this thesis as well as to deep
RC paradigm introduced theoretical studies [55, 67, 66|, further investigations on
the memory capacity of deep RNNs [49] and real-world applications on ambient
assisted living field [56]. In particular, on the theoretical side, studies in the field
of dynamical system theory [55] showed that reservoir states in different layers of
DeepESN are able to develop dynamics that are qualitatively different in terms of
contractive behavior. Specifically, as analyzed in [55] (in a basic setting without IP
learning), when the DeepESN is initialized using the same hyper parameters for
the scaling of reservoirs matrices in all the levels of the architecture, progressively
higher layers tend to be characterized by progressively less contractive dynamics.
Furthermore, stability analysis in presence of driving inputs, conducted through the
study of Lyapunov exponents in [66, 67|, pointed out that layered RNN architectures,
compared to shallow counterparts in condition of an equal number of recurrent
units, show a dynamical behavior that is naturally pushed closer to the edge of
stability. This represents a transition condition of states regime near which the
RNN system exhibits a rich internal representation of the driving input signals and

high performance in tasks requiring long memory spans [123, 16].

3.5.2 Time-scales Differentiation in RC models

The aspect of temporal scales differentiation in RC models has been addressed in
literature also from a different, though related, line of architectural studies. These
are based on the idea of structuring the reservoir into sub-groups, or sub-reservoirs,
characterized by different dynamical properties with the aim to achieve a decoupling
among the state dynamics [211], an idea that has been pursued also outside of the

RC context e.g. in [212]. A recent development, described in [151], proposed an
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incremental approach to the construction of the sub-groups reservoir organization.
Differently from the DeepESN model, all of these architectural variants are based on
a structured but non-hierarchical organization of the recurrent dynamical part, i.e.
they are shallow networks purposely designed to achieve a multiplicity of temporal
scales by construction. The experimental comparison between the two approaches,
studied in Section 3.3.1, pointed out the actual relevance of a layered architectural
construction, in which pools of recurrent units are progressively more distant from
the input (and there is no feedback from higher to lower layers). The main aspects

regarding DeepESN approaches are also summarized in two recent surveys [53, 58].

3.5.3 Subsequent Studies on Hierarchical RC structures

Further works introduced studies based on different hierarchical RC structures.
Empirical studies presented in [127] show the advantages obtained by multi-layered
RC architectures on time-series benchmarks in the RC area. Another proposed
architecture is characterized by layered reservoirs implemented by means of cellular
automata [138, 135]. The use of layering in cellular automata can improve the
performance of the model on artificial tasks [138, 135]. Finally, studies proposed in
[215] analyze the characteristics of emergent stimulus representations in a hierarchy
of recurrent modules of spiking neural networks. Interestingly, the evidences
reported in [215] in a context of spiking neural models highlighted that higher layers
are characterized by faster dynamics. Also in our studies (presented in the next
Chapter 4), we empirically show that it is possible to obtain faster dynamics in the
higher layers of DeepESN models by using [P adaptation on complex real-world
tasks.

3.6 Conclusions

In this Chapter, we have proposed an experimental analysis of state dynamics
in deep RNN architectures, targeted at assessing the real effect of layering on
the development of a hierarchical representation of the temporal information.
In particular, the recourse to RC networks allowed us to conduct such analysis
separately from learning aspects.

Despite the observations that stacking recurrent layers is just an architectural
constraint to a fully connected RNN, and that a shallow reservoir already provides

a rich pool of varied state dynamics by construction, the experimental evidences
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in this Chapter have shown that it is possible to exploit the same factors that
influence the dynamics of shallow recurrent architectures to achieve a temporal
data representation at multiple levels of abstractions through a layered network
organization in deep RNNs.

In particular, the introduction of the DeepESN model allowed us to study the
intrinsic properties of deep layered recurrent architectures in terms of time-scales
differentiation, and highlight such properties in comparison to purposely introduced
baseline models. This allowed us to evaluate the effect of architectural factors such
as the progressive distance of higher layers from the external input (versus DeepESN-
[A) and the effective hierarchical interplay among layers (versus GroupedESN).

In Section 3.3, experiments on two benchmark datasets have shown the synergy
between stacking reservoir layers and the role of already known RC parameters.
On the one hand, such analysis provided insights on the amplification of the effect
of these RC parameters in a deep architecture. On the other hand, it allowed
us to propose effective strategies to enhance the time-scale differentiation among
layers using different values of the leaky parameter and of the spectral radius, or
by unsupervised IP learning focused only the parameters of the activation function.
This allows us to preserve the efficiency of the RC approach, without resorting to a
full RNN training (extended to all the units parameters).

More in detail, the variability of parameters of reservoir design ruling the speed
of dynamics in response to the input, i.e. the leaky parameter, and the memory
length, i.e. the spectral radius, could effectively amplify the emergence of multiple
(separated) time scales, hierarchically ordered across the layers of a DeepESN.

The use of an efficient technique for unsupervised adaptation of (only) the
parameters of the reservoir activation functions, i.e. IP learning, has shown a great
impact on the development of multiple time scales (enhanced in deep models).
Such impact has been investigated also in terms of improved richness of reservoir
dynamics by measuring the entropy of reservoir state activations, showing that the
known effect of IP learning is actually progressively enhanced among the layers of
a DeepESN architecture. Furthermore, the advantages brought by the proposed
approaches have been shown also on the MC task, showing that DeepESN allows
to improve the short term memory capacity with respect to the shallow case, and
that the known effect of IP learning on the MC task is greatly exalted by the use
of a layered architecture.

Overall, after assessing the intrinsic architectural properties of general deep

layered RNN in representing different time-scale dynamics, more interestengly
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for RC modeling, the results of our experimental analysis pointed out the actual
relevance of the interplay between layering and RC parameters aspects on the
diversification of temporal representations. In particular, the proposed approaches
allowed us to achieve a time-scale differentiation in deep models that is higher
with respect to a standard ESNs without a layered structure, and led to explicitly
address the concept of including temporal data representation at different level of

abstraction within the RC paradigm.

In Section 3.4, we take a step forward in the study of the temporal features
naturally emerging in deep RNNs by means of frequency analysis tools. For this
purpose, we have studied the inherent properties of hierarchical linear RNNs by
analyzing the frequency of the states signals emerging in the different levels of the
recurrent architecture. The use of linear activations allowed us to define an intrinsic
mathematical characterization of layered recurrent architectures and to perform
a frequency analysis without harmonic distortion. The FFT analysis revealed
that the stacked composition of reservoirs in a L-DeepESN tends to develop a
structured representation of the temporal information. Exploiting an incremental
filtering effect, states in higher levels of the hierarchy are biased towards slower
components of the frequency spectrum, resulting in progressively slower temporal
dynamics. In this sense, the emerging structure of L-DeepESN states can be seen
as an echo of the multiple time scales present in the input signal, distributed across
the layers of the network. The hierarchical representation of temporal features
in L-DeepESN has been exploited to address recent challenging versions of the
MSO task. Experimental results showed that the proposed approach dramatically
outperforms the state of the art on the MSO tasks, emphasizing the relevance of
the hierarchical temporal representation and also confirming the effectiveness of

linear signal processing on the MSO problem.

Overall, the analysis proposed in this Chapter paves the way to further studies
on the design of novel deep RNN models for efficient representation learning on
sequences. Future developments deserve to move from the current insights to
the design and concrete set up of new learning models boosted by an enriched
representation of the input dynamics, exploiting the time-scale differentiation
developed through the layers to solve complex tasks that require/involve processing
time-series data at different levels of time granularity. The opening of this line of
research would contribute to achieving new findings that are demanded to result
in a relevant breakthrough in the area of efficiently learning from sequential and

temporal data.
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Moreover, we showed a concrete evidence that layering is an aspect of the network
construction that is intrinsically able to provide a distributed and hierarchical
feature representation of temporal data. Our analysis pointed out that this is
possible even without (or prior to) learning of the recurrent connections, and
releasing the requirement for nonlinearity of the activation functions.

Finally, the analysis tools developed in this Chapter that allowed us to study the
intrinsic role of layering in deep RNN pave the way to define design approaches
based on qualitative and quantitative measures. In particular, in the next Chapter,
we introduce a design approach for efficient deep RNN architectures based on

measures computed by frequency analysis tools.
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Analysis and Design of Deep RNINs

The content presented in this Chapter is based on work published in [62] (see

Section 1.5 for details).

In previous Chapter we developed analysis tools for the study of intrinsic char-
acterizations of deep RNNs (under different aspects). Moreover, the DeepESN
model (introduced in Section 3.2) resulted an efficient deep recurrent model able
to develop rich temporal representations of input signals characterized by multiple
time-scales dynamics. On such considerations, in this Chapter we aim to introduce
a novel approach for the efficient design of deep RNN based on DeepESN models.

The Chapter is organized as follows. In Section 4.1, we present main aspects of
the design approach that we aim to introduce. Then, in Section 4.2 we define the
proposed method for designing DeepESN architectures, providing an analysis of the
involved advantages in terms of computational cost and analyzing it under an ad
hoc controlled scenario. We discuss the outcomes of our analysis in Section 4.3, and
we present conclusions in Section 4.4. For the sake of presentation, the experimental
evaluations of this approach on real-world applications are presented in the next
Chapter (in Sections 5.3.1 and 5.3.2).

4.1 Introduction

The analysis conducted in the previous Chapter highlighted the potential advan-
tages of layering as a factor of architectural design in the development of a multiple
time-scales dynamical behavior. Starting from this intrinsic characterization, we
can thus ask whether the number of layers in the architecture is actually providing a
sufficiently diversified behavior, and, on the other hand, whether adding new layers
is still effective in terms of dynamical differentiation or not. In other words, in this

chapter we tackle the problem of how to choose the number of layers in a deep
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recurrent architecture, which currently represents one of the main open questions in
the deep learning area. Differently from the work in [145], which describes different
possible ways of introducing deepness into the architecture of an RNN trained
with stochastic gradient descent, here we explicitly address the issue of how to
operatively set the number of layers in deep stacked recurrent models, based on the
properties of the specific driving input signals and without the training of recurrent

units.

Specifically, in this Chapter we propose an automatic method for the design of
deep RNNs, based on frequency analysis and aimed at appropriately exploiting
the differentiation of temporal representation in DeepESN architectures. The
hypotheses (that delineate the scope of the proposed approach) are that the input
signals are multi-scale and that the differences in the time scales are important
for the learning task at hand. Given these hypotheses, we aim at exploiting such
differences, tailoring the layered architecture to the characteristics of the input
signals, by adding layers only as long as the changes in the frequency spectrum are
effective through layering. This will be crucial for the final classification /regression
performance, under the assumed conditions, proportionally to the effectiveness of
the readout training in grasping/modulating the layered differentiation. Under
such conditions, the proposed approach has the advantage to determine the proper
number of recurrent layers avoiding to apply the training algorithm for each possible

number of recurrent layers explored by the usual trial and error approach.

Besides, a secondary objective is also to bring attention to a more general method-
ological aspect concerning the analysis of multi-layered recurrent architectures by
means of signal processing tools for investigation aims, with a focus on monitoring
the filtering effect on input signals through the recurrent layers. This aspect is
concretely exploited for design purpose in this work, providing an unsupervised
approach to determine the number of layers for a deep recurrent architecture on
the basis of the data at hand, while conserving a more general flavor for future

research.

Based on the analysis of quantitative measures of frequency spectrum in the
state space, we define an iterative procedure to assess the diversification of multiple
time-scales dynamics among layers. In this Chapter, we analyze and refine our
design method on a controlled scenario characterized by signals with multiple
time-scales dynamics, studying qualitative and quantitative aspects of frequency
analysis in layers states. Subsequently, these analysis (and results) are exploited in

the next Chapter (in Sections 5.3.1 and 5.3.2), where we experimentally evaluate
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the method on challenging real-world tasks in the area of temporal processing of
time series featured by multiple times-scales, namely music processing and speech

processing.

4.2 Spectral Analysis and Depth of DeepESN

In the following sections, we introduce our approach based on the spectral
analysis for automatically determine the depth of DeepESN architectures. First,
in Section 4.2.1 we define the iterative algorithm, then in Section 4.2.2 we discuss
its advantages with respect to a standard cross-validation approach in terms of
computational costs. In Section 4.2.3 we assess our method on a controlled scenario.
Finally, in Section 4.2.4 we experimentally analyze the role of the depth in deep
RNNSs using spectral analysis.

4.2.1 Method

In this section, we aim to define an automatic algorithm, based on spectral
analysis, to determine the depth of DeepESN architectures in which every layer
encodes a different range of time-scales dynamics. For this purpose, we take
inspiration from research findings presented in Sections 3.3 and 3.4 that showed
the intrinsic ability of a stack of recurrent layers to develop a multiple time-scales
differentiation among the layers even considering the same value of the leaky rate
for each recurrent layer and unit. Since in Section 3.4 the aim was the qualitative
study of the spectral properties of the state developed through the layers, for those
assessments, we considered recurrent layers with linear activation functions in order
to avoid harmonic distortion and then to highlight in a clear way the time scales
involved in the temporal processing. Differently from Section 3.4, here we consider
the non-linear DeepESN model with IP training defined in Section 3.2 because, in
this context, we need nonlinearity to compete with the state of the art on real-world
tasks. These considerations allowed us to define a simple design method based on
building blocks (recurrent layers with same hyper parameters) used to build up the
deep architecture. As it is known, a recurrent layer can be studied as a filter 100,
120, 89, 209]. However, differently from filter design, in which the purpose is to
design a filter with a specific cut-off frequency, in our work we aim to exploit the
richness of dynamics represented in the state of each recurrent layer through the

training of the readout component. In such a way, the output layer can adaptively
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choose a proper modulation of time scales on the basis of the characteristics of the
supervised task to solve. Therefore, the main idea behind the proposed automatic
method for network design is to stop adding new layers whenever the filtering effects
become negligible, i.e. when adding new layers essentially does not enrich anymore

the multiplicity of temporal dynamics developed by the reservoir states.

In order to determine when the filtering effect becomes negligible, we perform a
spectral analysis by computing the spectral centroid and the spectral spread (defined
below in Equations 4.2 and 4.3) on the state signal of layers. Intuitively, they
represent weighted average and bandwidth of frequency spectrum values computed
on the state of recurrent layers over time. Spectral centroid tends to converge to a
certain value as we add recurrent layers (further details in Section 4.2.4). Therefore,
we define a stop condition of the iterative algorithm to detect when the shift of

spectral centroid converges:
D — =D < =0y (4.1)

where 0 < 17 < 1 (see Section 4.2.4 for details regarding the 7 value). p® and p¢—Y
are the spectral centroid computed on state of layers [ and [ — 1 respectively, and
o=V is the spectral spread computed on the state of layer [ — 1. On the right-hand
side of Equation 4.1, the n value is multiplied by ¢! in order to take into account

also the bandwidth of the spectrum.

In formulas, the spectral centroid (Equation 4.2) and the spectral spread (Equa-

tion 4.3) are defined as follows:

k k
l l l
u =P 0, (4.2)
o =1

k

k

o = [ = 0 3 (4.3)

j=1 j=1

where £fO = [ .. f,gl)] and p® =, ... ,p,il)] respectively denote the normal-
ized frequencies and the corresponding magnitudes of components, computed over
time on the state of layer [, i.e. x), by the FFT algorithm, whereas k is the number
of frequency components (i.e., the length of both vectors p) and £f). More in
detail, the steps performed for the computation of £ and p) are presented in
Algorithm 3.
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Algorithm 3 FFT of layer state signal

1: procedure FFT(x")

2: comps_g = [] > frequency components on guesses
3 for guess in 1, ..., number_of_guesses do

4 comps_u = [] > frequency components on units
5: for unit in 1, ..., number_of_units do

6 signal = x(®(unit, :) > state signal of the unit
7 timesteps = length(signal)

8 comps = fft(signal) > Matlab fft function
9 comps_u(unit,:) = abs(comps(1 : [timesteps/2)|) > positive fgs
10: comps_g(guess, :) = mean(comps_u) > average on units (rows)
11: p®) = mean (comps_g) > average on guesses (rows)
12: f) = [1: [timesteps/2]]/timesteps > normalized frequency (cyc/s)

13: return p®, f®

Algorithm 3 computes the frequency components for each unit of each reservoir
guess. For each layer [, terms p() are obtained by averaging over the reservoir units
and guesses. Depending on the number of time-steps, terms f¥) are computed in
order to have normalized frequency components measured as cycles/seconds.

Here we assume to consider a standard model selection process in which for each
hyper-parameterization a certain number of reservoir guesses are instantiated (with
different random initialization). Given a configuration of hyper parameters of the
model, denoted by 6, the design Algorithm 4 selects a number of layers for the
network’s architecture. The function computeState() called inside Algorithm 4, is
composed by two steps, first, the IP Adaptation is performed (see Equation 2.35)
over the layers and, second, the state of the network is computed and returned.
Finally, the number of layers is calculated before training the readout, incrementally
considering new layers of recurrent units in the architecture until the stop condition
in line 8 of Algorithm 4 (i.e., Equation 4.1) is satisfied or the max number of layers
(i.e., Mp) is reached.

4.2.2 Analysis of the Computational Cost

Typically, the number of layers in a deep (RNN) architecture is selected on a
validation set through a cross-validation approach that results in an extremely
expensive procedure from the computational point of view [3]. The aim of the

analysis provided in this sub-section is to quantify the advantage, in terms of
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Algorithm 4 Design of DeepESN

1: procedure DESIGNDEEPESN(6)
2: forl in 1, ..., M;-1do

3: x = computeState(l,d(1)) > state on layer | with h-params 6(1)
4: p®, £ = FrT(x®) > output of Algorithm 3

S0 0
5: plt) = =2 kl - 0}

j=1P;
SN b5 WY AT
Zle p§'>

7: if 1 > 1 then
8: if | — p=Y| <= o=y then
9: return 1

10: return M,

Algorithm 5 Basic Cross-Validation

1: for £ in 1, ...,Nydo

2 for 8 in 1, ...,Ngdo

3 forl in 1, ...,M; do

4: TRAINRNN(#,1, £) > TRAINREADOUT(6,1, £) in DeepESN cases
5: VALIDATE(6,1, f)

6: return SELECTMODEL(.) > € obtaining the best result on the validation set

computational cost, of the use of the proposed design algorithm for deep recurrent
models with respect to a basic cross-validation approach.

In the case of deep recurrent models, a typical systematic procedure to choose the
number of layers consists in training each hyper-parameterization of the network
on a training set for every number of layers considered, i.e. using networks with
a number of layers from 1 to a maximum number of layers M. The number of
layers is then chosen (along with the other hyper parameters) to maximize the
performance achieved on a validation set. The basic cross-fold validation procedure,
considering a number of N folds and Ny hyper-parameterizations, is summarized
in Algorithm 5.

For each hyper-parameterization 6 and fold £, the cost of such procedure is given
by:

My,
Cacep(Mp) = ) Cue(Ny), (4.4)
Np=1
where Cy,(IN1) is the cost of training a deep recurrent architecture with Ny recurrent

layers.
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Algorithm 6 Cross-Validation with the Design Algorithm

1: for £ in 1, ...,Nsdo

2 for 0 in 1, ...,Ngdo

3: 1 = DESIGNDEEPESN(#, f) > output of Algorithm 4
4: TRAINREADOUT(6,1, f)
)
6:

VALIDATE(6,1, f)
return SELECTMODEL(.) > 6 obtaining the best result on the validation set

Within the context of the deep RC paradigm, the readout layer is the only
part of the network that is trained. Accordingly, for DeepESNs the training cost
in Algorithm 5, i.e. the C;; term in Equation 4.4, is determined by the cost of
training the readout. Considering a DeepESN with Ny layers, a training set with
N7 time-steps, and adopting a typical direct method based on SVD for choosing

the readout’s weights, the training cost is given by:
Cr ve(NL) = O((NgNL)*Nr). (4.5)

Therefore, using the right-hand side of Equation 4.5 as training cost in Equation 4.4,
we can see that the process of choosing the number of layers (for each hyper-
parameterization 6 and fold f) using the basic procedure described by Algorithm 5

is given by:

Cbasic(ML) — ZL: O((NRNL)QNT) - O<N]2{M2NT> (46)

Np=1

Compared to the basic procedure explained above, the design methodology
proposed here allows to restrict the number of cases for which training is applied,
taking into account only the number of layers that are selected by the design

Algorithm 4. The resulting selection process is illustrated in Algorithm 6.

We can note that the cost of Algorithm 4 is dominated by the cost of performing
the FF'T, given by:
Cﬁ‘t(ML) = O(NR ML NV lOg<Nv)), (47)

where Ny is the size of the validation set. Overall, the cost entailed by the proposed
Algorithm 6 is determined by the sum between Cg (M) in Equation 4.7, which is
linear in the total number of recurrent units Ny M, and the cost Ctr_rC(M L) in
Equation 4.5, which is quadratic in NgpM. Accordingly, reducing the total cost

to the sole cost of the dominant operation (i.e., training the readout), the cost of
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Algorithm 6 (for each hyper-parameterization 6 and fold f) can be expressed as
follows:
Cdesign(ML) = O(N}QQMzNT) (48)

Overall, comparing Cgesign and Chasic emerges that the cross-validation procedure
that makes use of our proposed design algorithm leads to a clear reduction of the
cost (per fold and per hyper-parameterization) that scales with the number of
layers My,. Notice that these benefits are even more enhanced when the number of
hyper-parameterizations (Ny) and folds (Ny) is considered in the total cost of the
selection procedure. In such case, the reduction of the cost amounts to O(Ny N M),
which could be quite high both considering deep networks and the typical high

dimension of the hyper-parameter space in the RC applications.

4.2.3 Design Experiments in a Controlled Scenario

In this section, we define an artificial task called Frequency Based Classification
(FBC) characterized by signals with multiple time-scales dynamics in order to
analyze and refine our method on a controlled scenario. Accordingly, we consider
an input sequence s formed by a random concatenation of elements that belong
to subsequences s; or sg. The subsequence s; contains a sum of impulse trains
with periods from 3 to 29, while sy contains trains with periods from 3 to 31. The
classification task consists in determining, at each time-step ¢, if the element s(t) is
equal to s1(t) or so(t). The FBC dataset is made publicly available for download'.

In formulas, let signal, be an impulse train with period ¢ such that the element
t of the signal (i.e., signal,(t)) is 1 every period ¢ and 0 otherwise. The sequence s

is defined as follows:
S = [SO(O)a Sjl(l)a < S5, (n)]v (49)

29 . 31 .
where s;, € {s1,80}, s1 = ) ;_;signal, and s, = ) ;_;,signal,. Moreover, the

index j; € {0, 1} is different from j,_; € {0, 1} with probability of 0.01, in formulas:

, J¢ + 1 mod 2 with probability 0.01
oot = (4.10)
Jt otherwise.

Figure 4.1 shows an excerpt of the sequence s. The continuous lines and the dashed
lines indicate that the element s(t) belongs to s; or sy, respectively. Consider that

the probability (defined in Equation 4.10) to have a switch between subsequences

l<http://www.di.unipi.it/groups/ciml/Data/fbc.html>

100


<http://www.di.unipi.it/groups/ciml/Data/fbc.html>

s; and sq is low, for instance in Figure 4.1, this happens only in time-steps, 1107,
1122 and 1194. Therefore, sequence s tends to have long ranges with elements of
the same subsequence s;. In particular, in the generated sequence s for this task,
the average number of time-steps of such ranges is 88.2. Note that the information
involved in a single element s(t) is not sufficient to discriminate the elements sq(t)
and s;(t). Therefore, the capacity of the model in representing temporal dynamics

of the past of s(t) is relevant to perform the correct classification.

20 . . :
_51(1:)
...... so(t)
15+ 7
@107 . P, |
OiJ“ .m|| H-1— i I
1000 1050 1100 1150 1200 1250 1300

time-steps (t)

Figure 4.1: A 300 time-step long excerpt of the sequence s for the FBC task.

The dataset contains a total number of 6000 time-steps, and it is split such that
the first 2000 time-steps are used for training, the following 2000 for validation
and the last 2000 for test, while the first 20 time-steps of the training set are
used for the washout phase. The y,...(t) target, contained in the labeled dataset

{Viarget (1), 8(2) 12, is defined as follows:

017 if s(t) = s(¢)

Ytarget(t) =
[10]7 if s(t) = so(t).

The performance on the FBC task was evaluated in terms of classification accuracy
(ACCQC), i.e., the percentage of correctly classified elements of the sequence s. We
applied the design algorithm proposed in Section 4.2.1 to determine the number
of DeepESN recurrent layers, considering the network’s hyper-parameterizations

as specified by the ranges reported in Table 4.1. We fixed the same number
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of recurrent units (i.e., Ng = 100) in each layer in order to have a comparable
frequency spectrum of the temporal dynamics among layers’ states. Moreover,
the recurrent layers considered have a small/medium number of units because our
aim is to consider them as a sort of building blocks for the DeepESN architecture.
Finally, we performed model selection on the validation set, using for each hyper-
parameterization the number of layers computed by the design algorithm. For each
reservoir hyper-parameterization, we independently generated 10 reservoir guesses,
and the predictive performance in the different cases has been averaged over such
guesses. Moreover, the proposed approach was compared with a shallowESN (a
DeepESN model with one recurrent layer). Each model is individually optimized
with grid search on hyper-parameters values as specified in Table 4.1, and on a
range of total recurrent units in {100, 200, ...,2000}. We adopted an experimental
setting in which the hyper-parameter values are the same for all layers, in particular,
the leaky parameter ) and the spectral radius p) (see Equations 3.1 and 3.2 in
Section 3.2) are the same for every layer [. Note that the models are compared
on a wide range of hyper parameters: this range is large respect to the standard
ranges used in literature for ESN and it is suitable to optimize both shallow and
deep configuration without specific bias. The training of free parameters has been
performed by means of ridge-regression with regularization term A,. For determining
the depth of the DeepESN we used Algorithm 4 with 1 = 0.01 The choice of such 7

value is motivated and discussed in Section 4.2.4.

Hyper-parameter

readout regularization \, 0,107,107, ..., 10°
input and inter-layer scaling scale;, | 0.01, 0.1, 1, 10

leaking rate a 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
spectral radius p 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
IP standard deviation orp 0.1,1

Table 4.1: Range of DeepESN and shallowESN hyper-parameters values for model selec-
tion in the considered tasks.

Table 4.2 shows the training, validation and test classification accuracy achieved
by the DeepESN model with the optimal number of recurrent layers obtained by
the design algorithm, compared with the accuracy achieved by the shallowESN

model.
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[Model [ TR ACC [VL ACC [ TS ACC |

DeepESN 83.37 (0.0019) % | 83.00 (0.0017) % | 81.77 (0.0056) %
shallowESN | 82.22 (0.0065) % 77.37 (0.0196) % 79.31 (0.0067) %

Table 4.2: Training (TR), validation (VL) and test (TS) classification accuracy (ACC)
obtained by DeepESN and shallowESN on the FBC task.

The hyper parameters that obtained the best performance on the validation
set are N = 7 (by the design algorithm), Ng = 100, p = 0.9, scale;, = 0.1,
a=0.1, orp = 0.01 and A\, = 1071 for DeepESN and N;, = 1, Nz = 300, p = 0.9,
scaley, =1, a = 0.1, op = 0.01 and \, = 1077 for shallowESN. Results in Table 4.2
show that DeepESN outperforms shallowESN on both validation and test sets, with
an accuracy improvement of 5.63% and 2.46%, respectively. It is worth to note
that, noticeably, shallowESN obtains worse results on validation and test sets than
DeepESN despite the difference between the two models is due to the number of
layers in which the recurrent units are arranged, in condition of equal range of
possible values of hyper parameters for model selection. This is an instance of the
fact that choosing the proper number of recurrent layers in a hierarchical architecture
can play a big role in the representation of multiple time-scales dynamics involved

in complex signals, with an effect also on the accuracy.

In order to evaluate the quality of the proposed design algorithm in the selection
of the number of layers, we compared the performance obtained by our approach
with the results achieved using a DeepESN with a number of layers that goes from
1 to 20. Figure 4.2 shows the classification errors (= 100 —ACC %) obtained on
the validation set by DeepESN considering a progressively larger number of layers.
In this case, for the sake of analysis, the readout is trained for each configuration

to show the comparison.
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Figure 4.2: Classification error obtained on the validation set of the FBC task by
DeepESN architectures with a number of recurrent layers up to 20. Results
are obtained through model selection individually performed for each number
of layers. The marker ‘X’ indicates the number of recurrent layers selected
by the design algorithm.

In Figure 4.2, the marker ‘X’ represents the number of layers selected by the
design algorithm (7 in our case-study). Noteworthy, the design method added the
optimal number of layers in the hierarchy, besided filtering aspects, also with respect
to the final accuracy of the global model, i.e. allowing to obtain the lowest error
among the considered configurations. In the studied case, these results show that
the developed approach allowed us to accurately select the number of layers by just
analyzing the time-scales diversification among the temporal dynamics developed in
the hierarchy, avoiding to perform the training algorithm for each possible number
of recurrent layers.

The qualitative aspects of the temporal representation encoded in the state
dynamics of the recurrent layers is further investigated by means of frequency
analysis. Figures 4.3a), 4.3b), 4.3c) and 4.3d) show the frequency components
computed over time on the state of layers 1, 3, 5 and 7 respectively.

Note that the frequency components of the impulse trains (1/3,1/4,1/5, ..., 1/31)
that have smaller frequencies have smaller magnitudes. In this task, the frequencies
that discriminate sy from s; are 1/31 and 1/30, represented by the azure and red
vertical lines on the left of Figures 4.3a), 4.3b), 4.3¢) and 4.3d). In Figure 4.3a),
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Figure 4.3: Frequency components computed over time on reservoir states, encoding the
sequence defined in Equation 4.9, in progressively higher layers of DeepESN.
a) layer 1, b) layer 3, c) layer 5, d) layer 7. The red range represents the
shift of spectral centroid between current and previous layer, multiplied by a
factor of 10. Normalized Frequency is expressed in cycles per second (cyc/s).
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the components around frequencies 1/31 and 1/30 have almost null magnitudes.
Therefore, it is more difficult to perform the classification task by a 1-layered model,
as indeed showed by the lower performance achieved by shallowESN on the task.
In higher layers, instead, the frequency components around 1/31 and 1/30 are
progressively more visible, showing the filtering effect that naturally results in the
state computation taking place in successive layers of the architecture. The red
range in 4.3b), 4.3c) and 4.3d) represents the difference of frequency mean (i.e., the
shift of the spectral centroid) between the current layer and the previous layer (the
measure defined on the left side of Equation 4.1) amplified by a factor of 10 in order
to make it visually more clear. We can see that the frequency mean, represented by
the marker ‘X’ in 4.3b), 4.3c) and 4.3d), shifts progressively to the left in the higher
layers towards low-frequency components. At layer 7 the condition in Equation 4.1
is satisfied and the design algorithm stops adding new recurrent layers. In this
regard, it is also worth to note that, in the case illustrated in Figure 4.3, the
magnitude of the frequency components, e.g. as measured in a range of 0.01 cyc/s
around the vertical line indicated in the plots in correspondence of the frequency
1/31, in layer 7 are quantitatively amplified by more than 500% in comparison to
layer 1. Given the quantitative and the qualitative results described so far, we
can say that differently from the case of shallowESN, in the higher layers of the
DeepESN reservoir hierarchy, the information of the frequency components around
1/31 and 1/30 becomes more easily accessible and can be exploited in order to
improve the classification accuracy. Overall, in the analyzed scenario, the proposed
design algorithm allows to choose a proper number of recurrent layers, ensuring
a rich representation of the input history and at the same time guaranteeing the
time-scale differentiation in the hierarchy avoiding to consider further recurrent

layers with similar dynamics.

Finally note that, although in Figure 4.2 we show all the layers for the sake of the
analysis, the practical aim of the proposed design approach is to stop the algorithm
when the condition defined in Equation 4.1 is satisfied in order also to avoid the
computation of the FF'T in the remaining layers. The studies regarding the existence
of other possible optimal points depending on the dataset are postponed to future

works.
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4.2.4 Experimental Analysis of Depth in the Controlled

Scenario

In this section, we empirically evaluate how the spectral centroid (see Equa-
tion 4.2), computed by Algorithm 3 over the layers, varies with the depth of the
stacked recurrent architecture. This allows us to assess the considered threshold n
and to evaluate the effectiveness of the Algorithm 4 and the stop condition defined

in Equation 4.1.

A recurrent layer can be studied as a (low/high/band-pass) filter [89, 100, 120,
209]. The effect of the filter determines a cut-off frequency and a roll-off, which tells
how the frequency magnitude decreases for increasing (resp. decreasing) frequencies
after (resp. before) the cut-off frequency in a low (resp. high) pass filter. Hence,
a deep RNN architecture, such is DeepESN, operates as a stack of progressively
applied filters. Stacking progressively more filters, i.e. adding layers to a DeepESN,
leads the roll-off value to converge towards the cut-off frequency [94], which entails
that the spectral centroid converges to a certain asymptotic value. Hence, when a
new layer is added, its filtering effect in terms of shifting the spectral centroid of

state signals progressively decreases.

In this context, the purpose of the proposed automatic method for network
design is to stop adding new layers whenever the filtering effects become negligible,
i.e. when adding new layers essentially does not enrich anymore the multiplicity
of temporal dynamics developed by the reservoir states. Here, the role of the
n parameter in Equation 4.1 is to practically terminate the process of adding
layers when the spectral centroid is close enough to its convergence point. Since
the convergence can be asymptotic or some numerical errors can lead to small
fluctuations in the shift of the spectral centroid computed through layers, the n
value should not be 0. However, in order to reach a point that is close enough
to the convergence, the n value should be sufficiently small. Overall, the choice
of n stems from a reasonable trade-off between such conditions (as typical in any
iterative algorithm with asymptotic behaviour, which does not lose generality with
a termination cut-off condition). Empirically, we observed that in all considered
tasks a value of n = 0.01 meets this trade-off, being large enough to avoid chasing
the asymptote (or following the small fluctuations), and at the same time being
sufficiently small to reach a point near the convergence. In order to empirically
verify the soundness of this choice, we conducted several experimental evaluations

on the FBC task, in this section, and on the real-world tasks (described in the next
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Chapter in Sections 5.3.1 and 5.3.2).
Figure 4.4 shows the trend of the spectral centroid obtained from the state of
each recurrent layer of the DeepESN, optimized on the FBC task and considering

the value of n = 0.01. The red vertical line represents the number of selected layers.
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Figure 4.4: Spectral centroid computed on the state of DeepESN layers optimized on
FBC task. The red vertical line indicates the number of layers selected by
the design algorithm. Threshold 7 value is set to 0.01. Normalized Frequency
is expressed in cycles per second (cyc/s).

As expected, the layers progressively apply a filter to the signal. In particular, in
the case represented in Figure 4.4, the resulting effect is that of a cascade of low-pass
filters, with a decreasing trend of the spectral centroid as more layers are taken into
account. More in general, the specific trend of this behavior might depend on the
combined effect of the reservoir hyper parameters, IP adaptation and characteristics
of the input signal. Indeed, on the real-world tasks presented in the next Chapter
in Sections 5.3.1 and 5.3.2 we show also cases of high-pass filters. Moreover, as we
can see in Figure 4.4 for the considered case, the effect of filtering clearly tends to
decrease, with the shift of the spectral centroid approaching convergence as the
depth of the recurrent architecture increases. Interestingly, in the case of FBC task
convergence is achieved on the 7-th layer, i.e. in correspondence to the optimal
number of layers found for the task (see Figure 4.2). Furthermore, from Figure 4.4,
we note that, after convergence, some small fluctuations of the spectral centroid can
be observed, which can be due to possible numerical errors of FFT operations and
to the characteristics of the input signals (e.g., for the MuseData and Piano-midi.de
tasks in Section 5.3.1 the convergence is smoother). In this respect, the adoption

of n = 0.01 empirically shows to be a safe threshold value that is not too small to
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follow the fluctuations neither too large to determine an insufficient depth (too far
from the convergence). Apart from the specific trend of the spectral centroid for
increasing number of layers, the same qualitative considerations made here generally
apply also for the real-world tasks in Sections 5.3.1 and 5.3.2.

Overall, the properties of stacked filters are empirically evident in our experimental
analysis that shows the convergence of the shift of the spectral centroid in both
controlled scenario and real-world cases considered in this thesis, and the non-
critical role of the n value for the generality of the algorithm. At the same time,
our investigation shows an analysis methodology (i.e. to follow the trend of the
spectral centroid on the plot over the layers, similarly to Figure 4.4) that can be

helpful in assessing the useful (possibly different) 7 choice for the task at hand.

4.3 Discussion

The fundamental goal of the work presented in this Chapter consisted in the
development of a design strategy for automatizing the choice of the number of layers
in DeepESNs. Essentially, we exploited the idea that each new layer should provide
an internal state representation that, in terms of frequency spectrum, is sufficiently
diversified with respect to those developed in the previous ones. Collectively, this
ensures that the dynamical component of the network provides an advantageous
trade-off between the richness of temporal information representation (multiplicity
of temporal scales) and the resulting complexity (final number of layers).

The outcomes of our experimental analysis showed that the proposed design
strategy is effective in the RC context, leading to DeepESN setups that on the one
hand are able to fruitfully exploit the depth in the comparison with shallowESN
counterparts, and on the other hand outperform previous state-of-the-art results
achieved by fully trained RNN on real-world problems (see Sections 5.3.1 and 5.3.2
contained in the next Chapter).

From the point of view of filtering, extending the analysis presented in Sections 3.3
and 3.4, the qualitative analysis on the considered tasks empirically showed that
recurrent layers of a DeepESN architecture with IP adaptation can not only act as
low-pass filter, but also as high-pass filter (see Sections 5.3.1 and 5.3.2). This allows
the higher layers to develop faster state dynamics. We believe that these observations
can stimulate further analytical /theoretical studies on the characterization of the
filtering effect operated by a recurrent layer, in particular, focusing on the hyper

parameters of reservoirs in hierarchical architectures. Interestingly, the developing
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of faster state dynamics in higher layers of a stack of RNNs is observed also in the
context of spiking neural networks [215].

The exploitation of our contribution can be also considered from the point of view
of studies on the initialization and architectural properties of fully trained multi-
layered neural architectures with back-propagation (stochastic gradient descent
approaches). This is particularly interesting in consideration of the difficulties
that are typically encountered in training deep networks [70], especially for studies
regarding RNNs with ESN-based initialization, see [182]. Indeed, initialization
approaches based on pre-training analysis can influence the efficiency and the
stability of the convergence of gradient based algorithms in deep nonlinear networks
[94, 162].

Investigations conducted in this work also allowed to address other research issues
arising hot debates in the neural networks community. In particular, two relevant
instances of such questions regard the performance comparison between deep and
shallow RNN models [219, 72, 145, 73]. Through experimental comparisons between
DeepESNs and ESNs, we practically demonstrated, at least in the considered tasks,
the performance advantages that inherently stem from a suitable multi-layered
organization of the recurrent part of the model (in the RC framework, i.e. taking
aside the learning algorithms aspects of the recurrent part). At the same time, the
possibility to effectively exploit the layering factor in the design of multi-layered
recurrent networks, using the approach proposed in this thesis, paves the way for a
grounded comparison between deep and shallow RNNs also in the context of trained
models. Additionally, the results contributing to settle deep recurrent approaches,
further encourage future analysis aimed at exploiting properly designed deep RNNs
in modeling temporal information with latent compositionality under a generative

setting.

4.4 Conclusions

In this Chapter, we have introduced a novel approach to address a fundamental
issue in Deep Learning for sequence processing, i.e. the problem of how to choose the
number of recurrent layers in a deep recurrent architecture. Remembering the scope
of the approach, namely that the input signals are featured by multiple time scales
and that the differences in the time scales are important for the learning task at
hand, we aim at exploiting such differences to tailor the layered architecture to the

task. In turns, the trained output part of the model can exploit the differentiation
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provided through the layering for the performance aims on the learning task.

Indeed, framing our work in the deep RC area and making use of frequency
analysis tools, we have defined an automatic design algorithm for DeepESNs, aimed
at exploiting as much as possible the differentiation of the temporal information
representation naturally developed by recurrent hierarchies. Under the assumed
conditions, the provided approach enables to choose the proper number of recurrent
layers avoiding to perform the training of the readout part for each possible number
of considered layers. As such, compared to a standard selection process, the
proposed method allows to obtain a reduction of the time cost of model selection
that scales with the number of layers.

On the experimental side, in order to asses the effect of the diversification of the
frequency components enriching the state representation through layering, we have
analyzed the approach on a controlled scenario with a synthetic task characterized
by signals with a predefined multiple time-scales dynamics. Quantitative and
qualitative analysis on such task revealed that, in the considered experimental
setting, the proposed design method is able to choose a proper number of layers
reaching a better performance compared to alternative configurations with a different
number of layers or with a shallow recurrent architecture.

The results achieved on the considered tasks showed that DeepESNs designed
by our automatic algorithm consistently improve the performance of shallowESNs
counterparts under the same experimental settings (and ranges for the hyper-
parameter values).

Moreover, in the next Chapter (see Sections 5.3.1 and 5.3.2) we assess the design
method on challenging real-world tasks in the areas of music and speech processing.
Noteworthy, the performance achieved by DeepESN compares well with the state-of-
the-art results previously obtained by fully trained RNN-based models on real-world
tasks and RC approaches on the speech recognition task. This, in turn, suggests
that music and speech processing represent instances of applicative domains with
multiple time-scales information that can benefit from the DeepESN approach.

In conclusion, we believe that the design method proposed in this work can
contribute to, and further stimulate, the development of approaches aimed to a
principled automatic design of deep reservoir architectures in an information-based
fashion, i.e. through quantitative and qualitative analysis of the dynamics emerging

in the layers of stacked recurrent models.
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Applications of DeepESNs

The content presented in this Chapter is based on works published in [62, 60, 6, 64,
65, 59] (see Section 1.5 for details).

In this Chapter we first present new application solutions in the field of Health
Informatics based on RC and DeepESN models. Then, we analyze and evaluate
the DeepESN model on prediction and classification real-world tasks characterized
by high-dimensional time series. For each application, we compare the DeepESN
model with the shallow counterpart. Finally, we provide a comparison between
DeepESN model and fully trained RNN approaches on challenging prediction tasks.

In Section 5.1, we first propose a novel automatic system for human balance
estimation based on RC paradigm and then we compare the ESN approach with
the DeepESN model on the benchmark task. In Section 5.2, we propose a new
method for the diagnosis of Parkinson’s disease based on DeepESN. In Section 5.3,
we evaluate the approaches introduced in Chapter 4 for the design of DeepESNs on
prediction and classification tasks characterized by high-dimensional time series.
Finally, in Section 5.4 we compare the DeepEESN model with fully trained RNNs

typically used in DL community on polyphonic music tasks.

5.1 Automatic Berg Balance Scale Estimation

Here, we introduce an automatic system for the balance estimation in the field
of Health Informatics. In Section 5.1.1, we explain motivations and main aspects
of the considered medical application. In Section 5.1.2, we describe the procedure
performed to develop real-world datasets used in this context, then, we present an
overview of the proposed system, and finally, we evaluate the RC model on the
benchmark task. In Section 5.1.4, we compare the DeepESN model with the shallow

counterpart on the benchmark task. Finally, Section 5.1.5 draws the conclusions.

113



5.1.1 Introduction

All European countries are experiencing aging of their populations, with a decrease
in the number of people of working age per retiree. By 2050, an estimated 35%
of the European population will be over the age of 60, compared to 20% in 2005.
Health trends among older people are mixed: severe disability is declining in some
countries but increasing in others, while mild disabilities and chronic diseases are
generally increasing. The aging process is characterized by a constant decline of
body functions and is frequently associated to a series of impairments involving
reduction in mobility and cognitive decline [188]: these aspects work synergistically
increasing the risk of falls. Prevention of falls should be one of the first defense
lines to support an active aging. Accordingly, the balance assessment of elderly
is assuming great relevance in clinical practice, with the development of several
screening tools and tests that are used to assess stability or its deterioration: these
include both simple clinical measures and also sophisticated technologies [25]. One
of the common and easiest functional tests frequently used in medical practice is the
Berg Balance Scale (BBS) test. Initially, this was proposed for balance assessment
in elderly population but it has been frequently used in subjects with stroke [19],
Parkinson’s disease [152], brain injury [104], and multiple sclerosis [26]. The test is
composed by 14 items, in the following also referred to as exercises, with a score
ranging from 0 to 4 points. The maximum BBS score is 56 and the test duration
time is ~ 15-20 minutes. A score of 45 is indicated as a threshold for subjects at
high risk of fall [153]; each reduction of 1 point in BBS score is correlated to an
increased risk of 6-8% to fall [173].

Recently, within the aims of the DOREMI European project [5], a technological
platform to support and motivate elderly people to perform physical activity has
been developed, targeted at a reduction in sedentariness, cognitive decline and
malnutrition, at the same time promoting an improvement in the quality of life
and social inclusion. This is focused on the development of a systemic solution for
healthy aging able to prolong the functional capacities of the elderly. One of the
main innovative objectives of the DOREMI platform consists in the development of
an automated system for balance assessment. In the proposed approach, the balance
assessment system is an easy-to-use, cost-effective and unobtrusive ICT solution
for early pre-frail risk detection and frailty prevention. This innovative DOREMI
solution leverages the Wii Balance Board, a low-cost, portable and widely available

force platform, able to evaluate the user weight distribution at the four corners of
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its surface, developed by Nintendo for the Wii gaming console. This device has been
compared to laboratory-grade force platforms [32, 114] and its accuracy proved to
be acceptable for the employment in numerous scientific studies involving balance
assessment [32, 214] and gait or balance rehabilitation [69, 172, 39]. The relation
between statistical features and the evaluation of the balance stability in elderly
patients has been investigated in [126]|, which presents a comparative study on
stability-related measures using regression methods on data collected from a force
platform with the aim of estimating the probability of the patient’s fall. However,
it is worth to note that the whole temporal signal generated by a force platform,
such as the Wii Balance Board, potentially contains richer information than the
above mentioned static features, thereby allowing to envisage approaches that try
to directly and automatically exploit such richness of signal dynamics.

Here, we propose a novel system for automatic assessment of balance abilities
in elderly, able to estimate the overall BBS score of a user based on the stream of
input signals gathered from the Wii Balance Board during the execution of only
one BBS exercise out of 14. The major scientific goal of this study is to assess the
feasibility of accurately estimating the overall BBS score by exploiting the temporal
series from pressure sensors gathered during a single exercise execution by the user,
and to provide an experimental validation of the proposed system on real-world
data.

Such a scientific challenge requires to address the fundamental questions of
whether such temporal series contain enough information to be correlated with the
full BBS score and whether a RNN model can efficiently exploit such an information
to automatically estimate the score. For this purpose, we resort to RC models
(described in Section 2.4.1), which are widely recognized as particularly appropriate
for processing and extracting relevant dynamic knowledge from noisy temporal
data. Finally, we compare the DeepESN model (introduced in Chapter 3) with
the shallow RC counterpart (a 1-layered DeepESN with the same number of total
recurrent units) on the balance assessment benchmark in order to evaluate the

practical relevance in using layered RC architectures in this domain.

5.1.2 Balance Assessment Benchmark

Datasets

The datasets are collected during the experiments through an electronic balance

called Wii Balance Board. It is a gaming device developed by Nintendo for the
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Wii console. The device is a force platform with a width of 32,5c¢m, length of 52
cm and height of 7.5cm, weighing ~ 4 kg, similar to a household body weight
scale. The device is able to evaluate vertical forces at the four corner ends of its
surface, i.e front left (FL), front right (FR), back left (BL), back right (BR), by
using four strain-gauge pressure sensors placed inside the 4 feet bumpers. Even if
the Wii Balance Board is considered a fairly cheap force platform, the device has
been employed in numerous scientific studies involving balance assessment [32, 214]
and rehabilitation addressing several disabilities [69, 172, 39|, being a portable and
widely available device with acceptable accuracy.

In the proposed system, the user BBS score is estimated from data generated by
the execution on the Wii Balance Board of a single BBS exercise. For the design
and validation of our system we restricted our attention on 3 out of the 14 exercises
of the complete BBS test, namely exercises #6, #7, and #10. More details on the
recruitment process and the protocols used during the measurement campaign are
reported in [6].

For each time step ¢, the obtained signal values gathered by the balance board are
collected into a column vector u(t) = [upy(t) upr (t) uprL(t) usr(t)]T € R Further

details regarding pre-processing step are described in [6].

An example of the temporal signals gathered in correspondence of a complete
exercise execution (including the phases of getting on and off the balance board) is
reported in Figure 5.1, which illustrates the temporal evolution of the user weight
values at the four corners of the balance board during the execution of exercise
#10. Figure 5.1 shows how difficult would be to identify a pattern for the specific
BSS score by human visual inspection, also due to the noisy nature of the signal.
This is further complicated by the different ways the same exercise can be executed
by the user, e.g. the way they step up onto the balance board (in terms of which
foot is used first to step up and step down the board), the physical conditions of
the users that can lead to lurching during the exercise, and the total duration of

the execution.

As a result of the measurement campaign and data pre-processing we obtained
Balance datasets for the definition of 3 regression tasks on sequences, one for each
BBS exercise considered. The datasets contain couples of the type (S, Ytarget), Where
s = [u(1)u(2)...u(L)] is the pre-processed 4-dimensional input sequence of length
L containing the stream of weight values recorded by the balance board during the
exercise execution, and Yarger € [0, 56] is the corresponding target BBS score of the

user, representing the ground-truth information evaluated by a clinician during the
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Figure 5.1: Plot of the pre-processed data from the BBS exercise #10. The exercise
#10 is performed by the user placing the right foot first while stepping up
onto the balance board and the right foot first while stepping down.

measurement campaign (by summing up the scores for all the 14 BBS exercises).
Overall, the Balance datasets contain a total number of 470 sequences. The Balance

datasets and their description are made publicly available at [10].

Learning BBS score using RC

The overall operation of the proposed system for automatic BBS score estimation
is graphically sketched in Figure 5.2. While a subject executes a BBS exercise on
the Wii Balance Board, the sensor stream is gathered and collected into a database
as above described. Then the data is used as input for the neural network model

that computes the overall BBS score estimate.

Weight data collection Pre-processing of signal streams Estimation of the BBS score
using RNN

£
30

=
\/ i I\'Neh

Time Step BBS score
estimate

Figure 5.2: Graphical sketch of the overall operation of the proposed system for automatic
BBS score estimation.

The balance signals are processed by RNNs, modeled according to the RC
paradigm. Within the RC paradigm, we take into consideration the ESN, which is
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an effective yet extremely efficient neural network model for learning in temporal
domains. In particular, in this approach we use LI-ESN (described in Section 2.4.1).

For regression tasks in which only one output value is required in correspondence
of an entire input sequence, such is the case of this application to the BBS score
estimation, the output corresponding to s is computed from a state y(s) € RV% that
encodes the entire input sequence as processed by the reservoir. Here, we consider
the approach root state mapping (see Equation 2.9) in which the last reservoir state

computed for s is considered as representative of the whole encoding process.

Experimental Setting

The predictive performance of the learning models taken into account is evaluated
through a 7-fold cross validation process, splitting the available data according to a
3 persons-out approach, i.e. such that each fold contains all the data pertaining to
3 out of the 21 volunteer users. Note that the persons-out approach is of particular
relevance for the purposes of this type of real-world applications as it allows us to
estimate the performance of future assessments on new subjects during the real
operational use of the proposed system (and thus completely unseen in the training
phase).

In our computational experiments, we used LI-ESNs with 10% of reservoir
connectivity and spectral radius p = 0.99. The values of the other relevant LI-ESN
hyper parameters, including the reservoir dimension Ng, the input scaling scale;y,,
the leaking rate a, and the readout regularization for ridge regression training A,
were chosen from the ranges reported in Table 5.1 through a model selection process
on a validation set, by means of an extra level of 6-fold cross validation on the
training set of each external fold. For each reservoir hyper-parametrization, we
independently generated 5 reservoir guesses, and the predictive performance in the

different cases has been averaged over such guesses.

’ Hyper-parameter ‘ Values considered for model selection ‘
reservoir dimension Ny 10, 20, 50, 100, 200
input scaling scale;, 0.1, 0.5, 1
leaking rate a 0.1, 0.3, 0.5, 0.7, 1.0
readout regularization A, | 0.001, 0.01, 0.1, 1, 10

Table 5.1: Range of LI-ESN hyper-parameters values considered for model selection.

We considered 3 regression tasks (see Section 5.1.2) on the data collected during
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the execution of exercises #6, #7 and #10 of the BBS test, in the following
referred to as BBS-6, BBS-7 and BBS-10, respectively. The performance achieved
by the learning models on the considered regression tasks has been computed by
means of the Mean Absolute Error (MAE) and of the correlation coefficient R,
respectively providing a measure of the absolute deviation and of the strength
of linear relationship between the estimated and the ground-truth BBS score.
Assuming the dataset under consideration contains N sequences, MAE and R are

defined by the following equations:

MAE = < 3" lasge(s) — u(s)], (5.1)

2 s Yrarger (8) = y(8))?
> (Wharger (8) — 7 22, 9(s))*

where in correspondence of each input sequence s, y(s) and yi,,..;(s) denote the

R=,/1- (5.2)

output of the learning model and the (ground-truth) target, respectively.

A preliminary experimental analysis of LI-ESN results on BBS-6, BBS-7 and
BBS-10 allowed us to choose some common aspects of the experimental setting
concerning the input sampling frequency and normalization. On the basis of
preliminary results, we sampled the signals at a frequency of 5H z. Moreover, we
normalized each signal dimension in each input sequence s to zero mean and unitary

standard deviation (see [6] for further details).

Experimental Results

As described in Section 5.1.2, exercises #6, #7 and #10 of the BBS test were
chosen by clinical staff for reasons of safety and feasibility of execution on the Wii
Balance Board, while in the system for automatic balance assessment we require
the user to perform only one BBS exercise. Thereby, with the aim of selecting the
specific BBS exercise to be performed, we compared the predictive performance
achieved by LI-ESN on the 3 tasks BBS-6, BBS-7 and BBS-10. Table 5.2 reports
the values of MAE and R obtained on the BBS-6, BBS-7 and BBS-10 tasks by
LI-ESN.
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[ Task | TRMAE | VLMAE | TSMAE [TSR]

BBS-10 | 3.56 £ 0.12 | 4.21 + 0.14 | 4.80 & 0.40 | 0.68
BBS-7 | 3.74 £ 0.11 | 4.74 £ 0.17 | 5.05 £ 0.32 | 0.51
BBS-6 | 4.43 +£0.13 | 5.04 £ 0.19 | 5.53 + 0.43 | 0.53

Table 5.2: Training (TR), validation (VL) and test (TS) MAE obtained by LI-ESN on
the BBS-6, BBS-7 and BBS-10 tasks. R values on the test set are reported as
well.

From such results we can see that the best performance on validation set was
achieved on the BBS-10 task. Interestingly, the BBS-10 task also corresponded
to the smallest generalization MAE and the larger R value. Overall, the results
in Table 5.2 provides an experimental evidence that BBS exercise #10 enables
a more accurate estimation of the total BBS score, thereby in order to develop
our automatic system we restrict our focus on task BBS-10 only. Moreover, we
consider the task BBS-10 as a benchmark to compare the LI-ESN approach with
the DeepESN model in Section 5.1.4. Thereby, we evaluate the impact of layering
on the model’s performance in a basic balance assessment task regardless of the
specific configurations for the development of the automatic system within the
DOREMI project.

The applicative details regarding the development and the evaluation of the RC
system for the clinical analysis of human balance assessment are presented in the

next session.

5.1.3 RC System for BBS Score Estimation

In order to build up the automatic RC system for BBS score estimation, here,
we select the final model performing a series of experimental evaluations on ad-hoc
solutions developed to improve the clinical analysis of human balance assessment.
In particular, we evaluate a weight sharing technique and the use of clinical data in

addition to the time-series data gathered from the balance.

Weight Sharing Approach on Input Connections

During the exercise execution, the user can get on and off the balance board
with the right or with the left foot in an arbitrary manner. The way in which
the user gets on and off the board affects the shape of the input signals at the

beginning and at the end of each input sequence (see e.g. Figure 5.1 for a graphical
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example). This type of information is only related to the measurement campaign
and the corresponding real-world data sampling, and it is not relevant to the
aim of postural balance assessment. Accordingly, we do not want the learning
models to specialize on this information. A neural network architectural variant
that can be adopted to reach this purpose makes use of a weight sharing (WS)
approach applied to the input-to-reservoir connections, such that the influence of
the input signals coming from the left and right sides of the board is the same.
Considering a row-wise aggregation of the input weights pertaining to the signals
at the 4 corners of the balance board, the input-to-reservoir weight matrix can be
written as Wy, = [Wr, WrrWp, Wpgg]. In this case the adopted WS approach,
graphically depicted in Figure 5.3, consists in sharing the weights in Wy, such
that Wy, = Wgr and Wg, = Wpggr. The performance achieved by LI-ESN on

front left (FL) front right (FR)

back left (BL) \—,/ - back right (BR)

Input Layer Reservoir

Win = [WeL Wer WaL Wee]
WeL= Wer WaL= Whr

Figure 5.3: Graphical illustration of the adopted weight sharing approach. The input
weights pertaining to signals coming from the left and the right side of the
balance board are shared.

the BBS-10 task by adopting the WS technique is reported in Table 5.3. The
positive effect of the WS approach in this application is testified by the fact that
the predictive performance with respect to the case in which WS is not adopted is
improved both on the validation and on the test sets. Indeed, through a comparison

between Tables 5.3 and 5.2 it can be seen that the validation MAE is reduced by
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0.12 BBS score points (0.21% over the whole BBS score range), corresponding to an
average error reduction of 2.85% , while the test MAE is reduced by 0.77 BBS score
points (i.e. 1.38% of the BBS score range), leading to an average error reduction of
16.04%.

\ Task | TRMAE [ VLMAE [ TSMAE [TSR|
| BBS-10 + WS | 3.43 + 0.04 | 4.09 +0.08 | 4.03 £ 0.13 [ 0.71 |

Table 5.3: Training (TR), validation (VL) and test (TS) MAE obtained by LI-ESN on
the BBS-10 task using the WS technique. The R value on the test set is
reported as well.

Use of Clinical Data

A further significant experimental assessment consisted in the evaluation of the
influence on the predictive performance of users’ clinical data such as height, weight,
age and gender. The values of such clinical data were used as input to the model
by considering the height expressed in meters, the weight expressed in hundreds of
kg (i.e. dividing the weight in kg by 100), the age expressed in hundreds of years
(i.e. dividing the age in years by 100), and the gender expressed as a binary value
(—1 for women and +1 for men).

To avoid the introduction of artifacts related to the specific dataset on which
we trained the learning models, we excluded the use of the clinical features that
resulted in a high correlation with the BBS scores of the users in our sample data
(without however having a known correlation in the general case or in literature).
This analysis allowed us to exclude from consideration users’ height and gender,
restricting the focus on users’ weight and age only. The augmented input has been
implemented by appending at each time step of each sequence in the dataset the
value of the clinical parameter of the corresponding user as a further input element.
This process resulted in input sequences consisting of 5 elements per time steps, i.e.
U(t)augmented = [UrL () urr (t)upr () upr (t) Uetinical] . € R, where Uginical is the clinical
feature (weight or age). We accordingly prepared two variants of the BBS-10 task,
corresponding to the cases of augmenting with users’ weight or age, in the following
referred to as tasks BBB-10-W and BBB-10-A, respectively. Table 5.4 reports
the performance achieved by LI-ESN on these two tasks, showing that the best
result is achieved in correspondence of the BBS-10-W task. Comparing Tables 5.4

IThese choices were made as simple scaling approaches, in order to have values approximately in
the same range of the signals coming from the balance board.
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and 5.2, it is possible to observe that augmenting the input data with the user
weight information ultimately leads to a reduction in the validation MAE of 0.13
BBS score points (0.23% of the BBS score range), corresponding to an average
error reduction of 3.09%, whereas the improvement in the test MAE is quantifiable
in 0.18 BBS score points (the 0.32% of the BBS score range), with an average error
reduction of 3.75%.

| Task | TRMAE | VLMAE | TSMAE | TSR |

BBS-10-W | 3.50 £ 0.08 | 4.08 + 0.09 | 4.62 £ 0.30 | 0.69
BBS-10-A | 3.67 £ 0.12 | 4.23 £ 0.13 | 4.52 £ 0.27 | 0.65

Table 5.4: Training (TR), validation (VL), test (T'S) MAEs, obtained by LI-ESN on the
BBS-10-W and BBS-10-A tasks. R values on the test set are reported as well.

Joint Use of Weight Sharing and Clinical Information

The results discussed above, have shown the practical advantage in terms of
improved performance on the clinical analysis of human balance assessment brought
about by the use of an appropriate WS technique, or when the learning model
receives in input the overall user weight in addition to the time series data gathered
by the balance board. In this Section, we explore the synergy of these two approaches
to provide a final LI-ESN setup that has to be implemented in the RC system
for BBS score estimation. Accordingly, Table 5.5 shows the results obtained by
LI-ESN using the WS approach on the BBS-10-W task, i.e. augmenting the input
with the user weight information. Table 5.5 also recalls the performance achieved
by LI-ESN without the WS approach and the augmented input information to

facilitate performance comparison.

[ Task [ TRMAE | VLMAE | TSMAE [TSR|

BBS-10 (without WS) | 3.56 £0.12 | 4.21 + 0.14 | 4.80 £ 0.40 | 0.68
BBS-10-W (with WS) | 3.11 £0.05 | 3.85 &+ 0.08 | 3.80 + 0.17 | 0.76

Table 5.5: Training (TR), validation (VL) and test (TS) MAE obtained by LI-ESN on
the BBS-10 task (without WS) and on the BBS-10-W task (with WS). R
values on the test set are reported as well.

Results in Table 5.5 show that the joint effect of using WS and user weight input
information is indeed superior to the single improvements due to the use of the two
approaches alone. Indeed, LI-ESN with WS and users’ weight in input achieved
very close values of validation and a test MAE, respectively equal to 3.85 + 0.08
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and 3.80 £ 0.17, corresponding to an improvement of 0.37 BBS score points in
the validation set (0.66% of the BBS score range), i.e. an average performance
improvement of 8.79%, and of 1 point in test set (1.79% of BBS score range), with
an average performance improvement of 20.83%. Moreover, the R value on the test
set is overall improved of 0.08, i.e. of the 11.76%.

Selected Model and Analysis of BBS score Estimation on Subjects

The experimental evaluations above presented in this section, allowed us to select
the final setting of the RC model that has to be implemented in the automatic
system for the clinical analysis of balance assessment. In particular, for this
purpose we selected LI-ESN with WS using board sensor data from exercise #10
and complemented by the subject personal weight information. The predictive

performance results achieved in the final setting are summarized in Table 5.6.

Model | VL MAE | TS MAE | STDg | STDs | STDf | STDu | TS R
LI-ESN 3.85 3.80 017 | 292 | 1.64 | 2.01 0.76

Table 5.6: Performance results achieved in the final setting for BBS score estimation, i.e.
with LI-ESN using WS on the BBS-10-W task. The table reports validation
(VL) and test (T'S) MAE, along with the standard deviation computed on the
test set with respect to: the reservoir guesses (STDg), the different sequences
(STDs), the external folds of the double cross-validation scheme (STDf), the
different users (STDu). The R value on the test set is reported as well.

As can be seen, the selected model achieved a validation MAE (mean of errors
over the folds of the cross-validation) of 3.85 BBS score points (corresponding to
the 6.88% of the total BBS score range), a test MAE of 3.80 BBS score points
(corresponding to the 6.79% of total BBS score range). Such a result is indeed
extremely good, considering that the generalization error is even below the threshold
of 4 BBS score points, that is the score range of a single BBS exercise. Moreover, as
seen in Table 5.6, the selected LI-ESN achieved a standard deviation of the MAE of
0.17, 2.92, 1.64 and 2.01 BBS score points with respect to the reservoir guesses, the
different sequences (i.e. different exercise repetitions by the same user), the external
folds in the double cross-fold validation and the different users, respectively. Note
that these results are largely within the range of tolerance for clinical interpretation.
A recent study [34] has, in fact, estimated that it is necessary to observe a difference
of a least 8 BBS score points in order to diagnose an actual change in the postural

balance ability of a subject.
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The quality of the automated BSS estimate can be appreciated at a subject-level
by graphically summarizing the results for all users in test. In this sense, Figure 5.4
shows a plot comparing the ground-truth BBS score measured by the clinicians
for each subject versus the corresponding estimate provided by the LI-ESN model
(computed by averaging the results obtained for each exercise repetition by the
subject and for each reservoir guess). As can be seen, the points in the plot are
generally distributed close to the bisector of the x-y axis, with MAE of 3.36 BBS
score points, a correlation coefficient R equal to 0.8257, with p-value p < 0.0001.
These summarized results, looking also at the distribution of errors, confirm the

good quality of our RC-based system for automatic BBS estimation.

60
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Figure 5.4: Real (ground-truth) versus LI-ESN estimated BBS scores plot (each point
corresponds to a different user, evaluated in the test set).

Comparison with the state of the art

We compared RC setting selected for the proposed automatic system with other
basic neural network approaches (see the experimental comparison described in
[6]). Interestingly, the RC paradigm resulted the best applicative solution for the
estimation system in terms of accuracy.

Overall, it is worth mentioning that the proposed system compares well with the
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ones already reported in literature for BBS score estimation tasks. In particular,
the work in [176] describes a system based on a k-NN algorithm using data gathered
during the execution of 3 BBS exercises from a 3-axial accelerometer positioned on
the lower back of the user, achieving a MAE of 4.63 + 3.89. The system described in
[8] uses data gathered from 5 body-fixed sensors during the execution by the user of
the entire BBS test and proposes to estimate the overall BBS score by summing up
individual estimations of the 14 BBS exercises scores obtained by MLPs, obtaining
a MAE of ~ 1.5 £ 1. In comparison to such approaches our system outperforms
the predictive performance of the work in [176], while the one in [8] results to
be superior. In both cases, however, note that the literature systems present a
much higher intrusiveness, requiring the user to wear physical devices (1 sensor in
[176], 5 sensors in [8]) and to perform a higher number of balance exercises (3 BBS
exercises in [176], all the 14 BBS exercises in [8]). Thereby, the system proposed in
this work, using data collected during the execution of a single BBS exercise from
an unworn device (a balance platform) is characterized by a favorable trade-off

between predictive performance and intrusiveness.

5.1.4 Comparison with DeepESN model

In this section, we compare the DeepESN model with the LI-ESN approach,
that here we call shallowESN (i.e., a 1-layered DeepESN with the same number of
total units), on the benchmark task BBS-10 described in Section 5.1.2. The use
of a benchmark task allows us to evaluate the practical relevance of using layered
recurrent architectures in this domain regardless of the specific application settings
adopted for clinical motivations in the implementation of the estimation system

proposed in Section 5.1.3.

As in the setting of the benchmark task described in Section 5.1.2, here, the
output of the considered networks is computed through root state mapping function
(see Equation 2.9). For the DeepESN architecture we considered a number of
recurrent layers N, = 10. The models are individually optimized with a grid
search approach on hyper-parameters values as specified in Table 5.7. For each
hyper-parametrization, we generated 5 reservoir guesses, averaging the results on

such guesses.
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Hyper-parameter

total recurrent units 50,100, 150, 200, 250
readout regularization A, 0.001,0.01,0.1,1,10
input and inter-layer input scaling o | 0.1, 0.5, 1, 1.5, 2
leaking rate a 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
spectral radius p 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

Table 5.7: Range of DeepESN and shallowESN hyper-parameters values for model selec-
tion in BBS-10 task.

Table 5.8 shows the performance obtained by DeepESN and shallowESN on the
BBS-10 task.

[ Model [ TRMAE | VLMAE | TSMAE [TSR]
| DeepESN [ 4.1340.03 | 4.14£0.04 | 448+ 0.06 | 0.70 |
| shallowESN [ 4.17£0.02 | 418 £0.03 | 4.52+£0.06 | 0.69 |

Table 5.8: Training (TR), validation (VL), test (TS) MAEs, achieved by shallowESN
and DeepESN on the BBS-10 task. R values on the test set are reported as
well.

The results show that DeepESN outperforms shallowESN by 0.04 MAE. The
improvement of the performance achieved by DeepESN on this regression task
resulted significative with a p-value of 0.0156 which is computed performing the
Wilcoxon signed-rank test between DeepESN and shallowESN.

Although there are not big performance differences between DeepESN and ESN,
the comparison performed on benchmark task suggests that layering in DeepESN
model is able to improve the performance. Therefore, these results suggest that
the application of DeepESN deserves to be taken into consideration for further

researches in this field.

5.1.5 Conclusions

In this section we proposed an innovative learning system for the automatic
assessment of balance abilities in the elderly. The main scientific challenge tackled
by the study concerned assessing the feasibility of inferring the overall BBS score
(based on the clinical evaluation on all the 14 BBS exercises) on the basis of the
data streams collected by a Wii Balance Board during the execution by the subject
of a single BBS exercise. This study represents a positive answer to such a question,

showing that recurrent neural networks, modeled according to the principles of the
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RC paradigm, allow to effectively yet efficiently exploit (in an automatic fashion)
the richness of temporal dynamics contained in the data streams gathered from the
balance board to extract information that is relevant for the task of overall BBS

score estimation.

In order to train and experimentally validate the learning system, a measurement
campaign has been carried out on 21 volunteer users, gathering data pertaining
to the execution of a pool of 3 BBS exercises (i.e. #6, #7 and #10), considered
as the most clinically suitable for the aims of automatic BBS score estimation
from balance board data, and among these exercise #10 has been selected as the
benchmark task. The resulting Balance dataset has been made publicly available

and represents another relevant outcome of the work.

In order to develop an accurate system for the clinical analysis of balance
assessment, the final setup of the system is obtained evaluating the model on the
benchmark task considering the use of clinical data and weight sharing techniques.
The experimental analysis of the proposed system based on the RC approach on real-
world data, conducted by means of rigorous persons-out cross-fold validation, showed
a good predictive performance, allowing to accurately estimate the overall BBS
score with an average generalization error of 3.80 BBS points in test. Interestingly,
such a value is below the 7% of the whole BBS range (0-56) and it is even smaller
than the extent of the range of assignable points for each single BBS exercise (0-4),
ultimately suggesting that, with regard to the execution of one BBS exercise, the
learning models have been able to extract more information than the one that can
be provided by a clinician in terms of the score of a single exercise.

The proposed system The relevance of the results achieved with RC networks
has been further assessed through a performance comparison with other basic
neural networks models, generally showing a better generalization performance with
lower variability, and a favorable ratio among training, validation and test errors.
Moreover, in comparison with literature works, our approach showed a favorable

trade-off between predictive performance and intrusiveness.

Overall, the system proposed in this work compares well with the state of the art.
The RC approach show better generalization performance with lower variability
with respect to other literature approaches. Moreover, in comparison with literature
works, our approach showed a favorable trade-off between predictive performance
and intrusiveness. The system proposed in this work represents an automatic tool
for the accurate estimation of a users’ score at the BBS test (of ~ 15-20 minutes

of duration) from the execution of only one exercise of the test (of ~ 10 seconds
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of duration, i.e. &~ 1% of the duration of the whole test), thereby resulting in a
tremendous time saving in the task of monitoring balance stability in elderly people.
The system is characterized by limited obtrusiveness since it does not require the
subject to wear any sensor. In this respect, it appears of straightforward use and
particularly suitable for autonomous usage. Clinical and experimental evidence has
in fact highlighted how the BBS exercise selected for our setup is of simple and safe
execution and can be performed even without supervision by a clinician.

Finally, we performed further experimental evaluations on the benchmark task
in order to compare the DeepEESN model with the shallow counterpart. The results
showed that the DeepESN model outperforms the shallowESN model in terms of
performance. Therefore, DeepESN deserves to be considered as a good applicative

solution for further works in this field.

5.2 Diagnosis of Parkinson'’s Disease

In this section, we present a novel application approach for the diagnosis of
Parkinson’s Disease based on DeepESN model. In Section 5.2.1, we briefly describe
the application background. Moreover, in Section 5.2.2 we present the results

achieved by our approach. Finally, in Section 5.2.3 we draw the conclusions.

5.2.1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease that mainly affects
the extrapiramidal motor system causing tremor, bradykinesia, rigidity and loss
of postural reflexes [102]. The analysis of motor capacities such as handwriting
and sketching abilities of patients is performed to assess and diagnose PD [161].
While handwriting abilities are influenced by language capacities, sketching abilities
involved in the execution of a spiral test (i.e., drawing a spiral with a pen) are
considered as measures independent of education [161]. An example of application
of Deep Learning models for PD classification, applied directly to images of spiral
tests, is introduced in [147]. In [217] it is introduced a study on PD diagnosis
through statistical methods based on the analysis of velocity and the pen pressure
data collected from a tablet device during the execution of the spiral test.

Here, we propose a novel approach for diagnosis of PD based on RNNs that are
able to robustly exploit the whole time course of noisy and heterogeneous time-series

data collected from a tablet device during the execution of spiral tests. Moreover,
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we consider the Reservoir Computing (RC) framework (see Section 2.4.1) that
obtained state-of-the-art results in the clinical assessment application presented in
the previous Section 5.1 which is related to the study of neurological diseases. In
Particular, in this application we aim to exploit the ability of DeepESN model in the
processing of signal characterized by multiple time-scale dynamics (see Section 3.2)
to for the study of PD through the analysis of tablet signals.

We assess our approach for diagnosis of PD on a publicly available dataset of
spiral tests introduced in [93]. Moreover, in order to investigate the practical
relevance of using layered recurrent architectures in this domain, the experimental
analysis is also conducted in comparison to the shallowESN model. Finally, we
evaluate the results achieved by ensembling the realizations of the selected model,

in order to improve our application approach in terms of classification performance.

5.2.2 DeepESNs for Diagnosis of PD through Spiral Tests

We evaluated the proposed DeepESN model on the spiral dataset described in [93].
This dataset is publicly available on the UC Irvine Machine Learning Repository?.
The dataset is composed by spiral tests executed on a tablet device by 61 PD
patients and 15 control patients without PD. For each time-step, the time series
gathered from the tablet contain pen position (x and y components), pen pressure
and grip angle. In our method, the models were fed directly with such signals
without feature extraction or data preprocessing. Note that, the whole temporal
signal generated by the tablet potentially contains a richer information than static
preprocessed features, thereby a RNN model can be more effective on the analysis
of this kind of data. Figure 5.5 a), 5.5 b), 5.5 ¢) and 5.5 d) show (x,y) pen position,
pen pressure and grip angle gathered at each time-step from tablet during the
execution of the test by a control (Figure 5.5 a), 5.5 ¢)) and a PD (Figure 5.5 b),
5.5 d)) patient. As we can note, by visual inspection the sketches showed in Figure
5.5 a) and 5.5 b) are quite similar and consequently the classification task is not
trivial in such cases. Moreover, from Figure 5.5 ¢) and 5.5 d) it is possible to see
that the signals relative to pen pressure and grip angle are rather noisy, therefore,
the analysis of such kind of data without feature extraction can be challenging since
we need a noise-robust approach to perform a correct classification.

For the output computation of the network we considered mean state mapping

(see Equation 2.10). We evaluated the generalized performance of the proposed

2<https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+
Using+Digitized+Graphics+Tablet>
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Figure 5.5: Pen positions (1st row), pressure and grip angle (2nd row) gathered for a
control (Figure a), ¢)) and a PD (Figure b), d)) patient.

approach through a 3-fold cross validation, inserting in each fold 20 (or 21) PD
and 5 control patients. We considered a 10-layered DeepESN (i.e. Ny = 10) with
the same number of Ny units per layer and a leaky integrator of o) = 0.1 for
each layer [. The rest of the DeepESN hyper-parametrization were selected from
the ranges reported in Table 5.9, on a validation set by an extra level of 5-fold
validation on each fold. For each hyper-parametrization, we generated 10 reservoir

guesses, averaging the results on such guesses.

Hyper-parameter

recurrent units per layer N | 10,20, 30, 40, 50
input scaling o 0.1, 0.5, 1, 2
inter-layer scaling & 0.1, 0.5, 1, 2
spectral radius p 0.7, 0.8, 0.9, 1.0
readout regularization \, 0,107%,107°, ..., 10"

Table 5.9: Range of DeepESN hyper-parameters values for model selection.

Table 5.10 shows the accuracies and the standard deviations on reservoir guesses
(in parenthesis) obtained by DeepESN and shallowESN in PD classification task.
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In order to perform a fair comparison, we selected the shallowESN (i.e., 1-layered
DeepESN) considering the same hyper-parameters ranges as for DeepESN and the
same range of total number of recurrent units (i.e. 100-500), where the specific

choice depends on the fold of the 3-fold cross validation. Interestingly, DeepESN

Model TR VL TS
DeepESN | 94.27% (1.18%) | 86.57% (2.62%) | 87.20% (2.78%)
shallowESN | 91.60% (0.56%) | 83.62% (3.39%) | 84.13% (2.63%)

Table 5.10: Accuracies and standard deviations on reservoir guesses (in parenthesis)
obtained by DeepESN and shallowESN in validation, training and test.

model outperformed shallowESN in training, validation and test set of 2.67%,
2.95% and 3.07% of accuracy respectively. This comparison result suggests that
the ability of DeepESN in providing a hierarchical temporal representation of input
signals with complex dynamics allows us to improve the performance on this kind
of tasks. For completeness, we statistically compared the accuracies obtained
on test set by DeepESN and shallowESN models through McNemar’s test (a x?
variant). Classification accuracies obtained by DeepESN and shallowESN resulted
significantly different with a p-value of 0.0032.

To exploit the variability provided by different reservoir guesses, we evaluated the
selected model considering an ensemble approach. Accordingly, the classification
was performed averaging the output of the different guesses of the selected model.
Results are reported in Table 5.11, and show that the ensemble approach allowed
DeepESN to achieve improved performance in training, validation and test set of
0.40%, 2.95% and 2.13% of accuracy respectively. Overall, our proposed automatic
system obtained a test accuracy of 89.33% with a sensitivity (percentage of PDs
correctly classified) and a specificity (percentage of controls correctly classified) in
test set of 90.00% and 80.00% respectively.

Model TR ACC | VL ACC | TS ACC | TS SEN | TS SPEC
DeepESN | 94.67% 89.52% | 89.33% | 90.00% | 80.00%

Table 5.11: Accuracy (ACC), sensitivity (SEN) and specificity (SPEC) obtained by
ensemble of DeepESN in training (TR), validation (VL) and test (TS) set.

For what concerns the comparison with the state of the art, results of DeepEESN
in this experiments compare well with literature approaches recently devised on
the same type of input data. In particular, in [217], a method is introduced
for diagnosis of PD based on the analysis of spiral tests gathered from a similar

tablet device, achieving a classification accuracy in PD identification of 79.1%.
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Interestingly, our approaches outperform such method obtaining a test accuracy of
84.13%, 87.20% and 89.33% achieved by shallowESN, DeepESN and ensemble of
DeepESNSs respectively. This comparison further indicates that, contrary to what
might appear at first glance from the example in Figure 5.5, simple statistics on
the input signals, e.g. pressure data, are not rich enough to accurately discriminate
PD?, while our approach can capture relevant information from the whole temporal

signal, allowing to effectively improve such results.

5.2.3 Conclusions

In conclusion, we proposed a novel approach for diagnosis of PD based on
DeepESN model. The deep recurrent model is fed by the whole time series gathered
from a tablet during the sketching of spiral tests. We performed a comparative
assessment of our approach on a public dataset containing spiral tests executed by
PD and control patients. Results showed that the predictive accuracy obtained
by DeepESN significantly outperforms the result of shallowESNs, highlighting the
potential benefits of deep recurrent architectures in the treatment of temporal signals
for PD diagnosis. Moreover, the use of ensemble method on the selected DeepESN
model led to a further performance enhancement. Overall, the proposed approach
compared well also with respect to state-of-the-art results, further stressing the
potentiality of exploiting the whole richness of temporal signals for PD diagnosis.

At the best of our knowledge, this work represents the first attempt to develop
an approach for diagnosis of PD by using recurrent models, such as DeepESN, able
to develop hierarchical temporal representations from tablet signals without the

need of feature extraction and data preprocessing.

5.3 High-dimensional Time series: Prediction and

Classification

In the previous sections of this Chapter, we focused our work on the introduction
of original application solutions in the field of Health Informatics. This also allowed
us to evaluate the practical relevance in using deep RC architectures in medical
applications.

Here, we focus the studies on the analysis and the evaluation of the modeling

approaches proposed in this thesis on real-world benchmarks characterized by

3Correlation between averaged pressure and PD in the dataset used in our work is weak (—0.31).
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high-dimensional time series. Thereby, we experimental assess the DeepESN
model introduced in Chapter 3 and the design approaches defined in Chapter 4 on
challenging time-series prediction and classification real-world tasks.

In Sections 5.3.1 and 5.3.2 we present the experimental results obtained on
polyphonic music and speech recognition tasks respectively comparing our approach
with the applicative state of the art. Moreover, in Section 5.3.3 we experimentally
analyze the filtering effect over the depth of deep RNNs using spectral analysis
approaches (defined in Section 4.2) on polyphonic music and speech recognition
tasks. Finally, in Section 5.4 we perform a model comparison between DeepESN and
typical fully trained RNNs on 4 polyphonic music tasks which represent challenging

real-world benchmarks for time-series prediction on high-dimensional sequences.

5.3.1 Polyphonic Music Tasks

Here, we evaluate our model on polyphonic music tasks defined in [23]. In
particular, we consider two datasets, namely Piano-midi.de* and MuseData’. These
datasets are characterized by high dimensionality and complex temporal depen-
dencies involved at different time scales, forming interesting benchmarks for RNNs
[13]. The two datasets are characterized by complex piano and orchestral composi-
tions with a number of simultaneous notes that ranges from 0 to 15. The musical
compositions are represented by piano-rolls that were preprocessed from MIDI
files. Training, validation and test sets of preprocessed piano-rolls are available on
the website® of the authors of [23|. Table 5.12 shows the main characteristics of

Piano-midi.de and MuseData preprocessed piano-rolls as provided in [23].

’ Dataset ‘ Split ‘ # Samples ‘ Avg len ‘ Min len ‘ Max len ‘
Training 87 872.5 111 3857
Piano-midi.de | Validation | 12 711.7 209 1637
Test 25 761.4 65 2645
Training 524 467.9 9 3457
MuseData Validation | 135 613.0 63 3723
Test 124 518.9 45 4273

Table 5.12: The main characteristics of the preprocessed piano-rolls samples in training,
validation and test set, as defined in [23].

4Classical piano MIDI archive www.piano-midi.de
SLibrary of orchestral and piano classical music from CCARH www.musedata.org
Syww-etud.iro.umontreal.ca/~boulanni/icml2012
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In this representation, a musical composition is a sequence of 88- and 82-
dimensional vectors for Piano-midi.de and MuseData tasks, respectively. In both

cases, at each time-step a variable is set to 1 if the note is played and to 0 otherwise.

A polyphonic music task is a next-step prediction task on high-dimensional
vectors. In particular, the aim of the tasks is to predict the notes played at time-
steps t + 1 (i.e., the vector u(t + 1)) given the notes played at time-step ¢ (i.e., the
vector u(t)). In order to compare and evaluate the classification performance of
the models, we measured the expected frame-level accuracy (FL-ACC) defined as

in [11] and adopted in polyphonic music tasks in [23], computed as follows:

FL-ACC = — Z;; TP() - , (5.3)
D TP() + 32, FP(t) + 32, FN()

where T is the total number of time-steps of all sequences (i.e., musical compositions)
considered for the evaluation and T'P(t), FP(t) and FN(t) are respectively the
number of true positive notes, false positive notes and false negative notes predicted

at time-step t (i.e., the vector y(t)).

In our experiments on these tasks, we used reservoirs initialized with 10% of
connectivity. For what regards DeepESN, the model selection process is performed
by considering recurrent layers with a number of units per layer Ny varying
in {50, 100,200}. As regards readout training, we used ridge-regression with a
regularization parameter A, in {0,1073,1072,1071,10°}. We performed the design
Algorithm 4 considering a number of maximum recurrent layers M; = 50. All
other aspects of experimental setup were as described in Section 4.2.3, and the
remaining hyper parameters were chosen (for model selection purposes) from the
same ranges as shown in Table 4.1. To assess the effectiveness of the proposed
methodology, we compared the performance achieved by DeepESNs built using the
method proposed in Section 4.2, with the one obtained by shallowESNs, considering
the same ranges for hyper-parameters values shown in Table 4.1 and a range of
total recurrent units in 1000 — 7000 and 1000 — 7200 (with a step of 200), for
Piano-midi.de and MuseData respectively. Moreover, we compared the performance
obtained by our model with the state-of-the-art approach that achieved the best
FL-ACC results on the considered tasks [23], namely RNN-RBM. RNN-RBM is
a sequence of Restricted Boltzmann machines (RBMs) whose parameters are the
output of a deterministic RNN with proper constraint on the distribution of hidden
units [23]. Other examples of applications that assess the performance of RNNs

models using the FL-ACC measure on the considered polyphonic music tasks are
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presented in [143], in which however the pre-processing of piano-rolls is different”

and, as this affects the performance, the corresponding results are thereby difficultly

comparable.
‘ Model ‘ Piano-midi.de ‘ MuseData ‘
DeepESN 33.22 (0.12) % | 36.43 (0.05) %
shallowESN 31.76 (0.08) % 35.31 (0.03) %
RNN-RBM |[23] | 28.92 % 34.02 %

Table 5.13: FL-ACC (and standard deviation on reservoir guesses, shown in parenthe-
ses) obtained on the test set of the Piano-midi.de and MuseData tasks by
DeepESN, shallowESN and RNN-RBM.

Table 5.13 shows the FL-ACC obtained on the test set by DeepESN, shallowESN
and RNN-RBM on Piano-midi.de and MuseData tasks. In Piano-midi.de task, the
hyper parameters that obtained the best performance on the validation set are
Np, =35, Ng = 200, p = 0.1, scaley, = 0.1, a = 0.7, orp = 0.1 and A\, = 10~ for
DeepESN, and Ny = 1, Ng = 5000, p = 0.5, scaley, = 0.01, a = 0.1, op = 0.1
and )\, = 1072 for shallowESN. While for what regards MuseData task, the hyper
parameters that obtained the best performance on the validation set are N;, = 36,
Ny =200, p = 0.1, scaley, = 0.1, a = 0.7, orp = 0.1 and A\, = 1072 for DeepESN,
and N, = 1, N = 6000, p = 0.3, scales; = 0.01, a = 0.3, op = 0.1 and
A = 1072 for shallowESN. Noteworthy, our approach achieved the best results on
both the tasks, outperforming the state-of-the-art RNN-RBM model and leading
to an improvement of the test accuracy of 4.30% and 2.41% for Piano-midi.de and
MuseData, respectively. Moreover, DeepESN outperforms shallowESN with an
improvement of 1.46% and 1.12% FL-ACC on Piano-midi.de and MuseData tasks,
respectively.

These results highlight the effectiveness of the proposed design approach to
manage complex high-dimensional time series on real-world tasks without re-training
the readout for each configuration of the number of layers considered, outperforming
at the same time the shallowESN.

We next analyzed how the choice of the number of layers performed by the
design algorithm allows the DeepESN architecture to reach a good performance.

To this end, we evaluated the quality of our design method by comparing the

“Table 5.12 shows the characteristics of preprocessed piano-rolls provided by the authors of
paper [23] in which are defined the polyphonic music tasks. Note that the characteristics of
preprocessed piano-rolls in Table 1 of paper [143] are different.
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results obtained considering progressively more layers in the DeepESN architecture
with the performance achieved by shallowESN with the same total number of
recurrent units. To evaluate the choice performed by the design algorithm, we
re-trained the readout for each number of recurrent layers until the number of layers
selected by the design algorithm is reached, i.e. 35 for Piano-midi.de and 36 for
MuseData. Thereby, for DeepESN we considered an architecture with reservoirs
composed by 200 recurrent units each, and with a number of layers chosen in the
range {5, 10, 15, 20, 25, 30, selected _layers} where selected layers equals 35 and
36 for Piano-midi.de and MuseData respectively. Accordingly, the number of total
units considered for shallowESN is {1000, 2000, 3000, 4000, 5000, 6000, max__units}
where maz _units is 7000 and 7200 for Piano-midi.de and MuseData, respectively.
For each configuration of the number of DeepESN layers (total number of units
for the shallowESN), the networks were selected on the basis of the performance
achieved on the validation set considering values of the hyper-parameters chosen

from the ranges defined in Table 4.1.

Figures 5.6 and 5.7 show the validation FL-ACC obtained by DeepESN and
shallowESN on Piano-midi.de and MuseData, respectively, for increasing number of
layers and total number of recurrent units. For the sake of graphical comparison, in
the same figures we also plotted the test performance achieved by RNN-RBM in [23]
as a horizontal dashed line. As we can see from both Figures 5.6 and 5.7, DeepESN
always performs better than shallowESN for every number of total recurrent units
considered. Furthermore, the comparative plots clearly show that DeepESNs are
able to reach (and even outperform) the performance achieved by shallowESNs
with a much larger number of recurrent units, e.g. a DeepESN with only 1000 total
recurrent units reaches a similar performance to what achieved by a shallowESN
with a total reservoir size of 3000. Results in Figures 5.6 and 5.7 also point out
that the choice of the design algorithm to select 35 layers for Piano-midi.de and 36
layers for MuseData is appropriate, especially in light of the saturation effect on the
performance that can be appreciated in both cases after 30 layers. Moreover, looking
at the relation between validation and test performance, we observed that DeepEESN
obtained validation FL-ACCs of 32.61 and 37.76 on Piano-midi.de and MuseData,
respectively, with a deviation of 0.39 and 1.33 FL-ACCs from correspondent test
errors. Such results highlight the effectiveness of the design choice also in what
concerns the generalization error. Overall, in the studied cases, these results show
the good ability of our approach in the automatic selection of the proper number

of recurrent layers, also approaching challenging real-world tasks, reaching a good
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performance able to outperform the state-of-the-art results and at the same time

avoiding to build up a too complex model.
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Figure 5.6: Comparison between the FL-ACCs (and standard deviations on reservoir
guesses represented by vertical intervals) obtained on the validation set of
the Piano-midi.de task by DeepESN and shallowESN, considering a number
of recurrent layers in the range 5 — 35 and, correspondingly, a total number
of recurrent units in the range 1000 — 7000 (results are obtained through
model selection individually performed for each number of layers or total
recurrent units for shallowESN). The dashed line at the bottom represents
the test set performance achieved by RNN-RBM in [23].
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Figure 5.7: Comparison between the FL-ACCs (and standard deviations on reservoir
guesses represented by vertical intervals) obtained on the validation set of
the MuseData task by DeepESN and shallowESN, considering a number of
recurrent layers in the range 5 — 36 and, correspondingly, a total number
of recurrent units in the range 1000 — 7200 (results are obtained through
model selection individually performed for each number of layers or total
recurrent units for shallowESN). The dashed line at the bottom represents
the test set performance achieved by RNN-RBM in [23].

5.3.2 Speech Recognition

Here, we consider the isolated spoken digit recognition task discussed in [201].
This is a widely used task in the RC context (see e.g. [200, 154, 155]), and it is
characterized by multiple time-scales dependencies in high-dimensional sequences.
The problem is modeled as a multi-class classification task, and it consists in
recognizing ten (zero to nine) isolated spoken digits. Each digit is spoken 10 times
by 5 different speakers. The 500 spoken digits are randomly split into training and
test sets, each containing 250 sequences. As in works [200, 154, 155], the model
selection is performed by 10-fold cross-validation on the training set, and the error
is evaluated using the Word Error Rate (WER). As proposed in [200], the speech

audio was preprocessed using a biological model of the human cochlea by [122],
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resulting in a 77-channel cochleagram.

For what regards DeepESN, the model selection process is performed as in
Section 5.3.1. Moreover, the performance obtained by DeepESN is compared with
the one achieved by shallowESN model, considering a range of total recurrent units
in 50 — 550 (with a step of 50). For this task, the design algorithm selected a
DeepESN with 11 recurrent layers.

| Model | Test WER |

DeepESN | 0.0028 (0.0005)
shallowESN | 0.0530 (0.0318)
SRC [154] | 0.0081 (0.0022)
CRJ [155] | 0.0046 (0.0021)

Table 5.14: Test WER (and standard deviation on folds, shown in parentheses) obtained
on the speech recognition task by DeepESN, shallowESN, SRC and CRJ.

Table 5.14 shows the test WER obtained by DeepESN designed with the proposed
design algorithm, shallowESN, Simple Circular Reservoir (SCR) [154] and Circular
Reservoir with Jumps (CRJ) [155]. The hyper parameters that obtained the best
performance in validation set are N, = 11, Ng = 50, p = 0.7, scale;, = 10, a = 0.1,
o = 0.1 and A, = 107! for DeepESN and N;, = 1, Ny = 250, p = 1, scaley, = 10,
a=0.1, orp = 0.1 and \, = 1073 for shallowESN. As results show, on this task the
difference between the performance of DeepESN and shallowESN is remarkable,
with a gap of 0.0502 WER on the test set. Note that, the state-of-the-art approaches
SRC and CRJ, already reached good results in this task with respect to shallowESN,
achieving a test WER of 0.0081 and 0.0046, respectively. Moreover, such results
are obtained by CRJ and SCR models using 300 recurrent units. We can note from
Figure 5.8 that the error obtained by DeepESN using 300 recurrent units remains
lower than the error achieved by such models considering the same number of free
parameters.

Remarkably, the number of layers selected by the proposed design algorithm
allows the DeepESN model to outperform the state of the art, reaching a test
performance that is almost 4 and 2 times better than SRC and CRJ, respectively.

The effectiveness of the proposed approach is investigated by considering the
results obtained by re-training the readout of DeepESNs with a progressively larger
number of recurrent layers. Specifically, in this case the number of recurrent layers
in the DeepESN architecture varied in the range 1 — 11, while the total number of

recurrent units was in the range 50 — 550. The other hyper-parameters values were
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chosen from the ranges in Table 4.1. Also in this case, the experimental analysis
was conducted in comparison to the results achieved by shallowESN under the same
experimental settings and with the same total number of recurrent units.

Figure 5.8 shows the validation WERs obtained by DeepESN and shallowESN by
re-training the readout in correspondence of networks settings with a progressively
larger number of layers (and recurrent units) in the architecture. In the same figure,
we also indicated the test WERs achieved by the state-of-the-art models on the
task, i.e. SRC and CRJ, as horizontal dash-dotted and dashed lines, respectively.
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Figure 5.8: Comparison of WERs (and standard deviations on folds represented by
vertical intervals) obtained on the validation set by DeepESN and shallowESN
considering a number of recurrent layer in the range 1—11 and a total number
of recurrent units in the range 50 — 550 on speech recognition task (results are
obtained through model selection individually performed for each number of
layers or total recurrent units for shallowESN). The horizontal dash-dotted
and dashed lines respectively represent the test set performance achieved by
SRC and CRJ in [155].

From Figure 5.8 we can see that DeepESN outperformed the shallowESN also on
this task, for all the cases of total number of recurrent units considered. Moreover, we
can see that DeepESNs required a smaller number of units to reach and outperform
the performance of shallowESNs. For example, from the plot in Figure 5.8 we

can see that DeepESNs with only 150 units in total were already able to beat the
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results of shallowESNs with even up to more than three times larger reservoirs
(i.e. up to 550 units). In general, we can see that for increasing number of layers
the validation performance of the DeepESN continues to improve (i.e. the WER
continues to decrease), with a saturation effect that can be observed also in this
case. Finally, note that the DeepESN with 11 layers obtained a validation WER of
0.0024, with a corresponding test WER of 0.0028 (i.e. the validation-test deviation
is ~ 4 x 107* WER) which suggests that the choice made by our proposed design

method results effective also with respect to the generalization error.

5.3.3 Experimental Analysis of Depth on Real-world Tasks

In this section, we empirically evaluate how the spectral centroid of reservoir
states, computed by Algorithm 3 on the layers of the DeepESN, varies with the
depth of the stacked recurrent architecture on the considered real-world tasks (see
Section 4.2.4 for methodological details). The aim is to assess the considered 7 value
as well as to evaluate the effectiveness of the Algorithm 4 and the stop condition
defined in Equation 4.1 on the considered real-world tasks.

Figure 5.9 shows the trend of the spectral centroid obtained from the state of
each recurrent layer of the DeepESN, optimized on the speech recognition task
and considering the value of n = 0.01. The red vertical line represents the number

of selected layers.  As in the case of FBC task (see Section 4.2.4), the layers
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Figure 5.9: Spectral centroid computed on the state of DeepESN layers optimized on
speech recognition task. The red vertical line indicates the number of layers
selected by the design algorithm. Threshold n value is set to 0.01. Normalized
Frequency is expressed in cycles per second (cyc/s).

progressively apply a low-pass filter to the signal. Moreover, also in this case,

we can note that numerical FFT errors lead to small fluctuations of the spectral
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Figure 5.10: Spectral centroid computed on the state of DeepESN layers optimized
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by the design algorithm. Threshold 5 value is set to 0.01. Normalized
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centroid after convergence. From this, we can observe that also for this task the
value of n = 0.01 for the stop condition in Equation 4.1 is adequate to reach a point
near the convergence.

For what regards the polyphonic music tasks (defined in Section 5.3.1), Figures
5.10 and 5.11 show the spectral centroid obtained from the state of each recurrent
layer of DeepESN optimized on the Piano-midi.de and MuseData tasks respectively.
Note that, differently from the cases of FBC (in Figure 4.4) and speech recognition
(in Figure 5.9) tasks, the spectral centroid shifts progressively on high frequencies.
This can depend on many factors such as leaky integration, spectral radius of W,
input scaling and IP adaptation. Please note that, although these empirical results
on high-pass filtering are very interesting in themselves, the analytical study of this
aspect in relation to the hyper-parameterization of the reservoirs is out of the scope
of this work. However, even in this case, the filtering effect becomes progressively
negligible in determining the convergence of the spectral centroid. Moreover, we
can note that the trend of the spectral centroid is smooth and the convergence is
asymptotic. This is a reason why the 7 value should be greater than 0. However,
on these tasks the spectral centroid (Figures 5.10 and 5.11) and the performance
(Figures 5.6 and 5.7) tend to saturate, thus leading to small differences for both
the number of selected layers and the performance obtained if 7 is set to values
smaller than 0.01 (see considerations regarding the performance obtained on these
tasks in Section 5.3.1). Overall, we can conclude that on all considered cases, the
value of n = 0.01 resulted to be an empirically adequate threshold for the stop
condition (Equation 4.1) of the proposed design algorithm. Nevertheless, it is worth
to observe that the methodology assumed by looking at the trend of the spectral
centroid over the layers, similarly to the plots shown in this section, can be used to

fix a value of n tailored to different tasks.

5.4 Comparison Between DeepESNs and Gated
RNNs

In this section we investigate different approaches to RNN modeling (i.e., un-
trained stacked layers and fully-trained gated architectures), through an experi-
mental comparison between RC and fully-trained RNNs on challenging real-world
prediction tasks characterized by multivariate time series. In particular, we per-
form a comparison between DeepESN, LSTM and GRU models (see Section 2.3
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for RNN architectures description) on polyphonic music tasks described in Sec-
tion 5.3.1. For the sake of completeness, in this comparison we take into account
all 4 polyphonic music tasks introduced in 23], namely Piano-midi.de, MuseData,
JSBchorales® and Nottingham®. These applications concern next-step prediction
tasks in which data is composed by 88-, 82-, 52- and 58- dimensional sequences for
Piano-midi.de, MuseData, JSBchorales and Nottingham tasks, respectively (See
Section 5.3.1 for further details). Since these datasets are characterized by sequences
with high-dimensionality and complex temporal sequences, these challenging tasks
are particularly suitable for RNNs evaluation [13]. Moreover, we consider ESN
and simple RNN (Simple Recurrent Network - SRN) as baseline approaches for
DeepESN and gated RNNs, respectively. The models are evaluated in terms of
predictive accuracy and computation efficiency.

In a context in which the model design is difficult, especially for fully-trained
RNNs, we would provide a first glimpse in the experimental comparison between
different state-of-the-art recurrent models on multivariate time-series prediction
tasks which still lacks in literature.

Concerning DeepESN and ESN approaches, we considered reservoirs initialized
with 1% of connectivity. Moreover, we performed a model selection on the major
hyper parameters considering spectral radius p and leaky integrator a values in
{0.1,0.3,0.5,0.7,0.9, 1.0}, and input scaling o values in {0.5,1.5,2.5}. Training of
the readout was performed through ridge regression [99, 121] with regularization
coefficient A, in {107%,1073,1072,107'}. Moreover, based on the results of the
design analysis in [62] on polyphonic music tasks, we set up DeepESN with N = 30
layers composed by Nr = 200 units, and ESN with Ny = 6000 recurrent units.
We used an IP adaptation configured as in |61, 62] with a standard deviation of
op = 0.1.

For what regards fully trained RNNs, we used the Adam learning algorithm [106]
with a maximum of 2000 epochs. In order to regularize the learning process, we
applied dropout methods, a clipping gradient with a value of 5 and an early stopping
with a patience value of 30. Then, we performed a model selection considering
learning rate values in {107 1073,1072,107'} and dropout values in {0.1,0.2,
0.3,0.4,0.5}.

Since randomized and fully-trained RNNs implement different learning approaches,

it is difficult to set up a fair experimental comparison between them. However,

8A corpus of 382 harmonized chorales by J. S. Bach with the split of Allan Williams (2005)
9A collection of 1200 folk tunes ifdo.ca/~seymour/nottingham/nottingham.html

145


ifdo.ca/~seymour/nottingham/nottingham.html

Model ‘total recurrent units|free parameters‘test ACC ‘computation time
Piano-midi.de
DeepESN|6000 540088 33.33 (0.11) %386
ESN 6000 540088 30.43 (0.06) % |748
SRN 652 540596 29.48 (0.35) % |3185
LSTM  |316 539816 28.98 (2.93) % 2333
GRU 369 539566 31.38 (0.21) % |2821
MuseData
DeepESN|6000 504082 36.32 (0.06) %|789
ESN 6000 504082 35.95 (0.04) % (997
SRN 632 503786 34.02 (0.28) % |8825
LSTM  |307 504176 34.71 (1.17) % 18274
GRU 358 503072 35.89 (0.17) % |18104
JSBchorales
DeepESN|6000 324052 30.82 (0.12) %|83
ESN 6000 324052 29.14 (0.09) % [140
SRN 519 323908 29.68 (0.17) % |341
LSTM  |254 325172 29.80 (0.38) % |532
GRU 295 323372 29.63 (0.64) % 230
Nottingham
DeepESN|6000 360058 69.43 (0.05) % |677
ESN 6000 360058 69.12 (0.08) % [1473
SRN 545 360848 65.89 (0.49) % |2252
LSTM {266 361286 70.00 (0.24) % (26175
GRU 309 359116 71.50 (0.77) % (11844

Table 5.15: free parameters and test ACC achieved by DeepESN, SRN, LSTM and GRU.

Computation time represents the seconds to complete training and test.

we faced these difficulties by considering a comparable number of free parameters
for all the models. The number of recurrent units and free parameters considered
in the models is shown in the second and third columns of Tab. 5.15. Each
model is individually selected on the validation sets through a grid search on
hyper-parameters ranges. We independently generated 5 guesses for each network
hyper-parametrization (for random initialization), and averaged the results over
such guesses.

In accordance with the different characteristics of the considered training ap-
proaches (direct methods for RC and iterative methods for fully-trained models)
we preferred the most efficient method in all the considered cases. Accordingly,
we used a MATLAB implementation for DeepESN and ESN models, and a Keras
implementation for fully-trained RNNs. We measured the time in seconds spent by
models in training and test procedures, performing experiments on a CPU “Intel
Xeon E5, 1.80GHz, 16 cores” in the case of RC approaches, and on a GPU “Tesla
P100 PCIe 16GB” in the case of fully-trained RNNs, with the same aim to give the
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best resource to each of them.

Tab. 5.15 shows the number of recurrent units, the number of free parameters, the
predictive accuracy and the computation time (in seconds) achieved by DeepESN,
ESN, SRN, LSTM and GRU models. For what regards the comparison between
RC approaches in terms of predictive performance, results indicate that DeepESN
outperformed ESN with an accuracy improvement of 2.90%, 0.37%, 1.68% and
0.31% on Piano-midi.de, MuseData, JSBchorales and Nottingha tasks, respectively.
Concerning the comparison between fully-trained RNNs, GRU obtained a similar
accuracy to SRN and LSTM models on JSBchorales task and it outperformed them
on Piano-midi.de, MuseData and Nottingham tasks.

The efficiency assessments show that DeepESN requires about less that one order
of magnitude of computation time with respect to fully-trained RNNs, boosting
the already striking efficiency of standard ESN models. Moreover, while ESN
benefits in terms of efficiency only by exploiting the sparsity of reservoirs (with
1% of connectivity), in the case of DeepESN the benefit is intrinsically due to
the architectural constraints involved by layering [62] (and are obtained also with
fully-connected layers).

Overall, the DeepESN model outperformed all the other approaches on 3 out
of 4 tasks, resulting extremely more efficient with respect to fully-trained RNNs.
This kind of comparisons in complex temporal tasks, that is practically absent in
literature especially for what regards efficiency aspects, offered the opportunity
to assess efficient alternative models (ESN and DeepESN in particular) to typical
RNN approaches (LSTM and GRU). Moreover, we assessed also the effectiveness of
layering in deep recurrent architectures with a large number of layers (i.e., 30).

Concerning fully-trained RNNs, GRU outperformed the other gated RNNs on 3
out of 4 tasks and it was more efficient than LSTM in most cases. The effectiveness
of GRU approaches found in our experiments is in line with the literature that
deals with the design of adaptive gates in recurrent architectures.

For what regards randomized RNNs, the results show that DeepESN is able
to outperform ESN in terms of prediction accuracy and efficiency on all tasks.
Interestingly, this highlights that the layering aspect allows us to improve the
effectiveness of RC approaches on multiple time-scales processing. Overall, the
DeepESN model outperformed other approaches in terms of prediction accuracy on
3 out of 4 tasks. Finally, DeepESN required much less time in computation time
with respect to the others models resulting in an extremely efficient model able to

compete with the state of the art on challenging time-series tasks.
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More in general, it is interesting to highlight the gain in the prediction accuracy
showed by the multiple time-scales processing capability obtained by layering in
deep RC models and by using adaptive gates in fully-trained RNNs in comparison
to the respective baselines (ESN and SRN, respectively). Also, it is particularly
interesting to note the comparison between models with the capability to learn
multiple time-scales dynamics (LSTM and GRU) and models showing an intrinsic
capability to develop such kind of hierarchical temporal representations (DeepESN),
which was completely lacking in literature.

In addition to provide insights on such general issues, this experimental assessment
would contribute to show a practical way to efficiently approach the design of learning
models in the scenario of deep RNN, extending the set of tools available to the
users for complex time-series tasks. Indeed, the first empirical results provided
in these experiments seem to indicate that some classes of models are sometimes
uncritically adopted, i.e. despite their cost, guided by the natural popularity due
to their software availability (GRU, LSTM). The same diffusion of software tools
deserve more effort on the side of the other models (DeepESN class), although the
first instances are already available!".

The superiority of DeepESN over fully-trained RNNs highlighted in these ex-
perimental assessments open the way for future works concerning the comparison
between DeepESN and gated RNNs in tasks where fully-trained RNNs results
dominant such as natural language processing [132], continuous speech recognition

[73] and encoder-decoder mechanisms [9, 186].

0DeepESN implementations are made publicly available for download both in MATLAB
(see https://it.mathworks.com/matlabcentral/fileexchange/69402-deepesn) and in
Python (see https://github.com/lucapedrelli/DeepESN).
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Conclusions

In this thesis we introduced a novel class of randomized deep RNNs explicitly
extending the RC framework to Deep Learning paradigm. The main research issues
addressed in our studies concern the investigation of the merits of layering in deep
recurrent architectures, the analysis and design of deep models through quantitative
and qualitative measures and the development of competitive and efficient deep
RNNs for real-world tasks characterized by multiple time-scales dynamics data.
The recourse to RC paradigm allowed us to analyze deep recurrent architectures
separately from learning algorithms aspects and at the same time to exploit the
efficiency that characterizes RC models.

We started with the experimental analysis to assess the intrinsic ability of
layering in developing a multiple time-scales differentiation among the deep RNN
architecture. In order to study and analyze the temporal features developed by
layering in deep RNNs, we introduced the DeepESN model characterized by a
hierarchy of non-linear recurrent layers and a linear output layer. The first layer is
fed by the external input, while the successive layers are fed by previous ones. The
recurrent layers are randomly initialized, whereas the output layer is trained by
using direct methods. The output of the network is computed through a weighted
sum of the states coming from all recurrent layers in the architecture. In this
way, the training phase allows the model to weights the contributions of the state
dynamics involved in the architecture. Moreover, we introduced a pre-training
algorithm for deep RNN based on IP algorithm. Thereby, the IP algorithm is
incrementally applied through the recurrent layers in unsupervised manner.

The importance of layering is assessed by comparing DeepESN with other specific
architectural variants used as baseline (i.e., DeepESN-TIA | GroupedESN and shal-
lowESN). In particular, DeepESN-IA is a DeepESN variant in which the external
input is provided to every hidden layer. Thereby, in this case, the distance from the

external input is the same for every layer, whereas in DeepESN higher layers are at
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increasing distances from the input. Another architectural baseline considered is
GroupedESN in which layers are fed only by the input and are not organized in a
stack. Note that in this architectural case, although the recurrent layers can provide
decoupled multiple time-scales dynamics, the temporal features are not developed
by the interplay between layers (as in DeepESN), since the distance between the ex-
ternal input and the network’s output is the same as in shallow RNNs. As a further
architectural baseline, we also considered the shallowESN, with the same number
of total reservoir units of deep RC counterpart. Overall, we compared DeepESN
with other architectural baselines in terms of multiple time-scales differentiation

and memory capacity varying RC parameters and applying the IP algorithm.

The empirical analysis on the considered model topologies show that the con-
strained characterization of DeepESN architectures, obtained by imposing the
hierarchical organization of layers, is crucial to enhance the filtering effect between
the input information and the output layer and to inherently improve the temporal
representation in terms of multiple time-scales differentiation, memory capacity and
quantity of entropy. This characterization is obtained even in the case in which all
the recurrent layers share the same hyper parameters. Moreover, we obtained an
enhancement of temporal differentiation developed by the architecture by varying
the RC parameters among the layers. Another relevant improvement in the richness
of temporal representation is achieved by applying progressively the IP algorithm
trough the layers. A further advantage obtained by the constraint characterization
of DeepESN is the efficiency of the state computation. Indeed, by comparison
with shallowESN, the DeepESN architecture with the same number of units has

significantly fewer recurrent weights.

In order to take a step forward in the study of temporal features developed by a
layered RNN, we introduced the L-DeepESN architecture as a variant of DeepESN
which implements linear activation functions. Through L-DeepESN, we performed
the frequency analysis of the temporal features developed by a stack of recurrent
layers. The use of linear activations allowed us to study the characteristics of the
frequency spectrum avoiding harmonic distortion effects in the frequency analysis
of network’s dynamics. Moreover, we provided an algebraic characterization of the
layered architecture to highlight the filtering effect of layering.

The analysis conducted with L-DeepESN highlighted an ordered structure of
frequency components intrinsically developed by the architecture. Indeed, higher
frequency components are progressively filtered in higher layers. The filtering effect

emerges also from the proposed algebraic characterization for layered architectures.
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Interestingly, we found that layering in recurrent architectures is intrinsically able
to develop hierarchical and distributed temporal features even without the use of

non-linear transformation (and without the training recurrent weights).

After the study of layering characterization, we introduced a novel design approach
to determine the number of layers in a DeepESN based on the frequency analysis
of the network’s state. Accordingly, we developed an efficient tool to analyze
the filtering effect progressively performed in the depth of a deep RNN. On the
experimental side, we have first refined the approach on a controlled scenario
characterized by predefined multiple time-scale dynamics, then, we assessed the
design approach on real-world tasks in the area of speech processing and polyphonic

music.

Through the design tools introduced in this thesis, we analyzed the filtering effect
among the recurrent layers of a DeepESN. On the one hand, this approach allowed
us to efficiently design deep RNNs avoiding to perform the training algorithm
for each possible number of recurrent layers. On the other hand, differently to
other literature approaches, our method achieved competitive results exploiting
the temporal representation developed by many recurrent layers (>30). Moreover,
the design tools allowed us to find another interesting result in the study of the
filtering effect in recurrent layers. Indeed, contrary to other cases in literature in
which recurrent layers act as a low-pass filter, our empirical analysis showed that it

is also possible to produce an high-pass filtering effect by using the IP algorithm.

For what regards the experimental assessments on real-world tasks, we introduced
novel applications based on RC paradigm and we evaluated the DeepESN model

on all tasks for different purposes.

First, we introduced a novel learning system for human balance assessment
through the RC paradigm. The system is based on estimating the berg balance
scale score from the stream of sensor data gathered by an electronic balance board.
In order to develop the system, we collected a new dataset gathering the data
from the execution of exercises on the electronic balance board by volunteer users.
We compared the RC approach with different basic learning models. The results
highlighted the ability of the RC approach in capture relevant information from
the whole temporal signal, allowing to effectively improve state-of-the-art results in
BBS estimation. For the aim of this thesis, we also compared the DeepESN model
with the shallow counterpart on the baseline exercise task in order to assess the
advantage of layering in terms of performance. The DeepESN model obtained a

performance improvement with respect to the shallow counterpart on the balance
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assessment task.

Another medical application developed concerns the diagnosis of Parkinson’s
disease through DeepESN model. The model is evaluated on a public dataset of
spiral tests and compared with the shallow counterpart. The experiment assessment
shows that the DeepESN model outperforms the shallowESN model and the other
literature approaches in this kind of datasets. The results presented in this thesis
suggest that the proposed approaches are suitable for medical applications composed

by noisy signals characterized by multiple time-scales dynamics.

Finally, we assessed the DeepESN model on challenging real-world tasks in the field
of sequence classification and time-series prediction. We analyzed and evaluated our
design approach for DeepESN on speech recognition and polyphonic music tasks. In
particular, since polyphonic music tasks are characterized by high-dimensional time
series, heterogeneous sequences and sparse vector representations, they represent
good real-world benchmarks for time-series prediction. Therefore, on 4 polyphonic
music tasks, we compared the DeepESN model with typical state-of-the-art RNNs
in time-series processing namely SRN, GRU and LSTM.

The experimental assessments showed that DeepESN outperforms the shallow
counterpart on all considered tasks. Moreover, DeepESN resulted competitive
with the other RC approaches and the fully trained RNNs of the state of the art.
Interestingly, DeepESN outperformed all the considered gated RNNs on 3 out of 4
time-series prediction tasks based on 4 polyphonic music datasets obtaining better

training time performances.

Overall, the analysis conducted on DeepESN model highlighted that the layering
aspect in deep RNNs intrinsically enables to develop rich representations of tempo-
ral information characterized by multiple time-scales dynamics. These results are
supported by quantitative and qualitative experimental evaluations. Indeed, the
analysis showed that layering in deep recurrent architectures improves the richness
of temporal representation in terms of time-scales differentiation, entropy, memory
capacity and performance. Moreover, the filtering effect operated by hierarchy of
layers intrinsically develops an ordered structure of frequency components among
the layers. Through quantitative and qualitative measures, we introduced a design
tool that allowed us to select the number of layers of deep recurrent architectures
avoiding expensive trial and error procedures. The combination of randomized
RNNs and Deep Learning paradigm allows DeepESN architectures to exploit the
intrinsic characterization of layering, developing rich temporal representations, with-

out the training of hidden layers. Hence, this provide extremely efficient solutions
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for deep recurrent architecture avoiding the typical difficulties in training deep
models and RNNs. Finally, the empirical analysis on challenging real-world tasks
characterized by multiple time-scales dynamics highlighted that DeepESN models
are extremely more efficient than fully trained RNNs, they are also competitive in

terms of accuracy with the state-of-the-art approaches.

The studies and the approaches presented in this thesis open the way for future
works. Concerning filtering aspects, the qualitative analysis on the considered
tasks empirically showed that recurrent layers of a DeepESN can act as a low-pass
filter but also as a high-pass filter. Therefore, further investigations could concern
analytical /theoretical studies on the characterization of the filtering effect operated
by recurrent layers in deep RNNs. In particular, we could analytically study which
are the hyper parameters and parameters factors that determine the kind of filtering
effect.

The design approach for randomized deep RNNs proposed in this thesis could also
be considered to study the architectural initialization of fully trained multi-layered
architectures with stochastic gradient descent approaches. This is particularly
interesting in consideration of the difficulties that are typically encountered in
training deep networks. Indeed, initialization approaches based on pre-training
analysis can influence the efficiency and the stability of gradient based algorithms
in deep nonlinear networks.

Giving the good efficiency provided by our approaches, the evaluation of DeepESN
on other relevant applications characterized by bigger datasets in the field of natural
language processing and computer vision deserves to be investigated. Moreover,
in addition to the comparison presented in this thesis, it would be interesting to
perform further comparisons between DeepESN; fully trained deep RNNs and other
recent literature approaches in RNN field.

Another line of research could regard the design and the implementation of other
advanced methods for fully trained RNNs such as attention and encoder-decoder
mechanisms [9, 186] in DeepESNs approaches. The difficulty in this case is to
combine direct and iterative learning algorithms with randomized RNNs.

Finally, in this thesis we presented suitable approaches for sequence modelling.
Further works could generalize this methods in order to model more general struc-
tures such as trees and graphs [46, 57]. This would allow us to evaluate the proposed
analysis and design approaches on a wide range of application fields characterized

by structured information.
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